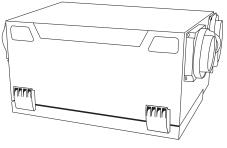

HRVBBLHA, HRVBBSVA, HRVBBSHA HEAT RECOVERY VENTILATORS


Product Data

HRVBBLHA

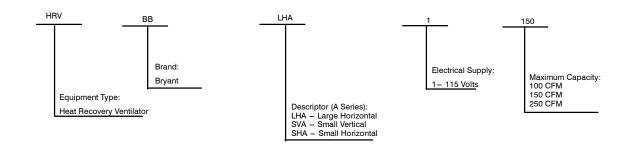
HRVBBSVA

HRVBBSHA

The Heat Recovery Ventilation (HRV) system offered by Bryant is the finest on the market today. The HRV provides efficient and cost effective heat recovery during the heating season when needed most.

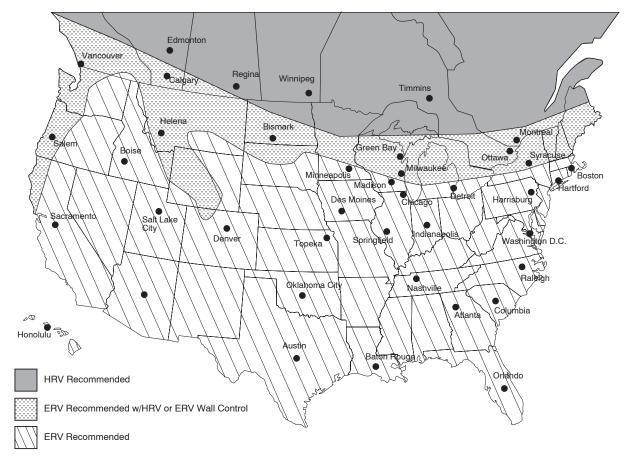
As temperatures drop below 23° F (-5°C), indoor air is recirculated periodically through the heat exchanger core to prevent frost from forming. Competitors' methods of supplementary electric defrost waste energy. Unlike rotary wheel heat exchangers which mix air streams, these cross-flow or counterflow heat exchangers ensure that there is no mixing of the stale air stream with the fresh outdoor air stream.

A filter installed on the incoming outdoor air stream removes large airborne particles from the intake air stream before they enter the heat exchanger and reduces the maintenance required. The units' acoustically engineered design makes the Bryant HRV the quietest on the market and ensures that comfort is felt, not heard.

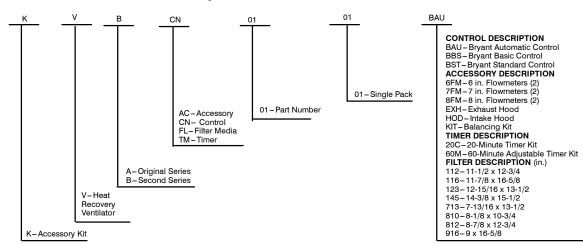

Unlatching two (2) suitcase style latches allows easy removal of the filters and core for cleaning.

NOTE: The HRV should not be installed in an attic or unconditioned space unless provisions are made for drainline freezing and condensation.

STANDARD FEATURES


- Energy saving defrost cycle
- · Cross-flow, counterflow heat exchangers
- One filter on incoming air; one filter on outgoing air to protect core
- Acoustical design
- No-tools maintenance
- · Polypropylene heat exchanger core

Model number nomenclature



Climate Map for Energy and Heat Recovery Ventilators

Controls and accessories part number nomenclature

Kit Number	Description	Where Used
KVBCN0101BBS	Basic HRV Control	Used with all HRVs
KVBCN0101BST	Standard HRV Control	Used with all HRVs
KVBCN0101BLT	Bryant OneTouch Control	Used with all HRVs as a main wall control
KVAAC0101HCO	Intake and Exhaust Hood	Used as a single intake/exhaust for HRVBBSVA1100, HRVBBSHA1100 only.
KVAAC0101HOD	Exterior Intake and Exhaust Hood	2 Required
KVATM010120B	20 Minute Push Button Timer	Used with all HRVs when 20 minute manual operation is required
KVATM010160M	60 Minute Timer	Used with all HRVs, time is adjustable between 10 and 60 minutes
KVAAC0101KIT	Start-Up Balancing Kit	Start up Balancing Kit, includes (2) 6 in. Flow Meter Collars & Magnehelic Gage
KVAAC01016FM	6 in. Flow Meter Collar	At start up, when 6 in. duct work is connected to HRV
KVAAC01017FM	7 in. Flow Meter Collar	At start up, when 7 in. duct work is connected to HRV
KVAAC01018FM	8 in. Flow Meter Collar	At start up, when 8 in. duct work is connected to HRV
KVAFK0101100	Internal Filter	Used with HRVBBSHA1100, HRVBBSVA1100 Unit 10 1/2 in. x 6 3/4 in. x 1/2 in.
KVAFK0201150	Internal Filter	Used with HRVBBLHA1150, HRVBBLHA1250 Unit 15 1/2 in. x 7 in. x 5/8 in.

