

WEATHERMAKER® 48A2,A3,A4,A5020-060 Single Package Gas Heating/Electric Cooling Rooftop Units with *COMFORT*LINK™ Controls and PURON® (R-410A) Refrigerant

Installation Instructions

CONTENTS

Pag	e
SAFETY CONSIDERATIONS	1
INSTALLATION	
Step 1 — Provide Unit Support	1
ROOF CURB	-
ALTERNATE UNIT SUPPORT	
Step 2 — Rig and Place Unit	2
POSITIONING	
ROOF MOUNT	
Step 3 — Field Fabricate Ductwork	2
Step 4 — Make Unit Duct Connections	2
Step 5 — Install Flue Hood	7
Step 6 — Trap Condensate Drain	/
Step 7 — Install Gas Piping	0
• POWER WIRING	0
FIELD POWER SUPPLY	
FIELD CONTROL WIRING	
Step 9 — Make Outdoor-Air Inlet	
Adjustments	0
 ECONOMIZER AND FIXED OUTDOOR 	
AIR DAMPER	
Step 10 — Position Power Exhaust/Barometric	
Relief Damper Hood	0
Step 11 — Route VAV Static Pressure Sensor 3	0
Step 11 — Route VAV Static Pressure Sensor 3 Step 12 — Install All Accessories	2
Step 13 — Field Modifications	4

SAFETY CONSIDERATIONS

Installation and servicing of air-conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair, or service air-conditioning equipment.

Untrained personnel can perform the basic maintenance functions of cleaning coils and filters and replacing filters. All other operations should be performed by trained service personnel. When working on air-conditioning equipment, observe precautions in the literature, tags and labels attached to the unit, and other safety precautions that may apply.

Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloth for unbrazing operations. Have fire extinguishers available for all brazing operations.

Before performing service or maintenance operations on unit, turn off main power switch to unit. Electrical shock could cause personal injury.

- 1. Improper installation, adjustment, alteration, service, or maintenance can cause property damage, personal injury, or loss of life. Refer to the User's Information Manual provided with this unit for more details.
- 2. Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

What to do if you smell gas:

- 1. DO NOT try to light any appliance.
- 2. DO NOT touch any electrical switch, or use any phone in your building.
- 3. IMMEDIATELY call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.
- 4. If you cannot reach your gas supplier, call the fire department.

Disconnect gas piping from unit when pressure testing at pressure greater than 0.5 psig. Pressures greater than 0.5 psig will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than 0.5 psig, it *must* be replaced before use. When pressure testing field-supplied gas piping at pressures of 0.5 psig or less, a unit connected to such piping must be isolated by closing the manual gas valve(s).

Puron (R-410A) refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on Puron refrigerant equipment. If service equipment is not rated for Puron refrigerant, equipment damage or personal injury may result.

INSTALLATION

Step 1 — Provide Unit Support

- 1. All panels must be in place when rigging or damage to unit may occur.
- 2. Unit is not designed for handling by fork truck. Damage to unit may occur.

ROOF CURB — For vertical discharge units, assemble or install accessory roof curb in accordance with instructions shipped with this accessory. See Fig. 1-3. Install insulation, cant strips, roofing, and counter flashing as shown. Ductwork can be installed to roof curb before unit is set in place. Curb should be level. This is necessary to permit unit drain to function properly. Unit leveling tolerance is shown in Fig. 1-3. Refer to Accessory Roof Curb Installation Instructions for additional information as required. When accessory roof curb is used, unit may be installed on class A, B, or C roof covering material.

IMPORTANT: The gasketing of the unit to the roof curb is critical for a watertight seal. Install gasket with the roof curb as shown in Fig. 1-3. Improperly applied gasket can also result in air leaks and poor unit performance.

ALTERNATE UNIT SUPPORT — When the preferred curb or slab mount cannot be used, support unit with sleepers on perimeter, using unit curb support area. If sleepers cannot be used, support long sides of unit (refer to Fig. 4-10) with a minimum number of 4-in. x 4-in. pads spaced as follows: 48A2,A3,A4,A5020-035 units require 3 pads on each side; 48A2,A3,A4,A5040-050 units require 4 pads on each side; 48A2,A3,A4,A5060 units require 6 pads on each side. Unit may sag if supported by corners only.

Step 2—**Rig and Place Unit**—Inspect unit for transportation damage. See Tables 1-6 for physical data and specifications. File any claim with transportation agency.

Do not drop unit; keep upright. Use spreader bars over unit to prevent sling or cable damage. This unit must be handled with a crane and can not be handled by a fork truck. Level by using unit frame as a reference; leveling tolerance is shown in Fig. 1-3. See Fig. 11 for additional information. Unit operating weight is shown in Table 2.

NOTE: On retrofit jobs, ductwork may be attached to the old unit instead of a roof curb. Be careful not to damage ductwork when removing old unit. Attach existing ductwork to roof curb instead of unit.

Four lifting lugs are provided on the unit base rails as shown in Fig. 4-10. Refer to rigging instructions on unit.

POSITIONING — Maintain clearance, per Fig. 4-10, around and above unit to provide minimum distance from combustible materials, proper airflow, and service access.

Do not install unit in an indoor location. Do not locate unit air inlets near exhaust vents or other sources of contaminated air. For proper unit operation, adequate combustion and ventilation air must be provided in accordance with Section 5.3 (Air for Combustion and Ventilation) of the National Fuel Gas Code, ANSI Z223.1 (American National Standards Institute).

Although unit is weatherproof, guard against water from higher level runoff and overhangs.

Locate mechanical draft system flue assembly at least 4 ft from any opening through which combustion products could enter the building, and at least 4 ft from any adjacent building. When unit is located adjacent to public walkways, flue assembly must be at least 7 ft above grade.

ROOF MOUNT — Check building codes for weight distribution requirements. See Fig. 11. Unit operating weight is shown in Table 2. **Step 3** — **Field Fabricate Ductwork** — Secure all ducts to building structure. Use flexible duct connectors between unit and ducts as required. Insulate and weatherproof all external ductwork, joints, and roof openings with counter flashing and mastic in accordance with applicable codes.

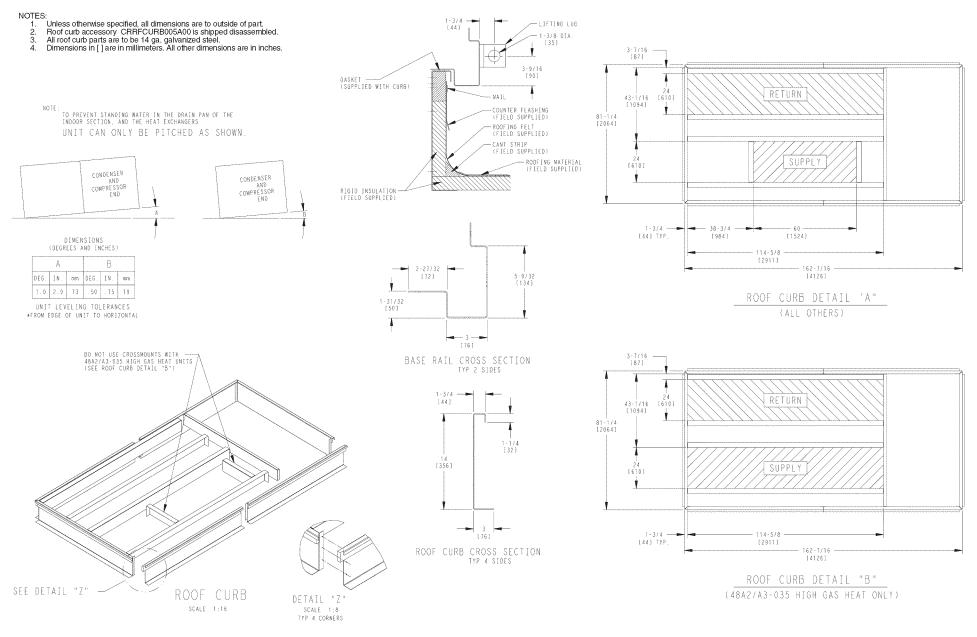
NOTE: Due to width of the horizontal supply and return ductwork, provisions should be made for servicing of the outdoor air filters (i.e., catwalk over ductwork).

Ducts passing through an unconditioned space must be insulated and covered with a vapor barrier. Outlet grilles must not lie directly below unit discharge. The return duct must have a 90-degree elbow before opening into the building space if the unit is equipped with power exhaust.

To attach ductwork to roof curb, insert duct approximately 10 to 11 in. up into roof curb. Connect ductwork to 14-gage roof curb material with sheet metal screws driven from inside the duct.

Follow AMCA (Air Movement and Control Association) guidelines relating to ductwork connections to the unit. These guidelines recommend a minimum $2^{1/2}$ equivalent duct diameters of straight duct connected to supply air inlet and outlet openings before any transitions, fittings, dampers, etc. Failure to adhere to these guidelines may result in system effects which can impact the unit's ability to achieve published performance.

For vertical supply and return units, tools or parts could drop into ductwork and cause an injury. Install a 90-degree elbow turn in the supply and return ductwork between the unit and the conditioned space. If a 90-degree elbow cannot be installed, then a grille of sufficient strength and density should be installed to prevent objects from falling into the conditioned space.


Step 4 — Make Unit Duct Connections

48A2 AND A3 UNITS — Unit is shipped for through-thebottom duct connections. Field-fabricated ductwork should be **attached to the roof curb**. Supply and return duct dimensions are shown in Fig. 4-6. Air distribution is shown in Fig. 12. Refer to installation instructions shipped with roof curb for more information.

48A4 AND A5 UNITS — Remove shipping covers from supply and return air openings. Attach field-supplied ductwork to unit. Connect to the unit with a single duct for **all** supply openings and with a single duct for all return openings. Splitting of the airflow into branch ducts should not be done at the unit. Sufficient duct length should be used prior to branching to ensure the air temperatures are well mixed within the ductwork. See Fig. 7-9 for duct opening dimensions. Secure all ducts to building structure. Air distribution is shown in Fig. 7-9 and Fig. 13.

Install accessory barometric relief or power exhaust in the field-fabricated return ductwork. Refer to Step 10 — Position Power Exhaust/Barometric Relief Damper Hood section on page 30 for more information.

Instructions continued on page 17.

