

English

Product Manual

RFID Reader LF60C SoliD

The operating manual must be read prior to the initial start-up. Observe the safety instructions! Store for future use! This documentation is not subject to revisions. ID130030 03/2013

This product manual corresponds with "Directive 1999/5/EC of the European Parliament and the Council on radio equipment and telecommunications transmission equipment and the mutual recognition of the conformity".

CE

This product manual is addressed to the operating company who must pass it on to the personnel responsible for installation, connection, use and repairs of the machine.

The plant manager must ensure that the information contained in this product manual and in the accompanying documents has been read and understood.

The product manual must be stored in a place that is familiar and easily accessible to employees and must be consulted whenever an employee is unsure of how to proceed.

The manufacturer does not assume any responsibility for injuries to persons or animals, or damage to property or to the device arising from incorrect use or disregard or insufficient consideration of the safety criteria contained in this product manual or based on modifications of the device or the use of unsuitable spare parts.

The copyright for this product manual is held solely by

Brooks Automation (Germany) GmbH RFID Division Gartenstr. 19 95490 Mistelgau Deutschland

or its legal successor.

Reproducing or circulating this product manual is only permitted with the exclusive approval of the copyright holder. This also applies if only excerpts of the product manual are copied or circulated. These requirements also apply for circulating the product manual in digital form.

Status: March 2013

Archiving

- Store the product manual in the vicinity of the device!
- Always keep the product manual handy!

Symbols and signal words

The following symbols and signal words are used in this documentation. The combination of a pictograph and a signal word classifies the respective safety information. The symbol can vary depending on the type of danger.

	Symbol	Signal word	Description
Death		DANGER	This signal word must be used if death or irreversible damage to health can occur if the hazard information is not followed.
Risk of injury and property damage		WARNING	This signal word indicates bodily injuries and property damage including injuries, accidents, and health risks.
		CAUTION	This signal word indicates a risk of property damage. In addition, there is a slight risk of injuries.
nage	!	ATTENTION	This signal word warns of malfunctions and may only be used if no damage to health can occur.
No dan		IMPORTANT	This signal word indicates cross- references and ways in which operations are facilitated. It excludes all risks of property damage and injury risks.

Target group

The operating instructions are addressed to personnel with the following areas of responsibility:

Area of responsibility	Competence
Installation, transport and storage	Specialized personnel
Commissioning, operation and decommissioning	Instructed personnel
Troubleshooting	Specialized personnel

Definition according to DIN EN 60204-1:

Instructed personnel:

Persons who have been instructed and, if required, trained by a specialist as to the tasks assigned to them, the possible risks of incorrect behavior and the required safety equipment and safety measures.

Specialized personnel:

Persons who can evaluate the work assigned to them and recognize possible risks based on their specialized training, knowledge, experience and familiarity with the relevant standards.

Contents

1	Identifi	cation	. 8
	1.1	Designated use	8
	1.2	Incorrect use	9
2	Declara	tion of Conformity	10
	2.1	USA - Federal Communications Commission (FCC)	10
	2.2	Europe - CE conformity	12
3	General	Instructions	14
	3.1	Liability and warranty	14
	3.2	Objectives of the operating instructions	14
4	Safety I	nstructions	16
	4.1	Area of application and symbols	16
	4.1.1	Safety symbols - in compliance with DIN 4844-2	16
	4.1.2	Warning symbols	17
	4.1.3	Prohibition symbols	17
	4.1.4	Other symbols	17
	4.2	Obligations	18
	4.2.1	Operating company's obligations	18
	4.2.2	Operating personnel's obligations	18
	4.3	ESD instructions	19
	4.4	Residual risks	19
	4.5	Additional instructions	20
5	Product	Specifications	22
	5.1	Function	22
	5.2	Images	23
	5.2.1	Front view	23
	5.2.2	Rear view	24
	5.3	Technical data	25
	5.3.1	Device label	26
	5.3.2	Power supply and current input	26
6	Installa	tion	27
	6.1	Safety instructions	27
	6.2	Qualified installation personnel	29
	6.3	Unpacking	29

Contents

	6.4	Assembly of the device	30
	6.5	Antenna installation	31
	6.5.1	Positioning the antenna	31
	6.5.2	Available antenna types	32
	6.5.3	Dimensions for planning	32
	6.6	Connecting the transponder reader	33
	6.7	Power/RS485 bus connection	34
	6.8	RS232 connection	35
	6.9	Commissioning	35
	6.9.1	Required operating conditions	35
	6.9.2	Parameters of the serial interface	35
	6.10	Ethernet connection	36
	6.11	Input and output	37
	6.12	DIP switches	38
7	Operati	on	39
	7.1	Operating personnel	39
	7.2	Protocol change	39
	7.2.1	General remarks	39
	7.2.2	Automatic protocol recognition (default)	40
	7.2.3	Protocol switchover using DIP switches	40
	7.2.4	Protocol setting using DIP switches	40
	7.3	Operation of the ASC-I1 protocol	41
	7.3.1	Structure of the communication protocol	41
	7.3.2	Package contents	41
	7.3.3	Commands of protocol	43
	7.3.4	Parameters	60
	7.3.5	Message examples	62
	7.4	Operation of SECS/HSMS Protocol	64
	7.4.1	Introduction	64
	7.4.2	SECS-I implementation	65
	7.4.3	HSMS option	69
	7.4.4	HSMS implementation	69
	7.4.5	SECS-II implementation	76
	7.4.6	Parameters	96
	7.4.7	SEMI E99	107
	7.4.8	Message details	111

Contents

	7.4.9	HSMS message examples	124
	7.4.10	SECS-I message examples	124
•	Comilao	and Travil lash actives	4 4 7
8	Service		147
	8.1	General	147
	8.2	Qualified troubleshooting personnel	148
	8.3	Safety instructions	148
	8.4	Error codes	149
	8.4.1	Error ID and Alarm ID	149
	8.4.2	SSACK	151
	8.4.3	Stream function	152
	8.5	Error display with LED	153
	8.5.1	Power LED does not light up	153
	8.5.2	Read fail LED flashes	153
	8.6	Reader does not respond	153
	8.7	Reset	154
	8.8	Power cut	154
	8.9	Software releases	154
	8.10	Customer service	155
9	Dismant	ling and Storage	156
	9.1	Dismantling	156
	9.2	Storage	156
10	Transpo	rt and Disposal	157
	10.1	Transport	157
	10.2	Disposal	157
11	Accesso	ries	158
	11.1	Antennas	158
	11.1.1	Available types	158
	11.1.2	Reading and writing ranges	159
	11.2	Cables	165
	11.3	Power supply	165
	11.4	Mounting adapter plates	166

Identification

1 Identification

This chapter gives you an overview of the following topics:

- Designated use
- Incorrect use

Model LF60C	Serial number	1101MIS10001
	Part number	TLS-23B-7000-T1-00E1 RS232/Ethernet TLS-13B-7000-T1-00E1 RS232
Model LF60CM	Serial number	1101MIS10001
	Part number	TLS-23B-7000-T1-66E1 RS232/Ethernet

Manufacturer

Brooks

Brooks Automation (Germany) GmbH RFID Division Gartenstr. 19 95490 Mistelgau GERMANY Telephone +49 (0) 9279 - 991 550 Fax +49 (0) 9279 - 991 501 E-mail info.rfid@brooks.com Website www.brooks-rfid.com

For information on the label, see → Device label.

1.1 Designated use

This product was developed for reading and writing transponders only. Any other use of this device constitutes misuse and renders the user's authority to install and operate the device invalid.

This product is designed to be mounted and operated in an industrial setting as a built-in-device only. It is not designed to be used as a stand-alone or portable device or in a non-industrial setting, such as a household, vehicle or in the openair.

Identification

Intended use also includes the following:

- following all instructions in the operating instructions
- observing all safety information

Before using the device, the user should ensure that the national approval requirements for use are met.

1.2 Incorrect use

Incorrect use, which can endanger the device, the user and third parties, includes:

- the use of the device contrary to its intended use (→ Designated use)
- modifying, extending or reconstructing the device without first consulting Brooks Automation (Germany) GmbH
- operating the device when there are obvious problems

WARNING	Risk of injury through incorrect modifications
^	There are risks from unauthorized modifications to the machine.
	Only use original spare parts from the manufacturer. Do not make any changes, attachments or modifications to the device without the approval of Brooks Automation (Germany) GmbH.
WARNING	Risk of injury and malfunction of machine operation through incorrect use
Λ	There are risks attached to using the device incorrectly.
	Use the device exclusively according to its intended use.

This chapter gives you an overview of the following topics:

- → USA Federal Communications Commission (FCC)
- → Europe CE conformity

2.1 USA - Federal Communications Commission (FCC)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- This device may not cause harmful interference and followed, read and understood by all persons working with the device (especially the safety information)
- This device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, in accordance with part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception - this can be determined by turning the equipment off and on - the user is encouraged to try to correct the interference using one or more of the following measures:

- Reposition or relocate the receiving antenna.
- Increase the distance between the equipment and the receiver.
- Connect the equipment to an outlet to a circuit other than the one to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for assistance.

FCC ID: N5GLF60C

Compliance with:

FCC Code of Federal Regulations, Part 15 Subpart C, Section §15.205 FCC Code of Federal Regulations, Part 15 Subpart C, Section §15.209

WARNING

Changes or modifications not expressly approved by the party responsible for compliance may void the user's authority to operate the equipment.

2.2 Europe - CE conformity

Konformitätserklärung gemäß dem Gesetz über Funkanlagen und Telekommunikationsendeinrichtungen (FTEG) und der Richtlinie 1999/5/EG (R&TTE)

Declaration of Conformity in accordance with the Radio and Telecommunications Terminal Equipment Act (FTEG) and Directive 1999/5/FC (R&TTE Directive)

Hersteller / Verantwortliche Person <i>Manufacturer / responsible person</i>	BROOKS Automation (Germany) GmbH / Herr Dittrich
erklärt, dass das Produkt declares that the product	LF60C SoliD
Type (ggf. Anlagenkonfiguration mit Angabe der Module) <i>Type (if applicable, configuration including the modules)</i>	
Telekommunikations(Tk-)endeinrichtung Telecommunications terminal equipment	Funkanlage <i>Radio equipment</i>
Verwendungszweck Intended purpose	Identification system
Geräteklasse Equipment class	1
bei bestimmungsgemäßer Verwendung den grund	llegenden Anforderungen des §

bei bestimmungsgemäßer Verwendung den grundlegenden Anforderungen des § 3 und den übrigen einschlägigen Bestimmungen des FTEG (Artikel 3 der R&TTE) entspricht.

complies with the essential requirements of § 3 and the other relevant provisions of the FTEG (Article 3 of the R&TTE Directive), when used for its intended purpose.

Gesundheit und Sicherheit gemäß § 3 (1) 1. (Artikel 3 (1) a)) Health and safety requirements pursuant to § 3 (1) 1. (Article 3(1) a))

angewendete harmonisierte Normen Harmonized standards applied	EN 60950-1:2006 + A11:2009
Einhaltung der grundlegenden Anforderungen	
auf andere Art und Weise (hierzu verwendete	
Standards/ Spezifikationen)	
Other means of proving conformity with the	
essential requirements (standards /	
specifications used)	

Schutzanforderungen in Bezug auf die elektromagnetische Verträglichkeit (§ 3 (1) 2, Artikel 3 (1) b)

Protection requirements concerning electromagnetic compatibility § 3(1)(2), (Article 3(1)(b))

angewendete harmonisierte Normen Harmonized standards applied EN 301 489-1 V1.8.1 EN 301 489-3 V1.4.1

Einhaltung der grundlegenden Anforderungen auf andere Art und Weise (hierzu verwendete Standards/ Spezifikationen) Other means of proving conformity with the essential requirements (standards / interface specifications used)

Maßnahmen zur effizienten Nutzung des Funkfrequenzspektrums

Measures for the efficient use of the radio frequency spectrum

Luftschnittstelle bei Funkanlagen gemäß § 3(2) (Artikel 3(2)) Air interface of the radio systems pursuant to § 3(2) (Article 3(2))

angewendete harmonisierte Normen	EN 300 330-1 V1.3.1
Harmonized standards applied	EN 300 330-2 V1.3.1

Einhaltung der grundlegenden Anforderungen auf andere Art und Weise (hierzu verwendete Standards/ Spezifikationen) Other means of proving conformity with the essential requirements (standards/specifications used)

Mit der CE-Kennzeichnung bestätigt Brooks Automation die Übereinstimmung mit der europäischen RoHS-Richtlinie 2011/65/EU.

With the CE marking Brooks Automation confirms compliance with the European Directive 2011/65/EU concerning RoHS.

BROOKS Automation (Germany) GmbH

Gartenstr. 19 D-95490 Mistelgau GERMANY

Telephone	+49 (0) 9279 - 991 550
Fax	+49 (0) 9279 - 991 501
E-mail	info.rfid@brooks.com

Mistelgau, March 20, 2013 (Place and date of issue)

L' Itrich

Gerald Dittrich (Name and signature)

3 General Instructions

This chapter gives you an overview of the following topics:

- Jiability and warranty
- Objectives of the operating instructions

3.1 Liability and warranty

The "General sales and delivery conditions" of Brooks Automation (Germany) GmbH always apply.

The warranty period is 12 months beginning with the delivery of the device, which is verified by the invoice or other documents.

The warranty includes repairs of all damages to the device that occur during the warranty period and were clearly caused by material or manufacturing defects.

Liability and warranty claims in cases of damage to persons or property are excluded if they can be attributed to one or more of the following causes:

- incorrect use of the device
- disregard of the information in the operating instructions
- unauthorized structural modifications of the device
- insufficient maintenance and repairs
- disasters due to foreign objects or force majeure

3.2 Objectives of the operating instructions

These operating instructions serve as support and contain all the necessary safety information that must be followed for general safety, transport, installation and operation.

These operating instructions including all safety information (as well as all additional documents) must be:

- followed, read and understood by all persons working with the device (especially the safety information)
- easily available to all persons at all times
- immediately consulted in case of doubt (safety)

General Instructions

Objectives:

- to avoid accidents
- to increase the service life and reliability of the device
- to reduce costs due to production downtimes

This chapter gives you an overview of the following topics:

- Area of application and symbols
- Obligations
- ESD instructions
- Residual risks
- Additional instructions

4.1 Area of application and symbols

DANGER	Danger to life, risk of injuries or loss of property
	Risks exist when disregarding the operating instructions and the safety instructions therein.
	Carefully read the operating instructions before initial commissioning. Perform the required safety measures before initial commissioning.
	Follow the general safety information as well as the special safety information given in other chapters.
	The device was constructed according to state-of-the-art technology and recognized safety regulations. In order to prevent any risks to life and limb of the user, third parties or damage to the device, only use the device for its intended

purpose and in perfect condition with regard to safety.

Bodily injuries and/or property damage resulting from non-compliance with the instructions given in the operating instructions are the responsibility of the company operating the device or of the assigned personnel. Malfunctions that could compromise safety must be eliminated immediately.

4.1.1 Safety symbols - in compliance with DIN 4844-2

WARNING	Risk of injuries when disregarding safety symbols
$\mathbf{\nabla}$	Risks exist when disregarding warnings in the operating instructions. Please heed the warnings.

Special safety symbols in accordance with DIN 4844-2 are used in the corresponding passages in the text of these operating instructions and require special attention depending on the combination of signal word and symbol.

4.1.2 Warning symbols

Warning: Hazardous area

Warning against electromagnetic radiation

Warning: Potentially explosive atmosphere

Warning: Flammable materials

Warning against electrostatically sensitive components

4.1.3 Prohibition symbols

Unauthorized access is prohibited

Fire, open flame and smoking is prohibited

Switching is prohibited

Prohibition

4.1.4 Other symbols

Dispose of packing material according to regulations

Important information

Disconnect from power supply

Recycling

4.2 Obligations

4.2.1 Operating company's obligations

The safe condition and use of the device is a requirement for the safe operation of the device. The company operating the device therefore has the obligation to ensure that the following points are adhered to:

- The device may only be operated by trained and authorized personnel!
- Prevent unsafe and/or dangerous work procedures! If necessary, check employees' actions!
- Only permit personnel to be trained or instructed within the scope of general training on the device under the supervision of an experienced person!
- Personnel must have understood the operating instructions. Have this confirmed by signature!
- Precisely establish responsibilities according to the various task areas (operation, installation)!
- Operating personnel must be committed to immediately reporting to their superior any identifiable safety deficiencies which occur!

4.2.2 Operating personnel's obligations

Operators are obligated to contribute to the prevention of work accidents and the consequences of them by their personal conduct.

WARNING Risk of injuries due to insufficient personnel qualifications

A risk exists for personnel and the proper operation due to insufficiently qualified personnel.

Only trained personnel may operate the device. New operators must be instructed by the current operating personnel. The operating company must precisely regulate and monitor the personnel's areas of responsibility and competence.

Personnel for the areas of responsibility mentioned above must have the corresponding qualification for this work (training, instructions). If necessary, this can be done by the manufacturer on behalf of the operating company.

All warranty claims are void when disregarded.

4.3 ESD instructions

CAUTION

Static electricity can damage electronic components in the device. All persons installing or maintaining the device must be trained in ESD protection.

ESD protective measures must be applied when opening the device.

- Disconnect the power supply prior to removing or adding components!
- Discharge your body and all tools used prior to touching any components on the interior of the device!
- Touch electronically sensitive parts carefully and only at their corners!

4.4 Residual risks

Even if all precautions have been taken, there may be unapparent residual risks! Adhering to the safety instructions, the intended use and the operating instructions as a whole can reduce residual risks!

DANGER

Risks from electric current

Electrical energy remains in lines, equipment and devices even when the device is switched off.

Only allow qualified electricians to perform work on the electrical supply system.

ATTENTION

Disconnect the device from the power supply system if active parts of the device can be accessed with tools. Access is only permitted for authorized personnel.

Regularly check the electrical equipment of the device. Regularly check all moving cables for damage within the scope of maintenance and repairs.

Smoking, open flames and fire are strictly prohibited in the vicinity of the device. Do not store any flammable liquids within the hazardous area. Keep a

DANGER

Fire and explosions may occur within the vicinity of the device.

Risk of fire and explosions

fire extinguisher in the vicinity of the device.

WARNING

Electromagnetic radiation develops when transmitting and receiving data.

Set the antenna in such a position that it is not in the vicinity of or touches a human body while transmitting.

4.5 Additional instructions

Warning against electromagnetic radiation

- Read and understand all safety and operating instructions prior to installing and operating the device.
- This documentation was written for specifically trained personnel. The installation, operation and defect management may only be carried out by specifically trained personnel.
- Retain these instructions. Keep this documentation in a location that is accessible to all personnel involved with the installation, use and troubleshooting of the device.
- Observe all warnings. Follow all warnings on and in the device and in the documentation.

- Install the device only in accordance with the manufacturer's instructions.
- Use only the accessories and cables supplied by the manufacturer.
- Troubleshooting that is not described in the chapter → Service and Troubleshooting may only be performed by the manufacturer.
- People with hearing aids should be aware that the radio signals emitted by the device can cause annoying noises in the hearing aid.
- Do not connect the device to power supplies such as normal household electrical outlets. The device should only be connected to power supplies as specified in this document.
- When removing a cable, only pull on the plug and not on the cable. Connect cable connectors straight and carefully to avoid damaging the contacts.
- Never bend the antenna cables too far or subject them to mechanical forces.
- When spare parts are required, use only the spare parts that were specified by the manufacturer. Unauthorized spare parts can result in fire, electric shock or other hazards.

Rules andThe provisions of the accident-prevention regulations of the government safetyregulationsorganizations always apply to all work on the device.

The following must also be observed:

- applicable legally binding accident-prevention regulations
- applicable binding regulations at the place of use
- the recognized technical rules for safe and professional work
- existing environmental protection regulations
- other applicable regulations

This chapter gives you an overview of the following topics:

- Function
- Images
- Technical data

5.1 Function

The BROOKS Transponder Reader System is a high-frequency identification system that uses FM transmissions.

The basic item is a transponder that works as a forgery-proof electronic identity disk.

The reading unit of the system sends an energy impulse via the antenna. The capacitor of the passive, battery-free transponder is charged by this impulse. After that, the transponder returns a signal with the stored data.

The total reading cycle takes less than 100 ms.

Since a sight connection between the transponder and the reader is not absolutely necessary, the transponder can also be identified through non-metallic material.

The data received by the transponder reader is transmitted to the host computer via

- a serial interface,
- an RS485 interface (requires Brooks LF60 Gateway) or
- an optional Ethernet interface.

5.2 Images

5.2.1 Front view

- 1 RS232 port
- Remote I/O port (LF60CM: 5-pin connecting plug with screw terminals)
- 3 Ethernet interface (optionally available)

5.2.2 Rear view

- 1 Switches: Protocol selection (from FW SG2IS12 / SG2IV1.2) Test Mode Auto Tuning
- 2 Status LEDs: Read / Write ok Read / Write fail Status Power
- 3 Antenna port
- Power/RS485 bus connection(LF60CM: 3-pin connecting plug with screw terminals)

5.3 Technical data

Technical data - device		
Operating temperature	0 °C to +50 °C 32 °F to 122 °F	
Storage temperature	-20 °C to +70 °C -4 °F to +158 °F	
Permissible humidity at 50 °C / 122 °F	25 - 80 %	
Transmitter frequency	134.2 kHz	
Protection class	IP 40	
Housing material	PS	
Weight	about 180 g	
Fuse	375 mA (T)	
Serial interface RS232	4,800 Bd - 57,600 Bd	

5.3.1 Device label

The device label with the CE mark, part/serial number, and the MAC address is on the device housing.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: 1) this device may not cause harmful interference, and 2) this device must accept any interference received, including interference that may cause undesired operation.

