Technical Practices

MainStreet Broadband Wireless

RELEASE 1.1

Information subject to change without notice.

Newbridge, the Newbridge logo and MainStreet are registered trademarks of Newbridge Networks Corporation.

MainStreetXpress is a trademark used by the Siemens/Newbridge alliance for comprehensive solutions in broadband communication. No agency relationship, partnership, or joint ownership of a legal entity is to be inferred or implied by the term alliance.

All other trademarks are the property of their respective holders.

© Copyright 1999 Newbridge Networks Corporation. All rights reserved.

Disclaimers

Newbridge products are intended for commercial uses. Without the appropriate network design engineering, they must not be sold, licensed or otherwise distributed for use in any hazardous environments requiring fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life-support machines, or weapons systems, in which the failure of products could lead directly to death, personal injury, or severe physical or environmental damage. The customer hereby agrees that the use, sale, licence or other distribution of the products for any such application without the prior written consent of Newbridge, shall be at the customer's sole risk. The customer hereby agrees to defend and hold Newbridge harmless from any claims for loss, cost, damage, expense or liability that may arise out of or in connection with the use, sale, licence or other distributions.

This document may contain information regarding the use and installation of non-Newbridge products. Please note that this information is provided as a courtesy to assist you. While Newbridge tries to ensure that this information accurately reflects information provided by the supplier, please refer to the materials provided with any non-Newbridge product and contact the supplier for confirmation. Newbridge assumes no responsibility or liability for incorrect or incomplete information provided about non-Newbridge products.

Newbridge has made reasonable efforts to ensure that the 28110 and 28120 MainStreet NIUs, Release 1.1, comply in all material respects with the "Referenced Detailed Functional Specification for Newbridge Product Date Compliance". To obtain this document and other information related to Year 2000 Date Compliance, visit the Newbridge Year 2000 Date Compliance website at the URL:

http://www.newbridge.com/year2000/index.html

However, this does not constitute a representation or warranty. The warranties provided for Newbridge products, if any, are set forth in contractual documentation entered into by Newbridge and its customers.

Customer documentation and product support

Newbridge is committed to providing superior product documentation in convenient and effective formats. Development and delivery of online documentation is one way Newbridge continues to meet the changing needs of customers.

For a wide range of documentation, see:

http://www.newbridge.com/documentation/index.html

Documentation updates

Updates to Newbridge documentation, including Technical Practices, are easily accessible on the World Wide Web.

For documentation updates, see:

http://www.newbridge.com/updates/index.html

TechInfo.NOW

TechInfo.NOW is a subscription service that gives customers access to the latest Newbridge information, including new applications, improved methods of configuring and upgrading, bug fixes and product enhancements.

For each product line, TechInfo.NOW provides access to:

- Applications and Procedures
- Product Manuals
- Technical Alerts
- Product Changes and Descriptions

By providing up-to-date information, TechInfo.NOW can help customers increase the business benefits of their Newbridge networks.

Subscribe to TechInfo.NOW at:

http://techinfo.now.newbridge.com

You can also order this service using part number 91-0030-01 TechInfo.NOW A La Carte.

Technical support

Technical Support Engineers are available to assist you 24 hours a day, 7 days a week.

To get technical help in your region, see the chart below:

Region	Contact Numbe	er	Fax Number
North and South America		(703) 834-5300	(703) 318-5153
Europe, Middle East, Africa and the	(Within UK)	0 1633 413 666	
	(Outside UK)	+44 1633 413 666	
Asia Pacific	Australia	1 800 814 499	
	China	10 800 600 4602	
	Hong Kong	800 90 8402	
	Japan	00 531 60 4602	
	Korea	007 986 01 8280	
	Malaysia	1 800 88 4602	
	New Zealand	0 800 143600	
Internet	http://www.newb	oridge.com	

Customer feedback

We value your feedback. Please direct questions or comments about Newbridge documentation to:

http://www.newbridge.com/documentation/feedback.html

Table of contents

Mandatory regulations

1.

Overvi	ew	
1.1	Broadband wireless system overview	1-1
1.2	Frequency and bandwidth utilization	1-3

2. Equipment overview

Equipment list	2-1
T-ARIC card	
Connectors	
MAU	
12:2 Combiner/Splitters	
2:1 Combiner/Splitters	
CPE 2:1 Combiner/Splitter	
BTS 2:1 Combiner/Splitter	
28110 and 28120 MainStreet CE Plus Ethernet NIUs	
Connectors	
Lightning arresters	
Surge protectors	
OTU and ORU	
Connectors	
Bias-T	
OTRU	
	Equipment list T-ARIC card Connectors MAU

3. Installing the base transceiver station components

3.1	BTS installation overview	
	Siting	
	Customer-supplied equipment	
	Broadband cables	
	Grounded entry point	
	OTU and ORU radios	
3.2	Installing BTS components	
3.3	BTS installation tasks	

4. Installing the MAU

4.1	To install the MAU	 4-	1
4.1		 +-	

5. Attaching an OTU or ORU to an antenna

	5.1	Attaching the OTU or ORU to an antenna	a
--	-----	--	---

6. Installing the BTS antenna assembly

6.1	Installing the BTS mounting hardware	e
-----	--------------------------------------	---

7. Installing Bias-Ts and surge protectors

7.1	Connecting the surge protector to the Bias-T
7.2	Connecting the Bias-T to the 12:2 Combiner/Splitter
7.3	Connecting the surge protector ground wire

8. Installing broadband cable lightning arresters

8.1	Connecting the mounting bracket to the BTS grounding plate	
0 0	Installing the lightning errector in the edepter breaket	0.0

9. BTS cable connections

9.1	BTS cables	9-1
9.2	Connecting BTS broadband cables	9-3
	Connecting the broadband cables	9-9
9.3	Connecting the synchronization reference cable	9-10
	Connecting synchronization reference cables (simplex OTU/ORU)	9-11
	Connecting synchronization reference cables (redundant OTU/ORU)	9-11
9.4	Connecting the RS-422 cables	9-12
	To connect a BTS RS-422 cable	9-12
9.5	Connecting SMA cables	9-13
9.6	Connecting the Bias-T power cable	9-14

10. Installing the customer premises equipment

10.1	Customer premises equipment	10-1
	Cable loss	10-2
	Passive components	10-2
10.2	CPE installation tasks	10-3

11. Installing the CPE OTRU

	1-	• •
--	----	-----

12. Installing CPE lightning arresters

12.1	Connecting the mounting bracket and lightning arrester to the
	CPE grounding plate 12-1

13 CPE cable connections

13.1	Decibel loss	. 13-1
13.2	CPE cables	. 13-1
13.3	Connecting single NIU cables	. 13-1
13.4	Connecting dual NIU cables	. 13-2
13.5	Decibel loss calculations	. 13-3

14. OTRU alignment

14.1	Test equipment and parts	14-1
14.2	Aligning the OTRU	14-2

15. Node management

15.1	Node management overview	
	NMTI user interface	
	To initiate a node management session with an NIU	
	Setting the password and level zero	
	To change the password	15-3
	To enable or disable level zero access	15-3
	Screen display	
15.2	Main menu	
	Softkeys	
	Selecting softkeys	
	Softkey functions	
	Keyboard entries	
	Keyboard conventions	15-8
	Keyboard entry formats	
	Keyboard entry functions	

16. Restrictions of Release 1.1

16.1	BTS restrictions	16-1
16.2	ATM restrictions	16-2

17. Configurable features summary

17.1	NIU configurable options	17-1
17.2	T-ARIC configurable options	17-4

18. NIU TDM configuration options

18.1	Channel group configuration1	8-1
	Restrictions on channel group configuration1	8-1
	To add channels to a channel group1	8-2
	To assign a channel group name1	8-2
	To delete channels and channel groups1	8-2
18.2	Port configuration 1	8-3
	To configure CRC framing 1	8-3
	To configure DS1 build-out1	8-3
	To configure DSX-1 line length 1	8-4
	To configure the framing method1	8-4
	To configure the RAI clearing method and LOF alarm declare/clear time 1	8-4
	To configure the output timing 1	8-4
	To configure the port name 1	8-5
	To configure the signaling method1	8-5
	To configure the zero suppression method1	8-5
18.3	Robbed bit signaling configuration1	8-6
	To configure RBS 1	8-6

18.4	Serial port configuration	18-6
	To configure the serial port baud rate	18-6
18.5	Trunk conditioning configuration	18-7
	To configure trunk conditioning	18-7
	To configure the trunk conditioning data and signaling patterns	18-8

19. ATM configuration options

19.1	NIU ATM configuration options	
	AAL service type	
	To configure the AAL service type	
	Padding octet value	
	To configure the padding octet value	
	Playout buffer	
	To configure the playout buffer threshold	
	User data octets per cell	
	To configure the user data octets per cell	
19.2	T-ARIC card ATM configuration options	
	NIU user data VPI	
	To configure the NIU user data VPI	

20. SNMP configuration options

20.1	SNMP access communities	
	To configure access privileges, name and IP address	20-1
	To delete access communities	20-2
20.2	SNMP trap communities	20-2
	To enable or disable a trap community	20-2
	To configure a trap community name	20-2
	To configure an element manager IP address	20-2
	To delete trap communities	20-3

21. Air interface configuration

21.1	Air interface-related parameters	
21.2	Frequency offsets	
	Downstream frequency offset	
	Rx LO offset	
21.3	Frequency utilization	
	Channel bandwidth, frequency and number of channels	
	Downstream channel frequency and bandwidth	
	Downstream IF start frequency	
	Rx upstream frequency start and end	
	Tx downstream frequency start and end	
	Upstream channel frequency	
	Upstream IF start frequency	
	Upstream frequency offset	
21.4	Groups	
21.5	NIU	
	Add NIU	
	NIU ID and NIU serial number	
	NIU type	

21.6	Power level	
21 7	Rx and Tx redundancy	21-10
21.8	Slot parameters	21-11
2110	Card type	
	Slot name	
21.9	Upstream timeslot utilization	
	Contention timeslots	
		21-12
	Guard and polling timeslots	
	Reserved DBA timeslots	
21.10	NIU configuration	
	To add frequencies	
	To delete channels	
	To configure the maximum power level after network entry	
	To configure the maximum power level before network entry	
	To configure the minimum power level before network entry	
	To configure the minimum power level after network entry	
	To configure the Tx LO and Rx LO frequency offsets	
	To configure the RF band start and end frequency and IF band	start frequency
	21-16	
21.11	T-ARIC group configuration	21-16
	To add or remove a T-ARIC card to or from a T-ARIC group	21-17
	To configure the downstream IF start frequency	
	To configure Rx and Tx control	
	To configure the Rx upstream start and end frequency	
	To configure the Tx downstream start and end frequency	
	To configure the upstream IF start frequency	
	To configure the upstream frequency offset	
21.12	Downstream T-ARIC modem configuration	
	To configure the downstream channel frequency	21-19
	To configure the downstream channel width	
	To configure the Tx default power level	21-20
21.13	Upstream T-ARIC modem configuration	21-20
	To add or remove an NIU	21-20
	To configure the number of contention timeslots	
	To configure the demodulator operational status	
	To configure the number of guard timeslots	21-22
	To configure the number of polling timeslots	21-22
	To configure the number of reserved DBA timeslots	21-23
	To configure the upstream channel frequency	21-24
21.14	T-ARIC card NIU configuration	
	To configure the NIU serial number	21-24
	To configure the NIU type	21-25
21.15	T-ARIC card port configuration	
	To configure the T-ARIC card port name	
21.16	T-ARIC card slot configuration	21-25
	To configure the T-ARIC card type	21-25
	To configure the T-ARIC card slot name	

22. Status information

22.1	Status information	22-1
	To view NIU T1 or E1 port status	22-2
	To view base network, NIU modem and housekeeping link status	22-2
	To view NIU status	22-2
	To view T-ARIC card port status	
	To view T-ARIC card slot status	22-3

23. T-ARIC card statistics

23.1	Statistics	
	To view ATM endpoint statistics	
	To view T-ARIC card port statistics	
	To refresh statistics	

24. NIU statistics

24.1	NIU port AAL1 statistics	
	To view NIU port AAL1 statistics	
	To view NIU channel group AAL1 statistics	
24.2	T1 and E1 statistics	
	To view NIU T1 port statistics	
	To view NIU E1 port G.821 statistics	
	To view NIU E1 port line error statistics	
	To refresh statistics	

25. LED activity

25.1	LED activity	
	NIU LED activity	
	T-ARIC card LED activity	

26. Loopbacks

26.1	T-ARIC card loopbacks	
	To configure the T-ARIC card port reference point	
	To configure the OAM segment type	
	To initiate an OAM loopback	
26.2	28110 and 28120 MainStreet NIU loopbacks	
	To initiate, clear or reset an NIU loopback	

27. Alarms

27.1	Alarm descriptions	27-1
	To acknowledge alarms	27-3
	To acknowledge alarms	27-3
	To clear alarms	27-3
	To configure remote alarm logging over CPSS	27-4
	To configure remote alarm logging over SNMP	27-4
	To configure the alarm queue overflow method	27-4
	To configure the remote alarm queue overflow method	27-5
	To delete alarms	27-5

To filter the alarm display	27-6
To view alarms in a specific queue	27-6
To view an alarm summary	27-7

28. Resetting the T-ARIC cards and NIUs

28.1	Resetting a T-ARIC card or port	
-	To reset the T-ARIC card	
	To reset the T-ARIC card port	
28.2	Resetting the NIU or NIU modem	
	To reset the NIU	
	To reset the NIU modem	

Glossary

Index

Mandatory regulations

This chapter outlines the mandatory regulations for the installation and operation of the MainStreet Broadband Wireless system. Adherence to these regulations is necessary to comply with regulatory requirements.

General requirements

The sections that follow outline the mandatory regulations governing the installation and operation of the MainStreet Broadband Wireless system. Adherence to these instructions is necessary to make sure regulatory compliance requirements are met.

Warning

The MainStreet Broadband Wireless system T-ARIC cards, 28110 and 28120 MainStreet CE Plus Ethernet NIUs, OTRUS, OTUS and ORUS contain no user-serviceable parts. Contact Newbridge for repair and servicing.

Caution

To prevent accidental electrical shorting of cards or modules, the cards or modules must be correctly aligned between the card guides before insertion.

Local regulations

All BTS and CPE installations must meet all local, national and civil electrical/safety regulations of the area where they are installed.

Wireless safety compliance in the United States of America

It is the responsibility of the wireless licence holder to ensure that the requirements of OET Bulletin 65 are met in the USA.

Wireless safety compliance in Canada

It is the responsibility of the wireless licence holder to ensure that the requirements of Safety Code 6 are met in Canada.

Placement of transmitting equipment

To prevent exposure to non-ionizing radiation, the OTU and OTRU should always be mounted to a minimum of 3 m (10 ft) above ground level or roof-top level. If in the case of a wall-mount OTRU, the unit should be mounted three meters away from any point of exposure such as windows, balconies or doors.

OTU and OTRU service and repair safety precautions

Only authorized personnel should service OTU and OTRU units.

Danger

Never touch the OTU or OTRU antennas while they are in operation. Do not stand in front of OTU and OTRU antennas, and never pass closer than 1 m from the front of an operating OTU or OTRU.

The OTU and OTRU should be deactivated prior to being installed or serviced.

Service and repair preparation activities should be made as close to the base of an elevated OTU or OTRU as possible, as the risk of exposure to non-ionizing radiation increases as you move further from the base toward the area that is serviced by the transmitter.

Equipment interconnection points

All card faceplate connectors are SELV.

Connect SELV circuits on this equipment only to other circuits that comply with the requirements of SELV circuits as defined in IEC 60950.

External power supply

The dc source for the wireless antenna must meet the requirements of a SELV source in accordance with IEC 60950 based standards and limit the output to 100VA.

Warning 1

BTS equipment is intended for use when powered by an appropriate external -48 V power supply or rack mount shelf approved by Newbridge. The use of any other power supply may invalidate regulatory approvals of this unit.

Warning 2

The 0VR connector on the -48 V power supply that supplies power to the OTU and ORU must be grounded to the same ground used by the MainStreetXpress 36170 system that connects to the BTS equipment.

Prevention of access to the user

Only authorized personnel should have access to the equipment. Install the equipment in a restricted-access location or similar environment, and post appropriate warning signs to indicate safety concerns. Failure to prevent unauthorized user access will invalidate any approvals given to this equipment.

Regulatory symbols

The following sections show examples of regulatory approval symbols generally used. They may be used on product markings such as approval labels. These symbols are described in IEC 417.

Power on

This symbol indicates the on position of the main on/off switch.

Figure 1: On position symbol for on/off switch

9715

Power off

This symbol indicates the off (O) position of the main on/off switch.

Figure 2: Off position symbol for on/off switch

\bigcirc

9716

Protective grounding terminal

These symbols indicate a terminal that must be connected to earth ground prior to making any other connections to the equipment.

Figure 3: Supply wire protective earth

Figure 4: Protective earth

9718

Dangerous voltage

The lightning flash with an arrowhead symbol, within an equilateral triangle, indicates the presence of uninsulated "dangerous voltage" within the product's enclosure that could cause electric shock. Labels bearing this symbol are installed on the outside of the product enclosure.

Figure 5: Dangerous voltage symbol

9719

Instructions

The exclamation point within a triangle indicates the existence of important operating and maintenance (servicing) instructions in the product documentation.

Figure 6: Important instructions symbol

9720

Elevated non-ionizing radiation levels

This symbol identifies equipment that emits elevated levels of non-ionizing radiation. Do not approach equipment that is marked with this symbol unless power to the device is disconnected. Labels bearing this symbol are installed on the outside casing of transmitter devices.

Figure 7: Elevated non-ionizing radiation levels symbol

International EMC compliance

The EMC compliance of these products relies on following the installation processes correctly.

Failure to follow the correct installation processes may result in a non-compliance to the EMC standards against which these products have been assessed.

28110 and 28120 CE Plus Ethernet NIU EMC compliance

This Class B digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

T-ARIC card EMC compliance

This Class A digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

Industry Canada regulations

The Industry Canada (formerly known as the Department of Communications) label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operational and safety requirements as prescribed in the Terminal Equipment Technical Requirements document(s). Industry Canada does not guarantee that the equipment will operate to the user's satisfaction.

Before installing this equipment, get permission to connect to the facilities of the local telecommunications company. Install the equipment using an acceptable method of connection. Compliance with the above conditions may not prevent degradation of service in some situations.

The standard connecting arrangement codes for the MainStreet Broadband Wireless system are CA11A, CA21A, CA48C, CA81A, CA2EA, CA2FA, CA2GA, CA2HA and CA-A11.

In some cases, the company's inside wiring for single-line individual service may be extended by means of a certified telephone extension cord. Compliance with these conditions may not prevent degradation of service in some situations.

Repairs to certified equipment must be made by an authorized Canadian maintenance facility designated by the supplier. If the user repairs or alters this equipment, or if the equipment malfunctions, the telecommunications company may request that the equipment be disconnected.

Make sure that the electrical ground connections of the power utility, telephone lines and internal metallic water pipe system, if present, are connected together. This precaution is especially important in rural areas.

Caution

Do not attempt to make electrical ground connections. Contact the electrical inspection authority or an electrician.

Safety approval for dc systems

The dc source for the MainStreet Broadband Wireless system must meet the requirements of a SELV source in accordance with CSA C22.2 No. 950. These systems are intended for use with a SELV secondary source that is electrically isolated from the ac source and that is reliably connected to earth.

1. Overview

The MainStreet Broadband Wireless system provides all the advantages of ATM. These advantages include the convergence of voice, data and video; scalability; and maintenance and control of quality of service to the customer site using cost-effective microwave transmissions.

1.1 Broadband wireless system overview

Figure 1-1 shows an example of a broadband wireless system.

Figure 1-1: MainStreet Broadband Wireless system

Table 1-1 describes major components of a broadband wireless system.

Term	Description
ATM backbone	The ATM backbone system is used for switching intercell traffic and connecting multiple BTSs.
BTS	The Base Transceiver Station is the linking point between customers in the coverage area of the BTS and the backbone network. The BTS is a hub that collects and delivers all traffic to and from subscribers within the coverage area.
Cell	The cell is the geographical area that is within range of the transmit and receive antennas at the BTS.
NIU	The Network Interface Unit provides the linking point between the customer equipment and the air interface at the customer site. The MainStreet Broadband Wireless system includes the 28110 and 28120 MainStreet CE Plus Ethernet NIUs.
OTU	The OTU is the transmit radio for the BTS.
ORU	The ORU is the receive radio for the BTS.
Sector	A sector is the smallest geographical area which has access to the entire Tx and Rx RF spectrum used in a wireless system. A sector can be a division of a cell, or an entire cell. A cell is often divided into sectors to simplify network and node management, and to take advantage of antenna profiles.
T-ARIC card	The Time Division Multiple Access - ATM Radio Interface Card resides in a MainStreetXpress 36170 shelf, and provides a cell relay modem interface between the BTS and one or more NIUs.
T-ARIC group	A T-ARIC group is two or more T-ARIC cards configured to use the same OTU/ORU. This allows for an increase in CPE density within the cell.
OTRU	An OTRU is a transceiver installed at a CPE site that connects to an NIU, providing RF connectivity between the NIU and the OTU/ORU.

	Table 1-1:	Component	s of the w	vireless s	system
--	------------	-----------	------------	------------	--------

Most of the air interface configuration is performed through the T-ARIC card; configuration of the NIUs is primarily related to TDM functionality. ATM functionality is provided by other cards in the MainStreetXpress 36170 shelf.

Table 1-2 describes the network management support available for the MainStreet Broadband Wireless system.

Term	Description
MainStreetXpress 45020	The MainStreetXpress 45020 Element Manager provides remote SNMP management of the NIUs.
MainStreetXpress 46020	The MainStreetXpress 46020 Network Manager provides remote management of the T-ARIC cards.
NMTI	The NMTI is a user interface for local management of the T-ARICs and NIUs. Remote access is configured through the PSTN.

