
JBuilder® 2005

Developing Applications for
J2EE™ Servers

Borland Software Corporation
100 Enterprise Way
Scotts Valley, California 95066-3249
www.borland.com

Refer to the file deploy.html located in the redist directory of your JBuilder product for a complete list
of files that you can distribute in accordance with the JBuilder License Statement and Limited
Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of
applicable patents. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1997–2004 Borland Software Corporation. All rights reserved. All Borland brand and
product names are trademarks or registered trademarks of Borland Software Corporation in the
United States and other countries. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. All other marks are
the property of their respective owners.

For third-party conditions and disclaimers, see the Release Notes on your JBuilder product CD.

Printed in the U.S.A.

JB2005j2eeapps 3E4R0804
0405060708-9 8 7 6 5 4 3 2 1
PDF

i

Contents

Chapter 1
Introduction 1
Documentation conventions 1
Developer support and resources. 2

Contacting Borland Developer Support 3
Online resources. 3
World Wide Web 3
Borland newsgroups 3
Usenet newsgroups 4
Reporting bugs 4

Chapter 2
Programming for the Java 2 Platform,
Enterprise Edition 5

Why are J2EE applications desirable? 5
Benefits of the multi-tier model 8

How JBuilder can help 9
Client tier technologies 9
Middle-tier technologies 9
Other J2EE technologies 10
Preparing to deploy J2EE applications 11

Learning about J2EE 11

Chapter 3
Creating applications with J2EE
technologies 13

Client-server applications 14
Multi-tier applications 15
Stand-alone clients 15

Consumers of dynamic web content. 16
Java client calling EJBs 16

Web-centric applications 17
Business to business 17

Chapter 4
Configuring the target server settings 19
Supported servers 19
Setting up servers within JBuilder 20

Creating a duplicate configuration to edit 22
Adding a service pack 22
The created libraries 23
Selecting a server 24
Setting up JDBC drivers 26

Creating the .library and .config files 26
Adding the JDBC driver to projects 27

Updating projects with the latest server settings . . . 27
Updating from an earlier version of JBuilder 28

Chapter 5
Using JBuilder with Borland servers 29
Configuring Borland servers in JBuilder 29

Borland Enterprise Server AppServer
Edition 6.0. 29

Borland Enterprise Server AppServer
Edition 5.2.1. 31

Making the ORB available to JBuilder 34
Configurations, partitions, partition services,

and J2EE APIs 34
Changing the management port 37

Starting the configuration or server 38
Remote deploying 40
Remote debugging. 41

Remote debugging for Borland Enterprise
Server 6.0 . 41

Preparing to remote debug partitions
that are not managed in JBuilder 41

Preparing to remote debug partitions
that are managed in JBuilder 41

Remote debugging for Borland Enterprise
Server 5.2.1 42

Preparing to remote debug before the
Borland Enterprise Server AppServer
Edition 5.2.1 is running 42

Preparing to remote debug when the
Borland Enterprise Server AppServer
Edition 5.2.1 is already running 42

Remote debugging in JBuilder 43
Web module workarounds 43
Displaying the Borland Management Console

in JBuilder . 44
International issues 44
Borland servers and JDataStore 7.0. 44

Chapter 6
Using JBuilder’s CORBA tools 45
How JBuilder and the VisiBroker ORB

work together. 45
RMI . 46

Setting up JBuilder for CORBA applications. 47
Configuring VisiBroker when the Borland

Enterprise Server is installed 47
Configuring VisiBroker stand-alone 48
Configuring the OrbixWeb ORB 50
Adding a new configuration. 51

Setting and viewing ORB build properties 52
Setting VisiBroker ORB properties 52
Setting build properties for the OrbixWeb

or other third-party ORBs 54

ii

Setting and viewing IDL build properties 55
Using the CORBA wizards 57

Sample IDL wizard 57
CORBA Client Interface wizard 57
CORBA Server Interface wizard. 58
HTML CORBA Client wizard 58
CORBA Server Application wizard 59
Use CORBA Interface wizard 59

Chapter 7
Using JBuilder with BEA WebLogic
servers 61

Service packs. . 61
Configuring JBuilder for WebLogic servers. 61

Creating a duplicate configuration to edit 63
Created libraries. 64
Adding a service pack 64

Selecting a server 64
Working in JBuilder 66

Using existing code 66
Creating WebLogic entity beans in JBuilder. . . . 67
Using the DD Editor 67
Compiling . 67

Starting the server 67
Remote deploying 68

WebLogic Application Sever 7.x and
WebLogic Platform Server 8.1 68

Deploying J2EE modules as an
exploded directory 69

Mapping EJB project modules at runtime . . . 69
Redeploying individual classes. 70

WebLogic 8.x Platform Server deployment
features . 70

Remote debugging 71
Remote debugging of JavaServer Pages 71

Updating projects with the latest server settings . . . 72

Chapter 8
Using JBuilder with IBM WebSphere
servers 73

Configuring JBuilder for WebSphere servers. 73
Selecting a server 75
Generating WebSphere deployment

descriptors for WebSphere 4.0 75
Starting the server 76
Deploying . 77

Using the DD Editor 77
WebSphere Application Server 5.x 77

Remote deploying 77
Deploying locally 78

WebSphere Server 4.0 78
Remote deploying 78
Deploying locally 79

Enabling remote debugging 79
WebSphere Application Server 5.x 79
WebSphere Single Server 4.0. 80
WebSphere Server Advanced Edition 4.0. 80

Container-managed persistence (CMP) 1.1
and 2.0 in WebSphere 5.x 81

Chapter 9
Using JBuilder with JBoss servers 83
Configuring JBuilder for the JBoss application

server .83
Selecting a server84
Creating a JBoss service module84

Copying an existing JBoss service module 85
Creating a JBoss service node for an

existing service module archive (SAR) in
a directory outside your project. 87

Editing the JBoss service module deployment
descriptor .88

MBeans .88
Starting the server. 88
Deploying locally 89
Deploying exploded web modules. 90
Remote debugging 90
JSP debugging .91

Chapter 10
Using JBuilder with Tomcat 93
Selecting Tomcat as your project’s web server 95
Running your servlet or JSP with Tomcat96

Starting Tomcat 96
Stopping Tomcat96
Changing Tomcat’s port number97
Creating a custom server.xml file with Tomcat . . .97
Debugging JSPs with Tomcat 4.1 98

Chapter 11
Editing J2EE deployment descriptors 99
Displaying the DD Editor 100
Standard and server-specific pages. 101
Adding to and deleting from a deployment

descriptor . 102
Validating a deployment descriptor entry 103

Chapter 12
Integrating with Enterprise
Information Systems 105

Creating a connector module node in the
project pane . 105

Creating an empty connector module 106
Copying an existing connector module. 107
Creating a module node for an existing

module in a directory outside your project . . . 108
Creating a connector module node for an

existing archive (RAR) outside your project . . 109
Viewing the connector module deployment

descriptors . 110
Editing the resource adapter descriptors 111

Authentication Mechanism page 112
Configuration Property page 113
Security Permission page 113

Server-specific pages 114
Compiling the connector module 114

iii

Chapter 13
Building J2EE modules 115
J2EE modules 115
Setting module build properties 116

File type filters 116
Class and resource filters 116
Clean filters 117
Dependencies 117

Adding custom file types 117
Sample build scenarios 118

EJB JAR without any bean classes 118
EJB JAR with custom files 118
EJB JAR without EJB designer XML

descriptors 119

WAR with custom descriptor(s) in the
WEB-INF directory 119

WAR without any classes. 119
WAR with custom class filters 119
WAR with custom file types. 119
EAR with custom files 120
RAR with classes and dependencies. 120
Application client module with classes and

dependencies 120
Improving module build performance 121

Web modules 121

Index 123

iv

Chapter 1 : Introduct ion 1

C h a p t e r

1
Chapter 1Introduction

Developing Applications for J2EE Servers introduces you to the various technologies
that make up the Java™ 2 Platform, Enterprise Edition (J2EE™), explains why they
are important, and describes how you can use JBuilder to create J2EE applications
that target your application server. You’ll learn how to configure JBuilder to work with
your server, and how to accomplish the essential programming tasks of running your
applications, debugging them remotely, and deploying them to your server.

Documentation conventions
The Borland documentation for JBuilder uses the typefaces and symbols described in
the following table to indicate special text.

Table 1.1 Typeface and symbol conventions

Typeface Meaning

Bold Bold is used for java tools, bmj (Borland Make for Java), bcj (Borland
Compiler for Java), and compiler options. For example: javac, bmj,
-classpath.

Italics Italicized words are used for new terms being defined, for book titles, and
occasionally for emphasis.

Keycaps This typeface indicates a key on your keyboard, such as “Press Esc to
exit a menu.”

Monospaced type Monospaced type represents the following:

� text as it appears onscreen
� anything you must type, such as “Type Hello World in the Title field

of the Application wizard.”
� file names
� path names
� directory and folder names
� commands, such as SET PATH
� Java code
� Java data types, such as boolean, int, and long.
� Java identifiers, such as names of variables, classes, package

names, interfaces, components, properties, methods, and events
� argument names
� field names
� Java keywords, such as void and static

2 Developing Appl icat ions for J2EE Servers

Developer suppor t and resources

JBuilder is available on multiple platforms. See the following table for a description of
platform conventions used in the documentation.

Developer support and resources
Borland provides a variety of support options and information resources to help
developers get the most out of their Borland products. These options include a range of
Borland Technical Support programs, as well as free services on the Internet, where
you can search our extensive information base and connect with other users of Borland
products.

[] Square brackets in text or syntax listings enclose optional items. Do not
type the brackets.

< > Angle brackets are used to indicate variables in directory paths,
command options, and code samples. JDK 5.0 uses angle brackets to
denote generics.

For example, <filename> may be used to indicate where you need to
supply a file name (including file extension), and <username> typically
indicates that you must provide your user name.

When replacing variables in directory paths, command options, and code
samples, replace the entire variable, including the angle brackets (< >).
For example, you would replace <filename> with the name of a file, such
as employee.jds, and omit the angle brackets.

See “Using command-line tools” in Building Applications with JBuilder for
more information.

Note: Angle brackets are used in HTML, XML, JSP, and other tag-based
files to demarcate document elements, such as and
<ejb-jar>. The following convention describes how variable strings are
specified within code samples that are already using angle brackets for
delimiters.

Italics, serif This formatting is used to indicate variable strings within code samples
that are already using angle brackets as delimiters. For example,
<url="jdbc:borland:jbuilder\\samples\\guestbook.jds">

... In code examples, an ellipsis (…) indicates code that has been omitted
from the example to save space and improve clarity. On a button, an
ellipsis indicates that the button links to a selection dialog box.

Table 1.2 Platform conventions

Item Meaning

Paths Directory paths in the documentation are indicated with a forward slash (/).

For Windows platforms, use a backslash (\).

Home directory The location of the standard home directory varies by platform and is
indicated with a variable, <home>.

� For UNIX, Linux, and OS X, the home directory can vary. For example,
it could be /user/<username> or /home/<username>

� For Windows NT, the home directory is C:\Winnt\Profiles\
<username>

� For Windows 2000 and XP, the home directory is C:\Documents and
Settings\<username>

Screen shots Screen shots reflect the Borland Look & Feel on various platforms.

Table 1.1 Typeface and symbol conventions (continued)

Typeface Meaning

Chapter 1 : Introduct ion 3

Developer suppor t and resources

Contacting Borland Developer Support

Borland offers several support programs for customers and prospective customers.
You can choose from several categories of support, ranging from free support upon
installation of the Borland product, to fee-based consultant-level support and extensive
assistance.

For more information about Borland’s developer support services, see our web site at
http://www.borland.com/devsupport/, call Borland Assist at (800) 523-7070, or contact
our Sales Department at (831) 431-1064.

When contacting support, be prepared to provide complete information about your
environment, the version of the product you are using, and a detailed description of the
problem.

For support on third-party tools or documentation, contact the vendor of the tool.

Online resources

You can get information from any of these online sources:

World Wide Web

Check the JBuilder page of the Borland website, www.borland.com/jbuilder, regularly.
This is where the Java Products Development Team posts white papers, competitive
analyses, answers to frequently asked questions, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:

� http://www.borland.com/jbuilder/ (updated software and other files)

� http://info.borland.com/techpubs/jbuilder/ (updated documentation and other
files)

� http://bdn.borland.com/ (contains our web-based news magazine for developers)

Borland newsgroups

When you register JBuilder you can participate in many threaded discussion groups
devoted to JBuilder. The Borland newsgroups provide a means for the global
community of Borland customers to exchange tips and techniques about Borland
products and related tools and technologies.

You can find user-supported newsgroups for JBuilder and other Borland products at
http://www.borland.com/newsgroups/.

World Wide Web http://www.borland.com/
http://info.borland.com/techpubs/jbuilder/

Electronic newsletters To subscribe to electronic newsletters, use the online form at:
http://www.borland.com/products/newsletters/index.html

4 Developing Appl icat ions for J2EE Servers

Developer suppor t and resources

Usenet newsgroups

The following Usenet groups are devoted to Java and related programming issues:

� news:comp.lang.java.advocacy
� news:comp.lang.java.announce
� news:comp.lang.java.beans
� news:comp.lang.java.databases
� news:comp.lang.java.gui
� news:comp.lang.java.help
� news:comp.lang.java.machine
� news:comp.lang.java.programmer
� news:comp.lang.java.security
� news:comp.lang.java.softwaretools

Note These newsgroups are maintained by users and are not official Borland sites.

Reporting bugs

If you find what you think may be a bug in the software, please report it to Borland at
one of the following sites:

� Support Programs page at http://www.borland.com/devsupport/namerica/. Click the
Information link under “Reporting Defects” to open the Welcome page of Quality
Central, Borland’s bug-tracking tool.

� Quality Central at http://qc.borland.com. Follow the instructions on the Quality
Central page in the “Bugs Report” section.

� Quality Central menu command on the main Tools menu of JBuilder (Tools|Quality
Central). Follow the instructions to create your QC user account and report the bug.
See the Borland Quality Central documentation for more information.

When you report a bug, please include all the steps needed to reproduce the bug,
including any special environmental settings you used and other programs you were
using with JBuilder. Please be specific about the expected behavior versus what
actually happened.

If you have comments (compliments, suggestions, or issues) for the JBuilder
documentation team, you may email jpgpubs@borland.com. This is for documentation
issues only. Please note that you must address support issues to developer support.

JBuilder is made by developers for developers. We really value your input.

Chapter 2: Programming for the Java 2 Plat form, Enterpr ise Edit ion 5

C h a p t e r

2
Chapter2Programming for the Java 2 Platform,

Enterprise Edition
The Java™ 2 Platform, Enterprise Edition (J2EE™) is an architecture for a Java
development platform for distributed enterprise applications. It was developed by Sun
Microsystems, with input from the development community, including Borland. J2EE
platform products, such as the Borland Enterprise Server, offer the developer the
capability of building applications with these benefits:

� Reliability and scalability, so business transactions are processed quickly and
accurately.

� Excellent security to protect users’ privacy and the integrity of the enterprise’s data.

� Ready availability, to meet the increasing demands of the global business
environment.

JBuilder is a Java integrated development environment that, when coupled with a
supported application server from companies such as Borland, BEA, and IBM greatly
simplifies and speeds the development of J2EE applications.

Why are J2EE applications desirable?
In the early 1990s, information systems frequently used a client-server architecture.
The user interface to the application usually ran on a desktop computer. This was the
client tier. The enterprise data being accessed by the client resided in a database and

6 Developing Appl icat ions for J2EE Servers

Why are J2EE appl icat ions desirable?

was “served up” by a server. This approach initially promised improved scalability and
functionality.

Through hard experience, however, the development community learned that building
and maintaining a flexible distributed system is very difficult using the client-server
model. For example, the business logic of the application was in the client application.
Every time that logic needed modification, the revised application had to be installed on
every client machine in the enterprise. Maintenance became a nightmare. These
applications also had to manage transactions, be concerned with security, and process
the data efficiently, all the while presenting an attractive, easy-to-understand interface
to its users. Few developers have talents in all these areas. While a client-server
architecture might be adequate for some environments, most of today’s global
companies demand considerably more than the client-server model can deliver.

Once the limitations of the client-server approach became apparent, the development
community began seeking a better way. The result is the multi-tier model.

In the multi-tier model, the logic involved in presenting the user interface of the
application to the user lives on the middle tier. The business logic is now on the middle
tier also. When changes are needed, they can be updated in one place instead of on
each client machine.

Chapter 2: Programming for the Java 2 Plat form, Enterpr ise Edit ion 7

Why are J2EE appl icat ions desi rab le?

This expanded diagram shows you the various components you might find running on
the various tiers:

The client in a J2EE application can be a JavaServer Page (JSP), HTML page, or
applet running in a browser; a Java application on a desktop machine; or even a Java
client on some portable device, such as a personal digital assistant (PDA) or cell
phone.

The middle-tier can have a servlet or a JSP-generated servlet running on a web server.
These elements usually make up the server-side presentation logic. An EJB container
provides a runtime environment for Enterprise JavaBeans™, which contain the
business logic of application. Both a web server and an Enterprise JavaBeans (EJB)
container provide services to the components that run on them. Because these
services are always available, programmers don’t have to include them in the
components they write.

The Enterprise Information System (EIS) tier is a repository for the enterprise’s data.
Usually it consists of the data in a relational database system.

Few J2EE applications have all of these components. They can be mixed and matched
in very flexible ways to meet the needs of the enterprise. See Chapter 3, “Creating
applications with J2EE technologies” for more on this topic.

8 Developing Appl icat ions for J2EE Servers

Why are J2EE appl icat ions desirable?

Benefits of the multi-tier model

The multi-tier approach adopted by the J2EE platform has several benefits:

� It reduces the complexity of distributed development with a simplified architecture
and the sharing of the work load among roles.

The business logic of the application runs in the middle tier inside an Enterprise
JavaBean (EJB) container and/or on a web server. These containers and servers
can handle many of the difficult tasks for developers. For example, an EJB container
can handle transactions, instance pooling, and data persistence without requiring
the EJB programmer to write the logic to perform these tasks. A web server can
create and pool instances of servlet classes and handle multiple threads and socket
connections. Instead of writing the code to do these things, a member of the
development team specifies the desired behavior at deployment time.

Members of the development team play different roles. Each is a specialist in one or
more areas. For example, the content of an HTML page or stylesheet would likely
be created by a graphic designer or webmaster. A senior developer might be
responsible for the business logic of the application encapsulated within Enterprise
JavaBean components. A web developer might develop the user interface and
presentation logic using JavaServer Pages (JSPs) and servlets. An application
assembler takes the various components of the application and puts it all together,
often creating an Enterprise Archive (EAR) file and creating the deployment
descriptor that explains how the application is to be deployed. The application
deployer and administrator deploy the application. By partitioning the work this way,
each step of the development/deployment process is handled by someone skilled in
their area while no one has to be an expert in every area.

� It is highly scalable, allowing the development of systems to meet many different
needs that can change quickly.

When demands on the system increase, the logic can be updated easily in one
place on the middle tier without having to load new logic on every client machine.

� New applications can integrate well with existing information systems.

JDBC, a J2EE technology, is a Java API to SQL databases, permitting the access to
any type of tabular data that might exist in the enterprise. The Java Naming and
Directory Interface (JNDI) allows applications that use Java technology to access
enterprise naming and directory services. The J2EE Connector architecture gives
Java applications connections to heterogeneous legacy systems. The Java
Message Service (JMS) is the Java API for sending and receiving messages though
enterprise messaging systems. CORBA services are called using JavaIDL.

� Security is enhanced.

J2EE technologies are designed with security in mind. For example, only users in
assigned roles can access certain methods in enterprise beans. Who can access
these methods isn’t coded in the enterprise beans themselves. Instead this
information is set in the enterprise beans’ deployment descriptors, which are used
by the deployer to establish their behavior after they are deployed. This type of
security is called declarative security.

For complex security requirements, however, J2EE also allows programmable
security. In these cases, the security logic is placed within the code itself.

� Developers can choose from a variety of development tools, servers, and
components to develop the applications they need.

The development team can select the solutions that are best for their needs, without
becoming locked into the offerings of a single vendor.

Chapter 2: Programming for the Java 2 Plat form, Enterpr ise Edit ion 9

How JBui lder can help

How JBuilder can help
JBuilder Enterprise Edition has many features to help your team develop J2EE
applications. These are the technologies JBuilder has to help you develop the client
tier:

Client tier technologies
� Applets

Applets are a special kind of Java application that are downloaded and run by a web
browser on a client machine. To begin developing an applet in JBuilder, start with
the Applet wizard. For information about working with applets, see “Working with
applets” in Developing Web Applications.

� Java user interface applications

JBuilder has several features that can help you develop an application that runs on
a client machine. Begin a Java application using the Application wizard. Continue
designing your user interface by using JBuilder’s UI designer. You create your UI by
adding UI components from JBuilder’s component palette. For information on
working with JBuilder’s UI designer, see “Visual design in JBuilder” in Designing
Applications with JBuilder.

If you want to create your own JavaBean components to use in your user interface,
BeansExpress can simplify the task for you. For information about using
BeansExpress, see “Creating JavaBeans with BeansExpress” in Designing
Applications with JBuilder. JBuilder’s DataExpress components for enterprise beans
make it easier for you to build client applications using database-aware visual
components such as dbSwing or InternetBeans Express. For more information
about DataExpress for EJB, see “Using the DataExpress for Enterprise JavaBeans
components” in Developing Applications with Enterprise JavaBeans.

Both a web server and/or an EJB container can run on the middle tier. JBuilder
ships with Tomcat, a servlet container that can be used as a web server, and with
the Borland Enterprise Server 5.2.1, which contains the EJB container. You can
build applications for these servers or you can set up JBuilder to enable you to
develop applications for BEA WebLogic 7.x, and 8.1, IBM WebSphere 4.0 and 5.0,
Sun-Netscape iPlanet 6.0 and 6.5, and Sybase 4.1 and 4.2.

Middle-tier technologies

These are the middle-tier J2EE technologies that use a web server:

� Servlets

A servlet is a server-side Java application that can process requests from clients.
The servlet responds to the request by generating dynamic output that is sent back
to the client. You can begin developing servlets with JBuilder’s Standard Servlet
wizard. To find out more about servlets and developing them, see “Developing
servlets” in Developing Web Applications.

� JavaServer Pages (JSPs)

An extension of servlet technology, JSPs offer a simplified way to develop servlets.
Like servlets, they generate dynamic output that is sent back to the client’s web
browser, thus bridging the client and middle tier. Begin developing JSPs with
JBuilder’s JavaServer Page wizard. To find out more about JSPs and developing
them, see “JavaServer Pages (JSP)” in Developing Web Applications.

InternetBeans Express is a component library that supplements the servlet and JSP
technology available in JBuilder. This library makes it easy to present and

10 Developing Appl icat ions for J2EE Servers

How JBui lder can help

manipulate data from a database so you can build data-aware servlets and JSPs.
For information about InternetBeans Express, see “Using InternetBeans Express” in
the Developing Web Applications.

This is the middle-tier J2EE technology that uses an EJB container:

� Enterprise JavaBeans (EJBs)

Enterprise JavaBeans are server-side components that contain the business logic of
the application. JBuilder assists you in building EJB 1.x and EJB 2.0 components.
Start building enterprise beans by using the EJB wizards on the Enterprise page of
the object gallery (File|New|Enterprise). For building EJB 2.0 components, JBuilder
offers the EJB designer, a Two-Way Tool™ that allows you to design your beans
visually all the while keeping your code, deployment descriptors, and design
synchronized. For more information about building, testing, and deploying
enterprise beans, see “An introduction to EJB development” in Developing
Applications with Enterprise JavaBeans.

As you create your enterprise beans, JBuilder is building your EJB deployment
descriptors. You can use JBuilder’s EJB DD Editor to modify them as you wish. For
more information about the EJB DD Editor see Chapter 11, “Editing J2EE
deployment descriptors” and “Editing EJB deployment descriptors” in Developing
Applications with Enterprise JavaBeans.

All the web application components and enterprise bean components can be combined
and delivered in an application module. JBuilder has an Application Module wizard. For
more information, see “Creating an application module” in the “Deploying enterprise
beans” chapter of the Developing Applications with Enterprise JavaBeans book.

Other J2EE technologies

While not confined to a particular architectural tier, these technologies are enablers
that make things work:

� Java Database Connectivity (JDBC)

JDBC is the standard used to access your database on the Enterprise Information
Systems (EIS) tier. It defines a Java API you use to write SQL statements that are
sent to your database.

JBuilder includes DataExpress, a component library for accessing data in your
database. It connects your application to your database using JDBC drivers.

JBuilder also includes JDataStore, an all-Java embedded database and component
library. You access JDataStore using JDBC.

Entity beans that access rows in your database, also connect to your data using
JDBC.

� Java Message Service (JMS)

JMS is an enterprise messaging service that routes messages between
components and processes in a distributed application.

The Borland Enterprise Server includes SonicMQ, a JMS implementation. Also
JBuilder supports EJB 2.0 components, which include message-driven beans.
Message-driven beans integrate JMS into enterprise beans. JBuilder also includes a
JMS wizard. See “Creating JMS producers and consumers” in Developing
Applications with Enterprise JavaBeans for information on creating classes and
applications that can create and consume JMS messages.

� Java Naming and Directory Interface (JNDI)

All J2EE servers use JNDI, a Java naming service used to locate distributed
objects.

Chapter 2: Programming for the Java 2 Plat form, Enterpr ise Edi t ion 11

Learn ing about J2EE

� Extensible Markup Language (XML)

Although not really a J2EE technology, XML is widely used by J2EE technologies.
For example, web components and enterprise beans have their deployment
descriptors written in XML. These deployment descriptors describe how the
components behave once they are deployed.

JBuilder has several XML features that help you accomplish common programming
tasks you might encounter in your J2EE projects. For information about JBuilder’s
XML features, see “Introduction” in Working with XML.

Preparing to deploy J2EE applications

As you create and compile your web applications and enterprise beans, JBuilder can
create the WAR (Web Archive) and EJB-JAR (EJB Archive) files for you automatically.
You can choose to bundle the components of a J2EE application together into an EAR
file. JBuilder provides an Application Module wizard to help you do this. For more
information, see “Creating an application module” in Developing Applications with
Enterprise JavaBeans.

Learning about J2EE
If you’ve read this far, you’ve been exposed very briefly to many concepts and, with all
the acronyms to identify J2EE technologies, an alphabet soup. To develop a deeper
understanding of J2EE benefits and concepts, begin your explorations on Sun’s
www.java.sun.com web site. This http://java.sun.com/j2ee/docs.html link takes you to
Sun’s J2EE documentation home page where you can find an abundance of useful
information.