- 1 Part number
- 2 Serial number
- 3 MAC address

5.3.2 Power supply and current input

Description	Min	Туре	Max	Unit
Voltage (proof against connecting to the wrong port)	18	24	30	V DC
Current (reading/writing)		80		mA
Current (passive)		60		mA

6 Installation

This chapter gives you an overview of the following topics:

- → Safety instructions
- Qualified installation personnel
- Unpacking
- Assembly of the device
- Antenna installation
- Connecting the transponder reader
- Power/RS485 bus connection
- RS232 connection
- Commissioning
- Ethernet connection
- Input and output
- DIP switches

Follow the instructions in the safety chapter

Follow the general safety instructions in the chapter \rightarrow Safety Instructions.

6.1 Safety instructions

CAUTION	The device is designed for indoor use in an industrial setting only.
$\mathbf{\Lambda}$	Installation is only allowed in an interior room at a constant temperature between 0° C / 32 °F and $+50$ °C / 122 °F, and a relative humidity between 25 % and 80 %.
•	Never use the device near or in water.
4	Never pour liquids of any type over the device. If the device should accidentally come in contact with liquid, disconnect it and have it checked by a technician.
	Do not install the device near heat sources such as radiators, heat registers, stoves or other devices (including amplifiers) that generate heat.
	Do not install the device in a flammable environment.

Chapter 6

Installation

	Never expose the device to extreme temperature fluctuations, since otherwise condensation develops in the device and causes damage.
	Do not install the device in the vicinity of voltage lines or other power lines with which they could collide (for example, when drilling), which could result in serious injuries or even death.
	The device (especially the antenna) should not be installed in the immediate vicinity of electrical equipment such as medical devices, monitors, telephones, TV sets, magnetic disks and metal objects. This could result in reduced read and write ranges.
	Never use the device in explosive areas (such as paint warehouses).
	Do not use the device in areas where it is exposed to vibrations or shocks.
ATTENTION	The installation location must be adequately illuminated during the installation.
	Never install the device during a lightning storm.
	Verify that the installation meets the requirements of the (country specific) FCC for human exposure to radio frequencies.

Chapter 6

ATTENTION

When determining the installation site, keep in mind the length of the antenna wire and the read/write range of the antenna used.

6.2 Qualified installation personnel

CAUTION

Operating the device without special training can result in damage to the reader and/or connected devices.

6.3 Unpacking

The device and the accessories are packed under clean-room conditions. In order to maintain this condition, the device must also be unpacked in clean-room conditions.

Disposing of the packaging material

The packaging material consists of cardboard and foil. Dispose of these materials separately and observing the respective regulations of your country.

6.4 Assembly of the device

The mounting surface must be stable, non-flammable, dry and clean.

If necessary, clean it before installing the device.

The device must be installed so that air can freely circulate vertically through the heat sink, and the operating and environmental conditions specified under Technical data are met at all times.

Installation dimensions

6.5 Antenna installation

ATTENTION

When installing the antenna, consider the required reading and writing ranges. The reader can only be used properly if the transponder is located within the individual reading/writing range of the antenna.

If the transponder is very close to the antenna, the transponder may be detuned by the metal of the antenna and a reading/writing is not possible. We recommend keeping a minimum distance between transponder and antenna of about 10 mm.

6.5.1 Positioning the antenna

Reliable reading and writing depends on the distance from and orientation of the transponder to the antenna.

Transponder parallel to the axis of the antenna:

Transponder perpendicular to the axis of the antenna:

Parallel	The illustration shows the optimal position of the transponder if it is positioned parallel to the axis of the antenna.	i IIII Antenna	Transponder
Perpendicu- Iar	The illustration shows the optimal position of the transponder if it is perpendicular to the axis of the antenna.	Antenna	Transponder Transponder

6.5.2 Available antenna types

Different types of antennas are available on request.

6.5.3 Dimensions for planning

a1	Length of antenna cylinder	125 mm
a2	Complete mounting dimensions (cable with 90 $^\circ$ angle)	150 mm
b1	Diameter of antenna cylinder	23.0 mm

Rod antenna

Mini antenna

a1	Length of antenna cylinder	68 mm
a2	Complete mounting dimensions (cable with 90 ° angle)	85 mm
b1	Diameter of antenna cylinder	10.0 mm

Micro antenna

b1	Diameter of antenna cylinder	10.0 mm
a2	Complete mounting dimensions (cable with 90 ° angle)	60 mm
a1	Length of antenna cylinder	40 mm

6.6 Connecting the transponder reader

Antenna Connect the antenna to the antenna port (> Images).

6.7 Power/RS485 bus connection

LF60C	Software version SG2S12/SG2IV1.2 does not support communication over RS485.
DANGER	Risk of death due to dangerous voltage
•	Risks exist when supplying the device with the incorrect voltage.
	Only use cables, plugs and adapters supplied by the manufacturer.
لاستعمال	Observe power ratings of the technical data (> Technical data).

The device can be connected to an interior DC power circuit of the equipment or to a DC adapter.

Once the device is connected to the power supply, the power LED lights up. If the LED does not light up, please refer to chapter \rightarrow Customer service.

Pin	Signal
1	Not used
2	RS485 B
3	Signal ground
4	Not used
5	Power ground
6	Signal ground
7	RS485 A
8	Not used
9	+24 V DC

LF60CM

		1		
Ē		L	PIN	Signal
	\otimes		3	Ground
	\otimes		2	0 V
	\otimes		1	+ 24 V DC
E				
2 nin a	annoati	100	nlua	

3-pin connecting plug

6.8 RS232 connection

The RS232 port is a shielded RJ45 socket. A cable for connecting to a PC is available.

Pin	Signal
4	Ground
5	TxD
6	RxD

6.9 Commissioning

6.9.1 Required operating conditions

To operate the reader, the following requirements must be met:

- **O** An antenna must be connected correctly to the reader.
- **C** The power supply must be connected.
- The transponder must be located within the individual reading/writing range of the antenna.
- A host must be connected to the reader.

6.9.2 Parameters of the serial interface

Baud rate	19,200
Data bits	8
Stop bit	1
Parity	EVEN (ASCII protocol) NONE (SECS protocol)

6.10 Ethernet connection

The 10/100 BaseT Ethernet interface has the following default settings:

DHCP mode	OFF
IP address	10.73.254.211
Gateway address	10.73.254.254
Subnet mask	255.255.254.0

If DHCP is enabled and the DHCP Server is not available, the device initializes the Ethernet connection with the following values:

IP address	169.254.MAC5.MAC6
Gateway	169.254.MAC5.254
Subnet mask	255.255.255.0
Primary DNS Server IP	0.0.0.0
Secondary DNS Server I	0.0.0.0
(MAC address	MAC1: MAC2: MAC3: MAC4: MAC5: MAC6)

The Brooks Device Discoverer Tool can be used to find a device in the network and to change the network settings easily. After sending a configuration message, the tool requests the device configuration password. Please enter the default passwort for Brooks RFID devices: **BROOKS**.

The tool can also be used to perform a firmware update!

terrear view	17	TD Addross	MAC Addross	Host Name	Denice Name
Davies Common		10.73.254.104	00:0A:A9:02:FF:F7	CEN30	CEN30
Device Comman	us	10.73.254.93	00:0A:A9:02:01:49	UF80 Midrange	UF80
MAC-Address:	00:0A:A9:02:01:49	DHCP Enabled:		~	Change DHCP Setting
P-Address:	10.73.254.93	ID Address	10.72.254.02		
ubnet Mask:	255.255.254.0	IP-Address:	10.73.254.95	`,	
Gateway:	10.73.254.254	Subnet-Mask:	255.255.254.0	,	CI TOD TD C U
Port:	3241	Gateway:	10.73.254.254	*	Change TCP/IP Settings
Host Name:	UF80 Midrange	Port:	3241	~	Change IP Port
Device Name:	UF80	Hostname:	UF80 Midrange	v	Set Hostname
Serial Number:	1103MIS10052				(<u></u>
Software Version:	UF80V1.3	Client Mode:		ž	
Hardware Version:	UHF80 <u>R</u> evB	Server IP-Address:	10.73.254.100		
Server IP-Address:	10.73.254.100	Server IP-Port:	3241		
Server IP-Port:	3241	Request Interval:	0	v	Change Client Mode
Request Interval:	0	R	Restart Device Change		onfig Password of Device
A					

For more information on the tool please refer to the manual of the Brooks Device Discoverer.

Installation

6.11 Input and output

LF60C The port labeled Remote I/O is used for external presence sensors and an external output like a LED for status indication. The input signal is used for pod placement and pod removal events.

The port is a shielded RJ45 socket.

Pin	Signal
1	24 V DC/5 V DC (changeable by jumper)
2	Input
3	Output (LED)
4	Ground
5	Not used
6	Not used
7	Not used
8	Not used

Installation

LF60CM

6.12 DIP switches

The activation of a DIP switch depends on the value of parameter 36.

Switch #	"Test mode" function
1	Deactivation of automatic protocol recognition from version SG2S12
	"OFF" - automatic protocol recognition active
	"ON" - automatic protocol recognition deactivated
	The protocol setting depends on the DIP2 switch setting.
2	Protocol selection (only if DIP1 is set to "ON") from version SG2S1
	"OFF" - ASCII protocol
	"ON" - SECS/HSMS protocol
3 - 5	No function
6	Switches between reading and writing action in test mode.
	"OFF" only reading a tag
	"ON" reading and writing a tag
7	Switches the reader into test mode.
	In test mode, the reader reads or writes (depends on the setting of switch 6) permanently to the tag, and shows the result via LED 'Read/Write ok' and 'Read/Write fail'.
	"ON" test mode activation
8	Launch automatic antenna tuning on switching from "OFF" to "ON".

7 Operation

This chapter gives you an overview of the following topics:

- Operating personnel
- Protocol change
- Operation of the ASC-I1 protocol
- → Operation of SECS/HSMS Protocol

7.1 Operating personnel

CAUTION

The RFID Reader LF60C SoliD is designed to be operated by specially trained personnel only. If you have doubts about the required qualifications, contact the manufacturer.

Operating the device without special training can result in damage to the reader and/or connected devices.

7.2 Protocol change

7.2.1 General remarks

The reader has the option of communicating with a connected host system using ASCII or SECS/HSMS protocols. The selection of protocol can be made in different ways:

- Automatic protocol recognition
- Protocol switchover using DIP switches
- Protocol setting using DIP switches

After a reset the protocol set at present is displayed briefly with the aid of the "Read/Write ok" and Read/Write fail" LEDs (\rightarrow Reset).

7.2.2 Automatic protocol recognition (default)

The reader automatically adapts to the relevant protocol by checking and analyzing the first message it receives after a reset. Depending on the data received, the interface is switched over accordingly and reinitialized. This procedure can take several seconds. The messages sent are then lost. The protocol found is used for further communication. Another change can only take place after another reset.

Automatic protocol recognition can be deactivated by setting \rightarrow Parameter 98 (0x62) (from FW SG2S12 / SG2IV1.2: also with DIP1).

ATTENTION

If after a reset undefined or random characters are sent to the reader, this can cause an unintentional change in parity or protocol! To prevent this, after making the correct protocol selection, set \rightarrow Parameter 98 (0x62) (or from firmware SG2S12 / SG2IV1.2: with DIP switches 1 and 2).

7.2.3 Protocol switchover using DIP switches

On power-up reset it is possible to switch the default protocol of the reader. To activate this feature, it is necessary to set DIP switches 5 to 8 to the "ON" state. After the power-up reset, the reader changes the protocol. The new protocol is shown by the LEDs, and the reader waits until the DIP switches are changed.

Read/Write Error LED	SECS Protocol
Read/Write OK LED	ASCII Protocol

The activation of a DIP switch depends on the value of parameter 36.

Switch #	Protocol change function
1 - 4	"OFF"
5 - 8	"ON"

7.2.4 Protocol setting using DIP switches

A protocol change can also be performed by setting the DIP switches (→ DIP switches). From firmware SG2S12 / SG2IV1.2 it is also possible to deactivate automatic switchover and non-adjustably set the appropriate protocol by setting DIP switch 2. At this setting any messages in the other protocol are discarded.

7.3 Operation of the ASC-I1 protocol

7.3.1 Structure of the communication protocol

General remarks:

- The communication is done with ASCII packages.
- Each reader represents a transponder reader with an RS232 interface or Ethernet interface to which an address from 0 to E can be assigned. When the reader is delivered, the address is 0.
- After each command to the reader, a defined response is sent. We recommend waiting for this response before sending a new command.

7.3.2 Package contents

General remarks:

Each package includes a package header (three characters), a message (two or more characters) and the end of the package (five characters).

Package header	Message	End of package

Package header The header includes the start character (one character) and the package length (two characters).

Package header			
Start	Length 1	Length 2	
Start	Start character (ASCII of	character ´S´)	
Length 1	High byte package length (hexadecimal) ASCII character ´0´´F´		
Length 2	Low byte package lengt ASCII character ´0´´I	h (hexadecimal)	

The message length describes the number of characters of a message.

Message structure

The message includes a command, a target address and a source address as well as information.

Message			
Command		Address	Information
Command	ASCII	character (→ Commands re	ader to host)
Address	Target ASCII	:/source address; character '0''E' for the rea	ader *
Information	Deper none,	nds on the command (include one or more ASCII characte	es rs '0''F')

The message length describes the number of characters of a message.

- * The reader is preset with 0 when delivered.
- **End of package** The end of the package includes an end character (one character) and in case of a serial interface also a checksum (four characters).

End o	f pacl	kage			
End	Cheo	cksum 1	Checksum 2	Checksum 3	Checksum 4
End		End chai (hexade	racter ASCII char cimal 0D)	acter no. 13	
Checks	um 1	High byte - XOR logic of all data (package header, message and end character); ASCII '0''F'			eader, message and
Checks	um 2	Low byte - XOR logic of all data (package header, message and end character); ASCII '0''F'		eader, message and	
Checks	um 3	High byte - addition of all data (package header, message and end character); ASCII '0''F'			
Checksi	um 4	Low byte - addition of all data (package header, message and end character); ASCII '0''F'			
When u transm	using ti itted).	he TCP/IP	interface option,	the checksum is n	ot used (is not

ATTENTION

7.3.3 Commands of protocol

Commands host to

reader

Command	Description
Х	Read data
W	Write data
r	Automatic read/acknowledgement
G	Request parameter value
Р	Set parameter
Ν	Reset
Н	Heartbeat
V	Query software version
L	Lock a page of the transponder
I	Set tuning of the RF module
J	Request tuning settings of the RF module
а	Sensor event/acknowledgement

Commands	r	ead	ler
		-	

+-	le e e t
το	nost

Command	Description
х	Read data/acknowledgement
W	Write data/acknowledgement
R	Automatic read
g	Request parameter value/acknowledgement
р	Set parameter/acknowledgement
n	Reset/acknowledgement
е	Error message
h	Heartbeat/acknowledgement
V	Query software version/acknowledgement
T	Lock a page of the transponder/acknowledgement
i	Set tuning of the RF module/acknowledgement
j	Request tuning settings of the RF module/acknowledgement
А	Sensor event

Message items				
	CMD			1 byte
	Command of the message. See table in chapter \rightarrow Commands reader to host			
	Data			16 bytes
	The data are interpreted in HEX format. That means that 2 ASCII characters define one byte tag data in HEX format. The data always contains all 8 bytes of the specified page of the transponder.			
	Example:			
	Tag data in ASCII"12345678" (8 bytes)Tag data in HEX0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38Data in message"3132333435363738" (16 ASCII characters)			
	Page			2 bytes
	Defines the page of the transponder for a read or write action. The two ASCII characters (2 bytes) define the page number of the tag in decimal format.			
	Example:	page 1 → page 10 → page 17 →	"01" "10" "17"	
	Parameter No).		1 byte
	Number of the parameter. One ASCII character (1 byte) display the parameter number in hex format.			
	Example: parame	eter 1	"1"	
	Parameter va	lue		2 bytes
	Value of a parameter. Two ASCII characters (2 bytes) display the value of the parameter in decimal format.			
	Example: value 4	5	"45"	

Reader ID	1 byte		
Address of the device (0 E). The default address of the card is 0 on delivery.			
Response code	4 bytes		
This feature is not used for the single reader. This code is always "0000".			

Contains the 4-byte serial number of the reader. The serial number is also shown on the label of the reader.

Example: "1234"

X - Read data Command X starts the reading of a transponder.

If there is no tag in the reading range of the antenna, the reader returns an error message (error 4 - no tag).

Data item "Page" can have the following values.

Value	Description
'01' to '17'	read page#
'98'	read more pages until end character or empty character ¹⁾
'99'	read entire tag data

¹⁾ 'E' respectively 'F' in ID Bit 0...3 of the reading ID

$Host \rightarrow Reader$				
CMD	Reader ID	Page		
Х	1 byte	2 bytes		

Reader \rightarrow Host			
CMD	Reader ID	Page	Data
х	1 byte	2 bytes	16 bytes

If there is no tag in the reading range of the antenna, the reader repeats the reading before an error message is sent out. The number of repeats is defined in parameter 4 (r/w maxrepeat).

No acknowledgement is expected from the host.

In case of a read request for more than one page (value 98 or 99), the protocol is repeated. For the end of reading the reader sends an additional package. The message includes the command 'x' and the source address '0'...'E'.

If the reading fails, the reading is repeated (parameter 3: r/w delay time; parameter 4: r/w maxrepeat). If it fails again, the reader sends an error message 'no tag(4)' to the host.

If the sensor check is activated, the circuit status of the floating contact connected to the external input is checked before a read process is triggered by the host. If it is not connected, the error message "NOTAG" is sent; otherwise the read process is started.

W - Write data The command W starts the writing to a transponder.

If there is no tag in the writing range of the antenna, the reader returns an error message (error 4 - no tag).

$Host \rightarrow Reader$				
CMD	Reader ID	Page	Data	
W	1 byte	2 bytes	16 bytes	

Reader \rightarrow Host	
CMD	Reader ID
w	1 byte

If 'write tag' fails, writing is repeated in the defined time frame (parameter 3: r/w delay time; parameter 4: r/w maxrepeat). If it fails again, the reader sends an error message 'no tag(4)' to the terminal.

If the sensor check is activated, the circuit status of the floating contact connected to the external input is checked before a write process is triggered by the terminal. If it is not connected, the error message "NOTAG" is sent; otherwise the write process is started.

Reader \rightarrow Host				
	readmode = whole (2) read the whole tag (all pages)			
	readmode = tag (1)	read a tag until the end character ('E' - end character or 'F' empty) in ID bit 03		
	readmode = page (0)	sequential read for different pages (parameter 2: readpage)		
	Depending on the readmode configuration (parameter 1: readmode), the reader reads the following pages:			
R - Automatic read	The external input is used to trigger an automatic read action. The R comma sends the read data to the host. The host then has to confirm the message.			

CMD	Reader ID	Page	Data	
R	1 byte	2 bytes	16 bytes	

$Host \rightarrow Reader$	
CMD	Reader ID
r	1 byte

Reading more pages (readmode "tag" or "whole"): protocol is repeated. The end package includes the command 'R' and the source address '0'...'E'

No acknowledgement from the host: information is repeated with the following parameters (parameter 5: RS232 delay time; parameter 6: RS232 maxrepeat)

Reading not possible: repeated read time frame (parameter 3: r/w delay time; parameter 4: r/w maxrepeat).

Reading again not possible: tag sends error message no tag (4) to the host.

The delay time for the presence sensor is configurable (parameter 0: sensor delay).

An automatic reading is only possible if all messages that have to be confirmed have been confirmed by the previous read, or if the waiting period (rs232 repeattime) has expired after the last sending (rs232 maxrepeat).

G - Request The command G is used to request the value of all public parameters of the parameter value device.

$\textbf{Host} \rightarrow \textbf{Reader}$	
CMD	Reader ID
G	1 byte

Reader \rightarrow Host			
CMD	Reader ID	Parameter No.	Parameter value
g	1 byte	2 bytes	16 bytes

The reader sends an individual protocol package for each available public parameter. After the last parameter the reader sends an end package including the command 'g' and the source address '0'...'E'

P - Set parameter Command P can be used to change the value of individual parameters. After successfully changing a parameter, the device sends a confirmation message.

$\textbf{Host} \rightarrow \textbf{Reader}$			
CMD	Reader ID	Parameter No.	Parameter value
Р	1 byte	1 byte	2 bytes

Reader \rightarrow Host	
CMD	Reader ID
g	1 byte

N - Reset The command N performs a reset of the reader hardware and software. After the reset the device sends a confirmation message.

Host ightarrow Reader	
CMD	Reader ID
Ν	1 byte

Reader \rightarrow Host	
CMD	Reader ID
n	1 byte

If the power to the device has been turned on (hardware reset), the host is informed about it (RS232 interface only).

