

Product External Specifications For 802.11b/g/n 2x2 USB Module

(MTK RT5372)

**Customer : TPV** 

# Model P/N TPV : 317GAAWF506ALP Alpha : TPWUSN24V2A1G

Model Number: WUS-N24V2

Version : 1.3



# **Revision History**

| Rev. | Date       | Author       | Reason for Changes                    |
|------|------------|--------------|---------------------------------------|
| 1.0  | 2013/07/01 | Yu-Chun Yu   | Draft Release                         |
| 1.1  | 2013/08/06 | Doreen Chang | • Add packing and the photo of module |
| 1.2  | 2013/8/19  | Doreen Chang | Add model number in cover page        |
| 1.3  | 2014/08/01 | Doreen Chang | Add FCC ID information                |



# Contents

| OPERATION MANUAL                                             | 4  |
|--------------------------------------------------------------|----|
| 1.0 SCOPE                                                    | 5  |
| 1.1 Document                                                 | 5  |
| 1.2 Product Features                                         | 5  |
| 2.0 REQUIREMENTS                                             | 6  |
| 2.1 FUNCTIONAL BLOCK DIAGRAM                                 | 7  |
| 2.2 GENERAL REQUIREMENTS                                     | 7  |
| 2.2.1 IEEE 802.11b Section                                   | 7  |
| 2.2.2 IEEE 802.11g Section                                   | 8  |
| 2.2.3 IEEE 802.11n Section                                   | 8  |
| 2.2.4 General Section                                        | 9  |
| 2.3 Software Requirements                                    | 10 |
| 2.3.1 Information                                            | 10 |
| 2.3.2 Configuration                                          |    |
| 2.3.3 Security                                               |    |
| 2.4 MECHANICAL REQUIREMENTS                                  | 11 |
| 2.5 COMPATIBILITY REQUIREMENTS                               | 11 |
| 2.6 REQUIREMENTS OF RELIABILITY, MAINTAINABILITY AND QUALITY | 11 |
| 2.7 Environmental Requirements                               | 12 |
| 2.8 FCC ID                                                   | 12 |



#### i. Install Driver

1. install the test driver

NRT5x7x V1.0.8.0\RT5x7x V1.0.8.0\x86 Driver RT2870QA.inf 安装信息 8 KB 8 KB 8 KB

- 2. TX signal command
  - (1) select TX/RX site
  - (2) select channel,datarate,bandwidth and chain0/1
  - (3) for continue TX select conti, press start tx; for continue packets tx, set repeat to 0, press start tx

