

Installation, Start-Up and Service Instructions

CONTENTS

	Page
SAFETY CONSIDERATION	ONS
MAJOR SYSTEM COMP	ONENTS
Constant Volume (CV) L	Jnits
Variable Air Volume (VA	V) Units 2
Stop 1 Complete Bro	Installation Checks 3
• EXAMINE THE UNIT	
UNIT STORAGE	
MODULAR UNITS	
	Unit
• REMOVE PACKAGING	O IIIt
 KENIOVE PACKAGING UNIT LOCATION	
 UNIT LOCATION UNIT PLACEMENT 	
 ONIT PLACEMENT ACOUSTICAL CONSIDE 	DATIONS
 ACOUSTICAL CONSIDE ASSEMBLING MODULA 	
 DUCT STATIC PRESSUR 	Prk
	E PROBE AND TUBING
(VAV Only)	HS) LIMIT SWITCH (VAV Only)
Stop 4 — Make Diping C	connections
CONDENSED WATED D	DINC (Water Casled Only)
 CONDENSER WATER PI EVAPORATOR CONDEN 	PING (Water-Cooled Only)
 EVAPORATOR CONDEN HOT WATER HEATING (
 HOT WATER HEATING (WATER ECONOMIZER (
 REMOTE REFRIGERAN 	
 REMOTE REFRIGERAN (Remote Air-Cooled Only) 	
Stop E Complete Elec	triad Connections 24
Step 5 — Complete Elec	ctrical Connections24
Step 5 — Complete Elect • POWER WIRING	ctrical Connections24
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV 	Only)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER 	Ctrical Connections 24 Only) FAN CONTACTOR WIRING
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA) 	Only) FAN CONTACTOR WIRING V Only)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERATION 	Ctrical Connections 24 Only) FAN CONTACTOR WIRING V Only) FURE SENSOR (SAT)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR 	Ctrical Connections 24 Only) FAN CONTACTOR WIRING V Only) FURE SENSOR (SAT) E ALARM SHUTDOWN (FSD)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND 	Ctrical Connections 24 Only) FAN CONTACTOR WIRING V Only) FURE SENSOR (SAT) E ALARM SHUTDOWN (FSD) WARNING (WARN) OUTPUTS
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY 	Ctrical Connections 24 Only) FAN CONTACTOR WIRING V Only) FURE SENSOR (SAT) E ALARM SHUTDOWN (FSD) WARNING (WARN) OUTPUTS (ROCC)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERAT 	Ctrical Connections24 Only) FAN CONTACTOR WIRING V Only) FURE SENSOR (SAT) E ALARM SHUTDOWN (FSD) WARNING (WARN) OUTPUTS (ROCC) JURE SENSOR (RAS)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERAT 	Only) FAN CONTACTOR WIRING V Only) IURE SENSOR (SAT) E ALARM SHUTDOWN (FSD) WARNING (WARN) OUTPUTS (ROCC) ITURE SENSOR (RAS)
Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERAT START-UP General	Only) FAN CONTACTOR WIRING V Only) IURE SENSOR (SAT) E ALARM SHUTDOWN (FSD) WARNING (WARN) OUTPUTS (ROCC) ITURE SENSOR (RAS)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERAT START-UP General CRANKCASE HEATERS 	ctrical Connections
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERAT START-UP General CRANKCASE HEATERS CONFIRM THE INPUT P 	Only) FAN CONTACTOR WIRING V Only) IURE SENSOR (SAT) E ALARM SHUTDOWN (FSD) WARNING (WARN) OUTPUTS (ROCC) ITURE SENSOR (RAS)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERAT START-UP General CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING 	ctrical Connections
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING RETURN-AIR FILTERS 	Ctrical Connections24 Only) FAN CONTACTOR WIRING V Only) IURE SENSOR (SAT) E ALARM SHUTDOWN (FSD) WARNING (WARN) OUTPUTS (ROCC) IURE SENSOR (RAS)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP General CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING RETURN-AIR FILTERS COMPRESSOR MOUNT 	ctrical Connections24Only)FAN CONTACTOR WIRINGV Only)IURE SENSOR (SAT)E ALARM SHUTDOWN (FSD)WARNING (WARN) OUTPUTS(ROCC)IURE SENSOR (RAS)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING RETURN-AIR FILTERS COMPRESSOR MOUNTI REFRIGERANT SERVIC 	ctrical Connections24Only)FAN CONTACTOR WIRINGV Only)FAN CONTACTOR WIRINGURE SENSOR (SAT)E ALARM SHUTDOWN (FSD)WARNING (WARN) OUTPUTS(ROCC)TURE SENSOR (RAS)30-48
Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP General CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING RETURN-AIR FILTERS COMPRESSOR MOUNTT REFRIGERANT SERVIC CV Unit Start-Up	ctrical Connections24Only)FAN CONTACTOR WIRINGV Only)1000000000000000000000000000000000000
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP General CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING RETURN-AIR FILTERS COMPRESSOR MOUNTI REFRIGERANT SERVIC CV Unit Start-Up EVAPORATOR FAN 	ctrical Connections24Only)FAN CONTACTOR WIRINGV Only)FAN CONTACTOR WIRINGURE SENSOR (SAT)E ALARM SHUTDOWN (FSD)WARNING (WARN) OUTPUTS(ROCC)TURE SENSOR (RAS)30-48
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP General CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING REFURSOR MOUNTI REFRIGERANT SERVIC CV Unit Start-Up EVAPORATOR FAN COOLING 	ctrical Connections24Only)FAN CONTACTOR WIRINGV Only)(URE SENSOR (SAT)E ALARM SHUTDOWN (FSD)WARNING (WARN) OUTPUTS(ROCC)JURE SENSOR (RAS)
Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING RETURN-AIR FILTERS COMPRESSOR MOUNTT REFRIGERANT SERVIC CV Unit Start-Up EVAPORATOR FAN COOLING HEATING (Heat Pump Ur	chrical Connections 24 Only) FAN CONTACTOR WIRING FAN CONTACTOR WIRING Vonly) rURE SENSOR (SAT) E E ALARM SHUTDOWN (FSD) WARNING (WARN) OUTPUTS WARNING (WARN) OUTPUTS (ROCC) JURE SENSOR (RAS) 30-48 OWER PHASE SEQUENCE 30 OWER PHASE SEQUENCE 31 inits Only) 31
Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING RETURN-AIR FILTERS COMPRESSOR MOUNTT REFRIGERANT SERVIC CV Unit Start-Up EVAPORATOR FAN COOLING HEATING (Heat Pump Ur	chrical Connections 24 Only) FAN CONTACTOR WIRING FAN CONTACTOR WIRING Vonly) rURE SENSOR (SAT) E E ALARM SHUTDOWN (FSD) WARNING (WARN) OUTPUTS WARNING (WARN) OUTPUTS (ROCC) JURE SENSOR (RAS) 30-48 OWER PHASE SEQUENCE 30 OWER PHASE SEQUENCE 31 inits Only) 31
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP General CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING REFURN-AIR FILTERS COMPRESSOR MOUNTI REFRIGERANT SERVIC CV Unit Start-Up EVAPORATOR FAN COOLING HEATING (Heat Pump Ur VAV Unit Start-Up PERFORM AUTOMATIC 	ctrical Connections24Only)FAN CONTACTOR WIRINGV Only)(URE SENSOR (SAT)E ALARM SHUTDOWN (FSD)WARNING (WARN) OUTPUTS(ROCC)JURE SENSOR (RAS)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP General CRANKCASE HEATERS COMFIRM THE INPUT P INTERNAL WIRING RETURN-AIR FILTERS COMPRESSOR MOUNTT REFRIGERANT SERVIC CV Unit Start-Up HEATING (Heat Pump Ur VAV Unit Start-Up PERFORM AUTOMATIC CHECK VFD 	ctrical Connections24Only)FAN CONTACTOR WIRINGFAN CONTACTOR WIRINGVonly)(URE SENSOR (SAT)EE ALARM SHUTDOWN (FSD)WARNING (WARN) OUTPUTS(ROCC)IURE SENSOR (RAS)
 Step 5 — Complete Elect POWER WIRING CONTROL WIRING (CV REMOTE CONDENSER CONTROL WIRING (VA' SUPPLY AIR TEMPERAT SMOKE DETECTOR/FIR ALARM (ALARM) AND REMOTE OCCUPANCY RETURN AIR TEMPERA START-UP General CRANKCASE HEATERS CONFIRM THE INPUT P INTERNAL WIRING REFURN-AIR FILTERS COMPRESSOR MOUNTI REFRIGERANT SERVIC CV Unit Start-Up EVAPORATOR FAN COOLING HEATING (Heat Pump Ur VAV Unit Start-Up PERFORM AUTOMATIC 	ctrical Connections24Only)FAN CONTACTOR WIRINGFAN CONTACTOR WIRINGVonly)(URE SENSOR (SAT)EE ALARM SHUTDOWN (FSD)WARNING (WARN) OUTPUTS(ROCC)IURE SENSOR (RAS)