Control Description	Fan Speed Control	Dehumidistat Control	Continuous Mode	Intermittent Mode
OneTouch	Yes	No	Yes	Yes
Basic	Yes	No	Yes	No
Standard	Yes	Yes	Yes	Yes

Control Features

Basic Control:

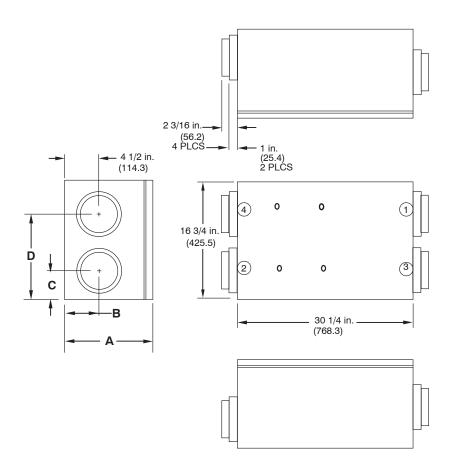
Allows the user to manually set fan speed to low or high as required to maximize comfort.

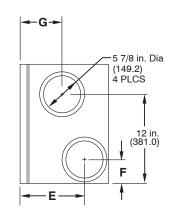
Standard Control:

Offers automatic dehumidistat control and the option to select continuous or intermittent fan operation. Setting the wall control to low will activate the continuous mode.

OneTouch Control:

Allows control of ventilator with the touch of a button. This control will operate as a main wall control. The OneTouch will operate the unit in Intermittent Mode (20 minutes per hour), continuous low speed, continuous high speed, and off.


Automatic Defrost Cycle Features

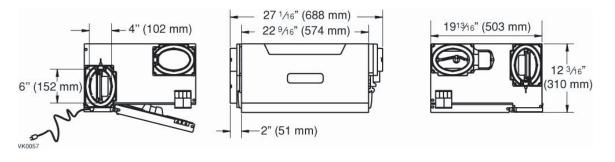

All models offer a non-electric defrost cycle feature which prevents frost and ice buildup within the heat recovery core. When the outside air temperature falls below 23° F (-5°C) it is electronically sensed and the dampers close the outside air ports. This allows warm indoor air to recirculate within the heat recovery core. The frequency of this cycle increases as the outside air temperature decreases.

Model	25°F TO 55°F (−5°C TO −15°C)		4°F TO −17°F (−15.6°C TO −27.3°C)		BELOW –18°F (–27.8°C)	
	DEFROST*	EXCHANGE [†]	DEFROST*	EXCHANGE†	DEFROST*	EXCHANGE†
HRVBBLHA	6 Minutes	60 Minutes	6 Minutes	32 Minutes	6 Minutes	20 Minutes
HRVBBSHA	6 Minutes	60 Minutes	6 Minutes	32 Minutes	6 Minutes	20 Minutes
HRVBBSVA	6 Minutes	60 Minutes	6 Minutes	32 Minutes	6 Minutes	20 Minutes

* All defrost times are in the standard mode (as shipped)

† Time between defrost when within specified temperature range

NOTES:


FRESH AIR FROM HRV TO HOUSE
FRESH AIR FROM OUTSIDE TO HRV
STALE AIR FROM HOUSE TO HRV
STALE AIR FROM HRV TO OUTSIDE

A05228

	A	4	E	3	c	>	[ט
Model	in.	mm	in.	mm	in.	mm	in.	mm
HRVBBLHA1150	17-1/4	438.2	10-1/2	266.7	4-1/2	114.3	11	279.4
HRVBBLHA1250	17-1/4	438.2	10-1/2	266.7	4-1/2	114.3	11	279.4