Table 1-2:	MainStreet	Broadband	Wireless	network	management

1.2 Frequency and bandwidth utilization

Figure 1-2 shows the signal flow between the T-ARIC card located at the BTS and an NIU located at a CPE site. The signals between the T-ARIC card and the OTU/ORU use IF. Signals between the OTU, ORU and the OTRU transceiver use RF. Signals between the OTRU transceiver and the NIU also use IF.

Figure 1-2: Signal flow

The term downstream always refers to the communication flow from the T-ARIC card to the NIU. Upstream always refers to communication flow from the NIU to the T-ARIC card.

The MainStreet Broadband Wireless system supports wireless communications in the 20 to 40 GHz frequency range. The actual frequencies used are country-dependent.

Bandwidth between the T-ARIC card and the OTU and ORU is in the IF range. The range is 400 to 900 MHz upstream, and 950 to 2050 MHz downstream. Bandwidth between the NIU and the transceiver is also in the IF range. The relationship between IF and RF frequencies is determined by the specific radios that are used in the OTU and ORU and the transceiver.

Figure 1-3 shows details of data flow on an upstream and a downstream channel.

The downstream channel is broadcast to all NIUs configured to be in the same T-ARIC group as the broadcasting T-ARIC card.

The MainStreet Broadband Wireless system uses TDMA to allow multiple NIUs to use a single upstream channel. In Figure 1-3, two NIUs are broadcasting on a single channel. The channel is divided into timeslots. These timeslots are allocated to the NIUs by system resources, not by manual configuration. The number of timeslots allocated to an NIU depends on the configured TDM traffic.

Figure 1-3: Upstream and downstream channels

2. Equipment overview

This chapter describes the physical components of the MainStreet Broadband Wireless system.

2.1 Equipment list

Tables 2-1 and 2-2 list the physical components and part numbers of the MainStreet Broadband Wireless system. These tables do not include the MainStreetXpress 36170 shelves, power supplies and cables.

Name	Part number
12:2 Combiner/Splitter	90-6659-01
2:1 Combiner/Splitter	90-6734-01
Lightning arrester	90-6517-01
ΟΤυ	90-4568-02/05
ORU	90-4567-02/05
Antennas	90-4563-02/05 (horizontal polarization)
	90-4564-02/05 (vertical polarization)
RS-422 lightning arrester	90-6519-01
Surge protector	90-6739-01
Bias-T	90-6516-01
Bias-T power cable	90-6518-01
MAU	90-6474-01
T-ARIC card	90-6206-01

Table 2-1. DIS equipment list	Ta	ble	2-1:	BTS	equip	ment	list
-------------------------------	----	-----	------	-----	-------	------	------

Table 2-2: CPE equipment list

Name	Part number
2:1 Combiner/Splitter	90-6524-01
28110 MainStreet T1 CE Plus Ethernet NIU	90-6210-01 (120 V) 90-6210-02 (240 V)
28120 MainStreet E1 CE Plus Ethernet NIU	90-6210-04 (120 Ω)
Lightning arrester	90-6522-01
OTRU	90-6626

2.2 T-ARIC card

The T-ARIC card is a double-width card that is installed in any two adjacent slots of the MainStreetXpress 36170 Peripheral Shelf. The T-ARIC card provides a cell relay modem interface from the BTS to the NIUs.

Figure 2-1 shows the T-ARIC card faceplate. The following four LEDs can be seen on the T-ARIC card faceplate. Refer to chapter 25 for information about LED activity.

- Status
- Activity
- Link
- Alarm

Figure 2-1: T-ARIC card faceplate

11310

Connectors

Table 2-3 describes the T-ARIC card faceplate connectors.

Link

Table 2-3: T-ARIC card faceplate connectors

Name	Туре	Purpose
Rx	SMA(F)	Carries Rx signal from ORU to the T-ARIC card
Тх	SMA(F)	Carries Tx signal from T-ARIC card to OTU

2.3 MAU

The MAU is used to connect RS-422 cables between the T-ARIC card and the OTU and ORU. The MAU installs on the backplane behind each T-ARIC card. Figure 2-2 shows the front of the MAU and the location of the MAU connectors. Table 2-4 describes the MAU connectors.

Figure 2-2: Front view of MAU

Name	Туре	Location	Purpose
ORU	RS-422	Front of MAU	Connects to the ORU RS-422 connector via intermediate cabling and lightning arresters
ΟΤυ	RS-422	Front of MAU	Connects to the OTU RS-422 connector via intermediate cabling and lightning arresters
MAU interface	DSUB	Back of MAU	Connects to the T-ARIC card DSUB connector
АММ	RS-232	Front of MAU	Used for software downloading to the AMM by Newbridge personnel

Table 2-4: MAU connectors

2.4 12:2 Combiner/Splitters

12:2 Combiner/Splitters connect up to 12 T-ARIC cards to the OTU and ORU. A typical application uses one 12:2 Combiner/Splitter to connect T-ARIC cards to the OTU, and one Combiner/Splitter to connect T-ARIC cards to the ORU.

The OTU 12:2 Combiner/Splitter combines outgoing Tx signals from each T-ARIC card into a single Tx signal to the connected OTU.

The ORU 12:2 Combiner/Splitter splits the incoming ORU Rx signals into separate Rx signals for each T-ARIC card.

Figure 2-3 shows the 12:2 Combiner/Splitter. Table 2-5 lists and describes the connectors.

Figure 2-3: 12:2 Combiner/Splitter

Table 2-5: BTS 12:1 Combiner/Splitter connectors

Name	Туре	Purpose
T-ARIC connectors	SMA(F)	Connect to T-ARIC card through SMA cables
Bias-T connectors	F(F)	Connect to Bias-Ts

2.5 2:1 Combiner/Splitters

There are two types of 2:1 Combiner/Splitters used in the MainStreet Broadband Wireless system:

- CPE 2:1 Combiner/Splitter
- BTS 2:1 Combiner/Splitter

CPE 2:1 Combiner/Splitter

The CPE 2:1 Combiner/Splitter is used to connect two NIUs to a single OTRU in a dual NIU CPE configuration. Figure 2-4 shows a CPE 2:1 Combiner/Splitter. Table 2-6 lists and describes the connectors.

13098

Table 2-6: CPE 2:1 Combiner/Splitter connectors

Name	Туре	Purpose
IN	F(F)	Connects to the OTRU via intermediate cabling and lightning arresters
OUT	F(F)	Connects to one of two NIUs
DC BLK OUT	F(F)	Connects to one of two NIUs

BTS 2:1 Combiner/Splitter

The BTS 2:1 Combiner/Splitter is used to connect the synchronization reference cable to OTUs and ORUs in an OTU/ORU redundant configuration. Figure 2-5 shows a BTS 2:1 Combiner/Splitter. Table 2-7 lists and describes the connectors.

Figure 2-5: BTS 2:1 Combiner/Splitter

13120

Table 2-7: BTS 2:1 Combiner/Splitter connectors

Name	Туре	Purpose
1	N(F)	Connects to the synchronization reference cable
2	N(F)	Connects to an OTU/ORU 100 MHz reference connector
3	N(F)	Connects to an OTU/ORU 100 MHz reference connector

2.6

28110 and 28120 MainStreet CE Plus Ethernet NIUs

The 28110 MainStreet CE Plus Ethernet T1 NIU provides a single T1 interface and a single Ethernet interface. The 28120 MainStreet CE Plus Ethernet E1 NIU provides a single E1 interface and a single Ethernet interface.

NIUs have an internal Modem module that is similar to the one used in the T-ARIC card. The Modem module converts a digital ATM signal to an analog IF signal for transmission, and conversely, converts a received analog IF signal to a digital ATM signal.

Figure 2-6 shows the faceplate and back panel of a 28110 MainStreet CE Plus Ethernet T1 NIU. The 28120 MainStreet CE Plus Ethernet E1 NIU has similar panels.

The following eight LEDs can be seen on a 28110 or 28120 MainStreet NIU faceplate. Refer to chapter 25 for information about LED activity.

- Status
- Network Connect
- Tx Data
- Rx Data
- T1/E1 Signal
- T1/E1 Alarm
- Ethernet Link
- Ethernet Activity

Figure 2-6: 28110 MainStreet T1 NIU

Front

Back

Connectors

Table 2-8 describes the 28110 and 28120 MainStreet NIU connectors.

Name	Туре	Location	Purpose
T1/E1	RJ48C	Back panel	Connects to customer TDM equipment
IF In/Out and 35 VDC Out	F(F)	Back panel	Provides IF connectivity between NIU and the OTRU, and power to the OTRU
Serial port 1	RJ45	Front panel	Local NMTI access
Serial port 2	RJ45	Back panel	Software downloading to the NIU gateway
Ethernet 1	RJ45	Back panel	Unused
Ethernet 2	RJ45	Back panel	Connects to customer Ethernet devices

2.7 Lightning arresters

Lightning arresters provide protection against lightning strikes to an OTRU, OTU or ORU. Each lightning arrester contains a gas discharge tube that shunts equipment-damaging lightning to ground. The gas discharge tubes should be replaced on a regular basis as recommended by the manufacturer.

The MainStreet Broadband Wireless system uses three types of lightning arresters:

- Type F (used at the CPE)
- Type N (used at the BTS)
- RS-422 (used at BTS)

Lightning arresters connect to ground either by a direct connection to a bulkhead, or by mounting brackets. It is recommended to ground lightning arresters through mounting brackets that are connected to a copper plate bolted to a grounded entry point.

Figure 2-7 shows a Type F lightning arrester installed in a mounting bracket.

Figure 2-8 shows a Type N lightning arrester installed in a mounting bracket, and the profile of the bulkhead interface required for the Type N lightning arrester.

Figure 2-7: Type F lightning arrester

Figure 2-9 shows an RS-422 lightning arrester, used at the BTS site. Table 2-9 lists the RS-422 lightning arrester physical connections.

Name	Туре	Purpose
LINE	RS-422	Connects to the MAU RS-422 cable
EQUIP	RS-422	Connects to the OTU or ORU RS-422 cable
Ground wire	Insulated copper wire	Connects to a ground source

Table 2-9:	RS-422	lightning	arrester	physical	connections

2.8 Surge protectors

Surge protectors filter power surges from the power supply, protecting the T-ARIC card, OTU and ORUs from damage. Surge protectors connect directly to each Bias-T via a BNC connector, and contain a gas discharge tube that must be replaced regularly. Figure 2-10 shows a surge protector. Table 2-10 lists and describes the connectors.

Figure 2-10: Surge protector

Table 2-10: Surge protector connectors

Name	Туре	Purpose
Bias-T	BNC	Connects to the MAU RS-422 cable
Bias-T power cable	BNC	Connects to the OTRU RS-422 cable
Ground screw	Slot-head screw to surge protector body	Connects to a ground source

2.9 OTU and ORU

The OTU is a transmitter radio that connects to an antenna. The OTU receives an IF channel from a T-ARIC card, converts the signal to RF, and sends the signal to the transmit antenna.

The ORU is a receiver radio that connects to an antenna. The ORU receives an RF signal from one or more NIU transceivers, converts the signal to IF, and sends the signal to the T-ARIC card.

Figure 2-11 shows the OTU and ORU connected to antennas.

Figure 2-11: OTU, ORU and antennas

Connectors

Table 2-11 describes the OTU and ORU connectors.

Name	Туре	Location	Purpose
RS-422 Data	RS-422 LEMO	OTU and ORU faceplates	Connects to the T-ARIC card MAU
IF and -48V	N(F) coaxial	OTU and ORU faceplates	Connects to Tx broadband coaxial cable (OTU) Connects to Rx broadband coaxial cable (ORU)
100 Mhz REF	N(F) coaxial	OTU and ORU faceplates	Connects to a synchronization reference cable that connects to and synchronizes the OTU and ORU

2.10 **Bias-T**

The Bias-T provides -48 V power to the OTU and ORU at the BTS site. Figure 2-12 shows the Bias-T. Table 2-12 describes the connectors on the Bias-T.

Figure 2-12: Bias-T

Table 2-12: Bias-T connectors

Name	Туре	Purpose
DC IN	BNC(M)	Connects to the power cable via an intermediate surge arrester to provide a -48 V power input
DC OUT	N(F) coaxial	Connects to OTU or ORU to provide both -48 V power and an RF signal connection
RF IN	N(M) coaxial	Connects to a Combiner/Splitter to provide RF signal connection

2.11 OTRU

In the downstream direction, the OTRU receives RF communications from the OTU, converts the signal to IF, and sends the signal to the NIU. In the upstream direction, the transceiver takes an IF signal from the NIU, converts the signal to RF, and transmits the signal to the ORU.

Note

There are two types of OTRU transceivers: side-mount and back-mount. Both OTRUs have the same part number, and are shipped according to availability.

Figure 2-13 shows a side-mount OTRU transceiver. Figure 2-14 shows a back-mount OTRU transceiver.

Both OTRUs have a single F(F) connector that is used to connect the OTRU to the NIU via an intermediate lightning arrester.

3. Installing the base transceiver station components

This chapter describes how to install the base transceiver station components.

3.1 BTS installation overview

BTS components and cables should be installed by qualified RF equipment installers.

Siting

The MainStreet Broadband Wireless requires line -of-sight access between BTS OTU/ORU equipment and CPE OTRUs. Each installation must be planned by qualified RF engineers to optimize cell placement and minimize line-of-sight BTS to CPE blockage by doing appropriate RF site planning, and using appropriate equipment and procedures.

Customer-supplied equipment

Customers installing a BTS will need to supply:

- attenuators
- coaxial cable that runs from the 12:2 Combiner/Splitters to the outdoor radios
- RS-422 cable that runs from the MAU to the OTU and ORU
- a grounded entry point
- ground wires and connectors
- weatherproof cable entry panel(s)
- poles or towers for ORU, OTU and OTRU mounting
- miscellaneous supplies (such as butyl electrical tape, cable cutter, wire stripper and crimping tool)

Broadband cables

Because many factors are associated with choosing a suitable coaxial cable, customers will be advised by Newbridge of the manufacturers and manufacturer part numbers recommended for each cable assembly.

The cable path from the T-ARIC card to the OTU or ORU must provide a fixed common loss. The losses are:

- downstream: 27 ±1 dB at 2050 MHz
- upstream: 24 ±1 dB at 900 MHz

If the total loss falls short of these values, attenuators must be installed.

Grounded entry point

Each BTS requires a grounded entry point in order to ground BTS components and cables. Refer to local electrical code requirements when choosing a grounded entry point for the BTS.

OTU and ORU radios

The OTU and ORU radios are designed to be installed on antenna tower(s), masts, buildings or other appropriate fixtures. The MainStreet Broadband Wireless system supports both simplex and redundant OTU and ORU configurations.

The distance between the T-ARIC card and the outdoor transmitter and receiver can be over 200 m (656 ft) with the use of high-quality, low-loss coaxial cable. This allows the RF equipment to be located on a tower or on a building while the T-ARIC card and MainStreetXpress 36170 shelves are installed indoors.

3.2 Installing BTS components

Figure 3-1 shows a diagram of a typical simplex BTS configuration. Figure 3-2 shows a diagram of a redundant BTS configuration. Grounding, surge protection and power connection are similar to the simplex system. Table 3-1 lists the BTS components and part numbers. For information on how to connect synchronization reference cables to redundant OTU/ORUs, see chapter 9.

Figure 3-1: Simplex BTS components and cables

Item	Number for simplex OTU/ORU system	Number for redundant OTU/ORU system	Part number
12:2 Combiner/Splitter	2	2	90-6659-01
2:1 Combiner/Splitter	0	2	90-6734-01
Lightning arrester	2	4	90-6517-01
OTU	1	2	90-4568
ORU	1	2	90-4567
Antennas	1	2	90-4563-01 (horizontal polarization)
	1	2	90-4564-01 (vertical polarization)
RS-422 lightning arrester	2	4	90-6519-01
Surge protector	2	4	90-6739-01
Bias-T	2	4	90-6516-01
Bias-T power cable	2	4	90-6518-01
MAU	1 to 12	1 to 12	90-6474-01
T-ARIC card	1 to 12	1 to 12	90-6206-01

Table 3-1:	BTS equipment	summary ((per sector)
------------	----------------------	-----------	--------------

3.3 BTS installation tasks

Perform the following installation tasks to install the BTS:

- install the MAU
- attach the antenna to the OTU/ORU
- attach the ORU and OTU to the pole assembly
- mount the lightning arresters
- connect the surge protectors to the Bias-Ts
- connect the Bias-Ts to the 12:2 Combiner/Splitter
- connect the BTS cables

4. Installing the MAU

This chapter describes how to install the MAU on the MainStreetXpress 36170 shelf.

4.1 To install the MAU

The MAU is installed on the back of the MainStreetXpress 36170 shelf, directly behind each T-ARIC card. Because a T-ARIC card uses two slots, two slot connector locations are available for the MAU. Always install the MAU in the even-numbered slot.

1. Locate the slot pair for the T-ARIC card, and align the MAU for attachment behind the even-numbered slot of the slot pair, as shown in Figure 4-1. If the T-ARIC card is already installed in the slot, ensure that the DSUB connector on the back of the MAU aligns correctly with the connector on the T-ARIC card.

Figure 4-1: MAU location on the MainStreetXpress 36170 shelf

2. Tighten the two MAU captive screws, as shown in Figure 4-2.

Figure 4-2: Tightening the MAU captive screws

5.

Attaching an OTU or ORU to an antenna

Each OTU or ORU should be connected to an antenna before the antenna is mounted on the BTS pole assembly.

If the OTU or ORU is being installed on an antenna that is already mounted and aligned on a pole, do not remove the antenna from the pole. Install the OTU or ORU directly on the mounted antenna.

Note 1

All procedures should be performed in a clean indoor lab environment, on a workbench suitable for electronic assembly.

Note 2

Do not remove the shipping caps from the coaxial and RS-442 connectors on the OTU and ORU until the BTS cables are ready for attachment.

5.1 Attaching the OTU or ORU to an antenna

1. Remove the RF channel cover from the OTU or ORU and remove the RF channel plug from the antenna . Figure 5-1 shows the locations of the plug and the cover.

Figure 5-1: Removing the plugs and covers

- **2.** Place the antenna on a flat surface.
- **3.** Place the provided O-ring on the O-ring seal seat around the OTU or ORU RF channel. Ensure that the O-ring remains in place during the entire procedure.
- **4.** Place the radio on the antenna as indicated in Figure 5-2. Turn each captive screw until there is only a small gap between the radio and the antenna. This gap must be small enough that the O-ring does not move.

Figure 5-2: Tightening the captive screws

5. Turn over the OTU or ORU and antenna as shown in Figure 5-3, and ensure that the weight of the antenna is put entirely on the radio. Insert and tighten the four RF channel screws as shown in the diagram.

Figure 5-3: RF channel screws

- **6.** Turn the OTU/ORU and antenna assembly over, and tighten each of the three captive screws on the radio.
- 7. Ensure that each of the RF channel screws is tight.

6. Installing the BTS antenna assembly

This chapter describes how to:

- attach the BTS antenna mounting hardware to a pole
- connect the antenna and OTU/ORU assembly to the mounting hardware
- connect a ground strap between the OTU/ORU and the mounting hardware

6.1 Installing the BTS mounting hardware

The BTS mounting hardware is composed of two assemblies: the top support arm bracket assembly, and the bottom support arm bracket assembly.

1. Attach the top support arm bracket assembly as shown in Figure 6-1.

2. Install the bottom support-arm bracket assembly as shown in Figure 6-2. The ground strap used must conform to local grounding and electrical safety guidelines.

Figure 6-2: Attaching the bottom support arm bracket assembly and ground strap

3. Attach the OTU/ORU and antenna assembly to the top and bottom support arm assembly as shown in Figure 6-3.

Figure 6-3: Connecting the OTU/ORU, antenna and ground strap

Installing Bias-Ts and surge 7. protectors

This chapter describes how to:

- connect the surge protector to the Bias-T
- connect the Bias-T to the 12:2 Combiner/Splitter ٠
- connect the surge protector ground wire ٠

Note

A surge protector must be installed on every Bias-T.

7.1 Connecting the surge protector to the Bias-T

To correctly connect a surge protector to a Bias-T, connect the male BNC connector on the surge protector to the DC IN connector on the Bias-T as shown in Figure 7-1.

7.2 Connecting the Bias-T to the 12:2 Combiner/Splitter

1. Position the Bias-T RF IN connector to one of the two Combiner/Splitter Bias-T connectors, as shown in Figure 7-2 (surge protector positioned at a right angle to the 12:2 Combiner/Splitter).

Figure 7-2: Connecting the Bias-T to the Combiner/Splitter

- **2.** Tighten the coupling on the RF IN connector until the Bias-T is firmly connected and does not rotate.
- 3. Install a 50 Ω terminator on the second 12:2 Combiner/Splitter connector if it is not used for a redundant OTU or ORU Bias-T.

7.3

Connecting the surge protector ground wire

- 1. Place the 12:2 Combiner/Splitter assembly in a permanent location at the MainStreetXpress 36170 shelf. If the 12:2 Combiner/Splitter is moved after the surge protector ground wire is connected, a new ground wire may need to be used if the previous wire is not long enough to run to the new 12:2 Combiner/Splitter location.
- 2. Measure a length of insulated copper wire that is long enough to run from the closest safety ground to the surge protector.
- **3.** Add a ring lug to one end of the ground wire, and connect it to the surge protector as shown in Figure 7-3.

4. Connect the other end of the ground wire to the building ground.

8. Installing broadband cable lightning arresters

This chapter describes how to connect BTS broadband cable lightning arresters to a grounded entry point. To correctly install a lightning arrester:

- connect the lightning arrester mounting brackets to the BTS grounding plate
- install the lightning arresters in the mounting brackets

8.1 Connecting the mounting bracket to the BTS grounding plate

Lightning arresters must be secured to a copper BTS grounding plate using mounting brackets. Connect a mounting bracket to the copper plate for each lightning arrester used in the system, as shown in Figure 8-1.