Ρ	a	ge	

	rage
 LOG ON TO THE LID DISPLAY 	
CHANGE THE DEFAULT PASSWORD	
SET THE CLOCK	
CONFIGURE SCHEDULES	
PROGRAM SET POINTS	
CHECK SYSTEM PARAMETERS	
DISPLAY ALARM HISTORY	
CONFIGURE THE CUSTOM PROGRAMMIN	G
SELECTIONS	
SET CONTROLLER ADDRESS	
LOG OFF FROM THE CONTROLLER	
Sequence of Operation (CV Only)	17
WATER ECONOMIZER COOLING	40
Sequence of Operation (VAV Only)	48
SUPPLY FAN	
COMPRESSOR COOLING	
WATER ECONOMIZER COOLING	
COOLING RESET	
Diagnostic Features (CV Only)	48
VAV Control and VED Diagnostico	
VAV Control and VFD Diagnostics	
SERVICE	49
Compressor Rotation	
Fan Motor Replacement	49
MAINTENANCE	49-51
Cleaning Unit Exterior	49
Coil Cleaning	49
Inspection	49
Air Filters	
Condensate Drains	
Water-Cooled Condensers	49
 GRAVITY FLOW METHOD 	
FORCED CIRCULATION METHOD	
Fan Motor Lubrication	50
Fan Bearing Lubrication	50
Fan Sheaves	
ALIGNMENT	
	د د
Evaporator Fan Performance Adjustment	
BELT TENSION ADJUSTMENT Charging the System	
Charging the System	51
REMOTE AIR-COOLED UNITS	
Compressor Oil	51
	51 65
TROUBLESHOOTING Forcing and Clearing an Input or Output	
Forcing and Clearing an input or Output	- ·
(VAV only)	
START-UP CHECKLIST	CL-1 CL-2
	$.CL^{-1}, CL^{-2}$

SAFETY CONSIDERATIONS

Installing, starting up, and servicing air-conditioning components and equipment can be dangerous. Only trained, qualified installers and service mechanics should install, startup, and service this equipment.

When working on the equipment, observe precautions in the literature and on tags, stickers, and labels attached to the equipment. Follow all safety codes. Wear safety glasses and work gloves.

Before performing service or maintenance operations on unit, turn off main power switch to unit and open all disconnects. More than one disconnect switch may be required to deenergize this equipment. Electric shock hazard can cause injury or death.

Use care in handling, rigging, and setting bulky equipment.

GENERAL

Omnizone[™] 50BV indoor packaged units are very flexible for a variety of applications. These self-contained units are available as water-cooled or remote air-cooled air conditioning units. The 50BV units are available with either constant volume (CV) or variable air volume (VAV) controls. In addition, the 50BV unit is available as a water-cooled heat pump. Finally, Omnizone 50BV units are available in two cabinet styles. Nominal 18 through 30-ton units are constructed in a singlepiece, unpainted galvanized cabinet. Nominal 30 through 60-ton units are available as modular units, and can be taken apart for easier installation. Modular units are built using an unpainted, galvanized steel cabinet with steel framework, and can be easily disassembled without breaking the refrigerant lines. See Table 1 for a model number reference by application.

Each unit contains multiple scroll compressors piped in separate refrigerant circuits. Each water-cooled circuit includes a coaxial (tube-in-tube) condenser, TXV (thermostatic expansion valve), individual evaporator coils, and all interconnecting piping. Water-cooled units are shipped fully charged with refrigerant. Remote air-cooled units are shipped with a nitrogen holding charge.

Each unit is equipped with one or two forward-curved centrifugal blowers, to ensure quiet air delivery to the conditioned space. Constant volume units operate at a single, adjustable fan speed and provide zone temperature control using a standard commercial thermostat. For VAV applications, the unit is supplied with a variable frequency drive(s) (VFD) that automatically adjusts blower speed to maintain a constant, adjustable duct static pressure. Compressors are automatically staged to provide supply air temperature control (VAV applications) or zone temperature control using a two-stage commercial thermostat (CV applications). The 50BV units have removable access panels for easy servicing. These panels allow access to controls, compressors, condensers, VFD(s) (if applicable), evaporator motors, blowers, belts, pulleys, and refrigeration components.

