

BEA AquaLogic Commerce Services

Deployment Guide

Version 5.1.1
March 2007

ii BEA AquaLogic Commerce Services Deployment Guide

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is permitted
unless you have entered into a license agreement with BEA authorizing such use. This document is protected by copyright and may
not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form, in whole or in part,
without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA Systems.
THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT
LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA
SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE DOCUMENT IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR
OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of
BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic
Interaction, BEA AquaLogic Interaction Analytics, BEA AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content
Services, BEA AquaLogic Interaction Data Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction
Process, BEA AquaLogic Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic
Service Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for WebLogic,
BEA Manager, BEA MessageQ, BEA Salt, BEA WebLogic Commerce Server, BEA AquaLogic Commerce Services, BEA
WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise
Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic
JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server, BEA WebLogic Network Gatekeeper, BEA WebLogic
Personalization Server, BEA WebLogic Personal Messaging API, BEA WebLogic Platform, BEA WebLogic Portlets for Groupware
Integration, BEA WebLogic Real Time, BEA WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA
WebLogic RFID Enterprise Server, BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup
Edition, BEA Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated Knowledge
Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA Self Assessment are service
marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

BEA AquaLogic Commerce Services Deployment Guide iii

Contents

Overview .. 1

Setting up AquaLogic Commerce Services.. 1

Install AquaLogic Commerce Services ...1

Create a New Domain ...1

Set Up AquaLogic Commerce Services..3

Open the WebLogic Administration Console ..4

Set Up a JNDI Data Source ..4

Configure SSL (Optional) ..9

Authorize.net payment processing..10

WebLogic Authentication Plug-in ..11

Copy the plug-in jar file ...11

Copy the JAAS login configuration file..11

Set the location of the login configuration file ...11

Change the user id generation mode..11

Change user maintenance mode..12

Change the customer mapping ...12

Single sign-on cookie ..12

WebLogic Portal Unified User Profile Plug-in..13

Assumptions..13

Extending Your Domain to Add WebLogic Portal ...13

Installing the plug-in ..15

Setting up the Database ... 16

Microsoft SQL Server 2005 ...16

Connect to Microsoft SQL Server ...16

Create the ALCS Database...16

Populate the Database..17

MySQL 4..18

Oracle 10g...19

Creating the alcs Database...20

Creating and Populating the alcs Schema..20

Running SnapItUp Import Jobs ...20

JNDI and JDBC Configuration ... 21

JNDI Configuration ..21

iv BEA AquaLogic Commerce Services Deployment Guide

JDBC Configuration...21

MySQL ..22

Oracle..22

Microsoft SQL Server..22

Configuring AquaLogic Commerce Services... 22

Storefront...22

acegi.xml ...23

guided-navigation.xml ...24

commerce-config.xml ..28

ep-treecache.xml...34

hibernate-config.xml ..35

quartz.xml..36

treecache.xml ..39

velocity.xml..40

util-config.xml ..40

Product Cache...41

Commerce Manager (CM)...45

commerce-config.xml ..45

hibernate-config.xml ..46

quartz.xml ...46

velocity.xml..47

util-config.xml ..47

Connect ...47

One Page Checkout ..48

PowerReviews Product Reviews (optional) ..48

Configuring for Optimal Performance..48

General..48

Load Balancing and Clustering (optional).. 51

General Clustering Architecture ..51

Cluster Components ...51

Clustering Your Application Server ...51

WebLogic 9.2 Clustering ...51

Load Balancing..55

Configuring Apache with WebLogic Apache Http Server Plug-in ...56

File Synchronization with rsync...57

Download rsync...58

Set Up the rsync Server ..58

BEA AquaLogic Commerce Services Deployment Guide v

Setup the rsync Client on the Storefront Servers..59

References ..59

Install AquaLogic Commerce Services

BEA AquaLogic Commerce Services Deployment Guide 1

Overview
The Getting Started Guide describes how to quickly setup a sample deployment of AquaLogic
Commerce Services with a preconfigured demo store. This deployment guide will expand on that
and explain how to setup your actual store and configure it to meet your needs.

 Path Placeholders

• <BEA_HOME> refers to your root path for BEA applications (for
example, C:\bea)

• <WL_HOME> refers to the path where BEA WebLogic Server 9.2 is
installed (for example, C:\bea\weblogic92)

• <ALCS_APP_HOME> refers to the root path for AquaLogic Commerce
Services applications (for example,
C:\bea\user_projects\applications\alcs\commerceApp)

Setting up AquaLogic Commerce Services

This section explains how to install and setup AquaLogic Commerce Services on BEA WebLogic
Server 9.2 on Windows XP.

 Caution

• If you are upgrading AquaLogic Commerce Services to a newer version,
follow the instructions in the Upgrading AquaLogic Commerce Services
section of the Getting Started Guide to avoid losing all product
configurations.

• The date and time of all application servers should be synchronized
with the date and time of your database server to prevent confusing
creation/last-modified timestamps from being created in the database.
This issue arises from the fact that some code uses the database server
date/time and other code uses the application server date/time.

Install AquaLogic Commerce Services
Run the AquaLogic Commerce Services automated installer to install AquaLogic Commerce
Services in the existing BEA WebLogic Server location (see the Getting Started Guide for details
on what the installer does).

Create a New Domain

1. Click Start > All Programs > BEA Products > Tools > Configuration Wizard.

 For Linux, you can run <WL_HOME>/common/bin/config.sh.

Setting up AquaLogic Commerce Services

2 BEA AquaLogic Commerce Services Deployment Guide

You must have an X server configured to use this GUI configuration tool.

2. Select Create A new WebLogic domain in the window that appears. Click Next.

3. Select Base this domain on an existing template.

4. Click the Browse button and select
“<WL_HOME>\common\templates\applications\commerce_services.jar” as the template to
use. Click OK to select this file.

5. Click Next.

6. Enter a User name and User password. For this example, we will use “weblogic” for both the
User name and User password. Write down this information, since you will need it later.
Click Next.

7. Select the BEA-supplied “Sun SDK 1.5.0” or point the application to the Java Development
Kit of your choice. Click Next.

8. Select Yes if you would like to configure your admin server, managed servers and JDBC
settings with the wizard, otherwise select No. If you select No, the default demo settings will
be used and these can be configured manually at a later time. Click Next.

9. If you selected Yes in step 8, enter the correct configuration for your environment (ensuring
that “jdbc/epjndi” is used for the JNDI name field) and continue through the wizard until you
get to the Create WebLogic Domain page (see the JNDI and JDBC Configuration section for
more details on JNDI/JDBC settings).

10. Enter the name and location for the domain and click Create. For this example, we will use
“alcs” as the name. The locations will be “<BEA_HOME>\user_projects\domains” and
“<BEA_HOME>\user_projects\applications”.

11. If you selected No in step 8, then you will need to click OK when you get the following
warning.

This warning appears, because the demo database has no password.

12. The wizard will then create the new domain, creating an “alcs” directory under both the
domains and applications directories.

13. When the wizard finishes, click Done to close the final window.

Set Up AquaLogic Commerce Services

BEA AquaLogic Commerce Services Deployment Guide 3

Set Up AquaLogic Commerce Services
1. To correctly set up a JDBC connection, the JDBC driver must be on WebLogic Server's

CLASSPATH. To do this, copy the JDBC driver file for your database into the
<BEA_HOME>\user_projects\domains\alcs\lib directory (see the JNDI and JDBC
Configuration section for more information).

2. In WEB-INF\conf\spring\dataaccess\hibernate\hibernate-config.xml (for each of the
commerceServices, commerceServicesConnect, and commerceServicesManager directories
found in <ALCS_APP_HOME>), find the tag <prop key="hibernate.dialect"> and change the
value to the database dialect type for the database that your application is currently
connecting to. For example, if you're using an Oracle database, the block should look like the
following.

<prop key="hibernate.dialect">org.hibernate.dialect.OracleDialect
</prop>

Below are the values for the different databases:

o org.hibernate.dialect.MySQLDialect

o org.hibernate.dialect.OracleDialect

o org.hibernate.dialect.SQLServerDialect

o org.hibernate.dialect.DerbyDialect

3. In WEB-INF\conf\spring\security\acegi.xml (for each of the commerceServices,
commerceServicesConnect, and commerceServicesManager directories found in
<ALCS_APP_HOME>), find the “portMapper” bean declaration and under the
“portMappings” property change the entry key to 7011 (or whatever your HTTP port is) and
the value to 7012 (or whatever your HTTPS port is). The whole block should now look
similar to the following.

<bean id="portMapper" class="org.acegisecurity.util.PortMapperImpl">

 <property name="portMappings">

 <map>

 <entry key="7011"><value>7012</value></entry>

 </map>

 </property>

</bean>

4. You may get compatibility exceptions on *.QName when starting WebLogic Server with
some releases of JDK 1.5. To correct this problem, you will need to edit
<BEA_HOME>\user_projects\domains\alcs\bin\setDomainEnv.cmd and add the following
line.

set JAVA_OPTIONS="%JAVA_OPTIONS%

 -Dcom.sun.xml.namespace.QName.useCompatibleSerialVersionUID=1.0"

5. If you get some JDK out of memory errors, then you may also need to change the maximum
heap size to 512MB (“-Xmx512m”) or higher and the maximum perm space size to 128MB
(“-XX:MaxPermSize=128m”) or higher for your platform. These settings can be changed in
<BEA_HOME>\user_projects\domains\alcs\bin\setDomainEnv.cmd.

Setting up AquaLogic Commerce Services

4 BEA AquaLogic Commerce Services Deployment Guide

Open the WebLogic Administration Console
The following sections will require the use of the WebLogic Administration Console. Perform the
following steps to open and log onto the Administration Console.

1. Start the WebLogic Server by double-clicking
<BEA_HOME>\user_projects\domains\alcs\startWebLogic.cmd

2. Log on to the Administration Console
a. Open a browser window.
b. Browse to http://localhost:7011/console (where 7011 is the port that you setup for the
admin server).
c. Type the username and password entered during step 4 of the Create a New Domain
section. For our example, it will be “weblogic” for both.

Set Up a JNDI Data Source
This section explains how to manually setup a JNDI/JDBC data source in the admin server.

Perform the following steps on the Administration Console to configure your JDBC data source if
you have not already set it up in with the configuration wizard.

1. On the left hand side, click the 'Lock and Edit' button under the Change Center. This will
allow you to make changes to your domain settings.

2. Under the alcs domain of the Domain Structure Tree, select Services > JDBC > Data
Sources.

Set Up a JNDI Data Source

BEA AquaLogic Commerce Services Deployment Guide 5

3. On the right hand pane, click the New button under Data Sources.

4. On the next page titled JDBC Data Source Properties, enter the following information:

Setting up AquaLogic Commerce Services

6 BEA AquaLogic Commerce Services Deployment Guide

o Name: commercejndi (any descriptive name may be used here)

o JNDI Name: jdbc/epjndi

o Database Type: Select your database type

o Database Driver: Select the name of the database driver that was copied to the
domain lib directory in the Set Up AquaLogic Commerce Services section (See
the JNDI and JDBC Configuration section for the correct Driver name).

Click Next.

5. Click Next on the Transaction Options screen.

6. Enter your database properties on the Connection Properties screen as seen below and then
click Next.

Set Up a JNDI Data Source

BEA AquaLogic Commerce Services Deployment Guide 7

7. In the Test Database Connection screen, click on the Test Configuration button.

If your connection information is correct, you should see a success message. Otherwise, fix
any errors reported.

Setting up AquaLogic Commerce Services

8 BEA AquaLogic Commerce Services Deployment Guide

Click Next.

8. In the Select Targets screen, click on the checkbox next to the name of your admin server (the
default demo setting is “CommerceServicesDemoServer”). Click Next.

9. Click Finish to save the configuration. The new data source should be visible in the Data
Sources window.

10. On the left hand side, click the Activate Changes button under the Change Center to commit
these changes. You have now completed setting up your JDBC connection.

