

	Safety Considerations
Approved Operation	Series BIS C-60_2 processors along with the other BIS C system components comprise an identification system and may only be used for this purpose in an industrial environment in conformity with Class A of the EMC Law.
Installation and Operation	Installation and operation should be carried out by trained personnel only. Unauthorized work and improper use will void the warranty and liability.
	When installing the processor, follow the chapters containing the wiring diagrams closely. Special care is required when connecting the processor to external controllers, in particular with respect to selection and polarity of the signals and power supply.
	Only approved power supplies may be used for powering the processor. See chapter 'Techni- cal Data' for details.
Use and Checking	Prevailing safety regulations must be adhered to when using the identification system. In par- ticular, steps must be taken to ensure that a failure of or defect in the identification system does not result in hazards to persons or equipment.
	This includes maintaining the specified ambient conditions and regular testing for functionality of the identification system including all its associated components.
Fault Conditions	Should there ever be indications that the identification system is not working properly, it should be taken out of commission and secured from unauthorized use.
Scope	This manual applies to processors in the series BIS C-6002-01903 and BIS C-6022-019-050-03

	BIS C-60_2 Processor Basic knowledge for application					
Control Function	The processor writes data from the host syste tag through the read/write head and prepares include:	em to the Data carrier or reads data from the s it for the host system. Host systems may				
	 a host computer (e.g. industrial PC) or a programmable logic controller (PLC) 					
Data checking	When sending data between the read/write head and the Data carrier a procedure is re- quired for recognizing whether the data were correctly read or written.					
	The processor is supplied with standard Balluff procedure of double reading and coming. In addition to this procedure a second alternative is available: CRC_16 data chect					
	Here a test code is written to the Data carrier any time or location.	, allowing data to be checked for validity at				
	Advantages of CRC_16	Advantages of double reading				
	Data checking even during the non-active phase (CT outside read/write head zone).	No bytes on the data carrier need to be reserved for storing a check code.				
	Shorter read times since each page is read only once.	Shorter write times since no CRC needs to be written.				
	Since both variations have their advantages of to select which method of data checking he was	depending on the application, the user is free vishes to use (see Parametering on № 26).				
R3	It is not permitted to operate the system using b	oth check procedures!				
		english BALLUFF				

	BUS interface PROFIBUS-DP
Unit's Master Data	For the correct parametering of the bus master as per type, a diskette, containing the unit's master data in the form of a GSD file is included with the BIS C-60_2 processor.
Station Address	The Processor BIS C-60_2 is delivered with the station address 126. This has to be set individually before using in a bus system. See information on ∩ 12.
Input/Output Buffer	An input buffer and an output buffer are used for the data exchange with the control system. The size of these buffers has to be configured via the master.
L3	The possible settings are entered in the GSD file (and Type file). A minimum of 4 and a maximum of 128 bytes can be accommodated. However, it must be an even number.
Parametering Bytes User-Parameter Bytes	Besides, in the case of the BIS C-60_2 processor, there are 6 further bytes (User-Parameter Bytes) which have to be set while parametering. The significance of the 6 bytes for parametering is described starting from №25.
R ^a	The preset is stored in the GSD file.

	Function Output I	n Desc ouffer,	ription config	n guratio	on and	l expla	anatio	n			
Configuration of the	The last by	te can be	e arrange	ed as a 2	2nd bit h	eader th	rough p	aramete	ring (def	fault).	
output buffer for one (1) read/write head	Subaddress	Bit No.	7	6	5	4	3	2	1	0	
	00 _{Hex} = Bit H	eader	CT	TI		HD		GR		AV	Bit Name
	01 _{Hex}		Comr	nand Desi	gnator		or	D	ata		
	02 _{Hex}	Start Address (Low Byte) or Program No.					or	D	ata		
	03 _{Hex}		Start Address (High Byte)					or	D	ata	
	04 _{Hex}		No. of Bytes (Low Byte)					or	D	ata	
	05 _{Hex}		No. of Bytes (High Byte)					or	D	ata	
	06 _{Hex}			Data							
					Data						
	Last Byte			2nd Bit	Header (a	s above)		or	D	ata	1
Description of	Sub- address	Bit Name	Meanin	g	Functi	on Desc	ription				
Output Buffer	00 _{Hex} Bit Header	CT	Data carrier type Select Data carrier type: for Data carrier type 0 32 Byte block size BIS C-102, -03, -0 1 64 Byte block size BIS C-110, -11, -3					/pe: 4, -05 0			
[]		TI	Toggle-Bit In Shows during a read action that the cont for additional data.		ontroller	is ready					
Please note the basic procedure on 114 and 2935 and the examples on pages 1136 53		HD	Head s 0 1	elect	for He Select Select (only i	ad 1 Head 1 Head 1 n conjun	.1 .2 iction w	fo Se St ith Adap	r Head 2 elect He elect He oter 655)	2 ad 2.1 ad 2.2	
pages 1100	(continue	d next 🛛	7)				-	,		

	Output	t buffer, conf	iguration and explanation
Description of Output Buffer	Sub- address	Meaning	Function Description
continued)	02 _{Hex}	Start address (Low Byte)	Address at which reading from or writing to the Data carrier begins.
	or	Start address (Low Byte)	Address for the Auto-Read function, starting at which the code tag is to be read. The value is stored in the EEPROM. (The Low Byte covers the address range from 0 to 255).
	or	Program No.	Number of the program to be stored in the EEPROM in conjunction with command ID 06Hex for Mixed Data Access function (values between 01Hex and 0AHex are allowed!).
	or	Program No.	Number of the program stored in the EEPROM for read or write operations in conjunction with command ID 21 _{Hex} or 22 _{Hex} for the Mixed Data Access function.
	or	Data	for writing to the Data carrier
	or	Program data	for writing to the EEPROM.
	03 _{Hex} Byte	Start address (High Byte)	Address for reading from or writing to the Data carrier (the High is additionally used for the address range from 256 to 8,191).
	or	Start address (High Byte)	Address for the Auto-Read function, starting at which the code tag is to be read. The value is stored in the EEPROM (the High Byte is also required for the address range from 256 to 8,191).
Please note the	or	Data	for writing to the Data carrier
basic procedure on	or	Program data	for writing to the EEPROM.
and the examples on pages 113653.	(continue	d next 🕅	

20

Function Description Output buffer, configuration and explanation

Description of Output Buffer	Sub- address	Meaning	Function Description				
(continued)	04 Hex	No. of bytes (Low Byte)	Number of bytes to read or write beginning with the start address (the Low Byte includes from 1 to 256 bytes).				
	or	Data	for writing to the Data carrier				
	or	Program data	for writing to the EEPROM.				
	05 Hex	No. of bytes (High Byte)	Number of bytes to read or write beginning with the start address (the High Byte is additionally used for the range between 257 and 8,192 bytes).				
	or	Data	for writing to the Data carrier				
	or	Program data	for writing to the EEPROM.				
	06 _{Hex}	Data	for writing to the Data carrier				
	or	Program data	for writing to the EEPROM.				
		Data	for writing to the Data carrier				
	or:	Program data	for writing to the EEPROM.				
	Last byte						
		2nd Bit header	The data are valid if the 1st and 2nd bit header are identical.				
	or	Data	for writing to the Data carrier				
Please note the basic procedure on	or	Program data	for writing to the EEPROM.				
and the examples on pages 113653.							
BALLUFF (english)							
-9							