If you’re new to J2EE programming, look at the J2EE tutorial at http://java.sun.com/
j2ee/tutorial/index.html. For an in-depth discussion of J2EE programming and the
recommended programming practices to use in your J2EE applications, don’t miss the
very detailed J2EE Blueprints, found at http://java.sun.com/j2ee/blueprints/
index.html. J2EE Blueprints is an integral part of J2EE itself. You’ll find it useful when
you need to understand deeper concepts and are looking for the best ways to
approach J2EE development. This material is also available in book form as Designing
Enterprise Applications with the Java 2 Platform, Enterprise Edition written by Nicholas
Kassem and the Enterprise Team of Sun. http://java.sun.com/j2ee/blueprints/
aboutthebook.html links you to information about the book.

You’ll find additional documentation and specifications for the various J2EE
technologies on the Sun site. There are also excellent third-party books, but because
J2EE is a developing product, be aware which versions of the various technologies
they address.

12 Developing Appl icat ions for J2EE Servers

Chapter 3: Creat ing appl icat ions wi th J2EE technologies 13

C h a p t e r

3
Chapter3Creating applications with J2EE

technologies
The Developing Web Applications, Developing Applications with Enterprise
JavaBeans, and other parts of JBuilder’s documentation explain how to use J2EE
technologies. They describe in depth how to use JBuilder features to develop web
applications, work with XML, develop Enterprise JavaBeans, access and work with
your data using DataExpress, and create web services. Within each of these areas of
the documentation, you should find the information to understand these technologies
and work productively with them.

But today’s web-based enterprise applications usually use several J2EE technologies.
How do these disparate technologies fit together in applications you and your team
might develop? Which technologies are right for which kind of applications? This
chapter intends to help you see how the pieces fit together, while highlighting the
flexibility of J2EE applications. It borrows heavily from the Introduction chapter of
Designing Enterprise Applications with the J2EE Platform by Inderjeet Singh, Beth
Stearns, Mike Johnson, and the Sun Enterprise Team. You can find the book online on
the Sun web site at http://java.sun.com/blueprints/guidelines/
designing_enterprise_applications_2e/#chapters, and it is also available for purchase.

14 Developing Appl icat ions for J2EE Servers

Cl ient -server appl icat ions

Here’s the diagram from the previous chapter showing the multiple tiers used in most
J2EE applications:

The diagram shows you all the different types of entities found on each tier, but it
doesn’t show you the common ways J2EE applications combine these technologies to
create reliable, scalable, and easily distributed applications.

Client-server applications
Before looking at multi-tier J2EE models, consider the old standard, the two-tier client-
server model. Using J2EE technologies does not preclude you from creating client-
server applications. Client-server applications omit the middle tier shown in the multi-
tier application diagram. While the client-server model scales poorly and maintaining
and distributing such applications is more difficult, sometimes a Java client on a
desktop that accesses the data of the company directly is all you really need.

The Java client can contain both the presentation and business logic, although it’s
possible one application could handle the presentation tasks while another could

Chapter 3: Creat ing appl icat ions wi th J2EE technologies 15

Mul t i - t ier appl icat ions

handle business logic, all on the client tier. You would use JDBC or Connectors to
access the data on the Enterprise Information System (EIS) tier.

Consider using the client-server model only when the number of desktops running
clients is quite small and will remain so. Once the demand for more than a few client
instances increases, you should probably consider another type of application
architecture.

Multi-tier applications
Here you see the classic multi-tier, distributed architecture that uses three tiers: the
browser on the client tier, the web container and EJB container on the middle tier that
runs on a J2EE server, and the Enterprise Information Systems (EIS) tier that is
managed by a database system. Such an application uses web components such as
JavaServer Pages (JSPs), servlets, and XML to manage the application’s presentation
logic. The EJB container contains enterprise beans that respond to requests from the
web tier components and access the data in the EIS tier.

When should you use JavaServer Pages and when should you use servlets?
JavaServer Pages are intended as user interface components. Servlets are usually
used for processing requests and controlling application logic.

XML can be very important in multi-tier applications. XML data messages use HTTP as
their transport protocol. Such data messages can encapsulate all types of data and
respond to a variety of client types, including XML-enabled browsers.

Stand-alone clients
Not all multi-tier applications use a browser on the client tier. Often the client is a Java
client or a client written in another language that consumes dynamic web content or an
application that interacts directly with enterprise beans running in an EJB container.
This diagram shows you the possibilities of this type of application:

Note that this diagram includes the client-server application also as such an application
includes a stand-alone client, too.

16 Developing Appl icat ions for J2EE Servers

Stand-alone c l ients

Consumers of dynamic web content

One type of stand-alone client is a Java application or another programming language
that consumes dynamic web content. This web content is usually XML data messages:

The web container performs the XML transformations and provides web connectivity to
clients. The client handles the presentation logic while the web tier manages the
business logic and accesses the data on the EIS tier if necessary. Business logic might
be implemented as enterprise beans. The J2EE technologies likely to be used are
XML, servlets, web services, and possibly enterprise beans and JDBC to access
enterprise data.

Java client calling EJBs

Enterprise JavaBeans (EJBs) are server-side components that run in a middle-tier EJB
container. The container provides services to the beans, such as transaction
management and security. You, as the developer, don’t have to implement such low-
level and complex services, but instead can concentrate on developing the business
logic for the beans, knowing that the services are there when they are needed.
Developers often choose EJBs when building applications that will be distributed over
several servers. They also like to use EJBs because of the transparent way they
handle transactions.

The following diagram depicts a Java client that calls upon the business methods
encapsulated with the enterprise beans that are running in an EJB container. If the
beans are entity beans, they access company data on the EIS tier through JDBC and
J2EE connectors. Ideally, the client should access company data through a session
bean which interacts with the entity beans that model company data. A session bean
that interacts with an entity bean in this way is usually using the Session Facade
design pattern; see “Creating session facades for entity beans” in Developing
Applications with Enterprise JavaBeans for more information. XML is used in the
deployment descriptors for enterprise beans.

If the application you need requires secure transactions over a distributed system,
consider using enterprise beans.

Chapter 3: Creat ing appl icat ions wi th J2EE technologies 17

Web-centr ic appl icat ions

Web-centric applications
There are times when your application just doesn’t need to use enterprise beans and if
you do so, you add a layer of complexity. If your application doesn’t require
transactions on a distributed system, consider a web-centric application model:

This scenario puts both the presentation and business logic on the web tier. The web
container can host JavaServer Pages and servlets. The client is simply a browser and
data is transferred using XML, HTTP protocol, and/or HTML pages. Servlets can
access the EIS tier, when necessary, using JDBC or connectors. Applications using
this type of architecture are quite common.

Business to business
When you need a web-based commerce solution, consider the business-to-business
model. This might include multiple web containers and multiple EJB containers.

Web container to web container architecture is suitable for ecommerce solutions.
Communication takes place through XML data message over HTTP. Such applications
are very loosely coupled.

Peer-to-peer communication between EJB containers offers a more tightly coupled
model that works well for intranet solutions. In these types of applications, seriously
consider using message-driven enterprise beans and Java Message Service (JMS),
which enable you to develop loosely coupled applications.

18 Developing Appl icat ions for J2EE Servers

Chapter 4 : Conf igur ing the target server set t ings 19

C h a p t e r

4
Chapter4Configuring the target server

settings
Before you begin creating enterprise applications, you must configure the settings for
the application server and/or web server to which you are going to deploy.

Tip Be sure to see the server-specific chapters for the various servers to find additional
configuration information for each server. These are the chapters:

� Chapter 5, “Using JBuilder with Borland servers”

� Chapter 7, “Using JBuilder with BEA WebLogic servers”

� Chapter 8, “Using JBuilder with IBM WebSphere servers”

� Chapter 9, “Using JBuilder with JBoss servers”

� Chapter 10, “Using JBuilder with Tomcat”

Supported servers
JBuilder supports the following servers:

� Borland Enterprise Server 5.2.1

� Borland Enterprise Server 6.0.1

� BEA WebLogic Server 7.0 SP 5

� BEA WebLogic Platform 8.1 SP 3

� IBM WebSphere Application Server 4.0.7 Single Server

� IBM WebSphere Application Server 4.0.7 Advanced Edition

� IBM WebSphere Application Server 5.0.2.4, 5.1.0.4

� JBoss Application Server 3.0.8

� JBoss Application Server 3.2.5

� Tomcat 4.1.30

� Tomcat 5.0.27

20 Developing Appl icat ions for J2EE Servers

Sett ing up servers wi th in JBui lder

Setting up servers within JBuilder
This is a feature of
JBuilder Developer

and Enterprise

To configure the settings to target one or more application servers,

1 Choose Enterprise|Configure Servers. The Configure Servers dialog box is
displayed:

The left side of the dialog box lists the servers that can be configured in JBuilder and
for which JBuilder finds a registered OpenTool.

2 Select the server you want to configure by clicking it in the pane on the left.

The right side of the dialog box lists the default settings for the selected server. Each
application server except Generic App Server 1.0 and all versions of Tomcat has
both a General and a Custom page for editing settings. The General page has fields
that all the application servers have in common, while the Custom page has fields
that are specific to the selected application server. In some cases, modifying a
Custom setting will update a setting on the General page and vice versa.

The Generic AppServer 1.0 server option is a generic option. It represents a basic
application server that supports EJB 1.1 and/or EJB 2.0 development. Select it if the
application server you use is not currently supported by JBuilder. You will probably
want to edit the resulting deployment descriptor with tools supplied with that
application server to get the exact settings you want. You could also choose this
option if the you aren’t targeting a specific application server.

3 Check the Enable Server check box at the top of the dialog box.

Checking this option enables the fields for the selected application server. You won’t
be able to edit any fields until it is checked. The Enable Server check box also
determines whether this server will appear in the list of servers when you select a
server for your project using the Server page of the Project|Project Properties dialog
box.

JBuilder provides default settings for the selected server. If JBuilder’s default
settings are not appropriate, edit any of the settings as needed. Some servers
require you to enter settings in addition to the defaults. Clicking the OK button in this

Chapter 4 : Conf igur ing the target server set t ings 21

Sett ing up servers with in JBui lder

dialog box when not all required values are set or selecting another server while the
current one is enabled displays a message dialog box that informs you about the
missing settings and usually selects the control representing the missing setting.

4 If you want to change any of the settings, click the ellipsis (…) button next to the field
and make your changes.

You can add any necessary application dependencies to the server’s classpath by
clicking the Required Libraries tab and using the Add button to add the libraries the
server needs.

5 Click the Custom tab to view settings unique to the server. Most application servers
allow you to specify the location of the JDK the server uses; some require you to
specify the JDK location for successful configuration completion. Updates you make
on the Custom page can update settings on the General page. (Note that Tomcat
configurations do not have a Custom tab.)

Following are the JDKs and their installed locations for the application servers
supported by JBuilder:

� Borland Enterprise Server AppServer Edition 5.2.1: <bes home>/jdk/jdk1.3.1 or
<bes home>/jdk/jdk1.4.1 (the default value)

� Borland Enterprise Server AppServer Edition 6.0: <bes home>/jdk/jdk1.4.2

� WebLogic Server 7.x: <bea home>/jdk131_10

� WebLogic Platform Server 8.1: <bea home>/jdk141_04. WebLogic 8.1 also
supports JRockit (a JDK optimized for server applications), so the JDK directory
could be <bea home>/jrockit81sp3_142_04

� WebSphere 4.x (either Advanced Edition or Single Server): <websphere home>/
java

� WebSphere 5.x: <websphere home>/java

As you make your edits, JBuilder attempts to validate your settings. Once you’ve
made your edits, click the OK button to accept your changes and close the dialog
box. If you prefer that JBuilder not try to validate your changes, uncheck the Enable
Server dialog box. Selecting OK saves changes for all servers you’ve enabled,
disabled, or modified.

6 Click OK when you are through configuring the application server.

When you click OK and the Enable Server check box is checked, JBuilder attempts
to verify your settings. If errors are detected, a message box containing information
about the errors appears and focus is given to the control appropriate for fixing the
error. If the Enable Server option is unchecked, the dialog box simply closes and no
setting validation is performed.

Once a server is properly configured and validated, the server you configured is listed
in black type in the pane on the left. Gray type indicates the server hasn’t been
configured yet. Red type indicates an error condition; specifically it means the server’s
library containing its settings has been read, but the OpenTool representing the server
can’t be found. You can delete a server shown in red by selecting it and clicking the
Delete button.

The Reset To Defaults button sets the settings back to the values they originally had
when JBuilder was first installed and the server is disabled.

If a dialog box appears with a message that you must restart JBuilder, you must close
and then restart JBuilder for changes to become effective; otherwise, restarting
JBuilder is not necessary.

22 Developing Appl icat ions for J2EE Servers

Adding a serv ice pack

Creating a duplicate configuration to edit

Once you’ve created a server configuration, you might find you’d like to have a similar
one, but with some slight differences. Follow these steps to create a duplicate
configuration you can then edit:

1 Choose Enterprise|Configure Servers to display the Configure Servers dialog box.

2 Select the server configuration you would like to duplicate from the left pane.

3 Click the Copy button at the bottom of the left pane to display the Copy Server
wizard:

4 Specify the name you want to use to identify this server configuration in the Name
For This Server field.

5 Specify the server version in the Version For This Server field.

6 Click OK.

7 Select your new configuration in the left pane of the Configure Servers dialog box
and make the changes to the settings you need using the General and Custom
pages.

Copying a server configuration also creates copies of that server’s tools. You could,
therefore, create a duplicate server configuration and modify just the server’s tools as
the only difference between the two configurations. As another example, you could
have the copied configuration refer to a different home directory if you have slightly
different versions of that server installed. You can also delete a server configuration in
the Configure Servers dialog box.

Adding a service pack
If you want to add a service pack to your application server configuration, follow these
steps:

1 Choose Enterprise|Configure Servers.

2 Select your server from the list of servers in the pane on the left side of the dialog
box.

3 Click the General tab, then the Class tab, if it isn’t already selected.

4 Click Add.

5 Navigate to the location of the service pack JAR file.

6 Click OK twice to close all dialog boxes.

Chapter 4 : Conf igur ing the target server set t ings 23

The created l ibrar ies

The created libraries
When you configure the server settings, one or more libraries are created for you
automatically in your JBuilder home directory that contain all the application server files
you will need for enterprise bean development with the application server of your
choice. These are the libraries created for you, listed by application server:

Borland Enterprise Server 6.0.1
� Borland Enterprise Server 6.0 Client: All JARs needed to run a client.
� Borland Enterprise Server 6.0 Servlet: Used for web applications.

Borland Enterprise Server 5.2.1

� Borland Enterprise Server 5.2.1 Client: All JARs needed to run a client.
� Borland Enterprise Server 5.2.1 Servlet: Used for web applications.

WebLogic 8.1
� WebLogic 8.1 Client: All JARs needed to run a client.
� WebLogic 8.1 Deploy: JARs needed to run the WebLogic 8.1 deploy tool.
� WebLogic 8.1 Servlet: Used for web applications.

WebLogic 7.x
� WebLogic 7.x Client: All JARs needed to run a client.
� WebLogic 7.x Deploy: JARs needed to run the WebLogic 7.x deploy tool.
� WebLogic 7.x Servlet: Used for web applications.

WebSphere 5.x
� WebSphere 5.x Client: JARs needed to run a client.
� WebSphere Application Server 5.x Ext Dirs: JARs used during server startup.
� WebSphere Application Server 5.x EJB Deploy: JARs used to compile enterprise

beans and create stubs.
� WebSphere Application Server 5.x Servlet: Used for web applications.

WebSphere 4.0 Single Server
� WebSphere AES 4.0 Client: JARs needed to run a client.
� WebSphere AES 4.0 Ext Dirs: JARs used during server startup.
� WebSphere AES 4.0 EjbDeploy: JARs used to compile enterprise beans and

create stubs.
� WebSphere AES 4.0 SeAppInstaller: JARs used to run the WebSphere 4.0

deploy tool (SeAppInstaller).
� WebSphere AES 4.0 Servlet: Used for web applications.

WebSphere 4.0 Advanced Edition
� WebSphere AE 4.0 Client: JARs needed to run a client.
� WebSphere AE 4.0 Ext Dirs: JARs used during server startup.
� WebSphere AE 4.0 XmlConfig: JARs used to run the WebSphere 4.0 AE deploy

tool.
� WebSphere AE 4.0 EjbDeploy: JARs used to compile enterprise beans can

create stubs.
� WebSphere AE 4.0 Servlet: Used for web applications.

24 Developing Appl icat ions for J2EE Servers

Select ing a server

JBoss 3.x+
� JBoss 3.x+ Client: JARs needed to run a client.
� JBoss 3.x+ Servlet: Used for web applications.

Tomcat
� Tomcat 4.1 Servlet: Used for web applications.
� Tomcat 5.0 Servlet: Used for web applications.

Selecting a server
JBuilder can target multiple servers. You can choose a single application server for all
stages of EJB and web application development, or you can choose different servers
for different aspects of development. For example, you can select one server to use to
develop enterprise beans and another to develop web applications.

To select one or more servers to use for your project,

1 Choose Project|Project Properties.

2 Select Server in the dialog box tree. The Server page is displayed:

3 Decide whether you want to use a single server for all aspects of development or
different servers to handle different areas of development.

� To use a single server,

1 Select the Single Server For All Services In Project option and select the
server from the drop-down list.

2 If you want to make changes to the configuration settings for the server, click
the ellipsis (…) button and edit the settings you want on the General and
Custom pages. Click OK.

You can also use this dialog box to select a different server.

3 If you don’t want a particular service started when the server starts up,
uncheck the check box next to the service in the Services list. This feature
currently applies only to the Borland Enterprise Server as it is the only one
which allows you to start and stop selected services.

If you uncheck the Deployment or Client JAR Creation services, the
corresponding menu items will be disabled on the JBuilder Enterprise menu. If
you uncheck the JSP/Servlet service, web server support is disabled. If you
uncheck the Naming/Directory service for Tomcat, naming service support is
disabled. If you uncheck the Deployment service, vendor-specific descriptors
won’t be generated and all deploy options will be disabled.

Chapter 4 : Conf igur ing the target server set t ings 25

Select ing a server

� To use different servers for different services,

1 Select the Modular Services Provided By Different Servers option.

2 Check the check boxes next to all the services for which you want to specify
an application server in the Services list.

3 Click one of the checked services to select it in the Services list.

4 In the Service Properties For Project group box, use the Server drop-down list
to select the server you want to use for this service.

If server-specific properties are available for the server you selected for the
particular service you are working with, they will appear below the Server
drop-down list. If the Deployment service is selected, a Build Target For
Deploying To Server drop-down list appears on the Service Properties For
Project panel. Select the type of build you want to occur. If the EJB service is
selected, you’ll see read-only information appear that is intended to help you
decide which server is appropriate for your needs.

If you select the JSP/Servlet service, the Default Runtime Host Name and
Default Runtime Port Number fields are available to you. The default values
refer to the global server configuration. If you change these values, they are
used for all server run configurations created after you made the change.

If you expand the Deployment service node, you can select from several
subnodes that have accompanying properties. The properties vary depending
on which is your selected server. All servers have a Build Target For
Deploying To Server field, however. Select your desired build option from the
drop-down list.

For Borland Enterprise Server only

The Deployment jndi-definitions.xml option determines whether the jndi-
definitions.xml file is included in any of the deployment actions you select.
Uncheck it if you don’t want it included. jndi-definitions.xml is an XML
deployment descriptor for EJB 2.0 resources.

For WebLogic 7.x – 8.1

If you expand the WebLogic Deployment service node and select the WARs
node, the service properties include a Map Project Webapps At Runtime
option. When this option is selected (the default value) all web applications in
the project deploy from the web application directory and not as a WAR when
the server starts up.

If you expand the WebLogic Deployment service node and select the EARs
node, the service properties include a Map Project EJB Modules At Runtime
option. When this option is selected (the default value) all EJBs in the project
deploy from the EJB directory and not as a EAR when the server starts up.

All the WebLogic Deployment service nodes have Deploy As Archive and
Deploy As Exploded Directory options. Checking the Deploy As Archive option
enables the archive to be deployed. Checking the Deploy As Exploded
Directory option means the archive is exploded into a directory as its contents
are deployed instead.

If you select the EJB service, the service properties include a combo box with
options to deploy data sources for all EJB modules in the project. These are
the options:

� Map Project Data Sources: Maps data sources for all EJB modules in
config.xml for the domain specified in the server configuration. DataSource
entries are removed when the server shuts down.

� Map And Persist Project Data Sources: Maps data sources for all EJB
modules in config.xml for the domain specified in the server configuration.

26 Developing Appl icat ions for J2EE Servers

Sett ing up JDBC dr ivers

Data Source information is persisted in config.xml. DataSource entries are
removed when the server shuts down.

� Do Not Map Project Data Sources: Does not map any data sources.

Note that JBuilder also adds the JDBC driver (if it can be located in the
project’s required libraries) to the server’s classpath at start up time. All data
sources created by JBuilder are transactional data sources.

5 If you want to make changes to the configuration settings for the server
selected for the service, click the ellipsis (…) button and edit the settings you
want on the General and Custom pages. Click OK.

6 Repeat these steps for each service you want access to.

4 Click OK.

If you neglect to select one ore more servers for a project, the Server page of the
Project Properties dialog box appears when you start an EJB wizard from the object
gallery. All EJB projects must have one or more selected servers.

Setting up JDBC drivers
To enable JBuilder’s EJB wizards and EJB designer to access a database, you must
install the JDBC driver supplied by the database vendor and set up the driver in
JBuilder. Install a JDBC driver following the vendor’s instructions.

To begin setting up the driver in JBuilder, select Enterprise|Enterprise Setup to display
the Enterprise Setup dialog box. Select Database Drivers in the tree to display the
Database Drivers page. Use this page to add a new database driver to JBuilder. See
the following section for step-by-step instructions.

Creating the .library and .config files

There are three steps to adding a database driver to JBuilder:

1 Creating a library file which contains the driver’s classes, typically a JAR file, and
any other auxiliary files such as documentation and source.

2 Deriving a .config file from the library file which JBuilder adds to its classpath at
start-up.

3 Adding the new library to your project, or to the Default project if you want it
available for all new projects.

The first two steps can be accomplished from the Database Drivers page:

1 Open JBuilder and choose Enterprise|Enterprise Setup. Click the Database Drivers
tab which displays .config files for all the currently known database drivers.

2 Click Add to add a new driver, then New to create a new library file for the driver.
The library file is used to add the driver to the required libraries list for projects.

Note You can also create a new library under Tools|Configure|Libraries, but since you
would then have to use Enterprise Setup to derive the .config file, it is simpler to do
it all here.

3 Type a name and select a location for the new file in the Create New Library dialog
box.

4 Click Add, and browse to the location of the driver. You can select the directory
containing the driver and all it’s support files, or you can select just the archive file
for the driver. Either will work. JBuilder will extract the information it needs.

Chapter 4 : Conf igur ing the target server set t ings 27

Updat ing pro jects wi th the latest server set t ings

5 Click OK to close the file browser. This displays the new library at the bottom of the
library list and selects it.

6 Click OK. JBuilder creates a new .library file in the JBuilder /lib directory with the
name you specified (for example, InterClient.library). It also returns you to the
Database Drivers page which displays the name of the corresponding .config file in
the list which will be derived from the library file (for example, InterClient.config).

7 Select the new .config file in the database driver list and click OK. This places the
.config file in the JBuilder /lib/ext directory.

8 Close and restart JBuilder so the changes to the database drivers will take effect,
and the new driver will be put on the JBuilder classpath.

Important If you make changes to the .library file after the .config file has been derived, you must
re-generate the .config file using Enterprise Setup, then restart JBuilder.

Now that JBuilder can see the database driver, you must add the database driver
library to the Required Libraries list in Project|Properties, or Project|Default Properties.

Adding the JDBC driver to projects

Projects run from within JBuilder use only the classpath defined for that project.
Therefore, to make sure the JDBC driver is available for all new projects that will need
it, define the library and add it to your default list of required libraries. This is done from
within JBuilder using the following steps:

1 Start JBuilder and close any open projects.

2 Choose Project|Default Project Properties.

3 Select the Required Libraries tab on the Paths page, then click the Add button.

4 Select the new JDBC driver from the library list and click OK.

5 Click OK to close the Default Project Properties dialog box.

Note You can also add the JDBC driver to an existing project. Just open the project, then
choose Project|Properties and use the same process as above.

Updating projects with the latest server settings
If a server configuration has been modified since a project was last opened, JBuilder
updates it with the latest server settings for the project’s selected server(s). So, for
example, if you have modified server settings for one project and you have others that
aren’t open that use the same server configuration, the next time you open those other
projects, your modified server settings will be in force automatically. If you want to use
a similar but unique server configuration for a particular project, create a duplicate
configuration using the Copy button, and use the Copy Servers wizard to edit it to your
needs.

Be aware that this automatic updating of projects with the latest server settings can
occur only with server configurations modified in JBuilder 9 or higher. If you attempt to
transfer server libraries from a previous JBuilder version, your projects won’t be
updated with them. You can still tell JBuilder to update the project manually:

1 Right-click the project node of the project you want to update in the project pane and
choose Properties.

2 Select the Servers page.

3 Click the ellipsis (…) button next to your selected single server or the separate
service servers and make your changes.

4 Click OK to close the dialog box.

28 Developing Appl icat ions for J2EE Servers

Updat ing f rom an earl ier vers ion of JBui lder

Updating from an earlier version of JBuilder
Previous versions of JBuilder supported an older module format. Your old modules will
be automatically converted to the new module format in JBuilder X. Once the
conversion has taken place, you will not be able to share modules between JBuilder X
and above and an earlier version of JBuilder.

Chapter 5: Using JBui lder with Bor land servers 29

C h a p t e r

5
Chapter5Using JBuilder with Borland servers

This chapter explains how to set up and use Borland servers with JBuilder. JBuilder
supports Borland Enterprise Server AppServer Editions 5.2.1 and 6.0.1.

Configuring Borland servers in JBuilder
To configure JBuilder settings to target your preferred Borland server, you use the
Configure Servers dialog box (Enterprise|Configure Servers). See the instructions
below for either the Borland Enterprise Server AppServer Edition 6.0 or the Borland
Enterprise Server AppServer Edition 5.2.1.

