
Datasheet Bluetron[™] Module BTR602

Key Features

- A small and cost effective Bluetooth[®] System
- Bluetooth[®] specification v2.1 +EDR compliant
- •Class 2, up to 10-meter range
- Transmit RF power, up to +4dBm
- Receive sensitivity, up to -85dBm@BER = 0.1%
- Complete 2.4GHz Bluetooth® System including:
 - Hardware: Radio, Baseband ,Crystal, MCU, Regulators & ROM
 - Standard Firmware: HCI stack 23C
- Integrated 1.8V & 1.5V regulators (linear mode)
- •Compact size: 28.2 mm x 15.0 mm x 2.8 mm
- ■SDIO (Bluetooth type A) & UART @4Mbps interfaces
- Auristream Codec (16, 24, 32, 40kbps), transmit power is minimized
- •Built-in PCM or I2S interfaces
- •Surface mount module for embedded applications
- Chip Antenna on board or External antenna design
- IEEE 802.11 coexistence
- •Green (RoHS & Halogen free)
- ■Operating & Storage temperature within -40° C to +85° C

Description

Bluetron™ BTR602 module from AvantWave is a complete Bluetooth[®] solution for fast implementation, cutting your time-tomarket. It is a short-range, compact and cost effective radio/baseband module that can be implemented in any kind of electronic devices, such as Bluetooth hands-free car kit, PDA and Mobile phone handset etc.

In standard configuration the module includes a baseband processor with on board 4M Bytes ROM memory, a radio front-end, supporting circuitry, able to connect with some higher-levels external software protocols and applications such as HSP, HFP, A2DP, AVRCP are coexisted with the external Host MCU (via I2S interface DAC codec).

The **Bluetron[™] BTR602 module** is a power class 2 Bluetooth[®] device, and is in compliance with version 2.1 +EDR of the Bluetooth[®] specification. It is supplied with Bluetooth[®] HCI stack firmware which runs on the internal microprocessor. **Bluetron[™] BTR602 module** is built on CSR BC06 QFN ROM core with ROM memory for firmware and application software storage.

Applications

Automotive Car Kit Applications
PDAs
Mobile Phones
Cellular Handsets

Software

The lower layers of the Bluetooth stack (HCI) runs on-package. An external microcontroller is required. Bluetron™ BTR602 is integrated with a digital ADPCM low power CODEC, and interface to power management circuit.

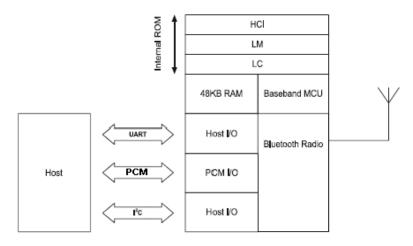


Fig. 1 System block diagram

Mechanical Specification

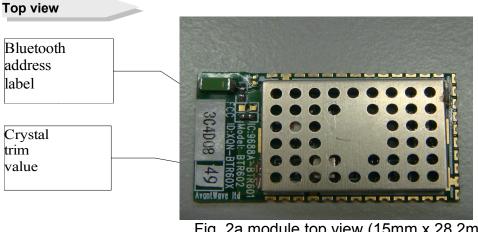
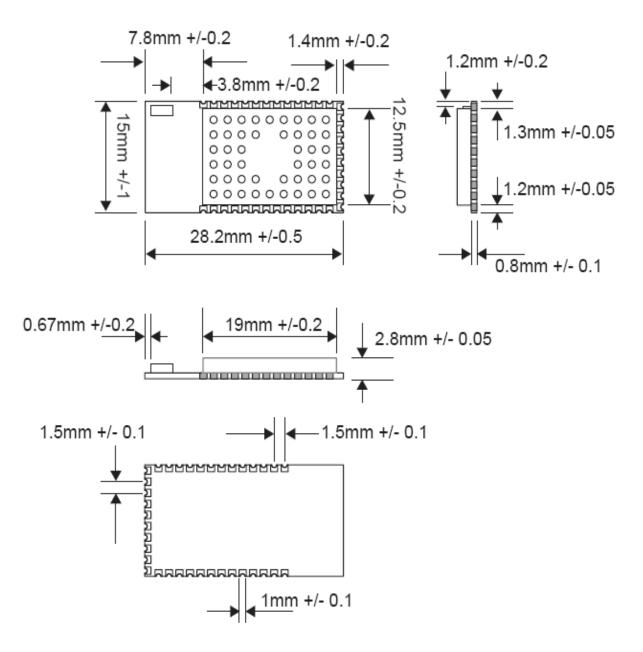


Fig. 2a module top view (15mm x 28.2mm)

Fig. 2b module bottom view



Page 2 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Tel: (852) 2648 9887 Fax: (852) 2646 3713 inquiry@avantwave.com

Bottom view

Sectional view

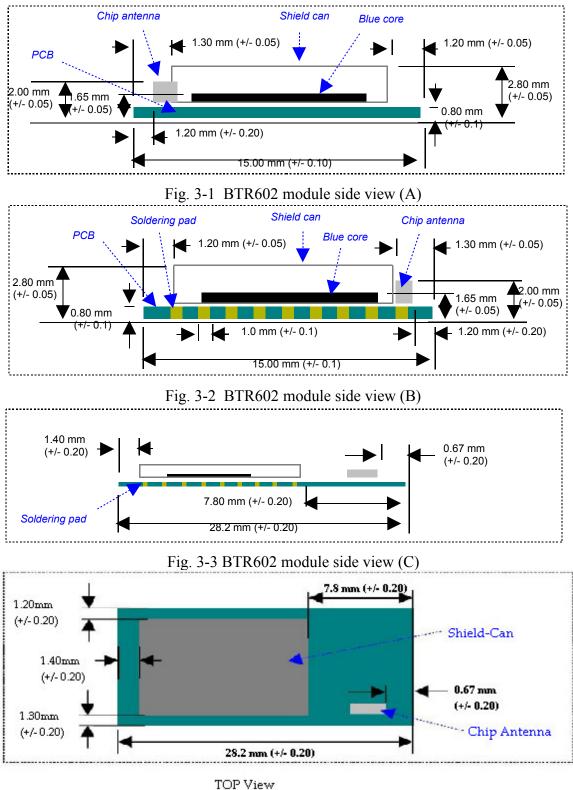


Fig. 3-4 BTR602 module Top view (D)

** All terminations surface finishing are coated by the Electroless Nickel immersion gold (ENIG) material, the advantages of the ENIG are good conductive, high solder-ability and excellent wettability,,etc.

Page 4 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Suggested Land Pattern

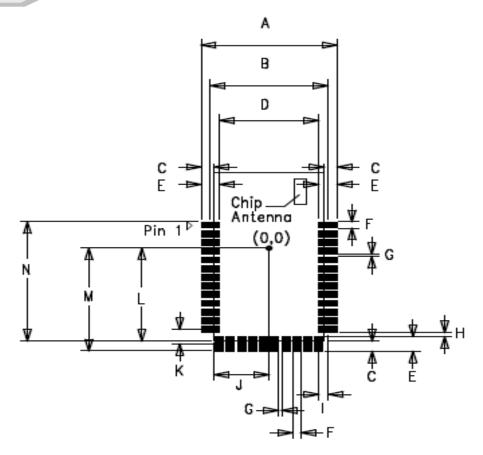


Fig.4a BTR602 module recommended PCB Land Pattern

Symbol	Dimension(mm)	Description				
Α	18.50	Outer width				
В	16.00	Center width				
С	1.75	Pad length outer from module edge				
	13.50	Inner width				
D E F	2.50	Pad length				
F	1.10	Pad width				
G	0.40	Inner gap				
Н	0.70	Inner gap				
	1.30	Center pad to center pad				
J	7.50	Module center to module edge				
ĸ	2.50	Center pad to center pad				
L	16.00	Module center to module edge				
м	17.70	Module center to pad edge				
N	20.55	Module edge to pin1 edge				

Table 1 Land Pattern Dimensions

Remark: all dimensions may have some tolerance within +/- 10%

Terminal Coating: The BTR602 module pads finishing material is flash gold over nickel (ENIG). The thickness is around 0.05 to 0.25 micron. It is the metallic surface finish plated onto the copper base by means of a chemical decomposition process

Page 5 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

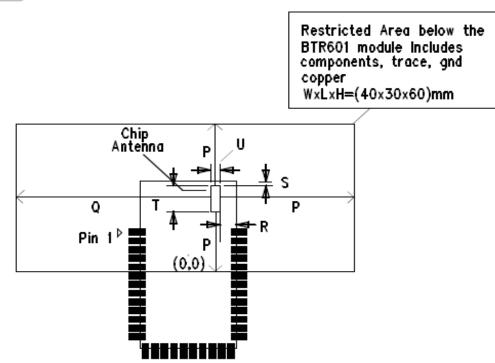


Fig.4b BTR601 module Antenna & its restricted area

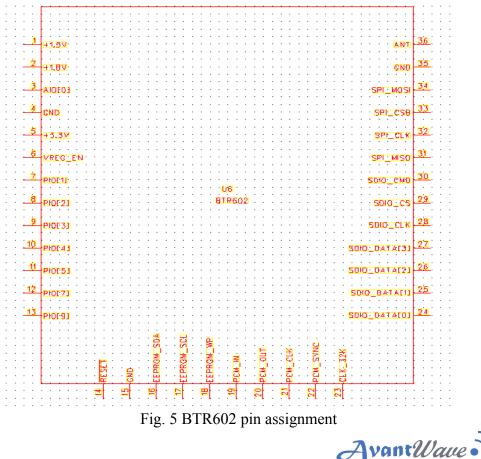
15.00	Antenna restricted area
	Automu usstaisted ansa
25.00	Antenna restricted area
	Antenna edge to right side pcb edge
	Antenna edge to top side pcb edge
4.2	Antenna pad to pad length Antenna pad width
	1.0 0.67 4.2

Table 2 restricted area dimensions

Restricted Area assumption: It is a reference guideline to suggest the application PCB designer about how to maximize the RF performance, generally, the restricted area should be as large as possible to attain the better performance. And the restricted area is different shape or size due to different application's PCB design. The basic concept is related to avoid obstacles around the Antenna. So, there is suggested a restricted area surround the on board Antenna with the certain dimension (>BT wavelength ~12.5cm long). For the height of restricted area, it also depends on different applications feasibility. The height supposed to be +z/-z axis (+65mm/-65mm) in order to totally achieve as long as BT wavelength(65mm+65mm). It is a reference only but not definitely can be achieved for all applications.

For the shield can cover area(P), it is simulate the EVB ground plane design of the Chip Antenna datasheet. The ground plane is replaced by the shield can(short to ground). The purpose is minimized the interference from/to the module.

Page 6 Datasheet BTR602 v2.4 Last Update 30/Apr/2014


Pin Description

Terminal	Name	Description
1	+1.5V	+1.5V voltage supply input /output(default)
2	+1.8V	+1.8V voltage supply input/ output(default)
3	AIO[0]	Analog Programmable input/output line
4	GND	Ground pin
5	VREG_IN	voltage supply input
6	VREG_EN	Enable the high-ion LDO regulator, active high input
7	PIO[1]	Programmable input/output line
8	PIO[2]	Programmable input/output line
9	PIO[3]	Programmable input/output line
10	PIO[4]	Programmable input/output line
11	PIO[5]	Programmable input/output line
12	PIO[7]	Programmable input/output line
13	PIO[9]	Programmable input/output line
14	/Reset	Reset pin, active low input
15	GND	Ground pin
16	EEPROM_SDA	EEPROM serial address/data (input / output)
17	EEPROM_SCL	EEPROM serial clock input
18	EEPROM_WP	EEPROM write protect input
19	PCM_IN	PCM synchronous data input
20	PCM_OUT	PCM synchronous data output
21	PCM_CLK	PCM synchronous data clock input(slave)/output(master)
22	PCM_SYNC	PCM synchronous data sync input(slave)/output(master)
23	CLK_32K	32kHz external reference clock input
24	SDIO_DATA[0]	Synchronous data input/output
	CSPI_MISO	CSR SPI Master in Slave out output
	UART_TX	UART data output, active high
25	SDIO_DATA[1]	Synchronous data input/output
	CSPI_INT	CSR SPI interrupt output
	UART_RTS	UART request to send, active low output
26	SDIO_DATA[2]	Synchronous data input/output

Terminal	Name	Description
	UART_RX	UART data input, active high
27	SDIO_DATA[3]	Synchronous data input/output
	CSPI_CS#	Chip select for CSR SPI, active low input
	UART_CTS	UART clear to send, active low input
28	SDIO_CLK	SDIO Clock input
	CSPI_CLK	CSR SPI Clock input
29	SDIO_CS	SDIO chip select to allow SDIO Accesses input
30	SDIO_CMD	SDIO data input
	CSPI_MOSI	CSPI Master out Slave in input
31	SPI_MISO	SPI Master in Slave out output
32	SPI_CLK	SPI clock input
33	SPI_CSB	Chip select for SPI, active low input
34	SPI_MOSI	SPI Master out Slave in input
35	GND	Ground pin
36	ANT	50 ohm impedance RF port input/output Table 3 Pin Description

** CSR SPI interface is an extension of SPI interface, 8 bit command, 24 bit address, 16 bit burst length ** SDIO is a host interface that allows a SDIO host to gain access to the internal of the core.

