

OBJECT REFERENCE MANUAL

Firmware Version 4.4.x / 4.2.x /3.10.x

• BrightSign, LLC. 16795 Lark Ave., Suite 200 Los Gatos, CA 95032 | 408-852-9263 | www.brightsign.biz

TABLE OF CONTENTS

INTRODUCTION .. 1

INTERFACES AND METHODS OVERVIEW .. 2

Classes .. 3
Object and Class Name Syntax ... 3
Zones... 3
Event Loops ... 4
BrightSign Object Library ... 5

BRIGHTSCRIPT CORE OBJECTS ... 6

roArray ... 6
roAssociativeArray ... 8
roBoolean .. 10
roByteArray .. 11
roDouble, roIntrinsicDouble ... 13
roFunction .. 14
roGlobal ... 15
roInt, roFloat, roString .. 18
roList .. 21
roRegex ... 23
roXMLElement ... 25

roXMLList .. 29

PRESENTATION AND WIDGET OBJECTS ... 32

roAudioEventMx .. 32
roAudioOutput ... 33
roAudioPlayer .. 35
roAudioPlayerMx ... 41
roCanvasWidget .. 46
roClockWidget ... 51
roHtmlWidget ... 54
roImageBuffer .. 57
roImagePlayer ... 58
roImageWidget .. 62
roRectangle ... 65
roShoutcastStream .. 66
roShoutcastStreamEvent ... 67
roTextField ... 68
roTextWidget ... 71
roVideoEvent, roAudioEvent .. 74
roVideoInput .. 76
roVideoMode ... 78
roVideoPlayer .. 82
roTouchCalibrationEvent ... 89
roTouchEvent .. 90
roTouchScreen .. 91

FILE AND STORAGE OBJECTS .. 97

roBrightPackage .. 97
roHashGenerator ... 100
roReadFile, roCreateFile, roReadWriteFile, roAppendFile .. 101
roRegistry .. 104
roRegistrySection .. 105
roSqliteDatabase ... 107
roSqliteEvent ... 108
roSqliteStatement .. 109
roStorageAttached, roStorageDetached .. 110
roStorageHotplug .. 111
roStorageInfo ... 112

NETWORKING OBJECTS .. 114

roAssetCollection ... 114
roAssetFetcher .. 116
roAssetFetcherEvent ... 118
roAssetFetcherProgressEvent ... 119
roAssetPool ... 120
roAssetPoolFiles .. 121
roAssetRealizer ... 122
roAssetRealizerEvent .. 123
roDatagramSender, roDatagramReceiver, roDatagramSocket, roDatagramEvent ... 124
roHttpEvent .. 129
roHttpServer .. 131
roMimeStream ... 133
roMimeStreamEvent .. 134
roNetworkAdvertisement ... 135

roNetworkAttached, roNetworkDetached ... 136
roNetworkConfiguration ... 137
roNetworkHotplug .. 143
roRssParser, roRssArticle ... 144
roRtspStream .. 146
roRtspStreamEvent ... 147
roShoutcastStream .. 148
roShoutcastStreamEvent ... 149
roSnmpAgent ... 150
roSnmpEvent ... 151
roStreamByteEvent ... 152
roStreamConnectResultEvent ... 153
roStreamEndEvent .. 154
roStreamLineEvent .. 155
roSyncSpec ... 156
roTCPConnectEvent .. 157
roTCPServer .. 158
roTCPStream ... 159
roUrlEvent .. 161
roUrlStream ... 165
roUrlTransfer ... 166

INPUT/OUTPUT OBJECTS ... 171

roCecInterface ... 171
roCecRxFrameEvent, roCecTxCompleteEvent ... 173
roChannelManager .. 175
roControlPort ... 183

roControlUp, roControlDown ... 185
roGpioControlPort, roGpioButton ... 186
roIRRemote ... 188
roIRRemotePress .. 189
roKeyboard, roKeyboardPress .. 191
roMessagePort .. 193
roSequenceMatcher .. 194
roSequenceMatchEvent .. 195
roSerialPort .. 196

SYSTEM OBJECTS .. 198

roDeviceInfo .. 198
roResourceManager .. 201
roSystemLog ... 203

DATE AND TIME OBJECTS ... 205

roDateTime .. 205
roSystemTime ... 207
roTimer .. 211
roTimerEvent ... 215
roTimeSpan ... 216

LEGACY OBJECTS .. 217

roSyncPool .. 217
roSyncPoolEvent ... 220
roSyncPoolFiles ... 221

roSyncPoolProgressEvent ... 222

Change Log .. 223

4.4.x, 4.2.x, 3.10.x ... 223

1

INTRODUCTION
We use BrightScript Objects (ROs) as the standardized way to expose functionality for our public SDKs. To publish a new
API, we create a new BrightScript Object. All BrightSign players use this library of objects.

This Object Reference Manual describes the BrightScript Object architecture in two main sections:

• How to use BrightScript Objects (as a script writer)
• How the initial objects are defined for BrightSign players

2

INTERFACES AND METHODS OVERVIEW
Every BrightScript Object consists of one or more “interfaces.” An RO interface consists of one or more “methods.” For
example, the roVideoPlayer object has two interfaces, ifMediaTransport and ifSetMessagePort. The interface
ifSetMessagePort has one method, SetPort.

Example:

p = CreateObject("roMessagePort")

video = CreateObject("roVideoPlayer")

gpio = CreateObject("roControlPort", "BrightSign")

gpio.SetPort(p)

video.SetPort(p)

This syntax makes use of a shortcut provided by the language: The interface name is optional, unless it is needed to
resolve name conflicts. For example:

gpio.SetPort(p)

is the same as

gpio.ifSetMessagePort.SetPort(p)

3

Note: The abstract interface ifSetMessagePort is exposed and implemented by both the roControlPort and the
roVideoPlayer objects. Once the SetPort method is called, these objects will send their events to the supplied message
port. This is discussed more in the Event Loops section below.

BrightScript Objects consist only of interfaces. Interfaces define only methods. There is no concept of a “property” or
variable at the object or interface level. These must be implemented as Set/Get methods in an interface.

Classes
A “class name” is used to create a BrightScript Object. For example:

video = CreateObject("roVideoPlayer")

The class name of the above BrightScript Object is roVideoPlayer.

Object and Class Name Syntax
Class names have the following characteristics:

• Must start with an alphabetic character (a – z).
• May consist of alphabetic characters, numbers, or the “_” (i.e. underscore) symbol.
• Are not case sensitive.
• May be of any reasonable length.

Zones
With the BrightSign Zones feature, you can divide the screen into rectangles and play different content in each rectangle.

4

A zone can contain video, images, audio, a clock, or text. There can be only one video zone per screen for all HD and AU
models. However, there can be multiple zones of other types on the screen. A text zone can contain simple text strings or
can be configured to display an RSS feed in a ticker type display.

To enable zone functionality, the following global function must be called in the script:

EnableZoneSupport(enable As Boolean) As Void

When zones are enabled, the image layer is always on top of the video layer. When zones are not enabled, the image
layer is hidden whenever video is played, and the video layer is hidden whenever images are played.

Event Loops
When writing anything more than a very simple script, an “event loop” will need to be created. Event loops typically have
this structure:

o Wait for the event.
o Process the event.
o Return to step 1.

Events are things like a button that has been pressed, a timer that has been triggered, or a video that has finished playing
back.

By convention, BrightScript Object (RO) events work as follows.

1. An object of the type roMessagePort is created in BrightScript by the user’s script.
2. Objects that can send events are instructed to send their events to this message port. You could set up multiple

message ports and have each event go to its own message port, but it is usually simpler to just create one
message port, and have all the events go to this one port. To instruct the object to send events to a specific port,
use the ifSetMessagePort interface.

5

3. The script waits for an event. The actual function to do this is ifMessagePort.WaitMessage, but if you are using
BrightScript, the built-in statement “WAIT” allows you to do this easily.

4. If multiple event types are possible, your script should determine which event the wait received, then process it.
The script then jumps back to the wait.

An event can be generated by any BrightScript Object. For example, the class roControlPort sends events of type
roControlDown and roControlUp. The roControlDown implements the ifInt Interface, which allows access to an integer. An
event loop needs to be aware of the possible events it can get and process them.

BrightSign Object Library
The following chapters specify each of the objects that can be used in BrightScript. A brief description, a list of interfaces,
and the member functions of the interfaces are provided for each object class.

While most BrightScript objects have self-contained sections in this chapter, some objects are grouped in the same
section if they are closely related or depend on one another to function correctly.

6

BRIGHTSCRIPT CORE OBJECTS

roArray
This object stores objects in a continuous array of memory locations. Since an roArray contains BrightScript components,
and there are object wrappers for most intrinsic data types, entries can either be different types or all of the same type.

Object creation:

CreateObject("roArray", size As Integer, resize As Boolean)

• size: The initial number of elements allocated for an array.
• resize: If true, the array will be resized larger to accommodate more elements if needed. If the array is large, this

process might take some time.
• dim: This statement may be used instead of CreateObject to create a new array. Dim is sometimes advantageous

because it automatically creates array of array for multi-dimensional arrays.

Interfaces: ifArray, ifEnum, ifArrayGet, ifArraySet

The ifArray interface provides the following:

• Peek() As Dynamic: Returns the last (highest index) array entry without removing it.
• Pop() As Dynamic: Returns the last (highest index) entry and removes it from the array.
• Push(a As Dynamic): Adds a new highest index entry to the end of the array
• Shift() As Dynamic: Removes index zero from the array and shifts all other entries down by one unit.
• Unshift(a As Dynamic): Adds a new index zero to the array and shifts all other entries up by one unit.

7

• Delete(a As Integer) As Boolean: Deletes the indicated array entry and shifts all above entries down by
one unit.

• Count() As Integer Returns the index of the highest entry in the array plus one (i.e. the length of the array).
• Clear(): Deletes every entry in the array.
• Append(a As Object): Appends one roArray to another. If the passed roArray contains entries that were never

set to a value, they are not appended.
Note: The two appended objects must be of the same type.

The ifEnum interface provides the following:

• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns a typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not an exact statement.

The ifArrayGet interface provides the following:

• GetEntry(a As Integer) As Dynamic: Returns an array entry of a given index. Entries start at zero. If an
entry that has not been set is fetched, Invalid is returned.

The ifArraySet interface provides the following:

• SetEntry(a As Integer, b As Dynamic): Sets an entry of a given index to the passed type value.

8

roAssociativeArray
An associative array (also known as a map, dictionary, or hash table) allows objects to be associated with string keys.

This object is created with no parameters:

CreateObject("roAssociativeArray")

Interfaces: ifEnum, ifAssociativeArray

The ifEnum interface provides the following:

• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns the typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not a next element.

The ifAssociativeArray interface provides the following:

• AddReplace(key As String, value As Object) As Void: Adds a new entry to the array, associating the
supplied object with the supplied string. Only one object may be associated with a string, so any existing object is
discarded.

• Lookup(key As String) As Object: Looks for an object in the array associated with the specified string. If
there is no object associated with the string, then an object implementing ifInt and containing zero is returned.

• DoesExist(key As String) As Boolean: Looks for an object in the array associated with the specified
string. If there is no associated object, then False is returned. If there is such an object, then True is returned.

• Delete(key As String) As Boolean: Looks for an object in the array associated with the specified string. If
there is such an object, then it is deleted and True is returned. If not, then False is returned.

• Clear As Void: Removes all objects from the associative array.

9

• SetModeCaseSensitive(): Makes all subsequent actions case sensitive. All roAssociativeArray lookups
are case insensitive by default.

• LookupCi(a As String) As Dynamic: Looks for an object in the array associated with the specified string.
This method functions similarly to Lookup(), with the exception that key comparisons are always case insensitive,
regardless of case mode.

• Append(a As Object): Appends a second associative array to the first.

Example:

aa = CreateObject("roAssociativeArray")

aa.AddReplace("Bright", "Sign")

aa.AddReplace("TMOL", 42)

print aa.Lookup("TMOL")

print aa.Lookup("Bright")

The above script produces the following:

42

Sign

10

roBoolean
This is the object equivalent for the Boolean intrinsic type. It is useful in the following situations:

• When an object is needed instead of an intrinsic value. For example, if a Boolean is added to roList, it will be
automatically wrapped in an roBoolean object by the language interpreter. When a function that expects a
BrightScript component as a parameter is passed a Boolean, BrightScript automatically creates the equivalent
BrightScript component.

• When any object exposes the ifBoolean interface. That object can then be used in any expression that expects an
intrinsic value.

Interfaces: ifBoolean

The ifBoolean interface provides the following:

• GetBoolean() As Boolean

• SetBoolean(a As Boolean)

11

roByteArray
This object contains functions to convert strings to or from a byte array, as well as to or from ASCII hex or ASCII base 64.
Note that if you are converting a byte array to a string, and the byte array contains a zero, the string conversion will end at
that point. roByteArray will automatically resize to become larger as needed.

If you are converting a byte array to a string, and the byte array contains a zero, the string conversion will end at that point.
roByteArray will autosize to become larger as needed. If you wish to disable this behavior, use the SetResize() function. If
an uninitialized index is read, “invalid” is returned.

Since roByteArray supports the ifArray interface, it can be accessed with the array [] operator. The byte array is
always accessed as unsigned bytes while this interface is being used. This object also supports the ifEnum interface, and
so can be used with a “for each” statement.

Interfaces: ifByteArray, ifArray, ifArrayGet, ifEnum, ifArraySet

See roArray for a description of ifArray, ifArrayGet, ifEnum and ifArraySet.

The ifByteArray interface provides the following:

• WriteFile(filename As String) As Boolean

• WriteFile(filename As String, start_index As Integer, length As Integer) As Boolean

• ReadFile(filename As String) As Boolean

• ReadFile(filename As String, start_index As Integer, length As Integer) As Boolean

• AppendFile(filename As String) As Boolean

• SetResize(minimum_allocation_size As Integer, autoresize As Boolean)

• ToHexString() As String

• FromHexString(hexstring As String)

12

• ToBase64String() As String

• FromBase64String(base65string As String)

• ToAsciiString() As String

• FromAsciiString(a As String)

• GetSignedByte(index As Integer) As Integer

• GetSignedLong(index As Integer) As Integer

• IsLittleEndianCPU() As Boolean

13

roDouble, roIntrinsicDouble

Interfaces: ifDouble

The ifDouble interface provides the following:
GetDouble() As Double
SetDouble(a As Double)

14

roFunction

Interfaces: ifFunction

• GetSub() As Function

• SetSub(value As Function)

15

roGlobal

Interfaces: ifGlobal

The ifGlobal interface provides the following:

• Sleep(a As Integer)

• asc(a As String) As Integer

• chr(a As Integer) As String

• len(a As String) As Integer

• str(a As Double) As String

• strI(a As Integer) As String

• val(a As String) As Double

• abs(a As Double) As Double

• atn(a As Double) As Double

• cdbl(a As Integer) As Double

• cint(a As Double) As Integer

• cos(a As Double) As Double

• exp(a As Double) As Double

• fix(a As Double) As Integer

• int(a As Double) As Integer

• log(a As Double) As Double

• sgn(a As Double) As Integer

• sgnI(a As Integer) As Integer

• sin(a As Double) As Double

• sqr(a As Double) As Double

• tan(a As Double) As Double

16

• Left(a As String, b As Integer) As String

• Right(a As String, b As Integer) As String

• StringI(a As Integer, b As Integer) As String

• String(a As Integer, b As String) As String

• Mid(a As String, b As Integer, c As Integer) As String

• instr(a As Integer, b As String, c As String) As Integer

• GetInterface(a As Object, b As String) As Interface

• Wait(a As Integer, b As Object) As Object

• ReadAsciiFile(a As String) As String

• WriteAsciiFile(a As String, b As String) As Boolean

• ListDir(a As String) As Object

• MatchFiles(a As String, b As String) As Object: Takes a directory to look in (it can be as simple as
“.” or “/”) and a pattern to be matched and then returns an roList containing the results. The match is only applied in
the specified directory; you will get no results if you have a pattern with a directory separator in it. The pattern is
case insensitive.

• LCase(a As String) As String

• UCase(a As String) As String

• DeleteFile(a As String) As Boolean

• DeleteDirectory(a As String) As Boolean

• CreateDirectory(a As String) As Boolean

• RebootSystem()

• ShutdownSystem()

• UpTime(a As Integer) As Float

• csng(a As Integer) As Float

• FormatDrive(a As String, b As String) As Boolean: Formats the specified drive using one of the file
systems listed below. This function returns True if successful and False in the event of failure:

o vfat (DOS/Windows file system): Readable and writable by Windows, Linux, and MacOS.

17

o ext2 (Linux file system): Writable by Linux and readable by Windows and MacOS with additional software.
o ext3 (Linux file system): Writable by Linux and readable by Windows and MacOS with additional software.

This file system uses journaling for additional reliability.
• EjectDrive(a As String) As Boolean

• CopyFile(a As String, b As String) As Boolean: Copies the specified source file-path name to the
specified destination path name. The function returns True if successful and False in the event of failure.

• MoveFile(a As String, b As String) As Boolean: Moves the specified source file to the specified
destination. The function returns True if successful and False in the event of failure.
Note: Both path names must be on the same drive.

• strtoi(a As String) As Integer

• rnd(a As Dynamic) As Dynamic

• RunGarbageCollector() As Object

• GetDefaultDrive() As String: Returns the current default drive complete with a trailing slash. When running
autorun.brs, the drive containing the autorun is designated as the current default.

• SetDefaultDrive(a As String): Sets the current default drive, which does not need to include a trailing
slash. This function will not fail. However, if the specified default drive is non-existent, it will not be possible to
retrieve anything.

• EnableZoneSupport(a As Boolean)

• EnableAudioMixer(a As Boolean)

• Pi() As Double

18

roInt, roFloat, roString
The intrinsic types roInt32, roFloat, and roString have an object and interface equivalent. These are useful in the following
situations:

• An object is needed instead of a typed value. For example, roList maintains a list of objects.
• If any object exposes the ifInt, ifFloat, or ifString interfaces, that object can be used in any expression that expects

a typed value. For example, an roTouchEvent can be used as an integer whose value is the userid of the
roTouchEvent.

Note: If “o” is an roInt, then these statements have the following effects:
o print o: Prints o.GetInt()
o i%=o: Assigns the integer i% the value of o.GetInt()
o k=o: Presumably k is typeOmatic, so it becomes another reference to the roInt o
o o=5: This is NOT the same as o.SetInt(5). Instead it releases o, changes the type of o to roINT32 (o is

typeOmatic), and assigns it to 5.

When a function that expects a BrightScript Object as a parameter is passed an int, float, or string, BrightScript
automatically creates the equivalent object.

Interfaces: ifInt, ifIntOps, ifFloat, ifString, ifStringOps

roInt contains the ifInt interface, which provides the following:

• GetInt As Integer

• SetInt(value As Integer) As Void

19

roInt also contains the ifIntOps interface, which provides the following:
• ToStr() As String

roFloat contains the ifFloat interface, which provides the following:
• GetFloat As Float
• SetFloat(value As Float) As Void

roString contains the ifString interface, which provides the following:

• GetString As String

• SetString(value As String) As Void

roString also contains the ifStringOps interface, which provides the following:
• SetString(a As String, b As Integer)

• AppendString(a As String, b As Integer)

• Len() As Integer

• GetEntityEncode() As String

• Tokenize(a As String) As Object

• Trim() As String

• ToInt() As Integer

• ToFloat() As Float

• Left(a As Integer) As String

• Right(a As Integer) As String

• Mid(a As Integer) As String

• Mid(a As Integer, b As Integer) As String

• Instr(a As String) As Integer

• Instr(a As Integer, b As String) As Integer

20

Example:

BrightScript> o=CreateObject("roInt")

BrightScript> o.SetInt(555)

BrightScript> print o

 555

BrightScript> print o.GetInt()

 555

BrightScript> print o-55

 500

Example:

BrightScript> list=CreateObject("roList")

BrightScript> list.AddTail(5)

BrightScript> print type(list.GetTail())

An integer value of "5" is converted to type roInt automatically because list.AddTail expects a BrightScript Object as its
parameter.

Example: Here the function ListDir returns an object roList of roStrings:

BrightScript> l=ListDir("/")

BrightScript> for i=1 to l.Count():print l.RemoveHead():next

test_movie_3.vob

test_movie_4.vob

test_movie_1.vob

test_movie_2.vob

21

roList
This object functions as a general-purpose, doubly linked list. It can be used as a container for arbitrary-length lists of
BrightSign Objects. The array operator [] can be used to access any element in an ordered list.

Interfaces: ifList, ifEnum, ifArray, ifArrayGet, ifArraySet

The ifList interface provides the following:

• Count() As Integer: Returns the number of elements in the list.
• ResetIndex() As Boolean: Resets the current index or position in the list to the head element.
• AddTail(obj As Object) As Void: Adds a typed value to the tail of the list.
• AddHead(obj As Object) As Void: Adds a typed value to the head of the list.
• RemoveIndex As Object: Removes an entry from the list at the current index or position and increments the

index or position in the list. It returns Invalid when the end of the list is reached.
• GetIndex As Object: Retrieves an entry from the list at the current index or position and increments the index

or position in the list. It returns Invalid when the end of the list is reached.
• RemoveTail As Object: Removes the entry at the tail of the list.
• RemoveHead As Object: Removes the entry at the head of the list.
• GetTail As Object: Retrieves the entry at the tail of the list and keeps the entry in the list.
• GetHead As Object: Retrieves the entry at the head of the list and keeps the entry in the list.
• Clear(): Removes all elements from the list.

The ifEnum interface provides the following:
• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns the typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not a next element.

22

The ifArray interface provides the following:
• Peek() As Dynamic: Returns the last (highest index) array entry without removing it.
• Pop() As Dynamic: Returns the last (highest index) entry and removes it from the array.
• Push(a As Dynamic): Adds a new highest index entry to the end of the array
• Shift() As Dynamic: Removes index zero from the array and shifts all other entries down by one unit.
• Unshift(a As Dynamic): Adds a new index zero to the array and shifts all other entries up by one unit.
• Delete(a As Integer) As Boolean: Deletes the indicated array entry and shifts all above entries down by

one unit.
• Count() As Integer Returns the index of the highest entry in the array plus one (i.e. the length of the array).
• Clear(): Deletes every entry in the array.
• Append(a As Object): Appends one roArray to another. If the passed roArray contains entries that were never

set to a value, they are not appended.
Note: The two appended objects must be of the same type.

The ifArrayGet interface provides the following:

• GetEntry(a As Integer) As Dynamic: Returns an array entry of a given index. Entries start at zero. If an
entry that has not been set is fetched, Invalid is returned.

The ifArraySet interface provides the following:

• SetEntry(a As Integer, b As Dynamic): Sets an entry of a given index to the passed type value.

23

roRegex
This object allows the implementation of the regular-expression processing provided by the PCRE library.

This object is created with a string to represent the “matching-pattern” and a string to indicate flags that modify the
behavior of one or more matching operations:

CreateObject(“roRegex”, “[a-z]+”, “i”)

The match string (in the example above, “[a-z]+”, which matches all lowercase letters) can include most Perl
compatible regular expressions found in the PCRE documentation.

This object supports any combination of the following behavior flags (in the example above, “i”, which can be modified to
match both uppercase and lowercase letters):

• “i”: Case-insensitive match mode.
• “m”: Multiline mode. The start-line (“^”) and end-line (“$”) constructs match immediately before or after any

newline in the subject string. They also match at the absolute beginning or end of a string.
• “s”: Dot-all mode, which includes a newline in the “.*” regular expression. This modifier is equivalent to “/s” in

Perl.
• “x”: Extended mode, which ignores whitespace characters except when escaped or inside a character class. This

modifier is equivalent to “/x” in Perl.

Interfaces: ifRegex

The ifRegex interface provides the following:

• IsMatch(a As String) As Boolean: Returns True if the string is consistent with the matching pattern.

http://pcre.org/�

24

• Match(a As String) As Object: Returns an roArray of matched substrings from the string. The entire match
is returned in the form array[0].This will be the only entry in the array if there are no parenthetical substrings. If
the matching pattern contains parenthetical substrings, the relevant substrings will be returned as an array of
length n+1, where array[0] is the entire match and each additional entry in the array is the match for the
corresponding parenthetical expression.

