

User Manual

Element Management System for Digivance Application Version 4.0 for SDR P/N 1282804 ADCP-75-166

The **Broadband** Company[™]

Element Management System

User Manual

ADCP-75-166

Part Number 1282804 Rev A

About This Manual

This manual tells how to install and use the Digivance[™] Element Management System (EMS), version 4.0 for Software-Defined Radio (SDR) applications. EMS is a software application that may be used on a PC or laptop computer. EMS can also be accessed remotely using a direct data link to the computer on which EMS is running.

Revision History

Issue	Date	Reason for Change
Issue 1	4/2004	Original.

Trademark Information

The following trademarks are referenced in this guide:

ADC is a registered trademark of ADC Telecommunications, Inc.

Digivance is a trademark of ADC Telecommunications, Inc.

Pentium is a registered trademark of Intel Corporation.

Java is a trademark of Sun Microsystems.

Windows is a registered trademark of MicroSoft Corporation.

Related ADC Publications

The following ADC publications contain information related to the Element Management System. Copies of these documents can be ordered by calling ADC Technical Assistance Center (1-800-366-3891 extension 73475, in U.S.A. and Canada; 1-952-917-3475 outside U.S.A. and Canada).

- Digivance Long Range Coverage Solution 1900 MHz System With Version 3.01 Element Management System Installation and Operation Manual (ADCP-75-153)
- Digivance Long Range Coverage Solution 800 MHz System With Version 3.01 Element Management System Installation and Operation Manual (ADCP-75-156)

STANDARDS CERTIFICATION

FCC: This equipment complies with the applicable sections of Title 47 CFR Section 22.

IC: This equipment complies with the applicable sections of RSS-131.

ABLE OF CONTENTS

SECT	ION 1. INTRODUCTION TO EMS	3	
1.1	General Description		
1.2	Data Flow		
1.3	3 Wider View of SDR-Based Network	6	
1.4	Common Use Scenarios	7	
	1.4.1 Laptop Use for Installation or Routine Maintenance	7	
	1.4.2 Local Office With Multiple Hosts	8	
	1.4.3 SNMP Manager and Proxy Agents.	9	
1.5	5 Overview of User Interfaces	10	
	1.5.1 Maintenance Interface	10	
	1.5.2 NOC-NEM Interface	11	
1.6	6 Overview of EMS Tasks	13	
1.7	7 Use of Ports	14	
SECT	ION 2. INSTALLATION AND SYSTEM CHECK	19	
2.1	System Requirements	19	
2.2	2 Installation CD Contents	20	
2.3	3 Installation Procedure	20	
	2.3.1 Installing the Java Runtime System.	20	
	2.3.2 Installing the EMS Software	21	
	2.3.3 Completing the Installation	21	
2.4	Connecting to the Host/Remote Pair	22	
2.5	5 Checking the System	23	
SECT	ION 3. USING EMS FOR NETWORK TASKS	27	
3.1	Master List of Tasks	27	
3.2	2 Starting EMS	28	
3.3	B Defining EMS Ports	29	
3.4	Selecting EMS Program File Directory	31	
3.5	5 Defining Log File Name and Trim Time	32	
3.6	5 Setting EMS Link Timeout, Cataloging Time, Demo Mode	34	
3.7	7 Entering Host/Remote Site Numbers and Site Names	36	
3.8	B Using Alarm Overview to View and Acknowledge Alarms	38	
3.9	Viewing Alarm Detail	42	
3.1	0 Determining RF Signal Levels	43	
3.1	1 Setting RF Forward Attenuation	44	
3.1	2 Defining RF Logical Channels	46	
3.1	3 Setting Operating Mode	48	

Table of Contents

3.14	Downloading Program Files		
3.15	Viewing	g the EMS Log File	53
SECTIO	N 4 SC	REEN-BASED REFERENCE	57
41	EMS Pu	ill-Down Menus	57
	411	File Menu	57
	412	Edit Menu	57
	413	View Menu	59
	4.1.4	Tools Menu	.60
	4.1.5	Window Menu	.63
	4.1.6	Help Menu	.64
4.2	Catalog	· · ·	.65
4.3	Alarm C	Dverview	.66
4.4	Host Di	splays	.69
	4.4.1	Host Alarms Window	.69
	4.4.2	Host RF Window	.71
	4.4.3	Host Window	.72
	4.4.4	Host DC Pwr Window	.74
	4.4.5	Host Prg Load Window	.76
	4.4.6	Host Config Window	.78
	4.4.7	Host SDR Cfg Window	.78
4.5	Remote	Displays	.80
	4.5.1	Remote Alarms Window	.80
	4.5.2	Remote RF Window	.82
	4.5.3	Remote STM Window	.85
	4.5.4	Remote DC Pwr Window	.86
	4.5.5	Remote Ext Alm Window	87
	4.5.6	Remote Prg Load Window	88
	4.5.7	Remote Config Window	.90
SECTIO	N 5 NO	C-NEM INTERFACE	93
51	Summai	ry of Tasks and Commands	93
5.2	Setup In	istructions	94
0.2	5 2 1	Requirements	94
	522	Procedure	94
5.3	Data Fo	rmat	.95
	5.3.1	Command Format	95
	5.3.2	Response Message Format	95
5.4	POST S	TATUS Message	.96
5.5	Comma	nds	.96
	5.5.1	GET CATALOG.	.96
	5.5.2	GET ALARMSUMMARY	.97
	5.5.3	GET SITENAME	.98