Page 8 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Tel: (852) 2648 9887 Fax: (852) 2646 3713 inquiry@avantwave.com

www.avantwave.com

Pin initial status (after reset)

Signalname	Pin #	I/0	Status under reseting (I/O)	Status under reseting (H/L/Hi-Z)	Externaloperation	InternalPU/PD
+1.5V (de fau lt	1	DWD	DWD	DWD	ם שם	DWD
output) +1.8V (output)	1	PW R	PWR	PWR	PW R	PWR
	2	PW R	PWR	PWR	PW R	PWR
A 10 [0]	3	I/0	I	Hi-Z	NC	-
GND	4	GND	G N D	GND	GND up to +3.3V input connect via a	GND
VREG_N (+3.3V)	5	PW R	PWR	PWR	decoupling capacitor to the GND	_
VREG EN	6	T	T	Н	NC	_
P 10 [1]	7	I/0	I	Hi-Z	NC	programmable PU or PD
P 10 [2]	8	I/0	I	Нi-Z	NC	programmable PU or PD
P 10 [3]	9	I/0	Ι	Hi−Z (Open-drain	NC	programmable PU or PD
P 10 [4]	10	I/0	Ι	Ηi-Z	Pulldown 100k ohm	programmable PU or PD
P 10 [5]	11	I/O	Ι	Ні-Z	NC	program m able PU or PD
P 10 [7]	12	I/O	I	Hi−Z	NC	program m able PU or PD
P 10 [9]	13	I/O	I	Hi−Z	NC	program m able PU or PD
/Reset	14	I	I	Hi−Z	Pullup 4k7 ohm	weak PU
GND	15	GND	GND	GND	GND	GND
					pullup 10k ohm (100kHz) or 1k	
EEPROM_SDA	16	I/0	I/0	Ηi-Z	ohm (400kHz)	N O N E
EEPROM <u>S</u> CL	17	I/0	I/0	Ηi-Z	pu∥up 10k ohm	-
EEPROM_WP	18	I/0	I/0	Ηi-Z	GND	-
PCM IN	19	Т	Т	ΗĖΖ	N C	weak PD
PCM_OUT	15	_			110	
	20	0	0	Hi−Z	N C	weak PD
PCM_CLK	21	I/0	I	Н÷-Z	NC	weak PD
PCM_SYNC	21 22	I/0	I	Ні-Z	N C NC	weak PD
CLK_32K	23	Τ	I T	Hi-Z	N C N C	weak PD
SD IO_DATA[0]	23	I/0	T	+1.7V	N C	weak PU
CSPIM ISO	24	1/0	T	+1.7V	N C	w eak PU
UART_TX	24	1/0	TRI-STATE	+1.7V	Pullup 4K7 ohm	weak PU
SD ID_DATA[1]	25	1/0	I	+1.7V	NC	w eak PU
CSPINT CSPINT	25	1/0	T	+1.7V	N C	w eak PU
UART_RTS	25	1/0	TRI-STATE	+1.7V	-	weak PU
SD IO_DATA[2]	26	1/0	T	+1.7V	N C	w eak PU
UART RX	26	1/0	TRI-STATE	+1.7V	Pullup 4K7 ohm	weak PU
SD IO_DATA[3]	20	1/0	I	Н	NC	weak PU
CSPICS#	27	I/0	I	Н	NC	weak PU
UART_CTS	27	1/0	TRI-STATE	Н	=	weak PU
SD ID _C LK	28	1/0	I	+1.7V	Pulldown 100k ohm	weak PU
CSP <u>I</u> CLK	28	1/0	I	+1.7V	-	weak PU
SDID_CS	29	1/0	I	+1.7V	-	weak PU
SDD_CMD	30	I/O	I	+1.7V	Pulldown 100k ohm	weak PU
CSP <u>IM</u> OSI	30	1/0	I	+1.7V	NC	weak PU
SPIM ISO	31	0	0	L	test pad (debug)	weak PD
SPICLK	32	IJ∕ O	I	Н	test pad (debug)	w eak PD
SPI <u>C</u> SB	33	1/0	I	Н	test pad (debug)	weak PD
SPIMOSI	34	Ι	I	L	test pad (debug)	weak PD
GND	35	GND	GND	GND	GND	GND
ANT	36	I/0	I/0	Hi−Z	-	NONE

Table. 4 Pin assignment initial status

AvantWave . www.avantwave.com

Bluetron[™] 600 Series

Applications Reference Circuit

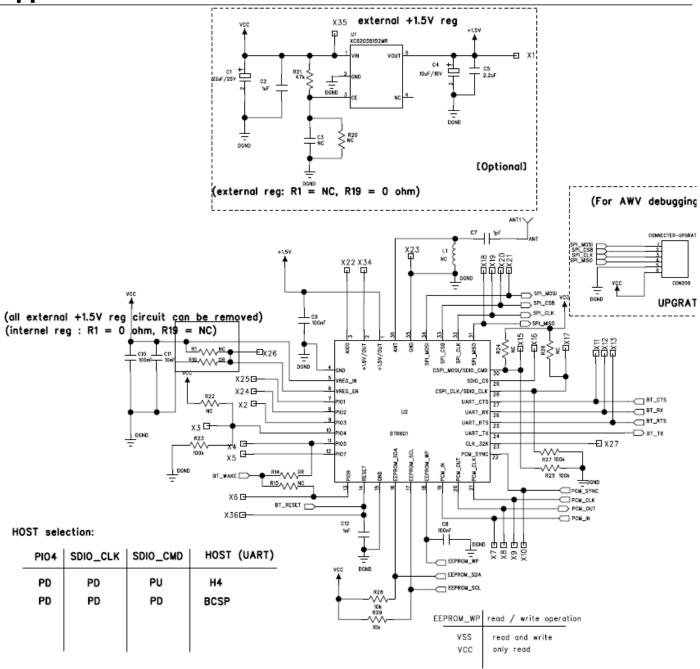


Fig.5 BTR602 module reference circuit

AIO & PIO depend on the application will be pull up or down, otherwise it will be open connection.

AvantWave . www.avantwave.com

General Specifications

	Minimum	Typical	Maximum
Supply Voltage: VREG_IN	-0.4V	3.3V	4.9V
High Voltage Regulator Output (I _{load} = 70 mA)	1.7V	1.8V	1.9V
Low Voltage Regulator Output (I _{load} = 70 mA)	1.4V	1.5V	1.6V
Operating Temperature range	-40°C	25°C	85°C
Storage Temperature range	-40°C(*)	25 °C	85°C(*)
Frequency Range	2.402 GHz	2.441 GHz	2.480 GHz
Crystal Frequency	26MHz - 15ppm	26MHz	26MHz +15ppm
AFH	-	79 channels	-
Channel Bandwidth (Basic rate / Enhanced data rate)	-	1Mbps / 2 or 3Mbps	-
Internal ROM / RAM	-	4MB / 48KB	-

Table. 4 General Specifications

Remark: (*) assume all components are soldered on the module PCB, although all components can be stored in between -40 to 85°C, but not recommend to store this module in the extreme temperature before it has soldered on the application PCB. The device is turn off but the environment also in between -40 to 85°C, assume it is able to sustain the extreme temperature. All components on the module can sustain the storage temperature between -40 to 85°C. Typically, we have tested the storage temperature(-40°C or +85°C) as maximum duration is 12 hours per each time.

We have passed the high/low temperature test for operated at -40 to 85°C, and most of the components have -40 to 85°C storage temperature

RF Specifications (Basic Data Rate)

Voltage Supplies = 3.3V VREG_IN => 1st internal step down to 1.8V => 2nd internal step down to 1.5V BC06 core supply voltage (all AIO/PIOs, PCM and SDIO/CSPI channels are NC)

core suppry von	aye (all Alorrios
Temperature	= 25°C
Frequency	= 2 441GHz

Frequency = 2.441GHz					
Receiver	Min	Тур	Мах	Bluetooth Specification	Unit
Sensitivity (DH1/3/5) at 0.1% BER	-80	-84	-86	≪-70	dBm
Maximum received signal at 0.1% BER	-20	3	6	≥-20	dBm
C/I Co-channel	6	9	11	≤11	dB
C/I Adjacent channel (f = f ₀ +/- 1MHz)	-7	-4	-1	<0	dB
C/I Adjacent channel (f = f ₀ +/- 2MHz)	-50	-45	-40	≪-40	dB
C/I Adjacent channel (f = f ₀ - 3MHz)	-60	-50	-40	≪-40	dB
C/I Adjacent channel (f = f ₀ - 5MHz)	-60	-50	-40	≪-40	dB
C/I Image rejection (carrier –3MHz)	-30	-20	-10	≪-9	dB
Transmitter	Min	Тур	Мах	Bluetooth Specification	Unit
Average Output Power	-6	0	4	-6 to +4	dBm
20dB bandwidth f _H - f _L	900	950	1000	≤ 1000	kHz
2 nd ACP (+/-2MHz)	-40	-30	-20	≤ -20	dBc
3 rd ACP (+/-3MHz)	-60	-50	-40	≤ -40	dBc

Table 5 Basic Data Rate

Avantlane www.avantwave.com

Unit

dBm

dBm

dB

dB

dB

dB

dB

dB

Unit dBm dB

dbm

%

%

%

RF Specifications (Enhanced Data Rate)

Voltage Supplies = 3.3V VREG_IN => 1st internal step down to 1.8V => 2nd internal step down to 1.5V BC06 core supply voltage (all AIO/PIOs, PCM and SDIO/CSPI channels are NC) Temperature = 25°C

Frequency

= 2.441GHz

Receiver	Modulation	Min	Тур	Мах	Bluetooth Specification
Sensitivity (DH1/3/5) at 0.01% BER	π/4 DQPSK 8DPSK	-75 -73	-83 -78	-84 -80	≤-70
Maximum received signal at 0.1% BER	π/4 DQPSK 8DPSK	-15	0	5	≥ -20
C/I Co-channel at 0.1% BER	π/4 DQPSK 8DPSK	5 17	10 19	12 20	≤13 ≤21
C/I Adjacent channel (f = f ₀ +/- 1MHz)	π/4 DQPSK 8DPSK	-18 -15	-10 -5	0 5	≪0 ≪5
C/I Adjacent channel (f = f_0 +/- 2MHz)	π/4 DQPSK 8DPSK	≥-30	≥-27	≥-25	≥-30 ≪-25
C/I Adjacent channel (f = f ₀ + 3MHz)	π/4 DQPSK 8DPSK	-40	-35	-33	≤-40 ≤-33
C/I Adjacent channel (f = f ₀ - 5MHz)	π/4 DQPSK 8DPSK	-40	-35	-33	≤-40 ≤-33
C/I Image rejection (carrier –3MHz)	π/4 DQPSK 8DPSK	-30 -15	-20 -15	-10 0	≤-7 ≤0
Transmitter		Min	Тур	Max	Bluetooth Specification
Average Output Power		-6	0	4	-6 to +4
Relative Transmit Power		-4	0	1	-4 to +1
In-band spurious emissions	$f = f_0 +/- 1MHz$ $f = f_0 +/- 2MHz$ $f = f_0 +/- 3MHz$	-40 -45 -55	-35 ≥-34 ≥-50	-26 -20 -40	≤-26 ≤-20 ≤-40