MAJOR SYSTEM COMPONENTS

Constant Volume (CV) Units

MAIN CONTROL BOARD (MCB) — The main control board for the 50BVC, E, Q, T, U, and V units provides both controls and diagnostics including:

- <u>Condensate Overflow Protection</u> prevents unit operation in the event that the drain pan clogs (optional sensors required).
- <u>Random Start</u> provides a programmable start with a range of 30 to 60 seconds.
- <u>Anti-short Cycle Timer</u> provides a 5-minute delay to prevent compressor short cycling.
- <u>Low Pressure Bypass Timer</u> bypasses the low-pressure switch for 90 seconds to avoid nuisance trips during cold start-up.
- <u>High Pressure Switch Delay</u> is a one-second delay that prevents nuisance trips at start-up.
- <u>Brownout/Surge/Power Interruption Protection</u> is a 20-second moving scale that works in conjunction with the random start timer to delay unit start when a nuisance lock-out would otherwise have occurred. This allows the water pumps to restart and establish water flow.
- <u>Alarm Output</u> contacts provide remote fault indication.
- <u>Test/Service Pin</u> is a jumper that reduces all time delay settings to 6 seconds during troubleshooting or operation verification.
- <u>Reset</u> occurs after a 5-minute delay when a fault condition occurs. When the timer expires, the unit will restart. If the same condition occurs a second time, the unit will be locked out.
- <u>Lockout Reset</u> requires that the unit power be cycled at the unit controller via either the thermostat or unit disconnect.

NOTE: The refrigerant circuits on dual compressor models are completely independent. If either stage has a fault condition the remaining stage will continue to operate without interruption. A freeze (optional sensor required) or condensate overflow lockout will shut down both refrigerant circuits.

<u>LEDs</u> are provided for diagnostic purposes.

Variable Air Volume (VAV) Units — The 50BVJ, K, W, and X units come equipped with a Carrier 6400 Comfort Controller and a VFD. Refer to the 50BV,XJ Controls, Operation and Troubleshooting manual for details.

NOTE: The VAV units utilize face split coils and should not be operated below 50% of nominal airflow to prevent coil freezing.

MODEL	TYPE*	AVAILABLE CAPACITY	CONSTRUCTION	CONTROLS
50BVC	Water-Cooled	18 to 30 nominal tons	Single-piece	CV
50BVE	Remote Air-Cooled	18 to 30 nominal tons	Single-piece	CV
50BVQ	Water-Cooled Heat Pump	18 to 30 nominal tons	Single-piece	CV
50BVJ	Water-Cooled	18 to 30 nominal tons	Single-piece	VAV
50BVK	Remote Air-Cooled	18 to 30 nominal tons	Single-piece	VAV
50BVT	Water-Cooled	30 to 60 nominal tons	Modular	CV
50BVU	Remote Air-Cooled	30 to 60 nominal tons	Modular	CV
50BVV	Water-Cooled Heat Pump	30 to 60 nominal tons	Modular	CV
50BVW	Water-Cooled	30 to 60 nominal tons	Modular	VAV
50BVX	Remote Air-Cooled	30 to 60 nominal tons	Modular	VAV

Table 1 — Model Number Reference By Application Type

LEGEND

CV — Constant Volume **VAV** — Variable Air Volume

*All units are cooling only unless specified.

INSTALLATION

OmnizoneTM 50BV units are intended for indoor installation only. Determine building alterations required to run piping, wiring, and ductwork. Read all installation instructions before installing the unit.

Step 1 — Complete Pre-Installation Checks

EXAMINE THE UNIT — Examine the unit for shipping damage. File a claim with the transit company if damage is found. Check the shipment for completeness. Verify that the nameplate electrical requirements match the available power supply.

UNIT STORAGE — The 50BV units are designed and packaged for indoor storage and use only. If the equipment is not needed for immediate installation upon its arrival at the job site, it should be left in its shipping carton and stored in a clean, dry area. Units must only be stored or moved in the normal upright position, as indicated by the "UP" arrows on each carton, at all times. DO NOT STACK UNITS.

MODULAR UNITS — The 50BVT,U,V,W,X units are shipped in multiple sections for easy movement and installation. The separate modules will pass through a standard 36-in. steelframed door or service elevator. Circuit integrity is maintained because none of the refrigerant piping requires disconnection. Water piping connections are made with the use of heavy-duty bronze-bodied unions so no field welding or brazing is required. See Table 2 for the number of sections per unit.