Borland Enterprise Server AppServer Edition 6.0

To configure JBuilder settings to target Borland Enterprise Server AppServer
Edition 6.0,

1 Choose Enterprise|Configure Servers to display the Configure Servers dialog box.

2 Select Borland Enterprise Server AppServer Edition 6.0 from the User Home folder
in the left pane.

The right side of the dialog box displays the default settings for the server. The
General page has fields that all servers have in common, while the Custom page
has fields that are specific to the selected server. In some cases, modifying a
Custom setting will update a setting on the General page.

3 Select the Enable Server option at the top of the dialog box.

Checking this option enables the fields for the selected application server. You won’t
be able to edit any fields until it is checked. The Enable Server check box also
determines whether this server will appear in the list of servers when you select a
server for your project using Project|Project Properties|Servers.

� Check the General tab to view and change (if required) default directories and
parameter settings for the server. If JBuilder’s default settings are not
appropriate, edit any of the settings as needed. To change settings, click the
ellipsis (…) button next to the field and make your changes.

30 Developing Appl icat ions for J2EE Servers

Conf iguring Bor land servers in JBui lder

� Home Directory: The directory where Borland Enterprise Server AppServer
Edition 6.0 is installed. The default is Borland/BDP. If the default directory is not
accurate, use the ellipsis (…) button to select the correct directory.

� Native Executable Launcher: The native executable used to run this server. The
default is partition.exe in the Home Directory’s bin folder.

� VM Parameters: The parameters you want to pass to the virtual machine.

� Server Parameters: The parameters you want to pass to the server.

� Working Directory: The name and location of a working directory.

The General tab will look similar to this:

4 Click the Custom tab to view and change (if required) fields unique to the server.
Change or fill in these fields:

� JDK Installation Directory: The directory where the JDK version required by the
server is located. JBuilder fills this field in automatically, depending on the value
you specified for the Home Directory on the General page. For the Borland
Enterprise Server AppServer Edition 6.0, this is the jdk/1.4.2 folder. Note that
your project will automatically be updated to use JDK 1.4.2.

� Server Name: The identifier of your machine.

� Configuration Name: The name of the configuration that manages the partition.
For more information see “Configurations, partitions, partition services, and J2EE
APIs” on page 34.

� Partition Name: The name of the partition in which the module is run. For more
information see “Configurations, partitions, partition services, and J2EE APIs” on
page 34.

� Add A Management Agent Item To The Enterprise Menu: Adds a Management
Agent item to the JBuilder Enterprise menu, so you can start the Management
Agent quickly from within JBuilder IDE.

� Server Realm: The realm of the server. For more information about the server
realm, see your Borland Enterprise Server documentation.

Chapter 5: Using JBui lder with Bor land servers 31

Conf igur ing Bor land servers in JBui lder

� User Name: The name you use to identify yourself to the server. The default
value is admin.

� User Password: The password you use to identify yourself to the server. The
default fault is admin.

� Advanced Settings: Click this button to display the Advanced Settings dialog box.
Use this dialog box to change the number of the port used by the Management
Agent and to select the Use Security option. The management port is used in
JBuilder to detect the server during startup and deployment. Change the
management port only if you are deploying to a remote server with a
management port that is different from the default. When you change the port
number, ensure that you entered the correct port number as configured in the
server, as the server won’t start up without the correct port number. The port and
security settings you choose must match the settings of your server. JBuilder
updates the values in this dialog box whenever the Home Directory changes. The
values are read from the Borland Enterprise Server property files. Changing the
port number while you have the Management Agent started in JBuilder
automatically shuts down the Management Agent.

The Custom tab will look similar to this:

Borland Enterprise Server AppServer Edition 5.2.1

To configure JBuilder settings to target Borland Enterprise Server AppServer
Edition 5.2.1,

1 Choose Enterprise|Configure Servers to display the Configure Servers dialog box.

2 Select Borland Enterprise Server AppServer Edition 5.2.1 from the User Home
folder in the left pane.

The right side of the dialog box displays the default settings for the selected server.
The General page has fields that all servers have in common, while the Custom
page has fields that are specific to the selected server. In some cases, modifying a
Custom setting will update a setting on the General page.

32 Developing Appl icat ions for J2EE Servers

Conf iguring Bor land servers in JBui lder

3 Select the Enable Server option at the top of the dialog box.

Checking this option enables the fields for the selected application server. You won’t
be able to edit any fields until it is checked. The Enable Server check box also
determines whether this server will appear in the list of servers when you select a
server for your project using Project|Project Properties|Servers.

4 Check the General tab to view and change (if required) default directories and
parameter settings for the server. If JBuilder’s default settings are not appropriate,
edit any of the settings as needed. To change settings, click the ellipsis (…) button
next to the field and make your changes.

� Home Directory: The directory where Borland Enterprise Server AppServer
Edition 5.2.1 is installed. The default is BES. If the default directory is not
accurate, use the ellipsis (…) button to select the correct directory.

� Native Executable Launcher: The native executable used to run this partition.
The default is partition.exe in the Home Directory’s bin folder.

� VM Parameters: The parameters you want to pass to the virtual machine.
� Server Parameters: The parameters you want to pass to the server. The default

is -partition jbuilder -server <server_name>.
� Working Directory: The name and location of a working directory.

The General tab will look similar to this:

5 Click the Custom tab to view and change (if required) fields unique to the server.
Change or fill in these fields:

� JDK Installation Directory: The directory where the JDK version required by the
server is located. JBuilder fills this field in automatically, depending on the value
you specified for the Home Directory on the General page. For the Borland
Enterprise AppServer Edition 5.2.1, the directory is jdk/jdk1.4.1 directory in the
Home Directory. Note that this version of the Borland Enterprise Server can use
either JDK 1.3 or JDK 1.4.

� Server Name: The name of the server you are configuring. By default, JBuilder
specifies the identifier of your machine.

Chapter 5: Using JBui lder with Bor land servers 33

Conf igur ing Bor land servers in JBui lder

� Partition Name: The name of the partition in which the server is run. For more
information about partitions, see “Configurations, partitions, partition services,
and J2EE APIs” on page 34.

� Add A Management Agent Item To The Enterprise Menu: Adds a Management
Agent item to the JBuilder Enterprise menu, so you can start the Management
Agent quickly from within JBuilder IDE.

� Add A SonicMQ Broker Agent Item To The Enterprise Menu: Adds the SonicMQ
Broker Agent item to the JBuilder Enterprise menu, so you can start the SonicMQ
Broker Agent quickly from within JBuilder IDE.

� Server Realm: The realm of the server. For more information about the server
realm, see your Borland Enterprise Server documentation.

� User Name: The name you use to identify yourself to the server. The default
value is admin.

� User Password: The password you use to identify yourself to the server. The
default fault is admin.

� Advanced Settings: Click this button to display the Advanced Settings dialog box.
Use this dialog box to change the number of the port used by the Management
Agent and to select the Use Security option. The management port is used in
JBuilder to detect the server during startup and deployment. Change the
management port only if you are deploying to a remote server with a
management port that is different from the default. When you change the port
number, please ensure that you entered the correct port number as configured in
the server, as the server won’t start up without the correct port number. The port
and security settings you choose must match the settings of your server. JBuilder
updates the values in this dialog box whenever the Home Directory changes. The
values are read from the Borland Enterprise Server property files. Changing the
port number while you have the Management Agent started in JBuilder
automatically shuts down the Management Agent.

The Custom tab will look similar to this:

34 Developing Appl icat ions for J2EE Servers

Making the ORB avai lable to JBui lder

Making the ORB available to JBuilder
You use the CORBA node of the Enterprise Setup dialog box (Enterprise|Enterprise
Setup) to set up the Borland Enterprise Server for use with VisiBroker. For Borland
Enterprise Server AppServer Editions 6.0 and 5.2.1, the server will create its own
VisiBroker configuration called “VisiBroker <server name and version>.” The default
VisiBroker configuration won’t be changed.

You also use this dialog box to set the VisiBroker Smart Agent port to a unique number.
All client/server communication takes through the Smart Agent port. To start the Smart
Agent from the Tools menu, check the Add The VisiBroker Smart Agent Item To The
Tools Menu option. This option is selected by default. The CORBA node of the
Enterprise Setup dialog box looks like this:

To make the ORB available to JBuilder, you must start the VisiBroker Smart Agent with
the Enterprise|VisiBroker Smart Agent command. This handles the initial bootstrap
issues such as how the client locates the naming service and so on.

For Borland Enterprise Server AppServer Edition 5.2.1/6.0: If you choose
Enterprise|Borland Enterprise Server Management Agent, the VisiBroker Smart Agent
is started as part of the process. When you are working with the Borland Enterprise
Server AppServer Edition 5.2.1/6.0, you must start the Borland Enterprise Server
Management Agent instead of the VisiBroker Smart Agent. If you don’t start it, it is
automatically started for you when you start the server within JBuilder. Note that
starting the server automatically might take longer because the server searches for any
running agents. The most efficient way to start the Management Agent is to start it
yourself.

For more information on setting up the ORB for use within JBuilder, see “Setting up
JBuilder for CORBA applications” on page 47.

Configurations, partitions, partition services, and J2EE APIs
The architecture of the Borland Enterprise Server AppServer Edition 6.0 and 5.2.1
varies significantly. The Borland Enterprise Server AppServer Edition 6.0 introduces
the concept of management hubs and configurations. A management hub, also known
as the server control unit, controls, by server (or machine identifier), one or more
configurations. A configuration, in turn, manages one or more running partitions, or
processes. A configuration is based on an XML configuration file that resides in the
configuration’s root directory. This file determines the order of partition startup. A
configuration can have multiple partitions. Because each partition is a separate
process, an application’s functions can be distributed across multiple processes.

In the Borland Enterprise Server AppServer Edition 5.2.1, a server, also a machine
identifier, manages a partition. A server can also have multiple partitions. And, as with

Chapter 5: Using JBui lder with Bor land servers 35

Conf igurat ions, par t i t ions, part i t ion serv ices, and J2EE APIs

Borland Enterprise Server AppServer Edition 6.0, because each partition is a separate
process, an application’s functions can be distributed across multiple processes. For
either edition, when you use the Configure Servers dialog box to configure the server,
all these pieces are seamlessly set up for use in JBuilder.

For more information on the Borland Enterprise Server architecture, refer to the
documentation, available from the Help menu of the Borland Management Console.

In both editions, partitions provide containers and services for hosting your
applications. Any or all of a partition’s containers and services can be enabled or
disabled. Additionally, a partition can be cloned (copied) on the same configuration or
server or on another enterprise configuration or server located on the same local area
network. Cloning a partition can save significant time in the deployment process
because it not only copies all of the deployed modules, but also copies all the
associated service configurations settings which can require a considerable amount of
time and effort to complete.

Application components are hosted in either the web container or EJB container, or
simply in the partition itself (in the case of connectors). You can deploy application
EARs or smaller archives to partitions. The partitions are “smart” and will place your
application components in the proper containers. Since you may create as many
partitions as you wish, you can also have as many container instances as you wish.
Borland provides up to two different containers per partition instance:

� Web container (Tomcat 4.x or 5.0): for hosting JSPs and servlets, and

� EJB container (Borland): for hosting EJB components

Each partition also provides Partition Services and J2EE APIs as Partition Services.
These services and APIs are:

� Naming Service: In Borland Enterprise Server, the Naming Service is managed by
the VisiBroker ORB.

� JDataStore: Borland’s all-Java database.

� JDBC: For getting connections to and modeling data from databases.

� Java Mail: A Java email service.

� JTA: The Java transactional API.

� JAXP: The Java API for XML parsing.

� JNDI: The Java Naming and Directory interface.

� RMI-IIOP: Remote method invocation (RMI) carried out via internet inter-ORB
protocol (IIOP).

JBuilder, by default, uses a partition named jbpartition and a configuration named
jbuilder as a deployment target for Borland Enterprise Server AppServer Edition 6.0.
For Borland Enterprise Server AppServer Edition 5.2.1, the partition name is jbuilder.
If the configuration or partition doesn’t exist, one will be created for you automatically.
For both editions, the default partition shares the same port number with Tomcat and
JDataStore services. Additionally, in both editions, the server name is the same as the
machine identifier.

You can start multiple partitions using multiple JBuilder run configurations. To create
multiple run configurations, follow these steps:

1 Choose Run|Configurations, then click New.

2 Change the Run Type to Server. The displayed server is the server selected for the
project in Project Properties|Server.

3 In the Category tree, select Server|Command Line.

36 Developing Appl icat ions for J2EE Servers

Conf igurat ions, par t i t ions, par t i t ion serv ices, and J2EE APIs

4 For Borland Enterprise Server 6.0, change the Partition And Configuration Name to
the one you want to use. The Command Line page looks like this:

For Borland Enterprise Server 5.2.1, edit the Server Command Line parameters and
change the partition name to the one you want to use, as show in the following
figure:

5 Click OK to close the New Runtime Configuration dialog box and save the
configuration.

6 Repeat these steps to create additional run configurations to run other partitions.

Before starting up the partition, make sure you have configured unique port numbers
for Tomcat and JDataStore services.

Also ensure that you have the naming service enabled for only one of the partitions to
avoid naming service conflicts. To disable the naming service for a partition, edit the

Chapter 5: Using JBui lder with Bor land servers 37

Conf igurat ions, par t i t ions, part i t ion serv ices, and J2EE APIs

run configuration for the partition (Edit Runtime Configuration dialog box) and uncheck
the naming service option, as shown in the following figure:

Changing the management port
The management agent manages all partitions. The default management port, set on
the Advanced Settings dialog box for both Borland Enterprise Server AppServer
Editions 6.0 and 5.2.1, is 42424. You can change the management port used by
JBuilder, or the one used by the server.

To change the port used by JBuilder,

1 Choose Enterprise|Configure Servers and chose Borland Enterprise Server
AppServer Edition 6.0 or 5.2.1 from the User Home Folder on the left.

2 Click the Custom tab, then the Advanced Settings button.

3 Change the port in the Management Port field, as shown in the following figure:

4 Click OK two times.

To change the management port used by the server,

1 Open the Borland Management Console.

2 Double-click Installations.

3 For Borland Enterprise Server 6.0, choose Wizards|Configure Agents. For Borland
Enterprise Server 5.2.1, right-click the server you want to change the port for.

4 Select Update Ports.

5 Use the Port Configuration wizard to change the Management Port number. The
User Port value is equal to the Smart Agent Port in JBuilder.

After you change the management port, the management agent will shutdown if it was
started in JBuilder.

38 Developing Appl icat ions for J2EE Servers

Star t ing the conf igurat ion or server

Starting the configuration or server
Before any server related actions (server startup, deployment, and so on) are
performed, you must start the management agent with Enterprise|Borland Enterprise
Server Management Agent (use the version of this command that matches the version
of the Borland Enterprise Server AppServer Edition your project is targeted for.). For
the Borland Enterprise Server 6.0, this will start the management hub. For Borland
Enterprise Server 5.2.1, this starts the server.

For both editions, after the management agent has started up, you can launch the
partition by right-clicking the EJB or web module in the project pane and selecting Run
Using Defaults. You can also create a Server run configuration and run the project
using that configuration.

Running the partition in JBuilder will

� Create the partition (and configuration for Borland Enterprise Server 6.0), if not
already present. The partition name (and the configuration name for Borland
Enterprise Server 6.0) used in this step is derived from the run configuration used to
start up the server. If you are starting the configuration or server using the default
configuration, the partition name as configured in the application server properties
will be used.

� Deploy any resources defined in jndi-definitions.xml (if present) to the root of the
partition directory. For the Borland Enterprise Server AppServer Edition 6.0, this
directory is: PARTITION_NAME\dars\jbuilder.dar. For Borland Enterprise Server 6.0
only, the jndi-definitions.xml file is packaged into a .dar file and deployed. For the
Borland Enterprise Server AppServer Edition 5.2.1, it is: APPSERVER_HOME\var\
servers\SERVER_NAME\partitions\PARTITION_NAME\.

This file will be created if your project contains an EJB 2.0 module with data
sources/messaging resources defined.

Note This action can be turned off by unchecking the Deploy jndi-definitions.xml option in
the Deployment EJBs Services properties on the Server node of the Project
Properties dialog box.

� Copy selected libraries to the partition’s lib directory. All archives in this directory
will be added to the partition’s classpath when the partition is started up.

The directory on the server for Borland Enterprise Server AppServer Edition 6.0 is
APPSERVER_HOME\var\domains\base\configurations\CONFIGURATION_NAME\mos\
PARTITION_NAME\lib. For the Borland Enterprise Server AppServer Edition 5.2.1, the
directory is APPSERVER_HOME\var\servers\SERVER_NAME\partitions\PARTITION_NAME\lib.

Chapter 5: Using JBui lder with Bor land servers 39

Star t ing the conf igurat ion or server

The libraries to be copied can be set with the Libraries To Deploy At Runtime list on
the Edit Runtime Configuration dialog box for the server run configuration:

� Remove any archives deployed to the partition, if this option is selected. This can be
set from the Archives Server category on the Edit Runtime Configuration dialog box
for the server run configuration. If you want to have a clean partition, select the
Remove Archives Already Deployed To Server option.

� Deploy archives if selected. By default all deployable archives in the project are
selected. To change this, click the Archives Server category in the Server run
configuration (Edit Runtime Configuration dialog box) and unselect any archives that
you do not wish to deploy.

� Start the partition. When partition startup is complete, you should see the partitions
listed in the message pane for Borland Enterprise Server AppServer Edition 6.0 or
the message ‘Partition <PARTITION_NAME> has been started’ for Borland
Enterprise Server AppServer Edition 5.2.1. Archives deployed at startup should be
loaded and accessible.

40 Developing Appl icat ions for J2EE Servers

Remote deploy ing

Note By default, all services associated with a partition are started. This could cause the
partition to take a longer time to start. To reduce startup time, uncheck the services that
you don’t require in the Server run configuration.

Remote deploying
To prepare to remote deploy EJBs, WARs, and EAR modules for the Borland
Enterprise Server AppServer Edition 6.0, follow these steps.

1 Choose Enterprise|Configure Servers.

2 Select Borland Enterprise Server AppServer Edition 6.0 from the left side of the
dialog box.

3 Click the Custom tab and set the Server, Configuration, and Partition names to
match that of the remote server.

4 Click the Advanced Settings button and make sure the Management Port matches
your server configuration.

5 Click OK two times.

6 Choose Enterprise|Enterprise Setup.

7 Select the CORBA node to display the CORBA page, and set the Smart Agent Port
to match that of your server configuration.

8 Click OK.

To prepare to remote deploy EJBs, WARs, and EAR modules for the Borland
Enterprise Server AppServer Edition 5.2.1, follow these steps.

1 Choose Enterprise|Configure Servers.

2 Select Borland Enterprise AppServer Edition 5.2.1 from the left side of the dialog
box.

3 Click the Custom tab and set the Server and Partition names to match that of the
remote server.

4 Click Advanced Settings and make sure the Management Port matches your server
configuration.

5 Click OK two times.

6 Choose Enterprise|Enterprise Setup.

7 Select the CORBA node to display the CORBA page, and set the Smart Agent Port
to match that of your server configuration.

8 Click OK.

Now you are ready to deploy. There are two ways to deploy EJBs, WARs, and EAR
modules using JBuilder:

� Deploying to the server using the Borland Enterprise Server Deployment Wizard
(Enterprise|Server Deployment). This is a Borland Enterprise Server tool and
requires that the management agent is running. On the first page of the wizard,
select the modules to deploy. The wizard then detects all partitions on the server,
even if they have not been started. Select the appropriate partition from the list and
click Finish to deploy the archive. If the partition has already been started, restart the
partition to access the deployed archive.

� Deploying to the server using the context menu option on any deployable node.
Right-click the deployable node to see the Deploy commands. Choose Deploy. You
can also select multiple deployable nodes, right-click them, and use the context
menu that appears to deploy more than one module.

Chapter 5: Using JBui lder with Bor land servers 41

Remote debugging

Remote debugging
Before you can debug your application remotely, you need to configure the partition.
You can do this before you start the server or while the server and partition are already
running. See these sections for more information:

� “Preparing to remote debug partitions that are not managed in JBuilder” on page 41

� “Preparing to remote debug partitions that are managed in JBuilder” on page 41

� “Preparing to remote debug before the Borland Enterprise Server AppServer Edition
5.2.1 is running” on page 42

� “Preparing to remote debug when the Borland Enterprise Server AppServer Edition
5.2.1 is already running” on page 42

Once the configuration is complete and the server and partition are started, follow the
instructions in “Remote debugging in JBuilder” on page 43.

Remote debugging for Borland Enterprise Server 6.0

Preparing to remote debug partitions that are not managed in JBuilder
To prepare to remote debug partitions that are not managed in JBuilder,

1 Start the Borland Management Console.

2 Start the server.

3 Locate the partition you wish to debug.

4 Right-click the partition and choose Properties.

5 Select the Partition Settings tab.

6 Check the Enable JPDA Remote Debugging option.

7 Set the transport address field to 3999.

8 Uncheck the Suspend Partition Until Debugger Attaches option.

9 Click OK.

Preparing to remote debug partitions that are managed in JBuilder
To prepare to remote debug partitions that are managed in JBuilder, you have two
options:

Starting the server/configuration/partition outside of JBuilder
1 Shut down the server.

2 Open the file <APPSERVER_HOME>/var/domains/base/configurations/configuration.xml.

3 Look for the JPDA element and edit attribute values as follows:

enable-jpda-debug="true"
jpda-transport-address="3999"
jpda-suspend="false"

4 Start the server/configuration/partition outside of JBuilder.

Starting the management agent/partition in JBuilder
1 Shut down the server.

2 Open the file <APPSERVER_HOME>/var/domains/base/configurations/configuration.xml.

42 Developing Appl icat ions for J2EE Servers

Remote debugging

3 Look for the JPDA element and edit attribute values as follows:

enable-jpda-debug="true"
jpda-transport-address="3999"
jpda-suspend="false"

4 Choose Run|Configurations, select the server run configuration, and click the Edit
button.

5 Set the following server parameters: -jpda:address=3999

6 Start the management agent/partition in JBuilder.

Remote debugging for Borland Enterprise Server 5.2.1

Preparing to remote debug before the Borland Enterprise Server AppServer
Edition 5.2.1 is running
To set up for remote debugging before you start the Borland Enterprise Server
AppServer Edition 5.2.1,

1 Start the Borland Management Console.

2 Click the Installations button.

3 Locate the server you will start. Expand the node and locate the partition you wish to
debug in JBuilder.

4 Click the partition node in the structure pane.

5 Search for and set the debug parameters as follows in the content pane (set the
values that are in bold-faced type):

partition.enable_jpda_debug=true
partition.jpda.transport_address=3999
partition.jpda.suspend=false

6 Click Apply Changes.

Preparing to remote debug when the Borland Enterprise Server AppServer
Edition 5.2.1 is already running
To set up for remote debugging when the Borland Enterprise Server AppServer Edition
5.2.1 is already running,

1 Start the Borland Management Console.

2 Click the Servers button.

3 Expand the Enterprise Servers node and locate the partition you want to debug.

4 Right-click and select Configure.

5 Choose the JPDA tab.

6 Check the Enable JPDA Remote Debugging option.

7 Set the transport address field to 3999.

8 Uncheck the Suspend Partition Until Debugger Attaches option.

9 Click Apply Changes.

Chapter 5: Using JBui lder with Bor land servers 43

Web module workarounds

Remote debugging in JBuilder

Once either edition of the Borland Enterprise Server AppServer and the partition have
been started, follow these steps from within JBuilder:

1 In the project from which you want to launch the remote debug session, choose
Run|Configurations. If you have not yet created a Server type run configuration,
click New. In the New Runtime Configuration dialog box, set the Type to Server. If
you have already created a Server run configuration, select it and choose Edit.

2 Select the Debug|Remote node.

3 Check the Enable Remote Debugging option.

4 Select the Attach option.

5 Enter the name of the machine on which the server is running in the Host Name
field.

6 Make sure the Transport Type is set to dt_socket and the Address is set to 3999.
The dialog box will look similar to this:

7 Click OK to close the dialog box.

8 Set a breakpoint in the process you want to debug.

9 Deploy that process to the running partition.

10 Click the down arrow next to the Debug Project button on the toolbar and select the
Server configuration you just created or edited. The debugger launches, attaches to
the partition running remotely, and stops at the breakpoint.

Web module workarounds
The default application server install includes ROOT.war, which contains the default
context. If you deploy an EAR that contains a default context, you must delete ROOT.war
(or rename its extension) so that it does not load and cause a conflict. If deploying
WARs (with the container classloader policy), the resulting WAR is automatically
copied to the partition as ROOT.war, in which case there is no conflict. Please note that it
is the <context-root>!ROOT!</context-root> element in the web-borland.xml file that
designates the context as root, not the file name.

44 Developing Appl icat ions for J2EE Servers

Disp lay ing the Bor land Management Console in JBui lder

If you are working on a named context but have the root context in an already deployed
archive, the internal web browser in JBuilder will attempt to load once that archive is
loaded by the container, because the root context can potentially match any URL.
You’ll then probably get a “Document not found” error. To prevent this, remove
ROOT.war if you’re not using it or overwriting it.

Displaying the Borland Management Console in JBuilder
You can display the Borland Management Console in JBuilder. Choose View|Panes|
BES Console.

International issues
The Borland Enterprise Server AppServer Editions 6.0 and 5.2.1 do support Japanese
characters in the JNDI name.

Borland servers and JDataStore 7.0
The Borland Enterprise Servers 5.2.1 and 6.0 do not support JDataStore 7.0.1,
although JBuilder does. When you are running applications that access JDataStore
databases, be sure you are using the JDataStore 6.x or older file format and
JDataStore libraries that ship with the server. Databases created using JDataStore 7.0
cannot be used with Borland Enterprise Server 5.2.1 and 6.0.

Chapter 6: Using JBui lder ’s CORBA tools 45

C h a p t e r

6
Chapter6Using JBuilder’s CORBA tools

This chapter explains the CORBA (Common Object Request Broker Architecture) tools
available in JBuilder, including the VisiBroker ORB and IDL compilers.

The Common Object Request Broker Architecture (CORBA) allows distributed
applications to interoperate (application to application communication), regardless of
what language they are written in or where these applications reside.

The CORBA specification was adopted by the Object Management Group to address
the complexity and high cost of developing distributed object applications. CORBA
uses an object-oriented approach for creating software components that can be reused
and shared between applications. Each object encapsulates the details of its inner
workings and presents a well defined interface, which reduces application complexity.
The cost of developing applications is reduced, because once an object is
implemented and tested, it can be used over and over again.

The Object Request Broker (ORB) connects a client application with the objects it
wants to use. The client program does not need to know whether the object
implementation it is in communication with resides on the same computer or is located
on a remote computer somewhere on the network. The client program only needs to
know the object’s name and understand how to use the object’s interface. The ORB
takes care of the details of locating the object, routing the request, and returning the
result.

