UMT/DCL/DD/0002 411-8111-905

Wireless Service Provider Solutions

UMTS

Product Fundamentals About the Univity iBTS

UMT/DCL/DD/0002 03.09/EN Preliminary October 2003 411-8111-905

Wireless Service Provider Solutions

UMTS

Product Fundamentals About the Univity iBTS

Document number: UMT/DCL/DD/0002

411-8111-905

Document issue: 03.09/EN
Document status: Preliminary
Product release: UMTS03
Date: October 2003

Copyright © 2000-2003 Nortel Networks, All Rights Reserved Printed in France

NORTEL NETWORKS CONFIDENTIAL

The information contained herein is the property of Nortel Networks and is strictly confidential. Except as expressly authorized in writing by Nortel Networks, the holder shall keep all information contained herein confidential, shall disclose the information only to its employees with a need to know, and shall protect the information, in whole or in part, from disclosure and dissemination to third parties with the same degree of care it uses to protect its own confidential information, but with no less than reasonable care. Except as expressly authorized in writing by Nortel Networks, the holder is granted no rights to use the information contained herein.

Information is subject to change without notice. Nortel Networks reserves the right to make changes in design or components as progress in engineering and manufacturing may warrant.

Nortel Networks, the Nortel Networks logo, the Globemark, Univity iBTS, Univity RNC, Passport, and Unified Networks are trademarks of Nortel Networks. Bussmann is a trademark of Bussmann. All other brand and product names are trademarks or registered trademarks of their respective holders.

Nortel Networks Confidential Publication history

PUBLICATION HISTORY

SYSTEM RELEASE UMTS03

October 2003

Issue 03.09/EN Preliminary Update after internal review

September 2003

Issue 03.08/EN Draft

Update for OAM V3.1/RAN V3.1 Customer Readiness

Introduction of UMTS 1900 Univity iBTSs Mono and Indoor Compact

August 2003

Issue 03.07/EN Preliminary
Update after internal review

July 2003

Issue 03.06/EN Draft

Update for OAM V3.1/RAN V3.1 Customer Readiness

Introduction of UMTS 1900 iBTSs Indoor 2 and Outdoor

July 2003

Issue 03.05/EN Preliminary

Update after FCC Regulatory information validation

June 2003

Issue 03.04/EN Draft

FCC Regulatory Information enhancement: addition of North-American rules

May 2003

Issue 03.03/EN Preliminary

Update after Internal Review

April 2003

Issue 03.02/EN Draft

Update for OAM V3.1/RAN V3.1

April 2003

Issue 03.01/EN Standard

Minor update

i

Nortel Networks Confidential Publication history

Document version change (UTRAN V2.1 belong to UMTS V3.0b system release)

SYSTEM RELEASE UMTS02

January 2003

Issue 02.08/EN Standard
Editorial Update to introduce the iBTS Indoor 2

November 2002

Issue 02.07/EN Standard
Update for UMTS V2.1 UTRAN

September 2002

Issue 02.06/EN Preliminary
Update for UMTS V2.0d UTRAN

July 2002

Issue 02.05/EN Preliminary Minor update

July 2002

Issue 02.04/EN Preliminary Update after internal review

June 2002

Issue 02.03/EN Draft Update for UMTS V2.0c UTRAN

May 2002

Issue 02.02/EN Preliminary Update after internal review

March 2002

Issue 02.01/EN Draft

- introduction of the STSR2 configuration
- introduction of the new iBTS Street
- drop and insert feature description

SYSTEM RELEASE UMTS01

February 2002

Issue 01.08/EN Preliminary Update after review

ii

Nortel Networks Confidential Publication history

January 2002

Issue 01.07/EN Draft

Update according the product release change.

October 2001

Issue 01.06/EN Preliminary

Update after review

September 2001

Issue 01.05/EN Draft

The following changes were made throughout the document:

- · modify modules organization throughout the document
- update the iBTS features according to the system release change
- · update the configuration rules
- · add the TMA description
- update the PFM description
- update the ac plinth description
- · update the batteries description
- modify software section

July 2001

Issue 01.04/EN Preliminary

Update after review

June 2001

Issue 01.03/EN Draft

The following changes were made throughout the document:

- · update the iBTS description and configuration according to the system release
- update the hardware description
- add information about physical interfaces, cabling, functional architecture, and software
- add and update the ancillary modules
- add the configuration description
- delete the dimensioning section

January 2001

Issue 01.02/EN Preliminary

Update after review

December 2000

iii

Nortel Networks Confidential Publication history iv

Issue 01.01/EN Draft Creation

About this publication	1
What is in new about the Univity iBTS	3
Univity iBTS regulatory information	5
UTRAN introduction of the UMTS03 solution	10
Univity iBTS basic characteristics	14
Univity iBTS introduction	15
Univity iBTS key features	24
Univity iBTS characteristics	26
Univity iBTS architecture and configuration	32
Univity iBTS architecture	33
Univity iBTS RF configuration	37
Univity iBTS interfaces	54
Uu interface physical description	55
lub interface physical description	56
Univity iBTS hardware	57
Univity iBTS hardware presentation	58
Univity iBTS digital shelf	80
Univity iBTS digital shelf description	81
CEM (Channel Element Module)	88
iCEM (internet Channel Element Module)	95
CCM (Core Control Module)	100
iCCM (internet Core Control Module)	104
TRM (Transceiver Receiver Module)	109
iTRM (internet Transceiver Receiver Module)	118
GPSAM/cGPSAM (GPS and Alarm Module)	122
Univity iBTS RF block	126

Univity iBTS Radio Frequency (RF) Description	127
MCPA (Multi Carrier Power Amplifier)	131
Tx Splitter	136
DDM (Dual Duplexer Module)	139
Univity iBTS cabinet other modules	145
MCA (Manufacturing, Commissioning, and Alarm) module	146
Mono Control Board	151
Single Power Control Module (SPCM)	153
TMA (Tower Masterhead Amplifier)	155
Interconnection module of the Univity iBTS	162
Alarm protection module	167
PCM protection module (iBTS Outdoor)	171
PCM protection module (iBTS Indoor 2)	173
PFM (Power Filter Module) (Univity iBTS Indoor 2100)	176
User ICO of the iBTS Outdoor	177
User ICO of the Univity iBTS Street 2100	178
Univity iBTS cooling system	179
Cooling system of the Univity iBTS Outdoor	180
Fan tray of the Univity iBTS Indoor 2100	183
Cooling system of the Univity iBTS Street 2100	185
Cooling system of the Univity iBTS Indoor 2	188
Cooling system of the Univity iBTS Indoor 1900 Compact	191
Univity iBTS power system	195
Power supply of the Univity iBTS Outdoor	196
Power supply of the Univity iBTS Indoor 2100	202
ac plinth (Univity iBTS Indoor 700 2100)	205