Table 2 — Modular Unit Shipping Table

	NUMBER OF SECTIONS						
SECTIONS		50BVT, U, V, W, X					
	034	044	054	064			
Main Air Conditioning	1	2	2	2			
Weight (Ib) (each)	2100	1825	2200	2225			
Reheat Coil Option	1	2	2	2			
Weight (Ib) (each)	40	40	40	40			
Economizer/Filter	1	2	2	2			
Filter Section Weight (Ib)	310	310	310	310			
Economizer Weight (Ib)	200	200	200	200			
Fan Section	1	2	2	2			
Weight (Ib) (each)	650	650	650	650			
Total Unit	4	8	8	8			
Weight (Ib)	3300	5400	6150	6150			

NOTE: Units ship with the main air conditioning, economizer/ filter, and, when selected, the reheat coil sections assembled together. These can be easily disassembled, as required, in the field. The fan section(s) always ships separately.

Step 2— **Rig and Place Unit** — Use proper lifting and handling practices to avoid damage to the unit. Move modular units with a fork truck using the baserails provided, or use spreader bars and lifting straps as shown in Fig. 1. For single piece units, use spreader bars and rigging straps if lifting with a crane to avoid damage to the unit. Otherwise, move with a fork truck using the shipping pallet.

Refer to Fig. 2-14 for unit dimensions.

Refer to Tables 3A and 3B for physical data.

REMOVE PACKAGING — Remove all protective plastic, remove and discard unit top cover protector, filter cover, controller display protector, and water piping connection packaging.

UNIT LOCATION — Locate the unit in an indoor area that allows easy removal of the filters, access panels, and accessories. Make certain enough space is available for service personnel to perform maintenance or repairs. Provide sufficient room to make all water, duct, and electrical connections. If the unit is located in a small mechanical equipment room, make sure adequate space is available for air to return freely to the unit. These units are not approved for outdoor installations and must be installed inside the structure. Do not locate in areas that are subject to freezing.

UNIT PLACEMENT — Ensure that the floor is structurally strong enough to support the weight of the equipment with minimum deflection. A good, level floor is required for proper unit operation and to ensure proper fit-up and alignment of all bolt together and union coupled modules on modular units.

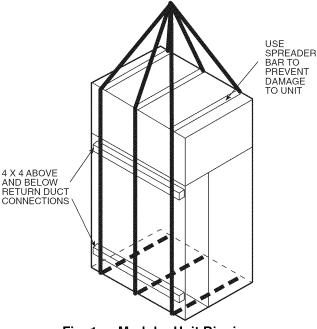
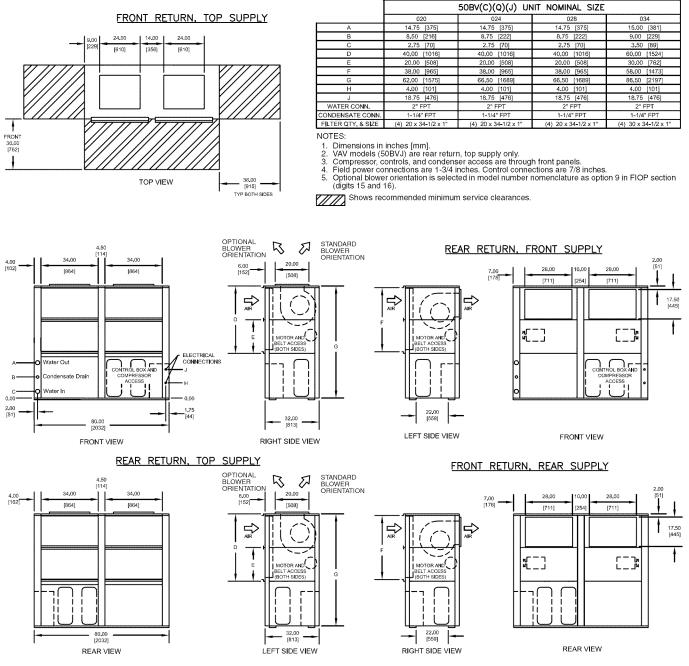
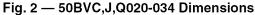
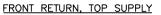





Fig. 1 — Modular Unit Rigging

		50BV(E)(K) UNI	NOMINAL SIZE	
	020	024	028	034
Đ	40.00 [1016]	40.00 [1016]	40.00 [1016]	60.00 [1524]
E	20.00 [508]	20.00 [508]	20.00 [508]	30.00 [762]
F	38.00 [965]	38.00 [965]	38.00 [965]	58.00 [1473]
G	62,00 [1575]	66,50 [1689]	66,50 [1689]	86,50 [2197]
Н	4.00 [101]	4.00 [101]	4.00 [101]	4.00 [101]
J	18.75 [476]	18.75 [476]	18.75 [476]	18.75 [476]
CONDENSATE CONN.	1-1/4" FPT	1-1/4" FPT	1-1/4" FPT	1-1/4" FPT
FILTER QTY. & SIZE	(4) 20 x 34-1/2 x 1"	(4) 20 x 34-1/2 x 1"	(4) 20 x 34-1/2 x 1"	(4) 30 x 34-1/2 x 1"