π/4 DQPSK Modulation Accuracy **8DPSK Modulation Accuracy** EDR Differential Phase Encoding

Table 6 Enhanced Data Rate

Peak DEVM

Peak DEVM

19

17

99.9

8

10

99

34

25

100

≤35

≤25

≥99

AvantWave. www.avantwave.com

Bluetron[™] 600 Series

Power Control & Regulation

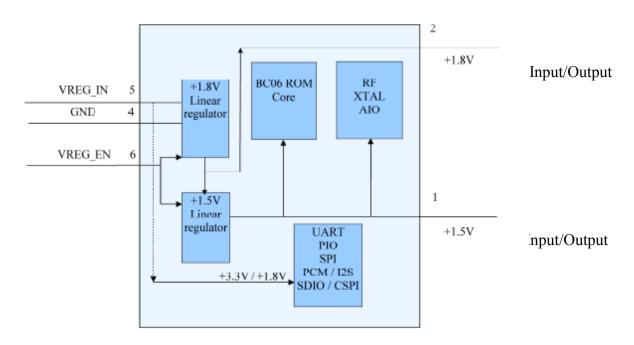


Fig. 6 BTR602 Power Management Block Diagram

VREG_EN (step down LDO regulator enable): Up to +4.9V dc voltage input

VREG_IN (positive supply for UART, PIOs, PCM/I2S, SPI & SDIO/CSPI) : typically +3.3V dc voltage input (can change to +1.8V dc depends on different applications)

VREG_OUT

•option 1 (+3.3V input, +1.8V output & +1.5V output):

=> input +3.3V to VREG_IN & VREG_EN, use the internal +1.8V & +1.5V regulator, +1.8V & 1.5V become the outputs

• option 2 (+1.8V input & +1.5V input):

=> input +1.8V to VREG_IN, use the external +1.5V input

•option 3 (+3.3V input & +1.5V input):

=> input +3.3V to VREG_IN, use the external +1.5 input

•option 4 (+1.8V input & +1.5V output):

=> input +1.8V to VREG_IN & VREG_EN, use the internal+1.8V & +1.5V regulator, +1.5V become the output, but +1.8V output may not as equal to +1.8V (-0.2V tolerance due to voltage drop.)

Remark: - If VREG_IN to +1.8V, all the UART, PIOs, PCM/I2S, SPI & SDIO/CSPI are set to +1.8V.

- If +1.5V is output, the maximum output current is lower than 70mA.

- Option 1 is default setting, option 4 is not recommend to use.

AvantWave www.avantwave.com

RESET timing diagram(+3.3V, +1.5V, VREG_EN & reset)

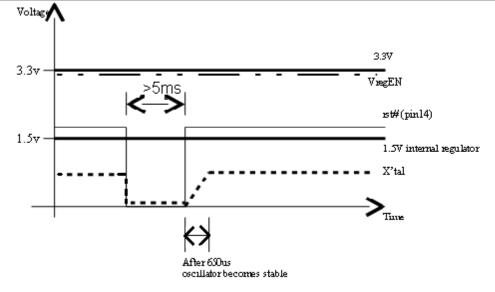


Fig. 7a Active low RESET pulse timing diagram

Sequence:

•External Reset signal (pin14) is generated

•Active low Reset pulse > 5ms

•+3.3V(pin5),VREG_EN(pin6),+1.5V(pin1)[internal or external regulator modes] remain no change •After (Reset pulse rising edge + 650us), module crystal frequency is stable

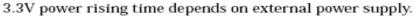


Fig. 7b Power on reset timing diagram (1.5V internal regulator mode)

Sequence:

•Input +3.3V and then power on the module, +3.3V(pin5) & VREG_EN(pin6) are started up •After [+3.3V(pin5) rising from 0 to 2.7V], +1.5V(pin1) is pull high •After [+1.5V(pin1) pull high + 1.5m sec], the module crystal frequency is stable

Page 14 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

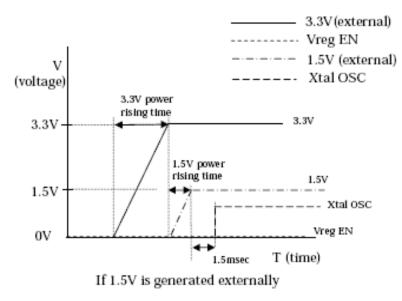


Fig. 7c Power on reset timing diagram (1.5V external regulator mode)

Sequence:

•+3.3V(pin5) is started up

•After [+3.3V(pin5) rising from 0 to 3.3V], +1.5V(pin1) is rising to the high level •After [+1.5V(pin1) pull high + 1.5m sec], the module crystal frequency is stable

EEPROM Connection

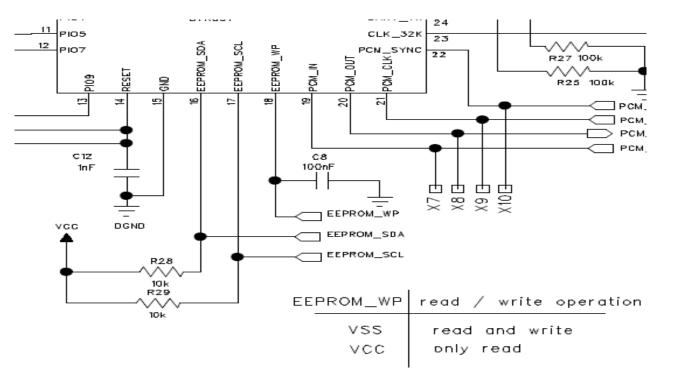


Fig. 8 EEPROM connection

Pin16 EEPROM_SDA: It is a bidirectional pin for transfer addresses and data in/out of the device, Due to the open-drain output, the I2C SDA port need a pull up resistor to Vcc (10k ohm for 100kHz, 2k ohm for 400kHz). I2C SDA bus is only able to change during I2C SCL low. Changes during I2C SCL high are reserved for indication Start and Stop bit status.

Page 15 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Pin17 EEPROM_SCL: I2C SCL input is assigned to synchronize the data transfer to and from the device.

Pin18 EEPROM_WP: Write protect(WP) input pin is selected by the external device to define the EEPROM is able to write or not.

If tied it to Vss, memory operation(write/read) is enabled normally. If tied it to Vcc, write operation is disabled and read operation is enabled.

EEPROM slave address = 1010XYZ for BT address, crystal trim value and crystal frequency PSKEY storage, X is don't care bit, YZ = "00" is block select bits.

Host Interface Selections

For the protocol that is selected by the UART host interface, it is determined by the status of the SDIO_CLK and SDIO_CMD lines when sampling the PIO[4] status. Table 7 & 8 shown the host and protocol setting:

Select UART, SDIO or CSPI Host Interface by the hardware configurable method:

(PIN10) PIO	Input	Connection	Host
4	High	100k ohm to Vcc	SDIO / CSPI
4	Low	100k ohm to GND	UART

Table 7. PIO 4 selections

PIO[4] is pulled low: UART host interface is chose (default configure) PIO[4] is pulled high: SDIO/CSPI host interface is chose.

Select UART Protocols by the hardware configurable method:

(PIN28) SDIO_CLK	Connection	(PIN30) SDIO_CMD	Connection	UART protocol
Low	100k ohm to GND	Low	100k ohm to GND	BCSP
Low	100k ohm to GND	High	100k ohm to Vcc	H4
High	100k ohm to Vcc	Low	100k ohm to GND	H4DS
High	100k ohm to Vcc	High	100k ohm to Vcc	Н5

Table 8. UART protocol selections

Example

BCSP mode: SDIO_CLK and SDIO_CMD both add a 100k ohm resistor pull down to GND. H5 mode: SDIO_CLK and SDIO_CMD both add a 100k ohm resistor pull up to Vcc.

UART connection:

Host	Module
UART	UART RX
TX UART	UART TX
RX	UART RTS
	UART CTS

Fig. 9 UART connection method

BCSP : CSR proprietary, reliable alternative to the standard bluetooth UART Host Transport.

H4DS : CSR proprietary, alternative to the standard bluetooth UART Host Transport, it supports deep sleep mode for low-power applications.

H4 => a transport protocol for bluetooth HCl packets over UART, the name came from bluetooth spec. appendix H4. H5 => a three-wire protocol, presumably based on CSR's BCSP protocol.

UART operation : Set the hardware configurable pins (PIO4, SDIO_CLK & SDIO_CMD), if hardware configurable selection is BCSP transport(PIO4 is low, SDIO_CLK is low & SDIO_CMD is low), the baudrate is auto detected. The UART connection method is referent to fig. 8.

•UART_RX and UART_TX transmit data between the BTR602 module and external host. UART_RX should pull up to Vcc via a 10k ohm resistor. UART_TX is already internal pull up. UART_CTS & UART_RTS is hardware flow control (default is NC).

e.g default BCSP(0x0806) is configured to 8bit length, no hardware flow control, even parity bit. The parameter details can refer to the Appendix 1. The other default transport settings (H4, H4DS & H5 parameter) please refer to the Appendix1. All settings(PSKEY) can be changed by the external MCU via UART channel. Both the transports with auto detected baudrate and same connection method.

UART Se	ttings:	
Parameter		Possible values
Baud rate	minimum	1200 baud (≤2% error)
		9600 baud (≤1% error)
	maximum	4M baud (≤1% error)
Flow contr	ol	RTS / CTS or none
Parity		Odd, Even or none
Number of	stop bit	1 or 2
Bits length		8

Table. 9 UART configurable value

PCM interface connections:

The module PCM interface is included the digital transmission and reception of PCM encoded audio data via the bluetooth channel. The BTR602 module is hardware ready for the PCM transceiver function, so, the processor computation power can be increased due to its overhead decreased. The module supports a bidirectional digital audio interface that streams directly into the baseband layer inside the on-chip firmware. It won't pass through the HCI protocol layer.

This PCM channel is able to send and receive the audio data from a SCO channel, it is three SCO channels can be supported by the PCM interface at any one time only.

For the PCM master, it can generate an output clock of 128, 256, 512, 1536 or 2400kHz. For the PCM slave, it can co-operate with an input clock up to 2400kHz. The module PCM supports 13bit or 16 bit linear, 8-bit

Avantlane www.avantwave.com

Page 17 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

 μ -law or A-law companding sample formats at 8k samples/s and send and receive on any three of first four slots following PCM_SYNC.

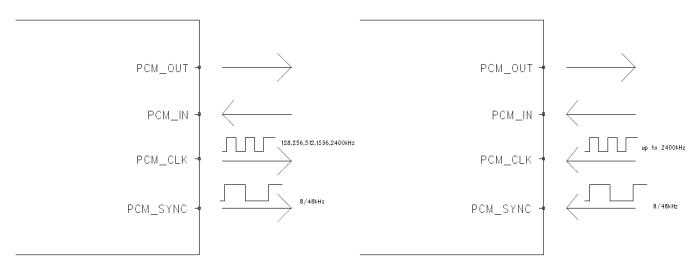


Fig. 10a) PCM interface master

Fig. 10b) PCM interface slave

Long Frame Sync:

A clocking format which is controlled the transfer of PCM data words/samples. The rising edge of PCM_SYNC indicates the start of the PCM data. For the PCM master, PCM_SYNC & PCM_CLK are output, PCM_SYNC is 8 bits long. Besides, as PCM slave, PCM_SYNC from two continue falling edges of PCM_CLK to half the PCM_SYNC rate (62.5us long).

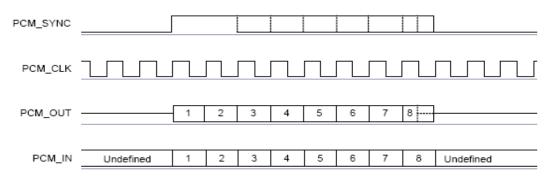


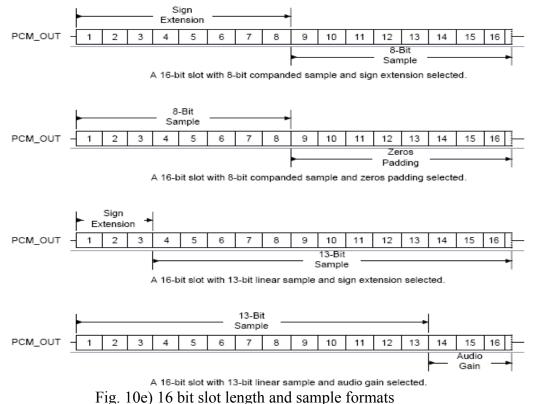
Fig. 10c) Long Frame Sync (8 bit PCM_OUT data)

Short Frame Sync:

The falling edge of PCM_SYNC indicates the start of the PCM_OUT data. PCM_SYNC is only one clock cycle duty.