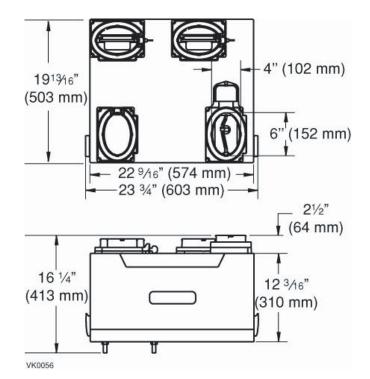

	E		F		G	
Model	in.	mm	in.	mm	in.	mm
HRVBBLHA1150	7-3/4	196.9	4-3/8	111.1	7-3/4	196.9
HRVBBLHA1250	7-3/4	196.9	5-13/16	147.6	7-3/4	196.9

Fig. 1 - HRVBBLHA Unit Dimensions

A05426

Fig. 2 - HRVBBSHA Unit Dimensions

A05425

Fig. 3 - HRVBBSVA Unit Dimensions

Physical data

Model	HRVBBLHA1150	HRVBBLHA1250	HRVBBSVA1100	HRVBBSHA1100
Port Locations	Side	Side	Тор	Side
Core Type	Polypropylene Cross Flow	Polypropylene Cross Flow	Polypropylene Cross Flow	Polypropylene Cross Flow
Weight — Ib (kg)	65 (29.5)	73 (33.2)	42	42
Shipping Weight — Ib (kg)	75 (34)	83 (37.6)	48	48
Shipping Dimensions (in.) Height Width Depth	23-1/16 36-1/16 17-13/16	22-15/16 35-1/16 22-15/16	25.5 17.5 23.0	30.0 15.0 23.0

Physical data (continued)

Model	HRVBBLHA1150	HRVBBLHA1250	HRVBBSVA1100	HRVBBSHA1100
Capacity—CFM @ 0.5-0.3ESP (in. wc)	130-168	191–210	99–107	99–107
Efficiency (Sensible)—Percent 32°F (0° C) 13°F (-25° C)	65 65	65 60	66 66	6 6 66
Efficiency (Latent)—Percent @ all temperatures	0	0	0	0
Heat Core Exchange Area— cu ft (cu m)	120 (3.4)	166 (4.7)	55 (5.1)	55 (5.1)

Model	HRVBBLHA1150	HRVBBLHA1250	HRVBBSVA1100	HRVBBSHA1100
Voltage	120	120	120	120
Max Power — watts	150	218	150	150
Max Amps	1.4	1.9	1.3	1.3

HEATING LOAD BTU

Methods to Size HRVs

Method 1:

- 1. Calculate cubic feet of occupied space
- 2. Multiply by recommended air changes per hour (AC/h)
- 3. Divide by 60 minutes per hour to convert to CFM

Example: 2000 sq ft with 8 ft ceiling

0.35 air changes per hour (AC/h)

(2000 sq ft x 8 ft ceiling x 0.35 AC/h) / 60 min/h = 93.3 CFM

Method 2:

- 1. Multiply number of people times 15 CFM/person
- 2. Multiply number of bathrooms times 20 CFM/each
- 3. Add 25 CFM for kitchen
- Example: 2 people