Table of Contents

5.5.4	SET SITENAME		99
5.5.5	GET SWINFO		. 100
5.5.6	GET ALARM		. 101
5.5.7	GET DATA		. 105
5.5.8	GET STATUS		. 106
5.5.9	GET RECORD		. 106
5.5.10	SET RECORD		. 108
5.5.11	GET POST		. 109
5.5.12	SET POST		. 109
5.5.13	GET PLAYBACK		. 111
5.5.14	SET PLAYBACK		. 111
5.5.15	GET ALARMFILTER		. 112
5.5.16	SET ALARMFILTER		. 113
5.5.17	GET THRESHOLD		. 114
5.5.18	SET THRESHOLD		. 115
GLOSSARY		• • • •	. 117
INDEX		• • • •	. 121

Table of Contents

INTRODUCTION TO EMS

This section introduces the ADC Digivance Element Management System (EMS) for Software-Defined Radio (SDR) Application.

1.1 General Description

EMS is a software application that provides control and monitoring functions for network elements in a Digivance Long Range Coverage Solution (LRCS) network. These network elements are of two types, host units and remote units, which in an operational state exist as "host/remote pairs." In an SDR application, the host unit consists of an ADC card in the BTS (Base Transceiver Station) server. Figure 1 shows the main components in a working system.

Figure 1. Network Elements in SDR Application

General Description

Section 1

Figure 2 provides a closer look at a working Digivance SDR system. As shown, the Base Transceiver Station in this system is a BTS application running on the BTS server. Being software, the BTS application has the advantage that it can be programmed to process any of a range of Radio Frequency (RF) modulation types. By comparison, a hardware BTS is restricted to one modulation type.

Figure 2. Closer Look at a Working System

As also shown in Figure 2, the Digivance SDR system involves two ADC cards in the BTS server: the Host PCIx Card and the Host Network Card. The Host PCIx Card is the "host unit" referred to on EMS screens. It communicates with the BTS application over the PCIx bus and, over the fiber interface, with the ADC remote unit. The Host Network Card is a communication card allowing access to the Host PCIx Card from the BTS server. The EMS computer plugs into the Host Network Card DB9 service port. The Host Network Card also provides one input and one output RJ-45 connector for connecting to other SDR host units in a Control Area Network (CAN). Up to 24 host units can be networked in this way into one EMS system. (In an EMS system consisting of a single, collocated host/remote pair, the Host Network Card can be eliminated by plugging the EMS computer into the DB9 service port on the remote unit.)

5

1.2 Data Flow

Data flow between a host unit and remote unit consists of at least one forward path and one reverse path. In diversity systems, there is a secondary reverse path, also. Figure 3 shows the data flow. As shown, input to the Host PCIx Card from the BTS application consists of up to eight "logical RF channels." On the card these logical channels are combined into a composite signal to the remote unit. Control data from the EMS computer is also combined into this signal. In the remote unit, digital RF data is converted to analog RF signals for the remote unit antenna. Data flow and operations in the reverse path are essentially the reverse of those in the forward path.

Figure 3. Data Flow

Logical RF channels are defined by user commands entered in EMS based on type of signals being received from the BTS application. User commands include RF modulation type, FCC channel number, and signal gain settings.

1.3 Wider View of SDR-Based Network

Figure 4 provides a wide view of an SDR base station system. As shown, the BTS application, running on the BTS server, is controlled over an A-bis interface by a Base Station Controller (BSC). In an SDR system deployment, the A-bis interface is over a packet switching network using Voice Over Internet Protocol (VoIP). A single BSC can control several BTS applications. The BSC, in turn, is controlled by a Message Switching Center (MSC), using a standard interface called the A-Interface. The MSC provides connectivity to the external, landline Public Switching Telephone Network (PSTN). The A-Interface can be carried over a packet switching network or over traditional T1 lines.

Figure 4. Wide View of an SDR Base Station System

7

1.4 Common Use Scenarios

This section presents three scenarios in which EMS is used.

1.4.1 Laptop Use for Installation or Routine Maintenance

In this use scenario, shown in Figure 5, an application engineer or technician carries EMS to a work site such as a telephone closet or rooftop hut and connects the EMS computer to a BTS server at that work site. This is done when the units are installed, using EMS to check and adjust operation as the units are turned up. RF signal levels can be checked, and attenuation and gain values entered.

Element Management System (EMS) 4.0 User Manual

Common Use Scenarios

EMS can also be used later to assist in routine maintenance or to respond to alarms and verify when the situation causing the alarms has been corrected.

1.4.2 Local Office With Multiple Hosts

In this use scenario, shown in Figure 6, EMS is permanently installed at a local office where multiple BTS servers, each equipped with ADC cards, are daisychained in a Controller Area Network (CAN). Each BTS server can house one host-remote pair. EMS provides monitoring of network performance and quick identification alarm conditions anywhere in the network.

Figure 6. Local Office Scenario

9

1.4.3 SNMP Manager and Proxy Agents

In this use scenario, shown in Figure 7, an analyst with SNMP manager software and internet access, manages one or more EMS systems with SNMP proxy agent software and internet access. Using the SNMP manager, the analyst can request and receive individual parameter values such as voltage readouts. The analyst can also set certain parameters values such as operating mode to remotely configure host/remote pairs. The interface also provides automatic reporting of alarms.

SNMP (Simple Network Management Protocol) is a common standard for internetwork management of online devices using internet protocol (TCP/IP or UDP/ IP). SNMP manager and proxy agent software are available from ADC. The ADC manager software is called "StarGazer."

Figure 7. EMS SNMP Application