| Address DOAEEC671025                                                                              | Set                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hip Info<br>T2182 :: 2 T 2 R ExtLNA =                                                                    |
|---------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| nnel 1 2412-MHz 💌                                                                                 | Made OFDM                                   | • Rate CS=7; 54                                                                                                      | Mbps 💌 H                                                                      | andwith 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TxBandSel Low -                                                                                          |
|                                                                                                   |                                             | r.n   🔽 Aggregat 🔽 Temp.                                                                                             | Com E Try ALC                                                                 | □ 5TBC 🔽 2 4G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Side Band Onti                                                                                           |
| Frame Type [15] Data                                                                              | ▼ Set I                                     | CxD 1 Cal Temp                                                                                                       | store first in the state of the state of the                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Di Antenna diversity                                                                                     |
| X frame setting<br>FC Dur Address1                                                                | (6) Addre                                   | ss2 Address3 (6)                                                                                                     | Seq                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C Main C Aux                                                                                             |
| 0800 0000 FFFFFF                                                                                  |                                             | 001122334455                                                                                                         |                                                                               | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IQ Compensation                                                                                          |
| - Pavload                                                                                         | Pavload                                     | l Repeat                                                                                                             | SW CRC Check                                                                  | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gain Phase                                                                                               |
| 🖵 Debu;                                                                                           |                                             | AA                                                                                                                   | SW CRC                                                                        | 1058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tx0 FF : FF : Enable                                                                                     |
| T Inc                                                                                             |                                             |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tx1 FF + FF + Calibrate                                                                                  |
|                                                                                                   |                                             |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |
|                                                                                                   | abada TRG                                   | 200 TX P                                                                                                             | owerO TX P                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |
| epeat 1000 Los                                                                                    |                                             | (0                                                                                                                   | 1.5dB (0                                                                      | ower1<br>5dB Freq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Offset                                                                                                   |
| epeat 1000 Lo.<br>Start <u>IX</u> Transmitte                                                      |                                             | Conti 1 Carrier t                                                                                                    | 0.548 (C                                                                      | ower1<br>5dB Freq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Offset<br>0 salibrat. C DAC 0                                                                            |
|                                                                                                   |                                             | Conti 1 Carrier t                                                                                                    | 0.548 (C                                                                      | ower1<br>5dB<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Offset<br>·alibrat. C DAC 0                                                                              |
|                                                                                                   |                                             | Conti 1 Carrier t                                                                                                    | 0.548 (C                                                                      | ower1<br>5dB Freq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Offset<br>0 salibrat. C DAC 0                                                                            |
| Start <u>TX</u> Transmitte                                                                        |                                             | Conti 1 Carrier t                                                                                                    | 0.548 (C                                                                      | ower1<br>5dB Freq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Offset<br>0 salibrat. C DAC 0                                                                            |
| Start IX Transmitte                                                                               |                                             | Conti 1 Carrier ti<br>Carrier Suppress:                                                                              | 0.548 (C                                                                      | owerl<br>SdB<br>I2 3<br>librate<br>RSSI tune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Offset<br>0 salibrat. C DAC 0                                                                            |
| Start IX Transmitter                                                                              | a of                                        | Conti 1 Carrier ti<br>Carrier Suppress:                                                                              | 1.5dB (0<br>0D + Ca<br>librate Ca                                             | overi<br>.5dB<br>12<br>.12<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB<br>.5dB | Offset<br>alibret: C DAC 0<br>C DAC 1                                                                    |
| Start IX Transpitte<br>RX Error (Dropped)<br>FCS error                                            | a 0/0                                       | EX Okay<br>U2M DATA :                                                                                                | 0.5dB (C<br>00 + Ca<br>librate Ca<br>0 / 0                                    | overi<br>.5dB<br>12 - 3<br>librate<br>RSSI tune<br>RSSI = xx dE<br>RSSI2 = xx dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Offset<br>O :alibret: O DAC 0<br>O DAC 1<br>mOffse Calibrate                                             |
| Start IX Transmitte<br>RX Error (Dropped)<br>FCS error<br>RX overflow                             | a 0/0<br>0/0                                | RX Okay<br>U2M DATA :<br>other DATA :                                                                                | 0.5dB (0<br>00 ÷<br>librate Ca<br>0 / 0<br>0 / 0                              | overi<br>.5dB<br>12 - 3<br>librate<br>RSSI tune<br>RSSI = xx dE<br>RSSI2 = xx dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Offset<br>0 :alibret: DAC 0<br>DAC 1<br>m Offse ÷ Calibrate<br>m Offse ÷ Calibrate                       |
| Start IX Transmitte<br>RX Error (Dropped)<br>FCS error<br>RX overflow<br>PHY error :              | a 0/0<br>0/0<br>0/0<br>0/0                  | Contil 1 Carrier to<br>Carrier Suppress:<br>EX Okay<br>U2M DATA :<br>other DATA :<br>BEACON :                        | 0.5dB (0<br>0) +<br>librate Ca<br>0 / 0<br>0 / 0<br>0 / 0                     | overi<br>.5dB<br>12 - 3<br>librate<br>RSSI tune<br>RSSI = xx dE<br>RSSI2 = xx dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Offset<br>0 :alibret: DAC 0<br>DAC 1<br>m Offse ÷ Calibrate<br>m Offse ÷ Calibrate                       |
| Start IX Transmitte<br>RX Error (Dropped)<br>FCS error<br>RX overflow<br>PHY error :<br>False CCA | a 0 / 0<br>0 / 0<br>0 / 0<br>0 / 0<br>0 / 0 | Contil 1 Carrier to<br>Carrier Suppress: Ca<br>RX Okay<br>U2M DATA :<br>other DATA :<br>BEACON :<br>others (Mgmt/Cnt | 0.5dB (0<br>0) + (<br>11brate Ca<br>0 / 0<br>0 / 0<br>0 / 0<br>0 / 0<br>0 / 0 | overi<br>5dB<br>12 -<br>RSSI tune<br>RSSI = xx dI<br>RSSI2 = xx dI<br>RSSI2 = xx dF<br>RSSI0 = xx dF<br>Freq. Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Offset<br>O:alibrat:<br>DAC 0<br>DAC 1<br>mOffse ÷ Calibrate<br>mOffse ÷ Calibrate<br>moffse ÷ Calibrate |