209
211
214
216
218
221
224
227
229
231
232
233
236
237
238
242
244
246
249
250
253
254
257
258
258 259

Nortel Networks Confidential Table of contents viii

Impact of the multi PCM feature on the network

263

Figure 1 - UTRAN architecture example of the UMTS03 solution (1900 MHzSONET)	11
Figure 2 - UTRAN architecture example of the UMTS03 solution (2100 MHz SDH)	12
Figure 3 - UTRAN architecture example of the UMTS03 solution (2100 MHz PCM)	13
Figure 4 - Univity iBTS Outdoor outside view	18
Figure 5 - Univity iBTS Indoor 2100 outside view	19
Figure 6 - Univity iBTS Street 2100 outside view	20
Figure 7 - Univity iBTS Indoor 2 outside view	21
Figure 8 - Univity iBTS Mono outside view	22
Figure 9 - Univity iBTS Indoor 1900 Compact outside view	23
Figure 10 - Univity iBTS functional architecture	34
Figure 11 - Univity iBTS hardware architecture	35
Figure 12 - Univity iBTS Mono configuration	40
Figure 13 - Univity iBTS Indoor 1900 Compact with OTOR1 configuration (functional	43
diagram) Figure 14 - Univity iBTS Indoor 1900 Compact with OTOR2 configuration (functional	44
diagram)	
Figure 15 - Univity iBTS Indoor 1900 Compact with BTBR1 configuration (functional	45
diagram) Figure 16 - Univity iBTS Indoor 1900 Compact with BTBR2 configuration (functional	46
diagram)	4-
Figure 17 - Univity iBTS Outdoor 2100, Univity iBTS Indoor 600, Univity iBTS Indoor 700, or Univity iBTS Indoor 2 2100 with OTSR1 configuration (functional diagram)	47
Figure 18 - Univity iBTS Street 2100 with OTSR1 configuration (functional diagram)	48
Figure 19 - iBTS Outdoor, iBTS Indoor 600, iBTS Indoor 700, or iBTS Indoor 2 with	49
STSR1 configuration without TRM/iTRM redundancy (functional diagram)	
Figure 20 - Univity iBTS Street 2100 with STSR1 configuration (functional diagram)	50
Figure 21 - Univity iBTS Indoor 1900 Compact with STSR1 configuration (functional diagram)	51
Figure 22 - Univity iBTS Outdoor, Univity iBTS Indoor 600, Univity iBTS Indoor 700,	52
Univity iBTS Indoor 2, or Univity iBTS Indoor 1900 compact with STSR2 (functional	
diagram)	50
Figure 23 - Inside view (Univity iBTS Outdoor 2100)	59
Figure 24 - Inside view (Univity iBTS Indoor 600)	61
Figure 25 - Inside view (Univity iBTS Indoor 700)	62
Figure 26 - Bulkhead top view (Univity iBTS Indoor 600)	63
Figure 27 - Bulkhead top view (Univity iBTS Indoor 700)	64
Figure 28 - Inside view (Univity iBTS Street 2100)	66
Figure 29 - Cabinet layout (Univity iBTS Street 2100)	67
Figure 30 - Internal cabling top view (Univity iBTS Street 2100)	68
Figure 31 - Inside view (Univity iBTS Indoor 2)	69
Figure 32 - Cabinet Layout (Univity iBTS Indoor 2)	70
Figure 33 - Bulkhead top view (Univity iBTS Indoor 2)	71
Figure 34 - Inside view (Univity iBTS Mono 2100)	73
Figure 35 - Cabinet layout (Univity iBTS Mono 2100)	74
Figure 36 - Bulkhead below view (Univity iBTS Mono 2100)	75

İΧ

Nortel Networks Confidential List of figures

Figure	37 -	Inside view (Univity iBTS Indoor 1900 Compact	77
Figure	38 -	Cabinet layout (Univity iBTS Indoor 1900 Compact)	78
Figure	39 -	Bulkhead top view (Univity iBTS Indoor 1900 Compact)	79
Figure	40 -	Digital shelf description	82
Figure 700)	41 -	Front view of the digital shelf (Univity iBTS Outdoor and Univity iBTS Indoor	83
Figure	42 -	Front view of the digital shelf (Univity iBTS Indoor 600)	84
Figure	43 -	Front view of digital shelf (Univity iBTS Street 2100)	84
Figure	44 -	Front view of digital shelf (Univity iBTS Indoor 2)	85
Figure	45 -	Front view of digital shelf (Univity iBTS Mono)	86
Figure	46 -	Front view of digital shelf (Univity iBTS Indoor 1900 Compact)	86
Figure	47 -	Overview of the CEM physical architecture	89
Figure	48 -	Detailed view of the CEM hardware	91
Figure	49 -	Interconnection of the mini backplane	92
Figure	50 -	Front view of the CEM	93
Figure	51 -	iCEM 64 functional architecture	95
Figure	52 -	Front view of the iCEM 64	97
Figure	53 -	Front view of the iCEM 128	98
Figure	54 -	Front view of the CCM	101
Figure	55 -	Interfaces of the CCM	103
Figure	56 -	iCCM functional architecture	105
Figure	57 -	Front view of the iCCM	107
Figure	58 -	Functional block diagram of the TRM	110
Figure	59 -	Block diagram of the dTRM	111
Figure	60 -	Block diagram of the rTRM transmitted part	112
Figure	61 -	Block diagram of the rTRM received part	113
Figure	62 -	Front view of the TRM	114
Figure	63 -	iTRM radio architecture (Direct Modulation)	118
Figure	64 -	iTRM radio architecture (Direct Demodulation)	119
Figure	65 -	Front view of the iTRM	120
Figure	66 -	GPSAM alarm and inventory diagram	123
Figure	67 -	Front view of the GPSAM	124
Figure	68 -	RF block general description	128
Univity	iBTS	Front view of the MCPA (Univity iBTS Outdoor, Univity iBTS Indoor 2100, and Indoor 2)	129
Figure	70 -	Front view of the MCPA (Univity iBTS Street 2100)	129
Figure	71 -	Functional description of an MCPA	132
Figure	72 -	MCPA functional block diagram	133
Figure	73 -	Front view of the MCPA module	134
-		Tx Splitter functional block	137
-		Tx Splitter hardware description	138
Figure	76 -	DDM block diagram	140