Configure SSL (Optional)

BEA AquaLogic Commerce Services Deployment Guide 9

 You may need to restart your WebLogic Server before you can successfully
commit changes when setting up a JDBC Connection

Configure SSL (Optional)
This section explains how to manually setup SSL for the admin server if you have not already set
it up with the configuration wizard.

1. On the left hand side, click the Lock and Edit button under the Change Center.

2. Under your domain in the Domain Structure tree, expand Environment > Servers.

3. Click on your admin server name AdminServer(admin) in the Servers section (the default
demo admin server name is “CommerceServicesDemoServer”).

4. In the General Configurations window check the SSL Listen Port Enabled box and ensure
that the ports correspond to the ones setup in the acegi.xml file as per the Set Up AquaLogic
Commerce Services section.

Setting up AquaLogic Commerce Services

10 BEA AquaLogic Commerce Services Deployment Guide

5. Click Save.

6. On the left hand side, click the Activate Changes button under the Change Center to commit
these changes. You have finished configuring SSL.

Authorize.net payment processing

When trying to connect to the Authorize.net testing server with WebLogic, WebLogic gives an
error similar to the following:

<Warning> <Security> <BEA-090504> <Certificate chain received from
test.authorize.net

- 64.94.118.75 failed hostname verification check. Certificate
contained *.authorize.net

but check expected test.authorize.net>

The workaround for this is to turn off "hostname verification" in WebLogic. This is ONLY an
issue with test transactions and does not occur when connecting to the Authorize.net production
server.

WebLogic Authentication Plug-in

BEA AquaLogic Commerce Services Deployment Guide 11

WebLogic Authentication Plug-in

The WebLogic authentication plug-in allows the Storefront to authenticate against WebLogic
Server, and also allows Single Sign-On with WebLogic Server and WebLogic Portal applications
running within the same server instance.

AquaLogic Commerce Services comes pre-configured with the WebLogic authentication plug-in
already setup, so you should never have to manually set it up. However, this section provides the
steps for manually setting up the authentication plug-in for informational purposes. It should help
you to better understand the integration.

Copy the plug-in jar file

The first step is to copy the WebLogic authentication plug-in jar file
com.elasticpath.plugins.wls_authenticator-5.1.jar to the AquaLogic Commerce
Services Storefront WEB-INF\lib folder. For example into
<BEA_HOME>\user_projects\applications\alcs\commerceApp\commerceServices
\WEB-INF\lib.

Copy the JAAS login configuration file

Copy the file jaaslogin.config into your domain root folder. For example,
<BEA_HOME>\user_projects\domains\alcs

Set the location of the login configuration file
1. For the application to be able to find the JAAS login configuration file we need to add a

startup option.

2. Navigate to the location of your domain. For our example,
<BEA_HOME>\user_projects\domains\alcs

3. Open the “bin” directory. For our example, this will be
<BEA_HOME>\user_projects\domains\alcs\bin.

4. Open the “setDomainEnv.cmd” file found in the bin directory in a text editor.

5. Add the following option to the end of the “set JAVA_OPTIONS=%JAVA_OPTIONS%
%JAVA_PROPERTIES%” line.

Djava.security.auth.login.config==jaaslogin.config

 There does need to be two equal signs in the line above, since the second equal
sign indicates that this login file should override any others.

6. Save the file and exit your text editor.

Change the user id generation mode

To allow customers to log into WebLogic Server after they change their email address, the user id
mode needs to be changed with the following steps.

Setting up AquaLogic Commerce Services

12 BEA AquaLogic Commerce Services Deployment Guide

1. Open the WEB-INF\commerce-config.xml under your Storefront web application root folder
and change the "userId.mode" value to "2".
In this mode, the system will generate a unique user id for each customer. This user id will
not be changed when customers log into the Storefront to
change their email address.

2. Repeat last step for your Commerce Manager web application.

Change user maintenance mode

By default, the Commerce Manager does not support the maintenance of a password when using
WebLogic authentication. To change this, the user maintenance mode needs to be changed as
follows.

1. Open the WEB-INF\commerce-config.xml under your Commerce Manager web application
root folder and change the "user.maintain.mode" to "2".
In this mode the create/delete customer and edit password functions will be disabled.

Change the customer mapping

When using WebLogic authentication, the password should not be stored in a local database. You
will need to change the customer Hibernate mapping file settings with the following steps.

1. Open WEB-INF\conf\spring\dataaccess\hibernate\mapping\Customer.hbm.xml under your
Storefront web application root and remove or comment out following lines:

<many-to-one column="AUTHENTICATION_UID"

 unique="true"

 lazy="false"

 cascade="all"

 name="customerAuthentication"

 class="com.elasticpath.domain.customer.CustomerAuthentication"

 fetch="select"/>

2. Repeate last step for your Commerce Manager web application.

Single sign-on cookie

To ensure Single Sign-on works without problems with your WebLogic Server and WebLogic
Portal applications, ensure that the weblogic.xml file for those applications contains the
following settings:

<session-descriptor>

 <cookie-name>JSESSIONID</cookie-name>

 <cookie-path>/</cookie-path>

</session-descriptor>

WebLogic Portal Unified User Profile Plug-in

BEA AquaLogic Commerce Services Deployment Guide 13

WebLogic Portal Unified User Profile Plug-in

WebLogic Portal supports the concept of a Unified User Profile (UUP) which allows a Portal user
to be associated with profile data from external systems. The UUP plug-in provides an EAR file
and user profile property set that allows you to manage AquaLogic Commerce Services user
properties from the WebLogic Portal Administration Console or within WebLogic Portal code.
The details on how to manage user properties from an external system with the WebLogic Portal
is described in the WebLogic Portal User Management Guide at
http://edocs.bea.com/wlp/docs92/users/index.html

This section describes how to extend your domain to add WebLogic Portal to it and how to install
the WebLogic Portal Unified User Profile plug-in for AquaLogic Commerce Services.

Assumptions

This document assumes you already know how to set up a WebLogic Portal project. Refer to the
Getting Started with WebLogic Portal documentation at
http://edocs.bea.com/wlp/docs92/tutorials/index.html for a tutorial on setting up your Portal
environment and creating a Portal.

Extending Your Domain to Add WebLogic Portal
The following steps will add WebLogic Workshop and Portal to your AquaLogic Commerce
Services domain.

1. Click Start > All Programs > BEA Products > Tools > Configuration Wizard.

 For Linux, you can run <WL_HOME>/common/bin/config.sh.
You must have an X server configured to use the GUI configuration tool.

2. Select Extend an existing WebLogic domain in the window that appears. Click Next.

3. Select the domain created for your AquaLogic Commerce Services applications (in our
example, this is <BEA_HOME>\user_projects\domains\alcs). Click Next.

4. Select Extend my domain automatically to support the following added BEA products.

5. Check Workshop for WebLogic Platform and WebLogic Portal. Click Next.

6. Select No to keep the default JDBC and JMS settings. Click Next.

7. Click Extend.

8. If you get the following warning, then you will need to click OK.

Setting up AquaLogic Commerce Services

14 BEA AquaLogic Commerce Services Deployment Guide

This warning appears, because the demo database has no password.

9. Click Done.

Since extending a domain to add Portal does not update the setDomainEnv.cmd and
startWebLogic.cmd files, you will need to make the following changes to those files all Portal
functionality to work correctly.

1. Make the following modifications to setDomainEnv.cmd in the bin directory of your
AquaLogic Commerce Services domain.

a) Replace "set POINTBASE_FLAG=" with the following lines:
set debugFlag=true

set testConsoleFlag=true

set iterativeDevFlag=true

set logErrorsToConsoleFlag=true

set POINTBASE_FLAG=true

set POINTBASE_PORT=9093

set POINTBASE_DBNAME=weblogic_eval

b) Replace "set EXTRA_JAVA_PROPERTIES=" with the following line (on one line):
set EXTRA_JAVA_PROPERTIES=

-Dweblogic.wsee.bind.suppressDeployErrorMessage=true

-Dweblogic.http.descriptor.merge=true

c) Add the following lines after “set SERVER_CLASS=weblogic.Server”:
set WLP_HOME=%WL_HOME%\portal

set P13N_HOME=%WL_HOME%\p13n

set
WLP_POST_CLASSPATH=%WL_HOME%\server\lib\xquery.jar;%WL_HOME%\server\
lib\binxml.jar

WebLogic Portal Unified User Profile Plug-in

BEA AquaLogic Commerce Services Deployment Guide 15

2. Make the following modifications to startWebLogic.cmd in the bin directory of your
AquaLogic Commerce Services domain.

a) Add following line after “set ALREADY_STOPPED=true”:
call "%WLP_HOME%\thirdparty\autonomy-wlp92\autonomy.cmd" stop

b) Add the following lines after “set JAVA_OPTIONS=%SAVE_JAVA_OPTIONS%”:
if "%WLP_SEARCH_OPTION%"=="" (

 @REM If not set externally, this portal domain will start the
full Autonomy engine stack.

 set WLP_SEARCH_OPTION=full

)

if "%WLP_SEARCH_OPTION%"=="full" (

 start "Start Portal SearchEngine" /B cmd /c call
"%WLP_HOME%\thirdparty\autonomy-wlp92\autonomy.cmd" start

)

if "%WLP_SEARCH_OPTION%"=="minimal" (

 start "Start Portal SearchEngine" /B cmd /c call
"%WLP_HOME%\thirdparty\autonomy-wlp92\autonomy.cmd" start

)

Installing the plug-in

Perform the following steps in a new or existing Workshop for a WebLogic Platform Portal Ear
Project:

1. If a Datasync project has not already been created in association with the EAR, create one
(right click, New > Datasync Project) and associate it with the EAR.

2. Copy CommerceServices.usr to the userprofiles folder of your Datasync project

3. Enter Workshop's Project Explorer view (Window > Show View > Project Explorer) and
expand Enterprise Applications.

4. Expand the node relating to your Portal EAR

5. Expand the [WebLogic] node

6. Right-click WebLogic J2EE Libraries and choose Add

7. In the Add WebLogic J2EE Library reference window, click Browse

8. In the Select WebLogic J2EE Library window, click Add

9. In the Add WebLogic J2EE Library window, click Browse

10. Browse to the plug-in's alcs-uup-lib-5.1.ear and click Open.

11. Click OK in the remaining open windows.

12. Deploy and run your Portal EAR as usual.

You should now be able to access the WebLogic Portal UUP in the Portal Administration
Console.

Setting up the Database

16 BEA AquaLogic Commerce Services Deployment Guide

Setting up the Database

This section explains how to create an AquaLogic Commerce Services database schema using
one of the following supported databases:

• Microsoft SQL Server 2005

• MySQL 5.0.x

• Oracle 10g

Microsoft SQL Server 2005

This section contains the instructions for creating a Microsoft SQL Server 2005 AquaLogic
Commerce Services database.

 The following instructions assume that Microsoft SQL Server 2005 is running,
and that the SQL Server Management Studio is installed.

Connect to Microsoft SQL Server
1. Launch the SQL Server Management Studio by clicking Start > Microsoft SQL Server 2005 >

SQL Server Management Studio

2. Enter the login information for your SQL Server and click Connect.

Create the ALCS Database
1. Right-click the Databases node in the Object Explorer, and click New Database...

2. Enter “alcs” in the Database name field, and click OK to create the database. It may take a

few seconds.

Microsoft SQL Server 2005

BEA AquaLogic Commerce Services Deployment Guide 17

Populate the Database
1. On the File menu point to Open, and then click on File...

2. Navigate to the <WL_HOME>\commerce\database-scripts\mssql folder

3. Select schema.sql and click Open

4. In the Connect to Database Engine dialog click on the Options >> button that is in the bottom
right corner.

5. Click on the dropdown next to Connect to database and select <Browse server...>.

6. In the Browse for databases dialog click Yes

7. Navigate to the database you created in the previous section, and click OK

Setting up the Database

18 BEA AquaLogic Commerce Services Deployment Guide

8. Click Connect

9. On the Query menu click on Execute. This may take a few seconds

10. Repeat steps 1 - 9 for the rest of the *.sql files in the following order:

• base-insert.sql

• snapitup-insert.sql (optional, deploys the AquaLogic Commerce Services Demo Store
"Snap It Up" on your database)

11. When you are finished the above steps you may exit the SQL Server Management Studio

12. If you chose to run the snapitup-insert.sql script you will also need to import the SnapItUp
product catalog data

MySQL 4
This section contains the instructions for creating a MySQL AquaLogic Commerce Services
database. These instructions assume that you have MySQL 4 installed in c:\mysql.