Fig. 1 — Roof Curb — 48A2,A3020-035 Units

 $\boldsymbol{\omega}$

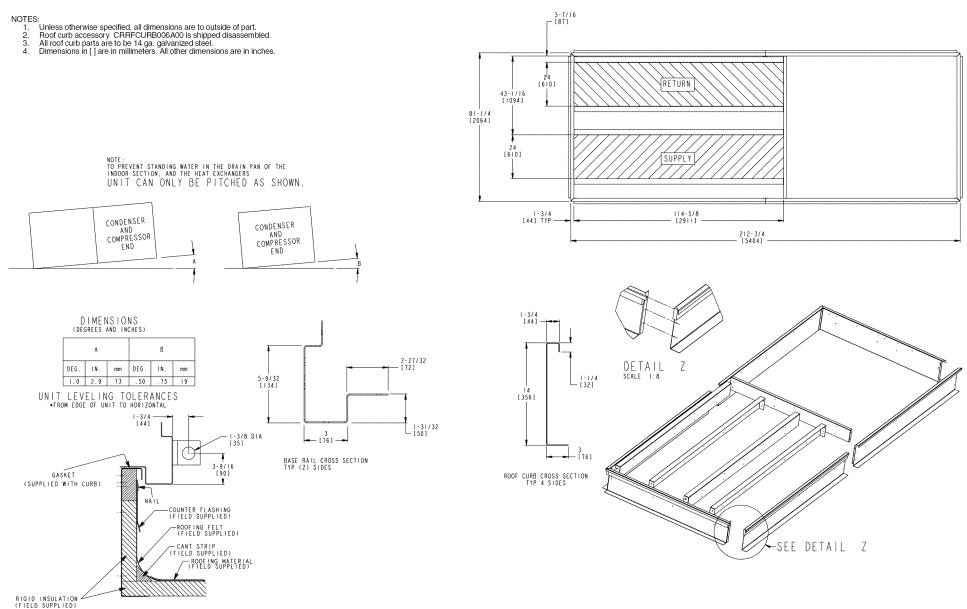


Fig. 2 — Roof Curb — 48A2,A3040-050 Units

4

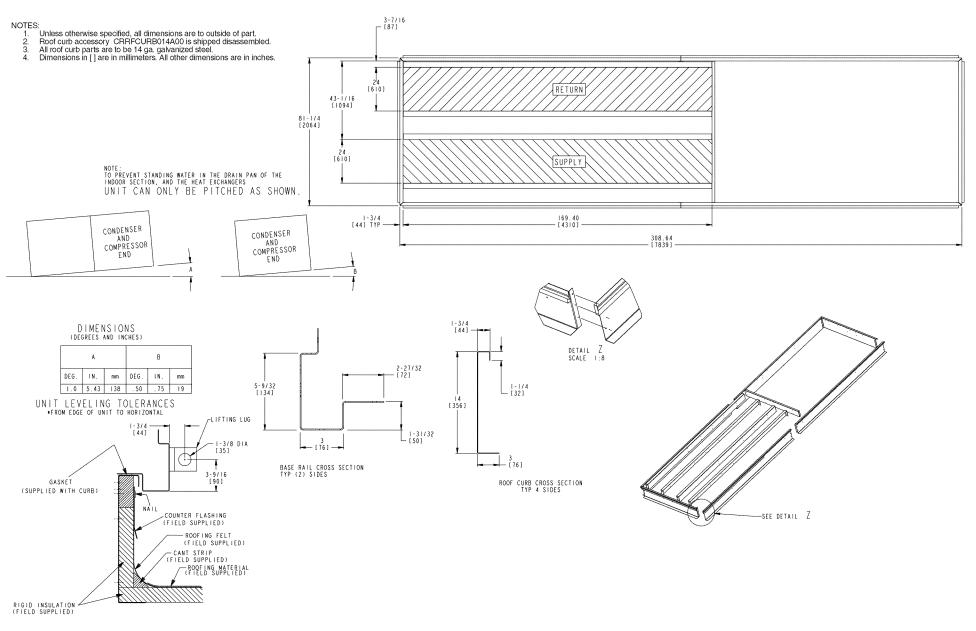


Fig. 3 — Roof Curb — 48A2,A3060 Units

S

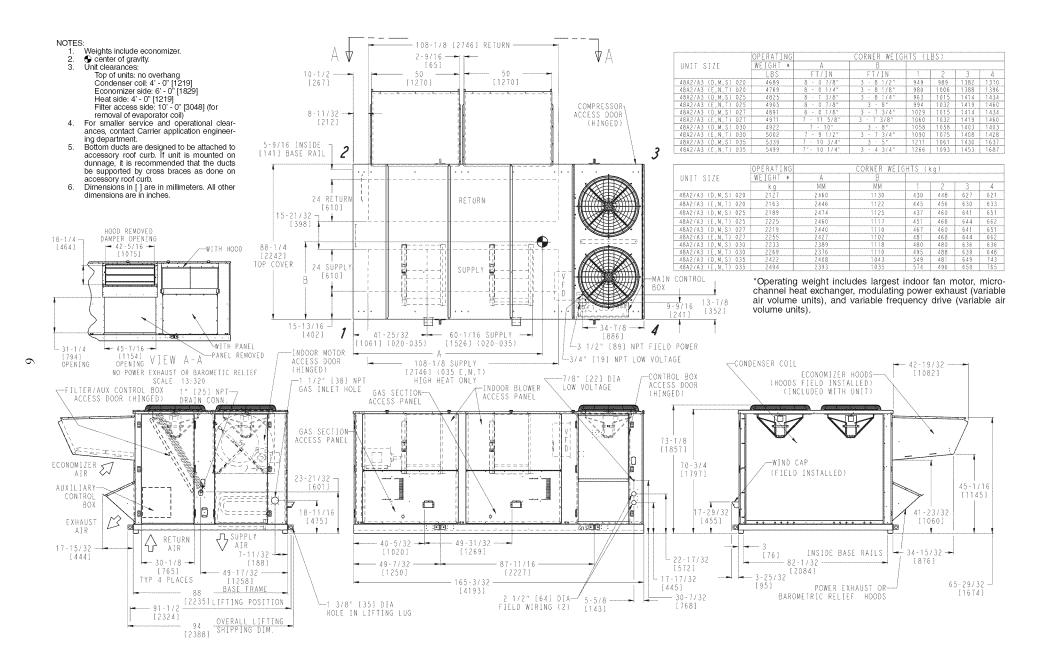


Fig. 4 — Base Unit Dimensions — 48A2,A3020-035

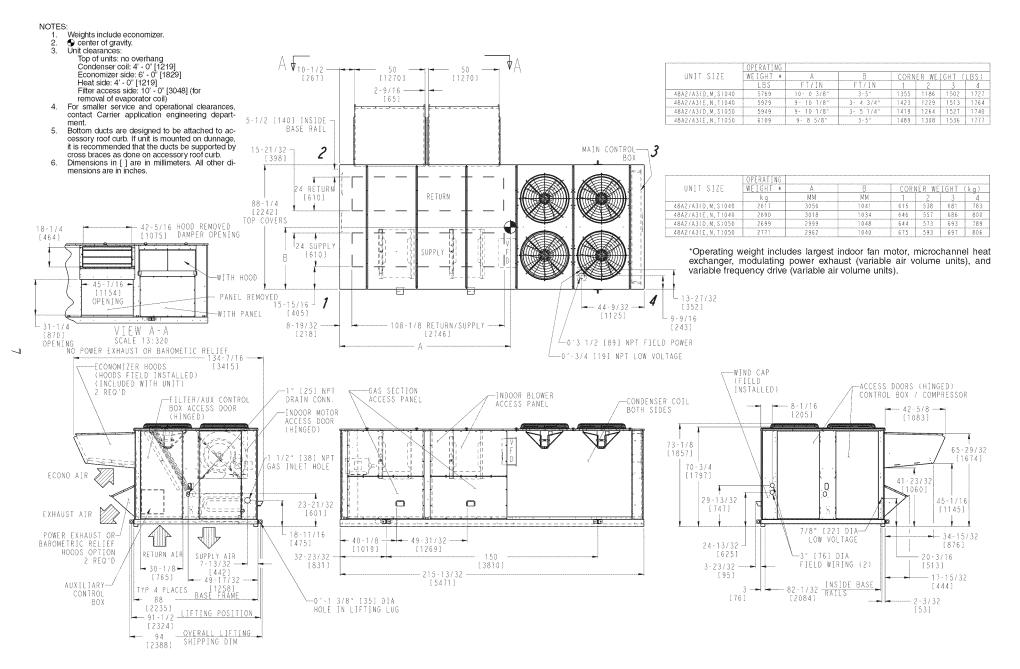
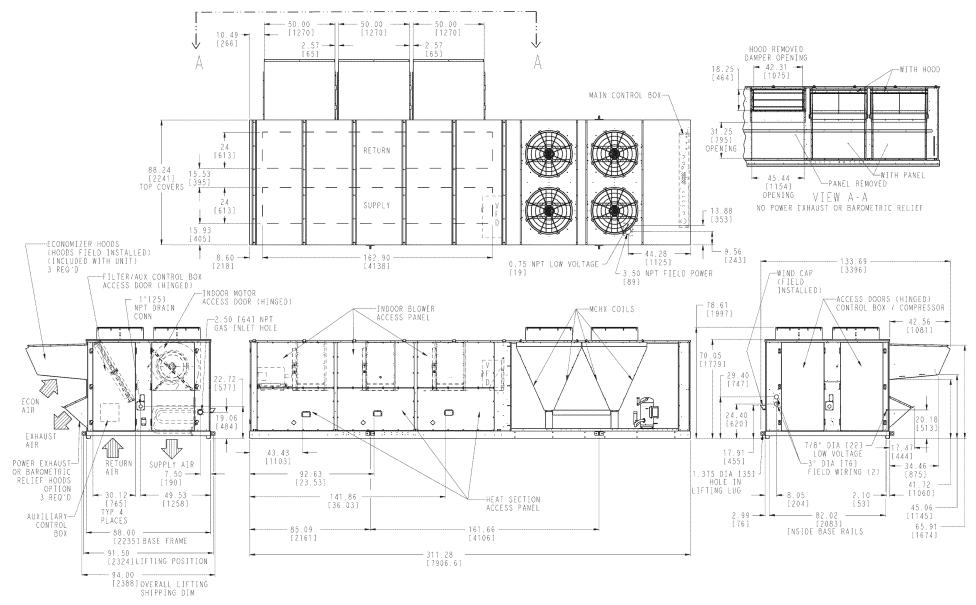



Fig. 5 — Base Unit Dimensions — 48A2,A3040-050

FOR CENTERS OF GRAVITY, OPERATING AND CORNER WEIGHTS, SEE FIG. 10

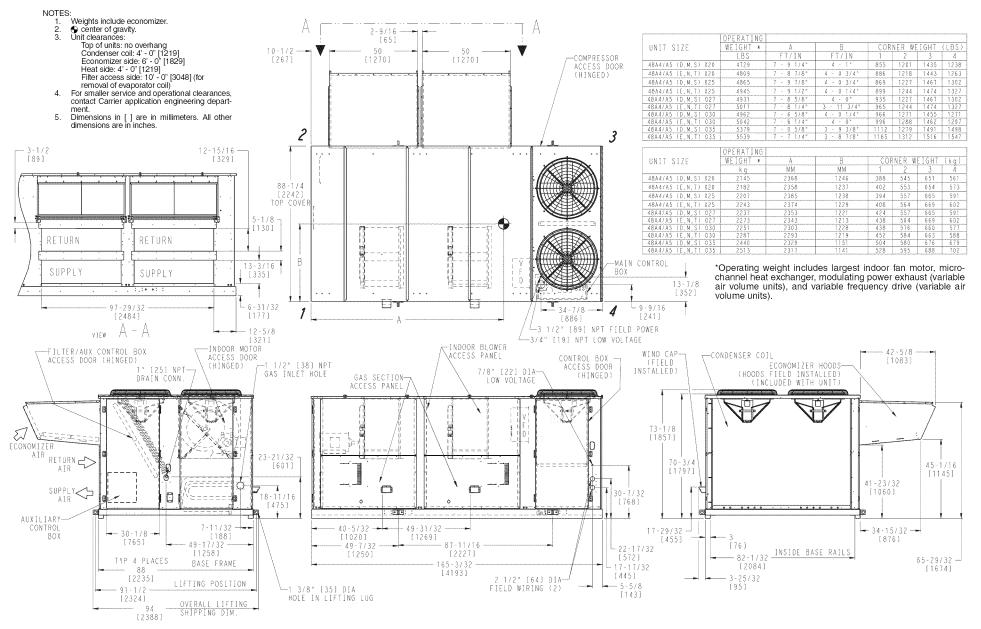


Fig. 7 — Base Unit Dimensions — 48A4,A5020-035

9

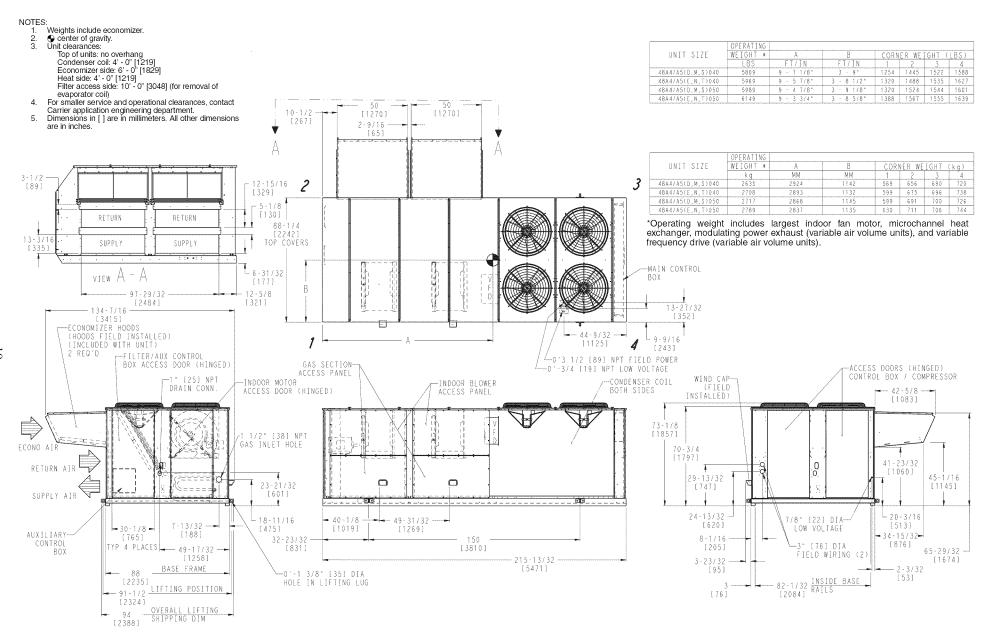


Fig. 8 — Base Unit Dimensions — 48A4,A5040-050

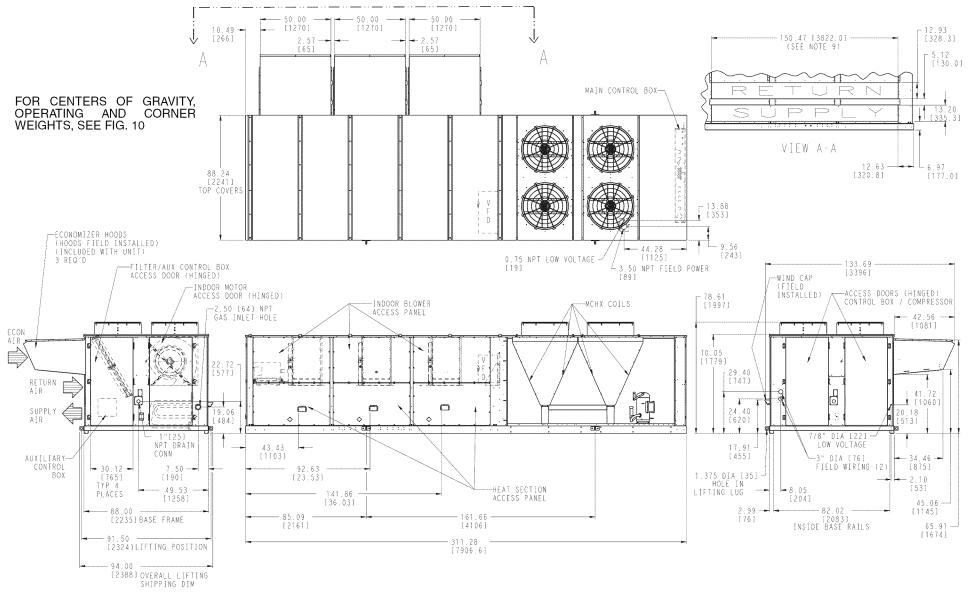


Fig. 9 — Base Unit Dimensions — 48A4,A5060

		DASE UNIT W
NOTE	S:	
1.	Weights include economizer or outdoor air damper.	48A2D/A
2.	Center of gravity.	4082078
З.	Unit clearances:	48A2F/A
	Top of units: no overhang	4082E78
	Condenser coil: 4' - 0'' [1219] Economizer side: 6' - 0'' [1829]	48A4D/A
	Heat side: 4' - 0" [1219]	
	Filter access side: 10' - 0" [3048] (for removal of evaporator coil)	48A4E/A
4.	For smaller service and operational clearances, contact Carrier application engineering department.	
5.	Bottom ducts are designed to be attached to accessory roof curb.	

- Bottom ducts are designed to be attached to accessory roor curp. If unit is mounted on dunnage, it is recommended that the ducts be supported by cross braces as done on accessory roof curb.
 Base unit weights include outdoor ain hoods and filters (indoor fan motor is not included). Add indoor fan motor, FIOPs, and acces-sories for total operating weight.
 VAV motor weights include indoor motor, VFD, VFD transducer, and accessible wiring.
- and associated wiring. 8. Dimensions in [] are in millimeters. All other dimensions are in
- inches. 9.
- For side-supply/return applications, a single return and supply ductwork connection is recommended for covering all three re-turn and all three supply openings. The entire area around the duct openings is available for a 1.5" duct flange attachment.

	060
48A2D/A3D	7066 (3205)
48A2E/A3E	7306 (3314)
48A4D/A5D	7106 (3223)
48A4E/A5E	7356 (3337)
OPTIONS / ACCESSORIES	
OPTIONS / ACCESSORIES BAROMETRIC RELIEF	(SEE NOTE 6 204)
BAROMETRIC RELIEF	450 (204)
BAROMETRIC RELIEF	450 (204)
BAROMETRIC RELIEF NON MOD. POWER EXHAUST	450 (204) 675 (306)

UNIT SIZE	OPERATING WEIGHT*	CENTER OF (ft -	COR	NER W	EIGHT	S (lb)	
	(lb)	Α	В	1	2	3	4
48A2,A3 (D, M, S) 060	8386	14 - 9 5/8	3 - 5 1/4	1909	1693	2243	2541
48A2,A3 (E, N, T) 060	8626	14 - 2 3/8	3 - 3 1/4	2159	1745	2100	2622
48A4,A5 (D, M, S) 060	8426	14 - 1 5/8	3 - 9 1/4	1763	2072	2259	2333
48A4,A5 (E, N, T) 060	8676	13 - 7 1/4	3 - 7 1/4	2000	2126	2134	2417

UNIT SIZE	OPERATING WEIGHT*	CENTER OF (mi	со		WEIGH (g)	ITS	
	(kg)	Α	В	1	2	3	4
48A2,A3 (D, M, S) 060	3804	4514	1048	866	768	1017	1153
48A2,A3 (E, N, T) 060	3913	4329	997	979	792	953	1189
48A4,A5 (D, M, S) 060	3822	4310	1150	800	940	1024	1058
48A4,A5 (E, N, T) 060	3936	4146	1099	907	964	968	1096

*Operating weight includes largest indoor fan motor, microchannel heat exchanger, modulating power exhaust (variable air volume units), and variable frequency drive (variable air volume units).

