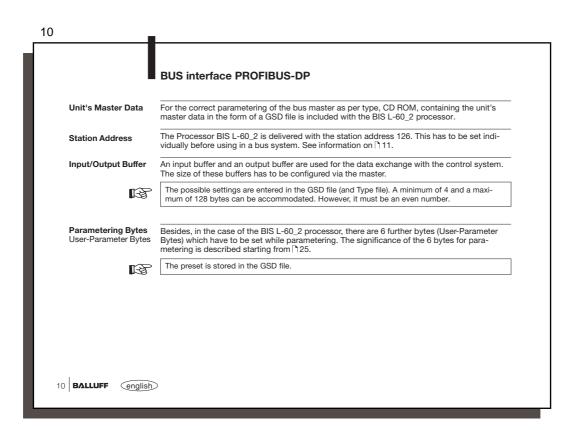
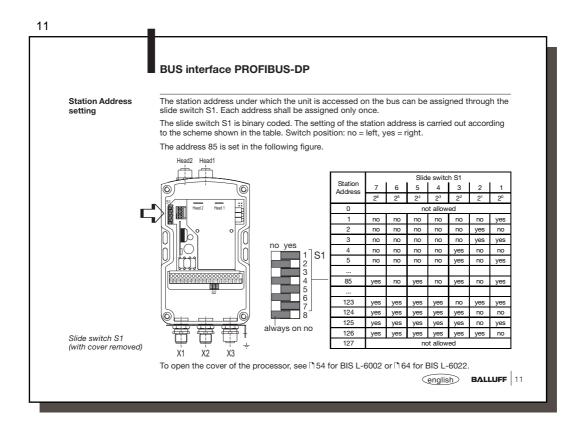
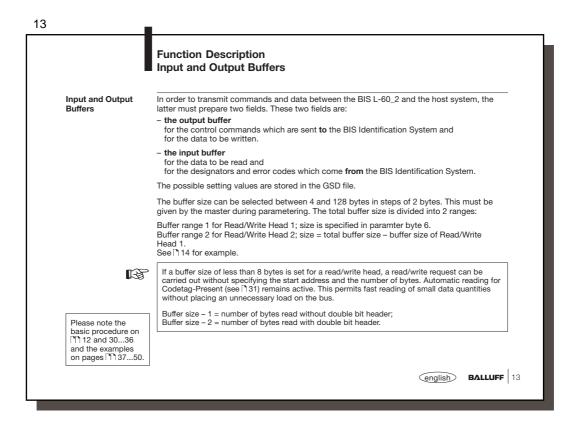

	Safety Considerations
Approved Operation	Series BIS L-60_2 processors along with the other BIS L system components comprise an identification system and may only be used for this purpose in an industrial environment in conformity with Class A of the EMC Law.
Installation and Operation	Installation and operation should be carried out by trained personnel only. Unauthorized work and improper use will void the warranty and liability.
	When installing the processor, follow the chapters containing the wiring diagrams closely. Special care is required when connecting the processor to external controllers, in particular with respect to selection and polarity of the signals and power supply.
	Only approved power supplies may be used for powering the processor. See chapter 'Techni- cal Data' for details.
Use and Checking	Prevailing safety regulations must be adhered to when using the identification system. In particular, steps must be taken to ensure that a failure of or defect in the identification system does not result in hazards to persons or equipment.
	This includes maintaining the specified ambient conditions and regular testing for functionalit of the identification system including all its associated components.
Fault Conditions	Should there ever be indications that the identification system is not working properly, it should be taken out of commission and secured from unauthorized use.
Scope	This manual applies to processors in the series BIS L-6002-019-050-03-ST11 and BIS L-6022-019-050-03-ST14.





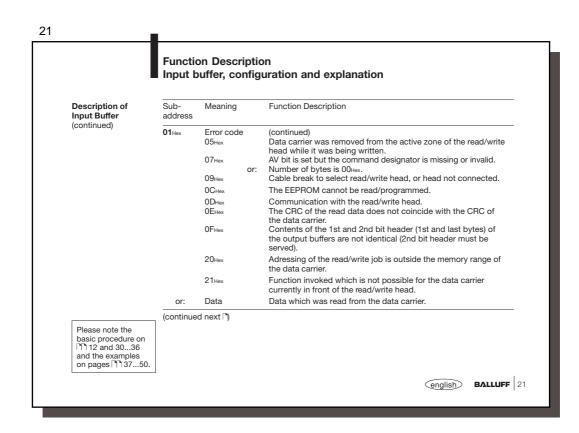

	BIS L-60_2 Processor Basic knowledge for application
Selecting System Components	The BIS L-6002 processor has a plastic housing. The BIS L-6022 processor has a metal housing.
	Connection is made through round connectors. Two read/write heads can be cable con- nected.
	Series BIS L-60_2 processors have in addition a digital input. The input has various functions depending on the configuration (see Parametering).
	The read/write distances depend on which data carriers are used. Additional information on the read/write heads in series BIS L-3 including all the possible data carrier/read-write head combinations can be found in the manuals for the respective read/write heads.
	The system components are electrically supplied by the processor. The data carrier represents a free-standing unit and needs no line-carried power. It receives its energy from the read/write head. The latter constantly sends out a carrier signal which supplies the code head as soon as the required distance between the two is reached. The read/write operation takes place during this phase. Reading and writing may be dynamic or static.
	(english) BALLUFF


8	
	BIS L-60_2 Processor Basic knowledge for application
Control Function	The processor writes data from the host system to the data carrier or reads data from the data carrier through the read/write head and prepares it for the host system. Host systems may include:
	 a host computer (e.g. industrial PC) or a programmable logic controller (PLC)
Data checking with CRC_16	For applications requiring high security against bad data, CRC_16 checking can be used. Here a check code is written to the data carrier which allows the data to be checked for integrity at any time or location. Advantages to CRC_16: Very high data integrity, even during the non-active phase (data carrier outside the active zone of the r/w head)
	Disadvantages to CRC_16: Longer read/write times, some user data space is taken up on the data carrier.
	Use of CRC_16 can be parameterized by the user. (see [125)
8 BALLUFF english	

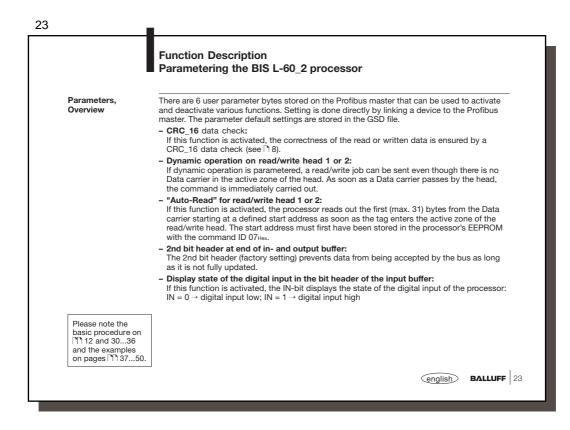
	Function Descr Input and Output				
Input and Output Buffers (continued)	Example: The 82 byt 46 bytes is assigned for Read/Write Head	to Read/Write Head			
	Procedure: The buffe parameter byte 6 to e binary 00101110.				
	PLC Organisation: T	he buffer range sta	rts at input byte	B 32 and output I	byte OB 32.
	Result: Read/Write Head 1: (R/W 1)	Subaddress 00 Input buffer Output buffer	IB 32 and OE IB 32 to IB 7 OB 32 to OB	7	OB 0 PLC buffer Buffer for R/W 1
	Read/Write Head 2: (R/W 2)	Subaddress 00 Input buffer Output buffer	IB 78 and OE IB 78 to IB 1 OB 78 to OB	13	Buffer for R/W 2
13	Note that these buffe			Sequence 1	Sequence 2
Please note the	The following descrip	0 21		Subaddress 00 01 02 03	Subaddress 01 00 03 02
basic procedure on 1112 and 3036 and the examples on pages 113750.				04 05 06 07	05 04 07 06

