

R1230CB

OEM UHF Multiregional Ultra Compact Reader

R1230CBEVB

Quark Reader Evaluation Board

R1230ADAT

Quark Adapter Board

Technical Information Manual

Revision n. 00

25/11/2010

Scope of Manual

The goal of this manual is to provide the basic information to work with the QUARK family.

Change Document Record

Date	Revision	Changes
25 Nov 2010	00	Preliminary release.

CAEN RFID srl

Via Vetraia, 11 55049 Viareggio (LU) - ITALY Tel. +39.0584.388.398 Fax +39.0584.388.959 info@caenrfid.it www.caenrfid.it

© CAEN RFID srl - 2010

Disclaimer

No part of this manual may be reproduced in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of CAEN RFID.

The information contained herein has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. CAEN RFID reserves the right to modify its products specifications without giving any notice; for up to date information please visit www.caenrfid.it.

Federal Communications Commission (FCC) Notice (Preliminary)

This device was tested and found to comply with the limits set forth in Part 15 of the FCC Rules. Operation is subject to the following conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received including interference that may cause undesired operation. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This device generates, uses, and can radiate radio frequency energy. If not installed and used in accordance with the instruction manual, the product may cause harmful interference to radio communications. Operation of this product in a residential area is likely to cause harmful interference, in which case, the user is required to correct the interference at their own expense. The authority to operate this product is conditioned by the requirements that no modifications be made to the equipment unless the changes or modifications are expressly approved by CAEN RFID.

Preliminary Product Information

This document contains information for a new product. CAEN RFID reserves the right to modify this product without notice.

"Preliminary" product information describes products that are ready for production, but for which full characterization data is not yet available. CAEN RFID believes that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (Express or implied). You are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by CAEN RFID for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties.

Disposal of the product

Do not dispose the product in municipal or household waste. Please check your local regulations for disposal/recycle of electronic products.

Index

	Scope of Manual	2
	Change Document Record	2
Inde	ex	3
List	of Figures	4
List	of Tables	4
1	Introduction	5
	General Information	6
	Ordering Code	7
	Installation Notice	8
2	Quark R1230CB	9
	Technical Specifications Table	10
	External Connections	11
	R1230CB supply and I/O connector electrical characteristics	13
	Power supply connection	14
	General purpose I/O connections	14
	External reset	15
	UART connection	15
	Antenna port specifications	15
	Reader – Tag Link Profiles	
	Firmware Upgrade	16
	BLS operation	16
	Firmware upgrade via R1230CBEVB board	
	PCB Pad Layout	
3	Quark R1230CBEVB	
	Technical Specifications Table	19
	Connection diagram	
	Technical drawings	
	Electrical scheme	
	External Connections	
4	Quark R1230ADAT	
	Technical Specifications Table	
	Technical drawings	
	Electrical scheme	
	External Connections	
5	Quark Regulatory Compliance	
-	FCC Compliance	

List of Figures

Fig. 1.1: QUARK R1230CB OEM UHF Multiregional compact reader	6
Fig. 1.2: QUARK R1230CBEVB - Quark Reader Evaluation Board	6
Fig. 1.3: QUARK R1230ADAT - Quark Adapter Board	6
Fig. 1.4: Connection of the R1230CBEVB to the Quark R1230CB module	8
Fig. 1.5: Connection of the R1230ADAT to the Quark R1230CB module	8
Fig. 2.1: QUARK R1230CB technical drawings: top view	11
Fig. 2.2: QUARK R1230CB technical drawings: lateral views	11
Fig. 2.3: QUARK R1230CB power supply connection	14
Fig. 2.4: QUARK R1230CB GPIO connection example	14
Fig. 2.5: QUARK R1230CB external reset	15
Fig. 2.6: QUARK R1230CB RS232 connection	15
Fig. 2.7: BSL sequence	
Fig. 2.8: QUARK R1230CB upgrade program window	17
Fig. 2.9: PCB pad layout	17
Fig. 3.1: Quark R1230CBEVB technical drawing	20
Fig. 3.2: Quark R1230CBEVB electrical scheme	21
Fig. 4.1: Quark R1230ADAT technical drawing	24
Fig. 4.2: Quark R1230ADAT electrical scheme	25
List of Tables	
Tab. 2.1: QUARK R1230CB Technical Specifications	10
Tab. 2.2: QUARK R1230CB connector pinout	
Tab. 2.3: QUARK R1230CB supply and I/O connector electrical characteristics	13
Tab. 2.4: RF port pinout	15
Tab. 2.5: RF port electrical characteristics	16
Tab. 2.6: QUARK R1230CB reader to tag link profiles	16
Tab. 3.1: QUARK R1230CBEVB Technical Specifications	19
Tab. 3.2: QUARK R1230CBEVB connector pinout	22
Tab. 4.1: QUARK R1230ADAT Technical Specifications	24
Tab. 4.2: QUARK R1230ADAT connector pinout	26