• Replace(a As String, b As String) As String: Replaces the first occurrence of a match to the
matching pattern in the string with the subset. The subset may contain numbered back-references to parenthetical
substrings.

• ReplaceAll(a As String, b As String) As String: Performs a global search and replace.
• Split(a As String) As Object: Uses the matching pattern as a delimiter and splits the string on the

delimiter boundaries. The function returns an roList of strings that were separated by the matching pattern in the
original string.

25

roXMLElement
This object is used to contain an XML tree.

The roXMLElement object is created with no parameters:

CreateObject(“roXMLElement”)

The following examples illustrate how XML elements are parsed in BrightScript:

<tag1>This is example text</tag1>

Name = tag1
Attributes = Invalid
Body = roString containing “This is example text”

<tag2 caveman=”barney”/>

Name = tag2
Attributes = roAssociativeArray with one entry, {caveman, barney}
Body = Invalid

If the tag contains other tags, the body will be of the type roXMLList.

To generate XML content, create an roXMLElement and call the SetBody() and SetName() methods to build it. Then
call the GenXML() method to generate it. See the following example:

26

root.SetName("myroot")

root.AddAttribute("key1","value1")

root.AddAttribute("key2","value2")

ne=root.AddBodyElement()

ne.SetName("sub")

ne.SetBody("this is the sub1 text")

ne=root.AddBodyElement()

ne.SetName("subelement2")

ne.SetBody("more sub text")

ne.AddAttribute("k","v")

ne=root.AddElement("subelement3")

ne.SetBody("more sub text 3")

root.AddElementWithBody("sub","another sub (#4)")

PrintXML(root, 0)

print root.GenXML(false)

Interfaces: ifXMLElement

The ifXMLElement interface provides the following:

• GetBody() As Object

• GetAttributes() As Object

• GetName() As String

• GetText() As String

• GetChildElements() As Object

• GetNamedElements(a As String) As Object

• GetNamedElementsCi(a As String) As Object

27

• SetBody(a As Object): Generates an roXMLList for the body if needed. The method then adds the passed
item (which should be an roXMLElement tag).

• AddBodyElement() As Object

• AddElement(a As String) As Object

• AddElementWithBody(a As String, b As Object) As Object

• AddAttribute(a As String, b As String)

• SetName(a As String)

• Parse(a As String) As Boolean

• GenXML(a As Object) As String: Generates XML content. This method takes a single Boolean parameter,
indicating whether or not the XML should have an <?xml …> tag at the top.

• Clear()

• GenXMLHdr(a As String) As String

• IsName(a As String) As Boolean

• HasAttribute(a As String) As Boolean

• ParseFile(a As String) As Boolean

The following is an example subroutine to print out the contents of an roXMLElement tree:

PrintXML(root, 0)

Sub PrintXML(element As Object, depth As Integer)

 print tab(depth*3);"Name: ";element.GetName()

 if not element.GetAttributes().IsEmpty() then

 print tab(depth*3);"Attributes: ";

 for each a in element.GetAttributes()

 print a;"=";left(element.GetAttributes()[a], 20);

 if element.GetAttributes().IsNext() then print ", ";

 end for

28

 print

 end if

 if element.GetText()<>invalid then

 print tab(depth*3);"Contains Text: ";left(element.GetText(), 40)

 end if

 if element.GetChildElements()<>invalid

 print tab(depth*3);"Contains roXMLList:"

 for each e in element.GetChildElements()

 PrintXML(e, depth+1)

 end for

 end if

 print

end sub

29

roXMLList

Interfaces: ifList, ifEnum, ifArray, ifArrayGet, ifArraySet, ifXMLList

The ifList interface provides the following:

• GetHead() As Dynamic: Retrieves the entry at the head of the list and keeps the entry in the list.
• GetTail() As Dynamic: Retrieves the entry at the tail of the list and keeps the entry in the list.
• RemoveHead() As Dynamic: Removes the entry at the head of the list.
• RemoveTail() As Dynamic: Removes the entry at the tail of the list.
• GetIndex() As Dynamic: Retrieves an entry from the list at the current index or position and increments the

index or position in the list. It returns Invalid when the end of the list is reached.
• RemoveIndex() As Dynamic: Removes an entry from the list at the current index or position and increments

the index or position in the list. It returns Invalid when the end of the list is reached.
• AddHead(a As Dynamic): Adds a typed value to the head of the list.
• AddTail(a As Dynamic): Adds a typed value to the tail of the list.
• ResetIndex() As Boolean: Resets the current index or position in the list to the head element.
• Count() As Integer: Returns the number of elements in the list.
• Clear(): Removes all elements from the list.

The ifEnum interface provides the following:
• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns the typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not a next element.

30

The ifArray interface provides the following:
• Peek() As Dynamic: Returns the last (highest index) array entry without removing it.
• Pop() As Dynamic: Returns the last (highest index) entry and removes it from the array.
• Push(a As Dynamic): Adds a new highest index entry to the end of the array
• Shift() As Dynamic: Removes index zero from the array and shifts all other entries down by one unit.
• Unshift(a As Dynamic): Adds a new index zero to the array and shifts all other entries up by one unit.
• Delete(a As Integer) As Boolean: Deletes the indicated array entry and shifts all above entries down by

one unit.
• Count() As Integer Returns the index of the highest entry in the array plus one (i.e. the length of the array).
• Clear(): Deletes every entry in the array.
• Append(a As Object): Appends one roArray to another. If the passed roArray contains entries that were never

set to a value, they are not appended.
Note: The two appended objects must be of the same type.

The ifArrayGet interface provides the following:
• GetEntry(a As Integer) As Dynamic: Returns an array entry of a given index. Entries start at zero. If an

entry that has not been set is fetched, Invalid is returned.

The ifArraySet interface provides the following:

• SetEntry(a As Integer, b As Dynamic): Sets an entry of a given index to the passed type value.

The ifXMLList interface provides the following:

• GetAttributes() As Object

• GetText() As String

• GetChildElements() As Object

31

• GetNamedElements(a As String) As Object: Returns a new XMLList that contains all roXmlElements that
match the name of the passed element. This action is the same as using the dot operator on an roXmlList.

• GetNamedElementsCi(a As String) As Object

• Simplify() As Object: Returns an roXmlElement if the list contains exactly one element. Otherwise, it will
return itself.

32

PRESENTATION AND WIDGET OBJECTS

roAudioEventMx

Interfaces: ifInt, ifSourceIdentity, ifAudioUserData

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifSourceIdentity interface provides the following:

• GetSourceIdentity() As Integer

• SetSourceIdentity() As Integer

The ifAudioUserData interface provides the following:

• GetSourceIdentity() As Integer

• SetSourceIdentity() As Integer

33

roAudioOutput
This object allows individual control of audio outputs on the player.

Object Creation:

CreateObject(“roAudioOutput”, output As String)

The audio output parameter can take the following strings:

• Analog

• SPDIF

• HDMI

• USB

• NONE

These strings can be extended if future BrightSign players have multiple channels of the same type of audio output. For
example, Analog could be extended to Analog:1 or Analog:0-2.

You can create any number of roAudioOutput objects. There can be multiple instances of this object that represent the
same audio output, but in these cases one object will override another.

Interfaces: ifAudioOutput

The ifAudioOuput interface provides the following:

• SetVolume(a As Integer) As Boolean: Sets the volume of the specified output as a percentage
represented by an integer between 0 and 100.

• SetMute(a As Boolean) As Boolean: Mutes the specified output if True. This method is set to False by
default.

34

• GetOutput() As String: Returns the string with which the roAudioOutput object was created.

The SetVolume and SetMute methods work in conjunction with the volume and mute functionality offered by
roAudioPlayer. The roAudioPlayer volume settings affect the audio decoder volume. The audio stream is then sent to the
assigned outputs, which have an additional level of volume control enabled by roAudioOutput.

Note: To control which audio outputs connect to audio player outputs generated by roAudioOutput, use the
SetPcmAudioOutputs and SetCompressedAudioOutputs methods, which can be used for roVideoPlayer and
roAudioPlayer. See the roAudioPlayer entry for further explanation of these methods.

The roAudioOutput object affects the absolute volume (as well as mute settings) for an audio output. If two players are
streaming to the same output, both will be affected by any settings implemented through roAudioOutput.

35

roAudioPlayer
An audio player is used to play back audio files using the generic ifMediaTransport interface. If the message port is set,
the object will send events of the type roAudioEvent. All object calls are asynchronous. In other words, audio playback is
handled in a different thread from the script. The script may continue to run while audio is playing.

Interfaces: ifIdentity, ifSetMessagePort, ifMediaTransport, ifAudioControl.

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifSetMessagePort interface provides the following:

• SetPort(As Object) As Void

• SetPort(a As Object)

See roVideoPlayer for a description of ifMediaTransport.

The ifAudioControl interface provides the following:
• SetPcmAudioOutputs(a As Object) As Boolean: Determines which PCM audio outputs are connected to

audio player outputs generated by roAudioOutput. This method takes as its argument one or more outputs in the
form of an roArray of roAudioOutput parameters.

• SetCompressedAudioOutputs(a As Object) As Boolean: Determines which compressed audio outputs
are connected to audio player outputs generated by roAudioOutput. This method takes as its argument one or
more outputs in the form of an roArray of roAudioOutput parameters.

Note: When one or both of these output methods are called, they will override the settings of the following
ifAudioControl methods:

o SetAudioOutput

36

o MapStereoOutput
o SetUsbAudioPort
o MapDigitalOutput

• SetAudioOutput(audio_output As Integer) As Boolean

• SetAudioMode(audio_mode As Integer) As Boolean

• MapStereoOutput(mapping As Integer) As Boolean

• MapDigitalOutput(mapping As Integer) As Boolean

Note: MapDigitalOutput is not available on the HD2000.
• SetVolume(volume As Integer) As Boolean

• SetChannelVolumes(channel_mask As Integer, volume As Integer) As Boolean

• SetUsbAudioPort(a As Integer) As Boolean

• SetSpdifMute(a As Boolean) As Boolean

• StoreEncryptionKey(a As String, b As String) As Boolean

• StoreObfuscatedEncryptionKey(a As String, b As String) As Boolean

• SetStereoMappingSpan(a As Integer) As Boolean

• ConfigureAudioResources() As Boolean

• SetAudioStream(stream_index As Integer) As Boolean

Note: The following “Aux” functions are implemented only on the HD2000
• SetAudioOutputAux(audio_output As Integer) As Boolean

• SetAudioModeAux(audio_mode As Integer) As Boolean

• MapStereoOutputAux(mapping As Integer) As BooleanSetVolumeAux(volume As Integer) As
Boolean

• SetChannelVolumesAux(channel_mask As Integer, volume As Integer) As Boolean

• SetAudioStreamAux(stream_index As Integer) As Boolean

A call to video.Stop is needed before changing the audio output when a video file is playing or has played.

37

Example: This example shows how to use the SetPcmAudioOutputs and SetCompressedAudioOutputs methods in
conjunction with roAudioOutput.

ao1=CreateObject("roAudioOutput", "Analog")

ao2=CreateObject("roAudioOutput", "HDMI")

ao3=CreateObject("roAudioOutput", "SPDIF")

v1=CreateObject("roVideoPlayer")

v1.SetPcmAudioOutputs(ao1)

--or--

ar = CreateObject("roArray", 2, true)

ar[0] = ao2

ar[1] = ao3

v1.SetCompressedAudioOutputs(ar)

Now the video player has been configured to output decoded audio to the analog output or compressed audio to the
HDMI and SPDIF outputs.

audio_output values
 0 – Analog audio
 1 – USB audio
 2 – Digital audio, stereo PCM
 3 – Digital audio, raw AC3
 4 – Onboard analog audio with HDMI mirroring raw AC3

38

digital audio values
 0 – Onboard HDMI
 1 – SPDIF from expansion module

audio_mode values: Options 0 and 1 only apply to video files; while 2 applies to all audio sources.
 0 – AC3 Surround
 1 – AC3 mixed down to stereo
 2 – No audio
 3 – Left
 4 – Right

mapping values: Used to select which analog output to use if audio_output is set to 0.
 0 – Stereo audio is mapped to onboard analog output
 1 – Stereo audio is mapped to expansion module leftmost output
 2 – Stereo audio is mapped to expansion module middle output
 3 – Stereo audio is mapped to expansion module rightmost output

set_volume: Volume functions as a percentage and therefore takes a value between 0-100. The volume value is clipped
prior to use (i.e. SetVoume(101) will set the volume to 100 and return True). The volume is the same for all mapped
outputs and USB/SPDIF/analog.
Note: Separate volume levels are stored for roAudioPlayer and roVideoPlayer.

set_channel_volumes: You can control the volume of individual audio channels. This volume command takes a hex
channel mask, which determines the channels to apply the volume to, and a level, which is a percentage of the full scale.
The volume control works according to audio channel rather than the output. The channel mask is a bit mask with the
following bits for MP3 output:

• &H01 Left

39

• &H02 Right
• &H03 Both left and right

Example: This code sets audio output to the rightmost expansion moduleaudio port.

video = CreateObject("roVideoPlayer")

video.SetAudioOutput(0)

video.MapStereoOutput(3)

Example: This code sets the volume level for individual channels.

audio = CreateObject(“roAudioPlayer”)

audio.SetChannelVolumes(&H01, 60) ‘left channel to 60%

audio.SetChannelVolumes(&H02, 75) ‘right channel to 75%

audio.SetChannelVolumes(&H03, 65) ‘all channels to 65%

Playing Multiple Audio Files Simultaneously
Multiple MP3 files, as well as the audio track of a video file, can be played to any combination of the following:

• Analog outputs
• SPDIF / HDMI
• USB

40

Only a single file can be sent to an output at any given time. For example, two roAudioPlayers cannot simultaneously play
to the SPDIF output. The second one to attempt a PlayFile will get an error. To free an output, the audio or video stream
must be stopped (using the ifMediaTransport Stop or StopClear calls).

Notes on multiple audio-file functionality:

• The onboard analog audio output and HDMI output are clocked by the same sample-rate clock. Therefore, if
different content is being played out of each, the content must have the same sample rate.

• Currently, only a single set of USB speakers is supported.
• Each audio and video stream played consumes some of the finite CPU resources. The amount consumed depends

on the bitrates of the streams. Testing is the only way to determine whether a given set of audio files can be played
at the same time as a video. The maximum recommended usage is a 16Mbps video file with three simultaneous
MP3 160kbps streams.

Example: This code plays a video with audio over HDMI and an MP3 file to the onboard analog port.

video=CreateObject("roVideoPlayer")

video.SetAudioOutput(3)

video.PlayFile("video.mpg")

audio=CreateObject("roAudioPlayer")

audio.MapStereoOutput(0)

audio.PlayFile("audio.mp3")

41

roAudioPlayerMx
This object allows you to mix audio files. Each roAudioPlayerMx object conatins two internal audio players: The main
audio playlist consists of queued audio tracks that play sequentially, while the audio overlay plays files on top of the main
playlist. A fade will not occur if it is called while an overlay is playing, but the next audio track will start playing as expected.

Tracks are queued to PlayFile with their fade parameters specified in an associative array. These are the parameters
you can pass to PlayFile:

• Filename: The filename of the track
• FrontPorch: The length, in milliseconds (ms), to skip from the start of the track. This value is 0 by default.
• FadeOutLocation: The location, in milliseconds (ms), of the fade out relative to the value of the FrontPorch. If the

value is 0 (which is the default setting), and the FadeOutLength has a non-zero value, then the fade out is
calculated back from the end of the file.

• FadeOutLength: The length of the fade out in milliseconds (ms). This value is 0 by default.
• SegueLocation: The location, in milliseconds (ms), of the event that triggers the next audio file to play. This

location is relative to the first audio file that is played. If the SegueLocation parameter is not passed to PlayFile,
the value defaults to the FadeOutLocation.

• BackPorchLocation: The location, in milliseconds (ms), of the termination point for the audio track. This location is
relative to the first audio file that is played. If the BackPorchLocation parameter is not passed to PlayFile, the
audio file plays to the end. The value is 0 by default, which disables the back porch.

• TrackVolume: The relative volume of of the audio track, measured as a percentage. Specify the percentage using
values between 0 and 100.

• EventID: The ID for an audio event
• EventTimeStamp: The timestamp for the audio event. There can only be one event per audio file.
• QueueNext: The queuing of an audio track. Set the parameter value to 1 to queue an audio file to play after the

current track.

42

• Overylay: The overlay specification of an audio track. Set the parameter value to 1 to fade down the main audio
playlist while playing the audio track as an overaly. Overlays have additional parameters:

o AudioBedLevel: The volume-level percentage of the main audio playlist while the overlay is playing.
Specify the percentage using values between 0 and 100.

o AudioBedFadeOutLength: The fade-out length of the main audio playlist.
o AudioBedFadeInLength: The fade-in lenth for the length of the underlying audio track once the segure is

triggered.
• FadeCurrentPlayNext: A fade command. Set the parameter value to 1 to fade out the current main audio playlist

track and fade in the designated audio file.
• CrossfadeCurrentPlayNext: A crossfade command. Set the parameter value to 1 to force an immediate crossfade

between the current main audio playlist track and the designated audio file.

The following diagram illustrates how some of these timing parameters work together:

43

Example: The following example illustrates a simple crossfade between audio tracks.

a = CreateObject("roAudioPlayerMx")

track1 = CreateObject("roAssociativeArray")

track1["Filename"] = "file1.mp3"

track1["FadeInLength"] = 4000

track1["FadeOutLength"] = 4000

track1["QueueNext"] = 1

track2 = CreateObject("roAssociativeArray")

track2["Filename"] = "file2.mp3"

track2["FadeInLength"] = 4000

track2["FadeOutLength"] = 4000

track2["QueueNext"] = 1

a.PlayFile(track1)

a.PlayFile(track2)

Interfaces: ifMediaTransport, ifSetMessagePort, ifAudioControl, ifSetMessagePort, ifAudioControlMx

The ifMediaTransport interface provides the following:

• PlayFile(a As Object) As Boolean

• Stop() As Boolean

• Play() As Boolean

• Pause() As Boolean

• Resume() As Boolean

44

• SetLoopMode(a As Boolean) As Boolean

• GetPlaybackStatus() As Object

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

The ifAudioControl interface provides the following:

• MapStereoOutput(a As Integer) As Boolean

• SetVolume(a As Integer) As Boolean

• SetChannelVolumes(a As Integer, b As Integer) As Boolean

• SetAudioOutput(a As Integer) As Boolean

• SetAudioMode(a As Integer) As Boolean

• SetAudioStream(a As Integer) As Boolean

• SetUsbAudioPort(a As Integer) As Boolean

• SetSpdifMute(a As Boolean) As Boolean

• MapDigitalOutput(a As Integer) As Boolean

• StoreEncryptionKey(a As String, b As String) As Boolean

• StoreObfuscatedEncryptionKey(a As String, b As String) As Boolean

• SetStereoMappingSpan(a As Integer) As Boolean

• ConfigureAudioResources() As Boolean

• SetPcmAudioOutputs(a As Object) As Boolean

• SetCompressedAudioOutputs(a As Object) As Boolean

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifAudioControlMx interface provides the following:

45

• SetDecoderCount(a As Integer) As Boolean

46

roCanvasWidget
This object composites background color, text, and images into a single rectangle, allowing you to layer images on a z-
axis. Like any other widget, roCanvasWidget is created with an roRectangle to set its size and position on the screen.

Interfaces: ifCanvasWidget

The ifCanvasWidget interface provides the following:

• Hide(): Hides the widget.

• Show(): Shows the widget.

• SetLayer(object content, int z-level): Sets the contents of a layer within the widget. The lowest z-

level is drawn first, and the highest z-level is drawn last. The object content is described below.

• ClearLayer(int z-level): Clears the specified layer.

• Clear(): Clears all of the layers.

• EnableAutoRedraw(bool enable): Enables or disables the automatic redrawing of the widget.

o When this function is enabled, each call to SetLayer, ClearLayer, or Clear results in a redraw. If you

need to change multiple layers, then you should disable auto redraw while calling the SetLayer function.

o SetLayer enables or disables redrawing of the widget when layer content is changed. When auto-redraw is

enabled, each call to SetLayer, ClearLayer, or Clear results in a redraw. To batch multiple updates

together, you should first suspend drawing using EnableAutoRedraw(false), then make the changes to

the content, and finally re-enable drawing using EnableAutoRedraw(true). The redraw happens in a

separate thread, so EnableAutoRedraw returns almost immediately.

47

Object Content
The content specified in each layer can consist of one or more objects. Each object is defined by an roAssociativeArray.

If there is more than one object, then each is placed into an roArray prior to passing to the SetLayer function. Currently,

there are four object types:

1. Background color

• color: The #[aa]rrggbb hex value of the background color

• targetRect: A target rectangle, which is another roAssociativeArray consisting of x, y, w, and h values. These

values are relative to the top left corner of the widget.

2. Text

• text: A string of text to display

• targetRect: The rectangle in which the text is displayed

• textAttrs: An roAssociativeArray containing attributes to be applied to the text. The attributes can be any of the

following:

o font: Small/medium/large/huge

o fontSize: A point size that is used directly when creating the font. If the value is set to 0, then the font

automatically resizes to fit the targetRect.

o fontfile: The filename for a non-system font to use

o hAlign: The left/center/right alignment of the text on a line

o vAlign: The top/center/bottom alignment of the text perpendicular to the line

o rotation: The 0/90/180/270 degree rotation of the text

o color: The #[aa]rrggbb hex value of the text

48

3. Image

• filename: The filename of an image

• targetRect: The rectangle in which the image is displayed. The image will be automatically resized to fit into the

target area.

• sourceRect: The source rectangle to clip from a source image

• compositionMode: Enter either source or source_over. The latter alpha blends with underlying objects. The

former replaces the underlying values completely.

4. QR Codes

Note: QR (quick response) codes appear as squares of black dots on a white background. They are used to encode

URLs, email addresses, etc, and they can be scanned using readily available software for smart phones. Although the

codes usually appear as black on white, you can, in theory, use any two contrasting colors.

• targetRect: The rectangle in which the QR code is displayed

o Regardless of the aspect ratio of this rectangle, the QR code itself will always be squared with the

background color that fills the gaps.

• QrCode (simple form): Contains the string to encode into the QR code.

• QrCode (complex form): Contains an array of parameters for the QR code. The parameters can be any of the

following:

o color: The foreground color in the QR code (the default is black)

o backgroundColor: The background color in the QR code (the default is white)

o rotation: 0/90/180/270 degree rotation of the code. The code will scan regardless of rotation.

o qrText: Contains the text to encode into the QR code.

49

Example: This code contains most of the roCanvasWidget features outlined above:

rect=CreateObject("roRectangle", 0, 0, 1920, 1080)

cw=CreateObject("roCanvasWidget", rect)

aa=CreateObject("roAssociativeArray")

aa["text"] = "Primal Scream"

aa["targetRect"] = { x: 280, y: 180, w: 500, h: 30 }

aa["textAttrs"] = { Color:"#AAAAAA", font:"Medium", HAlign:"Left", VAlign:"Top"}

aa1=CreateObject("roAssociativeArray")

aa1["text"] = "Movin' on up, followed by something else, followed by something else,

followed by something else, followed by something else"

aa1["targetRect"] = { x: 282, y: 215, w: 80, h: 500 }

aa1["textAttrs"] = { Color:"#ffffff", font:"Large", fontfile:"usb1:/GiddyupStd.otf",

HAlign:"Left", VAlign:"Top", rotation:"90"}

array=CreateObject("roArray", 10, false)

array.Push({ color: "5c5d5f" })

array.Push({ filename: "transparent-balls.png" })

array.Push(aa)

aa2=CreateObject("roAssociativeArray")

aa2["filename"] = "transparent-balls.png"

aa2["CompositionMode"] = "source_over"

aa2["targetRect"] = { x: 400, y: 200, w: 200, h: 200 }

aa3=CreateObject("roAssociativeArray")

50

aa3["QrCode"] = "www.brightsign.biz"

aa3["targetRect"] = { x: 100, y: 100, w: 400, h: 400 }

aa4=CreateObject("roAssociativeArray")

aa4["QrCode"] = { qrText:"www.brightsign.biz", rotation:"90" }

aa4["targetRect"] = { x: 1200, y: 100, w: 400, h: 600 }

aa5=CreateObject("roAssociativeArray")

aa5["QrCode"] = { color:"#964969", backgroundColor:"#FFFF77",

qrText:"www.brightsign.biz", rotation:"180" }

aa5["targetRect"] = { x: 100, y: 600, w: 400, h: 400 }

cw.Show()

cw.EnableAutoRedraw(0)

cw.SetLayer(array, 0)

cw.SetLayer(aa1, 1)

cw.SetLayer(aa1, 2)

cw.SetLayer(aa3, 3)

cw.SetLayer(aa4, 4)

cw.SetLayer(aa5, 5)

cw.EnableAutoRedraw(1)

cw.ClearLayer(0)

51

roClockWidget
This object places a clock on the screen. It has no extra interface, only construction arguments.