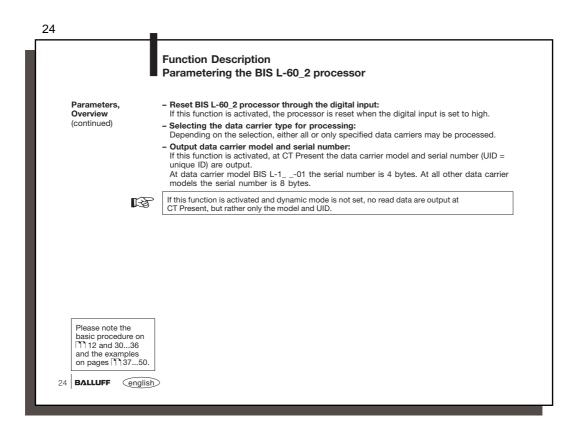
	Functior Output b				ratio	n and	expl	anati	on		
Configuration of the Output Buffer for One (1) Read/Write Head	The last two bytes can be parameterized as the 2nd bit header (default).										
	Bit No. Subaddress		7 6	6	5	4	3	2	1	0]
	00Hex = Bit Hea	der		TI	KA			GR		AV	Bit Name
	01 _{Hex}			Comn	nand Des	ignator		or	D	ata]
	02Hex		Start A) or Progra	m No.	or	D	ata	
	03 _{Hex}				ddress (H	• • •		or	-	ata	
	04Hex				Bytes (Lo			or	_	ata	
	05Hex			No. of	Bytes (Hi	gh Byte)		or	D	ata	4
	06Hex	Data									-
				0.101	Data	as above)					-
	Last Byte			2nu bil	neader (a	as above)		or	U	ata]
Description of	Sub- address	Bit Name		aning		Functio	on Des	cription	l		
Output Buffer	00 _{Hex} Bit Header	TI	Tog	gle-Bit	In	Shows for add			l actior	n that t	he controller is ready
		KA	Head function			Turn read/write head on/off as ne Active = 0 Read/write head is Inactive = 1 Read/write head is				on.	
Please note the basic procedure on		GR	Gro	und st	ate	Causes for the Any pe	respe	ctive re	ad/wri	te head	
and the examples on pages 113750.		AV	Con	nmand	l						that a command d is present.

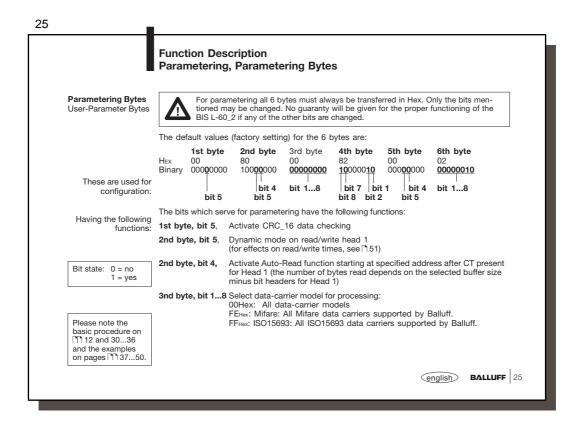
16 **Function Description** Output buffer, configuration and explanation Description of Output Buffer (continued) Sub-address Function Description Meaning 01_{Hex} Command designator 00Hex 01Hex 02Hex No command present Read data carrier Write to data carrier Store program in the EEPROM for the Mixed Data Access function 06_{HEX} Store the start address for the Auto-Read function in the EEPROM Initialize the CRC16 data check Read for Mixed Data Access function (corresponding to the program stored in the EEPROM) Write for Mixed Data Access function 07_{Нех} 12_{Нех} 21_{Нех} 22HEX (corresponding to the program stored in the EEPROM) Data for writing to the data carrier or: for writing to the EEPROM. Program data or: (continued next) Please note the basic procedure on 11 12 and 30...36 and the examples on pages 11 37...50. 16 BALLUFF english

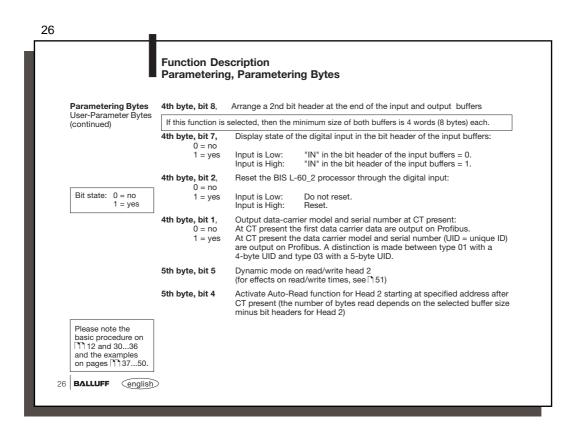

		on Description buffer, conf	on iguration and explanation
Description of Output Buffer (continued)	Sub- address	Meaning	Function Description
(continued)	02 Hex	Start address (Low Byte)	Address at which reading from or writing to the data carrier begin (The Low Byte includes the address range from 0 to 255).
	or:	Start address (Low Byte)	Address for the Auto-Read function, starting at which the code tag is to be read. The value is stored in the EEPROM. (The Low Byte covers the address range from 0 to 255).
	or:	Program No.	Number of the program to be stored in the EEPROM in conjunction with command ID 06Hex for Mixed Data Access function (values between 01Hex and 0AHex are allowed!).
	or:	Program No.	Number of the program stored in the EEPROM for read or write operations in conjunction with command ID 22 _{Hex} or 22 _{Hex} for the Mixed Data Access function.
	or:	Data	for writing to the data carrier
	or:	Program data	for writing to the EEPROM.
	03 _{Hex}	Start address (High Byte)	Address for reading from or writing to the data carrier . (The High Byte includes the address range from 256 to 1999).
	or:	Start address (High Byte)	Address for the Auto-Read function, starting at which the code tag is to be read. The value is stored in the EEPROM. (The High Byte includes the address range from 256 to 1999).
[or:	Data	for writing to the data carrier
Please note the basic procedure on	or:	Program data	for writing to the EEPROM.
and the examples on pages T13750.	(continue	d next 🗅)	

18

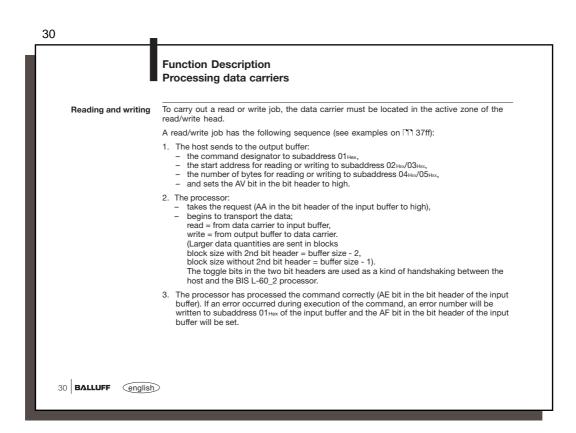

Function Description Output buffer, configuration and explanation Meaning Description of Sub-Function Description Output Buffer (continued) address Number of bytes to read or write beginning with the start address (the Low Byte includes from 1 to 255 bytes). 04_{Hex} No. of bytes (Low Byte) or: Data for writing to the data carrier or: Program data for writing to the EEPROM. No. of bytes (High Byte) Number of bytes to read or write beginning with the start address (the High Byte includes the address range from 256 to 1999). 05_{Hex} or: Data for writing to the data carrier or: Program data for writing to the EEPROM. 06_{Hex} Data for writing to the data carrier for writing to the EEPROM. Program data or: for writing to the data carrier ... Data for writing to the EEPROM. or: Program data Last byte 2nd Bit header The data are valid if the 1st and 2nd bit header are identical. Data for writing to the Data carrier or: or: Program data for writing to the EEPROM. Please note the basic procedure on T112 and 30...36 and the examples on pages T137...50. 18 BALLUFF english