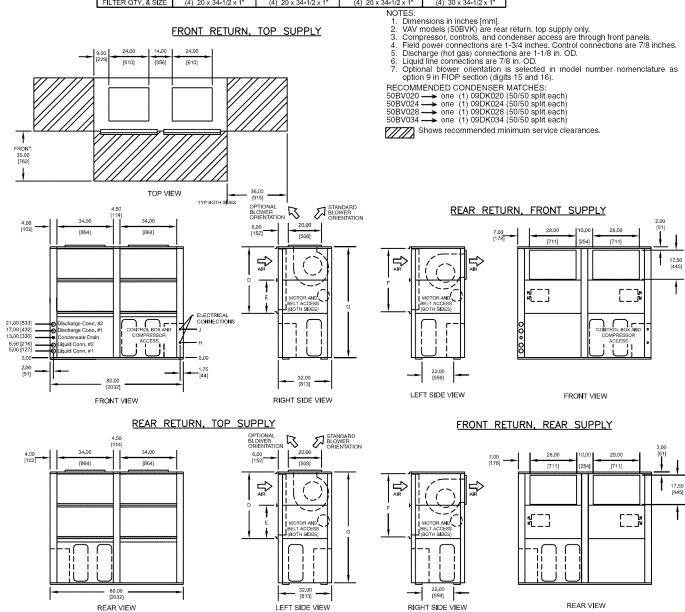
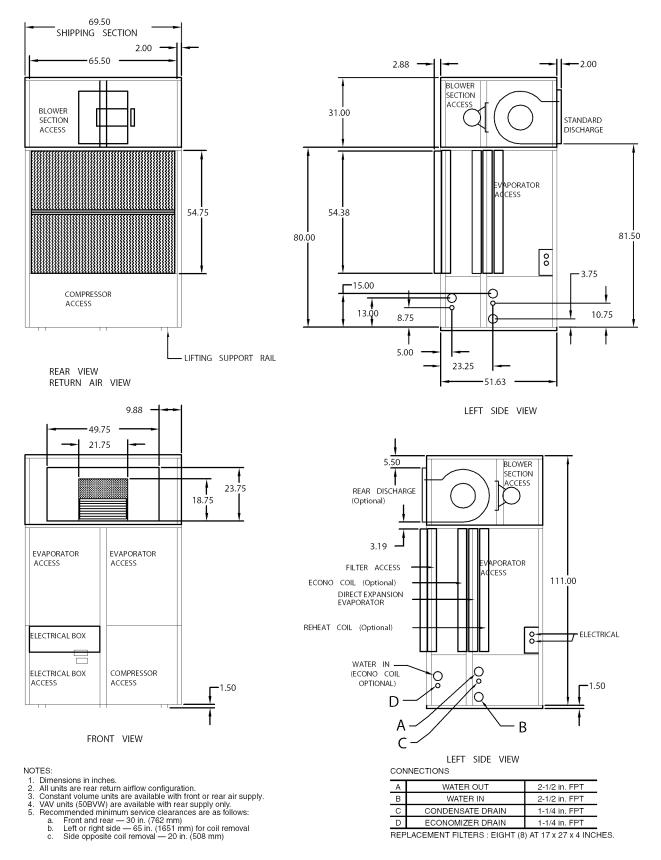
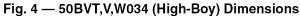
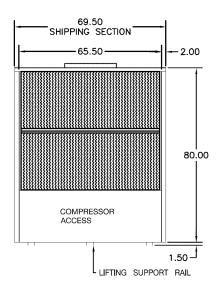
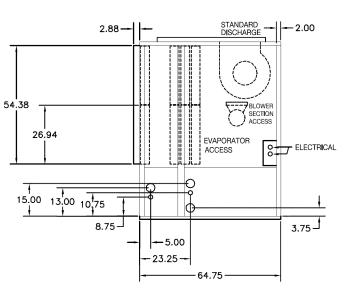
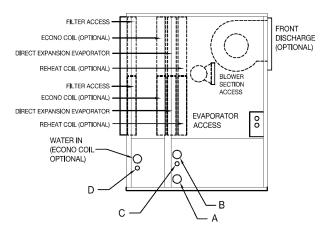