			WEIGHTS (Kg)		R WEIGHTS (SEE NOTE 7)
		HIGH EFFC'Y IFM	PREMIUM EFFC'Y IFM	HIGH EFFC'Y IFM	PREMIUM EFFC'Y IFM
25 HP	230/460	240 (109)	309 (140)	375 (170)	444 (201)
(18.65 Kw)	575	240 (109)	319 (145)	375 (170)	454 (206)
30 HP	230/460	283 (128)	355 (161)	418 (190)	490 (222)
(22.38 Kw)	575	283 (128)	359 (163)	418 (190)	494 (224)
40 HP (29.84 Kw)	230/460	372 (169)	415 (188)	507 (230)	550 (249)
	575	372 (169)	410 (186)	507 (230)	545 (247)

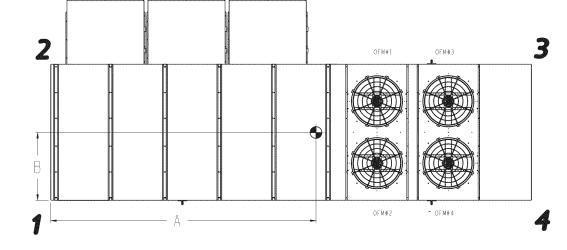


Fig. 10 — Center of Gravity and Weights — 48A2,A3,A4,A5060

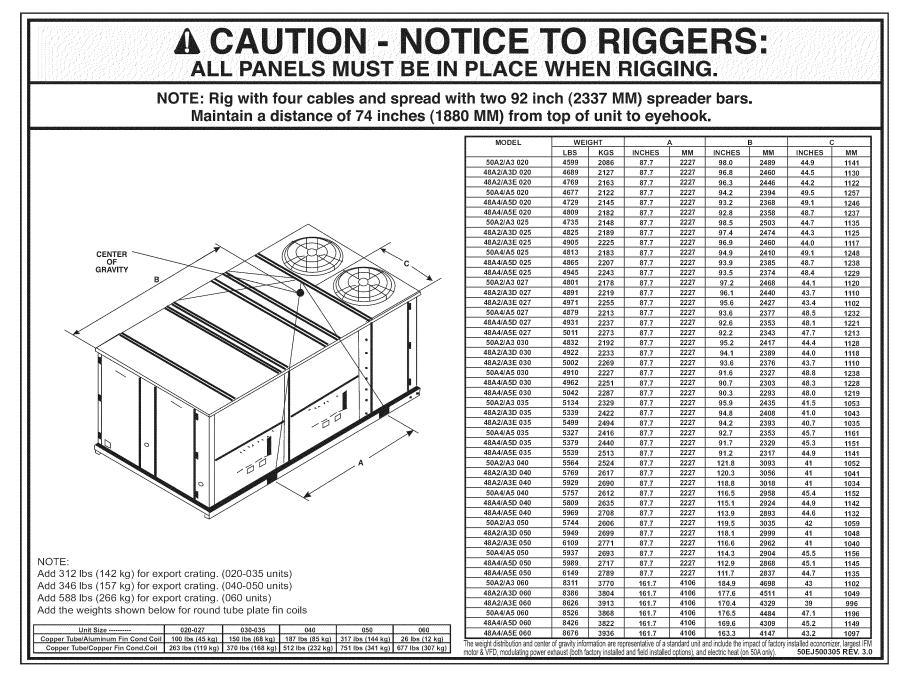
UNIT 48A2,A3,A4,A5	020D/E	025D/E	027D/E	030D/E				
NOMINAL CAPACITY (tons)	20	25	27	30				
BASE UNIT OPERATING WEIGHT (Ib)		See Unit Weigi	hts Table					
COMPRESSOR Quantity Type (Ckt 1/Ckt 2) Number of Refrigerant Circuits	2 ZP67/1ZP90 2	2 ZP90/1ZP90	2 ZP90/1ZP90 2	2ZP72, 2ZP72				
Oil	Precharged	Precharged	Precharged Precharged					
REFRIGERANT TYPE Operating Charge (Ib-oz) Circuit 1	14-14	R-410/ 20-6	20-6	15-2 15-5				
Circuit 2	11-13	12-13	12-13	15-5				
MCHX CONDENSER* Quantity Total Face Area (sq ft)	1 32.9	1 32.9	1 32.9	1 32.9				
CONDENSER FAN Nominal Cfm Quantity Diameter (in.) Motor Hp	19,500 2 30 1	Propeller 19,500 2 30 1	Type 19,500 2 30 1	19,500 2 30 1				
EVAPORATOR COIL Tube Size (in.) Rows Fins/in. Total Face Area (sq ft)	^{3/} 8 3 15 31.7	Cross-Hatched Copper Tubes, Aluminum ^{9/8} 4 14 31.7	Plate Fins with Intertwined Circuits ^{3/8} 4 15 31.7	^{3/} 8 4 15 31.7				
EVAPORATOR FAN Quantity Size (in.) Type Drive	2 20 X 15 Belt	Centrifugal 2 20 X 15 Belt	Type 2 20 X 15 Belt	2 20 X 15 Belt				
Nominal Cfm Motor Hp Motor Frame Size	8,000 5 10 15 184T 215T 254T	10,000 5 10 15 184T 215T 254T	11,000 10 15 20 215T 254T 256T	12,000 10 15 20 215T 254T 256T				
Motor Bearing Type Maximum Allowable Rpm Motor Pullev Pitch Diameter	Ball 1200 4.8 4.4 5.7	Ball 1200 4.8 6.1 5.5	Ball 1200 4.4 4.9 5.9	Ball 1200 4.4 5.7 5.9				
Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Nominal Fan Shaft Diameter (in.)	1 ¹ / ₈ 1 ³ / ₈ 1 ⁵ / ₈ 12.4 8.6 9.1 1 ¹⁵ / ₁₆	1 ¹ / ₈ 1 ³ / ₈ 1 ⁵ / ₈ 12.4 11.1 8.7 1 ¹⁵ / ₁₆	1 ³ / ₈ 1 ⁵ / ₈ 1 ⁵ / ₈ 9.4 8.1 8.7 1 ¹⁵ / ₁₆	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Belt Quantity Belt Type Belt Length (in.) Pulley Center Line Distance (in.) Factory Speed Setting (rpm)	1 2 2 BX56 BX50 5VX530 56 63 53 16.0-18.7 15.6-18.4 15.0-17.9	1 1 2 BX56 5VX570 5VX530 56 57 53 15.6-18.4 15.6-18.4 15.0-17.9	2 2 2 2 BX50 5VX500 5VX530 50 50 53 15.6-18.4 15.0-17.9 15.0-17.9	2 2 2 2 BX50 5VX530 5VX530 50 53 53 15.6-18.4 15.0-17.9 15.0-17.9				
FURNACE SECTION Supply Line Pressure Range	717 924 1096	717 962 1106 5.0-in. wg min/13.5	848 1059 1187	856 1096 1187				
Rollout Switch Cutout Temp (F)† Burner Orifice Diameter (indrill size)	225	225	225	225				
Natural Gas Std Liquid Propane Alt Thermostat Heat Anticipator Setting	.111 34 .089 43	.111 34 .089 43	.111 34 .089 43	.111 34 .089 43				
Stage 1 (amps) Stage 2 (amps) Gas Input (Btuh) Stage 1	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1				
(Low Heat/High Heat) Stage 2 (Low Heat/High Heat)	262,500/394,000 350,000/525,000	262,500/394,000 350,000/525,000	262,500/394,000 350,000/525,000	262,500/394,000 350,000/525,000				
Efficiency (Steady State) (%) Temperature Rise Range (Low Heat/High Heat)	81 15-45/35-65	81 15-45/35-65	81 15-45/35-65	81 15-45/35-65				
Manifold Pressure (in. wg) Natural Gas Std Liquid Propane Alt Gas Valve Quantity	3.5 3.5 2	3.5 3.5 2	3.5 3.5 2	3.5 3.5 2				
HIGH-PRESSURE SWITCH (psig) Cutout Reset (Auto.)	650 500	650 500	650 500	650 500				
MIXED-AIR FILTERS Quantity Size (in.) Standard Pleated	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4				
OUTDOOR-AIR FILTERS QuantitySize (in.)		5 20 x 24 x 4 5 20 x 24 x 4 5 20 x 24 x 4 5 20 x 24 x 4 816 x 25 x 2 420 x 25 x 2						
POWER EXHAUST Motor, QuantityHp Fan, DiameterWidth (in.)	Direct Drive, Single-Phase Motors (Factory-Wired for High Speed Operation), Forward-Curved Fan Wheels with Backdraft Dampers on Each Fan Housing 41 11 x 10							
			50: Circuit 1 uses the left condenser t A uses the two MCHX coils near th					

MCHX— Microchannel Heat Exchanger

Sizes 040 and 050: Circuit 1 uses the left condenser coil, Circuit 2 the right. Size 060: Circuit A uses the two MCHX coils near the bulkhead, Circuit B uses the two MCHX coils near the control box. †Rollout switch is manual reset.

*Sizes 020 to 027: Circuit 1 uses the lower portion of condenser coil, Circuit 2 uses the upper portion, Sizes 030 and 035: Circuit 1 uses the upper portion of condenser coil, Circuit 2 uses the lower portion.

Table 1 — Physical Data — 48A2,A3,A4,A5 Units (cont)


		-			
UNIT 48A2,A3,A4,A5		035D/E	040D/E	050D/E	060D/E
NOMINAL CAPACITY (tons)		35	40	50	60
BASE UNIT OPERATING WEIGHT (Ib)			See Unit W	eights Table I	L
COMPRESSOR Quantity Type (Ckt 1/Ckt 2)		2 ZP67/2ZP103	2ZP103/2ZP103	2ZP120/2ZP120	2SM154/2ZP154
Number of Refrigerant Circuits		2	2	2	2
011		Precharged	Precharged	Precharged	Precharged
REFRIGERANT TYPE Operating Charge (Ib-oz)			R-4	10A	1
Circuit 1		22-0	25-8	31-11	30-10
Circuit 2		30-11	26-0	31-11	38-5
MCHX CONDENSER* Quantity		1	1 2	1 2	I 4
Total Face Area (sq ft)		32.9	65.8	65.8	105.2
CONDENSER FAN			Propeller Type		Shrouded Axial Type
Nominal Cfm Quantity Diameter (in.)		19,500 2 30	32,000 4 30	35,000 4 30	40,000 430.5
Motor Hp		2 000	1	1	1
EVAPORATOR COIL		Cross	s-Hatched Copper Tubes, Alumin	um Plate Fins with Intertwined Ci	rcuits
Tube Size (in.) Rows Fins/in.		616	-Hatched Copper Tubes, Alumin $\frac{1/2}{417}$	6 16	^{1/2} 417
Total Face Area (sq ft)		31.3	31.3	31.3	48.1
EVAPORATOR FAN			Centrifu	gal Type	
Quantity Size (in.) Type Drive		2 20 X 15 Belt	2 20 X 15 Belt	2 20 X 15 Belt	3 20 X 15 Belt
Nominal Cfm		14,000	16,000	18,000	24,000
Motor Hp Motor Frame Size		15 20 25 254T 256T 284T	15 20 25 254T 256T 284T	20 25 30 256T 284T 286T	25 30 40 284T 286T 324T
Motor Bearing Type		Ball	Ball	Ball	Ball
Maximum Allowable Rpm Motor Pulley Pitch Diameter		1300 5.1 5.7 6.2	1300 5.3 5.7 7.5	1300 5.7 6.2 6.7	1200 5.3 5.9 6.5
Nominal Motor Shaft Diameter (in.)		1 ⁵ / ₈ 1 ⁵ / ₈ 1 ⁷ / ₈	1 ⁵ /8 1 ⁵ /8 1 ⁷ /8	1 ⁵ / ₈ 1 ⁷ / ₈ 1 ⁷ / ₈	1 ⁷ / ₈ 1 ⁷ / ₈ 2 ¹ / ₈
Fan Pulley Pitch Diameter (in.) Nominal Fan Shaft Diameter (in.)		8.7 8.7 8.7	9.5 9.5 11.1	9,5 9.5 9.5 1 ^{15/} 16	9.1 9.5 9.5
Belt Quantity		1 ^{15/} 16 2 2 2 2	1 ^{15/} 16 2 2 2 2	2 2 2 2	1 ^{15/} 16 3 3 3 3
Belt Type		5VX500 5VX530 5VX550	5VX530 5VX550 5VX590	5VX550 5VX570 5VX570	5VX530 5VX550 5VX570
Belt Length (in.) Pulley Center Line Distance (in.)		50 53 55 15.0-17.9 15.0-17.9 15.0-17.9	53 55 59 15.0- 15.0- 14.6-	55 57 57 15.0- 14.6- 14.6-	53 55 57 15.2- 14.7- 14.2-
Factory Speed Setting (rpm)		1025 1147 1247	17.9 17.9 17.6 976 1050 1182	17.9 17.6 17.6 1050 1142 1234	17.5 17.2 17.0 1019 1087 1197
FURNACE SECTION		1025 1147 1247	976 1030 1182	1050 1142 1234	1019 1087 1197
Supply Line Pressure Range			5.0-in. wg min/1	3.5-in. wg max.	
Rollout Switch Cutout Temp (F)†		225	225	225	225
Burner Orifice Diameter (indrill size)			223	223	223
Natural Gas	Std	.111 34 (low)/.120 31 (high)	.120 31	.120 31	.12031
Liquid Propane	Alt	.089 43	.096 41	.096 41	.09641
Thermostat Heat Anticipator Setting Stage 1 (amps)		0.1	0.24	0.1	0,1
Stage 2 (amps)		0.1	0.13	0.1	0.1
Gas Input (Btuh) Stage 1 (Low Heat/High Heat)		262,500/600,000	300,000/600,000	300,000/600,000	582,000/873,000
Stage 2		350,000/800,000	400.000/800.000	400.000/800.000	776.000/1,164,000
(Low Heat/High Heat) Efficiency (Steady State) (%)		81	81	81	82
Temperature Rise Range		15-45/30-60	10-40/30-60	10-40/30-60	10-40/30-60
(Low Heat/High Heat) Manifold Pressure (in. wg)					
Natural Gas	Std	3.5	3.5 3.5	3.5	3.3
Liquid Propane Gas Valve Quantity	Alt	3.5 2	3.5	3.5 2	3.3 3
HIGH-PRESSURE SWITCH (psig)			_	-	-
Cutout Reset (Auto.)		650	650 500	650 500	650
Reset (Auto.) MIXED-AIR FILTERS		500	500	500	500
Quantity Size (in.) Standard		10 20 x 24 x 2	10 20 x 24 x 2	10 20 x 24 x 2	1620 x 24 x 2
Pleated		5 20 x 20 x 4	5 20 x 20 x 4	5 20 x 20 x 4	820 x 20 x 4
OUTDOOR-AIR FILTERS		5 20 x 24 x 4	5 20 x 24 x 4	5 20 x 24 x 4	820 x 24 x 4
QuantitySize (in.)		816 x 25 x 2	816 x 25 x 2	816 x 25 x 2	1216 x 25 x 2
Guantity		420 x 25 x 2	420 x 25 x 2	420 x 25 x 2	620 x 25 x 2
POWER EXHAUST		Direct Drive, Single-	Phase Motors (Factory-Wired for	High Speed Operation), Forward- s on Each Fan Housing	Curved Fan Wheels
Motor, QuantityHp		41	41	41	61
Fan, DiameterWidth (in.)		11 x 10	11 x 10	11 x 10	11 x 10

LEGEND

MCHX- Microchannel Heat Exchanger

*Sizes 020 to 027: Circuit 1 uses the lower portion of condenser coil, Circuit 2 uses the upper portion. Sizes 030 and 035: Circuit 1 uses the upper portion of condenser coil, Circuit 2 uses the lower portion.

Sizes 040 and 050: Circuit 1 uses the left condenser coil, Circuit 2 the right. Size 060: Circuit A uses the two MCHX coils near the bulkhead, Circuit B uses the two MCHX coils near the control box. †Rollout switch is manual reset.