Note The ORB itself is not a separate process. It is a collection of libraries and network
resources that integrates within end-user applications, and allows your client
applications to locate and use objects.

JBuilder supports the VisiBroker ORB and the OrbixWeb ORB. JBuilder also provides
tools to configure other third-party ORBs.

How JBuilder and the VisiBroker ORB work together
The VisiBroker ORB provides a complete CORBA ORB runtime and supporting
development environment for building, deploying, and managing distributed Java
applications that are open, flexible, and inter-operable. The VisiBroker ORB is part of
the Borland Enterprise Server. Objects built with the VisiBroker ORB are easily
accessed by Web-based applications that communicate using OMG’s Internet Inter-
ORB Protocol (IIOP) standard for communication between distributed objects through

46 Developing Appl icat ions for J2EE Servers

How JBui lder and the Vis iBroker ORB work together

the Internet or through local intranets. The VisiBroker ORB has a native
implementation of IIOP to ensure high-performance and inter-operability.

The VisiBroker ORB incorporates the following compilers for working in a Java
environment:

� java2iiop

The java2iiop compiler allows you to stay in an all-Java environment. The java2iiop
compiler takes your Java interfaces and generates IIOP-compliant stubs and
skeletons. Part of the advantage of using the java2iiop compiler is that, through the
use of extensible structs, you can pass Java serialized objects by value.

� java2idl

The java2idl compiler turns your Java code into IDL, allowing you to generate client
stubs in the programming language of your choice. In addition, because this
compiler maps your Java interfaces to IDL, you can re-implement Java objects in
another programming language that supports the same IDL.

When you develop distributed applications with JBuilder and the VisiBroker ORB, you
must first identify the objects required by the application. You will then usually follow
these steps:

1 Write a specification for each object using the IDL wizard to generate the Interface
Definition Language (IDL) file. IDL is the language an implementer uses to specify
the operations an object will provide and how they should be invoked.

2 Use the IDL compiler to generate the client stub code and server Portable Object
Adapter (POA) servant code.

3 Write the client program code.

4 Write the server object code.

5 Compile the client and server code.

6 Start the server.

7 Run the client program.

For in-depth information on using the VisiBroker ORB to create distributed applications,
see the VisiBroker documentation in the doc directory of your Borland Enterprise Server
installation.

For more information about Common Object Request Broker Architecture (CORBA),
some useful links are:

� http://www.borland.com/books — Books on Borland products and related
technologies

� “A White Paper: Java, RMI, and CORBA” at http://www.omg.org/news/whitepapers/
wpjava.htm

� CORBA/IIOP Specification in Introduction to OMG’s Specifications at
http://www.omg.org/gettingstarted/specintro.htm

� CORBA Basics at http://www.omg.org/gettingstarted/corbafaq.htm

RMI

Another way to invoke methods on remote Java objects is to use Remote Method
Invocation (RMI). The Borland Enterprise Server provides capabilities equivalent to
RMI, but, in addition, allows you to create Java objects that communicate with all other
objects that are CORBA compliant even if they are not written in Java. For an example
of a Java interface that describes an RMI remote interface, see the sample file
Account.java in the examples/vbe/rmi-iiop/Bank directory of your Borland Enterprise
Server installation.

Chapter 6: Using JBui lder ’s CORBA tools 47

Sett ing up JBui lder for CORBA appl icat ions

Setting up JBuilder for CORBA applications
This section explains how to set up JBuilder with the VisiBroker ORB or OrbixWeb so
that you can create, run, and deploy CORBA applications. You can also configure
other, third-party ORBs. More information on the VisiBroker ORB is available in the doc
directory of your Borland Enterprise Server installation. Consult the OrbixWeb
documentation for information on particular features of that ORB.

Configuring VisiBroker when the Borland Enterprise Server
is installed

Follow the steps in this section to set up JBuilder for use with VisiBroker when the
Borland Enterprise Server AppServer Edition 6.0 is already installed, configured and
the target server for your project. Note that the server creates its own VisiBroker
configuration. For information on configuring Borland Enterprise Server, see Chapter 5,
“Using JBuilder with Borland servers.”

To configure VisiBroker when the Borland Enterprise Server is installed,

1 Choose Enterprise|Enterprise Setup to display the Enterprise Setup dialog box.
Select the CORBA page. The parameters in this dialog box allow JBuilder to see the
ORB.

2 Select the VisiBroker (Borland Enterprise Server AppServer Edition 6.0) option from
the Configuration drop-down list.

The Enterprise Setup dialog box will look similar to this:

3 Click OK to close the dialog box. You do not have to complete other configuration
steps; JBuilder is now configured for use with VisiBroker.

4 Click OK to save the configuration.

Important In the runtime configuration for your CORBA application, you need to add the following
parameters to the VM Parameters field in the Edit Runtime Configuration dialog box
(Run|Configurations|Edit):

 -Dvbroker.agent.port=14000
 -Dborland.enterprise.licenseDir=C:/<BES_install>/var
 -Dborland.enterprise.licenseDefaultDir=C:/<BES_install>/license

You’ve now completed setting up your system to use the VisiBroker version installed
with the Borland Enterprise Server AppServer Edition 6.0. Before running your
application, choose Tools|VisiBroker Smart Agent to start the Smart Agent. (Note that it
is also automatically started when you start the Management Agent with the Enterprise|
Borland Enterprise Server Management Agent command.)

48 Developing Appl icat ions for J2EE Servers

Sett ing up JBui lder for CORBA appl icat ions

Configuring VisiBroker stand-alone

Follow the steps in this section to set up JBuilder for use with VisiBroker stand-alone;
that is, without targeting your project for the Borland Enterprise Server AppServer
Edition 6.0.

To configure VisiBroker stand-alone,

1 Choose Enterprise|Enterprise Setup to display the Enterprise Setup dialog box.
Select the CORBA page. The parameters in this dialog box allow JBuilder to see the
ORB.

2 Select the VisiBroker option from the Configuration drop-down list.

3 Click the Edit button to display the Edit Configuration dialog box.

4 The Path For ORB Tools field allows JBuilder to access ORB tools. Click the ellipsis
(…) button next to the Path For ORB Tools field to browse to the directory
containing the ORB tools. Point to the directory that contains the osagent.exe file.
This is the bin directory of your Borland Enterprise Server installation.

Chapter 6: Using JBui lder ’s CORBA tools 49

Sett ing up JBui lder for CORBA appl icat ions

5 The Library For Projects field defines the library location of the ORB tools. To define
the library location, click the ellipsis (…) button next to the Library For Projects field.
This displays the Select A Different Library dialog box.

The library is necessary for compiling the generated stubs and skeletons and for
executing an application. For VisiBroker, browse to the Borland Enterprise Server
6.0 Client library, then click OK two times.

6 In the Enterprise Setup dialog box, leave the Apply This Configuration To The
Current Project option selected in order to set this ORB configuration for the current
project, as well as the default project.

7 Set the Make This Configuration’s ORB The Default For The Java VM option to use
the selected ORB as the default ORB for the Java VM.

8 Select the Add A VisiBroker Smart Agent Item To The Tools Menu option to enable
the Smart Agent to run as a JBuilder service during development. This option will be
disabled if the Smart Agent is not necessary.

9 Select a port on which to run the Smart Agent. The default port of 14000 will work on
most systems.

Note When running the project, you can use a JBuilder macro in the VM Parameters field
on the Edit Runtime Configuration dialog box for the application. This macro allows
the project to be used on another machine where the Smart Agent is configured for
a different port. The syntax is:

-Dvbroker.agent.port=($SmartAgentPort)

10 Click OK to save the configuration.

You also need to pass options to the IDL compiler.

To pass options to the IDL compiler when configuring VisiBroker stand-alone,

1 Choose Project|Project Properties|Build|IDL to display the IDL Build page, which will
look similar to this:

50 Developing Appl icat ions for J2EE Servers

Sett ing up JBui lder for CORBA appl icat ions

2 Make sure VisiBroker is selected as your IDL compiler.

3 Enter the following options into the Additional Options field:

-VBJprop borland enterprise.licenseDir=<visibroker license directory>
-VBJjavavm<jdk1.4.1 java or javaw path>

The license directory is <BES_install>\var\servers\SERVER_NAME\adm. The <server
directory> is same as the server name assigned when you configured the server
using Enterprise|Configure Servers. You can find the server name on the Custom
page of the Configure Servers dialog box.

4 Click OK to close the Project Properties dialog box.

You must still perform one step: starting the VisiBroker Smart Agent. This handles the
initial bootstrap issues such as how the client locates the naming service and so on. To
start the Smart Agent, choose Tools|VisiBroker Smart Agent.

You’ve now completed setting up your system to use the JBuilder CORBA features.

Configuring the OrbixWeb ORB

Follow the steps in this section to set up JBuilder for use with the OrbixWeb ORB.

To configure the OrbixWeb ORB,

1 Choose Enterprise|Enterprise Setup to display the Enterprise Setup dialog box.
Select the CORBA page. The parameters in this dialog box allow JBuilder to see the
ORB.

2 Select the OrbixWeb option from the Configuration drop-down list.

3 Click the Edit button to display the Edit Configuration dialog box.

Chapter 6: Using JBui lder ’s CORBA tools 51

Sett ing up JBui lder for CORBA appl icat ions

4 The Path For ORB Tools field allows JBuilder to access ORB tools. Click the ellipsis
(…) button next to the Path For ORB Tools field to browse to the directory
containing the ORB tools.

5 The Library For Projects field defines the library location of the ORB tools. To define
the library location, click the ellipsis (…) button next to the Library For Projects field.
This displays the Select A Different Library dialog box. The library is necessary for
compiling the generated stubs and skeletons and for executing an application.
Choose the library and click OK two times.

6 In the Enterprise Setup dialog box, leave the Apply This Configuration To The
Current Project option selected if this ORB configuration should be applied to the
current project as well as the default project.

7 Set the Make This Configuration’s ORB The Default For The Java VM option to use
the selected ORB as the default ORB for the Java VM.

8 Click OK to save the configuration.

Adding a new configuration

Follow the steps in this section to create a new configuration for a third-party ORB.

To configure a third-party ORB,

1 Choose Enterprise|Enterprise Setup to display the Enterprise Setup dialog box.
Select the CORBA page. The parameters in this dialog box allow JBuilder to see the
ORB.

2 Select the None option from the Configuration drop-down list, then click the New
button. The New Configuration dialog box is displayed.

3 Enter a name for the configuration in the Name For This Configuration field.

4 Enter the path for the ORB tools in the Path For ORB Tools field. Click the ellipsis
(…) button to browse to the directory containing the ORB tools.

5 Click the ellipsis (…) button next to the Library For Projects field to display the
Select A Different Library dialog box. You use this dialog box to browse to the library

52 Developing Appl icat ions for J2EE Servers

Sett ing and v iewing ORB bui ld proper t ies

location of the ORB tools. The library is necessary for compiling the generated stubs
and skeletons and for executing an application.

a To add a library that is not displayed in the Select A Different Library dialog box,
click the New button.

b In the New Library wizard, enter a name for the new library in the Name field.

c Select a location for the library: the JBuilder directory, the project directory, or
your home directory.

d Click Add to browse to the library (JAR) file.

e Click OK until you return to the New Configuration dialog.

6 Enter the command for the IDL compiler in the IDL Compiler Command field.

7 Enter the IDL compiler command option that specifies the output directory in the
Command Option For Output Directory field.

8 Click OK to close the New Configuration dialog box.

9 In the Enterprise Setup dialog box, leave the Apply This Configuration To The
Current Project option selected in order to set this ORB configuration for the current
project, as well as the default project.

10 Click OK to save the new configuration.

Setting and viewing ORB build properties
This section explains how to set and view build properties for the installed ORB.

Setting VisiBroker ORB properties
To set and view properties for the java2iiop and java2idl compilers in the JBuilder
development environment,

1 Choose Project|Project Properties|Build|IDL. The IDL page is displayed.

Chapter 6: Using JBui lder ’s CORBA tools 53

Sett ing and v iewing ORB bui ld propert ies

Make sure the IDL Compiler field is set to VisiBroker or VisiBroker (Borland
Enterprise Server AppServer Edition 6.0 and 5.2.1).

2 Set the Generated Code Options as needed:

� In the Package field, enter the name of the package to generate code in. The
package name for definitions is prepended with the specified package name. If a
directory with the specified package name does not exist, it will be created. If the
package directory exists, its contents will be updated. Code is generated that
uses CORBA package resolution rules.

� In the Include Path field, enter the location where other files that are referenced
from IDL files reside. Click the ellipsis (…) button beside this field to open a dialog
box that lets you browse the directory structure for the location of the files.

� In the Additional Options field, enter any additional options for your IDL compiler,
as you would enter them when running the compiler from the command line.

� The Symbols Defined For Conditional IDL Compilation list displays symbols that
have been defined for conditional IDL compilation. Click the New button to
display the Define New Symbol dialog box where you can define a new
conditional symbol. To remove a symbol from the list, select it then choose the
Delete button.

3 Choose the Paths node of the Project Properties dialog box. Make sure the
Required Libraries list includes the Borland Enterprise Server 6.0 Client.

4 Click OK to close the Project Properties dialog box.

5 Once you’ve created a Java interface file in your JBuilder project, right-click the file
in the project pane and choose Properties.

6 On the Build|VisiBroker node, select the Generate IDL and Generate IIOP options.
The dialog box should look like this:

� Select the Java2IDL Generate IDL option to generate an Interface Definition
Language (IDL) file from a Java file or a class file. To support the distribution of
objects implemented in a variety of programming languages, an IDL file is used to
define the services offered by a particular distributed object.

� Enter any Java2IDL command line options in the Options field. See the Borland
Enterprise Server VisiBroker documentation for command line options.

� The Java2IIOP Generate IIOP Interface option generates an Internet InterORB
(Object Request Broker) Protocol (IIOP) compatible Java interface file from a
Java interface or class file. This is done by creating a new Java interface that
extends org.omg.Corba.object. This Java interface can be used to describe
CORBA interfaces in place of using an Interface Definition Language (IDL) file to
describe the interfaces. The IIOP protocol maintains a basic set of functionality to
ensure inter-operability between client applications and server-based objects in a
Common Object Request Broker Architecture (CORBA).

54 Developing Appl icat ions for J2EE Servers

Sett ing and v iewing ORB bui ld proper t ies

� Set the Java2IIOP Strict Portable Code Generation (Java2IIOP) option to enable
generation of portable stubs, that is, stubs that contain code not specific to
VisiBroker.

� Set the Java2IIOP Generate Example Implementation option to enable
generation of example implementation code.

� Set the Java2IIOP Generate Tie Bindings option to enable generation of tie
classes.

� Set the Java2IIOP Generate Comments option to enable generation of
comments in the source code.

� Enter any Java2IIOP command line options in the Options field. See the Borland
Enterprise Server VisiBroker documentation for command line options.

7 Click OK to close the dialog box.

Setting build properties for the OrbixWeb or other third-party
ORBs

To set and view properties for a configured ORB,

1 Choose Project|Project Properties|Build|IDL. The IDL page is displayed.

Make sure the IDL Compiler field matches the ORB you selected in the Enterprise
Setup dialog box.

2 Set the Generated Code Options as needed:

� In the Package field, enter the name of the package to generate code in. The
package name for definitions is prepended with the specified package name. If a
directory with the specified package name does not exist, it will be created. If the
package directory exists, its contents will be updated. code is generated that
uses CORBA package resolution rules.

� In the Include Path field, enter the location where other files that are referenced
from IDL files reside. Click the ellipsis (…) button beside this field to open a dialog
box that lets you browse the directory structure for the location of the files.

� In the Additional Options field, enter any additional options for your IDL compiler,
as you would enter them when running the compiler from the command line.

� The Symbols Defined For Conditional IDL Compilation list displays symbols that
have been defined for conditional IDL compilation. Click the New button to
display the Define New Symbol dialog box where you can define a new
conditional symbol. To remove a symbol from the list, select it then choose the
Delete button.

Chapter 6: Using JBui lder ’s CORBA tools 55

Sett ing and v iewing IDL bui ld propert ies

3 Choose the Paths node in the Project Properties dialog box. Make sure the
Required Libraries list includes the libraries specific to the ORB you’re working with.

4 Click OK to close the Project Properties dialog box.

Setting and viewing IDL build properties
This section explains how to set and view build properties for an IDL file. You must first
create an IDL file. You can use the Sample IDL wizard, available on the Enterprise|
CORBA page of the object gallery (File|New).

To set and view IDL build properties,

1 Right-click an IDL file in the project pane and choose Properties. The Compiler
Options page of the Build node (Properties dialog box) is displayed:

� Set the Process This IDL File option to set compiler options, add the compiled
files and/or packages to the current project, and view compiler output.

� Enter the package for generated code in the Package field. The package name
for definitions is prepended with the specified package name. If a directory with
the specified package name does not exist, it will be created. If the package
directory exists, its contents will be updated. When this option is not set, idl2java
generates code using the CORBA package resolution rules.

� Select the Strict Portable Code Generation option to generate code that can run
on any CORBA-compliant ORB. This means that any VisiBroker-specific code
will not be generated, including code that generates smart stubs. Selecting this
option also suppresses the generation of toString() and bind() methods. When
this option is selected, the compiler generates skeleton code using the Dynamic
Skeleton Interface (DSI).

If not selected, the portable stubs will not be generated. VisiBroker-specific
extensions and optimizations will be present in the code that is generated.
Generated stubs will specifically be for use in VisiBroker ORB environments.

� Select the Generate Example Implementation option to generate example
classes when the IDL file is compiled. If not selected, the generation of example
classes will be suppressed.

� Select the Generate Comments option to generate comments in the code. If not
selected, comments will be suppressed in the generated code.

� Select the Generate Tie Bindings option to generate _tie classes when the IDL
file is compiled. If this option is not selected, the generation of _tie classes will be
suppressed.

56 Developing Appl icat ions for J2EE Servers

Sett ing and v iewing IDL bui ld proper t ies

The tie mechanism offers an alternative when it is not convenient or possible to
have your implementation class inherit from the VisiBroker skeleton class. Object
implementation classes must inherit from the VisiBroker skeleton class. Java
does not allow multiple class inheritance and you may want your implementation
class to inherit from a different class.

Inheritance is easier to use than the tie mechanism because implementation
objects look and behave just like object references. If an implementation object
happens to be in the same process as a client using it, operation invocations
involve less overhead because no transport, indirection, or delegation of any kind
is required.

The tie mechanism provides a delegator implementation class that inherits from
org.omg.CORBA.Object. The delegator implementation class does not provide any
semantics of its own. It simply delegates every call to the real implementation
class, which can be implemented separately and can inherit from whichever class
it wishes.

The Operations class defines all of the methods that must be implemented by the
object implementation. This class acts as the delegate object for the associated
_tie class when the tie mechanism is used.

� Click the ellipsis (…) button next to the Include Path field to display the Select
Directory dialog box, where you can select a directory to search for the list of files
to include in the build. You must select a directory that contains an .idl file.

� Enter options not available in this dialog box in the Additional Options field.

� The IDL2package Setting options are the equivalent of the command line
parameter -idl2package idl pkg. If any part of the IDL file is in the scope
::CORBA,the generated is code is placed in the org.omg.CORBA package. When this
option is not set, the generated code uses the CORBA package resolution rules.

� IDL Definition — The definition in scope of IDL.

� Package — The Java package into which to place the IDL definition.

2 Click the Conditional Defines tab to set symbols defined for conditional compilation.

� The Symbols Defined for Conditional IDL Compilation list displays a list of
symbols defined for conditional IDL compilation.

� Click the New button to display the Define New Symbol dialog box, where you to
define a symbol name for conditional IDL compilation, for example #define name
def.

� Choose a symbol and click the Delete button to delete the selected symbol from
the list of symbols defined for conditional compilation.

Chapter 6: Using JBui lder ’s CORBA tools 57

Using the CORBA wizards

3 Click the OK button to set the options to be used by the VisiBroker idl2java
compiler, when the IDL file is compiled. Set the correct options so that when
compiled, Java interface definitions and Java client and server stubs and skeletons
are generated in a subdirectory of the project with the same name as the project.

When the Process This IDL File option is not checked, selecting OK saves the
selected options, but does not call the idl2java compiler when the IDL file is
compiled. This means that the client stubs and server skeletons are not generated
when the IDL file is compiled.

Using the CORBA wizards
This section describes the JBuilder wizards that are available for CORBA
development. Wizards provide quick and easy development of IDL files and CORBA
client and server interfaces. These wizards are available only if your project is
configured for use with CORBA (Enterprise|Enterprise Setup|CORBA).

Sample IDL wizard

The Sample IDL wizard creates a simple IDL file that may be used to experiment with
the various CORBA tools that take an IDL file as input. The generated IDL file will
consist of a module and an interface containing a single method that can be
customized. This wizard is available on the Enterprise|CORBA page of the object
gallery (File|New).

The Sample IDL wizard looks like this:

CORBA Client Interface wizard

The CORBA Client Interface wizard produces a layer over idl2java-generated code
allowing a client application to easily invoke the interface methods of a running CORBA
server. You will be able to invoke methods in the interface that will be executed on a
CORBA server when you are connected to an Object Request Broker (ORB). This
wizard is only available if you have an IDL file in your project. It is available on the
Enterprise|CORBA page of the object gallery (File|New).

58 Developing Appl icat ions for J2EE Servers

Using the CORBA wizards

The CORBA Client Interface wizard looks like this:

CORBA Server Interface wizard

The CORBA Server Interface wizard lets you define and create a new Java CORBA
server interface bean. Complete the method stubs and add the bean to an application
to create a working CORBA server for that interface. This wizard is only available if you
have an IDL file in your project. It is available on the Enterprise|CORBA page of the
object gallery (File|New).

The CORBA Server Interface wizard looks like this:

HTML CORBA Client wizard

The HTML CORBA Client wizard produces a JSP or HTML client application that
provides input to a CORBA server. This wizard is only available if you have an IDL file
in your project and a web server is selected. It is available on the Enterprise|CORBA
page of the object gallery (File|New).

Chapter 6: Using JBui lder ’s CORBA tools 59

Using the CORBA wizards

The Enter Application Details page of the HTML CORBA Client wizard looks like this.
This page of the wizard allows you to select an existing web module or create a new
one.

The final page of the wizard is where you create a runtime configuration.

CORBA Server Application wizard

The CORBA Server Application wizard produces an application that provides a
complete default implementation for a CORBA server. This wizard is only available if
you have an IDL file in your project. It is available on the Enterprise|CORBA page of
the object gallery (File|New).

The Enter Application Details page of the CORBA Server Application wizard looks like
this:

The final page of the wizard is where you create a runtime configuration.

Use CORBA Interface wizard

This Use CORBA Interface wizard creates a client CORBA application. It will create a
reference to a CORBA client interface that was built earlier, or it will create one. This
wizard is only available if you have an IDL file in your project and a .java file open in
the editor. It is available from the Edit menu.

60 Developing Appl icat ions for J2EE Servers

Using the CORBA wizards

The first page of the Use CORBA Interface wizard, where you choose whether to use
an existing client interface, looks like this:

The second page of the wizard, where you define and create the new CORBA interface
bean looks like this:

The final page of the wizard is where you create a runtime configuration.

Chapter 7: Using JBui lder with BEA WebLogic servers 61

C h a p t e r

7
Chapter7Using JBuilder with BEA WebLogic

servers
This chapter explains how to use to set up and use BEA WebLogic servers with
JBuilder. JBuilder supports WebLogic Server 7.x and WebLogic Platform 8.1.

Service packs
JBuilder requires WebLogic 7.0 with Service Pack 5 for proper operation. For
WebLogic 8.1, you will need Service Pack 3.

Configuring JBuilder for WebLogic servers
To configure JBuilder settings to target WebLogic servers,

1 Choose Enterprise|Configure Servers.

The Configure Servers dialog box appears.

2 Select the WebLogic server you want to configure by clicking it in the pane on the
left.

The right side of the dialog box lists the default settings for the selected server. The
General page has fields that all WebLogic servers have in common, while the
Custom page has fields that are specific to the selected server. In some cases,
modifying a Custom setting will update a setting on the General page.

3 Check the Enable Server check box at the top of the dialog box.

Checking this option enables the fields for the selected application server. You won’t
be able to edit any fields until it is checked. The Enable Server check box also
determines whether this server will appear in the list of servers when you select a
server for your project using the Servers page of the Project|Project Properties
dialog box.

JBuilder provides default settings for the selected server. If JBuilder’s default
settings are not appropriate, edit any of the settings as needed. Some servers
require you to enter settings in addition to the defaults. Clicking the OK button in this

62 Developing Appl icat ions for J2EE Servers

Conf iguring JBui lder for WebLogic servers

dialog box when not all required values are set or selecting another server while the
current one is enabled displays a message dialog box that informs you about the
missing settings.

4 If you want to change any of the settings, click the ellipsis (…) button next to the field
and make your changes. Assuming you installed WebLogic Platform 8.1 into a
BEA_HOME directory with the name bea, your home directory should be [drive]:/
bea/weblogic81/server. For WebLogic Server 7.x, you home directory should be
[drive]:/bea/weblogic71/server.

For WebLogic Platform 8.1 and WebLogic Server 7.x, the working directory is set
when you set the domain directory using the Custom page. For now, you can leave
it unchanged.

5 Click the Custom tab to view fields unique to the server. Change or fill in these
fields:

� BEA Home Directory: The BEA Home Directory is the directory into which you
installed the WebLogic Server and that contains the file registry.xml. JBuilder
assigns a default value for the BEA Home Directory that varies depending on the
version of the WebLogic Server installed.

� JDK Installation Directory: For WebLogic Platform 8.1, the directory is <bea
home>/jdk141_04. For WebLogic 7.x, the directory is <bea home>/jdk131_010.

� Domain Directory: Use the ellipsis (…) button to select a directory as your domain
directory. The domain directory is the directory where your WebLogic domain is
stored. For WebLogic 7.x, this is user_projects/mydomain. For WebLogic 8.1, it is
user_projects/domains/mydomain. Setting the domain directory sets the working
directory value on the General page. For more information about WebLogic
domains, see your WebLogic documentation.

� User Name: The user name you use to authenticate yourself to the server. This
field appears for WebLogic Platform 8.1 and WebLogic Server 7.x.

� Password: The password you use to authenticate yourself to the server.

� Server Name: The name you specify is used as a VM parameter for starting the
server. JBuilder suggests a default name of “myserver.”

� Listen Address: Specifies a listen address for this server. The host value must be
either the DNS name or the IP address of the server. If you do not specify a
Listen Address, the server uses either the machine’s DNS name or its IP
address.