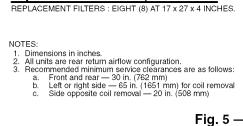
Fig. 3 — 50BVE,K020-034 Dimensions




REAR VIEW RETURN AIR VIEW

21.75

- 23.75 -



LEFT SIDE VIEW

CONNECTIONS

А

В

С

D

-22.75

49.75

TOP DISCHARGE TOP VIEW

WATER OUT

WATER IN

CONDENSATE DRAIN

ECONOMIZER DRAIN

Fig. 5 — 50BVT,V,W034 (Low-Boy) Dimensions

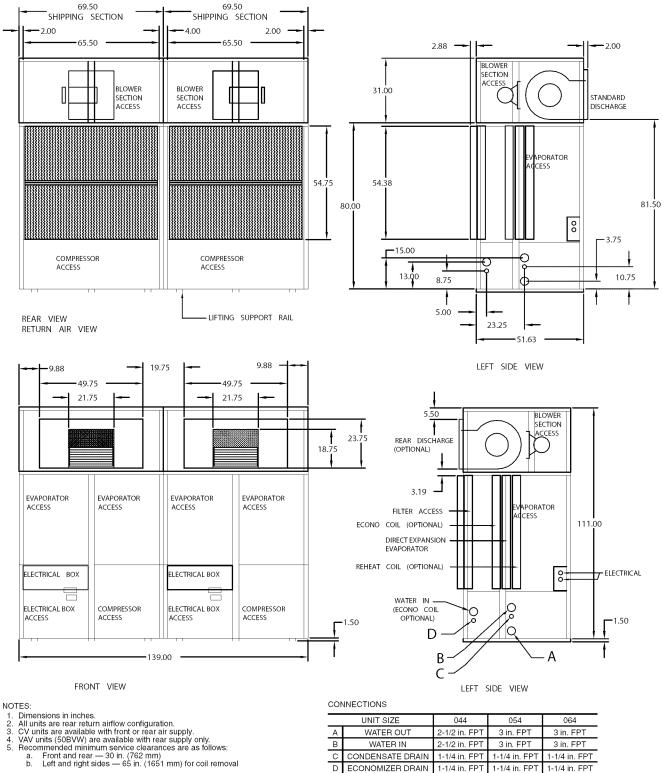
18.75

18.75

-9.50

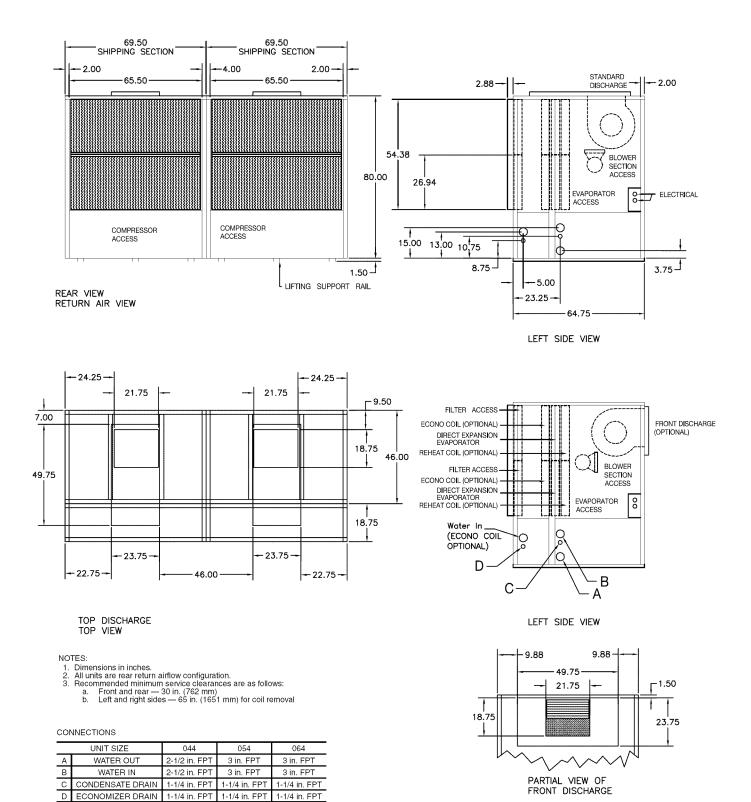
46.00

- 24.25 -


2-1/2 in. FPT

- 22.75 --

2-1/2 in. FPT


1-1/4 in. FPT

1-1/4 in. FPT

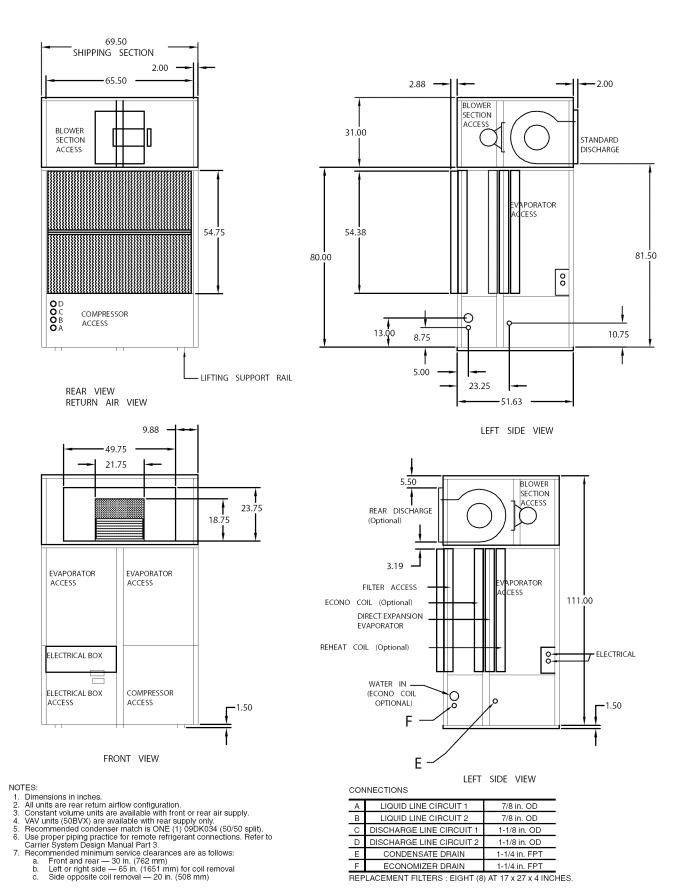
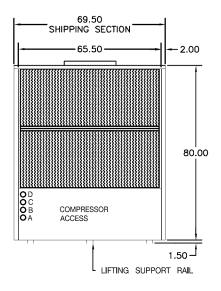

ECONOMIZER DRAIN 1-1/4 in. FPT 1-1/4 in. FPT D 1-1/4 in. FPT REPLACEMENT FILTERS : SIXTEEN (16) AT 17 x 27 x 4 INCHES