Table 2 — Unit Operating Weights (lb)

UNIT	020	025	027	030	035	040	050	060
48A2D,A3D	3825	3961	3961	3992	4340	4770	4914	7066
48A2E,A3E	3905	4041	4041	4072	4500	4930	5074	7306
48A4D,A5D	3865	4001	4001	4032	4380	4810	4954	7106
48A4E,A5E	3945	4081	4081	4112	4540	4970	5114	7356

Table 3 — Option and Accessory Weights (lb)

UNIT	020	025	027	030	035	040	050	060
	OPTIONS/ACCESSORIES (WEIGHT ADDERS) (lb)							
Barometric Relief	300	300	300	300	300	300	300	450
Non-Modulating Power Exhaust	450	450	450	450	450	450	450	675
Modulating Power Exhaust	500	500	500	500	500	500	500	725
Cu Tube/Alum Fin Cond. Coil	100	100	100	150	150	187	317	26
Cu Tube/Cu Fin Cond. Coil	263	263	263	370	370	512	751	677
OA Hood Crate/Packaging	45	45	45	45	45	45	45	45
(Less Hoods' Weight)				(Packagi	ng Only)			
Outdoor Air Hoods/Filters (included with unit)	170	170	170	170	170	170	170	255
Hail Guards	73	73	73	73	73	146	146	219
Roof Curb (14-in.)	365	365	365	365	365	410	410	540

Table 4 — Constant Volume Fan Motor Weights (Ib)

MOTOR HP	UNIT VOLTAGE	HIGH EFFICIENCY IFM	PREMIUM EFFICIENCY IFM
5 HP	230/460	78	94
3 115	575	78	92
10 HP	230/460	118	164
	575	118	156
15 HP	230/460	150	217
15 HP	575	150	220
20 HP	230/460	212	250
20 HP	575	212	258
25 HP	230/460	240	309
23 HF	575	240	319
30 HP	230/460	283	355
30 HP	575	283	359
40 HP	230/460	372	415
40 NF	575	372	410

Table 5 — Variable Volume Fan Motor Weights (lb)

MOTOR HP	UNIT VOLTAGE	HIGH EFFICIENCY IFM	PREMIUM EFFICIENCY IFM
5 HP	230/460	136	152
5 HP	575	147	161
10 HP	230/460	187	233
IU HP	575	187	225
15 HP	230/460	249	316
15 HP	575	249	319
20 HP	230/460	347	385
20 ПР	575	311	357
25 HP	230/460	375	444
23 HP	575	375	454
30 HP	230/460	418	490
30 HP	575	418	494
40 HP	230/460	507	550
40 HP	575	507	545

LEGEND AND NOTES FOR TABLES 2-5

LEGEND

Cu — Copp FIOP — Factory-Instant HP — Horsepower IFM — Indoor-Fan Motor OA — Outdoor Air VAV — Variable Air Volume VFD — Variable Frequency Drive *Outdoor-air hoods and filters included in base unit weights; indoor-fan motors are NOT

NOTES:

- Base unit weight includes OA hoods (economizer or outdoor air damper); does not include an indoor-fan motor. ADD indoor motor, FIOPs and Accessories for TOTAL operating weight.
 VAV motor weights include the indoor motor and the VFD, optional VFD bypass, VFD trans-ducer and associated wiring.

UNIT SIZE 48A2,A3, A4,A5	Motor HP	MOTOR SHAFT DIA. (in.)	FAN SHAFT SPEED (rpm)	MOTOR SHEAVE (P/N)	MOTOR SHEAVE PITCH DIAMETER (in.)	BUSHING DIAMETER (in.)	FAN SHEAVE (P/N)	FAN SHEAVE PITCH DIAMETER (in.)	BUSHING DIAMETER (in.)	BELT (Quantity) (P/N)	BELT TENSION (Ib at .25 in.)
020	5	1.125	717	BK55	4.8	NONE - 1.125	1B5V124	12.4	B - 1.9375	BX56	8
	10	1.375	924	2BK50	4.4	NONE - 1.375	2B5V86	8.6	B - 1.9375	(2) BX50	8
	15	1.625	1096	2B5V56	5.7	B - 1.625	2B5V90	9.1	B - 1.9375	(2) 5VX530	9
025	5	1.125	717	BK55	4.8	NONE - 1.125	1B5V124	12.4	B - 1.9375	BX56	8
	10	1.375	962	1B5V60	6.1	H - 1.375	1B5V110	11.1	B - 1.9375	5VX570	11
	15	1.625	1106	2B5V54	5.5	B - 1.625	2B5V86	8.7	B - 1.9375	(2) 5VX530	9
027	10	1.375	848	2BK50	4.4	NONE - 1.375	2B5V94	9.4	B - 1.9375	(2) BX50	8
	15	1.625	1059	2B5V56	4.9	B - 1.625	2B5V90	8.1	B - 1.9375	(2) 5VX530	10
	20	1.625	1187	2B5V58	5.9	B - 1.625	2B5V86	8.7	B - 1.9375	(2) 5VX530	11
030	10	1.375	856	2BK50	4.4	H - 1.375	2B5V94	9.0	B - 1.9375	(2) BX50	8
	15	1.625	1096	2B5V56	5.7	B - 1.625	2B5V90	9.1	B - 1.9375	(2) 5VX530	9
	20	1.625	1187	2B5V58	5.9	B - 1.625	2B5V86	8.7	B - 1.9375	(2) 5VX530	11
035	15	1.625	1025	2B5V50	5.1	B - 1.625	2B5V86	8.7	B - 1.9375	(2) 5VX500	9
	20	1.625	1147	2B5V56	5.7	B - 1.625	2B5V86	8.7	B - 1.9375	(2) 5VX530	10
	25	1.875	1247	2B5V62	6.2	B - 1.875	2B5V86	8.7	B - 1.9375	(2) 5VX530	11
040	15	1.625	976	2B5V52	5.3	B - 1.625	2B5V94	9.5	B - 1.9375	(2) 5VX530	10
	20	1.625	1050	2B5V56	5.7	B - 1.625	2B5V94	9.5	B - 1.9375	(2) 5VX550	11
	25	1.875	1182	2B5V74	7.5	B - 1.875	2B5V110	11.1	B - 1.9375	(2) 5VX590	11
050	20	1.625	1050	2B5V56	5.7	B - 1.625	2B5V94	9.5	B - 1.9375	(2) 5VX550	10
	25	1.875	1142	2B5V62	6.2	B - 1.875	2B5V94	9.5	B - 1.9375	(2) 5VX570	11
	30	1.875	1234	2B5V66	6.7	B - 1.875	2B5V94	9.5	B - 1.9375	(2) 5VX570	13
060	25	1.875	1019	3B5V52	5.3	B - 1.875	3B5V90	9.1	B - 1.9375	(3) 5VX530	12
	30	1.875	1086	3B5V58	5.9	B - 1.875	3B5V94	9.5	B - 1.9375	(3) 5VX550	12
	40	2.125	1197	3B5V64	6.5	B - 2.125	3B5V94	9.5	B - 1.9375	(3) 5VX570	14

Table 6 — Evaporator Fan Motor Data

NOTES:

1. Motor shaft speed is 1750 rpm. The fan shaft diameter is 115/16 inches.

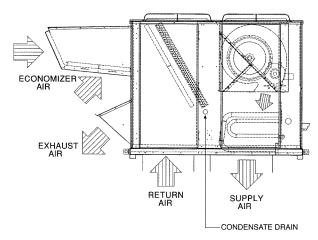


Fig. 12 — Air Distribution — Thru-the-Bottom

Step 5 — Install Flue Hood

48A2,A3,A4,A5020-050 UNITS — Flue hood is shipped inside gas section of unit. To install, secure flue hood to access panel. See Fig. 14.

48A2,A3,A4,A5060 UNITS — Flue hood and wind baffle are shipped inside gas section of unit. To install, secure flue hood to access panel. Install the two pieces of the wind baffle over the flue hood. See Fig. 15.

NOTE: When properly installed, flue hood will line up with combustion fan housing. See Fig. 16.

Step 6 — **Trap Condensate Drain** — See Fig. 4-9 for drain location. Condensate drain is open to atmosphere and must be trapped. Install a trapped drain at the drain location. One 1-in. female coupling is provided inside the unit evaporator section for condensate drain connection. A trap at least 4-in. deep must be used. See Fig. 17. Trap must be installed to prevent freeze-up.

Condensate pans are sloped so that water will completely drain from the condensate pan to comply with indoor air quality guidelines. The condensate drain pans are not insulated. All indoor fan motors meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT), effective October 24, 1997.

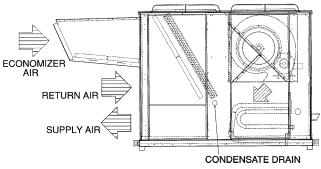


Fig. 13 — Air Distribution — Thru-the-Side

Step 7 — **Install Gas Piping** — Unit is equipped for use with natural gas. Installation must conform with local building codes or, in the absence of local codes, with the National Fuel Gas Code, ANSI Z223.1.

Install manual gas shutoff valve with a 1/8-in. NPT pressure tap for test gage connection at unit. Field gas piping must include sediment trap and union. See Fig. 18. An 1/8-in. NPT is also located on the gas manifold adjacent to the gas valve.

Do not pressure test gas supply while connected to unit. Always disconnect union before servicing. Personal injury or damage to unit may occur.

IMPORTANT: Natural gas pressure at unit gas connection must not be less than 5 in. wg or greater than 13.5 in. wg.

Size gas-supply piping for 0.5-in. wg maximum pressure drop. Do not use supply pipe smaller than unit gas connection.

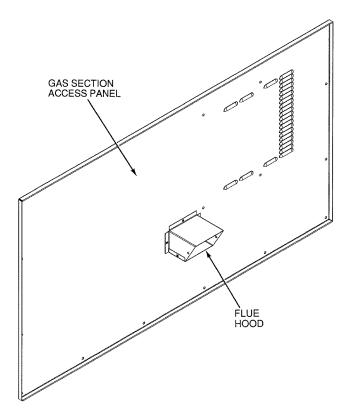


Fig. 14 — Flue Hood Location (48A2,A3,A4,A5020-050 Units)

FLUE HOOD

WIND

TOP VIEW

BAFFLE

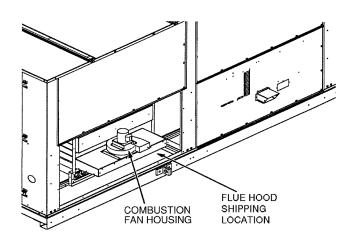


Fig. 16 — Combustion Fan Housing Location (48A2,A3,A4,A5020-050 Shown)

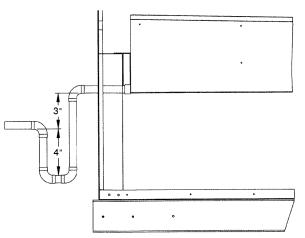
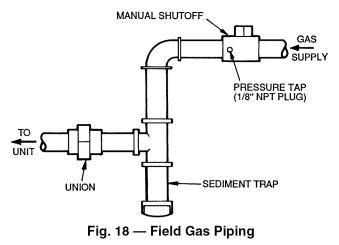



Fig. 17 — Condensate Drain Trap Piping Details (Typical Roof Curb or Slab Mount Shown)

OPTIONAL STAGED GAS UNITS - See Table 7 for staged gas information. Staging pattern is selected during controls start-up.

Fig. 15 — Flue Hood Location

(48A2,A3,A4,A5060 Units)

SIDE VIEW

For complete information and service instructions for staged gas control units, see Control Operation and Troubleshooting literature.

Step 8 — Make Electrical Connections

POWER WIRING - Units are factory wired for the voltage shown on the unit nameplate.

Provide a unit safety disconnect switch in the main power supply to each unit (see Fig. 19). Select switch size and mounting location in accordance with applicable local codes or National Electrical Code (NEC). If combining the functions of safety disconnect with maximum overcurrent protection (MOCP) fuses ("fused disconnect"), coordinate safety switch size with MOCP size data as marked on unit informative plate.

GAS SECTION ACCESS PANEL

Table 7 — 48A Series Staged Gas Control

NUMBER OF	MODEL NU	MBER POSITION	HEAT SIZE
STAGES	5	6,7,8	HEAT SIZE
5 stages	S	020 025 027 030 035 040 050	Low
	т	035 040 050	High
7 stages	Т	020 025 027 030	High
9 stages	Т	060	High
11 stages	S	060	Low

Unit may be equipped with optional factory-installed nonfused disconnect switch (see Fig. 19). Provide maximum overcurrent protection devices (fuses or HACR breakers, per local codes) in branch circuit wiring remote from unit. Observe requirements of NEC Article 440. Install service switch upstream of remote fuses if required.

The main power terminal block is suitable for use with aluminum or copper wire. See Fig. 19. Units have circuit breakers for compressors, fan motors, and control circuit. The unit must be electrically grounded in accordance with local codes, or in absence of local codes, with NEC, ANSI C1-latest year.

FIELD POWER SUPPLY - Unit is factory wired for voltage shown on unit nameplate. See Tables 8A and 8B for electrical data.

Field wiring can be brought into the unit from bottom (through basepan and roof curb) or through side of unit (corner post next to control box).

A $3^{1/2}$ -in. NPT coupling for field power wiring and a $^{3/4}$ -in. NPT coupling for 24-v control wiring are provided in basepan. In the side post, there are two $2^{1/2}$ -in. (sizes 020-035) or 3-in. (sizes 040-060) knockouts for the field power wiring. See Fig. 4-9. If control wiring is to be brought in through the side of

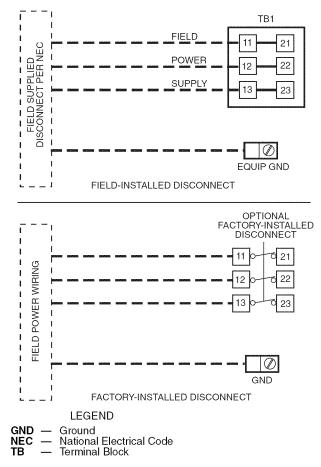
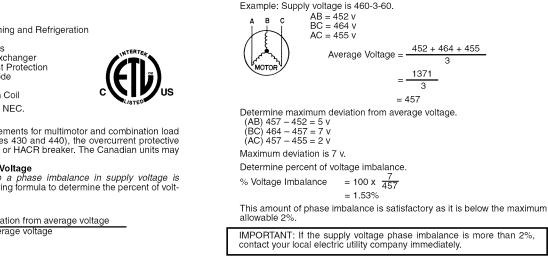



Fig. 19 — Field Power Wiring Connections

unit, a $\frac{7}{8}$ -in. diameter hole is provided in the condenser side post next to the control box.

Do not route control wiring in the same conduit as power wiring

If disconnect box is mounted to corner post, be careful not to drill or screw into the condenser coil.

LEGEND AND NOTES FOR TABLES 8A AND 8B

LEGEND

- FLA HACR Full Load Amps
- Heating, Air Conditioning and Refrigeration Locked Rotor Amps LRA
- MCA MCHX
- _
- Minimum Circuit Amps Microchannel Heat Exchanger Maximum Overcurrent Protection MOCP
- NEC National Electrical Code **BLA** Rated Load Amps
- RTPF Round Tube Plate Fin Coil

*Fuse or HACR circuit breaker per NEC.

- NOTES
- In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. The Canadian units may be fuse or circuit breaker.

Unbalanced 3-Phase Supply Voltage

Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent of voltage imbalance.

