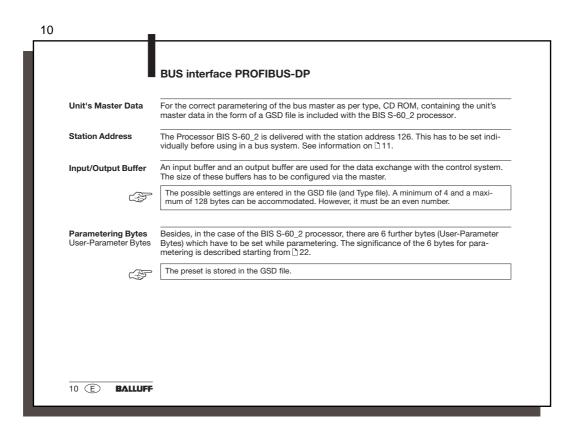
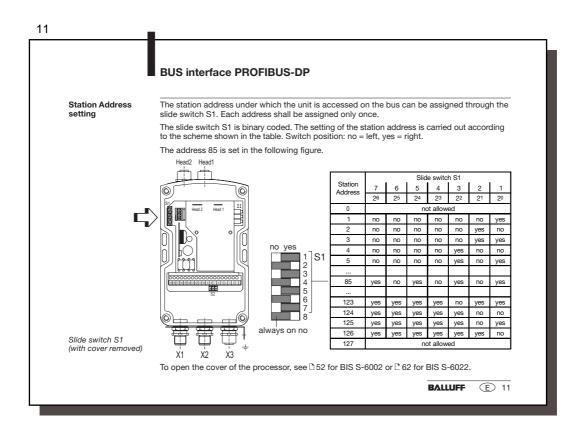
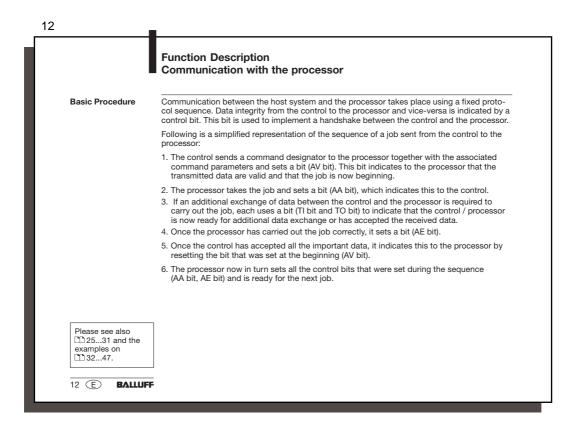
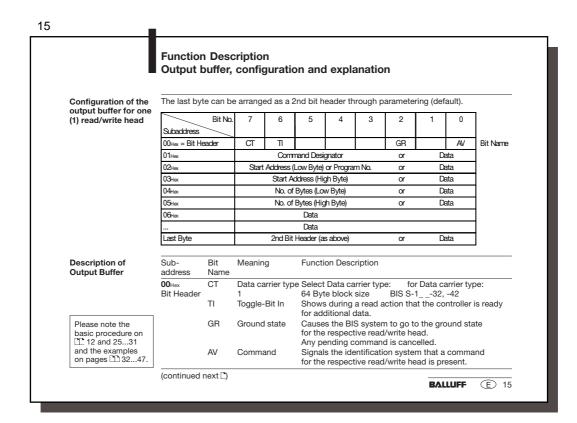

	Safety Considerations
Approved Operation	Series BIS S-60_2 processors along with the other BIS S system components comprise an identification system and may only be used for this purpose in an industrial environment in conformity with Class A of the EMC Law.
Installation and Operation	Installation and operation should be carried out by trained personnel only. Unauthorized work and improper use will void the warranty and liability.
	When installing the processor, follow the chapters containing the wiring diagrams closely. Special care is required when connecting the processor to external controllers, in particular with respect to selection and polarity of the signals and power supply.
	Only approved power supplies may be used for powering the processor. See chapter 'Techni- cal Data' for details.
Use and Checking	Prevailing safety regulations must be adhered to when using the identification system. In par- ticular, steps must be taken to ensure that a failure of or defect in the identification system does not result in hazards to persons or equipment.
	This includes maintaining the specified ambient conditions and regular testing for functionality of the identification system including all its associated components.
Fault Conditions	Should there ever be indications that the identification system is not working properly, it should be taken out of commission and secured from unauthorized use.
Scope	This manual applies to processors in the series BIS S-6002-019-050-03-ST11 and BIS S-6022-019-050-03-ST14.






	BIS S-60_2 Processor Basic knowledge for application
Selecting System	The BIS S-6002 processor has a plastic housing.
Components	The BIS S-6022 processor has a metal housing.
	Connection is made through round connectors. Two read/write heads can be cable con- nected.
	Series BIS S-60_2 processors have in addition a digital input. The input has various functions depending on the configuration (see Parametering).
	The read/write distances depend on which data carriers are used. Additional information on the read/write heads in series BIS S-3 including all the possible data carrier/read-write head combinations can be found in the manuals for the respective read/write heads.
	The system components are electrically supplied by the processor. The data carrier represents a free-standing unit and needs no line-carried power. It receives its energy from the read/write head. The latter constantly sends out a carrier signal which supplies the code head as soon as the required distance between the two is reached. The read/write operation takes place during this phase. Reading and writing may be dynamic or static.

8	BIS S-60_2 Processor Basic knowledge for application					
Control Function		m to the Data carrier or reads data from the tag r the host system. Host systems may include:				
	 a host computer (e.g. industrial PC) or a programmable logic controller (PLC) 					
Data checking	When sending data between the read/write head and the Data carrier a procedure is required for recognizing whether the data were correctly read or written.					
	The processor is supplied with standard Balluf In addition to this procedure a second alternat					
	Here a test code is written to the Data carrier, a time or location.	allowing data to be checked for validity at any				
	Advantages of CRC_16	Advantages of double reading				
	Data checking even during the non-active phase (CT outside read/write head zone).	No bytes on the data carrier need to be reserved for storing a check code.				
	Shorter read times since each page is read only once.	Shorter write times since no CRC needs to be written.				
	Since both variations have their advantages de select which method of data checking he wish					
C P	It is not permitted to operate the system using	both check procedures!				
8 (E) BALLUFF						
-						



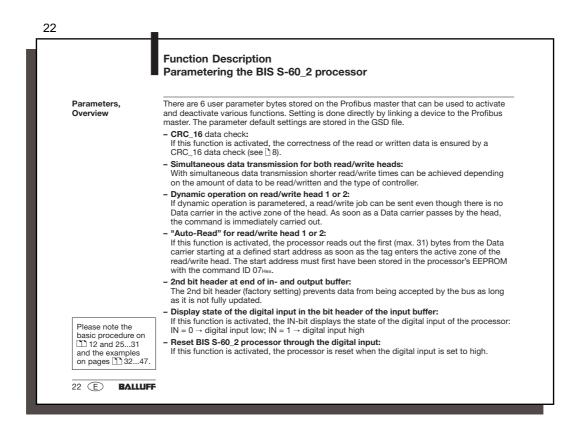
	Function Description Input and Output Buffers
Input and Output Buffers	In order to transmit commands and data between the BIS S-60_2 and the host system, the latter must prepare two fields. These two fields are:
	 the output buffer for the control commands which are sent to the BIS Identification System and for the data to be written.
	 - the input buffer for the data to be read and for the designators and error codes which come from the BIS Identification System.
	The possible setting values are stored in the GSD file.
	The buffer size can be selected between 4 and 128 bytes in steps of 2 bytes. This must be given by the master during parametering. The total buffer size is divided into 2 ranges:
	Buffer range 1 for Read/Write Head 1; size is specified in paramter byte 6. Buffer range 2 for Read/Write Head 2; size = total buffer size – buffer size of Read/Write Head 1. See 🗋 14 for example.
C\$	If a buffer size of less than 8 bytes is set for a read/write head, a read/write request can be carried out without specifying the start address and the number of bytes. Automatic reading for Codetag present (see 2 26) remains active. This permits fast reading of small data quantities without placing an unnecessary load on the bus.
Please note the basic procedure on	Buffer size $-1 =$ number of bytes read without double bit header; Buffer size $-2 =$ number of bytes read with double bit header.
12 and 2531 and the examples on pages 13247.	
	BALLUFF

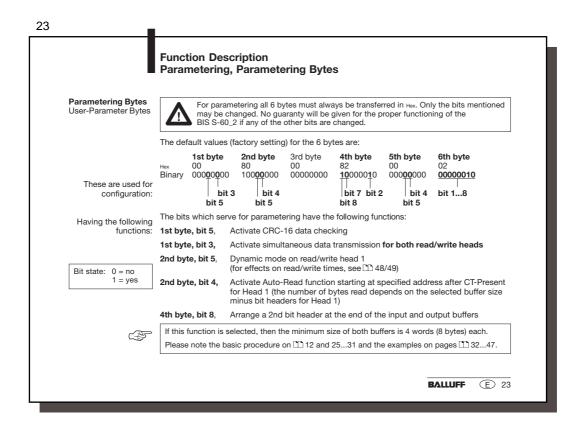
	Function Descr							
Input and Output Buffers (continued)	Example: The 82 bytes is assigned for Read/Write Head	to Read/Write Head						
	Procedure: The buffer size for Read/Write Head 1 is set to 46 bytes. This means using the parameter byte 6 to enter Hex value 2E (corresponds to 46 decimal), which corresponds to binary 00101110.							
	PLC Organisation: T	he buffer range sta	rts at input byte	IB 32 and output b	oyte OB 32.			
	Result: Read/Write Head 1: (R/W 1)	Subaddress 00 Input buffer	IB 32 and OB IB 32 to IB 77	7	DB 0 PLC buffer			
	Read/Write Head 2: (R/W 2)	Output buffer Subaddress 00 Input buffer Output buffer	OB 32 to OB IB 78 and OB IB 78 to IB 11 OB 78 to OB	378	Buffer for R/W 1 Buffer for R/W 2			
<u>(</u> \$7	Note that these buffe	ers can be in two diff	erent	Sequence 1	Sequence 2			
	sequences dependin	g on the type of con	trol.	Subaddress 00 01 02	Subaddress 01 00			
Please note the basic procedure on 12 and 2531 and the examples	The following descrip	otion is based on sec	quence 1!	02 03 04 05 06	03 02 05 04 07			
on pages 1 3247.				07	06			