Interfaces: ifTextWidget, ifWidget

Object creation:

CreateObject("roClockWidget", rect As roRectangle, res As roResourceManager, display_type

As Integer)

• Rect: The rectangle in which the clock is displayed. The widget picks a font based on the size of the rectangle.
• display_type: Use 0 for date only, and 1 for clock only. To show both on the screen, you need to create two

widgets.

Example:

rect=CreateObject("roRectangle", 0, 0, 300, 60)

res=CreateObject("roResourceManager", "resources.txt")

c=CreateObject("roClockWidget", rect, res, 1)

c.Show()

The resource manager is passed into the widget, which uses the following resources within “resources.txt” to display the
time and date correctly. Here are the “eng” entries:
[CLOCK_DATE_FORMAT]

eng "%A, %B %e, %Y"

[CLOCK_TIME_FORMAT]

eng "%l:%M"

[CLOCK_TIME_AM]

52

eng "AM"

[CLOCK_TIME_PM]

eng "PM"

[CLOCK_DATE_SHORT_MONTH]

eng "Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec"

[CLOCK_DATE_LONG_MONTH]

eng

"January|February|March|April|May|June|July|August|September|October|November|December"

[CLOCK_DATE_SHORT_DAY]

eng "Sun|Mon|Tue|Wed|Thu|Fri|Sat"

[CLOCK_DATE_LONG_DAY]

eng "Sunday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday"

The following are the control characters for the date/time format strings:

// Date format

//

// %a Abbreviated weekday name

// %A Long weekday name

// %b Abbreviated month name

// %B Full month name

// %d Day of the month as decimal 01 to 31

// %e Like %d, the day of the month as a decimal number, but without leading zero

// %m Month name as a decimal 01 to 12

// %n Like %m, the month as a decimal number, but without leading zero

// %y Two digit year

// %Y Four digit year

53

// Time format

//

// %H The hour using 24-hour clock (00 to 23)

// %I The hour using 12-hour clock (01 to 12)

// %k The hour using 24-hour clock (0 to 23); single digits are preceded by a blank.

// %l The hour using 12-hour clock (1 to 12); single digits are preceded by a blank.

// %M Minutes (00 to 59)

// %S Seconds (00 to 59)

See the entry for roTextWidget for a description of ifTextWidget.

The ifWidget interface provides the following:
• GetFailureReason() As String

• SetForegroundColor(a As Integer) As Boolean

• SetBackgroundColor(a As Integer) As Boolean

• SetFont(a As String) As Boolean

• SetBackgroundBitmap(a As String, b As Boolean) As Boolean

• SetSafeTextRegion(a As Object) As Boolean

• Hide() As Boolean

• Show() As Boolean

54

roHtmlWidget
This object embeds the WebKit HTML renderer. You can use multiple instances of roHtmlWidget at the same time.

Object creation: Like other widgets, an roHtmlWidget is created with an roRectangle, which specifies the size and position
that the widget occupies on the screen.

Interfaces: ifHtmlWidget, ifMessagePort

The ifHtmlWidget interface provides the following:

• GetFailureReason() As String: : Gives more information when a member function returns False.
• Hide() As Boolean: Hides the widget.
• Show() As Boolean: Shows the widget.
• SetURL(a As String) As Boolean: Displays content from the specified URL.

Note
When using SetUrl to retrieve content from local storage, you do not need to specify the full file path:
SetUrl(“file:/example.html”). If the content is located somewhere other than the current storage device, you
can specify it within the string itself. For example, you can use the following syntax to retrieve content from a storage
device inserted into the USB port when the current device is an SD card:
SetUrl(“file:///USB1:/example.html”).

• MapFilesFromAssetPool(a As Object, b As Object, c As String, d As String) As Boolean:
Sets the mapping between the URL space and the pool files.

• SetZoomLevel(a as Float): Adjusts the scale factor for the displayed page (the default equals 1.0).
• EnableSecurity() As Boolean: Enables security checks by the Webkit. Setting this method to False disables

security checks.

55

• EnableMouseEvents() As Boolean: Enables response to button presses if True. Setting this method to False
(the default) disables this feature.

• SetPortriat() As Boolean: Sets the screen orientation to portrait if True. If this method is False (the default),
the screen is oriented as a landscape.

• SetAlpha (a As Integer): Sets the overall alpha level for the widget (the default equals 255).
• Scroll (x As Integer, y As Integer): Scrolls the viewport to a new location.
• EnableScrollbars() As Boolean: Enables automatic scrollbars for content that does not fit into the viewport

if True. Setting this method to False (the default) disables this feature.
• AddFont (filename As String): Makes a font available for text rendering. The AddFont() method can be

used to supply additional or custom typefaces for the WebKit renderer. These should be supplied in the form of
TTF files, and the filename should be passed as the argument to AddFont().

• SetAppCacheDir(file_path As String): Sets the directory to use for storing the application cache (which
services <html manifest=”example.appcache”> tags). The file path is passed to the method as a string (e.g.
“SD:/appcache”).

• SetAppCacheSize(maximum As Integer): Sets the maximum size (in bytes) for the application cache.
Changing the storage size of the application cache will clear the cache and rebuild the cache storage. Depending
on database-specific attributes, you will only be able to set the size in units that are equal to the page size of the
database, which is established at creation. These storage units will occur only in the following increments: 512,
1024, 2048, 4096, 8192, 16384, 32768.

• EnableJavascript(a As Boolean) As Boolean

• SetUserAgent(a As String) As Boolean

The ifMessagePort interface provides the following:

• SetPort (a As Object)

An roMessagePort can be attached to an roHtmlWidget. It will then receive roHtmlWidgetEvent objects when something
happens to the parent widget. An roAssociativeArray functions as the payload of the roHtmlWidgetEvent, and the payload

56

can be retrieved using the GetData() method. Within the associative array, the reason key identifies the cause of the
event. The reason key can return the following values:

• load-started: The WebKit has started loading a page.
• load-finished: The WebKit has completed loading a page.
• load-error: The WebKit has failed to load a page. The uri key identifies the failing resource, and the message

key provides some explanatory text.

Filename Mapping
HTML content that has been deployed via BrightAuthor will typically reside in the pool and have encrypted SHA1-based
filenames. A mapping mechanism is required to allow any relative URIs contained in the HTML content to continue
working and to locate the appropriate resources in their respective pool locations.

An roHtmlWidget.MapFilesFromAssetPool() method can be used to bind part of the resource URI space onto
pool locations, as long as it is used with the following: an roAssetPool object containing some assets, an
roAssetCollection object identifying them, and two semi-arbitrary strings (URI_PREFIX and POOL_PREFIX).

Any URI in the form “file:/[URI_PREFIX][RESOURCE_ID]” will be rewritten into the form “[POOL_PREFIX]
[RESOURCE_ID]”. It will then be located in the pool as if that name had been passed to the
roAssetPoolFiles.GetPoolFilePath() method. This binding occurs for every instance of roHtmlWidget, so different
mappings can be used for different bundles of content.

57

roImageBuffer

Interfaces: ifImageBufferControl

The ifImageBufferControl interface provides the following:

• DisplayBuffer(a As Integer, b As Integer) As Boolean

58

roImagePlayer
This object displays static bitmap images on the video display.

Interfaces: ifImageControl

The ifImageControl interface provides the following:

• DisplayFile(image_filename As String) As Boolean

• DisplayFile(parameter As roAssociativeArray) As Boolean

• PreloadFile(filename As String) As Boolean

• PreloadFile(parameter As roAssociativeArray) As Boolean

• DisplayPreload As Boolean
• StopDisplay As Boolean: Removes an image from the display.
• DisplayFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As

Boolean

• PreloadFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As
Boolean

• SetDefaultMode(mode As Integer) As Boolean
• SetDefaultTransition(transition As Integer) As Boolean
• SetRectangle(r As roRectangle) As Void

• OverlayImage(a As String, b As Integer, c As Integer) As Boolean

• GetRectangle() As Object

• CreateTestHole(a As Object) As Boolean

• SetTransitionDuration(a As Integer) As Boolean

• DisplayBuffer(a As Object, b As Integer, c As Integer) As Boolean

59

The simplest way to use roImagePlayer is to make calls to “DisplayFile” with the filename as a String. Alternatively, you
can use PreloadFile/DisplayPreload to have more control.

PreloadFile loads the file into an off-screen memory buffer. DisplayPreload then displays the image in memory to the
screen using the on-screen buffer. There are only two memory buffers: one is displayed on screen; and the other can be
used for preloading. PreloadFile can be called multiple times before DisplayPreload is called, and will keep loading into
the same off-screen buffer. DisplayFile calls a PreloadFile followed immediately by a DisplayPreload, so any previously
preloaded image will be lost. If no image is preloaded, DisplayPreload will have no effect.

X, Y: x and y indicate which position of the image to center as near as possible, or both x and y can be set to -1, which
uses the center of the image as the point to position nearest to the center.

SetDefaultMode sets the mode used for DisplayFile and PreloadFile. If SetDefaultMode is not called, then the default
mode is set to 0 (equivalent to centered without scaling) when the object is created.

Currently, image_filename must point to a PNG, JPEG, or a 8-bit, 24-bit, or 32-bit BMP file.

The supported Display Modes are listed here:

• 0 - Center image: No scaling takes place. Only cropping occurs if the image is bigger than the screen.
• 1 - Scale to fit: The image is scaled so that it is fully viewable, with its aspect ratio maintained.
• 2 - Scale to fill and crop: The image is scaled so that it completely fills the screen, with its aspect ratio maintained.
• 3 - Scale to fill: The image is stretched so that it fills the screen and the whole image is viewable. This means that

the aspect ratio will not be maintained if it is different to that of the current screen resolution.

SetDefaultTransition sets the transition to be used when the next image is displayed. The following are available
transitions:

• 0 - No transition, immediate blit.

60

• 1 to 4 - Wipes from top, bottom, left and right.
• 5 to 8 - Explodes from centre, top left, top right, bottom left, bottom right.
• 10 to 11 - Venetian blinds vertical and horizontal.
• 12 to 13 - Comb effect vertical and horizontal.
• 14 - Fade out to background color, then back in.
• 15 - Fade between current image and new image.
• 16 to 19 - Slides from top, bottom, left and right.
• 20 to 23 – Slides entire screen from top, bottom, left, and right.
• 24, 25 – Scales old image in, then the new one out again (this works as a pseudo “rotation” around a vertical and

horizontal axis, respectively).
• 26 to 29 – New image expands onto screen from right, left, bottom, and top, respectively.

To display images in a zone, SetRectangle must be called. EnableZoneSupport must be included in a script to use the
zones functionality.

Here are some example shell commands you can use to test the different display modes:

Roku> image filename.bmp 0

Roku> image filename.bmp 1

Roku> image filename.bmp 2

Roku> image filename.bmp 3

Roku> image filename.bmp 0 0 0

Roku> image filename.bmp 2 0 0

61

The following example script uses preloaded images to improve the UI speed when the user hits a key on the keyboard.
As soon as a key is struck, the display switches to the new image, which has already been preloaded. The only possible
delay occurs if the key is hit while the image is preloading. In this case, the image will display as soon as it is loaded.

i = CreateObject("roImagePlayer")

p = CreateObject("roMessagePort")

k = CreateObject("roKeyboard")

k.SetPort(p)

i.PreloadFile("one.bmp")

loop:

i.DisplayPreload

i.PreloadFile("two.bmp")

wait(0,p)

i.DisplayPreload

i.PreloadFile("one.bmp")

wait(0,p)

goto loop

62

roImageWidget
This object can be used in place of roImagePlayer in cases where the image is displayed within a rectangle. Using a
roImageWidget can result in more pleasing aesthetics for image player creation. Beyond this, roImageWidget behaves
identically to roImagePlayer.

When displaying roImagePlayer within a rectangle, the following code is used:

rectangle = CreateObject("roRectangle", 0, 0, 1024, 768)

i = CreateObject("roImagePlayer")

i.SetRectangle(rectangle)

When utilizing an roImageWidget, the following code is used:

rectangle = CreateObject("roRectangle", 0, 0, 1024, 768)

i = CreateObject("roImageWidget", rectangle)

Interfaces: ifImageControl

See roImagePlayer for a description of ifImageControl and its attendant methods.

We have added some overloaded PreloadFile and DisplayFile functions. These take an roAssociativeArray as a
parameter. The roAssociativeArray stores various options to be passed. They must be used when displaying images
across multiple screens in an array, or displaying a portion of an image though they can also be used in place of the
original function calls.

63

Example: This code uses PreloadFile for a multiscreen display:

i=CreateObject("roImagePlayer")

a=CreateObject("roAssociativeArray")

a["Filename"] = "test.jpg"

a["Mode"] = 1

a["Transition"] = 14

a["MultiscreenWidth"] = 3

a["MultiscreenHeight"] = 2

a["MultiscreenX"] = 0

a["MultiscreenY"] = 0

i.PreloadFile(a)

i.DisplayPreload

The filename, mode, and transition are the same values as documented above, but the multiscreen parameters are new.
The MultiscreenWidth and MultiscreenHeight parameters specify the width and height of the multiple screen matrix. For
example, 3x2 would be three screens wide and two screens high. The MultiscreenX and MultiscreenY specify the position
of the current screen within that matrix.

In the above case, on average only 1/6 of the image is drawn on each screen, though the image mode still applies so that
depending on the shape of the image, it may have black bars on the side screens. It is relatively simple, therefore, for an
image widget to display part of an image based on its position in the multiscreen array. The following are default values
for the parameters:
Mode = 0

Transition = 0

MultiscreenWidth = 1

MultiscreenHeight = 1

MultiscreenX = 0

64

MultiscreenY = 0

Example: This code uses DisplayFile for displaying a portion of an image:

i=CreateObject("roImagePlayer")

a=CreateObject("roAssociativeArray")

a["Filename"] = "test.JPG"

a["Mode"] = 0

a["SourceX"] = 600

a["SourceY"] = 600

a["SourceWidth"] = 400

a["SourceHeight"] = 400

i.DisplayFile(a)

This displays just a portion of the image test JPG starting at coordinates SourceX, SourceY, and SourceWidth by
SourceHeight in size. The viewmode is still honored as if it were displaying the whole file.

65

roRectangle
This object is created with several parameters:

CreateObject("roRectangle", x As Integer, y As Integer, width As Integer, height As

Integer)

Interfaces: ifRectangle

The interface ifRectangle provides the following:
• SetX(x As Integer) As Void

• SetY(y As Integer) As Void

• SetWidth(width As Integer) As Void

• SetHeight(height As Integer) As Void

• GetX As Integer

• GetY As Integer

• GetWidth As Integer

• GetHeight As Integer

SetRectangle calls honor the view mode/aspect ratio conversion mode set up by the user. If the user has set the
videoplayer for letterboxing, it will occur if the video does not fit exactly into the new rectangle.

66

roShoutcastStream

Object creation: roShoutcastStream takes a URL object, a maximum buffer size (in seconds), and an initial buffering
duration (in seconds).

CreateObject("roShoutcastStream", url_transfer, buffer size, buffer duration)

Interfaces: ifShoutcastStream, ifSetMessagePort, ifSourceIdentity

The ifShoutcastStream interface provides the following:

• GetUrl() As String

• GetBufferedDuration() As Integer

• GetTimeSinceLastData() As Integer

• GetCurrentMetadata() As String

• Rebuffer() As Boolean

• AsyncSaveBuffer(a As String) As Boolean

• RestartBufferRecord() As Boolean

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

The ifSourceIdentity interface provides the following:
• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

67

roShoutcastStreamEvent

Interfaces: ifInt, ifSourceIdentity

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifSourceIdentity interface provides the following:
• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

68

roTextField
A text field represents an area of the screen that can contain arbitrary text. This feature is intended for presenting
diagnostic and usage information rather than for generating a user interface.

The object is created with several parameters:

CreateObject("roTextField", xpos As Integer, ypos As Integer, width_in_chars As Integer,

height_in_chars As Integer, metadata As Object)

• xpos: The horizontal coordinate for the top left of the text field.
• ypos: The vertical coordinate for the top left of the text field. The top of the screen is equivalent to zero.
• width_in_chars: The width of the text field in character cells.
• height_in_chars: The height of the text field in character cells.
• metadata: An optional roAssociativeArray containing extra parameters for the text field. You can pass zero if you

do not require this.

Note: In TV modes a border around the screen may not be displayed due to overscanning. You may want to use the
roVideoMode object functions GetSafeX and GetSafeY to ensure that the coordinates you use will be visible.

The metadata object supports the following extra parameters:

• "CharWidth": The width of each character cell in pixels.
• "CharHeight": The height of each character cell in pixels.
• "BackgroundColor": The background color of the text field as an integer specifying eight bits (for each) for red,

green and blue in the form &Hrrggbb.
• "TextColor": The color of the text as an integer specifying eight bits (for each) for red, green and blue in the form

&Hrrggbb.

69

• "Size"= An alternative to "CharWidth" and "CharHeight" for specifying either normal size text (0) or double-sized
text (1).

Interfaces: ifTextField, ifStreamSend

The ifTextField interface provides the following:

• Cls As Void: Clears the text field.
• GetWidth As Integer: Returns the width of the text field
• GetHeight As Integer: Returns the height of the text field.
• SetCursorPos(x As Integer, As Integer) As Void: Moves the cursor to the specified position.

Subsequent output will appear at this position.
• GetValue As Integer: Returns the value of the character currently under the cursor.

The ifStreamSend interface provides the following:
• SendByte(byte As Integer) As Void: Writes the character indicated by the specified number at the current

cursor position within the text field. It then advances the cursor.
• SendLine(string As String) As Void: Writes the characters specified at the current cursor position

followed by the end-of-line sequence.
• SendBlock(string As String) As Void: Writes the characters specified at the current cursor position and

advances the cursor to one position beyond the last character.
• SetSendEol(string As String) As Void: Sets the sequence sent at the end of a SendLine request. You

should leave this at the default value of “chr(13)” for normal use.
Note: The ifStreamSend interface is also described in the section documenting the various file objects. The interface is
described again here in a manner more specific to the roTextField object.

As with any object that implements the ifStreamSend interface, a text field can be written to using the PRINT
#textfield syntax. See the example below for more details.

70

It is also possible to write to a text field using the syntax PRINT #textfield, @pos, where pos is the character
position in the textfield. For example, if your textfield object has 8 columns and 3 rows, writing to position 17 writes to row
3, column 2 (positions 0-7 are in row 1; positions 8-15 are in row 2; and positions 16-23 are in the last row).

When output reaches the bottom of the text field, it will automatically scroll.

Example:

meta = CreateObject("roAssociativeArray")

meta.AddReplace("CharWidth", 20)

meta.AddReplace("CharHeight", 32)

meta.AddReplace("BackgroundColor", &H101010) ' Dark grey meta.AddReplace("TextColor",

&Hffff00) ' Yellow

vm = CreateObject("roVideoMode")

tf = CreateObject("roTextField", vm.GetSafeX(), vm.GetSafeY(), 20, 20, meta)

print #tf, "Hello World"

tf.SetCursorPos(4, 10)

print #tf, "World Hello"

71

roTextWidget
This object is used to place text on the screen.

Object creation:

CreateObject("roTextWidget", r As roRectangle, line_count As Integer, text_mode As

Integer, pause_time As Integer)

• r : Create an roRectangle that contains the text.
• line_count: Determine the number of lines of text to show in the rectangle.
• text_mode: Use 0 for an animated view similar to teletype, 1 for static text, and 2 for simple text with no queue of

strings.
• pause_time: Determine how long each string is displayed prior to displaying the next string.

CreateObject("roTextWidget", r As roRectangle, line_count As Integer, text_mode As

Integer, array As roAssociativeArray)

• r : Create an roRectangle that contains the text.
• line_count: Determine the number of lines of text to show in the rectangle.
• text_mode: Use 0 for an animated view similar to teletype, 1 for static text, and 2 for simple text with no queue of

strings.
• array: Create an associative array that can include the following values:

o “LineCount”: Determine the number of lines of text to show in the rectangle.
o “TextMode”: Use 0 for an animated view similar to teletype, or use 1 for static text.
o “PauseTime”: Determine how long each string is displayed prior to displaying the next string. This does not

apply to mode 2 roTextWidget objects, in which the strings on screen are updated immediately.
o “Rotation”: Determine the rotation of the text in the widget: 0 degrees (0), 90 degrees (1), 180 degrees (2),

or 270 degrees (3).

72

o “Alignment”: Determine the alignment of the text: left (0), center (1), or right (2).

Interfaces: ifTextWidget, ifWidget

The ifTextWidget interface provides the following:

• PushString(str As String) As Boolean: Adds the string to the list of strings to display in modes 0 and 1.
Strings are displayed in order, and when the end is reached, the object loops, returning to the beginning of the list.
In mode 2, the string is displayed immediately.

• PopStrings(number_of_string_to_pop As Integer) As Boolean: Pops strings off the front of the list
(using “last in, first out” ordering) in modes 0 and 1. This occurs the next time the widget wraps so that strings can
be added to and removed from the widget seamlessly. In mode 2, the string is cleared from the widget immediately.

• GetStringCount As Integer: Returns the number of strings that will exist once any pending pops have taken
place.

• Clear As Boolean: Clears the list of strings, leaving the widget blank and able to accept more PushString calls.

This ifWidget interface provides the following:
• SetForegroundColor(color As Integer) As Boolean

• SetBackgroundColor(color As Integer) As Boolean: Sets the background color in ARGB format.
• SetFont(font_filename As String) As Boolean: Sets the font_filename using a TrueType font (for

example, SD:/Ariel.ttf).
• SetBackgroundBitmap(background_bitmap_filename As String, stretch As Boolean) As

Boolean: Sets the background bitmap. If stretch is True, then the image is stretched to the size of the window.
• SetSafeTextRegion(rect As roRectangle) As Boolean: Specifies the rectangle within the widget where

the text can be drawn safely.
• Show As Boolean: Displays the widget. After creation, the widget is hidden until Show is called.
• Hide As Boolean: Hides the widget.
• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.

73

The top 8 bits of the color value are “alpha,” which has no effect on the foreground text color, but does affect the widget
background color. Zero is equivalent to fully transparent and 255 to fully non-transparent. This feature allows effects
similar to subtitles. For example, you can create a semi-transparent black box containing text over video.

Modes 0 and 1 are useful for displaying RSS feeds and ticker-type text. However, for dynamic data where immediate
screen updates are required, mode 2 is more appropriate. Mode 2 allows text to be drawn immediately to the screen.

74

roVideoEvent, roAudioEvent
Video and audio events can have one of these integer values. They are declared as separate classes as they are likely to
diverge in the future:
1 Undefined: Player is in an undefined state.
2 Stopped: Playback of the current media item is stopped.
3 Playing: The current media item is playing.
4 ScanForward: The current media item is fast forwarding.
5 ScanReverse: The current media item is rewinding.
6 Buffering: The current media item is getting additional data from the server.
7 Waiting: Connection is established, but the server is not sending data. Waiting for session to begin.
8 MediaEnded: The media item has completed playback.
9 Transitioning: Player is preparing new media item.
10 Ready: Player is ready to begin playing.
11 Reconnecting: Player is reconnecting to the stream.
12 TimeHit: A particular timecode is hit. See roVideoPlayer.