Fig. 10d) Short Frame Sync (8 bit PCM_OUT data)


AvantWave www.avantwave.com

For the BTR602 module, it samples PCM_IN on the falling edge of PCM_CLK and generates PCM_OUT on the rising edge. And, PCM_OUT can be configured to be either high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge.

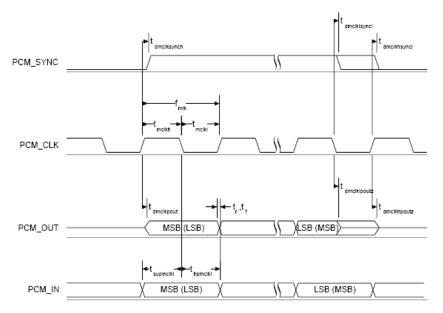
Slots and Sample Formats:

BTR602 module able to transmit and receive on any first four slots following each sync pulse. Slot periods can be either 8 or 16 clock pulses. The 8 clock cycles can only apply for the 8 bit sample formats. The 16 clock cycles can apply for 8 bit, 13 bit and 16 bit sample formats.

BTR602 module supports 13 bit linear, 16 bit linear and 8 bit μ -law or A-law sample formats. The sample rate is 8k samples/s. In case 16 bit slots are used, there are 3 or 8 unused bits in each slot will be filled with sign extension , padded with zero or a programmable 3 bit audio attenuation which is compatible with some Motorola CODEC.

Symbol	Parameter		Min	Тур	Max	Unit
Symbol	i arameter		IVIIII	тур	IVIAX	Unit
fmclk	PCM_CLK frequency	4MHz DDS generation. Selection of frequency is programmable. See Table. 24	128	256	512	kHz
		48MHz DDS generation. Selection of frequency is programmable . See Table. 23 and page 20	2.9	3	3.1	kHz
-	PCM_SYNC frequency	y for SCO connection	4	8	8	kHz
tmclkh ^(a)	PCM_CLK high	4MHz DDS generation	980	990	1000	ns
tmclkl ^(a)	PCM_CLK low	4MHz DDS generation	730	740	750	ns

Page 19 Datasheet BTR602 v2.4 Last Update 30/Apr/2014


Tel: (852) 2648 9887 Fax: (852) 2646 3713 inquiry@avantwave.com

vw.avantwave.com

AvantWave

i i	L		1			i	
-	PCM_CLK jitter	48MHz DDS generation		10	15	21	ns
tmclksynch	Delay time from PCM		10	15	20	ns	
tmclkpout	Delay time from PCM	10	15	20	ns		
tmclklsyncl	Delay time from PCM_	10	15	20	ns		
tmclkhsyncl	Delay time from PCM		10	15	20	ns	
tmclklpoutz	Delay time from PCM		10	15	20	ns	
tmclkhpoutz	Delay time from PCM_CLK high to PCM_OUT high impedance					20	ns
tsupinclkl	Set-up time for PCM_I	30	35	40	ns		
thpinclkl	Set-up time for PCM_0	Set-up time for PCM_CLK low to PCM_IN invalid					

Table. 10a) PCM Master Timing

ig. 10f) PCM Master Timing Long Frame Sync

AvantWave. www.avantwave.com

Bluetron[™] 600 Series

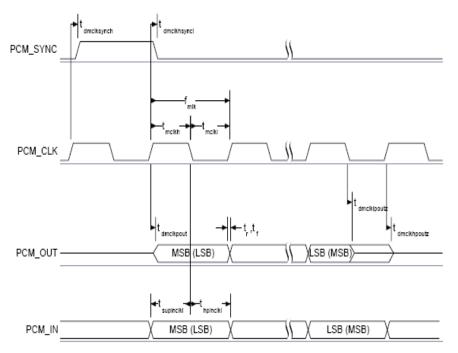


Fig. 10g) PCM Master Timing Short Frame Sync

Symbol	Parameter	Min	Тур	Max	Unit
fmclk	PCM_CLK frequency (slave mode: input)	64	512	2048	kHz
tclkh	PCM_CLK high time	200	300	400	ns
tclkl	PCM_CLK low time	200	300	400	ns
thclksynch	hold time from PCM_CLK low to PCM_SYNC high	30	50	70	ns
tsusclksynch	Set-up time for PCM_SYNC high to PCM_CLK low	30	50	70	ns
tdpout	Delay time from PCM_SYNC or PCM_CLK that is later, to valid PCM_OUT data (Long Frame Sync only)	15	20	20	ns
tdsclkhpout	Delay time from CLK high to PCM_OUT valid data	15	20	20	ns
tdpoutz	Delay time from PCM_SYNC or PCM_CLK that is later, to valid PCM_OUT data line high impedance	15	20	20	ns
tsupinclkl	Set-up time for PCM_IN valid to PCM_CLK low	30	40	50	ns
thpinclkl	Set-up time for PCM_CLK low to PCM_IN invalid	30	40	50	ns

Table. 10b) PCM Slave Timing

AvantWave. www.avantwave.com

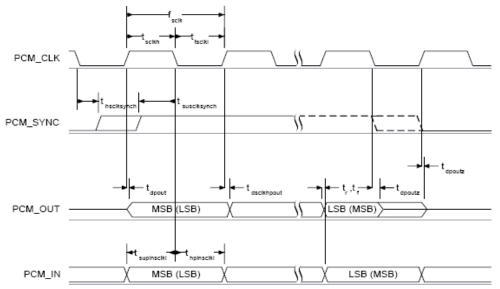


Fig. 10h) PCM Slave Timing Long Frame Sync

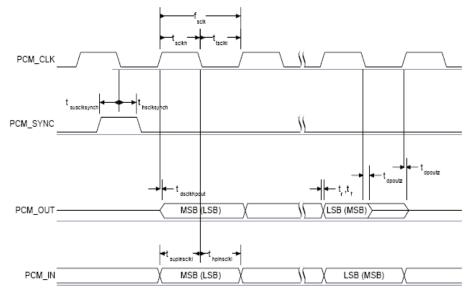


Fig. 10i) PCM Slave Timing Short Frame Sync

PCM CLK and PCM-SYNC generation:

•Generating these by DDS from the Core internal 4MHz clock. It is limited the PCM_CLK to 128, 256 or 512kHz and PCM_SYNC to 8kHz

•Generating these by DDS from an internal 48MHz clock. Set bit via 48M_PCM_CLK_GEN_EN in PSKEY_PCM_CONFIG32. For the long frame sync, the length of PCM_SYNC maybe either 8 or 16 bit cycles of PCM_CLK, determined by LONG_LENGTH_SYNC_EN in PSKEY_PCM_CONFIG32.

PCM_CLK frequency(internal 48MHz clock) formula: f = (CNT_RATE / CNT_LIMIT) x 24MHz

PCM_SYNC frequency relevant to PCM_CLK (PCM_SYNC_MULT = 0) f = PCM_CLK / (SYNC_LIMIT x 8)

AvantWave www.avantwave.com

Page 22 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

PCM_SYNC frequency relevant to PCM_CLK (PCM_SYNC_MULT = 1) f = PCM_CLK / SYNC_LIMIT

CNT_RATE, CNT_LIMIT and SYNC_LIMIT all are set by PSKEY_PCM_LOW_JITTER_CONFIG. For example, to generate PCM_CLK at 512kHz with PCM_SYNC at 8kHz, set PSKEY_PCM_LOW _JITTER_CONFIG to 0x08080177.

PCM configuration refer to the Appendix 4.

<u>I²S interface connections:</u>

The BTR602 module digital audio interface provided the I^2S , left-justified or right justified. It is the same pins which shares with the PCM channel. So, the active digital audio interface is either PCM or I^2S at the same time.

PCM interface	I ² S interface
PCM_OUT	SD_OUT
PCM_IN	SD_IN
PCM_SYNC	WS
PCM_CLK	SCK

Table. 10a) PCM & I2S interfaces pin assignment

Page 23 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

<u>I2S interface (WS, SCK, SD OUT):</u>

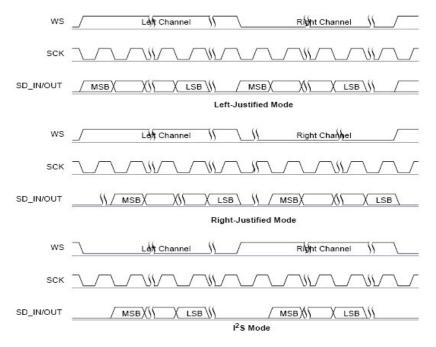
Table. 11 shown the values for the PSKEY_DIGITAL_AUDIO_CONFIG how to configure the digital audio interface. i e. to configure an I²S interface with 16 bit SD data set PSKEY_DIGITAL_CONFIG to 0x0406.

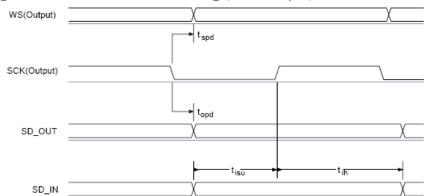
Bit	Mask	Name	Description
D[0]	0x0001	CONFIG_JUSTIFY_FORMAT	0 for left justified, 1 for right justified.
D[1]	0x0002	CONFIG_LEFT_JUSTIFY_DELAY	For left justified formats: 0 is MSB of SD data occurs in the first SCLK period following WS transition. 1 is MSB of SD data occurs in the second SCLK period.
D[2]	0x0004	CONFIG_CHANNEL_POLARITY	For 0, SD data is left channel when WS is high. For 1 SD data is right channel.
D[3]	0x0008	CONFIG_AUDIO_ATTEN_EN	For 0, 17 bit SD data is rounded down to 16 bits. For 1, the audio attenuation defined in CONFIG_AUDIO_ATTEN is applied over 24 bits with saturated rounding. Requires CONFIG_16_BIT_CROP_EN to be 0.
D[7:4]	0x00F0	CONFIG_AUDIO_ATTEN	Attenuation in 6 dB steps.
D[9:8]	0x0300	CONFIG_JUSTIFY_RESOLUTION	Resolution of data on SD_IN, 00=16 bit, 01=20 bit, 10=24 bit, 11=Reserved. This is required for right justified format and with left justified LSB first.
D[10]	0x0400	CONFIG_16_BIT_CROP_EN	For 0, 17 bit SD_IN data is rounded down to 16 bits. For 1 only the most significant 16 bits of data are received.