Figure 8-1: Connecting the mounting brackets to the grounding plate

8.2 Installing the lightning arrester in the adapter bracket

Before cables are connected to the lightning arrester, install each lightning arrester in the mounting brackets, as shown in Figures 8-2 and 8-3. Figure 8-3 shows the lightning arresters with cables connected.

Figure 8-2: Connecting the lightning arrester to the adapter bracket

9. BTS cable connections

This procedure describes how to select cable types, and how to connect cables between BTS components.

Note

All outdoor cable connections should be wrapped in butyl electrical tape to protect against moisture.

9.1 BTS cables

Figure 9-1 shows a simplex OTU/ORU BTS configuration. Figure 9-2 shows a redundant OTU/ORU BTS configuration. The cables shown in the diagram must be connected between the components.

Figure 9-2: Redundant OTU/ORU BTS components and cables

Table 9-1 lists the cables used to connect the OTU, ORU and the T-ARIC card. Table 9-2 lists the part numbers for the BTS cable connectors.

Physical path	Intermediate cables	Connectors	Recommended cable specification
OTU IF and -48 V to 12:2 Combiner/Splitter	OTU to lightning arrester Lightning arrester to Bias-T	N(M) - N(M) N(M) - N(M)	LDF4-50A LDF5-50A LDF6-50A CR 50-540-PE
			CR-50-1070-PE CR-50-1873-PE
ORU IF and -48 V to 12:2 Combiner/Splitter	ORU to lightning arrester Lightning arrester to Bias-T	N(M) - N(M) N(M) - N(M)	LDF4-50A LDF5-50A LDF6-50A CR 50-540-PE CR-50-1070-PE CR-50-1873-PE
12:2 Combiner/Splitter to T-ARIC Tx connector	n/a	N(M) - SMA(M)	90-6656-01 (3 m [10 ft]) 90-6656-02 (6 m [20 ft])
12:2 Combiner/Splitter to T-ARIC Rx connector	n/a	N(M) - SMA(M)	90-6656-01 (3 m [10 ft]) 90-6656-02 (6 m [20 ft])

Га	ble	9-1:	BTS	cables

Physical path	Intermediate cables	Connectors	Recommended cable specification
OTU RS-422 connector to T-ARIC MAU Tx connector	OTU to RS-422 lightning arrester RS-422 lightning arrester to MAU OTU connector	LEMO - RJ45 RJ45 - RJ45	Delco 398087P
ORU RS-422 connector to T-ARIC MAU Rx connector	ORU to RS-422 lightning arrester RS-422 lightning arrester to MAU ORU connector	LEMO - RJ45 RJ45 - RJ45	Delco 398087P
ORU to OTU	100 MHz reference cable	N(M) - N(M)	LDF4-50A CR-50-540 PE
Bias-T power cable	n/a	BNC(M) - lug connectors	90-6516-01

Table 9-2: BTS cable connectors

Connector	Part number
N(M)	90-6657-01 (1 connector)
	90-6657-02 (25 connectors)
LEMO	90-6816-01
RJ-45	90-6815-01

9.2 Connecting BTS broadband cables

Note

Outdoor BTS broadband cables should be grounded via the outer conductor every 15 m (50 ft).

BTS cables, connectors and equipment must provide a fixed decibel loss in both the upstream and downstream directions. The downstream losses must total 27 dB at 2050 MHz, ± 1 dB. The upstream losses must total 24 dB at 900 MHz, ± 1 dB. If the total loss is less than the required value, attenuators are installed between SMA cables and the 12:2 Combiner/Splitters.

In order to maintain a fixed cable loss, different cable types are selected depending on the distance between the T-ARIC card and the OTU and ORU.

 Table 9-3 shows the recommended cable types for specific distances. Tables 9-4 through 9-9 show how the fixed loss is calculated for each type of cable.

Distance	Cable type	Supplier	Loss calculations
60 m (196 ft)	LDF4-50A	Andrew	Table 9-4
120 m (394 ft)	LDF5-50A	Andrew	Table 9-5
150 m (492 ft)	LDF6-50A	Andrew	Table 9-6
70 m (230 ft)	CR50-540-PE	CommScope	Table 9-7
120 m (394 ft)	CR50-1070-PE	CommScope	Table 9-8
200 m (656 ft)	CR50-1873-PE	CommScope	Table 9-9

Table 9-3: Cable lengths and types

Table 9-4: LDF4-50A cable (60 m [196 ft]) decibel loss calculations

BTS item	Max VSWR (<i>x</i> :1)	Downstream loss (2050 MHz) (dB)	Upstream loss (900 MHz) (dB)	Downstream insertion and coupling loss (2050 MHz) (dB)	Upstream insertion and coupling loss (900 MHz) (dB)	Downstream VSWR corrected loss (2050 MHz) (dB)	Upstream VSWR corrected loss (900 MHz) (dB)
1 × T-ARIC SMA cable (3 m [10 ft])	1.35	0.467	.333	1.40	1.00	1.46	1.05
1 × OTU 12.2 Combiner/Splitter	1.30	3.000	0.000	14.00	0.00	17.10	0.00
1 × ORU 12:2 Combiner/Splitter	1.30	0.000	2.500	0.00	14.00	0.00	16.59
1 × Bias-T	1.30	1.000	1.000	1.00	1.00	1.03	1.03
1 × surge protector	1.10	0.200	0.200	0.20	0.20	0.20	0.20
1 × cable LDF4-50A (60 m [196 ft])	1.20	0.065	0.040	7.75	4.80	7.88	4.88
$4 \times cable connectors$	1.20	0.200	0.200	0.80	0.80	0.94	0.94
Total loss	-	-	_	25.15	21.80	28.63	24.69

BTS item	Max VSWR (<i>x</i> :1)	Downstream loss (2050 MHz) (dB)	Upstream Ioss (900 MHz) (dB)	Downstream insertion and coupling loss (2050 MHz) (dB)	Upstream insertion and coupling loss (900 MHz) (dB)	Downstream VSWR corrected loss (2050 MHz) (dB)	Upstream VSWR corrected loss (900 MHz) (dB)
1 × T-ARIC SMA cable (3 m [10 ft])	1.35	0.467	.333	1.40	1.00	1.46	1.05
1 × 12:2 OTU Combiner/Splitter	1.30	3.000	0.000	14.00	0.00	17.10	0.00
1 × 12:2 ORU Combiner/Splitter	1.30	0.000	2.500	0.00	14.00	0.00	16.59
1 × Bias-T	1.30	1.000	1.000	1.00	1.00	1.03	1.03
1 × surge protector	1.10	0.200	0.200	0.20	0.20	0.20	0.20
1 × cable LDF5-50A (120 m [394 ft])	1.20	0.065	0.040	7.75	4.80	7.88	4.88
$4 \times cable connectors$	1.20	0.200	0.200	0.80	0.80	0.94	0.94
Total loss	—	-	-	25.15	21.80	28.63	24.69

Table 9-5:	LDF5-50A cable	(120 m [394 ft])) decibel loss	calculations
1 4 5 1 6 6 1		(,	valuationio

BTS item	Max VSWR (<i>x</i> :1)	Downstream loss (2050 MHz) (dB)	Upstream loss (900 MHz) (dB)	Downstream insertion and coupling loss (2050 MHz) (dB)	Upstream insertion and coupling loss (900 MHz) (dB)	Downstream VSWR corrected loss (2050 MHz) (dB)	Upstream VSWR corrected loss (900 MHz) (dB)
1 × T-ARIC SMA cable (3m [10 ft])	1.35	0.467	.333	1.40	1.00	1.46	1.05
1 × 12:2 OTU Combiner/Splitter	1.30	3.000	0.000	14.00	0.00	17.10	0.00
1 × 12:2 ORU Combiner/Splitter	1.30	0.000	2.500	0.00	14.00	0.00	16.59
1 × Bias-T	1.30	1.000	1.000	1.00	1.00	1.03	1.03
1 × surge protector	1.10	0.200	0.200	0.20	0.20	0.20	0.20
1 × cable LDF6-50A (150 m [492 ft])	1.20	0.065	0.040	7.75	4.80	7.88	4.88
$4 \times cable connectors$	1.20	0.200	0.200	0.80	0.80	0.94	0.94
Total loss	—	—	-	25.15	21.80	28.63	24.69

Table 9-6: LDF6-50A cable (150 m [492 ft]) decibel loss calculations
--

BTS item	Max VSWR (<i>x</i> :1)	Downstream loss (2050 MHz) (dB)	Upstream loss (900 MHz) (dB)	Downstream insertion and coupling loss (2050 MHz) (dB)	Upstream insertion and coupling loss (900 MHz) (dB)	Downstream VSWR corrected loss (2050 MHz) (dB)	Upstream VSWR corrected loss (900 MHz) (dB)
1 × T-ARIC SMA cable (3m [10 ft])	1.35	0.467	.333	1.40	1.00	1.46	1.05
1 × 12:2 OTU Combiner/Splitter	1.30	3.000	0.000	14.00	0.00	17.10	0.00
1 × 12:2 ORU Combiner/Splitter	1.30	0.000	2.500	0.00	14.00	0.00	16.59
1 × Bias-T	1.30	1.000	1.000	1.00	1.00	1.03	1.03
1 × surge protector	1.10	0.200	0.200	0.20	0.20	0.20	0.20
1 × cable CR50-540-PE (70 m [230 ft])	1.20	0.065	0.040	7.75	4.80	7.88	4.88
$4 \times cable connectors$	1.20	0.200	0.200	0.80	0.80	0.94	0.94
Total loss	—	—	-	25.15	21.80	28.63	24.69

Table 9-7:	CR50-540-PE	cable (70 r	n [230 ft])	decibel	loss cal	culations
------------	-------------	-------------	-------------	---------	----------	-----------

BTS item	Max VSWR (<i>x</i> :1)	Downstream loss (2050 MHz) (dB)	Upstream loss (900 MHz) (dB)	Downstream insertion and coupling loss (2050 MHz) (dB)	Upstream insertion and coupling loss (900 MHz) (dB)	Downstream VSWR corrected loss (2050 MHz) (dB)	Upstream VSWR corrected loss (900 MHz) (dB)
1 × T-ARIC SMA cable (3m [10 ft])	1.35	0.467	.333	1.40	1.00	1.46	1.05
1 × 12:2 OTU Combiner/Splitter	1.30	3.000	0.000	14.00	0.00	17.10	0.00
1 × 12:2 ORU Combiner/Splitter	1.30	0.000	2.500	0.00	14.00	0.00	16.59
1 × Bias-T	1.30	1.000	1.000	1.00	1.00	1.03	1.03
1 × surge protector	1.10	0.200	0.200	0.20	0.20	0.20	0.20
1 × cable CR50-1070-PE (120 m [394 ft])	1.20	0.065	0.040	7.75	4.80	7.88	4.88
$4 \times cable connectors$	1.20	0.200	0.200	0.80	0.80	0.94	0.94
Total loss	—	—	—	25.15	21.80	28.63	24.69

Table 9-8:	CR50-1070-PE	cable (120 m	[394 ft])	decibel loss	calculations
------------	--------------	--------------	-----------	--------------	--------------

BTS item	Max VSWR (<i>x</i> :1)	Downstream loss (2050 MHz) (dB)	Upstream loss (900 MHz) (dB)	Downstream insertion and coupling loss (2050 MHz) (dB)	Upstream insertion and coupling loss (900 MHz) (dB)	Downstream VSWR corrected loss (2050 MHz) (dB)	Upstream VSWR corrected loss (900 MHz) (dB)
$1 \times T$ -ARIC SMA cable (3m [10 ft])	1.35	0.467	.333	1.40	1.00	1.46	1.05
$1 \times 12:2 \text{ OTU}$ Combiner/Splitter	1.30	3.000	0.000	14.00	0.00	17.10	0.00
$1 \times 12:2 \text{ ORU}$ Combiner/Splitter	1.30	0.000	2.500	0.00	14.00	0.00	16.59
1 × Bias-T	1.30	1.000	1.000	1.00	1.00	1.03	1.03
$1 \times surge$ protector	1.10	0.200	0.200	0.20	0.20	0.20	0.20
1 × cable CR50-1873-PE (200 m [656 ft])	1.20	0.065	0.040	7.75	4.80	7.88	4.88
$4 \times cable connectors$	1.20	0.200	0.200	0.80	0.80	0.94	0.94
Total loss	—	-	-	25.15	21.80	28.63	24.69

Connecting the broadband cables

- **1.** Determine the cable length required for the distance between the OTU/ORU assembly and the T-ARIC card.
- 2. Use Table 9-3 to select a cable type based on the required length. If non-Newbridge components are used, use Tables 9-4 to 9-9 to ensure that the fixed dB loss is maintained.
- **3.** Secure the OTU and ORU broadband cables to the respective poles or towers with a cable tie, leaving enough length to connect the cables to the elevated OTU and ORU positions.
- 4. Feed the cables through the weatherproof access panel to the grounded entry point where the lightning arresters are installed. Secure the cables to the grounded entry point, and continue to feed the cables to the location of the 12:2 Combiner/Splitters.
- 5. Secure the end of the cables to a location near the 12:2 Combiner/Splitters, after ensuring that the cables are long enough to reach and connect to the 12:2 Combiner/Splitters.
- **6.** At the grounded entry point, cut each cable to a length sufficient to allow the ends of both cables to connect to the lightning arresters.
- 7. Install the N(M) connectors on the cables, and mate the cables to the lightning arresters, as indicated in Figures 9-1 or 9-2.

- **8.** At the OTU, install an N(M) connector on the end of the broadband cable, and connect the cable to the IF and -48 V connector on the OTU.
- **9.** At the ORU, install an N(M) connector on the end of the broadband cable, and connect the cable to the IF and -48 V connector on the ORU.
- **10.** At the 12:2 Combiner/Splitters, install N(M) connectors on the ends of the broadband cables, and connect the broadband cables to their respective 12:2 Combiner/Splitter connectors.

9.3 Connecting the synchronization reference cable

Each OTU and ORU pair are connected by a synchronization reference cable. In a redundant configuration, the synchronization reference signal must be split by 2:1 Combiner/Splitters that distribute the signal to both the control and the redundant ORU/OTU.

Table 9-10 describes the requirements for both simplex and redundant OTU/ORU synchronization reference cable configurations.

Configuration	Requirements
Non-redundant ORU and OTU	A single cable between the ORU reference output and the OTU reference input
Redundant ORU and redundant	Two cables from ORUs to 2:1 Combiner/Splitter
	 Two cables from OTUs to 2:1 Combiner/Splitter
	One cable from the OTU/R-OTU 2:1 Combiner/Splitter to the ORU/R-ORU 2:1 Combiner/Splitter

Table 9-10:	Synchroniz	ation reference	e cable config	uration re	auirements
1 4 9 1 9 1 9 1 9 1	• • • • • • • • • • • • • • •		o danio o o ining	anationitio	9411 011101110

Figure 9-3 shows a redundant OTU/ORU synchronization reference cable configuration.

Figure 9-3: Reference cables for redundant OTU/ORU configurations

Connecting synchronization reference cables (simplex OTU/ORU)

- 1. Measure and cut a length of cable that runs between the OTU and ORU, including the distance required to run up each pole to the OTU and ORU connectors.
- 2. Install N(M) connectors on each end of the cable.
- 3. Run the cable between the OTU and ORU.
- 4. Connect the cable connectors to the 100 MHz reference connectors on the OTU and ORU.
- 5. Secure the cable to the pole every 1 m (3 ft) with plastic ties.

Connecting synchronization reference cables (redundant OTU/ORU)

- 1. Using a metal hose clamp, attach a 2:1 Combiner/Splitter to the OTU pole, just beneath the OTU/R-OTU pair.
- 2. Using a metal hose clamp, attach a 2:1 Combiner/Splitter to the ORU pole, just beneath the ORU/R-ORU pair.
- **3.** Measure and cut four lengths of cable that are long enough to run from the 2:1 Combiner/Splitter to each of the OTUs or ORUs mounted above the 2:1 combiner splitter.
- 4. Install N(M) connectors on each of the lengths of cable.

- 5. Connect the cable connectors to the OTUs and ORUs as shown in Figure 9-3.
- **6.** Measure and cut a length of cable long enough to run between the OTU/R-OTU 2:1 Combiner/Splitter and the ORU/R-ORU 2:1 Combiner/Splitter, including the distance required to run up each pole to the 2:1 Combiner/Splitter connectors.
- 7. Install N(M) connectors on each end of the cable.
- 8. Run the cable between the 2:1 Combiner/Splitters.
- **9.** Connect the cable connectors to 2:1 Combiner/Splitters connectors on the OTU and ORU, as shown in Figure 9-3.
- **10.** Secure the cable to the pole with plastic ties every 1 m (3 ft).

9.4 Connecting the RS-422 cables

In a simplex OTU/ORU system, RS-422 cables connect the MAU associated with the first T-ARIC card in a T-ARIC group to the OTU and ORU.

In a redundant OTU/ORU system, additional RS-422 cables connect:

- the redundant OTU to the MAU of the configured Tx control T-ARIC card
- the redundant ORU to the MAU of the configured Rx control T-ARIC card

Each RS-422 cable is composed of two intermediate cables. Table 9-1 lists the intermediate cables, and the connectors required to connect them between the MAU and the OTU/ORU.

To connect a BTS RS-422 cable

For each OTU and ORU:

- **1.** Determine the cable length required for the distance between the OTU/ORU and the T-ARIC card MAU.
- **2.** Secure the cable to the pole or tower with cable ties, leaving enough length to connect the cables to the elevated OTU or ORU positions.
- **3.** Feed the cable through the weatherproof access panel to the grounded entry point where the RS-422 lightning arrester is installed. Secure the cables to the grounded entry point with cable ties, and continue to feed the cables to the location of the MAU.
- **4.** Secure the end of the cable to a location near the MAU with cable ties, after ensuring that the cable is long enough to connect to the MAU connector.
- 5. At the grounded entry point, cut each cable to a length sufficient to allow both ends of the cable to connect to the RS-422 lightning arresters.
- 6. Install the RJ45 connectors on the cables, and connect:
 - the cable from the OTU or ORU to the lightning arrester EQUIP connector
 - the cable to the MAU to the lightning arrester LINE connector
- At the OTU or ORU, install a LEMO connector on the end of the cable, and connect the cable to the RS-422 data connector on the OTU or ORU. Use Table 9-11 to connect the LEMO connector pins and signals to the RJ45 connector pins and signals.

LEMO pin	RJ45 pin	Function
1	2	Tx+
2	7	Rx+
3	1	Tx-
4	8	Rx-

Table 9-11	I FMO to	RS-422	connector	nins	and	signals
		110-422	CONNECTOR	pilla	anu	Signals

8. At the MAU, install an RJ45 connector on the end of the broadband cable, and connect the cable to the appropriate MAU connector (OTU cable to MAU OTU connector, ORU cable to ORU MAU connector).

9.5 Connecting SMA cables

T-ARIC cards are connected to 12:2 Combiner/Splitters by pairs of SMA cables. If multiple T-ARIC cards are used, multiple pairs of SMA cables are used.

Note

The number of T-ARIC cards connected to the 12:2 Combiner/Splitters may be limited by the ORU/OTU hardware. Consult Newbridge for the maximum number of T-ARIC cards that can be connected to an OTU/ORU through a 12:2 Combiner/Splitter.

- **1.** Connect the SMA(M) connector on the SMA cable to the Tx connector on the T-ARIC card faceplate.
- **2.** Connect the N(M) connector on the same SMA cable to connector 1 on the Tx Combiner/Splitter.
- **3.** Connect the SMA(M) connector on the SMA cable to the Rx connector on the T-ARIC card faceplate.
- **4.** Connect the N(M) connector on the same SMA cable to connector 1 on the Rx Combiner/Splitter.

- 5. Connect the Tx and Rx connectors from the other T-ARIC cards (cards 2 through 12) to Tx and Rx Combiner/Splitter connectors 2 to 12, as indicated in Figure 9-4.
- **6.** Install 50 Ω terminators on all unused 12:2 Combiner/Splitter connectors.

9.6 Connecting the Bias-T power cable

The Bias-T power cable connects between the Bias-T surge protector and the -48 V power supply.

- **1.** Connect the Bias-T power cable BNC(M) connector to the surge protector.
- 2. On the Bias-T power cable, connect the lug connector on the red wire to the -48 V power supply -48 V connector, and connect the lug connector on the black wire to the power supply 0VR connector.

10. Installing the customer premises equipment

This chapter provides an overview on how to install the customer premises equipment.

10.1 Customer premises equipment

The combined transmitter and receiver functions are provided by the OTRU. Similar to the OTU and ORU, the OTRU is designed to be installed on an antenna mast or building roof top at the subscriber site. If two OTRUs are installed at the same customer site, they must be installed 1 m (3 ft) apart (horizontal or vertical), to avoid blocking line-of-sight access to the BTS. Figure 10-1 shows typical single NIU and dual NIU equipment.

Figure 10-1: CPE overview

Cable loss

The CPE passive components, in all installations, are designed to provide a fixed common loss. The losses are:

- downstream: maximum 16 dB at 2050 MHz
- upstream: 8 ±1 dB at 700 MHz

If the total loss of the installed passive components falls short of these values, do not insert attenuators to make up the difference. Use a specific cable length to make up the loss.

Passive components

Passive components for the CPE consist of a single coaxial cable from the NIU to the OTRU. Figure 10-2 shows a typical single NIU and dual NIU passive component configuration. Power for the radio is duplexed onto the line by the NIU; hence, no external power supply is required.

Properly grounded lightning arresters are highly recommended at the building entry point. Every customer site is different. Therefore, cable runs on the inside and outside of the premises will vary from site to site. As with the BTS, Newbridge can recommend the cable type and specifications for customers wishing to optimize their CPE sites by running their own cable. Because there are many factors associated with choosing a suitable coaxial cable, customers will be advised by Newbridge of the manufacturers and manufacturers part numbers recommended for these cable assemblies.

To interconnect two NIUs to one CPE OTRU, a 2:1 Combiner/Splitter is required.