	Functior Input bu	n Desc ffer, c	cription onfigu	n ration	and e	explan	ation				
Configuration of the	The last by	e can be	e arrange	ed as a 2	2nd bit h	eader thi	rough p	aramete	ering (de	fault).	
(1) read/write head	Subaddress	Bit No.		6	5	4	3	2	1	0	
	00 _{Hex} = Bit	Header	BB	HF	TO	IN/KN	AF	AE	AA	CP	Bit Name
	01 _{Hex}	E	Fror Co	de	0	r		Data			
	02 _{Hex}			Data							
	03 _{Hex}			Data							
	04 _{Hex}			Data							
	05 _{Hex}			Data							
	06 _{Hex}					Da	ta				
						Da	ta				
	Last byte		2no	d Bit Hea as abov	ader e)	o	r		Data		
Description of Input Buffer	Sub- address	Bit Name	Meaning	J	Function Description						
	00 Hex	BB	Ready		The BIS Identification System is in the Ready			state.			
Please note the	Bit Header	HF	Head Er	ror	Cable break from read/write head or no read/write head connected.						
11 14 and 2935 and the examples on		то	Toggle-Bit Out		for read: BIS has new/additional data ready. for write: BIS is ready to accept new/additional data			l data.			
pages 11 3653.		(contin	ued on n	ext 🗅							
										aliah	BALLUEE

	Function Description Processing data carriers
Reading and writing in dynamic mode	In normal operation a read/write job is rejected by the BIS C-60_2 processor by setting the AF bit and an error number if there is no data carrier in the active zone of the read/write head. If dynamic mode is configured, the processor accepts the read/write job and stores it. When a data carrier is recognized, the stored job is carried out.
Reading and writing with simultaneous data transmission	Reading without simultaneous data transmission: In the case of a read job the processor first reads our all requested data from the data carrier after receiving the start address and the desired number of bytes, and then sets the AE bit. Then the data read from the data carrier are written to the input buffer. In the case of larger data amounts this is done in blocks, controlled by the handshake with the toggle bits as described on D29.
	Reading with simultaneous data transmission: In the case of a read job the processor begins by transmitting the data into the input buffer as soon as the first 30 bytes (with 2nd bit header, or 31 bytes without 2nd bit header, or less if the buffer size was set smaller) have been read from the data carrier beginning with the start address, and indicates this by inverting the TO bit. As soon as the controller inverts the TI bit, the processor sends the data, which have in the meantime been read, to the input buffer. This is repeated until the processor has read out all the desired data from the data carrier. Now the processor sets the AE bit and outputs the remaining data on the input buffer.
	Writing without simultaneous data transmission: In the case of a write job the processor waits until it has received all the data that need to be written from the controller. Only then are the data written to the data carrier as described on \square 29.
	Writing with simultaneous data transmission: In the case of a write job the processor begins to write the data to the data carrier as soon as it has received the first data to be written from the controller's output buffer. Once all the data have been written to the data carrier, the AE bit is set.

	Function Description Processing data carriers							
Mixed Data Access	The following shows the structure of a program:							
	Program structure	Subaddress	Value	Range				
	Command designator	01 _{Hex}	06 _{Hex}					
	Program number	02 _{Hex}	01 _{Hex}	01_{Hex} to $0A_{\text{Hex}}$				
	Start address Low Byte	03 _{Hex}						
	Start address High Byte	04 _{Hex}						
	Number of bytes Low Byte	05 _{Hex}						
	Number of bytes High Byte 2nd data record:	06 _{Hex}						
	 25th data record:							
	Start address Low Byte	03 _{Hex}						
	Start address High Byte	04Hex						
	Number of bytes Low Byte	05Hex 06Hex						
	Terminator	FFHex FFHex						
	To store a second program, repeat th	nis process.						
	The procedure for writing these set on ͡¹͡ๅ4850.	tings to the EEPRC	M is describ	ed in the 10th example				
	Replacing the EEPROM is described	d on ो 69 for BIS C	-6002 and o	n ि 81 for BIS C-6022.				
				\frown				

1	
	Function Description Processing data carriers
Read from data carrier, with program Mixed Data Access	The command identifier 21 _{Hex} can be used to read out the program records stored in the program from the data carrier. The user must document exactly which data are to be read from where and with what number of bytes for the respective program (see example 11 on \Box 51).
Write to data carrier, with program Mixed Data Access	The command identifier 22_{Hex} can be used to write the program records stored in the program to the data carrier. The user must document exactly which data are to be written from where and with what number of bytes for the respective program (see example 12 on \bigcap 52).
Copying from Head 1 to Head 2	For a copy command there must be a data carrier in front of both read/write heads (even if dynamic mode is configured). Simultaneous data transmission is used to read (even if simultaneous data transmission is not configured). The total process is controlled with the bit header(s) for Head 1. The start address and number of bytes applies both to reading at Head 1 and to writing at Head 2. The copy command is in principle the same as reading with simultaneous data transmission. In addition, the data which are placed in the input buffer are written at the same time to the data carrier at Head 2.
	The AE bit is not set until the write procedure at Head 2 has finished successfully. If the GR bit is set during a started copy command, both read/write heads are placed in the base state and the pending job is aborted (see example 8 on \Box 45).
34 BALLUFF english	

35										
	Function Description Processing data carriers									
CRC initialization	To be able to use the CRC check, the data carrier must first be initialized with the com- mand identifier 12tex (see [1 36). The CRC initialization is used like a normal write job. The latter is rejected (with an error message) if the processor recognizes that the data carrier does not contain the correct CRC. Data carriers as shipped from the factory (all data are 0) can immediately be programmed with a CRC check.									
	If CRC_16 data checking is activated, a special error message is output to the interface whenever a CRC error is detected.									
	If the error message is not caused by a failed write request, it may be assumed that one or more memory cells on the data carrier is defective. That data carrier must then be re- placed.									
	If the CRC error is however due to a failed write request, you must reinitialize the data car- rier in order to continue using it.									
	The checksum is written to the data carrier as a 2-byte wide datum. Two bytes per page are 'lost', i.e., the page size becomes 30 bytes or 62 bytes depending on data carrier type (setup of page size see ∩ 17). This means that the actual usable number of bytes is reduced:									
	Data carrier type Usable bytes									
	128 bytes = 120 bytes									
	256 bytes = 240 bytes									
	511 bytes *) = 450 bytes									
	1023 bytes *) = 930 bytes									
	2047 bytes *) = 1922 bytes									
	2048 bytes = 1984 bytes *) The last data carrier page for these EEPROM-									
	0102 bytes = 7000 bytes based data camers is not available.									
	(english) BALLUFF 35									

	Function Description Examples for protocol sequence	,
Example No. 1	Host:	BIS C-60_2 Identification System:
(continued)	7.) Process subaddresses of the output buffer:	8.) Process subaddresses of the output buffer:
For configuring with	0106Hex Enter the remaining data byte	0106Hex Copy the remaining data byte
and 8-byte buffer		00Hex/07Hex Set AE-Bit
31261	9.) Process subaddresses of the output buffer:	10.)Process subaddresses of the input buffer:
	00 _{Hex} /07 _{Hex} Reset AV-Bit	00Hex/07Hex Reset AA-Bit and AE-Bit