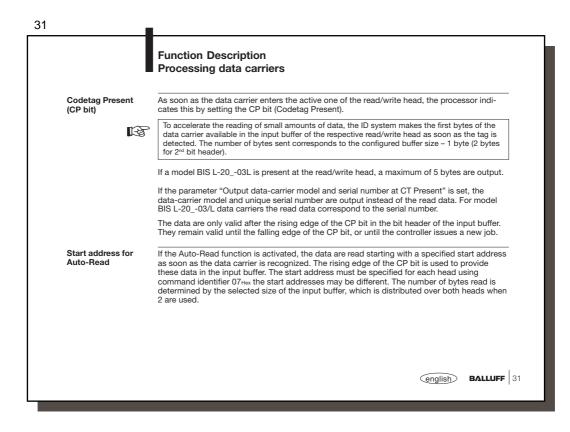

	Functior Input bu				n and e	explan	ation				
Configuration of the input buffer for one	The last by	te can be	e arrange	ed as a 2	2nd bit h	eader th	rough p	aramete	ring (de	fault).	
(1) read/write head	Subaddress	Bit No	. 7	6	5	4	3	2	1	0]
	00 _{Hex} = Bit	Header	BB	HF	то	IN	AF	AE	AA	CP	Bit Name
	01 _{Hex}				Error Coc	le		or	D	ata	1
	02 _{Hex}							Data			1
	03 _{Hex}			Data							
	04 _{Hex}							Data			1
	05 _{Hex}							Data			1
	06 _{Hex}							Data			
								Data			
	Last byte			2nd Bit	Header (a	as above)	or	D	ata	
Description of Input Buffer	Sub- address	Bit Name	Meaning]	Functio	on Descr	iption				
	00 Hex	BB	Ready		The BIS	S Identif	cation S	System is	s in the	Ready s	state.
Please note the basic procedure on	Bit Header	HF	Head Er	ror	Cable break from read/write head or no read/write head connected.						
and the examples			Toggle-E			d: BIS ha e: BIS is					l data.
on pages 1 3750.		(contin	ued on n	ext 🗅							

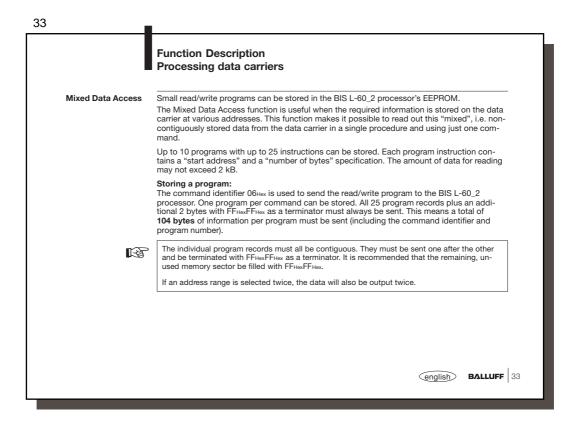

I	Function		•	and explanation			
Description of Input Buffer	Sub- address	Bit Meaning Name		Function Description			
(continued)	00 Hex(continued)Bit HeaderINInput			If the parameter "Input IN" is 1, this bit indicates the state of the Input.			
		AF	Command Error	The command was incorrectly processed or aborted.			
		AE	Command end	The command was finished without error.			
		AA	Command start	The command was recognized and started.			
		CP Codetag Present		Data carrier present within the active zone of the read/write head.			
				CP bit, the output signal CT present is available. This cess the presence of a data carrier directly as a hardwar			
	Sub- address	Meaning	g Function	Description			
	01 _{Hex}	Error co		ber is entered if command was incorrectly processed d. Only valid with AF bit!			
		DOHex	No error.				
r	1	D 1 Hex		or writing not possible because no data carrier is presen ive zone of a read/write head.			
Please note the		02 _{Hex}	Read erro				
basic procedure on 11 12 and 3036	(03 _{Hex}		er was removed from the active zone of the read/write e it was being read.			
and the examples		04 _{Hex}	Write erro				
on pages 113750.	(continu	ed on next 🗅				




Description of	Sub-	Meaning	Function Description
Input Buffer	address	Meaning	I unction Description
(continued)	02 Hex	Data	Data which was read from the data carrier.
		Data	Data which was read from the data carrier.
	Last byte		
		2nd Bit header	The data are valid if the 1st and 2nd bit headers are in agreement.
	or:	Data	Data which was read from the data carrier.

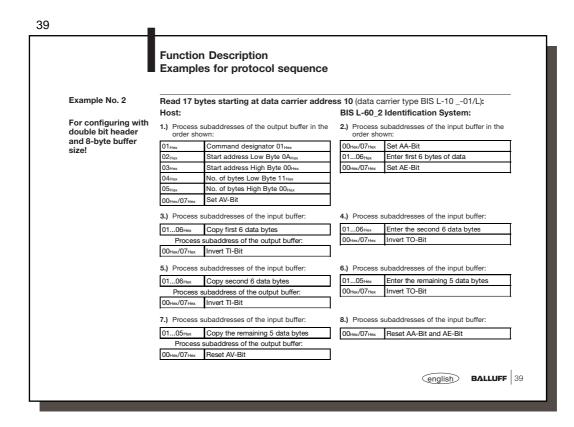


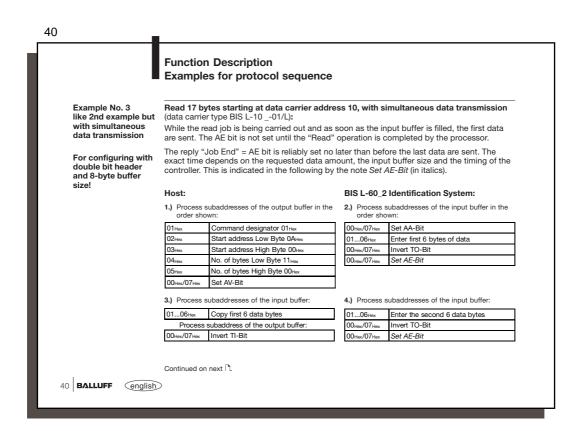


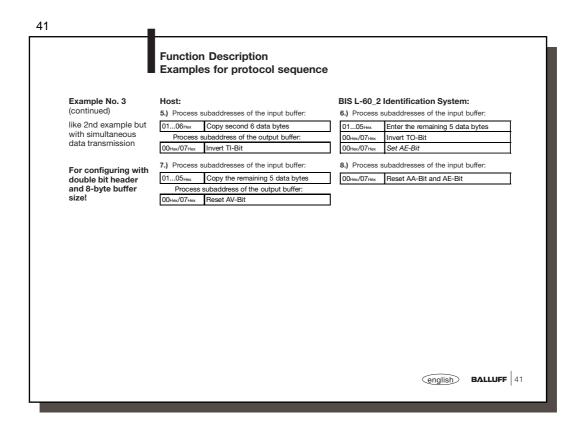

Data carrier BIS L-1001/L	Model BIS L-1001/L data carriers have a memory capacity of 192 bytes of user data. These data can be read or programmed. These data carriers also have a unique, 4-byte
	serial number, which is read-only. The data carrier also contains additional memory ranges for configuration and protected data. These areas cannot be processed using the BIS L-60_2 processor.
	Model BIS L-1001/L data carriers are supplied with FF _{Hex} 37 _{Hex} configuration. Only data carriers having this configuration are processed.
CT present	At CT Present the first user data are read from the data carrier and stored in the Profibus input buffer (see [1 31). If the "Output data-carrier model and serial number at CT present" function is enabled, model 01_{Hex} is output in Byte 1 of the input buffer and then the 4 bytes representing the unique serial number.
Functions	The full command set of the BIS L-60_2 processor can be used with model BIS L-10_01/L data carriers.
Device parameters	When using model BIS L-1001/L data carriers, the device parameterizing depends mainly on the number of bytes to be read and programmed per head.
R	Please refer to [1] 13ff and [1] 23ff.