� Listen Port: Specifies the non-SSL listen port for this server. If you do not specify
a Listen Port, the server uses 7001 as the default.

� Version: Select the combination of WebLogic version and service pack you are
configuring from the drop-down list.

The Custom page of the Enterprise|Configure Servers dialog box for WebLogic
7.x and 8.x now includes Listen Address and Listen Port fields. If you edit fields
such as User Name, Server Name, Listen Address, and so on, the corresponding
entries in the Server Deployment dialog box and the node deployment dialog box
are updated accordingly.

� Add An Admin Console Item To The Enterprise Menu: Checking this check box
adds the WebLogic Admin Console item to JBuilder’s Enterprise menu. You must
also fill in the next field, Web Browser Path, to have the menu item added.

Chapter 7: Using JBui lder with BEA WebLogic servers 63

Conf iguring JBui lder for WebLogic servers

� Web Browser Path: Specify the path and file name of the web browser of your
choice. For example, you might specify c:/program files/Internet Explorer/
iexplore.exe if you want to use Microsoft’s Internet Explorer.

� Add A Configuration Wizard Item To The Enterprise Menu: Adds a WebLogic
Configuration Wizard item to the JBuilder Enterprise menu. When you select this
menu item, the BEA WebLogic Configuration wizard begins, which guides you
through the steps of configuring the domain for your use.

� Use External Compiler: Check this check box if you want to use an external
compiler to generate stub files instead of JBuilder’s compiler, bcj. WebLogic
Platform 8.1 uses the appc compiler, while earlier versions use the ejbc compiler.

� Path: Specify the fully-qualified name of the compiler you want to use. You can
use the ellipsis (…) button to navigate to the compiler location.

6 Choose OK to close the dialog box.

Creating a duplicate configuration to edit

Once you’ve created a server configuration, you might find you’d like to have a similar
one, but with some slight differences. Follow these steps to create a duplicate
configuration you can then edit:

1 Choose Enterprise|Configure Servers to display the Configure Servers dialog box.

2 Select the server configuration you would like to duplicate from the left pane.

3 Click the Copy button at the bottom of the left pane to display the Copy Server
wizard:

4 Specify the name you want to use to identify this server configuration in the Name
For This Server field.

5 Specify the server version in the Version For This Server field.

6 Click OK.

7 Select your new configuration in the left pane of the Configure Servers dialog box
and make the changes to the settings you need using the General and Custom
pages.

Copying a server configuration also creates copies of that server’s tools. You could,
therefore, create a duplicate server configuration and modify just the server’s tools as
the only difference between the two configurations.

64 Developing Appl icat ions for J2EE Servers

Select ing a server

Created libraries

When you configure JBuilder to target a WebLogic server, required libraries are
created for you that contain all the application server files you will need for enterprise
bean development. These are the libraries created for you, listed by WebLogic server
version:

WebLogic Platform 8.1
� WebLogic 8.1 Client: All JARs needed to run a client.
� WebLogic 8.1 Deploy: JARs needed to run the WebLogic 8.1 deploy tool.

WebLogic Server 7.x
� WebLogic 7.x Client: All JARs needed to run a client.
� WebLogic 7.x Deploy: JARs needed to run the WebLogic 7.x deploy tool.

Adding a service pack

If you want to add a service pack to your application server configuration, follow these
steps:

1 Choose Enterprise|Configure Servers.

2 Select your server from the list of servers in the pane on the left side of the dialog
box.

3 Click the General tab, then the Class tab, if they are not already selected.

4 Click Add.

5 Navigate to the location of the service pack JAR file.

6 Click OK twice to close all dialog boxes.

Selecting a server
If you are working with more than one version of WebLogic Server and have configured
JBuilder for all versions, you must select which version you want to use for your current
project. Choose Project|Project Properties and select Server in the tree to display the
Server page.

Chapter 7: Using JBui lder with BEA WebLogic servers 65

Select ing a server

You can click the Help button on this page for assistance using this page to select a
server.

JBuilder can target multiple servers. You can choose a single application server for all
stages of EJB and web application development, or you can choose different servers
for different aspects of development. For example, you can select one server to use to
develop enterprise beans and another to develop web applications.

Decide whether you want to use a single server for all aspects of development or
different servers to handle different areas of development.

� To use a single server,

a Select the Single Server For All Services In Project option and select the server
from the drop-down list.

b If you want to make changes to the configuration settings for the server, click the
ellipsis (…) button and edit the settings you want on the General and Custom
pages. Click OK.

You can also use this dialog box to select a different server.

� To use different servers for different services,

a Select the Modular Services Provided By Different Servers option.

b Check the check boxes next to all the services for which you want to specify an
application server in the Services list.

c Click one of the checked services to select it in the Services list.

Note that the web module won’t be deployed automatically if it is part of an EAR.

d In the Service Properties For Project group box, use the Server drop-down list to
select the server you want to use for this service.

If server-specific properties are available for the server you selected for the
particular service you are working with, they will appear below the Server drop-
down list. If the Deployment service is selected, a Build Target For Deploying To
Server drop-down list appears on the Service Properties For Project panel.
Select the type of build you want to occur. If the EJB service is selected, you’ll
see read-only information appear that is intended to help you decide which server
is appropriate for your needs.

If you select the JSP/Servlet service, the Default Runtime Host Name and Default
Runtime Port Number fields are available to you. The default values refer to the
global server configuration. If you change these values, they are used for all
server run configurations created after you made the change.

If you expand the Deployment service node, you can select from several
subnodes that have accompanying properties. The properties vary depending on
which is your selected server. All servers have a Build Target For Deploying To
Server field, however. Select your desired build option from the drop-down list.

If you expand the WebLogic Deployment service node and select the WARs
node, the service properties include a Map Project Webapps At Runtime option.
When this option is selected (the default value) all web applications in the project
deploy from the web application directory and not as a WAR when the server
starts up.

If you expand the WebLogic Deployment service node and select the EARs
node, the service properties include a Map Project EJB Modules At Runtime
option. When this option is selected (the default value) all EJBs in the project
deploy from the EJB directory and not as a EAR when the server starts up.

All the WebLogic Deployment service nodes have Deploy As Archive and Deploy
As Exploded Directory options. Checking the Deploy As Archive option enables
the archive to be deployed. Checking the Deploy As Exploded Directory option

66 Developing Appl icat ions for J2EE Servers

Working in JBui lder

means the archive is exploded into a directory as its contents are deployed
instead.

If you select the EJB service, the service properties include a Datasource
Mapping combo box with options to deploy (auto-deploy) data sources for all EJB
modules in the project. These are the options:

� Map Project Datasources: Maps data sources for all EJB modules in
config.xml for the domain specified in the server configuration. Datasource
entries are removed when the server shuts down.

� Map And Persist Project Datasources: Maps data sources for all EJB modules
in config.xml for the domain specified in the server configuration. Data Source
information is persisted in config.xml. Datasource entries are removed when
the server shuts down.

� Do Not Map Project Datasources: Does not map any data sources.

e If you want to make changes to the configuration settings for the server selected
for the service, click the ellipsis (…) button and edit the settings you want on the
General and Custom pages. Click OK.

f Repeat these steps for each service you want access to.

Click OK when you are finished with the dialog box to select your specified server for
your current project.

If you neglect to select one ore more servers for a project, the Server page of the
Project Properties dialog box appears when you start an EJB wizard from the object
gallery. Use this page to select your server. All EJB projects must have one or more
selected servers.

Working in JBuilder
JBuilder supports WebLogic servers in all areas of development. This section
describes some of the WebLogic-specific features available to you.

Using existing code

If you already have existing WebLogic EJB 2.0 deployment descriptors for enterprise
beans you created previously, you can create a new EJB module that contains the
descriptors. You have two options:

� Use the EJB Module From Descriptors wizard, which creates a new EJB module
that contains the deployment descriptors.

� Use the Project For Existing Code wizard, which creates a new JBuilder project
containing one or more new EJB modules that contain the deployment descriptors.

See “Creating an EJB module from existing deployment descriptors” in Developing
Applications with Enterprise JavaBeans for complete information.

Chapter 7: Using JBui lder with BEA WebLogic servers 67

Star t ing the server

Creating WebLogic entity beans in JBuilder

JBuilder’s EJB designer has support for WebLogic-specific features. The entity bean
inspector includes options such as optimistic concurrency and field groups. There is a
WebLogic version of the Table Map Editor. When creating relationships between entity
beans, there are WebLogic versions of the relationship inspector and a special
WebLogic RDBMS Relation Editor. For information about using these tools, see
“Adding WebLogic table references” and “Specifying a WebLogic 7.x – 8.x relationship”
in Developing Applications with Enterprise JavaBeans.

Using the DD Editor

The DD Editor has several WebLogic-specific pages for information that applies only to
WebLogic servers. For information about using the DD Editor to edit J2EE modules,
see Chapter 11, “Editing J2EE deployment descriptors.” Whenever a WebLogic-
specific page is displayed in the DD Editor, you can press F1 for help on that particular
page. You’ll also find it convenient to have a copy of your server’s documentation
handy to look up the type of information your server requires in the deployment
descriptors.

Compiling

To set APPC or EJBC options for compiling your WebLogic beans, right-click the EJB
module node in the project pane, choose Properties and select the Build|WebLogic
page. This page contains the options for your WebLogic compiler. Here, for example,
are the APPC options for WebLogic Platform 8.1:

Starting the server
To prepare to start the server from within JBuilder, create a server runtime
configuration. Follow these steps:

1 Choose Run|Configurations.

2 In the dialog box that appears, click the New button.

68 Developing Appl icat ions for J2EE Servers

Remote deploy ing

3 Select Server from the Type drop-down list.

4 In the Name field, enter a name, such as Server or something that will identify the
run configuration.

5 Fill in the VM Parameters and Server Parameters needed to run the server. If you’ve
selected a target application server as described in “Selecting a server” on page 64,
default values are already in place. If the default values aren’t adequate, you may
find the Macro buttons helpful in building the command line you need.

6 Click OK two times.

To start the server, click the down-arrow next to the Run Project icon () and select
the server run configuration you just created.

Remote deploying
To deploy a deployable module to a remote server, follow these instructions for your
version of WebLogic Server:

WebLogic Application Sever 7.x and WebLogic Platform Server 8.1

Choose one of these options:

� Using the Enterprise|Server Deployment command:

a Choose Enterprise|Server Deployment to display the WebLogic Deploy Settings
dialog box.

b From the Action drop-down list, select Deploy.

c Select the archive to deploy from the drop-down Archive To Deploy list or browse
to the archive you want to deploy using the ellipsis (…) button.

d Set the Admin URL to the remote server, such as <HOST NAME>:<port number>.

e Enter the User Name and Password that matches the remote server
configuration.

f Choose OK.

Chapter 7: Using JBui lder with BEA WebLogic servers 69

Remote deploy ing

� Deploying from the project pane:

a Right-click the module you want to deploy in the project pane and choose
Properties.

b Select Deployment in the tree to display the Deployment page.

c Set the Admin URL to Set the Admin URL to the remote server, such as <HOST
NAME>:<port number>.

d Right-click the module you want to deploy in the project pane and choose Deploy
Options|Deploy.

Deploying J2EE modules as an exploded directory
You can deploy WebLogic 7.x and 8.x J2EE modules as an exploded directory. You
can set this option at the project-wide level, at the module level, or at deployment time.

To set this option at the project level,

1 Choose Project|Project Properties and select the Server page.

2 Open the Deployment node in the tree on the left to see the types of J2EE module
modes.

3 Select the type of module node(s) you want to explode at deployment time.

4 Check the Deploy As Exploded Directory option on the module type page that
appears.

5 When you are done selecting the types of modules you want to explode at
deployment time, choose OK to close the dialog box.

To set this option at the module level,

1 Right-click the module you want to deploy as an exploded directory and choose
Properties.

2 Select the Deployment page.

3 On the WebLogic 8.x page that appears, check the Deploy As Exploded Directory
check box.

4 Choose OK to close the dialog box.

To set this option at deployment time,

1 Choose Enterprise|Server Deployment to display the WebLogic Deploy Settings
dialog box.

2 Check the Deploy As Exploded Directory check box.

3 Choose OK to close the dialog box.

Mapping EJB project modules at runtime
EJB project modules can be mapped at runtime. Mapping EJB modules modifies your
domain config file by adding an application tag to it. The advantage to doing this is that
the module is not deployed as an archive. You would want to use this feature only for
development and not during production. Follow these steps:

1 Choose Project|Project Properties.

2 Select the Server page.

3 Open the Deployment node in the tree on the left to see the types of J2EE module
modes.

4 Check the EJB node in the tree on the Server page and EJB module deployment
properties appear.

70 Developing Appl icat ions for J2EE Servers

Remote deploy ing

5 Select the Map Project EJB Modules At Runtime option:

6 Choose OK to close the dialog box.

EJB modules that are included in EARs won’t be mapped at runtime. If you try to
deploy a module (either EJB or web) that has been mapped, JBuilder displays a
warning. If you try to map a module (either EJB or web) that has been already
deployed, the deployment will fail and JBuilder displays a warning. You’ll also get a
warning if you right-click a module, choose Properties, and in the Build options page
select Never from the Build <Module> Directory drop-down list and then attempt to
deploy as an exploded directory or to map an EJB or web module.

Redeploying individual classes
For WebLogic 8.x only, once you have mapped an EJB project module at runtime as
explained in the previous section, you can then redeploy individual classes from the
module directory:

1 Right-click the class you want to redeploy (reload) in the project pane.
2 Choose Redeploy.

WebLogic 8.x Platform Server deployment features

The OpenTool for WebLogic 8.x Platform Server has improved deployment features.
You can now deploy submodules so you can deploy a module that has been newly
added to an EAR or redeploy it.

Use the deploy options on the context menu when you right-click the archive and choose
Properties. You can also access the deployment options when you choose Enterprise|
Server Deployment and choose from the actions on the drop-down Action list.

There are two additional options on the context menu that appears when you right-click
the archive and choose Deploy Options: Deactivate and Activate. Deactivate suspends
deployed components, leaving staged data in place for subsequent reactivation. To
reactivate a deactivated component, choose Activate. To totally remove the application
and any staged data from the server, choose Undeploy.

JBuilder now allows WebLogic Server 7.x and 8.x EAR, WAR, RAR, and EJB modules
to be deployed as an exploded directory. To permit this, follow these steps.

1 Choose Enterprise|Server Deployment to display the WebLogic Deploy Settings
dialog box.

2 Check the Deploy As Exploded Directory option.

3 Choose OK to close the dialog box.

Chapter 7: Using JBui lder with BEA WebLogic servers 71

Remote debugging

A few WebLogic Server properties, such as field groups and other CMP WebLogic-
specific properties, were previously accessed only through the EJB Designer. You can
now access them through the EJB DD Editor as well.

Remote debugging
To prepare to debug remotely, launch the WebLogic Server with debug parameters. To
do this, modify startWebLogic.sh in your domain directory and add the following
parameters to the JAVA_OPTIONS variable:

-Xdebug
-Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=n

Within JBuilder, follow these steps:

1 In the project from which you want to launch the remote debug session, click Run|
Configurations. If you have not yet created a server type run configuration, click
New and select type Server. If you have already created a server type run
configuration, select it and choose Edit.

2 Select Debug|Remote in the tree.

3 Check the Enable Remote Debugging option.

4 Enter the host name (the name of the machine on which the server is running.)

5 Click OK.

6 Click the down arrow next to the Debug Project icon () on the JBuilder toolbar
and select the debug run configuration you just created or edited. You will now be
able to set breakpoints in Java code, such as in EJBs, servlets, and so on.

Remote debugging of JavaServer Pages

To debug JSPs remotely, open the project containing the web application you want to
debug and follow these steps,

1 Expand the web application node in the project and expand the deployment
descriptors node under the web application node.

2 Double-click weblogic.xml and add the following descriptor elements:

<jsp-descriptor>
 <jsp-param>
 <param-name>keepgenerated</param-name>
 <param-value>true</param-value>
 </jsp-param>
 <jsp-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </jsp-param>
 <jsp-param>
 <param-name>precompile</param-name>
 <param-value>true</param-value>
 </jsp-param>
 <jsp-param>
 <param-name>compileFlags</param-name>
 <param-value>-g</param-value>
 </jsp-param>
 </jsp-descriptor>

3 Rebuild project and deploy the web application (as a WAR).

72 Developing Appl icat ions for J2EE Servers

Updat ing pro jects with the la test server set t ings

4 Launch the WebLogic server with debug parameters. To do this, modify
startWebLogic.sh in your domain directory and add the following parameters to the
JAVA_OPTIONS variable:

-Xdebug
-Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=n

Note that these steps can be done on a local machine provided WebLogic is set up
and configured in JBuilder.

On the local machine, follow these steps:

1 Transfer the project to the local machine where you wish to debug the JSP and
open the project in JBuilder.

2 Under the source path for the project (normally <PROJECT_ROOT>/src), create a
directory named jsp_servlet. If you need to use a source path other than the
default, you can obtain this setting from the General page of the Project Properties
dialog box.

3 Copy the JSP(s) you want to debug to the directory you just specified.

4 Open the JSP(s) and set breakpoints where required.

5 Choose Run|Configurations.

6 Click the New button, select the Application from the drop-down list, and click the
Debug tab.

7 Check the Enable Remote Debugging option.

8 Enter the host name of the remote server in the Host Name field and set the Build
Target to None. Accept all other default settings.

9 Attach to the remote server by clicking on the debug project icon in the toolbar.

10 Load your JSP in a web browser. The debugger stops at breakpoints in the JSP.

Updating projects with the latest server settings
Every time you open a project, JBuilder updates it with the latest server settings for the
project’s selected server(s). So, for example, if you have modified server settings for
one project and you have others that use the same server configuration, the next time
you open those other projects, your modified server settings will be in force
automatically. If you want to use a similar but unique server configuration for a
particular project, create a duplicate configuration using the Copy button, and use the
Copy Servers wizard to edit it to your needs.

Be aware that this automatic updating of projects with the latest server settings can
occur only with server configurations modified in JBuilder 9. If you attempt to transfer
server libraries from a previous JBuilder version, your projects won’t be updated with
them. You can still tell JBuilder to update the project manually:

1 Right-click the project node of the project you want to update in the project pane and
choose Properties.

2 Select the Servers page.

3 Click the ellipsis (…) button next to your selected single server or the separate
service servers and make your changes.

4 Click OK to close the dialog box.

Chapter 8: Using JBui lder with IBM WebSphere servers 73

C h a p t e r

8
Chapter8Using JBuilder with IBM WebSphere

servers
This chapter explains how set up and use IBM WebSphere servers with JBuilder.
JBuilder supports WebSphere Application Server 4.0.7 Single Server, WebSphere
Application Server 4.0.7 Advanced Edition, and WebSphere Application Server 5.0.2.4,
5.1.0.4.

Configuring JBuilder for WebSphere servers
To configure JBuilder settings to target WebSphere servers,

1 Choose Enterprise|Configure Servers.

The Configure Servers dialog box appears.

2 Select the WebSphere server you want to configure by clicking it in the pane on the
left.

The right side of the dialog box lists the default settings for the selected server. The
General page has fields that all servers have in common, while the Custom page
has fields that are specific to the selected server. In some cases, modifying a
Custom setting will update a setting on the General page.

3 Check the Enable Server check box at the top of the dialog box.

Checking this option enables the fields for the selected application server. You won’t
be able to edit any fields until it is checked. The Enable Server check box also
determines whether this server will appear in the list of servers when you select a
server for your project using the Servers page of the Project|Project Properties
dialog box.

JBuilder provides default settings for the selected server. If JBuilder’s default
settings are not appropriate, edit any of the settings as needed. Some servers
require you to enter settings in addition to the defaults. Clicking the OK button in this
dialog box when not all required values are set or selecting another server while the
current one is enabled displays a message dialog box that informs you about the
missing settings.

74 Developing Appl icat ions for J2EE Servers

Conf iguring JBui lder for WebSphere servers

4 If you want to change any of the settings, click the ellipsis (…) button next to the field
and make your changes. If you installed WebSphere into [drive]:/Program Files/
WebSphere, the default Home Directory is [drive]:/Program Files/WebSphere/
AppServer. Otherwise, the Home Directory becomes whichever directory you specify.

5 Click the Custom tab to view fields unique to the server. Change or fill in these
fields:

For WebSphere Application Server 4.0.7:

� IBM JDK Installation Directory: Where the IBM installation of the JDK is installed.
JBuilder uses this field to locate the proper version of the JDK the server
requires. This field is set when you specify the Home Directory, so it should be
the java directory of the Home Directory; for example, the directory would be
[drive]:/Program Files/WebSphere/AppServer/java if [drive]:/Program Files/
WebSphere/AppServer is your Home Directory.

� DB2 Installation Directory: The directory in which DB2 is installed on your
system. Usually this is in [drive]:/SQLLIB.

� Add An Administrator’s Console Item to The Enterprise Menu: Checking this
check box adds the WebSphere Admin Console item to JBuilder’s Enterprise
menu so you have quick access to it from the JBuilder IDE.

� Add an Application Assembly Tool Item to The Enterprise Menu: Checking this
check box adds the WebSphere Application Assembly item to JBuilder’s
Enterprise menu so you have quick access to this tool from the JBuilder IDE.

For WebSphere Application 5.0.2.4, 5.1.0.4:
� JDK Installation Directory: Where the IBM installation of the JDK is installed. This

field is set when you specify the Home Directory, so it should be the java
directory of the Home Directory; for example, [drive]:/Program Files/WebSphere/
AppServer/java.

� Embedded Message Path: The directory where WebSphere’s messaging
software is located. This field is set by default and is usually in the Ibm/WebSphere
MQ directory. So, if you installed WebSphere into [drive]:/Program Files/
WebSphere, the Embedded Messaging Path would be [drive]:/Program Files/Ibm/
WebSphere MQ. You can, however, specify any path directly that contains the
messaging software.

� Cell Name: The cell name is set by default. It is read in from your local server
configuration. You can edit this field, but you will seldom need to do so. For more
information about cells, see your WebSphere documentation.

� Node Name: The node name is set be default. It is read in from your local server
configuration. You can edit this field, but you will seldom need to do so. For more
information about nodes, see your WebSphere documentation.

� Server Name: The server name which you are configuring. It is read in from your
local server configuration. JBuilder suggests a default name, which you can
change to meet your needs.

� Add An Administrative Console Item To The Enterprise Menu: Checking this
check box adds the WebSphere Admin Console item to JBuilder’s Enterprise
menu so you have quick access to it from the JBuilder IDE. You must also fill in
the next field, Web Browser Path, to have the menu item added.

� Web Browser Path: Specify the path and file name of the web browser of your
choice. For example, you might specify c:/Program Files/Internet Explorer/
iexplore.exe if you want to use Microsoft’s Internet Explorer.

� Add An Application Assembly Item To The Enterprise Menu: Checking this check
box adds the WebSphere Application Assembly item to JBuilder’s Enterprise
menu so you have quick access to this tool from the JBuilder IDE.

Chapter 8: Using JBui lder with IBM WebSphere servers 75

Select ing a server

� Add An Administrative Scripting Item To The Enterprise Menu: Checking this
check box adds the WebSphere Administrative Scripting item to JBuilder’s
Enterprise menu so you have quick access to this tool from the JBuilder IDE.

� This step is optional. Click the CMP Mapping button to display the CMP Mapping
page. Use this page to view and possibly change the container-managed
persistence (CMP) mappings JBuilder uses. By examining the tables on this
page, you can see the mappings JBuilder is using. Usually you will not need to
change any of these mappings, especially if you are using the more common
database drivers. You can, however, edit these mappings if you are using other
drivers, want to do your own type mappings, and so on. For more information
about editing mappings and aliases, click the Help button.

6 Choose OK to close the dialog box and configure JBuilder.

When you configure JBuilder to target a WebSphere server, required libraries are
created for you. To see a list of the WebSphere libraries, see “The created libraries” on
page 23.

Selecting a server
If you are working with more than one version of WebSphere Application Server and
have configured JBuilder for all versions, you must select which version you want to
use for your current project. Choose Project|Project Properties and choose Server.
See “Selecting a server” on page 24 for more information.

Generating WebSphere deployment descriptors for WebSphere 4.0
When you are using the Enterprise JavaBean 1.x wizard or the EJB 1.x Entity Modeler
to create entity beans that target WebSphere 4.0 Advanced Edition, the wizards do not
generate the Map.mapxmi and Schema.dbxmi deployment descriptors. When you build
your bean, EjbDeploy, which is called during the build process, will generate them for
you. You can then modify the mapping and run Make again to keep the mapping in the
JAR.

If you’ve used the Entity Modeler to create your entity beans and the field names in
your bean don’t map directly to columns in the database, you can choose to have
JBuilder create WebSphere CMP deployment descriptors that override the default
EjbDeploy behavior:

1 Right-click the EJB module node in the project pane when WebSphere 4.0
Advanced Edition is your selected server.

2 Choose Properties on the context menu.

3 Select the Build|WebSphere page.

4 Check the Generate CMP Descriptors check box.

5 Make your changes:

The list of Data Mapping Files contains the default mapping files that are used to
map Java primitive types to database types. You can modify, add, and remove
mapping files. The Database Type Substitution In Generated Descriptors list
displays the substitutions JBuilder makes if the Java primitive types can’t be directly
mapped to a type in the database. You can modify this list. For example, you might
want another Java type to be substituted for a particular original type in a specified
database. Or you can add additional substitutions to the list.

6 Click OK.

When you compile your bean, the two deployment descriptors (Map.mapxmi and
Schema.dbxmi are generated for entity beans with container-managed persistence for

76 Developing Appl icat ions for J2EE Servers

Star t ing the server

the WebSphere 4.0 Advanced Edition only. If you are using one edition of WebSphere
4.0 and change your target server to the other version, you must recompile your project
to ensure JBuilder generates the correct deployment descriptors for you.

If the database schema name used is different from the username, manually modify
the Schema.dbxmi file as follows:

1 Make the project to generate the CMP descriptors.

2 Double-click the EJB module node in the project pane to open the EJB module
viewer.

3 Click the source view for Schema.dbxmi.

4 Add the following line above the last line of the source:<RDBSchema:RDBSchema
xmi:id="RDBSchema_1" name="<your_schema_name>" database="<database_id>"
tables="<table_id>"/>

5 Rebuild the project to incorporate the change.

Starting the server
To prepare to start the server from within JBuilder, create a server runtime
configuration. Follow these steps:

1 Choose Run|Configurations.

2 In the dialog box that appears, click the New button.

3 Select Server from the Type drop-down list.

4 In the Name field, enter a name, such as Server or something that will identify the
run configuration.

5 Fill in the VM Parameters and Server Parameters needed to run the server. If you’ve
selected a target application server as described in “Selecting a server” on page 75,
default values are already in place.