With regard to the TCP/IP option of the device, no command is sent after a hardware reset because a TCP/IP connection must be opened first. If the TCP/IP connection is open, the reader sends a heartbeat command.

e - Error message If an error occurs, the device sends an error message with the corresponding error code to the host.

Reader \rightarrow Host		
CMD	Reader ID	Error ID
е	1 byte	1 byte

For more information on error codes and the corresponding correcting actions please refer to \Rightarrow Error codes.

H - Heartbeat The command H sends a heartbeat request to the reader. The reader responds with his serial number and a response code.

$\textbf{Host} \rightarrow \textbf{Reader}$	
CMD	Reader ID
н	1 byte

$\textbf{Reader} \rightarrow \textbf{Host}$			
CMD	Reader ID	Serial No.	Response code
h	1 byte	4 bytes	4 bytes

The response code is part of the protocol but is not used for this device. The response code is always '0000'.

Because of compatibility with other systems, the heartbeat is also allowed with the address $\mbox{'}\mbox{F}\xspace$.

V - Query software The command V is used to request the installed software version of the version transponder reader.

$Host \rightarrow Reader$	
CMD	Reader ID
V	1 byte

$\textbf{Reader} \rightarrow \textbf{Host}$		
CMD	Reader ID	Software version
V	1 byte	16 bytes

The 8 characters of the software version are described by 16 ASCII characters. Each character is described in HEX format represented by 2 ASCII characters (see section \rightarrow Message examples).

L - Lock a page of An individual page of a multipage transponder can be locked (read only). the transponder

$Host \rightarrow Reader$			
CMD	Reader ID	Page	
L	1 byte	2 bytes	

Reader \rightarrow Host	
CMD	Reader ID
I	1 byte

If the page of the transponder could not be locked, the writing action is repeated automatically (parameter 3: r/w delaytime and parameter 4: r/w maxrepeat).

If the page still could not be locked, an error message NoTag (4) is sent to the host. If the page was already locked, the successful feedback follows just as at the first locking.

If the sensor check is activated, the status of the external sensor is checked first before a lock process is started. If the sensor is not triggered, the error message "NOTAG" is sent; otherwise the lock process is started.

ATTENTION

A locked page cannot be unlocked. This page is locked permanently.

I - Set tuning of the RF module

Depending on the surroundings of the antenna it might be necessary to tune the RF module to get the optimal reading/writing range for this special installation environment. The RF module therefore has 3 capacitors which can be switched ON or OFF.

Each capacitor has one reserved bit which shows its status.

The tuning can be set manually (not recommended) or automatic tuning can be performed (recommended).

- 0 OFF
- 1 ON

Bit 2^0 corresponds to capacitor C_0 .

$Host \rightarrow Reader$		
CMD	Reader ID	Value
I	1 byte	2 bytes

Reader \rightarrow Host	
CMD	Reader ID
i	1 byte

Hex. value	Bin. value	Meaning
00	0000 0000	no capacitor is set
07	0000 0111	all 3 capacitors are set
08	0000 1000	starts the automatic tuning

To start the automatic tuning, use value 08 (1008).

If no reasonable calibration was found, the error "5 - Invalid" is sent instead of the confirmation, and all capacitors are switched ON.

J - Request tuning settings of RF module Command J requests the current setting of the tuning capacitors. The response message contains the current status of the capacitors in hexadecimal format. Each capacitor has one reserved hit which shows its status

Each capacitor has one reserved bit which shows its status.

Host → Reader			
CMD	Reader ID		
J	1 byte		

Reader \rightarrow Host			
CMD	Reader ID	Value	
j	1 byte	2 bytes	

A - Sensor event If parameter watchport is activated ('01'), the reader reports the release event of the external sensor. The event message must be confirmed by the host.

$\textbf{Host} \rightarrow \textbf{Reader}$	
CMD	Reader ID
A	1 byte

Reader \rightarrow Host	
CMD	Reader ID
а	1 byte

If the host does not send an acknowledge message, the message is repeated (value 6: RS232 maxrepeat) in the defined time frame (value 5: RS232 delaytime).

7.3.4 Parameters

No. (dec.)	No. (hex)	Parameter name
0	0x00	→ Sensor delay
1	0x01	→ Read mode
2	0x02	→ Read page
3	0x03	→ r/w repeat time
4	0x04	→ r/w max repeat
5	0x05	→ RS232 repeat time
6	0x06	→ RS232 max repeat
7	0x07	→ Watch port
F		→ Reader address

Parameter 0 Sensor delay

Operation delay for the presence sensor.

01 .. 99 (0.1 seconds)

Default: 10 (1s)

```
Parameter 1 Read mode
```

(0x00)

(0x01)

Readmode for automatic read triggered by external input.

- 00 read only one page
- 01 read until end character or empty character²⁾
- 02 read all pages
- 10 read only one page with sensor check first¹⁾
- 11 read until end/empty character with sensor check first^{1) 2)}
- 12 read all pages with sensor check first¹⁾
- 99 deactivate sensor

¹⁾ If the sensor check is activated (first byte is 1) the circuit state of the floating contact connected to the external input is checked before a read- or write-process triggered by the terminal. If it is not connected, the error message "NOTAG" is sent, otherwise the read respectively write process is started.

2) 'E' respectively 'F' in ID Bit 0...3 of the reading ID

Default: 00 (read only one page)

Operation

Parameter 2	Read page
(0x02)	Page for readmode "00".
	First page of any type of transponder17 - Page of multipage transponder
	Default: 00 (first page of any type of transponder)
Parameter 3	r/w repeat time
(UXU3)	Time between two read or write attempts.
	01 99 (0.1 s)
	Default: 05 (0.5 s)
Parameter 4	r/w max repeat
(0x04)	Maximum number of read/write attempts.
	01 99
	Default: 05
Parameter 5	RS232 repeat time
(0x05)	In case no confirmation message from the host was received, the device waits this time before sending a repeat message. The number of repeats is defined in parameter 6 (RS232 maxrepeat).
	01 99 (0.1 s)
	Default: 45 (4.5 s)
Parameter 6	RS232 max repeat
(0x06)	If the host does not send the expected confirmation message, the device repeats the message according the value of this parameter. After that, an error message is sent.
	00 - never ending 01 99 - number of attempts
	Default: 3
Parameter 7	Watch port
(0x07)	Enables/disables the event message to the host that the floating contact (external input) was opened.
	00 - not activated (no event message)

01 - activated

Default: 1

Parameter F Reader address

Reader address of the device.

0.. E - 0 up to 14

Default: 0

7.3.5 Message examples

ASCII	HEX	Description
'S'	53	start character
'0'	30	high byte message length
'2'	32	low byte message length
'H'	48	first character message: value
'O'	30	second character message: target address
CR	0D	end character
'2'	32	high byte checksum XOR
'4'	34	low byte checksum XOR
'3'	33	high byte checksum addition
'A'	41	low byte checksum addition

Calculation for the XOR checksum:

53 XOR 30 XOR 32 XOR 48 XOR 30 XOR 0D = 24 \rightarrow '2' '4'

Calculation for the addition checksum:

53 + 30 + 32 + 48 + 30 + 0D = 13A

Only low significant bytes are used: \rightarrow 3A \rightarrow '3' 'A'

X - Read data (read page 1 of multipage transponder)

n nouu	uata (roua pago ror manipago transponac
>> X001	
<< x00132	32323232323232
Command	Х
Reader ID	0
Page	01
Data	'323232323232323232' → ASCII "22222222"

Operation

W - Write data (write to page 1 of multipage transpond		
>> W0013132333435363738		
<< w0		
Command	W	
Reader ID	0	
Page	01	
Data	'3132333435363738' → ASCII "12345678"	
R - Automatic ı	reading	
<< R0013132333	435363738	
>> r0		
Command	R	
Reader ID	0	
Page	01	
Data	'3132333435363738' → ASCII "12345678"	
V - Request so	ftware version	
>> V0		
<< v0534732495	6312E30	
Command	V	
Reader ID	0	
Software Version	'5347324956312E30' → ASCII "SG2IV1.0"	

7.4 Operation of SECS/HSMS Protocol

7.4.1 Introduction

The SECS-I standard defines a communication interface that is suitable for exchanging messages between semiconductor processing equipment and a host. A host is a computer or network of computers that exchanges information with the equipment to perform/execute the production.

The standard does not define the data contained within a message. The meaning of messages must be determined through a message contents standard such as SEMI Equipment Communications Standard E5 (SECS-II).

This standard provides the means for independent manufacturers to produce equipment and hosts that can be connected without requiring specific knowledge of each other.

The SECS-I protocol can be seen as a layered protocol used for point-to-point communication. The layers within SECS-I are the physical link, the block transfer protocol and the message protocol.

The standard is not intended to meet the communication needs of all possible applications. For example, the speed of RS232 may be insufficient to meet the needs of transferring mass amounts of data or programs in a short period, such as may be required for high-speed functional test applications.

In a network, the roles of host and equipment may be assumed by any party of the network. In this situation, one end of the communications link must assume the role of the equipment and the other the role of the host.

Electronic Industries Association Standards:

EIA RS-232-C Interface between Data Terminal Equipment and Data Communication Equipment Employing Serial Binary Data Interchange.

7.4.2 SECS-I implementation

This message set describes the communication between a SECS-I reader and a host. The host and the transponder reader communicate via an RS232 interface (SECS-I).

Character structure Data is transmitted or received in a serial bit stream of 10 bits per character at one of the specified data rates. The standard character has one start bit (0), 8 data bits and one stop bit (1). All bit transmissions are of the same duration.

SECS-I performs no parity or other verification of the individual bytes.

- Block transferThe gateway uses an interpretation of SECS-I by a serial transport layer. Theprotocolfollowing are some points to note about this implementation.
- Master-Slave The host connects to the reader. If there is a conflict, the host "gives in" (i.e. receives before sending).

In the course of communication, the reader takes on the role of the master and the host takes on the role of the slave.

Control characters The four standard handshake codes used in the block transfer protocol are displayed in the table below.

<enq></enq>	0x05	Request to send
<eot></eot>	0x04	Empfangsbereit
<ack></ack>	0x06	Korrekter Empfang
<nak></nak>	0x15	Fehlerhafter Empfang

Message block	
structure	

SECS message blocks have the following form:

	Byte	msb	Description		
Length	0	Length without checksum, 10 - 254			
	1	R	Upper device ID (Reader ID)		
	2		Lower device ID (Gateway ID)		
	3	W	Upper message ID (Stream)		
	4		Lower message ID (Function)		
	5	E	Upper block number		
	6		Lower block number		
	7	System byte 1			
System	ystem 8 Sy		System byte 2		
bytes	9	System byte 3			
	10	System byte 4			
Text	11 - 254	message text, user data			
Check sum	255, 256	16-bit unsigned checksum			

The operation of all communication functions above the block transfer protocol is linked in information contained in a 10-byte data element, called the header.

The header is always the first 10 bytes of every block sent by the block transfer protocol.

The length includes all bytes sent after the length byte, excluding the two checksum bytes. The maximum block length allowed by SECS-I is 254 bytes and the minimum is 10 bytes.

The reverse bit (R bit) signifies the direction of a message. The R-bit (msb) is set to 0 for messages to the equipment and to 1 for messages to the host.

The **device ID** is a definite number to contact the reader.

The device ID consists of the 8-bit gateway ID (bit 0 - bit 7), which is identical with the last two characters of the reader's serial number, and a 5-bit fixed reader number

(bit 8 - bit 14 = 0x01).

Of course, the ID can be changed within the valid scope.

Operation

Upper device ID	R-bit 0	0	0	0	0	1
Lower device ID	Last two number	digit	s of t	he se	erial	

Direction reader to host 0x81xx * Direction Host to equipment (reader) 0x01xx *

* The serial number is located on a label on the reader.

The W bit indicates that the sender of a primary message expects a reply. A value of 1 in the W bit means that a reply is expected.

The message ID identifies the format and content of the message being sent.

A primary message is defined as any odd-numbered message. A secondary message is defined as any even-numbered message.

The **end bit** determines whether a block is the last block of the message. A value of 1 means that the block is the last block.

A message sent as more than one block is called a **multi-block message**. A block number of 1 is given to the first block, and the block number is incremented by one for each subsequent block until the entire message is sent.

As all messages can be sent in one block, the block number always has the value 1.

The **system bytes** in the header of each message for a given device ID must meet the following requirements:

- The system bytes of a primary message must be distinct from the bytes of all currently open transactions initiated from the same end of the communications link.
- The system bytes of the reply message are required to be the same as the system bytes of the corresponding primary message.

The system bytes are incremented for each primary message.

The **checksum** is calculated as the numeric sum of the unsigned binary values of all the bytes, after the length byte and before the checksum and in a single block.

Block transfer protocol

The drawing below illustrates some simple message interactions between the host and the equipment. The figure shows the possible handshake sequence to acquire the status of the equipment.

When the host wants to send, it first sends an **<ENQ>** and then tries to read.

If it receives an **<EOT>**, it sends its message and then expects an **<ACK>**.

If it receives an **<ENQ>**, it puts off sending its message, sends an **<EOT>** and then reads the other message.

When both the host and the equipment try to send at the same time, the host must cancel its inquiry because the host is working in slave mode. It must first receive the equipment message because the reader is the master. Only then can the host send its message.

For more detailed information about all possible cases, see SEMI E4.

(SEMI Equipment Communication Standard 1 Message Transfer SECS-I)

7.4.3 HSMS option

The hardware version with an Ethernet interface uses the HSMS protocol. It works as a HSMS server. That means that it waits for a connection inquiry of any HOST PC.

TCP/IP: IP address xxx.xxx.xxx Port 3241

If a connection inquiry of any HOST takes place, the reader initializes the HSMS connection, and the SECS-II messages defined in the message set are forwarded from the reader to the respective HOST and vice versa.

It is possible to operate all readers connected to the network via one or several HOST PCs.

But one HSMS reader can only be connected to one HOST at a time.

Use the Brooks Device Discoverer to change the TCP/IP settings.

7.4.4 HSMS implementation

HSMS defines the procedure for all message exchanges between entities across the TCP/IP. The HSMS Connection Status Diagram - The HSMS status machine is illustrated in the diagram below. The behavior described in this diagram defines the basic requirements of HSMS:

A - NOT CONNECTED

The entity is ready to listen for or to initiate TCP/IP connections, but either has not yet established any connections or all previously established TCP/IP connections have been terminated.

CONNECTED

A TCP/IP connection has been established. This status has two sub-statuses, NOT SELECTED and SELECTED.

Operation

B - NOT SELECTED

A sub-status of CONNECTED in which no HSMS session has been established or any previously established HSMS sessions have ended.

C - SELECTED

A sub-status of CONNECTED in which at least one HSMS session has been established. This is the normal "operating" status of HSMS: data messages may be exchanged in this status.

#	Current status	Trigger	New status	Comment
1		Local entity-specific preparation for TCP/ IP communication	Not connected	Action depends on connection procedure to be used: active or passive.
2	Not connected	A TCP/IP connection is established for HSMS communication.	Connected - Not selected	None
3	Connected	Breaking of TCP connection	Not connected	HSMS only permits termination of the connection when the connection is in the Not selected sub-status.
4	Not selected	Successful completion of HSMS Select procedure.	Selected	HSMS communication is now fully established: data message exchange is permitted.
5	Selected	Successful completion of HSMS Deselect or Separate.	Not selected	This transition normally indicates the end of HSMS communication; an entity would immediately proceed to break the TCP/IP connection.
6	Not selected	T7 connection timeout	Not connected	There is a time limit on how long an entity is required to remain in the Not selected status before either entering in Selected status or returning to Not connected status.

The specification of a required TCP Application Program Interface (API) for use in implementations is outside the scope of HSMS. An HSMS implementation may use any TCP/IP API sockets, TLI (Transport Layer Interface), etc.

Operation

HSMS message exchange procedures

HSMS defines the procedures for all message exchanges between entities across the TCP/IP connection established according to the procedures in the previous section. As explained in the overview, once the connection is established, the two entities establish HSMS communications with the Select procedure. The data messages may be exchanged in any direction at any time. When the entities wish to end HSMS communication, the Deselect or Separate procedure is used to terminate the HSMS communication.

Operation

HSMS message format

This section defines the detailed format of the messages used by the procedures in the previous section. An HSMS message is transmitted as a single continuous stream of bytes in the following order:

Number of bytes	Description
4 bytes	Message length. MSB first. Specifies the number of bytes in the message header plus the message text.
10 bytes	Message header
0 - n bytes	Message text. Format is further specified by P-type field of message header. The message text corresponds to message data by SECS-II encoding.

The minimum possible message length is 10 (header only). The maximum possible message length depends on SECS-I.

HSMS message header

The message header is a 10-byte field. The bytes in the header are numbered from byte 0 (first byte transmitted) to byte 9. The format of the message header is as follows:

Bytes	Description
0-1	Session ID (Device ID)
2	Header byte 2
3	Header byte 3
4	P-type
5	S-type
6-9	System bytes

The physical byte order is designed to correspond as closely as possible to the SECS-I header.

The session ID is a 16-bit unsigned integer value, which occupies bytes 0 and 1 of the header (byte 0 is MSB). Its purpose is to provide an association by reference between control messages and subsequent messages.

Header byte 2 is used in different ways for different HSMS messages. For control messages, it contains 0 or a status code. For a data message, it contains the W bit and SECS stream.

Header byte 3 contains 0 or a status code for control messages. For data messages, it contains the SECS function.

P-type is an 8-bit unsigned integer value which occupies byte 4 of the message header; message header and message text are encoded. Only P-type = 0 is defined by HSMS to mean SECS-II message encoding. For non-zero P-type values, see SEMI E37.

Value	Description
0	SECS-II Encoding
1 - 127	Reserved for subsidiary standards
128 - 255	Reserved, not used

S-type (session type) is a 1-byte unsigned integer value which occupies header byte 5.

Value	Description	Value	Description
0	Data message	6	Linktest.rsp
1	Select.req	7	Reject.req
2	Select.rsp	8	Not used
3	Deselect.req	9	Separate.req
4	Deselect.req	10	Not used
5	Linktest.req	11-255	Reserved, not used

The system bytes are used to uniquely identify a transaction among the set of open transactions. The system bytes are also defined as SECS-I-specific.

Operation

HSMS message

format summary

Message hea	lder		Message header					
Message type	bytes 0 - 1 Session ID	byte 2	byte 3	byte 4 P-type	byte 5 S-type	bytes 6 - 9 System bytes	Message text	
Data message	* (no R bit)	W bit and SECS stream	SECS Functio n	0	0	Primary: Unique Reply: Same as primary	Text	
Select req	*	0	0	0	1	Unique	None	
Select.rsp	Same as.req	0	Select status	0	2	Same as.req	None	
Deselect.req	*	0	0	0	3	Unique	None	
Deselect.rsp	Same as.req	0	Deselec t Status	0	4	Same as.req	None	
Linktest.req	OxFFFF	0	0	0	5	Unique	None	
Linktest.rsp	OxFFFF	0	0	0	6	Same as.req	None	
Reject.req	Same as message being rejected	P-type or S-type of message being rejected	Reason code	0	7	Same as message being rejected	None	
Separate.req	*	0	0	0	9	Unique	None	

* Indicates further specification by subsidiary standards

7.4.5 SECS-II implementation

Introduction The SEMI Equipment Communication Standard Part 2 (SECS-II) defines how messages exchanged between intelligent equipment and a host are interpreted.

It is the intent of this standard to be fully compatible with SEMI Equipment Communication Standard E4 (SECS-I).

The messages defined in this specification support the typical activities required for the BROOKS transponder reader.

SECS-II gives form and meaning to messages exchanged between the equipment and the host using a message transfer protocol, such as SECS-I. SECS-II defines the method of conveying information between the equipment and the host in the form of messages.

These messages are organized into categories of activities, called streams, which contain specific messages, called functions. In SECS-II, messages are identified by a stream code (0-127, 7 bits) and a function code (0-255, 8 bits). Each combination of stream and function represents a unique message identification.

SECS-II defines the structure of messages into entities called items and lists of items. These data structures define the logical divisions of the message as distinct from the physical division of the message transfer protocol.

An item is an information packet that has a length and format defined by the first 2, 3 or 4 bytes of the item. These bytes are called the item header. The item header consists of the format byte and the length byte as shown below.

Byte	Name	Description
0	Format and number of the length bytes	The data format is coded in the upper 6 bits. The two less significant bits determine the number of the following length bytes.
1 1-2 1-3	Length bytes	The length corresponds to the number of the bytes of a data element. In the "List" format, the length corresponds to the number of the list elements. The standard does not require the minimum possible number of length bytes for a given data length.
Next <length></length>	Data	Data bytes of a data element or number of the data elements in case of the "List" format.

A list is an ordered set of elements, whereby an element can be either an item or a list. The list header has the same form as an item header with format type 0. However, the length byte refers to the number of elements in the list rather than to the number of bytes.