- 3. RX signal command
  - (1) select TX/RX site
  - (2) select channel, datarate and chain 0/1

|                                                                                                    |                                         | 5                                                                                                                 |                                                                                                 |                                                                                                  | Chip Info                                                                                                                          |
|----------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Address DOAEEC671025                                                                               | Set                                     |                                                                                                                   |                                                                                                 |                                                                                                  | RT2182 :: 2 T 2 R ExtLNA =                                                                                                         |
| unel 1 2412-MHz                                                                                    | Node OFDM                               | Rate MCS=7; 54                                                                                                    | Mbps V B                                                                                        | andwidth 20                                                                                      | ▼ TxBandSel Lower ▼                                                                                                                |
|                                                                                                    |                                         |                                                                                                                   |                                                                                                 |                                                                                                  |                                                                                                                                    |
| rame Type [15] Data                                                                                | 💌 Set I                                 |                                                                                                                   |                                                                                                 |                                                                                                  |                                                                                                                                    |
| frame setting                                                                                      |                                         | Cal Temp                                                                                                          | o. Cal TSSI                                                                                     | J D SGI J A                                                                                      | -MPDU Antenna diversity                                                                                                            |
| C Dur Addressi (6                                                                                  |                                         |                                                                                                                   | Seq                                                                                             |                                                                                                  | C Main C Aux                                                                                                                       |
| 0800 0000 FFFFFFFFF                                                                                | FF DOAEE                                | 001122334455                                                                                                      | 0000                                                                                            |                                                                                                  | - IQ Compensation                                                                                                                  |
| Payload                                                                                            | Payload                                 |                                                                                                                   | SW CRC Check                                                                                    | Total                                                                                            | Gain Phase<br>Tx0 FF + FF + Enable                                                                                                 |
| Debug I:                                                                                           | af h                                    | AA                                                                                                                | SW CRC                                                                                          | 1058                                                                                             | Tx1 FF + FF + Calibrate                                                                                                            |
|                                                                                                    |                                         |                                                                                                                   |                                                                                                 |                                                                                                  | 101 11 - 11 -                                                                                                                      |
|                                                                                                    |                                         |                                                                                                                   |                                                                                                 |                                                                                                  |                                                                                                                                    |