Table. 10b) I2S interface configurable PSKEY

BC06 Master mode I2c(PSKEY_DIGITAL_AUDIO_CONFIG): 0x0006

=> D[1] & D[2] is 1, others are 0




Fig. 11a) BTR602 module digital audio interface modes

Page 24 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Symbol	Parameer	Min	Тур	Max	Unit
-	Clock frequency (SCK)	1.5	3	6.2	MHz
-	L/R clock (WS)	24	48	96	kHz
topd	SCK to SD_OUT delay	20	200	400	ns
tspd	SCK to WS delay	20	100	200	ns
tisu	SD_IN to SCK set up time	20	200	400	ns
tih	SD_IN to SCK hold time	10	200	450	ns

Table 10c) Digital audio interface master timing (Data Output)

Fig. 11b) Digital Audio Interface Master Timing

a 1 1					
Symbol	Parameter	Min	Тур	Max	Unit
-	SCK frequency	1	3	6.2	MHz
-	WS frequnecy	16	48	96	kHz
tch	SCK high time	80	340	600	ns
tcl	SCK low time	80	350	650	ns
topd	SCK to SD_OUT delay	20	50	150	ns
tssu	WS to SCK set-up time	20	100	500	ns
tsh	WS to SCK hold time	20	200	600	ns
tisu	SD_IN to SCK set-up time	20	100	400	ns
tih	SD_IN to SCK hold time	20	100	400	ns
	Table 10d) Digital Audia		-		

Table. 10d) Digital Audio Interface Slave Timing

Page 25 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

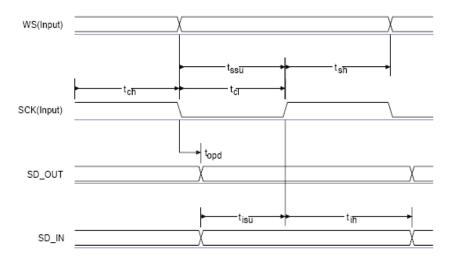


Fig. 11c) Digital audio Interface Slave Timing

BTR 601/BTR602 EEPROM I2C Read/Write Operation (To external MCU)

Aim:

Since there are some Bluetooth Configuration Parameter(**BT address, Crystal Trim, Crystal Frequency**) are required in production, EEPROM is applied for temporary storage the parameters. This document will interpret the parameter that stored in EEPROM (read/write)

Communication Interface: **I2C** Devices: External MCU to BTR601/BTR602

I2C Read/Write Command format:

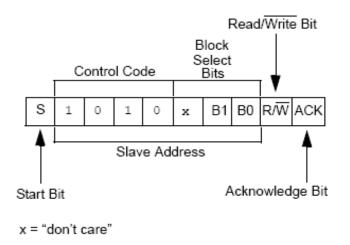
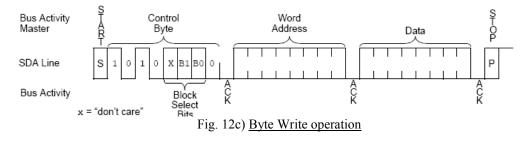


Fig. 12a) Control Byte Allocation

Operation	Control Code	Block Select	R/W
Read	1010	Block Address	1
Write	1010	Block Address	0

Fig. 12b) I2c Read/Write operations


•Control code is set as 1010 for read and write operations, block select bits B2, B1 & B0 are 000. •Read operation set to "1" and Write operation set to "0"

Page 26 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Write Operation (slave address set to '0'):

1. Byte Write

- From the Start condition from the master, the device code bits (1010), block select bits(000) and r/w bit (0 or 1), which is a logic low, is placed onto the bus by the master transmitter
- The addressed slave receiver is a byte with a word address will follow once it has generated an Acknowledge bit during the ninth clock cycle.
- The next byte transmitted by the master is the word address and will be written into the Address Pointer.
- After receiving another Acknowledge signal, the master device will transmit the data word to be written into the addressed memory location.
- One more Acknowledge again, the master generates a Stop operation, it indicates the internal write cycle and without Acknowledge signals.

2. Page Write

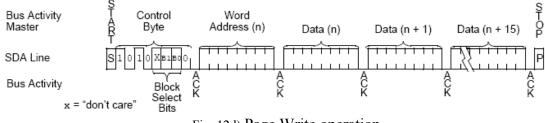


Fig. 12d) Page Write operation

- It is the same method to the Byte Write
- The master transmits up to 16 data bytes to the EEPROM, it is temporarily stored in the on chip page buffer and will be written into memory after it has sent a Stop condition.
- The four lower order address pointer bits are internally incremented by '1'
- The higher order 7 bits of the word address remain constant.
- If the master transmit more than 16 words, the address counter will roll over and will be overwritten the previous received data.
- After the Stop condition, the write cycle will begin.

Read Operation (slave address set to '1'):

1. Current Address Read

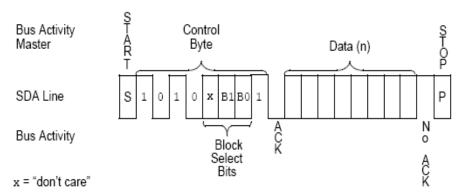


Fig. 12e) Current Address Read operation

• If the previous access was address n, the next current address read operation would access data from address n+1.

AvantWave www.avantwave.com

Page 27 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Bluetron[™] 600 Series

- After received of the slave address with R/W bit is set to '1', there is an acknowledge send out and transmit 8-bit data word
- The master will not send Acknowledge again but generate a Stop condition to terminate the transmission.

2. **Random Read**

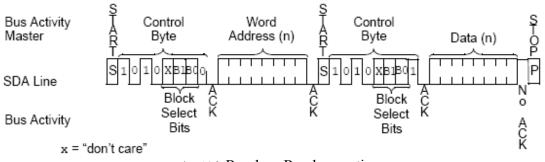
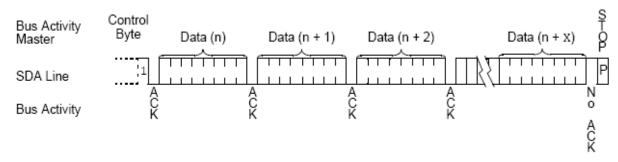



Fig. 12f) Random Read operation

- The word address is first to be set and become a part of write operation .
- After the word address is sent out, the master condition generates a Start condition follow the Acknowledge and terminate the write operation but not before an internal Address Pointer is set.
- The master generate the Control byte again and R/W is set to '1' instead of '0'
- Then, it issue an Acknowledge and send the 8-bit data word.
- It will not generate an Acknowledge but have a Stop condition.

3. **Sequential Read**

Fig. 12g) Sequential Read operation

- It is the same method to the Random Read except the master transmit the 1st data byte but use an Acknowledge to replace a Stop condition, it represents the continue read process.
- The EEPROM transmit the next sequentially addressed 8 bit word and increase the internal Address Pointer by 1 to allow the whole memory contents can be sequentially read as one operation.

I2C Data Packet format:

All data (BT address, Crystal Trim, Crystal Frequency)will store as a packet in EEPROM with 8 byte code

BT address: It will store from address 0x00 to 0x07 in EEPROM.(8 byte code) 0x00,0x08 //NAP 0xe0, //UAP C_LAP_0,C_LAP_1,C_LAP_2, //LAP 0x00, //dummy C_CHKSUM //checksum

ps: C_CHKSUM =0xff - (0x00+0x08+0xe0+C_UAP_0+C_UAP_1+C_UAP_2 +0x00) & 0x00ff;

Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Page 28

www.avantwave.com

EEPROM address	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07
Data	0x00	0x08	0xe0	C_LAP_0	C_LAP_1	C_LAP_2	0x00	C_CHKSU M

Table. 11a) BT address data format

e.g. bluetooth address is 0008-e0-123456, In EEPROM as follows 00 08 e0 12 34 56 00 7b

Crystal Frequency

It will store from address 0x08 to 0x0f in EEPROM.(8 byte code)

C_CRYFREQ_HIGHER_BYTE,C_CRYFREQ_LOWER_BYTE, 0x00, 0x00,0x00,0x00,0x00, C_CHKSUM //crystal frequency //dummy //checksum

ps:C_CHKSUM=

0xff -(C_CRYFREQ_HIGHER_BYTE+C_CRYFREQ_LOWER_BYTE+0x00+0x00+0x00+0x00) & 0x00ff;

EEPROM address	0x08	0x09	0x0a	0x0b	0x0c	0x0d	0x0e	0x0f
Data	C_CRYFR EQ_HIGHE R_BYTE	C_CRYFR EQ_LOWE R_BYTE	0x00	0x00	0x00	0x00	0x00	C_CHKSU M

Table. 11b) Crystal Frequency data format

e.g. the crystal frequency is 16Mhz, In EEPROM as follows 3e 80 00 00 00 00 00 41

Crystal Trim

It will store from address 0x10 to 0x17 in EEPROM.(8 byte code) C_CRYTRIM, //crystal trim 0x00,0x00, 0x00,0x00,0x00,0x00, //dummy C_CHKSUM //chksum ps: C_CHKSUM =0xff -(C_CRYFTRIM+0x00+0x00+0x00+0x00+0x00) & 0x00ff;

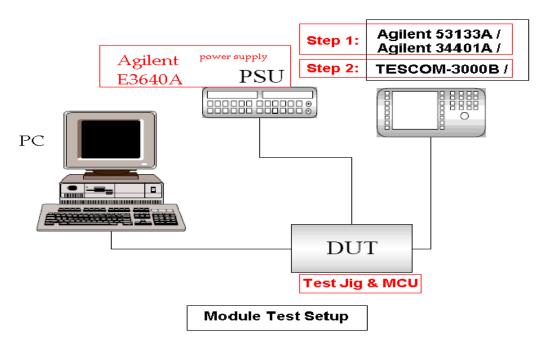

EEPROM address	0x10	0x11	0x12	0x13	0x14	0x15	0x16	0x17
Data	C_CRYTR IM	0x00	0x00	0x00	0x00	0x00	0x00	C_CHKSU M

Table. 11c) Crystal Trim data format

e.g. the crystal trim in decimal is 29 In EEPROM as follows 1d 00 00 00 00 00 00 e2

AvantWave www.avantwave.com

Test equipment system diagram

Fig. 13 RF test setup configure

Step 1:

- (a) Stick the bar code label on the shield can, scan the bar code label for the unique BT address
- (b) Setup the PC & Test Fixture, connect the COM port & +8V power supply unit
- (c) Insert the BT module into the Fixture
- (d) Download the RF & basic PSKEY to the module via UART interface
- (e) Start the crystal trim, use the software program to trim the crystal value and log to a text file with the unique BT ID. Put the unique BD addr label on the BTR602 module.
- (f) Check the PIOs, AIO, +1.8V output, UART & SPI by the software testing program
- (g) Log and record the results into the text file

Step 2:

- (h) Scan the bar code label for the unique BT address
- (i) Start the conductive RF test and log the result to a text file (refer to AWV Conductive RF Test)
- (j) Log and record the results into the text file

Step 3:

- (k) Scan the bar code label for the unique BT address
- (1) Write the PSKEYs (unique BT address, crystal trim value & crystal frequency) into the EEPROM
- (m) Check the EEPROM by the external MCU to verify the written PSKEYs are corrected or not, put the crystal trim value label on the BTR602 module

Step 4:

- (\mathbf{n}) Scan the bar code label for the unique BT address
- (o) visual check the BTR602 module and read the EEPROM value to confirm that it is matched between the BD addr label and EEPROM information per each module. Failed module will be collected and analyzed by the engineers.
 (p) Log and record the MP products into the text file before deliver out

Avantlane www.avantwave.com

Power Consumption

Referent current consumption(different HCI settings):

Voltage Supplies = 3.3V VREG_IN => 1st internal step down to 1.8V => 2nd internal step down to 1.5V BC06 core supply voltage (all AIO/PIOs, PCM and SDIO/CSPI channels are NC) Temperature = 25°C Frequency = 2.441GHz

Mode	Average	Peak	Unit
SCO connection HV3 (30ms interval sniff mode)(slave)	16.1	25	mA
SCO connection HV3 (30ms interval sniff mode)(Master)	16.9	27	mA
SCO connection HV3 (no sniff mode)(slave)	23.1	30	mA
SCO connection HV1 (Slave)	36.9	40	mA
SCO connection HV1 (Master)	37.1	40	mA
ACL data transfer 115.2kbps UART (Master)	8.8	15	mA
ACL data transfer 115.2kbps UART (slave)	17.2	20	mA
ACL data transfer 921kbps UART (Master or slave)	29.5	37	mA
ACL connection, sniff mode 40ms interval, 38.4kbps UART	1.6	5	mA
ACL connection, sniff mode 1.28s interval, 38.4kbps UART	0.21	2	mA
Parked Slave, 1.28s beacon interval, 38.kpbs UART	0.26	1	mA
Standby Mode (Connected to host, no RF activity)	39	150	μA
Reset (RESET high or RESETB low)	. 38	120	μA

Table. 13 HCI current consumption

Measured current consumption(overall):

Voltage Supplies = 3.3V VREG_IN => 1st internal step down to 1.8V => 2nd internal step down to 1.5V BC06 core supply voltage (all AIO/PIOs, PCM and SDIO/CSPI channels are NC) Temperature = 25°C Frequency = 2.402GHz to 2.480GHz (hopping)

•standby current consumption: $\sim 0.8 \text{mA}$

•pairing current consumption: $\sim 35 \text{mA}$

•A2DP audio streaming connected current consumption: ~ 45mA

•Headset/Handsfree connected current consumption: ~ 40mA

Remark: connect to PC via UART interface with the IVT software tool, HCI module can perform some different BT profiles function like A2DP, SPP, HID & HS/HF,,etc when connected to the IVT software tool.