Figure 10-2: Passive component interconnections

10.2 CPE installation tasks

Perform the following installation tasks to install the CPE:

- attach the OTRU to the pole assembly
- install the lightning arresters
- connect the CPE cables

11. Installing the CPE OTRU

This chapter describes how to install the back-mount or side-mount OTRU on a pole.

Note

There are two types of OTRU transceivers: side-mount and back-mount. Both OTRUs have the same part number, and are shipped according to availability.

11.1 Mounting the OTRUs

- **1.** Assemble the OTRU mounting hardware according to Figures 11-1 or 11-2. If the backing plate is pre-installed, remove it.
- 2. Connect the mounting hardware to the pole.
 - **i.** Position the mounting hardware against the pole as shown in Figures 11-1 or 11-2; attach the backing plate with the four nuts.
 - **ii.** Secure the mounting hardware to the pole by tightening the four backing plate bolts until the mounting hardware does not rotate freely by hand.
- **3.** Connect the OTRU to the mounting hardware.
 - **i.** Align the OTRU as shown in Figures 11-1 or 11-2. Make sure that the polarization indicator arrow on the rim of the OTRU antenna points sideways for horizontal polarization installations, or that the polarization indicator arrow on the rim of the OTRU antenna points down for vertical polarization installations.
 - **ii**. Insert and tighten the four bolts that attach the OTRU to the mounting hardware.
- 4. Install the provided plug into the drain hole on the side of the OTRU antenna housing. Ensure that the second drain hole (located at the bottom of the OTRU antenna housing) is clear of obstructions.

Figure 11-1: Side-mount OTRU

Figure 11-2: Back-mount OTRU

12. Installing CPE lightning arresters

This chapter describes how to connect CPE lightning arresters to a grounded entry point. To correctly install a lightning arrester:

- connect the mounting bracket to the CPE grounding plate
- install the lightning arresters in the mounting brackets

12.1 Connecting the mounting bracket and lightning arrester to the CPE grounding plate

Lightning arresters must be secured to a copper CPE grounding plate using mounting brackets. Connect the mounting brackets and lightning arresters as shown in Figure 12-1.

Figure 12-1: Connecting the mounting brackets to the grounding plate

Figure 12-2 shows a lightning arrester installed on a grounding plate, and connected to broadband cables.

Figure 12-2: Connected lightning arrester

13. CPE cable connections

This procedure describes how to select cable types, and how to connect RG-11 cables between the CPE components.

13.1 OTRU configurations

The CPE RG-11 cable connects the OTRU transceiver to either one or two NIUs at the customer premises. A configuration using one NIU is called a single NIU configuration. A configuration using two NIUs is called a dual NIU configuration. Figure 13-1 shows an example of single and dual NIU configurations. Table 13-1 lists and describes CPE cables and connectors.

NIU configuration	Physical path	Intermediate cables	Connectors
Single NIU	OTRU to NIU	OTRU to lightning arrester Lightning arrester to NIU	F(M) - F(M) F(M) - F(M)
Dual NIU	OTRU to NIU	OTRU to lightning arrester Lightning arrester to 2:1 Combiner/Splitter 2:1 Combiner/Splitter to each NIU	F(M) - F(M) F(M) - F(M) F(M) - F(M)

Table 13-1:	CPE cables
-------------	------------

13.2 Decibel loss calculations

The CPE cable, connectors and equipment must provide a fixed decibel loss in both the upstream and downstream directions. The downstream losses must not exceed 16 dB at 2050 MHz. The upstream losses must total 8 dB at 700 MHz, \pm 1 dB. If the total loss does not equal the recommended values, reduce or increase cable length accordingly.

Single and dual NIU configurations require different cable lengths to achieve the desired cable loss. Figure 13-2 shows the cable lengths used in single and dual NIU configurations.

Table 13-2 shows the loss characteristics of the single NIU components and the cable length (65 m [213 ft]) required to achieve the fixed decibel losses.

Single NIU CPE components	Max VSWR (<i>x</i> :1)	Downstream loss (2050 MHz) (dB)	Upstream loss (700 MHz) (dB)	Downstream insertion and coupling loss (2050 MHz) (dB)	Upstream insertion and coupling loss (700 MHz) (dB)	Downstream VSWR corrected transmission loss (2050 MHz) (dB)	Upstream VSWR corrected transmission loss (700 MHz) (dB)
Surge protector	1.40	0.200	0.200	0.20	0.20	0.21	0.21
1 × RG-11 cable (65 m [212 ft])	1.20	0.150	0.105	9.75	6.83	9.91	6.95
$4 \times F$ -type connectors	1.40	0.200	0.200	0.80	0.80	0.97	0.97
Total loss	—	—	—	10.75	7.83	11.09	8.12

Table 13-2: Single NIU RG-11 cable (65 m [212 ft]) decibel loss calculations

Table 13-3 shows the loss characteristics of the dual NIU components and the cable lengths required to achieve the required fixed decibel losses.

Table 13-3:	Dual NIU RG-11	cable (30	m [98 ft])	decibel loss	calculations

Dual NIU CPE components	Max VSWR (<i>x</i> :1)	Downstream loss (2050 MHz) (dB)	Upstream loss (700 MHz) (dB)	Downstream insertion and coupling loss (2050 MHz) (dB)	Upstream insertion and coupling loss (700 MHz) (dB)	Downstream VSWR corrected transmission loss (2050 MHz) (dB)	Upstream VSWR corrected transmission loss (700 MHz) (dB)
1 × RG-11 jumper	1.20	0.150	0.105	0.00	0.00	0.00	0.00
1 × 2:1 Combiner/ Splitter	1.200	0.500	0.000	0.00	0.00	0.00	0.00
1 × surge protector	1.40	0.200	0.200	0.20	0.20	0.21	0.21
1 × RG-11 cable (30 m [98 ft])	1.20	0.150	0.105	4.50	3.15	4.58	3.21
6 × F-type connectors	1.40	0.200	0.200	1.20	1.20	1.61	1.61
Total loss	—	-	—	9.05	7.66	10.75	8.64

13.3 Connecting single NIU cables

- 1. Cut a 65 m (212 ft) length of RG-11 cable into two lengths, as follows.
 - The first length must be long enough to run from the OTRU F(F) connector to the lightning arrester.
 - The second length must be long enough to run from the lightning arrester to the NIU IF In/Out and 35 VDC Out connector.
- 2. Install F(M) connectors on the ends of both cables.
- **3.** Connect the first length of cable between the OTRU F(J) connector and one of the lightning arrester connectors.
- 4. Connect the second length of cable between the second lightning arrester connector and the NIU IF Input/Output and 35 VDC connector.
- 5. If the cable run between the OTRU and the NIU is less than 65 m (212 ft), one or both of the two lengths of cable will be longer than is necessary to reach between the connected devices. Do not cut off this extra cable length. If necessary, coil the cable and put the cable in an area that does not impede access to any CPE components.

13.4 Connecting dual NIU cables

Note

The total cable length between the OTRU and an NIU must be 30 m (98 ft).

- 1. Cut a 30 m (98 ft) length of RG-11 cable into three lengths, as follows.
 - The first length must be long enough to run between the OTRU and the lightning arrester.
 - The second length must be long enough to run between the lightning arrester and the 2:1 Combiner/Splitter.
 - The third length of cable must be long enough to run between the 2:1 Combiner/Splitter and the NIU that is farthest (in terms of the length of cable required) from the 2:1 Combiner/Splitter.
- 2. Cut a fourth length of cable equal in length to the third length of cable.
- **3.** Install F(M) connectors on all the cable ends.
- **4.** Connect the first length of cable between the OTRU F(F) connector and one of the lightning arrester connectors.
- 5. Connect the second length of cable between the second lightning arrester connector and the 2:1 Combiner/Splitter IN connector.

- **6.** Connect the third length of cable between either of the remaining 2:1 Combiner/Splitter connectors and the IF In/Out and 35 VDC Out connector on the first NIU.
- 7. Connect the fourth length of cable between the remaining 2:1 Combiner/Splitter connector and the IF Input/Output and 35 VDC connector on the second NIU.
- 8. If the cable run between the OTRU and either NIU is less than 30 m (98 ft), one or more of the lengths of cable will be longer than is necessary to reach between the connected devices. Do not cut off this extra cable length. If necessary, coil the cable and put the cable in an area that does not impede access to any CPE components.

14. OTRU alignment

This chapter describes how to align an OTRU by adjusting the azimuth, elevation and vertical angle of an OTRU. This procedure requires a minimum distance of 300 m (900 ft) between the BTS and the OTRU. If the distance is less, contact Newbridge for information.

14.1 Test equipment and parts

A spectrum analyzer or power meter is required for this procedure.

Table 14-1 lists the components and cables required to align the OTRU.

Equipment	Supplier
Bias-T	Newbridge (part number 90-6516-01) Pulsar (BT-D6-411NM)
F(F) to N(M) adapter	Gilbert Engineering (NS-2873-1)
BNC(M) to F(F) adapter	Gilbert Engineering (G-BNCF-MF)
N(F) to N(F) adapter	Narda Model 77
RF cable, F(M), 1 m (3 ft) in length minimum	any
RF cable, N(M), 1 m (3 ft) in length minimum	any

Table 14-1: Components and cables required

14.2 Aligning the OTRU

An OTRU must be aligned to point directly toward the BTS in order to receive a reliable signal. Figure 14-1 shows the mounting hardware bolts used to adjust the azimuth, elevation and vertical angle of an OTRU in relation to the BTS.

In order to align the OTRU to the BTS signal, adjust the OTRU mounting hardware to find a position that provides the highest possible power readings. Acceptable peak power readings are based on RF planning and analysis activities that should be done before an OTRU is installed.

Figure 14-1: OTRU alignment adjustment hardware

1. Switch off the NIU, and connect the test equipment as shown in Figure 14-2.

Figure 14-2: Test equipment configuration

- **2.** Ensure that the BTS is transmitting a signal in the CPE sector.
- **3.** Adjust the bolts identified in Figure 14-1 until the OTRU mounting hardware is sufficiently snug to hold the unit on the mast, but is loose enough to allow easy rotation of the unit by hand. Set the azimuth, elevation and rotation of the antenna to point at the approximate location of the BTS.
- 4. Switch the NIU on.
- 5. Prepare the test equipment to make the measurements.
 - **a.** If measurements are made using a power meter, set AVERAGING to a low figure (for example, 2).
 - **b.** If a spectrum analyzer is used, set CENTER FREQUENCY to a value that is 200 MHz higher than the tone frequency at the BTS, and set BANDWIDTH to 100 MHz.
- **6.** Observe and record the measurement on the test equipment, and adjust the azimuth of the OTRU to provide a peak power reading.
- 7. Observe and record the measurement on the test equipment, and adjust the elevation of the OTRU to provide a peak reading.
- **8.** Observe and record the measurement on the test equipment, and adjust the vertical angle of the OTRU to provide a peak reading.
- **9.** Tighten the mounting hardware and verify the measurements previously made to ensure that the OTRU is still aligned to provide a peak reading on the test equipment.
- **10.** Switch the NIU off, disconnect the test equipment and reconnect the outdoor cable to the OTRU. Switch the NIU on.

15. Node management

This chapter describes:

- node management through the NMTI
- the main menu

15.1 Node management overview

NMTI user interface

The NMTI is a user-interface software program that resides in the PROM module on the NIUs and the MainStreetXpress 36170 Control card. It allows you to have a node management session through an attached ASCII (VT100-compatible) terminal.

The 28110 and 28120 MainStreet NIUs have their own NMTIs, which are used to set up, operate, monitor and maintain the NIUs.

Although the T-ARIC card does not have its own NMTI, it can be configured through an NMTI session with the MainStreetXpress 36170 Control card.

For information on initiating a node management session with the MainStreetXpress 36170 Control card, see the *MainStreetXpress 36170 Technical Practices*. For information on softkey conventions used in this manual, see "Softkeys" in section 15.2.

To initiate a node management session with an NIU

The following steps describe the logon procedure for the first NMTI session. Users logging on later may find that some steps are not necessary, are slightly different or are skipped because previous users have changed the configuration. If the node management equipment is used regularly, steps 1 to 3 may not be necessary.

1. Switch on the NIU. The power switch is on the back panel.

The LED display runs through a predetermined pattern, while self-diagnostics are performed.

2. Ensure the terminal is connected to the front panel serial port of the NIU and switch on the terminal.

- **3.** Verify that the terminal is set up for the following:
 - eight data bits
 - one stop bit
 - no parity
 - no local echo
 - baud rate of 9600 b/s
- **4.** Press the → key on the terminal at approximately one second intervals until a startup message appears on the terminal, and you are prompted for an access level.
- 5. Enter your access level number.
 - **a.** If this is the first NMTI session, enter a <5> and press →. Level 5 users have read and write access to all areas required to configure the system.
 - **b.** If this is not the first NMTI session and you have been assigned an access level (between 0 and 5), enter your level number and press *⊥*.

The NMTI prompts you for the password (unless you enter an access level of 0, which allows read-only access). The default password is <mainstreet>.

- **6.** If you are not a level 0 user, enter the password.
 - a. If this is the first NMTI session, type <mainstreet> (lower case) and press ↓. The default password for all levels is <mainstreet> and is not displayed on the screen.
 - **b.** If this is not the first NMTI session, enter the password assigned to your access level.

The NMTI displays the main menu screen, as shown in Figure 15-1.

28110 T1 NIU	AA1211-R0-AF	NIU_5:?:?	MAJ:Alrm:1	03-JAN-1999 12:56
l-CONFIG 6-	2-HOUSE 3 7- 8	-MAINT -	4-STATISTICS 9-QUIT	5-ALARMS 0-

Figure 15-1: NIU Main Menu Screen

Setting the password and level zero

When you initiate a node management session you can change your password and enable or disable level 0 access. In the following softkey menus, an asterisk (*) indicates the default setting.

To change the password

To enable or disable level zero access

HOUSE — LEVEL_0/NO_LEVEL_0*

Screen display

The NMTI screen display has 24 lines; each line is 78 characters wide. The screen is arranged in the following five functional areas, which are described in Table 15-1:

- header line
- data area
- command line
- diagnostics line
- softkey area

The screen refreshes when you select softkeys or make keyboard entries.

Area	Description					
Header line	Specifies:					
	product name					
	software generic and revision number					
	node name (a blank space if a node name has not been assigned)					
	• the number of alarms in the major alarm queue					
	• date ⁽¹⁾					
	• time					
Data area	Occupies 18 lines Displays information associated with the current menu					
Command line	Displays the softkey selections and keyboard entries as they are entered					
Diagnostics line	Displays:					
	• prompts					
	• warnings					
	error messages					
	valid ranges for numeric parameters					
	NIU ID number					
Softkey area	Occupies the bottom two lines of the screen					
	Line 1 indicates the softkeys associated with keyboard keys 1 through 5 Line 2 indicates the softkeys associated with keyboard keys 6 through 0					

Table 15-1: Description of NMTI screen areas

Note

1. "01-JAN-1970" appears in the header line until the BTS sends the date.

15.2 Main menu

The group of softkeys that first appears when you log on to an NIU is called the main menu (see Figure 15-1) and provides access to the following main functions:

- CONFIG
- HOUSE
- MAINT
- STATISTICS
- ALARMS

Table 15-2 lists the functions of each main menu softkey.

Main menu softkey	function
CONFIG	Configuring system parameters Defining connections
HOUSE	Specifying the node name Configuring the system serial ports Defining the parameters for access to the NMTI
MAINT	Performing system diagnostics Monitoring status Performing loopbacks
STATISTICS	Monitoring and clearing use and performance statistics Setting refresh modes
ALARMS	Monitoring the system for abnormal conditions and significant events continuously and listing them in queues that can be viewed and edited Assigning a classification to each alarm type Selecting the method of logging alarms

Table 15-2: Description of main menu softkeys

Softkeys

The term softkey means both a numbered key (on the keyboard) and the function associated with it. The softkey area shows each available keyboard key and its current function. Functions change each time a softkey is selected.

Table 15-3 shows the softkey conventions used in this manual.

т	ahle	15-3.	Softkey	conventions
	able	15-5.	JUILKEY	conventions

Convention	Example
Softkeys are written as they appear on the screen, in upper case.	CIRCUIT
Some softkeys have underscores.	NVM_DATA
Some softkeys have hyphens.	END-TO-END
Some softkeys are marked with an asterisk (*) to indicate that they are default settings.	30_MIN*
Some softkeys have an oblique, which indicates that they are toggle softkeys with two states. The state or function that is not in effect is shown next to the softkey number.	SHORT/LONG*
The PROCEED softkey executes an instruction; it is not included in the procedures unless selecting it has effects in addition to executing the instruction.	PROCEED

Selecting softkeys

Select softkeys by pressing a number key (0 through 9) on the keyboard or number pad. For example, to select HOUSE from the main menu, press <2>. The exception is when the NMTI prompts for a numeric entry and you want to select a display softkey, such as CANCEL or QUIT. First press < Esc>, then press the softkey number. If you do not press <Esc> first, the NMTI interprets your softkey selection as a numeric entry.

Selecting a softkey updates the data area, changes the softkey selection or adds text to the command line.

Most softkeys add their function to the command line. Exceptions are MORE, CANCEL, QUIT, PROCEED and display softkeys.

Softkey functions

Table 15-4 describes softkey functions.

Softkey	Functions	Format
PREVIOUS	Displays the previous screen of data, if one exists.	Always associated with the 1 key.
NEXT	Displays the next screen of data, if one exists.	Always associated with the 2 key.
MORE	Displays additional menu selections, where they exist.	Always associated with the 7 key.
CANCEL	Cancels the last part of the instruction being entered.	Always associated with the 8 key. (1)
	Returns to the previous menu.	
	Cancels the command.	
QUIT	Logs you off the node when selected from the main menu.	Always associated with the 9 key. (1)
	Displays the main menu when selected from any other menu.	

Softkey	Functions	Format
PROCEED (2)	Executes the instruction.	Always associated with the 0 key. (1)

Notes

- 1. You may need to press <Esc> to access this softkey if the node management session is expecting a text or number string.
- PROCEED appears in the softkey area only when required: The NMTI prompts you with the message "Press PROCEED to confirm change". Only the CANCEL, QUIT and PROCEED softkeys appear. If you select PROCEED, all softkeys disappear briefly and a message indicates the instruction is being executed. Then the softkeys for the next operation appear.

Note

Some softkeys described in this manual may not appear on your screen. The softkeys available depend on your access level, the system configuration, and the software generic you are using.

Keyboard entries

Use the keyboard to type text or number strings when the NMTI prompts you for an entry.

Examples of keyboard entries are:

- passwords
- node names
- dates
- alarm numbers

The display indicates that the node management session expects a keyboard entry by:

- displaying "??-??" or "..." on the command line
- displaying a prompt on the diagnostics line
- removing all softkeys except CANCEL, QUIT and display softkeys

In many cases, the diagnostics line prompts you for a valid range or required entry format. If the format includes a hyphen (-) or a slash (/), it must be typed as part of the entry.

Keyboard conventions

Some keys are assigned names, for example, Return and Esc. Table 15-5 shows keyboard entry conventions used in this manual.

|--|

Convention	Example
Keyboard entries are indicated by italicized text enclosed in angle brackets	<shelf-slot></shelf-slot>
A key with a name is indicated by the name of the key with the first letter capitalized, and enclosed by angle brackets	<esc></esc>
The Return key appears in the procedures where required, because the display does not prompt for it	4

Keyboard entry formats

Keyboard entries require specific formats and appear on the diagnostics line. The format can be a mixture of specific letters and variable information, for example:

<CGgroup>

In this example, CG must be typed and group represents variable information.

Keyboard entry functions

Table 15-6 shows the functions associated with keyboard entries.

Key(s)	Function
4	Completes and executes a keyboard entry.
<esc> <r></r></esc>	Refreshes the screen in the following situations:
	 when a database verification is in progress
	• when monitoring system alarms to update the displayed information
	 when a transmission error or some other event corrupts the displayed information
	 when monitoring statistics to update displayed information
<delete> or <backspace></backspace></delete>	Deletes a keyboard error.
<esc> <softkey number=""></softkey></esc>	Lets you select a softkey when the node management session expects a number or text string keyboard entry.

Table 15-6: Keyboard entry functions

16. **Restrictions of Release 1.1**

This chapter describes the software and hardware restrictions of the MainStreet Broadband Wireless system.

16.1 BTS restrictions

Table 16-1 lists the BTS restrictions.

Table 16-1: BTS restrictions

Name	Limit	Level
CPSS links	300	System
Downlink timeslots per port	350 (at 18 MHz) 700 (at 36 MHz)	T-ARIC card
NIUs (E1 per port, fully configured without cell padding)	8	T-ARIC card
Managed NIUs per BTS	299	NIU
NIUs per BTS	3300	NIU
NIUs per port	300	T-ARIC card
NIUs (T1 per port, fully configured without cell padding)	10	T-ARIC card
T-ARIC card ports per BTS	94	T-ARIC card
Uplink timeslots per port	266	T-ARIC card

16.2 ATM restrictions

Table 16-2 lists the ATM restrictions.

Table 16-	2: ATM	restrictions
-----------	--------	--------------

Name	Limit
Connections per T-ARIC port	4096
CPSS over RF	Not supported
EPD (early packet discard) over RF	Not supported
PPD (partial packet discard) over RF	Not supported
Service categories supported	CBR, UBR, VBR
VCI range	1 to 511
VPI limitations	255 - reserved
	254 - reserved
	253 - reserved for ATM control messaging
	252 - reserved (provides date and time information to NIUs)
	251 - reserved
	250 - reserved
	0 to 249 - used for data connections
VPIs per NIU	1 (The same VPI can be used by multiple NIUs that are using the same T-ARIC card, providing the VCIs are unique, and are within the acceptable range.)

17. Configurable features summary

This chapter summarizes the configurable features for the T-ARIC card and the NIUs.