| epeat 1000 [ Loopb                                                                                 | ack IPG                                 | 200 TX Pc                                                                                                         |                                                                                                 | ower1 Fr                                                                                         | req. Offset                                                                                                                        |
| epeat 1000 🔽 Loopb<br>Start <u>T</u> X   Transmitted                                               | 0 1                                     | Conti. 1 Carrier to                                                                                               | .548 (0                                                                                         | .5dB Fr                                                                                          | req. Offset                                                                                                                        |
|                                                                                                    | 0 1                                     | Conti. 1 Carrier t.                                                                                               | .548 (0<br>00 🛨 🔽                                                                               |                                                                                                  | req. Offset                                                                                                                        |
|                                                                                                    | 0 1                                     | Conti. 1 Carrier t.                                                                                               | .548 (0<br>00 🛨 🔽                                                                               | .54B                                                                                             | req. Offset<br>30 alibrat C DAC 0                                                                                                  |
| Start IX   Transmitted                                                                             | 0 1                                     | Conti. 1 Carrier to<br>Carrier Suppress:                                                                          | .548 (0<br>00 🛨 🔽                                                                               | 12 - Ilibrate                                                                                    | req. Offset<br>30 alibrat C DAC 0                                                                                                  |
| Start IX Transmitted                                                                               | • -                                     | Conti. 1 Carrier to<br>Carrier Suppress:                                                                          | .5dB (0<br>OD : Ca<br>Librate Ca                                                                | .5dB Fr<br>12 + F<br>librate -                                                                   | req. Offset<br>30 :alibrat<br>> CDAC 0<br>CDAC 1                                                                                   |
| Start IX Transmitted<br>RX Error (Dropped)<br>FCS error                                            | ° F                                     | Conti. 1 Carrier to Carrier Carrier Suppress: Cal                                                                 | 5dB (0<br>00 ÷<br>Librate Ca<br>0 / 0                                                           | SdB Fr<br>12                                                                                     | req. Offset<br>30 :alibrat<br>A dBm Offse Calibrate                                                                                |
| Start IX Transmitted<br>RX Error (Dropped)<br>FCS error<br>RX overflow                             | 0 F<br>0/0                              | Conti. 1 Carrier to Carrier Carrier Suppress: Call                                                                | .5dB (0<br>OD : Ca<br>Librate Ca                                                                | SdB Fr<br>12                                                                                     | req. Offset<br>30<br>(alibrat)<br>* dBmOffse<br>* dBmOffse<br>* Calibrate<br>Calibrate                                             |
| Start IX Transmitted<br>RX Error (Dropped)<br>FCS error                                            | ° F                                     | Conti. 1 Carrier to Carrier Carrier Suppress: Cal                                                                 | 5dB (0<br>00 ÷<br>Librate Ca<br>0 / 0                                                           | SdB Fr<br>12 - I<br>librate - SSSI tune<br>RSSI tune<br>RSSI1 = x<br>RSSI2 = x                   | req. Offset<br>30 :alibrat<br>A dBm Offse Calibrate                                                                                |
| Start IX Transmitted<br>RX Error (Dropped)<br>FCS error<br>RX overflow                             | 0 F<br>0/0                              | Conti. 1 Carrier to Carrier Carrier Suppress: Cal                                                                 | .548 (0<br>0) + Ca<br>Librate Ca<br>0 / 0<br>0 / 0                                              | SdB fr<br>12 12 12<br>Librate -<br>RSSI tune<br>RSSI = x<br>RSSI2 = x<br>RSSI0 = x               | req. Offset<br>30 :alibrat<br>* dBmOffse - Calibrate<br>x dBmOffse - Calibrate<br>x dBmOffse - Calibrate<br>x dBmOffse - Calibrate |
| Start IX Transmitted<br>RX Error (Dropped)<br>FCS error<br>RX overflow<br>FHY error :              | 0 F                                     | Conti. 1 Carrier to<br>Carrier Suppress:<br>EX Okay<br>U2M DATA :<br>other DATA :<br>BEACON :                     | .548 (0<br>0) +<br>Librate Ca<br>0 / 0<br>0 / 0<br>0 / 0                                        | SdB Fr<br>12 - I<br>librate - SSSI tune<br>RSSI tune<br>RSSI1 = x<br>RSSI2 = x                   | req. Offset<br>30 :alibrat<br>* dBmOffse - Calibrate<br>x dBmOffse - Calibrate<br>x dBmOffse - Calibrate<br>x dBmOffse - Calibrate |
| Start IX Transmitted<br>EX Error (Dropped)<br>FCS error<br>EX overflow<br>FHY error :<br>False CCA | 0 F<br>0 / 0<br>0 / 0<br>0 / 0<br>0 / 0 | Conti. 1 Carrier to<br>Carrier Suppress:<br>EX Okay<br>U2M DATA :<br>other DATA :<br>BEACON :<br>others (Mgmt/Cnt | .5dB (0<br>0) + (0<br>librate Ca<br>0 / 0<br>0 / 0<br>0 / 0<br>0 / 0<br>0 / 0<br>0 / 0<br>0 / 0 | SdB fr<br>12 -<br>librate -<br>RSSI tune<br>RSSI1 = x<br>RSSI2 = x<br>RSSI0 = x<br>Freq. Deviati | req. Offset<br>30 :alibrat<br>* dBmOffse - Calibrate<br>x dBmOffse - Calibrate<br>x dBmOffse - Calibrate<br>x dBmOffse - Calibrate |