	Example	es for protocol sequenc	е				
Example No. 3 (like 2nd example	Read 17 bytes starting at data carrier address 10, with simultaneous data transmission (data carrier type with 32 byte block size):						
but with simultaneous data transmission)	While the r are sent. T	While the read job is being carried out and as soon as the input buffer is filled, the first data are sent. The AE bit is not set until the "Read" operation is completed by the processor.					
For configuring with double bit header and 8-byte buffer	The reply "Job End" = AE bit is reliably set no later than before the last data are sent. The exact time depends on the requested data amount, the input buffer size and the timing of the controller. This is indicated in the following by the note <i>Set AE-Bit</i> (in italics).						
size!	Host:			BIS C-60_2	2 Identification System:		
	1.) Process subaddresses of the output buffer in the order shown:			2.) Process order sho	subaddresses of the input buffer in the own:		
	01 _{Hex}	Command designator 01Hex		00 _{Hex} /07 _{Hex}	Set AA-Bit		
	02 _{Hex}	Start address Low Byte 0AHex		0106 _{Hex}	Enter first 6 bytes of data		
	03 _{Hex}	Start address High Byte 00 _{Hex}		00 _{Hex} /07 _{Hex}	Invert TO-Bit		
	04 _{Hex}	No. of bytes Low Byte 11 _{Hex}		00 _{Hex} /07 _{Hex}	Set AE-Bit		
	05 _{Hex}	No. of bytes High Byte 00 _{Hex}					
	00 _{Hex} /07 _{Hex}	CT-Bit to 0 (32 Byte block size), set AV-Bit					
	3.) Process	subaddresses of the input buffer:		4.) Process	subaddresses of the input buffer:		
	0106 _{Hex}	Copy first 6 data bytes		0106 _{Hex}	Enter the second 6 data bytes		
	Process	subaddress of the output buffer:		00 _{Hex} /07 _{Hex}	Invert TO-Bit		
	00 _{Hex} /07 _{Hex}	Invert TI-Bit		00 _{Hex} /07 _{Hex}	Set AE-Bit		
	Continued o	n next 🗅.					

40 **Function Description** Examples for protocol sequence Example No. 3 (continued) BIS C-60_2 Identification System: Host: 5.) Process subaddresses of the input buffer: 6.) Process subaddresses of the input buffer: (like 2nd example but with simultaneous Process subaddress of the output buf Process subaddress of the output buff OI...05Hex Enter the remaining 5 data bytes O0Hex/07Hex Invert TO-Bit O0Hex/07Hex Set AE-Bit Process subaddress of the output buffer: data transmission) 00_{Hex}/07_{Hex} Invert TI-Bit For configuring with double bit header and 8-byte buffer size! 7.) Process subaddresses of the input buffer: 8.) Process subaddresses of the input buffer: 01...05_{Hex} Copy the remaining 5 data bytes 00Hex/07Hex Reset AA-Bit and AE-Bit Process subaddress of the output buffer: 00_{Hex}/07_{Hex} Reset AV-Bit 40 BALLUFF english

	Function Example	n Description es for protocol sequence		
Example No. 4	Read 30 b (data carrie	ytes starting at data carrier addre er type with 64 byte block size):	ss 10 with r	ead error
For configuring with	Host:		BIS C-60_	2 Identification System:
double bit header and 8-byte buffer size!	1.) Process order sho	subaddresses of the output buffer in the own:	2.) Process order she	subaddresses of the input buffer in the own:
	01 _{Hex}	Command designator 01 _{Hex}	If an err	or occurs right away:
	02 _{Hex}	Start address Low Byte 0AHex	00 _{Hex} /07 _{Hex}	Set AA-Bit
	03нех	Start address High Byte 00 _{Hex}	01 _{Hex}	Enter error number
	04 _{Hex}	No. of bytes Low Byte 1E _{Hex}	00 _{Hex} /07 _{Hex}	Set AF-Bit
	05нех	No. of bytes High Byte 00 _{Hex}		
	00 _{Hex} /07 _{Hex}	Set CT-Bit to 1 (64 Byte block size), set AV-Bit		
	3.) Process	subaddress of the input buffer:	4.) Process	subaddresses of the input buffer:
	01 _{Hex}	Copy error number	00 _{Hex} /07 _{Hex}	Reset AA-Bit and AF-Bit
	Process	subaddress of the output buffer:		
	00 _{Hex} /07 _{Hex}	Reset AV-Bit		
				anglish BALLUE

	Example	es for protocol sequence				
Example No. 6 (with simultaneous	Read 30 by transmissi	ytes starting at data carrier addre ion (data carrier type with 64 byte b	ess 10, with lock size):	read error and simultaneous data		
data transmission) For configuring with double bit header	If an error occurs after data have started to be sent, the AF-Bit is set instead of the AE-Bit along with the corresponding error number. The error message AF is dominant. It cannot be specified which data are incorrect. When the AF-Bit is set the job is interrupted and declared to be ended.					
and 8-byte buffer size!	Host:		BIS C-60 2 Identification System:			
	1.) Process order sho	subaddresses of the output buffer in the own:	2.) Process subaddresses of the input buffer in the order shown:			
	01 _{Hex}	Command designator 01 _{Hex}	00 _{Hex} /07 _{Hex}	Set AA-Bit		
	02 _{Hex}	Start address Low Byte 0AHex	0106нех	Enter the first 6 data bytes		
	03 _{Hex}	Start address High Byte 00Hex	00 _{Hex} /07 _{Hex}	Invert TO-Bit		
	04 _{Hex}	No. of bytes Low Byte 1E _{Hex}		•		
	05 _{Hex}	No. of bytes High Byte 00 _{Hex}				
	00 _{Hex} /07 _{Hex}	Set CT-Bit to 1 (64 Byte block size), set AV-Bit				
	3.) Process	subaddress of the input buffer:	4.) Process subaddresses of the input buffer:			
	0106Hex	Copy first 6 data bytes	If an err	f an error has occurred:		
	Process subaddress of the output buffer:		01 _{Hex}	Enter error number		
	00 _{Hex} /07 _{Hex}	Invert TI-Bit	00Hex/07Hex	Set AF-Bit		
	5.) Process	subaddress of the input buffer:	6.) Process subaddresses of the input buffer:			
	01 _{Hex}	Copy error number	00 _{Hex} /07 _{Hex}	Reset AA-Bit and AF-Bit		
	Process	subaddress of the output buffer:		•		
	00 _{Hex} /07 _{Hex}	Reset AV-Bit				