1 Introduction

This Chapter gives general information about the **Quark** family. It contains these topics:

- General Information
- Ordering Code
- Installation Notice

General Information

The Quark (Model R1230CB), the new OEM reader of the easy2read© Family, is an UHF multiregional ultra compact reader for low-power, high performances UHF RFID applications.

With programmable output power in 15 steps from 9dBm to 23dBm, the reader can detect tags at more than 2 mt of distance (depending on antenna and tag dimensions).

Due to its low power consumption, the module is specifically designed to be easily integrated in battery powered devices as well as powered directly by a standard USB port.

The radio frequency core of the module permits to achieve fast reading and to be used in dense reader and dense tag environments for top-class rated performances.

The compactness of the device and the board-to-board connector allow to embed the R1230CB inside the new small form factor industrial handhelds, smartphone accessories, small USB dongles and other compact form factor devices.

The R1230CB complies with and can operate in both European and US regulatory environments and due to its multiregional capabilities, it is ideal for integration in devices requiring compliance to different geographical regions.

The Mod. R1230CBEVB evaluation board allows to manage the Mod. R1230CB OEM UHF multiregional Compact Reader directly via USB

In case customers want to replace directly with Quark reader others CAEN RFID OEM modules (i.e. A828, A828A, A528), the Mod. R1230ADAT adapter board can be used.

Fig. 1.1: QUARK R1230CB OEM UHF Multiregional compact reader



Fig. 1.2: QUARK R1230CBEVB - Quark Reader Evaluation Board

Fig. 1.3: QUARK R1230ADAT - Quark Adapter Board

It is also available the R1230CBDK Development KIT with QUARK reader, antenna, tags.

Kit contents:

- no. 1 R1230CB Quark Low Power OEM UHF Compact RFID Reader
- no. 1 R1230CBEVB Quark Reader Evaluation Board
- no. 5 WEPCLABEL002 EPC C1G2 Label Short Dipole EU
- no. 1 A927Z Temperature logger UHF semi-passive tag (EPC C1G2)
- $\bullet\,$ no. 1 RT0005 Temperature logger UHF semi-passive tag (EPC C1G2) Blistered
- no. 1 WANTENNAX009 Linear polarized antenna for printers 865 870 MHz (ETSI)
- no. 1 WANTENNAX012 Linear polarized antenna for printers 902 928 MHz (FCC)
- no. 1 cable MINI USB no. 1 CD-ROM containing SW libraries, CAENRFID demo SW and technical manuals

Ordering Code

Code	Description
WR1230ADAT01	R1230ADAT - Quark Adapter Board
WR1230CBEVBX	R1230CBEVB - Quark Reader Evaluation Board
WR1230CXBAAA	R1230CB – Quark Low Power OEM UHF Compact RFID Reader
WR1230CBDKEU	R1230CBDK - Development KIT with QUARK reader, antenna, tags

Installation Notice

The correct way to connect the Quark R1230CB module to the evaluation board and the adapter board is shown in the following pictures.