# 1.1 Scope

## **1.2 Document**

This document is to specify the product requirements for **802.11n USB Module with onboard metal antenna**. This USB module is based on MTK Ralink single chip that complied with 802.11n standard from 2.4~2.5GHz, and it can be used to provide up to 11Mbps for IEEE 802.11b, 54Mbps for IEEE 802.11g and 300Mbps for 802.11n to connect your wireless LAN.

With seamless roaming, fully interoperability and advanced security with WEP standard, **802.11n USB Module** offers absolute interoperability with different vendors' 802.11b, 802.11g, and 802.11n Access Points through the wireless LAN.

## **1.3 Product Features**

- Compatible with IEEE 802.11g standard to provide wireless 54Mbps data rate
- Compatible with IEEE 802.11b standard to provide wireless 11Mbps data rate
- Compatible with IEEE 802.11n standard to provide wireless 300Mbps data rate



- Supports infrastructure networks via Access Point and ad-hoc network via peer-to-peer communication
- Supports WEP, 802.1x, WPA and WPA2 enhanced security
- Friendly user configuration and diagnostic utilities
- Drivers support Windows XP, Vista, Win7.
- 6-pin pitch connector USB interface
- RoHS compliant
- Antenna type : Two onboard metal Antenna

## 2.0 Requirements

The following sections identify the detailed requirements of 802.11b/g/n embedded USB Module



## **2.2 General Requirements**

## 2.2.1 IEEE 802.11b Section

| #       | Feature              | Detailed Description                                                     |
|---------|----------------------|--------------------------------------------------------------------------|
| 2.2.1.1 | Standard             | • IEEE 802.11b                                                           |
| 2.2.1.2 | Radio and            | • DQPSK, DBPSK, DSSS, and CCK                                            |
|         | Modulation           |                                                                          |
|         | Schemes              |                                                                          |
| 2.2.1.3 | Operating            | • 2400 ~ 2483.5MHz ISM band                                              |
|         | Frequency            |                                                                          |
| 2.2.1.4 | Channel Numbers      | • 11 channels for United States                                          |
|         |                      | 13 channels for Europe Countries and other regions                       |
| 2.2.1.5 | Data Rate            | • 11, 5.5, 2, and 1Mbps                                                  |
| 2.2.1.6 | Media Access         | CSMA/CA with ACK                                                         |
|         | Protocol             |                                                                          |
| 2.2.1.7 | Transmitter Output   | • Typical RF Output Power at each RF chain, Data Rate and at room        |
|         | Power                | Temp. 25degree C                                                         |
|         |                      | • 16 dBm(±2dB) at 1,2,5.5,11Mbps                                         |
| 2.2.1.8 | Receiver Sensitivity | • Typical Sensitivity at each RF chain. Frame (1000-byte PDUs) Error     |
|         |                      | Rate = 8%                                                                |
|         |                      | • -76 dBm at 1Mbps                                                       |
|         |                      | • -76 dBm at 2Mbps                                                       |
|         |                      | • -76 dBm at 5.5Mbps                                                     |
|         |                      | • -76 dBm at 11Mbps                                                      |
| 2.2.1.9 | Receiver Maximum     | The Receiver shall provide a maximum PER of 8 % at a PSDU length of      |
|         | Input Level          | 1000 bytes for a maximum input level of -10 dBm measured at each antenna |
|         |                      | for any baseband modulation                                              |



| #       | Feature                            | Detailed Description                                                                                                                                                                                                                                                                                                     |
|---------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.2.2.1 | Standard                           | • IEEE 802.11g                                                                                                                                                                                                                                                                                                           |
| 2.2.2.2 | Radio and<br>Modulation<br>Schemes | • BPSK, QPSK, 16QAM, 64QAM, and OFDM                                                                                                                                                                                                                                                                                     |
| 2.2.2.3 | Operating<br>Frequency             | • 2400 ~ 2483.5MHz ISM band                                                                                                                                                                                                                                                                                              |
| 2.2.2.4 | Channel Numbers                    | <ul> <li>11 channels for United States</li> <li>13 channels for Europe Countries and other regions</li> </ul>                                                                                                                                                                                                            |
| 2.2.2.5 | Data Rate                          | • 6,9,12,18,24,36,48,54Mbps                                                                                                                                                                                                                                                                                              |
| 2.2.2.6 | Media Access<br>Protocol           | CSMA/CA with ACK                                                                                                                                                                                                                                                                                                         |
| 2.2.2.7 | Transmitter Output<br>Power        | <ul> <li>Typical RF Output Power at each RF chain, Data Rate and at room<br/>Temp. 25degree C</li> <li>16<sup>±</sup> 2dBm at 6,9 Mbps</li> <li>15<sup>±</sup> 2dBm at 12,18 Mbps</li> <li>15<sup>±</sup> 2dBm at 24,36 Mbps</li> <li>14<sup>±</sup> 2dBm at 48,54 Mbps</li> </ul>                                       |
| 2.2.2.8 | Receiver Sensitivity               | <ul> <li>Typical Sensitivity at each RF chain. Frame (1000-byte PDUs) Error<br/>Rate = 8%</li> <li>-82 dBm at 6Mbps</li> <li>-81 dBm at 9Mbps</li> <li>-79 dBm at 12Mbps</li> <li>-77 dBm at 18Mbps</li> <li>-74 dBm at 24Mbps</li> <li>-70dBm at 36Mbps</li> <li>-66dBm at 48Mbps</li> <li>-65 dBm at 54Mbps</li> </ul> |
| 2.2.2.9 | Receiver Maximum<br>Input Level    | The Receiver shall provide a maximum PER of 10 % at a PSDU length of 1000 bytes for a maximum input level of -20 dBm measured at each antenna for any baseband modulation                                                                                                                                                |