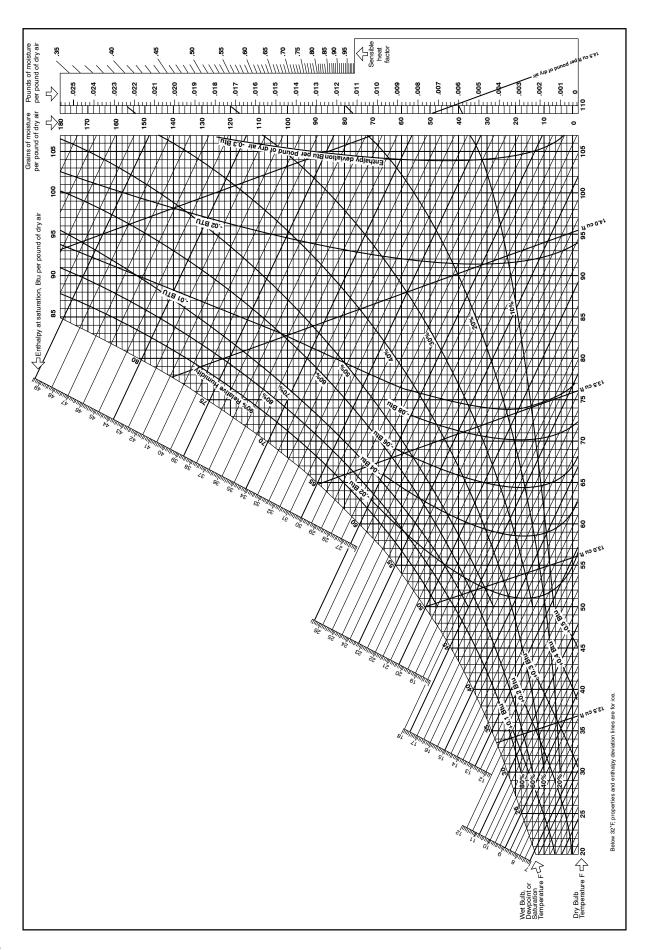
2 bathrooms 1 kitchen

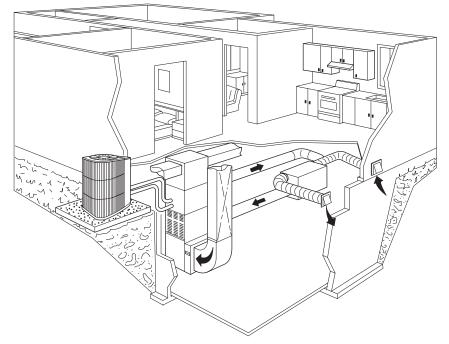
 $(2 \times 15) + (2 \times 20) + 25 = 95$ CFM

Additional heating and cooling load charts

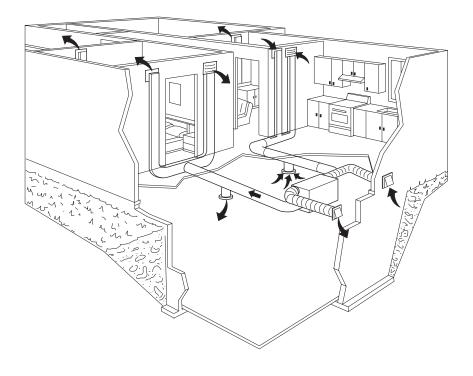
Although the ventilators process the outside air before it enters the home, additional heating and cooling loads need to be considered.

Outside Temp °F	Heat Load (BTUh) @ Inside Design Temp 72°F
	HRVBBLHA1150
-25	4,688
-20	4,466
-15	4,598
-10	4,334
-5	4,069
0	3,805
5	3,541
10	3,502
15	3,220
20	2,938
25	2,950
30	2,636
35	2,322
40	2,009


The heating load chart shows the heating loads in BTUh for a range of winter design temperatures for each model of ventilator. **EXAMPLE:** The heating design temperature for Milwaukee, WI, is $-4^{\circ}F$. At $-5^{\circ}F$, the additional heating load of the HRVBBLHA1250 is 8417 BTUh. This additional load should be taken into consideration when sizing the heating equipment.


Outside	Cooling Load (BTUh) @ Inside Design Temp 75°F and 50% Relative Humidity				
Enthalpy BTU/lb	HRVBBLHA1150	HRVBBLHA1250			
30	670	1,071			
31	1,090	1,741			
32	1,509	2,411			
33	1,928	3,080			
34	2,347	3,750			
35	2,766	4,419			
36	3,185	5,089			
37	3,604	5,759			
38	4,023	6,428			
39	4,442	7,098			
40	4,861	7,767			
41	5,280	8,437			
42	5,699	9,107			

The cooling load chart shows the loads in BTUh also. To use the cooling load chart, first find the design enthalpy from a psychrometric chart using the design dry bulb and wet bulb temperatures. (See following psychrometric chart.) The cooling load can then be found for a range of enthalpies for each ventilator.


EXAMPLE: The cooling design dry bulb temperature for Milwaukee, WI, is $87^{\circ}F$ and the average wet bulb at that temperature is $73^{\circ}F$. On the psychrometric chart the enthalpy is about 37.7 BTU/lb of dry air which will round up to 38 BTU/lb of dry air. In the left column, at 38 BTU/lb the HRVBBLHA1250 would have an additional cooling load of 6428 BTUh. This additional load should be taken into account when sizing the air cooling equipment.

HRV installed with independent air distribution

A99298

© Bryant Heating & Cooling Systems 7310 W. Morris St. Indianapolis, IN 46231 Printed in U.S.A. Edition Catalog No. PDS HRV.150.1 Manufacture 406% rives the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations. Replaces: NEW

A99297