Data items The formats represent arrays of types: <type>[number of elements], whereby <type> is one of the following:

Oct- code	Hex- code	Format	Meaning	Example
00	01	List	List element with the number of the "Length" data elements	<l2> <a "hello"=""> <b 0x00=""></l2>
11	25	Boolean	1-byte Boolean false = 00 true = 01	<boolean1 0x00=""></boolean1>
10	21	Binary	Byte sequence of the length "Length"	<b1 0x01=""></b1>
20	41	ASCII	Printable ASCII characters	<a "hello"="">
31	65	11	1-byte signed integer	<11 123>
32	69	12	2-byte signed integer	<12 -12345>
34	71	14	4-byte signed integer	<14 2147483647>
30	61	18	8-byte signed integer	<18 931372980293834>
51	A5	U1	1-byte unsigned integer	<u1 0=""></u1>
52	A9	U2	2-byte unsigned integer	<u2 #empty=""></u2>
54	B1	U4	4-byte unsigned integer	<u4 429489725=""></u4>
50	A1	U8	8-byte unsigned integer	<u8 763468676756767></u8
40	91	F8	8-byte floating point	<f8 1.223="" e204=""></f8>
44	81	F4	4-byte floating point	<f4 -1.23=""></f4>

Data item examples

Meaning	Format	Length						
1-byte integer	65	01	хх					
4-byte integer	71	04	MSB			LSB		
ASCII	41	06	1st chr	2nd chr	3rd chr	4th chr	5th chr	6th chr
Zero-length	xx	00						
List data item	01	03	1st elem	ient	2nd elem	ent	3rd elem	ent

Message set

The SECS-II message set used by the LDN reader consists of six different stream types.

Stream 1: (Equipment status)

S1F1	and	S1F2	Are you there request
S1F15	and	S1F16	Request offline
S1F17	and	S1F18	Request online

Stream 2: (Equipment control)

S2F13	and	S2F14	Equipment constant request
S2F15	and	S2F16	New equipment constant request
S2F19	and	S2F20	Reset send

Stream 3: (Material status)

S3F5	and	S3F6	Cassette found send
S3F7	and	S3F8	Cassette lost send
S3F11	and	S3F12	Read MID at I/O port
S3F13	and	S3F14	Return read MID
S3F65	and	S3F66	Write MID at I/O port
S3F67	and	S3F68	Return write success
S3F73	and	S3F74	Lock MID at I/O port
S3F75	and	S3F76	Return lock success

Operation

Stream 5: (Exception handling)

S5F1 and S5F2 Alarm report send

Stream 9: (System errors)

- S9F1 Unrecognized device ID
- S9F3 Unrecognized stream type
- S9F5 Unrecognized function type
- S9F7 Illegal data
- S9F9 Transaction timer timeout

For more information on error codes and the corresponding correcting actions please refer to \Rightarrow Error codes.

According to SEMI E99 carrier ID read / writer functional standard for SECS-I and SECS-II protocol, the RFID Reader LF60C SoliD supports these defined stream 18 messages:

Stream 18: (Equipment status)

S18F1	and	S18F2	Read attribute request
S18F3	and	S18F4	Write attribute request
S18F5	and	S18F6	Read request
S18F7	and	S18F8	Write request
S18F9	and	S18F10	Read ID request
S18F11	and	S18F12	Write ID request
S18F13	and	S18F14	Subsystem command request

Data itemThis section defines the data items used in the standard SECS-II messagesdictionarydescribed in the section "Message details".

Syntax:

Name	A unique name for this data item. This name is used in the message definitions.
Format	The permitted item format code which can be used for this standard data item. Item format codes are shown in hex and octal, as described in the chapter \rightarrow Data items. The notification "3()" indicates any of the signed integer formats (30, 31, 32, 34).
Description	A description of the data item, with the meanings of specific values.
Where used	The standard messages in which the data item appears.

СКСЗ	Format: B[1]
------	--------------

Acknowledge code

0	:	Sensor 0 was the initiator
>0	:	Error, not accepted
Where u	used	S3F6, S3F8

ACKC5

Format: B[1]

Acknowledge code

0	:	No error
>0	:	Error, not accepted
Where	used	S5F2

ALARM STA	TUS	Format: A[1]	
Description 0 1	The value of the alarm status refers t process. If a read or write error occur A successful read or write resets the When leaving maintenance mode, the deleted. No alarm Alarm	o the last reading rs, the alarm status is set. alarm status. e alarm status is also	
Where used	S18F13		
ALCD		Format: B[1]	
Alarm code byte			
Only the occurrence of an error is reported. Errors are not generally reset. bit 8 = 1 Alarm is set			
Where used	S5F1		
ALID		Format: B[1]	

Alarm identifier

- 0 No error
- 1 Auto read failed, the reader is engaged
- 2 External read failed, the reader is engaged
- 3 External write failed, the reader is engaged
- 4 No tag could be recognized when the sensor was covered or the carrier had been removed prematurely (sensor uncovered)
- 5 Invalid command or parameter detected
- 6 Unknown error
- 7 Reserved
- 8 Parity error or checksum error detected
- 9 Unexpected confirmation was sent
- 10 Locked page could not be written
- 11 Reserved
- 12 Incorrect type of transponder
- 13 External read or write failed because the sensor is not covered
- 14 Reserved
- 15 Reserved
- 16 Reserved

For more information on error codes and the corresponding correcting actions please refer to \Rightarrow Error codes.

Where used S5F1

Operation

ALTX

Format: A[max40]

Alarm text

The length of the alarm text is 0 to 40 characters.

According to the reader version, status information about the sensor or sensors is also transmitted during a reader error message.

The information should be interpreted as follows:

ALTX[0] Initiator of an error message

"O":	Sensor 0
"1":	Sensor 1 (not available)
"F":	Cannot be assigned

ALTX[1] Status of sensor 0

"O":	Sensor not occupied
"1":	Sensor is occupied
"E":	Sensor status is not available
"F":	Sensor not defined

ALTX[3] ':' a colon separates the alarm text from the sensor statuses

Where used S5F1

.TRID

Format: A[max25]

Description: Identifier for an attribute for a specific type of object.

CIDRW attribute definitions:

"Configuration"	Number of heads
"AlarmStatus"	Current CIDRW sub-status of ALARM STATUS
"OperationalStatus"	Current CIDRW sub-status of OPERATING
"SoftwareRevisionLevel"	Revision (version) of software - 8-byte maximum
"CarrierIDOffset"	Offset of CID in CID field (MID area)
"CarrierIDLength"	Length of CID in CID field (MID area)
"SERIALNUM"	String of Serial number
"HARDWARE"	String of hardware release
"SELF_TEST_RESULT"	Delivers the result from the last triggered self test
"MANUFACTURER"	String of manufacturer
"ECID_00" \rightarrow parameter 0 -	Gateway ID (ECID=0)
"ECID_01" \rightarrow parameter 1 -	Baudrate (ECID=1)
"ECID_02" \rightarrow parameter 2 -	Inter-character-timeout T1
"ECID_03" \rightarrow parameter 3 -	Block-protocol-timeout T2
"ECID_04" \rightarrow parameter 4 -	- Reply-timeout T3
"ECID_05" \rightarrow parameter 5 -	Inter-block-timeout T4

Operation

"ECID_06" \rightarrow parameter 6 - Retry-limit RTY
"ECID_07" \rightarrow parameter 7 - TARGETID high byte
"ECID_08" \rightarrow parameter 8 - TARGETID low byte
"ECID_09" \rightarrow parameter 9 - Heartbeat time
"ECID_10" \rightarrow parameter 10 - FIX
"ECID_11" \rightarrow parameter 11 - Reader ID
"ECID_12" \rightarrow parameter 12 - HeadID
"ECID_20" \rightarrow parameter 20 - Sensor delay for presence sensor
"ECID_22" \rightarrow parameter 22 - Sensor triggered action for presence sensor
"ECID_23" \rightarrow parameter 23 - Triggered read frequency
"ECID_24" \rightarrow parameter 24 - R/W max repeat
"ECID_25" \rightarrow parameter 25 - Transponder type
"ECID_26" \rightarrow parameter 26 - Sensor activity
"ECID_27" \rightarrow parameter 27 - Watchport for presence
"ECID_29" \rightarrow parameter 29 - Transponder load duration (read mode)
"ECID_30" \rightarrow parameter 30 - r/w synchronize
"ECID_31" \rightarrow parameter 31 - Auto-adjust value (read mode)
"ECID_32" \rightarrow parameter 32 - Auto-adjust value (write mode)
"ECID_33" \rightarrow parameter 33 - Automatic antenna adjustment
"ECID_34" \rightarrow parameter 34 - Sensor type for presence sensor
"ECID_35" \rightarrow parameter 35 - Special features
"ECID_36" \rightarrow parameter 36 - DIP switch activation
"ECID_37" \rightarrow parameter 37 - MID area
"ECID_38" \rightarrow parameter 38 - Test after software reset
"ECID_40" \rightarrow parameter 40 - Transponder load duration (write mode)
"ECID_41" \rightarrow parameter 41 - Delay time between read cycles
"ECID_42" \rightarrow parameter 42 - CarrierIDOffset
"ECID_43" \rightarrow parameter 43 - CarrierIDLength
"ECID_44" → parameter 44 - FixedMID
"ECID_45" \rightarrow parameter 45 - MIDFormat
"ECID_98" \rightarrow parameter 98 - Protocol change allowed
"ECID_99" \rightarrow parameter 99 - Customer code

Head attribute definitions: *

"HeadStatus"	The current status	
"HeadID"	Head number 00-31 (2 digits))

* With regard to an RFID Reader LF60C SoliD, the head attribute definition "HeadStatus" is equal to the "OperationalStatus" of the CIDRW.

Where used S18F1, S18F3

Operation

ATTRVAL

Format: A[max4]

Description: Value of the specified attribute.

CIDRW attribute definitions:

"Configuration"	Number of heads "01"	
"AlarmStatus"	Current CIDRW sub-status of ALARM STATUS "0"NO "1"ALARMS	
"OperationalStatus"	Current CIDRW sub-status of OPERATING "IDLE" Reader in IDLE mode "BUSY" Reader is busy "MANT" Maintenance mode	
"SoftwareRevisionLevel"	Revision (version) of Software - 8-byte maximum	
"SERIALNUM"	String of Serialnumber - 15 bytes maximum	
"HARDWARE"	String of hardware release - 10 bytes maximum	
"SELF_TEST_RESULT"	Delivers the result from the last triggered hardware self test. A self test can be triggered by S18F13 with SSCMD "PerformDiagnostics" "P" No hardware errors detected "F" Hardware errors detected	
"MANUFACTURER"	String of manufacturer "BROOKS"	

ECID_00 to ECID_99 see data item ECV parameters 0 - 99

Head attribute definitions:

"HeadStatus"	The current status	
	"IDLE" Reader in IDLE mode "BUSY" Reader is busy	
	"NOOP" Not operating	
"HeadID"	Head number 00-31 (2 digits) "00" Reader 0	
"HeadID" Where used	Head number 00-31 (2 digits) "00" Reader 0 "31" Reader 31 S18F2, S18F3	

CPVAL		Format: A[]
Description	Status request value	
OpStatus Operation status "OP" "MT"	Maintenance or Idle Operating status Maintenance status	
LEDStatus LED state "Off" "On" "Flash"	Switch LED off Switch LED on Switch LED to flash with 1H	Z
LedNO LED number, 1 byte "1" "2" "3" "4" "5"	Status LED Status LED External output Read OK LED Read Fail LED	
Timeout Timeout period Units Seconds Range "1" - "98" "99" has a special meaning: it specifies "always". For example, a LED is turned on with the TIMEOUT value of 99; it will stay on until the host turns it off or the device is reset.		
Where used	S18F13	
DATA		Format: A [max 200]
Description Multipage transponder	A vector or string of unformatted data. DATA area depends on the MID area, can be page 1 - page 17	
Read/write transponder Read/only transponder	DATA correspond to 8 byte MID DATA correspond to 8 byte MID	
Where used	S18F6, S18F7	

Operation

DAT	ALENGTH					Format: U2
Descr	iption	7	lotal bytes	to be sent.		
The D writte	ATALENGTI n.	H corres	ponds to t	he quantity of b	oytes	that are to be read or
The v	alid range o	depends	on the ler	igth of the MID	area	(parameter 37).
Wher	e used		S18F5, S1	8F7		
DAT	ASEG					Format:A[2]
Descri	ption	U	sed to ide	ntify the data r	eques	sted.
The D transp	ATASEG com oonder.	rrespond	ls to the pa	age number (P/	AGEIE	0) of the ISO 15693
"00" Firs DAT			irst page o ATA area i	st page of any type of transponder or first page of TA area in case of a multipage transponder.		
Multi	page-tran	sponde	er (page	1 to page 17	'):	
Start t	he reading	or writir	ng on the f	ollowing page of	of a m	nultipage transponder:
"01"	page 1	"81"	Locked	page 1		
 "11"	page 17	 "91"	Locked	page 17		
Read/only transponder Read/only transponder			"F0" Read only the one page "F1" Read or write only the one page			
Where used			S18F5,	S18F5, S18F7		
EAC						Format: B[1]
Acknov 0 1	wledge cod	e for nev Parame Parame	v reader c eter was se eter could	onstant et successfully not be set		

Where used S2F16

ECID		Format: U1		
Parameter numbe	er of reader (see data item ECV)			
Where used	2F13, S2F15			
ECV		Format: U1		
Reader parameter The values are dis	r definition. splayed as decimal values.			
MDLN		Format: A[6]		
Equipment model	number.			
Where used	S1F2			
MF		Format: B[1]		
Material format co	ode.			
20: The mate	rial port number corresponds to the se	nsor number and status		
Where used	S3F5, S3F7			
MHEAD		Format: B[10]		
SECS message block header associated with message block in error.				

Where used S9F1, S9F3, S9F5, S9F7, S9F9

MID	For	mat: A	
Description	Material ID Depending on the type of transpo possible to modify the length of th) I on the type of transponder, it is I modify the length of the MID.	
Multipage transponder	MID can be set from "0" (no MID) to "10" (MID occupies the first 10 pages (writeable)))	
Read/write transponder	MID corresponds to DATA (writeal	ble)	
Read/only transponder	MID corresponds to DATA (fix)		
Where used	S18F10, S18F11		
Please note parameters	42 - 45.		

MIDAC

Format: B[1]

Material ID acknowledge code

- 0 Material ID acknowledged; the presence sensor was the initiator
- 1 Not defined
- 2 Material ID acknowledged reaction on externally triggered action; the message cannot be related to any sensor
- >2 Material ID not acknowledged

The data item port number PTN indicates the initiator.

Where used S3F14, S3F68

MIDRA		Format: B[1]				
Material ID acknowledge code						
2 Acknov	vledge, will send MID later in S3F13					
Where used	S3F12					
OFLACK		Format: B[1]				
Acknowledge co	ode for OFF-LINE request.					
0 OFF-LI	NE acknowledge (reader is offline)					
Whoro used	S1E16					
where used	31F10					
	31710					
ONLACK	51F10	Format: B[1]				
ONLACK Acknowledge co	ode for ON-LINE request.	Format: B[1]				
ONLACK Acknowledge co	ode for ON-LINE request. IE accepted (reader is online)	Format: B[1]				
ONLACK Acknowledge co O ON-LIN Where used	ode for ON-LINE request. IE accepted (reader is online) S1F18	Format: B[1]				
ONLACK Acknowledge co O ON-LIN Where used PAGE_ID	ode for ON-LINE request. IE accepted (reader is online) S1F18	Format: B[1] Format: B[1]				
ONLACK Acknowledge cr 0 ON-LIN Where used PAGE_ID Page number o	ode for ON-LINE request. IE accepted (reader is online) S1F18 f multipage, read/only and read/write tra	Format: B[1] Format: B[1]				

Multipage transponder (pages 1 to 17): If only one page of the multipage transponder is read, note the following:

0x01	:	(1)	page 1	0x81 :	(129)	locked page 1
 0x11	:	(17)	page 17	 0x91 :	(146)	locked page 17

Read-only transponder: 0xF0: (240)

Read one page only

Read/write transponder: OxF1: (241) Read or write one page only Where used S3F11

PAGEDATA		Format: B[9]		
The cassette identifier that has been read or will be written. The PAGEDATA corresponds to the value of a transponder page.				
PAGEDATA [0] Corresponds to the page number. The value of the page number is displayed in the data item "PAGE_ID".				
PAGEDATA [1] The 8 bytes (one page) of the transponder ID follow.				
PAGEDATA [8]				
Where used	S3F7, S3F12, S3F13, S3F65			

ΡΙΝ

Format: B[1]

Information about the status of up to two sensors and the initiator of the message.

The second sensor is not implemented yet.

For special applications, the reading process of the transponder reader is triggered by two sensors. In this case it is necessary to distinguish between the two sensors. The initiator represents the number of the sensor that has caused the message.

Default: Only sensor 0 is defined.

bit 7		bit 0	
Initiator	Sen	sor 1	Sensor 0

Sensor 0: *bit 0 - bit 2*

The current status of sensor 0 is described in three bits.

- 0 Sensor not occupied
- 1 Sensor occupied
- 7 Sensor not defined

Sensor 1: bit 3 - bit 5 (defined for future developments)

The current status of sensor 1 is described in three bits.

- 0 Sensor not occupied
- 1 Sensor occupied
- 7 Sensor not defined

Initiator: *bit 6 - bit 7*

The initiator represents the number of the sensor that has caused the message.

- 0 Sensor 0
- 1 Sensor 1 (not implemented yet)
- 3 Cannot be assigned

Where used S3F5, S3F7, S3F12, S3F13, S3F67

PM Ir	nformatio	Format: A[2]				
Descrip	tion	Preventive maintenance information				
"NE	"	Normal execution				
"MR	"	Maintenance required				
Where used		S18F2, S18F4, S18F8, S18F10, S18F12, S18F14				

RAC		Format: B[1]
Reset acknowle 0 1	edge code Reset to be done Reset could not be done	
RIC	52120	Format: B[1]
Reset code 1 2	Power-up reset Software reset	
Where used	S2F19	Format: B[10]

Stored SECS message block header. Only the last message is stored, which must still be confirmed by the host.

Where used	S9F9		
SOFTREV			Format: A[max 6]
Software revision	on code.		
Where used	S1F2		

SSA	СК			Format: A[2]
Descri servic	ption: Resi e request.	ult information on the status of	f the requ	lest concerning the
"NO"	Normal o	operation s the success of the requested	action.	
EE"	Execute Cannot r However	error ead tag data. Cannot read ID s ; equipment is normal.	sequence	
'CE"	Commur Syntax e	lication error Prror of message or message fo	ormat or v	value.
'HE"	Hardwar ID reade powered	e error r/writer head fault, ID reader/ off.	writer he	ad is
'TE"	Tag error	-		
For mo	ore informa e refer to →	ation on error codes and the co [,] Error codes.	orrespond	ing correcting actions
Where	e used	S18F2, S18F4, S18F6, S18F	8, S18F10	D, S18F12, S18F14

Product Manual - RFID Reader LF60C SoliD

SSCMD	Format: A[max 18]
Description: Indicates an action to be performed by the	subsystem.
Used to differentiate between the different subsystem co	ommands indicated.

"ChangeStatus"	 < OpStati	Change status
CPVAL.	< Opsial	us>
"GetStatus"		Get status
"Reset"		Reset CIDRW
"PerformDiagnosti	cs"	A hardware self test is performed. To get the result read parameter "SELF_TEST_RESULT"
"ADJUST"		Triggers a automatic antenna adjustment
"DefaultParams"		Set default reader parameters
"SetLED"		Set one of the device LEDs
CPVAL's:	1. <leds 2.<time 3.<ledn< td=""><td>tatus> out> lo></td></ledn<></time </leds 	tatus> out> lo>
Where used	S18F13	

STATUS		Format: A[max 5]
Description	Provides status information of a subsy	ystem component.
	Consists of PM Information and the cu CIDRW attributes AlarmStatus, Opera HeadStatus.	urrent values of the itingStatus, and

List of a Status

L,4

<PMInformation> <AlarmStatus> <OperatingStatus> <HeadStatus>

For data items OperatingStatus and HeadStatus, see data item ATTRVAL.

Where used S18F2, S18F4, S18F8, S18F10, S18F12, S18F14

TARGETID		Format: A[max 4]
Description	Identifies where a request for action or data is to be applied. Alternatively, you can use the HeadID.	
	See also reader parameter definitions item ECV) parameter 7, 8 and 12.	s (data
	The 4 ASCII character TARGETID is cl in parameter 7 and 8 ("ECID_07", "EC The 2 ASCII character HeadID is char and defined in parameter 12 ('ECID_'	hangeable, and defined CID_08"). ngeable, 12').
Where used	S18F1, S18F3, S18F5, S18F7, S18F9	, S18F11, S18F13

7.4.6 Parameters

No. (dec.)	No. (hex)	Parameter name
0	0x00	→ Gateway ID
1	0x01	→ Baudrate
2	0x02	➔ Inter-character timeout T1
3	0x03	→ Block protocol timeout T2
4	0x04	→ Reply timeout T3
5	0x05	➔ Inter-block timeout T4
6	0x06	→ Retry limit RTY
7	0x07	→ TARGETID high byte
8	0x08	→ TARGETID low byte
9	0x09	→ Heartbeat time
11	0x0B	→ ReaderID
12	0x0C	→ HeadID
20	0x14	Sensor delay for presence sensor
22	0x16	Sensor-triggered action for presence sensor
23	0x17	Triggered read frequency
24	0x18	→ r/w max repeat
25	0x19	→ Transponder type
26	0x1A	→ Sensor activity
27	0x1B	→ Watchport for presence
29	0x1D	Transponder load duration (read mode)
30	0x1E	→ r/w synchronize
31	0x1F	→ Auto-adjust value (read mode)
32	0x20	→ Auto-adjust value (write mode)
33	0x21	Automatic antenna adjustment
34	0x22	Sensor type for presence sensor
35	0x23	→ Special features
36	0x24	DIP switch activation

Operation

No. (dec.)	No. (hex)	Parameter name
37	0x25	→ MID area
38	0x26	→ Test after software reset
40	0x28	Transponder load duration (write-mode)
41	0x29	Delay time between read cycles
42	0x2A	→ CarrierIDOffset
43	0x2B	→ CarrierIDLength
44	0x2C	→ FixedMID
46	0x2D	→ MIDFormat
98	0x62	Protocol change allowed
99	0x63	→ Customer code

Parameter 0 Gateway ID

(0x00)

The gateway ID is a part of the device ID. The BROOKS reader works simultaneously as a gateway and as a reader (CIDRW with integrated head).