If you have not configured your MySQL server to start automatically, follow steps 1 to start your
server.

1. Start your database server as follows:

a. Open a DOS command window by clicking: Start > Run
b. Type: “cmd” and then press ENTER
c. Change folder to: c:\mysql\bin
d. Type: “mysqld-nt” and press ENTER to start the database.

2. Repeat steps (a) to (c) above to open another DOS command window, and type the following
to enter mysql console:

mysql -u root

If you configured the root user to use a password, type

mysql -u root -p

Type the password for the root user when prompted.

3. Create a database called ALCS.

mysql> create database ALCS character set utf8;

If you choose to use a database name other than ALCS, please make sure this value is
configured correctly when setting up your data source. (See 2 - JNDI and JDBC
Configuration)

4. Create a user account.

Oracle 10g

BEA AquaLogic Commerce Services Deployment Guide 19

If the MySQL server and the web application server run on different hosts, create a user
account and grant privileges to the host which runs the web application server with the
following command:

mysql> grant all privileges on ALCS.* to username@'ipaddress';

If your database is on a different machine than the web application server, you may want to
specify a password by adding identified by 'password' to your grant command.

Commit the permission changes:

mysql> flush privileges;

5. Change database to ALCS:

mysql> use ALCS;

6. Copy the sql files from <WL_HOME>\commerce\database-scripts\mysql to c:\mysql\bin.

7. Create a blank ALCS database:

mysql> source schema.sql;

mysql> source base-insert.sql;

8. Optionally, deploy the AquaLogic Commerce Services Demo Store "Snap It Up" to your
database

mysql> source snapitup-insert.sql;

9. If you chose to run the snapitup-insert.sql script, you will also need to import the SnapItUp
product catalog data (see the Running SnapItUp Import Jobs section).

Oracle 10g

This section contains the instructions for creating an Oracle 10g AquaLogic Commerce Services
database.

 You will need to set the database to use case-insensitive comparisons and also
ensure that the indexes are created in case-insensitive mode to allow searches
to be case-insensitive and to avoid full table scans on certain tables.

 • When installing Oracle 10g on a Windows system as a domain user as
opposed to a local administrator you must set the
SQLNET.AUTHENTICATION_SERVICES configuration value to NONE in
the <ORACLE_BASE>\NETWORK\ADMIN\sqlnet.ora file (where
<ORACLE_BASE> refers to the Oracle home directory on your system,
for example C:\Oracle\product\10.2.0\db_1).

• In order to install Oracle on a Windows system with a dynamically
assigned IP address you must install the Microsoft Loopback Adapter:
http://support.microsoft.com/kb/839013

Setting up the Database

20 BEA AquaLogic Commerce Services Deployment Guide

The following instructions assume that Oracle is already installed and running.

Creating the alcs Database
1. Launch the Oracle Database Configuration Assistant via the start menu by clicking Start » All

Programs » Oracle - OraDb10g_home1 » Configuration and Migration Tools » Database
Configuration Assistant.

2. Select Create a Database, and click Next

3. Select General Purpose, and click Next

4. Enter “alcs” as the Global Database Name and the SID

5. Click Next

6. Enter a password and click Next

7. Select File System and click Next

8. Select Use Database File Locations from Template and click Next

9. Click Next

10. Ensure that Sample Schemas is unchecked, and click Next

11. On the Character Sets tab select Choose from the list of character sets and select UTF8 -
Unicode 3.0 UTF-8 Universal character set, CESU-8 Compliant, and click Finish

12. Click OK on the confirmation dialog, and the database creation process will start. It may take
a few minutes to complete.

Creating and Populating the alcs Schema
1. Click Start » Run

2. Enter “cmd” into the Open field, and click OK to launch the Windows command line

3. Navigate to the <WL_HOME>\commerce\database-scripts\oracle folder

4. Type “sqlplus” into the command prompt, and press Enter

5. Type “@schema.sql” into the SQL>* prompt, and press Enter

6. Repeat step 5 for the rest of the *.sql files in the following order:

o base-insert.sql

o snapitup-insert.sql (optional, deploys the AquaLogic Commerce Services Demo
Store "Snap It Up" on your database)

7. When you are finished type quit to exit SQL*Plus

8. If you chose to run the snapitup-insert.sql script you will also need to import the SnapItUp
product catalog data (see the Running SnapItUp Import Jobs section)

Running SnapItUp Import Jobs

This section is for users who wish to import the SnapItUp product catalog data from the CSV
files provided with AquaLogic Commerce Services.

JNDI Configuration

BEA AquaLogic Commerce Services Deployment Guide 21

1. Log into the Commerce Manager

2. Click on Admin

3. Click on Import

4. Choose Select existing import job to run

5. Choose the first import job from the picklist called "01-SnapItUp"

6. Click Next

7. Choose Execute Import Now

8. Click Proceed and wait for the import job to finish

9. Repeat steps 3 through 8 for each existing import job in the picklist, being sure to import
them in the order in which they are numbered (01, 02, 03, etc).

JNDI and JDBC Configuration

This section discusses how to configure your JNDI and JDBC settings to connect your application
server to your database.

JNDI Configuration
The default JNDI name used for the Elastic Path data source is “jdbc/epjndi”. This should not be
changed. If you must use a different JNDI name, you must change this in all locations where it is
listed in this document.

In addition, the JNDI name must be changed in the following places.

• <ALCS_APP_HOME>\commerceServices\WEB-INF\web.xml

• <ALCS_APP_HOME>\commerceServicesManager\WEB-INF\web.xml

• <ALCS_APP_HOME>\commerceServicesConnect\WEB-INF\web.xml

• <ALCS_APP_HOME>\commerceServices\WEB-
INF\conf\spring\dataaccess\hibernate\hibernate-config.xml

• <ALCS_APP_HOME>\commerceServicesManager\WEB-
INF\conf\spring\dataaccess\hibernate\hibernate-config.xml

• <ALCS_APP_HOME>\commerceServicesConnect\WEB-
INF\conf\spring\dataaccess\hibernate\hibernate-config.xml

JDBC Configuration

The configuration information for the different databases is listed in this section.

Configuring AquaLogic Commerce Services

22 BEA AquaLogic Commerce Services Deployment Guide

MySQL

Database Driver JAR file: mysql-connector-java-3.1.11-bin.jar
Database Driver: com.mysql.jdbc.Driver
Database Connection URL:
jdbc:mysql://HOSTNAME:PORT/DBNAME?autoReconnect=true&useUnicode=true&characterE
ncoding=UTF8
(Default Port is 3306)
Database Driver Download: http://dev.mysql.com/downloads/connector/j/3.1.html

Oracle

Database Driver JAR file: ojdbc14.jar
Database Driver: oracle.jdbc.driver.OracleDriver
Database Connection URL: jdbc:oracle:thin:@_HOSTNAME:PORT:SID
(Default port is 1521)
Database Driver Download:
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc9201.html

Microsoft SQL Server

Database Driver JAR file: msutil.jar, msbase.jar, mssqlserver.jar (all 3 are required)
Database Driver: com.microsoft.jdbc.sqlserver.SQLServerDriver
Database Connection URL:
jdbc:microsoft:sqlserver://HOSTNAME:PORT;DatabaseName=DBNAME;selectMode=cursor
(Default port is 1433)
Database Driver Download:
http://www.microsoft.com/downloads/details.aspx?FamilyID=07287b11-0502-461a-b138-
2aa54bfdc03a&DisplayLang=en

Configuring AquaLogic Commerce Services

This section explains how to configure the various AquaLogic Commerce Services applications.

Each sub-section explains the common configuration parameters. There are many other
configuration parameters not described here which are further documented in the comments of
the various configuration files listed. These other parameters can use their default values and
should only be modified if needed.

Storefront

Configure the following files for your AquaLogic Commerce Services Storefront application:

• acegi.xml

• commerce-config.xml

• ep-treecache.xml

Storefront

BEA AquaLogic Commerce Services Deployment Guide 23

• hibernate-config.xml

• quartz.xml

• treecache.xml

• velocity.xml

• util-config.xml

acegi.xml

AquaLogic Commerce Services uses the Acegi security framework to perform user authentication
and authorization.

The acegi.xml file for configuring acegi is located in the following application-specific paths.
Since the acegi.xml file contains different settings for each application, you will need to configure
each of them separately.

• Storefront – < >\commerceServices\WEB-INF\conf\spring\security\

• Commerce Manager – <ALCS_APP_HOME>\commerceServicesManager\WEB-
INF\conf\spring\security\

• Connect – <ALCS_APP_HOME>\commerceServicesConnect\WEB-
INF\conf\spring\security\

Configuring the HTTPS port redirect

Specify your HTTP port number in the <entry> tag as described in the example below.

In acegi.xml, specify the HTTP port number in the key attribute of the entry tag and the HTTPS
port number in the <value> tag as shown in the example below. This allows the application server
switch to the HTTPS port for pages that require it. Not all URLs in an application are secure. For
each application, we have specified a default list of URLs which are secure. You can modify
these lists if desired as explained in the Acegi - security framework section of the AquaLogic
Commerce Services Developer Guide.

In the example below, we have specified the standard port numbers of 80 for HTTP and 443 for
HTTPS.

<!-- port # are specified in default.xml -->

 <bean id="portMapper"
class="org.acegisecurity.util.PortMapperImpl">

 <property name="portMappings">

 <map>

 <entry key="80"><value>443</value></entry>

 </map>

 </property>

 </bean>

Configuring AquaLogic Commerce Services

24 BEA AquaLogic Commerce Services Deployment Guide

guided-navigation.xml

The AquaLogic Commerce Services Storefront uses guided-navigation.xml to generate the
guided navigation menu to display to users when they are browsing a category or executing a
search. Guided Navigation appears in the User Interface as a set of links on the left side of the
pages. Users can click links in the guided navigation area to filter the list of products to find the
product that they are looking for.

The guided-navigation.xml file is located in the following location:
<ALCS_APP_HOME>\commerceServices\WEB-INF\

There are 3 types of filters defined in elements in the configuration file:

• attribute – defines the simple value filters for an attribute.

• attributeRange – defines the range values for an attribute.

• price – defines the price ranges.

Attribute Simple Value Filter

This defines the simple value filter for an attribute. It starts with the "attribute" tag as shown in
the following example.

<attribute key="A00551" localized="false">

 <simple id="01" value="CCD" />

 <simple id="02" value="CMOS" />

 <simple id="03" value="Super HAD CCD" />

 <simple id="04" value="Live MOS" />

 <simple id="05" value="3CCD" />

 <simple id="06" value="LBCAST" />

</attribute>

• key="A00551" is the reference to the attribute key. Each attribute can only be defined once in
the XML file.

• localized="false" means that this attribute is not localized.

• <simple id="01" value="CCD" /> defines each available value. The "id" should be unique for
this attribute since it is used to reference the filter. The "value" should be unique too.

If the attribute is localized, it will have the following differences in the XML.

• The "localized" property should be "true".

• For each simple value, it should have the "language" property defined.

• The "id" should be unique for this attribute since it is used to reference this filter, but the
"value" can be the same for different languages.

Storefront

BEA AquaLogic Commerce Services Deployment Guide 25

The following is a localized attribute example.

<attribute key="A00556" localized="true">

 <simple id="01" value="TFT active matrix" language="en" />

 <simple id="02" value="Matrice active TFT" language="fr" />

 <simple id="03" value="LCD passive matrix" language="en" />

 <simple id="04" value="LCD à matrice passive" language="fr" />

 <simple id="05" value="None" language="en" />

 <simple id="06" value="Aucun(e)" language="fr" />

 <simple id="07" value="LCD" language="en" />

 <simple id="08" value="LCD" language="fr" />

</attribute>

Attribute Range Filter

This defines the range value for an attribute. Only attributes with type "Integer", "Decimal" or
"Short-Text" can have ranges defined. It starts with the "attributeRange" tag. The range filter can
have subranges defined.