% Voltage imbalance

```
max voltage deviation from average voltage
= 100 x
                          average voltage
```

UNIT		VOL.	TAGE			c	OMPR	ESSO	R			COND	ENSER	EVAP	ORATOR	POWER	DOWE	
SIZE 48A	VOLTAGE 3 PH, 60 Hz		NGE	Cir A,			No. 2		No. 1	Cir B,	-		NOTOR		MOTOR	EXHAUST		RSUPPLY
40A		Min	Мах	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA	Qty	FLA	Нр	FLA	FLA (total)	MCA 111.4	125
														5	16.7	23.6	135.0	150
	208	187	229	22.4	149	22.4	149	29.5	195	—	—	2	6.5 (ea)	10	30.8	23.6	125.8 149.4	150 175
														15	46.2	 23.6	145.1 168.7	175 200
														5	15.2		110.1	125
													6.6			23.6	133.7 122.9	150 150
	230	207	253	22.4	149	22.4	149	29.5	195	—	—	2	(ea)	10	28.0	23.6	146.5	175
														15	42.0	23.6	140.0 163.6	175 200
														5	9.1	 14.8	59.2 74.0	70 90
020	380	342	418	11.0	88	11.0	88	16.7	123	—	_	2	3.6 (ea)	10	16.7	 14.8	66.8 81.6	80 90
														15	24.5	 14.8	76.5 91.3	100 110
														5	7.6	 12.6	53.8 66.4	60 80
	460	414	508	10.6	75	10.6	75	14.7	95	_	_	2	3.3 (ea)	10	14.0	 12.6	60.2 72.8	70 80
														15	21.0		68.8 81.4	80 100
														5	6.1	 9.6	42.0 51.6	50 60
	575	518	632	7.7	54	7.7	54	12.2	80	_	_	2	2.6 (ea)	10	11.0	 9.6	46.9 56.5	50 60
														15	17.0	 9.6	54.1 63.7	70 80
														5	16.7	23.6	125.6 149.2	150 175
	208	187	229	29.5	195	29.5	195	29.5	195	_	_	2	6.5 (ea)	10	30.8	23.6	140.0 163.6	150 175
														15	46.2	23.6	159.3 182.9	200 225
														5	15.2	23.6	124.3 147.9	150 175
	230	207	253	29.5	195	29.5	195	29.5	195	_	_	2	6.6 (ea)	10	28.0	23.6	137.1 160.7	150 175
													(01)	15	42.0	23.6	154.2 177.8	175 200
														5	9.1	 14.8	70.6 85.4	80 100
025	380	342	418	16.7	123	16.7	123	16.7	123	_	_	2	3.6 (ea)	10	16.7	 14.8	78.2 93.0	90 100
														15	24.5	14.8	87.9 102.7	110 125
														5	7.6	12.6	62.0 74.6	70 80
	460	414	508	14.7	95	14.7	95	14.7	95	_	—	2	3.3 (ea)	10	14.0	 12.6	68.4 81.0	80 90
														15	21.0	 12.6	77.0 89.6	90 110
														5	6.1	9.6	51.0 60.6	60 70
	575	518	632	12.2	80	12.2	80	12.2	80	—	_	2	2.6 (ea)	10	11.0	9.6	55.9 65.5	60 70
														15	17.0	9.6	63.1 72.7	80 80

Table 8A — 48A2,A3,A4,A5020-060 Units Without Convenience Outlet

UNIT			TAGE			2,73,		ESSO					ENSER		ORATOR	POWER		
	VOLTAGE 3 PH, 60 Hz		NGE	Cir A,	No. 1		No. 2	Cir B,		Cir B,	No. 2		IOTOR		MOTOR	EXHAUST	POWEF	SUPPLY
48A	• · · · · , • • · · · ·	Min	Мах	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA	Qty	FLA	Нр	FLA	FLA (total)	MCA	MOCP*
														10	30.8	23.6	140.0 163.6	150 175
	208	187	229	29.5	195	29.5	195	29.5	195	_	—	2	6.5 (ea)	15	46.2	23.6	159.3 182.9	200 225
													X y	20	59.4	23.6	175.8 199.4	225 250
														10	28.0	23.6	137.1 160.7	150 175
	230	207	253	29.5	195	29.5	195	29.5	195	-	—	2	6.6 (ea)	15	42.0	23.6	154.2 177.8	175 200
														20	54.0	23.6	169.2 192.8	200 225
														10	16.7	 14.8	78.2 93.0	90 100
027	380	342	418	16.7	123	16.7	123	16.7	123	—	—	2	3.6 (ea)	15	24.5	 14.8	87.9 102.7	110 125
														20	30.0	 14.8	94.8 109.6	110 125
														10	14.0	 12.6	68.4 81.0	80 90
	460	414	508	14.7	95	14.7	95	14.7	95	—	—	2	3.3 (ea)	15	21.0	12.6	77.0 89.6	90 110
														20	27.0	12.6	84.5 97.1	110 110
														10	11.0	9.6	55.9 65.5	60 70
	575	518	632	12.2	80	12.2	80	12.2	80	—	—	2	2.6 (ea)	15	17.0	9.6	63.1 72.7	80 80
														20	22.0	 9.6	69.3 78.9	90 110
														10	30.8	23.6	144.3 167.9	175 175
	208	187	229	23.2	184	23.2	164	23.2	164	23.2	164	2	6.5 (ea)	15	46.2	23.6	163.6 187.2	200 225
														20	59.4	23.6	180.1 203.7	225 250
														10	28.0	23.6	141.0 164.6	150 175
	230	207	253	23.2	164	23.2	164	23.2	164	23.2	164	2	6.6 (ea)	15	42.0	23.6	158.5 182.1	200 200
														20	54.0	23.6	173.5 197.1	225 250
														10	16.7	 14.8	76.9 91.7	90 100
030	380	342	418	12.2	73	12.2	73	12.2	73	12.2	73	2	3.6 (ea)	15	24.5	 14.8	86.6 101.4	110 125
														20	30.0	 14.8	93.5 108.3	110 125
														10	14.0	 12.6	68.9 81.5	80 90
	460	414	508	11.2	75	11.2	75	11.2	75	11.2	75	2	3.3 (ea)	15	21.0	 12.6	77.7 90.3	90 110
														20	27.0	 12.6	85.2 97.8	110 110
														10	11.0	 9.6	50.6 60.2	60 70
	575	518	632	7.9	54	7.9	54	7.9	54	7.9	54	2	2.6 (ea)	15	17.0	— 9.6	58.1 67.7	70 80
														20	22.0	 9.6	64.3 73.9	80 90

Table 8A — 48A2,A3,A4,A5020-060 Units Without Convenience Outlet (cont)

UNIT		VOL	TAGE			<u>ر د</u>	· ·	ESSO	R			COND	ENSER	EVAP	ORATOR	POWER	POWE	SUPPLY
SIZE 48A	VOLTAGE 3 PH, 60 Hz		NGE Max	Cir A, RLA	No. 1 LRA	Cir A, RLA	No. 2 LRA	Cir B, RLA	No. 1 LRA	Cir B, RLA	No. 2 LRA	FAN N Qty	IOTOR FLA	FAN Hp	MOTOR FLA	EXHAUST FLA (total)	MCA	MOCP*
		IVIIII	IVIAX	NLA	LNA	NLA	LNA	NLA		nLA	LNA	Giy	FLA	пр 15	46.2		175.8	200
	208	187	229	22.4	149	22.4	149	30.1	225	30.1	225	2	6.5	20	59.4	23.6	199.4 192.3	225 250
	200	107	220		1.10	<i>LL</i> . 1	110	00.1		00.1	LLO	-	(ea)	25	74.8	23.6	215.9 211.5	250 250
																23.6	235.1 170.7	300 200
													6.6	15	42.0	23.6	194.3 185.7	225 225
	230	207	253	22.4	149	22.4	149	30.1	225	30.1	225	2	(ea)	20	54.0	23.6	209.3	250 250
														25	68.0	23.6	226.8	250
														15	24.5	14.8	98.2 113.0	110 125
035	380	342	418	11.0	88	11.0	88	19.2	140	19.2	140	2	3.6 (ea)	20	30.0	 14.8	105.1 119.9	125 125
														25	38.0	 14.8	115.1 129.9	150 150
														15	21.0	 12.6	87.5 100.1	100 110
	460	414	508	10.6	75	10.6	75	16.7	114	16.7	114	2	3.3 (ea)	20	27.0		95.0 107.6	110 125
													(,	25	34.0	12.6	103.7 116.3	125 150
														15	17.0	9.6	66.3 75.9	80 90
	575	518	632	7.7	54	7.7	54	12.2	80	12.2	80	2	2.6	20	22.0	9.0 — 9.6	72.5	90
													(ea)	25	27.0	_	82.1 78.8	100
														15	46.2	9.6	88.4 204.2	110 250
	208	187	229	30.1	225	30.1	225	30.1	225	30.1	225	4	6.5	20	59.4	23.6	227.8 220.7	250 250
	200										220		(ea)	25	74.8	23.6	244.3 239.9	300 300
														15	42.0	23.6	263.5 199.3	300 225
	000	007	050	00.1	005	00.1	005	00.1	005	00.1	005		6.6			23.6	222.9 214.3	250 250
	230	207	253	30.1	225	30.1	225	30.1	225	30.1	225	4	(ea)	20	54.0	23.6	237.9 231.8	250 250
														25	68.0	23.6	255.4 121.8	300 125
													0.0	15	24.5	14.8	136.6	150
040	380	342	418	19.2	140	19.2	140	19.2	140	19.2	140	2	3.6 (ea)	20	30.0		128.7 143.5	150 150
														25	38.0	14.8	138.7 153.5	175 175
														15	21.0	 12.6	106.3 118.9	125 125
	460	414	508	16.7	114	16.7	114	16.7	114	16.7	114	4	3.3 (ea)	20	27.0	12.6	113.8 126.4	125 150
														25	34.0		122.5 135.1	150 150
														15	17.0	9.6	80.5 90.1	90 100
	575	518	632	12.2	80	12.2	80	12.2	80	12.2	80	4	2.6 (ea)	20	22.0	9.6	86.7 96.3	100 110
													(64)	25	27.0	_	93.0	110
0	aond and Not															9.6	102.6	125

Table 8A — 48A2,A3,A4,A5020-060 Units Without Convenience Outlet (cont)

<	LINUT			TAGE					RESSOR				COND	ENSER		PORATOR	POWER	_	
· • • • • • • • • • • • • • • • • • • •		VOLTAGE 3 PH, 60 Hz	RA	NGE				No. 2	Cir B	, No. 1			FAN N	NOTOR	FAN	MOTOR	EXHAUST		
< <tr></tr>	48A	,	Min	Max	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA	Qty	FLA			FLA (total)		
<u <tr=""></u>															20	59.4	23.6	257.1	300
And series and series in the series		208	187	229	33.3	239	33.3	239	33.3	239	33.3	239	4		25	74.8			
															30	88.0			350 350
 															20	54.0	_	227.1	250
A set in the s		220	207	252	000	220		220	22.2	220	22.2	220	4	6.6	25	69.0	—	244.6	300
1 1 <th1< th=""> 1 1 <</th1<>		230	207	200	33.3	235	33.3	239	33.5	239	33.5	235	4	(ea)					
And barresh sectors in the															30	80.0		283.2	350
weak(a)(20	30.0	14.8		175
 <!--</td--><td>050</td><td>380</td><td>342</td><td>418</td><td>23.7</td><td>145</td><td>23.7</td><td>145</td><td>23.7</td><td>145</td><td>23.7</td><td>145</td><td>4</td><td></td><td>25</td><td>38.0</td><td></td><td></td><td></td>	050	380	342	418	23.7	145	23.7	145	23.7	145	23.7	145	4		25	38.0			
 Math and base in the series of the series															30	43.5			
 <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td><td>27.0</td><td>—</td><td>118.6</td><td>125</td>															20	27.0	—	118.6	125
(MC) (M) (M) <td></td> <td>400</td> <td></td> <td></td> <td></td> <td>105</td> <td>170</td> <td>105</td> <td>17.0</td> <td>105</td> <td>17.0</td> <td>105</td> <td></td> <td>3.3</td> <td></td> <td></td> <td>12.6</td> <td></td> <td></td>		400				105	170	105	17.0	105	17.0	105		3.3			12.6		
Image: bord region Image:		460	414	508	17.9	125	17.9	125	17.9	125	17.9	125	4		25	34.0	12.6	139.9	150
Martial state in the state i															30	40.0	12.6		175
 															20	22.0	9.6		
 <td></td><td>575</td><td>518</td><td>632</td><td>12.8</td><td>80</td><td>12.8</td><td>80</td><td>12.8</td><td>80</td><td>12.8</td><td>80</td><td>4</td><td></td><td>25</td><td>27.0</td><td></td><td></td><td>110</td>		575	518	632	12.8	80	12.8	80	12.8	80	12.8	80	4		25	27.0			110
(marbov) (marbov) (marbov) (marbov) (marbov) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b														(ea)	20	22.0	_		
Matrix <p< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9.6</td><td></td><td></td></p<>																	9.6		
Matrix and barries and barries. Note: The section of the section and barries and barries and barries and barries. Note: The section and barries and barries and barries and barries. Note: The section and barries and barries and barries and barries and barries. Note: The section and barries and barries and barries and barries. The section and barries and barries and barries and barries. The section and barries and barries and barries and barries. The section and barries and barries and barries and barries. The section and barries and barries and barries and barries and barries. The section and barries and barries and barries and barries and barries. The section and barries and barries and barries and barries and barries. The section and barries and barries and barries and barries and barries. The section and barries and barries and barries and barries and barries and barries. The section and barries and barries and barries and barries and barries and barries. The section and barries and barries. The section and barries an															25	74.8	35.4	356.1	400
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		208	187	229	51.3	300	51.3	300	51.3	300	51.3	300	4		30	88.0	35.4		
$ \begin barbar \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$															40	114.0	35.4		
000 000 <td></td> <td>25</td> <td>68.0</td> <td>—</td> <td>313.4</td> <td>350</td>															25	68.0	—	313.4	350
$ \begin barbar \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				0.50	-		54.0				54.0			5.8					
000 (MCHN) 380 342 418 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 269 139 26 139 26 139 26 139 26 130 44 25 38.0 27.2 199.6 222 199.6 222 199.6 222 199.6 222 199.6 222 199.7 200 199.7 <		230	207	253	51.3	300	51.3	300	51.3	300	51.3	300	4		30	80.0	35.4	363.8	400
0000 (MCCH) 380 342 418 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 139 26.9 130 43.5 122.2 136.9 222.9 137.1 222.9 137.1 222.9 137.1 227.9 147.1 227.9 147.1 227.9 147.1 277.1 277.1 147.1 <td></td> <td>40</td> <td>104.0</td> <td>35.4</td> <td></td> <td>450</td>															40	104.0	35.4		450
(MCHX) = (25	38.0	22.2		
$\left(\operatorname{RTPF} \right) \left(\operatorname{RTPF} \right) $		380	342	418	26.9	139	26.9	139	26.9	139	26.9	139	4		30	43.5	—	176.8	200
$ \begin basis tabular basis $														(ea)	40	56.2	_	192.7	225
$\left(\operatorname{REFF}\right) \\ \left(\operatorname{REFF}\right) \\ \left(\operatorname{REFF}\right) \\ \left(\operatorname{A}60 \\ \left(\operatorname{A}14 \\ \left(\operatorname{A}60 \\ \left(\operatorname{A}14 \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \right) \right) \right) \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \right) \right) \right) \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \right) \right) \right) \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \right) \right) \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \right) \right) \right) \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \right) \right) \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \right) \right) \right) \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \\ \left(\operatorname{A}76 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \right) \\ \left(\operatorname{A}77 \right) \\ \left(\operatorname{A}77 \right) \right) \\ \left(\operatorname{A}77 \\ \left(\operatorname$																			
$\left(\begin{array}{c c c c c c c c c c c c c c c c c c c $															25	34.0		162.6	175
$ \left(\begin{array}{c c c c c c c c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		460	414	508	22.4	150	22.4	150	22.4	150	22.4	150	4		30	40.0	18.9		
$ \left(\begin{array}{c} 0 6 6 \\ 0 \\ $															40	52.0			200 225
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$															25	27.0	_	122.6	125
$ \left(\begin{array}{c c c c c c c c c c c c c c c c c c c $		575	510	600	10.0	100	10.0	100	10.0	100	10.0	100	4	2.3					
$ \left(\begin{array}{c c c c c c c c c c c c c c c c c c c $		575	510	0.52	19.9	105	15.5	105	15.5	109	15.5	105	4	(ea)					
$ \left(\begin{array}{c} 060 \\ \mathbf{(RTPF)} \end{array} \right) \left(\begin{array}{c} 230 \\ 187 \\ 208 \end{array} \right) \left(\begin{array}{c} 187 \\ 127 \\ 229 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 137 \\ 229 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 300 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 51.3 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 300 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 51.3 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 300 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 51.3 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 300 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 51.3 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 300 \end{array} \right) \left(\begin{array}{c} 51.3 \\ 51.3 \end{array} \right) \left($															40	41.0		154.5	175
$ \left(\begin{array}{c} 1208 \\ (\text{RTFF}) \end{array} \right) \left(\begin{array}{c} 187 \\ 229 \end{array} \right) \left(\begin{array}{c} 187 \\ 229 \end{array} \right) \left(\begin{array}{c} 229 \\ 300 \end{array} \right) \left(\begin{array}{c} 310 \\ 300 \end{array} \right) \left(\begin{array}{c} 310 \\ 30 \end{array} \right) \left(\begin{array}{c} 311 \\ 300 \end{array} \right) \left(\begin{array}{c} 310 \\ 30 \end{array} \right) \left(\begin{array}{c$															25	74.8	35.4		
$ \left(\begin{array}{c c c c c c c c c c c c c c c c c c c $		208	187	229	51.3	300	51.3	300	51.3	300	51.3	300	6		30	88.0	35.4		
$ (RTPF) \begin{array}{ c c c c c c c c c c c c c c c c c c c$														/	40	114.0	_	386.7	500
$ \left(\begin{array}{c} 060 \\ 0 \\ \mathbf{(RTPF)} \end{array} \right) \left(\begin{array}{c} 230 \\ 207 \\ 253 \\ 207 \\ 253 \\ 207 \\ 253 \\ 51.3 \\ 51.3 \\ 300 \\ 51.4 \\ 410 \\ 52.0 \\ 51.3 \\ 51.3 \\ 300 \\ 51.4 \\ 410 \\ 51.3 \\ $																	_	329.8	350
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														66			35.4	365.2	400
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		230	207	253	51.3	300	51.3	300	51.3	300	51.3	300	6		30	80.0	35.4	380.2	450
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			L	L		L									40	104.0			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															25	38.0	_	151.9	175
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		380	342	418	26.9	139	26.9	139	26.9	139	26.9	139	6		30	43.5	_	159.4	175
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(RTPF)						20.0						ľ	(ea)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		193.3	225
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															25	34.0		170.8	200
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		460	414	508	22.4	150	22.4	150	22.4	150	22.4	150	6		30	40.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															40	52.0	—	174.4	225
575 518 632 19.9 109 19.9 109 19.9 109 19.9 109 19.9 109 19.9 109 109 109 6 6																	_	129.0	150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ι.						Ι.					26				143.4	150
		575	518	632	19.9	109	19.9	109	19.9	109	19.9	109	6		30	32.0	14.4	149.6	175
															40	41.0	14.4	146.5 160.9	175 200