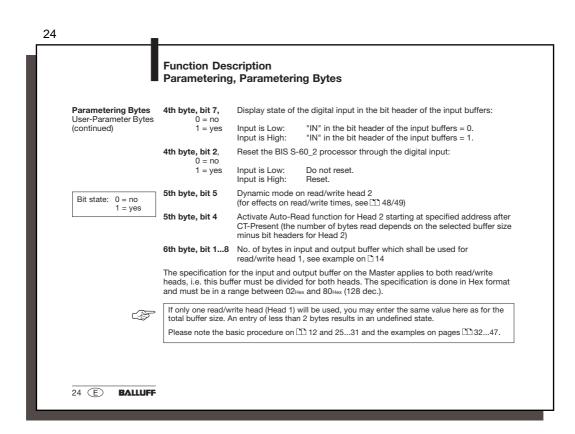
16 **Function Description** Output buffer, configuration and explanation Description of Sub-Meaning Function Description Output Buffer address (continued) 01_{Hex} Command designator 00_{Hex} 01_{Hex} No command present Read data carrier Write to data carrier 02_{Hex} 06HEX Store program in the EEPROM for the Mixed Data Access function 07_{HEX} Store the start address for the Auto-Read function in the EEPROM Initialize the CRC16 data check 12HEX Read for Mixed Data Access function (corresponding to the program stored in the EEPROM) Write for Mixed Data Access function (corresponding to the program stored in the EEPROM) 21ны 22HEX for writing to the data carrier Data or: Program data for writing to the EEPROM. or: (continued next 1) Please note the basic procedure on 12 and 25...31 and the examples on pages 132...47. 16 E BALLUFF

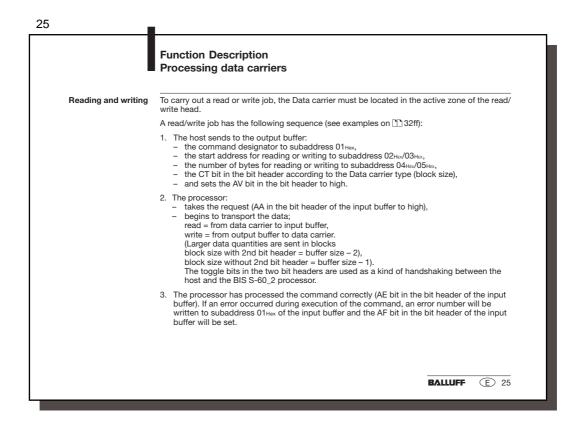
		on Descripti t buffer, cont	on figuration and explanation
Description of Output Buffer (continued)	Sub- address	Meaning	Function Description
	02 Hex	Start address (Low Byte)	Address at which reading from or writing to the data carrier begins (The Low Byte includes the address range from 0 to 255).
	or:	Start address (Low Byte)	Address for the Auto-Read function, starting at which the code tag is to be read. The value is stored in the EEPROM. (The Low Byte covers the address range from 0 to 255).
	or:	Program No	Number of the program to be stored in the EEPROM in conjunction with command ID 06Hex for Mixed Data Access function (values between 01Hex and 0AHex are allowed!).
	or:	Program No.	Number of the program stored in the EEPROM for read or write operations in conjunction with command ID 21 _{Hex} or 22 _{Hex} for the Mixed Data Access function.
	or:	Data	for writing to the data carrier
	or:	Program data	for writing to the EEPROM.
	03 Hex	Start address (High Byte)	Address for reading from or writing to the Data carrier (the High Byte is additionally used for the address range from 256 to 16.383).
	or:	Start address (High Byte)	Address for the Auto-Read function, starting at which the code tag is to be read. The value is stored in the EEPROM (the High Byte is also required for the address range from 256 to 16.383).
	or:	Data	for writing to the Data carrier
Please note the basic procedure on	or:	Program data	for writing to the EEPROM.
12 and 2531 and the examples on pages 1 3247.	(continue	d next 🗅	

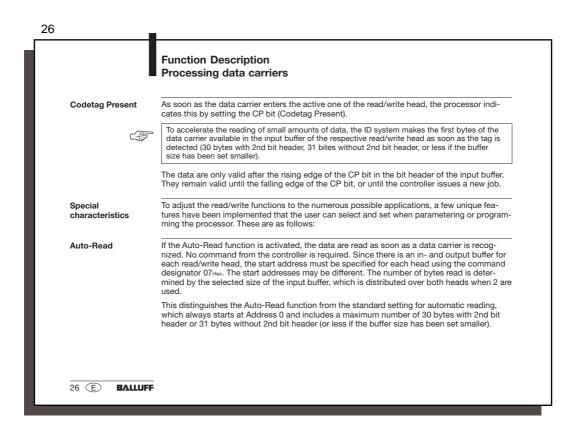
18

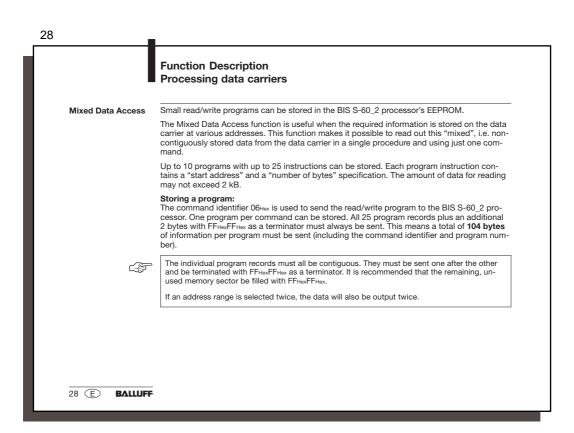

Function Description Output buffer, configuration and explanation

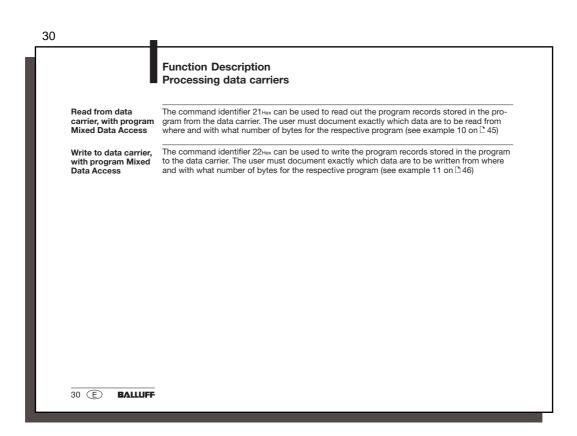

Description of Output Buffer	Sub- address	Meaning	Function Description
continued)	04 Hex	No. of bytes (Low Byte)	Number of bytes to read or write beginning with the start address (the Low Byte includes from 1 to 256 bytes).
	or:	Data	for writing to the data carrier
	or:	Program data	for writing to the EEPROM.
	05 _{Hex}	No. of bytes (High Byte)	Number of bytes to read or write beginning with the start address (the High Byte is additionally used for the range between 257 and 16.384 bytes).
	or:	Data	for writing to the data carrier
	or:	Program data	for writing to the EEPROM.
	06 Hex	Data	for writing to the data carrier
	or:	Program data	for writing to the EEPROM.
		Data	for writing to the data carrier
	or:	Program data	for writing to the EEPROM.
	Last byte	e	
		2nd Bit header	The data are valid if the 1st and 2nd bit header are identical.
	or:	Data	for writing to the data carrier
Please note the basic procedure on	or:	Program data	for writing to the EEPROM.
12 and 2531 and the examples on pages 1 3247.			

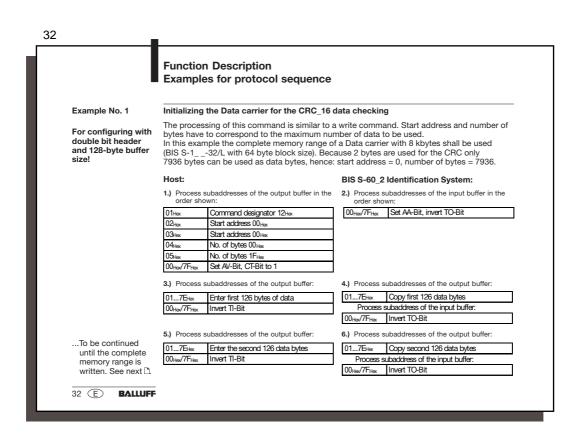

	Functior Input bu				and e	explan	ation				
Configuration of the input buffer for one	The last byte can be arranged as a 2nd bit header through parametering (default).										
(1) read/write head	Subaddress	Bit No	. 7	6	5	4	3	2	1	0	
	00 _{Hex} = Bit H	leader	BB	HF	то	IN	AF	AE	AA	CP	Bit Name
	01 _{Hex}			Error Coc	le		or	D	ata	1	
	02 _{Hex}		Data							1	
	03 _{Hex}			Data							1
	04 _{Hex}		Data						1		
	05 _{Hex}							Data			
	06 _{Hex}							Data			
								Data			
	Last byte			2nd Bit	Header (a	as above)	or	D	ata]
Description of Input Buffer	Sub- address	Bit Name	Meaning)	Functio	on Descr	iption				
	00 Hex	BB	Ready		The BI	3 Identif	ication S	System is	s in the	Ready s	state.
Please note the basic procedure on	Bit Header	HF	Head Er	ror	Cable break from read/write head or no read/write head connected.						
12 and 2531 and the examples		то	Toggle-E		for read: BIS has new/additional data ready. for write: BIS is ready to accept new/additional data.			l data.			
on pages 🖺 3247.		(contin	ued on n	ext 🗋							