<attributeRange key="A00140" localized="false">

 <range lower="" upper="1.9" id="_1.9">

 <display language="en">

 <value>1.9 in. & Under</value>

 <seo>1.9in-and-under</seo>

 </display>

 <display language="fr">

 <value>1.9 in. et dessous</value>

 <seo>1.9in-et-dessous</seo>

 </display>

 </range>

 <range lower="2" upper="2.9" id="2_2.9">

 <display language="en">

 <value>2 to 2.9 in.</value>

 <seo>2-to-2.9in</seo>

 </display>

 <display language="fr">

 <value>2 et 2.9 in.</value>

 <seo>2-et-2.9in</seo>

 </display>

 </range>

 <range lower="3" upper="" id="3_">

 <display language="en">

Configuring AquaLogic Commerce Services

26 BEA AquaLogic Commerce Services Deployment Guide

 <value>3in. & Up</value>

 <seo>3in-and-up</seo>

 </display>

 <display language="fr">

 <value>3in. et Plus</value>

 <seo>3in-et-plus</seo>

 </display>

 </range>

</attributeRange>

The attribute range filter also has the "key" property and "localized" property. Each "range" tag
represents one range, which may have the "lower" value and "upper" value set. If the "lower"
value is not set, then there is no minimum allowed value for the attribute filter. If the "upper"
value is not set, then the there is no maximum allowed value for the attribute filter.

The "display" tag contains the information to display the filter on the guided navigation links.

Price Filter

This defines the range value for the price. It starts with the "Price" tag. The range filter can have
subranges defined.

<price currency="USD" localized="false">

 <range lower="" upper="100" id="_100">

 <display language="en">

 <value>Under $100</value>

 <seo>under-$100</seo>

 </display>

 <display language="fr">

 <value>au-dessous de $100</value>

 <seo>au-dessousd-de-$100</seo>

 </display>

 </range>

 <range lower="100" upper="300" id="100_300">

 <display language="en">

 <value>$100 to $300</value>

 <seo>$100-to-$300</seo>

 </display>

 <display language="fr">

 <value>$100 et $300</value>

 <seo>$100-et-$300</seo>

 </display>

 <range lower="100" upper="200" id="100_200">

Storefront

BEA AquaLogic Commerce Services Deployment Guide 27

 <display language="en">

 <value>$100 to $200</value>

 <seo>$100-to-$200</seo>

 </display>

 <display language="fr">

 <value>$100 et $200</value>

 <seo>$100-et-$200</seo>

 </display>

 </range>

 <range lower="200" upper="300" id="200_300">

 <display language="en">

 <value>$200 to $300</value>

 <seo>$200-to-$300</seo>

 </display>

 <display language="fr">

 <value>$200 et $300</value>

 <seo>$200-et-$300</seo>

 </display>

 </range>

 </range>

 <range lower="300" upper="" id="300_">

 <display language="en">

 <value>More than $300</value>

 <seo>more-than-$300</seo>

 </display>

 <display language="fr">

 <value>au-dessous de $300</value>

 <seo>au-dessousd-de-$300</seo>

 </display>

 </range>

</price>

The price filter has the "currency" and "localized" property. Each "range" tag represents one price
range, which may have the "lower" and "upper" values set. If the "lower" value is not set, then
there is no minimum allowed value for the price filter. If the "upper" value is not set, then there is
no maximum allowed value for the price filter.

The "display" tag contains the information to display the filter on the guided navigation links.

Configuring AquaLogic Commerce Services

28 BEA AquaLogic Commerce Services Deployment Guide

commerce-config.xml

AquaLogic Commerce Services's configuration settings are stored in the commerce-config.xml
files located in the following application-specific paths.

• Storefront – <ALCS_APP_HOME>\commerceServices\WEB-INF\

• Commerce Manager – <ALCS_APP_HOME>\commerceServicesManager\WEB-INF\

• Connect – <ALCS_APP_HOME>\commerceServicesConnect\WEB-INF\

The following are the names and descriptions of the key elements in the configuration file.

• commerceConfig - the main element containing all the configuration settings for an
AquaLogic Commerce Services implementation.

o web - the element containing all web-related settings.

 web.sf.context.url - the context part of the URL for the Storefront
application. For example, "alcssf". Set this to an empty string if the
application is in the root context.

 catalog.topSeller.count - the number of top selling products to display on
the category pages

 catalog.view.pagination - the number of items to display per page on the
catalog browsing and search pages

o customer - the element containing customer settings

 userid.mode - determines whether the customer's email address will be
used as userid or a unique userid will be generated based on the email
address

o asset - the element containing the paths to all assets

 catalog.asset.path - the root path where catalog assets are stored

 image.asset.subfolder - the subdirectory under the root path where
images are stored

 file.asset.subfolder - the subdirectory under the root path where non-
image files are stored

 digitalgoods.asset.subfolder - the subdirectory under the root path where
digital goods (such as electronic books) are stored

o mail - the element containing all mail-related settings.

 mail.host - domain or IP address of your SMTP server. This is used to
send email confirmations.

 mail.host.port - the port of the SMTP server.

 email.from - the "From" email address for all emails generated by
AquaLogic Commerce Services, e.g. customerservice@elasticpath.com.

 email.from.name - the "From" personal name for all emails generated by
AquaLogic Commerce Services, e.g. AquaLogic Commerce Services.

Storefront

BEA AquaLogic Commerce Services Deployment Guide 29

 email.store.url - URL for images etc. in emails generated by the
Storefront

 email.cm.url - URL for images etc. in emails generated by the Commerce
Manager

o locale - the element containing all locale-related settings.

 locale.default - system default locale. Must be valid ISO Language Code
and country code defined by ISO-639 and ISO-3166, such as en_CA etc.

 locale.all - all locales that the AquaLogic Commerce Services application
supports. E.g. "en_CA, fr_CA, en_US"

 locale.date.format - the format of the dates stored in the properties files

 content.encoding - the character encoding for the web pages and emails

 datafile.encoding - the character encoding for import data files, export
data files, and report files

 country.default - default country for the Storefront (only required if the
default locale set does not include the country code)

o currency - the element containing all currency-related settings.

 currency.default - system default currency. Must be valid ISO Currency
Code - 3-letter codes as defined by ISO-4217, such as CAD etc.

 currency.all - all currencies that the AquaLogic Commerce Services
application supports. E.g. "CAD, USD"

o units - the element containing the settings for units of measurement

o units.length - the unit of length to display. For example, "CM" for centimeters.

o units.weight - the units of weight to display. For example, "KG" for kilograms.

o payment - the element containing information about configured payment
gateways. Configure your available payment methods here.

o seo - the element containing search engine optimization (SEO) settings, which
generates search engine friendly URLs for products and categories

 seo.enable - enables/disables SEO URL generation

o attributeFilter - the element containing settings for guided navigation, which
allows customers to narrow down their browsing/search results to find a product
that they are looking for

 attributeFilter.enable - enables/disables guided navigation

o dynamicimagesizing - the element for setting image display options

 dynamicimagesizing.jpegquality - the quality of the displayed jpeg
images

 dynamicimagesizing.noimage - the name of the image to display if the
image to be displayed is not found

o search - the element containing catalog search settings

Configuring AquaLogic Commerce Services

30 BEA AquaLogic Commerce Services Deployment Guide

 maxReturnNumber - the maximum number of products to return in a
search result

 minimumSimilarity - used in searches that do not require an exact match
(fuzzy searches). This is the fraction of similarity required between the
search term and a matching term

 prefixLength - used in searches that do not require an exact match (fuzzy
searches). This is the number of characters at the beginning of the term
that must match exactly between the search term and matching term

 minimumResultsThreshold - the number of results under which alternate
queries (such as spelling suggestions) will be suggested to the user

 maximumSuggestionsPerWord - the maximum number of suggestions
generated for each word in the query

 accuracy - the fraction of similarity required between suggested words
and original words in the query

o onepage - the element containing settings for One Page checkout

 onepage.enable - the boolean true/false value specifying if One Page
checkout is enabled or not

o powerreviews - the element containing settings for PowerReviews product
reviews

 powerreviews.enable - the boolean true/false value specifying if
PowerReviews is enabled or not

 powerreviews.merchantid - the merchant account id provided by
PowerReviews

o security - the element containing encryption information

 encryption.key - the encryption key for encrypting customer credit card
numbers stored in the TORDERPAYMENT table. You must configure
this before order checkout will work.

o productcache - the element containing product cache settings

 productcache.preload - the boolean true/false value specifying if all
products will be pre-loaded into the cache upon startup or not

o database - the element containing database settings (applies to AquaLogic
Commerce Services 5.1.1 only)

 database.product.name - the name of the database being used
("postgresql", "db2", "sqlserver", "mysql", or "oracle")

Customer User Id Generation

AquaLogic Commerce Services by default uses a customer's email address as the user id, but you
can change the user id generation mode in commerce-config.xml as shown below.

<property name="userid.mode" value="1" />

The possible values for the user id generation mode are:

Storefront

BEA AquaLogic Commerce Services Deployment Guide 31

1 - Use user's email as the user id, this is the default value. If you use JAAS, you can't use this
mode.

2 - Generates a unique permanent user id by appending a random four digit suffix to the email
address and uses this as the user id. The user id is created when the customer first creates an
account. Later, when the customer changes the email address, the user ID will not be changed.
For example, if a customer email address is a@a.com, the user id would be a@a.comXXXX,
where XXXX is a random generated string.
3 - Independent email and user id. This mode is not yet supported.

Customer Maintenance Mode

This setting indicates whether to add, delete and maintain user passwords through the Commerce
Manager. By default the customer password is maintained in the AquaLogic Commerce Services
database. If customers are authenticated through JAAS, (e.g. authenticated in WebLogic Server)
the customer maintenance mode must be set to 2. This setting will only affect the Commerce
Manager, not the Storefront.

<property name="user.maintain.mode" value="1" />

The possible values are:

1 - Maintain user passwords in the local DB, this is the default value.

2 - Maintain user passwords through JAAS, the Commerce Manager will disable the create/delete
and change Password functions in this mode.

Payment Configuration

The payment gateway used by the Storefront is configured in the <payment> block within the
commerce-config.xml file as follows.

• The checkout transaction behavior can be set to one of the following two values:

o authorization - When an order is placed, the payment will be pre-authorized only.
The payment will be captured later when the shipment for the goods is released.
This mode is typically used whenever a store sells shippable goods.

o sale - When an order is placed, the payment for the order will be captured
immediately. This mode is typically used when only digital goods can be
purchased in the store.

• The <gateway> block specifies the fully-qualified class name of the payment processor to be
used, which must implement PaymentGateway.

o The names of supported card types are also specified in this block. Note that the
supported card types are for display only, since the payment processor
determines the card type from the card number.

o The ValidateCvv2 element determines whether the card security code should be
requested from the user and sent to the payment processor.

Configuring AquaLogic Commerce Services

32 BEA AquaLogic Commerce Services Deployment Guide

• Only ONE "credit card processing" payment gateway is supported at a time. Changing to a
different payment gateway requires re-configuring the payment gateway settings in the
commerce-config.xml file.

• PayPal Express Checkout can also be configured alongside the chosen "credit card
processing" payment gateway in the <payment> block.
Each gateway has its own gateway-specific properties.