	Function Example	n Description es for protocol sequence		
Example No. 7	Write 16 b	ytes starting at data carrier addres	s 20 (data carrier type with 32 byte block size):	
	Host:		BIS C-60_2 Identification System:	
For configuring with double bit header	1.) Process order she	subaddresses of the output buffer in the own:	 Process subaddresses of the input buffer in the order shown: 	
size!	01 _{Hex}	Command designator 02Hex	00 _{Hex} /07 _{Hex} Set AA-Bit, invert TO-Bit	
	02 _{Hex} /03 _{Hex}	Start address 14 _{Hex} / 00 _{Hex}		
	04 _{Hex} /05 _{Hex}	No. of bytes 10 _{Hex} / 00 _{Hex}		
	00 _{Hex} /07 _{Hex}	CT-Bit to 0 (32 Byte block size), set AV-Bit		
	3.) Process	subaddresses of the output buffer:	4.) Process subaddresses of the output buffer:	
	0106 _{Hex}	Enter the first 6 data bytes	0106 _{Hex} Copy the first 6 data bytes	
	$00_{\text{Hex}}/07_{\text{Hex}}$	Invert TI-Bit	Process subaddress of the input buffer:	
			00 _{Hex} /07 _{Hex} Invert TO-Bit	
	5.) Process	subaddresses of the output buffer:	6.) Process subaddresses of the output buffer:	
	0106 _{Hex}	Enter the second 6 data bytes	0106 _{Hex} Copy the second 6 data bytes	
	$00_{\text{Hex}}/07_{\text{Hex}}$	Invert TI-Bit	Process subaddress of the input buffer:	
			00 _{Hex} /07 _{Hex} Invert TO-Bit	
	7.) Process	subaddresses of the output buffer:	8.) Process subaddresses of the output buffer:	
	0104 _{Hex}	Enter the remaining 4 data bytes	0104 _{Hex} Copy the remaining 4 data bytes	
	$00_{\text{Hex}}/07_{\text{Hex}}$	Invert TI-Bit	Process subaddress of the input buffer:	
			00 _{Hex} /07 _{Hex} Set AE-Bit	
	9.) Process	subaddresses of the output buffer:	10.)Process subaddresses of the input buffer:	
	00 _{Hex} /07 _{Hex}	Reset AV-Bit	00 _{Hex} /07 _{Hex} Reset AA-Bit and AE-Bit	

	Exampl	es for protocol sequence	•	
Example No. 8	Copy 17 I	bytes starting at data carrier add er type with 32-byte block size):	iress 10	
For configuring with double bit header!	Data from cation in t the data c buffer. During dat written to Head 2 ha in the bit I	the data carrier in front of Head 1 he data carrier in front of Head 2. arrier in front of Head 1 is being ru- ta transmission ("toggling" of the T the data carrier in front of Head 2. as been successfully completed. A header for Head 1.	are read and Data transmis ead. This is in I bit / TO bit), The AE bit is ny errors at H	written to the same memory lo- ssion can be started even while dicated by the TO bit in the inpu , and only then are the bytes rear not set until the write process a lead 2 are indicated by the AF b
	Host:		BIS C-60	2 Identification System:
	1.) Process the orde	subaddresses of the output buffer in er shown:	2.) Process the order	subaddresses of the output buffer in shown:
	01 _{Hex}	Command designator 11 _{Hex}	00 _{Hex} /07 _{Hex}	set AA-Bit
	02 _{Hex}	Start address Low Byte 0A _{Hex}	0106 _{Hex}	Enter the first 6 data bytes
	03 _{Hex}	Start address High Byte 00Hex	00 _{Hex} /07 _{Hex}	Invert TO-Bit
	04 _{Hex}	No. of bytes Low Byte 11 _{Hex}		•
	05 _{Hex}	No. of bytes High Byte 00 _{Hex}		
	00/07 _{Hex}	CT-Bit to 0 (32 Byte block size), set AV-Bit		
	3.) Process	subaddresses of the input buffer:	4.) Process	subaddresses of the input buffer:
	0106 _{Hex}	Copy the first 6 data bytes	0106 _{Hex}	Enter the second 6 data bytes
	Process	s subaddresses of the output buffer:	00 _{Hex} /07 _{Hex}	Invert TO-Bit
	00 _{Hex} /07 _{Hex}	Invert TI-Bit		•
			_	Continued on next

46	L	
	Function Description Examples for protocol sequence	9
Example No. 8	5.) Process subaddresses of the input buffer:	6.) Process subaddresses of the input buffer:
(continued)	0106Hex Copy the second 6 data bytes	0105 _{Hex} Enter the remaining 5 data bytes
For configuring with	00Hex/07Hex Invert TI-Bit	UUHex/U/Hex Invert IO-Bit
double bit header!	7) Process subaddresses of the input buffer	8) Process subaddresses of the input buffer.
	0105Hex Copy the remaining 5 data bytes	00 _{Hex} /07 _{Hex} Set AE-Bit
	Process subaddresses of the output buffer:	
	00 _{Hex} /07 _{Hex} Invert TI-Bit	
	9.) Process subaddresses of the output buffer:	10.)Process subaddresses of the input buffer:
	00 _{Hex} /07 _{Hex} Reset AV-Bit	00 _{Hex} /07 _{Hex} Reset AA-Bit and AE-Bit
46 BALLUFF english		

	Function Example	n Description es for protocol sequence				
Example No. 9	Programming start address 75 (data carrier type with 32 byte block size):					
Address assignment	Host:		BIS C-60 2	2 Identification System:		
function	1.) Process order she	subaddresses of the output buffer in the own:	2.) Process	subaddresses of the input buffer:		
For configuring with	01 _{Hex} Command designator 06 _{Hex}		00 _{Hex} /07 _{Hex}	Set AA-Bit and AE-Bit		
double bit header	02 _{Hex}	Start address Low Byte 488ex		•		
size!	03 _{Hex}	Start address High Byte 008ex				
01201	00 _{Hex} /07 _{Hex}	CT-Bit to 0 (32 byte block size), set AV-Bit				
	3.) Process	subaddresses of the output buffer:	4.) Process subaddresses of the input buffer:			
	$00_{\text{Hex}}/07_{\text{Hex}}$	Reset AV-Bit	00 _{Hex} /07 _{Hex}	Reset AA-Bit and AE-Bit		
ß	To ensure and/or He If the Auto starting w double bit	correct data output, use command id ad 2. b-Read function is not activated, the p ith data carrier address 0 until the but header or 31 bytes for a single bit he	lentifier 07 _{Hex} f processor runs fer is filled, bu ader.	for each distributed buffer Head 1 s in standard mode and sends ut a maximum of 30 bytes for		