It is the "lower message ID" in the message header.

00 .. 255

Default: Last two characters of hex serial number

The default gateway ID corresponds to parameter 8 (low byte TargetID).

Parameter 1 Baudrate

(0x01) Data transmission rate to the SECS-Host

3:	300 Baud
6:	600 Baud
12:	1,200 Baud
24:	2,400 Baud
48:	4,800 Baud
96:	9,600 Baud
192:	19,200 Baud
200:	38,400 Baud
201:	57,600 Baud
202:	115,200 Baud

Default: (192) 19,200 Baud (see accompanying letter of the reader)

Chapter 7 Operation

Parameter 2	Inter-character timeout T1
(0x02)	1 100 1/10 s
	Default: (5) 0.5 s
Parameter 3	Block protocol timeout T2
(0x03)	2 250 1/10 s
	Default: (10) 1 s
Parameter 4	Reply timeout T3
(0x04)	1 120 1 s
	Default: (10) 10 s
Parameter 5	Inter-block timeout T4
(0x05)	This parameter is ineffective if the used messages are not larger than one block.
	1 120 1 s
	Default: (45) 45 s
Parameter 6	Retry limit RTY
(0x06)	Number of times a question or message is to be repeated.
	031
	Default: 3
Parameter 7	TARGETID high byte
(0x07)	High byte of the predefined TARGETID.
	Default: 0x12
	* Note parameter 12
Parameter 8	TARGETID low byte
(0x08)	Low byte of the predefined TARGETID.
	Default: 0x34
	* Note parameter 12

Parameter 9	Heartbeat time		
(0x09)	The reader offers the option of generating a regular heartbeat. This means the reader sends an S1F1 message to the host at the defined interval.		
	0 No heartbeat 1 255 10 s (10 s - 2,550 s)		
	Default: 0 no heartbeat		
Parameter 11	ReaderID		
(0x0B)	The reader ID is a part of the device ID. In the message header, it corresponds to the 7 LSB (last significant bits) of the "upper message ID".		
	00 127		
	Default: 0x01		
	The BROOKS reader works simultaneously as a gateway and a reader (CIDRW with integrated head). Therefore the reader ID is predefined as 0x01. Of course, the ID can be changed within the valid scope.		
Parameter 12	HeadID		
(0x0C)	If you use a 2-byte TARGETID, this parameter corresponds to TARGETID.		
	00 31		
	Default: 0x01		
	The head ID is predefined as 0x01. Of course, the ID can be changed within the valid scope.		
Parameter 20	Sensor delay for presence sensor		
(0x14)	Delay time for sensor signal to start an automatic read.		
	0 255 1/10 s		
	Default: (10) 1 s		
Parameter 22	Sensor-triggered action for presence sensor		
(0x16)	0: Read all transponders		
	Read page 1 of a multipage transponder		
	 17: Read page 17 of a multipage transponder 240: Read a read/only transponder 241: Read a read/write transponder 		
	Default: (0) read all transponders		

Operation

Parameter 23		Triggered read frequency
	(0x17)	If a read/write error occurs, the triggered read frequency defines the time between two attempts to read or write a transponder; or the read frequency if there is a triggered read (no polling).
		2 10 from 1/10 s
		Default: (5) 500 ms
	Parameter 24	r/w max repeat
	(0x18)	Delay time for sensor signal to start a defined action.
		0255
		Default: 5
Parameter 25	Parameter 25	Transponder type
	(0x19)	This parameter defines the validity of the read transponder data.
		 Read and write TIRIS type Each transponder page consists of 8 data bytes. The validity of the data bytes is checked by a 2 byte CRC checksum.
		Default: 00
Parameter 26		Sensor activity
	(0x1A)	The transponder reader offers the option of deactivating the connected sensor.
		0 Sensor not activated1 Sensor activated
		Default: 1
	Parameter 27	Watchport for presence
	(0x1B)	Enables a message to the host if a cassette/FOUP is detected on the I/O port, or if it is removed from the I/O port.
		A sensor is required to use this option.

- 0 Report nothing
- 1 Report cassette/FOUP is removed
- 2 Report cassette/FOUP is detected
- 3 Report cassette/FOUP is detected and cassette is removed

Default: (3) Report cassette/FOUP is detected and removed

Parameter 29	Transponder load duration (read mode)		
(0x1D)	The time required to load a transponder during a read process. The default value (50 ms) should not be changed.		
	00 255 ms		
	Default: (50) 50	ms	
Parameter 30	r/w synchroni	ize	
(Ox1E)	Enables/disables takes notice of ir cycle.	reader synchronization. If synchronization is enabled, the reader nterference or other active readers and synchronizes the reading	
	00 01	Synchronization disabled Synchronization enabled	
	Default: (01) ena	abled	
Parameter 31	Auto-adjust v	alue (read mode)	
(0x1F)	The influence of interferences in the environment of the readers can be minimized by using the automatic adjustment during the operation. If the parameter is set to defined values (0x00 - 0x08), the reader starts the adjustment.		
	In case of autom this time the read	atic adjustment, the reader requires up to two seconds. During der cannot receive any serial data.	
	00 0x07 0x08	Range of manual adjustment (read mode only) Start automatic adjustment (read and write mode)	
	Automatic adjus (parameters 31	stment changes the adjustment of the read and write modes and 32).	
Parameter 32	Auto-adjust v	alue (write mode)	
(0x20)	The influence of interferences in the environment of the readers can be minimized by using the automatic adjustment during the operation. If the parameter is set to defined values (0x00 - 0x08), the reader starts the adjustment.		
	In the case of au During this time	tomatic adjustment, the reader requires up to two seconds. the reader cannot receive any serial data.	
	00 0x07 0x08	Range of manual adjustment (write mode only) Start automatic adjustment (read and write mode)	

Parameter 33	Automatic antenna adjustment		
(0x21)	The parameter defines the permitted causes for an antenna adjustment.		
	 Automatic adjustment is not activated Automatic adjustment only by DIP8 Automatic adjustment only by external command Automatic adjustment by DIP8 or external command 		
	Default: (3) automatic antenna adjustment by DIP8 or external command		
Parameter 34	Sensor type for presence sensor		
(0x22)	Type of sensor signal to start an automatic read.		
	Automatic read starts if sensor is coveredAutomatic read starts if sensor is not covered		
	Default: (0) sensor is covered		
Parameter 35	Special features		
(0x23)	After a hardware reset, the reader offers an automatic read if the presence sensor is covered.		
	 bit 0: value 0: Effect auto read after reset, if sensor is covered value 1: Effect no auto read after reset, if sensor is coverd (default) bit 1: value 0: Effect a sensor triggered auto read (default) value 1: Effect no sensor triggerd auto read bit 2: Without function bit 3: Without function bit 4: The setting of the LEDs by S18F13 "SetLED" is prioritized 		
	Default: 0x01 (0000 0001)		
Parameter 36	DIP switch activation		
(0x24)	Bits 0 to bit 4 define the behavior of DIP switches 8 down to 5. DIP switches 4 down to 1 have no function at this time.		
	 bit0: DIP 8 for tuning is active in test mode bit1: DIP 8 for tuning is active in normal mode bit2: DIP 7 (activate test mode) activation bit3: DIP 6 (type of test mode) activation bit4: DIP 5 can be used for protocol change Default: 0x1F (0001 1111) 		

Parameter 37	MID area		
(0x25)	This parameter defines the range of the MID.		
	'0' '10' pages		
	Default: '2' - MID area = 2 pages = 16 bytes (depends on parameter 25).		
IMPORTANT	See also parameters 42 - 45 and 99.		
Parameter 38	Test after software reset		
(0x26)	This parameter enables/disables the initial test after a software reset.		
	0 No initial test after software reset		
	1 Initial test after software reset		
	Default: (0) No initial test after software reset		
Parameter 40	Transponder load duration (write-mode)		
(0x28)	The time required to load a transponder during a write process. The default value (50 ms) should not be changed.		
	00 255 ms		
	Default: (50) 50 ms		
Parameter 41	Delay time between read cycles		
(0x29)	The delay time between two reading cycles. It takes care of the reading module lifetime.		
	To increase reading speed, set the delay time to zero.		
	1 250 1 ms		
	Default: (10) 10 ms		

Parameter 42 CarrierIDOffset

(0x2A)

Defines the offset of the CID within the CID field (MID area -parameter 37). The valid value range depends on the value of the MID area and the value of the CarrierIDLength.

Valid range 0 ... maximum bytes of CID -1

Default 0

Offset + Length cannot be larger than the length of the CID field.

Parameter 43 CarrierIDLength

(0x2B) Defines the length of the CID within the CID field (MID area - parameter 37). The valid value range depends on the value of the MID area and the value of the CarrierIDOffset (see parameter 42: CarrierIDOffset).

Valid range: 1 ... maximum bytes of CID field

Default: 16

Parameter 44 FixedMID

(0x2C) Defines the read, write and error behavior regarding the CarrierIDLength defined in SEMI E99-0303.

- Dynamic CID length (to ensure compatibility with older versions).
 MID length is variable for writing to the tag.
 Reading up to the first non-visible ASCII character.
- Fixed CID length (to meet the new standard revision).
 Length of MID in the tag must be the same as the reader settings. If there is a non-visible ASCII character within the CID field, an error occurs.

Default: 1

Parameter 45 MIDFormat

(0x2D) Defines the physical format of the MID data in the transponder memory. Affects the messages S18F9/F10 and S18F11/F12.

0 E99 standard format left aligned - meets the requirement of the SEMI standard E99

Default: 0

Examples: MID string is '123456789ABC'

Parameter 45 = '0':

Tag memory:

Page 2	9	А	В	С	0x00	0x00	0x00	0x0 0
Memory address	15	14	13	12	11	10	9	8
Page 1	1	2	3	4	5	6	7	8
Memory address	7	6	5	4	3	2	1	0

 \rightarrow Output string: '123456789ABC'

Parameter 98 Protocol change allowed

(0x62) This parameter enables/disables the automatic change between the BROOKS ASCII and SECS protocol. If protocol change is enabled, the reader detects the protocol type on the communication port, and switches to the new protocol type. The setting of parameter 98 will not reflect the protocol change by DIP switches on power up reset (see chapter → DIP switches)!

- 0 No protocol change is allowed
- 1 Protocol change is allowed

Default: (1) Protocol change is allowed

Parameter 99 Customer code

(0x63)

If the customer requires special parameter settings that deviate from the default values, a customer code can be assigned by BROOKS to set several parameter values via one parameter.

The following parameters are defined:

'00'Sets the following parameters:Reader complies with the last revisions of SEMI E99-0303

Parameter	Value
37	2
42	0
43	16
44	1
45	0

 '03' Sets the following parameter: Reader complies with older reader versions before the revision of SEMI E99-0303.

Parameter	Value
37	1
42	0
43	8
44	0
45	0

7.4.7 SEMI E99

Introduction The purpose of the Carrier ID reader/writer functional standard is to provide a common specification for concepts, behavior and services provided by a carrier ID reader/writer to an upstream controller. A standard interface increases the interchangeability of a carrier ID reader/writer, so that users and equipment suppliers have a wide choice.

Scope:

- The interface standard addresses the functional requirements for a generic carrier ID reader/writer interface with an upstream controller.
- The specification includes the required behavior and required communications for a carrier ID reader and writer.
- The specification does not require, define or prohibit asynchronous messages sent by the carrier ID reader or writer.
- This standard does not purport to address safety issues, if any, associated with its use.

Status models To facilitate independent control of the individual heads, there are two separate status models defined, one for the CIDRW subsystem and one for each individual head. The BROOKS reader combines the CIDRW subsystem with the head.

The status model for the BROOKS reader is displayed in the status model below.

Status	Definition			
ALARM STATUS	Displays the presence or absence of alarms.			
ALARMS	An alarm condition exists.			
BUSY	A service is being performed that affects the status of the hardware.			
CIDRW	Super-status of the CIDRW status model. Always active when the CIDRW is powered on.			
IDLE	No service is being performed. All heads are idle.			
INITIALIZ- ING	The CIDRW is carrying out initialization and a self-diagnostic. Presence or absence of alarms is initially determined in this status.			
NO ALARMS	No alarm condition exists.			
OPERATING	Normal operating status where reading and/or writing operations can be performed.			
OPERATING STATUS	The CIDRW is fully capable of performing all services that it supports.			
RUNNING	The CIDRW is operational and able to communicate.			
MAINTE- NANCE	Internal setup and maintenance activities.			

The table below defines the status of the BROOKS transponder reader.

The table below defines the transitions of the BROOKS SECS-I status model of the transponder reader.

#	Previous state	Trigger	New status	Action	Comment
1	Any	Power-up or reset	INITIALIZ- ING	Initialize hardware and software	Default entry on power-up
2	INITIALIZ- ING	Initialization is complete.	RUNNING	None	The CIDRW is now able to communicate.
3	INITIALIZ- ING	Default entry into OPERATING	IDLE	None	Internal
4	IDLE	A service request to read or write or perform diagnostics is received.	BUSY	None	
5	BUSY	All services request that effect	IDLE	None	
6	IDLE	A user selects the MAIN-TENANCE status and all heads are IDLE.	MAINTE- NANCE	None	The upstream controller may send a request or the operator may set a switch to select the MAINTENANCE status. Maintenance and setup activities may now be performed.
7	MAINTE- NANCE	A user selects the OPERATING status and all heads are IDLE	IDLE	None	The upstream controller may send a request or the operator may set a switch to select the OPERATING status. Normal operating activities may now be performed.
8	INITIALIZ- ING	Default entry into ALARM STATUS	ALARMS or NO ALARMS	None	
9	NO ALARMS	An alarm condition is detected.	ALARMS	None	
10	ALARMS	All alarm conditions have cleared.	NO ALARMS	None	
11	Any	A reset service request is received.	CIDRW	None	

Operation

Valid services per status

The following table shows which of the various services can be performed by the reader when the reader is in various individual statuses.

	Serv	vice								
	Write ID	Write data	Set attributes	Reset	Read ID	Read data	Perform diag.	Get status	Get attributes	Change status
Reader status										
INIT										
IDLE/BUSY		Х	Х	Х	Х	Х	Х	Х	Х	Х
MANT	Х		Х	Х	Х		Х	Х	Х	Х

IMPORTANT

Note that the CIDRW may not be able to communicate when in initializing status after power-up or reset service.

Operation

7.4.8 Message details

Equipment status S1F0: ABORT TRANSACTION (reader <-> host)

Used instead of an expected reply to abort a transaction. Function 0 is defined in every stream and has the same meaning in every stream. S1F0 W . * Header only

S1F1: ARE YOU THERE REQUEST (reader <-> host, reply)

Establishes if the gateway/reader or host is online.

S1F1 W . * Header only

S1F2: ON-LINE DATA (host -> reader)

The host signals that it is online.

```
S1F2
<L[2]
```

<A[6]MDLN > <A[6]SOFTREV >

```
>
```

S1F2: ON-LINE (reader -> host)

The reader signals that it is online.

```
S1F2
<L[2]
<A[6]MDLN >
<A[6]SOFTREV >
```

>.

S1F15: REQUEST OFF_LINE (host ->reader, reply)

The reader is requested to change the communication status to offline. The reader can only be set online again by using message S1F17 (or reset S2F19); all other messages are aborted by the SxF0 message. S1F15 W. *Header only

S1F16: OFFLINE ACKNOWLEDGE (reader -> host)

Acknowledge.

S1F16 <B[1]OFLACK>.

Operation

The reader is requested to change the communication status to online. S1F17 W.*Header only S1F18: ONLINE ACKNOWLEDGE (reader -> host) Acknowledge. S1F18 <B[1]ONLACK>. Equipment control S2F0: ABORT TRANSACTION (reader <-> host)

S1F17: REQUEST ON_LINE (host -> reader, reply)

Used instead of an expected reply to abort a transaction. Function 0 is defined in every stream and has the same meaning in every stream.

S2F0 W . * Header only

S2F13: EQUIPMENT CONSTANT REQUEST (host-> reader, reply) The host requests a constant from the reader.

S2F13 W <L[1] <U1[1] ECID> >.

S2F14: EQUIPMENT CONSTANT DATA (reader -> host)

The reader sends the requested constant to the host.

```
S2F14
<L[1]
<U1[1] ECV>
>.
```

S2F15: NEW EQUIPMENT CONSTANT SENT (host-> reader, reply) The host changes a reader constant.

```
S2F15 W
<L[1]
<L[2]
<U1[1] ECID>
<U1[1] ECV>
>
>.
```


S2F16: NEW EQUIPMENT CONSTANT ACKNOWLEDGE (reader -> host)

The reader acknowledges the setting of the reader constant.

S2F16

<B[1] EAC>.

S2F19: RESET SEND (host -> reader, reply)

The host requests the reader to reset the hardware and software.

If a heartbeat time is set (parameter 9), the reader sends an S1F1 message when the reset is finished.

The power-up reset requires a few seconds.

S2F19 W <B[1] RIC>.

S2F20: RESET ACKNOWLEDGE (reader -> host)

The reader acknowledges the reset.

This message will only appears if a software reset (RIC=2) is triggered.

S2F20

<B[1] RAC>.

Material status S3F0: ABORT TRANSACTION (reader <-> host)

Used instead of an expected reply to abort a transaction. Function 0 is defined in every stream and has the same meaning in every stream.

S3F0 W. * Header Only

S3F5: CASSETTE FOUND SEND (reader -> host, reply)

The reader sends the information that a cassette was detected by the presence sensor.

This message is sent only if a sensor is connected and activated (see parameters 27 'watchport' and 26 'sensor activity').

S3F5 W.

```
<L[2]
<B[1] MF>
<B[1] PTN>
```

>.

S3F6: CASSETTE FOUND ACKNOWLEDGE (host -> reader)

The host acknowledges the cassette found message.

S3F6

```
<B[1] ACKC3>.
```


Operation

S3F7: CASSETTE LOST SEND (reader -> host, reply)

The reader sends the information that the cassette was removed from the I/O port (presence sensor).

This message is sent only if a sensor is connected and activated (see parameters 27 'watchport' and 26 'sensor activity'). The PAGEDATA can be given only if the PAGEDATA that was read last is still available.

S3F7 W.

```
<L[3]
<B[1] MF >
<B[1] PTN >
<B[9] PAGEDATA >*
>.
```

* a zero-length PAGEDATA indicates that no PAGEDATA is available (case of error)

S3F8: CASSETTE LOST ACKNOWLEDGE (host -> reader)

The host acknowledges the cassette lost message.

```
S3F8
```

<B[1] ACKC3>.

S3F11: READ MID AT I/O PORT (host -> reader, reply)

The host requests the reader to read the PAGEDATA of the given PAGE_ID.

S3F11 W <B[1] PAGE_ID>.

S3F12: READ ACKNOWLEDGE (reader -> host)

The reader only acknowledges the receipt of the reading command. The PAGEDATA is sent later.

```
S3F12
<L[3]
<B[1] PTN>*
<B[1] MIDRA>
<B[9] PAGEDATA>**
>.
```

- * a zero-length PTN indicates that no PTN is available
- ** a zero-length PAGEDATA indicates that no DATA is available

S3F13: RETURN READ MID (reader -> host, reply)

The reader sends the ID of the cassette at the I/O port to the host.

```
S3F13 W
<L[2]
<B[1] PTN>
<B[9] PAGEDATA >
```

>.

S3F14: MID ACKNOWLEDGE (host -> reader)

The host acknowledges the received data.

S3F14 <B[1] MIDAC>.

S3F65: WRITE MID AT I/O PORT (host -> reader, reply)

The host requests that the reader write the PAGEDATA.

S3F65 W <B[9] PAGEDATA >

S3F66: WRITE ACKNOWLEDGE (reader -> host)

The reader only acknowledges the receipt of the write command. The write acknowledge is sent later.

```
S3F66
<L[2]
<B[1] MIDRA>
```

```
<B[9] PAGEDATA >
```

S3F67: RETURN WRITE SUCCESS (reader -> host, reply)

The reader reports the successful writing of the transponder. The reader sends information about the presence sensor.

```
S3F67 W
<B[1] PTN>.
```

S3F68: WRITE SUCCESS ACKNOWLEDGE (host -> reader)

The host acknowledges the received data.