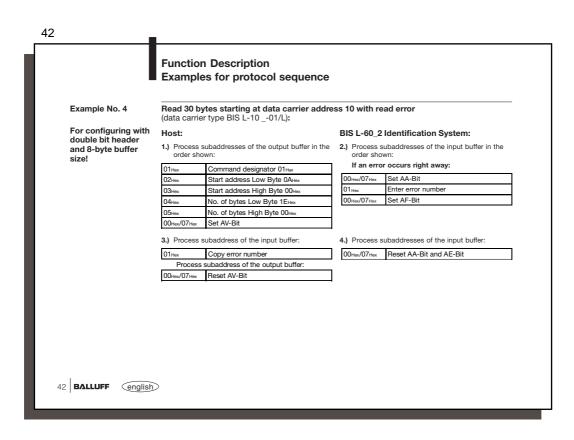
29	
	Data-carrier models BIS L-2003/L
Data carrier BIS L-2003/L CT present	Model BIS L-2003/L data carriers have a unique serial number consisting of 5 bytes. These are read-only and are considered like user data. At CT Present the 5 bytes of the serial number are read from the data carrier and stored in the Profibus input buffer (see $\$ 31). If the "Output data-carrier model and serial number at CT present" function is enabled, model 03 _{Hex} is output in Byte 1 of the input buffer and then the 5 bytes representing the unique serial number.
Functions	With model BIS L-2003/L data carriers, all data are read and output as soon as CT present occurs. No other BIS L-60 2 processor commands are usable.
Device parame	
	Total buffer size on Profibus: 16 bytes (8 bytes if only one read/write head is used)
	Parameterizing bytes: 00Hex 80Hex 00Hex 82Hex 00Hex 08Hex
	ог: 00нех 80нех 03нех 82нех 00нех 08нех
	\rightarrow only model BIS L-2003/L data carriers are processed.
	00Hex 80Hex 00Hex 83Hex 00Hex 08Hex
	\rightarrow output data carrier model and serial number at CT present.
	english BALLUFF 29

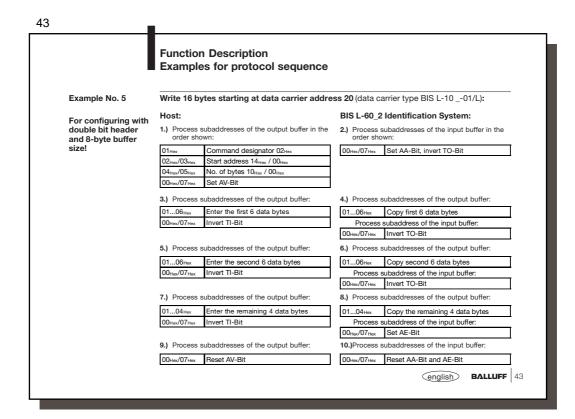
32 **Function Description Processing data carriers** In normal operation a read/write job is rejected by the BIS L-60_2 processor by setting the Reading and writing AF bit and an error number if there is no data carrier in the active zone of the read/write head. If dynamic mode is configured, the processor accepts the read/write job and stores it. When a in dynamic mode data carrier is recognized, the stored job is carried out. Reading and writing Reading without simultaneous data transmission: In the case of a read job the processor with simultaneous first reads our all requested data from the data carrier after receiving the start address and the desired number of bytes, and then sets the AE bit. Then the data read from the data carrie are written to the input buffer. In the case of larger data amounts this is done in blocks, data transmission controlled by the handshake with the toggle bits as described on \bigcap 30. Reading with simultaneous data transmission: In the case of a read job the processor begins by transmitting the data into the input buffer as soon as the first 30 bytes (with 2nd bit header, or 31 bytes without 2nd bit header, or less if the buffer size was set smaller) have been read from the data carrier beginning with the start address, and indicates this by inverting the TO bit. As soon as the controller inverts the TI bit, the processor sends the data, which have in the meantime been read, to the input buffer. This is repeated until the processor has read out all the desired data from the data carrier. Now the processor sets the AE bit and outputs the remaining data on the input buffer. Writing without simultaneous data transmission: In the case of a write job the processor waits until it has received all the data that need to be written from the controller. Only then are the data written to the data carrier as described on \bigcap 30. Writing with simultaneous data transmission: In the case of a write job the processor begins to write the data to the data carrier as soon as it has received the first data to be written from the controller's output buffer. Once all the data have been written to the data carrier, the AE bit is set. 32 BALLUFF english


	Function Description Processing data carriers								
Mixed Data Access (continued)	The following shows the structure of a program:								
	Program structure	Subaddress	Value	Range					
	Command designator 1. Program record	01 _{Hex}	06 _{Hex}						
	Program number 1st data record:	02 _{Hex}	01 _{Hex}	01 _{Hex} to 0A _{Hex}					
	Start address Low Byte	03 _{Hex}							
	Start address High Byte Number of bytes Low Byte	04 _{Hex} 05 _{Hex}							
	Number of bytes Low Byte Number of bytes High Byte 2nd data record:	06 _{Hex}							
	 25th data record: Start address Low Byte Start address High Byte Number of bytes Low Byte	03 _{Нех} 04 _{Нех} 05 _{Нех}							
	Number of bytes High Byte Terminator	06 _{Hex} FF _{Hex} FF _{Hex}							
	To store a second program, repeat this process.								
	The procedure for writing these settin [1]14547.	ngs to the EEPRON	I is described	l in the 7th example on					
	Replacing the EEPROM is described	on 🗅 58 for BIS L-6	6002 and on [168 for BIS L-6022.					


	Function Description Processing data carriers
Read from data carrier, with program Mixed Data Access	The command identifier 21_{Hex} can be used to read out the program records stored in the program from the data carrier. The user must document exactly which data are to be read from where and with what number of bytes for the respective program (see example 8 on $\[nabel{nabel}]$ 48,
Write to data carrier, with program Mixed Data Access	The command identifier 22_{Hex} can be used to write the program records stored in the program to the data carrier. The user must document exactly which data are to be written from where and with what number of bytes for the respective program (see example 9 on [\ 49)
CRC_16 initialization	To be able to use the CRC_16 check, the data carrier must first be initialized with the command identifier 12_{Hex} (see [37). The CRC_16 initialization is used like a normal write job. The latter is rejected (with an error message) if the processor recognizes that the data carrier does not contain the correct CRC_16 checksum. Data carriers as shipped from the factory (all data are 0) can immediately be written with CRC-checked data. If CRC_16 data checking is activated, a special error message is output to the interface whenever a CRC_16 error is detected.
	If the error message is not caused by a failed write request, it may be assumed that one or more memory cells on the data carrier is defective. That data carrier must then be replaced.
	If the CRC error is however due to a failed write request, you must reinitialize the data carrier in order to continue using it.
	(english) BALLUFF

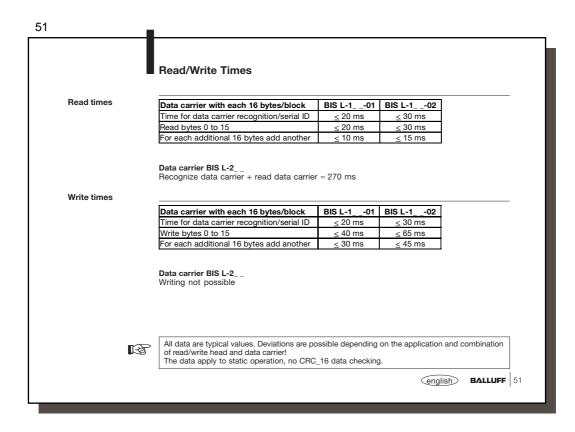

	Data-carrier models BIS L-1001/L
Data carrier BIS L-1001/L	Model BIS L-1001/L data carriers have a memory capacity of 192 bytes of user data. These data can be read or programmed. These data carriers also have a unique, 4-byte serial number, which is read-only.
	The data carrier also contains additional memory ranges for configuration and protected data. These areas cannot be processed using the BIS L-60_2 processor.
	Model BIS L-1001/L data carriers are supplied with FF _{Hex} 37_{Hex} configuration. Only data carriers having this configuration are processed.
CT present	At CT Present the first user data are read from the data carrier and stored in the Profibus input buffer (see [3 31). If the "Output data-carrier model and serial number at CT present" function is enabled, model 01 _{Hex} is output in Byte 1 of the input buffer and then the 4 bytes representing the unique serial number.
Functions	The full command set of the BIS L-60_2 processor can be used with model BIS L-10_01/L data carriers.
Device parameters	When using model BIS L-1001/L data carriers, the device parameterizing depends mainly on the number of bytes to be read and programmed per head.
13	Please refer to [1]13ff and [1]23ff.
36 BALLUFF (englis	