CyberSource Credit Card Sample Configuration

<gateway name="CyberSource"
class="com.elasticpath.domain.payment.impl.CyberSourcePaymentGatewayI
mpl">

 <property name="merchantID" value="YOUR_MERCHANT_ID"/>

 <property name="keysDirectory"
value="RELATIVE/PATH/TO/CERT/DIRECTORY (from WEB-INF)" />

 <property name="targetAPIVersion" value="1.19"/>

 <property name="sendToProduction" value="false"/>

 <property name="logMaximumSize" value="10"/>

 <property name="enableLog" value="false"/>

 <property name="logDirectory" value="WEB-INF/log"/>

</gateway>

Paypal Payflow Pro (formerly Verisign) Sample Configuration
<gateway name="PayflowPro"
class="com.elasticpath.domain.payment.impl.PayflowProPaymentGatewayIm
pl">

 <property name="user" value="YOUR_USERNAME"/>

 <property name="password" value="YOUR_PASSWORD"/>

 <property name="vendor" value="YOUR_VENDOR"/>

 <property name="partner" value="Verisign"/>

 <property name="certificateLocation"
value="RELATIVE/PATH/TO/CERT/DIRECTORY (from WEB-INF)"/>

 <property name="hostAddress" value="test-payflow.verisign.com"/>

 <property name="hostPort" value="443"/> <!--optional - defaults
to 443-->

 <property name="proxyAddress" value=""/> <!--optional-->

 <property name="proxyPort" value=""/> <!--optional-->

 <property name="proxyLogon" value=""/> <!--optional-->

 <property name="proxyPassword" value=""/> <!--optional-->

</gateway>

Authorize.Net Sample Configuration
<gateway name="AuthorizeNet"
class="com.elasticpath.domain.payment.impl.AuthorizeNetPaymentGateway
Impl">

Storefront

BEA AquaLogic Commerce Services Deployment Guide 33

 <property name="authorizeNetURL"
value="https://certification.authorize.net/gateway/transact.dll"/>

 <property name="testMode" value="true"/>

 <property name="loginID" value="XXXX"/>

 <property name="transKey" value="XXXX"/>

 <property name="version" value="3.1"/>

 <property name="delimChar" value="|"/> <!--optional-->

 <property name="encapChar" value=""/> <!--optional-->

</gateway>

Fuzzy Search in Lucene

The search mechanism in AquaLogic Commerce Services takes advantage of the Fuzzy Search
feature in Lucene. Fuzzy Search provides a way to search for terms similar to a specified term
(for example with misspelled words).

The Fuzzy Search can be configured with two settings in the commerce-config.xml

1. minimumSimilarity - Value between 0 and 1 to set the required similarity between the query
term and the matching terms. For example, for a minimumSimilarity of 0.5 a term of the same
length as the query term is considered similar to the query term if the edit distance between both
terms is less than length(term)*0.5 where edit distance is a measure of similarity between two
strings and distance is measured as the number of character deletions, insertions, or substitutions
required to transform one string to the other string.

2. prefixLength - length of common non-fuzzy prefix

Spelling Suggestions

Spelling suggestions can be generated for Storefront keyword queries. The Lucene Spellchecker
is used to find words similar to terms in the original keyword query. This is configured in the
following elements.

• minimumResultsThreshold - If the number of results does not exceed this setting the search
will attempt to suggest possible alternate queries

• maximumSuggestionsPerWord - The maximum amount of suggestions that will be generated
for each word in the query

• accuracy - The degree of similarity that suggested words will have to the original keywords

Encryption Key

For security reasons, this key field is not pre-set to any particular value out-of-the-box. You must
make up your own site-specific value, and set this field. Otherwise, the application will NOT
work with the empty default encryption key. Any string at least 24 characters may be used for the
key. This must be entered in all AquaLogic Commerce Services application commerce-
config.xml configuration files (Storefront, Commerce Manager, and Connect).

Configuring AquaLogic Commerce Services

34 BEA AquaLogic Commerce Services Deployment Guide

 The same key must be used in all places in order for the credit card numbers
that have been encrypted in the Storefront to be correctly decrypted and
masked in the other applications.

One Page Checkout

One Page checkout is included as part of the AquaLogic Commerce Services install. It is enabled
by setting "onepage.enable" to "true". You can always revert back to using the standard checkout
process by changing this value to "false".

<onepage>

 <property name="onepage.enable" value="false"/>

</onepage>

PowerReviews Product Reviews (optional)

You must have setup an account with PowerReviews to use this functionality. Once setup
correctly, PowerReviews product reviews can be enabled by setting "powerreviews.enable" to
"true". You can disable PowerReviews product reviews by setting this value to "false" and no
product review information will display on the Storefront.

AquaLogic Commerce Services trial edition comes setup with a demo PowerReviews merchant
account with some sample reviews, but any reviews created with this demo merchant id will not
display on your Storefront. Once you have setup an account with PowerReviews, replace the
value of "powerreviews.merchantid" with the merchant id assigned to you by PowerReviews.

<powerreviews>

 <property name="powerreviews.enable" value="true"/>

 <property name="powerreviews.merchantid" value="7609"/>

</powerreviews>

ep-treecache.xml

AquaLogic Commerce Services implements a specialized caching system for product information
only. JBoss Cache is used as the underlying implementation of this product cache and several
parameters of the JBoss Cache can be configured in ep-treecache.xml. Note that this caching
system is used only when the singleCachingProductRetrieveStrategy is configured as the strategy
for retrieving products. Product retrieval strategies are configured in ServiceSF.xml.

 Tree Cache file locations:

• ep-treecache.xml is located in
<ALCS_APP_HOME>\commerceServices\WEB-INF\classes\

• ServiceSF.xml is located in <ALCS_APP_HOME>\WEB-
INF\conf\spring\service\

Storefront

BEA AquaLogic Commerce Services Deployment Guide 35

The following parameters can be configured in ep-treecache.xml's EvictionPolicyConfig element

• timeToLiveSeconds - The idle time in seconds that should elapse before a node is removed
from the tree cache. A value of 0 denotes no limit.

• maxAgeSeconds - The maximum time in seconds that a node in the tree cache can exist
regardless of idle time. A value of 0 denotes no limit.

There are additional configurable parameters in ep-treecache.xml, however, we do not
recommend that you modify them unless you are performing advanced JBoss Cache optimization
or troubleshooting.

hibernate-config.xml

Hibernate is used in AquaLogic Commerce Services for object to relational database mapping.
The hibernate-config.xml file used to configure Hibernate is located in the following application-
specific paths.

• Storefront – <ALCS_APP_HOME>\commerceServices\WEB-
INF\conf\spring\dataacess\hibernate\

• Commerce Manager – <ALCS_APP_HOME>\commerceServicesManager\WEB-
INF\conf\spring\dataacess\hibernate\

• Connect – <ALCS_APP_HOME>\commerceServicesConnect\WEB-
INF\conf\spring\dataacess\hibernate\

Setting Hibernate properties for a production environment

Ensure that the "hibernate.show_sql" property is set to false in production, since having it turned
on adversely affects performance. The setting of this property determines whether or not the
Hibernate generated SQL is written to system log files.

The "hibernate.dialect" property needs to be set to a value appropriate for the database type that
your application is using. Below are the values for each database.

• org.hibernate.dialect.MySQLDialect

• org.hibernate.dialect.OracleDialect

• org.hibernate.dialect.SQLServerDialect

The following is a set of example hibernate settings found in hibernate-config.xml.

<property name="hibernateProperties">

 <props>

 <prop
key="hibernate.dialect">org.hibernate.dialect.MySQLDialect</prop>

 <prop key="hibernate.show_sql">false</prop>

 <prop key="hibernate.jdbc.use_streams_for_binary">true</prop>

Configuring AquaLogic Commerce Services

36 BEA AquaLogic Commerce Services Deployment Guide

 <prop key="hibernate.jdbc.batch_size">20</prop>

 </props>

</property>

quartz.xml

Quartz is used in AquaLogic Commerce Services to execute scheduled jobs (for example,
building the Lucene index). A quartz.xml file is used to configure quartz jobs for the different
AquaLogic Commerce Services applications. The quartz.xml file is located in the following
application-specific paths.

• Storefront – <ALCS_APP_HOME>\commerceServices\WEB-INF\conf\spring\scheduling\

• Commerce Manager – <ALCS_APP_HOME>\commerceServicesManager\WEB-
INF\conf\spring\scheduling\

• Connect – <ALCS_APP_HOME>\commerceServicesConnect\WEB-
INF\conf\spring\scheduling\

Quartz files have three basic types of blocks of XML:

• Factory block – The definition of the Scheduler Factory, which is used to populate a
Scheduler class with the list of Triggers that it will be responsible for executing.

• Job block – The definition of the job that is being scheduled. This defines the method that
will be called by the Trigger and references the class in which the method lives.

• Trigger block – The definition of the trigger that will be used to trigger the job. This will
usually be either a SimpleTriggerBean (which runs a job every x milliseconds) or a
CronTriggerBean (which will run a job at a specified time).

There is usually one Factory definition in a quartz.xml file, and then each job has both a Job
definition and a Trigger definition.

 Extended information about Quartz is available from the Quartz website at
http://www.opensymphony.com/quartz/

Quartz Cron Configuration

The time/trigger to execute the scheduled job can be set with the cronExpression property. The
cron expression contains six required components and one optional component. A cron
expression is written on a single line and each component is separated from the next by space.
Only the last, or rightmost, component is optional. The table below describes the cron
components in detail.

Components of a Cron Expression:

Storefront

BEA AquaLogic Commerce Services Deployment Guide 37

 Position Meaning

Allowed Special
Characters

 1 Seconds (0-59)

, - * /

 2 Minutes (0-59)

, - * /

 3 Hours (0-23)

 , - * /

 4 Day of month (1-31) , - * / ? L C

 5 Month (either JAN-DEC or 1-12) , -
* /

 6 Day of week (either SUN-SAT or 1-7) , - * / ? L C #

 7 Year (optional, 1970-2099), when empty, full range is
assumed

 , - * /

Each component accepts the typical range of values that you would expect, such as 0-59 for
seconds and minutes and 1-31 for day of the month. For the month and day of the week
components, you can use numbers, such as 1-7 for day of the week, or text such as SUN-SAT.

Each field also accepts a given set of special symbols, so placing a * in the hours component
means every hour, and using an expression such as 6L in the day-of-the-week component means
last Friday of the month. The table below describes cron wildcards and special symbols in detail.

Cron Expression Wildcards and Special Symbols:

 Special
Character

Description

 * Any value. This special character can be used in any field to indicate that the value
should not be checked. Therefore, our example cron expression will be fired on any
day of the month, any month, and any day of the week between 1970 and 2099.

 ? No specific value. This special character is usually used with other specific values to
indicate that a value must be present but will not be checked.

 - Range. For example 10-12 in the Hours field means hours 10, 11, and 12.

 , List separator. Allows you to specify a list of values, such as MON, TUE, WED in the

Configuring AquaLogic Commerce Services

38 BEA AquaLogic Commerce Services Deployment Guide

 Special
Character

Description

Day of week field.

 / Increments. This character specifies increments of a value. For example 0/1 in the
Minute field in our example means every 1-minute increment of the minute field,

starting from 0.

 L L is an abbreviation for Last. The meaning is a bit different in Day of month and Day
of week. When used in the Day of month field, it means the last day of the month

(31st of March, 28th or 29th of February, and so on). When used in Day of week, it
has the same value as 7---Saturday. The L special character is most useful when you

use it with a specific Day of week value. For example, 6L in the Day of week field
means the last Friday of each month.

 # This value is allowed only for the Day of week field and it specifies the nth day in a
month. For example 1#2 means the first Monday of each month.

 C[PD:*] The Calendar value is allowed for the Day of month and Day of week fields. The
values of days are calculated against a specified calendar. Specifying 20C in the Day
of month field fires the trigger on the first day included in the calendar on or after

the 20th. Specifying 6C in the Day of week field is interpreted as the first day
included in the calendar on or after Friday.

[PD:*]C At the time of writing, support for the C special character and specifying both Day of
week and Day of month values has not been not completed.

* info extracted from Pro Spring

Storefront Quartz Jobs

The Storefront has three configured Quartz Jobs:

• IndexBuildJob – builds the Lucene search index

• RulebaseCompileJob – builds the promotion rules

• UpdateProductCacheJob – updates the product cache

Building the Lucene search index
• Storefront index build scheduling should normally have a longer time lag to reduce overhead.

The default setting is to start the first build 60 seconds after the application server has started
and then build every hour.