	Function			and explanation		
Description of Input Buffer	Sub- address	Bit Meaning Name		Function Description		
(continued)	00 _{Hex} Bit Header			If the parameter "Input IN" is 1, this bit indicates the state of the Input.		
		AF	Command Error	The command was incorrectly processed or aborted.		
		AE	Command end	The command was finished without error.		
		AA	Command start	The command was recognized and started.		
		CP	Codetag Present	Data carrier present within the active zone of the read/write head.		
				CP bit, the output signal CT present is available. This cess the presence of a data carrier directly as a hardware		
	Sub- address	Meaning	g Function	Description		
	01 _{Hex}	Error coo	Lifer Han	ber is entered if command was incorrectly processed		
	(Онех	or aborte No error.	d. Only valid with AF bit!		
21		D1 _{Hex}	Reading of	or writing not possible because no data carrier is presen ve zone of a read/write head.		
Please note the basic procedure on		02 _{Hex}	Read erro			
12 and 2531	(ОЗнех		er was removed from the active zone of the read/write e it was being read.		
and the examples on pages 1 3247.		04 _{Hex}	Write erro			
5 pageo 📖 oz+/.	(continue	ed on next 🗅			

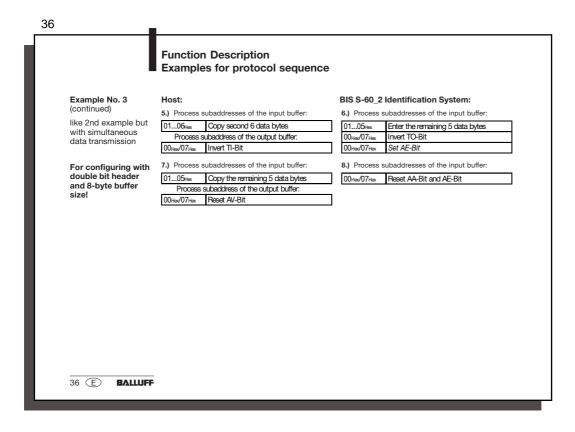

		on Descripti ouffer, config	on guration and explanation				
Description of Input Buffer	Sub- address	Meaning	Function Description				
(continued)	01 _{Hex}	01 _{Hex} Error code (continued)					
		05 _{Hex}	Data carrier was removed from the active zone of the read/write head while it was being written.				
		07 _{Hex} or:	AV bit is set but the command designator is missing or invalid. Number of bytes is 00 _{Hex} .				
		09 _{Hex}	Cable break to select read/write head, or head not connected.				
		0C _{Hex}	The EEPROM cannot be read/programmed.				
		0D _{Hex} 0E _{Hex}	Communication with the read/write head. The CRC of the read data does not coincide with the CRC of the data carrier.				
		0F _{Hex}	Contents of the 1st and 2nd bit header (1st and last bytes) of the output buffers are not identical (2nd bit header must be served				
		20 _{Hex}	Addressing of the read/write job is outside the memory range of the data carrier.				
		21 _{Hex}	Invoking of a function which is not possible for the data carrier which is in front of the read/write head.				
	or:	Data	Data which was read from the data carrier.				
	02 Hex	Data	Data which was read from the data carrier.				
		Data	Data which was read from the data carrier.				
Please note the	Last byte)					
basic procedure on 12 and 2531		2nd Bit header	The data are valid if the 1st and 2nd bit headers are in agreement.				
and the examples on pages 1 3247.	or:	Data	Data which was read from the data carrier.				

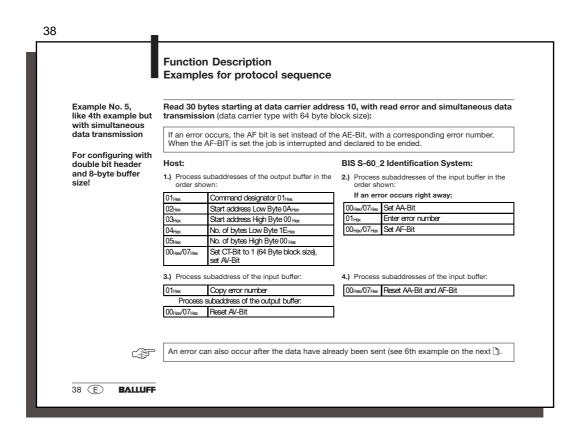





	Function Description Processing data carriers
Reading and writing in dynamic mode	In normal operation a read/write job is rejected by the BIS S-60_2 processor by setting the AF bit and an error number if there is no data carrier in the active zone of the read/write head. If dynamic mode is configured, the processor accepts the read/write job and stores it. When a data carrier is recognized, the stored job is carried out.
Reading and writing with simultaneous data transmission	Reading without simultaneous data transmission: In the case of a read job the processor first reads our all requested data from the data carrier after receiving the start address and the desired number of bytes, and then sets the AE bit. Then the data read from the data carrier are written to the input buffer. In the case of larger data amounts this is done in blocks, controlled by the handshake with the toggle bits as described on D 25.
	Reading with simultaneous data transmission: In the case of a read job the processor be- gins by transmitting the data into the input buffer as soon as the first 30 bytes (with 2nd bit header, or 31 bytes without 2nd bit header, or less if the buffer size was set smaller) have beer read from the data carrier beginning with the start address, and indicates this by inverting the TO bit. As soon as the controller inverts the TI bit, the processor sends the data, which have in the meantime been read, to the input buffer. This is repeated until the processor has read out all the desired data from the data carrier. Now the processor sets the AE bit and outputs the remaining data on the input buffer.
	Writing without simultaneous data transmission: In the case of a write job the processor waits until it has received all the data that need to be written from the controller. Only then are the data written to the data carrier as described on 125.
	Writing with simultaneous data transmission: In the case of a write job the processor be- gins to write the data to the data carrier as soon as it has received the first data to be written from the controller's output buffer. Once all the data have been written to the data carrier, the AE bit is set.

Mixed Data Access (cont.)	The following shows the structure of a program:							
	Program structure	Subaddress	Value	Range				
	Command designator 1. Program record	01 _{Hex}	06 _{Hex}					
	Program number 1st data record:	02 _{Hex}	01 _{Hex}	01_{Hex} to $0A_{\text{Hex}}$				
	Start address Low Byte	03 _{Hex}						
	Start address High Byte	04 _{Hex}						
	Number of bytes Low Byte	05 _{Hex}						
	Number of bytes High Byte 2nd data record:	06 _{Hex}						
	25th data record:							
	Start address Low Byte	03 _{Hex}						
	Start address High Byte	04 _{Hex}						
	Number of bytes Low Byte	05 _{Hex}						
	Number of bytes High Byte Terminator	06 _{Hex} FF _{Hex} FF _{Hex}						
	To store a second program, repeat th	is process.						
	The procedure for writing these settin	ngs to the EEPRON	I is described	I in the 9th example on				
	Replacing the EEPROM is described	on 🗋 56 for BIS S-	6002 and on [66 for BIS S-6022.				


	Function Description Processing data carriers						
CRC initialization	To be able to use the CRC check, the data carrier must first be initialized with the command identifier 12 _{Hex} (see [] 32/33). The CRC initialization is used like a normal write job. The latter is rejected (with an error message) if the processor recognizes that the data carrier does not contain the correct CRC. Data carriers as shipped from the factory (all data are 0) can immediately be programmed with a CRC check.						
	If CRC-16 data checking is activated, a special error message is output to the interface when ever a CRC error is detected.						
	If the error message is not caused by a failed write request, it may be assumed that one or more memory cells on the data carrier is defective. That data carrier must then be replaced.						
	If the CRC error is however due to a failed write request, you must reinitialize the data carrier in order to continue using it.						
	The checksum is written to the data carrier as a 2-byte wide datum. Two bytes per page are 'lost', i.e., the page size becomes 62 bytes. This means that the actual usable number of bytes is reduced:						
	Data carrier type Usable bytes						
	8192 bytes = 7936 bytes 16384 bytes = 15872 bytes						
	BALLUFF (E) 31						
	BALLUFF (E) 31						