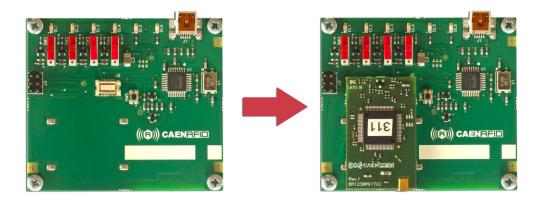


Fig. 1.4: Connection of the R1230CBEVB to the Quark R1230CB module.

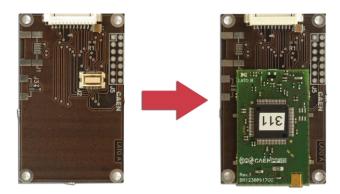


Fig. 1.5: Connection of the R1230ADAT to the Quark R1230CB module.

2 Quark R1230CB

This Chapter provide the basic information to work with the **Quark R1230CB multiregional ultra compact reader**. It contains these topics:

- Technical Specifications Table
- External Connections
- Reader Tag Link Profiles
- Firmware Upgrade
- PCB Pad Layout

Technical Specifications Table

_	902÷928 MHz (FCC part 15)
Frequency Band	865.600÷867.600 MHz (ETSI EN 302 208)
	Programmable in 15 levels (1dB step) from 9dBm to 23dBm (from 8mW to
Output Power Level	200mW) conducted
Output Power Accuracy	+/- 1dB
Antenna VSWR Requirement	2:1 or better for optimum performances
Antenna Connector	Nr. 1 MMCX type
Frequency Tolerance	±10 ppm over the entire temperature range
	4 channels (compliant to ETSI EN 302 208 v1.2.1)
Number of Channels	50 hopping channels (compliant to FCC part 15.247).
	All subsets of 902-928 MHz band are supported
Standard Compliance	EPC C1G2
Standard Compliance	Others by FW upgrade
Digital I/O	Four I/O lines 3.3V out @ 3mA; 3.3V input level
	Baudrate: 115200
	Databits: 8
	Stopbits: 1
UART Serial Port	Parity: none
	Flow control: none
	3.3 V I/O voltage level
	9.6÷115 kbit/s data rate (settable)
Dimensions	(W)25 x (L)40 x (H)6 mm ³
Dimensions	$(1.0 \times 1.6 \times 0.2 \text{ inch}^3)$
Supply Voltage Range	2.5V ÷ 5.5V
	- 1.6W @ RF out = 23dBm
Power Consumption	- 1.3W @ RF out = 17dBm
	- 0.25W in idle mode
Operating Temperature	-10 °C to +55 °C
Weight	8 g

Tab. 2.1: QUARK R1230CB Technical Specifications

External Connections

The location of the connectors is shown in Fig. 2.1. Their mechanical specifications are listed below:

Antenna Port: RF Coax Connector Huber+Suhner type 82MMCX-S50-0-2/111_K (to be used with Huber+Suhner type 11MMCX-50-1-1/111_0).

Supply and I/O connector: Molex P.N. 53748-0208 (mates with Molex 52991-0208 to be used on the host board).

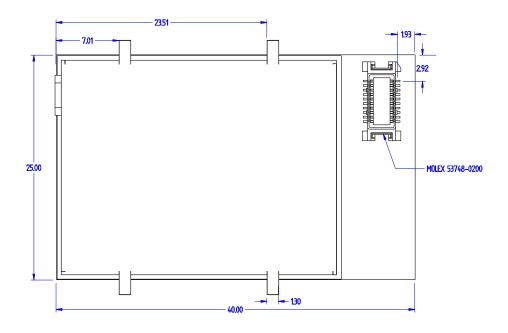


Fig. 2.1: QUARK R1230CB technical drawings: top view

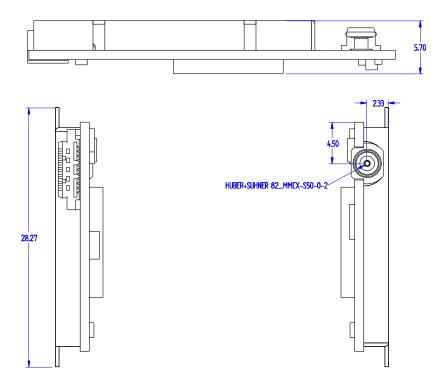


Fig. 2.2: QUARK R1230CB technical drawings: lateral views

Supply and I/O connector pinout is shown in the following table¹:

Pin#	Signal	Description
1	GND	Ground
2	TCK	TCK JTAG signal (debug purpose only)
3	GND	Ground
4	/RST	Reset (active low)
5	TXD	UART TX to host
6	TMS	TMS JTAG signal (debug purpose only)
7	RXD	UART RX from host
8	TDI	TDI JTAG signal (debug purpose only)
9	5V_OUT	5Vdc auxiliary output voltage
10	TDO	TDO JTAG signal (debug purpose only)
11	BSL_SEL	Bootloader interface selection ²
12	TST	TST JTAG signal (also for BSL operation)
13	VDD_M	3.3Vdc auxiliary output voltage
14	GPIO0	General Purpose IO #0
15	VDD_M	3.3Vdc auxiliary output voltage
16	GPIO1	General Purpose IO #1
17	VIN	Input supply voltage
18	GPIO2	General Purpose IO #2
19	VIN	Input supply voltage
20	GPIO3	General Purpose IO #3

Tab. 2.2: QUARK R1230CB connector pinout

The GPIO0-GPIO3 pins are 4 general purpose bidirectional pins, their default direction (or after a Reset) is input.

The RXD/TXD pins are used to communicate with the Quark reader via UART port; to establish a link with the device you must configure your COM port as follows:

Baud rate: 115200

Parity: None

Data bits: 8
Stop bits: 1

Flow Control: none

JTAG pins, unless otherwise noted, are for internal debug purpose only and shall not be connected by the user.

/RST, BSL_SEL and TST pins shall be properly driven to start the bootloader of R1230CB embedded microcontroller in case the user wants to upgrade the firmware image of the reader. In normal operation BSL_SEL and TST shall be at low level or left unconnected.

See § BLS operation (pag. 16) for the description of bootloader operation.

VDD_M and 5V_OUT are two auxiliary supply sources with 20mA maximum current capability to be used as supply voltages of external components.

 $^{^{1}\,\}mathrm{Debug}$ purpose and unused pins should not be connected.

² If BSL_SEL is at high level, the UART interface is connected to the serial port dedicated to microcontroller Boot Strap Loader operation required for flashing the firmware inside the MCU memory. This pin shall be at low level or left unconnected in normal operation.

R1230CB supply and I/O connector electrical characteristics³

Pin name	Pin No.	Parameter	Min	Туре	Max	Unit
GND 1,3						
		VIL	-0.3		0.75	V
TCK	2	VIH	1.5		3.6	V
		Input current			10	μΑ
		VIL	-0.3		0.6	
/p.co==	_	VIH	1.65		3.6	
/RESET	4	Internal pull-up resistance		47		
		Pulse width	10			μs
		VOL	0		0.55	V
TXD	5	VOH	2.5		3.5	V
		Output current			3.0	mA
		VIL	-0.3		0.75	V
TMS	6	VIH	1.5		3.6	V
		Input current			10	μΑ
		VIL	-0.3		0.75	V
RXD	7	VIH	1.5		3.6	V
		Input current			10	μΑ
		VIL	-0.3		0.75	V
TDI	8	VIH	1.5		3.6	V
	-	Input current			10	μΑ
	9	Output DC voltage	4.75	5.00	5.25	V
5V_OUT		Output current			20	mA
		VOL	0		0.55	V
TDO	10	VOH	2.5		3.5	V
		Output current			3.0	μΑ
		VIL	-0.3		1.0	V
BSL_SEL	11	VIH	2.2		3.6	V
_		Internal pull-down resistance		10		kΩ
		VIL	-0.3		0.75	V
TST	12	VIH	1.5		3.6	V
		Internal pull-down resistance	45			kΩ
		Output DC voltage	3.1	3.3	3.5	V
VDD_M	13,15	Output current			20	mA
		VOL	0		0.55	V
		VOH	2.5		3.5	V
25:273	14, 16,	Output current			3.0	mA
GPIO[0:3]	18, 20	VIL	-0.3		0.75	V
		VIH	1.5		3.6	V
		Input current			10	μΑ
		Input supply voltage	2.5		5.5	V
\ u. 4	47.10	Supply current @ Vin = 2.5V		0.68		А
VIN ⁴	17,19	Supply current @ Vin = 3.7V		0.42		А
		Supply current @ Vin = 5.0V		0.30		А
			I	1	I	1