6 Click OK.

To start the server, click the down-arrow next to the Run Project icon () and select
the server run configuration you just created.

Chapter 8: Using JBui lder with IBM WebSphere servers 77

Deploying

By default in WebSphere 5.x, the stdout and stderr streams are redirected to log files at
application server startup. To view the output in JBuilder when you start the server in
JBuilder:

1 Start the server.

2 Start the Administrative Console from the JBuilder Enterprise menu.

3 Choose Servers|Application Servers|<server_name>|Process Definition|
ProcessLogs.

4 On the Configuration page, set the Stdout File Name and the Stderr File Name to
Console.

Deploying
The following sections describe deploying to both the WebSphere Application Server
5.x and the WebSphere Application Server 4.0.

Using the DD Editor

The DD Editor has several WebSphere-specific pages for information that applies only
to WebSphere servers. For information about using the DD Editor to edit J2EE
modules, see Chapter 11, “Editing J2EE deployment descriptors.” Whenever a
WebSphere-specific page is displayed in the DD Editor, you can press F1 for help on
that particular page. You’ll also find it convenient to have a copy of your server’s
documentation handy to look up the type of information your server requires in the
deployment descriptors.

To prepare to deploy a deployable module, follow the steps outlined for your version of
WebSphere:

WebSphere Application Server 5.x

This section explains how to deploy remotely and locally to the WebSphere Application
Server 5.x.

Remote deploying
WebSphere Application Server 5.x supports remote deployment using the Deployment
Manager version of the application server. The Deployment Manager must be
configured to manage the remote server instance. Please refer to your server
documentation for more information.

Once you have configured your Deployment Manager to manage the remote server
instance, you can deploy to the remote server instance in JBuilder if you follow these
steps:

1 Right-click the archive node you want to deploy in JBuilder’s project pane and
choose Properties.

2 Select Deployment in the tree to display the Deployment page and make sure the
General tab is selected.

3 Set the Cell Name to the Deployment Manager’s cell name.

4 Set the Node Name to the remote server node name.

5 Set Server Name to the remote server name.

6 Click the Connection tab.

7 Set the Connection Type field to SOAP or RMI.

78 Developing Appl icat ions for J2EE Servers

Deploying

8 Set the Host field to the host name where the Deployment Manager is running.

9 Set the Port field to the port number of the Deployment Manager.

10 Set the User Name and Password fields if they are required; for example, if security
is enabled.

Deploying locally
To deploy locally to a server which is not running,

1 Right-click the node you want to deploy in JBuilder’s project pane and choose
Properties.

2 Select Deployment in the tree and click the Connection tab.

3 Set the Connection Type to NONE.

If the connection type is set to NONE, deployment actions performed while the server
is running won’t start or stop the deployed module.

WebSphere Server 4.0

If you are using WebSphere 4.0 Advanced Edition, you must create an EAR group that
contains your beans. You then deploy the EAR group. For more information about
creating EAR groups, see “Creating an EAR file” in Developing Applications with
Enterprise JavaBeans.

Enterprise|Server Deployment displays a WebSphere Deployment dialog box.
Configure your deployment settings with this dialog box. JBuilder passes the settings
you specify on to the WebSphere deployment tool. The deployment tool for
WebSphere 4.0 differs depending on the version of the server you are using. For the
Single Server, WebSphere’s deployment tool is SEAppInstaller. For the Advanced
Edition, the deployment tool is XmlConfig. Therefore, the appearance of the Deploy
Settings dialog box will vary between these two WebSphere Server 4.0 editions.

If your target application server is WebSphere 4.0 Advanced Edition and you want an
XML file to be generated as input to the WebSphere XMLConfig utility, check the
Generate XML check box. If this option isn’t checked, the file won’t be created. If you
make your own modifications to the generated XML file (named
deploy_<selectednode>.xml and appearing under the EJB module node or EAR group),
uncheck this option to be sure you don’t lose your changes. If you use the Deployment
Options on the context menu (right-click the EJB module and choose Deployment
Options <jar name>.jar to see the deployment commands), the generated XML file is
deploy.xml. It appears under the project node.

Remote deploying
Follow these steps to use the WebSphere Deploy Settings dialog box to deploy to a
remote server:

1 Choose Enterprise|Server Deployment.

2 Select the Deploy action.

3 Specify these options in the Options field:

-nameServiceHost<host name> -nameServicePort<port number>

4 Set the Primary Node and Server Name to match your server configuration.

5 Click OK.

Chapter 8: Using JBui lder with IBM WebSphere servers 79

Enabl ing remote debugging

You can also deploy a module to a remote server from JBuilder’s project pane:

1 Right-click the module you wish to deploy.

2 Select Properties.

3 Select Deployment in the tree to display the Deployment page.

4 Specify these options in the Options field:

-nameServiceHost<host name> -nameServicePort<port number>

5 Set the Primary Node and Server Name to match your server configuration.

6 Right-click the module in the project pane and choose Deploy Options|Deploy.

Deploying locally
These are the deploy options you’ll find on the Deploy Options context menu:

� Deploy — Deploys a JAR to the currently running container of the project application
server. If the Build Target option is Make for the current runtime configuration
(Choose Run|Configurations, select the current runtime configuration, and click Edit
then click Server and select Deployment in the tree of services to see the Build
Target), this option will “make” the JAR’s contents before deploying it to the
container.

� Redeploy — Deploys a JAR again to the currently running container. If the Build
Target option is Make for the current runtime configuration (Choose Run|
Configurations, select the current runtime configuration, and click Edit then click
Server and select Deployment in the tree of services to see the Build Target), this
option will “make” the JAR’s contents before redeploying it to the container.

� Undeploy — Undeploys an already deployed JAR in the running container.

� List Deployments — Lists all JARs deployed in the running container.

� Stop Container — Stops the container. This option appears for WebSphere 4.0
Advanced Edition only. When a deployed EJB changes, the container must be
stopped and then restarted for the changes to register.

� Start Container — Starts the container. This option appears for WebSphere 4.0
Advanced Edition only.

Enabling remote debugging
The steps to enable remote debugging of a bean running on a WebSphere server vary
depending on which version of WebSphere you are using.

Note You won’t be able to debug JSPs in a remote debug session.

WebSphere Application Server 5.x

Follow these steps to enable remote debugging for WebSphere Application Server 5.x:

1 Launch the server with the -script option:

WEBSPHERE_HOME/bin/startserver -script

This command should write a script called start_<server name> in the
WEBSPHERE_HOME/bin directory.

80 Developing Appl icat ions for J2EE Servers

Enabl ing remote debugging

2 Edit the launch script and add the following remote debug parameters to the java
command line:

-Xdebug
 -Djava.compiler=NONE
 -Xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=n

3 Launch the server using the script.

4 In JBuilder, choose Project|Project Properties. If you have not yet created a server
run configuration, choose New and create a new configuration of type Server. If you
already have a server run configuration, choose Edit.

5 Select Debug|Remote in the tree and check the Enable Remote Debugging and
Attach options and click OK.

Click the down arrow next to the Debug Project icon () on the JBuilder toolbar and
select the debug run configuration you just created or edited. You will now be able to
set breakpoints in Java code, such as in EJBs, servlets, and so on.

WebSphere Single Server 4.0

If you are using WebSphere Single Server 4.0, follow these steps to enable remote
debugging:

1 Launch the server with the -script option:

WEBSPHERE_HOME/bin/startserver -script

This command should write a script called launch in the WEBSPHERE_HOME/bin
directory.

2 Edit the launch script and add the following remote debug parameters to the java
command line:

-Xdebug
-Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=n

3 Launch the server using the script.

4 In JBuilder, choose Project|Project Properties. If you have not yet created a server
run configuration, choose New and create a new configuration of type Server. If you
already have a server run configuration, choose Edit.

5 Select Debug|Remote in the tree.

6 Check the Enable Remote Debugging and Attach options and click OK.

Click the down arrow next to the Debug Project icon () on the JBuilder toolbar and
select the debug run configuration you just created or edited. You will now be able to
set breakpoints in Java code, such as EJBs, servlets, and so on.

WebSphere Server Advanced Edition 4.0

WebSphere Server Advanced Edition 4.0 launches another Java virtual machine for
debugging, so you must follow instructions so you can debug your enterprise beans:

1 Start the WebSphere Server 4.0.

2 Start the WebSphere Server 4.0 console application (which you’ll find at
<ws4_ae home>\bin\adminclient.bat if you’re running on Windows.)

3 When the console application appears, expand the tree on the left until you see the
Application servers node. Select this node.

4 In the panel on the right side of the console, click the JVM Settings tab. Click the
Advanced Settings button. (You might need to scroll the panel to see this button.)

Chapter 8: Using JBui lder with IBM WebSphere servers 81

Conta iner-managed persis tence (CMP) 1.1 and 2.0 in WebSphere 5.x

5 In the dialog box that appears, enter the following VM options:

-Xdebug
-Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=n

6 If you start the server outside of JBuilder, choose Run|Configurations and click the
New button in the dialog box that appears. In the Configuration Name field, specify a
name for the new run configuration server for debugging on your application server.

7 Select Debug|Remote and make these changes on the Debug page:

a Check the Enable Remote Debugging check box.

b Select the Attach option.

c In the Port Number field, enter the port number you noted during the server
startup process.

d Click OK twice to close all dialog boxes.

8 Click the down arrow next to the Debug Project icon () on the JBuilder toolbar
and select the debug run configuration you just created or edited.

You will be attaching to the application server process. Now you can deploy your
web applications and you’ll be able to stop at breakpoints you set in the bean, JSPs,
or servlets.

To start the server in debug mode within JBuilder, follow these steps:

� Choose Run|Configurations.

� Select the Command node and enter the remote debug port number in the Debug
Transport Address field.

Now clicking the debug toolbar button launches the server in debug mode and attaches
to it, all in one session.

Container-managed persistence (CMP) 1.1 and 2.0 in WebSphere 5.x
You can set the schema name and database vendor type as properties on EJB module
nodes:

1 Right-click the EJB module and choose Properties.

2 Select Build|WebSphere 5.x in the tree.

3 Enter your schema and database vendor information in this dialog box:

4 Click OK.

82 Developing Appl icat ions for J2EE Servers

Container-managed pers is tence (CMP) 1.1 and 2.0 in WebSphere 5.x

To change the default CMP mapping behavior such as the Java to database type
mappings,

1 Choose Enterprise|Configure Servers.

2 Select WebSphere Application Server 5.x in the list of application servers.

3 Click the Custom button.

4 Click the CMP Mapping button.

5 Make your changes in the CMP Mapping Settings dialog box that appears:

6 Click OK.

These are your options:

� Default Java To Data Type Mappings: This list is used if JBuilder is unable to
resolve the database schema type for a CMP field. This could happen if the JDBC
driver fails to report a type for a database column or if the corresponding column (as
defined in the CMP field mapping) is missing.

� Java Type Aliases: This list is used to translate between actual Java types in the
bean and types defined in IBM database type mapping files.

� Data Type Aliases: This list is used to translate between database vendor types (as
reported by the JDBC driver) and types defined in IBM database type mapping files.

Chapter 9: Using JBui lder wi th JBoss servers 83

C h a p t e r

9
Chapter9Using JBuilder with JBoss servers

This chapter explains how set up and use the JBoss application server with JBuilder.
JBuilder officially supports JBoss 3.2.5 and JBoss 3.0.8.

Configuring JBuilder for the JBoss application server
To configure JBuilder settings to target JBoss servers,

1 Choose Enterprise|Configure Servers.

The Configure Servers dialog box appears.

2 Select the JBoss 3.x+ server by clicking it in the pane on the left.

The right side of the dialog box lists the default settings for the selected server. The
General page has fields that all servers have in common, while the Custom page
has fields that are specific to the selected server. In some cases, modifying a
Custom setting will update a setting on the General page.

3 Check the Enable Server check box at the top of the dialog box.

Checking this option enables the fields for the selected application server. You won’t
be able to edit any fields until it is checked. The Enable Server check box also
determines whether this server will appear in the list of servers when you select a
server for your project using the Servers page of the Project|Project Properties
dialog box.

JBuilder provides default settings for the selected server. If JBuilder’s default
settings are not appropriate, edit any of the settings as needed. Some servers
require you to enter settings in addition to the defaults. Clicking the OK button in this
dialog box when not all required values are set or selecting another server while the
current one is enabled displays a message dialog box that informs you about the
missing settings.

4 If you want to change any of the settings, click the ellipsis (…) button next to the field
and make your changes. If you installed JBoss into [drive]:/jboss325, for example,
the default Home Directory would be [drive]:/jboss325/jboss-3.2.5.

84 Developing Appl icat ions for J2EE Servers

Select ing a server

5 Click the Custom tab to view fields unique to the server. Change or fill in these fields:

� Server Version: Your choices are server version 3.2.5 and 3.0.8. These are the
versions of JBoss JBuilder officially supports.

� Configuration Name: Specify the configuration you want to begin using. You can
select a configuration from the drop-down list, or type in your own configuration
name. The configuration you specify must exist in the server directory, which is a
subdirectory of the Home directory.

� Deployment Path: Specify the path used to deploy your modules. By default, the
deployment path will be in the deploy subdirectory of the directory you specified
as the Configuration Name.

� Include System Modules When Listing Deployments: JBuilder can list all your
deployed modules. If you wish to see the system modules such as the web
container or the EJB container and other services that are a core part of the
JBoss server, check this option.

� Include Disabled Modules When Listing Deployments. JBuilder can list all your
deployed modules. If you wish to see modules which are currently disabled,
check this option. A disabled module is simply one that has been renamed to
<module name>.disabled when you chose to disable it within JBuilder using the
Disable deployment option.

6 Choose OK to close the dialog box and configure JBuilder.

When you configure JBuilder to target a JBoss server, required libraries are created for
you. To see a list of the JBoss libraries, see “The created libraries” on page 23.

Selecting a server
If you are working with more than one version of JBoss Application Server and have
configured JBuilder for all versions, you must select which version you want to use for
your current project. Choose Project|Project Properties and select Server in the tree to
display the Server page. See “Selecting a server” on page 24 for more information.

Creating a JBoss service module
You can use JBoss to create a service module for extending the JBoss server. A
service module contains the definition of a service. Once you compile the service
module, a service archive (SAR) is created, ready to be deployed to JBoss.

To begin creating a JBoss service module within JBuilder, follow these steps:

1 Choose File|New|Enterprise and double-click the JBoss Service Module wizard. The
wizard appears:

Chapter 9: Using JBui lder wi th JBoss servers 85

Creat ing a JBoss serv ice module

2 Decide whether you are creating an empty JBoss service module that you will fill in
later, if you are copying an existing JBoss service module from a directory or
archive, if you are creating a JBoss module node that represents a service module
in a directory outside your project, or if you are creating a JBoss service node that
represents an archive (.sar).

Because your selection determines the behavior of the wizard, the next sections
describe how to use the wizard depending on the task you want to accomplish.

If you want to create a new empty JBoss service module,

1 Select the Create Empty JBoss Service Module option on the first page of the JBoss
Service Module wizard.

2 Click Next to see Step 2:

3 Specify a name to identify the new service module in the Name field. The default will
be the name of the selected directory.

4 Specify a directory name for the Directory field. This is the directory that will contain
the module. By default, the wizard uses the same name for the directory as the
name you specified in the Name field. You can use the ellipsis (…) button to
navigate to a directory you want to use instead, if you choose.

5 From the Build JBoss Service Archive drop-down list, select when you want the
JBoss service archive to be built.

6 Choose Finish.

Copying an existing JBoss service module

You can use an existing JBoss service module by copying it to your current project with
the JBoss Service Module wizard:

1 Select the Copy JBoss Service Module From A Directory Or Archive option on the
first page of the JBoss Service Module wizard.

2 Use the ellipsis (…) button to browse to the location of the directory or archive that
contains the module or archive you want to copy to the your project.

86 Developing Appl icat ions for J2EE Servers

Creat ing a JBoss serv ice module

3 Click Next.

4 Specify a name to identify the new module in the Name field.

5 Specify a directory name for the Directory field. By default, the wizard uses the
same name for the directory as the name you specified in the Name field. You can
use the ellipsis (…) button to navigate to a directory you want to use instead, if you
choose.

6 You might want to add Java source paths that are necessary to build a module. It
isn’t absolutely necessary to add the source paths in this wizard, however. You can
also add additional source path directories to your project directly. If you choose to
add the source path directories using the JBoss Service Module wizard, the
directories you specify will be added to your project source path. If you choose to
add to the module’s source path, click the Add button and navigate to the Java
source file directories you want to add. Continue until all source file directories are
added. You can order the source file directories using the Move Up and Move Down
buttons on the page, and you can select a previously added source file directory and
delete with the Remove button.

7 Choose Finish.

You can use an existing module in a directory outside your project; you don’t have to
copy it to your current project:

1 Select the Create A JBoss Service Module For An Existing Directory Or Archive on
the first page of the JBoss Service Module DD Editor.

2 Use the ellipsis (…) button to browse to the location of the directory that contains the
module.

3 Click Next.

Chapter 9: Using JBui lder wi th JBoss servers 87

Creat ing a JBoss serv ice module

4 Specify a name to identify the new JBoss service module in the Name field.

5 From the Build JBoss Service Archive drop-down list, select when you want the
service archive to be built.

6 Use the Add button to add the source path for any Java files associated with the
module.

You might want to add Java source paths that are necessary to build a module. It
isn’t absolutely necessary to add the source paths in this wizard, however. You can
also add additional source path directories to your project directly. If you choose to
add the source path directories using the JBoss Service Module wizard, the
directories you specify will be added to your project source path. If you choose to
add to the module’s source path, click the Add button and navigate to the Java
source file directories you want to add. Continue until all source file directories are
added. You can order the source file directories using the Move Up and Move Down
buttons on the page, and you can select a previously added source file directory and
delete with the Remove button.

7 Choose Finish.

Creating a JBoss service node for an existing service module
archive (SAR) in a directory outside your project

You can create a JBoss service module archive node that is outside your current
project. Although you will be able to view the contents of the archive using the JBoss
Service Module DD Editor, you won’t be able to edit it. The module node will be read
only. You also won’t be able to build it, but you will be able to deploy it.

1 Select the Create A JBoss Service Module For An Existing Directory Or Archive on
the first page of the JBoss Service Module DD Editor.

2 Use the ellipsis (…) button to browse to the location of the directory that contains the
module.

3 Click Next.

4 Specify a name to identify the new module in the Name field.

5 Choose Finish.

88 Developing Appl icat ions for J2EE Servers

Edi t ing the JBoss serv ice module deployment descr ip tor

Editing the JBoss service module deployment descriptor
Once you’ve created a JBoss service module, you edit the module’s deployment
descriptor using JBuilder’s JBoss Service Module DD Editor. To display the editor,
double-click the new service module that appears in the project pane:

Now you can customize the service module deployment descriptor (jboss-service.xml)
with the values you need for your new service. The JBoss Service Module DD Editor
works just like the other J2EE DD Editors in JBuilder. To learn how to add pages and
edit them in the DD Editor, see Chapter 11, “Editing J2EE deployment descriptors.”

In the structure pane, you can see that there are JBoss-specific nodes for Classpaths,
Local Directories, and MBeans. Add a Classpath, Local Directory, or MBean by right-
clicking the category of the item you are adding and choosing Add on the context menu
that appears. Then double-click that new entry in the structure pane to display a page
for it in the JBoss Service Module DD Editor. For assistance filling in the fields on these
pages, display the page and press F1. You’ll find JBoss documentation useful in filling
in the fields, too.

At any time you can view the jboss-service.xml descriptor in its source form. Expand
the service module node in the project pane to see the Deployment Descriptors node
and then expand that node too. The jboss-service.xml node becomes visible. Double-
click it to see the it in the content pane. You can edit the file by hand, if you wish.

MBeans

All JBoss services are in MBeans. So your service module will have one or more
MBeans. Once you’ve added an MBean entry to the module, expand the entry in the
structure pane to see Attributes, Depends Items, and Depends Lists nodes. Add
entries to these categories by right-clicking them and choosing Add. Press F1 for help
filling in the fields.

Starting the server
To prepare to start the server from within JBuilder, create a server runtime
configuration. Follow these steps:

1 Choose Run|Configurations.

2 In the dialog box that appears, click the New button.

Chapter 9: Using JBui lder wi th JBoss servers 89

Deploying loca l ly

3 Select Server from the Type drop-down list.

4 In the Name field, enter a name, such as Server or something that will identify the
run configuration.

5 Fill in the VM Parameters and Server Parameters needed to run the server. If you’ve
selected a target application server as described in “Selecting a server” on page 84,
default values are already in place.

6 Click OK.

To start the server, click the down-arrow next to the Run Project icon () and select
the server run configuration you just created.

Deploying locally
To deploy a deployable module to a local server, choose one of these options:

� Using the Enterprise|Server Deployment command:

a Choose Enterprise|Server Deployment to display the JBoss 3.x+ Deploy Settings
dialog box.

b From the Action drop-down list, select Deploy.

c Select the archive to deploy from the drop-down Archive To Deploy list or browse
to the archive you want to deploy using the ellipsis (…) button.

d Specify the correct deployment path for JBoss Server. Accept the default value or
browse to the correct directory using the ellipsis (…) button.

e Choose OK.

� Deploying from the project pane:

a Right-click the module you want to deploy in the project pane and choose Properties.

b Select Deployment in the tree to display the Deployment page.

c Specify the correct deployment path for JBoss Server. Accept the default value or
browse to the correct directory using the ellipsis (…) button.

d Choose OK.

e Right-click the module you want to deploy in the project pane and choose Deploy
Options|Deploy.

90 Developing Appl icat ions for J2EE Servers

Deploy ing exploded web modules

Both the Server Deployment dialog box and the Deployment page of the Project|
Project Properties dialog box have these two options:

� Include System Modules When Listing Deployments

� Include Disabled Modules When Listing Deployments

These options allow you to fine tune what you see when you list deployments using
either the List Deployments action in the Server Deployment dialog box or when you
right-click a module and choose Deploy Options|List Deployments. Listed deployments
appear in a tree in the message pane. A system module is one that extends the server
and provides a service your modules can use. A disabled module is one you mark as
Disabled by right-clicking the module and choosing Deploy Options|Disable. When a
module is disabled, it is simply renamed to <module>.disabled. To enable a module
again, right-click the module and choose Deploy Options|Enable.

Deploying exploded web modules
To deploy exploded modules, follow these steps:

1 Create a web module in a directory with the name <modulename>.<fileext>, such as
Module1.war, for example.

2 Ensure that the directory that contains the web module is at least one level below
the project directory. So, for example, if your project is created in a directory named
Project1, you might create your module in a directory named Project1/deploy/
<modulename>.<fileext>.

3 Edit the jboss-service.xml file in your JBoss configuration directory (<CONFIG_NAME>/
conf). Add the parent directory of your module directory (such as Project1/deploy) to
the URL attribute element under the mbean named
jboss.deployment:type=DeploymentScanner,flavor=URL. For example, deploy/,file://
C:/Project1/deploy/. Be that you add to the existing URL attribute (deploy/).

4 Start the server.

Remote debugging
Within JBuilder, follow these steps:

1 In the project from which you want to launch the remote debug session, click Run|
Configurations. If you have not yet created a server type run configuration, click
New and select type Server. If you have already created a server type run
configuration, select it and choose Edit.

2 Select Debug|Remote in the tree.

3 Check the Enable Remote Debugging option.

4 Enter the host name (the name of the machine on which the server is running.)

5 Specify the correct port number for the remote server.

6 Click OK.

7 Click the down arrow next to the Debug Project icon () on the JBuilder toolbar
and select the debug run configuration you just created or edited. You will now be
able to set breakpoints in Java code, such as in EJBs, servlets, and so on.

Chapter 9: Using JBui lder wi th JBoss servers 91

JSP debugging

JSP debugging
Tomcat or Jetty do not support JSP source debugging, but you can remedy this
problem with the following steps:

1 Download Tomcat 4.0 from jakarta.apache.org/tomcat.

2 Browse to the lib directory of the Tomcat server install.

3 Search for the jasper-compiler.jar and the jasper-runtime.jar in your JBoss
installation and replace them with the jasper-compiler.jar and the jasper-
runtime.jar found in the Tomcat 4.0 server’s lib directory.

For more information about JSP debugging, see “Debugging JSPs” in the “JavaServer
Pages (JSP)” chapter of the Developing Web Applications.

92 Developing Appl icat ions for J2EE Servers

Chapter 10: Using JBui lder wi th Tomcat 93

C h a p t e r

10
Chapter 10Using JBuilder with Tomcat

Web Development is a
feature of JBuilder

Developer and
JBuilder Enterprise

Both Java servlets and JavaServer Pages (JSP) run inside web servers. Tomcat, the
JavaServer Pages/Java Servlets reference implementation, is included with JBuilder.
Although it might differ from your production web server, Tomcat allows you to develop
and test your servlets and JSPs within the JBuilder development environment. This
chapter explains how to work with Tomcat running inside JBuilder.

When you install JBuilder, two versions of Tomcat, 4.1.30 and 5.0.27, are automatically
installed in your JBuilder directory. By default, they are automatically configured. You
can examine the configuration with the Configure Servers dialog box (Enterprise|
Configure Servers).

Tomcat 4.is the JDK 1.4 Lightweight Edition. This edition does not contain an XML
parser (JDK 1.4 has one built in) and a few other publicly available components. You
can download the full edition from http://jakarta.apache.org/ and use the Configure
Servers dialog box to point to it.

In JBuilder Enterprise, Tomcat 5.0 is the default server. To change the default for your
project, see “Setting up servers within JBuilder” on page 20. Tomcat 5.0 supports JSR-
45, allowing you to debug non-Java source, both locally and remotely. For more
information, see “Debugging non-Java source” in Building Applications with JBuilder.

Tip If you want to use an earlier version of Tomcat, you can download the binary
distribution locally and use the Configure Servers dialog box (Enterprise|Configure
Servers) to configure it.

94 Developing Appl icat ions for J2EE Servers

Using JBui lder wi th Tomcat

To view Tomcat configurations,

1 Choose Enterprise|Configure Servers. The Configure Servers dialog box is
displayed.

Note In the tree on the left side of the dialog box, entries in gray have not yet been
configured. Entries in red are invalid.

2 Choose one of the Tomcat installations from the User Home folder. The Enable
Server option at the top of the right side of the dialog box is automatically checked.
You do not need to change any settings.

3 Click OK to close the dialog box.

If you have installed Tomcat to another directory and want to run Tomcat from that
directory instead of the default, you can change the settings to point to that directory.
The following table explains the settings.