Example No. 10 Store Mixed Data Access program Storing a program for reading out 3 data records: 1st data record Start address 5 3rd data record Start address 75 Number of bytes 7 Number of bytes 17 Total number of bytes exchanged in the operation: 27 bytes For configuring with double bit header and 8-byte buffer sizel Host: 1.0 Process subaddresses of the output buffer in the order shown: Number of bytes 7 Number of bytes 17 Total number of bytes exchanged in the operation: 27 bytes Host: 1.0 Process subaddresses of the output buffer in the order shown: Host: 1.0 Process subaddresses of the output buffer in the order shown: 00+ex/07/tex CT-Bit to 0 or 1 (depending on block size), set AV-Bit 00+ex/07/tex CT-Bit to 0 or 1 (depending on block size), set AV-Bit 00+ex/07/tex CH Byte 00-tex (High Byte) 00-tex 4.) Process subaddresses of the input buffer:	F	unction De Examples fo	escription or protoco	ol sequer	ce				
Store Mixed Data Access program 1st data record Start address 5 Number of bytes 7 For configuring with double bit header and 8-byte buffer size! 1st data record Start address 312 Number of bytes 17 Total number of bytes exchanged in the operation: 27 bytes All 104 bytes are written for the programming. 27 bytes Host: Host: 2.) Process subaddresses of the output buffer in the order shown: 2.) Process subaddresses of the input buffer: 01Hex Command designator 06Hex 00Hex/07Hex Set AA-Bit, invert TO-Bit 01Hex Command designator 06Hex 00Hex/07Hex Set AA-Bit, invert TO-Bit 01Hex Command designator 06Hex 00Hex/07Hex 1.9 Process subaddresses of the output buffer: 01Hex Command designator 06Hex 00Hex/07Hex 1.9 Process subaddresses of the input buffer: 01Hex Command designator 06Hex 00Hex/07Hex 1.9 Process subaddresses of the input buffer: 01Hex Command designator 06Hex 00Hex/07Hex 1.9 Process subaddresses of the input buffer: 01Hex 1st start address (Low Byte) 07Hex 4.) Process subaddresses of the input buffer: 01Hex 1st number of <t< td=""><td>Example No. 10 S</td><td colspan="8">Storing a program for reading out 3 data records:</td></t<>	Example No. 10 S	Storing a program for reading out 3 data records:							
For configuring with double bit header and 8-byte buffer size! Total number of bytes exchanged in the operation: 27 bytes All 104 bytes are written for the programming. All 104 bytes are written for the programming. Host: 1.) Process subaddresses of the output buffer in the order shown: 01Hex Command designator 08Hex 02Hex Program number 01Hex 00Hex/07Hex CT-Bit to 0 or 1 00Hex/07Hex CT-Bit to 0 or 1 01Hex 1st start address 01Hex 1st start address 01Hex 1st number of Low Byte) 05Hex 02Hex 1st number of Low Byte) 05Hex 03Hex 1st number of Low Byte) 05Hex 05Hex 2nd start address 06Hex (High Byte) 00Hex 06Hex (High Byte) 00Hex 06Hex (High Byte) 00Hex 06Hex (High Byte) 00Hex 0Hex (High Byte) 00Hex	Store Mixed Data Access program	1st data record Start address 5 1 2nd data record Start address 75 1 3rd data record Start address 312		Number of byte Number of byte Number of byte	s 7 s 3 s 17				
size! Host: Host: 1.) Process subaddresses of the output buffer in the order shown: 2.) Process subaddresses of the input buffer: 01+tex Cormand designator 06+tex 00+tex/07/tex 02+tex Program number 01+tex 00+tex/07/tex 00+tex/07/tex CT-Bit to 0 or 1 00+tex/07/tex 00+tex/07/tex CT-Bit to 0 or 1 00+tex/07/tex 01+tex 1st start address (Low Byte) 05+tex 02+tex (High Byte) 00+tex 4.) Process subaddresses of the input buffer: 01+tex 1st number of (Low Byte) 07+tex 4.) Process subaddresses of the input buffer: 02+tex (High Byte) 00+tex 0+tex/07+tex 03+tex 1st number of (Low Byte) 07+tex 4.) Process subaddresses of the input buffer: 05+tex 2rd start address (Low Byte) 07+tex 05+tex 2rd start address (Low Byte) 00+tex 06+tex (High Byte) 00+tex 0+tex/07+tex	For configuring with To double bit header and 8-byte buffer A	Total number of bytes exchanged in the operation: 27 bytes All 104 bytes are written for the programming.							
 1.) Process subaddresses of the output buffer in the order shown: 2.) Process subaddresses of the input buffer: 2.) Process subaddresses of the input buffer: 2.) Process subaddresses of the input buffer: 3.) Process subaddresses of the output buffer: 4.) Process subaddresses of the input buffer: 3.) Outes/07 Hex 4.) Process subaddresses of the input buffer: 3.) Process subaddresses of the input buffer: 4.) Process subaddresses of the output buffer: 5. (High Byte) 00Hex 6. (Low Byte) 07Hex 6. (Low Byte) 00Hex 7. (High By	size! H	lost:				Host:			
01Hex Command designator 06Hex 02Hex Program number 01Hex 00Hex/07Hex CT-Bit to 0 or 1 (depending on block size), set AV-Bit 3.) Process subaddresses of the output buffer: 4.) Process subaddresses of the input buffer: 0Hex 1st start address (Low Byte) 05Hex (High Byte) 00Hex 0Hex 1st number of 04Hex (Low Byte) 07Hex (High Byte) 00Hex 05Hex 2nd start address (Low Byte) 00Hex (High Byte) 00Hex 05Hex 2nd start address (Low Byte) 00Hex (High Byte) 00Hex 05Hex 2nd start address (Low Byte) 00Hex (High Byte) 00Hex 05Hex 2nd start address (Low Byte) 00Hex (High Byte) 00Hex 05Hex 2nd start address (Low Byte) 00Hex (High Byte) 00Hex 0Hex/07Hex Invert TI-Bit	1.) Process subade order shown:	dresses of the c	output buffer i	the	2.) Process sub	addresses of	f the input buffer:	
02+tex Program number 01+max 00+tex/07+tex CT-Bit to 0 or 1 (depending on block size), set AV-Bit 4.) Process subaddresses of the input buffer: 01+tex 1st start address (Low Byte) 05+tex (High Byte) 00+tex 1nvert TO-Bit 02+tex (High Byte) 00+tex 1nvert TO-Bit 05+tex 2nd start address (Low Byte) 00+tex 05+tex 2nd start address (Low Byte) 00+tex 06+tex 2nd start address (Low Byte) 00+tex 06+tex (High Byte) 00+tex 1nvert TO-Bit	0	1Hex Corr	mand designate	or 06 _{Hex}		00 _{Hex} /07 _{Hex} S	et AA-Bit, inv	/ert TO-Bit	
00Hes/07Hex CT-Bit to 0 or 1 (depending on block size), set AV-Bit 4.) Process subaddresses of the input buffer: 01Hex 1st start address (Low Byte) 05Hex 01Hex 1st start address (Low Byte) 00Hex 03Hex 1st number of (Low Byte) 07Hex 04Hex bytes (High Byte) 00Hex 05Hex 2nd start address (Low Byte) 00Hex 06Hex 2nd start address (Low Byte) 00Hex 06Hex (High Byte) 00Hex 06Hex (High Byte) 00Hex 06Hex (High Byte) 00Hex 0Hex/07Hex Invert TI-Bit	0	12 _{Hex} Prog	ram number 01	Hex					
3.) Process subaddresses of the output buffer: 4.) Process subaddresses of the input buffer: 01 _{Hex} 1st start address (Low Byte) 05 _{Hex} 02 _{Hex} 1st number of (Low Byte) 07 _{Hex} 03 _{Hex} 1st number of (Low Byte) 07 _{Hex} 04 _{Hex} bytes (High Byte) 00 _{Hex} 05 _{Hex} 2nd start address (Low Byte) 4B _{Hex} 06 _{Hex} /07 _{Hex} Invert TI-Bit	O	00Hex/07Hex CT-E (dep set A	Bit to 0 or 1 ending on block AV-Bit	k size),					
01Hex 1st start address (Low Byte) 05Hex 02Hex (High Byte) 00Hex 03Hex 1st number of (Low Byte) 01Hex 04Hex bytes (High Byte) 00Hex 05Hex 2nd start address (Low Byte) 01Hex 06Hex 2nd start address (Low Byte) 00Hex 06Hex 00Hex/07Hex Invert To-Bit	3.	.) Process subade	dresses of the o	output buffer:		4.) Process sub	addresses of	f the input buffer:	
02Hex (High Byte) 00Hex 03Hex 1st number of (Low Byte) 07Hex 04Hex bytes (High Byte) 00Hex 05Hex 2nd start address (Low Byte) 4BHex 06Hex (High Byte) 00Hex (High Byte) 00Hex 06Hex (High Byte) 00Hex (High Byte) 00Hex 00Hex/07Hex Invert TI-Bit (High Byte) 00Hex	0	1st s	start address	(Low Byte) 0	Hex	00 _{нех} /07 _{нех} In	vert TO-Bit		
03Hex 1st number of bytes (Low Byte) 07Hex (High Byte) 00Hex 04Hex 2nd start address (Low Byte) 4BHex (High Byte) 00Hex 06Hex 1nvert TI-Bit	0	2 _{Hex}		(High Byte) 0	Hex				
04+ex Dytes (High Byte) 00+ex 05+ex 2nd start address (Low Byte) 4B+ex 06+ex (High Byte) 00+ex 00+ex/07+ex Invert TI-Bit	0	3Hex 1st n	number of	(Low Byte) 0	Hex				
05Hex 2nd start address (Low Byte) 4BHex 06Hex (High Byte) 00Hex 00Hex/07Hex Invert TI-Bit	0	4 _{Hex} bytes	S	(High Byte) 0	Hex				
U0Hex (High Byte) U0Hex 00Hex/07Hex Invert TI-Bit	0	D5Hex 2nd	start address	(Low Byte) 4	Hex				
	0		rt TI_Bit	(High Byte) 0	JHex				
	0	OHex/07 Hex IIIVer							
Continued on ne								Continued on	next 🗅.
48 BALLIEE anglish	BALLIEE								