• In a development environment, you can disable the index build by setting the following flag
to true in the env.config file as follows.

ep.disable.index.build=true

Storefront

BEA AquaLogic Commerce Services Deployment Guide 39

 Using the env.config value to disable an index build will also disable the index
build for the Commerce Manager when it is built, so be careful to remember
whether index building is enabled or not in your current environment

Building the promotion rule base

Rules are read from the database periodically as invoked by the Quartz scheduler. The scheduler
is configured in the quartz.xml configuration file. This configuration file specifies parameters for
how often the rule base is to be "recompiled." For performance reasons, the rule base should not
be recompiled more than once every few minutes.

For demonstrations and testing, the recompile frequency can be set to a shorter interval such as
three seconds so that rules defined in the Commerce Manager will take effect immediately in the
Storefront. However, any caching of the rules objects will prevent updates to the set of rules in
use. Therefore, it is necessary to turn off caching in hibernate-config.xml file if rules are to take
effect immediately (see the hibernate-config.xml section).

Updating the product cache

Depending on your Product Caching Strategy, you may need to periodically update the Product
Cache so that changes in product information take effect in the Storefront. If you are using the
default caching strategy, it is essential to enable the quartz update product cache job; it is initially
configured to run 30 seconds after startup, and then every hour after that. Please see the Product
cache section for more information about product caching.

treecache.xml

The Hibernate persistence framework used in AquaLogic Commerce Services can be configured
to use JBoss Cache to cache persistent domain objects. The configuration for this caching
behavior is specified in treecache.xml which is found in the following application-specific paths.

• Storefront – <ALCS_APP_HOME>\commerceServices\WEB-INF\classes\

• Commerce Manager – <ALCS_APP_HOME>\commerceServicesManager\WEB-
INF\classes\

The objects that will be cached are listed in hibernate-config.xml (see the hibernate-config.xml
section for details).

 Warning
Currently, the use of Hibernate caching is not recommended due to a bug in the
JBoss Cache eviction policy. It is disabled by default in hibernate-config.xml.

Configuring AquaLogic Commerce Services

40 BEA AquaLogic Commerce Services Deployment Guide

velocity.xml

Velocity is used for UI html rendering in AquaLogic Commerce Services. The velocity.xml file
for configuring Velocity is located in the following application-specific paths.

• Storefront – <ALCS_APP_HOME>\commerceServices\WEB-
INF\conf\spring\views\velocity\

• Commerce Manager – <ALCS_APP_HOME>\commerceServicesManager\WEB-
INF\conf\spring\views\velocity\

Setting Velocity properties for a production environment

Changes made to velocity.xml should be applied to both the Storefront and Commerce Manager
deployments.

Ensure that the cacheSeconds property is set to -1. When set to a positive value this property
allows you to change and test changes to message source resource files without having to restart
your application or servlet container. In production it is recommended that this property is
disabled and set to -1.

<bean id="globalMessageSource"
class="org.springframework.context.support.ReloadableResourceBundleMe
ssageSource">

 <property name="basenames">

 <list>

 <value>/WEB-INF/templates/velocity/globals</value>

 </list>

 </property>

 <!-- Set cacheSeconds to -1 in Production Environment -->

 <property name="cacheSeconds"><value>-1</value></property>

</bean>

The following properties in util-config.xml (Storefront and Commerce Manager) should also be
set for optimal performance:

• file.resource.loader.cache - "true"

• velocimacro.library.autoreload - "false"

• velocimacro.messages.on - "false"

See the util-config.xml section for more details on these configuration options.

util-config.xml

This configuration file contains the Spring configuration for utility classes. It is located in the
following application-specific paths.

Storefront

BEA AquaLogic Commerce Services Deployment Guide 41

• Storefront – <ALCS_APP_HOME>\commerceServices\WEB-INF\conf\spring\commons\

• Commerce Manager – <ALCS_APP_HOME>\commerceServicesManager\WEB-
INF\conf\spring\commons\

Within the velocityProperties bean definition, the following properties can be configured.

• file.resource.loader.cache – Set this value to "true" for production to cache templates in
Velocity's loader. Set this value to "false" for development so that changes to templates will
take effect immediately.

• velocimacro.library.autoreload – This parameter enables/disables automatic reloading of
Velocity macros. Set this value to "false" for production. For development, setting this value
to "true" will allow changes to Velocity macros to take effect without restarting the server.

• velocimacro.messages.on – Set this value to "false" for production for improved
performance. When developing Velocity templates, this value can be set to "true" to see
Velocity logging and debugging information.

• runtime.log.logsystem.class – Set this value to
org.apache.velocity.runtime.log.NullLogSystem as shown below for production.

<entry
key="runtime.log.logsystem.class"><value>org.apache.velocity.
runtime.log.NullLogSystem</value></entry>

Product Cache

AquaLogic Commerce Services implements a special cache for Storefront product information
only. The underlying cache mechanism is JBoss Cache and configuration for this instance of
JBoss Cache is in ep-treecache.xml (see the ep-treecache.xml section for details). There are
several caching strategies that are available to choose from and the nature of each strategy is
described below. The strategies are configured in ServiceSF.xml.

 Tree Cache file locations:

• ep-treecache.xml is located in
<WL_HOME>\samples\commerce\commerceApp\commerceServices\W
EB-INF\classes\

• ServiceSF.xml is located in
<WL_HOME>\samples\commerce\commerceApp\commerceServices\W
EB-INF\conf\spring\service\

Configuring AquaLogic Commerce Services to use a particular
caching strategy

Caching strategies are configured in the serviceSF.xml Spring configuration file. There are
several places in this file where the caching strategy to be used is specified by referencing the
bean id of the strategy. See below for an example.

<bean id="productViewService"

Configuring AquaLogic Commerce Services

42 BEA AquaLogic Commerce Services Deployment Guide

class="com.elasticpath.service.catalogview.impl.ProductViewServiceImp
l">

 <property name="elasticPath">

 <ref bean="elasticPath" />

 </property>

 <property name="productService">

 <ref bean="productService" />

 </property>

 <property name="productRetrieveStrategy">

 <!-- Specifiy the bean id of the caching strategy

 to be used here -->

 <ref bean="noCachingProductRetrieveSrategy" />

 </property>

</bean>

To change the caching strategy, find all instances where the current strategy is referenced by
bean id as shown above and change the id to the id of new strategy you wish to use.

Caching Strategies

The available caching strategies and their bean ids that are to be set in serviceSF.xml are
described in the following sections.

NoCachingProductRetrieveStrategy

This strategy always retrieves products from the database. Retrieved products are passed through
the rules engine.

The bean id for this strategy is "noCachingProductRetrieveSrategy"

SingleCachingProductRetrieveStrategy

This strategy retrieves a product from the database, executes rules on it, and then caches this
single instance of the product. On all subsequent requests for the product, the single cached
instance is returned. Because only a single instance of the product is cached, this strategy cannot
be used in combination with promotion rules that compute different prices for different
customers.

The bean id for this strategy is "singleCachingProductRetrieveStrategy"

RefreshableCachedProductRetrieveStrategy

This strategy is an extension of the SingleCachingProductRetrieveStrategy that allows the cached
copy of a product to be periodically refreshed from the database. Since products in the cache can

Storefront

BEA AquaLogic Commerce Services Deployment Guide 43

be updated, you may choose to configure JBoss Cache so that products are never evicted. To
prevent eviction, modify ep-treecache.xml so that the timeToLiveSeconds and maxAgeSeconds
attributes have a value of 0 as shown below.

<!-- Cache wide default -->

<region name="/_default_">

 <!-- This is the maximum number of nodes allowed in this
region.

 Any integer less than or equal to 0 will throw an
exception

 when the policy provider is being configured for use. -->

 <attribute name="maxNodes">50000</attribute>

 <!-- Time to idle (in seconds) before the node is swept away.

 0 denotes no limit. -->

 <attribute name="timeToLiveSeconds">0</attribute>

 <!-- Time an object should exist in TreeCache (in seconds)

 regardless of idle time before the

 node is swept away. 0 denotes no limit. -->

 <attribute name="maxAgeSeconds">0</attribute>

</region>

When using this strategy, you will need to enable a job in quartz.xml (Storefront) that will
periodically retrieve modified products from the database and update their cache entries. To
enable this job, ensure that the updateProductCacheTrigger bean is declared in the
schedulerFactory bean as shown below.

<bean id="schedulerFactory"

class="org.springframework.scheduling.quartz.SchedulerFactoryBean">

 <property name="triggers">

 <list>

 <!-- The presence of this trigger enables the cache

 refresh job -->

 <ref bean="updateProductCacheTrigger" />

 </list>

 </property>

</bean>

You can configure the start delay and the interval that products are refreshed in the quartz.xml
XML block shown below.

Configuring AquaLogic Commerce Services

44 BEA AquaLogic Commerce Services Deployment Guide

<bean id="updateProductCacheTrigger"

 class="org.springframework.scheduling.quartz.SimpleTriggerBean">

 <property name="jobDetail" ref="updateProductCacheJob" />

 <!-- Start delay in *milliseconds* -->

 <property name="startDelay" value="30000" />

 <!-- repeat interval in *milliseconds* (3600000 = 1 hour) -->

 <property name="repeatInterval" value="3600000" />

</bean>

When using the RefreshableCachedProductRetrieveStrategy, it is necessary to periodically re-
execute promotion rules on cached products because the promotion rules that apply to the cached
product may have changed. You can configure the amount of time for which a product may be
returned from the cache without re-running rules in the serviceSF.xml configuration file as shown
in the XML block below.

<bean init-method="start"
id="refreshableCachedProductRetrieveSrategy"

 class="com.elasticpath.service.catalogview.

impl.RefreshableCachedProductRetrieveStrategyImpl">

 <property name="epRuleEngine">

 <ref bean="epRuleEngine" />

 </property>

 <property name="productService">

 <ref bean="productService" />

 </property>

 <property name="defaultProductLoadTuner">

 <ref bean="productLoadTunerForProductPage" />

 </property>

 <!-- Set the rule execution interval here (in seconds).

 If a product is requested from the cache and it has

 existed in the cache for longer than this period of

 time then it will have rules re-executed on it. -->

 <property name="ruleExecutionIntervalSeconds">

 <value>30</value>

 </property>

</bean>

The bean id for this strategy is "refreshableCachedProductRetrieveSrategy"

Commerce Manager (CM)

BEA AquaLogic Commerce Services Deployment Guide 45

 Important

If you configure JBoss Cache in ep-treecache.xml to never evict products (by
setting time values of 0), then it is necessary to use the
RefreshableCachedProductRetrieveStrategy and configure the
updateProductCache job in quartz.xml.

Commerce Manager (CM)

Follow the Storefront instructions for configuring acegi.xml in your Commerce Manager
application.

Then configure the following files in your Commerce Manager application:

• commerce-config.xml

• hibernate-config.xml

• quartz.xml

• velocity.xml

• util-config.xml

commerce-config.xml

See the Storefront commerce-config.xml section for the details on property configurations that
are common to the Storefront, Commerce Manager, and Connect applications.

The following are the names and descriptions of the key Commerce Manager elements the
commerce-config.xml configuration file that differ from the Storefront commerce-config.xml.

• commerceConfig - the main element containing all the configuration settings for an
AquaLogic Commerce Services implementation.

o web - the element containing all web-related settings.

 web.cm.context.url - the context part of the URL for the Commerce
Manager application. For example, "alcscm". Set this to an empty string
if the application is in the root context.

o search - the element containing catalog search settings

 maxReturnNumber - the maximum number of records returned in search
results, such as customers and orders.

o shipmentcarrier - the element containing the shipment carrier settings

 carrier.all - the list of all shipment carriers, separated by commas

Configuring AquaLogic Commerce Services

46 BEA AquaLogic Commerce Services Deployment Guide

o productrecommendations - the element containing product recommendation
settings

 productrecommendations.numorderhistorymonths - the number of
months of previous order history that is used in product recommendation
calcuations

 productrecommendations.maxrecommendations - the maximum number
of recommendations that will be computed for each product

 Setting either value to -1 prevents recalculation of the product
recommendations. However, existing recommendations will NOT be removed as
a result of setting the value to -1.

hibernate-config.xml

See the Storefront hibernate-config.xml section for the details on configuring hibernate-
config.xml for both the Storefront and Commerce Manager.

quartz.xml

The quartz.xml file is used to configure regularly scheduled jobs. See the Storefront quartz.xml
section for a description of the basic structure of a quartz.xml file.