Interfaces: ifInt, ifData

The ifInt interface contains the event ID enumerated above and provides the following:

• GetInt As Integer
• SetInt(a As Integer)

• GetSourceIdentity() As Integer

• SetSourceIdentity() As Integer

The ifData interface contains userdata and provides the following:
• GetData As Integer

75

• SetData(a As Integer)

Example:

vp_msg_loop:

 msg=wait(tiut, p)

 if type(msg)="roVideoEvent" then

 if debug then print "Video Event";msg.GetInt()

 if msg.GetInt() = 8 then

 if debug then print "VideoFinished"

 retcode=5

 return

 endif

 else if type(msg)="roGpioButton" then

 if debug then print "Button Press";msg

 if escm and msg=BM then retcode=1:return

 if esc1 and msg=B1 then retcode=2:return

 if esc2 and msg=B2 then retcode=3:return

 if esc3 and msg=B3 then retcode=4:return

 else if type(msg)="rotINT32" then

 if debug then print "TimeOut"

 retcode=6

 return

 endif

 goto vp_msg_loop

76

roVideoInput
This object allows playback of video supplied by a video capture dongle.

roVideoInput is created with no parameters:

CreateObject("roVideoInput ")

Interfaces: ifVideoInput

The ifVideoInput interface provides the following:

• GetStandards As roArray(String)

• GetInputs As roArray(String): These return an array of strings describing the various inputs and video
standards that the video capture device supports. The following are the possible standards that can be returned:
PAL-D/K, PAL-G, PAL-H, PAL-I, PAL-D, PAL-D1, PAL-K, PAL-M, PAL-N, PAL-Nc, PAL-60, SECAM-B/G, ECAM-B,
SECAM-D, SECAM-G, SECAM-H, SECAM-K, SECAM-K1, SECAM-L, SECAM-LC, SECAM-D/K, NTSC-M, NTSC-
Mj, NTSC-443, NTSC-Mk, PAL-B and PAL-B1. Inputs returned are s-video and composite.

• SetStandard(As String) As Boolean

• GetCurrentStandard As String

• SetInput(As String) As Boolean

• GetCurrentInput As String: Use the above to get and set the input and video standard.
• GetControls As roArray(String): Returns the possible controls on the input. These include “Brightness,”

“Contrast,” “Saturation,” “Hue,” and others.
• SetControlValue(control_name As String, value As Integer) As Boolean: Sets the value of the

specified control.

77

• GetCurrentControlValue(control_name As String) As roAssociativeArray: Returns an
associative array with 3 members: “Value,” “Minimum,” and “Maximum.” “Value” is the current value, and the
possible range is specified by “Minimum” and “Maximum.”

• GetFormats() As Object

• SetFormat(a As String, b As Integer, c As Integer) As Boolean

• GetCurrentFormat() As String

Example: This script creates a full-screen display with the video capture dongle as the video source.

v=CreateObject("roVideoPlayer")

i=CreateObject("roVideoInput")

p=CreateObject("roMessagePort")

vm=CreateObject("roVideoMode")

vm.SetMode("1280x720x60p")

r = CreateObject("roRectangle", 0, 0, 1280, 720)

v.SetRectangle(r)

i.SetInput("s-video")

i.SetStandard("ntsc-m")

v.PlayEx(i)

78

roVideoMode
This object allows you to set the output video resolution. The same video resolution is applied to all video outputs on a
BrightSign player. Video or images that are subsequently decoded and displayed will be scaled (using the hardware
scalar) to this output resolution if necessary.

Interfaces: ifVideomode, ifSetMessagePort

The ifVideoMode interface provides the following:

• SetMode(mode As String) As Boolean

• GetResX As Integer: Gets the width of the display for the current video mode.
• GetResY As Integer: Gets the height of the display for the current video mode.
• GetSafeX As Integer: Gets the left coordinates for the start of the "safe area.” For modes that are generally

displayed with no overscan, this will be zero.
• GetSafeY As Integer: Gets the top coordinates for the start of the "safe area." For modes that are generally

displayed with no overscan, this will be zero.
• GetSafeWidth As Integer: Gets the width of the "safe area.” For modes that are generally displayed with no

overscan, this will return the same as GetResX.
• GetSafeHeight As Integer: Gets the height of the "safe area.” For modes that are generally displayed with no

overscan, this will return the same as GetResY.
Note: More information about safe areas can be found here:

• http://en.wikipedia.org/wiki/Safe_area
• http://en.wikipedia.org/wiki/Overscan_amounts

• SetBackgroundColor(a As Integer) As Boolean: Specifies the background color using an #rrggbb hex

value.
• SetPowerSaveMode(power_save_enable As Boolean) As Boolean: Turns off the syncs for VGA output

and the DAC output for component video. This will cause some monitors to go into standby mode.

http://en.wikipedia.org/wiki/Safe_area�
http://en.wikipedia.org/wiki/Overscan_amounts�

79

Note that the BrightSign Hardware has a video anti-aliasing low pass filter that is set automatically. See the
hardware manual, which you find on the support page, for more information.

If the video mode specified in SetMode is different from the object’s current video mode, the unit will reboot and set
its video mode to the new setting during system initialization.

• SetMultiscreenBezel(x_pct As Integer, y_pct As Integer) As Boolean: Adjusts the size of the
bezel used in calculations when using multiscreen displays for video and images. It allows users to compensate for
the width of their screen bezels in multiscreen configurations. The calculations for the percentages are as follows:

x_percentage = (width_of_bezel_between_active_screens / width_of_active_screen) * 100

y_percentage = (height_of_bezel_between_active_screens / height_of_active_screen) * 100

The bezel measurement is therefore the total of the top and bottom bezels in the y case, or the left and right bezels
in the x case. When this value is set correctly, images spread across multiple screens take account of the bezel
widths, leading to better alignment of images.

• GetEdidIdentity(a As Boolean) As Object:Returns an associative array with EDID information from a
compatible monitor/television connected over HDMI. These are the possible parameters:

o serial_number_string

o year_of_manufacture

o monitor_name

o manufacturer

o text_string

o serial_number

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting�

80

o product

o week_of_manufacture

The system will generate an roHdmiEdidChanged event when an HDMI cable is hotplugged and the EDID
information changes. Calling GetEdidIdentity(1) at this point retrieves the new EDID information.

The ifSetMessagePort interface provides the following:
• SetPort(obj As Object) As Void

The following are supported modes that can be passed to SetMode on the HD110, HD210, HD210w, HD410, HD810,
HD1010, HD1010w, HD120, HD220 and HD1020:

• “auto”
• “640x480x60p”
• “800x600x60p” (The HD210w and HD1010w support “800x600x75p” instead)
• “1024x768x60p” (The HD210w and HD1010w support “1024x768x75p” instead)
• “1280x768x60p”
• “1280x800x60p
• “1360x768x60p”
• “720x576x50p”
• “720x480x60p”
• “1280x720x50p”
• “1280x720x59.94p”
• “1280x720x60p”
• “1920x1080x50i”
• “1920x1080x59.94i”
• “1920x1080x60i”
• “1920x1080x29.97p”

81

• “1920x1080x50p”
• “1920x1080x60p”

If the mode is set to “auto,” the BrightSign will try to determine the best video mode to use based on connected hardware.
The algorithm is as follows:

1. Try VGA first – If VGA is attached, use the best mode as reported by the monitor that BrightSign supports.
2. Try HDMI next – If HDMI is attached, use the best mode as reported by the monitor that BrightSign supports.
3. Default to 1024x768x75p.

82

roVideoPlayer
A Video Player is used to play back video files (using the generic ifMediaTransport interface). If the message port is set,
the object will send events of type roVideoEvent. All object calls are asynchronous. That is, video playback is handled in a
different thread from the script. The script will continue to run while video is playing. Decoded video will be scaled to the
output resolution specified by roVideoMode.

Interfaces: ifIdentity, ifSetMessagePort, ifAudioControl, ifAudioAuxControl, ifVideoControl, ifMediaTransport.

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifSetMessagePort interface provides the following:

• SetPort(obj As Object)As Void

• SetPort(a As Object)

See roAudioPlayer for an explanation of ifAudioControl.

The ifAudioAuxControl interface provides the following:
• MapStereoOutputAux(a As Integer) As Boolean

• SetVolumeAux(a As Integer) As Boolean

• SetChannelVolumesAux(a As Integer, b As Integer) As Boolean

• SetAudioOutputAux(a As Integer) As Boolean

• SetAudioModeAux(a As Integer) As Boolean

• SetAudioStreamAux(a As Integer) As Boolean

• SetUsbAudioPortAux(a As Integer) As Boolean

83

The ifVideoControl interface provides the following:
• PlayStaticImage(filename As String) As Boolean

• SetViewMode(mode As Integer) As Boolean

• SetRectangle(r As roRectangle) As Void

• EnableSafeRegionTrimming(a As Boolean) As Boolean

The ifMediaTransport interface provides the following:
• PlayFile(filename As String) As Boolean

• PlayFile(parameters As AssociativeArray) As Boolean

• PreloadFile(parameters As AssociativeArray) As Boolean

• Stop As Boolean

• Play As Boolean

• SetLoopMode(mode As Integer) As Boolean

• ClearEvents As Boolean

• AddEvent(userdata As Integer, time_in_ms As Integer) As Boolean

• StopClear As Boolean

• Pause() As Boolean

• Resume() As Boolean

• PlayEx(a As Object) As Boolean

If you wish to use a view mode different from the default, you must set it prior to starting video playback.

view_mode values:
 0 – Scale to fill (default). The aspect ratio can change.
 1 – Letterboxed and centered. The aspect ratio is maintained, and the video has black borders.
 2 – Full screen and centered. The aspect ratio is maintained and the screen is filled.

84

To display the video in a zone, SetRectangle must be called. EnableZoneSupport must be called to use the zones
functionality.

MPEG2 video files are encoded with a specific aspect ratio, and output display resolutions have an aspect ratio. Video
display modes 1 and 2 use these aspect ratios to ensure that the video-file aspect ratio is preserved when it is displayed.
This will fail only when a widescreen monitor displays a 4:3 output resolution such as 800x600 across the whole screen
(i.e. the monitor does not respect the aspect ratio). Please note that this feature relies on the correct aspect ratio marking
of the MPEG2 video files. Unfortunately, not all files are marked correctly.

Users can add events that trigger messages of the roVideoEvent Timecode Hit at the specified millisecond times in a
video file. The data field of the roVideoEvent holds the userdata passed in with AddEvent.

Example: This script uses timecode events. The script prints out 2, 5, and 10 into the video at 2 seconds, 5 seconds, and
10 seconds. The msg is approaching frame accurate.

10 v = CreateObject("roVideoPlayer")

20 p = CreateObject("roMessagePort")

30 v.SetPort(p)

40 ok = v.AddEvent(2, 2000) ' Add timed events to video

50 ok = v.AddEvent(5, 5000)

60 ok = v.AddEvent(10, 10000)

70 ok = v.AddEvent(100, 100000)

80 ok = v.PlayFile("SD:/C5_d5_phil.vob")

90 msg = wait(0,p) ' Wait for all events

95 if msg.GetInt() = 8 then stop ' End of file

100 if msg.GetInt() <> 12 goto 90 ' I only care about time events

85

110 print msg.GetData() ' Print out index when the time event happens

120 goto 90

Calling PlayStaticImage displays an image on the video layer. The image is stretched to fill the video rectangle.

Multiscreen video playback
We have also added some overloaded PreloadFile and PlayFile functions. These take a roAssociativeArray as a
parameter, which stores all the various options to be passed in. They must be used when displaying images across
multiple screens in an array, or displaying windowed portions of a video, though they can also be used in place of the
original function calls.

Example: This script uses the PreloadFile for a multiscreen display:

v=CreateObject("roVideoPlayer")

a=CreateObject("roAssociativeArray")

a["Filename"] = "test.ts"

a["MultiscreenWidth"] = 3

a["MultiscreenHeight"] = 2

a["MultiscreenX"] = 0

a["MultiscreenY"] = 0

v.PreloadFile(a)

…

…

v.Play()

The filename is the same as documented earlier, but the multiscreen parameters are new. MultiscreenWidth and
MultiscreenHeight specify the width and height of the multiple-screen matrix. For example, 3x2 would be 3 screens wide

86

and 2 high. MultiscreenX and MultiscreenY specify the position of the current screen within that matrix. In the case above,
on average only 1/6th of the video is drawn on each screen (though the view mode still applies), so depending on the
shape of the video, it may have black bars on the side screens. In this way, it is relatively simple for a video player to
display part of an image based on its position in the multiscreen array.

PreloadFile does all of the preliminary work to get ready to play the specified video clip, including stopping the playback of
the previous video file. The call to “Play” starts the playback. This is good for synchronizing video across multiple players
as they can all be prepared ready to play and then will immediately start playing when the “Play” command is issued. This
reduces synchronization latencies.

The following are the default values for the parameters:
MultiscreenWidth = 1
MultiscreenHeight = 1
MultiscreenX = 0
MultiscreenY = 0

Example: Here is a script using PlayFile for displaying a portion of a video:

v=CreateObject("roVideoPlayer")

a=CreateObject("roAssociativeArray")

a["Filename"] = "test.ts"

a["SourceX"] = 100

a["SourceY"] = 100

a["SourceWidth"] = 1000

a["SourceHeight"] = 500

v.PlayFile(a)

87

This displays a windowed portion of the video test.ts starting at coordinates SourceX, SourceY, and SourceWidth by
SourceHeight in size. The viewmode is still honored as if displaying the whole file.

RF Channel Scanning
The PlayFile() method can be used for channel scanning and handling functionality similar to roChannelManager. To
use PlayFile() for channel scanning, pass an roAssociativeArray with the following possible parameters:

• VirtualChannel

• RfChannel

• SpectralInversion
o INVERSION_ON

o INVERSION_OFF

o INVERSION_AUTO

• ModulationType
o QAM_64

o QAM_256

o QAM_AUTO

o 8VSB

• VideoCodec
o MPEG1-Video

o MPEG2-Video

o MPEG4Part2-Video

o H264

o H264-SVC

o H264-MVC

o AVSC

• AudioCodec
o MPEG-Audio

88

o AAC

o AAC+

o AC3

o AC3+

o DTS

• VideoPid

• AudioPid

• PcrPid

The VirtualChannel and RfChannel parameters must be present for PlayFile() to scan correctly. If you specify only
these parameters, the player will scan the RF channel for a QAM/ATSC signal and attempt to retrieve the specified virtual
channel from the results. The results from this action are cached so that subsequent calls to PlayFile() will take much less
time. Providing the SpectralInversion and/or ModulationType parameters will further speed up the scanning
process.

If all parameters are supplied, then no scanning is required and the player can tune to the channel immediately. If one or
more of the optional parameters is missing, then the player must parse the transport stream metadata to find the
appropriate values for the supplied VirtualChannel and RfChannel.

89

roTouchCalibrationEvent

Interfaces: ifInt, ifIntOps

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifIntOps interface provides the following:

• ToStr() As String

90

roTouchEvent

Interfaces: ifInt, ifPoint, ifEvent

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifPoint interface provides the following:

• GetX() As Integer

• GetY() As Integer

• SetX(a As Integer)

• SetY(a As Integer)

The ifEvent interface provides the following:
• GetEvent() As Integer

• SetEvent(a As Integer)

91

roTouchScreen
This object allows you to accept events from touch screen panels or mice. Not all touchscreens are supported. However,
we are always working on more driver support. Please see this FAQ for a full list of supported touch screens, or contact
sales@brightsign.biz if you want to see a specific touch-screen model supported.

roTouchScreen responds to the clicks of a USB mouse in the same way it responds to touch events on a touch screen.

To use a touch screen, follow these general steps:

1. Create an roTouchScreen object.
2. Use SetPort to communicate to the roTouchScreen which roMessagePort to send events to.
3. Define one or more touch regions.
o A touch region may be rectangular or circular.
o When someone touches the screen anywhere inside the area of a touch region, an event will be sent to the

message port.
4. Process the events.

Note: If touch areas overlap such that a touch hits multiple regions, an event for each affected region will be sent.

The roTouchScreen object supports rollover regions. Rollovers are based around touch regions. When a rectangular or
circular region is added, it defaults to having no rollover. You can enable a rollover using the touch region’s ID and
specifying an on and off image. Whenever the mouse cursor is within that region, the on image is displayed. In all other
cases, the off image is displayed. This allows buttons to be highlighted as the mouse cursor moves over them.

Interfaces: ifTouchScreen, ifSetMessagePort, ifTouchScreenCalibration, ifSerialControl

http://support.brightsign.biz/entries/262256-Which-touchscreens-can-I-use-with-BrightSign-players-�
mailto:sales@rokulabs.com�

92

The ifTouchScreen interface provides the following:
• SetResolution(x As Integer, y As Integer) As Void
• AddRectangleRegion(x As Integer, y As Integer, w As Integer, h As Integer, userid As

Integer) As Void
• AddCircleRegion(x As Integer, y As Integer, radius As Integer, userid As Integer) As

Void
• ClearRegions(): Clears the list of regions added using AddRegion so that any touches in those regions no

longer generate events. This call has no effect on the rollover graphics.
• GetDeviceName As String

• SetCursorPosition(x As Integer, y As Integer) As Void

• SetCursorBitmap(As String, x As Integer, y As Integer) As Void

• EnableCursor(on-off As Boolean) As Void

• EnableRollover(region_id As Integer, on_image As String, off_image As String,

cache_image As Boolean, image_player As Object) As Void: Enables a rollover for a touch region.
The function accepts the ID of the touch region, as well as two strings specifying the names of the on and off
bitmap images, a cache setting, and the image player that draws the rollover. The cache_image parameter simply
tells the script whether to keep the bitmaps loaded in memory or not. This setting uses up memory very quickly, so
we recommend that cache_image normally be set to 0.

• EnableRegion(region_id As Integer, enabled As Boolean) As Void: Enables or disables a rollover
region. The function accepts the ID of the touch region, as well as a Boolean value (True or False). The rollover
regions default to “enabled” when created, but you can set up all of the regions at the start of your script and then
enable the current ones when required.

• SetRollOverOrigin(region_id As Integer, x As Integer, y As Integer) As Void: Changes
the origin so that more (or less) of the screen changes when the mouse rolls in and out of the region. This means
that bitmaps that are larger than the region can be drawn. The default requirement is that rollover bitmaps be the
same size and position as the touch region (though, for circular regions, the bitmap is square). Note that the default
origin for circular regions is x - r, y - r where x, y is the center and r is the radius.

93

• IsMousePresent() As Boolean: Returns whether a relative pointing device is attached or not.
Note: This does not work for absolute devices like touch screens.
• EnableSerialTouchscreen(a As Integer) As Boolean

• SetSerialTouchscreenConfiguration(a As String) As Boolean

The ifSetMessagePort interface provides the following:
• SetPort(a As Object)

The ifTouchScreenCalibration interface provides the following:
• StartCalibration() As Boolean

• GetCalibrationStatus() As Integer

The ifSerialControl interface provides the following:

• SetBaudRate(a As Integer) As Boolean

• NotUsed1(a As String)

• SetMode(a As String) As Boolean

• NotUsed2(a As Boolean) As Boolean

The roTouchScreen interface sends events of type roTouchEvent, which provides the following:
• ifInt: The userid of the touched region.
• ifPoint: The x,y coordinates of the touch point. This interface is not normally needed. ifPoint has two member

functions: GetX As Integer and GetY As Integer.
• ifEvent: The mouse events. ifEvent has one member function: GetEvent As Integer.

Information about the cursor
The mouse cursor is a 32x32 pixel square, where each pixel can be one of 16 different colors. These colors are 16 bits,
with 14 bits of color and 2 bits of alpha. If you use all of the alpha levels on all shades, then you limit the number of

94

available shades to five (five shades at three alpha levels plus one fully transparent color gives 16). The colors are
actually specified internally in YUV (6-4-4 bits respectively), but BrightScript supports setting the cursor from PNG, JPG,
GIF or BMP.

Rules:

1. The 32x32 pixel square in which the cursor is drawn cannot be moved outside of the screen boundaries.
2. The 32x32 cursor can be moved around within the screen boundaries, but can never overlap the edge.
3. Cursors should be 32x32 and centered.

Although the cursor does not reach the edge, it does so in a symmetrical manner. The only other limitation is as follows:
When running in interlaced modes such as 1080i and 1080p (because it is 1080i and de-interlaced by the HDMI), the
cursor is double the size.

Example: This code loops a video and waits for a mouse click or touch screen input. It outputs the coordinates of the click
or touch to the shell if it is located within the defined region.

v=CreateObject("roVideoPlayer")

t=CreateObject("roTouchScreen")

p=CreateObject("roMessagePort")

v.SetPort(p)

t.SetPort(p)

v.SetLoopMode(1)

v.PlayFile("testclip.mp2v")

t.AddRectangleRegion(0,0,100,100,2)

loop:

95

 msg=wait(0, p)

 print "type: ";type(msg)

 print "msg=";msg

 if type(msg)="roTouchEvent" then

 print "x,y=";msg.GetX();msg.GetY()

 endif

 goto loop:

Example: This code includes mouse support.

t=CreateObject("roTouchScreen")

t.SetPort(p)

REM Puts up a cursor if a mouse is attached

REM The cursor must be a 16 x 16 BMP

REM The x,y position is the “hot spot” point

t.SetCursorBitmap("cursor.bmp", 16, 16)

t.SetResolution(1024, 768)

t.SetCursorPosition(512, 389)

REM

REM Pass enable cursor display: TRUE for on, and FALSE for off

REM The cursor will only enable if there is a mouse attached

REM

t.EnableCursor(TRUE)

Example: This code includes a rollover region and mouse support.

96

img=CreateObject("roImagePlayer")

t=CreateObject("roTouchScreen")

p=CreateObject("roMessagePort")

t.SetPort(p)

t.SetCursorBitmap("cursor.bmp", 16, 16)

t.SetResolution(1024, 768)

t.SetCursorPosition(512, 389)

t.EnableCursor(1)

img.DisplayFile("\menu.bmp")

REM Adds a rectangular touch region

REM Enables rollover support for that region

REM Sets the rollover origin to the same position as the touch region REM

t.AddRectangleRegion(0, 0, 100, 100, 1)

t.EnableRollOver(1, "on.bmp", "off.bmp", true, img)

t.SetRollOverOrigin(1, 0, 0)

97

FILE AND STORAGE OBJECTS

roBrightPackage
An roBrightPackage object represents a zip file. The zip file can include arbitrary content or can be installed on a storage
device to provide content and script updates (for example, to distribute updates via USB thumb drives).

Interfaces: ifBrightPackage

Object creation:

CreateObject("roBrightPackage", filename As String)

• Filename: The filename for the zip file.

The ifBrightPackage interface provides the following:
• Unpack(path As String) As Void: Provides the destination path for the extracted files, e.g. “SD:/”.
• SetPassword(password As String) As Void: Provides the password specified when the zip file was

created. roBrightPackage supports AES 128 and 256 bit encryption as generated by WinZip.
• GetFailureReason() As String

• UnpackFile(a As String, b As String) As Boolean
Note: ifBrightPackage is a legacy interface. We recommend you use roAssetPool instead to achieve better
functionality.

Example:

package = CreateObject("roBrightPackage", "newfiles.zip")

package.SetPassword("test")

98

package.Unpack("SD:/")

Using roBrightPackage to distribute new content
BrightSign checks storage devices for autorun scripts in the following order:

1. External USB devices 1 through 9
2. SD
3. µSD

In addition to looking for autorun.brs scripts, BrightSign players look for autorun.zip files that contain the script name
autozip.brs. If autozip.brs is encrypted, then the player uses the password stored in the registry, in the section “security”
under the name “autozipkey,” to decrypt the file. If an autorun.zip file with an autozip.brs file is found, and autozip.bas is
decrypted, then the player will execute the autozip.brs file.

The autozip.brs file cannot reference any external files, as it is the only file to be automatically uncompressed by a
BrightSign player prior to execution. The autozip.brs script unpacks the contents of the autorun.zip file to an installed
storage device and reboots to complete the update.