S3F68

<B[1] MIDAC>.

	S3F73: LOCK MID AT I/O PORT (host -> reader, reply) The host requests the reader to lock the requested page.
	S3F73 W <b[1] page_id="">.</b[1]>
ATTENTION	Locking a transponder page is permanent.
	You cannot unlock a transponder page.

S3F74: LOCK ACKNOWLEDGE (reader -> host)

The reader acknowledges the receipt of the locking command only. The locking acknowledgement is sent later.

S3F74

```
<L[2]
<B[1] MIDRA>
<B[9] PAGEDATA >
>.
```

S3F75: RETURN LOCK SUCCESS (reader -> host, reply)

The reader reports the successful locking of the given page. The reader sends information about the presence sensor.

S3F75 W

<B[1] PTN>.

S3F76: LOCK SUCCESS ACKNOWLEDGE (host -> reader)

The host acknowledges the receipt of the lock success message (S3F75).

S3F76

<B[1] MIDAC>.

Exception handling S5F0: ABORT TRANSACTION (reader <-> host)

Used instead of an expected reply to abort a transaction. Function 0 is defined in every stream and has the same meaning in every stream.

S5F0 W . * Header only

S5F1: GATEWAY READER ALARM REPORT SEND (reader -> host, reply)

The reader reports all errors to the host.

```
S5F1 W

<L[3]

<B[1] ALCD >* alarm code byte

<B[1] ALID > * alarm ID

<A[MAX 40] ALTX >* alarm text
```

```
>.
```

S5F2: ALARM REPORT ACKNOWLEDGE (host -> reader)

The host acknowledges an alarm.

S5F2

<B[1] ACKC5>.Exception handling

System errors S9F1: UNRECOGNIZED DEVICE ID (reader -> host)

The device ID in the message block header does not correspond to the equipment device ID.

S9F1

< B[10] MHEAD > .

S9F3: UNRECOGNIZED STREAM TYPE (reader -> host)

The reader does not recognize the stream type in the message block header.

S9F3

< B[10] MHEAD > .

S9F5: UNRECOGNIZED FUNCTION TYPE (reader -> host)

The reader does not recognize the function number in the message block header.

S9F5

< B[10] MHEAD > .

S9F7: ILLEGAL DATA (reader -> host)

The reader does not recognize the data in the message.

S9F7

< B[10] MHEAD > .

S9F9: TRANSACTION TIMER TIMEOUT (reader -> host)

This message indicates that a transaction timer has timed out and that the corresponding transaction was aborted. Only the last sent message (which must be confirmed by the host) is stored and controlled.

S9F9

< B[10] SHEAD > .

For more information on error codes and the corresponding correcting actions please refer to

Subsystem control and data

S18F0: ABORT TRANSACTION (reader <-> host)

Used instead of an expected reply to abort a transaction. Function 0 is defined in every stream and has the same meaning in every stream.

S18F0 W . * Header only

S18F1: READ ATTRIBUTE REQUEST (RAR) (host -> reader, reply)

This message requests the current values of specific attributes of the subsystem component indicated in the TARGETID.

S18F1 W

L,2		
1. <	TARGET	D>
2. L	"n	
	1.	<attrid1></attrid1>
	n.	<attridn></attridn>

S18F2: READ ATTRIBUTE DATA (RAD) (reader -> host)

This message returns the current values of the requested attributes and the current status of the requested component indicated in the TARGETID.

```
S18F2
L,4
1. <TARGETID>
2. <SSACK>
3. L,n
1. <ATTRVAL1>
...
n. <ATTRVAL1>
4. L,1
```

- 1 L,s 1. <STATUS1> ...
 - s. <STATUSs>

If the ATTRID of the S18F1 message is unknown, the corresponding ATTRVAL has the value <nothing>.

S18F3: WRITE ATTRIBUTE REQUEST (WAR) (host -> reader, reply) This message requests the subsystem to set the value of the read/write attributes of the component specified in the TARGETID.

S18F3 ,W

L,2

<TARGETID>
 L,n
 L,2
 <ATTRID1>
 <ATTRVAL1>

n. L,2

1. <ATTRIDn>

2. <ATTRVALn>

S18F4: WRITE ATTRIBUTE ACKNOWLEDGE (WAA) (reader -> host)

This message acknowledges the success or reports the error of the request to write attribute data to the subsystem indicated in the TARGETID.

S18F4

L,3 1. <TARGETID> 2. <SSACK> 3. L,1 L,s 1. <STATUS1> ... s. <STATUSS>

If the ATTRID of the S18F3 message is unknown, a communication error (CE) occurs.

S18F5: READ REQUEST (RR) (host -> reader, reply)

The host requests the subsystem indicated in the TARGETID to read information. DATASEG may be used to indicate a specific section of data to be read. DATALENGTH is used to limit the amount of data for that section.

S18F5 W

L,3

- 1. <TARGETID>
- 2. <DATASEG>
- 3. <DATALENGTH>

If DATASEG and DATALENGTH are both omitted (zero length items), then all pages of the data area are requested. If only DATALENGTH is omitted, all data within the indicated section is requested.

S18F6: READ DATA (RD) (reader -> host)

This message is used to return requested information from the subsystem indicated in the TARGETID or to acknowledge the result of the request.

S18F6

L,3

- 1. <TARGETID>
- 2. <SSACK>
- 3. <DATA>

If the TARGETID is unknown, a communication error (CE) occurs.

S18F7: WRITE DATA REQUEST (WAR) (host -> reader, reply)

This message requests to write data to the subsystem component indicated in the TARGETID. DATASEG may be used to indicate a specific section of the data area to be written or overwritten.

S18F7 W

L,4

- 1. <TARGETID>
- 2. <DATASEG>
- 3. < DATALENGTH
- 4. <DATA>

If DATASEG and DATALENGTH are both omitted (zero length items), then all data in the data area are to be overwritten. If only DATALENGTH is omitted or if DATALENGTH has a value of zero, then all data within the indicated section are to be written.

If DATASEG is omitted (zero length items), the value of DATALENGTH sets the length of data that is to be written. If the length of the data that is to be written is longer than the value of DATALENGTH, a communication error (CE) occurs.

S18F8: WRITE DATA ACKNOWLEDGE (WDA) (reader -> host)

This message acknowledges the success or failure of writing data to the subsystem indicated in the TARGETID.

S18F8

L,3

- 1. <TARGETID>
- 2. <SSACK>
- 3. L,1
 - L,s
- 1. <STATUS1>

s. <STATUSs>

If the TARGETID is unknown, a communication error (CE) occurs.

S18F9: READ ID REQUEST (RIR) (host -> reader, reply)

This message is used to request the subsystem indicated by the TARGETID to read the MID.

S18F9,W

<TARGETID>

S18F10: READ ID DATA (RID) (reader -> host)

This message returns a requested material identifier MID as read by the subsystem indicated in the TARGETID.

S18F10

L,4

- 1. <TARGETID>
- 2. <SSACK>
- 3. <MID>
- 4. L,1
 - L,s
 - 1. <STATUS1>
 - ...
 - s. <STATUSs>

S18F11: WRITE ID REQUEST (WIR) (host -> reader, reply)

This message is used to request the subsystem indicated by the TARGETID to write the MID.

S18F11 W

L,2

1. <TARGETID>
 2. <MID>

The reader must be in maintenance mode to write the MID with message S18F11.

S18F12: WRITE ID ACKNOWLEDGE (WIA) (reader -> host)

This message acknowledges the success or error of writing the MID to the subsystem indicated in the TARGETID.

S18F12

L,3

1. <TARGETID>

2. <SSACK>

3. L,1

L,s

- 1. <STATUS1>
- s. <STATUSs>

If the TARGETID is unknown, a communication error (CE) occurs.

S18F13: SUBSYSTEM COMMAND REQUEST (SCR) (host -> reader, reply)

This message is used to request the subsystem indicated in the TARGETID to perform a specific action.

S18F13 W

L,3

- 1. <TARGETID>
- 2. <SSCMD>
- 3. L,n
 - 1. <CPVAL>
 - ...
 - n. <CPVALn>

S18F14: SUBSYSTEM COMMAND ACKNOWLEDGE (SCA) (reader -> host)

This message reports the result from the subsystem specified in the TARGETID for the requested action.

S18F14

L,3

- 1. <TARGETID>
- 2. <SSACK>
- 3. L,1
 - L,s
 - 1. <STATUS1>

```
s. <STATUSs>
```

If the TARGETID is unknown, a communication error (CE) occurs.

Operation

7.4.9 HSMS message examples

Starting routine of the HSMS protocol

Outgoing: Length byte (00 00 00 0A) Outgoing: Select.reg (FF FF 00 00 00 01 80 00 00 01) Incoming: Length byte (00 00 00 0A) Incoming: Select.rsp (FF FF 00 00 00 02 80 00 00 01) Outgoing: Length byte (00 00 00 0A) Outgoing: Linktest.req (FF FF 00 00 00 05 80 00 00 02) Incoming: Length byte (00 00 00 0A) Incoming: Linktest.req (FF FF 00 00 00 05 80 00 00 01) Outgoing: Length byte (00 00 00 0A) Outgoing: Linktest.rsp (FF FF 00 00 00 06 80 00 00 01) Incoming: Length byte (00 00 00 0A) Incoming: Linktest.rsp (FF FF 00 00 00 06 80 00 00 02) Link test Incoming: Length byte (00 00 00 0A) Incoming: Linktest.reg (FF FF 00 00 00 05 80 00 00 1C) Outgoing: Length byte (00 00 00 0A)

Outgoing: Linktest.rsp (FF FF 00 00 00 06 80 00 00 1C)

Separate request Incoming: Length byte (00 00 00 0A) Incoming: Separate.req (FF FF 00 00 00 09 80 00 00 03)

7.4.10 SECS-I message examples

S1F1 Message from the reader to the host

Reader to Host: S1F1 14:08:17 Incoming: ENQ (05) 14:08:17 Outgoing: EOT (04) 14:08:17 Incoming: Length Byte (0A) 14:08:17 Incoming: Header (81 34 81 01 80 01 00 01 00 01) 14:08:17 Incoming: Checksum (01 BA) 14:08:17 Outgoing: ACK (06) Host to Reader: S1F2

14:08:17 Outgoing: ENQ (05)
14:08:17 Incoming: EOT (04)
14:08:17 Outgoing: Length Byte (10)
14:08:17 Outgoing: Header (01 34 01 02 80 01 00 01 00 01)
14:08:17 Outgoing: Data (01 02 41 00 41 00)
14:08:17 Outgoing: Checksum (01 40)

Operation

S1F1 Message from the host to the reader

Host to Reader: S1F1 14:04:09 Outgoing: ENQ (05) 14:04:11 Incoming: EOT (04) 14:04:11 Outgoing: Length Byte (0A) 14:04:11 Outgoing: Header (01 34 81 01 80 01 00 00 00 27) 14:04:11 Outgoing: Checksum (01 5F) 14:04:11 Incoming: ACK (06)

Reader to Host: S1F2

14:04:11 Incoming: ENQ (05)
14:04:11 Outgoing: EOT (04)
14:04:11 Incoming: Length Byte (1C)
14:04:11 Incoming: Header (81 34 01 02 80 01 00 00 00 27)
14:04:11 Incoming: Data (01 02 41 06 4C)
14:04:11 Incoming: Data (36 30 53 47 32 41 06 53)
14:04:11 Incoming: Data (47 32 53 31 30)
14:04:11 Incoming: Checksum (04 EF)
14:04:11 Outgoing: ACK (06)

Message S1F15 puts the reader offline

Host to Reader: S1F15 10:32:53 Outgoing: ENQ (05) 10:32:53 Incoming: EOT (04) 10:32:54 Outgoing: Length byte (0A) 10:32:54 Outgoing: Header (01 FF 81 0F 80 01 00 00 00 02) 10:32:54 Outgoing: Checksum (13 02) 10:32:54 Incoming: ACK (06)

Reader to Host: S1F16 10:32:54 Incoming: ENQ (05) 10:32:54 Outgoing: EOT (04) 10:32:54 Incoming: Length byte (0D) 10:32:54 Incoming: Header (81 FF 01 10 80 01 00 00 00 02) 10:32:54 Incoming: Data (21 01 00) 10:32:54 Incoming: Checksum (02 36) 10:32:54 Outgoing: ACK (06)

Operation

Message S1F17 puts the reader online

Host to Reader: S1F17 10:33:24 Outgoing: ENQ (05) 10:33:24 Incoming: EOT (04) 10:33:24 Outgoing: Length byte (0A) 10:33:24 Outgoing: Header (01 FF 81 11 80 01 00 00 00 04) 10:33:24 Outgoing: Checksum (17 02) 10:33:24 Incoming: ACK (06)

Reader to Host: S1F18 10:33:24 Incoming: ENQ (05) 10:33:24 Outgoing: EOT (04) 10:33:24 Incoming: Length byte (0D) 10:33:24 Incoming: Header (81 FF 01 12 80 01 00 00 00 04) 10:33:24 Incoming: Data (21 01 00) 10:33:24 Incoming: Checksum (02 3A) 10:33:24 Outgoing: ACK (06)

Request reader constant with message S2F13

Host to Reader (Gateway): S2F13 10:34:01 Outgoing: ENQ (05) 10:34:01 Incoming: EOT (04) 10:34:01 Outgoing: Length byte (OF) 10:34:01 Outgoing: Header (01 FF 82 0D 80 01 00 00 00 05) 10:34:01 Outgoing: Data (01 01 A5 01 01) \rightarrow Parameter 1 10:34:01 Outgoing: Checksum (3A 02) 10:34:01 Incoming: ACK (06) Reader to Host: S2F14 10:34:01 Incoming: ENQ (05) 10:34:01 Outgoing: EOT (04) 10:34:01 Incoming: Length byte (OF) 10:34:01 Incoming: Header (81 FF 02 0E 80 01 00 00 00 05) 10:34:01 Incoming: Data (01 01 A5 01 C0) \rightarrow Value 192 10:34:01 Incoming: Checksum (03 7E) 10:34:01 Outgoing: ACK (06) The host requests the reader parameter "1" (transmission rate). The reader sends the value "C0" (192) that confirms the 19,200 baud.

Operation

New reader constant sent with S2F15

Host to Reader: S2F15 10:39:32 Outgoing: ENQ (05) 10:39:32 Incoming: EOT (04) 10:39:32 Outgoing: Length byte (14) 10:39:32 Outgoing: Header(01 FF 82 0F 80 01 00 00 00 07) 10:39:32 Outgoing: Data 01 01 01 02 A5 01 14 \rightarrow Parameter 20 A5 01 05 \rightarrow Value 5 10:39:32 Outgoing: Checksum (83 02) 10:39:32 Incoming: ACK (06) Reader to Host: S2F16 10:39:32 Incoming: ENQ (05) 10:39:32 Outgoing: EOT (04) 10:39:32 Incoming: Length byte (0D) 10:39:32 Incoming: Header(81 FF 02 10 80 01 00 00 00 07) 10:39:32 Incoming: Data (21 01 00) \rightarrow ECV 0 10:39:32 Incoming: Checksum (02 3C) 10:39:32 Outgoing: ACK (06) The host sets the reader parameter "20" (sensor delay) to the value "5". The reader acknowledges the new constant with ECV = 0.

Host requests a software reset with S2F19

Host to Reader: S2F19 14:18:46 Outgoing: ENQ (05) 14:18:46 Incoming: EOT (04) 14:18:46 Outgoing: Length Byte (0D) 14:18:46 Outgoing: Header (01 34 82 13 80 01 00 00 00 2E) 14:18:46 Outgoing: Data (21 01 02) \rightarrow Software reset 14:18:46 Outgoing: Checksum (01 9D) 14:18:46 Incoming: ACK (06) Reader to Host: S2F20 14:18:46 Incoming: ENQ (05) 14:18:46 Outgoing: EOT (04)

14:18:46 Incoming: Length Byte (0D)

14:18:46 Incoming: Header (81 34 02 14 80 01 00 00 00 2E)

14:18:46 Incoming: Data (21 01 00)

14:18:46 Incoming: Checksum (01 9C)

14:18:46 Outgoing: ACK (06)

Operation

Host requests a hardware reset with S2F19

Host to Reader: S2F19 14:18:59 Outgoing: ENQ (05) 14:18:59 Incoming: EOT (04) 14:18:59 Outgoing: Length Byte (0D) 14:18:59 Outgoing: Header (01 34 82 13 80 01 00 00 00 2F) 14:18:59 Outgoing: Data (21 01 01) \rightarrow Hardware reset 14:18:59 Outgoing: Checksum (01 9D) 14:18:59 Incoming: ACK (06)

The reader sends the message S3F5 after the sensor detects a cassette

Reader to Host: S3F5 15:51:45 Incoming: ENQ (05) 15:51:46 Outgoing: EOT (04) 15:51:46 Incoming: Length byte (12) 15:51:46 Incoming: Header (81 FF 83 05 80 01 00 03 00 04) 15:51:46 Incoming: Data 01 02 21 01 20 \rightarrow MF 0x20 21 01 39 \rightarrow Initiator=0, Sensor 0=1 15:51:46 Incoming: Checksum (03 30) 15:51:46 Outgoing: ACK (06) Host to Reader: S3F6 15:51:46 Outgoing: ENQ (05) 15:51:46 Incoming: EOT (04) 15:51:46 Outgoing: Length byte (0D) 15:51:46 Outgoing: Header (01 FF 03 06 80 01 00 03 00 04) 15:51:46 Outgoing: Data (21 01 00) \rightarrow ACKC3 15:51:46 Outgoing: Checksum (B4 01)

15:51:46 Incoming: ACK (06)

Operation

The reader sends the message S3F13 after the sensor was detected and the transponder could be read Reader to Host: S3F13 15:51:46 Incoming: ENQ (05) 15:51:46 Outgoing: EOT (04) 15:51:46 Incoming: Length byte (1A) 15:51:46 Incoming: Header (81 FF 83 0D 80 01 00 03 00 05) 15:51:46 Incoming: Data 01 02 21 01 39 \rightarrow Initiator=0, Sensor 0=1 21 09 81 11 11 11 11 10 00 00 00 \rightarrow PAGEDATA 15:51:46 Incoming: Checksum (03 F6) 15:51:46 Outgoing: ACK (06) Host to Reader: S3F14 15:51:46 Outgoing: ENQ (05) 15:51:46 Incoming: EOT (04) 15:51:46 Outgoing: Length byte (0D) 15:51:46 Outgoing: Header (01 FF 03 0E 80 01 00 03 00 05) 15:51:46 Outgoing: Data (21 01 00) \rightarrow ACKC3 15:51:46 Outgoing: Checksum (BD 01) 15:51:46 Incoming: ACK (06) The material ID acknowledgement MIDAC depends on the sensor status PTN. The initiator was the sensor 0 and the host acknowledges with "0".

The reader sends the message S3F7 after the cassette was removed from the sensor.

Reader to Host: S3F7 15:51:52 Incoming: ENQ (05) 15:51:52 Outgoing: EOT (04) 15:51:52 Incoming: Length byte (1D) 15:51:52 Incoming: Header (81 FF 83 07 80 01 00 03 00 06) 15:51:52 Incoming: Data 01 03 21 01 20 → MF 0x20 21 01 38 → Initiator=0, Sensor 0=0 21 09 81 11 11 11 11 00 00 00 → Last read PAGEDATA 15:51:52 Incoming: Checksum (04 34)

15:51:52 Outgoing: ACK (06)

Operation

Host to Reader: S3F8 15:51:52 Outgoing: ENQ (05) 15:51:52 Incoming: EOT (04) 15:51:52 Outgoing: Length byte (0D) 15:51:52 Outgoing: Header (01 FF 03 08 80 01 00 03 00 06) 15:51:52 Outgoing: Data (21 01 00) \rightarrow ACKC3 15:51:52 Outgoing: Checksum (B8 01) 15:51:52 Incoming: ACK (06)

The reader detects an unrecognized device ID and sends the message S9F1.

Host to Reader: S1F1

16:42:58 Outgoing: ENQ (05) 16:42:58 Incoming: EOT (04)

16:42:58 Outgoing: Length byte (0A)

16:42:58 Outgoing: Header (02 FF 81 01 80 01 00 00 00 31)

16:42:58 Outgoing: Checksum (35 02)

16:42:58 Incoming: ACK (06)

Reader to Host: S9F1

16:42:58 Incoming: ENQ (05)

16:42:58 Outgoing: EOT (04)

16:42:58 Incoming: Length byte (16)

16:42:58 Incoming: Header (81 FF 09 01 80 01 00 07 00 18)

16:42:58 Incoming: Data

21 0A 02 FF 81 01 80 01 00 00 00 31

 \rightarrow MHEAD error message

16:42:58 Incoming: Checksum (04 8A)

16:42:58 Outgoing: ACK (06)

The device ID in the message block header does not correspond to the device ID in the reader detecting the error.