17.1 NIU configurable options

Tables 17-1 to 17-5 describe the features, configurable options and default settings for NIUs. The Reference column indicates where configuration information can be found.

Feature	Configurable options and default	Reference
Add/delete channel or range	channel (or channel range) from 1 to 31 no defaults	18.1
Channel group name	up to 16 characters no default	18.1
Playout buffer	0 to 6 ms (increments of 0.5 ms) default: 3 ms	19.1
Trunk conditioning data pattern ⁽¹⁾	0x00 to 0xFF, IDLE (0xEF) or SEIZED (0x1A) default: 0xFF	18.5
Trunk conditioning signaling pattern 1 ⁽¹⁾	0x00 to 0xFF default: 0x00	18.5
Trunk conditioning signaling pattern 2 ⁽¹⁾	0x00 to 0xFF default: 0x00	18.5
User data octets per cell	1 to 46, or all default: all	19.1

Table 17-1: NIU channel group features

Note

1. Can be configured on a channel, channel group or channel range.

Feature	Configurable options and default	Reference
SNMP access privileges	none, read or read/write configurable for each of the 10 communities default: read	20.1
SNMP community name	up to 16 characters configurable for each of the 10 communities no default	20.1

Feature	Configurable options and default	Reference
SNMP element manager IP address	xxx.xxx.xxx.xxx format configurable for each of the 10 communities no default	20.1
SNMP trap community name	up to 16 characters configurable for each of the 10 trap communities no default	20.2
SNMP trap element manager IP address	xxx.xxx.xxx.xxx format configurable for each of the 10 trap communities no default	20.2
SNMP trap status	enabled or disabled default: disabled	20.2

Table 17-3:	NIU modem fe	atures
-------------	--------------	--------

Tabl	le 17-3: NIU modem features	
Feature	Configurable options and default	Reference
Add channel frequency	channel frequency: 27500 to 28600 (increments of 1 MHz) channel bandwidth: 36 MHz no defaults	21.10
Tx LO offset	17000 MHz to 40000 Mhz default: 26000 MHz	21.10
Rx LO offset	17000 MHz to 40000 Mhz default: 26000 MHz	21.10
RF band start frequency	20000 MHz to 40000 MHz default: 27500 MHz	21.10
RF band end frequency	20000 MHz to 40000 MHz default: 28600 MHz	21.10
IF band start frequency	950 MHz to 2050 MHz default: 950 MHz	21.10
Channel bandwidth	See Addchannel frequency	21.10
Channel frequency	See Addchannel frequency	21.10
Channels (number of)	See Addchannel frequency	21.10
Downlink frequency offset	-320 to 320 Mhz default: 0 Mhz	21.2
Power level (maximum) after network entry	60 to -10 dBm default: -10 Mhz	21.10
Power level (minimum) after network entry	60 to -10 dBm default: -40 MHz	21.10
Power level (maximum) before network entry	60 to -10 dBm default: -10 MHz	21.10
Power level (maximum) before network entry	60 to -10 dBm default: -40 MHz	21.10

Feature	Configurable options and default	Reference
AAL service type	SDT_BASIC, SDT_CAS, UDT or UDT_PERFMON default: UDT	19.1
LOF alarm clearing	1 to 30 s (increments of 0.1 s) default: 10 s	18.2
LOF alarm declaration	1 to 30 s (increments of 0.1 s) default: 0.8 s	18.2
Output timing	ACR, SRTS, or network default: synchronous	18.2
Padding octet value	0 to FF default: FF	18.2
Port name	up to 15 characters no default	18.2
CRC framing	on or off default: on	18.2
signaling	31 channel or CAS default: CAS	18.2

Table 17-4:	28120 MainStreet E1 NIL	J port features

Feature	Configurable options and default	Reference
AAL service type	SDT_BASIC, SDT_CAS, UDT or UDT_PERFMON default: UDT	19.1
CRC framing	on or off default: on	18.2
DS1 build-out	0, -7.5, -15 or -22 dB 0 dB	18.2
DSX-1 line length	0 to 132, 133 to 265, 266 to 398, 399 to 532, 533 to 654 ft default: 0 to 132 ft	18.2
Framing	SF (D4) or ESF default: ESF	18.2
LOF alarm clearing	1 to 30 s (increments of 0.1 s) default: 10 s	18.2
LOF alarm declaration	1 to 30 s (increments of 0.1 s) default: 0.8 s	18.2
Output timing	ACR, SRTS or network default: network	18.2
Port name	up to 15 characters no default	18.2
Red alarm indication alarm clearing	on LOF clear, or on resynch default: on LOF clear	18.2
Zero suppression	B8ZS or JB7 default: B8ZS	18.2

Table 17-5: 28110 MainStreet T1 NIU port feature
--

17.2

T-ARIC configurable options

Tables 17-6 to 17-10 list the T-ARIC card features, configurable options and default settings.

You must configure the following T-ARIC card features:

- downstream channel frequency
- downstream IF start
- group number
- Rx RF frequency upstream end
- Rx RF frequency upstream start
- Tx RF frequency downstream end
- Tx RF frequency downstream start
- upstream IF start
| Feature | Configurable options and default | Reference |
|-------------------|----------------------------------|-----------|
| NIU ID | 100 to 3399
no default | 21.14 |
| NIU serial number | 19 characters
no default | 21.14 |
| NIU type | CE | 21.14 |
| NIU user data VPI | 0 to 249
default: 0 | 19.2 |

Table 17-6:	T-ARIC card	NIU features

Feature	Configurable options and default	Reference
Add NIU	NIU ID: 100 to 3399 no default	21.13
Demodulator	enabled or disabled default: disabled	21.13
Downstream channel frequency	20000 to 40000 MHz (in increments of 1 MHz) no default	21.12
Timeslots reserved for NIU contention	2 to 133 (minus the number of polling slots minus the number of guard slots) default: 2	21.13
Timeslots reserved for NIU UBR connections	0 to 133 (minus the number of polling slots minus the number of guard slots) default: 0	21.13
Timeslots reserved for guard slots	1 to 3 default: 2	21.13
Tx power level	-22 to +8 dB (in increments of 2 dB) default: -22 dB	21.12
Tx power level status	auto enable or auto disable default: auto disable	21.12
Upstream channel frequency	20000 to 40000 MHz (in increments of 1 MHz) no default	21.13

Table 17-8: T-ARIC card group features

Feature	Configurable options and default	Reference
Downstream IF start	disabled, 400 to 900 MHz (in increments of 1 MHz) no default	21.11
Group number	1 to 64 no default	21.11
Rx control	enabled or disabled default: disabled	21.11

Feature	Configurable options and default	Reference
Rx RF upstream frequency end	20000 to 40000 MHz (in increments of 1 MHz) no default this parameter must be configured	21.11
Rx RF upstream frequency start	20000 to 40000 MHz (in increments of 1 MHz) no default	21.11
Tx control	enabled or disabled default: disabled	21.11
Tx interface power level	disabled, -22 to +8 dBm (in increments of 2 dBm) -22 dBm (the upconverter is disabled until the Tx RF is specified for the T-ARIC group)	21.11
Tx RF downstream frequency end	20000 to 40000 MHz (in increments of 1 MHz) no default	21.11
Tx RF downstream frequency start	20000 to 40000 MHz (in increments of 1 MHz) no default	21.11
Upstream IF start	disabled, 400 to 900 MHz (in increments of 1 MHz) no default	21.11
Upstream IF frequency offset	-500 to 0 MHz (in increments of 1 MHz) no default	21.11

Table 17-9: T-ARIC card port features

Feature	Configurable options and default	Reference
Downstream channel width	18 MHz default: 18 MHz	21.12
Port name	15 characters no default	21.15

Table 17-10: T-ARIC card slot features

Feature	Configurable options and default	Reference
Slot name	15 characters no default	21.16

18. NIU TDM configuration options

This chapter describes how to configure the TDM options. The options supported by the 28110 and 28120 MainStreet NIUs include:

- channel groups
- ports
- robbed bit signaling (for the 28110 MainStreet T1 NIU only)
- serial ports
- trunk conditioning

18.1 Channel group configuration

Channel group configuration includes:

- adding channels to a channel group
- assigning the channel group name
- deleting channels from a channel group

Note

Channel groups can only be configured if the NIU port has an AAL service type of SDT_BASIC or SDT_CAS.

Restrictions on channel group configuration

The following restrictions apply.

- A channel can belong to only one channel group at a time.
- A channel group must be identified by the lowest number channel that is a part of the group. For example, CG3 must contain channel 3 and not channel 1 or channel 2.
- Channel 31 corresponds to timeslot 16 on an E1 port; if you configure channel 31 as part of a channel group, the system treats channel 31 as though it is timeslot 16. For example, a channel group containing channels 16, 20 and 31 is identified as CG31 because the timeslot that corresponds to channel 31 (timeslot 16) comes before the timeslot that corresponds to channel 16 (timeslot 17) on an E1 port.

To add channels to a channel group

CONFIG — CHANNELGROUP — <CG*group*> → — ADD_CHANNEL — <*channel>* or <*start-end>* →

where

group is an integer from 1 to 24 for T1 NIUs, or 1 to 31 for NIUs channel is an integer from 1 to 24 for T1 NIUs, or 1 to 31 for NIUs start is an integer from 1 to 24 for T1 NIUs, or 1 to 31 for E1 NIUs end is an integer from 2 to 24 for T1 NIUs, or 2 to 31 for E1 NIUs, and end must be greater than start

Note

You can add single channels and ranges of channels at the same time by separating the channel numbers or range of channel numbers with a comma. For example, to add channel 2, channel 4, and channels 5 to 7, enter <2,4,5-7>.

To assign a channel group name

 $\texttt{CONFIG} - \texttt{CHANNELGROUP} - < \texttt{CG}\textit{group} \Rightarrow - \texttt{NAME} - < \textit{groupname} \Rightarrow \Rightarrow$

where

group is an integer from to 1 to 24 for T1 NIUs, or 1 to 31 for E1 NIUs

groupname is up to 15 characters excluding spaces, tabs, question marks and percent signs

To delete channels and channel groups

To delete the entire channel group, enter \dashv .

SK002364

where

group is an integer from 1 to 24 for T1 NIUs, or 1 to 31 for E1 NIUs *channel* is an integer from 1 to 24 for T1 NIUs, or 1 to 31 for E1 NIUs *start* is an integer from 1 to 24 for T1 NIUs, or 1 to 31 for E1 NIUs *end* is an integer from 2 to 24 for T1 NIUs, or 2 to 31 for E1 NIUs, and *end* must be greater than *start*

18.2 Port configuration

Port options include:

- CRC framing
- DS1 build-out (T1 NIUs only)
- DSX-1 line length (T1 NIUs only)
- framing (T1 NIUs only)
- LOF alarm clearing
- LOF alarm declaration

- output timing
- port name
- RAI alarm clearing (T1 NIUs only)
- signaling (E1 NIUs only)
- zero suppression (T1 NIUs only)

ON

OFF

SK002315

• RBS

To configure CRC framing

Note

You cannot configure CRC framing for a T1 NIU port if you have configured the port for SF(D4) framing.

CONFIG — PORT— <port> → — OPTIONS — PHYSICAL — CRC_FRAMING

where port is 1

To configure DS1 build-out

where port is 1

To configure DSX-1 line length

where port is 1

To configure the framing method

where port is 1

To configure the RAI clearing method and LOF alarm declare/clear time

To configure the output timing

where port is 1

To configure the port name

```
CONFIG — PORT — <port> → — NAME — <port_name> →
where
port is 1
port_name is up to 15 characters excluding spaces, tabs, question marks and percent signs
```

To configure the signaling method

18.3 Robbed bit signaling configuration

RBS is supported by the 28110 MainStreet T1 NIU only.

To configure RBS

18.4 Serial port configuration

This section describes how to configure the serial port baud rate.

To configure the serial port baud rate

SK002304

18.5 Trunk conditioning configuration

This section describes how to:

- enable and disable trunk conditioning
- configure the NIU to use either the idle or seized fault codes
- configure the data and signaling fault codes

To configure trunk conditioning

group is an integer from 1 to 24

To configure the trunk conditioning data and signaling patterns

19. ATM configuration options

This chapter describes how to configure the ATM options for the MainStreet Broadband Wireless system.

The NIU ATM configuration options are:

- AAL service type
- padding octet value
- playout buffer
- user data octets per cell

The only T-ARIC card ATM configuration option is NIU user data VPI.

19.1 NIU ATM configuration options

AAL service type

Each port is configured to provide either structured or unstructured data transfer.

When a structured data mode is selected (SDT_BASIC and SDT_CAS), framing is passed or inserted. SDT_CAS mode passes signaling bits on each of the contained channel groups, while SDT_BASIC removes signaling bits.

When an unstructured data mode is selected (UDT and UDT_PERFMON), framing is not passed or inserted. UDT_PERFMON allows performance monitoring statistics to be collected from the port. UDT mode blocks the collection of performance monitoring statistics.

Caution

Selection of any of the UDT or SDT keys removes all configured channel groups and connections on the port.

Note 1

CAS cannot be selected on E1 ports that are configured for 31-channel framing.

Note 2

RBS and zero suppression options are available only for SDT_BASIC, SDT_CAS and UDT_PERFMON mode.

To configure the AAL service type

From the NIU NMTI, enter:

where port is 1

Padding octet value

When valid user data does not occupy all the available octets in an ATM cell, pad characters are inserted into empty octets by the NIU to maintain a fixed cell size.

The specified pad character is inserted in each unused octet on every connected channel group.

To configure the padding octet value

From the NIU NMTI, enter:

CONFIG — SYSTEM — PAD_OCTET_VAL — <octet_value> ↓

where octet_value is from 00 to FF

Playout buffer

The playout buffer for each VC has a configurable fill level threshold that provides buffer underrun protection. Adjust the playout buffer fill level threshold to balance larger playout buffer delay requirements against greater underrun protection, to suit the particular network conditions or application. The default fill level provides 3 ms of underrun protection.

To configure the playout buffer threshold

From the NIU NMTI, enter:

 $\begin{array}{l} {\rm CONFIG-PORT-<} \textit{port>} \dashv - {\rm OPTIONS-AAL_SERVICE-OPTIONS-PLAYOUT_BUFF-<} \textit{threshold>} \dashv \end{array}$

where *port* is 1 *threshold* is from 0 to 6 s in increments of 0.5 s

User data octets per cell

For each channel group, the number of octets per cell that are reserved for user data can be configured as a number from 1 to 46.

To configure the maximum value of 46, select ALL.

To configure the user data octets per cell

From the NIU NMTI, enter:

where

group is an integer from 1 to 24 for T1 NIUs, or 1 to 31 for E1 NIUs *octet_count* is an integer from 1 to 46

19.2 T-ARIC card ATM configuration options

NIU user data VPI

User data connections to a specific NIU are made through a VPI that is unique to that NIU. Each NIU must be configured for a unique VPI before the NIU can communicate with the BTS.

To configure the NIU user data VPI

From the MainStreetXpress 36170 NMTI, enter:

CONFIG — MORE — BTS — NIU — <*NIU_id*> → — DATA_VPI — <*vpi_number*> → where *NIU_id* is an integer from 100 to 3299 *vpi_number* is an integer from 0 to 249

20. SNMP configuration options

This chapter describes how to configure the SNMP options supported by the NIUs.

20.1 SNMP access communities

This section describes how to:

- configure access community privileges
- configure a community name
- configure an element manager IP address
- delete access communities

To configure access privileges, name and IP address

where

community_id is an integer from 1 to 10

community_name is a string of up to 16 characters excluding spaces, tabs, question marks and percent signs *ip_address* is in the decimal format #.#.#, where # is an integer from 0 to 255

To delete access communities

20.2 SNMP trap communities

This section describes how to:

- enable or disable a trap community
- configure a trap community name
- configure an element manager IP address
- delete a trap community

To enable or disable a trap community

CONFIG — SYSTEM — SNMP — TRAPS — EDIT — <community_id> → — ENABLE/DISABLE*

where *community_id* is an integer from 1 to 10

To configure a trap community name

CONFIG — SYSTEM — SNMP — TRAPS — EDIT — <community_id> → — NAME — <community_name> J

where

community_id is an integer from 1 to 10
community_name is a string of up to 16 characters excluding spaces, tabs, question marks and percent signs

To configure an element manager IP address

CONFIG — SYSTEM — SNMP — TRAPS — EDIT — <community_id> → — IP_ADDRESS — <ip_address> ↓

where

community_id is an integer from 1 to 10
ip_address is in the decimal format #.#.#, where # is an integer from 0 to 255

To delete trap communities

21. Air interface configuration

This chapter describes the functionality and configuration of the T-ARIC card and NIU air interface parameters.

21.1 Air interface-related parameters

Table 21-1 and 21-2 lists the air interface parameters and provides references to explanations of the functionality and configuration.

Parameter	Functionality description	Configuration procedure
Add NIU	21.5	21.13
Card type	21.8	21.16
Contention timeslots	21.9	21.13
Demodulator	21.9	21.13
Downstream channel frequency	21.3	21.12
Downstream channel width	21.3	21.12
Downstream IF start	21.3	21.11
Group number	21.4	21.11
NIU ID	21.5	21.14
Guard timeslots – see Timeslots reserved for guard timeslots	21.9	21.13
NIU serial number	21.5	21.14
NIU type	21.5	21.14
Polling timeslots – see Timeslots reserved for polling slots	21.9	21.13
Port name	21.15	21.15
Reference point	3.7.7	21.15
Reserved timeslots – see Timeslots reserved for DBA NIU connections	21.9	21.13
Rx control	21.7	21.11
Rx LO offset	21.2	21.11
Rx RF upstream frequency end	21.3	21.11
Rx RF upstream frequency start	21.3	21.11
Slot name	21.8	21.16
Timeslots reserved for guard slots	21.9	21.13

Table 21-1: T-ARIC card air interface parameters

Parameter	Functionality description	Configuration procedure
Timeslots reserved for NIU contention (for E1 and T1 NIUs)	21.9	21.13
Timeslots reserved for polling slots	21.9	21.13
Timeslots reserved for DBA NIU connections	21.9	21.13
Tx control	21.7	21.11
Tx default power level	21.6	21.12
Tx power level	21.6	21.12
Tx power level status	21.6	21.12
Tx RF downstream frequency end	21.3	21.11
Tx RF downstream frequency start	21.3	21.11
Upstream channel frequency	21.3	21.13
Upstream IF start	21.3	21.11
Upstream IF frequency offset	21.3	21.11

Table 21-2: NIU air interface parameters

Parameter	Functionality description	Configuration procedure
Add frequency	21.3	21.10
Channel bandwidth, frequency and number of channels	21.3	21.10
Downstream frequency offset	21.2	21.10
Power level (maximum) after network entry	21.6	21.10
Power level (maximum) before network entry	21.6	21.10
Power level (minimum) after network entry	21.6	21.10
Power level (minimum) before network entry	21.6	21.10
Tx LO offset	21.2	21.10
Rx LO offset	21.2	21.10
RF band start frequency	21.2	21.10
RF band end frequency	21.2	21.10
IF band start frequency	21.2	21.10

21.2 Frequency offsets

This section describes the functions of:

- downstream frequency offset for the NIUs
- Rx LO offset for the T-ARIC card

Downstream frequency offset

There is a fixed RF range for which the transceiver radio can receive signals over the air. Likewise, there is a fixed IF range for which the transceiver radio can transmit to the NIU modem. Radios that are supplied by different manufacturers do not necessarily support the same IF range, even though the radios support the same RF range.

The downstream frequency offset provides a method of compensating for differences between the modem and transceiver IF spectrums. The value configured as the downstream frequency offset is the difference between the modem IF range and the transceiver IF range.

For Release 1.1, keep the downstream frequency offset at the default value (0).

Rx LO offset

There is a fixed RF range for which the BTS Rx radio can receive signals over the air. Likewise, there is a fixed IF range for which the BTS OTU can transmit to the T-ARIC modem. Ideally, the IF spectrum should be the same for the OTU, ORU and modem.

The Rx LO offset compensates for differences between the modem and the Rx radio IF spectrums. The value configured as the Rx LO offset is the difference between the modem IF range and the ORU IF range.

For Release 1.1, keep the Rx LO offset at the default value (150).

21.3 Frequency utilization

This section describes:

- add frequency
 - channel bandwidth
 - channel frequency
 - number of channels
- downstream channel frequency and bandwidth
- downstream IF start frequency
- Rx RF upstream frequency start and end
- Tx RF downstream frequency start and end
- upstream channel frequency
- upstream IF start frequency

Figure 21-1 shows two T-ARIC cards and two NIUs. The T-ARIC cards and NIUs are part of the same sector. Other T-ARIC cards and NIUs in the sector are not shown.

Figure 21-1: RF frequency utilization

11444

Channel bandwidth, frequency and number of channels

Each T-ARIC card in the T-ARIC group transmits downstream on a different frequency range, called the downstream RF channel (see 3 and 4 in Figure 21-1). An RF channel is defined by the channel frequency and the channel bandwidth. You must configure each NIU to receive in the appropriate RF channel. The add frequency feature allows you to create a list of channels; the NIU attempts to connect to each channel in turn until a connection is established.

When you add a channel to a list of channels, specify the channel frequency and the channel bandwidth. The channel frequency, or the center of the RF channel, is fixed at 18 MHz.

You can create multiple RF channels simultaneously by specifying the lowest center RF, the channel bandwidth and the number of channels you want to create. The channels run consecutively.

The system assigns a unique channel identifier in the range 1 to 30 for each channel.

Downstream channel frequency and bandwidth

Each T-ARIC card in a T-ARIC group transmits downstream on a different frequency range, called the downstream RF channel. An RF channel is defined by the channel frequency and the channel bandwidth. You must specify a channel bandwidth and a channel frequency for each T-ARIC card in a T-ARIC group (see 3 and 4 in Figure 21-1). The channels cannot overlap.

The channel frequency, or the center of the RF channel, is fixed at 18 MHz.

Although it is not strictly necessary, it is good practice to configure all RF channels to use contiguous bandwidth.