Example:

' Content update application

r=CreateObject("roRectangle", 20, 668, 1240, 80)

t=CreateObject("roTextWidget",r,1,2,1)

r=CreateObject("roRectangle", 20, 20, 1200, 40)

t.SetSafeTextRegion(r)

t.SetForegroundColor(&hff303030)

99

t.SetBackgroundColor(&hffffffff)

t.PushString("Updating content from USB drive, please wait...")

package = CreateObject("roBrightPackage", "autorun.zip")

package.SetPassword("test")

package.Unpack("SD:/")

package = 0

t.Clear()

t.PushString("Update complete - remove USB drive to restart.")

while true

 sleep(1000)

 usb_key = CreateObject("roReadFile", "USB1:/autorun.zip")

 if type(usb_key) <> "roReadFile" then

 a=RebootSystem()

 endif

 usb_key = 0

end while

100

roHashGenerator
This object provides an API for generating a variety of message digests.

Object Creation: The hash algorithm is specified when creating the roHashGenerator object.

CreateObject(“roHashGenerator”, algorithim As String)

The algorithm parameter can take the following strings:

• SHA256

• SHA384

• SHA512

• SHA1

• MD5

• CRC32

Note: SHA1, MD5, and CRC32 are only available on firmware versions 4.4.9 or later.

Interfaces: ifHashGenerator

The ifHashGenerator interface provides the following.

• Hash(obj As Object) As Object: Hashes the payload, which can be supplied in the form of a string (or any
object implementing ifString) or an roByteArray. The hash is returned as an roByteArray.

101

roReadFile, roCreateFile, roReadWriteFile, roAppendFile
These objects provide file I/O functionality.

Object creation:

CreateObject("roReadFile", filename As String): Creating an roReadFile object opens the specified file
for reading only. Object creation fails if the file does not exist. roReadFile implements ifStreamSeek and ifReadStream.

CreateObject("roCreateFile", filename As String): Creating an roCreateFile object opens an existing
file or creates a new file. If the file exists, it is truncated to a size of zero. roCreateFile implements ifStreamSeek,
ifReadStream, ifStreamSend, and ifFile.

CreateObject("roReadWriteFile", filename As String): Creating an roReadWriteFile object opens an
existing file for both reading and writing. Object creation fails if the file does not exist. The current position is set to the
beginning of the file. roReadWriteFile implements ifStreamSeek, ifReadStream, ifStreamSend, and ifFile.

CreateObject("roAppendFile", filename As String): Creating an roAppendFile object opens an existing
file or creates a new file. The current position is set to the end of the file, and all writes are made to the end of the file.
roAppendFile implements ifStreamSend and ifFile.

Interfaces: ifReadStream, ifStreamSend, ifStreamSeek, ifFile

The ifReadStream interface provides the following:

• SetReceiveEol(eol_sequence As String) As Void: Sets the EOL sequence when reading from the
stream.

102

• ReadByte() As Integer: Reads a single byte from the stream, blocking if necessary. If the EOF is reached or
there is an error condition, then a value less than 0 is returned.

• ReadByteIfAvailable() As Integer: Reads a single byte from the stream if one is available. If no bytes are
available, it returns immediately. A return value less than 0 indicates either that the EOF has been reached or no
byte is available.

• ReadLine() As String: Reads until it finds a complete end of the line sequence. If it fails to find the sequence
within 4096 bytes, then it returns the 4096 bytes that are found. No data is discarded in this case.

• ReadBlock(size As Integer) As String: Reads the specified number of bytes. The number is limited to
65536 bytes. In the event of an EOF or an error, fewer bytes than requested will be returned. Any null bytes in the
file will mask any further bytes.

• AtEof() As Boolean: Returns True if an attempt has been made to read beyond the end of the file. If the
current position is at the end of the file, but no attempt has been made to read beyond it, this method will return
False.

The ifStreamSend interface provides the following:
• SetSendEol(eol_sequence As String) As Void: Sets the EOL sequence when writing to the stream.
• SendByte(byte As Integer) As Void: Writes the specified byte to the stream.
• SendLine(string As String) As Void: Writes the specified characters to the stream followed by the

current EOL sequence.
• SendBlock(string As String) As Void: Writes the specified characters to the stream. Any null bytes will

terminate the block.
• Flush()

• AsyncFlush()

The ifStreamSeek interface provides the following:

103

• SeekAbsolute(offset As Integer) As Void: Seeks the specified offset. If the offset is beyond the end of
the file, then the file will be extended upon the next write and any previously unoccupied space will be filled with
null bytes.

• SeekRelative(offset As Integer) As Void: Seeks to the specified offset relative to the current position. If
the ultimate offset is beyond the end of the file, then the file will be extended as described in SeekAbsolute.

• SeekToEnd As Void: Seeks to the end of the file.
• CurrentPosition As Integer: Retrieves the current position within the file.

The ifFile interface provides the following:

• Flush As Void: Ensures that all writes have been written out to the file. This is done automatically when the
object is destroyed (for example, by reassigning the variable containing it).

• AsyncFlush As Void: Ensures that all writes will be written out to the file within a few seconds. Without this call
(or destroying the object or calling Flush), some writes will be cached indefinitely in the memory.

104

roRegistry
The registry is an area of memory where a small number of persistent settings can be stored. Access to the registry is
available through the roRegistry object.

This object is created with no parameters:

CreateObject("roRegistry")

Interfaces: ifRegistry

The ifRegistry interface provides the following:

• GetSectionList As roList: Returns a list with one entry for each registry section.
• Delete(section As String) As Boolean: Deletes the specified section and returns an indication of

success.
• Flush As Boolean: Flushes the registry out to persistent storage.

105

roRegistrySection
This object represents a section of the registry, enabling the organization of settings within the registry. It allows the
section to be read or written.

This object must be supplied with a "section" name upon creation.

CreateObject("roRegistrySection", section As String)

Interfaces: ifRegistrySection

The ifRegistrySection interface provides the following:

• Read(key As String) As String: Reads and returns the value of the specified key.
• Write(key As String, value As String) As Boolean: Replaces the value of the specified key.
• Delete(key As String) As Boolean: Deletes the specified key.
• Exists(key As String) As Boolean: Returns True if the specified key exists.
• Flush As Boolean: Flushes the contents of the registry out to persistent storage.
• GetKeyList As roList: Returns a list containing one entry per registry key in this section.

Example:

registrySection = CreateObject("roRegistrySection", "widget-usage")

' An empty entry will read as the null string and therefore be converted to zero.

hits = val(registrySection.Read("big-red-button-hits"))

hits = hits + 1

registrySection.Write("big-red-button-hits", strI(hits))

106

Writes do not always take effect immediately to prevent the system from exceeding the maximum number of writes on the
onboard persistent storage. At most, 60 seconds after a write to the registry, the newly written data will be automatically
written out to persistent storage. If, for some reason, the change must be written immediately, then one of the flush
functions should be called. Changes are automatically written prior to exiting the application.

107

roSqliteDatabase
This object is the main SQLite object that “owns” the database. You can produce as many of these objects as you need.

Interfaces: ifSqliteDatabase, ifSetMessagePort

The ifSqliteDatabse interface provides the following:

• Open(a As String) As Boolean

• Create(a As String) As Boolean

• Close()

• CreateStatement(a As String) As Object

• RunBackground(a As String, b As Object) As Integer

• SetMemoryLimit(a As Integer)

• SetTempDirectory(a As String)

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

108

roSqliteEvent
This object is returned by a RunBackground() operation if you set a message port on the associated roSqliteDatabase
object.

Interfaces: ifSqliteEvent

The ifSqliteEvent interface provides the following:

• GetTransactionId() As Integer

• GetSqlResult() As Integer

109

roSqliteStatement
This object can only be created by calling CreateStatement() on an roSqliteDatabase object.

Interfaces: ifSqliteStatement

The ifSqliteStatement interface provides the following:

• BindByName(a As Object) As Boolean

• BindByOffset(a As Object) As Boolean

• BindText(a As Object, b As String) As Boolean

• BindInteger(a As Object, b As Integer) As Boolean

• Run() As Integer

• RunBackground() As Integer

• GetData() As Object

• Finalise()

110

roStorageAttached, roStorageDetached

Interfaces: ifString, ifStringOps

The ifString interface provides the following:

• GetString() As String

• SetString(a As String)

The ifStringOps interface provides the following:

• SetString(a As String, b As Integer)

• AppendString(a As String, b As Integer)

• Len() As Integer

• GetEntityEncode() As String

• Tokenize(a As String) As Object

• Trim() As String

• ToInt() As Integer

• ToFloat() As Float

• Left(a As Integer) As String

• Right(a As Integer) As String

• Mid(a As Integer) As String

• Mid(a As Integer, b As Integer) As String

• Instr(a As String) As Integer

• Instr(a As Integer, b As String) As Integer

111

roStorageHotplug
This object can provide events when storage devices appear or disappear. Currently, only external USB devices are
supported, and there is no polling for media.

Interfaces: ifSetMessagePort

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

112

roStorageInfo
This object is used to report storage device usage information.

Object creation:

CreateObject("roStorageInfo", path As String): Creates an roStorageInfo object containing the storage
device information for the specified path. The path does not need to extend to the root of the storage device.

Interfaces: ifStorageInfo

The ifStorageInfo interface provides the following:

Note: On some filesystems that have a portion of space reserved for the super-user, the following expression may not be
true: GetUsedInMegabytes + GetFreeInMegabytes == GetSizeInMegabytes

• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.
• GetBytesPerBlock As Integer: Returns the size of a native block on the filesystem used by the specified

storage device.
• GetSizeInMegabytes As Integer: Returns the total size of the storage device in Mibibytes.
• GetUsedInMegabytes As Integer: Returns the amount of space currently used on the storage device in

Mibibytes.
Note: This amount includes the size of the pool because this class does not integrate pools into its calculations.

• GetFreeInMegabytes As Integer: Returns the available space on the storage device in Mibibytes.
• GetFileSystemType As String: Returns a string describing the type of filesystem used on the specified

storage. Potential values are fat12, fat16, fat32, ext3, ntfs, hfs, Hfsplus.
• GetStorageCardInfo As Object: Returns an associative array containing details of the storage device

hardware (a memory card, for example). For SD cards, the returned data may include the following:

113

sd_mfr_id Int Card manufacturer ID as assigned by the SD Card Association
sd_oem_id String Two-character card OEM identifier as assigned by the SD Card Association
sd_product_name String Product name, assigned by the card manufacturer (5 bytes for SD, 6 bytes for

MMC)
sd_spec_vers Int Version of SD spec to which the card conforms
sd_product_rev String Product revision assigned by the card manufacturer
sd_speed_class String Speed class (if any) declared by the card
sd_au_size Int Size of the SD AU in bytes.

Example:

si=CreateObject(“roStorageInfo”, “SD:/”)

Print si.GetFreeInMegabytes(); “MiB free”

114

NETWORKING OBJECTS

roAssetCollection
This object is used to represent a collection of assets. This collection can be created by calls to AddAssets or AddAsset,
or by calls to roSyncPool.GetAssets (“download” or similar).

Interfaces: ifAssetCollection, ifInternalAssetCollection

The ifAssetCollection interface provides the following:

• GetFailureReason() As String

• AddAsset(asset_info as Object) As Boolean: Adds a single asset from an associative array.
• AddAssets(asset_info_array as Object) As Boolean: Adds multiple assets from an enumerable object

(roList or roArray) that contains compatible associative arrays.

The associative array contains the following:

name String Mandatory The name of the asset. For a file to be realized, it must have a valid

filename (i.e. no slashes).
link String Mandatory The download location of the asset
size Integer/String Optional The size of the asset. Use a string if you want to specify a number that is

too large to fit into an integer (this allows file sizes larger than 2 GB).
hash String Optional A string in the form of “hash_algorithm:hash”. See the next table for

details.
change_hint String Optional Any string that will change in conjunction with the file contents. This is

not necessary if the link or hash is supplied and always changes.

115

auth_inherit Boolean Optional Indication of whether or not this asset uses roAssetFetcher
authentication information. The default is set to True.

auth_user Boolean Optional User to utilize for authentication when downloading only this asset. This
automatically disables “auth_inherit”.

auth_passowr

d
Boolean Optional Password to use when downloading only this asset. This automatically

disables “auth_inherit”.
headers_inhe

rit
Boolean Optional The command to pass any header supplier to roAssetFetcher when

fetching this asset. The default is true.

Hash algorithms:

sha1 If a sha1 is available, you can validate the hash as the file is downloaded. If such a hash is available, it should

be used. The link and change_hint properties have no effect on the pool file name, so the file is shared
even if it is downloaded from different locations.

besha1 This algorithm hashes some of the file along with the file size in order to verify the contents. It also moves the
link and change_hint properties into the pool filename.

(none) Without any hash, the file cannot be verified as it is downloaded, and the system will rely on the link and
change_hint properties to give the pool a unique filename.

116

roAssetFetcher

Interfaces: ifAssetFetcher, ifMessagePort, ifUserData

The ifAssetFetcher interface provides the following:

• GetFailureReason() As String

• EnableUnsafeAuthentication(a As Boolean) As Boolean

• AsyncDownload(a As Object) As Boolean

• AsyncSuggestCache(a As Object) As Boolean

• AsyncCancel() As Boolean

• EnablePeerVerification(a As Boolean)

• EnableHostVerification(a As Boolean)

• SetCertificatesFile(a As String)

• SetUserAndPassword(a As String, b As String) As Boolean

• AddHeader(a As String, b As String)

• SetHeaders(a As Object) As Boolean

• SetMinimumTransferRate(a As Integer, b As Integer) As Boolean

• SetProxy(a As String) As Boolean

• SetFileProgressIntervalSeconds(a As Integer) As Boolean

• SetFileRetryCount(a As Integer) As Boolean

• SetRelativeLinkPrefix(a As String) As Boolean

• BindToInterface(a As Integer) As Boolean

The ifMessagePort interface provides the following:
• SetPort(a As Object)

117

The ifUserData interface provides the following:
• SetUserData(a As Object)

• GetUserData() As Object

118

roAssetFetcherEvent

Interfaces: ifAssetFetcherEvent, ifUserData

The ifAssetFetcherEvent interface provides the following:

• GetEvent() As Integer

• GetName() As String

• GetResponseCode() As Integer

• GetFailureReason() As String

• GetFileIndex() As Integer

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

119

roAssetFetcherProgressEvent

Interfaces: ifAssetFetcherProgressEvent, ifUserData

The ifAssetFetcherProgressEvent interface provides the following:

• GetFileName() As String

• GetFileIndex() As Integer

• GetFileCount() As Integer

• GetCurrentFileTransferredMegabytes() As Integer

• GetCurrentFileSizeMegabytes() As Integer

• GetCurrentFilePercentage() As Float

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

120

roAssetPool
An instance of roAssetPool represents a pool of files for synchronization. You can instruct this object to populate the pool
based on a sync spec and then realize it in a specified directory when required.

Object Creation: roAssetPool is created with a single parameter representing the rooted path of the pool.

CreateObject(“roAssetPool”, pool_path As String)

Example:

pool = CreateObject (“roAssetPool”, “SD:/pool”)

Interfaces: ifAssetPool

The ifAssetPool interface provides the following:

• GetFailureReason() As String

• ProtectAssets(a As String, b As Object) As Boolean

• UnprotectAssets(a As String) As Boolean

• UnprotectAllAssets() As Boolean

• ReserveMegabytes(a As Integer) As Boolean

• GetPoolSizeInMegabytes() As Integer

• Validate(a As Object, b As Object) As Boolean

• QueryFiles(a As Object) As Object

• AssetsReady(a As Object) As Boolean

121

roAssetPoolFiles

Interfaces: ifAssetPoolFiles

The ifAssetPoolFiles interface provides the following:

• GetFailureReason() As String

• GetPoolFilePath(a As String) As String

• GetPoolFileInfo(a As String) As Object

122

roAssetRealizer

Interfaces: ifAssetRealizer

The ifAssetRealizer interface provides the following:

• GetFailureReason() As String

• EstimateRealizedSizeInMegabytes(a As Object) As Integer

• Realize(a As Object) As Object

• ValidateFiles(a As Object, b As Object) As Object

123

roAssetRealizerEvent

Interfaces: ifAssetRealizerEvent, ifUserData

The ifAssetRealizerEvent interface provides the following:

• GetEvent() As Integer

• GetName() As String

• GetResponseCode() As Integer

• GetFailureReason() As String

• GetFileIndex() As Integer

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

124

roDatagramSender, roDatagramReceiver, roDatagramSocket, roDatagramEvent
The roDatagramSender and roDatagramReceiver objects allow for simple sending and receiving of unicast and broadcast
UDP packets. The roDatagramEvent object can be used to both send and receive UDP packets.

roDatagramSender
This object allows UDP packets to be sent to a specified destination.

Object Creation: roDatagramSender is created with no parameters:

CreateObject("roDatagramSender")

Interfaces: ifDatagramSender

The ifDatagramSender interface provides the following:

• SetDestination(destination_address As String, destination_port As Integer) As
Boolean: Specifies the destination IP address in dotted quad form along with the destination port. This function
returns True if successful.

• Send(packet As Object) As Integer: Sends the specified data packet as a datagram. The packet may be
a string or an roByteArray. This method returns 0 upon success and a negative error code upon failure.

This example script broadcasts a single UDP packet containing “HELLO” to anyone on the network listening on port
21075:

sender = CreateObject(“roDatagramSender”)

sender.SetDestination(“255.255.255.255”, 21075)

sender.Send(“Hello”)

125

roDatagramReceiver
This object causes instances of roDatagramEvent to be sent to a message port when UDP packets are received on a
specified port.

Object Creation: roDatagramReceiver is created with a single parameter:

CreateObject("roDatagramReceiver ", port As Integer)

The port paremeter specifies the port on which to receive UDP packets.

Interfaces: ifIdentity, ifSetMessagePort

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

This example script listens for UDP packets on port 21075:

receiver = CreateObject(“roDatagramReceiver”, 21075)

mp = CreateObject(“roMessagePort”)

receiver.SetPort(mp)

while true

 event = mp.WaitMessage(0)

 if type(event) = “roDatagramEvent” then

 print “Datagram: “; event

 endif

126

end while

roDatagramSocket
This object both sends and receives UDP packets. Use roDatagramSocket if you need the player to communicate using
protocols such as SSDP, which only allow a server to respond to the source of a received request.

Received packets are delivered to the message port as roDatagramEvent objects.

Interfaces: ifUserData, ifMessagePort, ifDatagramSocket, ifIdentity

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

The ifMessagePort interface provides the following:

• SetPort(a As Object)

The ifDatagramSocket interface provides the following:

• GetFailureReason() As String: Returns additional information if the BindToLocalPort or Sendto
methods fail.

• BindToLocalPort(port As Integer) As Boolean: Binds the socket to the specified local port. Use this
method to receive packets sent to a specific port. Alternatively, if you want to receive replies to sent packets (and it
doesn’t matter which local port is used), pass a port number of 0, and the player will select an unused port. This
method returns True upon success and False upon failure

• GetLocalPort() As Integer: Returns the local port to which the socket is bound. Use this method if you
passed a port number of 0 to BindToLocalPort and need to determine which port the player has selected.

127

• SendTo(destination_address As String, destination_port As Integer, packet As Object)

As Integer: Sends a single UDP packet, which can be an roString or roByteArray, to the specified address and
port. This method returns 0 upon success and a negative error code upon failure.

• JoinMulticastGroup(address as String) as Boolean: Joins the multicast group for the specified
address on all interfaces that are currently up. This method returns True upon success and False upon failure. In
the event of failure, GetFailureReason() may provide additional information. To ensure that you are joined on
all network interfaces, you should register for roNetworkHotplug events and call the JoinMulticastGroup()
method in response to the arrival of new networks.

The ifIdentity interface provides the following:

• GetIdentity() As Integer

roDatagramEvent

Interfaces: ifUserData, ifSourceIdentity, ifString, ifDatagramEvent

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

The ifSourceIdentity interface provides the following:

• GetSourceIdentity() As Integer

The ifString interface provides the following:

• GetString() As String

The ifDatagramEvent interface provides the following:

128

• GetByteArray as Object: Returns the contents of the packet as an roByteArray.
• GetSourceHost as String: Returns the source IP address of the packet in dotted form.
• GetSourcePort as Integer: Returns the source port of the packet.

129

roHttpEvent

Interfaces: ifHttpEvent, ifUserData

The ifHttpEvent interface provides the following:

• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.
• SetResponseBodyString(a As String): Sets the response body for an event generated using the following

function: roHttpServerAddGetFromEvent. Otherwise, this call is ignored.
• SetResponseBodyFile(a As String) As Boolean: Sets the name of a file to use as the source response

body for an event generated via roHttpServer.AddGetFromEvent. Otherwise, this call is ignored. This function
will return False if the file cannot be opened or another failure occurs.

Note: The file is read gradually as it is sent to the client.
• GetRequestBodyString() As String: Returns the string received if the event was generated via

roHttpServer.AddPostToString. Otherwise, an empty string is returned.
• GetRequestHeader(a As String) As String: Returns the value of the specified HTTP request header. If

the header does not exist, an empty string is returned.
• GetRequestHeaders() As Object: Returns an roAssociativeArray containing all the HTTP request headers.
• GetRequestParam(a As String) As String: Returns the value of the specified URI parameter. If the

parameter does not exist, an empty string is returned.
• GetRequestParams() As Object: Returns an roAssociativeArray containing all the URI parameters.
• AddResponseHeader(a As String, b As String) As Boolean: Adds the specified HTTP header and

value to the response. This function returns True upon success.
• AddResponseHeaders(a As Object) As Boolean. Expects to be passed an associative array of header

names mapped to header values, which can be of type roString, roInt, or roFloat. Any other value types will cause
the request to fail and a subset of headers to possibly be set. This function returns True upon success.

130

• GetRequestBodyFile() As String: Returns the name of the temporary file created if the event is generated
via roHttpServer.AddGetFromEvent. Otherwise, this call is ignored.

• SendResponse(a As Integer) As Boolean: Sends the HTTP response using the specified HTTP status
code. To ensure that the response is sent, this function needs be called once you have finished handling the event.

• GetUrl() As String

• GetFormData() As Object: Returns an roAssociativeArray containing all the form data. See
roHttpServer.AddPostToFormData for more information.

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

131

roHttpServer

Interfaces: ifHttpServer, ifSetMessagePort, ifGetMessagePort

The ifHttpServer interface provides the following:

• GetFailureReason() As String: Yields additional useful information if an roHttpServer method fails.
• AddGetFromFile(a As Object) As Boolean: Causes any HTTP GET requests for the specified URL path to

be met directly from the specified file. You should always specify the MIME type (and possibly the character set) if
you expect the request to come from a web browser.

• AddGetFromEvent(a As Object) As Boolean: Requests that an roHttpEvent event be sent to the
configured message port. This occurs when an HTTP GET request is made for the specified URL path.

• AddPostToString(a As Object) As Boolean: Requests that an roHttpEvent event be sent to the
configured message port. This occurs when an HTTP POST request is made for the specified URL path. Use
roHttpEvent.GetRequestBodyString()to retrieve the posted body.

• AddPostToFile(a As Object) As Boolean: Requests that, when an HTTP POST request is made to the
specified URL path, the request body will be stored in a temporary file according to the following parameters:
“destination_directory”. When this request is complete, an roHttpEvent event is sent to the configured message
port. Use roHttpEvent.GetRequestBodyFile() to retrieve the name of the temporary file. If the file still exists
at the time the response is sent, it will be automatically deleted.

• AddPostToFormData(a As Object) As Boolean: Requests that, when an HTTP POST request is made to
the specified URL path, an attempt be made to store form data (passed as application/x-www-form-
urlencoded or multipart/form-data) in an associative array that can be retrieved by calling
roHttpEvent.GetFormData().

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

132

The ifGetMessagePort interface provides the following:

• GetPort() As Object

133

roMimeStream
This object passes an MJPEG stream in MIME format to the roVideoPlayer.PlayFile() method. There are some limitations
to what MJPEG streams this object will play correctly. roMimeStream has been optimized to play streaming video from a
local source with the smallest possible delay. The result is a short buffering window that is not appropriate for playing
MJPEG streams from URLs outside of a local network. We are currently optimizing roMimeStream to work with different
IP camera brands: see the IP Camera FAQ for more details.