Tab. 2.3: QUARK R1230CB supply and I/O connector electrical characteristics

 $^{^{\}rm 3}$ Exceeding maximum values reported in the table may cause permanent damage to the model.

⁴ External 100uF bypass capacitor between Vin and GND is recommended for proper operation.

Power supply connection

In the following schematic suggested R1230CB power supply connection is shown.

An external 100uF bypass capacitor between Vin and GND is recommended for proper operation.

The use of fuse F1 (or an equivalent solid state current limiter) is recommended since R1230CB doesn't provide internal current limitation protection.

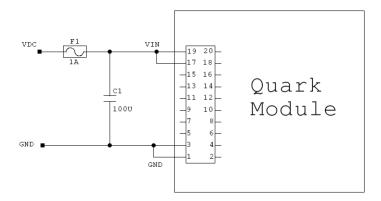


Fig. 2.3: QUARK R1230CB power supply connection

General purpose I/O connections

The GPIO0-GPIO3 pins are 4 general-purpose bidirectional pins. Their default direction after a power on reset or a general reset is set to input.

GPIO, when configured as Outputs, can be used to drive indicators as leds or buzzers or to send trigger signal to others equipments.

GPIO, when configured as Inputs, can accept control signals from other equipments or trigger signals from sensors (i.e. photocells).

In the following schematic an example of application of GPIO is shown.

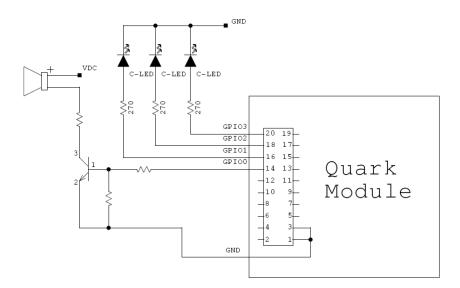


Fig. 2.4: QUARK R1230CB GPIO connection example

External reset

R1230CB manual reset can be performed by forcing at low level /RESET pin for $10\mu s$ at least. /RESET pin is pulled-up by an internal resistor.

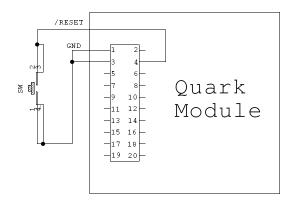


Fig. 2.5: QUARK R1230CB external reset

UART connection

The RXD/TXD pins are used to communicate with the R1230CB board via UART port. Since Quark RX/TX are TTL level signals, in order to connect it with a PC, a TTL/RS232 translator shall be used (please refer to the diagram below).

To establish a link with the device host COM port shall be configured as follows:

Baud rate: 115200
Parity: None
Data bits: 8
Stop bits: 1
Flow Control: none

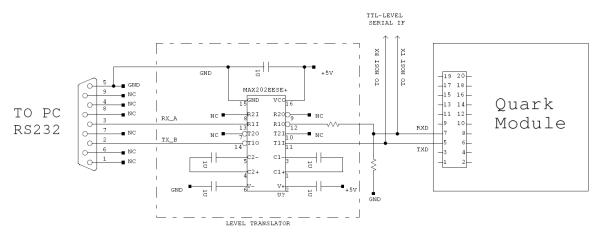


Fig. 2.6: QUARK R1230CB RS232 connection

Antenna port specifications

In the following table the pinout of R1230CB antenna is shown.