Downstream IF start frequency

Communication between a Modem module located on a T-ARIC card and an ORU or OTU are in the IF spectrum. Each T-ARIC card in a T-ARIC group uses a different downstream IF frequency range. You must specify the start (that is, the lowest) downstream IF frequency. The other IF ranges are determined by the T-ARIC card and are not user-configurable.

Rx upstream frequency start and end

Each T-ARIC card in the T-ARIC group receives upstream on a different frequency range, called the upstream RF channel. An RF channel is defined by the channel frequency and the channel bandwidth. At the T-ARIC group level, you must configure the upstream RF start and end frequency (see 7 and 8 in Figure 21-1).

The upstream RF frequency start is the lower limit of the lowest upstream RF channel. The upstream RF frequency end is the higher limit of the highest RF upstream channel.

Tx downstream frequency start and end

Each T-ARIC card in a T-ARIC group transmits downstream on a different frequency range, called the downstream RF channel. An RF channel is defined by the channel frequency and the channel bandwidth. At a T-ARIC group level, you must configure the downstream RF start frequency and end frequency (see 1 and 2 in Figure 21-1).

The downstream RF frequency start is the lower limit of the lowest downstream RF channel. The downstream RF frequency end is the higher limit of the highest RF downstream channel.

Upstream channel frequency

Each T-ARIC card in a T-ARIC group receives upstream on a different frequency range, called the upstream RF channel. An RF channel is defined by the channel frequency and the channel bandwidth. The upstream channel width is fixed at 9 MHz. You must specify a channel frequency for each T-ARIC card in a T-ARIC group (see 9 and 10 in Figure 21-1). The channels cannot overlap.

The channel frequency is the center of the RF channel; the channel width is 9 MHz. For example, if you specify a channel frequency of 27 355 MHz, the channel itself begins at 27 350.5 MHz and ends at 27 359.5 MHz.

Although a T-ARIC card receives on two separate RF channels, specify the channel frequency for one channel only. If you configure the upstream channel frequency for upstream 1, then the channel frequency for upstream 2 is automatically set to the channel frequency for upstream 1 plus 9 MHz. If you configure the upstream channel frequency for upstream 2, then the channel frequency for upstream 1 is automatically set to the channel frequency for upstream 2 minus 9 MHz.

Although it is not strictly necessary, it is good practice to configure all RF channels to use contiguous bandwidth.

Upstream IF start frequency

Communications between a Modem module located on a T-ARIC card and an OTU/ORU are in the IF spectrum. Each T-ARIC card in a T-ARIC group uses a different upstream IF frequency range. You must configure the start (that is, the lowest) upstream IF frequency. The other IF ranges are determined by a T-ARIC card and are not user-configurable.

Upstream frequency offset

The T-ARIC card must know the beginning of the NIU Tx IF band in order to communicate with the NIU. The upstream frequency offset is used by the BTS to calculate the NIU Tx IF band. The frequency offset is defined as the CPE IF start frequency minus the BTS IF start frequency. Therefore, if the BTS IF start frequency is 400 MHz, and the CPE IF start frequency is 550 MHz, configure the upstream frequency offset as -150 MHz. This will allow the BTS to communicate with the NIU on the appropriate IF frequency.

21.4 Groups

You can connect up to 12 T-ARIC cards and configure them to use the same OTU/ORU. Some configurable parameters can be common to each of the T-ARIC cards in the group.

Note that even single T-ARIC cards must belong to a group; in this case, the group has only one T-ARIC card.

21.5 NIU

The following parameters are configurable on a T-ARIC card:

- add NIU
- NIU ID
- NIU serial number
- NIU type

Add NIU

Before the system can establish any communication over the air interface, you must configure each T-ARIC card with the NIU ID of each NIU that a T-ARIC card is to communicate with. This procedure consists of adding each NIU to one of the two demodulators on a T-ARIC card.

NIU ID and NIU serial number

Each NIU is physically configured at the time of manufacture with a unique NIU serial number of up to 19 characters.

You must configure the NIU with an NIU ID in the range 100 to 3299. The NIU ID must be unique within a BTS, but the same NIU ID can be used in more than one BTS.

During configuration of the T-ARIC card, you must associate each NIU with one of the two T-ARIC card upstreams, by programming the T-ARIC card upstream with the NIU ID.

NIU type

The MainStreet Broadband Wireless system supports only CE NIUs.

21.6 Power level

This section describes the functions of:

- maximum power level after network entry
- maximum power level before network entry
- minimum power level after network entry
- power level before network entry
- Tx power level
- Tx power level status

NIU power level functions

For each NIU, configure the maximum and minimum power levels that the NIU will operate at, both before and after the NIU enters the network. The process of entering the network is called network registration.

Figure 21-2 shows relative values for the minimum and maximum NIU transmit values before and after network entry.

The minimum and maximum transmit power levels used before network entry are a subset of the transmit values that are used after network entry. The BTS is able to receive from the NIU at the minimum transmit power level in normal operating conditions. If the BTS does not respond, the NIU increases the transmit power until the maximum transmit power level is reached.

The purpose of configuring a maximum power level before network entry is to prevent the NIU from interfering with other equipment. If an NIU transceiver is not aligned with a BTS, and if there were no maximum transmit limit, the NIU would continue to increase the transmit power and ultimately cause interference with other network equipment.

After the NIU has registered with the network, the NIU adjusts the transmit power level in response to the power level received from the BTS. If the receive power level increases, the NIU lowers the transmit power level; if the receive power level decreases, the NIU increases the transmit power level.

You should configure the minimum power level used after network entry at a level that the BTS can always receive.

The minimum power level used after network entry ensures that the NIU cannot reduce the transmit power level to a level that cannot be received by the BTS. The maximum power level used after network entry ensures that the NIU does not increase the transmit power level to a level that interferes with other network equipment.

The maximum power level used after network entry can be set higher than the maximum power level used before network entry, because until the NIU has registered you cannot be certain that the NIU and the BTS are aligned.

The overall intent of providing configurable transmit levels for each NIU is to try to ensure that the receive power at the BTS is consistent. NIUs that are close to the BTS have lower transmit power levels than NIUs that are farther away.

21.7 Rx and Tx redundancy

This section describes the functions of:

- Rx control
- Tx control

The MainStreet Broadband wireless system supports redundancy only for the OTUs and ORUs. Rx and Tx redundancy is supported at the T-ARIC group level; you can configure each T-ARIC card in the T-ARIC group to control one receiver and/or one transmitter.

Figure 21-3 shows a T-ARIC group with two T-ARIC cards. T-ARIC 1 is connected to an OTU and an ORU. T-ARIC 2 is connected to an OTU, but not to an ORU. If the active transmitter connected to T-ARIC 1 fails, the inactive transmitter connected to T-ARIC 2 becomes active.

The Rx and Tx control functions provide a method of independently enabling (or disabling) a receiver and/or a transmitter for each T-ARIC card. A single T-ARIC card cannot support redundant receivers or transmitters.

21.8 Slot parameters

This section describes the:

- card type
- slot name

Card type

You must configure the T-ARIC slot card type as T-ARIC.

Slot name

You can assign each T-ARIC card slot a name of up to 15 characters.

21.9 Upstream timeslot utilization

This section describes the parameters:

- contention timeslots
- demodulator status
- guard timeslots
- polling timeslots
- reserved DBA timeslots

You configure these parameters independently for each upstream channel. Figure 21-4 shows an example of timeslot utilization on an upstream channel.

Contention timeslots

The E1 and T1 NIUs use contention timeslots to communicate with the T-ARIC card. These timeslots do not carry user data. You configure the number of contention timeslots independently for each of the two upstream demodulators on the T-ARIC card.

All NIUs connected to the upstream demodulator share access to the contention timeslots, but a contention timeslot can only be used by a single NIU at a time. If no contention timeslots are available and the NIU needs to communicate with the T-ARIC card, the NIU must make successive attempts until a contention timeslot becomes available.

At least one timeslot must be reserved for contention. The T-ARIC card determines the location of the contention timeslots within the upstream channel.

Guard and polling timeslots

During the process of network entry, the NIU attempts to communicate with the T-ARIC card on an assigned polling slot. Timeslot 0 is called a polling timeslot. Because the NIUs may not be synchronized with the BTS during the network entry process, it is possible that the message from the NIU might overflow into the next timeslot.

Guard slots are timeslots that do not carry user data. Guard slots immediately follow the polling slot and guarantee that timeslots used for user data are not interfered with by NIUs attempting to enter the network. At least one timeslot must be reserved as a guard timeslot, which is why polling timeslots used for network entry are followed by guard timeslots.

The T-ARIC card continues to poll the NIUs after the NIUs have entered the network. To prevent congestion on timeslot 0 you can configure additional polling slots. These polling slots are used only by NIUs that have entered the network, so guard timeslots are not needed. The T-ARIC card determines the location of any additional polling timeslots. You only configure the number of polling timeslots.

Reserved DBA timeslots

You configure the number of timeslots that are available for use for bandwidth-on-demand by NIUs. These timeslots are used for the Ethernet port, MAC messages and management data.

If no DBA timeslots are reserved, NIU CBR connections might use all available bandwidth. All NIU connections are CBR.

The T-ARIC card determines the location of the reserved DBA timeslots. You only configure the number of reserved DBA timeslots.

SK002330

21.10 NIU configuration

This section describes how to configure the following options:

- add frequency
 - channel bandwidth
 - channel frequency
 - number of channels
- delete channel
- maximum power level after network entry
- maximum power level before network entry
- maximum power level after network entry
- maximum power level before network entry
- Tx LO offset
- Rx LO offset
- RF band start frequency
- RF band end frequency
- IF band start frequency

To add frequencies

bandwidth is 18 MHz center_frequency is the center frequency of the downstream channel from 20000 to 40000 roll-off is 0.35 number is an integer from 1 to 30

Note

The NIU verifies that the new parameters do not overlap any existing entries. If the new parameters do overlap any existing entries, the screen displays an error message.

To delete channels

To configure the maximum power level before network entry

CONFIG — SYSTEM — MODEM — MAX_POWER_BEF — < power> →

where power is -10 to -60 dB in increments of 40 dB

To configure the minimum power level before network entry

CONFIG — SYSTEM — MODEM — MIN_POWER_BEF — < power> →

where power is -10 to -60 dB in increments of 40 dB

To configure the minimum power level after network entry

CONFIG — SYSTEM — MODEM — MIN_POWER_AFT — < power> →

where *power* is -10 to -60 dB in increments of 40 dB

To configure the Tx LO and Rx LO frequency offsets

 $CONFIG - SYSTEM - MODEM - LO - \langle tx_LO, rx_LO \rangle \downarrow$

where *tx_LO* is from 17000 to 40000 Mhz *rx_LO* is from 17000 to 40000 Mhz

To configure the RF band start and end frequency and IF band start frequency

CONFIG — SYSTEM — MODEM — FREQ — <RF_start, RF_end, IF_start> →

where *RF_start* is 20000 to 40000 MHz *RF_end* is 20000 to 40000 MHz *IF_start* is 950 to 2050 MHz

21.11 T-ARIC group configuration

This section describes how to add or remove a T-ARIC card from a group, and how to configure the following options:

- downstream IF start frequency
- Rx and Tx control
- Rx RF upstream frequency start and end
- Tx RF upstream frequency start and end
- upstream IF start frequency
- upstream frequency offset

For a T-ARIC card to function, it must be configured as part of a T-ARIC group, even if it is the only card in the group.

To add or remove a T-ARIC card to or from a T-ARIC group

To configure the downstream IF start frequency

CONFIG — MORE — BTS — ARIC_GROUP — <group_id> → — DOWNSTREAM — IF_START — <start_if> →

where group_id is an integer from 1 to 64 start_if is an integer from 950 to 2050

To configure Rx and Tx control

SK002333

where group_id is an integer from 1 to 64

To configure the Rx upstream start and end frequency

end_RF is an integer from 20000 to 40000
start_RF is an integer from 20000 to 40000

To configure the Tx downstream start and end frequency

group_id is an integer from 1 to 64 end_RF is an integer from 20000 to 40000 start_RF is an integer from 20000 to 40000

To configure the upstream IF start frequency

CONFIG — MORE — BTS — ARIC_GROUP — <group_id> ,J — UPSTREAM — IFSTART | <start_if> ,J \$K002336

where *group_id* is an integer from 1 to 64 *start_if* is an integer from 400 to 900
To configure the upstream frequency offset

CONFIG — MORE — BTS — ARIC_GROUP — <*group_id*> → — UPSTREAM — FREQ_OFFSET — <*offset*> →

where *group_id* is an integer from 1 to 64 *offset* is an integer from -500 to 0

21.12 Downstream T-ARIC modem configuration

This section describes how to configure:

- downstream channel frequency
- downstream channel bandwidth
- Tx default power level

To configure the downstream channel frequency

 $\begin{array}{l} \text{CONFIG} - \text{OBJECT} - \text{PORT} - < \textit{shelf-slot-1} > \dashv - \text{MODEM} - \text{DOWNSTREAM} - \\ \text{CHANL}_{FREQ} - < \textit{center}_\textit{frequency} > \dashv \end{array}$

where shelf is P1 to P16 slot is an integer from 1 to 11 center_frequency is an integer from 20000 to 40000

To configure the downstream channel width

SK002337

where shelf is P1 to P16 slot is an integer from 1 to 11

To configure the Tx default power level

```
CONFIG — OBJECT — PORT — <shelf-slot-1> ,J — MODEM — DOWNSTREAM — IF_POWER — DEF_POWER
|
<power> ,J
SK002341
where
shelf is P1 to P16
slot is an integer from 1 to 11
power is an integer from –22 to 8 in increments of 2
```

21.13 Upstream T-ARIC modem configuration

This section describes how to add or remove NIUs, and how to configure:

- NIU association
- contention timeslots
- demodulator operation
- guard timeslots

- polling timeslots
- reserved NIU DBA timeslots
- upstream channel frequency

To add or remove an NIU

SK002343

where shelf is P1 to P16 slot is an integer from 1 to 11 niu_id is an integer from 100 to 3299

To configure the number of contention timeslots

contention_timeslots is an integer from 2 to (133 minus the number of configured polling slots, minus the number of configured guard slots)

To configure the demodulator operational status

SK002345

where shelf is P1 to P16 slot is an integer from 1 to 11

To configure the number of guard timeslots

where shelf is P1 to P16 slot is an integer from 1 to 11 guard_timeslots is an integer from 1 to 3

To configure the number of polling timeslots

SK002347

SK002346

where shelf is P1 to P16 slot is an integer from 1 to 11 poll_timeslots is an integer from 1 to 16

To configure the number of reserved DBA timeslots

To configure the upstream channel frequency

Note

Although the T-ARIC card receives on two separate RF channels, you specify the channel frequency for one of the two channels, but not for both. If you configure the upstream channel frequency for upstream 1, then the channel frequency for upstream 2 is automatically set to the channel frequency for upstream 1 plus 9 MHz. If you configure the upstream channel frequency for upstream 2, then the channel frequency for upstream 1 is automatically set to the channel frequency for upstream 2 minus 9 MHz.

center_frequency is the center frequency of the upstream channel from 20000 to 40000

21.14 T-ARIC card NIU configuration

This section describes:

- NIU serial number
- NIU type

To configure the NIU serial number

 $\texttt{CONFIG} - \texttt{MORE} - \texttt{BTS} - \texttt{NIU} - <\texttt{niu_id} \Rightarrow \dashv - \texttt{SERIAL}_\texttt{NUM} - <\texttt{serial}_\texttt{number} \Rightarrow \dashv$

where *niu_id* is an integer from 100 to 3299 *serial_number* is up to 19 characters

To configure the NIU type

 $\text{CONFIG} - \text{MORE} - \text{BTS} - \text{NIU} - <\!\textit{niu_id}\!\!> \! \lrcorner - \text{CE}$

where *niu_id* is an integer from 100 to 3299

21.15 T-ARIC card port configuration

This section describes how to configure the T_ARIC port name.

To configure the T-ARIC card port name

CONFIG — OBJECT — PORT — <*shelf-slot-1>* → — NAME — <*port_name>* →

where shelf is P1 to P16 slot is an integer from 1 to 11 port_name is up to 20 characters

21.16 T-ARIC card slot configuration

This section describes how to configure:

- card type
- slot name

To configure the T-ARIC card type

 $\begin{array}{l} \text{CONFIG} - \text{OBJECT} - \text{PORT} - < \textit{shelf-slot-1} > \dashv - \text{TYPE} - \text{CELL}_\text{RELAY} - \text{WIRELESS} - \text{ARIC}_\text{T} \end{array}$

where *shelf* is P1 to P16

slot is an integer from 1 to 11

To configure the T-ARIC card slot name

CONFIG — OBJECT — PORT — <*shelf-slot-1>* → — NAME — <*slot_name>* → where *shelf* is P1 to P16 *slot* is an integer from 1 to 11 *slot_name* is up to 20 characters

22. Status information

This chapter describes status information that can be viewed on NIUs and T-ARIC cards.

22.1 Status information

Table 22-1 describes the individual status fields. The fields shown are status fields only; these fields do not show information about any of the configured parameters.

Field	Status
E1 port	AIS LOF LOS Ok RAI
NIU network connectivity	Hunting Modem not configured Network entered
NIU modem	OK Fault
NIU modem housekeeper link	OK Link down
NIU status	Active (the NIU has been configured, has been associated with a T-ARIC card port, and has entered the network) Config (the NIU has been configured, but has not been associated with a T-ARIC card port) Pooled (the NIU has been configured and has been associated with a T-ARIC card port, but has not completed network entry)
T1 port	AIS LOF LOS Ok RAI TS16 AIS TS16 multiframe TS16 RAI

Table 22-1: Status information

Field	Status			
T-ARIC card port	Alarm (at least one alarm is logged against this port)			
	AllIn (all NIUs associated with this port have completed network entry)			
	Idle (there are no NIUs associated with this port)			
	ModemLinkDown (the communication link with the modem is down)			
	NoneIn (none of the NIUs associated with this port have completed network entry)			
	SomeIn (at least one, but not all, of the NIUs associated with this port have completed network entry)			
	TunerLinkDown (the communication link with the tuner module is down)			
T-ARIC card slot	RxDown (the receiver controlled by this T-ARIC card is down)			
	RxLinkDown (the communication link with the receiver is down)			
	TxDown (the transmitter controlled by this T-ARIC card is down)			
	TxLinkDown (the communication link with the transmitter is down)			
	TxRxDown (the transmitter and receiver devices controlled by this T-ARIC card are both down)			

To view NIU T1 or E1 port status

From the NIU NMTI, enter:

CONFIG — PORT — < port> →

where port is 1

To view base network, NIU modem and housekeeping link status

From the NIU NMTI, enter:

MAINT-SYSTEM - MODEM

To view NIU status

From the MainStreetXpress 36170 NMTI, enter:

where *niu_id* is an integer from 100 to 3299

To view T-ARIC card port status

From the MainStreetXpress 36170 NMTI, enter:

 $\texttt{CONFIG} - \texttt{OBJECT} - \texttt{PORT} - < \texttt{shelf-slot-1} \succ \dashv$

where *shelf* is P1 to P16 *slot* is an integer from 1 to 11

To view T-ARIC card slot status

From the MainStreetXpress 36170 NMTI, enter:

CONFIG — OBJECT — SLOT — <*shelf-slot-*1> →

where *shelf* is P1 to P16 *slot* is an integer from 1 to 11

23. T-ARIC card statistics

This chapter describes the T-ARIC card statistics supported on the MainStreet Broadband Wireless system.

23.1 Statistics

Table 23-1 describes all supported statistics.

Statistic	Description	Endpoint or port	Egress or ingress
Cells Discarded by UPC (CLP 0)	Displays the number of valid cells that have CLP=0 and which have been discarded at ingress by the ingress traffic policing This number includes cells with corrected header errors	Endpoint	Ingress
Cells Discarded by UPC (CLP 0+1)	Displays the number of valid cells that have CLP=0 or CLP=1, and which have been discarded at ingress by the ingress traffic policing This number includes cells with corrected header errors	Endpoint	Ingress
Cells Tagged by UPC	Displays the number of valid cells with CLP=0 admitted at ingress and which had CLP set to 1 by the ingress traffic policing This number includes cells with corrected header errors	Endpoint	Ingress
Cells Transmitted	Displays the number of valid cells that have been transmitted at egress	Port	Egress
Cells Transmitted (CLP 0)	Displays the number of valid cells that have been transmitted at egress with CLP=0		Egress
Cells Transmitted (CLP 0+1)Displays the number of valid cells that have been transmitted at egress with CLP=0 or with CLP=1		Endpoint	Egress
Valid Cells Received	Displays the number of valid cells admitted at ingress	Port	Ingress
Valid Cells Received (CLP 0)	d Displays the number of valid cells with CLP=0 that have been admitted at ingress This number includes cells with corrected header errors		Ingress
Valid Cells Received (CLP 0+1)	Displays the number of valid cells with CLP=0 or CLP=1, that have been admitted at ingress This number includes cells with corrected header errors	Endpoint	Ingress

Table 23-1: Description of supported statistics

To view ATM endpoint statistics

From the MainStreetXpress 36170 NMTI, enter:

STATS — OBJECT — ENDPOINT — <*shelf-slot-1;vpi_id/vci_id>* , — ATM

where shelf is P1 to P16 slot is an integer from 1 to 11 vpi_id is an integer from 0 to 249 vci_id is an integer from 32 to 511

To view T-ARIC card port statistics

From the MainStreetXpress 36170 NMTI, enter:

 $STATS - OBJECT - PORT - < shelf-slot-1 > \dashv - ATM$

where shelf is P1 to P16 slot is an integer from 1 to 11

To refresh statistics

From the MainStreetXpress 36170 NMTI, enter:

<Esc> <R>

24. NIU statistics

This chapter describes the statistics supported by the NIUs.

24.1 NIU port AAL1 statistics

The NIUs provide performance monitoring statistics for each connection at the AAL layer as required by the ATM Forum B-ICI specification. All statistics are available in SDT and UDT modes except for AAL1 pointer parity errors and pointer reframes, which are available only in SDT mode.