X

Figure	77 - Front view of DDM (iBTS Outdoor, iBTS Indoor 2100, and iBTS Indoor 2)	141
Figure	78 - Front view of DDM (iBTS Street 2100 and iBTS Mono)	142
Figure	79 - Front view of DDM-2 (iBTS Outdoor, iBTS Indoor 2100, and iBTS Indoor 2)	143
Figure	80 - Front view of the MCA module (Univity iBTS Outdoor)	146
Figure	81 - Front view of the MCA module (Univity iBTS Indoor 2100)	147
Figure	82 - Front view of the MCA module (Univity iBTS Street 2100)	148
Figure	83 - Front view of the MCA module (Univity iBTS Mono)	149
Figure	84 - Front view of MCA module	150
Figure	85 - Front view of the MCA module (Univity iBTS Indoor 2)	150
Figure	86 - Front view of Control board (iBTS Mono)	152
Figure	87 - Front view of the SPCM	153
Figure	88 - Double TMA 2100 insertion in the system	156
Figure	89 - single TMA 1900 insertion in the system	157
Figure	90 - TMA 2100 block diagram	158
Figure	91 - TMA 1900 block diagram	159
Figure	92 - Front view of single TMA 1900 module	160
Figure	93 - Front view of double TMA 2100 module	160
Figure	94 - Front view of ICO module (iBTS Outdoor)	164
Figure	95 - Front view of ICO module (Univity iBTS Indoor)	164
	96 - Front view of CICO module (Univity iBTS Street 2100/Univity iBTS Indoor Compact)	165
Figure	97 - Front view of ICO module (Univity iBTS Indoor 2)	166
Figure	98 - Front view of ICO module (Univity iBTS Mono)	166
Figure	99 - Front view of the alarm protection module (iBTS Outdoor)	167
Figure	100 - Front view of the alarm protection module (iBTS Indoor)	168
Figure	101 - Alarm protection cabling (iBTS Outdoor)	169
Figure	102 - Alarm protection cabling (iBTS Indoor 600)	170
Figure	103 - Front view of the PCM protection module (iBTS Outdoor)	171
Figure	104 - PCM lightning protection cabling (iBTS Outdoor)	172
Figure	105 - Front view of the LPPCM (iBTS Indoor 2)	174
Figure	106 - LPPCM cabling (iBTS Indoor 2)	175
Figure	107 - Front view of the PFM	176
Figure	108 - Front view of User ICO module (iBTS Outdoor)	177
Figure	109 - Front view of User ICO module (iBTS Street)	178
Figure	110 - iDACS operation principle	181
Figure	111 - iBTS Indoor cooling unit	183
Figure	112 - iBTS Street air paths	186
Figure	113 - ICU front view	190
Figure	114 - Univity iBTS Indoor 1900 Compact airflow	192
Figure	115 - CICU detailed front view	194
Figure	116 - Distribution of the ac voltage within the Univity iBTS Outdoor	196
Figure	117 - Front view of the single phase filtering box	197

χi

Figure	118 -	Front view of the split-phase filtering box (US)	198
Figure	119 -	Front view of the split-phase filtering box	199
Figure	120 -	Front view of the three-phase filtering box	200
Figure	121 -	ac distribution module	201
Figure	122 -	BIP functional diagram	203
Figure	123 -	Front view of the BIP (Univity iBTS Indoor 2100)	204
Figure	124 -	Outside view of the ac plinth	205
Figure	125 -	Inside view of the ac plinth	206
Figure	126 -	ac plinth cabling (Univity iBTS Indoor 700 2100)	208
Figure	127 -	ac voltage distribution within the Univity iBTS Street 2100	209
Figure	128 -	Front view of the dc power system shelf (Univity iBTS Outdoor)	212
Figure 2100)	129 -	Front view of the dc power system shelf in the ac plinth (Univity iBTS Indoor	212
Figure	130 -	Front view of the dc power system shelf (Univity iBTS Street 2100)	213
Figure	131 -	dc distribution rack of the Univity iBTS Outdoor	214
Figure	132 -	Front view of the dc distribution (Univity iBTS Outdoor)	215
Figure	133 -	Distribution scheme of the dc current within the Univity iBTS Street 2100	217
Figure	134 -	Univity iBTS Indoor 2 dc electrical distribution system	219
Figure	135 -	Univity iBTS Indoor 2 dc distribution scheme	220
Figure	136 -	electrical distribution scheme of Univity iBTS Mono (mode 1)	222
Figure	137 -	electrical distribution scheme of Univity iBTS Mono (mode 2)	223
Figure	138 -	Univity iBTS Indoor 1900 Compact distribution system	225
Figure	139 -	Univity iBTS Indoor 1900 dc distribution scheme	226
Figure	140 -	Front view of the rectifier module	228
Figure	141 -	Front view of the SPCM	229
Figure	142 -	Inside view of the external battery cabinet	234
Figure	143 -	+24 V dc converter kit option	236
Figure	144 -	iBTS protocol stacks	240
Figure	145 -	iBTS function mapping	241
Figure	146 -	Call processing on the CEM	243
Figure	147 -	TRM software architecture	244
Figure	148 -	Call processing on the TRM	245
Figure	149 -	OAM software architecture on the CCM	247
Figure	150 -	Call processing on the CCM	248
Figure	151 -	Data flow of the uplink path	251
Figure	152 -	Data flow of the downlink path	252
Figure	153 -	CEM physical model	254
Figure	154 -	iBTS external connection	259
Figure	155 -	Transmission between iBTS and Univity RNC by using the IMA over PCM	261

χij

About this publication

This publication deals with the Nortel Network Univity Internet Base Transceiver Station (iBTS) which is part of the UMTS network.

Applicability

This publication is applicable to the UMTS03 system release.

Audience

This publication is for operations and maintenance personnel, and other users who want more knowledge of the iBTS.

Prerequisites

It is recommended that readers also become familiar with the following documents:

- About the UMTS Network (UMT/DCL/DD/0001 or 411-8111-101)
- Univity iBTS Fault Analysis (UMT/DCL/DD/0006 or 411-8111-506)
- Univity iBTS Hardware Maintenance Guide (UMT/DCL/DD/0005 or 411-8111-505)
- About the Univity RNC (UMT/DCL/DD/0003 or 411-8111-906)

How this document is organized

In a continuous effort to improve our documentation, we are preparing its delivery through the web. This leads to a new global organization of the Nortel Networks technical publications.

The information will be broken down into modules, with each module containing elementary information such as the procedure to replace a particular equipment, or the description of a particular component.

The modules are designed in order to deliver just enough information to provide the user with the solution required to perform his current task.

These modules will usually be delivered on CD-ROMs or through the web. The user will access this information by browsing, navigating from one module to another, or by using a search engine.

In its current version, this NTP has been written as a series of modules. The modules are arranged one after the other in logical order. The table of contents helps you to access the right module. Be careful, while screening the table of contents, since all the modules will be displayed with the same level of importance.

This publication consists of the following sets of modules:

- The first part describes what is new in the About the Univity iBTS publication.
- The second part provides the Univity iBTS regulatory information.
- The third part gives the UTRAN overview of the UMTS03 solution.
- The fourth part describes the Univity iBTS configuration and architecture.
- The fifth part describes the Univity iBTS interfaces
- The sixth part describes the Univity iBTS hardware
- the seventh part describes the Univity iBTS software

the last part describes the Univity iBTS services and features

Vocabulary conventions

Lists of terms used in the publication are in: Terminology (UMT/DCL/DD/0004 or 411-8111-804)

Safety regulation

In order to guarantee the safety of personnel and equipment it must be taken into account of the following aspects general personnel safety instructions and equipment safety instructions.