Pin #	Function	Direction	Description
INNER	RF OUT	OUT	RF output
OUTER	GND	-	Ground

Tab. 2.4: RF port pinout

Parameter	Min	Тур.	Max	Unit
DE output nouser	8		200	mW
RF output power	9		23	dBm
Output power vs. power setting accuracy			± 1	dB
RF port impedance		50		Ω
Recommended antenna VSWR			2:1	-

Tab. 2.5: RF port electrical characteristics

Reader – Tag Link Profiles

Quark reader supports different modulation and return link profiles according to EPC Class1 Gen2 protocol.

In the following table are reported all profiles that have been tested for the compliance with ETSI and FCC regulations.

Link profile #	Regulation	Modulation	Return Link
0	ETSI - FCC	DSB–ASK; f=40kHz	FM0; f = 40kHz
1	ETSI - FCC	DSB–ASK; f=40kHz	Miller (M=4); f = 256kHz

Tab. 2.6: QUARK R1230CB reader to tag link profiles

Firmware Upgrade

Quark reader firmware upgrade is based on Boot Start Loader (BSL) of the embedded microcontroller inside the module.

An upgrade software has been developed to be used with Quark evaluation board (mod. R1230CBEVB).

BLS operation

In order to start the BSL of Quark internal microcontroller /RST, TST and BSL_SEL signal shall be driven as in the picture below:

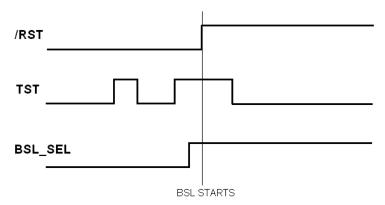


Fig. 2.7: BSL sequence

The BSL program execution starts when TST pin has received a minimum of two positive transitions and if TST is high while /RST rises from low to high. BSL_SEL shall be at high level before BSL starts. Pulses length and distance between edges of all signals shall be 10ms at least.

Firmware upgrade via R1230CBEVB board

Quark firmware upgrade can be managed via USB by using the evaluation board (mod.R1230CBEVB) and the SW upgrade program.

In order to upgrade the firmware follow the steps below:

- Connect to the USB port the evaluation board with the Quark reader installed
- Verify the virtual COM port associated to the board
- Open the FW upgrade program
- Select the COM port
- Select the image file by clicking on "Open" button
- Click on "Upgrade" button
- Disconnect the USB cable from the evaluation board
- Connect again the USB cable in order to restore normal reader operation.

Fig. 2.8: QUARK R1230CB upgrade program window

PCB Pad Layout

In the picture below the recommended PCB pad layout to be implemented on the user host board is shown. The 4 square pads shall be used to solder R1230CB shield and shall be connected to ground. In addition is shown the position and the layout required for Molex 52991-0208 connector, which mates with R1230CB supply and I/O connector, and which shall be soldered on the host board.

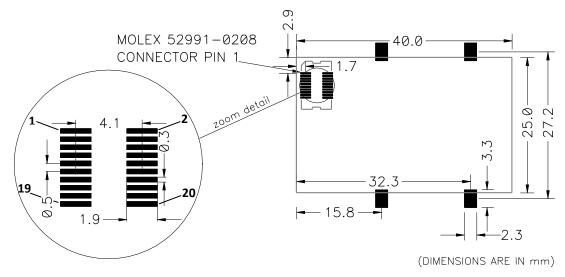
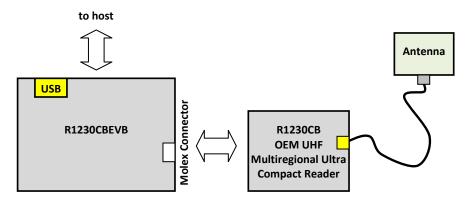


Fig. 2.9: PCB pad layout

3 Quark R1230CBEVB

This Chapter provide the basic information to work with the **Quark R1230CBEVB Evaluation Board**. It contains these topics:

- Technical Specifications Table
- Connection diagram
- Technical drawings
- Electrical scheme
- External Connections


Technical Specifications Table

	SW1= RESET
Switch	
	SW2SW5=GPIO
	USB Type A plug connector
	Bus powered USB 2.0 device
	Must be connected to Hight-power Port (500 mA @ VBUS)
	It appears as USB serial port
	Virtual Com Port (VCP) drivers for Windows XP/Vista/Seven (7), Windows
USB Port	CE 4.2, Linux 2.40 and greater
	Baudrate: 115200
	Databits: 8
	Stopbits: 1
	Parity: none
	Flow control: none
	Red LED: Power
User Interface	Yellow LED: USB communication activity
	Green LED: GPIO[03].
Dimensions	(W)70.9 x (L)62.5 x (H)11.6 mm ³
Dimensions	(2.8 x 2.5 x 0.5 inch ³)
Electrical Power	DC Voltage 5V +/-5%
Electrical Power	Max 400 mA ⁵
Operating Temperature -10 °C to +55 °C	

Tab. 3.1: QUARK R1230CBEVB Technical Specifications

Connection diagram

The following block diagram shows how to connect the Mod. R1230CB with the PC host via the Mod. R1230CBEVB evaluation board.

_

⁵ With Quark reader operating.

Technical drawings

The location of the connectors is shown in Fig. 3.1. Their mechanical specifications are listed below:

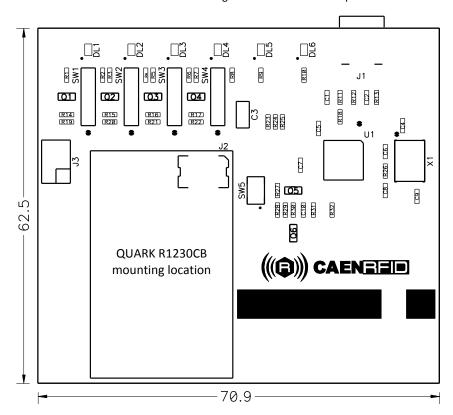


Fig. 3.1: Quark R1230CBEVB technical drawing

Electrical scheme

The electrical scheme of the Quark R1230CBEVB is shown in Fig. 3.2.

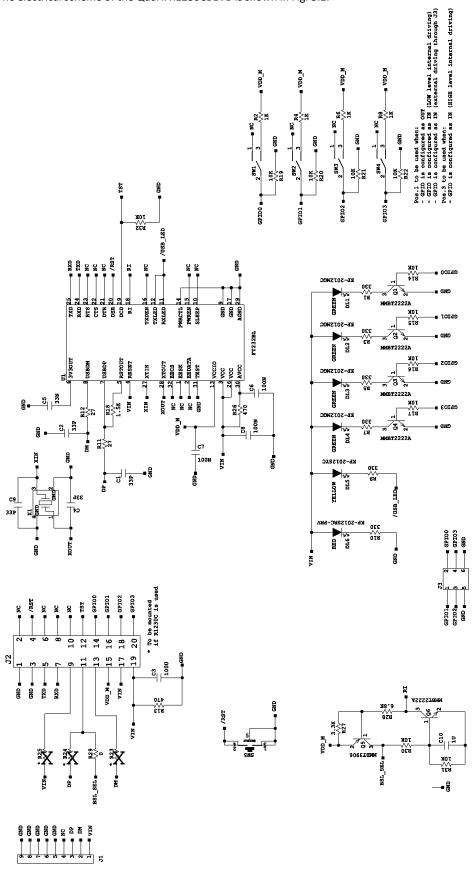


Fig. 3.2: Quark R1230CBEVB electrical scheme

External Connections

GPIO connector pinout is shown in the following table:

Pin #	Signal
1	GPIO 1
2	GPIO 0
3	GPIO 2
4	GPIO 3
5	GND
6	GND

Tab. 3.2: QUARK R1230CBEVB connector pinout

4 Quark R1230ADAT

This Chapter provide the basic information to work with the **Quark R1230ADAT Adapter Board**. It contains these topics:

- Technical Specifications Table
- Technical drawings
- Electrical scheme
- External Connections

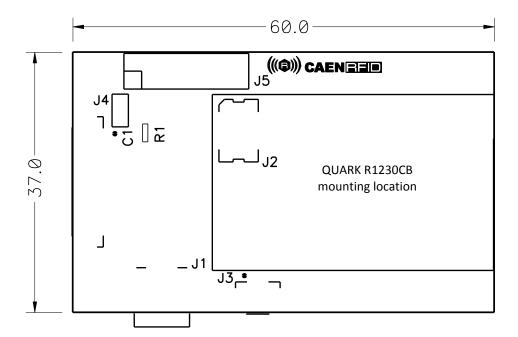
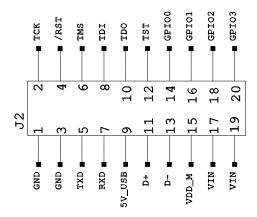
Technical Specifications Table

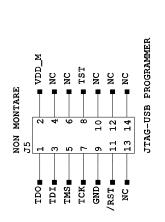
Digital I/O	Four I/O lines 3.3 V out @ 3mA
UART Serial Port	Baudrate: 115200
	Databits: 8
	Stopbits: 1
	Parity: none
	Flow control: none
	3.3 V I/O voltage level
	9.6÷115 kbit/s data rate (settable)
Dimensions	(W)60 x (L)37 x (H)4.6 mm ³
	$(2.4 \times 1.5 \times 0.2 \text{ inch}^3)$
Supply Voltage Range	2.5V ÷ 5.5V
Operating Temperature	-10 °C to +55 °C

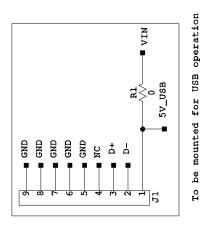
Tab. 4.1: QUARK R1230ADAT Technical Specifications

Technical drawings

The location of the connector is shown in Fig. 4.1. The mechanical specifications are listed below:


Fig. 4.1: Quark R1230ADAT technical drawing



Electrical scheme

The electrical scheme of the Quark R1230ADAT is shown in Fig. 4.2.

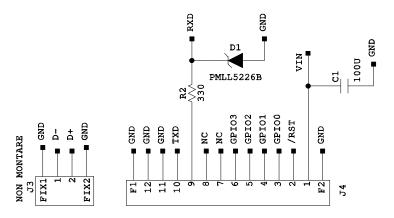


Fig. 4.2: Quark R1230ADAT electrical scheme

External Connections

Supply and I/O connector pinout is shown in the following table:

Pin#	Signal	Description
1	VIN	Input supply voltage
2	/RST	Reset (active low)
3	GPIO0	General Purpose IO #0
4	GPIO1	General Purpose IO #1
5	GPIO2	General Purpose IO #2
6	GPIO3	General Purpose IO #3
7	NC	Not connected
8	NC	Not connected
9	RXD	UART RX from host
10	TXD	UART TX to host
11	GND	Ground
12	GND	Ground

Tab. 4.2: QUARK R1230ADAT connector pinout

Quark Regulatory Compliance

FCC Compliance

This equipment has been tested and found to comply with Part 15 of the FCC Rules.

NOTE:

- (a) Any changes or modification not approved by CAEN RFID could void the user's authority to operate the equipment.
- (b) The QUARK R1230CB Module, which is rated at 200 mW output, is approved for operation with the CAENRFID antenna Mod. WANTENNAX012 (Linear polarized antenna 1.3dBi gain 902 928 MHz). Use of other than the approved antenna with this unit may result in harmful interference with other users, and cause the unit to fail to meet regulatory requirements.
- (c) The QUARK R1230CB transmitter module is approved for battery operation. In case that the module is embedded inside a device powered by AC line, the overall equipment shall be tested to comply with Section 15.207 requirements.