## 2.2.3 IEEE 802.11n Section

| #       | Feature                      | Detaile | Detailed Description                 |       |          |       |  |
|---------|------------------------------|---------|--------------------------------------|-------|----------|-------|--|
| 2.2.3.1 | Standard                     | • I     | EEE 802.11n                          |       |          |       |  |
| 2.2.3.2 | Radio and<br>Modulation Type | • E     | • BPSK, QPSK, 16QAM, 64QAM with OFDM |       |          |       |  |
| 2.2.3.3 | Operating<br>Frequency       | • 2     | • 2400 ~ 2483.5MHz ISM band          |       |          |       |  |
| 2.2.3.4 | Data Rate                    |         |                                      |       |          |       |  |
|         |                              |         | GI=800ns                             |       | GI=400ns |       |  |
|         |                              | MCS     | 20MHz                                | 40MHz | 20MHz    | 40MHz |  |
|         |                              | 0       | 6.5                                  | 13.5  | 7.2      | 15    |  |
|         |                              | 1       | 13                                   | 27    | 14.4     | 30    |  |
|         |                              | 2       | 19.5                                 | 40.5  | 21.7     | 45    |  |
|         |                              | 3       | 26                                   | 54    | 28.9     | 60    |  |
|         |                              | 4       | 39                                   | 81    | 43.3     | 90    |  |
|         |                              | 5       | 52                                   | 108   | 57.8     | 120   |  |
|         |                              | 6       | 58.5                                 | 121.5 | 65.0     | 135   |  |
|         |                              | 7       | 65                                   | 135   | 72.2     | 150   |  |