Caution message indicate the risk of impact on equipment.

CAUTION Impact on equipment

What is in new about the Univity iBTS

This following list details the main changes in this publication between system release UMTS03 and UMTS02 releases:

Univity iBTS modules

The new modules are the following:

- DDM-2
- iCEM 64 (19006)
- iCEM 128 (22752)
- iCCM (19845)
- iCCM Redundancy (20681)
- iTRM (20615)
- TMA 2100 module
- TMA 1900 module (22691)
- NAM (19849) from the system point of view.
- DDM/DDM2 1900
- MCPA 1900 module
- TRM/iTRM 1900 module

Univity iBTS cabinets

The new Univity iBTS cabinets are the following:

- Univty iBTS Mono 2100 (20600)
- Univity iBTS Indoor 2 2100
- Univity iBTS Outdoor 1900 (24861)
- Univity iBTS Indoor 2 1900(20914)
- Univity iBTS Mono 1900
- Univity iBTS Indoor 1900 Compact

Univity iBTS functionalities

The new Univity iBTS functionalities are the following:

- iModules mixity
- Univity iBTS 1900 transmission (IMA+D&I) (22458)
- +24 Vdc option for Univity iBTS indoor 2 1900 (21654)
- +24 Vdc option for Univity iBTS indoor 1900 Compact
- OTOR configuration
- BTBR configuration
- OTBR configuration (only for UMTS 2100)

Univity iBTS regulatory information

This part which provides the regulatory information concerning the Univity iBTS is split into the following items:

- European regulatory requirement compliance
- North American regulatory requirement compliance
- Compliances for other regions/countries
- Operation conditions
- Cable specifications
- Product labelling

European regulatory requirement compliance

As a radio product, the Nortel Networks UMTS iBTS falls under the requirement of the RTTE (Radio and Telecom Terminal Equipment) European directive 1999/5/EEC. The RTTE directive covers essential requirements in the field of:

- protection of the Health and Safety of the user and any other person, including the objectives with respect to safety requirements contained in the Low Voltage directive (73/23/EEC)
- the protection requirements with respect to EMC contained in Directive 89/336/EEC.

The equipment generates, uses, and can radiate radio frequency energy. If not installed and used in accordance with the instruction manual, the equipment may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference.

The EMC requirements have been selected to ensure an adequate level of compatibility for apparatus at residential, commercial, and light industrial environments. The levels however, do not cover extreme cases which may occur in any location but with a low probability of occurrence. In particular, it may not cover those cases where a potential source of interference which is producing individually repeated transient phenomena, or continuous phenomena, is permanently present, for example a radar or broadcast site in the near vicinity. In such a case it may be necessary to either limit the source of interference, or use special protection applied, to the interfered part, or both.

Note: For operation or maintenance inside Nortel Networks systems, the antistatic wrist shall always be used to maintain the integrity of the product.

• effective use of the Radio spectrum allocated to terrestrial/space radio communication and orbital resources so as to avoid harmful interference. The routes and standards used to demonstrate compliance with there essential requirements are outlined in the following paragraphs.

- iBTS EMC

Compliance with the essential requirements of EMC has been demonstrated using EN301489-1 & -23 standard

iBTS radio compliance

Compliance with the essential requirements of effective use of the radio spectrum has been demonstrated using EN301908-1 & -3 standard.

- iBTS safety

Compliance with the essential requirements of Safety has been demonstrated using EN 60950 Standard.

iBTS health protection

Compliance with the essential requirement of health requirement has been demonstrated using EN50385.

North American regulatory requirements compliance

The Nortel Networks UMTS iBTS has been qualified according to North American market requirements for the Outdoor, Indoor 2, Mono, and Indoor 1900 compact versions.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- reorient or relocate the receiving antenna
- · increase the separation between the equipment and receiver
- connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- consult the dealer or an experienced radio/TV technician for help

iBTS safety

Nortel Network iBTS complies with UL60950 and CAN/CSA C22.2 No. 60950-00 Safety Standards. The CSA mark is applied on the iBTS and demonstrates compliance with both US and Canadian Standards.

iBTS EMC and radio compliance

Nortel Network iBTS complies with 47CFR Part 15 class B and 47 CFR Part 24 for EMC and radio emission limits according to US regulatory requirements as indicated on the regulatory label

iBTS interconnection compliance

The UMTS Univity iBTS complies with 47 CFR Part 68 of the FCC rules and the requirements adopted by the ACTA.

On the top right of this equipment is a label that contains, among other information, a product identifier in the following format:

- US: AB6XDNANUMTSIND for the Univity iBTS Indoor 2
- US: AB6XDNANUMTSOUT for the Univity iBTS Outdoor
- US: AB6XDNANUMTSMONO for the Univity iBTS Mono
- US: AB6XDNANUMTSCOMP for the Univity iBTS Indoor Compact

If requested, the following information must be provided to the telephone company:

- FCC Registered Number: AB6
- Facility Interface Code (FIC): 04DU9.BN, 04DU9.DN, 04DU9.1KN, and 04DU9.1SN
- Service Order Code (SOC): 6.0F

A FCC part 68 and ACTA compliant cable is provided with the Univity iBTS equipment, with no connector at network interface side. The Univity iBTS equipment operates with a 1.544 Mbps digital channel. See Installation Instructions for details.

If the Univity UMTS iBTS equipment causes harm to the phone network, the telephone company will notify you in advance that temporary discontinuance of service may be required. But if advance notice is not practical, the telephone company will notify the customer as soon as possible. Also, you will be advised of your right to file a complaint with the FCC if you believe it is necessary

The telephone company may make changes to its facilities, equipment, operations or procedures that could affect the operation of the equipment. If this happens the telephone company will provide advance notice so you can make the necessary modifications to maintain uninterrupted services.

If trouble is experienced with Univity UMTS iBTS equipment, for repair or warranty information, please contact Toy-Brent LoranceNortel NetworksPhone: 972-685-2270Fax: 972-684-7601Nortel Networks 1334 Enterprise Drive, West Chester PA, 19380.

If the equipment is causing harm to the telephone network, the telephone company may request that you disconnect the equipment until the problem is resolved.

All repairs should be handled by authorized Nortel Networks Service Personnel.

Univity iBTS data equipment

The following table shows which jacks are associated with which modes of operation.

Operation Mode	USOC Jack
Programmable & Test	RJ45S

Univity iBTS systems

Facility Interface Codes (FIC), Services Order Codes (SOC), USOC Jack Codes, and Ringer Equivalence Number (REN) are shown in the table below for each port where applicable.