Statistics can be viewed for:

- the current 15-minute interval and the 96 previous 15-minute intervals
- previous 24-hour intervals.

Figure 24-1 shows an NIU port AAL1 statistics NMTI display. Table 24-1 lists the AAL1 statistics supported on the NIU port. AAL1 statistics are only available in UDT mode.

	28110 T1 NIU	AA1211-R0-AF	NIU7:?:?	MAJ:Alrm:1	03-JAN-1999 12:56
	AAL1 Statistics	Val	id :CURRENT		Worst Interval
J			00:12:58		-
	Reassembled Cells	1	000		-
	AAL1 Header Errors	2			-
	Lost Cells	5			-
	Buffer Overflows	3			-
	Buffer Starvation/	Under flows 3			-
	AAL1 Underflow Sec	onds 3			-
	Valid 15-minute in	tervals 31	(curre	ent day)	
	STATS PORT 1 AAL1 1	5_MINUTE			
1					
	1- 2-P	REV_INTVL 3-	NEXT_INTVL	4-CURRENT	5-INTERVAL_ID
	6-TEMP_CLEAR 7-	8 -	CANCEL	9-QUIT	0 -

Figure 24-1: NIU port AAL1 statistics NMTI display

Statistic	Description
AAL1 Reassembled Cells	The number of cells played out to the DS1/E1 service interface, excluding cells that were discarded
AAL1 Uncorrectable Header Errors	The number of uncorrectable AAL1 header errors detected
AAL1 Lost cells	The approximate number of cells lost due to SN continuity errors
AAL1 Buffer Overflows	The number of Rx buffer overflows
	This counter cannot increment more than once every 100 ms
AAL1 Buffer	The number of Rx buffer underflows
Starvation/Underflow	This counter cannot increment more than once every 100 ms
AAL1 Underflow Seconds	The number of seconds during which there was an Rx buffer underflow
AAL1 Pointer Parity	The number of SDT pointer parity errors
Errors	This counter cannot increment more than once every 100 ms
AAL1 Pointer Reframes	The number of times that the AAL1 reassembler found that an SDT pointer was not where it was expected
	A pointer must be re-acquired

Table 24-1: NIU port AAL1 statistics

To view NIU port AAL1 statistics

To view NIU channel group AAL1 statistics

24.2 T1 and E1 statistics

The NIUs collect T1 and E1 statistics that are available for viewing through NMTI. The 28110 MainStreet T1 NIU collects T1 statistics. The 28120 MainStreet E1 NIU collects E1 statistics. Statistics can be viewed for the current 15-minute interval and the 96 previous 15-minute intervals for the T1 and E1 physical statistics.

Figure 24-2 shows T1 statistics for the 28110 MainStreet T1 NIU port. Table 24-2 lists the T1 statistics supported on the NIU port.

Figure 24-2:	T1 port statistics NM	TI display

28110 T1 NIU	J AA1211-R	0-AF	NIU7:?:?	MAJ:Alrm:1	03-JAN-1999 12:56
# Typ 1 T1_	e Status _CE -		Name		
Statistics	Valid	: Ct 0 0 :	JRRENT	Wo	rst Interval
Errored Sec	onds	65	02 11		67
Severely Er	rored Seconds	10			12
Unavailable	Seconds	10			11
Bursty Erro	ored Seconds	65			65
Loss of Fra	ime Counts	2			6
Valid 15-mi	nute Intervals	44			
STATS PORT 1	PHYSICAL 15_MINU	ΓE			
1- 6-temp_clear	2-prev_intvl 7-	3–1 8–0	NEXT_INTVL CANCEL	4-CURRENT 9-QUIT	5-INTERVAL_ID 0-

Table 24-2: T1 port statistics

Statistic	Description	AAL1 mode supported	Framing mode supported
Errored Seconds	The number of seconds during which the average BER was greater than 0 but less than 1×10^{-3} , and a loss of synchronization was not detected	UDT/SDT	SF(D4) / ESF
Severely Errored Seconds	The number of seconds during which the average BER was greater than 1×10 ⁻³ or where a loss of synchronization was detected	UDT/SDT	SF(D4)/ESF
Unavailable Seconds	Unavailable The number of seconds in the selected interval where the link was in the unavailable state, not including the 10 severely errored seconds preceding the unavailable state		SF(D4)/ESF
Bursty Errored Seconds The number of seconds in the selected interval that contained more than one CRC error (in ESF framing mode) or more than one LCV error (in D4 framing mode)		UDT ⁽¹⁾ /SDT	SF(D4)/ESF
Loss of Frame Count	Loss of Frame The number of LOF errors that occurred in the selected interval		SF(D4)/ESF
Valid 15-minute Intervals	The number of valid 15-minute intervals recorded	UDT/SDT	SF(D4)/ESF

Note

1. Parameters are supported for UDT only if is in the monitored mode.

The 28120 MainStreet E1 NIU displays G.821 and line error statistics.

Figure 24-3 shows an example of a port G.821 statistics NMTI display for an 28120 MainStreet E1 NIU. Table 24-3 lists the G.821 statistics supported on the NIU port.

_								
	28120 E1	NIU	AA1211-R0	-AF	NIU7:?:?	MAJ:Alrm:1	03-jan-1999	12:56
	#	Type	Status		Name			
	T	ET_CE120	-					
	Statisti	ics	Interv	/al:C	URRENT		Worst Interval	
				00:	02:11		(02)	
	Errored	Seconds	(55			87	
	Severely	/ Errored	Seconds 2	LO			12	
	Unavaila	able Secon	ids 2	LO			11	
	Bursty H	Errored Se	conds (55			65	
	Loss of	Frame Cou	int (55			65	
	Valid 15	5-minute I	Intervals	66				
	STATS POP	RT 1 PHYSI	CAL G_821 15	_MINU'	TE			
	1-	2-	PREV_INTVL	3-N	EXT_INTVL	4-CURRENT	5-INTERVAL_II)
	6-TEMP_CI	LEAR 7-		8-C	ANCEL	9-QUIT	0 -	

Figure 24-3: E1 port G.821 statistics NMTI display

Table 24-3: E1 port G.821 statistics

Statistic	Description	AAL1 mode supported	Framing mode supported
Errored Seconds	The number of seconds during which the average BER was greater than 0 but less than 1×10^{-3} , and a loss of synchronization was not detected	UDT/SDT	G.704
Severely Errored Seconds	The number of seconds during which the average BER was greater than 1×10^{-3} , or where a loss of synchronization was detected	UDT/SDT	G.704
Unavailable Seconds	The number of seconds in the selected interval where the link was in the unavailable state, not including the 10 severely errored seconds preceding the unavailable state	UDT/SDT	G.704
Bursty Errored Seconds	Bursty Errored The number of seconds with more than one CRC error when CRC is enabled and more than one LCV error when CRC is disabled		G.704
Loss of Frame Count	The number of LOF errors that occurred in the selected interval	UDT/SDT	G.704
Valid 15-minute Intervals	The number of valid 15-minute intervals recorded	UDT/SDT	G.704

Figure 24-4 shows an example of a port line error statistics NMTI display for a 28120 MainStreet E1 NIU. Table 24-4 lists the line error statistics supported on the NIU port.

28120 E1 NIU	AA1211-R0-AF	NIU7:?:?	MAJ:Alrm:1	03-JAN-1999	12:56
# Туре 1 E1_CE12	Status 20 -	Name			
Statistics	Interval:	CURRENT		Worst Interval	
	0 0	:02:11		(02)	
Line Code Viola	ations 65			87	
Far End Block H	Errors 10			12	
Frame Alignment	t Signal Errs 10			11	
CRC4 Errors	65			65	
Valid 15-minute	Intervals 66				
STATS PORT 1 PHY	YSICAL LINE_ERROR 1	5_MINUTE			
1-	2-PREV_INTVL 3-	NEXT_INTVL	4-CURRENT	5-INTERVAL_II)
6-TEMP_CLEAR	7- 8-	CANCEL	9-QUIT	0 -	

Figure 24-4: E1 port line error statistics NMTI display

Table 24-4: E1 port line error statistics

Statistic	Statistic Description		Framing mode supported
Line Code Violations	The number of BPV or EXZ error events that occurred during the selected interval	UDT/SDT	G.704
Far End Block Errors	UDT/SDT	G.704	
Frame Alignment Signal Errors	The number of consecutive errored FAS that occurred during the selected interval	UDT/SDT	G.704
CRC4 Errors	The number of CRC-4 errors that occurred during the selected interval	UDT/SDT	G.704

To view NIU T1 port statistics

To view NIU E1 port line error statistics

<Esc> <R>

25. LED activity

This chapter describes T-ARIC card and NIU LED activity.

25.1 LED activity

This section describes the LED activity on both the T-ARIC card and on NIUs.

NIU LED activity

Table 25-1 describes NIU LED activity.

LED	Color/activity	Description	
ATM egress data	Green/flashing	Valid user egress data is detected. The LED lights for 20 ms for each cell that is detected.	
ATM ingress data	Green/flashing	Valid user ingress data is detected. The LED lights for 20 ms for each cell that is detected.	
Basestation	Green/continuous	The NIU has locked on to the downlink frequency.	
connectivity	Green/flashing	The NIU is hunting for the downlink frequency.	
	Red/continuous	No downlink frequencies have been programmed on the NIU.	
E1/T1 alarm	Off	No local or remote alarms are detected on the port.	
	Red/continuous	The port is in a local alarm state. One of the following alarms has occurred: AIS, LIS, LOF, OOF, TS16 AIS or TS16 LOF.	
	Yellow/continuous	The port is in a remote alarm state. One of the following alarms has occurred: RDI or TS16 RDI.	
E1/T1 signal	Green/continuous	The port is receiving a signal other than AIS, LIS, or TS16 AIS	
	Off	The port has not been enabled.	
	Red/continuous	The port is receiving an LIS.	
	Yellow/continuous	The port is receiving AIS or TS16 AIS.	
Ethernet Link	Green/continuous	A connection to other Ethernet equipment is detected.	
Ethernet Activity	Green/continuous	Ethernet frames are being received.	
Power	Green/continuous	+5 V is present.	
Status	Green/continuous	There are no critical or major alarms on the NIU.	
	Red/continuous	There is at least one critical or major alarm on the NIU.	

Table 25-1: NIU LED activity

T-ARIC card LED activity

Table 25-2 describes the T-ARIC card LED activity.

LED	Color/activity	Description
Active	Green/continuous	The card is functioning.
	Green/flashing	The card is not using the preferred fabric.
	Red/continuous	The card is malfunctioning.
Alarm	Off	Currently, there are no critical or major alarms on the T-ARIC card.
	Red/continuous	There is at least one critical or major alarm on the T-ARIC card.
Link	Green/continuous	All NIUs associated with this T-ARIC card have completed network entry.
	Green/flashing	At least one NIU has completed network entry, and at least one NIU has not completed network entry.
	Off	There are no NIUs associated with the T-ARIC card.
	Yellow/continuous	None of the NIUs associated with this T-ARIC card have completed network entry.
Status	Green/continuous	The card is in service.
	Green/flashing	The card has not been recognized by the Control card.
	Green and red/flashing	The card installed in the slot does not match the slot configuration.
	Off	The card is not powered up, or the LED has failed.
	Red/continuous	The card is in a failed state. An alarm is generated to indicate the nature of the card failure.

Table 25-2: T-ARIC card LED activity

26. Loopbacks

This chapter describes the loopbacks supported by the T-ARIC card and the 28110 and 28120 MainStreet NIUs.

26.1 T-ARIC card loopbacks

The T-ARIC card supports segment and end-to-end OAM loopbacks.

Prior to initiating an OAM loopback:

- each node on the path must be configured with a unique CPSS address
- each port on the path must be configured with an appropriate port reference point type
- each endpoint on the path must be configured with an appropriate OAM segment type

To configure the T-ARIC card port reference point

where shelf is P1 to P16 slot is an integer from 1 to 11

To configure the OAM segment type

26.2 28110 and 28120 MainStreet NIU loopbacks

The NIUs support line and equipment loopbacks.

To initiate, clear or reset an NIU loopback

27. Alarms

This chapter describes all alarms supported by the T-ARIC card and the NIUs, and describes how to:

- acknowledge alarms
- clear alarms
- configure remote alarm logging over CPSS (available only for the T-ARIC card)
- configure remote alarm logging over SNMP
- configure the alarm queue overflow method
- configure the remote alarm queue overflow method
- delete alarms
- filter the alarm display
- view alarms in a specific queue
- view an alarm summary

Note

Uncleared diagnostic alarms are never counted in any of the outstanding alarms fields.

27.1 Alarm descriptions

Table 27-1 summarizes NIU alarms. Table 27-2 summarizes T-ARIC card alarms.

Alarm	Raised by	Queue	Description
AIS	28110 and 28120 MainStreet NIUs	Minor	The monitored port is receiving an AIS indication.
Buffer Overrun	28110 and 28120 MainStreet NIUs	Major	The egress AAL-1 buffer has overflowed. alarm clear time: 12.5 s alarm declare time: 0 s
Buffer Starvation	28110 and 28120 MainStreet NIUs	Major	The egress AAL-1 buffer has entered the starvation state. alarm clear time: 12.5 s alarm declare time: 2.5 s
Line Loopback Activated	28110 MainStreet NIU	Major	A loopback has been raised as a result of in-band signaling that has been received from the far end.
LOF	28110 and 28120 MainStreet NIUs	Major	The monitored port has either lost framing, or framing cannot be detected.
LOS	28110 and 28120 MainStreet NIUs	Major	The received signal does not contain sufficient ones density.

Table 27-1: NIU alarm descriptions

Alarm	Raised by	Queue	Description
Modem Configuration Fault	28110 and 28120 MainStreet NIUs	Major	The modem is incorrectly configured.
Modem Device Alarm	28110 and 28120 MainStreet NIUs	Critical	There is a problem with the modem physical layer, or the modem has lost communication with the basestation.
Over Temperature Alarm	28110 and 28120 MainStreet NIUs	Major	The temperature of the NIU has exceeded 50°C (122°F).
RAI	28110 and 28120 MainStreet NIUs	Minor	The monitored port is receiving an RAI notification.
System Restart	28110 and 28120 MainStreet NIUs	Major	The housekeeper processor has restarted. There is no associated clearing alarm.
TS16 AIS	28120 MainStreet NIU	Major	The monitored port is receiving an AIS indication in timeslot 16.
TS16 Multiframe	28120 MainStreet NIU	Major	The monitored port is detecting a loss of multiframe in timeslot 16.
TS16 RAI	28120 MainStreet NIU	Major	The monitored port is receiving an RAI indication in timeslot 16.

Table 27-2: T-ARIC card alarm descriptions

Alarm	Queue	Description
Downconverter LO Not Locked	Major	The specified downconverter is not locked to the programmed operating frequency.
NIU Entered Network	Diagnostic	An NIU (identified by the NIU ID) has established communications with the T-ARIC.
NIU Left Network	Diagnostic	An NIU (identified by the NIU ID) has lost communications with the T-ARIC.
Rx LO Not Locked	Major	The T-ARIC Rx LO is not locked to the programmed operating frequency.
Tx LO Not Locked	Major	The T-ARIC Tx LO is not locked to the programmed operating frequency.
Upconverter LO Not Locked	Major	The T-ARIC is not locked to the programmed operating frequency.

To acknowledge alarms

where

alarm_id is the alarm number listed under the #### column on the screen
alarm1_id is the alarm number (under the #### column) of the first alarm in the range
alarm2_id is the alarm number (under the #### column) of the last alarm in the range

To clear alarms

SK002356

where

alarm_id is the alarm number listed under the #### column on the screen alarm1_id is the alarm number (under the #### column) of the first alarm in the range alarm2_id is the alarm number (under the #### column) of the last alarm in the range

To configure remote alarm logging over CPSS

To configure the remote alarm queue overflow method

alarm_id is the alarm number listed under the #### column on the screen
alarm1_id is the alarm number (under the #### column) of the first alarm in the range
alarm2_id is the alarm number (under the #### column) of the last alarm in the range

To filter the alarm display

The alarm display can be filtered to display outstanding, cleared or all alarms. To view alarms that have lower alarm numbers, select PAGE_UP. To view alarms that have higher alarm numbers, select PAGE_DOWN.

To view alarms in a specific queue

To view alarms that have lower alarm numbers, select PAGE_UP. To view alarms that have higher alarm numbers, select PAGE_DOWN.

To view an alarm summary

Select:

ALARMS

The alarm summary display appears, listing the number of alarms in each of the alarm queues. For each queue, the display shows the number of outstanding alarms and the number of total alarms; the alarm total includes cleared alarms and outstanding alarms.
28. Resetting the T-ARIC cards and NIUs

This chapter describes how to reset the following:

- T-ARIC cards and card ports
- 28110 and 28120 MainStreet NIUs and NIU modems

28.1 Resetting a T-ARIC card or port

You can reset both the T-ARIC card and the T-ARIC port.

To reset the T-ARIC card

MAINT — SLOT — <*shelf-slot-1*> , – RESET_CARD

where shelf is P1 to P16 slot is an integer from 1 to 11

To reset the T-ARIC card port

MAINT — PORT — <*shelf-slot-*1> → — RESET_PORT

where shelf is P1 to P16 slot is an integer from 1 to 11

28.2 Resetting the NIU or NIU modem

You can reset both the 28110 and 28120 MainStreet NIU and the modem.

To reset the NIU

 ${\rm MAINT-SYSTEM-RESET_CARD}$

To reset the NIU modem

 ${\sf MAINT-SYSTEM-MODEM-RESET_MODEM}$

Glossary

0VR	zero volts return
AAL	ATM-adaptation layer
AIS	alarm indication signal
ATM	asynchronous transfer mode
BTS	base transceiver station
BNC	bayonet-locking connector
CBR	constant bit rate
CAC	connection admission control
CE	circuit emulation
СРЕ	customer premises equipment
CPSS	control packet switching system
CRC	cyclic redundancy check
DS1	digital signal, level 1
DSX-1	digital signal cross-connect, level 1
EMC	electromagnetic compatibility
EN	european norm
ESF	extended superframe format
F(F)	Type F connector, female end
F(M)	Type F connector, male end
IF	intermediate frequency
LED	light emitting diode
LIS	loss of incoming signal
LO	local oscillator
LOF	loss of frame
LOS	loss of signal
MAU	media attachment unit
N(F)	Type N connector, female end

NIU	network interface unit
NMTI	node management terminal interface
OAM	operations, administration and maintenance
ΟΤυ	outdoor transmitter unit
OTRU	outdoor transmitting and receiving unit
ORU	outdoor receiver unit
PSTN	public switched telephone network
PVC	permanent virtual connection
QoS	quality of service
RAI	remote alarm indication
RBS	robbed bit signaling
RF	radio frequency
Rx	receive
SNMP	simple network management protocol
T-ARIC card	Time Division Multiple Access ATM Radio Interface card
TDM	time division multiplexing
Тх	transmit
VCI	virtual channel identifier
VPI	virtual path identifier

Index

28110 MainStreet CE Plus Ethernet T1 NIU, see T1 NIU, 2-7
28120 MainStreet CE Plus Ethernet E1 NIU, see E1 NIU, 2-7

A

AAL service type configuration of, 19-2 E1 NIU, options, 17-1 T1 NIU, options, 17-3 Active LED, 25-2 activity threshold options, 17-4 add channel E1 NIU, options, 17-1 T1 NIU, options, 17-3 add channels configuration of, 21-14 deleting, 21-15 add frequency E1 NIU, options, 17-1 T1 NIU, options, 17-3 add NIU about, 21-8 adjustment period options, 17-4 AIS alarm, 27-1 Alarm LED, 25-2 alarms acknowledging, 27-3 clearing, 27-3 descriptions, 27-1 local queue overflow, 27-4 logging over CPSS, 27-4 logging over SNMP, 27-4 remote queue overflow, 27-5 antenna and an OTU or ORU, 5-1 ATM backbone, 1-2 ATM egress data LED, 25-1 ATM ingress data LED, 25-1

В

bandwidth utilization about, 1-3 Basestation connectivity LED, 25-1 baud rate E1 NIU, options, 17-1 T1 NIU, options, 17-3 **Bias-T** about. 2-13 connecting to Combiner/Splitter, 7-2 connecting to surge protector, 7-1 connectors, 2-13 power cable connections, 9-14 broadband wireless about. 1-1 ATM-related limitations. 16-2 BTS-related limitations, 16-1 components, 1-1 equipment overview, 2-1 terminology, 1-2 BTS cables, 9-1 components, 3-1 mounting hardware, 6-1 simplex and redundant configurations, 3-2 BTS, description of, 1-2 Buffer Overrun alarm, 27-1 Buffer Starvation alarm. 27-1

С

cables and decibel loss, 9-3 connections, 9-9 types, 9-1 cell, in a wireless network, 1-2 cells discarded by UPC statistics, 23-2, 24-7, 24-8 cells tagged by UPC statistics, 23-2, 24-7, 24-8 cells transmitted statistics, 23-2, 24-7, 24-8 channel bandwidth about, 21-6 E1 NIU, options, 17-1 T1 NIU, options, 17-3 channel frequency about, 21-6 E1 NIU, options, 17-1 T1 NIU, options, 17-3 channel group name E1 NIU, options, 17-1 T1 NIU, options, 17-3 channel group number E1 NIU, options, 17-1 T1 NIU, options, 17-3 channel group range E1 NIU, options, 17-1 T1 NIU, options, 17-3 channel groups adding channels to, 18-2 deleting, 18-2 name configuration, 18-2 restrictions on, 18-1 channels deleting from channel groups, 18-2 channels. number of E1 NIU options, 17-1 T1 NIU, options, 17-3 Combiner/Splitter connecting to Bias-T, 7-2 Combiner/Splitter, types, 2-5 contention timeslots about. 21-12 configuration of, 21-21 options, 17-4 CPE lightning arresters connecting to grounding plate, 12-1 CRC framing configuration of, 18-3 E1 NIU, options, 17-1 T1 NIU. 17-3 customer premises equipment cable loss, 10-2 for dual and single NIU, 10-1 passive components, 10-2