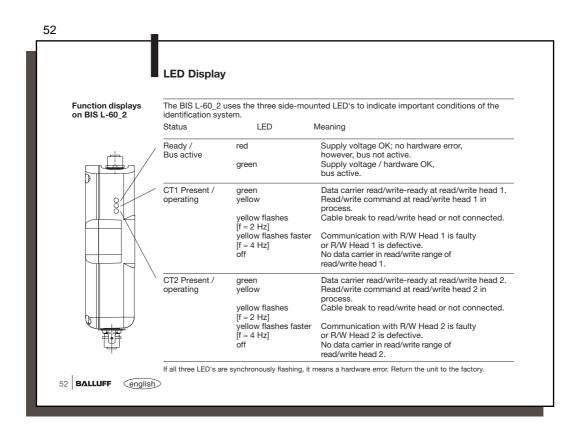

I		on Description les for protocol sequence	•		
Example No. 1 For configuring with double bit header and 8-byte buffer size!	Initializing the data carrier for the CRC_16 data checking The processing of this command is similar to a write command. Start address and number of bytes have to correspond to the maximum number of data to be used. In this example the complete memory range of a data carrier with 192 bytes shall be used (BIS L-1001/L). Because 2 bytes are used for the CRC only 168 bytes can be used as data bytes, hence: start address = 0, number of bytes = 168.				
	Host: 1.) Process order st 01 _{Hex} 02 _{Hex} 03 _{Hex} 04 _{Hex} 05 _{Hex} 00 _{Hex} /07 _{Hex}	Command designator 12 _{Hex} Start address 00 _{Hex} Start address 00 _{Hex} No. of bytes 92 _{Hex} No. of bytes 92 _{Hex}	e	2.) Process sub order shown	Ientification System: addresses of the input buffer in the n: Set AA-Bit, invert TO-Bit
To be continued until the complete memory range is written. See next N	3.) Process 0106нех 00 _{Нех} /07 _{Нех}	s subaddresses of the output buffer: Enter first 6 bytes of data Invert TI-Bit s subaddresses of the output buffer: Enter the second 6 data bytes		0106 _{Hex} 0 Process su 00 _{Hex} /07 _{Hex} II 6.) Process sub 0106 _{Hex} 0 Process sub	baddresses of the output buffer: Copy first 6 data bytes ubaddress of the input buffer: nvert TO-Bit Copy second 6 data bytes baddress of the input buffer: nvert TO-Bit

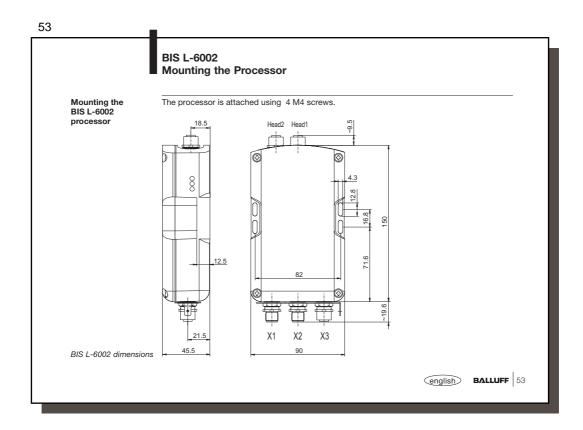

38		
	Function Description Examples for protocol sequence	
Example No. 1 (continued)	Host: 7.) Process subaddresses of the output buffer:	BIS L-60_2 Identification System: 8.) Process subaddresses of the output buffer:
For configuring with double bit header and 8-byte buffer size!	0106Hex Enter the remaining data byte 00Hex/07Hex Invert TI-Bit	0106Hex Copy the remaining data byte Process subaddress of the input buffer: 00Hex/07Hex Set AE-Bit
5128:	9.) Process subaddresses of the output buffer:	10.)Process subaddresses of the input buffer: 00Hex/07Hex Reset AA-Bit and AE-Bit
38 BALLUFF english	>	

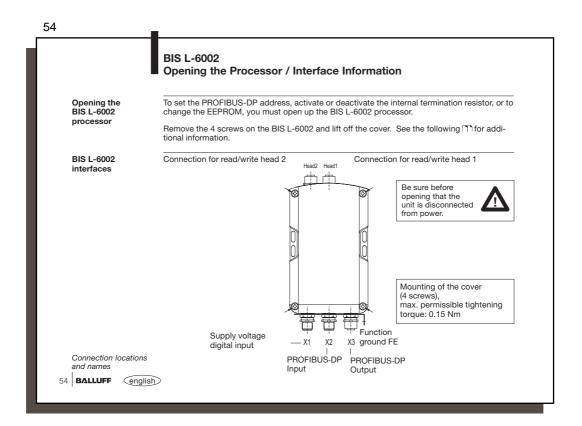
44 **Function Description** Examples for protocol sequence Programming start address 75: Example No. 6 Address assignment for the Auto-Read Host: BIS L-60 2 Identification System: function 1.) Process subaddresses of the output buffer in the 2.) Process subaddresses of the input buffer: order shown: For configuring with double bit header 01_{Hex} Command designator 07_{Hex} 00_{Hex}/07_{Hex} Set AA-Bit and AE-Bit Start address Low Byte 4BHe 02_{Hex} and 8-byte buffer 03⊦ Start address High Byte 00 size! 00_{Hex}/07 Set AV-Bit 3.) Process subaddresses of the output buffer 4.) Process subaddresses of the input buffer: 00Hex/07Hex Reset AA-Bit and AE-Bit 00_{Hex}/07_{Hex} Reset AV-Bit To ensure correct data output, use command identifier $\rm 07_{Hex}$ for each distributed buffer Head 1 and/or Head 2. R If the Auto-Read function is not activated, the processor runs in standard mode and sends starting with data carrier address 0 until the buffer is filled. 44 BALLUFF english

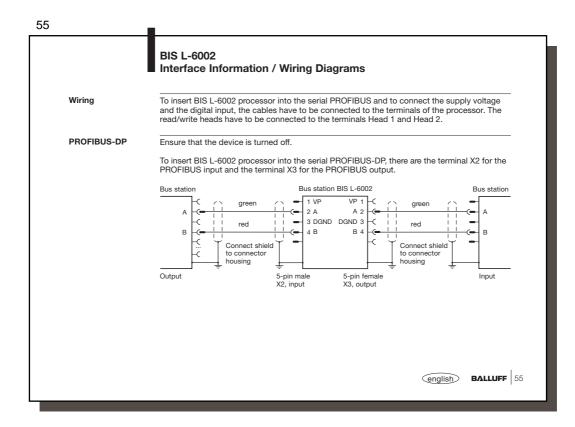
		n Descriptior es for protoc		e	
Example No. 7 Store Mixed Data Access program	Storing a p 1st data re 2nd data re 3rd data re	ecord Start add	dress 5 dress 75	records: Number of b Number of b Number of b	ytes 3
For configuring with double bit header and 8-byte buffer size!	All 104 byte Host:	subaddresses of the	the programmin	ng. BIS L-60_2	27 bytes Identification System: subaddresses of the input buffer:
	01 _{Hex} 02 _{Hex} 00 _{Hex} /07 _{Hex}	Command designa Program number 0 Set AV-Bit subaddresses of the	1 _{Hex}	00Hex/07Hex	Set AA-Bit, invert TO-Bit
	01Hex 02Hex 03Hex 04Hex 05Hex 06Hex 00Hex/07Hex	1st start address 1st number of bytes 2nd start address Invert TI-Bit	(Low Byte) 05 _H (High Byte) 00 _H (Low Byte) 07 _H (High Byte) 00 _H (Low Byte) 4B _H (High Byte) 00 _H	ex ex ex	Invert TO-Bit
					Continued on next