Port	FIC	soc	USOC Jack	REN
CCM T1 board	04DU9.BN	6.0F	N/A	N/A
CCM T1 board	04DU9.DN	6.0F	N/A	N/A
CCM T1 board	04DU9.1KN	6.0F	N/A	N/A
CCM T1 board	04DU9.1SN	6.0F	N/A	N/A
iCCM T1 board	04DU9.BN	6.0F	N/A	N/A
iCCM T1 board	04DU9.DN	6.0F	N/A	N/A
iCCM T1 board	04DU9.1KN	6.0F	N/A	N/A
iCCM T1 board	04DU9.1SN	6.0F	N/A	N/A

iBTS RF health protection

Compliance with the North American requirements is demonstrated through calculation according to FCC OET bulletin 65.

Compliances for other regions/countries

For countries outside Europe and the Americas, the requirements of European countries usually apply.

It is not possible to list all the applicable approvals / compliances as they will be dependent on the markets and products considered.

Note: Please contact your local Nortel Networks representative for more information.

Operational conditions

The aforementioned standards compliance of the products are based on the following operating conditions (called normal operation):

- doors shall be closed and/or covers shall be in place
- external cables shall be of the same type as specified by Nortel Networks
- no modification of any mechanical or electrical characteristics of the product shall be made

Any change or modification made to the product without written approval from Nortel Networks releases Nortel Networks from subsequent responsibility regarding the standards compliance.

Cable specifications

The compliance to the aforementioned standards has been verified using cables as specified by Nortel Networks. The continuing compliance of the product relies upon use of the correct cabling scheme as well as use of identical type cables as specified by Nortel Networks. Refer to the installation guides for details on cable specifications.

Product labeling

The label may be located inside or outside the product, provided that the operation and/or maintenance personnel have the information when working on the product.

iBTS labeling for American Countries

To indicate compliance with the CSA and UL Safety requirements, the Nortel Networks UMTS iBTS bears the following mark in a conspicuous location.

On the regulatory label, compliance to 47 CFR Part 15, 24 and 68 is stated along with:

- FCC ID, FCC Registration Number
- · Manufacturers name
- · Equipment designation
- · Nominal voltage operating range and maximum rated current.

iBTS labelling for European Countries

To indicate compliance with the European RTTE Directive, the Nortel Networks UMTS iBTS bears the following information in a conspicuous location:

- Manufacturers name
- Equipment designation
- Nominal voltage operating range and maximum rated current

Labeling for other regions / countries

Labeling for other regions and countries is performed as appropriate and required by the local regulatory framework.

UTRAN introduction of the UMTS03 solution

The Nortel Networks UTRAN is based on:

- the Univity RNC
- · the Univity iBTS
- the NAM, optionally for transmission purpose

Univity RNC

The Univity RNC is the Nortel Networks Univity UMTS RNC. It is the 3GPP-compliant UMTS RNC developed by Nortel Networks.

The Univity RNC allows mobility between UMTS and GSM networks.

The main functions of the Univity RNC are to control and manage the following:

- the Radio Access Network (RAN)
- the signaling between the different Core Network (CN) components and the Radio Network System (RNS)
- the Node Bs and their corresponding radio resources

The Univity RNC is connected to:

- · Univity iBTSs through the lub interface
- · another Univity RNC through the lur interface.

In fact an RNC can be connected to several other RNCs via lur.

the Core Network through the lu interface

Most of the Univity RNC interfaces provide the ability to build multi-vendor solutions. The main part of the Univity RNC is built upon the Passport technology.

The Univity RNC supports the UMTS 1900 MHz and the UMTS 2100 MHz frequencies.

Univity RNC configurations for UMTS 1900

The RNC supports UMTS 1900 MHz configurations to provide the SONET/OC-3 transmission interfaces. The SONET/OC-3 mode is supported for the lu, lub, lur interfaces.

Univity RNC configurations for UMTS 2100

The RNC supports UMTS 2100 MHz configurations to provide the SDH/STM-1 transmission interfaces. The SDH/STM-1 mode is supported for the lu, lub, lur interfaces.

Univity iBTS

The Univity iBTS is the 3GPP-compliant UMTS Node B developed by Nortel Networks. The generic term iBTS is used to designate the Univity UMTS Internet Base Transceiver Station.

The Univity iBTS supports the following functions:

- network interface management
 - Iub towards the Univity RNC
 - Uu towards the UE

- radio access and modem (modulation/demodulation, frequency up/down-conversion, amplification)
- call processing (channel setup and management for both common and dedicated channels, cell management, power control, handover and measurement)
- · configuration and supervision
- synchronization
- · performance monitoring

NAM

The NAM improves the switching/routing capabilities of the Univity iBTS.

It provides the following features:

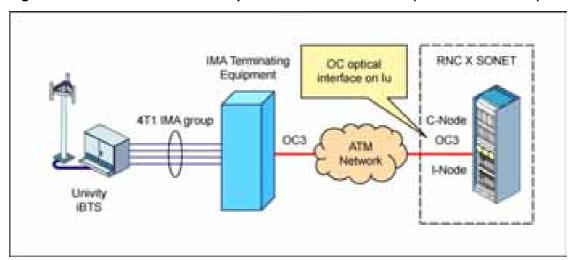
Hub

The NAM can implement a hubbing function for the Node Bs. It allows to minimize the number of T1/E1 links, between Node Bs and a RNC.

Cell aggregation

It concentrates the traffic of different Node Bs before transmission on the lub interface.

Fractional E1/T1 to achieve Drop&Insert UMTS-UMTS and GSM-UMTS.


The NAM is built on the Passport 7420 equipment.

UTRAN architecture examples of the UMTS03 solution

UTRAN architecture examples of the UMTS03 solution are shown in the following figures. They are split into:

- UMTS 1900: for a SONET configuration
- UMTS 2100: for a SDH and a PCM configuration

Figure 1 UTRAN architecture example of the UMTS03 solution (1900 MHz—SONET)

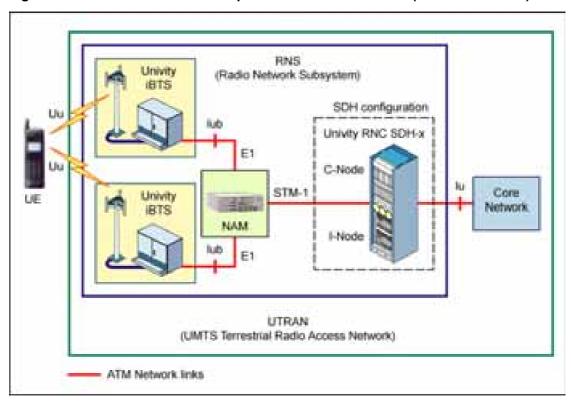


Figure 2 UTRAN architecture example of the UMTS03 solution (2100 MHz — SDH)