	Function Description Examples for protocol sequence	
Example No. 1	Host:	BIS S-60_2 Identification System:
(continued)	127.) Process subaddresses of the output buffer:	128.) Process subaddresses of the output buffer:
For configuring with double bit header and 128-byte buffer	017EHex Enter the remaining data byte 00Hex/7FHex Invert TI-Bit	017E _{Hex} Copy the remaining data byte Process subaddress of the input buffer: 00Hex/7FHex Set AE-Bit
size!	129.) Process subaddresses of the output buffer: 00 _{He/} /7F _{Hex} Reset AV-Bit	130.) Process subaddresses of the input buffer:
	OUHER THE HOSE PARTIE	
		BALLUFF (E) 33
		BALLUFF E 33

		n Description es for protocol sequence		
Example No. 2	Read 17 by	rtes starting at data carrier addres	s 10 (Data ca	rrier type with 64 byte block size):
	Host:		BIS S-60_2	2 Identification System:
For configuring with double bit header and 8-byte buffer	1.) Process s	subaddresses of the output buffer in the own:	2.) Process order sho	subaddresses of the input buffer in the own:
size!	01 _{Hex}	Command designator 01 _{Hex}	$00_{\text{Hex}}/07_{\text{Hex}}$	Set AA-Bit
0.201	02 _{Hex}	Start address Low Byte 0A _{Hex}	0106 _{Hex}	Enter first 6 bytes of data
	03 _{Hex}	Start address High Byte 00 Hex	00Hex/07Hex	Set AE-Bit
	04 _{Hex}	No. of bytes Low Byte 11 Hex		
	05 _{Hex}	No. of bytes High Byte 00 Hex		
	00 _{Hex} /07 _{Hex}	CT-Bit to 1 (64 Byte block size), set AV-Bit		
	3.) Process	subaddresses of the input buffer:	4.) Process	subaddresses of the input buffer:
	0106 _{Hex}	Copy first 6 data bytes	0106 _{Hex}	Enter the second 6 data bytes
		subaddress of the output buffer:	00 _{Hex} /07 _{Hex}	Invert TO-Bit
	00 _{Hex} /07 _{Hex}	Invert TI-Bit		
	5.) Process	subaddresses of the input buffer:	6.) Process	subaddresses of the input buffer:
	0106Hex	Copy second 6 data bytes	0105 _{Hex}	Enter the remaining 5 data bytes
	Process s	subaddress of the output buffer:	$00_{\text{Hex}}/07_{\text{Hex}}$	Invert TO-Bit
	$00_{\text{Hex}}/07_{\text{Hex}}$	Invert TI-Bit		
	7.) Process	subaddresses of the input buffer:	8.) Process	subaddresses of the input buffer:
	0105 _{Hex}	Copy the remaining 5 data bytes	00Hex/07Hex	Reset AA-Bit and AE-Bit
	Process	subaddress of the output buffer:		
	00 _{Hex} /07 _{Hex}	Reset AV-Bit		

Bood 17 b					
	ytes starting at data carrier addre er type with 64 byte block size):	ss 10, with s	imultaneous data transmission		
The reply "Job End" = AE bit is reliably set no later than before the last data are sent. The exact time depends on the requested data amount, the input buffer size and the timing of controller. This is indicated in the following by the note <i>Set AE-Bit</i> (in italics).					
Host:		BIS S-60_2	2 Identification System:		
			subaddresses of the input buffer in the		
01 _{Hex}	Command designator 01 _{Hex}	00 _{Hex} /07 _{Hex}	Set AA-Bit		
02 _{Hex}	Start address Low Byte 0A _{Hex}	0106 _{Hex}	Enter first 6 bytes of data		
03 _{Hex}	Start address High Byte 00 Hex	00 _{Hex} /07 _{Hex}	Invert TO-Bit		
04 _{Hex}	No. of bytes Low Byte 11 _{Hex}	00 _{Hex} /07 _{Hex}	Set AE-Bit		
05 _{Hex}	No. of bytes High Byte 00 Hex				
00 _{Hex} /07 _{Hex}	CT-Bit to 1 (64 Byte block size), set AV-Bit				
3.) Process	subaddresses of the input buffer:	4.) Process	subaddresses of the input buffer:		
0106 _{Hex}	Copy first 6 data bytes	0106 _{Hex}	Enter the second 6 data bytes		
Process	subaddress of the output buffer:	00 _{Hex} /07 _{Hex}	Invert TO-Bit		
00 _{Hex} /07 _{Hex}	Invert TI-Bit	00 _{Hex} /07 _{Hex}	Set AE-Bit		
	While the r are sent. TI The reply " exact time controller." Host: 1.) Process order shr 024xx 024xx 024xx 034xx 0	While the read job is being carried out and as are sent. The AE bit is not set until the "Read" The reply "Job End" = AE bit is reliably set no lexact time depends on the requested data am controller. This is indicated in the following by Host: 1.) Process subaddresses of the output buffer in the order shown: 01Hex Command designator 01Hex 02Hex Start address Low Byte 0AHex 03Hex No. of bytes Low Byte 00Hex 04Hex No. of bytes High Byte 00Hex 00Hex/07Hex CT-Bit to 1 (64 Byte block size), set AV-Bit 3.) Process subaddresses of the input buffer: Copy first 6 data bytes	While the read job is being carried out and as soon as the ir are sent. The AE bit is not set until the "Read" operation is of the repuly "Job End" = AE bit is reliably set no later than befexact time depends on the requested data amount, the inpucontroller. This is indicated in the following by the note Set J Host: BIS S-60_2 1.) Process subaddresses of the output buffer in the order shown: 2.) Process 01Hex Command designator 01Hex 01Hex(07Hex) 02Hex Start address Low Byte 00Hex 00Hex/07Hex 03Hex No. of bytes Low Byte 11Hex 00Hex/07Hex 00Hex/07Hex CT-Bit to 1 (64 Byte block size), set AV-Bit 4.) Process subaddresses of the output buffer: 3.) Process subaddresses of the output buffer: 0106Hex 0106Hex 0106Hex Copy first 6 data bytes 0106Hex		

		n Description es for protocol sequence		
Example No. 4		ytes starting at data carrier addre er type with 64 byte block size):	ess 10 with r	read error
For configuring with	Host:		BIS S-60	2 Identification System:
double bit header and 8-byte buffer size!	1.) Process order she	subaddresses of the output buffer in the own:	order sh	
	01 _{Hex}	Command designator 01 _{Hex}	If an err	ror occurs right away:
	02 _{Hex}	Start address Low Byte 0AHex	00 _{Hex} /07 _{Hex}	Set AA-Bit
	03 _{Hex}	Start address High Byte 00 Hex	01 _{Hex}	Enter error number
	04 _{Hex}	No. of bytes Low Byte 1E _{Hex}	00Hex/07Hex	Set AF-Bit
	05нек	No. of bytes High Byte 00 Hex		
	00 _{Hex} /07 _{Hex}	Set CT-Bit to 1 (64 Byte block size), set AV-Bit		
	3.) Process	subaddress of the input buffer:	4.) Process	subaddresses of the input buffer:
	01 _{Hex}	Copy error number	00 _{Hex} /07 _{Hex}	Reset AA-Bit and AF-Bit
	Process	subaddress of the output buffer:		
	00 _{Hex} /07 _{Hex}	Reset AV-Bit		
				BALLUFF (E) 37

		n Description es for protocol sequence			
Example No. 6, with simultaneous data transmission		ytes starting at data carrier addre ion (data carrier type with 64 byte b		read error and simultaneous data	
For configuring with double bit header and 8-byte buffer size!	If an error occurs after data have started to be sent, the AF-Bit is set instead of the AE-Bit alo with the corresponding error number. The error message AF is dominant. It cannot be specifie which data are incorrect. When the AF-BIT is set the job is interrupted and declared to be end				
	Host:		BIS S-60_2 Identification System:		
	1.) Process order she	subaddresses of the output buffer in the own:		s subaddresses of the input buffer in the	
	01 _{Hex}	Command designator 01 _{Hex}	00 _{Hex} /07 _{Hex}	Set AA-Bit	
	02 _{Hex}	Start address Low Byte 0AHex	0106 _{Hex}	Enter the first 6 data bytes	
	03 _{Hex}	Start address High Byte 00 Hex	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	04 _{Hex}	No. of bytes Low Byte 1E _{Hex}			
	05 _{Hex}	No. of bytes High Byte 00 Hex			
	00 _{Hex} /07 _{Hex}	Set CT-Bit to 1 (64 Byte block size), set AV-Bit			
	3.) Process	subaddress of the input buffer:	4.) Process subaddresses of the input buffer:		
	0106 _{Hex}	Copy first 6 data bytes	If an er	ror has occurred:	
		subaddress of the output buffer:	01 _{Hex}	Enter error number	
	00Hex/07Hex	Invert TI-Bit	00 _{Hex} /07 _{Hex}		
	5.) Process	subaddress of the input buffer:	6.) Process	s subaddresses of the input buffer:	
	01 _{Hex}	Copy error number	00 _{Hex} /07 _{Hex}	Reset AA-Bit and AF-Bit	
	Process	subaddress of the output buffer:			
	00 _{Hex} /07 _{Hex}	Reset AV-Bit			

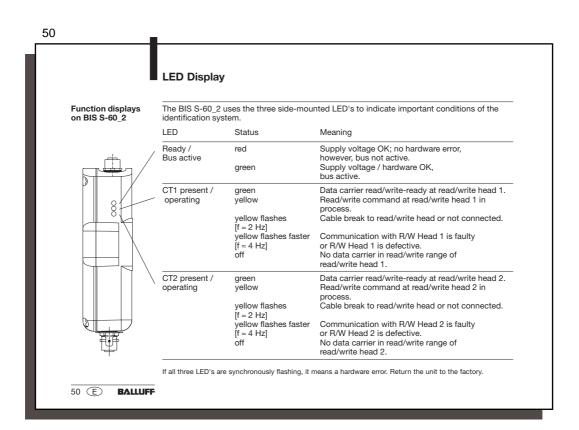
	Function Description Examples for protocol sequence	
Example No. 7	Write 16 bytes starting at data carrier address	s 20 (data carrier type with 64 byte block size):
	Host:	BIS S-60_2 Identification System:
For configuring with double bit header and 8-byte buffer	1.) Process subaddresses of the output buffer in the order shown:	2.) Process subaddresses of the input buffer in the order shown:
size!	01 _{Hex} Command designator 02 _{Hex}	00 _{Hex} /07 _{Hex} Set AA-Bit, invert TO-Bit
	02Hex/03Hex Start address 14Hex / 00Hex	
	04Hex/05Hex No. of bytes 10Hex / 00Hex	
	00 _{Hex} /07 _{Hex} CT-Bit to 1 (64 Byte block size), set AV-Bit	
	3.) Process subaddresses of the output buffer:	4.) Process subaddresses of the output buffer:
	0106 _{Hex} Enter the first 6 data bytes	0106 _{Hex} Copy the first 6 data bytes
	00 _{Hex} /07 _{Hex} Invert TI-Bit	Process subaddress of the input buffer:
		00 _{Hex} /07 _{Hex} Invert TO-Bit
	5.) Process subaddresses of the output buffer:	6.) Process subaddresses of the output buffer:
	0106 _{Hex} Enter the second 6 data bytes	0106 _{Hex} Copy the second 6 data bytes
	00 _{Hex} /07 _{Hex} Invert TI-Bit	Process subaddress of the input buffer:
		00 _{Hex} /07 _{Hex} Invert TO-Bit
	7.) Process subaddresses of the output buffer:	8.) Process subaddresses of the output buffer:
	0104 _{Hex} Enter the remaining 4 data bytes	0104 _{Hex} Copy the remaining 4 data bytes
	00 _{Hex} /07 _{Hex} Invert TI-Bit	Process subaddress of the input buffer:
		00Hex/07Hex Set AE-Bit
	9.) Process subaddresses of the output buffer:	10.)Process subaddresses of the input buffer:
	00Hex/07Hex Reset AV-Bit	00Hex/07Hex Reset AA-Bit and AE-Bit