Electrical Characteristics

ESD Precautions:

The BTR602 module should be applied ESD handling precautions during PCBA manufacturing proceed.

Absolute Maximum Ratings:

Storage Temperature		Min	Max	Unit
Core Supply	+1.5V supply rail	-0.4	1.6	V
IO volage	+3.3V supply rail	-0.4	3.6	V
Supply voltage	+1.5V internal regulator input	-0.4	2.6	V
	+1.8V internal regulator input, VREG_EN	-0.4	4.9	V
Other terminal	voltages	Vss-0.4	Vdd + 0.4	V

Recommended Operating Conditions:

Operating Temperature Range			Max	Unit
Core Supply +1.5V supply rail		1.4	1.6	V
IO volage	+3.3V supply rail	1.7	3.6	V

+3.3V Linear Regulator Conditions:

Normal Operation	Min	Тур	Max	Unit
Input voltage	2.7	3.3	4.9	V
Output voltage (I = 70mA, Vdd =+3.3V)	1.7	1.8	1.9	V
Temperature coefficient	-250	0	250	ppm/ºC
Output noise (freq. Range 100Hz to 100kHz, reg. Output connected to 100nF and 10uF 2.2 ohm ESR capacitors)	0	0.5	1	mV rms
Load regulation (I = 70mA)	40	45	50	mV/A
Settling time (1mA to 70mA pulse load, reg. Output connected to 100nF and 10uF 2.2 ohm ESR capacitors)	30	50	100	μS
Maximum output current	60	70	75	mA
Minimum load current	5	8	15	μA
Quiescent current (excluding load, I < 1mA)	30	40	60	μA

AvantWave .

www.avantwave.com

Page 32 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

	Bluetron [™] 600 Series
Deep Sleep Mode Operation	
Quiescent current (excluding load, I < 100µA)	10 13 21 µA
Standby Mode	
Quiescent current	1.5 2.5 3.3 μA

+1.8V Linear Regulator Conditions:

Normal Operation	Min	Тур	Max	Unit
Input voltage	1.7	1.8	2.6	V
Output voltage (I = 70mA, Vdd =+1.7V)	1.4	1.5	1.6	V
Temperature coefficient	-250	0	250	ppm/ºC
Output noise (freq. Range 100Hz to 100kHz, reg. Output connected to 100nF and 10uF 2.2 ohm ESR capacitors)	0	0.5	1	mV rms
Load regulation (I = 70mA)	40	45	50	mV/A
Settling time (1mA to 70mA pulse load, reg. Output connected to 100nF and 10uF 2.2 ohm ESR capacitors)	30	50	100	μS
Maximum output current	60	70	75	mA
Minimum load current	5	8	15	μA
Quiescent current (excluding load, I < 1mA)	50	90	150	μA
Deep Sleep Mode Operation				
Quiescent current (excluding load, I < 100µA)	6	10	17	μΑ
Standby Mode				
Quiescent current	1.5	2.5	3.3	μA

Digital part:

Page 33 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Digital Terminals	Min	Тур	Max	Unit
Input Voltage Levels			<u> </u>	
Input logic level low	-0.4	0	0.25xVdd	V
Input logic level high	0.7xVdd	2.5	Vdd+0.3	V
Output Voltage Levels				
Output logic level low ($I = 4mA$)	0	0	0.12	V
Output logic level high($I = -4mA$)	Vdd-0.4	Vdd-0.1	Vdd	V
Input and Tri-state Current with	:			
Strong pull up	-100	-40	-10	μA
Strong pull down	10	40	100	μA
Weak pull up	-5	-1	-0.2	μA
Weak pull down	0.2	1	5	μA
I / O pad leakage current	-1	0	1	μA
Input capacitance	1	3	5	pF

Crystal frequency input (reference clock input):

Clock Source	Min	Тур	Max	Unit
Crystal Oscillator				
Crystal Frequency (250kHz per one step)	26	26	26	MHz
Frequency tolerance (at +25°C temperature)	-15	-	+15	ppm
Digital trim range (internal capacitance at min & max value)	5	6.2	8	pF
Trim step size (internal capacitance at min & max value)	0	0.1	0.1	pF
Transconductance	2	4	4	mS
Negative resistance (xtal = 26 MHz, Co = 0.76 pF. Cl = 8.5 pF)	870	1500	2400	ohm

Reset levels:

AvantWave www.avantwave.com

Page 34 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Power on Reser	Min	Тур	Max	Unit
+1.5V falling threshold	1.13	1.25	1.3	V
+1.5V rising threshold	1.2	1.3	1.35	V
Hysteresis	0.05	0.1	0.15	V

RSSI ADC channel:

RSSI ADC(*)		Min	Тур	Max	Unit
Resolution		10	10	10	Bits
Input voltage range (LSB size = $+1.5$ V/	1024)	0	1.5	1.6	V
Accuracy (Guaranteed monotonic)	INL	-1	0	1	LSB
DNL		0	1	1	LSB
Offset		-4	0	4	LSB
Gain Error		-0.2	0	0.2	%
Sample rate		680	690	700	S/s
Conversion time		2.7	2.75	2.8	μs
Input Bandwidth		90	100	110	kHz

* RSSI Analogue to Digital Converter: The ADC applies fast AGC. The ADC samples the RSSI voltage on a step by step base. The front end LNA gain will be changed refer to the measured RSSI value(receive), the 1st mixer input signal with a limited range. It improves the dynamic range of the receiver, enhancing RF performance in noisy limited environments.

32kHz External Reference Clock (deep sleep mode for power saving):

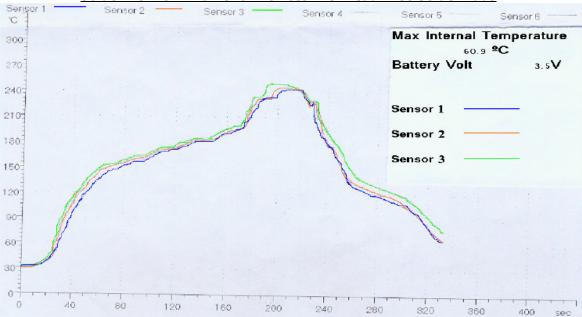
32kHz External Reference Clock	Min	Тур	Max	Units
Frequency	32748	32768	32788	Hz
Frequency deviation at 25°C	0	±10	±20	ppm
Frequency deviation at -30°C to 85°C	±140	±145	±150	ppm
Input high level, square wave	0.625 x 1.5	0.625 x 1.5	0.65 x 1.5	V
Input low level, square wave	0.4 x 1.5	0.425 x 1.5	0.425 x 1.5	V
Duty cycle square wave	30	50	70	%
Rise and fail time	30	40	50	ns

* 32kHz External Reference Clock: A 32kHz clock can be implemented to either CLK_32K or AlO[0], refer to the PSKEY_DEEP_SLEEP_EXTERNAL_CLOCK_SOURCE. Once the external clock is implemented to the analog AlO [0] pad in the 1.5V supply domain, the digital signal would be limited as +1.5V maximum driven voltage. If 32kHz clock is under 200ppm accuracy, the enhance power saving feature can be added.

* 32kHz crystal is a optional selection (external circuitry), if seeking the power saving mode, 32kHz crystal is a must.

Otherwise, it can be NC.

AvantWave www.avantwave.com


Solder Profiles

In order to setup your application, it is required to have the soldering profile which is based on various parameters.

Zone	Sensor	Description
Preheat Zone	1-2	This zone raises the temperature at a controlled rate. Generally 1~2.5°C/s.
Equilibrium Zone	3	This zone brings the board to a uniform temperature and also activates the flux. The duration in this zone will need to be adjusted to optimize the out gassing of the flux. Generally 120~180s duration.
Reflow Zone	4	The peak temperature should be high enough to achieve good wetting but not so high as to cause component discoloration or damage. Excessive soldering time can lead to inter-metallic growth which can result in a brittle joint.
Cooling Zone	5-6	The cooling rate should be fast, to keep the solder grains small which will give longer lasting joint. Generally 2~5°C/s.
		Table 14 Soldering zones

 Table 14. Soldering zones

** Normally, the components endure 2 times reflow & peak temperature around 255°C+/- 5°C. Solder Re-Flow Profile for Devices with Lead-Free Solder Pads

Temperature Analysis at 200°C

Sensor	Max °C	Max at (s)	Over (s)
S1	245.6	204.5	53
S2	244.3	209	52
S3	251.3	196	52

Fig. 14 Reflow soldering temperature

Hand soldering conditions:

- 1. Maximum hand soldering points ≤ 8 (not included to remove the shield can)
- 2. Maximum hand soldering times per each point($3 \sim 5 \text{ seconds}$) ≤ 4 with the solder iron temperature around 360°C +/- 20°C

AvantWave www.avantwave.com

Page 36 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Module radiative characteristics

The AUT is feed by a coaxial cable inserted with an attenuator and common mode current chocking components. During measurements, the AUT is rotated 180° with a step of 2.61°. As per each special measurement point, the dual polarization crossed probe filed intensity of Phi polarization (Azimuth) and Theta (Elevation) accordingly. After calibration, the system software computes the configure data and antenna parameters of the AUT. Probes are placed each 2.61° in Elevation. In azimuth, a complete rotation of the antenna is suitable to average results and get a better uncertainty. The AUT is under passive mode during the test.

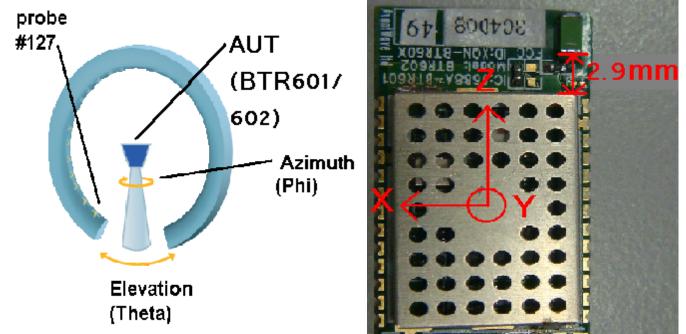


Fig. 15 Laboratory setup environment & BTR602 AUT radiative measurement direction

Frequency (MHz)	Average power gain (dBi)	Radiation Efficiency (%)
2402	3.2	41
2441	2.1	34
2450	2.1	33
2480	1.3	28
2500	0.4	23

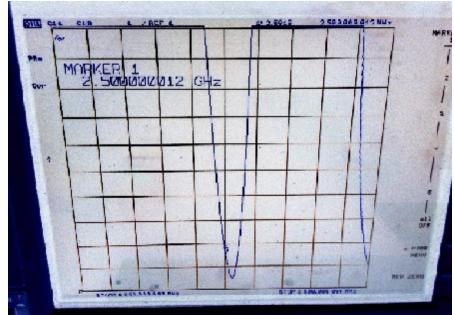

Antenna Gain & Efficiency:

Table 15. BTR602 module radiation power gain & efficiency

AvantWave vww.avantwave.com

Page 37 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

VSWR:

VSWR: 2.58 @ 2.5GHz Fig. 16 BTR602 module VSWR

Antenna radiation patterns:

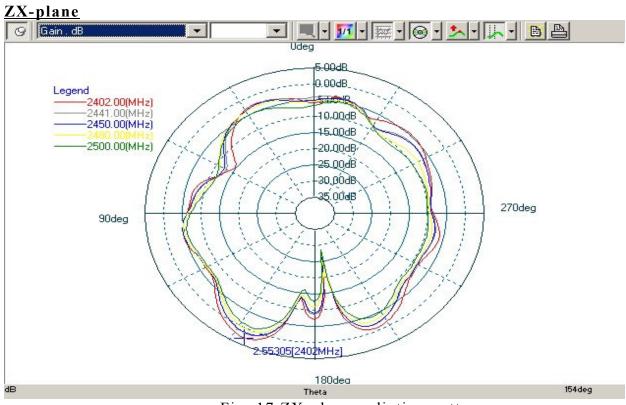


Fig. 17 ZX-plane radiation pattern

AvantWave.com

Page 38 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

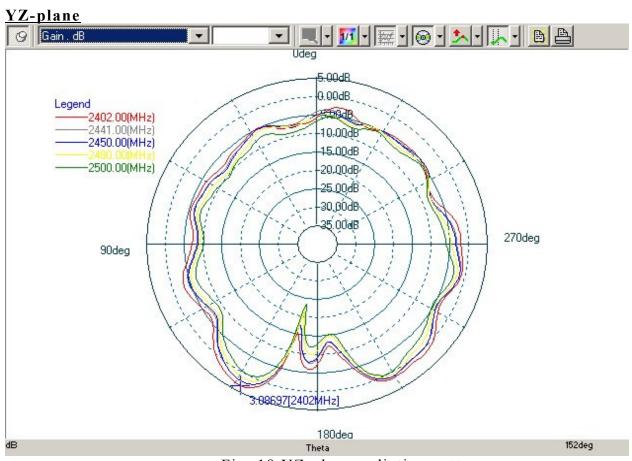


Fig. 18 YZ-plane radiation pattern

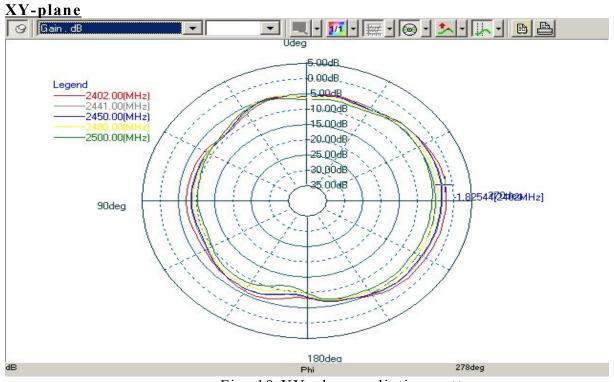


Fig. 19 XY-plane radiation pattern

AvantWave.com

Page 39 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Moisture sensitivity devices caution label on MBB

This bag contains Moisture-Sensitive Devices (MSL 2)

Seal Date: DD/MM/YY

Appendix 1

Host transport configurations (PSKEY):

BCSP transport:

If PSKEY_HOST_INTERFACE selects use of BCSP then the UART's configuration register is set to the value of this PS key when it boots.

The UART configuration register is a bitfield:

```
Bit Meaning
   0 = 0 one stop bit, 1 = 0 two stop bits.
   1 0 \Rightarrow no parity bits, 1 \Rightarrow one parity bit.
   2 0 \Rightarrow odd parity, 1 \Rightarrow even parity.
   3 0 \Rightarrow h/w flow control disabled, 1 \Rightarrow enabled.
   4 Set to 0.
   5.0 \Rightarrow RTS deasserted, 1 \Rightarrow RTS asserted.
   6 Set to 0.
   7.0 \Rightarrow non-BCSP/H5 operation disabled, 1 \Rightarrow enabled.
   8 Set to 0.
   9 Set to 0.
 10 Set to 0.
 11 Set to 1.
 12 0 \Rightarrow H5 operation disabled, 1 \Rightarrow enabled.
 13 Set to 0.
 14 Set to 0.
 15 Set to 0.
```

The default value, 0x0806, selects use of BCSP mode and even parity.

In builds from HCI 18.X, this key replaces PSKEY_UART_CONFIG, PSKEY_UART_CONFIG_STOP_BITS, PSKEY_UART_CONFIG_PARITY_BIT, PSKEY_UART_CONFIG_FLOW_CTRL_EN, PSKEY_UART_CONFIG_RTS, PSKEY_UART_CONFIG_NON_BCSP_EN.

H4 transport:

If PSKEY_HOST_INTERFACE selects use of H4 then the UART's configuration register is set to the value of this PS key when it boots.

Avantlane www.avantwave.com

Page 40 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

The UART configuration register is a bitfield and shares its format with PSKEY_UART_CONFIG_BCSP:

Bit Meaning 0 = 0 one stop bit, 1 = 0 two stop bits. $1 0 \Rightarrow$ no parity bits, $1 \Rightarrow$ one parity bit. $2 0 \Rightarrow$ odd parity, $1 \Rightarrow$ even parity. $3 0 \Rightarrow h/w$ flow control disabled, $1 \Rightarrow$ enabled. 4 Set to 0. $5 0 \Rightarrow RTS$ deasserted, $1 \Rightarrow RTS$ asserted. 6 Set to 0. $7 0 \Rightarrow$ non-BCSP/H5 operation disabled, $1 \Rightarrow$ enabled. 8 Set to 0. 9 Set to 0. 10 Set to 0. 11 Set to 1. $12 0 \Rightarrow H5$ operation disabled, $1 \Rightarrow$ enabled. 13 Set to 0. 14 Set to 0.

15 Set to 0.

The default value, 0x08a8, selects use of hardware flow control, as required by the H4 specification.

In builds from HCI 18.X, this key replaces PSKEY_UART_CONFIG, PSKEY_UART_CONFIG_STOP_BITS, PSKEY_UART_CONFIG_PARITY_BIT, PSKEY_UART_CONFIG_FLOW_CTRL_EN, PSKEY_UART_CONFIG_RTS, PSKEY_UART_CONFIG_NON_BCSP_EN.

H4DS transport:

If PSKEY_HOST_INTERFACE selects use of H4DS then the UART's configuration register is set to the value of this PS key when the system boots.

The UART configuration register is a bitfield:

Bit Meaning
0 0 => one stop bit, 1 => two stop bits.
1 0 => no parity bits, 1 => one parity bit.
2 0 => odd parity, 1 => even parity.
3 0 => h/w flow control disabled, 1 => enabled.
4 Set to 0.
5 0 => RTS deasserted, 1 => RTS asserted.
6 Set to 0.
7 0 => non-BCSP/H5 operation disabled, 1 => enabled.
8 Set to 0.

Page 41 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Bluetron[™] 600 Series

9 Set to 0. 10 Set to 0. 11 Set to 1. $12 0 \Rightarrow H5$ operation disabled, $1 \Rightarrow$ enabled. 13 Set to 0. 14 Set to 0. 15 Set to 0

The default value, 0x08a8, selects use of hardware flow control, as required by the H4 (sic) specification.

H5 transport:

If PSKEY HOST INTERFACE selects use of H5 then the UART's configuration register is set to the value of this pskey when it boots.

The UART configuration register is a bitfield:

Bit Meaning

0 = 0 one stop bit, 1 = 0 two stop bits. $1 0 \Rightarrow$ no parity bits, $1 \Rightarrow$ one parity bit. $2 0 \Rightarrow$ odd parity, $1 \Rightarrow$ even parity. $3.0 \Rightarrow h/w$ flow control disabled, $1 \Rightarrow$ enabled. 4 Set to 0. $5.0 \Rightarrow RTS$ deasserted, $1 \Rightarrow RTS$ asserted. 6 Set to 0. $7 0 \Rightarrow$ non-BCSP/H5 operation disabled, $1 \Rightarrow$ enabled. 8 Set to 0. 9 Set to 0. 10 Set to 0. 11 Set to 1. $12 0 \Rightarrow H5$ operation disabled, $1 \Rightarrow$ enabled. 13 Set to 0. 14 Set to 015 Set to 0.

(The "H5" host transport protocol is properly known as the "Three Wire Uart Transport Layer", but is commonly known as H5 within CSR.)

In builds from HCI 18.X, this key replaces PSKEY UART CONFIG, PSKEY UART CONFIG STOP BITS, PSKEY UART CONFIG PARITY BIT, PSKEY UART CONFIG FLOW CTRL EN, PSKEY UART CONFIG RTS, PSKEY UART CONFIG NON BCSP EN.

AvantWave www.avantwave.com

Page 42 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

BTR602 module silkscreen photos:

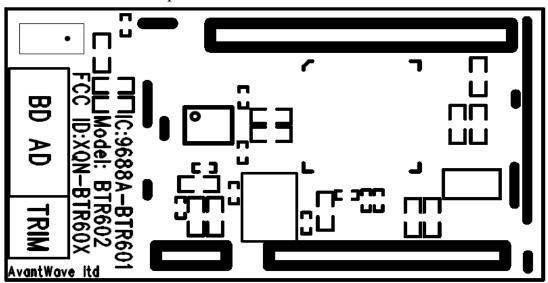


Fig. 20 BTR602 module top layer silkscreen

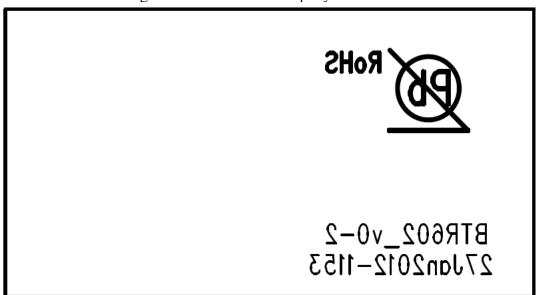


Fig. 21 BTR602 module bottom layer silkscreen

BTR602 approval certification ID:

•QD ID: BXXXXXX (Bluetooth SIG qualified design ID), XXXXXX = 018099

•FCC ID: XXX-product code, Federal Communications Commission Identification, an FCC ID has 2 elements. The first is a three-character Grantee Code which begins with a alphabetic character and does not contain 1s or 0s. The FCC permanently assigns this code to a company for authorization of radio frequency equipment. It represents the Grantee or Applicant and each manufacturer has its unique Grantee Code. The second FCC ID element is the Product Code, which can include hyphens and dashes. An FCC ID is proof that the equipment and its manufacturer complies with the FCC-specified technical standards.

•IC: Industry Canada, certification of equipment means only that the equipment has met the requirements of the noted specification. License applications, where application to use certified equipment, are acted on accordingly by the issuing office and will depend on the existing radio environment, service and location of operation. This certification is issued on condition that the holder

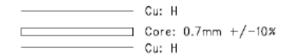
Page 43 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

complies and will continue to comply with the requirements of the radio standards specifications and procedures issued by the Department(IC).

The certification number is made up of a Company Number (CN) assigned by Industry Canada's Certification and Engineering Bureau followed by the Unique Product Number (UPN), assigned by the applicat.

IC: XXXXX-YYYYYYYYYYY

Model: project code


9688A-BTR60X (is the certification number)

XXXXXX is the CN assigned bt Industry Canada, made of at most 6 alphanumneric character (A-Z, 0-9), including a letter at the end of the CN to distinguish between different company addresses; YYYYYYYYYYY is the UPN assigned by the applicant, made of at most 11 alphanumneric characters (A-Z, 0-9); and the letters "IC" are to indicate the Industry Canada certification number, but are not part of the certification number.

Model: BTR602 (is the company project code)

Dimension outline:

total PCB thickness: 0.8 mm +/- 0.1 mm

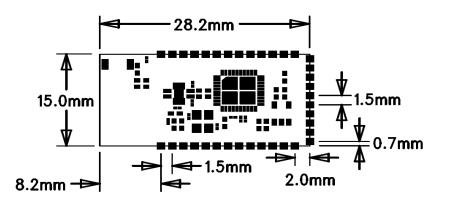


Fig. 22 BTR602 module terminals & shapes of parts

Appendix 3

BTR 602 EEPROM Data ReadPacketFormat from EEPROM to PC

Aim:

Since there are some Bluetooth Configuration Parameter(BT address, Crystal Trim, Crystal Frequency) are required to read from EEPROM to PC through UART as a confirmation in production.

This document will interpret the packet format in how to Send Packet Cmd to MCU for reading the EEPROM data

Communication Port: UART, 38400,8N1

All Send Packet Cmd (BT address, Crystal Trim, Crystal Frequency) contain 10 bytes data and receiving 8 bytes EEPROM data.