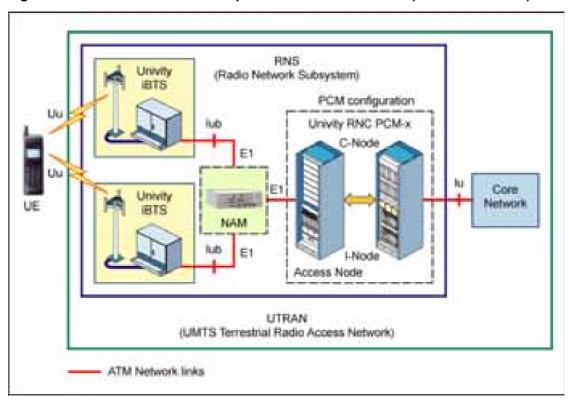


Figure 3 UTRAN architecture example of the UMTS03 solution (2100 MHz — PCM)

Univity iBTS basic characteristics

This part describing the basic characteristics of the Univity iBTS is split into the following:

- Univity iBTS introduction
- Univity iBTS key features

Univity iBTS introduction

A NodeB supports Frequency Division Duplex (FDD) mode, Time Division Duplex (TDD) mode or dual-mode operation.

The 3GPP-compliant UMTS base station developed by Nortel Networks is named Univity iBTS. The Univity iBTS supports only the FDD mode and it provides Outdoor and indoor deployment to cover different customer requirements.

This section provides an overview of Nortel Network Univity iBTS.

The Univity iBTS is responsible for radio transmission/reception in one or more cells to/from the UE (User Equipment).

The iBTS provides:

- the means of communication between a User Equipment (UE) and a network via Transport Channels
- physical layer channels which are necessary to synchronize the downlink and also to perform cell selection/reselection and hand over preparation
- measurement information to the Univity RNC for radio resource management (hand over, power control)

The Univity iBTS provides up to eight E1/T1 with IMA (Inversion Multiplexing ATM) or to Drop and Insert a fractional E1/T1.

Univity iBTS interfaces

The iBTS provides the following interfaces:

- Uu interface (UMTS User interface): this interface is used between the iBTS (internet Base Transceiver Station) and the UE (User Equipment). It is dependent on the technology used on the radio (for example, it can be W-CDMA or TD/CDMA)
- Iub interface (Interface UMTS iBTS): this interface lies between the Univity RNC and the iBTS. It allows to connect Univity RNCs (internet Radio Network Controller).

Univity iBTS cabinets

Nortel Networks provides the following iBTS cabinet types:

Univity iBTS Outdoor 2100

The iBTS Outdoor 2100 is a single cabinet closed by two doors.

The iBTS Outdoor 2100 is designed to optimize deployment in rural area, suburban area, urban area, highway, and rooftop.

Univity iBTS Outdoor 1900

The iBTS Outdoor 1900 is a single cabinet closed by two doors.

The iBTS Outdoor 1900 is only the 1900 MHz version of the Univity iBTS Outdoor 2100, which makes it compatible with the North-American standard.

Univity iBTSs Indoor 2100

The Univity iBTS Indoor is a single 600mm-wide cabinet (Univity iBTS Indoor 600) or a single 700mm-wide cabinet (Univity iBTS Indoor 700) closed by two doors. It is installed inside if an air

exchanger is provided.

The Univity iBTS Indoor 2100 is also designed to optimize deployment in rural area, sub-urban area, urban area, highway, and rooftop.

Univity iBTS Street 2100

The Univity iBTS Street 2100 is a single cabinet closed by two doors.

The Univity iBTS Street 2100 is designed to optimize deployment in city, urban, and sub-urban areas: city street corner, public sidewalks, parking areas, and motorways.

Univity iBTS Indoor 2 2100

The Univity iBTS Indoor 2 2100 is a single cabinet closed by one door. It is designed for ease of manufacture, transportation, installation, system assembly, repair and testing.

The iBTS Indoor 2 2100 is installed inside if an air exchanger is provided.

The iBTS Indoor 2 2100 is an evolution of iBTS Indoor 600 to improve mechanical, acoustic performances on the equipment.

Univity iBTS Indoor 2 1900

The Univity iBTS Indoor 2 1900 is a single cabinet closed by one door. It is designed for ease of manufacture, transportation, installation, system assembly, repair and testing.

The iBTS Indoor 2 1900 is installed inside if an air exchanger is provided.

The Univity iBTS Indoor 2 1900 is a new version of the Univity iBTS Indoor 2 2100, which makes it compatible with the North-American standard. There is no specific evolution, excepted the support of the module needed for the 1900 MHz frequency.

Univity iBTS Mono 2100

the Univity iBTS Mono 2100 is a single cabinet closed by one door.

The Univity iBTS Mono 2100 is designed to be installed on walls or poles. It is also designed to provide minimum visual impact while maintaining the highest Radio Frequency (RF) performance for a mono carrier UMTS product. Its compact dimensions allow easy and flexible installation in outdoor areas.

• Univity iBTS Mono 1900

The Univity iBTS Mono 1900 is a new version of the Univity iBTS Mono 2100, which makes it compatible with the North-American standard. There is no specific evolution, excepted the support of the module needed for the 1900 MHz frequency.

Univity iBTS Indoor 1900 Compact

the Univity iBTS Indoor 1900 Compact is a single cabinet closed by one door.

The Univity iBTS Compact provides the an attractive solution for restricted site space, particularly in urban and sub-urban environments. It can fit in standard racks or even on tabletops.

The Univity iBTS Indoor 1900 Compact compatible with the North-American standard.

The Macro iBTS term is used to indicate the set of iBTS cabinets (Univity iBTS Outdoor, Univity iBTS Indoor 700, Univity iBTS Indoor 600, and Univity iBTS Indoor 2).

The Macro iBTS is modular in design for easy network growth and flexibility, to manage diverse traffic demands. Common modules are used to grow the iBTS to increase capacity as required. The

increase in capacity is provided via the simple addition of modules, as opposed to the addition entire of cabinets.