Table 10.1 Configure Servers dialog box settings for Tomcat

Option Description

Home directory Tomcat’s home directory. If you’re reconfiguring one of the Tomcat
versions installed with JBuilder, this will be in the <jbuilder>/
thirdparty directory.

Main class The main class for starting the Tomcat web server.

VM parameters The parameters to pass to the Java VM running the web server.

Server parameters The parameters to pass to the web server.

Working directory The working directory.

Class The location of Tomcat class files.

Source The location of Tomcat source files.

Documentation The location of Tomcat documentation files.

Required Libraries The libraries that Tomcat requires.

Chapter 10: Using JBui lder wi th Tomcat 95

Select ing Tomcat as your pro ject ’s web server

If you’d like more information about Tomcat or would like to run it standalone, refer to
the documentation WAR file in the following folder:

� Tomcat 4.1 — <jbuilder>/thirdparty/jakarta-tomcat-4.1.30/webapps

� Tomcat 5.0 — <jbuilder>/thirdparty/jakarta-tomcat-5.0.27/webapps

Tomcat 4.1 does not support JSP debugging. You can remedy this problem with the
following steps:

1 Download the Tomcat 4.0 binary from http://jakarta.apache.org/.

2 Browse to the Tomcat 4.0 installation directory. Open the lib folder.

3 Copy jasper-compiler.jar and jasper-runtime.jar to the <jbuilder>/thirdparty/
jakarta-tomcat-4.1.30/common/lib directory. You will overwrite the two existing files.

Note The Borland Enterprise Server AppServer uses Tomcat internally for the production
web server. If you’re using the Borland Enterprise Server, you do not need to configure
Tomcat separately.

Selecting Tomcat as your project’s web server
Before you begin web development, you should select Tomcat as the web server for
your project.

To select the Tomcat web server for your project,

1 Choose Project|Project Properties.

2 Click the Server page. The Server page is displayed.

3 Select the Single Server For All Services In Project option and select the version of
Tomcat you want from the drop-down list.

4 If you want to avoid having libraries added to your project that you won’t use,
uncheck the check box in front of the service(s) you don’t need in the Services list. If
you disable services, the corresponding JBuilder features will be disabled.

Important Tomcat 4.1 and 5.0 support the JSP/Servlet and Naming/Directory services.

5 If you want to make changes to the configuration settings for the selected version of
Tomcat, click the ellipsis (…) button to the right of the server name and edit the
settings you want on the General page. Click OK when you’re finished.

96 Developing Appl icat ions for J2EE Servers

Running your serv let or JSP with Tomcat

Running your servlet or JSP with Tomcat
Before you run your web application, you should configure web view options to control
how Tomcat is launched in the IDE. For more information, see “Configuring the IDE for
web run/debug” in the “Working with web applications in the JBuilder IDE” chapter of
Developing Web Applications.

Before you web run your servlet or JSP in JBuilder, you also need to create a runtime
configuration, set runtime properties for your project, and compile your servlet or JSP.
For complete information about these topics, see “Working with web applications in the
JBuilder IDE” in Developing Web Applications. Once you’ve completed these tasks,
you are ready to run your servlet or JSP.

To web run your servlet or JSP in JBuilder, right-click the servlet or JSP file in the
project pane and choose Web Run. The Web Run command runs your configuration in
Tomcat without debugging it. If your servlet runs from an HTML or SHTML file, right-
click that file and choose Web Run.

If the Web Run or Web Debug command is grayed out on the context menu for a
servlet or JSP, check the runtime configuration. To run a web application, you need to
create a runtime configuration with the server type selected as the current runner. That
server must support the JSP/Servlet service. To create a runtime configuration, see
“Creating a runtime configuration” in the “Working with web applications in the JBuilder
IDE” chapter of Developing Web Applications.

Note Applets cannot be web run or web debugged. This is because applets don’t have a
URL or a web context to run in. Additionally, applets run in a client browser as opposed
to a server. Typically, you run an applet in Sun’s AppletViewer or in JBuilder’s
AppletTestbed. For more information, see “JBuilder’s AppletTestbed and Sun’s
appletviewer” in the “Working with applets” chapter of Developing Web Applications.

Starting Tomcat

When you choose Web Run, JBuilder starts Tomcat, using:

� The runtime configuration

� The options set on Tools|Preferences|Web Run|Debug|Optimize

Messages are logged to the web server tab displayed in the message pane. HTTP
commands and parameter values are also echoed to this pane. The name of the tab
will reflect the name of the web server, for example “Tomcat” for the Tomcat web
server.

Stopping Tomcat

To stop Tomcat, click the Reset Program button on the web server tab. To start the
web server again and re-run your web application, click the Restart Program button
on the tab. You’ll usually follow these steps when you make changes to source code,
re-compile, and re-run. You don’t need to close the web server pane each time you
start the web server.

Note The first time you press the Reset Program button, it simply sends a command to the
server to shutdown. In particular, if you are trying to debug your web application’s
lifecycle event handlers, this would call the Servlet.destroy() and
ServletContextListener.contextDestroyed() methods. If you’re not debugging, the
server will usually shutdown by itself in a few seconds. If you press the Reset Button a
second time, the server process is terminated immediately.

Chapter 10: Using JBui lder wi th Tomcat 97

Running your serv le t or JSP wi th Tomcat

Changing Tomcat’s port number

Occasionally, you may run into a problem where the default port number assigned to
your web server (typically 8080) is in use by another application. You can reassign the
port number, or simply instruct JBuilder to search for an unused port. (In a typical
installation, this is set as the default.)

To change Tomcat’s port number,

1 Choose Run|Configurations and select the runtime configuration for your web
application. Choose Edit.

2 Choose the JSP/Servlet Service in the tree on the lower left side of the Edit Runtime
Configuration dialog box.

3 Enter the port number the web server should listen to in the Port Number field.

4 Choose the Search For Unused Port option to tell JBuilder to choose another port if
the specified one is in use. (The port is only searched for the first time a web run is
requested.) It is useful to select this option when you are running more than one
servlet or JSP, as otherwise you might get a message that the port is busy. It is also
useful to check this option in the event that a user problem brings the web server
down. With this option selected, you will be protected if the web server is not shut
down properly. This option works in conjunction with the Web View options on the
Web page of the Preferences dialog box when the specified port is in use by a non-
web process.

Creating a custom server.xml file with Tomcat

Typically, when you run your web application using Tomcat in the JBuilder IDE,
JBuilder creates a serverXXXX.xml file (where XXXX is the port number Tomcat is
listening to) and deletes it when you shut down Tomcat. You can edit the file and force
JBuilder to keep it.

To create a custom server.xml file,

1 Run your web application in JBuilder as you normally would.

2 Go to your project’s Tomcat\conf directory while Tomcat is running. This folder is
created by JBuilder when your web application is running.

3 Make a copy of the conf directory in a temp directory.

4 Open serverXXXX.xml in the conf directory in a text editor.

5 Remove the second line of the file:

<!--This comment marks this file as generated, so it may be deleted and
regenerated at any time. To preserve manual changes to this file, delete
this comment.-->

With this line removed, JBuilder will not automatically delete the file when you stop
the server.

6 Make other changes to the server configuration file as needed. (Save the file and
leave it open in the editor.)

7 Go back to JBuilder and shut down Tomcat.

8 Save the edited file to the copy of the conf directory.

9 Copy the conf directory back to your project’s Tomcat directory.

10 Restart the web server and your web application.

Now, when you re-start the web application and the web server, your edited
serverXXXX.xml file will be used instead of an auto-generated one.

98 Developing Appl icat ions for J2EE Servers

Running your serv let or JSP with Tomcat

Debugging JSPs with Tomcat 4.1

Tomcat 4.1 does not support JSP debugging. You can remedy this problem with the
following steps:

1 Download the Tomcat 4.0 binary from http://jakarta.apache.org/.

2 Browse to the Tomcat 4.0 installation directory. Open the lib folder.

3 Copy jasper-compiler.jar and jasper-runtime.jar to the <jbuilder>/thirdparty/
jakarta-tomcat-4.1.30/common/lib directory. You will overwrite the two existing files.

Chapter 11: Edit ing J2EE deployment descr ip tors 99

C h a p t e r

11
Chapter 11Editing J2EE deployment

descriptors
JBuilder has a Deployment Descriptor Editor, also known as the DD Editor, you can
use to edit the deployment descriptors of various types of J2EE modules. This chapter
introduces you to the DD Editor and gives you an overview of how to use it.

The DD Editor can edit these types of J2EE modules:

� Web — A Web module contains all the compiled source files, resources, and
deployment descriptors needed to deploy a web application. You can create web
modules using JBuilder’s web wizards and tools. For complete information about
web modules, see Developing Web Applications.

� EJB — An EJB module contains all the compiled source files, resources, and
deployment descriptors needed to deploy one or more enterprise beans. You can
create enterprise beans using JBuilder’s EJB wizards and tools. For complete
information about creating EJB modules and enterprise beans, see “Creating
session beans with the EJB designer”, “Creating beans with the Enterprise
JavaBean 1.x wizard”, “Creating entity beans with the EJB designer”, and “Creating
EJB 1.x entity beans from an existing database table.” All these chapters are in the
Developing Applications with Enterprise JavaBeans book.

� Application client — An application client module contains all the resources and
deployment descriptors for a client application that references one or more
enterprise beans. Create the module using the File|New|Enterprise|Application
Client Module wizard. For more specific information about creating application client
modules and editing the deployment descriptors, see “Creating an application client
module” in the “Developing enterprise bean clients” chapter of Developing
Applications with Enterprise JavaBeans.

� Connector — A connector module contains the resource adapter and deployment
descriptors that connect the selected application server with an existing enterprise
information system. Create a connector module using the File|New|Enterprise|
Connector Module wizard. For more specific information about creating connector

100 Developing Appl icat ions for J2EE Servers

Disp lay ing the DD Editor

modules and editing the deployment descriptors, see Chapter 12, “Integrating with
Enterprise Information Systems.”

� Application — An application module can contain any of the other types of J2EE
modules and wraps them into a single application and includes its own deployment
descriptor entries. Create an application module using the File|New|Enterprise|
Application Module wizard. For more specific information about creating application
modules and editing the deployment descriptors, see “Creating an application
module” in the “Deploying enterprise beans” chapter of Developing Applications with
Enterprise JavaBeans.

� JBoss service — A JBoss service module contains the definition of a service. Once
you compile the service module, a service archive (SAR) is created, ready to be
deployed to JBoss. For information about creating a JBoss service module, see
“Creating a JBoss service module” on page 84.

Displaying the DD Editor
After you have created a J2EE module, display the DD Editor by double clicking the
new module in the project pane. If the module is an EJB module, you must then click
the EJB DD Editor tab in the content pane of the browser. You’ll also see nodes appear
in the structure pane. As an example, here is how the browser appears when a EJB
module has been double-clicked, the EJB DD Editor page in the content pane selected,
and the BEA WebLogic Platform Server 8.x is the selected server for the project:

Some of the nodes in the structure pane are expandable as they contain data already.
In this particular EJB module, two entity beans were created using the EJB designer
and added to the MyEJBModule module. As a result, the Entity Beans node is

Chapter 11: Edit ing J2EE deployment descr iptors 101

Standard and server-specif ic pages

expandable. When this node is expanded, you can see the entity beans the module
contains:

Standard and server-specific pages
Usually you will see a Standard page for each node in the structure pane that can be
expanded. This Standard page contains fields that apply to all servers. Often you will
also see one or more tabs that apply to a specific server. Click the server-specific tab to
see the page. The pages available depend on which server you selected for the
project. In this example, there are three additional pages available for a WebLogic
entity bean as WebLogic is the selected server:

Tip To see information about a page in the DD Editor, press F1.

Fill in each Standard page with the information requested. You can find more specific
information about filling in these fields in other parts of the documentation that discuss
the various types of J2EE modules:

� EJB modules
� Web modules
� Application client modules
� Connector modules
� Application modules

102 Developing Appl icat ions for J2EE Servers

Adding to and delet ing f rom a deployment descr ip tor

Click any server-specific tabs and fill in each of these pages also. Whether there are
server-specific pages available depends on the type of node you are editing and on
your selected server. Here you can see a WebLogic-specific page selected for an EJB
module:

You may have noticed already the nodes in the structure pane that are marked with the
server-specific icon (). These too are specific to a particular server. In this
particular case, that server is BEA WebLogic Server.

Adding to and deleting from a deployment descriptor
To add descriptor information to a module,

� Right-click the type of node for which you want to add information to the descriptor
in the structure pane and choose Add.

Chapter 11: Edit ing J2EE deployment descr iptors 103

Val idat ing a deployment descr ip tor entry

A new page appears in the content pane that corresponds to the type of node you
selected. The sample image shows a security permission being added to a
connector module.

� Fill in the information requested on this page and new node for that page appears
under the node you selected in the structure pane.

Double-clicking a top-level category node, such as Entity Beans in an EJB module,
displays a page with a table containing all existing entries of that type. For example, if
an EJB module contains two entity beans, double-clicking the Entity Beans node
displays a table containing an entry for each entity bean. You can also use this page to
add and delete entries or reorder the list with the Move Up and Move Down buttons.

To add an entry, click the Add button, then select the new entry in the table and double-
click it. The appropriate page appears. Fill in the required information.

There are two ways to delete an entry from a category:

� Right-click the node you want to delete in the structure pane and choose Delete.

� Double-click the top-level category node. On the page that appears, select the entry
from the table you want to delete and click the page’s Remove button.

Validating a deployment descriptor entry
You can help ensure the deployment descriptor information that is common to all
servers is entered correctly by using the DD Editor’s validator. The validator checks
that the deployment descriptor conforms to the DTD specification and also makes other
checks such as insuring proper naming conventions are used.

To validate a deployment descriptor,

1 Right-click the node in the structure pane you want to validate.

2 Choose Validate on the context menu that appears.

Note Server-specific data is not checked. Only data found on Standard pages is validated.

104 Developing Appl icat ions for J2EE Servers

Val idat ing a deployment descr iptor entry

If errors or warnings exist, they will appear on a Validation page in the message pane:

Click an error message and the page on which the error occurs appears in the DD
Editor.

There is also an Errors folder that appears in the structure pane when the deployment
descriptor has errors. The Errors folder appears only for the Standard DD editor pages.
Open the Errors folder to see the error messages.

The validator is invoked as part of the build process. Output from the validator is
merged with the build output. You can turn this default behavior off:

1 Right-click the module and choose Properties.

2 Select the Build node.

3 Uncheck the Validate Deployment Descriptors During Build option.

4 Choose OK.

Chapter 12: In tegrat ing wi th Enterpr ise In format ion Systems 105

C h a p t e r

12
Chapter12Integrating with Enterprise

Information Systems
The J2EE Connector architecture addresses the problem of integrating Java enterprise
applications with existing Enterprise Information Systems (EIS). An EIS can be a
system such as ERP, CRM, and supply chain management applications and database
systems. Previously, if an enterprise application had to access information in an EIS,
some one had to build a custom connection between the application server and the
EIS.

Now the J2EE Connector architecture defines a uniform way to integrate J2EE
application servers with existing information systems. Each EIS vendor creates a
resource adapter using this architecture. A resource adapter is much like a JDBC
driver, as both provide a standard API through which an application can access a
resource that is outside the J2EE server. This resource adapter plugs into a J2EE
compliant application server. As long as the resource adapter follows the Connector
specification, it provides a scalable, secure, and transactional connection to an
application server.

To use a resource adapter for an application server, you can use JBuilder’s Connector
Module wizard, which creates the deployment descriptors for the resource adapter.
Then you use the Connector Module DD Editor to provide the information the resource
adapter needs to make the connection to the EIS.

Creating a connector module node in the project pane
To create a connector module, you use JBuilder’s Connector Module wizard. Besides
creating a new empty connector module, the Connector Module wizard also gives you
the option to copy an existing connector module to your project instead of creating a
new one. You can also use the wizard to create a module node in the project pane that
represents an existing module directory outside your project. Or you can use it to
create a module node that represents an archive (.rar) outside your project; you can
view the archive using the Connector Module DD Editor, but you won’t be able to edit it.

106 Developing Appl icat ions for J2EE Servers

Creat ing a connector module node in the project pane

To begin creating a connector module node that contains a resource adapter, follow
these steps:

1 Choose File|New|Enterprise and double-click the Connector Module (RAR) wizard.

2 Decide whether you are creating an empty connector module that you will fill in later,
if you are copying an existing connector module from a directory or archive, if you
are creating a module node that represents a connector module in a directory
outside your project, or if you are creating a module node that represents an archive
(.rar).

Because your selection determines the behavior of the wizard, the next sections
describe how to use the wizard depending on the task you want to accomplish.

Creating an empty connector module

If you want to create a new empty connector module,

1 Select the Create Empty Connector Module option on the first page of the
Connector Module wizard.

2 Click Next to see Step 2:

Chapter 12: In tegrat ing wi th Enterpr ise In format ion Systems 107

Creat ing a connector module node in the pro ject pane

3 Specify a name to identify the new module in the Name field. The default will be the
name of the selected directory.

4 Specify a directory name for the Directory field. This is the directory that will contain
the module. By default, the wizard uses the same name for the directory as the
name you specified in the Name field. You can use the ellipsis (…) button to
navigate to a directory you want to use instead, if you choose.

5 From the Build Connector Archive drop-down list, select when you want the
connector archive to be built.

6 Select which Connector specification you are using from the options in the Available
Standards box.

7 Click Next to go to Step 3:

8 Check the Include box of the archives found in your current project that you want to
become part of the Connector module. The wizard lists all archives it finds in your
current project.

9 If you want files that are outside modules in your project included, click the External
Files tab, click the Add button to display the Select One Or More Files dialog box,
and use it to select the files you want to add. Continue adding files until all the files
you want added to the connector module are added. Click OK.

10 Choose Finish.

Copying an existing connector module

You can use an existing connector module by copying it to your current project with the
Connector Module wizard:

1 Select the Copy Connector Module From A Directory Or Archive option on the first
page of the Connection Module wizard.

2 Use the ellipsis (…) button to browse to the location of the directory or archive that
contains the module or archive you want to copy to the your project.

3 Click Next.

4 Specify a name to identify the new module in the Name field.

5 Specify a directory name for the Directory field. By default, the wizard uses the
same name for the directory as the name you specified in the Name field. You can
use the ellipsis (…) button to navigate to a directory you want to use instead, if you
choose.

6 From the Build Connector Archive drop-down list, select when you want the
connector archive to be built.

108 Developing Appl icat ions for J2EE Servers

Creat ing a connector module node in the project pane

7 Select which Connector specification you are using from the options in the Available
Standards box.

8 Click Next to go to Step 3:

9 Check the Include box of the archives found in your current project that you want to
become part of the Connector module. The wizard lists all archives it finds in your
current project.

10 If you want files that are outside modules in your project included, click the External
Files tab, click the Add button to display the Select One Or More Files dialog box,
and use it to select the files you want to add. Continue adding files until all the files
you want added to the connector module are added.

11 Choose Finish.

Creating a module node for an existing module in a directory
outside your project

You can use an existing module in a directory outside your project; you don’t have to
copy it to your current project:

1 Select the Create A Connector Module For An Existing Directory Or Archive on the
first page of the Connector Module DD Editor.

2 Use the ellipsis (…) button to browse to the location of the directory that contains the
module.

3 Click Next.

Chapter 12: In tegrat ing wi th Enterpr ise In format ion Systems 109

Creat ing a connector module node in the pro ject pane

4 Specify a name to identify the new module in the Name field.

5 From the Build Connector Archive drop-down list, select when you want the
connector archive to be built.

6 Use the Add button to add the source path for any Java files associated with the
module.

You might want to add Java source paths that are necessary to build a module. It
isn’t absolutely necessary to add the source paths in this wizard, however. You can
also add additional source path directories to your project directly. If you choose to
add the source path directories using the Connector Module wizard, the directories
you specify will be added to your project source path.

7 Click Next to go to Step 3:

8 Check the Include box of the archives found in your current project that you want to
become part of the Connector module. The wizard lists all archives it finds in your
current project.

9 If you want files that are outside modules in your project included, click the External
Files tab, click the Add button to display the Select One Or More Files dialog box,
and use it to select the files you want to add. Continue adding files until all the files
you want added to the connector module are added.

10 Choose Finish.

Creating a connector module node for an existing archive (RAR)
outside your project

You can create a connector module node for a resource adapter that is outside your
current project. Although you will be able to view the contents of the archive using the
Connector Module DD Editor, you won’t be able to edit it. The module node will be read
only. You also won’t be able to build it, but you will be able to deploy it.

To create a connector module node for a resource adapter outside your project,

1 Select the Create A Connector Module For An Existing Directory Or Archive.

2 Use the ellipsis (…) button to browse to the location of the resource adapter.

110 Developing Appl icat ions for J2EE Servers

Viewing the connector module deployment descr iptors

3 Click Next to go to the next page:

4 Specify the name you want to use as the name of the connector for the Name field.
The default name will be the name of the archive with the extension as a separate
word at the end, such as Connector1 RAR.

5 Choose Finish.

Viewing the connector module deployment descriptors
No matter which method you used to create a new connector module node, you’ll see it
appear in the project pane when you finish using the Connector Module wizard.

To view or edit the connector module deployment descriptor(s), double-click the
connector module node in the project pane. (You won’t be able to edit an archive
located outside your current project.) The Connector Module DD Editor appears:

Fill in the fields on the Connector page in the Connector DD Editor. These are the fields:

� Vendor Name: Enter the name of the EIS vendor.

� Specification Version: Specify the Connector specification version being used.

� EIS Type: The type of EIS, which helps identify which EIS instances the connector
can be used with.

Chapter 12: In tegrat ing wi th Enterpr ise In format ion Systems 111

Edi t ing the resource adapter descr ip tors

� Resource Adapter Version: Specify the version of the resource adapter being
used.

� Language: Select the language you are using from the drop-down list.

� Display Name: Specify a short name that can be displayed in a GUI.

� Description: Use this field to include any information that the component file
producer wants to provide to the deployer. This information is optional.

� Large Icon: Specify a JPEG or GIF file containing a small image (16x16 pixels) to
be used in a GUI. This information is optional.

� Small Icon: Specify a JPEG or GIF file containing a small image (32x32 pixels) to
be used in a GUI. This information is optional.

� License Required: Use the drop-down list to specify whether a license is required
or not.

� Description: If a license is required, this field specifies the licensing requirements
for the resource adapter module. For example, you might include the duration of
license, number of connection restrictions, and so on. This information is optional.

Editing the resource adapter descriptors
By looking in the structure pane, you’ll see that your connector module contains a
resource adapter node. Other nodes that you may see are server-specific nodes, so
which nodes appear depends on your server.

Note You won’t be able to edit an archive that is located outside your current project.

You must supply the information requested on the Resource Adapter page. Fill in the
following fields:

� Managed Connection Factory Class: Specify the class that implements the
ManagedConnectionFactory interface, which either matches an existing connection to
the EIS with the incoming request or creates a new physical connection to the EIS.
When the application server needs a connection to the EIS, it asks this class to
retrieve an existing connection or create a new one.

� Connection Factory Interface: Specify the ConnectionFactory interface, which
allows an application component to connect to an EIS instance.

� Connection Factory Implementation Class: Specify the class that implements the
ConnectionFactory interface. This class will contain a getConnection() method that
requests the application server to allocate a connection using the
ConnectionManager.allocateConnection() method.

� Connection Interface: Specify the Connection interface, which connects an
application with the EIS.

� Connection Implementation Class: Specify the class that implements the
Connection interface. This class must include a close() method so the application
can terminate a connection with the EIS.

� Transaction Support: Use the drop-down list to specify whether the connection will
have No Transaction Support, Local Transaction Support, or XATransaction
Support. Local transactions are managed internally by the EIS. XA transactions are
managed by a transaction manager external to the EIS.

� Supports Reauthentication: Check this field if you want the resource adapter to
support reauthentication.

112 Developing Appl icat ions for J2EE Servers

Edi t ing the resource adapter descrip tors

For more information about resource adapters and the J2EE Connector Architecture,
see these articles on the web:

� “The Java 2, Enterprise Edition (J2EE) Connector Architecture’s Resource Adapter”
at http://developer.java.sun.com/developer/technicalArticles/J2EE/
connectorclient/resourceadapter.html

� “J2EE Connector Architecture” at http://java.sun.com/j2ee/connector/.

� “J2EE Connector Architecture” at http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/
Connector.html, which is part of Sun’s J2EE Tutorial.

Expand the resource adapter node in the structure pane to see the subnodes. Which
subnodes appear depends on which version of the Connector standard you are using.
To add a new node of any of these types, right-click the node and choose Add.

Authentication Mechanism page

Connector modules have an Authentication Mechanism node in the structure pane.
Expand the Resource Adapter node to see it.

If you add a Authentication Mechanism node, it looks like this:

These are the fields on this page:

� Type: Use the drop-down list to specify the type as BasicPassword or Kerbv5,
meaning a Kerboros version 5 authentication mechanism.

� Credential Interface: Use the drop-down list to specify the interface. If you chose
the BasicPassword type, select the PasswordCredential interface, which
encapsulates a user name and password. If you chose the Kerbv5 type, select the
GenericCredential interface, which defines a way to access the security credentials
of a Principal.

� Description: Use the optional Description field to specify any resource adapter
specific requirement for the support of security contract and authentication
mechanism.

Chapter 12: In tegrat ing wi th Enterpr ise In format ion Systems 113

Edi t ing the resource adapter descr ip tors

Configuration Property page
Connector modules have a Configuration Property node in the structure pane. Expand
the Resource Adapter node to see it.

If you add a Configuration Property page, it looks like this:

These are the fields on this page:

� Name: Specify the name of the configuration property.
� Type: Specify the type of the configuration property by using the drop-down list.
� Value: Specify the value of the configuration property.
� Description: Describe the configuration property.

Security Permission page
Connector modules have a Security Permission node in the structure pane. Expand the
Resource Adapter node to see it.

If you add a Security Permission page, it looks like this:

These are the fields on this page:

� Specification: Specifies a security permission that is required by the resource
adapter code.

� Description: An optional description.

114 Developing Appl icat ions for J2EE Servers

Server-specif ic pages

Server-specific pages
As you work with pages in the Connector Module DD Editor, you may find server-
specific pages. To get help for these pages, press F1. Your server documentation
should also be a good source of information about the type of data your server
requires.

Some servers have a server-specific node in a connector module that is not a part of
the resource adapter. For example, here you see a Map Entries node in the structure
pane, which appears if your selected server is WebLogic 8.x:

Again, if you need help with the pages linked to a server-specific node, press F1 and
also consult your server’s documentation.