Object Creation: To play an RTSP stream, first instantiate an roUrlTransfer object. Then wrap it in an roMimeStream
object and pass the PictureStream to PlayFile as follows:

u=createobject("roUrlTransfer")

u.seturl("http://mycamera/video.mjpg")

r=createobject("roMimeStream", u)

p=createobject("roVideoPlayer")

p.PlayFile({ PictureStream: r })

Interfaces: ifPictureStream, ifMessagePort

The ifPictureStream interface provides the following:

• GetUrl() As String

The ifMessagePort interface provides the following:

• SetPort(a As Object) Posts event messages to the attached message port. The event messages are of the
type roMimeStreamEvent and will implement the ifInt interface. There are currently two possible event messages:

o PICTURE_STREAM_FIRST_PICTURE_AVAILABLE = 0: The first picture is now available for decoding.
o PICTURE_STREAM_CONNECT_FAILED: The object is unable to connect to the specified URL.

http://support.brightsign.biz/entries/21693211-does-the-brightsign-support-streaming-from-ip-camera�

134

roMimeStreamEvent
This object will return an integer corresponding to the event that has occurred:

Interfaces: ifInt

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

135

roNetworkAdvertisement
This object is used to advertise services running on a BrightSign player to other devices on the network. The current
implementation supports advertising via mDNS (which is part of Zeroconf via Bonjour).

Object creation:

CreateObject(“roNetworkAdvertisement”, advertisement as Object) as Object

The advertisement should be provided as an roAssociativeArray containing the following keys:

• name: The service name. This should be a readable string such as “Remote BrightSign Widget Service.”
• type: The service type. This should be a service from the definitive list, formatted in the following manner:

“_service._protocol” (for example, “_http._tcp”).
• Port: The port number on which the service runs.
• _name: Any arbitrary text key preceded by an underscore to avoid conflicts within the roAssociativeArray.

Note: The underscore is removed before the record is registered with mDNS.

Once the object is created, advertising starts immediately and continues until the object is destroyed (i.e. when it becomes
unreferenced).

Interfaces: None

http://en.wikipedia.org/wiki/Zero_configuration_networking�
http://www.apple.com/support/bonjour/�

136

roNetworkAttached, roNetworkDetached

roNetworkAttached
This object implements ifInt to report the index of the attached network interface. Instances of this object are posted by
roNetworkHotplug when a configured network connection becomes available.
Note: It may take some time after the cable is inserted for this to take place.

Interfaces: ifInt, ifIntOps

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifIntOps interface provides the following:

• ToStr() As String

roNetworkDetached
This object implements ifInt to report an index of the detached network interface. Instances of this object are posted by
roNetworkHotplug when a configured network connection becomes unavailable.

The interfaces and methods for roNetworkDetached are identical to those outlined for roNetworkAttached above.

137

roNetworkConfiguration

Object creation:

CreateObject("roNetworkConfiguration", network_interface as Integer)

The network_interface parameter is used to distinguish between the following:
• 0 for the Ethernet port (if available) on the rear of the BrightSign.
• 1 for the optional internal Wi-Fi.

Some of the settings are specific to the network interface and some are used by the BrightSign host for all network
interfaces.

Interfaces: ifNetworkConfiguration

The ifNetworkConfiguration interface provides the following:

Note: “Set” methods do not take effect until “Apply” is called.
• SetupDWS(a As Object) As Boolean

• GetClientIdentifier() As String

• GetProxy() As String

• SetClientIdentifier(a As String) As Boolean

• SetObfuscatedWiFiPassphrase(a As String) As Boolean

• SetInboundShaperRate(a As Integer) As Boolean

138

• SetRoutingMetric(a As Integer) As Boolean: Configures the metric for the default gateway on the
current network interface. Routes with lower metrics are preferred over routes with higher metrics. This function
returns True upon success.

• SetDHCP as Boolean (interface): Enables DHCP and disables all other settings. This function returns True if
successful.

• SetIP4Address(ip As String) As Boolean (interface)
• SetIP4Netmask(netmask As String) As Boolean (interface)
• SetIP4Broadcast(broadcast As String) As Boolean (interface)
• SetIP4Gateway(gateway As String) As Boolean (interface): Sets the IPv4 interface configuration. All

values must be specified explicitly. Unlike the ifconfig shell command, there is no automatic inference. The
parameter is a string dotted decimal quad (i.e. “192.168.1.2” or similar). It returns True upon success.

Example:

nc.SetIP4Address("192.168.1.42")

nc.SetIP4Netmask("255.255.255.0")

nc.SetIP4Broadcast("192.168.1.255")

nc.SetIP4Gateway("192.168.1.1")

• SetWiFiESSID(essid as String) as Boolean (interface): Configures the name of the wireless network to
connect to. It returns True on success.

• SetWiFiPassphrase(passphrase as String) as Boolean: Configures the passphrase or key for the
wireless network. It returns True if successfully set.

• SetDomain(domain As String) As Boolean (host): Sets the device domain name. This will be appended to
names to fully qualify them, though it is not necessary to call this. This method returns True on success.

Example:

nc.SetDomain("brightsign.biz")

139

• AddDNSServer(server As String) (host): Adds another server to the list when the object is created and
there are no DNS servers. There is currently a maximum of three servers, but adding more will not cause any
errors. This method returns True on success. There is no way to remove all the servers; it will be easier to recreate
the object instead.

• GetFailureReason As String: Returns additional information when a member function returns False.
• Apply As Boolean: Applies the requested changes to the network interface. This may take several seconds to

complete.
• SetTimeServer(time_server As String) As Boolean (host): Sets the default time server, which is

“time.brightsignnetwork.com”. You can disable the use of NTP by calling SetTimeServer("").
• GetTimeServer As String (host): Retrieves the time server currently in use.
• SetHostName(name as String) as Boolean (host): Sets the device host name. If no host name has been

explicitly set, then a host name is automatically generated based on the device serial number.
• GetHostName As String (host): Retrieves the host name currently in use.
• SetProxy(proxy as String) As Boolean (host): Sets the name or address of the proxy server used for

HTTP and FTP requests. This should be in the form of “http://user:password@hostname:port”. It can contain up to
four “*” characters, which are each replaced with one octet from the current IP address. For example, if the IP
address is currently 192.168.1.2, and the proxy is set to “proxy-*-*”, then the BrightSign will attempt to use a proxy
named “proxy-192.168”.

• ScanWiFi As Object: Scans for available wireless networks. The results are reported as an roArray containing
one or more associative arrays with the following members:

essid String Network name
bssid String Access point BSSID
signal Integer Received signal strength indication. The absolute value of this

field is not usually relevant, but it can be compared with the
reported value on other networks or in different locations.

mailto:password@hostname�

140

• GetCurrentConfig As Object: Retrieves the entire current configuration as an associative array containing
the following members:

metric Integer Interface Returns the current routing metric for the interface. See
SetRoutingMetric for more details.

dhcp Boolean Interface

Returns True if the system is currently configured to use DHCP.
Returns False otherwise.

hostname String Host The currently configured host name

mdns_hostname String Host The Zeroconf host name currently in use. This may be longer
than the host name if there is a collision on the current network.

ethernet_mac String Interface The Ethernet MAC address

ip4_address

String Interface The current IPv4 address. If none is currently set, the string will
be empty.

ip4_netmask String Interface The current IPv4 network mask. If none is currently set, the string
will be empty.

ip4_broadcast String Interface The current IPv4 broadcast address. If none is currently set, the
string will be empty.

ip4_gateway String Interface The current IPv4 gateway address. If none is currently set, the

string will be empty.
domain String Host The current domain suffix
dns_servers roArray Host The currently active DNS servers

141

of
Strings

time_server String Host The current time server
configured_proxy String Host The currently configured proxy. This may contain magic

characters as explained under SetProxy above.
current_proxy String Host The currently active proxy. Any magic characters will have been

replaced as explained under SetProxy above.
type String Interface Either “wired” or “wifi”
link Boolean Interface Indicates whether the network interface is currently connected.
wifi_essid String Interface The name of the current Wi-Fi network (if any)
wifi_signal Integer Interface An indication of the received signal strength. The absolute value

of this field is usually not meaningful, but it can be compared
with the reported value on other networks or in different
locations.

• TestInterface As Object: Performs various tests on the network interface to determine whether it appears to
be working correctly. It reports the results via an associative array containing the following members:

ok Boolean True if the tests find no problems. False if at least one problem was

identified.
diagnosis String A single-line diagnosis of the first problem identified in the network interface.
log roArray containing

Strings
A complete log of all the tests performed and their results.

• TestInternetConnectivity As Object: Performs various tests on the Internet connection (via any available

network interface, not necessarily the one specified when the roNetworkConfiguration object was created) to

142

determine whether it appears to be working correctly. It reports the results via an associative array containing the
following members:

ok Boolean True if the tests find no problems. False if at least one problem was
identified.

diagnosis String A single line diagnosis of the first problem identified with the Internet
connection.

log roArray containing
Strings

A complete log of all the tests performed and their results.

143

roNetworkHotplug
This object can be used to generate events when a network interface becomes available or unavailable. It will post events
of the type roNetworkAttached and roNetworkDetached to the associated message port.
Note: Reconfiguring a network interface using roNetworkConfiguration may cause it to detach and attach again.

Interfaces: ifSetMessagePort

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

144

roRssParser, roRssArticle
roRssParser and roRssArticle are used to display an RSS ticker on the screen.

roRssParser is created with no parameters:

CreateObject("roRssParser")

Interfaces: ifRssParser, ifRssArticle

roRssParser uses the ifRssParser interface, which provides the following:

• ParseFile(filename As String) As Boolean: Parses an RSS feed from a file.
• ParseString(filename As String) As Boolean: Parses an RSS feed from a string.
• GetNextArticle As Object: Gets the next article parsed by the RSS parser. The articles are sorted by

publication date, with the most recent article first. This returns a roRssArticle object if there is one. Otherwise, an
integer is returned.

roRssArticle uses the ifRssArticle interface, which provides the following:

• GetTitle As String: Returns the title of the RSS item.
• GetDescription As String: Returns the content of the RSS item.
• GetTimestampInSeconds: Returns in seconds the difference in publication date between this RSS item and the

most recent item in the feed. The user can utilize this to decide if an article is too old to display.
• SetTitle(a As String) As Boolean

• SetDescription(a As String) As Boolean

• SetTimestampInSeconds(a As Integer) As Boolean

145

Example:

u=CreateObject("roUrlTransfer")

u.SetUrl("http://www.lemonde.fr/rss/sequence/0,2-3208,1-0,0.xml")

u.GetToFile("tmp:/rss.xml")

r=CreateObject("roRssParser")

r.ParseFile("tmp:/rss.xml")

EnableZoneSupport(1)

b=CreateObject("roRectangle", 0, 668, 1024, 100) t=CreateObject("roTextWidget", b, 3, 2,

2)

t.SetForegroundColor(&hD0D0D0)

t.Show()

article_loop:

a = r.GetNextArticle()

if type(a) = "roRssArticle" then

 t.PushString(a.GetDescription())

 goto article_loop

endif

loop:

sleep(1000)

goto article_loop

http://www.lemonde.fr/rss/sequence/0,2-3208,1-0,0.xml�

146

roRtspStream
This is a simple object that is passed to the roVideoPlayer.PlayFile() method. There are some limitations to the RTSP
streams this object will play correctly. roRtspStream has been optimized to play streaming video from a local source with
the smallest possible delay. The result is a short buffering window that is not appropriate for playing RTSP streams from
URLs outside of a local network. We are currently optimizing roRtspStream to work with different IP camera brands: see
the IP Camera FAQ for more details.

Object Creation: To play an RTSP stream, instantiate an roRtspStream object with a URL as its argument. Then pass it to
the playfile() method as follows:

r=createobject("roRtspStream", "rtsp://172.30.1.194/axis-media/media.amp")

p=createobject("roVideoPlayer")

p.PlayFile({Rtsp: r})

Interfaces: ifRtspStream, ifMessagePort

The ifRtspStream interface provides the following:

• GetUrl() As String

The ifMessagePort interface provides the following:
• SetPort(a As Object): Posts event messages to the attached message port. The event messages are of the

type roRtspStreamEvent and will implement the ifInt interface.

http://support.brightsign.biz/entries/21693211-does-the-brightsign-support-streaming-from-ip-camera�

147

roRtspStreamEvent
This object will return an integer corresponding to the event that has occurred:

Interfaces: ifInt

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

148

roShoutcastStream

Object creation: roShoutcastStream takes a URL object, a maximum buffer size (in seconds), and an initial buffering
duration (in seconds).

CreateObject("roShoutcastStream", url_transfer, buffer size, buffer duration)

Interfaces: ifShoutcastStream, ifSetMessagePort, ifSourceIdentity

The ifShoutcastStream interface provides the following:

• GetUrl() As String

• GetBufferedDuration() As Integer

• GetTimeSinceLastData() As Integer

• GetCurrentMetadata() As String

• Rebuffer() As Boolean

• AsyncSaveBuffer(a As String) As Boolean

• RestartBufferRecord() As Boolean

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

The ifSourceIdentity interface provides the following:
• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

149

roShoutcastStreamEvent

Interfaces: ifInt, ifSourceIdentity

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifSourceIdentity interface provides the following:
• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

150

roSnmpAgent
When this object is created, it starts an SNMP process that handles some standard SNMP MIBs such as system uptime.
Prior to starting the roSnmpAgent, you can register other OIDs for handling. You can set and retrieve these both by an
SNMP client and by the script.

OID values are retrieved by an SNMP client without script interaction, and setting these values simply generates an event
from roSnmpAgent stating that it has been changed. The script event handler can then retrieve new values and take
appropriate action.

Interfaces: ifSnmpAgent, ifSetMessagePort

The ifSnmpAgent interface provides the following:

• AddOidHandler(a As String, b As Boolean, c As Object) As Boolean

• GetOidValue(a As String) As Object

• SetOidValue(a As String, b As Object) As Boolean

• Start() As Boolean

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

• Interface ifGetMessagePort:

• GetPort() As Object

151

roSnmpEvent

Interfaces: ifString, ifStringOps

The ifString interface provides the following:

• GetString() As String

• SetString(a As String)

The ifStringOps interface provides the following:

• SetString(a As String, b As Integer)

• AppendString(a As String, b As Integer)

• Len() As Integer

• GetEntityEncode() As String

• Tokenize(a As String) As Object

• Trim() As String

• ToInt() As Integer

• ToFloat() As Float

• Left(a As Integer) As String

• Right(a As Integer) As String

• Mid(a As Integer) As String

• Mid(a As Integer, b As Integer) As String

• Instr(a As String) As Integer

• Instr(a As Integer, b As String) As Integer

152

roStreamByteEvent

Interfaces: ifInt, ifUserData

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifUserdata interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

153

roStreamConnectResultEvent
The event is posted when a new connection is made to an roTCPServer port. The normal response to receiving such an
event is to create a new roTCPStream object and pass the event to its AcceptFrom call.

Interfaces: ifInt, ifUserData

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

154

roStreamEndEvent

Interfaces: ifInt, ifUserData

The ifInt interface provides the following:

• GetInt() As Integer

• SetInt(a As Integer)

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

155

roStreamLineEvent

Interfaces: ifUserData, ifString

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

The ifString interface provides the following:

• GetString() As String

• SetString(a As String)

156

roSyncSpec
This object represents a parsed sync specification. It allows various parts of the specification to be retrieved through
methods.

Interfaces: ifSyncSpec, ifInternalSyncSpec, ifInstanceFromStream

The ifSyncSpec interface provides the following:

• GetFailureReason() As String

• ReadFromFile(a As String) As Boolean

• ReadFromString(a As String) As Boolean

• WriteToFile(a As String) As Boolean

• WriteToString() As String

• GetMetadata(a As String) As Object

• GetFileList(a As String) As Object

• LookupMetadata(a As String, b As String) As String

• GetName() As String

• EqualTo(a As Object) As Boolean

• GetFile(a As String, b As Integer) As Object

• FilterFiles(a As String, b As Object) As Object

• FilesEqualTo(a As Object) As Boolean

• GetAssets(a As String) As Object

157

roTCPConnectEvent
The event is posted when a new connection is made to an roTCPServer port. The normal response to receiving such an
event is to create a new roTCPStream object and pass the event to its AcceptFrom call.

Interfaces: ifUserData, ifInternalGetTCPStream

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

158

roTCPServer

Interfaces: ifTCPServerInstance, ifUserData

The ifTCPServerInstance interface provides the following:

• GetFailureReason() As String: Yields additional useful information if an roTCPServer method fails.
• SetPort(a As Object): Sets the message port that will receive events from an roTCPServer instance.
• BindToPort(a As Integer) As Boolean: Prepares to accept incoming TCP connections on the specified

port. The function returns True upon success.

The ifUserData interface provides the following:

• SetUserData(a As Object): Supplies an object that will be provided by every event called by an roTCPServer
instance.

• GetUserData() As Object

159

roTCPStream

Interfaces: ifStreamReceive, ifUserData, ifStreamSend, ifTCPStream

The ifStreamReceive interface provides the following:

• SetLineEventPort(a As Object)

• SetByteEventPort(a As Object)

• SetReceiveEol(a As String)

• SetMatcher(a As Object) As Boolean

The ifUserData interface provides the following:

• SetUserData(a As Object): Supplies an object that will be provided by every event called by an
roTCPStream instance.

• GetUserData() As Object

The ifStreamSend interface provides the following:

• SendByte(a As Integer)

• SendLine(a As String)

• SendBlock(a As Dynamic)

• SetSendEol(a As String)

• Flush()

The ifTCPStream interface provides the following:

• GetFailureReason() As String: Yields additional useful information if an roTCPStream method fails.
• ConnectTo(a As String, b As Integer) As Boolean: Connects the stream to the specified host

(designated using a dotted quad) and port. The function returns True upon success.

160

• Accept(a As Object) As Boolean: Accepts an incoming connection event. The function returns True upon
success.

• AsyncConnectTo(a As String, b As Integer) As Boolean: Attempts to connect the stream to the
specified host (designated using a dotted quad) and port. The function returns False if this action is immediately
impossible (for example, when the specified host is not in the correct format). Otherwise, the function returns True
upon success. The connect proceeds in the background, and an roStreamConnectResultEvent is posted to the
associated message port when the connect attempt succeeds or fails.

161

roUrlEvent

Interfaces: ifInt, ifUserData, ifUrlEvent, ifString, ifSourceIdentity

The ifInt interface provides the following:

• GetInt As Integer: Returns the type of event. The following event types are currently defined: transfer
complete (1), transfer started (2). Headers are available for suitable protocols (though this is not currently
implemented).

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

The ifUrlEvent interface provides the following:

• GetResponseCode As Integer: Returns the protocol response code associated with an event. The following
codes indicate success:

o 200: Successful HTTP transfer
o 226: Successful FTP transfer
o 0: Successful local file transfer

For unexpected errors, the return value is negative. There are many possible negative errors from the CURL library,
but it is often best to look at the text version by calling GetFailureReason.

Here are some potential errors. Not all of them can be generated by a BrightSign player:
Status Name Description

-1 CURLE_UNSUPPORTED_PROTOCOL
-2 CURLE_FAILED_INIT

162

-3 CURLE_URL_MALFORMAT
-5 CURLE_COULDNT_RESOLVE_PROXY
-6 CURLE_COULDNT_RESOLVE_HOST
-7 CURLE_COULDNT_CONNECT
-8 CURLE_FTP_WEIRD_SERVER_REPLY

-9 CURLE_REMOTE_ACCESS_DENIED A service was denied by the server due to lack of access.
When login fails, this is not returned.

-11 CURLE_FTP_WEIRD_PASS_REPLY
-13 CURLE_FTP_WEIRD_PASV_REPLY
-14 CURLE_FTP_WEIRD_227_FORMAT
-15 CURLE_FTP_CANT_GET_HOST
-17 CURLE_FTP_COULDNT_SET_TYPE
-18 CURLE_PARTIAL_FILE
-19 CURLE_FTP_COULDNT_RETR_FILE
-21 CURLE_QUOTE_ERROR Failed quote command
-22 CURLE_HTTP_RETURNED_ERROR
-23 CURLE_WRITE_ERROR
-25 CURLE_UPLOAD_FAILED Failed upload command.
-26 CURLE_READ_ERROR Could not open/read from file.
-27 CURLE_OUT_OF_MEMORY
-28 CURLE_OPERATION_TIMEDOUT The timeout time was reached.
-30 CURLE_FTP_PORT_FAILED FTP PORT operation failed.
-31 CURLE_FTP_COULDNT_USE_REST REST command failed.
-33 CURLE_RANGE_ERROR RANGE command did not work.
-34 CURLE_HTTP_POST_ERROR
-35 CURLE_SSL_CONNECT_ERROR Wrong when connecting with SSL.
-36 CURLE_BAD_DOWNLOAD_RESUME Could not resume download.
-37 CURLE_FILE_COULDNT_READ_FILE
-38 CURLE_LDAP_CANNOT_BIND
-39 CURLE_LDAP_SEARCH_FAILED
-41 CURLE_FUNCTION_NOT_FOUND

163

-42 CURLE_ABORTED_BY_CALLBACK
-43 CURLE_BAD_FUNCTION_ARGUMENT
-45 CURLE_INTERFACE_FAILED CURLOPT_INTERFACE failed.
-47 CURLE_TOO_MANY_REDIRECTS Catch endless re-direct loops.
-48 CURLE_UNKNOWN_TELNET_OPTION User specified an unknown option.
-49 CURLE_TELNET_OPTION_SYNTAX Malformed telnet option.
-51 CURLE_PEER_FAILED_VERIFICATION Peer's certificate or fingerprint wasn't verified correctly.
-52 CURLE_GOT_NOTHING When this is a specific error.
-53 CURLE_SSL_ENGINE_NOTFOUND SSL crypto engine not found.
-54 CURLE_SSL_ENGINE_SETFAILED Cannot set SSL crypto engine as default.
-55 CURLE_SEND_ERROR, Failed sending network data.
-56 CURLE_RECV_ERROR Failure in receiving network data.
-58 CURLE_SSL_CERTPROBLEM Problem with the local certificate.
-59 CURLE_SSL_CIPHER Could not use specified cipher.
-60 CURLE_SSL_CACERT Problem with the CA cert (path?)
-61 CURLE_BAD_CONTENT_ENCODING Unrecognized transfer encoding.
-62 CURLE_LDAP_INVALID_URL Invalid LDAP URL.
-63 CURLE_FILESIZE_EXCEEDED, Maximum file size exceeded.
-64 CURLE_USE_SSL_FAILED, Requested FTP SSL level failed.
-65 CURLE_SEND_FAIL_REWIND, Sending the data requires a rewind that failed.
-66 CURLE_SSL_ENGINE_INITFAILED Failed to initialize ENGINE.

-67 CURLE_LOGIN_DENIED User, password, or similar field was not accepted and login
failed .

-68 CURLE_TFTP_NOTFOUND File not found on server.
-69 CURLE_TFTP_PERM Permission problem on server.
-70 CURLE_REMOTE_DISK_FULL Out of disk space on server.
-71 CURLE_TFTP_ILLEGAL Illegal TFTP operation.
-72 CURLE_TFTP_UNKNOWNID Unknown transfer ID.
-73 CURLE_REMOTE_FILE_EXISTS File already exists.
-74 CURLE_TFTP_NOSUCHUSER No such user.
-75 CURLE_CONV_FAILED Conversion failed.

164

-76 CURLE_CONV_REQD

Caller must register conversion callbacks using the following
URL_easy_setopt options:
CURLOPT_CONV_FROM_NETWORK_FUNCTION
CURLOPT_CONV_TO_NETWORK_FUNCTION
CURLOPT_CONV_FROM_UTF8_FUNCTION

-77 CURLE_SSL_CACERT_BADFILE Could not load CACERT file, missing or wrong format.
-78 CURLE_REMOTE_FILE_NOT_FOUND Remote file not found.

-79 CURLE_SSH Error from the SSH layer (this is somewhat generic, so the
error message will be important when this occurs).

-80 CURLE_SSL_SHUTDOWN_FAILED Failed to shut down the SSL connection.

• GetObject() As Object

• GetFailureReason As String: Returns a description of the failure that occurred.
• GetSourceIdentity As Integer: Returns a unique number that can be matched with the value returned by

roUrlTransfer.GetIdentity to determine where this event came from.
• GetResponseHeaders As roAssociativeArray: Returns an associative array containing all the headers

returned by the server for appropriate protocols (such as HTTP).