Commerce Manager Quartz Jobs

The Commerce Manager has three configured jobs:

• indexBuildJob – builds the lucene search index

• productRecommendationJob – recomputes product recommendations

• topSellerJob – determines the latest top selling products

Building the Lucene Search Index
• The index build process will pick up all added, modified, and deleted objects since the last

build and update the index accordingly.

 Since orders cannot be deleted from the system, the index build process won't
pick up deleted orders.

• Commerce Manager index build scheduling should normally have a shorter lag time than the
Storefront to ensure the index is as up-to-date as possible. The default setting is to start the
first build 5 seconds after application server started and then build every 5 seconds.

• Indexes are created under the following subcategories of the application WEB-INF directory:

Connect

BEA AquaLogic Commerce Services Deployment Guide 47

o categoryIndex

o productIndex

o customerIndex

o orderIndex

• In a development environment, you can disable the index build by setting the following flag
to true in the env.config file as follows.

ep.disable.index.build=true

Disabling the index build at this level will disable indexes in the Storefront as
well.

Computing Product Recommendations

A trigger is declared for computing product recommendation data. A SimpleTriggerBean is
typically used to compute recommendations every 30 seconds for demonstration purposes. For
production, a CronTriggerBean should be used to compute recommendations with a longer
interval such as one day.

Computing the Top Sellers

A trigger is declared for computing the top selling product statistics. Like the product
recommendation job, A SimpleTriggerBean is typically used to compute recommendations every
30 seconds for demonstration purposes. For production, a CronTriggerBean should be used to
compute recommendations with a longer interval such as one day.

velocity.xml

See the Storefront velocity.xml section for the details on configuring velocity template properties
for both the Storefront and Commerce Manager.

util-config.xml

See the Storefront util-config.xml section for the configuration options for both the Storefront and
Commerce Manager.

Connect

Follow the instructions in the following sections for configuring your Connect application.

• Storefront acegi.xml – Configuring https security and adding new users / roles / permissions
for web services.

• Commerce Manager commerce-config.xml – Configuring max number of results for order
and customer search.

• Storefront hibernate-config.xml – Database-related configurations.

Configuring AquaLogic Commerce Services

48 BEA AquaLogic Commerce Services Deployment Guide

• Commerce Manager quartz.xml – Configuring the Lucene index for order and customer
searches.

One Page Checkout

One Page checkout is included and turned on by default in AquaLogic Commerce Services. See
the commerce-config.xml section for the One Page checkout configuration options.

PowerReviews Product Reviews (optional)

The basic steps required to setup PowerReviews product reviews are as follows:

1. Setup a merchant account with PowerReviews (see the PowerReviews website at
http://www.powerreviews.com/ for details)

2. Setup a new login on your FTP server for PowerReviews to send your scheduled ZIP file
with review data and the latest JavaScript code

3. Create a script to unzip the contents of the PowerReviews ZIP file from your FTP server to
the <ALCS_APP_HOME>\commerceServices\template-resources\power-reviews\ directory
on your AquaLogic Commerce Services Storefront server (overwriting the existing directory)

4. Configure PowerReviews settings in AquaLogic Commerce Services (see the Storefront
commerce-config.xml section for details)

Consult your PowerReviews documentation for more details on how to setup and customize
PowerReviews.

Configuring for Optimal Performance

This page lists tips and settings for configuring AquaLogic Commerce Services for optimal
performance. The first section outlines general performance tuning considerations that affect both
the Storefront and Commerce Manager. The following sections describe specific optimizations
for the Storefront and Commerce Manger. The Advanced optimization section covers additional
techniques for troubleshooting performance problems.

 This document only covers performance topics from a configuration and
deployment perspective.

General

Key Configuration files and settings

Refer to the documentation of the following configuration files to ensure you have configured
AquaLogic Commerce Services for a production environment. Remember to check these files in
both your Storefront and your Commerce Manager deployments.

Configuring for Optimal Performance

BEA AquaLogic Commerce Services Deployment Guide 49

• velocity.xml - It is very important that you have configured Velocity for production
according to these instructions.

• util-config.xml - It is very important that you have configured Velocity for production
according to these instructions.

• ep-treecache.xml - You can tweak cache settings in this file to tune your performance
(Storefront only).

• hibernate-config.xml - Check that "show SQL" is off. You can also tweak the commit batch
size to tune import manager performance.

• quartz.xml - Check this file to ensure that you are not running batch jobs during peak times or
during performance tests.

 Performance tip
Check that you have configured Velocity for production by following the
instructions in velocity.xml and especially util-config.xml.

Run your JVM in server mode

The JVM server mode will take longer to start but performs better once it is running. Use server
mode for production environments and client mode for development only.

Specify the JVM heap size

By default, a JVM may only be able to use 64M or 128M memory.
You should specify the heap size of the application server JVM to make more memory accessible
to it.

• -Xms specifies the initial Java heap size

• -Xmx specifies the maximum Java heap size

Sample setting:

-Xmx4096m -Xms4096m

 Linux Memory Limitation

In 32bit Linux, the JVM may only be able to use up to 2GB memory.

Use a different garbage collector

In JVM version 1.5, several types of garbage collectors are provided. On a 2-CPU server, our test
results show that the concurrent low pause collector gives a little better performance under stress.

Application Server
• Shorten the session timeout

If you define a long session timeout, data stored in the session have a higher chance of being
pushed up into slower segments of the JVM memory where they are expensive to garbage
collect. Shorter timeouts will also increase the amount of memory available.

Configuring AquaLogic Commerce Services

50 BEA AquaLogic Commerce Services Deployment Guide

• Consider disabling session replication
Session replication makes it possible to retain customer sessions when an application server is
down. However, this will slow down application servers to some extent. If it's not critical to
retain customer sessions, disabling replication can result in better performance.

Reverse Proxy Server

Reverse proxy servers are often used to cache static content to reduce load on application servers.
AquaLogic Commerce Services implements an image renderer which can render an image in any
desired size. This simplifies image management but also incurs CPU overhead each time an
image is rendered. However there is a little cpu overhead for the application server to use this
image renderer again and again on the same image. We recommend enabling caching for the
rendered images on a reverse proxy server.

Infrastructure

Ensure that enough network bandwidth is provided between the following servers.

• Internet and the reverse proxy server

• Reverse proxy server and the application servers

• Application servers and the database server

Storefront

Use the AquaLogic Commerce Services product cache

Ensure that the product retrieval strategy in use is the SingleCachingProductRetrieveStrategy.
The strategy to use is configured in the serviceSF.xml Spring configuration file. Check that all
objects which use a product retrieval strategy are using the
SingleCachingProductRetrieveStrategy. See ep-treecache.xml to fine tune this cache, which is
based on JBoss Cache.

Advanced optimization

Monitor JVM memory usage in JVM 5.0

You can use the following tools that ship with JVM 1.5 to monitor memory usage.

jstat -gc JVM_PROCESS_ID MONITORING_INTERVAL

e.g. jstat -gc 1234 5000

How to get a thread trace

A thread trace will help you see thread status and find thread blockers.
You can use the following command in Linux to get a thread trace.

kill -3 JVM_PROCESS_PID

General Clustering Architecture

BEA AquaLogic Commerce Services Deployment Guide 51

Load Balancing and Clustering (optional)

This section explains how to setup a cluster of WebLogic servers with Apache HTTP Server as a
load balancer and rsync for file synchronization.

General Clustering Architecture

A server cluster is a group of computers that act as one server. The most common use of a cluster
is to increase performance and/or availability. When setup as a load balancing cluster, the work
goes through one server and then is distributed among all nodes in the cluster.

Cluster Components

The following are the typical components of a load balancing cluster.

• Load Balancer – All traffic to your website goes through this server and it distributes the
work to the nodes in the cluster.

• Cluster Nodes – The servers in the cluster that each have an instance of the web application
and perform all of the work.

• File Synchronization Server – Synchronizes changes to common files across all servers in the
cluster.

AquaLogic Commerce Services has been architected to run on a load balanced cluster. A typical
configuration for this would be as follows.

• Load Balancer – An Apache server with a load balancing module configured.

• Cluster Nodes – Multiple application servers setup in a cluster each with the AquaLogic
Commerce Services Storefront deployed to it.

• Commerce Manager Server – One application server with the AquaLogic Commerce Services
Commerce Manager deployed to it.

• File Synchronization Server – An rsync server setup on the Commerce Manager Server and
an rsync client setup on each Cluster Node.

Clustering Your Application Server

This section provides you with the tools and information you need to setup an application server
cluster with WebLogic.

WebLogic 9.2 Clustering

This section describes how to setup a WebLogic 9.2 cluster on Linux servers using the BEA
WebLogic Scripting Tool (WLST). WLST is a scripting tool installed with WebLogic that allows
for command-line configuration of the WebLogic server. The set of scripts provided here along
with these instructions will allow you to setup a WebLogic cluster in your environment with ease.

Load Balancing and Clustering (optional)

52 BEA AquaLogic Commerce Services Deployment Guide

Clustering Scripts Setup

In preparation for running the WLST scripts to create a cluster, you will need to download the
WLST Clustering Scripts package at
http://edocs.bea.com/alcs/docs51/pdf/wlstClusteringScripts.zip (ZIP, 7KB) and unzip it to a
directory. After that, configure the environment variables in all of the scripts to match your
environment. A description of the variables that will need to be set can be found in the section
Environment Variables to Configure in the WLST Scripts. After that, copy the files to the servers
that you will be using in the cluster. You will then need to navigate to this directory on a server to
execute any of the scripts on that server.

Steps to Create the WebLogic Domain and Setup the Cluster

On the Server hosting the AdminServer:

1 Create a domain with
AdminServer and a cluster
of two managed servers

WL_HOME/common/bin/wlst.sh createcluster.py DOMAIN_NAME
CLUSTER_NAME

2 Start the node manager
and AdminServer

WL_HOME/common/bin/wlst.sh startadminserver.py DOMAIN_NAME

3 Setup JDBC Data Source WL_HOME/common/bin/wlst.sh createjdbc.py
t3://AdminServerIP:AdminServerHttpPort CLUSTER_NAME

4 Pack the domain WL_HOME/common/bin/pack.sh -managed=true -
domain=DOMAIN_PATH -template=DOMAIN_TEMPLATE -

template_name=DOMAIN_TEMPLATE_NAME

On all servers not hosting the AdminServer:

5 Unpack the
domain

Copy DOMAIN_TEMPLATE from the server hosting the AdminServer to the
same directory on all other servers that are a part of the cluster and then
execute the following command on the servers to create the base domain:

WL_HOME/common/bin/unpack.sh -domain=DOMAIN_PATH -
template=DOMAIN_TEMPLATE

6 Enroll the node
manager with

AdminServer and
then start it

Execute the following command on the servers to setup the node managers
and start them: WL_HOME/common/bin/wlst.sh enrollnodemanager.py

t3://AdminServerIP:AdminServerHttpPort DOMAIN_NAME

On the Server hosting the AdminServer:

7 Deploy the AquaLogic
Commerce Services code

to the cluster

WL_HOME/common/bin/wlst.sh deploy.py
t3://AdminServerIP:AdminServerHttpPort DEPLOYMENT_NAME

APPLICATION_PATH CLUSTER_NAME

Clustering Your Application Server

BEA AquaLogic Commerce Services Deployment Guide 53

8 Start the cluster WL_HOME/common/bin/wlst.sh startcluster.py
t3://AdminServerIP:AdminServerHttpPort CLUSTER_NAME

Additional Useful Scripts
To create another server in the
cluster, execute this command

after step 1

WL_HOME/common/bin/wlst.sh createmanagedserver.py
DOMAIN_NAME CLUSTER_NAME

To shut down server ServerName WL_HOME/common/bin/wlst.sh stopserver.py DOMAIN_NAME
ServerName