UNIT			TAGE	0	NL 4			ESSO		0' D					ORATOR			POWE	ER SUPPLY
SIZE 48A	VOLTAGE 3 PH, 60 Hz		NGE Max	CIFA, RLA	LRA	CIFA, RLA	LRA	Cir B, RLA		CIFB, RLA	NO. 2 LRA		IOTOR FLA	Hp	MOTOR FLA	EXHAUST FLA	OUTLET FLA	МСА	MOCP*
												,		5	16.7	(total) 	7.0 7.0	118.4 142.0	125 150
	208	187	229	22.4	149	22.4	149	29.5	195	_	_	2	6.5 (ea)	10	30.8	23.6	7.0 7.0	132.8 156.4	150 150 175
													(eu)	15	46.2	23.6	7.0 7.0 7.0	152.1 175.7	175 200
														5	15.2	23.6	7.0 7.0 7.0	117.1 140.7	125 150
	230	207	253	22.4	149	22.4	149	29.5	195	_	_	2	6.6 (ea)	10	28.0	23.6	7.0 7.0	129.9 153.5	150 175
													~ /	15	42.0	 23.6	7.0 7.0	147.0 170.6	175 200
020														5	7.6		3.5 3.5	57.3 69.9	70 80
	460	414	508	10.6	75	10.6	75	14.7	95	_	_	2	3.3 (ea)	10	14.0		3.5 3.5	63.7 76.3	70 90
														15	21.0	 12.6	3.5 3.5	72.3 84.9	90 100
														5	6.1	 9.6	2.5 2.5	44.5 54.1	50 60
	575	518	632	7.7	54	7.7	54	12.2	80	—	—	2	2.6 (ea)	10	11.0	 9.6	2.5 2.5	49.4 59.0	60 70
														15	17.0	 9.6	2.5 2.5	56.6 66.2	70 80
														5	16.7	23.6	7.0 7.0	132.6 156.2	150 175
	208	187	229	29.5	195	29.5	195	29.5	195	—	—	2	6.5 (ea)	10	30.8	23.6	7.0 7.0	147.0 170.6	175 200
														15	46.2	23.6	7.0 7.0 7.0	166.3 189.9	200 225
													6.6	5	15.2	23.6	7.0 7.0 7.0	131.3 154.9 144.1	150 175 150
	230	207	253	29.5	195	29.5	195	29.5	195	—	—	2	(ea)	10	28.0	23.6	7.0 7.0	167.7 161.2	175
025														15	42.0	23.6	7.0	184.8 65.5	225 80
	460	414	508	14.7	95	14.7	95	14.7	95			2	3.3	5 10	7.6 14.0	12.6	3.5 3.5	78.1 71.9	90 80
	400	414	508	14.7	35	14.7	55	14.7	55			2	(ea)	15	21.0	12.6	3.5 3.5	84.5 80.5	90 100
														5	6.1	12.6	3.5 2.5	93.1 53.5	<u>110</u> 60
	575	518	632	12.2	80	12.2	80	12.2	80	_	_	2	2.6 (ea)	10	11.0	9.6 — 9.6	2.5 2.5 2.5	63.1 58.4 68.0	70 70 80
													(ea)	15	17.0	9.6	2.5	65.6 75.2	80 90
														10	30.8	23.6	7.0 7.0	147.0 170.6	175 200
	208	187	229	29.5	195	29.5	195	29.5	195	—	_	2	6.5 (ea)	15	46.2	23.6	7.0 7.0	166.3 189.9	200 225
														20	59.4	 23.6	7.0 7.0	182.8 206.4	225 250
														10	28.0	23.6	7.0 7.0	144.1 167.7	150 175
	230	207	253	29.5	195	29.5	195	29.5	195	—	—	2	6.6 (ea)	15	42.0	23.6	7.0 7.0	161.2 184.8	200 225
027														20	54.0	23.6	7.0 7.0	176.2 199.8	225 250
													2.2	10	14.0	12.6	3.5 3.5 3.5	71.9 84.5	80 90
	460	414	508	14.7	95	14.7	95	14.7	95	—	—	2	3.3 (ea)	15	21.0	12.6	3.5 3.5 3.5	80.5 93.1 88.0	100 110 110
														20	27.0	12.6	3.5 3.5 2.5	100.6 58.4	125 70
	575	E10	600	10.0	00	10.0	00	10.0	00			0	2.6	10	11.0	9.6	2.5 2.5	68.0 65.6	80 80
	575	518	632	12.2	80	12.2	80	12.2	80	_		2	(ea)	15 20	17.0	9.6	2.5 2.5	75.2 71.8	90 90
														20	22.0	9.6	2.5	81.4	100

Table 8B — 48A2,A3,A4,A5020-060 Units With Convenience Outlet

UNIT	VOLTAGE				No.1			RESSO		Cir B.	No.2		ENSER IOTOR		ORATOR MOTOR	POWER EXHAUST		POWE	R SUPPLY
SIZE 48A	3 PH, 60 Hz		Max	RLA	LRA	RLA	LRA	RLA		RLA	LRA	Qty	FLA	Нр	FLA	FLA (total)	FLA	МСА	MOCP*
														10	30.8	23.6	7.0 7.0	151.3 174.9	175 200
	208	187	229	23.2	184	23.2	164	23.2	164	23.2	164	2	6.5 (ea)	15	46.2	23.6	7.0 7.0 7.0	170.6 194.2	200 225
													(00)	20	59.4	23.6	7.0 7.0	187.1 210.7	225 250
														10	28.0	23.6	7.0 7.0	148.0 171.6	175 175
	230	207	253	23.2	164	23.2	164	23.2	164	23.2	164	2	6.6 (ea)	15	42.0	23.6	7.0 7.0	165.5 189.1	200 225
													, ,	20	54.0	23.6	7.0 7.0	180.5 204.1	225 250
030														10	14.0		3.5 3.5	72.4 85.0	80 90
	460	414	508	11.2	75	11.2	75	11.2	75	11.2	75	2	3.3 (ea)	15	21.0	 12.6	3.5 3.5	81.2 93.8	100 110
														20	27.0	 12.6	3.5 3.5	88.7 101.3	110 125
														10	11.0	9.6	2.5 2.5	53.1 62.7	60 70
	575	518	632	7.9	54	7.9	54	7.9	54	7.9	54	2	2.6 (ea)	15	17.0	9.6	2.5 2.5	60.6 70.2	70 80
														20	22.0	9.6	2.5 2.5	66.8 76.4	80 90
														15	46.2	 23.6	7.0 7.0	182.8 206.4	225 250
	208	187	229	22.4	149	22.4	149	30.1	225	30.1	225	2	6.5 (ea)	20	59.4	 23.6	7.0 7.0	199.3 222.9	250 250
														25	74.8	 23.6	7.0 7.0	218.5 242.1	250 300
														15	42.0	 23.6	7.0 7.0	177.7 201.3	200 225
	230	207	253	22.4	149	22.4	149	30.1	225	30.1	225	2	6.6 (ea)	20	54.0	23.6	7.0 7.0	192.7 216.3	225 250
035														25	68.0	23.6	7.0 7.0	210.2 233.8	250 300
														15	21.0	12.6	3.5 3.5	91.0 103.6	110 110
	460	414	508	10.6	75	10.6	75	16.7	114	16.7	114	2	3.3 (ea)	20	27.0	12.6	3.5 3.5	98.5 111.1	125 125
														25	34.0	12.6	3.5 3.5	107.2 119.8	125 150
														15	17.0	 9.6	2.5 2.5	68.8 78.4	80 90
	575	518	632	7.7	54	7.7	54	12.2	80	12.2	80	2	2.6 (ea)	20	22.0	 9.6	2.5 2.5	75.0 84.6	90 100
														25	27.0	9.6	2.5 2.5	81.3 90.9	100 110
													0.5	15	46.2	23.6	7.0 7.0	211.2 234.8	250 250
	208	187	229	30.1	225	30.1	225	30.1	225	30.1	225	2	6.5 (ea)	20	59.4	23.6	7.0 7.0	227.7 251.3	250 300
														25	74.8	23.6	7.0 7.0	246.9 270.5	300 300
														15	42.0	23.6	7.0 7.0	206.3 229.9	225 250
	230	207	253	30.1	225	30.1	225	30.1	225	30.1	225	2	6.6 (ea)	20	54.0	23.6	7.0 7.0 7.0	221.3 244.9	250 250
040														25	68.0	23.6	7.0 7.0	238.8 262.4	300 300
														15	21.0	12.6	3.5 3.5	109.8 122.4	125 125
	460	414	508	16.7	114	16.7	114	16.7	114	16.7	114	2	3.3 (ea)	20	27.0	12.6	3.5 3.5	117.3 129.9	125 150
														25	34.0	12.6	3.5 3.5	126.0 138.6	150 150
													0.0	15	17.0	9.6	2.5 2.5	83.0 92.6	90 100
	575	518	632	12.2	80	12.2	80	12.2	80	12.2	80	2	2.6 (ea)	20	22.0	9.6	2.5 2.5	89.2 98.8	110 110
														25	27.0	9.6	2.5 2.5	95.5 105.1	110 125

Table 8B — 48A2,A3,A4,A5020-060 Units With Convenience Outlet (cont)

		VOL	TAG			с	OMPR	ESSO	R							DOWED			
UNIT SIZE	VOLTAGE		F	Cir A,	No. 1					Cir B,	No. 2		ENSER 10TOR		ORATOR MOTOR	POWER EXHAUST		POWEF	SUPPLY
48A	3 PH, 60 Hz	Min	Мах	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA	Qty	FLA	Нр	FLA	FLA (total)	FLA	МСА	MOCP*
														20	59.0	23.6	7.0 7.0	240.5 264.1	250 300
	208	187	229	33.3	239	33.3	239	33.3	239	33.3	239	4	6.5 (ea)	25	75.0	23.6	7.0 7.0	259.7 283.3	300 350
													(· · · /	30	88.0	23.6	7.0 7.0	276.2 299.8	350 350
														20	54.0	23.6	7.0 7.0	234.1 257.7	250 300
	230	207	253	33.3	239	33.3	239	33.3	239	33.3	239	4	6.6 (ea)	25	68.0	23.6	7.0 7.0	251.6 275.2	300 300
													. ,	30	80.0	23.6	7.0 7.0	266.6 290.2	300 350
050														20	27.0	12.6	3.5 3.5	122.1 134.7	125 150
	460	414	508	17.9	125	17.9	125	17.9	125	17.9	125	4	3.3 (ea)	25	34.0	 12.6	3.5 3.5	130.8 143.4	150 175
														30	40.0		3.5 3.5	138.3 150.9	175 175
														20	22.0	9.6	2.5 2.5	91.6 101.2	110 110
	575	518	632	12.8	80	12.8	80	12.8	80	12.8	80	4	2.6 (ea)	25	27.0	9.6	2.5 2.5	97.9 107.5	110 125
														30	32.0	 9.6	2.5 2.5	104.1 113.7	125 125
														25	75.0	 35.4	7.0 7.0	327.7 363.1	400 400
	208	187	229	51.3	300	51.3	300	51.3	300	51.3	300	4	5.5 (ea)	30	88.0	35.4	7.0 7.0	344.2 379.6	400 450
														40	114.0	 35.4	7.0 7.0	376.7 412.1	450 500
														25	68.0	 35.4	7.0 7.0	320.4 355.8	350 400
	230	207	253	51.3	300	51.3	300	51.3	300	51.3	300	4	5.8 (ea)	30	80.0	 35.4	7.0 7.0	335.4 370.8	400 450
060														40	104.0	 35.4	7.0 7.0	365.4 400.8	450 500
(MCHX)														25	34.0	 18.9	3.5 3.5	147.2 166.1	175 200
	460	414	508	22.4	150	22.4	150	22.4	150	22.4	150	4	2.9 (ea)	30	40.0	18.9	3.5 3.5	154.7 173.6	175 200
														40	52.0		3.5 3.5	169.7 188.6	200 225
														25	27.0	14.4	2.5 2.5	125.1 139.5	150 150
	575	518	632	19.9	109	19.9	109	19.9	109	19.9	109	4	2.3 (ea)	30	32.0	14.4	2.5 2.5	131.3 145.7	150 175
														40	41.0	 14.4	2.5 2.5	142.6 157.0	175 175
														25	74.8	35.4	7.0 7.0	344.7 380.1	400 450
	208	187	229	51.3	300	51.3	300	51.3	300	51.3	300	6	6.5 (ea)	30	88.0	35.4	7.0 7.0	361.2 396.6	400 450
														40	114.0	35.4	7.0 7.0	393.7 429.1	500 500
														25	68.0	35.4	7.0 7.0	336.8 372.2	400 400
	230	207	253	51.3	300	51.3	300	51.3	300	51.3	300	6	6.6 (ea)	30	80.0	35.4	7.0 7.0	351.8 387.2	400 450
060														40	104.0	35.4	7.0 7.0	381.8 417.2	450 500
(RTPF)														25	34.0	18.9	3.5 3.5	155.4 174.3	175 200
	460	414	508	22.4	150	22.4	150	22.4	150	22.4	150	6	3.3 (ea)	30	40.0	18.9	3.5 3.5	162.9 181.8	200 200
														40	52.0	18.9	3.5 3.5	177.9 196.8	225 225
														25	27.0	14.4	2.5 2.5	131.5 145.9	150 150
	575	518	632	19.9	109	19.9	109	19.9	109	19.9	109	6	2.6 (ea)	30	32.0	14.4	2.5 2.5	137.7 152.1	150 175
														40	41.0	14.4	2.5 2.5	149.0 163.4	175 200

Table 8B — 48A2,A3,A4,A5020-060 Units With Convenience Outlet (cont)

<u>Routing Through Bottom of Unit</u> — If wiring is brought in through bottom of unit, use field-supplied watertight conduit to route power wiring through the $3^{1/2}$ -in. diameter hole provided in the unit basepan.