The ifString interface provides the following:
• GetString As String: Returns the string associated with the event. For transfer-complete AsyncGetToString,

AsyncPostFromString, and AsyncPostFromFile requests, this will be the actual response body from the server,
truncated to 65,536 characters.

The ifSourceIdentity interface provides the following:
• GetSourceIdentity As Integer: Returns a unique number that can be matched with the value returned

by roUrlTransfer.GetIdentity to determine where this event originated.

165

roUrlStream
This object allows playback of content from a URL; the current implementation is only designed to work from local NAS
storage.

This object is created with an associated roUrlTransfer object, as well as a number of other numeric parameters that
define buffer size, etc. The roUrlTransfer object defines the retrieval URL and is documented separately.

To use the final object to play back content, you must put the object into an associative array with the parameter name
“Url”. This array can then be sent to roVideoPlayer.PlayFile() for playback.

Interfaces: ifUrlStream

The ifUrlStream interface provides the following:

• GetUrl() As String

• GetBufferSize() As Integer

• GetRewindSize() As Integer

• GetMinimumFill() As Integer

166

roUrlTransfer
This object is used for reading from and writing to remote servers through URLs.

This object is created with no parameters:

CreateObject("roUrlTransfer")

Interfaces: ifUserData, ifIdentity, ifSetMessagePort, ifGetMessagePort, ifUrlTransfer

The ifUserData interface provides the following:
• SetUserData(a As Object)

• GetUserData() As Object

The ifIdentity interface provides the following:

• GetIdentity As Integer: Returns a unique number that can be used to identify whether events originated
from this object.

The ifSetMessagePort interface provides the following:

• SetPort(port As ifMessagePort) As Void: Sets the message port to which events will be posted for
asynchronous requests.

The ifGetMessagePort interface provides the following:
• GetPort() As Object

167

The ifUrlTransfer interface provides the following:
• SetUrl(URL As String) As Boolean: Sets the URL for the transfer request. This function returns False on

failure. Use GetFailureReason to learn the reason for the failure.

Note
When using SetUrl to retrieve content from local storage, you do not need to specify the full file path:
SetUrl(“file:/example.html”). If the content is located somewhere other than the current storage device, you
can specify it within the string itself. For example, you can use the following syntax to retrieve content from a storage
device inserted into the USB port when the current device is an SD card:
SetUrl(“file:///USB1:/example.html”).

• AddHeader(name As String, value As String) As Boolean: Adds the specified HTTP header. This is

only valid for HTTP URLs. This function returns False on failure. Use GetFailureReason to learn the reason for the
failure.

• GetToString As String: Connects to the remote service as specified in the URL and returns the response
body as a string. This function cannot return until the exchange is complete, and it may block for a long time.
Having a single string return means that much of the information (headers, response codes) has been discarded. If
you need this information, you can use AsyncGetToString instead.
Note: The size of the returned string is limited to 65,536 characters.

• GetToFile(filename As String) As Integer: Connects to the remote service as specified in the URL and
writes the response body to the specified file. This function does not return until the exchange is complete and may
block for a long time. The response code from the server is returned. It is not possible to access any of the
response headers. If you need this information, use AsyncGetToFile instead.

• AsyncGetToString As Boolean: Begins a “get” request to a string asynchronously. Events will be sent to the
message port associated with the object. If False is returned, then the request could not be issued and no events
will be delivered.

168

• AsyncGetToFile(filename As String) As Boolean: Begins a “get” request to a file asynchronously.
Events will be sent to the message port associated with the object. If False is returned, then the request could not
be issued and no events will be delivered.

• Head As Object: Synchronously perform an HTTP HEAD request and return the resulting response code and
headers through an roUrlEvent object. In the event of catastrophic failure (e.g. an asynchronous operation is
already active), a null object is returned.

• AsyncHead As Boolean: Begins an HTTP HEAD request asynchronously. Events will be sent to the message
port associated with the object. A False return indicates that a request could not be issued and no events will be
delivered.

• PostFromString(request As String) As Integer: Uses the HTTP POST method to post the supplied
string to the current URL and return the response code. Any response body is discarded.

• PostFromFile(filename As String) As Integer: Uses the HTTP POST method to post the contents of
the file specified to the current URL and then return the response code. Any response body is discarded.

• AsyncPostFromString(request As String) As Boolean: Uses the HTTP POST method to post the
supplied string to the current URL. Events of type roUrlEvent will be sent to the message port associated with the
object. A False return indicates that the request could not be issued and no events will be delivered.

• AsyncPostFromFile(filename As String) As Boolean: Uses the HTTP POST method to post the
contents of the specified file to the current URL. Events of the type roUrlEvent will be sent to the message port
associated with the object A False return indicates that the request could not be issued and no events will be
delivered.

• SetUserAndPassword(user As String, password As String) As Boolean: Enables HTTP
authentication using the specified user name and password. Note that HTTP basic authentication is deliberately
disabled due to it being inherently insecure. HTTP digest authentication is supported.

• SetMinimumTransferRate(bytes_per_second As Integer, period_in_seconds As Integer) As

Boolean: Causes the transfer to be terminated if the rate drops below bytes_per_second when averaged
over period_in_seconds. Note that if the transfer is over the Internet, you may not want to set period_in_seconds

169

to a small number in case network problems cause temporary drops in performance. For large file transfers and a
small bytes_per_second limit, averaging over fifteen minutes or even longer might be appropriate.

• GetFailureReason As String: May provide additional information if any of the roUrlTransfer functions
indicate failure.

• SetHeaders(a As Object) As Boolean

• AsyncGetToObject(a As String) As Boolean

• AsyncCancel() As Boolean

• EnableUnsafeAuthentication(a As Boolean) As Boolean: Supports basic HTTP authentication if True.
HTTP authentication uses an insecure protocol, which might allow others to easily determine the password. The
roUrlTransfer object will still prefer the stronger digest HTTP if it is supported by the server. If this method is False
(which is the default setting), it will refuse to provide passwords via basic HTTP authentication, and any requests
requiring this authentication will fail.

• EnableResume(a As Boolean) As Boolean

• EnablePeerVerification(a As Boolean) As Boolean

• EnableHostVerification(a As Boolean) As Boolean

• SetCertificatesFile(a As String) As Boolean

• EnableEncodings(a As Boolean) As Boolean

• SetUserAndPassword(a As String, b As String) As Boolean

• Head() As Object

• Escape(a As String) As String

• Unescape(a As String) As String

• GetUrl() As String

• SetProxy(a As String) As Boolean

• SetTimeout(a As Integer) As Boolean

• SetUserAgent(a As String) As Boolean

• PutFromString(a As String) As Integer

• PutFromFile(a As String) As Integer

170

• AsyncPutFromString(a As String) As Boolean

• AsyncPutFromFile(a As String) As Boolean

• Delete() As Object

• AsyncDelete() As Boolean

• ClearHeaders()

• AddHeaders(a As Object) As Boolean

• AsyncMethod(a As Object) As Boolean

• SyncMethod(a As Object) As Object

• BindToInterface(a As Integer) As Boolean

171

INPUT/OUTPUT OBJECTS

roCecInterface
This object provides access to the HDMI CEC channel.

roCecInterface is created with no parameters:

CreateObject("roCecInterface")

Interfaces: IfCecInterface, ifSetMessagePort

The IfCecInterface interface provides the following:

• SendRawMessage(packet As Object) As Void: Sends a message on the CEC bus. The frame data should
be provided as an roByteArray, with the destination address in the low 4 bits of the first octet. The high 4 bits of the
first octet should be supplied as zero; they will be replaced with the source address.

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

If an roMessagePort is attached to roCecInterface, it will receive events of type roCecRxFrameEvent and/or
roCecTxCompleteEvent.

roCecRxFrameEvent implements ifCecRxFrameEvent.

The ifCecRxFrameEvent interface provides the following:

172

• GetByteArray As Object: Returns the message data as an roByteArray.

roCecTxCompleteEvent implements ifCecTxCompleteEvent.

The ifCecTxCompleteEvent interface provides the following:
• GetStatusByte As Integer

173

roCecRxFrameEvent, roCecTxCompleteEvent

roCecRxFrameEvent

Interfaces: ifCecRxFrameEvent

The ifCecRxFrameEvent interface provides the following;

• GetByteArray() As Object

roCecTxFrameEvent

Interfaces: ifCecTxCompleteEvent

The ifCecTxCompleteEvent interface provides the following:

• GetStatusByte() As Integer

The currently defined status codes are described below:

0x00 Transmission successful
0x80 Unable to send, CEC hardware powered down
0x81 Internal CEC error
0x82 Unable to send, CEC line jammed
0x83 Arbitration error

174

0x84 Bit-timing error
0x85 Destination address not acknowledged
0x86 Data byte not acknowledged

175

roChannelManager
You can use this object to manage RF channel scanning and tuning. The roVideoPlayer method also has channel
scanning capabilities.

Object Creation: roChannelManager is created with no parameters.

CreateObject(“roChannelManager”)

Interfaces: ifUserData, ifMessagePort, ifSetMessagePort, ifChannelManager,

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

The ifMessagePort interface provides the following:

• SetPort(a As Object)

The ifSetMessagePort interface provides the following:

• SetPort(a As Object)

The ifChannelManager interface provides both a Synchronous and Asynchronous API:
Synchronous API

• Scan(parameters As roAssociativeArray) As Boolean: Performs a channel scan on the RF input for
both ATSC and QAM frequencies and builds a channel map based on what it finds. The roChannelManager object
stores a list of all channels that are obtained using the CreateChannelDescriptor() method (described below).
The list is cleared on each call to Scan() by default, but this behavior can be overridden.

176

Each channel takes approximately one second to scan; you can limit the scope of the channel scan with the
following parameters:

o [“ChannelMap”] = ”ATSC” or ”QAM”: Limits the frequency scan to either QAM or ATSC.
o [“ModulationType”] = ”QAM64” or ”QAM256”: Limits the modulation type of the scan to QAM64 or

QAM256.
o [“FirstRfChannel”] = Integer and/or [“LastRfChannel”] = Integer: Limits the scan to the

specified range of channels. The high end of the channel range is an optional parameter.
o [“ChannelStore”] = “DISCARD ALL” or “MERGE”: Controls how the script handles previous channel

scan information. The default setting is DISCARD ALL, which clears all channel data prior to scanning. On
the other hand, MERGE overwrites the data only for channels specified in the scan.

• GetChannelCount() As Integer: Returns the number of found channels.
• ClearChannelData() As Boolean: Clears all stored channel scanning data, including that which persists in

the registry. This method also cancels any AsyncScan() calls that are currently running.
• GetCurrentSnr() As Integer: Returns the SNR (in centibels) of the currently tuned channel.
• ExporttoXML() As String: Serializes the contents of RF channels into XML. You can write the XML to a file

that can be used at a later point on the same or other units. See below for an example of XML output.
• ImportFromXML(a As String) As Boolean: Retrieves the RF channel contents stored as XML. The

formatting of the XML is controlled using version tags.
Example

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE boost_serialization>

<boost_serialization signature="serialization::archive" version="7">

<ChannelList class_id="0" tracking_level="0" version="0">

<ChannelCount>2</ChannelCount>

<Channel class_id="1" tracking_level="0" version="0">

 <RfChannel>42</RfChannel>

177

 <ModulationType>7</ModulationType>

 <SpectralInversion>0</SpectralInversion>

 <MajorChannelNumber>1</MajorChannelNumber>

 <MinorChannelNumber>1</MinorChannelNumber>

</Channel>

<Channel>

 <RfChannel>42</RfChannel>

 <ModulationType>7</ModulationType>

 <SpectralInversion>0</SpectralInversion>

 <MajorChannelNumber>1</MajorChannelNumber>

 <MinorChannelNumber>2</MinorChannelNumber>

</Channel>

</ChannelList>

• EnableScanDebug(filename As String) As Boolean: Allows all scan debugging to be written to a text file.
By default, there is no debug output from a scan. You can close the debug file by passing an empty string.

Example

c=CreateObject("roChannelManager")

c.EnableScanDebug("tmp:/scandebug.txt")

v = CreateObject("roVideoPlayer")

aa = CreateObject("roAssociativeArray")

aa["RfChannel"] = 12

aa["VirtualChannel"] = "24.1"

print v.PlayFile(aa)

178

c.EnableScanDebug("")

• CreateChannelDescriptor(a As Object) As Object: Creates an associative array that can either be
passed to the roVideoPlayer.PlayFile method (to tune to a channel) or parsed for metadata. The generated channel
object can be based on one of the following:

o Index:

[“ChannelIndex”] = 0

o Virtual channel number as a string in an associative array:

[“VirtualChannel”] = ”12.1”

o Channel name as a string:

[“ChannelName”] = ”KCBS”

Note: Channels are sorted internally by virtual channel, so you could use a ChannelIndex script to implement
standard channel up/down behavior.

These are the entries generated in the array:

o VirtualChannel

o ChannelName

o CentreFrequency

o ModulationType

o VideoPid

o VideoCodec

o AudioPid

179

o AudioCodec

o SpectralInversion

o ChannelMap

o FirstRfChannel

o LastRfChannel

The last three entries in this array allow you to use the same roArray as a parameter for Scan() and PlayFile().
The first and last RF channel values are set to the same value so that only one RF channel will be scanned. This
kind of scan can be performed at the same time as playing the channel because it doesn’t require retuning.

Example

c=CreateObject("roChannelManager")

aa=CreateObject("roAssociativeArray")

aa["ChannelMap"] = "QAM"

aa["FirstRfChannel"] = 10

aa["LastRfChannel"] = 15

c.Scan(aa)

cinfo = CreateObject("roAssociativeArray")

cinfo["ChannelIndex"] = 0

desc = c.CreateChannelDescriptor(cinfo)

print desc

v = CreateObject("roVideoPlayer")

v.PlayFile(desc)

c.Scan(desc)

180

Asynchronous API

• AsyncScan(parameters As roAssociativeArray) As Boolean: Begins a channel scan on the RF input
and returns the results immediately. Otherwise, the behavior and parameters of this method are identical to
Scan(). When completed or cancelled, AsyncScan() generates an roChannelManagerEvent, which supports
ifUserData and outputs two types of event:

o 0 – Scan Complete: Generated upon the completion of a scan. No extra data is supplied.
o 1 – Scan Progress: Generated upon every tune that is performed during the scan. GetData() returns the

percentage complete of the scan.
• CancelScan() As Boolean: Cancels any asynchronous scans that are currently running. This method does

not generate an roChannelManagerEvent.

Synchronous Example

c = CreateObject("roChannelManager")

' Scan the channels

aa = CreateObject("roAssociativeArray")

aa["ChannelMap"] = "ATSC"

aa["FirstRfChannel"] = 12

aa["LastRfChannel"] = 50

c.Scan(aa)

' Start at the first channel

index = 0

cinfo = CreateObject("roAssociativeArray")

cinfo["ChannelIndex"] = index

desc = c.CreateChannelDescriptor(cinfo)

181

' Play the first channel

v = CreateObject("roVideoPlayer")

v.PlayFile(desc)

' Play the second channel

index = index + 1

cinfo["ChannelIndex"] = index

desc = c.CreateChannelDescriptor(cinfo)

v.PlayFile(desc)

Asynchronous Example

c = CreateObject("roChannelManager")

p = CreateObject("roMessagePort")

c.SetPort(p)

' Scan the channels

aa = CreateObject("roAssociativeArray")

aa["ChannelMap"] = "ATSC"

aa["FirstRfChannel"] = 12

aa["LastRfChannel"] = 50

c.AsyncScan(aa)

loop:

 msg = wait(2000,p)

 if msg = 0 then goto scan_complete

182

 goto loop

scan_complete:

' Start at the first channel

index = 0

cinfo = CreateObject("roAssociativeArray")

cinfo["ChannelIndex"] = index

desc = c.CreateChannelDescriptor(cinfo)

' Play the first channel

v = CreateObject("roVideoPlayer")

v.PlayFile(desc)

' Rescan the current channel, and update the

desc["ChannelStore"] = MERGE

c.Scan(desc)

183

roControlPort
This object is an improved version of roGpioControlPort. It provides support for the IO port of the BP200 and BP900 USB
botton boards as well as the on-board IO port and side buttons on the BrightSign player. It also supports button-up events.
The object is used to configure output levels on the IO connector and monitor inputs. Typically, LEDs and buttons are
attached to the IO connector on the BrightSign player or the BrightSign Expansion Module.

Object creation:

CreateObject("roControlPort", name as String)

For name, use one of the following:

• BrightSign to specify the onboard DA-15 connector (on HD210, HD410, HD1010w, HD1020) and side buttons
(i.e. SVC button and reset button).

• Expander-GPIO to specify the DB-25 connector on the BrightSign Expansion Module. If no BrightSign Expansion
module is attached, then object creation will fail and Invalid will be returned.

• Expander-DIP to specify the eight DIP switches on the BrightSign Expansion Module. If no BrightSign Expansion
module is attached, then object creation will fail and Invalid will be returned.

Note: Hot-plugging the BrightSign Expansion Module is not supported.

Interfaces: ifControlPort, ifSetMessagePort

The ifControlPort interface provides the following:

• GetVersion as String: Returns the version number of the firmware (either the main BrightSign firmware or the
BrightSign Expansion Module firmware) responsible for the control port.

http://www.brightsign.biz/products/accessories/usb-button-panels/�

184

• EnableOutput(pin as Integer) as Boolean: Marks the specified pin as an output. If an Invalid pin number
is passed, False will be returned. If successful, the function returns True. The pin will be driven high or low
depending on the current output state of the pin.

• EnableInput(pin as Integer) as Boolean: Marks the specified pin as an input. If an Invalid pin number is
passed, False will be returned. If successful, the function returns True. The pin will be tri-stated and can be driven
high or low externally.

• GetWholeState as Integer: Returns the state of all the inputs attached to the control port as bits in an integer.
The individual pins can be checked using binary operations, although it is normally easier to call IsInputActive
instead.

• IsInputActive(pin as Integer) as Boolean: Returns the state of the specified input pin. If the pin is not
configured as an input, then the result is undefined.

• SetWholeState(state as Integer): Specifies the desired state of all outputs attached to the control port as
bits in an integer. The individual pins can be set using binary operations, although it is normally easier to call
SetOutputState instead.

• SetOutputState(pin as Integer, level as Boolean): Specifies the desired state of the specified
output pin. If the pin is not configured as an output, the resulting level is undefined.

• GetIdentity as Integer: Returns the identity value that can be used to associate roControlUp and
roControlDown events with this control port.

The ifSetMessagePort interface provides the following:
• SetPort(port as Object): Requests that all events raised on this control port be posted to the specified

message port.

185

roControlUp, roControlDown
These objects are posted by the control port to the configured message port when inputs change state. The roControlUp
and roControlDown objects are not normally created directly.

An roControlDown event is posted when the input level goes from high to low. An roControlUp event is posted when the
input level goes from low to high.

Interfaces: ifInt, ifSourceIdentity

The ifInt interface provides the following:

• GetInt as Integer: Retrieves the pin number associated with the event.

The ifSourceIdentity interface provides the following:
• GetSourceIdentity as Integer: Retrieves the identity value that can be used to associate events with the

source roControlPort instance.

186

roGpioControlPort, roGpioButton
Note: New scripts should use roControlPort instead of roGpioControlPort.

roGpioControlPort
This object is used to control and wait for events on the BrightSign generic DB15 control port. Typically, LEDs or buttons
are connected to the DB15 / DB25 port. Turning on a GPIO output changes the voltage on the GPIO port to 3.3V. Turning
off a GPIO output changes the voltage on the GPIO port to 0V.

On all BrightSign models, the GPIO ports are bidirectional and must be programmed as either inputs or outputs. The IDs
range from 0–7. SetWholeState will overwrite any prior output settings. SetOutputState takes an output ID (1, 2, or 6 for
example). SetWholeState takes a mask (for example, SetWholeState(2^1 + 2^2) to set IDs 1 and 2).

Interfaces: ifSetMessagePort, ifGpioControlPort

The ifSetMessagePort interface provides the following:

• SetPort(obj As Object) As Void

The ifGpioControlPort interface provides the following:
• IsInputActive(input_id As Integer) As Boolean

• GetWholeState As Integer

• SetOutputState(output_id As Integer, onState As Boolean) As Void

• SetWholeState(on_state As Integer) As Void

• EnableInput(input_id As Integer) As Boolean (HD410, HD810, HD1010 only)

• EnableOutput(output_id As Integer) As Boolean (HD410, HD810, HD1010 only)

187

roGpioButton

Interfaces: ifInt.

The ifInt interface contains the input ID listed above and provides the following:

• GetInt As Integer

188

roIRRemote
This component supports receiving and transmitting arbitrary Infrared remote control codes using the NEC protocol.
Codes are expressed in 24 bits.

• Bits 0-7: Button code
• Bits 8-23: Manufacturer code

If the manufacturer code is zero, then the code is considered to be intended for the Roku SoundBridge remote control.

The best way to determine the values required is to capture the codes received by roIRRemote when the remote buttons
of the device are pressed and then send the same codes.

Interfaces: ifSetMessagePort, ifIRRemote.

The ifSetMessagePort interface provides the following:

• SetPort(message_port_object As Object) As Void

The ifIRRemote interface provides the following:
• Send(protocol as String, code as Integer) As Boolean

Note: The only protocol currently supported is “NEC.” The return value is True if the code was successfully transmitted,
although there is no way to determine if the controlled device actually received it.

189

roIRRemotePress
Messages are generated upon key presses from the Roku Soundbridge remote.

Interfaces: ifInt, ifIntOps

The ifInt interface contains keycode and provides the following:

• GetInt As Integer
• SetInt(a As Integer)

The ifIntOps interface provides the following:

• ToStr() As String

For the Roku SoundBridge remote control, the Integer returned can have one of the following values:
West 0

East 1

North 2

South 3

Select 4

Exit 5

Power 6

Menu 7

Search 8

Play 9

Next 10

Previous 11

Pause 12

190

Add 13

Shuffle 14

Repeat 15

Volume up 16

Volume down 17

Brightness 18

191

roKeyboard, roKeyboardPress

roKeyboard
This object is used to wait for events from a USB keyboard.

Interfaces: ifSetMessagePort

The ifSetMessagePort interface provides the following:

• SetPort(As Object) As Void

roKeyboardPress
This object is a keyboard event resulting from the user pressing a key on a USB keyboard. The int value is equivalent to
the ASCII code of the key that was pressed.

Interfaces: ifInt, ifIntOps

The ifInt interface contains the ASCII value of key presses and provides the following:

• GetInt As Integer
• SetInt(a As Integer)

The ifIntOps interface provides the following:
• ToStr() As String

192

The rotINT32 returned can have one of the following values:

Letter Keys
Number

Keys
Function

Keys Misc Keys Special Keys

A - 97 R - 114 0 - 48 F1 - 32826 Del - 127 "-" 45 : 58

B - 98 S - 115 1 - 49 F2 - 32827 Backspace - 8 "=" 61 " 34

C - 99 T - 116 2 - 50 F3 - 32828 Tab - 9 \ 92 < 60

D - 100 U - 117 3 - 51 F4 - 32829 Enter - 13 ` 96 > 62

E - 101 V - 118 4 - 52 F5 - 32830 Print Scrn - 32838 [91 ? 63

F - 102 W - 119 5 - 53 F6 - 32831 Scrl Lock - 32839] 93 ! 33

G - 103 X - 120 6 - 54 F7 - 32832 Pause/Brk - 32840 ; 59 @ 64

H - 104 Y - 121 7 - 55 F8 - 32833 INS - 32841 " ' " 39 # 35

I - 105 Z - 122 8 - 56 F9 - 32834 Home - 32842 , 44 $ 36

J - 106 9 - 57 F11 - 32836 Page Up - 32843 . 46 % 37

K - 107 F12 - 32837 Page Down - 32846 / 47 ^ 94

L - 108 End - 32845 _ 95 & 38

M - 109 Caps - 32811 "+" 43 * 42

N - 110 Left Arrow - 32848 | 124 (40

O - 111 Right Arrow - 32847 ~ 126) 41

P - 112 Up Arrow - 32850 { 123

Q - 113 Down Arrow - 32849 } 125

193

roMessagePort
A message port is the destination where messages (events) are sent. See the Event Loops section for more details. You
do not call these functions directly when using BrightScript. Instead, use the “Wait” BrightScript statement (see the
BrightScript documentation for more details).