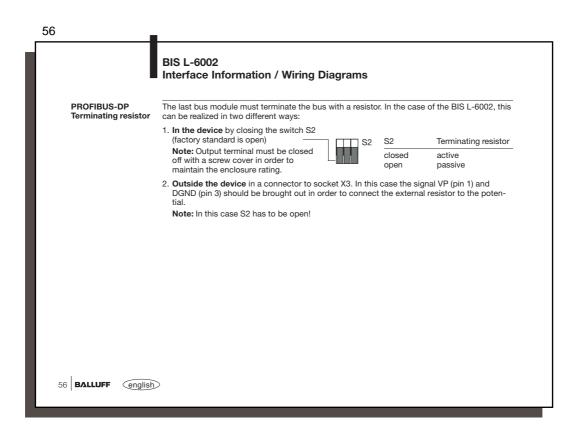

Example No. 7 Store Mixed Data	Host:			BIS L-60_2 Identification System: 6.) Process subaddresses of the input buffer:		
Access program (continued)	5.) Process subaddresses of the output buffer:		6.) Process	subaddresses of	the input buffer:	
	01 _{Hex}	2nd number of	(Low Byte) 03 _{Hex}	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	02 _{Hex}	bytes 3rd start address	(High Byte) 00 _{Hex} (Low Byte) 70 _{Hex}			
For configuring with	03Hex 04Hex	STO STATE AUDIESS	(High Byte) 00Hex			
double bit header	04Hex 05Hex	3rd number of	(Low Byte) 11 _{Hex}			
and 8-byte buffer size!	06 _{Hex}	bytes	(High Byte) 00 _{Hex}			
	00 _{Hex} /07 _{Hex}	Invert TI-Bit	(0))			
	01 _{Hex} /02 _{Hex}	Terminator	FF _{Hex} /FF _{Hex}	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	03 _{Hex} /04 _{Hex}	(not used)	FF _{Hex} /FF _{Hex}	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	03 _{Hex} /04 _{Hex} 05 _{Hex} /06 _{Hex}	(not used) (not used)		00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	03 _{Hex} /04 _{Hex}	(not used)	FF _{Hex} /FF _{Hex}	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	03 _{Hex} /04 _{Hex} 05 _{Hex} /06 _{Hex} 00 _{Hex} /07 _{Hex}	(not used) (not used)	FFHex/FFHex FFHex/FFHex			Continued on next 🖻
	03 _{Hex} /04 _{Hex} 05 _{Hex} /06 _{Hex} 00 _{Hex} /07 _{Hex}	(not used) (not used) Invert TI-Bit	FFHex/FFHex FFHex/FFHex			Continued on next 🗅
	03 _{Hex} /04 _{Hex} 05 _{Hex} /06 _{Hex} 00 _{Hex} /07 _{Hex}	(not used) (not used) Invert TI-Bit	FFHex/FFHex FFHex/FFHex			Continued on next 🅅
	03 _{Hex} /04 _{Hex} 05 _{Hex} /06 _{Hex} 00 _{Hex} /07 _{Hex}	(not used) (not used) Invert TI-Bit	FFHex/FFHex FFHex/FFHex			Continued on next 🏳
	03 _{Hex} /04 _{Hex} 05 _{Hex} /06 _{Hex} 00 _{Hex} /07 _{Hex}	(not used) (not used) Invert TI-Bit	FFHex/FFHex FFHex/FFHex			Continued on next ि
	03 _{Hex} /04 _{Hex} 05 _{Hex} /06 _{Hex} 00 _{Hex} /07 _{Hex}	(not used) (not used) Invert TI-Bit	FFHex/FFHex FFHex/FFHex			Continued on next 🗅

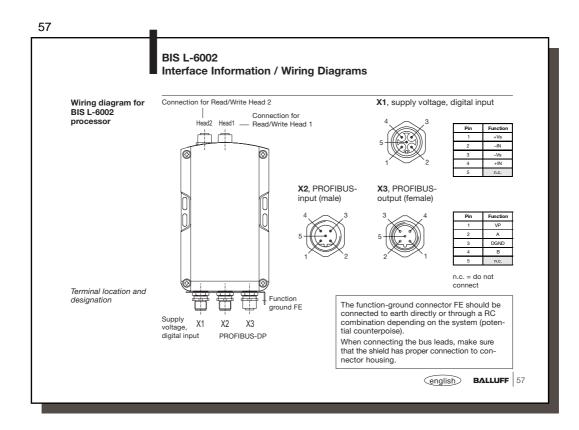

47	<u> </u>
	Function Description Examples for protocol sequence
Example No. 7 Store Mixed Data Access program	Host: BIS L-60_2 Identification System: 9.) Process subaddresses of the output buffer: 10.)Process subaddresses of the input buffer:
(continued)	01Hex/02Hex (not used) FFHex/FFHex 00Hex/07Hex Set AE-Bit
, , , , , , , , , , , , , , , , , , ,	03Hex/04Hex (not used) FFHex/FFHex
	05 _{Hex} /06 _{Hex} (not used) FF _{Hex} /FF _{Hex}
For configuring with double bit header	00 _{Hex} /07 _{Hex} Invert TI-Bit
size!	11.)Process subaddresses of the output buffer: 12.)Process subaddresses of the input buffer: 00Hos/07Hos Reset AV-Bit 00Hos/07Hos
R	We recommend that you carefully document which parameters are used for start addresses and number of bytes for writing/reading the desired data records. The data are sequenced in the exact order specified in the program.
	(english) BALLUFF 47
	english BALLUFF 47

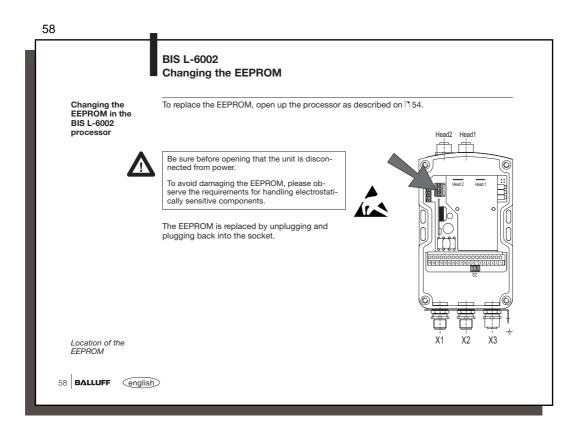

48	Function Description Examples for protocol sequence		
Example No. 8 Use Mixed Data Access program	Read data carrier using Program No. 1 (data of Host: 1.) Process subaddresses of the output buffer in the order shown:	BIS L-60_2	2 Identification System: subaddresses of the input buffer in the
For configuring with double bit header	01 _{Hex} Command designator 21 _{Hex}	00 _{Hex} /07 _{Hex}	Set AA-Bit
and 8-byte buffer	02Hex Program number 01Hex	0106нех	Enter first 6 bytes of data
size!	00Hex/07Hex Set AV-Bit	00 _{Нех} /07 _{Нех}	Set AE-Bit
	0106Hex Copy first 6 data bytes Process subaddress of the output buffer: 00Hex/07Hex 00Hex/07Hex Invert TI-Bit A total of 27 bytes of data are exchanged. For the remainder of the procedure, see Example	0106 _{Hex} 00 _{Hex} /07 _{Hex}	Enter the second 6 data bytes Invert TO-Bit
₽	Dynamic mode is turned off while the Mixed Data	a Access pro	ogram is being run.
48 BALLUFF (english	>		