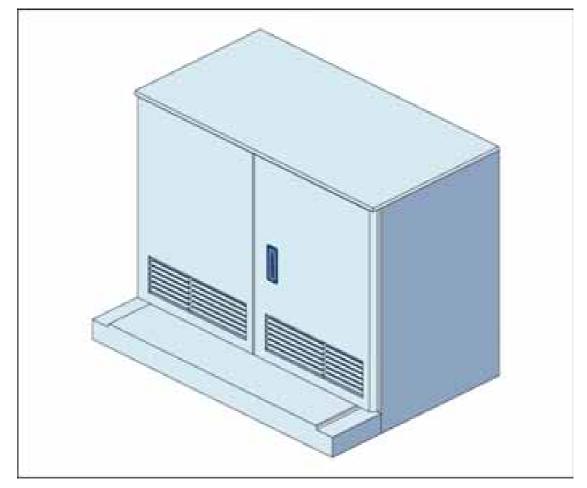
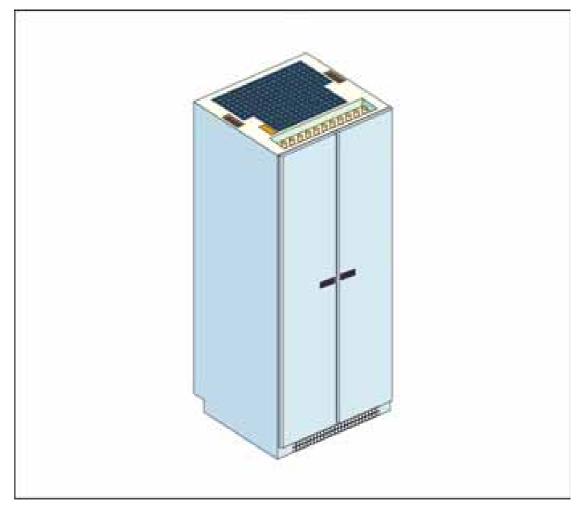
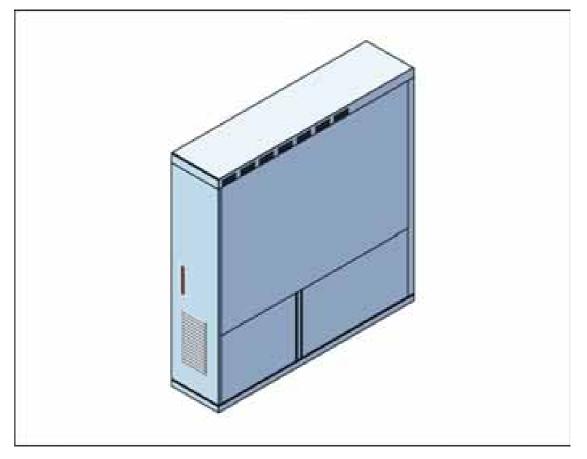
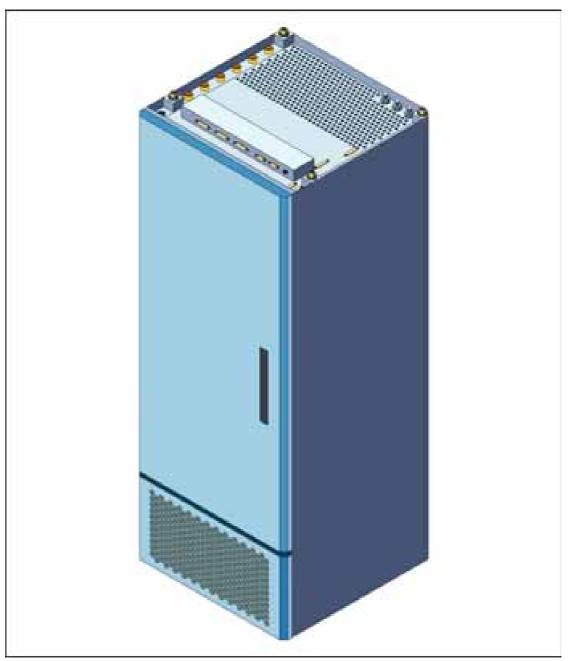

The following table lists the Univity iBTS cabinets according to the UMTS standard (UMTS 2100 and UMTS 1900).

Table 1 Univity iBTS cabinets


Types	UMTS 2100	UMTS 1900
Univity iBTS Outdoor	X	X
Univity iBTS Indoor 2100 (600/700)	Х	NA
Univity iBTS Indoor 2	X	X
Univity iBTS Mono	X	X
Univity iBTS Street 2100	Х	NA
Univity iBTS Indoor 1900 Compact	NA	X

The following figure shows the iBTS types provide by Nortel Networks:





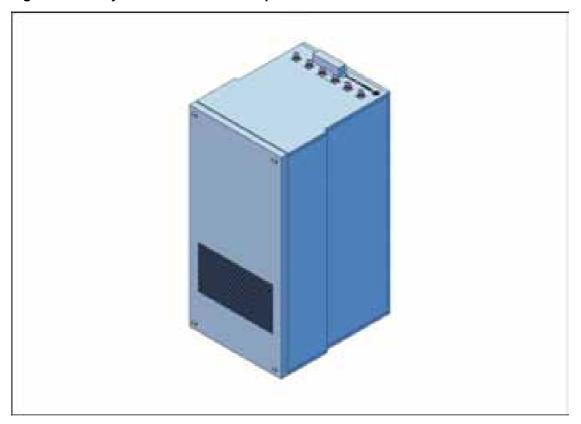


Figure 9 Univity iBTS Indoor 1900 Compact outside view

Univity iBTS modules

In the first generation, Nortel Networks delivers the modules-alpha. These modules are supported by all the iBTSs (Macro iBTS, Univity iBTS Mono, Univity iBTS Indoor 1900 Compact, and Univity iBTS Street 2100).

In the second generation (UMTS03 system release), Nortel Networks delivers the iModules (called also modules-beta). These modules are supported by all the iBTSs (Macro iBTS, Univity iBTS Mono, Univity iBTS Indoor 1900 Compact, and Univity iBTS Street 2100) and are compatible with existing ones. These new modules are transparent to you as they do not provide a capacity change (except for the iCEM).

Univity iBTS key features

This section describes the general features of the iBTS.

iBTS features

The iBTS includes the following features:

- outdoor operation
- indoor operation
- ac operation (iBTS Outdoor, iBTS Street, and iBTS Indoor 700) or dc operation (iBTS Indoor 600, iBTS Indoor 2, iBTS Mono, and iBTS Indoor 1900 Compact)
- digital system support of up to three carriers
- · front access only
- plug and play
- · PCM internal protection
- multiple CEM
- multiple PCM
- · no need for an extra site cabinet for user space and batteries
- · best-in-class in term of volume and size
- easy installation and commissioning
- maintenance facilities: modular design, hardware and software diagnostics for fault isolation mechanism and fast reconfiguration
- most commonly shared modules between the iBTS different types
- software upgrade with minimum service downtime
- a flexible product: possible growth from low to high capacity without any additional cabinets
- drop and insert
- STSR1 configuration
- BTBR1 configuration
- STSR2 configuration
- BTBR2 configuration
- OTSR1 configuration
- OTBR1 configuration
- OTOR1 configuration
- OTOR2 configuration
- Network Access Module (NAM)
- iCEM, iCCM, and iTRM modules
- iCCM redundancy

Univity iBTS characteristics

This section details the characteristics (frequency bands, physical, electrical, thermal and acoustic) of the iBTS cabinet types.