| #       | Feature                                             | Detailed Description                                                                        |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                      |                   |                                   |  |
|---------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|--|
|         |                                                     | 8                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                      | 27                                                                                                                   | 14.444            | 30                                |  |
|         |                                                     | 9                                                                                           | 26                                                                                                                                                                                                                                                                                                                                                      | 54                                                                                                                   | 28.889            | 60                                |  |
|         |                                                     | 10                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                      | 81                                                                                                                   | 43.333            | 90                                |  |
|         |                                                     | 11                                                                                          | 52                                                                                                                                                                                                                                                                                                                                                      | 108                                                                                                                  | 57.778            | 120                               |  |
|         |                                                     | 12                                                                                          | 78                                                                                                                                                                                                                                                                                                                                                      | 162                                                                                                                  | 86.667            | 180                               |  |
|         |                                                     | 13                                                                                          | 104                                                                                                                                                                                                                                                                                                                                                     | 216                                                                                                                  | 115.556           | 240                               |  |
|         |                                                     | 14                                                                                          | 117                                                                                                                                                                                                                                                                                                                                                     | 243                                                                                                                  | 130.000           | 170                               |  |
|         |                                                     | 15                                                                                          | 130                                                                                                                                                                                                                                                                                                                                                     | 270                                                                                                                  | 144.444           | 300                               |  |
| 2.2.3.5 | Media Access<br>Protocol                            | • (                                                                                         | CSMA/CA with A                                                                                                                                                                                                                                                                                                                                          | СК                                                                                                                   |                   |                                   |  |
| 2.2.3.6 | Transmitter Output<br>Power at Antenna<br>Connector | 1                                                                                           | Typical RF Output<br>Temp. 25degree C                                                                                                                                                                                                                                                                                                                   |                                                                                                                      | RF chain, Data Ra | te and at room                    |  |
|         |                                                     |                                                                                             | 2.4GHz Band/HT-2                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                   |                                   |  |
|         |                                                     |                                                                                             | $3\pm 2$ dBm at MCS                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |                   |                                   |  |
|         |                                                     | • 1                                                                                         | 3±2dBm at MCS                                                                                                                                                                                                                                                                                                                                           | 2/3                                                                                                                  |                   |                                   |  |
|         |                                                     | • 1                                                                                         | 3±2dBm at MCS                                                                                                                                                                                                                                                                                                                                           | 4/5                                                                                                                  |                   |                                   |  |
|         |                                                     |                                                                                             | 3±2dBm at MCS                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |                   |                                   |  |
|         |                                                     |                                                                                             | 2.4GHz Band/HT-4                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                   |                                   |  |
|         |                                                     |                                                                                             | 3±2dBm at MCS                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |                   |                                   |  |
|         |                                                     | • 1                                                                                         | 3±2dBm at MCS                                                                                                                                                                                                                                                                                                                                           | 2/3                                                                                                                  |                   |                                   |  |
|         |                                                     | • 1                                                                                         | 3±2dBm at MCS                                                                                                                                                                                                                                                                                                                                           | 4/5                                                                                                                  |                   |                                   |  |
|         |                                                     | • 1                                                                                         | 3± 2dBm at MCS                                                                                                                                                                                                                                                                                                                                          | 6/7                                                                                                                  |                   |                                   |  |
| 2.2.3.7 | Receiver Sensitivity<br>at Antenna<br>Connector     | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | Fypical Sensitivity<br>Error Rate <10% a<br>HT-20<br>80 dBm at MCS 0<br>77 dBm at MCS 1<br>75 dBm at MCS 2<br>72 dBm at MCS 3<br>68 dBm at MCS 4<br>64 dBm at MCS 5<br>63 dBm at MCS 6<br>62 dBm at MCS 7<br>HT-40<br>77 dBm at MCS 0<br>74 dBm at MCS 1<br>72 dBm at MCS 3<br>65 dBm at MCS 3<br>65 dBm at MCS 5<br>60 dBm at MCS 5<br>60 dBm at MCS 7 | nd at room Terr<br>/8<br>/9<br>/10<br>/11<br>/12<br>/13<br>/14<br>/15<br>/8<br>/9<br>/10<br>/11<br>/12<br>/13<br>/14 |                   | ctets PSDUs).                     |  |
| 2.2.3.8 | Receiver Maximum<br>Input Level                     | The Re<br>1000 b                                                                            | eceiver shall provid                                                                                                                                                                                                                                                                                                                                    | le a maximum P<br>m input level of                                                                                   |                   | PSDU length of ed at each antenna |  |

# 2.2.4 eneral Section

| #       | Feature      | Detailed Description  |
|---------|--------------|-----------------------|
| 2.2.4.1 | Antenna Type | Onboard metal Antenna |



| 2.2.4.2 | Operating Voltage | • | 3.3VDC +/-10%                                         |
|---------|-------------------|---|-------------------------------------------------------|
| 2.2.4.3 | Current           | • | 450mA at continuous transmit mode @HT40 MCS0          |
|         | Consumption       |   | 315mA at receive mode w/o receiving packet @HT40 MCS0 |
| 2.2.4.4 | Interface         | • | 6-pin pinch connector, wafer                          |

# **2.3 Software Requirements**

The Configuration Software supports Microsoft Windows XP, Vista, Win7. This configuration software includes the following functions:

#### • Information

Information allows you to monitor network status.

## Configuration

Configuration allows you to configure parameters for wireless networking.

#### • Security

Supports enhanced security WEP, WPA and WPA2.