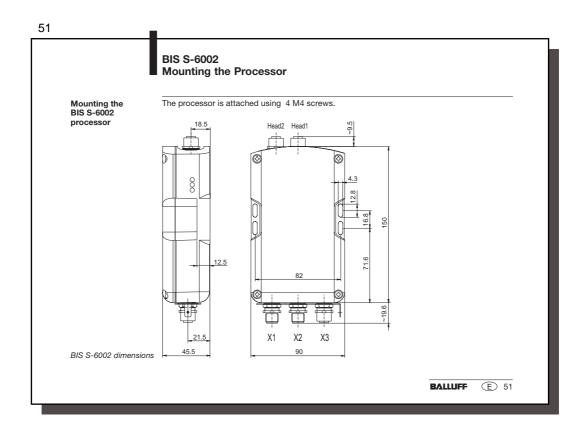
		n Description es for protocol sequence			
Example No. 8	Programm	ning start address 75 (data carrier t	ype with 64 b	pyte block size):	
Address assignment for the Auto-Read	Host:		BIS S-60 2	2 Identification System:	
function	1.) Process order she	subaddresses of the output buffer in the own:	2.) Process subaddresses of the input buffer:		
For configuring with double bit header	01 _{Hex}	Command designator 07Hex	00Hex/07Hex	Set AA-Bit and AE-Bit	
and 8-byte buffer	02 _{Hex}	Start address Low Byte 4B Hex			
size!	03 _{Hex}	Start address High Byte 00 Hex			
	00Hex/07Hex	CT-Bit to 1 (64 Byte block size), set AV-Bit			
	3.) Process	subaddresses of the output buffer:	4.) Process	subaddresses of the input buffer:	
	00Hex/07Hex	Reset AV-Bit	00Hex/07Hex	Reset AA-Bit and AE-Bit	
		correct data output, use command is	ontifior 07.	for each distributed buffer Head 1	
	To ensure correct data output, use command identifier 07 _{Hex} for each distributed buffer Head 1 and/or Head 2.				
	starting w	b-Read function is not activated, the p ith data carrier address 0 until the but header or 31 bytes for a single bit he	fer is filled, bu		

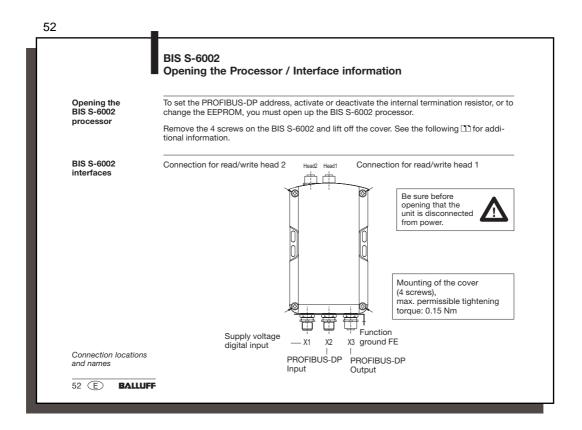
<text> Brand Bring Br</text>		Function Description Examples for protocol sequence
Access program 1st data record Start address 5 Number of bytes 7 Access program Start address 312 Number of bytes 7 Bro configuring with double bit header and 8-byte buffer size! Total number of bytes exchanged in the operation: 27 bytes Intel number of bytes exchanged in the operation: 27 bytes All 104 bytes are written for the programming. 21 Intel number of bytes exchanged in the operation: 27 bytes All 104 bytes are written for the programming. 21 Intervention: 101 Intex Command designator 0646x Intex Intex Intex Intex Intex Intex Intex Intex	Example No. 9	Storing a program for reading out 3 data records:
double bit header and 8-byte buffer size! All 104 bytes excitaliged in the operation. 27 bytes All 104 bytes are written for the programming. Host: All 104 bytes are written for the programming. Host: 1. Process subaddresses of the output buffer in the order shown: 0. Process subaddresses of the output buffer in the <u>014ex</u> Program number 014ex <u>004ex</u> /074ex 0. Process subaddresses of the input buffer: 014ex 014ex CT-Bit to 1 (64 bytes block size), set AV-Bit 0. Process subaddresses of the output buffer: 014ex 1st start address (Low Byte) 054ex (High Byte) 004ex (High Byte) 004ex 0. Process subaddresses of the input buffer:		2nd data record Start address 75 Number of bytes 3
All 104 bytes are written for the programming. Host: Host: 1.) Process subaddresses of the output buffer in the order shown: 0.) Process subaddresses of the output buffer in the order shown: 0.) Process subaddresses of the output buffer in the order shown: 0.) Process subaddresses of the output buffer in the order shown: 0.) Process subaddresses of the output buffer in the order shown: 0.) Process subaddresses of the output buffer. 0.0 Haw/07 Haw Order of the output buffer in the order shown: 0.) Process subaddresses of the output buffer. 0.) Process subaddresses of the output buffer. 0.1 Hew 1 St start address (Low Byte) 50 Haw 0.) Process subaddresses of the input buffer. 0.1 Hew 1 Ist start address (Low Byte) 0.0 Haw 0.) Haw/07 Haw 0.0 Haw/07 Haw 1 St start address (Low Byte) 0.0 Haw 0.0 Haw/07 Haw 1 St start address (Low Byte) 0.0 Haw 0.0 Haw/07 Haw 1 St start address (Low Byte) 0.0 Haw 0.0 Haw/07 Haw 1 St start address (Low Byte) 0.0 Haw 0.0 Haw/07 Haw 1 St start address (Low Byte) 0.0 Haw 0.0 Haw/07 Haw 1 St start address (Low Byte) 0.0 Haw 0.0 Haw/07 Haw 1 St start address (Low Byte) 0.0 Haw 0.0 Haw/07 Haw		Total number of bytes exchanged in the operation: 27 bytes
Host: Host: 1.) Process subaddresses of the output buffer in the order shown: 2.) Process subaddresses of the input buffer: 1/14xx Command designator 064xx 004xx/074xx 024xx Program number 014xx 004xx/074xx 014xx CT-Bit to 1 (64 bytes block size), set AV-Bit 5. 3.) Process subaddresses of the output buffer: 4.) Process subaddresses of the input buffer: 014xx (High Byte) 004xx 004xx/074xx 024xx (High Byte) 004xx Invert TO-Bit 044xx (High Byte) 004xx Invert TO-Bit 054xx (High Byte) 004xx Invert TO-Bit		All 104 bytes are written for the programming.
Order shown: Onex Of Hex Command designator 06Hex O2Hex Program number 01Hex Onex/07Hex Set AA-Bit, invert TO-Bit O1Hex/07Hex CT-Bit to 1 (64 bytes block size), set AV-Bit A.) Process subaddresses of the input buffer: O1Hex 1st start address (Low Byte) 05Hex (High Byte) 00Hex O2Hex 1st number of bytes (Low Byte) 07Hex Invert TO-Bit O4Hex 2High Byte) 00Hex (High Byte) 00Hex Invert TO-Bit O5Hex 2nd start address (Low Byte) 07Hex Invert TO-Bit O6Hex/07Hex Invert TI-Bit Continued on next D.	size!	Host: Host:
02+ex Program number 01+ex 00+ex/07+ex CT-Bit to 1 (64 bytes block size), set AV-Bit 3.) Process subaddresses of the output buffer: 4.) Process subaddresses of the input buffer: 01+ex 1st start address (Low Byte) 05+ex 02+ex (High Byte) 00+ex 03+ex 1st number of bytes Invert TO-Bit 04+ex (High Byte) 00+ex 05+ex (High Byte) 00+ex 06+ex (High Byte) 00+ex 00+ex/07+ex Invert TI-Bit		
00+esr/07+esr CT-Bit to 1 (64 bytes block size), set AV-Bit 3.) Process subaddresses of the output buffer: 4.) Process subaddresses of the input buffer: 01+esr 1st start address (Low Byte) 05+esr 02+esr (High Byte) 00+esr Invert TO-Bit 03+esr 1st number of bytes (Low Byte) 07+esr 03+esr 1st number of bytes (Low Byte) 00+esr 03+esr 2nd start address (Low Byte) 00+esr 05+esr 2nd start address (Low Byte) 4B+esr 06+esr (High Byte) 00+esr OHesr/07+esr 00+esr/07+esr Invert TI-Bit Envert TI-Bit		01 _{Hex} Command designator 06 _{Hex} 00 _{Hex} /07 _{Hex} Set AA-Bit, invert TO-Bit
set AV-Bit 3.) Process subaddresses of the output buffer: 01 _{Hex} 1st start address (Low Byte) 05 _{Hex} 02 _{Hex} 1st start address (Low Byte) 00 _{Hex} 03 _{Hex} 1st number of bytes (Low Byte) 07 _{Hex} 04 _{Hex} (High Byte) 00 _{Hex} 05 _{Hex} 2nd start address (Low Byte) 01 _{Hex} 06 _{Hex} (High Byte) 00 _{Hex} 00 _{Hex} /07 _{Hex} Invert TI-Bit		02Hex Program number 01Hex
01Hax 1st start address (Low Byte) 05Hax Invert TO-Bit 02Hax 1st number of bytes (Low Byte) 00Hax Invert TO-Bit 03Hax 1st number of bytes (Low Byte) 00Hax Invert TO-Bit 05Hax 2nd start address (Low Byte) 00Hax Invert TO-Bit 05Hax 2nd start address (Low Byte) 00Hax Invert TO-Bit 06Hax (High Byte) 00Hax OHax OHax 00Hax/07Hax Invert TI-Bit Continued on next 1.		
02+ex (High Byte) 00+ex 03+ex 1st number of bytes (Low Byte) 00+ex 03+ex (High Byte) 00+ex 04+ex (High Byte) 00+ex 05+ex 2nd start address (Low Byte) 4B+ex 06+ex (High Byte) 00+ex 00+ex/07+ex Invert TI-Bit		 Process subaddresses of the output buffer: Process subaddresses of the input buffer:
03+tex 1st number of bytes (Low Byte) 07+tex 04+tex (High Byte) 00+tex 05+tex 2nd start address 06+tex (High Byte) 00+tex 06+tex (High Byte) 00+tex 00+tex/07+tex Invert TI-Bit		01 _{Hex} 1st start address (Low Byte) 05 _{Hex} 00 _{Hex} /07 _{Hex} Invert TO-Bit
04Hex (High Byte) 00Hex 05Hex 2nd start address 06Hex (High Byte) 00Hex 06Hex (High Byte) 00Hex 00Hex/07Hex Invert TI-Bit Continued on next D.		
05Hex 2nd start address [Low Byte] 4BHex 06Hex (High Byte) 00Hex 00Hex/07Hex Invert TI-Bit Continued on next 1.		
06Hex (High Byte) 00Hex 00Hex/07Hex Invent TI-Bit Continued on next D.		(3),,
00 _{Hex} /07 _{Hex} Invert Π-Bit Continued on next D.		
Continued on next D.		
42 E BALLUFF		Continued on next \Box .
42 (E) BALLUFF		
	42 (E) BALLUFF	