•BT address

Send Packet Cmd: 0xf0,

//Header

Tel: (852) 2648 9887 Fax: (852) 2646 3713 inquiry@avantwave.com

Page 44 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

0x00,	
0x00,0x00,0x00,0x00,0x00,0x00,0x00,	
C_CHKSUM	

//EEPROM Address //dummy //checksum

	Data	0XI0	0x00	C_CI 1K30M							
1	Data	0xf0	0x00	C CHKSUM							
	Packet byte	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09

Table. 16 BT address send packet command

Receive Packet Cmd:

It will o	contains 8 bytes	(i.e EEPROM ad	ddress 0-7) to sh	now the Bluetoot	h address			
Receive Packet byte	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07
Data	BT address(NAP_0)	BT address(NAP_1)	BT address(UAP)	BT address(LAP_0)	BT address(LAP_1)	BT address(LAP_2)	0x00(dummy)	C_CHKSUM(Re c)

Table. 17 BT address receive packet command

ps: C_CHKSUM(Rec) =0xff - (BT address(NAP_0)+BT address(NAP_1)+BT address(UAP)+BT address(LAP_0)+BT address(LAP_1)+BT address(LAP_2)+0x00) & 0x00ff;

e.g. read bluetooth address cmd, and suppose bluetooth address is 0008-e0-123456 Send : f0 00 00 00 00 00 00 00 00 00 00 f Receive : 00 08 e0 12 34 56 00 7b

•Crystal Frequency

Send Packet Cmd:

0xf0 0x08 0x00, 0x00,0x00, 0x00,0x00,0x00,0x00, C_CHKSUM

//Header //EEPROM Address //dummy //checksum

Packet byte	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09
Data	0xf0	0x08	0x00	C_CHKSUM						

Table. 18 Crystal frequency send packet command

Receive Packet Cmd: It will contains 8 bytes(i.e EEPROM address 8-15) to show the Crystal Frequency

		1.0 221 1.011 40						
Receive Packet byte	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07
Data	C_CRYFREQ_ HIGHER_BYT E	C_CRYFREQ_ LOWER_BYT E	0x00	0x00	0x00	0x00	0x00	C_CHKSUM(Re c)

Table. 19 Crystal frequency receive packet command

ps: C_CHKSUM(Rec) =0xff - (C_CRYFREQ_HIGHER_BYTE+C_CRYFREQ_LOWER_BYTE+0x00+0x00+0x00+0x00 + 0x00) & 0x00ff;

e.g. read the crystal frequency and suppose its value is 16Mhz Send : f0 08 00 00 00 00 00 00 00 07 Receive : 3e 80 00 00 00 00 00 41

•Crystal Trim Value

Send Packet Cmd: 0xf0 0x10,

//Header //EEPROM Address

AvantWave www.avantwave.com

Tel: (852) 2648 9887 Fax: (852) 2646 3713 inquiry@avantwave.com

Page 45 Datasheet BTR602 v2.4 Last Update 30/Apr/2014 0x00,0x00,0x00, 0x00,0x00,0x00,0x00, C_CHKSUM

ps: C_CHKSUM =0xff -(0xf0+0x10+0x00+0x00+0x00+0x00+0x00+0x00 +0x00) & 0x00ff;

//dummy

//chksum

Packet	oyte 0x0	x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09
Data	0x:	cf0	0x10	0x00	C_CHKSUM						

Table. 20 Crystal trim value send packet command

Receive Packet Cmd: It will contains 8 bytes(i e FEPROM address 16-23) to show the Crystal Trim

	contains o bytes	(I.E LLFROM at	10-23/10	show the cryste				
Receive Packet	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07
byte								
Data	C_CRYTRIM	0x00	0x00	0x00	0x00	0x00	0x00	C_CHKSUM(Re
								c)

Table. 21 Crystal trim value receive packet command

ps: C_CHKSUM(Rec) =0xff - (C_CRYTRIM+0x00+0x00+0x00+0x00+ 0x00 + 0x00) & 0x00ff;

e.g. read the crystal trim and suppose its value is 29 Send : f0 10 00 00 00 00 00 00 00 ff Receive : 1d 00 00 00 00 00 00 e2

Appendix 4

PCM configuration:

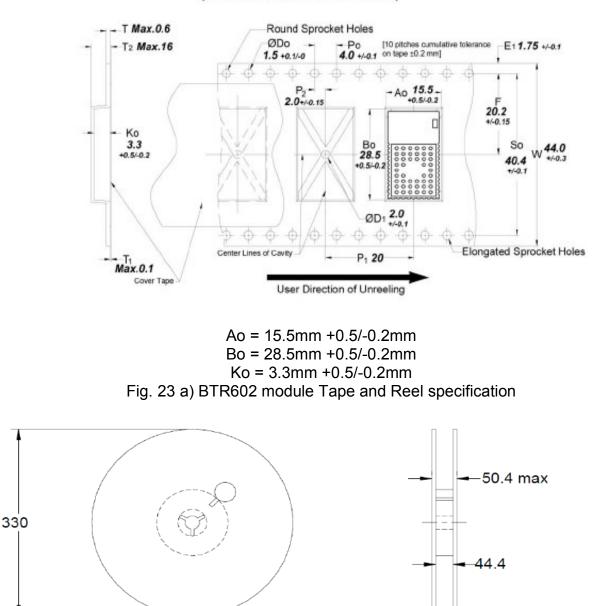
•default PCM configure: PSKEY_PCM_CONFIG32 is 0x00800000.

Name	Bit Position	Description
CNT_LIMIT	[12:0]	Sets PCM_CLK counter limit
CNT_RATE	[23:16]	Sets PCM_CLK count rate
SYNC_LIMIT	[31:24]	Sets PCM_SYNC division relative to PCM_CLK

Table. 22 PSKEY_PCM_LOW_JITTER_CONFIG description

Avantlaue www.avantwave.com

Name	Bit Position	Description
-	0	Set to 0.
SLAVE_MODE_EN	1	0 = master mode with internal generation of PCM_CLK and PCM_SYNC. 1 = slave mode requiring externally generated PCM_CLK and PCM_SYNC.
SHORT_SYNC_EN	2	0 = long frame sync (rising edge indicates start of frame). 1 = short frame sync (falling edge indicates start of frame).
-	3	Set to 0.
SIGN_EXTEND_EN	4	0 = padding of 8 or 13-bit voice sample into a 16-bit slot by inserting extra LSBs. When padding is selected with 13-bit voice sample, the 3 padding bits are the audio gain setting; with 8-bit sample the 8 padding bits are zeroes. 1 = sign-extension.
LSB_FIRST_EN	5	0 = MSB first of transmit and receive voice samples. 1 = LSB first of transmit and receive voice samples.
TX_TRISTATE_EN	6	0 = drive PCM_OUT continuously. 1 = tri-state PCM_OUT immediately after falling edge of PCM_CLK in the last bit of an active slot, assuming the next slot is not active.
TX_TRISTATE_RISING_EDGE_E N	7	0 = tri-state PCM_OUT immediately after falling edge of PCM_CLK in last bit of an active slot, assuming the next slot is also not active. 1 = tri-state PCM_OUT after rising edge of PCM_CLK.
SYNC_SUPPRESS_EN	8	0 = enable PCM_SYNC output when master. 1 = suppress PCM_SYNC while keeping PCM_CLK running. Some CODECS use this to enter a low power state.
GCI_MODE_EN	9	1 = enable GCI mode.
MUTE_EN	10	1 = force PCM_OUT to 0.
48M_PCM_CLK_GEN_EN	11	0 = set PCM_CLK and PCM_SYNC generation via DDS from internal 4MHz clock. 1 = set PCM_CLK and PCM_SYNC generation via DDS from internal 48MHz clock.
LONG_LENGTH_SYNC_EN	12	0 = set PCM_SYNC length to 8 PCM_CLK cycles. 1 = set length to 16 PCM_CLK cycles. Only applies for long frame sync and with 48M_PCM_CLK_GEN_EN set to 1.
PCM_SYNC_MULT	12	0 = Sync limit = SYNC_LIMIT x 8. 1 = SYNC_LIMIT.
-	[20:16]	Set to 0b00000.


Table. 23 PSKEY_PCM_CONFIG32 Description

Page 47 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Tape and Reel packaging dimensions:

(all dimensions in millimeters)

With reference to industrial standard EIA-481, the diameter of the reel is 330mm x thickness 44mm.

Fig. 23 b) Reel diameter and thickness

Ordering information: No. of module per reel: 800 pcs MPQ: 2400 pcs (3 reeps) MOQ: 4800 pcs

Remarks:

No. of empty packets: 930 pcs, No. of packets with modules: 800 pcs & 65 pcs of empty packets at both ends.

AvantWave www.avantwave.com

Page 48 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Place the bluetooth address

label within the "BD AD"

Label sticking

white barrier.

- 1. Refer to the BTR602 module golden sample in the SMT department, each worker can clearly know that what is the exact label sticking position.
- 2. In the Manufacturing Instruction (MI), it included two module photos to show out the position of bluetooth address and crystal trim value, Basically, those labels should be on the proper position that is point out at the MI.

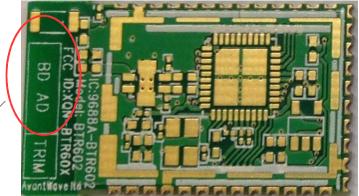
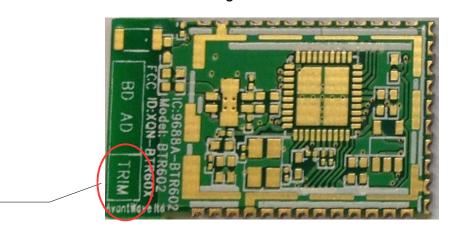
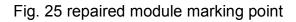



Fig. 24a bluetooth address label

Place the crystal trim value label within the "TRIM" white barrier.

Fig. 24b crystal trim value label

Visual Check


- 1. Compare to the golden sample
- 2. After the testing procedure step 4, the worker will check the labels position are correct or not. If the label on the wrong position, the worker should be sticking again to meet the golden sample standard.

The stickers are compliant with RoHS standard self-adhesive label. The material of the label is mainly art paper.

Page 49 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Repaired module notification:	SMT line: Hand soldering reparation with a pass result (after soldered)
3C41)08 49 101 101 101 101 101 101 101 101 101 10	
Test line: Re-tested process with a pass result (after repaired)	

mark standard

SMT line: red dot with around 3mm diameter

Testing line: blue dot with around 3mm diameter

marker type: Pilot Super Color Marker SCA-B or Pilot V Super Color (BeGreen) permanent marker SCA-VSC-MC (Chisel)

Page 50 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

Datasheet History

Version	Date	Changed item
V1.0	02/27/12	• 1 st version
V1.1	02/29/12 to 03/13/12	Revised the tray dimensions drawing
V1.2	04/17/12	Revised the Measured Current Consumption in Power Consumption section
V1.3 to V1.4	04/23/12 to 05/08/12	Revised the Solder Profiles section
		• Updated the Tray dimensions drawing
		• Modified the Appendix 2 and BTR602 terminals & shapes of parts figure
		Modified the Mechanical Specifications section
		• Modified the General Specifications & RF specifications sections
		Modified the Power Consumption & Electrical Characteristics sections
V1.5	05/16/12	Revised the Power Sequence section
		Revised the Solder Profiles section
V1.6	05/23/12	• Added the Reset Timing Diagram section instead of the Power Sequence section
V1.7	05/31/12	Revised the Reset Timing Diagram section
		Revised the Solder Profiles section
V1.8	06/05/12	Revised the Reset Timing Diagram section
V1.9	06/07/12	Revised the Reset Timing Diagram section
V2.0	07/03/12	Revised the Appendix 6 (Label Sticking section)
V2.1	07/19/12	Added the Datasheet History section
		• Added the EEPROM via I2C interface data & command format section
V2.2	04/02/13	Added the radiation pattern characteristics & VSWR information
V2.3	04/17/13	Added the radiation pattern characteristics & VSWR information
		• Added the T&R specification instead of the tray specification

AvantWave www.avantwave.com

Page 51 Datasheet BTR602 v2.4 Last Update 30/Apr/2014

V2.4

4/30/14

Remarks

Specifications subject to change without notice. All other trademarks mentioned are the property of their respective owners. This document shows outlined specification only. Please contact AvantWave upon evaluation and integration.

FCC Compliance statements Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received,

including interference that may cause undesired operation

LABEL OF THE END PRODUCT:

The final end product must be labeled in a visible area with the following " Contains TX FCC ID: XQN-BTR60X".

If the size of the end product is larger than 8x10cm, then the following FCC part 15.19 statement has to also be available on the label: This device complies with Part 15 of FCC rules. Operation is subject to the

following two conditions: (1) this device may not cause harmful interference and

(2) this device must accept any interference received, including

interference that may cause undesired operation.

IC statements

LABEL OF THE END PRODUCT:

The final end product must be labeled in a visible area with the following "Contains TX IC: 9688A-BTR601".

This Class B digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions

suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit

accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en

compromettre le fonctionnement.