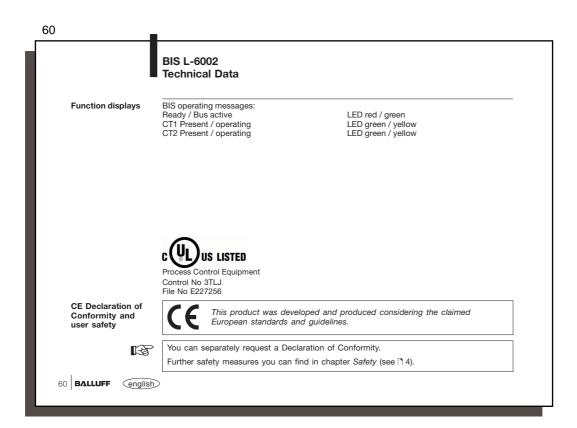

		n Description es for protocol sequence		
Example No. 9		carrier using Program No. 1 (data	carrier type	BIS L-1001/L):
Use Mixed Data Access program	Host:		BIS L-60_2 Identification System:	
	1.) Process order sh	subaddresses of the output buffer in the own:	2.) Process order sh	subaddresses of the input buffer in the own:
For configuring with double bit header	01 _{Hex}	Command designator 22 _{Hex}	00 _{Hex} /07 _{Hex}	Set AA-Bit, invert TO-Bit
and 8-byte buffer	02 _{Hex}	Program number 01 _{Hex}		
size!	00 _{Hex} /07 _{Hex}	Set AV-Bit		
	3.) Process	subaddresses of the output buffer:	4.) Process	subaddresses of the output buffer:
	0106 _{Hex}	Enter first 6 bytes of data	0106 _{Hex}	Copy first 6 data bytes
	$00_{Hex}/07_{Hex}$	Invert TI-Bit	Process	subaddress of the input buffer:
			00 _{Hex} /07 _{Hex}	Invert TO-Bit
		of 27 bytes of data are exchanged. nainder of the procedure, see Exam	ole 5 on 🗅 43	
R3	Dynamic	mode is turned off while the Mixed Da	ita Access pro	ogram is being run.
				(english) BALLUFF 4
				english BALLUFF 4

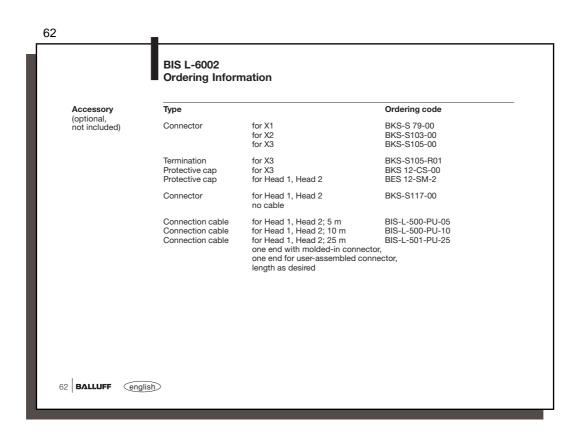

	Function Description Examples for protocol sequenc	e
Example No. 10	Put the relevant read/write head into group Both read/write heads can be independently	
	Host:	BIS L-60_2 Identification System:
	1.) Process subaddresses of the output buffer:	 Go to ground state; Process subaddresses of the input buffer:
	00Hex/07Hex Set GR-Bit	00 _{Hex} /07 _{Hex} Reset BB-Bit
	3.) Process subaddresses of the output buffer:	4.) Process subaddresses of the input buffer:
	00 _{Hex} /07 _{Hex} Reset GR-Bit	00 _{Hex} /07 _{Hex} Set BB-Bit
Example No. 11	be mutual interference between the heads off to prevent interference. Host: 1.) Process subaddresses of the output buffer: 00 _{Hex} /07 _{Hex} Set KA-Bit	. If the installation is less than ideal, there may . In this case the unused head should be turned