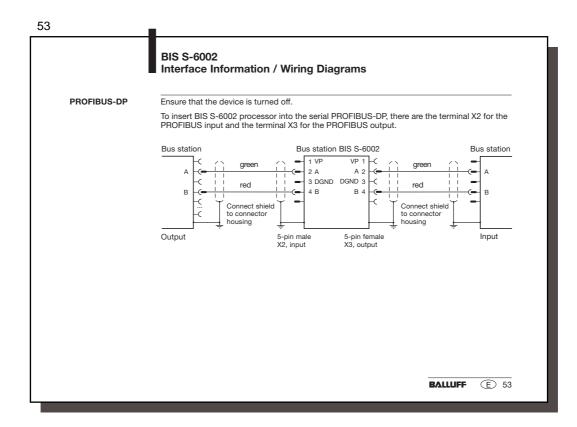
		n Descriptior es for protoc				
Example No. 9	Host:			BIS S-60 2	Identification System:	
Store Mixed Data	5.) Process	subaddresses of the	output buffer:		ubaddresses of the input bu	Iffer:
Access program (continued)	01 _{Hex} 02 _{Hex}	2nd number of bytes	(Low Byte) 03Hex (High Byte) 00Hex	00Hex/07Hex	Invert TO-Bit	
	03 _{Hex}	3rd start address	(Low Byte) 38Hex			
For configuring with	04 _{Hex}		(High Byte) 01 нек			
double bit header and 8-byte buffer	05 _{Hex}	3rd number of	(Low Byte) 11 _{Hex}			
size!	06 _{Hex}	bytes	(High Byte) 00 _{Hex}			
	$00_{\text{Hex}}/07_{\text{Hex}}$	Invert TI-Bit				
	7.) Process subaddresses of the output buffer:			8.) Process s	ubaddresses of the input bu	iffer:
	01 _{Hex} /02 _{Hex}	Terminator	FFHex/FFHex	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	03Hex/04Hex	(not used)	FFHex/FFHex	-		
	05 _{Hex} /06 _{Hex}	(not used)	FFHex/FFHex			
	00Hex/07Hex	Invert TI-Bit				
	Fill all unuse	d start addresses an	d number of bytes w	ith FF _{Hex} !	Continued or	n next 🗋

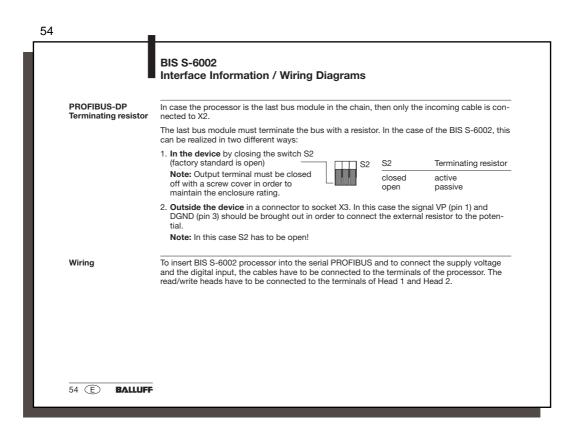
Example No. 9 Store Mixed Data Access program (continued) Host: 35.)Process subaddresses of the output buffer: 03:ew/04:ex BIS S-60_2 Identification System: 36.)Process subaddresses of the input buffer: 00:ew/07:ex For configuring with double buffer size! 01:ew/02:ex Terminator FF:ew/FF:ex 00:ew/07:ex Set AE-Bit 37.)Process subaddresses of the output buffer: 00:ew/07:ex Reset AV-Bit 38.)Process subaddresses of the input buffer: 00:ew/07:ex Reset AV-Bit 00:ew/07:ex Reset AA-Bit and AE-Bit
Access program (continued) 35,)Process subaddresses of the output buffer: 36,)Process subaddresses of the input buffer: 01Hew/02Hex Terminator FHew/FHex 00Hew/07Hex Set AE-Bit 00Hew/07Hex Invert TI-Bit 00Hew/07Hex Set AE-Bit 37.)Process subaddresses of the output buffer: 00Hew/07Hex Reset AV-Bit 00Hew/07Hex 00Hew/07Hex Reset AV-Bit 00Hew/07Hex Reset AA-Bit and AE-Bit
(continued) 01 _{Het/} /02 _{Hax} Terminator FFHe//FFHax 00He//07Hex Set AE-Bit For configuring with double bit header and 8-byte buffer size! 00He//07Hex (not used) FFHe//FFHex 00He//07Hex Set AE-Bit 37.)Process subaddresses of the output buffer: 38.)Process subaddresses of the input buffer: 00He//07Hex Reset AA-Bit and AE-Bit We recommend that you carefully document which parameters are used for start addresses and number of bytes for writing/reading the desired data records. We recommend that addresses and number of bytes for writing/reading the desired data records.
For configuring with double bit header and 8-byte buffer size! 05+tw/06+tw. (not used) FFHw/FFHw. 37.)Process subaddresses of the output buffer: 38.)Process subaddresses of the input buffer: 00+tw/07+tw. Reset AV-Bit 00+tw/07+tw. We recommend that you carefully document which parameters are used for start addresses and number of bytes for writing/reading the desired data records. We recommend that addresses and number of bytes for writing/reading the desired data records.
For configuring with double bit header and 8-byte buffer size! Invert Ti-Bit 37.)Process subaddresses of the output buffer: 38.)Process subaddresses of the input buffer: 00Hex/07/Hex Reset AV-Bit 00Hex/07/Hex Reset AV-Bit 00Hex/07/Hex Reset AV-Bit 00Hex/07/Hex Reset AA-Bit and AE-Bit We recommend that you carefully document which parameters are used for start addresses and number of bytes for writing/reading the desired data records.
double bit header and 8-byte buffer size! Invert H-bit 37.)Process subaddresses of the output buffer: 38.)Process subaddresses of the input buffer: 00Hex/07Hex Reset AV-Bit 00Hex/07Hex Reset AV-Bit We recommend that you carefully document which parameters are used for start addresses and number of bytes for writing/reading the desired data records.
37.) Process subaddresses of the output burrer: 38.) Process subaddresses of the input burrer: 00Hes/07Hex Reset AV-Bit 00Hes/07Hex Reset AV-Bit We recommend that you carefully document which parameters are used for start addresses and number of bytes for writing/reading the desired data records.
We recommend that you carefully document which parameters are used for start addresses and number of bytes for writing/reading the desired data records.
We recommend that you carefully document which parameters are used for start addresses and number of bytes for writing/reading the desired data records.