	Example	es for protoc	ol sequence			
Example No. 10	Host:			BIS C-60 2	Identification System:	
Store Mixed Data Access program (continued)	5.) Process subaddresses of the output buffer:			6.) Process subaddresses of the input buffer:		
	01 _{Hex} 02 _{Hex}	2nd number of bytes	(Low Byte) 03 _{Hex} (High Byte) 00 _{Hex}	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	03 _{Hex}	3rd start address	(Low Byte) 38Hex			
For configuring with	04 _{Hex}		(High Byte) 01 _{Hex}			
double bit header and 8-byte buffer size!	05нех	3rd number of	(Low Byte) 11 _{Hex}			
	06 _{Hex}	bytes	(High Byte) 00 _{Hex}			
	00 _{Hex} /07 _{Hex}	Invert TI-Bit				
	7.) Process	subaddresses of the	output buffer:	8.) Process si	ubaddresses of the input buffer:	
	01 _{Hex} /02 _{Hex}	Terminator	FF _{Hex} /FF _{Hex}	00Hex/07Hex	Invert TO-Bit	
	03 _{Hex} /04 _{Hex}	(not used)	FFHex/FFHex			
	05 _{Hex} /06 _{Hex}	(not used)	FFHex/FFHex			
	00 _{Hex} /07 _{Hex}	Invert TI-Bit				
	Fill all unuse	d start addresses an	d number of bytes w	rith FF _{Hex} !	Continued on next ∏.	

	Functior Example	n Descripti es for proto	on ocol sequence	•			
Example No. 10	Host:			BIS C-60_2	2 Identification System:		
Store Mixed Data	9.) Process	subaddresses of	the output buffer:	10.) Process subaddresses of the input buffer:			
(continued)	01 _{Hex} /02 _{Hex}	(not used)	FF _{Hex} /FF _{Hex}	00 _{Hex} /07 _{Hex}	Set AE-Bit		
	03 _{Hex} /04 _{Hex}	(not used)	FF _{Hex} /FF _{Hex}	_	· · · · · · · · · · · · · · · · · · ·		
For configuring with	05 _{Hex} /06 _{Hex}	(not used)	FFHex/FFHex				
double bit header	00 _{Hex} /07 _{Hex}	Invert TI-Bit					
and 8-byte buffer size!	11.)Process	subaddresses of	the output buffer:	12.)Process	subaddresses of the input buffer:		
	00Hex/07Hex	Reset AV-Bit		00Hex/07Hex	Reset AA-Bit and AE-Bit		
ß	We recominumber of The data a	mend that you o bytes for writin re sequenced i	carefully document v g/reading the desire n the exact order sp	which paramete d data records ecified in the p	ers are used for start addresses and rogram.		

Exa	ample No. 11	Function Example	n Description es for protocol sequence					
Exa	ample No. 11 Mixed Data	Road data						
Use	Mixed Data	Read data carrier using Program No. 1 (data carrier type with 32 byte block size):						
000 000		Host:		BIS C-60	2 Identification System:			
Acc	cess program	1.) Process s order sho	subaddresses of the output buffer in the wn:	 Process subaddresses of the input buffer in the order shown: 				
ror	ble bit beader	01 _{Hex} Command designator 21 _{Hex}		00 _{Hex} /07 _{Hex}	Set AA-Bit			
and	d 8-byte buffer	02 _{Hex}	Program number 01 _{Hex}	0106 _{Hex}	Enter first 6 bytes of data			
size	el	00 _{Hex} /07 _{Hex}	CT-Bit to 0 (32 byte block size),	00 _{Hex} /07 _{Hex}	Set AE-Bit			
			set AV-Bit					
		3.) Process :	subaddresses of the input buffer:	4.) Process	subaddresses of the output buffer:			
		0106 _{Hex}	Copy first 6 data bytes	0106 _{Hex}	Enter the second 6 data bytes			
		Process	subaddress of the output buffer:	00 _{Hex} /07 _{Hex}	Invert TO-Bit			
		00 _{Hex} /07 _{Hex}	Invert TI-Bit					
		A total of For the ren	27 bytes of data are exchanged. nainder of the procedure, see Exan	nple 2 on Ҧ∶	38.			
	R ^a	Dynamic n	node is turned off while the Mixed Dat	a Access pro	gram is being run.			
					english BALLUFF 51			

52	Functio Example	n Description es for protocol sequence		
Example No. 12 Use Mixed Data Access program	Write data Host: 1.) Process the orde	a carrier using Program No. 1 (dat subaddresses of the output buffer in r shown:	ta carrier type with 32 byte block size): BIS C-60_2 Identification System: 2.) Process subaddresses of the input buffer in the order shown:	
double bit header and 8-byte buffer size!	01 _{Hex} 02 _{Hex} 00 _{Hex} /07 _{Hex}	Command designator 22Hex Program number 01Hex CT-Bit to 0 (32 byte block size), set AV-Bit	00 _{Hex} /07 _{Hex}	Set AA-Bit, invert TO-Bit
	 Элу Process О106нех О0нех/07нех 	subaddresses of the output buffer: Enter first 6 bytes of data Invert TI-Bit	4.) Process 0106 _{Hex} Process 00 _{Hex} /07 _{Hex}	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit
ræ	A total of For the rer	of 27 bytes of data are exchanged mainder of the procedure, see Exa mode is turned off while the Mixed Da	d. Imple 7 on D 4	44. gram is being run.
L S				<u> </u>
52 BALLUFF Cenglish	>			