#### 2.3.1 nformation

| #       | Feature                     | Detailed Description                                                                                                                                                                 |
|---------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.3.1.1 | General Information         | • General Information shows the name of Wireless Adapter, Adapter MAC Address, Regulatory Domain, Driver Version, and Utility Version.                                               |
| 2.3.1.2 | Current Link<br>Information | <ul> <li>Current Link Information shows the Current Setting ESSID, Channel<br/>Number, Associated BSSID, Network Type, Security Status, Link<br/>Status, Signal Strength.</li> </ul> |
| 2.3.1.3 | Site survey                 | • To search the neighboring access points and display the information of all access points.                                                                                          |

#### 2.3.2 Configuration

| #       | Feature  | Detailed Description                                                  |
|---------|----------|-----------------------------------------------------------------------|
| 2.3.2.1 | ESS ID   | • Input an SSID number if the roaming feature is enabled              |
|         |          | Supports for ASCII printable characters.                              |
| 2.3.2.2 | MAC      | The MAC address of the wireless device                                |
| 2.3.2.3 | Signal   | The link quality of the wireless connection                           |
| 2.3.2.4 | Security | • If there is a "lock" icon, it means the wireless network is secure. |
|         |          | Must know the encryption key/security settings to connect.            |
| 2.3.2.5 | Channel  | The wireless network                                                  |

#### 2.3.3 curity

| #       | Feature        | Detailed Description                                            |
|---------|----------------|-----------------------------------------------------------------|
| 2.3.3.1 | Encryption     | RC4 encryption algorithm                                        |
|         |                | Support 64/128 bit WEP encryption                               |
|         |                | Support open system and shared key authentication               |
| 2.3.3.2 | WEP Management | • Four WEP keys can be selected                                 |
|         | _              | • STA with WEP off will never associate any AP with WEP enabled |
|         |                | WEP Key Format: Option for Hex format                           |



| #       | Feature  | Detailed Description                  |
|---------|----------|---------------------------------------|
| 2.3.3.4 | WPA/WPA2 | Support WPA/WPA2-PSK and WPA/WPA2-EAP |
|         |          | Support Cipher Mode AES and TKIP      |

# **2.4 Mechanical Requirements**

| #     | Feature | Detailed Description                               |
|-------|---------|----------------------------------------------------|
| 2.4.1 | Length  | • $100 \text{mm} \pm 0.005 \text{mm} (\text{PCB})$ |
| 2.4.2 | Width   | • 17mm ±0.005mm (PCB)                              |



# **2.5 Compatibility Requirements**

This device passes the following compatibility requirements.

| #     | Feature                             | Detailed Description                             |
|-------|-------------------------------------|--------------------------------------------------|
| 2.5.1 | Wi-Fi                               | Meet Wi-Fi certification for IEEE 802.11 product |
| 2.5.2 | Physical Layer and<br>Functionality | Meet ALPHA Engineering Test Plan and Test Report |

# 2.6 Requirements of Reliability, Maintainability and Quality

| #     | Feature         | Detailed Description                                                  |
|-------|-----------------|-----------------------------------------------------------------------|
| 2.6.1 | MTBF            | • Mean Time Between Failure > 30,000 hours                            |
| 2.6.2 | Maintainability | There is no scheduled preventive maintenance required                 |
| 2.6.3 | Quality         | • The product quality is followed-up by ALPHA factory quality control |
|       |                 | system                                                                |



| #     | Feature                                    | Detailed Description                                                                                                                                                                                  |
|-------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.7.1 | Operating<br>Temperature<br>Conditions     | • The product is capable of continuous reliable operation when operating in ambient temperature of 0 $^{\circ}$ C to +50 $^{\circ}$ C.                                                                |
| 2.7.2 | Non-Operating<br>Temperature<br>Conditions | • Neither subassemblies is damaged nor the operational performance is degraded when restored to the operating temperature after exposing to storage temperature in the range of $-20$ °C to $+75$ °C. |
| 2.7.3 | Operating<br>Humidity<br>conditions        | • The product is capable of continuous reliable operation when subjected to relative humidity in the range of 10% and 90% non-condensing.                                                             |
| 2.7.4 | Non-Operating<br>Humidity<br>Conditions    | • The product is not damaged nor the performance is degraded after exposure to relative humidity ranging from 5% to 95% non-condensing                                                                |

# 2.8 FCC ID

# FCC ID: RRK-WUSN24V2

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

## **Federal Communication Commission Interference Statement**

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

## **Radiation Exposure Statement:**

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

## This device is intended only for OEM integrators under the following conditions:

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further <u>transmitter</u> test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed

**IMPORTANT NOTE:** In the event that these conditions <u>can not be met</u> (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID <u>can</u> <u>not</u> be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

## **End Product Labeling**

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains FCC ID: RRK-WUSN24V2. The grantee's FCC ID can be used only when all FCC compliance requirements are met.

## Manual Information To the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.