The reader detects a wrong stream number and sends the S9F3 message

Host to Reader: S4F1 20:03:20 Outgoing: ENQ (05) 20:03:20 Incoming: EOT (04) 20:03:20 Outgoing: Length byte (0A) 20:03:20 Outgoing: Header (01 FF 84 01 80 01 00 00 00 08) 20:03:20 Outgoing: Checksum (0E 02) 20:03:20 Incoming: ACK (06)

Reader to Host: S9F3 20:03:20 Incoming: ENQ (05) 20:03:20 Outgoing: EOT (04) 20:03:20 Incoming: Length byte (16) 20:03:20 Incoming: Header (81 FF 09 03 80 01 00 00 00 09) 20:03:20 Incoming: Data (21 0A 01 FF 84) \rightarrow The wrong message header 20:03:20 Incoming: Data (01 80 01 00 00 00 08) 20:03:20 Incoming: Checksum (04 4F) 20:03:20 Outgoing: ACK (06) The stream "4" is not part of the BROOKS SECS-II message set, so a S9F3 error message appears.

The reader detects an unrecognized function and sends the message S9F5.

Host to Reader: S1F3 19:54:43 Outgoing: ENQ (05) 19:54:43 Incoming: EOT (04) 19:54:43 Outgoing: Length byte (0A) 19:54:43 Outgoing: Header (01 FF 81 03 80 01 00 00 00 06) 19:54:43 Outgoing: Checksum (0B 02) 19:54:43 Incoming: ACK (06) Reader to Host: S9F5 19:54:43 Incoming: ENQ (05) 19:54:43 Outgoing: EOT (04) 19:54:43 Incoming: Length byte (16) 19:54:43 Incoming: Header (81 FF 09 05 80 01 00 00 00 07)

- 19:54:43 Incoming: Data (21 0A 01 FF 81) \rightarrow The wrong message header
- 19:54:43 Incoming: Data (03 80 01 00 00 00 06)
- 19:54:43 Incoming: Checksum (04 4C)
- 19:54:43 Outgoing: ACK (06)

The function "3" is not part of the SECSII message set, so a S9F5 error message appears.

Operation

The reader detects wrong data and sends the S9F7 message Host to Reader: S2F13 16:49:00 Outgoing: ENQ (05) 16:49:00 Incoming: EOT (04) 16:49:00 Outgoing: Length byte (OF) 16:49:00 Outgoing: Header (01 FF 82 0D 80 01 00 00 00 36) 16:49:00 Outgoing: Data (01 01 A5 01 0F) 16:49:00 Outgoing: Checksum (79 02) 16:49:00 Incoming: ACK (06) Reader to Host: S2F14 16:49:00 Incoming: ENQ (05) 16:49:00 Outgoing: EOT (04) 16:49:00 Incoming: Length byte (OE) 16:49:00 Incoming: Header (81 FF 02 0E 80 01 00 00 00 36) 16:49:00 Incoming: Data (01 01 A5 00) 16:49:00 Incoming: Checksum (02 EE) 16:49:00 Outgoing: ACK (06) Reader to Host: S9F7: 16:49:00 Incoming: ENQ (05) 16:49:00 Outgoing: EOT (04) 16:49:00 Incoming: Length byte (16) 16:49:00 Incoming: Header (81 FF 09 07 80 01 00 07 00 1F) 16:49:00 Incoming: Data (21 0A 01 FF 82) 16:49:00 Incoming: Data (0D 80 01 00 00 00 36) 16:49:00 Incoming: Checksum (04 A8) 16:49:00 Outgoing: ACK (06) The reader replies to the S2F13 equipment constant request message without data, because the parameter was invalid. Additionally, the reader sends the S9F7 illegal data message.

The secondary message fails and the reader sends the S9F9 message

Reader to Host: S1F1 20:07:16 Incoming: ENQ (05) 20:07:16 Outgoing: EOT (04) 20:07:16 Incoming: Length byte (0A) 20:07:16 Incoming: Header (81 FF 81 01 80 01 00 00 00 01) 20:07:16 Incoming: Checksum (02 84) 20:07:16 Outgoing: ACK (06)

Operation

Host to Reader: S9F9

20:08:01 Incoming: ENQ (05) 20:08:01 Outgoing: EOT (04) 20:08:01 Incoming: Length byte (16) 20:08:01 Incoming: Header (81 FF 09 09 80 01 00 00 00 02) 20:08:01 Incoming: Data (21 0A 81 FF 81) 20:08:01 Incoming: Data (01 80 01 00 00 00 01) → The stored header 20:08:01 Incoming: Checksum (04 C3) 20:08:01 Outgoing: ACK (06)

Host requests reader attributes with S18F1

Host to Reader: S18F1

15:19:31 Outgoing: ENQ (05)

15:19:31 Incoming: EOT (04)

15:19:31 Outgoing: Length byte (5A)

15:19:31 Outgoing: Header (01 FF 92 01 80 01 00 00 00 03)

15:19:31 Outgoing: Data

01 02

41 04 31 32 33 34

01 04

41 OD 43 6F 6E 66 69 67 75 72 61 74 69 6F 6E

41 OB 41 6C 61 72 6D 53 74 61 74 75 73

41 11 4F 70 65 72 61 74 69 6F 6E 61 6C 53 74 61 74 75 73

41 15 53 6F 66 74 77 61 72 65 52 65 76 69 73 69 6F 6E 4C 65 76 65 6C

15:19:31 Outgoing: Checksum (CD 02)

15:19:31 Incoming: ACK (06)

Operation

```
Reader to Host: S18F2
15:19:31 Incoming: ENQ (05)
15:19:31 Outgoing: EOT (04)
15:19:31 Incoming: Length byte (44)
15:19:31 Incoming: Header (81 FF 12 02 80 01 00 00 00 03)
15:19:31 Incoming: Data
        01 04
         41 04 31 32 33 34 → TARGETID "1234"
         41 02 4E 4F \rightarrow SSACK "NO"
         01 04
          41 02 30 31 \rightarrow Configuration "01"
          41 01 30 \rightarrow Alarmstatus "0"
          41 04 49 44 4C 45 → OperatingStatus "IDLE"
          41 06 53 47 32 53 31 30 \rightarrow SoftwareRevisionLevel "SG2S10"
        01 04 ' STATUS <L4>
          41 02 4E 45 \rightarrow PMInformation "NE"
          41 01 30 \rightarrow Alarmstatus "0"
          41 04 49 44 4C 45 → OperatingStatus "IDLE"
          41 04 49 44 4C 45 \rightarrow HeadStatus "IDLE"
15:19:31 Incoming: Checksum ( 0C 29 )
15:19:31 Outgoing: ACK (06)
The host requests all fundamental CIDRW attributes defined in ATTRID.
The reader answers with the actual attribute values.
```


Operation

```
Host writes new reader attributes with S18F3
Host to Reader: S18F3
15:18:14 Outgoing: ENQ (05)
15:18:14 Incoming: EOT (04)
15:18:14 Outgoing: Length Byte (8E)
15:18:14 Outgoing: Header (01 34 92 03 80 01 00 00 00 44)
15:18:14 Outgoing: Data (01 02 41 02 30 31
01 06
01 02
41 0D 43 6F 6E 66 69 67 75 72 61 74 69 6F 6E
41 02 30 31
01 02
41 11 4F 70 65 72 61 74 69 6F 6E 61 6C 53 74 61 74 75 73 41 04 49 44 4C 45
01 02
41 0B 41 6C 61 72 6D 53 74 61 74 75 73
41 01 31
01 02
41 OF 43 61 72 72 69 65 72 49 44 4F 66 66 73 65 74
41 01 30
01 02
41 06 48 65 61 64 49 44 41 01 31 01 02
41 OF 43 61 72 72 69 65 72 49 44 4C 65 6E 67 74 68
41 02 31 30 )
15:18:14 Outgoing: Checksum (26 62)
15:18:14 Incoming: ACK (06)
Reader to Host: S18F4
15:18:14 Incoming: ENQ (05)
15:18:14 Outgoing: EOT (04)
15:18:14 Incoming: Length Byte (2B)
15:18:14 Incoming: Header (81 34 12 04 80 01 00 00 00 44)
15:18:14 Incoming: Data (01 03 41 02 30 31)
15:18:14 Incoming: Data (41 02 4E 4F)
15:18:14 Incoming: Data (01 01)
15:18:14 Incoming: Data (01 04)
15:18:14 Incoming: Data (41 02 4E 45)
15:18:14 Incoming: Data (41 01 31)
15:18:14 Incoming: Data (41 04 49 44 4C 45)
15:18:14 Incoming: Data (41 04 49 44 4C 45)
15:18:14 Incoming: Checksum (07 2E)
15:18:14 Outgoing: ACK (06)
The host writes all fundamental CIDRW attributes defined in ATTRID.
The reader answers with the actual attribute values.
```


Host reads data on page 8 of a multipage transponder with S18F5 Host to Reader: S18F5

17:52:17 Outgoing: ENQ (05) 17:52:17 Incoming: EOT (04) 17:52:17 Outgoing: Length byte (1A) 17:52:17 Outgoing: Header (01 FF 92 05 80 01 00 00 00 08) 17:52:17 Outgoing: Data 01 03 41 04 31 32 33 34 → TARGETID "1234" 41 02 30 38 → DATASEG "08" A9 02 00 08 \rightarrow DATALENGTH 0x08 17:52:17 Outgoing: Checksum (91 02) 17:52:17 Incoming: ACK (06) Reader to Host: S18F6 17:52:17 Incoming: ENQ (05) 17:52:17 Outgoing: EOT (04) 17:52:17 Incoming: Length byte (20) 17:52:17 Incoming: Header (81 FF 12 06 80 01 00 00 00 08) 17:52:17 Incoming: Data 01 03 41 04 31 32 33 34 → TARGETID "1234" 41 02 4E 4F \rightarrow SSACK "NO" 41 08 30 31 32 33 34 35 36 37 \rightarrow DATA "01234567" 17:52:17 Incoming: Checksum (05 F9) 17:52:17 Outgoing: ACK (06) The host reads 8 bytes on page 8 of a multipage transponder. The reader shows

the success of the operation with SSACK "NO" (normal operation) and with the read values.

Operation

Host writes data on page 10 with S18F7 Host to Reader: S18F7 13:14:15 Outgoing: ENQ (05) 13:14:15 Incoming: EOT (04) 13:14:15 Outgoing: Length byte (24) 13:14:15 Outgoing: Header (01 FF 92 07 80 01 00 00 00 18) 13:14:15 Outgoing: Data 01 04 41 04 31 32 33 34→ TARGETID "1234" 41 02 30 41 → DATASEG "OA" A9 02 00 08 → DATALENGTH 0x08 41 08 41 42 43 44 45 46 47 48 \rightarrow DATA ABCDEFGH" 13:14:15 Outgoing: Checksum (1A 02) 13:14:15 Incoming: ACK (06) Reader to Host: S18F8 13:14:16 Incoming: ENQ (05) 13:14:16 Outgoing: EOT (04) 13:14:16 Incoming: Length byte (2D) 13:14:16 Incoming: Header (81 FF 12 08 80 01 00 00 00 18) 13:14:16 Incoming: Data 01 03 41 04 31 32 33 34 → TARGETID "1234" 41 02 4E 4F \rightarrow SSACK "NO" 01 01 01 04 \rightarrow STATUS <L4> 41 02 4E 45 \rightarrow PMInformation "NE" 41 01 30 \rightarrow Alarmstatus "0" 41 04 49 44 4C 45 → OperatingStatus "IDLE" 41 04 49 44 4C 45→ HeadStatus "IDLE" 13:14:16 Incoming: Checksum (08 3B) 13:14:16 Outgoing: ACK (06) The host writes the ASCII string "ABCDEFGH" to page 10. The reader confirms the write command with SSACK "NO" in the S18F8 message.

Host reads the material ID of a multipage transponder with S18F9 Host to Reader: S18F9

14:31:32 Outgoing: ENQ (05) 14:31:32 Incoming: EOT (04) 14:31:32 Outgoing: Length byte (10) 14:31:32 Outgoing: Header (01 FF 92 09 80 01 00 00 00 2D) 14:31:32 Outgoing: Data 41 04 31 32 33 34 → TARGETID "1234" 14:31:32 Outgoing: Checksum (58 02) 14:31:32 Incoming: ACK (06) Reader to Host: S18F10 14:31:32 Incoming: ENQ (05) 14:31:32 Outgoing: EOT (04) 14:31:32 Incoming: Length byte (37) 14:31:32 Incoming: Header (81 FF 12 0A 80 01 00 00 00 2D) 14:31:32 Incoming: Data 01 04 41 04 31 32 33 34→ TARGETID "1234" 41 02 4E 4F \rightarrow SSACK "NO" 41 08 4E 72 2E 30 30 31 32 33 → MID "Nr.00123" 01 01 01 04 \rightarrow STATUS <L4> 41 02 4E 45 \rightarrow PMInformation "NE" 41 01 30 \rightarrow Alarmstatus "0" 41 04 49 44 4C 45 → OperatingStatus "IDLE" 41 04 49 44 4C 45→ HeadStatus "IDLE" 14:31:32 Incoming: Checksum (OA 80) 14:31:32 Outgoing: ACK (06) The host wants to read the material ID of any transponder. The reader confirms

the success of the read command with SSACK "NO" and returns the material ID "No.00123". (For chapter data items, see page 49).

Host writes the material ID of a multipage transponder with
S18F11
Host to Reader: S18F11
16:46:22 Outgoing: ENQ (05)
16:46:22 Incoming: EOT (04)
16:46:22 Outgoing: Length byte (1C)
16:46:22 Outgoing: Header (01 FF 92 0B 80 01 00 00 00 66)
16:46:22 Outgoing: Data
01 02
41 04 31 32 33 34 → TARGETID "1234"
41 08 4E 72 2E 30 30 41 42 43 \rightarrow MID "Nr.00ABC"
16:46:22 Outgoing: Checksum (F3 02)
16:46:22 Incoming: ACK (06)
Reader to Host: S18F12
16:46:23 Incoming: ENQ (05)
16:46:23 Outgoing: EOT (04)
16:46:23 Incoming: Length byte (2D)
16:46:23 Incoming: Header (81 FF 12 0C 80 01 00 00 00 66)
16:46:23 Incoming: Data
01 03
41 04 31 32 33 34 → TARGETID "1234"
41 02 4E 4F \rightarrow SSACK "NO"
01 01
01 04 \rightarrow STATUS <l4></l4>
41 02 4E 45 \rightarrow PMInformation "NE"
41 01 30 \rightarrow Alarmstatus "0"
41 04 4D 41 4E 54 \rightarrow OperatingStatus "MANT"
41 04 4E 4F 4F 50 \rightarrow HeadStatus "NOOP"
16:46:23 Incoming: Checksum (08 BD)
16:46:23 Outgoing: ACK (06)
The host wants to write a new material ID to a transponder. The reader c
the success of the write MID command with SSACK "NO". Note: the mate

The host wants to write a new material ID to a transponder. The reader confirms the success of the write MID command with SSACK "NO". Note: the material ID can be changed only if the reader is in maintenance status (MANT). If the reader remains in IDLE status, the command fails and the reader answers with SSACK "EE" (execute error).

Operation

```
Host changes the reader status from IDLE to MANT with S18F13
Host to Reader: S18F13
17:12:29 Outgoing: ENQ (05)
17:12:29 Incoming: EOT (04)
17:12:29 Outgoing: Length byte (25)
17:12:29 Outgoing: Header (01 FF 92 0D 80 01 00 00 00 67)
17:12:29 Outgoing: Data
       01 03
        41 04 31 32 33 34 ' → TARGETID "1234"
        41 OB 43 68 61 6E 67 65 53 74 61 74 65
                 → SSCMD "ChangeStatus"
         01 01
          41 02 4D 54 \rightarrow CPVAL1 "MT"
17:12:29 Outgoing: Checksum (13 02)
17:12:29 Incoming: ACK (06)
Reader to Host: S18F14
17:12:29 Incoming: ENQ (05)
17:12:29 Outgoing: EOT (04)
17:12:29 Incoming: Length byte (2D)
17:12:29 Incoming: Header (81 FF 12 0E 80 01 00 00 00 67)
17:12:29 Incoming: Data
       01 03
         41 04 31 32 33 34→ TARGETID "1234"
        41 02 4E 4F \rightarrow SSACK "NO"
        01 01
          01 04 \rightarrow STATUS <L4>
          41 02 4E 45 \rightarrow PMInformation "NE"
          41 01 30 \rightarrow Alarmstatus "0"
          41 04 4D 41 4E 54→ OperatingStatus "MANT"
          41 04 4E 4F 4F 50 → HeadStatus "NOOP"
17:12:29 Incoming: Checksum (08 C0)
17:12:29 Outgoing: ACK (06)
ChangeStatus is an optional service that requests the CIDRW to change its
operating sub status to MAINTENANCE ("MT") or to OPERATING ("OP").
In MAINTENANCE status, the reader could not read (S18F5) or write (S18F7) any
DATA in the defined DATASEG.
```


Operation

```
Host requests a reset with S18F13
Host to Reader: S18F13
11:45:34 Outgoing: ENQ (05)
11:45:34 Incoming: EOT (04)
11:45:34 Outgoing: Length byte (1F)
11:45:34 Outgoing: Header (01 FF 92 0D 80 01 00 00 00 3F)
11:45:34 Outgoing: Data
       01 03
                                 → TARGETID "1234"
        41 04 31 32 33 34
        41 05 52 65 73 65 74 → SSCMD "Reset"
        01 01
          41 02 4D 54 → CPVAL1 "MT"
11:45:34 Outgoing: Checksum (A1 02)
11:45:34 Incoming: ACK (06)
Reader to Host: S18F14
11:45:34 Incoming: ENQ (05)
11:45:34 Outgoing: EOT (04)
11:45:34 Incoming: Length byte (2D)
11:45:34 Incoming: Header (81 FF 12 0E 80 01 00 00 00 3F)
11:45:34 Incoming: Data
       01 03
        41 04 31 32 33 34 → TARGETID "1234"
        41 02 4E 4F \rightarrow SSACK "NO"
        01 01
          01 04 \rightarrow STATUS <L4>
           41 02 4E 45 \rightarrow PMInformation "NE"
           41 01 30 \rightarrow Alarmstatus "0"
           41 04 49 44 4C 45→ OperatingStatus "IDLE"
           41 04 49 44 4C 45→ HeadStatus "IDLE"
11:45:34 Incoming: Checksum (08 68)
11:45:34 Outgoing: ACK (06)
Reset is an optional service used to reinitialize the reader. If reader parameter 9 is
unequal to 0x00, the reset causes a S1F1 "Are you there" message from the
reader.
```


Host requests the setting of a LED with S18F13 Host to Reader: S18F13 15:37:12 Outgoing: ENQ (05) 15:37:12 Incoming: EOT (04) 15:37:12 Outgoing: Length Byte (28) 15:37:12 Outgoing: Header (01 34 92 0D 80 01 00 00 00 46) 15:37:12 Outgoing: Data (01 03) 41 02 30 31 → TargetID "01" 41 06 53 65 74 4C 45 44 → SSCMD "SetLED" 01 03 41 05 46 4C 41 53 48 → LedState "FLASH" 41 02 31 30 → Timeout "10" 41 01 33) \rightarrow LEDNo "3" external LED 15:37:12 Outgoing: Checksum (07 5C) 15:37:12 Incoming: ACK (06) Reader to Host: S18F14 15:37:12 Incoming: ENQ (05) 15:37:12 Outgoing: EOT (04) 15:37:12 Incoming: Length Byte (2B) 15:37:12 Incoming: Header (81 34 12 0E 80 01 00 00 00 46) 15:37:12 Incoming: Data (01 03 41 02 30) 15:37:12 Incoming: Data (31 41 02 4E 4F 01 01 01) 15:37:12 Incoming: Data (04 41 02 4E 45 41 01 31) 15:37:12 Incoming: Data (41 04 49 44 4C 45 41 04) 15:37:12 Incoming: Data (49 44 4C 45) 15:37:12 Incoming: Checksum (07 3A) 15:37:12 Outgoing: ACK (06)

Host requests a perform diagnostic with S18F13 \rightarrow the reader has no valid adjustment! Host to Reader: S18F13 15:52:29 Outgoing: ENQ (05) 15:52:29 Incoming: EOT (04) 15:52:29 Outgoing: Length Byte (26) 15:52:29 Outgoing: Header (01 34 92 0D 80 01 00 00 00 4A) 15:52:29 Outgoing: Data (01 03 41 02 30 31 41 12 50 65 72 66 6F 72 6D 44 69 61 67 6E 6F 73 74 69 63 73 \rightarrow "PerformDiagnostics" $01\ 00$) 15:52:29 Outgoing: Checksum (09 EE) 15:52:29 Incoming: ACK (06) Reader to Host: S18F14 15:52:29 Incoming: ENQ (05) 15:52:29 Outgoing: EOT (04) 15:52:29 Incoming: Length Byte (2B) 15:52:29 Incoming: Header (81 34 12 0E 80 01 00 00 00 4A) 15:52:29 Incoming: Data (01 03 41 02 30) 15:52:29 Incoming: Data (31 41 02 4E 4F 01 01 01) 15:52:29 Incoming: Data (04 41 02 4E 45 41 01 31) 15:52:29 Incoming: Data (41 04 49 44 4C 45 41 04) 15:52:29 Incoming: Data (49 44 4C 45) 15:52:29 Incoming: Checksum (07 3E) 15:52:29 Outgoing: ACK (06) Host to Reader: S18F1 15:52:39 Outgoing: ENQ (05) 15:52:39 Incoming: EOT (04) 15:52:39 Outgoing: Length Byte (24) 15:52:39 Outgoing: Header (01 34 92 01 80 01 00 00 00 4B) 15:52:39 Outgoing: Data (01 02 41 02 30 31 01 01 41 10 53 45 4C 46 5F 54 45 53 54 5F 52 45 53 55 4C 54) → "SELF_TEST_RESULT" 15:52:39 Outgoing: Checksum (07 95) 15:52:39 Incoming: ACK (06)

Operation

Reader to Host: S18F2 15:52:39 Incoming: ENQ (05) 15:52:39 Outgoing: EOT (04) 15:52:39 Incoming: Length Byte (30) 15:52:39 Incoming: Header (81 34 12 02 80 01 00 00 00 4B) 15:52:39 Incoming: Data (01 04 15:52:39 Incoming: Data (41 02 30 31) 15:52:39 Incoming: Data (41 02 4E 4F) 15:52:39 Incoming: Data (01 01) 15:52:39 Incoming: Data (01 01) 15:52:39 Incoming: Data (01 01 04 41 02) 15:52:39 Incoming: Data (4E 45 41 01 31 41 04 49) 15:52:39 Incoming: Data (44 4C 45 41 04 49 44 4C) 15:52:39 Incoming: Data (45) 15:52:39 Incoming: Checksum (07 BE)

The reader detects a wrong TARGETID

Host to Reader: S18F5 13:44:33 Outgoing: ENQ (05) 13:44:33 Incoming: EOT (04) 13:44:33 Outgoing: Length byte (1A) 13:44:33 Outgoing: Header (01 FF 92 05 80 01 00 00 00 40) 13:44:33 Outgoing: Data 01 03 41 04 30 30 30 $30 \rightarrow$ TARGETID "0000" 41 02 30 31 \rightarrow DATASEG "01" A9 02 00 08 \rightarrow DATALENGTH 0x08 13:44:33 Outgoing: Checksum (B8 02) 13:44:33 Incoming: ACK (06)

Operation

```
      Reader to Host: S18F6

      13:44:33
      Incoming: ENQ (05)

      13:44:33
      Outgoing: EOT (04)

      13:44:33
      Incoming: Length byte (18)

      13:44:33
      Incoming: Header (81 FF 12 06 80 01 00 00 00 40)

      13:44:33
      Incoming: Data

      01 03
      41 04 31 32 33 34 \rightarrow TARGETID "1234"

      41 02 43 45
      \rightarrow SSACK "CE"

      41 00
      \rightarrow DATA ""

      13:44:33
      Incoming: Checksum (04 78)

      13:44:33
      Outgoing: ACK (06)

      The TARGETID in the S18F5 message does not correspond to the TARGETID in the
```

reader detecting the error. The reader therefore answers with communication error "CE".