D

```
data pattern
configuration of, 18-8
deleting channels, 21-15
demodulator
options, 17-4
demodulator status
configuration of, 21-21
Downconverter LO Not Locked alarm, 27-1
downstream channel frequency
```

about, 21-6 configuration of, 21-19 options, 17-4 downstream channel width about, 21-6 configuration of, 21-19 options, 17-4 downstream frequency offset about. 21-3 E1 NIU, options, 17-1 T1 NIU, options, 17-3 downstream IF start frequency about, 21-6 configuration of, 21-17 options, 17-4 DS1 build out configuration of, 18-3 options, 17-3 DSX-1 line length configuration of, 18-4 options, 17-3

Ε

E1 alarm LED, 25-1 E1 NIU AAL service type, configuration of, 19-2 AAL service type, options, 17-1 about, 2-7 add channel, options, 17-1 add channels, configuration of, 21-14 add channels, deleting, 21-15 add frequency, options, 17-1 add NIU, about, 21-8 adding to T-ARIC, 21-20 alarms, 27-1 baud rate, options, 17-1 channel bandwidth, about, 21-6 channel bandwidth, options, 17-1 channel frequency, about, 21-6 channel frequency, options, 17-1 channel group name, options, 17-1 channel group number, options, 17-1 channel group range, options, 17-1 channel groups, adding channels to, 18-2 channel groups, deleting, 18-2 channel groups, deleting channels from, 18-2 channel groups, name configuration, 18-2 channel groups, restrictions on, 18-1 channels, number of, options, 17-1 configurable options, 17-1

CRC framing, configuration of, 18-3 CRC framing, options, 17-1 downstream frequency offset, options, 17-1 E1 port status, 22-1 LED activity, 25-1 LOF alarm clearing time, configuration of, 18-4 LOF alarm clearing time, options, 17-1 LOF alarm declaration time, configuration of. 18-4 LOF alarm declaration time, options, 17-1 loopbacks, 26-3 NIU basestation connectivity status, 22-1 NIU id, about, 21-8 NIU modem housekeeper link status, 22-1 NIU modem status. 22-1 NIU serial number. about. 21-8 NIU type, about, 21-8 number of channels, about, 21-6 output timing, configuration of, 18-4 output timing, options, 17-1 padding octet value, configuration of, 19-2 padding octet value, options, 17-1 playout buffer, configuration of, 19-3 playout buffer, options, 17-1 port name, configuration of, 18-5 port name, options, 17-1 power level, maximum after network entry, configuration of, 21-15 power level, maximum before network entry, configuration of, 21-15 power level, minimum after network entry, configuration of, 21-16 power level, minimum before network entry, configuration of, 21-16 power level, options, 17-1 power levels, about, 21-9 removing from T-ARIC, 21-20 serial number, configuration of, 21-24 serial port baud rate, configuration of, 18-6 signaling, options, 17-1 signalling method, configuration of, 18-5 SNMP access communities name, configuration of, 20-1 SNMP access communities privileges, configuration of, 20-1 SNMP access communities, deleting, 20-2 SNMP access privileges, options, 17-1 SNMP community name, options, 17-1 SNMP element manager IP address, options, 17-1

SNMP trap communities element manager IP address, configuration of, 20-2 SNMP trap communities, configuration of, 20 - 2SNMP trap communities, deleting, 20-3 SNMP trap community name, options, 17-1 SNMP trap element manager IP address, options, 17-1 SNMP trap status, options, 17-1 statistics supported, 23-1, 24-3 status information, 22-1 trunk conditioning code, configuration of, 18-8 trunk conditioning data pattern, configuration of, 18-8 trunk conditioning data pattern, options, 17-1 trunk conditioning signaling pattern, options, 17-1 trunk conditioning signalling pattern, configuration of, 18-8 trunk conditioning, configuration of, 18-7 type, configuration of, 21-25 upstream frequency offset, options, 17-1 user data octets per cell, configuration of, 19-3user data octets per cell, options, 17-1 E1 port status, 22-1 E1 signal LED, 25-1 Ethernet Activity LED, 25-1 Ethernet Link LED, 25-1

F

framing configuration of, 18-4 options, 17-3 frequency offsets downstream frequency offset, 21-3 Rx LO offset, about, 21-3 frequency utilization about. 1-3 channel bandwidth, about, 21-6 channel frequency, about, 21-6 downstream channel frequency, about, 21-6downstream channel width, about, 21-6 downstream IF start frequency, about, 21-6 number of channels, about, 21-6 Rx upstream frequency end, about, 21-6 Rx upstream frequency start, about, 21-6 Tx downstream frequency end, 21-7

Tx downstream frequency start, about, 21-7 upstream channel frequency, about, 21-7 upstream IF start frequency, about, 21-7

G

group number options, 17-4 groups about, 21-8 adding a T-ARIC to, 21-17 removing a T-ARIC from, 21-17 guard timeslots about, 21-13 configuration of, 21-22 options, 17-4

Κ

keyboard entries using NMTI, 15-7

L

LED activity NIU, 25-1 T-ARIC card, 25-2 lightning arresters connecting to adapter bracket, 8-2 for customer premises equipment, 12-1 function. 2-9 securing to BTS grounding plate, 8-1 limitations ATM-related. 16-2 BTS-related, 16-1 Line Loopback Activated alarm, 27-1 Link LED. 25-2 LOF alarm. 27-1 LOF alarm clearing time configuration of, 18-4 E1 NIU, options, 17-1 T1 NIU, options, 17-3 LOF alarm declaration time configuration of, 18-4 E1 NIU, options, 17-1 T1 NIU, options, 17-3 loopbacks E1 NIU, 26-3 T1 NIU. 26-3 T-ARIC card, 26-1 LOS alarm, 27-1

Μ

MainStreetXpress 36170 shelf and wireless functionality, 1-2 MAU installation, 4-1 MainStreetXpress 45020 Element Manager, 1-2 MaInStreetXpress 46020 Network Manager, 1-2 MAU function, 2-4 installing, 4-1 MAU, *see* Media Access Unit Modem Configuration Fault alarm, 27-1 Modem Device alarm, 27-1

Ν

network registration, 21-9 NIU communication flow, illustration of, 1-3 description of, 1-2 downstream channel, illustration of, 1-3 upstream channel, illustration of, 1-4 NIU basestation connectivity status, 22-1 NIU entered network alarm, 27-1 NIU id about. 21-8 configuration of, 21-20 options, 17-4 NIU Left Network alarm, 27-1 NIU modem housekeeper link status, 22-1 NIU modem status, 22-1 NIU power levels about. 21-9 NIU serial number about. 21-8 configuration of, 21-24 options, 17-4 NIU status, 22-1 NIU type about, 21-8 configuration of, 21-25 options, 17-4 NIU user data VPI configuration of, 19-4 options, 17-4 NIU, see also E1 NIU NIU, see also Ethernet NIU NIU. see also T1 NIU NMTI description of, 1-2 initiating a session, 15-1 keyboard entries, 15-7

level zero, 15-3 main menu, 15-5 overview, 15-1 password, 15-3 screen display, 15-4 session time, 15-3 softkeys, 15-5 number of channels about, 21-6

0

OAM loopbacks configuration of, 26-2 types, 26-1 OAM reference point configuration of, 26-1 options, 17-4 ORU attaching an antenna, 5-1 function, 2-12 OTRU alignment to BTS, 14-2 mounting, 11-1 test equipment and components, 14-1 types, 2-14 OTU attaching an antenna, 5-1 function, 2-12 output timing configuration of, 18-4 E1 NIU, options, 17-1 T1 NIU, options, 17-3 Over Temperature alarm, 27-1

Ρ

padding octet value configuration of, 19-2 E1 NIU, options, 17-1 T1 NIU, options, 17-3 password for NMTI, 15-3 playout buffer configuration of, 19-3 options, 17-1 T1 NIU, options, 17-3 polling timeslots about, 21-13 configuration of, 21-22 port name configuration of, 18-5, 21-25 E1 NIU, options, 17-1 options, 17-4

T1 NIU, options, 17-3 power control activity threshold options, 17-4 power control adjustment period options, 17-4 power control default power level configuration of, 21-20 power control maximum power options, 17-4 power control minimum power options, 17-4 power control reference NIU options, 17-4 power control step size options, 17-4 Power LED, 25-1 power level E1 NIU, options, 17-1 maximum after network entry, configuration of, 21-15 maximum before network entry, configuration of, 21-15 minimum after network entry, configuration of, 21-16 minimum before network entry, configuration of, 21-16 T1 NIU, options, 17-3 power level functions NIU, about, 21-9

R

RAI alarm. 27-1 RAI alarm clearing method configuration of, 18-4 RBS configuration of, 18-6 T1 NIU, options, 17-3 receiver redundancy see Rx control red alarm indication alarm clearing options, 17-3 redundancy about, 21-10 reference point options, 17-4 reserved timeslots options, 17-4 RF downstream frequency end options, 17-4 **RF** downstream frequency start options, 17-4

RS-422 cable connections, 9-12 Rx control about. 21-10 configuration of, 21-17 options, 17-4 Rx LO Not Locked alarm, 27-1 Rx LO offset about. 21-3 options, 17-4 Rx RF upstream frequency end options, 17-4 Rx RF upstream frequency start options, 17-4 Rx upstream end configuration of, 21-18 Rx upstream frequency end about, 21-6 Rx upstream frequency start about, 21-6 Rx upstream start configuration of, 21-18

S

sector, 1-2 segment loopback, 26-1 serial port baud rate, configuration of, 18-6 signaling E1 NIU, options, 17-1 signalling configuration of, 18-5 signalling pattern configuration of, 18-8 slot name options, 17-4 SMA cable connections. 9-13 SNMP access communities deleting, 20-2 name, configuration of, 20-1 privileges, configuration of, 20-1 SNMP access privileges E1 NIU, options, 17-1 T1 NIU, options, 17-3 SNMP community name E1 NIU, options, 17-1 T1 NIU, options, 17-3 SNMP element manager IP address E1 NIU, options, 17-1 T1 NIU, options, 17-3 SNMP trap communities configuration of, 20-2

deleting, 20-3 element manager IP address, configuration of. 20-2 SNMP trap community name E1 NIU, options, 17-1 T1 NIU, options, 17-3 SNMP trap element manager IP address E1 NIU, options, 17-1 T1 NIU, options, 17-3 SNMP trap status E1 NIU, options, 17-1 T1 NIU, options, 17-3 softkeys for NMTI, 15-5 statistics endpoint, viewing, 23-2, 24-7, 24-8 port, viewing, 23-2 refreshing, 23-2, 24-8 supported, 23-1, 24-3 status information about. 22-1 Status LED E1 NIU, 25-1 T1 NIU, 25-1 T-ARIC card, 25-2 surge protector connecting to Bias-T, 7-1 ground wire, 7-2 surge protectors function, 2-11 synchronization reference cable configuration requirements, 9-10 redundant OTU/ORU, 9-11 simplex OTU/ORU, 9-11 System Restart alarm, 27-1

Т

T1 alarm LED, 25-1 T1 NIU AAL service type, configuration of, 19-2 AAL service type, options, 17-3 about, 2-7 add channel, options, 17-3 add channels, configuration of, 21-14 add channels, deleting, 21-15 add frequency, options, 17-3 add NIU, about, 21-8 adding to T-ARIC, 21-20 alarms, 27-1 baud rate, options, 17-3 channel bandwidth, about, 21-6 channel bandwidth, options, 17-3

channel frequency, about, 21-6 channel frequency, options, 17-3 channel group name, options, 17-3 channel group number, options, 17-3 channel group range, options, 17-3 channel groups, adding channels to, 18-2 channel groups, deleting, 18-2 channel groups, deleting channels from, 18-2 channel groups, name configuration, 18-2 channel groups, restrictions on, 18-1 channels, number of, options, 17-3 CRC framing, configuration of, 18-3 CRC framing, options, 17-3 downstream frequency offset, 17-3 DS1 build out, configuration of, 18-3 DS1 build out, options, 17-3 DSX-1 line length, configuration of, 18-4 DSX-1 line length, options, 17-3 framing, configuration of, 18-4 framing, options, 17-3 LED activity, 25-1 LOF alarm clearing time, configuration of, 18-4 LOF alarm clearing time, options, 17-3 LOF alarm declaration time, configuration of. 18-4 LOF alarm declaration time, options, 17-3 loopbacks, 26-3 NIU basestation connectivity status, 22-1 NIU id, about, 21-8 NIU modem housekeeper link status, 22-1 NIU modem status, 22-1 NIU serial number, about, 21-8 NIU type, about, 21-8 number of channels, about, 21-6 output timing, configuration of, 18-4 output timing, options, 17-3 padding octet value, configuration of, 19-2 padding octet value, options, 17-3 playout buffer, configuration of, 19-3 playout buffer, options, 17-3 port name, configuration of, 18-5 port name, options, 17-3 power level, maximum after network entry, configuration of, 21-15 power level, maximum before network entry, configuration of, 21-15 power level, minimum after network entry, configuration of, 21-16 power level, minimum before network entry, configuration of, 21-16

power level, options, 17-3 power levels, about, 21-9 RAI alarm clearing method, configuration of. 18-4 RBS, configuration of, 18-6 RBS, options, 17-3 red alarm indication alarm clearing, options, 17-3 removing from T-ARIC, 21-20 serial number, configuration of, 21-24 serial port baud rate, configuration of, 18-6 signaling, options, 17-3 SNMP access communities name, configuration of, 20-1 SNMP access communities privileges, configuration of, 20-1 SNMP access communities, deleting, 20-2 SNMP access privileges, options, 17-3 SNMP community name, options, 17-3 SNMP element manager IP address, options, 17-3 SNMP trap communities element manager IP address, configuration of, 20-2 SNMP trap communities, configuration of, 20-2 SNMP trap communities, deleting, 20-3 SNMP trap community name, options, 17-3 SNMP trap element manager IP address, options, 17-3 SNMP trap status, options, 17-3 statistics supported, 23-1, 24-3 status information. 22-1 T1 port status, 22-1 trunk conditioning code, configuration of, 18-8 trunk conditioning data pattern, configuration of, 18-8 trunk conditioning data pattern, options, 17-3trunk conditioning signalling pattern, configuration of, 18-8 trunk conditioning signalling pattern, options, 17-3 trunk conditioning, configuration of, 18-7 type, configuration of, 21-25 upstream frequency offset, options, 17-3 user data octets per cell, configuration of, 19-3 user data octets per cell, options, 17-3 zero suppression method, configuration of, 18-5 zero suppression, options, 17-3

T1 port status, 22-1 T1 signal LED, 25-1 T-ARIC card type, about, 21-11 card type, configuration of, 21-25 contention timeslots, about, 21-12 contention timeslots, configuration of, 21 - 21demodulator status, configuration of, 21-21 downstream channel frequency, about, 21-6 downstream channel frequency, configuration of, 21-19 downstream channel width, about, 21-6 downstream channel width, configuration of. 21-19 downstream IF start frequency, about, 21-6 downstream IF start frequency, configuration of, 21-17 endpoint statistics, viewing, 23-2, 24-7, 24-8 groups, about, 21-8 groups, adding to, 21-17 groups, removing from, 21-17 guard timeslots, about, 21-13 guard timeslots, configuration of, 21-22 guard timeslots, options, 17-4 NIU serial number, configuration of, 21-24 NIU status, 22-1 NIU type, configuration of, 21-25 NIU user data VPI, configuration of, 19-4 NIU, adding, 21-20 NIU, removing, 21-20 polling timeslots, about, 21-13 polling timeslots, configuration of, 21-22 port name, configuration of, 21-25 port statistics, viewing, 23-2 port status, 22-1 power control default power level, configuration of, 21-20 redundancy, about, 21-10 Rx control, about, 21-10 Rx control, configuration of, 21-17 Rx upstream end, configuration of, 21-18 Rx upstream frequency end, about, 21-6 Rx upstream frequency start, about, 21-6 Rx upstream start, configuration of, 21-18 slot name, about, 21-11 slot name, configuration of, 21-26 slot status, 22-1 statistics supported, 23-1, 24-3 statistics, refreshing, 23-2, 24-8 status information, 22-1

tuner module status. 22-1 Tx control, about, 21-10 Tx control, configuration of, 21-17 Tx downstream end, configuration of, 21-18 Tx downstream frequency end, about, 21-7 Tx downstream frequency start, about, 21-7 Tx downstream start, configuration of, 21-18 UBR timeslots, about, 21-13 UBR timeslots, configuration of, 21-23 upstream channel frequency, about, 21-7 upstream channel frequency, configuration of, 21-24 upstream IF start frequency, about, 21-7 upstream IF start, configuration of, 21-18 T-ARIC card about. 2-2 activity threshold, options, 17-4 adjustment period, options, 17-4 alarms, 27-1 communication flow, illustration of, 1-3 connectors, 2-3 contention timeslots, options, 17-4 demodulator, options, 17-4 description of, 1-2 downstream channel frequency, options, 17-4 downstream channel width, options, 17-4 downstream channel, illustration of, 1-3 downstream IF start frequency, options, 17-4 group number, options, 17-4 LED activity, 25-2 loopbacks, 26-1 NIU id, options, 17-4 NIU serial number, options, 17-4 NIU type, options, 17-4 NIU user data VPI, options, 17-4 OAM loopback, 26-2 OAM reference point, 26-1 OAM reference point, options, 17-4 OAM segment loopback, 26-2 port name, options, 17-4 power control activity threshold, options, 17-4 power control adjustment period, options, 17-4 power control maximum power, options, 17-4

power control minimum power, options, 17-4 power control reference NIU, options, 17-4 power control step size, options, 17-4 reference point, options, 17-4 reserved timeslots, options, 17-4 RF downstream frequency end, options, 17-4 RF downstream frequency start, options, 17-4 Rx control, options, 17-4 Rx LO offset, options, 17-4 Rx RF upstream frequency end, options, 17-4 Rx RF upstream frequency start, options, 17-4 slot name, options, 17-4 timeslots reserved for NIUs, options, 17-4 timeslots reserved for guard slots, options, 17-4 timeslots reserved for NIU contention, options, 17-4 Tx control, options, 17-4 Tx interface power level, options, 17-4 Tx power level status, options, 17-4 Tx power level, options, 17-4 upstream channel frequency, options, 17-4 upstream channel, illustration of, 1-4 upstream IF start, options, 17-4 VCI, options, 17-4 VPI, options, 17-4 T-ARIC group description of, 1-2 T-ARIC port status, 22-1 T-ARIC slot status, 22-1 terminology, for wireless components, 1-2 timeslots reserved for Ethernet NIUs options, 17-4 timeslots reserved for guard slots options, 17-4 timeslots reserved for NIU contention options, 17-4 transceiver, see OTRU 2-14 transmitter redundancy see Tx control trunk conditioning configuration of, 18-7 trunk conditioning code configuration of, 18-8 trunk conditioning data pattern configuration of, 18-8 E1 NIU, options, 17-1

T1 NIU, options, 17-3 trunk conditioning signaling pattern E1 NIU, options, 17-1 T1 NIU, options, 17-3 trunk conditioning signalling pattern configuration of, 18-8 TS16 AIS alarm, 27-1 TS16 Multiframe alarm, 27-1 TS16 RAI alarm, 27-1 tuner module status. 22-1 Tx control about, 21-10 configuration of, 21-17 options, 17-4 Tx downstream end configuration of, 21-18 Tx downstream frequency end about, 21-7 Tx downstream frequency start about. 21-7 Tx downstream start configuration of, 21-18 Tx interface power level options, 17-4 Tx LO not locked alarm, 27-1 Tx power level options, 17-4 Tx power level status options, 17-4

U

UBR timeslots about. 21-13 configuration of, 21-23 Upconverter LO Not Locked alarm, 27-1 upstream channel frequency about, 21-7 configuration of, 21-24 options, 17-4 upstream frequency offset E1 NIU, options, 17-1 T1 NIU, options, 17-3 upstream IF start configuration of, 21-18 options, 17-4 upstream IF start frequency about. 21-7 upstream timeslot utilization contention timeslots, about, 21-12 guard timeslots, about, 21-13 polling timeslots, about, 21-13

UBR timeslots, about, 21-13 user data octets per cell configuration of, 19-3 E1 NIU, options, 17-1 T1 NIU, options, 17-3

V

valid cells received statistics, 23-2, 24-7, 24-8 VCI

options, 17-4

verifying the shipment, 13-1 VPI NIU user data VPI, configuration of, 19-4 options, 17-4

Ζ

zero suppression configuration of, 18-5 options, 17-3

Corporate Headquarters

Newbridge Networks Corporation 600 March Road, P.O. Box 13600 Kanata, Ontario, Canada K2K 2E6 Telephone: +1 613 591 3600 Facsimile: +1 613 591 3680

North and South America

Newbridge Networks Inc. 593 Herndon Parkway Herndon, Virginia U.S.A. 20170-5241 Telephone: 1 800 343 3600 +1 703 834 3600 Facsimile: +1 703 471 7080

Europe, Middle East and Africa

Newbridge Networks Limited Coldra Woods, Chepstow Road Newport, South Wales NP6 1JB U.K. Telephone: +44 (0) 1633 413600 Facsimile: +44 (0) 1633 413680

Asia Pacific

Newbridge Networks Sdn.Bhd. Unit 1201 Level 12, Uptown Two 2, Jalan SS 21/37 Damansara Uptown 47400 Petaling Jaya Selangor Darul Ehsan, Malaysia Telephone: +60 3 715 8400 Facsimile: +60 3 715 8415

Printed in Canada 90-4434-01

Newbridge and logo, and MainStreet are registered trademarks of Newbridge Networks Corporation.

All other trademarks are property of their respective holders.

Information subject to change without notice. © 1999 Newbridge Networks Corporation. All rights reserved.