Install conduit connector in unit basepan as shown in Fig. 4-9. Route power and ground lines through connector to terminal connections in unit control box as shown on unit wiring diagram and Fig. 19.

Use strain relief going into control box through $3^{5}/_{8}$ -in. diameter hole provided. After wires are in unit control box, connect to power terminal block (see Power Wiring section on page 18).

Low-voltage wiring must be run in watertight conduit from the basepan to control box and through $\frac{7}{8}$ -in. diameter hole provided in bottom of unit control box. Field-supplied strain relief must be used going into the box. After wiring is in control box, make connections to proper terminals on terminal blocks (see Field Control Wiring section on this page).

<u>Routing Through Side of Unit</u> — Route power wiring in field-supplied watertight conduit into unit through $2^{1/2}$ -in. (sizes 020-035) or 3-in. (sizes 040-060) hole.

Use field-supplied strain relief going into control box through $3^{5/8}$ -in. diameter hole provided. After wires are in unit control box, connect to power terminal block (see Power Wiring section on page 18).

Bring low-voltage control wiring through the 7/8-in. diameter hole provided in the condenser section side post. Use strain relief going into 7/8-in. diameter hole in bottom of unit control box.

After wiring is in control box, make connection to proper terminals on terminal blocks (see Field Control Wiring section below).

IMPORTANT: The VAV (variable air volume) units use variable frequency drives, which generate and can radiate radio frequency energy. If units are not installed and used in accordance with these instructions, they may cause radio interference. They have been tested and found to comply with limits of a Class A computing device as defined by FCC (Federal Communications Commission) regulations, Subpart J of Part 15, which are designed to provide reasonable protection against such interference when operated in a commercial environment.

The unit must be electrically grounded in accordance with local codes and NEC ANSI/NFPA 70 (National Fire Protection Association). Personal injury may result.

Affix crankcase heater sticker (located in the installers packet) to unit disconnect switch.

Voltage to compressor terminals during compressor operation must be within the voltage range indicated on the unit nameplate. Phases must be balanced within 2%.

Use the formula in Tables 8A and 8B to determine the percentage of voltage imbalance.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

Unit failure as a result of operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components. On 208/230-v units, transformers 1-5 are wired for 230-v. If 208/230-v unit is to be run with 208-v power supply, the transformers must be rewired as follows:

For transformer 1 move the black wires connected to terminal H2 and connect it to terminal H3.

For transformers 2-4, that are used for the 24-volt control circuits, connect as follows:

- 1. Remove cap from red (208 v) wire.
- 2. Remove cap from spliced orange (230 v) wire. Disconnect orange wire from black unit power wire.
- 3. Cap orange wire.
- 4. Splice red wire and black unit power wire. Cap wires.

If the unit is equipped with the optional convenience outlet connect the yellow wire to H2 on transformer 5.

IMPORTANT: BE CERTAIN UNUSED WIRES ARE CAPPED. Failure to do so may damage the transformers.

FIELD CONTROL WIRING — The 48A Series units support a large number of control options that can impact the field control wiring.

The control options that the unit can provide relate to the following parameters:

- CV (constant volume), VAV (variable air volume), VVT[®] (variable volume variable temperature) or Carrier TEMP system control operation.
- Standalone with a thermostat (CV) or with a space sensor (CV and VAV)
- Network application with CCN (Carrier Comfort Network®) or other networks
- Demand ventilation with CO₂ sensor
- Economizer and economizer with changeover control
- Staged gas heat
- Building and duct static pressure control
- Fire shutdown and smoke control
- · Diagnostics and monitoring

For constant volume applications a thermostat (T-Stat) or space temperature sensor (SPT) will be required.

<u>T-STAT (Conventional Thermostat)</u> — Unit can be controlled with a Carrier-approved accessory electro-mechanical or electronic thermostat that has two stages of cooling, two stages of heating control and an output for indoor fan control. It may also include time of day scheduling or use the scheduling routines built into the *Comfort*LinkTM controls.

Install thermostat according to the installation instructions included with accessory thermostat and the unit wiring diagrams. Locate thermostat assembly on a solid interior wall in the conditioned space to sense average temperature.

Route thermostat cable or equivalent single leads of colored wire from subbase terminals through conduit into unit to low-voltage connection in the main control box. For thermostat TB4 connections see Fig. 20.

NOTE: For wire runs up to 50 ft, use no. 18 AWG (American Wire Gage) insulated wire (35 C minimum). For 50 to 75 ft, use no. 16 AWG insulated wire (35 C minimum). For over 75 ft, use no. 14 AWG insulated wire (35 C Minimum). All wire larger than no. 18 AWG cannot be directly connected at the thermostat and will require a junction box and splice at the thermostat. Set heat anticipator settings as follows:

SIZE	STAGE 1 (W1) ON	STAGE 2 (W1 and W2) ON
020-050	0.24	0.13
060	0.36	0.13

Settings may be changed slightly to provide a greater degree of comfort for a particular installation.

<u>Staged Gas Control Option Thermistors</u> — If the unit is equipped with the staged gas heat option, supply-air thermistors must be installed. Three supply-air thermistors are shipped with staged gas units and are inside the heating section. The supply-air thermistors should be located in the supply duct with the following criteria:

- Downstream of the heat exchanger cells
- Equally spaced as far as possible from the heat exchanger cells
- In a duct location where none of the supply-air thermistors are within sight of the heat exchanger cells
- In a duct location with good mixed supply-air portion of the unit.

<u>SPT (Space Temperature Sensor)</u> — For constant volume applications the *Comfort*LinkTM controls can also be used with T55 and T56 space temperature sensors that use a 10K thermistor. The T56 sensor also has the capability for a configurable temperature set point offset. For variable air volume applications only the T55 sensor can be used.

Install sensor according to the installation instructions included with accessory sensor. Locate sensor assembly on a solid interior wall in the conditioned space to sense average temperature.

Run wiring to the space sensor as shown in Fig. 21.

Note that when the remote sensor is used, the red jumper wires provided must be connected from TB4 terminal 4 to 5 and TB4 terminal 5 to 1.

Both the T55 and T56 have a CCN communications port and this should be wired to the CCN Communications TB3 board if it is desired to have access to the CCN system through the sensor. If more than one T-55 sensor is being used and averaged, sensors must be wired in multiples of 4 or 9 as shown in Fig. 22. <u>T58 Communicating Thermostat</u> — Carrier also has a fully communicating thermostat which, if used, will be wired to the CCN communication connections on TB3 as described in the Carrier Comfort Network[®] Interface section below.

<u>Carrier Comfort Network Interface</u> — The rooftop units can be connected to the CCN system. The communication bus wiring is supplied and installed in the field. Wiring consists of shielded, 3-conductor cable with drain wire. The system elements are connected to the communication bus in a daisy chain arrangement. The positive pin of each system element communication connector must be wired to the positive pins of the system element on either side of it, the negative pins must be wired to the negative pins, and the signal pins must be wired to signal ground pins. Wiring connections for CCN system should be made at the TB3 terminal block using the screw terminals. The TB3 board also contains an RJ14 CCN plug that can be used to connect a field service computer or other CCN device temporarily. There is also an RJ14 LEN (local equipment network) connection that is used to connect a Navigator[™] device or download software.

FIFLD-SUPPL	IED	THERMOSTAT
FIELD-SUFFL		THERMOSTAT

							aht C
R-RC	Y1	Y2	W1	W2	G	Ċ	×
R	¥1	Y2	W1	W2	G	C	×
1	2	3	4	5	6	7	8
			TB4				

Fig. 20 — Field Control Thermostat Wiring

Conductors and drain wire must be 20 AWG minimum stranded, tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon, or polyethylene. An aluminum/polyester 100% foil shield and an outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of -20 C to 60 C (-4 F to 140 F) is required. Table 9 lists cables that meet the requirements.

Table 9 — CCN Connection Approved Shield Cable

MANUFACTURER	CABLE PART NO.
Alpha	2413 or 5463
American	A22503
Belden	8772
Columbia	02525

IMPORTANT: When connecting to CCN communication bus to system elements, use color coding system for the entire network to simplify installation and checkout. See Table 10.

SIGNAL TYPE	CCN BUS CONDUCTOR INSULATION COLOR	CCN PLUG PIN NO.
Positive (+)	RED	1
Ground	WHITE	2
Negative (-)	BLACK	3

If a cable with a different color scheme is selected, a similar color code should be adopted for the entire network. At each system element, the shields of the communication bus cables must be tied together. If the communication bus is entirely within one building, the resulting continuous shield must be connected to a ground at one point only. If the communication bus cable exits from one building and enters another, the shields must be connected to grounds at the lightning suppressor in each building where the cable enters or exits the building (one point per building only).

To connect the unit to the network:

- 1. Turn off power to the control box.
- 2. Cut the CCN wire and strip the ends of the red (+), white (ground), and black (-) conductors. (If a different network color scheme is used, substitute appropriate colors.)
- 3. Remove the 3-pin male plug from the base control board in the main control box, and connect the wires as follows:
 - a. Insert and secure the red (+) wire to terminal 1 of the 3-pin plug.
 - b. Insert and secure the white (ground) wire to terminal 2 of the 3-pin plug.
 - c. Insert and secure the black (-) wire to terminal 3 of the 3-pin plug.

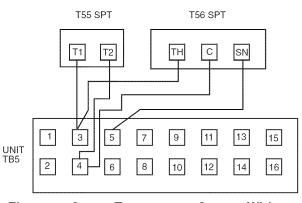


Fig. 21 — Space Temperature Sensor Wiring

4. Insert the plug into the existing 3-pin mating connector on the base module in the main control box.

<u>VAV Units With Heat</u> — For variable air volume units that will use heat, the variable air volume terminals should be interlocked with the unit at TB5 terminals 1 and 2.

<u>Demand Ventilation</u> — The unit can be equipped with a CO_2 sensor for use in demand ventilation. This can be factory supplied and will be mounted in the return duct. It can also be field supplied and mounted in the return duct or in the space. Connect the field-installed 4 to 20 mA sensor to TB5 terminals 6 and 7. Do not remove the factory-installed 182-ohm resistor.

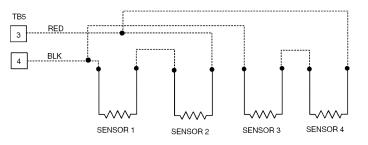
If an outdoor air quality sensor is used then it should be wired to terminal 11 and 12 on TB6. This will require the use of the optional controls expansion module.

<u>Remote IAQ Override</u> — If the control is being used with non Carrier building management system it supports the use of the remote IAQ override switch. This should be connected to TB6 terminal 13 and 14. Use of this will require the optional controls expansion module.

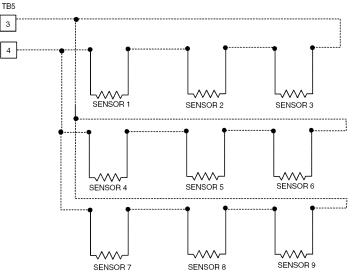
<u>Remote Economizer Position Control</u> — The *Comfort*LinkTM controls will normally control the position of the economizer, but it can also support field control of the economizer position through a 4 to 20 mA signal. If this is used it should be connected to TB5 terminal 6 and 7. If the signal is a 4 to 20 mA signal then leave the 182-ohm resistor in place.

<u>Remote Economizer Enable</u> — If the control is being used with other building management systems and the system will control the enabling and disabling of the economizer free cooling, this switch input can be connected to TB6 terminals 1 and 2. Note that the controls also support integrated economizer changeover using outdoor dry bulb, differential dry bulb, outdoor enthalpy and differential enthalpy.

<u>Remote Occupancy Switch</u> — For interface to other building management systems the control also supports a switch input for remote occupancy signals. This wiring should be connected to terminal TB6 terminal 1 and 3.


<u>Remote Economizer Minimum Position Control</u> — If the *Comfort*Link control is controlling the economizer, but a remote minimum position is required, then an external 100K potentiometer can be connected to TB5 terminal 6 and 7. Remove the factory-installed 182-ohm resistor.

<u>Smoke Sensor Interface</u> — The *Comfort*Link control includes an optional factory-installed return air smoke detector. Remote alarm circuits can be wired to TB5 terminal 8 and 9.


<u>Fire Shutdown and Smoke Control</u> — The control supports interface to fire and smoke control systems and allows for the following system overrides from remote switch inputs.

- Fire Shutdown Connect to TB6 terminals 8 and 9.
- Smoke Pressurization Connect to TB6 terminals 12 and 13. This requires the use of the optional controls expansion module.
- Smoke Evacuation Connect to TB6 terminals 12 and 14. This requires the use of the optional controls expansion module.
- Smoke Purge Connect to TB6 terminals 12 and 15. This requires the use of the optional controls expansion module.

<u>Demand Limiting</u> — The control can also be used with demand limiting control from remote building management systems. If a two-stage system is going to be used with redline limiting where the machine is not allowed to increase load and load shed where

SPACE TEMPERATURE AVERAGING (4 SENSOR APPLICATION)

SPACE TEMPERATURE AVERAGING (9 SENSOR APPLICATION)

NOTE: Use T55 sensor only.

Fig. 22 — Space Temperature Averaging Wiring

the load is decreased to a configurable limit in capacity then these can be connected to TB6 terminals 4 and 5, and 5 and 6. This requires use of the controls expansion module.

Step 9 — Make Outdoor-Air Inlet Adjustments

ECONOMIZER AND FIXED OUTDOOR AIR DAMPER — Hoods are used on all units with economizer or adjustable self-closing fixed outdoor air damper.

NOTE: If accessory power exhaust or barometric relief packages are being added to the unit, install power exhaust or barometric relief before installing economizer hoods.