The reader detects no tag

Host to Reader: S18F5 17:29:25 Outgoing: ENQ (05) 17:29:25 Incoming: EOT (04) 17:29:25 Outgoing: Length byte (1A) 17:29:25 Outgoing: Header (01 FF 92 05 80 01 00 00 00 43) 17:29:25 Outgoing: Data 01 03 41 04 31 32 33 34 \rightarrow TARGETID "1234" 41 02 30 31 \rightarrow DATASEG "01" A9 02 00 08 \rightarrow DATALENGTH 0x08 17:29:25 Outgoing: Checksum (C5 02) 17:29:25 Incoming: ACK (06)

Operation

```
Reader to Host: S18F6
17:29:27 Incoming: ENQ (05)
17:29:27 Outgoing: EOT (04)
17:29:27 Incoming: Length byte (18)
17:29:27 Incoming: Header (81 FF 12 06 80 01 00 00 00 43)
17:29:27 Incoming: Data
       01 03
        41 04 31 32 33 34 \rightarrow TARGETID "1234"
        41 02 54 45 → SSACK "TE"
        41 00
                         \rightarrow DATA ""
17:29:27 Incoming: Checksum (04 8C)
17:29:27 Outgoing: ACK (06)
The reader receives a valid S18F5 message.
If there is no tag in the reading (writing) range of the antenna, the reader
answers with a tag error "TE".
```


This chapter gives you an overview of the following topics:

- General
- Qualified troubleshooting personnel
- Safety instructions
- Error codes
- Frror display with LED
- → Reader does not respond
- Reset
- Power cut
- Software releases
- Customer service

8.1 General

Follow the instructions specified in the safety chapter

Follow the general safety information in the chapter -> Safety Instructions.

- The transponder reader and its components must be serviced by the manufacturer only!
- If errors occur, follow the instructions in this section. Do not carry out any error eliminating measures other than the ones described in this section!
- If you are uncertain about errors and their handling, contact the manufacturer, see → Customer service. Have the serial number of the transponder reader ready as shown on the label (see → Device label) when contacting the manufacturer!

8.2 Qualified troubleshooting personnel

Error handling shall be carried out by specially trained personnel only. If you are uncertain about the qualifications that are required, contact the manufacturer.
Error handling the device without the special skills required and unqualified interference with the device can result in personal injury and damage to the reader and/or connected devices.

8.3 Safety instructions

	All antenna resonant circuit components carry high voltages.
WARNING	when spare parts are required, use only manufacturer-specified parts.
$\mathbf{\nabla}$	Unauthorized substitution of parts can result in fire, electric shock or other hazards.
	Electrostatic charges can damage electronic components within the device.
	ESD protective measures must be applied when opening the device (\Rightarrow ESD instructions).
CAUTION	Never short-circuit the fuse! This may result in fire or damage to the device.
$\mathbf{\nabla}$	Only use fuses specified by the manufacturer.

8.4 Error codes

8.4.1 Error ID and Alarm ID

ID	Name	Description	Possible cause	Correcting action
0	none	no error	not used	no
1	auto fail	automatic reading is not possible *	reader is still busy with a former read or write request	wait until the former request is done
2	ex fail	read or write initiated from the host and/or other actions cannot be carried out *	reader is still busy with a former read or write request	wait until the former request is done
3	write fail	data transfer to the transponder not possible *	reader is still busy with a former read or write request	wait until the former request is done
4 no tag		no transponder or antenna is installed	no readable tag within the reading range	put a transponder into the antenna range, verify type and function of the transponder
	no tag		antenna is not connected correctly	check antenna connection
			antenna and transponder are in a bad orientation	check orientation between antenna and transponder (see → Antenna installation)
			antenna is not tuned	perform an antenna tuning (see → DIP switches)
			disturbing field at transmitting freqency	check antenna surroundings for possible disturbing sources (monitors, servo motors,)
			antenna is damaged or too close to metal	exchange antenna, verify antenna installation
		invalid parameter or data	data sent with a command are wrong	check syntax and data of command
5	invalid		sent parameter is not implemented or is out of range	check syntax and value of parameter
6	unknown	unknown error	not used	no

ID	Name	Description	Possible cause	Correcting action
7	unconfig	the device is not configured	wrong reader address is sent	check syntax of message, check parameter F "Reader address"
0	chock	parity and/or checksum	wrong baud rate is set	check baud rate of serial interface (COM port)
0	CHECK	error	transmission errors on serial communication	check RS232 cable and connectors, check disturbing sources at RS232
			double or wrong acknowledgement	check host communication settings
9	void ackn	no valid acknowledge	serial communication is interrupted	check RS232 cable and connectors, check disturbing sources at RS232
,		acknowledge)	Ethernet communication is interrupted	check Ethernet cable and connec- tors, check the Link LED and the Traffic LED, verify IP address set- tings
A (10)	locked	locked page cannot be written	page to be written is locked (permanently write protected)	check page number to write, replace tag with new one
			length of message is longer than shown at the length byte	check message length, check length byte
:	msg len	message too long or too short or message is not received completley	no valid end sign of message (end sign 0xD) detected	check syntax of message
			not all characters are transmitted (Intercharacter timeout)	check syntax of messages, check RS232 or Ethernet connection
;	invalid	invalid command	unknown command was sent	check syntax of command
B (11)	no ackn	the message which has to be confirmed has been sent the maximum number of times (RS232 maxrepeat) and has not been confirmed by the terminal within the defined time frame (see \rightarrow Parameter 5 (0x05))	host system does not acknowledge the message	check availability of the host system (terminal), check RS232 cables and connectors, check Ethernet cable and connectors, check the Connect LED and the Traffic LED, verify IP address settings

ID	Name	Description	Possible cause	Correcting action
C (12)	bad type	incorrect transponder type	incorrect transponder type is used (read only or read/write instead of Multipage)	check transponder type and replace it

* because the device is still busy or because a message has not been confirmed by the previous read up to now

8.4.2 SSACK

SSACK	Name	Description	Possible cause	Correcting action
NO	Normal mode	indicates the success of the operation requested	-	no
EE	Execute error	transponder data and read ID sequence can- not be read	transponder has no or too less valid ASCII characters on MID area	program transponder with valid ASCII characters on MID area
			parameters for MID area are not matching transponder data	set reader parameters for MID area corresponding to transponder data area for the MID
			reader is still busy with a former read or write request	wait until the former request is done
			incorrect reader mode for operation	switch to correct mode (MANT for writing MID)
CE	Commu- nication error	syntax error of message ore message format or incorrect value	data sent with a com- mand are wrong	check syntax and data of command
			list format, amount of lists or data type is wrong	check syntax of SECS message
			sent parameter is not implemented or not within the range	check syntax and parameter value
HE	Hard- ware error	error in the head of the ID reader/writer, head of the ID reader/writer is deactivated		

SSACK	Name	Description	Possible cause	Correcting action
TE	Tag error	no transponder or antenna installed	no readable tag within the reading range	put a transponder into the antenna range, verify type and function of the transponder
			antenna is not connected correctly	check antenna connection
			antenna and transponder are in a bad orientation	check orientation between antenna and transponder (see → Antenna installation)
			antenna is not tuned	perform an antenna tuning
			disturbing field at transmitting freqency	check antenna surroundings for possible disturbing sources (monitors, servo motors,)
			antenna is damaged or too close to metal	exchange antenna, verify antenna installation

8.4.3 Stream function

Stream Function	Description	Possible cause	Correcting action
S9F1	unrecognized DeviceID	message with wrong Devi- ceID was sent to the reader	send a message with the correct DeviceID (can be taken from the S9F1 message)
S9F3	unrecognized stream type	message with a unkown stream type was sent to the reader	check stream function syntax of the message
S9F5	unrecognized function type	messagw with a unkown function type was sent to the reader	check strem function syntax of the message
S9F7	illegal data	wrong RIC at reset message	check RIC value
S9F9	Transaction Timer Timeout	host system does not acknowledge the message or sends no answer	Check availability of the host sys- tem (terminal), check RS232 cable and connector, check Ethernet cable and connector, check link LED and traffic LED, check IP address settings

8.5 Error display with LED

8.5.1 Power LED does not light up

- Check the power supply and the connection cables!
- If the LED does not light up, disconnect the device from the power supply and carefully remove the fuse. Test the fuse. If it is defective, replace it with a fuse specified by the manufacturer!
- If the above measures do not solve the problem, leave the reader disconnected and contact the manufacturer!

8.5.2 Read fail LED flashes

- Reader detected a hardware failure: no valid antenna adjustment or antenna has broken.
- Switch DIP8 to "On" to start an antenna tuning!

If Read fail LED flashes again:

- Check if the antenna is located too near to a strong metallic environment. Relocate the antenna with more distance!
- Check if the antenna and the antenna cable are connected correctly. Use another antenna cable if available!
- **I**f these measures do not solve the problem, contact the manufacturer!

8.6 Reader does not respond

- Check if the interface connection cable is undamaged and correctly connected to both reader and host!
- Check the status as indicated by the LED!
- Download the test software from the Internet <u>www.brooks-rfid.com</u> → Service). Follow the instructions!
- If these measures do not solve the problem, contact the manufacturer!

8.7 Reset

- In the case of a malfunction, a hardware reset can be performed by switching the power supply off and on!
- After the reset, the reader performs a self-test. The self test can take up to five seconds. As the first step in these self-tests, all LEDs (Status, Read OK and Read Fail) light up. At the second step, the reader displays the selected protocol type. The read fail LED signalizes the SECS-II protocol. The read ok LED signalizes the ASCII protocol. If the test was successful, all LEDs except the power LED go out!

8.8 Power cut

After a power cut, the reader performs a reset with self-test. The self-test can take up to five seconds. In the first step of these self-tests, all LEDs (status, read fail, read ok) light up. In the second step, the reader displays the selected protocol type. The read fail LED signalizes the SECS-II protocol. The read ok LED signalizes the ASCII protocol.

If the test was successful, all LEDs, except for the power LED, go out.

8.9 Software releases

Release Date	Version	Description
May 2011	SG2S10/SG2IV1.0	First version
Januar 2012	SG2S11/SG2IV1.1	Hardware version 25 characters long, serial UDP protocol, parity and baud rate can also be set in ASCII
Mai 2012	SG2S12/SG2IV1.2	Auto. protocol recognition can be deactivated with DIP1, manual protocol setting with DIP2

8.10 Customer service

Brooks Automation (Germany) GmbH RFID Division Gartenstr. 19 D-95490 Mistelgau GERMANY Telephone +49 (0) 9279 - 991 550 Fax +49 (0) 9279 - 991 501

Fax	+49 (0) 9279 - 991 501
E-mail	rfid.support@brooks.com

24 hour technical support hotline (Brooks):

US and Canada	+1 978 262 2900
Europe	+49 1804 2255 4887
Japan	+81 45 477 5980
China	+86 21 5131 7066
Taiwan	+886 3 5525225
Korea	+82 31 288 2500
Singapore	+65 6464 1481

9 Dismantling and Storage

This chapter gives you an overview of the following topics:

- Dismantling
- Storage

9.1 Dismantling

- Remove the power supply device!
- Remove all cables!
- Loosen and remove the mounting screws!
- **Control** Remove the device from the installation area!

9.2 Storage

Store the reader and its components in a clean and dry environment with the power supply disconnected. Make sure the contacts remain clean. Observe the necessary storage conditions.

10 Transport and Disposal

This chapter gives you an overview of the following topics:

- Transport
- Disposal

10.1 Transport

For transportation purposes such as mailing, use a firm cardboard box. Use adequate padding material to protect the device on all sides.

10.2 Disposal

The device and its components are made of various materials.

Dispose of these materials separately, and observing the legal regulations of your country.

Do not dispose of the device in regular household waste.

Disconnect the electronic components from the case and dispose of them as follows:

- the case as plastic trash
- the electronic components, antennas and cables as electronic waste

Accessories

11 Accessories

This chapter gives you an overview of the following topics:

- Antennas
- Cables
- Power supply
- Mounting adapter plates

11.1 Antennas

11.1.1 Available types

Туре	Part-No.	Picture
Micro antenna (xx = cable length)	ANT-7Mxx	0
Mini antenna (xx = cable length)	ANT-7Kxx	0
Rod antenna (xx = cable length)	ANT-7Sxx	6

xx = cable length $03 \rightarrow 300 mm$ $05 \rightarrow 500 mm$ $10 \rightarrow 1,000 mm$ $15 \rightarrow 1,500 mm$ other length on request Special antenna types are available on request.

Accessories

11.1.2 Reading and writing ranges

ATTENTION

!

If the transponder is very close to the antenna the transponder may be detuned by the metal of the antenna and reading/writing is not possible. We recommend keeping a minimum distance between transponder and antenna of about 10 mm.

The following reading/writing ranges are measured with a 32 mm glass transponder (read only, read/write, multipage). If you use a multipage transponder, the diagrams are only valid for page 1 of the multipage transponder.

Reading range micro antenna

Transponder parallel to antenna Transponder vertical to antenna

Accessories

Accessories

Reading range mini antenna

Product Manual - RFID Reader LF60C SoliD

Accessories

Writing range mini antenna

Product Manual - RFID Reader LF60C SoliD

Accessories

- - - - - Transponder vertical to antenna

antenna

Writing range rod

Accessories

----- Transponder vertical to antenna

Accessories

11.2 Cables

Туре	Part-No.	Picture
Power supply cable (cable length: 2,000 mm)	KBV24-20-020	
RS232 cable (cable length: 2,000 mm)	RSK9-20-020	

11.3 Power supply

Туре	Part-No.	Picture
Power supply 1.8 A	SVG24V-1,8A-020 SVG24V-1,8A-GB-020 SVG24V-1,8A-US-020	Ø
Power supply 0.6 A	SVG24V-0,6-UNI-020	

Accessories

11.4 Mounting adapter plates

No.	Part-No.	Picture
1	RMS-020 Vertical mounting	
2	RMS-040 Fixing holes like LF60 Eco	
3	RMS-050 Fixing holes like LF80	
4	RMS-060 Fixing holes like ATR9000	

Α

A - Sensor event 59 ACKC3 81 ACKC5 81 ALARM STATUS 82 ALCD 82 ALID 82 ALTRID 83 ALTX 83 Antenna 32 Antenna port 24 ATTRVAL 85 Automatic tuning 57

В

Block transfer protocol 68

С

Carrier ID 107 CE conformity 12 Checksum 62, 67 CIDRW 107 CMD 45 Commands of protocol 43 CPVAL 86

D

DATA 86 Data 45 DATALENGTH 87 DATASEG 87 DC power 34 Device ID 66 Device label 26 DHCP-Server 36 DIP switches 38

Е

e - Error message 53 EAC 87 ECID 88 ECV 88 EIA RS-232-C 64 Electronic Industries Association Standards 64 Error message 47 Ethernet 36

F

FCC Rules 10

Index

G

G - Request parameter value 50

Н

H - Heartbeat 54
High byte 41
HSMS message examples 124
HSMS message format 72
HSMS message format summary 75
HSMS option 69
Humidity 27

I - Set tuning of the RF module 57 IP address 36

J

J - Request tuning 58

L

L - Lock a page of the transponder 56 Low byte 41

Μ

MDLN 88 Message 41 Message block structure 66 Message set 79 MF 88 MHEAD 88 MICO antenna 33 MID 89 MIDAC 89 MIDRA 90 Mini antenna 33

Ν

N - Reset 52 No tag 47 NOTAG 48

0

OFLACK 90 ONLACK 90

Ρ

P - Set parameter 51 Page 45 PAGE_ID 90

PAGEDATA 91

Parameter 38, 45 Parameter 0, Gateway ID 97 Parameter 0, Sensor delay 60 Parameter 1, Baudrate 97 Parameter 1, Read mode 60 Parameter 11, ReaderID 99 Parameter 12, HeadID 99 Parameter 2, Inter-character timeout T1 98 Parameter 2, Read page 61 Parameter 20, Sensor delay for presence sensor 99 Parameter 22, Sensor-triggered action for presence sensor 99 Parameter 23, Triggered read frequency 100 Parameter 24, r/w max repeat 100 Parameter 25, Transponder type 100 Parameter 26, Sensor activity 100 Parameter 27, Watchport for presence 100 Parameter 29, Transponder load duration (read mode) 101 Parameter 3, Block protocol timeout T2 98 Parameter 3, r/w repeat time 61 Parameter 30, r/w synchronize 101 Parameter 31, Auto-adjust value (read mode) 101 Parameter 32, Auto-adjust value (write mode) 101 Parameter 33, Automatic antenna adjustment 102 Parameter 34, Sensor type for presence sensor 102 Parameter 35, Special features 102 Parameter 36, DIP switch activation 102 Parameter 37, MID area 103 Parameter 38, Test after software reset 103 Parameter 4, r/w max repeat 61 Parameter 4, Reply timeout T3 98 Parameter 40, Transponder load duration (write-mode) 103 Parameter 41, Delay time between read cycles 103 Parameter 42, CarrierIDOffset 104 Parameter 43, CarrierIDLength 104 Parameter 44, FixedMID 105 Parameter 45, MIDFormat 105 Parameter 5, Inter-block timeout T4 98 Parameter 5, RS232 repeat time 61 Parameter 6, Retry limit RTY 98 Parameter 6, RS232 max repeat 61 Parameter 7, TARGETID high byte 98 Parameter 7, Watchport 61 Parameter 8, TARGETID low byte 98 Parameter 9, Heartbeat time 99 Parameter 98, Protocol change allowed 106 Parameter 99, Customer code 106 Parameter F, Reader address 62 Parameter No. 45

Index

Parameter value 45 PIN 91 PM Information 92 Power/RS485 bus connection 24, 34 Prohibition symbols 17

R

R - Automatic read 49 RAC 92 Read mode 60 Read page 61 Reader address 62 Reader ID 46 Relative humidity 27 Remote I/O 37 Remote I/O port 23 Response code 46 **RIC 92** RJ45 35 Rod antenna 32 RS232 35 RS232 max repeat 61 RS232 port 23 RS232 repeat time 61

S

Safety Instructions 16 Safety symbols 16 SECS-I 64 SECS-I message examples 124 SECS-II 64, 76 SEMI E99 107 SEMI Equipment Communication Standard 76 SEMI Equipment Communications Standard 64 Sensor delay 60 Serial No. 46 Serial number 26 SHEAD 92 SOFTREV 92 SSACK 93 SSCMD 94 STATUS 94

Т

TARGETID 95 Temperature 27

V

V - Query software version 55

Index

W

W - Write data 48 Warning symbols 17 Warranty 14 Watchport 61

Х

X - Read data 47