	Function Description Examples for protocol sequenc	e
Example No. 13	Put the relevant read/write head into grou	und state:
	Both read/write heads can be independently	y set to the ground state.
	Host:	BIS C-60_2 Identification System:
	1.) Process subaddresses of the output buffer:	2.) Go to ground state; Process subaddresses of the input buffer:
	00 _{Hex} /07 _{Hex} Set GR-Bit	00 _{Hex} /07 _{Hex} Reset BB-Bit
	3.) Process subaddresses of the output buffer:	4.) Process subaddresses of the input buffer:
	00 _{Hex} /07 _{Hex} Reset GR-Bit	00 _{Hex} /07 _{Hex} Set BB-Bit
		english BALLUFF 53

	Read/Write Time	es				
Read times from	For double read and co	mpare:				
Data carrier to	Data carrier with 32 byt	e blocks	Data carrier with 64 by	te blocks		
static mode	No. of bytes	Read time [ms]	No. of bytes	Read time [ms]		
(parametering:	from 0 to 31	110	from 0 to 63	220		
without CRC_16 data	for each additional 32 bytes add	120	for each additional 64 bytes add	230		
,	from 0 to 255	= 950	from 0 to 2047	= 7350		
Write times from processor to Data carrier in static	Including readback an Data carrier with 32 byte	d compare:	Data carrier with 64 byte	e blocks		
mode	No. of bytes	Write time [ms]	No. of bytes	Write time [ms]		
(parametering:	from 0 to 31	110 + n * 10	n * 10 from 0 to 63 220			
without CRC 16 data	for 32 bytes or more	y * 120 + n * 10	for 64 bytes or more	y * 230 + n * 10		
check)	$\label{eq:states} \begin{array}{l} n = number \ of \ contiguous \\ y = number \ of \ blocks \ to \ be \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	bytes to write processed n address 187 have to be processed since to 6. : 410 ms	be written. Data carrier wi he start address 187 is in b	th 32 bytes per block. block 5 and the end		
LE C	The indicated times ap yet recognized, an addi recognized must be ad	pply after the Data carrie tional 45 ms for building ded.	er has been recognized. If th the required energy field unt	e Data carrier is not il the Data carrier is		

	Read/Write Tir	nes									
Read times from	Read times within the 1st block for dual read and compare:										
processor in dynamic mode (parametering: 2pd byte bit 5 = 1	The indicated times apply after the Data carrier has been recognized. If the Data carrier is not yet recognized, an additional 45 ms for building the required energy field until the Data carrier is recognized must be added.										
without CRC_16 data check)	Data carrier with 32 b	oyte blocks	Data carrier with 64 byte blocks								
	No. of bytes	Read time [ms]	No. of bytes	Read time [ms]							
	from 0 to 3	14	from 0 to 3	3.5							
	for each additional byte add	3.5	for each additional byte add								
	from 0 to 31	112	from 0 to 63	224							
	m = highest address to Formula: t = (m + 1 Example: Read 11 t This corre	be read) * 3.5 ms bytes starting at address asponds to 70 ms.	9, i.e. the highest address	to be read is 19.							

I	BIS C-6002 Technical Data	
Dimensions, Weight	Housing Dimensions with read/write head BIS C-65_ Dimensions with adapter BIS C-650 Weight	Plastic ABS ca. 169 x 90 x 35 mm ca. 185 x 90 x 35 mm ca. 500 g
Operating Conditions	Ambient temperature	0 °C to + 50 °C
Enclosure Rating	Enclosure rating	IP 65 (with read/write head)
Connections BIS C-6002KL2	Terminal block Cable entry Cable diameter Cable entry Cable diameter	19-pin 2 x PG 11 fittings (metal) 5 to 10 mm 1 x PG 9 fittings (metal) 4 to 8 mm
	Conductor size with ferrules	0.14 to 1 mm ² 0.25 to 0.34 mm ²
Connections BIS C-6002ST11	Integral connector X1 for V _s , IN Integral connector X2 for PROFIBUS-DP Input Integral connector X3 for PROFIBUS-DP Output	5-pin (male) 5-pin (male) 5-pin (female)
Electrical Connections	Supply voltage V _s , input Ripple Current draw	DC 24 V ± 20 % ≤ 10 % ≤ 400 mA
	PROFIBUS-DP slave	electrically isolated

71			
		BIS C-6002 Technical Data	
Elec Con (con	trical nections tinued)	Digital Input (+IN, -IN) Control voltage active Control voltage inactive Input current at 24 V Delay time, typ.	Optocoupler isolated 4 V to 40 V 1.5 V to -40 V 11 mA 5 ms
	with KL2 only:	$\begin{array}{l} \textbf{Control outputs CT Present 1 and 2} \\ \textbf{Output circuit PNP (current sourcing)} \\ \textbf{Operating voltage } V_{so} (external) for output \\ \textbf{Ripple} \\ \textbf{Output current} \\ \textbf{Voltage drop at 20 mA} \\ \textbf{Output resistance } \textbf{R}_{A} \end{array}$	Optocoupler isolated DC 24 V \pm 20 % \leq 10 % max. 20 mA approx. 2.5 V 10 k\Omega to -V_{so}
		Service interface	RS 232
		Read/Write Head option for mounted adapter BIS C-650 *)	integrated, BIS C-65_ and following *); 2 x connectors 4-pin (male) for all read/write heads BIS C-3 with 4-pin connector (female), excent BIS C-350 and BIS C-352
		option for mounted adapter BIS C-670 *)	1 x connector 8-pin (male) for one of the read/write heads BIS C-350 or BIS C-352
Fun	ction Displays	BIS operating messages: Ready / Bus active CT1 Present / operating CT2 Present / operating	LED red / green LED green / yellow LED green / yellow
			english BALLUFF 71

I	Opening the processor / Interface information
Opening the BIS C-6022 processor	To set the PROFIBUS-DP address, activate or deactivate the internal termination resistor, set the compatibility mode or to change the EEPROM, you must open up the BIS C-6022 processor.
	Remove the 4 screws on the BIS C-6022 and lift off the cover. See the following $\ensuremath{\square}\ensuremath{\square}$ for additional information.
BIS C-6022 interfaces	Connection for read/write head 2
	Supply voltage, input, output (ST10 only) X1
	PROFIBUS-DP X2
	PROFIBUS-DP X3 A. A. A
Connection locations	Service interface X4

	BIS C-6022 Interface Information / Wiring Diagrams								
	To insert BIS C-6022 processor into the serial PROFIBUS and to connect the supply voltage and the digital input, the cables have to be connected to the terminals of the processor. For more details regarding the wiring see the following [Th. The read/write heads have to be con- nected to the to terminals Head 1 and Head 2.								
PROFIBUS-DP	Ensure that the device is turned off.								
	Connect the "incoming" PROFIBUS cable to the PROFIBUS-Input. Connect the "outgoing" PROFIBUS cable to the PROFIBUS-Output.								
	The last bus module must terminate the bus with a resistor. In the case of the BIS C-6022, can be realized in two different ways:								
	1. In the device by closing the switch S2 (factory standard is open) S2 S2 Terminating resistor The PROFIBUS-Output must be closed off with a screw cover in order to maintain the enclosure rating. S2 S2 Terminating resistor								
	 Outside the device in a connector. In this case the signal VP and DGND should be brought out in order to connect the external resistor to the potential. Note: In this case the S2 switch has to be open! 								
	No supply voltage is allowed on the PROFIBUS connections!								
	Connect cable for the supply voltage, the digital input, and the outputs to terminal X1.								
	anglish BALLUFF								