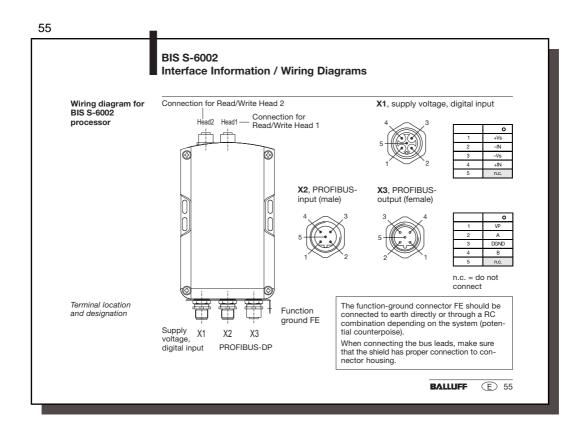

		n Description es for protocol sequence			
Example No. 10	Read data carrier using Program No. 1 (data carrier type with 64 byte block size):				
Use Mixed Data Access program	Host:		BIS S-60	2 Identification System:	
	1.) Process subaddresses of the output buffer in the order shown: 2.) Process subaddresses of the input buff				
For configuring with double bit header and 8-byte buffer	01 _{Hex}	Command designator 21 _{Hex}	00 _{Hex} /07 _{Hex}	Set AA-Bit	
	02 _{Hex}	Program number 01 _{Hex}	0106 _{Hex}	Enter first 6 bytes of data	
size!	00Hex/07Hex	CT-Bit to 1 (64 byte block size),	00 _{Hex} /07 _{Hex}	Set AE-Bit	
	3.) Process	set AV-Bit subaddresses of the input buffer:	4.) Process	subaddresses of the output buffer:	
	0106Hex	Copy first 6 data bytes	0106 _{Нек}	Enter the second 6 data bytes	
		subaddress of the output buffer:	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	$00_{\text{Hex}}/07_{\text{Hex}}$	Invert TI-Bit			
		f 27 bytes of data are exchanged. nainder of the procedure, see Exam	ple 2 on 🗋 34		
(F)	Dynamic r	node is turned off while the Mixed Da	ata Access pr	ogram is being run.	

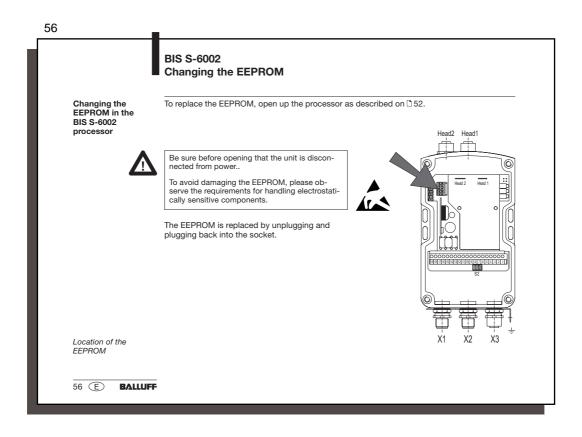

46		n Description es for protocol sequence					
Example No. 11 Use Mixed Data Access program For configuring with	Host:	subaddresses of the output buffer in the	 a carrier type with 64 byte block size): BIS S-60_2 Identification System: 2.) Process subaddresses of the input buffer in the order shown: 				
double bit header	01 _{Hex}	Command designator 21 _{Hex}	1	00 _{Hex} /07 _{Hex}	Set AA-Bit		
and 8-byte buffer	02 _{Hex}	Program number 01 _{Hex}	1	0106 _{Hex}	Enter first 6 bytes of data		
size!	00нех/07нех	CT-Bit to 1 (64 byte block size), set AV-Bit	1	00 _{Hex} /07 _{Hex}	Set AE-Bit		
	00 _{Hex} /07 _{Hex}	Copy first 6 data bytes subaddress of the output buffer: Invert TI-Bit f 27 bytes of data are exchanged. nainder of the procedure, see Exam] nple	0106 _{Hex} 00Hex/07Hex e 7 on № 40.	Enter the second 6 data bytes Invert TO-Bit		
Ŧ	Dynamic r	node is turned off while the Mixed Da	ata	a Access pro	ogram is being run.		
46 E BALLUFF							

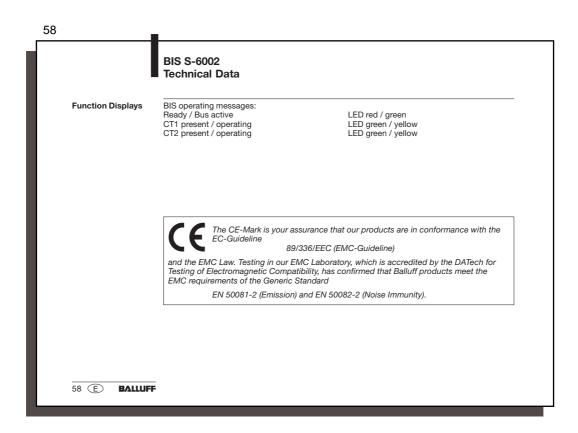

	Function Description Examples for protocol sequence										
Example No. 12	Put the relevant read/write head into ground state:										
	Both read/write heads can be independently set to the ground state.										
	Host:	BIS S-60_2 Identification System:									
	1.) Process subaddresses of the output buffer:	2.) Go to ground state; Process subaddresses of the input buffer:									
	00 _{Hex} /07 _{Hex} Set GR-Bit	00Hex/07Hex Reset BB-Bit									
	3.) Process subaddresses of the output buffer:	4.) Process subaddresses of the input buffer:									
	00 _{Hex} /07 _{Hex} Reset GR-Bit	00Hex/07Hex Set BB-Bit									
		BALLUFF (E) 47									

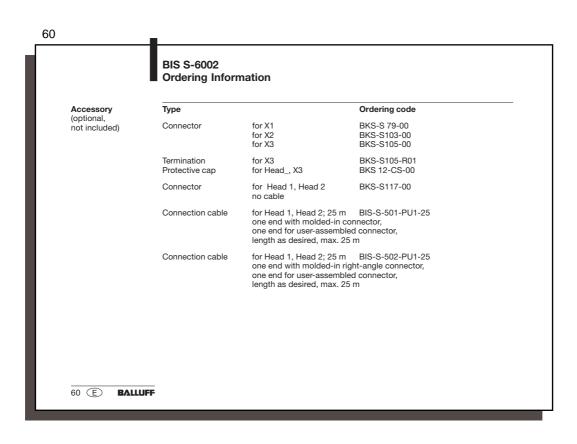

	Read/Write Time	es					
Read times from	For double read and co	ompare:					
Data carrier to processor in	Data carrier with 64 byte	e blocks					
static mode	No. of bytes	Read time [ms]					
(parametering: 2nd byte, bit 5 = 0,	from 0 to 63	29					
without CRC-16 data check)	for each additional 64 bytes add	31					
	from 0 to 2047	= 990					
Write times from	Including readback an	d compare:					
processor to Data carrier in static	Data carrier with 64 byte	blocks	-				
mode	No. of bytes	Write time [ms]	-				
(parametering: $2nd byte, bit 5 = 0,$	from 0 to 63	31 + n * 1.5	_				
without CRC-16 data	for 64 bytes or more	y * 31 + n * 1.5	-				
check)	n = number of contiguous bytes to write y = number of blocks to be processed						
		II be processed since t I.	o be written. Data carrier with 64 bytes per block he start address 130 is in block 3 and the end				
(F		litional 45 ms for building	er has been recognized. If the Data carrier is not the required energy field until the Data carrier is				

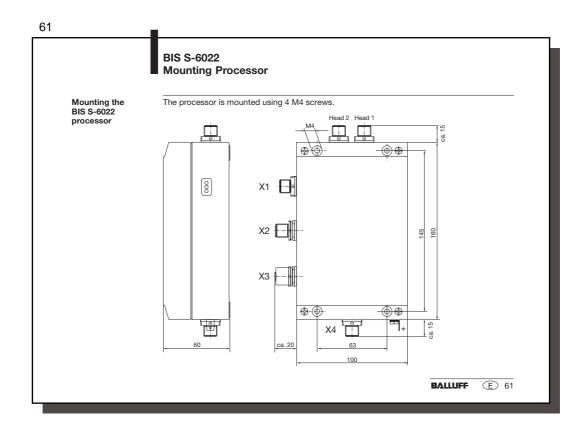

	Read/Write Tim	ies							
Read times from Data carrier to processor in dynamic mode (parametering: 2nd byte, bit 5 = 1,	Read times within the 1st block for dual read and compare:								
	The indicated times apply after the Data carrier has been recognized. If the Data carrier is not yet recognized, an additional 45 ms for building the required energy field until the Data carrier is recognized must be added.								
without CRC-16 data	Data carrier with 64 byt	te blocks	-						
:heck)	No. of bytes	Read time [ms]	-						
	from 0 to 3	2	_						
	for each additional		-						
	byte add from 0 to 63	0.5	_						
	m = highest address to be		-						
	Formula: $t = (m + 1)$								
		ytes starting at address ponds to 10 ms.	9, i.e. the highest address to be read is 19.						