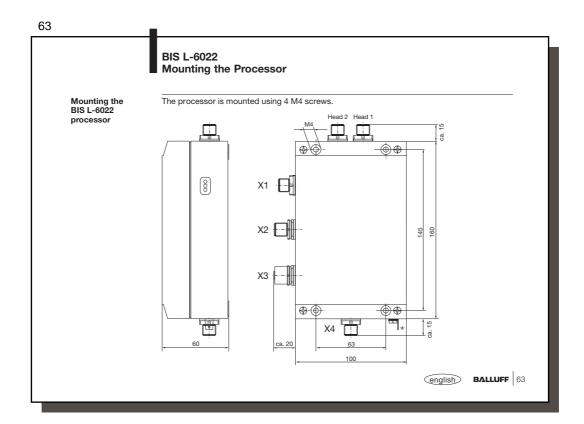


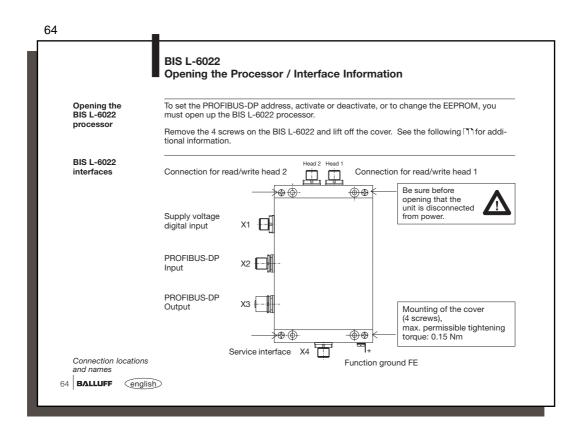


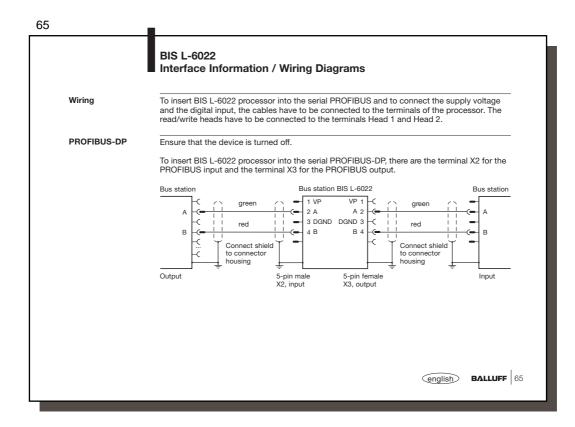


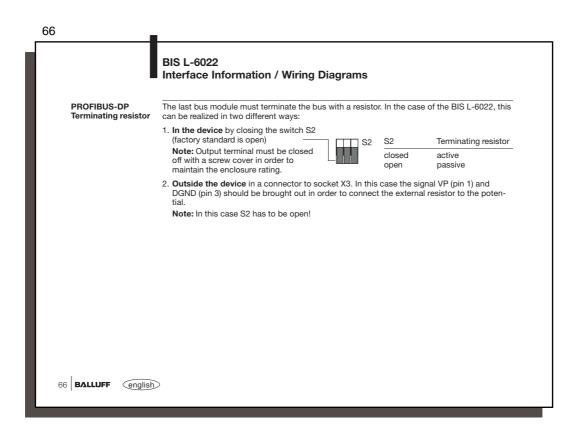


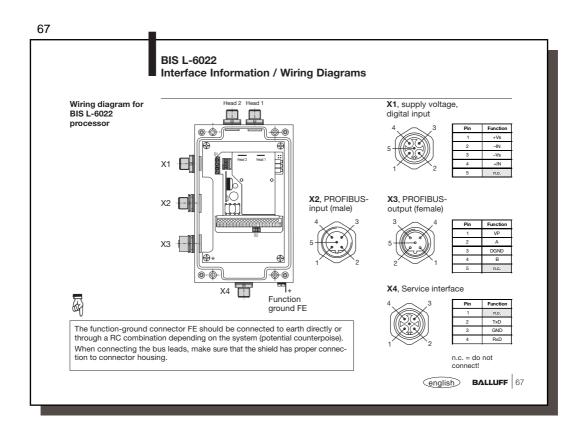


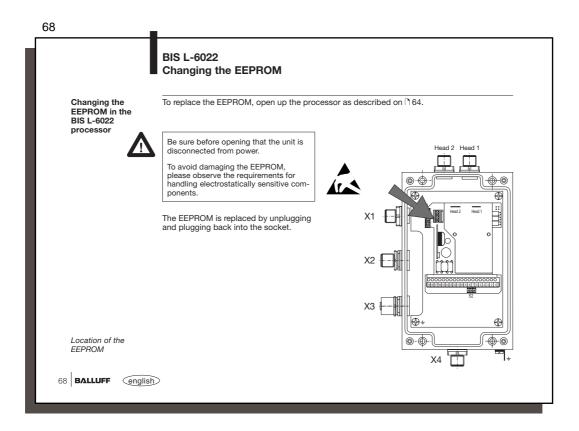


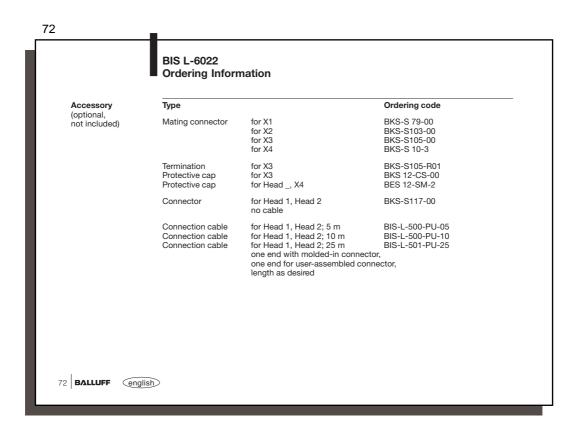

Conditions Enclosure Rating Connections Electrical	Housing Dimensions Weight Ambient temperature Enclosure rating Integral connector X1 for V _s , IN Integral connector X2 for PROFIBUS-DP Input Integral connector X3 for PROFIBUS-DP Output	Plastic ca. 179 x 90 x 45,5 mm ca. 500 g 0 °C to + 60 °C IP 65 (when connected) 5-pin (male) 5-pin (male) ut 5-pin (female)
Conditions Enclosure Rating Connections Electrical	Enclosure rating Integral connector X1 for V _s , IN Integral connector X2 for PROFIBUS-DP Input	IP 65 (when connected) 5-pin (male) 5-pin (male)
Connections	Integral connector X1 for V _s , IN Integral connector X2 for PROFIBUS-DP Input	5-pin (male) 5-pin (male)
Electrical	Integral connector X2 for PROFIBUS-DP Input	5-pin (male)
Connections	Supply voltage V _s	DC 24 V ± 20 % LPS Class 2
	Ripple Current draw	≤ 10 % < 400 mA
	PROFIBUS-DP slave	Terminal block, electrically isolated
	Digital Input (+IN, -IN) Control voltage active Control voltage inactive Input current at 24 V Delay time, typ.	Optocoupler isolated 4 V to 40 V 1.5 V to -40 V 11 mA 5 ms
	Read/Write Head	2 x connectors 8-pin (female) for all read/writ heads BIS L-3 with 8-pin connector (male)

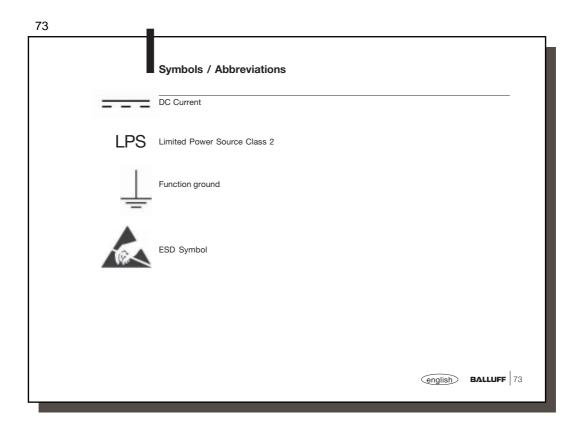



	BIS L-6002 Ordering Information
Ordering Code	BIS L-6002-019-050-03-ST1
	Balluff Identification System
	Type L Read/Write System
	Hardware-Typ 6002 = plastic housing, PROFIBUS-DP
	Software-Typ 019 = PROFIBUS-DP
	Read/Write Head
	Interface
	User Connection









	BIS L-6022 Technical Data								
Dimensions, Weight	Housing Dimensions Weight	Metal 190 x 120 x 60 mm 820 g							
Operating Conditions	Ambient temperature	0 °C to +60 °C							
Enclosure	Protection class	IP 65 (when connected)							
Connections	Integral connector X1 for V _s , IN Integral connector X2 for PROFIBUS-DP input Integral connector X3 for PROFIBUS-DP output Integral connector X4 for Service interface	5-pin (male) 5-pin (male) 5-pin (female) 4-pin (male)							
Electrical Connections	Supply voltage V _s Ripple Current draw	DC 24 V ± 20 % LPS Class 2 ≤ 10 % ≤ 400 mA							
	Digital input +IN Control voltage active Control voltage inactive Input current at 24 V Delay time, typ. PROFIBUS-DP, Connector X2, X3	Optocoupler isolated 4 V to 40 V 1.5 V to -40 V 11 mA 5 ms serial interface for PROFIBUS stations							
	Head 1, Head 2, Read/Write Head	via 2 x connectors 8-pin connector (female) for all read/write heads BIS L-3 with 8-pin connector (male)							
	Service interface X4	RS 232							

	BIS L-6022 Ordering Information
Ordering code	Bils L-6022-019-050-03-ST14 Balluff Identification System Type L Read/Write System Hardware-Type 6022 = metal housing, PROFIBUS-DP Software-Type 019 = PROFIBUS-DP Adapter 050 = with two connectors for read/write heads BIS L-3
	english BALLUFF

				A				-											
				Арр	ena	IX, A	SCII T	able											
Deci- mal	Hex	Control Code	ASCII	Deci- mal	Hex	Control Code	ASCII	Deci- mal	Hex	ASCII	Deci- mal	Hex	ASCII	Deci- mal	Hex	ASCII	Deci- mal	Hex	ASCI
0	00	Ctrl @	NUL	22	16	Ctrl V	SYN	44	2C	,	65	41	Α	86	56	V	107	6B	k
1	01	Ctrl A	SOH	23	17	Ctrl W	ETB	45	2D	-	66	42	В	87	57	W	108	6C	I
2	02	Ctrl B	STX	24	18	Ctrl X	CAN	46	2E		67	43	С	88	58	Х	109	6D	m
3	03	Ctrl C	ETX	25	19	Ctrl Y	EM	47	2F	/	68	44	D	89	59	Υ	110	6E	n
4	04	Ctrl D	EOT	26	1A	Ctrl Z	SUB	48	30	0	69	45	Е	90	5A	Ζ	111	6F	0
5	05	Ctrl E	ENQ	27	1B	Ctrl [ESC	49	31	1	70	46	F	91	5B	[112	70	р
6	06	Ctrl F	ACK	28	1C	Ctrl \	FS	50	32	2	71	47	G	92	5C	\	113	71	q
7	07	Ctrl G	BEL	29	1D	Ctrl]	GS	51	33	3	72	48	Н	93	5D]	114	72	r
8	08	Ctrl H	BS	30	1E	Ctrl ^	RS	52	34	4	73	49	Ι	94	5E	^	115	73	s
9	09	Ctrl I	HT	31	1F	Ctrl _	US	53	35	5	74	4A	J	95	5F	-	116	74	t
10	0A	Ctrl J	LF	32	20		SP	54	36	6	75	4B	Κ	96	60	`	117	75	u
11	0B	Ctrl K	VT	33	21		!	55	37	7	76	4C	L	97	61	а	118	76	v
12	0C	Ctrl L	FF	34	22			56	38	8	77	4D	М	98	62	b	119	77	w
13	0D	Ctrl M	CR	35	23		#	57	39	9	78	4E	Ν	99	63	С	120	78	х
14	0E	Ctrl N	SO	36	24		\$	58	ЗA	:	79	4F	0	100	64	d	121	79	у
15	0F	Ctrl O	SI	37	25		%	59	3B	;	80	50	Р	101	65	е	122	7A	z
16	10	Ctrl P	DLE	38	26		&	60	3C	<	81	51	Q	102	66	f	123	7B	{
17	11	Ctrl Q	DC1	39	27			61	3D	=	82	52	R	103	67	g	124	7C	- 1
18	12	Ctrl R	DC2	40	28		(62	3E	>	83	53	S	104	68	h	125	7D	}
19	13	Ctrl S	DC3	41	29)	63	3F	?	84	54	Т	105	69	i	126	7E	2
20	14	Ctrl T	DC4	42	2A		*	64	40	@	85	55	U	106	6A	j	127	7F	DEL
21	15	Ctrl U	NAK	43	2B		+												