Interfaces: ifMessagePort, ifEnum

The ifMessagePort interface provides the following:

• GetMessage As Object

• WaitMessage(timeout As Integer) As Object

• PostMessage(msg As Object) As Void

• PeekMessage() As Object

The ifEnum interface provides the following:
• Reset(): Resets the position to the first element of enumeration.
• Next() As Dynamic: Returns the typed value at the current position and increment position.
• IsNext() As Boolean: Returns True if there is a next element.
• IsEmpty() As Boolean: Returns True if there is not a next element.

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting�

194

roSequenceMatcher

Interfaces: ifStreamReceiveObserver, ifSequenceMatcher

The ifSequenceMatcher interface provides the following:

• SetMessagePort(a As Object)

• Add(a As Object, b As Object) As Boolean

195

roSequenceMatchEvent

Interfaces: ifUserData

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

196

roSerialPort
This object controls the RS232 serial port, allowing you to receive input and send responses.

roSerialPort sends the following event types:

• roStreamLineEvent: The line event is generated whenever the end of line string set using SetEol is found and
contains a String for the whole line. This object implements the ifString and ifUserData interfaces.

• roStreamByteEvent: The byte event is generated on every byte received. This object implements the ifInt and
ifUserData interfaces.

Interfaces: ifStreamSend, ifStreamReceive, ifSerialControl, ifUserData

The ifStreamSend interface provides the following:

• SendByte(byte As Integer) As Void

• SendLine(line As String) As Void

• SendBlock(block As String) As Void

• SetSendEol(a As String) As Void

• Flush()

The ifStreamReceive interface provides the following:
• SetLineEventPort(port As Object) As Void

• SetByteEventPort(port As Object) As Void

• SetReceiveEol(a As String)

• SetMatcher(a As Object) As Boolean

197

The ifSerialControl interface provides the following:
• SetBaudRate(baud_rate As Integer) As Boolean: Sets the baud rate of the device. The supported baud

rates are as follows: 1800, 2000, 2400, 3600, 4800, 7200, 9600, 12800, 14400, 19200, 23040, 28800, 38400,
57600, and 115200.

• SetMode(mode As String) As Boolean: Sets the serial mode in “8N1” syntax. The first character is the
number of data bits. It can be either 5, 6, 7, or 8. The second number is the parity. It can be “N”one, “O”dd, or
“E”ven. The third is the number of stop bits. It can be 1 or 2.

• SetEcho(enable As Boolean) As Boolean: Enables or disables serial echo. It returns True on success and
False on failure.

• SetEol(a As String)
• SetInverted(a As Boolean) As Boolean

The ifUserData interface provides the following:

• SetUserData(user_data As Object): Sets the user data that will be returned when events are raised.
• GetUserData() As Object: Returns the user data that has previously been set via SetUserData. It will return

Invalid if no data has been set.

Example: This code waits for a serial event and echoes the input received on the serial port to the shell.

serial = CreateObject("roSerialPort", 0, 9600)

p = CreateObject("roMessagePort")

serial.SetLineEventPort(p)

serial_only:

msg = wait(0,p) ' Wait forever for a message.

if(type(msg) <> "roStreamLineEvent") goto serial_only 'Accept serial messages only.

serial.SendLine(msg) ' Echo the message back to serial.

198

SYSTEM OBJECTS

roDeviceInfo

Interfaces: ifDeviceInfo

The ifDeviceInfo interface provides the following:

• GetModel As String: Returns the model name for the BrightSign device running the script as a string (for
example, "HD1010" or "HD110").

• GetVersion As String: Returns the version number of the BrightSign firmware running on the device (for
example, "4.0.13").

• GetVersionNumber As Integer: Returns the version number of the BrightSign firmware running on the device
in the more comparable numeric form of (major*65536 + minor*256 + build).

• GetBootVersion As String: Returns the version number of the BrightSign boot firmware, also known as "safe
mode”, as a string (for example, "1.0.4").

• GetBootVersionNumber As Integer: Returns the version number of the BrightSign boot firmware, also
known as "safe mode,” in the more comparable numeric form of (major*65536 + minor*256 + build).

• GetDeviceUptime As Integer: Returns the number of seconds that the device has been running since the
last power cycle or reboot.

• GetDeviceUniqueId As String: Returns an identifier that, if not an empty string, is unique to the unit running
the script.

• GetFamily As String: Returns a single string that indicates the family to which the device belongs. A device
family is a set of models that are all capable of running the same firmware.

• GetDeviceLifetime() As Integer

199

• HasFeature(a As String) As Boolean: Returns True if the player feature, passed as a
case-insensitive string parameter, is present on the current device and firmware.

These are the possible features you can query from the script:

Note: If you pass a parameter other than one of those listed below, it may return False even if the feature is
available on the hardware and firmware.

o "brightscript1": BrightScript Version 1
o "brightscript2": BrightScript Version 2
o "networking": Any form of networking capability; there may be no network currently available.
o "hdmi"

o "component video"

o "vga"

o "audio1": The first audio output
o "audio2": The second audio output (true on the HD2000 only)
o "audio3": The third audio output (true on the HD2000 only)
o "ethernet"

o "usb"

o "rs232"

o "5v serial"

o "gpio connector"

o "gpio12 button"

o "reset button"

o "rtc"

o "registry"

o "nand storage"

o "sd": SD or SDHC
o "sdhc": SDHC only

200

Example:

di = CreateObject("roDeviceInfo")

print di.GetModel()

print di.GetVersion(), di.GetVersionNumber()

print di.GetBootVersion(), di.GetBootVersionNumber()

print di.GetDeviceUptime(), di.GetDeviceBootCount()

On a particular system, this generates:

HD1010

3.2.41 197161

3.2.28 197148

 14353 3129

201

roResourceManager
The roResourceManager is used for managing strings in multiple languages.

Object creation:

CreateObject("roResourceManager", filename As String): filename is the name of the file that contains all
of the localized resource strings required by the user. This file must be in UTF-8 format.

Interfaces: ifResourceManager

The interface ifResourceManager provides the following:

• SetLanguage(language_identifier As String) As Boolean: Instructs the roResourceManager object
to use the specified language. False is returned if there are no resources associated with the specified language.

• GetResource(resource_identifier As String) As String: Returns the resource string in the current
language for a given resource identifier.

• GetFailureReason() As String: Yields additional useful information if a function return indicates an error.
• GetLanguage() As String

At present, roResourceManager is primarily used for localizing the roClockWidget. The resource file passed in during
creation has the following format for each string entry:

[RESOURCE_IDENTIFIER_NAME_GOES_HERE]

eng "Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec"

ger "Jan|Feb|Mär|Apr|Mai|Jun|Jul|Aug|Sep|Okt|Nov|Dez"

spa "Ene|Feb|Mar|Abr|May|Jun|Jul|Ago|Sep|Oct|Nov|Dic"

fre "Jan|Fév|Mar|Avr|Mai|Jun|Jul|Aou|Sep|Oct|Nov|Déc"

202

ita "Gen|Feb|Mar|Apr|Mag|Giu|Lug|Ago|Set|Ott|Nov|Dic"

dut "Jan|Feb|Mar|Apr|Mei|Jun|Jul|Aug|Sep|Okt|Nov|Dec"

swe "Jan|Feb|Mar|Apr|Maj|Jun|Jul|Aug|Sep|Okt|Nov|Dec"

The name in square brackets is the resource identifier. Each line after it is a language identifier followed by the resource
string. Multiple roResourceManager objects can be created. A default “resources.txt” file, which contains a range of
internationalization for the clock widget, is available from the BrightSign website.

http://brightsign.zendesk.com/entries/314637-brightsign-downloads�

203

roSystemLog
This object enables the application to receive events that are intended for reporting errors and trends, rather than for
triggering a response to a user action.

roSystemLog requires specific design patterns in your BrightScript application:

• Use one roMessagePort throughout the application (instead of creating a new roMessagePort for each screen).
• Create one roSystemLog instance at startup that remains for the entire lifetime of the application.
• Pass the global roMessagePort mentioned above to SetMessagePort() on the roSystemLog component.
• Enable the desired log types using EnableType().

This object is created with no parameters:

CreateObject(“roSystemLog”)

Interfaces: ifStreamSend, ifSystemLog

The ifStreamSend interface provides the following:

• SendByte(a As Integer)

• SendLine(a As String)

• SendBlock(a As Dynamic)

• SetSendEol(a As String)

• Flush()

204

The ifSystemLog interface provides the following:
• ReadLog() As Object: Enables log messages of the type LogType. When a LogType is enabled, the log

events are sent to the message port using SetMessagePort(). All system log events are disabled by default and
must be explicitly enabled by the application. The current valid forms of LogType are as follows:

o http.error: Sent whenever an error occurs while executing an HTTP request. This could be during or
after the initial connection (i.e. while reading data from the body).

o http.connect: Sent whenever a successful HTTP connection is made, meaning that the server
responded to the HTTP request and there were no errors in the headers of the response. This message
indicates nothing about the body of the HTTP request.

o Bandwidth.minute: Sent every minute to indicate the current measured bandwidth.

205

DATE AND TIME OBJECTS

roDateTime
roDateTime represents an instant in time. See roSystemTime and roTimer for other objects with timing functionality.

Interfaces: ifDateTime, ifString

The ifDateTime interface provides the following:

• GetDayOfWeek As Integer

• GetDay As Integer

• GetMonth As Integer

• GetYear As Integer

• GetHour As Integer

• GetMinute As Integer

• GetSecond As Integer

• GetMillisecond As Integer

• SetDay(day As Integer) As Void

• SetMonth(month As Integer) As Void

• SetYear(year As Integer) As Void

• SetHour(hour As Integer) As Void

• SetMinute(minute As Integer) As Void

• SetSecond(second As Integer) As Void

• SetMillisecond(millisecond As Integer) As Void

• AddSeconds(seconds As Integer) As Void

• SubtractSeconds(seconds As Integer) As Void

206

• AddMilliseconds(milliseconds As Integer) As Void

• SubtractMilliseconds(milliseconds As Integer) As Void

• Normalize As Boolean: Checks that all the fields supplied are correct. This function fails if the values are out of
bounds.

• ToIsoString() As String

• FromIsoString(a As String) As Boolean

• ToSecondsSinceEpoch() As Integer

• FromSecondsSinceEpoch(a As Integer) As Boolean

• GetString() As String

The ifString interface provides the following:

• GetString() As String

A new object is, at the time of its creation, represented by zero seconds. When used via the ifString interface, ifDateTime
will always use the sortable date format "YYYY-MM-DD hh:mm:ss".

207

roSystemTime
roSystemTime provides the ability to read and write the time stored in the RTC. This object supports getting and setting
the time and time zone. See roDateTime and roTimer for other objects with timing functionality.

Interfaces: ifSystemTime.

The ifSystemTime interface provides the following:

• GetLocalDateTime As ifDateTime

• GetUtcDateTime As ifDateTime

• GetZoneDateTime(timezone_name As String) As ifDateTime

• SetLocalDateTime(localDateTime As roDateTime) As Boolean

• SetUtcDateTime(utcDateTime As roDateTime) As Boolean

• GetTimeZone As String

• SetTimeZone(zone_name As String) As Boolean

• IsValid As Boolean: Returns True if the system time is set to something valid. It can be set from the RTC or
NTP.

Dates up to 1 January, 2038 are supported.

The following are the supported time zones:
EST: US Eastern Time
CST: US Central Time
MST: US Mountain Time
PST: US Pacific Time
AKST: Alaska Time
HST: Hawaii-Aleutian Time with no Daylight Savings (Hawaii)

208

HST1: Hawaii-Aleutian Time with Daylight Saving
MST1: US MT without Daylight Saving Time (Arizona)
EST1: US ET without Daylight Saving Time (East Indiana)
AST: Atlantic Time
CST2: Mexico (Mexico City)
MST2: Mexico (Chihuahua)
PST2: Mexico (Tijuana)
BRT: Brazil Time (Sao Paulo)
NST: Newfoundland Time
AZOT: Azores Time
GMTBST: London/Dublin Time
WET: Western European Time
CET: Central European Time
EET: Eastern European Time
MSK: Moscow Time
SAMT: Delta Time Zone (Samara)
YEKT: Echo Time Zone (Yekaterinburg)
IST: Indian Standard Time
NPT: Nepal Time
OMST: Foxtrot Time Zone (Omsk)
JST: Japanese Standard Time
CXT: Christmas Island Time (Australia)
AWST: Australian Western Time
AWST1: Australian Western Time without Daylight Saving Time
ACST: CST, CDT, Central Standard Time, , Darwin, Australia/Darwin, Australian Central Time without Daylight Saving
Time (Darwin)
AEST: Australian Eastern Time

209

AEST1: Australian Eastern Time without Daylight Saving Time (Brisbane)
NFT: Norfolk (Island) Time (Australia)
NZST: New Zealand Time (Auckland)
CHAST: , Fiji Time, , Fiji, Pacific/Fiji, Yankee Time Zone (Fiji)
SST: X-ray Time Zone (Pago Pago)
GMT: Greenwich Mean Time
GMT-1: 1 hour behind Greenwich Mean Time
GMT-2: 2 hours behind Greenwich Mean Time
GMT-3: 3 hours behind Greenwich Mean Time
GMT-3:30: 3.5 hours behind Greenwich Mean Time
GMT-4: 4 hours behind Greenwich Mean Time
GMT-4:30: 4.5 hours behind Greenwich Mean Time
GMT-5: 5 hours behind Greenwich Mean Time
GMT-6: 6 hours behind Greenwich Mean Time
GMT-7: 7 hours behind Greenwich Mean Time
GMT-8: 8 hours behind Greenwich Mean Time
GMT-9: 9 hours behind Greenwich Mean Time
GMT-9:30: 9.5 hours behind Greenwich Mean Time
GMT-10: 10 hours behind Greenwich Mean Time
GMT-11: 11 hours behind Greenwich Mean Time
GMT-12: 12 hours behind Greenwich Mean Time
GMT-13: 13 hours behind Greenwich Mean Time
GMT-14: 14 hours behind Greenwich Mean Time
GMT+1: 1 hour ahead of Greenwich Mean Time
GMT+2: 2 hours ahead of Greenwich Mean Time
GMT+3: 3 hours ahead of Greenwich Mean Time
GMT+3:30: 3.5 hours ahead of Greenwich Mean Time

210

GMT+4: 4 hours ahead of Greenwich Mean Time
GMT+4:30: 4.5 hours ahead of Greenwich Mean Time
GMT+5: 5 hours ahead of Greenwich Mean Time
GMT+5:30: 5.5 hours ahead of Greenwich Mean Time
GMT+6: 6 hours ahead of Greenwich Mean Time
GMT+6:30: 6.5 hours ahead of Greenwich Mean Time
GMT+7: 7 hours ahead of Greenwich Mean Time
GMT+7:30: 7.5 hours ahead of Greenwich Mean Time
GMT+8: 8 hours ahead of Greenwich Mean Time
GMT+8:30: 8.5 hours ahead of Greenwich Mean Time
GMT+9: 9 hours ahead of Greenwich Mean Time
GMT+9:30: 9.5 hours ahead of Greenwich Mean Time
GMT+10: 10 hours ahead of Greenwich Mean Time
GMT+10:30: 10.5 hours ahead of Greenwich Mean Time
GMT+11: 11 hours ahead of Greenwich Mean Time
GMT+11:30: 11.5 hours ahead of Greenwich Mean Time
GMT+12: 12 hours ahead of Greenwich Mean Time
GMT+12:30: 12.5 hours ahead of Greenwich Mean Time
GMT+13: 13 hours ahead of Greenwich Mean Time
GMT+14: 14 hours ahead of Greenwich Mean Time

211

roTimer
See roDateTime and roSystemTime for other objects with timing functionality.

Interfaces: ifTimer, ifIdentity, ifSetMessagePort

The ifTimer interface provides the following:
• SetTime(hour As Integer, minute As Integer, second As Integer, millisecond As Integer)

As Void

• SetDate(year As Integer, month As Integer, day As Integer) As Void

• SetDayOfWeek(day_of_week As Integer) As Void: Sets the time when you wish the event to trigger. In
general, if a value is -1, then it is a wildcard and will cause the event to trigger every time the rest of the specification
matches. If there are no wildcards, then the timer will trigger only once when the specified date/time occurs. It is
possible, using a combination of day and day_of_week, to specify invalid combinations that will never occur. If
specifications include any wildcard, then the second and millisecond specifications must be zero. Events will be raised
at most once per minute near the whole minute.

• SetDateTime(As ifDateTime) As Void: Sets the time when you wish the event to trigger from an roDateTime
object. It is not possible to set wildcards using this method.

• Start As Boolean: Starts the timer based on the current values specified using the above functions.
• Stop As Boolean: Stops the timer.
• SetTime(a As Integer, b As Integer, c As Integer)

The ifIdentity interface provides the following:
• GetIdentity() As Integer

• SetIdentity(a As Integer)

212

The ifSetSetMessagePort interface provides the following:
• SetPort(a As Object)

Example: This code creates a timer that triggers every 30 seconds.

st=CreateObject("roSystemTime")

timer=CreateObject("roTimer")

mp=CreateObject("roMessagePort")

timer.SetPort(mp)

timeout=st.GetLocalDateTime()

timeout.AddSeconds(30)

timer.SetDateTime(timeout)

timer.Start()

while true

 ev = wait(0, mp)

 if (type(ev) = "roTimerEvent") then

 print "timer event received"

 timeout=st.GetLocalDateTime()

 timeout.AddSeconds(30)

 timer.SetDateTime(timeout)

 timer.Start()

 else

 print "unexpected event received"

 endif

213

endwhile

Example: This code creates a timer that triggers every minute using wildcards in the timer spec.

st=CreateObject("roSystemTime")

timer=CreateObject("roTimer")

mp=CreateObject("roMessagePort")

timer.SetPort(mp)

timer.SetDate(-1, -1, -1)

timer.SetTime(-1, -1, 0, 0)

timer.Start()

while true

 ev = wait(0, mp)

 if (type(ev) = "roTimerEvent") then

 print "timer event received"

 else

 print "unexpected event received"

 endif

endwhile

214

Example: This code creates a timer that triggers once at a specific date/time.

timer=CreateObject("roTimer")

mp=CreateObject("roMessagePort")

timer.SetPort(mp)

timer.SetDate(2008, 11, 1)

timer.SetTime(0, 0, 0, 0)

timer.Start()

while true

 ev = wait(0, mp)

 if (type(ev) = "roTimerEvent") then

 print "timer event received"

 else

 print "unexpected event received"

 endif

endwhile

215

roTimerEvent

Interfaces: ifSourceIdentity

The ifSourceIdentity interface provides the following.

• GetSourceIdentity() As Integer

• SetSourceIdentity(a As Integer)

216

roTimeSpan
This object provides an interface to a simple timer for tracking the duration of activities. It is useful for tracking how long an
action has taken or whether a specified time has elapsed from a starting event.

Interfaces: ifTimeSpan

The ifTimeSpan interface provides the following:

• Mark()

• TotalMilliseconds() As Integer

• TotalSeconds() As Integer

• GetSecondsToISO8601Date(a As String) As Integer

217

LEGACY OBJECTS

roSyncPool
We recommend using roAssetPool instead.

Object Creation:

CreateObject(“roSyncPool”, pool_path As String)

Example:

pool = CreateObject (“roSyncPool”, “SD:/pool”)

Interfaces: ifSyncPool, ifIdentity, ifMessagePort, ifUserData

The ifSyncPool interface provides the following:

• GetFailureReason() As String

• AsyncDownload(a As Object) As Boolean

• AsyncCancel() As Boolean

• Realize(a As Object, b As String) As Object

• ProtectFiles(a As Object, b As Integer) As Boolean

• ReserveMegabytes(a As Integer) As Boolean

• GetPoolSizeInMegabytes() As Integer

• EstimateRealizedSizeInMegabytes(a As Object, b As String) As Integer

• IsReady(a As Object) As Boolean

218

• Validate(a As Object, b As Object) As Boolean

• EnablePeerVerification(a As Boolean)

• EnableHostVerification(a As Boolean)

• SetCertificatesFile(a As String)

• SetUserAndPassword(a As String, b As String) As Boolean

• AddHeader(a As String, b As String)

• SetHeaders(a As Object) As Boolean

• SetMinimumTransferRate(a As Integer, b As Integer) As Boolean

• AsyncSuggestCache(a As Object) As Boolean

• SetProxy(a As String) As Boolean

• ValidateFiles(a As Object, b As String, c As Object) As Object

• SetFileProgressIntervalSeconds(a As Integer) As Boolean

• QueryFiles(a As Object) As Object

• SetFileRetryCount(a As Integer) As Boolean

• SetRelativeLinkPrefix(a As String) As Boolean

• BindToInterface(a As Integer) As Boolean

• EnableUnsafeAuthentication(a As Boolean)

The ifIdentity interface provides the following:

• GetIdentity() As Integer

The ifMessagePort interface provides the following:

• SetPort(a As Object)

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData () As Object

219

220

roSyncPoolEvent
We recommend using roAssetFetcherEvent instead.

Interfaces: ifSourceIdentity, ifSyncPoolEvent, ifUserData

The ifSourceIdentity interface provides the following:

• GetSourceIdentity() As Integer

The ifSyncPoolEvent interface provides the following

• GetEvent() As Integer

• GetName() As String

• GetResponseCode() As Integer

• GetFailureReason() As String

• GetFileIndex() As Integer

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

221

roSyncPoolFiles
We recommend using roAssetPoolFiles instead.

Interfaces: ifSyncPoolFiles

The ifSyncPoolFiles interface provides the following:

• GetFailureReason() As String

• GetPoolFilePath(a As String) As String

• GetPoolFileInfo(a As String) As Object

222

roSyncPoolProgressEvent
We recommend using roAssetFetcherProgressEvent instead.

Interfaces: ifSourceIdentity, ifSyncPoolProgressEvent, ifUserData

The ifSourceIdentity interface provides the following:

• GetSourceIdentity() As Integer

The ifSyncPoolProgressEvent interface provides the following:

• GetFileName() As String

• GetFileIndex() As Integer

• GetFileCount() As Integer

• GetCurrentFileTransferredMegabytes() As Integer

• GetCurrentFileSizeMegabytes() As Integer

• GetCurrentFilePercentage() As Float

The ifUserData interface provides the following:

• SetUserData(a As Object)

• GetUserData() As Object

223

CHANGE LOG

4.4.x, 4.2.x, 3.10.x
March 1, 2013
1.1 Added entries for roDatagramSocket [implemented in version 4.4.47], roXMLElement, roAudioPlayerMx, and

roAudioEventMx.
1.2 Added entry for roChannelManager [implemented in version 4.4.51].
1.3 Added entries for the ifUserData interface [implemented in version 4.4.47] in the roDatagramSender and

roDatagramReceiver section.
1.4 Added a description of the SetBackgroundColor() method in the roVideoOutput entry.
1.5 Added a description and listed the possible parameters for HasFeature() in the roDeviceInfo entry.
1.6 Added object creation parameters for roAssetPool and roSyncPool (as well as a more comprehensive introduction for

roAssetPool)
1.7 Revised description of the GetResponseCode() method in the roUrlEvent entry.
1.8 Changed the formatting of all example scripts to make them easier to distinguish from definitions and other

explanatory language.

March 14, 2013
2.1 Added a description of the JoinMulticastGroup()method [implemented in version 4.4.62] to the

roDatagramSocket entry.
2.2 Added a description of the EnableScanDebug()method [implemented in version 4.4.62] to the roChannelManager

entry.

March 27, 2013
3.1 Added descriptions of SetAppCacheDir() and SetAppCacheSize() methods [implemented in version 4.4.71] to

the roHtmlWidget entry.

224

3.2 Revised roVideoPlayer entry to include information about new channel scanning functionality.

April 8, 2013
4.1 Removed uses of “CF:” (compact flash) and “ATA:” directories from example scripts in favor of “SD:”
4.2 Added description of GetEdidIdentity() [implemented in 4.4.73] to the roVideoMode entry.