82

BIS C-6022 **Technical Data**

Dimensions, weight	Housing Dimensions Weight	Metal 190 x 120 x 60 mm 820 g
Operating conditions	Ambient temperature	0 °C to +60 °C
Enclosure	Protection class	IP 65 (when connected)
Connections BIS C-6022ST10	Integral connector X1 for V _s , CT Present_, +IN Round connector X2 / X3 for PROFIBUS-DP Integral connector X4 for Service interface	5-pin (male) 12-pin (female) 4-pin (male)
Connections BIS C-6022ST14	Integral connector X1 for V _{sr} +IN Integral connector X2 for PROFIBUS-DP input Integral connector X3 for PROFIBUS-DP output Integral connector X4 for Service interface	5-pin (male) 5-pin (male) 5-pin (female) 4-pin (male)
Electrical connections	Supply voltage V _s Ripple Current draw	DC 24 V ± 20 % ≤ 10 % ≤ 400 mA
with ST10 only:	Control outputs CT Present 1 and 2 Output circuit Operating voltage V_s for output Ripple Output current Voltage drop at 20 mA Output resistance R_A	Optocoupler isolated PNP (current sourcing) DC 24 V \pm 20 % via X1 $\pm 00\%$ max. 20 mA approx. 2.5 V 10 k Ω to $-V_s$ $-V_s$
BALLUFF english		

82

	BIS C-6022 Technical Data								
Electrical Connections (continued)	Digital input +IN Control voltage active Control voltage inactive Input current at 24 V Delay time, typ.	Optocoupler isolated 4 V to 40 V 1.5 V to -40 V +IN 11 mA -Vs 5 ms							
	PROFIBUS-DP, Connector X2, X3 Head 1, Head 2, Read/Write Head	serial interface for PROFIBUS stations via 2 x connectors for all read/write heads BIS C-3 with 4-pin connector (female), excluding BIS C-350 and BIS C-352							
	Service interface X4	RS 232							
Function displays	BIS operating messages: Ready / Bus active CT1 Present / operating CT2 Present / operating	LED red / green LED green / yellow LED green / yellow							
	The CE-Mark is your assura EU Directive	nce that our products are in conformance with the 08/EC (EMC-Guideline)							
	and the EMC Law. Testing in our EMC Testing of Electromagnetic Compatibilit EMC requirements of the Generic Stand	Laboratory, which is accredited by the DATech for y, has confirmed that Balluff products meet the dard							
	EN 61000-6-4 (Emission) al	nd EN 61000-6-2 (Noise Immunity).							

	BIS C-6022 Ordering Information											
Ordering code			BIS C-60	022-019-050-03-ST								
	Balluff Identification System											
	Type C Read/Write	e System										
	Hardware Type – 6022 = metal hous	sing, PROFIBUS-	DP									
	Software Type — 019 = PROFIBUS-	DP										
	Version 050 = with two co (except BIS	nnections for ext C-350 and -352	ernal read/write heads BIS (C-3								
	Interface											
	User Connection ST10 = Connector ST14 = Connector	version X1, X2, version X1, X2,	X3, X4 (male: 1× 5-pin, 1× 4 X3, X4 (male: 2× 5-pin, 1× 4-	-pin, female: 2× 12-pin) -pin, female: 1× 5-pin)								
Accessory	Туре		Ordering code for ST10	Ordering code for ST14								
0.000.000	Mating connector	for X1 for X2 for X3	BKS-S 79-00 BKS-S 86-00 BKS-S 86-00	BKS-S 79-00 BKS-S103-00 BKS-S105-00 BKS-S 10-3								
(optional, not included)		for X4	BKS-S 10-3									

L

				Арр	end	ix, AS	SCII T	able											
Deci- mal	Hex	Control Code	ASCII	Deci- mal	Hex	Control Code	ASCII	Deci- mal	Hex	ASCII	Deci- mal	Hex	ASCII	Deci- mal	Hex	ASCII	Deci- mal	Hex	ASC
0	00	Ctrl @	NUL	22	16	Ctrl V	SYN	44	2C	,	65	41	А	86	56	V	107	6B	k
1	01	Ctrl A	SOH	23	17	Ctrl W	ETB	45	2D	-	66	42	В	87	57	W	108	6C	Τ
2	02	Ctrl B	STX	24	18	Ctrl X	CAN	46	2E		67	43	С	88	58	Х	109	6D	m
3	03	Ctrl C	ETX	25	19	Ctrl Y	EM	47	2F	/	68	44	D	89	59	Y	110	6E	n
4	04	Ctrl D	EOT	26	1A	Ctrl Z	SUB	48	30	0	69	45	Е	90	5A	Ζ	111	6F	0
5	05	Ctrl E	ENQ	27	1B	Ctrl [ESC	49	31	1	70	46	F	91	5B	[112	70	р
6	06	Ctrl F	ACK	28	1C	Ctrl \	FS	50	32	2	71	47	G	92	5C	\	113	71	q
7	07	Ctrl G	BEL	29	1D	Ctrl]	GS	51	33	3	72	48	Н	93	5D]	114	72	r
8	08	Ctrl H	BS	30	1E	Ctrl ^	RS	52	34	4	73	49	1	94	5E	^	115	73	s
9	09	Ctrl I	HT	31	1F	Ctrl _	US	53	35	5	74	4A	J	95	5F	_	116	74	t
10	0A	Ctrl J	LF	32	20		SP	54	36	6	75	4B	К	96	60	`	117	75	u
11	0B	Ctrl K	VT	33	21		!	55	37	7	76	4C	L	97	61	а	118	76	v
12	0C	Ctrl L	FF	34	22		-	56	38	8	77	4D	М	98	62	b	119	77	w
13	0D	Ctrl M	CR	35	23		#	57	39	9	78	4E	Ν	99	63	с	120	78	х
14	0E	Ctrl N	SO	36	24		\$	58	ЗA	:	79	4F	0	100	64	d	121	79	у
15	0F	Ctrl O	SI	37	25		%	59	3B	;	80	50	Р	101	65	е	122	7A	z
16	10	Ctrl P	DLE	38	26		&	60	3C	<	81	51	Q	102	66	f	123	7B	{
17	11	Ctrl Q	DC1	39	27		'	61	3D	=	82	52	R	103	67	g	124	7C	1
18	12	Ctrl R	DC2	40	28		(62	3E	>	83	53	S	104	68	h	125	7D	}
19	13	Ctrl S	DC3	41	29)	63	3F	?	84	54	Т	105	69	i	126	7E	~
20	14	Ctrl T	DC4	42	2A		*	64	40	0	85	55	U	106	6A	j	127	7F	DEL
21	15	Ctrl U	NAK	43	2B		+							_			_		