Compiling the connector module
When you successfully compile a connector module, a RAR (resource archive) is
created.

To compile a connector module, right-click the module in the project pane and choose
Make.

Note You will not be able to make or build a read-only module.

To see the resulting RAR, expand the connector module node in the project pane:

You can also expand the RAR node to see the RAR’s deployment descriptors. Double-
click a deployment descriptor to see it in its XML format. If there are errors in the
resulting XML file, the Errors folder in the structure pane will tell you what the problems
are.

Chapter 13: Bui ld ing J2EE modules 115

C h a p t e r

13
Chapter13Building J2EE modules

This chapter presents specific information about packaging J2EE modules in JBuilder.
It explains about setting module build properties, including the use of custom filters and
file types. It also provides a few common build scenarios and tips for improving build
performance.

J2EE modules
You can create J2EE modules in JBuilder using the wizards available in the object
gallery (File|New). JBuilder recognizes the following types of J2EE modules:

� Web — A Web module contains all the compiled source files, resources, and
deployment descriptors needed to deploy a web application. You can create web
modules using JBuilder’s web wizards and tools. Once you compile the web
module, a WAR file is created. For complete information about web modules, see
Developing Web Applications.

� EJB — An EJB module contains all the compiled source files, resources, and
deployment descriptors needed to deploy one or more enterprise beans. You can
create enterprise beans using JBuilder’s EJB wizards and tools. Once you compile
the EJB module, a JAR file is created. For complete information about creating EJB
modules and enterprise beans, see “Creating session beans with the EJB designer”,
“Creating beans with the Enterprise JavaBean 1.x wizard”, “Creating entity beans
with the EJB designer”, and “Creating EJB 1.x entity beans from an existing
database table.” All these chapters are in the Developing Applications with
Enterprise JavaBeans book.

� Application client — An application client module contains all the resources and
deployment descriptors for a client application that references one or more
enterprise beans. Create the module using the File|New|Enterprise|Application
Client Module wizard. Compiling an application client module creates a JAR file. For
more specific information about creating application client modules and editing the
deployment descriptors, see “Creating an application client module” in the
“Developing enterprise bean clients” chapter of Developing Applications with
Enterprise JavaBeans.

� Connector — A connector module contains the resource adapter and deployment
descriptors that connect the selected application server with an existing enterprise
information system. Create a connector module using the File|New|Enterprise|

116 Developing Appl icat ions for J2EE Servers

Sett ing module bui ld proper t ies

Connector Module wizard. Compiling a connector module creates a RAR (Resource
Archive) file. For more specific information about creating connector modules and
editing the deployment descriptors, see Chapter 12, “Integrating with Enterprise
Information Systems.”

� Application — An application module can contain any of the other types of J2EE
modules and wraps them into a single application and includes its own deployment
descriptor entries. Create an application module using the File|New|Enterprise|
Application Module wizard. Compiling an application module creates an EAR
(Enterprise Archive) file. For more specific information about creating application
modules and editing the deployment descriptors, see “Creating an application
module” in the “Deploying enterprise beans” chapter of Developing Applications with
Enterprise JavaBeans.

� JBoss service — A JBoss service module contains the definition of a service. Once
you compile the service module, a service archive (SAR) is created, ready to be
deployed to JBoss. For information about creating a JBoss service module, see
“Creating a JBoss service module” on page 84

Setting module build properties
The content of an archive is controlled by a combination of node level properties (filters
for file types and classes and dependencies). The content of the archive will match the
content of the module directory. To begin editing the properties of a module, right-click
the module in the project pane and choose Properties on the context menu.

File type filters

In the Properties dialog box for a module, the Content page contains a list of include file
type filters that control which file types are copied over from the project’s output path to the
module directory before the archive is created. The file types listed here match the global
file types recognized by JBuilder. (See Tools|Preferences|Browser|File Types.) Each
module has a list of pre-selected file type filters depending on the type of module. For
example, the EAR module has only the Archive and the XML file type selected by default.

The file types therefore work in combination with the include and exclude filters. For
example, if you add a recursive exclude filter for a certain file type, it will override the
file type filter selection.

Class and resource filters

You can customize archive content using custom filters. Add filters on the Content
page of the Properties dialog box for a module. The following default rules apply for the
different module types:

� EJB JAR content is by default controlled by the classes defined in the module
descriptors and dependent classes. You must add any other classes using custom
filters. The Java Class file type is included by default. To turn off this behavior,
uncheck the option Only Include Module Specific Java Classes and add custom filters.

� Web JAR content is by default controlled by the classes defined in the module
descriptors and dependent classes. You must add any other classes using custom
filters. The Java Class file type is included by default. To turn off this behavior,
uncheck the option Only Include Module Specific Java Classes and add custom
filters.

� An application client JAR by default includes all classes in the project’s output path
and the generated classes, such as IDL stubs. The Java class file type is included
by default.

Chapter 13: Bui ld ing J2EE modules 117

Adding custom f i le types

� A connector module RAR by default contains only descriptors. Classes in the
project’s output are not included.

� An application module EAR by default contains descriptors and archive files defined
in the descriptor. The Java class type is excluded by default.

Note To add custom classes to a module, you must remove the Java class file type filter (if it
is included by default for the module) before you add a custom Java class include filter.
The default Java class file type filter includes all classes in the project, which overrides
any custom include class filters.

Clean filters

You add clean filters using the Clean page of the Properties dialog box for a module.
Clean filters control which files are deleted in the module directory before the module is
rebuilt whenever you choose either the Rebuild Project or the Rebuild Module context
menu command. A number of clean filters (exclude filters) are added to prevent the
deletion of mandatory files, such as descriptors, CVS content, and so on. Be sure that
you add the appropriate exclude clean filters to prevent the deletion of any custom
content added manually to the module directory (such as custom descriptors that
JBuilder does not recognize).

Dependencies

Use the Content|Dependencies page of the Properties dialog box for a module to add
libraries to the module. This page lists all libraries in a project including dependent
libraries. These are the default values for J2EE modules:

� EJB modules: All libraries are excluded by default. Including a library will expand the
library inside the EJB JAR.

� Web modules: All libraries except the server libraries (Client and Servlet) are
included in the WAR. Including a library will include the JAR in the WAR’s WEB-INF/
lib directory.

� Connector modules: All libraries are excluded by default. Including a library will
include the JAR inside the RAR (at the root level).

� Application client modules: All libraries are excluded by default. Including a library
will expand the library inside the JAR.

� Application modules: All libraries are excluded by default. Including a library will
include the JAR inside the EAR (at the root level). Use the Application|Other page of
the Properties dialog box for the application module to include files in a specific
directory structure inside an EAR.

Adding custom file types
You can add custom file types to the file types that JBuilder recognizes:

1 Choose Tools|Preferences.

2 Select the Browser|File Types page.

3 Select Generic Resource File in the Recognized File Types list box.

4 Click the Add to display the Add Custom Extension dialog box.

5 Enter the new file extension in the dialog box and choose OK.

The extension you specified appears in the Associated Extensions list.

Note Create all resource files in the project’s source path to ensure that a resource file is
copied over to the project’s output path and to the module directory.

118 Developing Appl icat ions for J2EE Servers

Sample bui ld scenar ios

To select file types to be copied over to the project’s output path and the module
directory,

1 Choose Project|Project Properties.

2 Select the Build|Resource page and select the custom file type.

3 Select the Copy option.

4 Choose OK.

Note You will need to refresh and make the project after this step before you rebuild the
module. You will have to add an include filter for this file type for all other modules
(**/*.<file type>) on the Content page of the Properties dialog box for the module.

Sample build scenarios
Here are a few common build scenarios to help you understand how to work with build
properties:

EJB JAR without any bean classes

This sample EJB JAR includes only stubs/skeletons and descriptors. The server used
is WebLogic Server. Follow these steps:

1 Right-click the EJB module in the project pane and choose Properties.

2 Select the Build|WebLogic page and uncheck the Remove Project Output Path
From Classpath option.

3 Select the Content page.

4 Remove the Java Class file type filter.

5 Choose OK.

EJB JAR with custom files

This sample adds .dat files to the EJB JAR. Please ensure that you create a .dat file in
the project’s source path for this test.

1 Choose Tools|Preferences.

2 Select the Browser|File Types page.

3 Select Generic Resource File in the Recognized File Types list box.

4 Click the Add button to display the Add Custom Extension dialog box.

5 Enter dat and choose OK.

6 Choose Project|Project Properties and select the Build|Resource page.

7 Select dat from the list of extensions and click the Copy button.

8 Choose OK.

9 Right-click the EJB module and select Properties.

10 Select the Content page and click the Add Filters button to display the Add Filters
dialog box.

11 Select from one of these methods of specifying a filter:

� Select the Include option and specify **/*.dat in the Expression field.

� Click the File Types tab, select Generic Resource File, and choose OK.

12 Choose OK.

Chapter 13: Bui ld ing J2EE modules 119

Sample bu i ld scenar ios

EJB JAR without EJB designer XML descriptors

Follow these steps:

1 Right-click the EJB module and select Properties.

2 Select the Content page and click the Add Filters page.

3 Select the Exclude option.

4 Enter this exclude filter in the Expression field: META-INF/ejb-modeler*.xml

5 Choose OK.

WAR with custom descriptor(s) in the WEB-INF directory

Perform this one step: Copy the custom descriptor(s) over to the WEB-INF directory of
the web module.

Note The descriptor must have a standard extension listed in the XML file type (Tools|
Preferences|Browser|File Types). If the file type is not recognized by JBuilder, add the
required extension to the global file types. You must do this whenever adding custom
descriptors to any J2EE module in JBuilder.

WAR without any classes

This sample will create a WAR with descriptors only. Follow these steps:

1 Right-click the web module and choose Properties.

2 Select the Content page and remove the Java Class file type filter.

3 Choose OK.

WAR with custom class filters

Follow these steps:

1 Right-click the web module and choose Properties.

2 Select the Content page and remove the Java Class file type filter.

3 Add include filters for the required classes (for example, <package name>/*.*).

4 Choose OK.

WAR with custom file types

This sample adds the .inc extension to the JSP file type:

1 Choose Tools|Preferences.

2 Select the Browser|File Types page.

3 Select JSP File in the Recognized File Types list box.

4 Click the Add button to display the Add Custom Extension dialog box.

5 Enter inc and choose OK.

6 Right-click the web module’s Module Directory in the project pane and select New|
File.

7 Create a file named test1 with the extension inc in the module directory at the root
level.

120 Developing Appl icat ions for J2EE Servers

Sample bui ld scenar ios

EAR with custom files

This sample adds .dat files along with the archives and descriptors to an application
module (EAR):

1 Choose Tools|Preferences.

2 Select the Browser|File Types page.

3 Select Generic Resource File in the Recognized File Types list box.

4 Click the Add button to display the Add Custom Extension dialog box.

5 Enter dat and choose OK.

6 Choose Project|Project Properties.

7 Select the Build|Resource page.

8 Select dat in the list box and select the Copy option.

9 Right-click the application module and choose Properties.

10 Select the Content page and click the Add Filters button.

11 Select the Include option and add the follow filter in the Expression field: **/*.dat

12 Choose OK.

RAR with classes and dependencies

Follow these steps:

1 Right-click the connector module and choose Properties.

2 Select the Content page.

3 Select the Java Class file type and click the Add Filters button to add a new filter.

4 Select the Include option and add a new filter in the Expression field.

5 Choose OK.

6 Select the Content|Dependencies page and select the required libraries. Select the
Include All option.

7 Choose OK.

Application client module with classes and dependencies

Follow these steps:

1 Right-click the application client module and choose Properties.

2 Select the Content page.

3 Select the Java Class file type and click the Add Filters button to add a new filter.

4 Select the Include option and add a new filter in the Expression field.

5 Choose OK.

6 Select the Content|Dependencies page and select the required libraries. Select the
Include All option.

7 Choose OK.

These steps will expand the libraries into the application client JAR.

Chapter 13: Bui ld ing J2EE modules 121

Improv ing module bui ld per formance

Improving module build performance
To improve module build performance, try these suggestions:

� Remove file type filters that are not being used in the module. To do this, right-click
the module and choose Properties. Select the Module page and remove the file type
filters that are not in use for the module.

� Turn off archive generation if the archive is not being deployed. To do this, right-click
the module and choose Properties. Select the Build page and select Never in the
Build <module type> Archive drop-down list.

� Turn off the Build <Module> Directory option for modules other than web modules
and also for web modules if you are using a server other than Tomcat or WebLogic.
To do this, right-click the module and choose Properties. Select the Build page and
in the Build <module type> Directory drop-down list, select Never.

Warning Anything that is not excluded using an exclude filter on the Clean page will be deleted
during the clean process. Be sure to add an exclude filter on the Clean page for any
custom file types that you are using in your module directory.

Web modules

To improve web module build performance, turn off dependencies that are no being
used in the module:

1 Right-click the web module and choose Properties.

2 Select the Content|Dependencies page.

3 For each library that is not needed, select the Exclude All option for the Dependency
Rule value.

4 Choose OK.

Turning off the option Only Include Module Specific Java Classes and adding custom
filters to control content also improves module build performance.

122 Developing Appl icat ions for J2EE Servers

Index 123

A
application client modules 99
Application Module wizard 11
application modules 11, 99
application servers 19

Borland target 19
configuring target 19
enabling 19
iPlanet target 19
libraries 23
WebLogic target 19
WebSphere target 19

Authentication Mechanism page
Connector DD Editor 112

B
Borland

contacting 3
developer support 3
e-mail 4
newsgroups 3
online resources 3
reporting bugs 4
technical support 3
World Wide Web 3

Borland Enterprise Server AppServer Edition 5.2.1
configuring in JBuilder 29
deploying to remotely 40
international issues 44
remote debugging 41
starting 38

Borland Enterprise Server AppServer Edition 6.0
configuring in JBuilder 29
deploying to remotely 40
international issues 44
remote debugging 41
starting 38

Borland Enterprise Server Management Agent 34
Borland Management Console

in JBuilder 44
Borland servers 29

configurations 34
configuring in JBuilder 29
JDataStore 7.0 44
partitions 34

bugs, reporting 4
build performance

J2EE modules 121
build properties

J2EE modules 116
build scenarios

J2EE modules 118

C
class filters 116
clean filters 117
client stubs

generating 45
client tier 8

technologies 9

Common Object Request Broker Architecture See
CORBA

Configuration Property page
Connector DD Editor 113

configurations
copying server 22, 63
duplicate server 22, 63

configurations (Borland) 34
starting in JBuilder 38

Configure Servers dialog box 19, 61
configuring

JBuilder for Borland servers 29
servers 61
Tomcat 93

configuring JBuilder
for JBoss 83
for WebLogic 61
for WebSphere 73
servers 19

Connector architecture 105
J2EE 105

Connector DD Editor 105
Connector Module wizard 105
connector modules 99, 105

compiling 114
creating 105

CORBA 45
and OrbixWeb ORB 45
and VisiBroker ORB 45
java2idl 45
java2iiop 45
setting up JBuilder for 47, 48
wizards 57

CORBA interfaces 45

D
database drivers

adding to project 27
DD Editor 99, 100

displaying 100
server-specific pages 101
standard pages 101
structure pane nodes 100

debugging 90
remote 41, 90

debugging JSPs
JBoss 91

default project
adding database drivers 27

dependencies 117
deploying

to WebSphere servers 77
deployment

exploded JBoss web modules 90
Deployment Descriptor Editor See DD Editor
deployment descriptors 99

adding to 102
deleting 102
editing 99, 100
removing 102
server-specific 101
validating 103
WebSphere 75

Index

124 Developing Appl icat ions for J2EE Servers

Developer Support 3
disabled EJB wizards 24
distributed applications

CORBA 45
VisiBroker ORB 45
wizards 57

documentation conventions 1
platform conventions 2

drivers
adding database drivers to project 27
database 26
JDBC 26

E
EAR files

creating 11
editing

deployment descriptors 99
EJB modules 99
EJB wizards

disabled 24
EJBC options 67
Enable Server option 19
enterprise beans

deploying to WebSphere servers 77
Enterprise Information Systems

integrating with 105
entity beans

creating 67

F
file type filters 116
file types

adding custom 117
filters

class and resource 116
clean 117
file type 116

fonts 1
JBuilder documentation conventions 1

I
IDL files 45
IDL interfaces 45

creating from Java interfaces 52
setting properties for 55

IIOP interfaces 45
creating from Java interfaces 52

IIOP-compliant skeletons 45
generating 45

IIOP-compliant stubs 45
generating 45

interfaces
for IIOP-compliant clients 45

J
J2EE applications 5, 13

advantages 5
JBuilder support 9
learning about 11

J2EE modules 99
build properties 116
build scenarios 118

building 115
class and resource filters 116
clean filters 117
dependencies 117
editing deployment descriptors 99
file type filters 116
improving build performance 121
types 99, 115

J2EE technologies 13
JAR files 11
Java interface definitions 45
Java interfaces

converting to IDL 45
java2idl compiler 45, 52
java2iiop compiler 45, 52
JBoss 83

deploying locally 89
JSP debugging 91
remote debugging 90
service modules 84
starting server 88

JBoss exploded web modules
deploying 90

JBuilder
newsgroups 3
reporting bugs 4

JDataStore 7.0 44
JDBC drivers 26

adding to project 27
JSP

running with Tomcat 96
JSP debugging

JBoss 91

L
libraries

application server 23
WebLogic Platform 8.1 64
WebLogic Server 7.x 64

M
management agent 34

starting 34, 38
management port (Borland) 37
MBeans 88
middle tier 8

technologies 9
modules

application 99
application client 99
build properties 116
build scenarios 118
building J2EE 115
class and resource filters 116
clean filters 117
connector 99
dependencies 117
EJB 99
file type filters 116
improving build performance 121
J2EE 99
web 99

multi-tier architecture
benefits 8

Index 125

N
newsgroups 3

Borland and JBuilder 3
public 4
Usenet 4

O
ORB (Object Request Broker) 45

default 47, 51
properties 47, 50
setting up 47, 51

OrbixWeb ORB 45
setting up for JBuilder 47, 50

P
partitions (Borland) 34

starting in JBuilder 38
ports

changing Borland management 37
changing for Tomcat 97
VisiBroker Smart Agent 34

Project Properties dialog box
Servers page 24

projects
adding database drivers 27
selecting web server for 95
updating with latest server settings 24
updating with server settings 27, 72

R
RAR files (resource archives) 114
remote debugging 90

Borland servers 41
JBoss 90
JSPs on WebLogic Server 71
WebSphere 79
WebSphere 5.x 79
WebSphere Server Advanced Edition 4.0 80
WebSphere Single Server 4.0 80

reporting bugs 4
resource adapters 105

editing 111
resource archives (RAR) 114
resource filters 116
RMI

and VisiBroker ORB 46

S
scenarios

building J2EE modules 118
Security Permission page

Connector DD Editor 113
server configurations

copying 22, 63
creating duplicate 22, 63
creating similar 22, 63
updating 27, 72
updating projects with latest 24

server settings 19, 61
latest 27, 72

server.xml
creating custom file for Tomcat 97

servers
configuring 19, 61
enabling 19, 61
selecting 24
selecting JBoss 84
selecting WebSphere 75
starting Borland 38
supported 19

server-specific pages
Connector DD Editor 114
DD Editor 101

service modules 84
editing 88

service packs
adding 22, 64
required WebLogic 61

servlets
running with Tomcat 96

Smart Agent 34
standard pages

DD Editor 101
starting

Tomcat 96
supported servers 19

T
target application server 19
target web server 19
Tomcat 93

changing port number 97
configuring 93
creating custom server.xml file 97
running JSP 96
running servlets 96
selecting for project 95
starting 96
stopping 96
target web server 19

U
updating

from earlier version of JBuilder 28
Usenet newsgroups 4

V
VisiBroker

ORB, making available to JBuilder 34
Smart Agent 34

VisiBroker ORB 45
and RMI 46
IDL compiler 45
IIOP compiler 45
setting up for JBuilder 47, 48
using in JBuilder 45

W
WAR files 11
web modules 99

and Borland servers 43
web naming (CORBA) 45
web running

JSP 96
servlets 96

126 Developing Appl icat ions for J2EE Servers

web servers
configuring 19
Tomcat 93

WebLogic 66
DD Editor 67
setting EJBC options 67
target application server 19
using existing code 66

WebLogic servers 61, 64
libraries 64

WebSphere servers 19, 73
deploying to 77
deployment descriptors 75
target application server 19

	Developing Applications for J2EE™ Servers
	Contents
	Ch 1: Introduction
	Documentation conventions
	Developer support and resources
	Contacting Borland Developer Support
	Online resources
	World Wide Web
	Borland newsgroups
	Usenet newsgroups
	Reporting bugs

	Ch 2: Programming for the Java 2 Platform, Enterprise Edition
	Why are J2EE applications desirable?
	Benefits of the multi-tier model

	How JBuilder can help
	Client tier technologies
	Middle-tier technologies
	Other J2EE technologies
	Preparing to deploy J2EE applications

	Learning about J2EE

	Ch 3: Creating applications with J2EE technologies
	Client-server applications
	Multi-tier applications
	Stand-alone clients
	Consumers of dynamic web content
	Java client calling EJBs

	Web-centric applications
	Business to business

	Ch 4: Configuring the target server settings
	Supported servers
	Setting up servers within JBuilder
	Creating a duplicate configuration to edit

	Adding a service pack
	The created libraries
	Selecting a server
	Setting up JDBC drivers
	Creating the .library and .config files
	Adding the JDBC driver to projects

	Updating projects with the latest server settings
	Updating from an earlier version of JBuilder

	Ch 5: Using JBuilder with Borland servers
	Configuring Borland servers in JBuilder
	Borland Enterprise Server AppServer Edition 6.0
	Borland Enterprise Server AppServer Edition 5.2.1

	Making the ORB available to JBuilder
	Configurations, partitions, partition services, and J2EE APIs
	Changing the management port

	Starting the configuration or server
	Remote deploying
	Remote debugging
	Remote debugging for Borland Enterprise Server 6.0
	Preparing to remote debug partitions that are not managed in JBuilder
	Preparing to remote debug partitions that are managed in JBuilder

	Remote debugging for Borland Enterprise Server 5.2.1
	Preparing to remote debug before the Borland Enterprise Server AppServer Edition 5.2.1 is running
	Preparing to remote debug when the Borland Enterprise Server AppServer Edition 5.2.1 is already r...

	Remote debugging in JBuilder

	Web module workarounds
	Displaying the Borland Management Console in JBuilder
	International issues
	Borland servers and JDataStore 7.0

	Ch 6: Using JBuilder’s CORBA tools
	How JBuilder and the VisiBroker ORB work together
	RMI

	Setting up JBuilder for CORBA applications
	Configuring VisiBroker when the Borland Enterprise Server is�installed
	Configuring VisiBroker stand-alone
	Configuring the OrbixWeb ORB
	Adding a new configuration

	Setting and viewing ORB build properties
	Setting VisiBroker ORB properties
	Setting build properties for the OrbixWeb or other third-party ORBs

	Setting and viewing IDL build properties
	Using the CORBA wizards
	Sample IDL wizard
	CORBA Client Interface wizard
	CORBA Server Interface wizard
	HTML CORBA Client wizard
	CORBA Server Application wizard
	Use CORBA Interface wizard

	Ch 7: Using JBuilder with BEA WebLogic servers
	Service packs
	Configuring JBuilder for WebLogic servers
	Creating a duplicate configuration to edit
	Created libraries
	Adding a service pack

	Selecting a server
	Working in JBuilder
	Using existing code
	Creating WebLogic entity beans in JBuilder
	Using the DD Editor
	Compiling

	Starting the server
	Remote deploying
	WebLogic Application Sever 7.x and WebLogic Platform Server 8.1
	Deploying J2EE modules as an exploded directory
	Mapping EJB project modules at runtime
	Redeploying individual classes

	WebLogic 8.x Platform Server deployment features

	Remote debugging
	Remote debugging of JavaServer Pages

	Updating projects with the latest server settings

	Ch 8: Using JBuilder with IBM WebSphere servers
	Configuring JBuilder for WebSphere servers
	Selecting a server
	Generating WebSphere deployment descriptors for WebSphere 4.0
	Starting the server
	Deploying
	Using the DD Editor
	WebSphere Application Server 5.x
	Remote deploying
	Deploying locally

	WebSphere Server 4.0
	Remote deploying
	Deploying locally

	Enabling remote debugging
	WebSphere Application Server 5.x
	WebSphere Single Server 4.0
	WebSphere Server Advanced Edition 4.0

	Container-managed persistence (CMP) 1.1 and 2.0 in WebSphere 5.x

	Ch 9: Using JBuilder with JBoss servers
	Configuring JBuilder for the JBoss application server
	Selecting a server
	Creating a JBoss service module
	Copying an existing JBoss service module
	Creating a JBoss service node for an existing service module archive (SAR) in a directory outside...

	Editing the JBoss service module deployment descriptor
	MBeans

	Starting the server
	Deploying locally
	Deploying exploded web modules
	Remote debugging
	JSP debugging

	Ch 10: Using JBuilder with Tomcat
	Selecting Tomcat as your project’s web server
	Running your servlet or JSP with Tomcat
	Starting Tomcat
	Stopping Tomcat
	Changing Tomcat’s port number
	Creating a custom server.xml file with Tomcat
	Debugging JSPs with Tomcat 4.1

	Ch 11: Editing J2EE deployment descriptors
	Displaying the DD Editor
	Standard and server-specific pages
	Adding to and deleting from a deployment descriptor
	Validating a deployment descriptor entry

	Ch 12: Integrating with Enterprise Information Systems
	Creating a connector module node in the project pane
	Creating an empty connector module
	Copying an existing connector module
	Creating a module node for an existing module in a directory outside your project
	Creating a connector module node for an existing archive (RAR) outside your project

	Viewing the connector module deployment descriptors
	Editing the resource adapter descriptors
	Authentication Mechanism page
	Configuration Property page
	Security Permission page

	Server-specific pages
	Compiling the connector module

	Ch 13: Building J2EE modules
	J2EE modules
	Setting module build properties
	File type filters
	Class and resource filters
	Clean filters
	Dependencies

	Adding custom file types
	Sample build scenarios
	EJB JAR without any bean classes
	EJB JAR with custom files
	EJB JAR without EJB designer XML descriptors
	WAR with custom descriptor(s) in the WEB-INF directory
	WAR without any classes
	WAR with custom class filters
	WAR with custom file types
	EAR with custom files
	RAR with classes and dependencies
	Application client module with classes and dependencies

	Improving module build performance
	Web modules

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