Univity iBTS Outdoor

The characteristics of the Univity iBTS Outdoor are the following:

- frequency bands 2100 MHz:
 - 2110-2170 MHz for downlink
 - 1920-1980 MHz for uplink
- frequency bands 1900 MHz:
 - 1930-1990 MHz for downlink
 - 1850-1910 MHz for uplink
- · optimized size versus capacity ratio:
 - footprint: 0.95 m²
 - cabinet size is the following:
 - width (W): 1350 mm
 - depth (D): 700 mm
 - height (H): 1300 mm
 - Volume: 1240 I
- ac Power:
 - Single/Split: 20 A/phase
 - three phase: 10 A/phase (balanced)
- operation Temperature Range: -40 to +50 degree Celsius
- weight:
 - fully equipped: 520 kg
 - empty: 180 kg
- acoustic: about 44 dBA at 5 feet

Univity iBTS Indoor 600

The characteristics of the Univity iBTS Indoor 600 are the following:

- frequency bands 2100 MHz:
 - 2110-2170 MHz for downlink
 - 1920-1980 MHz for uplink
- optimized size versus capacity ratio:
 - footprint: 0.615 m²
 - cabinet size is the following:

- width (W): 600 mmdepth (D): 600 mmheight (H): 1600 mm
- volume: 576 Ldc Power: -48 V dc
- operation Temperature Range: -5 to +50 degree Celsius
- · weight:
 - fully equipped: 560 kg
 - empty: 105 kg

Univity iBTS Indoor 700 without ac power plinth

The characteristics of the Univity iBTS Indoor 700 are the following:

- frequency bands 2100 MHz:
 - 2110-2170 MHz for downlink
 - 1920-1980 MHz for uplink
- · Optimized size versus capacity ratio:
 - footprint: 0.7525 m²
 - cabinet size is the following:
 - width (W): 700 mm
 - depth (D): 600 mm
 - height (H): 1600 mm
 - volume: 672 l
- dc Power: -48 V dc
- · operation Temperature Range:
 - long term: 5 to +40 degree Celsius
 - short term: -5 to +50 degree Celsius
- weight:
 - fully equipped: 325.5 kg
 - empty: 128.5 kg

Univity iBTS Indoor 700 with ac power plinth

The characteristics of the Univity iBTS Indoor 700 with ac power plinth are the following:

- frequency bands 2100 MHz:
 - 2110-2170 MHz for downlink
 - 1920-1980 MHz for uplink

- optimized size versus capacity ratio:
 - footprint: 0.7525 m²
 - cabinet size is the following:
 - Width (W): 700 mmDepth (D): 600 mm
 - Height (H): 2000 mm
 - Volume: 672 I
- dc Power: -5 V dc and +24 V dc
- ac Power:
 - Single/Split: 20 A/phase
 - three phase: 10 A/phase (balanced)
- · operation Temperature Range:
 - long term: 5 to +40 degree Celsiusshort term: -5 to +50 degree Celsius
- weight:
 - fully equipped: 513.5 kg
 - empty: 128.5 kg— ac Plinth: 170 kg

Univity iBTS Street 2100

The characteristics of the Univity iBTS Street are the following:

- frequency bands 2100 MHz:
 - 2110-2170 MHz for downlink
 - 1920-1980 MHz for uplink
- · optimized size versus capacity ratio:
 - footprint: 0.52 m²
 - cabinet size is the following:
 - width (W): 1480 mmdepth (D): 350 mm
 - height (H): 1500 mm
 - volume: 761.25 lac power is following:
 - Single/Split: 120/240 V ac
 - three phase: 120/208 V ac or 240/416 V ac
- operation Temperature Range: -40 to +45 degree Celsius

- weight:
 - fully equipped: 321 kg
 - empty: 180 kg
- acoustic: about 47 dBA between -20 and +40 degree Celsius

Univity iBTS Indoor 2

The characteristics of the Univity iBTS Indoor 2 are the following:

- frequency bands 2100 MHz:
 - 2110-2170 MHz for downlink
 - 1920-1980 MHz for uplink
- frequency bands 1900 MHz:
 - 1930-1990 MHz for downlink
 - 1850-1910 MHz for uplink
- · optimized size versus capacity ratio:
 - cabinet size is the following:
 - width (W): 600 mm
 - depth (D): 600 mm
 - height (H): 1650 mm
 - volume: 594 L
- dc Power: -48 V dc (2100)
- dc Power: + 24 V dc (1900) by using the +24 V dc converter kit option
- operation Temperature Range:
 - long term: +5 to +45 degree Celsius
 - short term: -5 to +45 degree Celsius
- weight:
 - empty: 140 kg
 - fully equipped: 305 kg

Univity iBTS Mono

The characteristics of the Univity iBTS Mono are the following:

- frequency bands 2100 MHz:
 - 2110-2170 MHz for downlink
 - 1920-1980 MHz for uplink
- frequency bands 1900 MHz:
 - 1930-1990 MHz for downlink
 - 1850-1910 MHz for uplink

- optimized size versus capacity ratio:
 - cabinet size is the following:
 - width (W): 460 mm
 - depth (D): 570 mm
 - height (H): 600 mm
 - volume: 157,32 L
- dc power: -48 V dc
- single phase: 220 V ac
- operation Temperature Range: -20 to +45 degree Celsius
- weight < 90 kg
- single configuration: 1 sector and 1 carrier
- receive diversity

The iBTS Mono does not support the following:

- external alarms
- · battery backup
- CCM redundancy
- Tx diversity
- +24 V dc

The iBTS Mono supports the following options:

- Tower Masterhead Amplifiers (TMA)
- Lightening protection
- Fractional E1/T1 which is shared with GSM BTS

Univity iBTS Indoor 1900 Compact

The characteristics of the Univity iBTS Indoor 1900 Compact are the following:

- frequency bands 1900 MHz:
 - 1930-1990 MHz for downlink
 - 1850-1910 MHz for uplink
- optimized size versus capacity ratio:
 - cabinet size is the following:
 - width (W): 483 mm
 - depth (D): 650 mm
 - height (H): 900 mm
 - volume: 282 L
- dc power: -48 V dc

- single/split phase: 120/240 V ac
- operation Temperature Range: -5 to +45 degree Celsius
- weight < 63kg
- the configurations supported are the following:
 - OTOR1/OTOR2 configuration
 - STSR1/STSR2 configuration with MCPAs 45W
 - BTBR1/BTBR2 configuration with MCPAs 45W
- · receive diversity

The Univity iBTS Indoor 1900 Compact does not support the following:

- external or internal battery
- O2 configuration
- CCM redundancy
- Tx diversity

The Univity iBTS Indoor 1900 Compact supports the following options:

- Tower Masterhead Amplifiers (TMA)
- Lightening protection
- Fractional E1/T1 which is shared with GSM BTS
- +24 V dc