Economizer Hood Assembly — The economizer hood is shipped in a package secured to the outside of the unit. The hood assemblies must be field-assembled. The 48A4,A5 units are side supply and side return. The return duct limits access to economizer filters from below. Filter tracks (mounting angle without tabs) must be installed correctly to allow access to economizer filters from each side.

The 48A2,A3,A4,A5020-050 units have two hoods on every unit. Each hood has two lower filter tracks, one slotted side and one side without slots. Construct the assembly so that the slotted side is adjacent to the other hood when mounted on the unit.

The 48A2,A3,A4,A5060 units have 3 hoods on every unit. Each hood has two lower filter tracks, one slotted side and one side without slots. Construct the two outer hood assemblies so that the slotted sides are adjacent to the center hood when mounted on the unit.

NOTE: Before assembly of the economizer hood, check along the outer edges of the economizer assembly for any seal strip protruding past the flanges. Trim the excess seal strip so that it is flush with the economizer assembly flanges.

Perform the following procedure to assemble the economizer hood.

- Apply black seal strip (provided) to outside top-edge of hood sides. Wrap seal strip over edge to cover top flange (6 hood sides). Make sure seal strip covers screw holes. Allow strip to overhang ¹/₈-in. past the end opposite the mounting flange. See Fig. 23.
- 2. Assemble hood sides, top, and cross member with gasketed screws provided. See Fig. 24.
- 3. Attach 15 green speed clips (provided) to hood top.
- 4. Apply black seal strip (provided) to mounting flanges of hood sides being sure to cover mounting holes. See Fig. 25.
- Apply black seal strip (provided) to back of hood top mounting flange. Seal strip of hood top mounting flange must press tightly against seal strip of hood side mounting flanges. See Fig. 26.
- 6. Add gray foam strip (provided) to cross members on bottom tray. See Fig. 27.
- 7. Place gray foam strip (provided) on inside of slotted hood side between filter and cross member opposite the mounting end. See Fig. 28.
- 8. Attach gray foam strip (provided) to block-off baffle on outer face of flange. See Fig. 29.
- 9. Remove the screws on each end and along top of damper assembly of unit. Remove top 4 screws on each side of filter panel under damper assembly. Set hood assembly in place and attach to unit using these screws.
- 10. Remove screws along bottom of damper assembly. Locate and mount blockoff baffle using these screws.
- 11. Assemble 2 filter tracks side-by-side with the assembled ends together.
- 12. Attach mounting angle (without tabs) to the assembled end of the filter track. See Fig. 30.

- 13. Attach 9 green speed clips (provided) to hood side panels without slots. Engagement section of clip faces up and towards the outside of the hood side panels.
- 14. Attach remaining mounting angle (with tabs) to other end of the filter track with no. 10 screws provided. See Fig. 31.
- 15. Place filter track assembly in bottom of hood by placing tabbed end into slotted side (with tab on bottom) and attaching opposite end to hood with speed clips and gasketed screws provided. Tabs can be hand bent after they have been inserted into the side.

NOTE: The filter track assembly end with screws should face away from the other hood when mounted on the unit. Be sure the filters are installed with the airflow in the correct direction.

NOTE: Tabs from both filter tracks will be in the same space. After one filter track has been inserted into hood side, bend the tabs so they will not interfere with installation of the center hood.

- 16. Attach black seal strip (provided) to filter cover. Seal strip should be applied centered over the holes of the one flange, making sure to fully cover holes and centered over the other large flange. See Fig. 32.
- 17. Slide two 20 x 25-in. filters into cross members of hood assembly. Attach filter cover over filters with screws and speed clips provided.

Step 10 — **Position Power Exhaust/Barometric Relief Damper Hood** — All units are shipped with the hoods folded inside the unit in a shipping position. For 48A2, and A3 units the hood must be tilted out once the unit is installed. On 48A4, A5 units, (designed for horizontal supply and return) the assemblies will have to be relocated to return ductwork. See Fig. 33 for dimensions and details.

All electrical connections have been made and adjusted at the factory. The power exhaust blowers and barometric relief dampers are shipped assembled and tilted back into the unit for shipping. Brackets and extra screws are shipped in shrink wrap around the dampers. If ordered, each unit will have 4 (48A2,A3,A4,A5020-050 units) or 6 (48A2,A3,A4,A5060 units) power exhaust blowers and motors or barometric relief dampers.

1. Remove 9 screws holding each damper assembly in place. See Fig. 34. Each damper assembly is secured with 3 screws on each side and 3 screws along the bottom. **Save screws.**

Be careful when tilting blower assembly. Hoods and blowers are heavy and can cause injury if dropped.

- 2. Pivot each damper assembly outward until edges of damper assembly rest against inside wall of unit.
- 3. Secure each damper assembly to unit with 6 screws across top (3 screws provided) and bottom (3 screws from Step 1) of damper.
- 4. With screws saved from Step 1, install brackets on each side of damper assembly.
- 5. Remove tape from damper blades.

Step 11 — Route VAV Static Pressure Sensors

VAV DUCT PRESSURE TRANSDUCER — The VAV duct pressure transducer (VAV inverter pressure transducer) is located behind the filter access door on the lower inner panel. See Fig. 35. A section of field-supplied ¹/₄-in. plastic tubing must be run from the high pressure tap on the differential pressure switch and connected to a field-supplied tap in the supply-air duct. The tap is usually located ²/₃ of the way out on the main supply duct. Remove plug button in panel to route tubing.

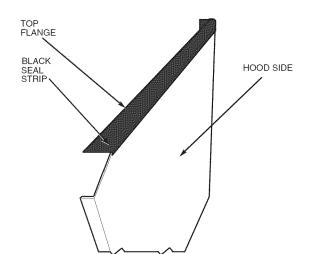
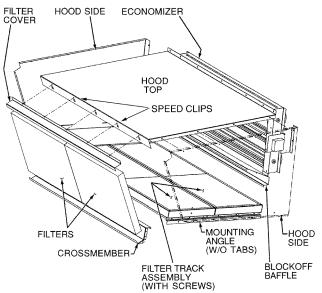



Fig. 23 — Adding Seal Strip to Top of Hood Sides

NOTE: Left side economizer hood has mounting angle without tabs and filter rack assembled end on the opposite side.

Fig. 24 — Economizer Hood Assembly (Right Side/Center Economizer Hood Shown)

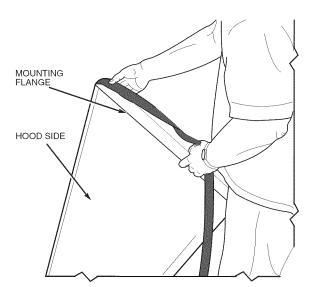


Fig. 25 — Adding Seal Strip to Sides of Hood Top Mounting Flange

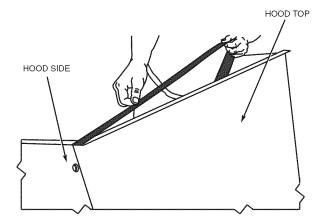


Fig. 26 — Adding Seal Strip to Back of Hood Top Mounting Flange

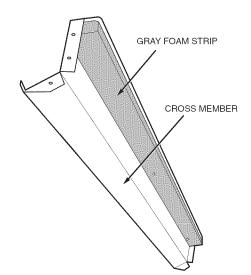


Fig. 27 — Adding Foam Strip to Cross Member

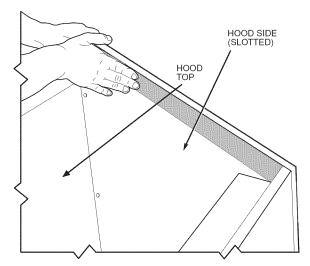


Fig. 28 — Adding Foam Strip to Hood Side

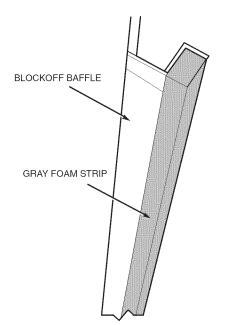
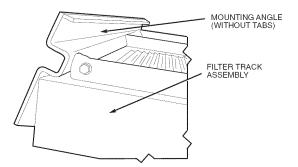



Fig. 29 — Adding Seal Strip to Blockoff Baffle

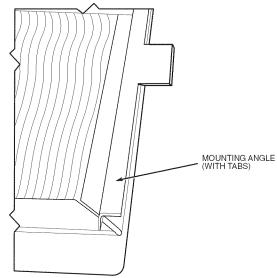


Fig. 31 — Mounting Angle (With Tabs) Attached to Filter Track Assembly

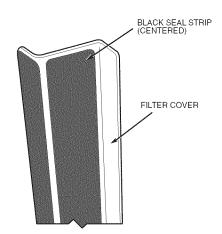


Fig. 32 — Attaching Seal Strip to Filter Cover

VAV BUILDING PRESSURE TRANSDUCER — The VAV building pressure transducer (modulating power exhaust pressure transducer) is located behind the filter access door on the lower inner panel. See Fig. 35. A section of field-supplied ¹/₄-in. plastic tubing must be run from the high pressure tap on the differential pressure switch to the conditioned space. The pressure tube must be terminated in the conditioned space where a constant pressure is required. This location is usually in an entrance lobby so that the building exterior doors will open and close properly. Remove plug button in panel to route tubing.

The low pressure tap is factory-routed to the atmosphere. For a positive-pressure building, route the high tap to building air and low tap to atmosphere. For a negative-pressure building, route the high tap to atmosphere and the low tap to building air.

Step 12 — **Install All Accessories** — After all the factory-installed options have been adjusted, install all field-installed accessories. Refer to the accessory installation instructions included with each accessory.

The 48A Series units have a large number of factoryinstalled options which were previously available only as accessories. Some of the available options can also be installed in the field if needed. In most cases the units have been pre-wired so that the accessories can be easily installed. Instructions are shipped with each accessory. Configuration of the controls for these accessories as well as the factory-installed options can be found in the Controls, Start-up, Operation, Service and Troubleshooting book. The following is a list of some of the common accessories:

- Thermostats and space temperature sensors
- LP (liquid propane) conversion kit
- Accessory barometric relief damper
- Accessory power exhaust
- Non-modulating to modulating power exhaust
- Condenser coil hail guards
- Outdoor humidity sensor (used for economizer enthalpy changeover)
- Return air humidity sensors (used for economizer differential enthalpy changeover)
- Return air smoke detector
- Controls expansion module (used for interface to building management systems, not typically needed on system with the Carrier Comfort Network[®] [CCN] system)

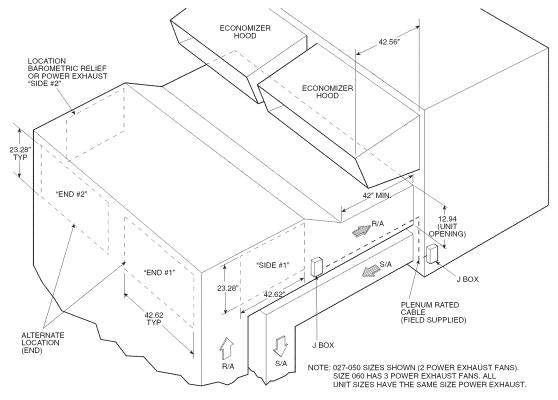
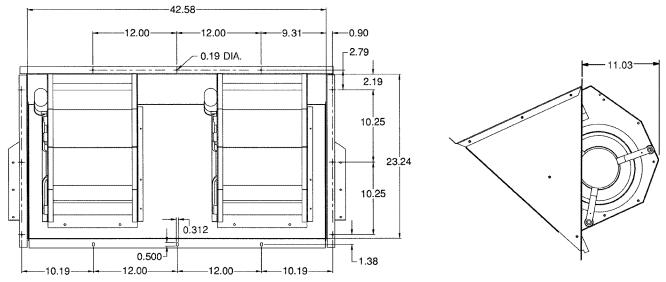



Fig. 33 — Power Exhaust Relocated to Side Return Duct

NOTES:
1. Unless otherwise specified, all dimensions are to outside of part.
2. Dimensions are in inches.
3. On 48A4,A5 units, accessory barometric relief or power exhaust must be mounted in the field-supplied return ductwork.

Fig. 34 — Barometric Relief Damper and Power Exhaust Mounting Details

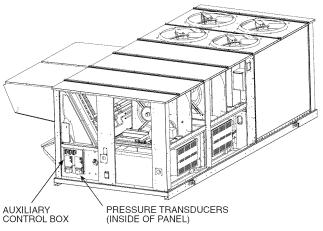


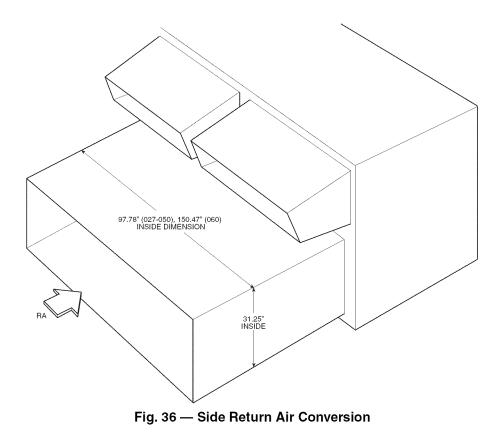
Fig. 35 — Pressure Transducer Locations

- Plugged filter sensor
- Motormaster® V low ambient head pressure control

IMPORTANT: Carrier recommends the installation of field-fabricated wind baffles on all vertically oriented condenser coils when operating in environments with prevailing winds of more than 5 MPH and where temperatures drop below 32 F. See the Motormaster accessory installation guide for instructions.

Step 13 — Field Modifications DUCTWORK

Bottom Return Units (48A2 and A3) Field-Modified for Side Return — The 48A2 and A3 units with bottom return air connections may be field-modified to accommodate side return air connections.


IMPORTANT: The following section is a guideline and not a comprehensive procedure to field modify the units. The installing contractor must provide some design initiative. Field-conversion is complex and is not recommended. Conversion to horizontal return requires that the bottom return openings of the unit must be sealed with airtight panels capable of supporting the weight of a person. The return ductwork connection locations on the side of the unit are higher than normal (31-in. high). Unit-mounted power exhaust or barometric relief cannot be used because of return air ductwork will cover the power exhaust or barometric relief installation locations. Power exhaust or barometric relief may be installed in the return air ductwork.

To convert the unit, perform the following:

- 1. Seal the bottom return openings of the unit with airtight panels capable of supporting the weight of a person.
- 2. Remove the panels located below the economizer outdoor-air dampers. These openings will be used for the return-air ductwork. There are 2 panels on 48A2,A3020-050 units. There are 3 panels on 48A2,A3060 units. These openings are normally used for power exhaust or barometric relief.
- 3. Run the return air ductwork up to the openings. One single duct is recommended to connect to the unit over the return air openings. See Fig. 36. The return duct must incorporate a minimum ³/₄-in. flange for connection to the unit cabinet. The unit does not have duct flanges for this conversion.

<u>Side Supply and Return Units (48A4,A5) With Field-Installed Power Exhaust in Return Duct</u> — Space must be available in the return duct to mount the power exhaust fan (gravity relief) modules. Dimensions and suggested locations are shown in Fig. 36. These instructions are a guideline and not a comprehensive procedure. The design contractor must provide some design initiative.

The wiring harness that is provided with the power exhaust accessory is not long enough for the fan modules to be mounted in the return air duct. Field-supplied wiring must be spliced into the harness. Use a junction box at each splice. The wiring may be run in the return duct, or externally in conduit. A service access panel will be needed near each power exhaust fan.

Copyright 2008 Carrier Corporation