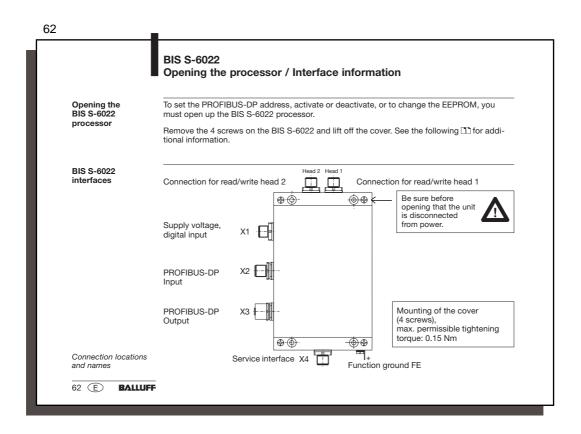


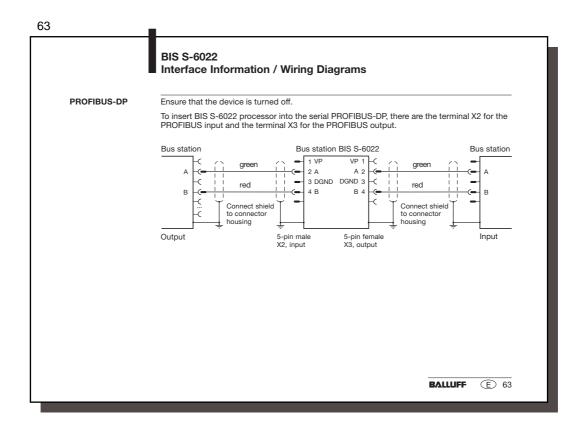


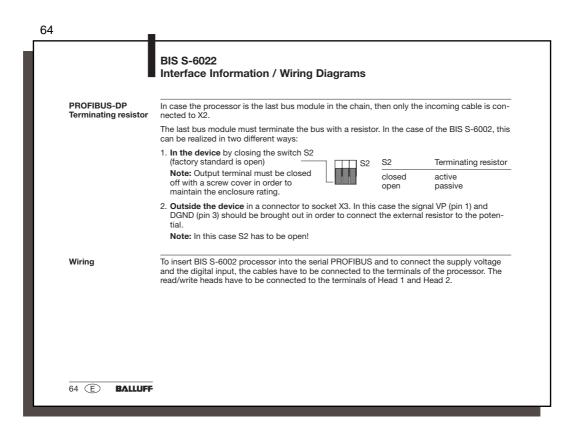


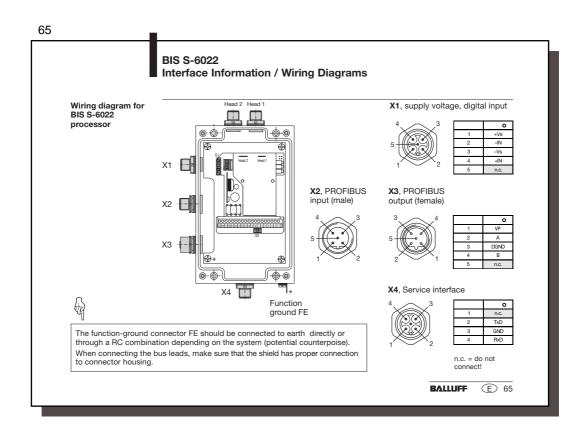


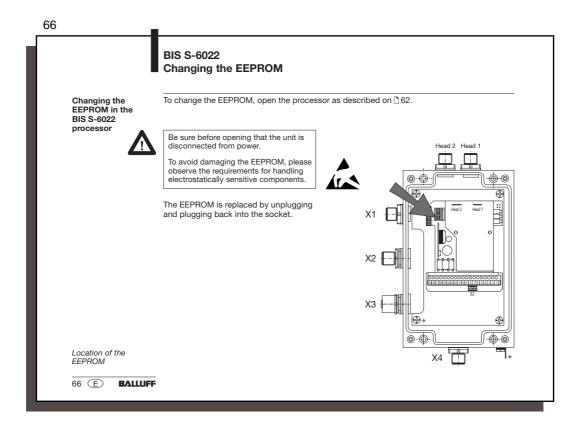


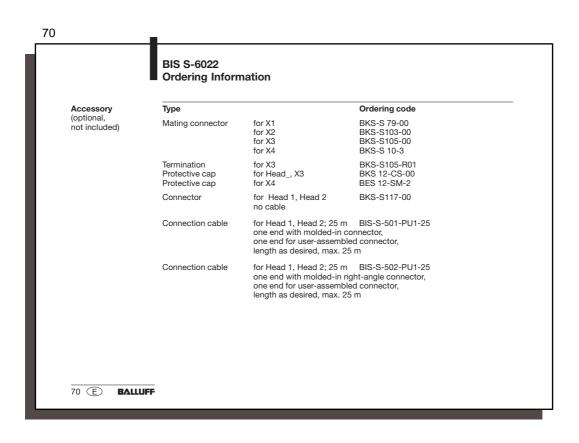

	BIS S-6002 Technical Data	
Dimensions, Weight	Housing Dimensions Weight	Plastic ca. 179 x 90 x 45,5 mm ca. 500 g
Operating Conditions	Ambient temperature	0 °C to + 60 °C
Enclosure Rating	Enclosure rating	IP 65 (when connected)
Connections	Integral connector X1 for V _{sr} IN Integral connector X2 for PROFIBUS-DP Input Integral connector X3 for PROFIBUS-DP Output	5-pin (male) 5-pin (male) 5-pin (female)
Electrical Connections	Supply voltage V_s, input Ripple Current draw	DC 24 V ± 10 % ≤ 10 % ≤ 600 mA
	PROFIBUS-DP slave	Terminal block, electrically isolated
	Digital Input (+IN, -IN) Control voltage active Control voltage inactive Input current at 24 V Delay time, typ.	Optocoupler isolated 4 V to 40 V 1.5 V to -40 V 11 mA 5 ms
	Read/Write Head	2 x connectors 8-pin (female) for all read/write heads BIS S-3 with 8-pin connector (male)
		BALLUFF (E) 5




	BIS S-6002 Ordering Information
Ordering Code	BIS \$-6002-019-050-03-ST1
	Balluff Identification System
	Type S Read/Write System
	Hardware Type 6002 = plastic housing, PROFIBUS-DP
	Software-Type 019 = PROFIBUS-DP
	Read/Write Head, connection
	Interface
	User Connection







	BIS S-6022 Technical Data	
Dimensions, weight	Housing Dimensions Weight	Metal 190 x 120 x 60 mm 820 g
Operating conditions	Ambient temperature	0 °C to +60 °C
Enclosure	Protection class	IP 65 (when connected)
Connections	Integral connector X1 for V _s , +IN Integral connector X2 for PROFIBUS-DP input Integral connector X3 for PROFIBUS-DP output Integral connector X4 for Service interface	5-pin (male) 5-pin (male) 5-pin (female) 4-pin (male)
Electrical connections	Supply voltage V s Ripple Current draw	DC 24 V ± 10 % ≤ 10 % ≤ 600 mA
	Digital input +IN Control voltage active Control voltage inactive Input current at 24 V Delay time, typ.	Optocoupler isolated 4 V to 40 V 1.5 V to -40 V 11 mA 5 ms
	PROFIBUS-DP, Connector X2, X3 Head 1, Head 2, Read/Write Head	serial interface for PROFIBUS stations via 2 x connectors 8-pin connector (female for all read/write heads BIS S-3 with 8-pin connector (male)
	Service interface X4	RS 232

	BIS S-6022 Technical Data	
Function displays	BIS operating messages: Ready / Bus active CT1 present / operating CT2 present / operating	LED red / green LED green / yellow LED green / yellow
	The CE-Mark is your a	ssurance that our products are in conformance with the
	EC-Guideline	9/336/EEC (EMC-Guideline)
		EMC Laboratory, which is accredited by the DATech for atibility, has confirmed that Balluff products meet the Standard
	EN 50081-2 (Emission	n) and EN 50082-2 (Noise Immunity).

	BIS S-6022 Ordering Information
Ordering code	BIS S-6022-019-050-03-ST14
	Balluff Identification System
	Type S Read/Write System
	Hardware Type
	Software Type
	Version
	Interface
	User Connection ST14 = Connector version X1, X2, X3, X4 (male: 2x 5-pin, 1x 4-pin, female: 1x 5-pin)

l

				App	end	ix, As	SCII T	able											
		00				00													
0	00	Ctrl @	NUL	22	16	Ctrl V	SYN	44	2C		65	41	Α	86	56	V	107	6B	k
1	01	Ctrl A	SOH	23	17	Ctrl W	ETB	45	2D	-	66	42	B	87	57	Ŵ	108	-	-
2	02	Ctrl B	STX	24	18	Ctrl X	CAN	46	2E		67	43	С	88	58	Х	109	6D	m
3	03	Ctrl C	ETX	25	19	Ctrl Y	EM	47	2F	/	68	44	D	89	59	Y	110	6E	n
4	04	Ctrl D	EOT	26	1A	Ctrl Z	SUB	48	30	0	69	45	Е	90	5A	Ζ	111	6F	0
5	05	Ctrl E	ENQ	27	1B	Ctrl [ESC	49	31	1	70	46	F	91	5B	[112	70	р
6	06	Ctrl F	ACK	28	1C	Ctrl \	FS	50	32	2	71	47	G	92	5C	\	113	71	q
7	07	Ctrl G	BEL	29	1D	Ctrl]	GS	51	33	3	72	48	Н	93	5D]	114	72	r
8	08	Ctrl H	BS	30	1E	Ctrl ^	RS	52	34	4	73	49	Ι	94	5E	Λ	115	73	S
9	09	Ctrl I	HT	31	1F	Ctrl _	US	53	35	5	74	4A	J	95	5F		116	74	t
10	0A	Ctrl J	LF	32	20		SP	54	36	6	75	4B	К	96	60	`	117	75	u
11	0B	Ctrl K	VT	33	21		!	55	37	7	76	4C	L	97	61	а	118	76	v
12	0C	Ctrl L	FF	34	22		"	56	38	8	77	4D	М	98	62	b	119	77	W
13	0D	Ctrl M	CR	35	23		#	57	39	9	78	4E	Ν	99	63	С	120	78	Х
14	0E	Ctrl N	SO	36	24		\$	58	ЗA	:	79	4F	0	100	64	d	121	79	у
15	0F	Ctrl O	SI	37	25		%	59	3B	;	80	50	P	101	65	e	122	7A	Z
16	10	Ctrl P	DLE	38	26		&	60	3C	<	81	51	Q	102	66	f	123	7B	{
17	11	Ctrl Q	DC1	39	27		'	61	3D	=	82	52	R	103	67	g	124		
18	12	Ctrl R	DC2	40	28		(62	3E	>	83	53	S	104	68	h	125	7D	}
19	13	Ctrl S	DC3	41	29)	63	3F	?	84	54	Т	105	69	<u>i</u>	126	7E	~
20	14 15	Ctrl T Ctrl U	DC4 NAK	42	2A 2B		+	64	40	@	85	55	U	106	6A	J	127	7F	DEI