To remove a deployment WL_HOME/common/bin/wlst.sh undeploy.py
t3://AdminServerIP:AdminServerHttpPort DEPLOYMENT_NAME

Descriptions of Constants Used in Setup Steps
BEA_HOME The BEA Home directory where files common to all BEA products are

stored

(eg. /opt/bea/)

WL_HOME The WebLogic Server product installation directory

(eg. /opt/bea/weblogic92/)

AdminServerIP The IP address of the server that the AdminServer is on

AdminServerHttpPort The port for the AdminServer to listen to http requests on

DOMAIN_NAME The name of the clustered domain to be created (eg.
alcsclusterdomain)

DOMAIN_PATH BEA_HOME/user_projects/domains/DOMAIN_NAME

(the path to the clustered domain)

DOMAIN_TEMPLATE The filename of the domain template to be created or accessed (eg.
BEA_HOME/user_templates/alcsclusterdomain_managed.jar)

DOMAIN_TEMPLATE_NAME The descriptive name of the domain template to be created

(eg. "ALCS Clustered Domain")

CLUSTER_NAME The name of the cluster to create (eg. wlsCluster)

DEPLOYMENT_NAME The name for the deployment of

AquaLogic Commerce Services application code

(eg. alcssf_cluster_deployment)

APPLICATION_PATH The path to where the AquaLogic Commerce Services

application has been setup

Load Balancing and Clustering (optional)

54 BEA AquaLogic Commerce Services Deployment Guide

 (eg.
WL_HOME/samples/commerce/commerceApp/commerceServices)

Environment Variables to Configure in the WLST Scripts
BEA_HOME The BEA Home directory where files common to all BEA products are stored

(eg. /opt/bea/)

WL_HOME The WebLogic Server product installation directory (eg.
/opt/bea/weblogic92/)

JAVA_HOME The root directory of the Java JDK install that is used to run WebLogic (eg.
/opt/j2sdk)

AdminServerIP The IP address of the server that the AdminServer is on

AdminServerHttpPort The port for the AdminServer to listen to http requests on

AdminServerHttpsPort The port for the AdminServer to listen to https requests on

AdminServerPassword The password used to connect to the AdminServer as default user weblogic

Machine1IP The IP address of the server hosting the first managed server in the cluster

Machine1Name The machine name of the server hosting the first managed server in the
cluster

Server1HttpPort The port for the first managed server to listen to http requests on

Server1HttpsPort The port for the first managed server to listen to https requests on

Server1Name The name to use for the first managed server in the cluster (eg.
alcsServer1)

Machine2IP The IP address of the server hosting the second managed server in the
cluster

Machine2Name The machine name of the server hosting the second managed server in the
cluster

Server2HttpPort The port for the second managed server to listen to http requests on

Server2HttpsPort The port for the second managed server to listen to https requests on

Server2Name The name to use for the second managed server in the cluster (eg.
alcsServer2)

JdbcName The descriptive name of the JDBC data source (eg. ALCS)

JndiName The JNDI name of the JDBC data source (eg. jdbc/alcsjndi)

Load Balancing

BEA AquaLogic Commerce Services Deployment Guide 55

Url The JDBC connection URL (eg. jdbc:oracle:thin:@11.11.1.111:1111:alcs)

JdbcDriverName The name of the JDBC driver (eg. oracle.jdbc.OracleDriver)

DbUserName The username for accessing the database

DbUserPassword The password for accessing the database

Useful Websites
Example setting up a

clustered deployment on a
single server with WLST

http://dev2dev.bea.com/pub/a/2006/03/wlst-clustered-
deployment.html?page=1

Steps for Creating and
starting a managed server

on a remote machine

http://edocs.bea.com/common/docs92/pack/tasks.html#wp1068348

WLST Documentation http://edocs.beasys.com/wls/docs92/config_scripting/

WLST Command and
Variable Reference

http://e-docs.bea.com/wls/docs92/config_scripting/reference.html

WebLogic Server Mbean
Reference

http://e-docs.bea.com/wls/docs92/wlsmbeanref/core/index.html

Load Balancing

Apache HTTP Server may be used along with an installed module to load balance among a
cluster of application servers. This section explains how to setup Apache HTTP Server and the
sub-sections give the details on how to setup the WebLogic Apache HTTP Server Plug-in module
for load balancing. WebLogic provides the WebLogic Apache HTTP Server Plug-in module to be
used with Apache for load balancing WebLogic servers.

Setup of the Apache HTTP Server as a Load Balancer
• Download the latest version of Apache that can be used with the module that you will be

using from the Apache Downloads Page at http://httpd.apache.org/download.cgi.

 If you download the source code and build it based on the instructions, don't
forget to enable ssl when you do the configuration.

$ {APACHE_HTTP_SERVER_SRC_DIR}/configure --enable-ssl

 --enable-so -enable-mods-shared="proxy \

 proxy_http proxy_ftp proxy_connect headers cache

 disk_cache mem_cache"

 --prefix={INSTALL_FULL_PATH}

$ {APACHE_HTTP_SERVER_SRC_DIR}/make

Load Balancing and Clustering (optional)

56 BEA AquaLogic Commerce Services Deployment Guide

$ {APACHE_HTTP_SERVER_SRC_DIR}/make install

• Setup SSL for the Apache server

o Create an SSL key and certificate
Refer to the article at
http://www.samspublishing.com/articles/article.asp?p=30115&seqNum=4
for instructions on how to do this.

o Copy the SSL key to APACHE_HOME/conf/, renaming the file to "server.key".

o Copy the SSL certificate to APACHE_HOME/conf/, renaming it to "server.crt".

• Apache Http Server Control
The following commands can be used to start and stop the Apache server. See the
documentation on the version of Apache that you downloaded for the full details of all
commands.

• Start with ssl enabled:
• {APACHE_HOME}/bin/apachectl startssl
•
• Stop:

• {APACHE_HOME}/bin/apachectl stop

Configuring Apache with WebLogic Apache Http Server Plug-in
This section explains how to setup Apache HTTP Server with WebLogic's Apache Http Server
Plug-in module to load balance a cluster of WebLogic 9.2 servers. See BEA's WebLogic 9.2
Apache HTTP Server Plug-In documentation at http://e-
docs.bea.com/wls/docs92/plugins/apache.html for more detailed instructions.

Load Balancing Setup with the WebLogic Apache HTTP Server Plug-
in
1. Setup the Apache WebLogic clustering configuration files

o Unzip the Apache WebLogic cluster configuration file at
http://edocs.bea.com/alcs/docs51/pdf/apacheWebLogicClusterConfiguration.zip
(ZIP, 2KB) to APACHE_HOME/conf/ on the Apache server.

o Configure the values of the elements in the unzipped files weblogic.conf and ssl-
weblogic.conf to match your environment. The following are descriptions of the
elements in the files that will need to be configured:

APACHE_HOME The BEA Home directory where files common to
all BEA products are stored (eg.

/opt/httpd.2.0.52/)

APACHE_IP The IP address of the server hosting Apache

APACHE_MACHINE_NAME The descriptive machine name of the server
hosting Apache

File Synchronization with rsync

BEA AquaLogic Commerce Services Deployment Guide 57

APACHE_HTTP_PORT The port that the Apache server will be listening
to http requests on

APACHE_HTTPS_PORT The port that the Apache server will be listening
to https requests on

SERVER1_IP The IP address of the server hosting the first
managed server in the cluster

SERVER1_HTTP_PORT The port that the first managed server is listening
to http requests on

SERVER2_IP The IP address of the server hosting the second
managed server in the cluster

SERVER2_HTTP_PORT The port that the second managed server is
listening to http requests on

APPLICATION_CONTEXT_NAME The name of the Elastic Path Storefront context.
Apache will only handle requests with this context
in it. If the context is empty or you want Apache

to handle all requests against
APACHE_HTTP_PORT/APACHE_HTTPS_PORT, then

this line can be taken out of the files.

2. Setup Apache Http Server Plug-in Module

o Copy the correct version of the WebLogic Apache Http Server Plug-in for the
Operating System of your Apache server from the WebLogic install to
APACHE_HOME/modules. See the Apache HTTP Server Plug-In
documentation at http://e-docs.bea.com/wls/docs92/plugins/apache.html to
determine which is the correct version to copy.

o Comment out the following line in APACHE_HOME/conf/httpd.conf so it can
be replaced with a clustered WebLogic SSL configuration file.

Include conf/ssl.conf

o Add the following lines to APACHE_HOME/conf/httpd.conf under the other
LoadModule lines to include the weblogic clustering configurations (replacing
mod_wl_20 with the correct name of the server plug-in module that you copied
over).

LoadModule weblogic_module modules/mod_wl_20.so

<IfModule mod_ssl.c>

 Include conf/ssl-weblogic.conf

</IfModule>

Include conf/weblogic.conf

File Synchronization with rsync

AquaLogic Commerce Services uses rsync to synchronize asset and template files between a
Commerce Manager server and Storefront servers.

Load Balancing and Clustering (optional)

58 BEA AquaLogic Commerce Services Deployment Guide

If your Commerce Manager and Storefront are located on the same server, you do not need to
setup an rsync server.

If they are located on different servers, however, then you will need to setup an rsync daemon on
the server hosting the Commerce Manager and rsync clients on all Storefront servers.

Download rsync
• Download the rsync software from the rsync download page at

http://samba.anu.edu.au/rsync/download.html.
The rsync server and client are bundled together. If you downloaded the source code, you can
run the following commands to build it (a C compiler is required for this).

• {RSYNC_SRC_DIR}/configure
• {RSYNC_SRC_DIR}/make
• {RSYNC_SRC_DIR}/make install

Set Up the rsync Server
1. Setup the rsync daemon on the Commerce Manager server (replacing SF1_SERVER_IP and

SF2_SERVER_IP with the IP addresses of the servers that you will be using as the nodes in
the cluster and <ALCS_APP_HOME> with the path to the root of the AquaLogic Commerce
Services code base).

motd file = /etc/rsyncd.motd

log file = /var/log/rsyncd.log

pid file = /var/run/rsyncd.pid

lock file = /var/run/rsync.lock

hosts allow = SF1_SERVER_IP, SF2_SERVER_IP

exclude = .svn .svn/* *.bak

[assets]

 path = <ALCS_APP_HOME>/ assets

 comment = assets

[templates]

 path = <ALCS_APP_HOME>/commerceServicesManager/WEB-
INF/templates

 comment = view templates

2. Create the welcome message file /etc/rsyncd.motd.

Welcome to rsyncd server.

3. Start the rsync daemon.

rsync --verbose --progress --stats --compress --
rsh=/usr/local/bin/ssh \

 --recursive --times --perms --links --delete \

 -daemon

File Synchronization with rsync

BEA AquaLogic Commerce Services Deployment Guide 59

Setup the rsync Client on the Storefront Servers
1. Create a new file /sbin/rsync_alcs as follows (replacing CM_SERVER_IP with the IP address

of the server that will be hosting the Commerce Manager and ALCS_INSTALL_PATH with
the path to the root of the AquaLogic Commerce Services code base).

#!/bin/bash

rsync --verbose --progress --stats --compress --recursive --
times --perms

 --links --delete

 CM_SERVER_IP::assets/* <ALCS_APP_HOME>/ /assets

rsync --verbose --progress --stats --compress --recursive --
times --perms

 --links --delete

 CM_SERVER_IP::templates/* <ALCS_APP_HOME>/commerceServices
/template-resources/templates

1. Execute "chmod 744 /sbin/rsync_alcs"

2. Create a new cron job /etc/cron.d/rsync as follows:

1. # run rysnc every 10 minutes

2. */10 * * * * root /sbin/rsync_alcs

 Keep in mind that if a large number of files need to be replicated, it may take a
while before they are transferred to each Storefront. If you are planning on
importing a lot of products into a live production catalog, you should first
upload the media files to the Commerce Manager application and let the
replication finish before running the import.

References

Linux rsync Tutorial: http://everythinglinux.org/rsync/