Fig. 6 — 50BVT,V,W044-064 (High-Boy) Dimensions



REPLACEMENT FILTERS : SIXTEEN (16) AT 17 x 27 x 4 INCHES.

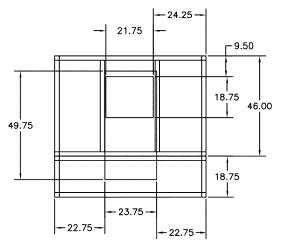
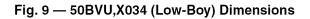
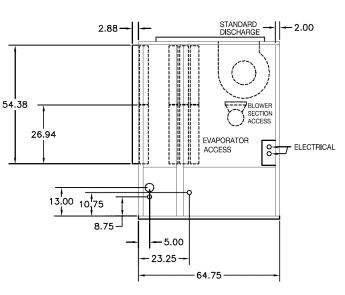

Fig. 7 — 50BVT,V,W044-064 (Low-Boy) Dimensions

Fig. 8 — 50BVU,X034 (High-Boy) Dimensions

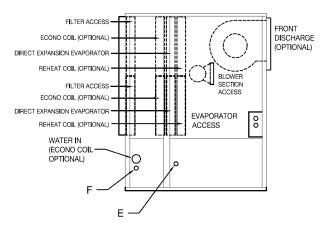
TOP DISCHARGE TOP VIEW

CONNECTIONS

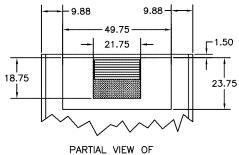

001	INECTION3	
А	LIQUID LINE CIRCUIT 1	7/8 in. OD
В	LIQUID LINE CIRCUIT 2	7/8 in. OD
С	DISCHARGE LINE CIRCUIT 1	1-1/8 in. OD
D	DISCHARGE LINE CIRCUIT 2	1-1/8 in. OD
Е	CONDENSATE DRAIN	1-1/4 in. FPT
F	ECONOMIZER DRAIN	1-1/4 in. FPT
DED		

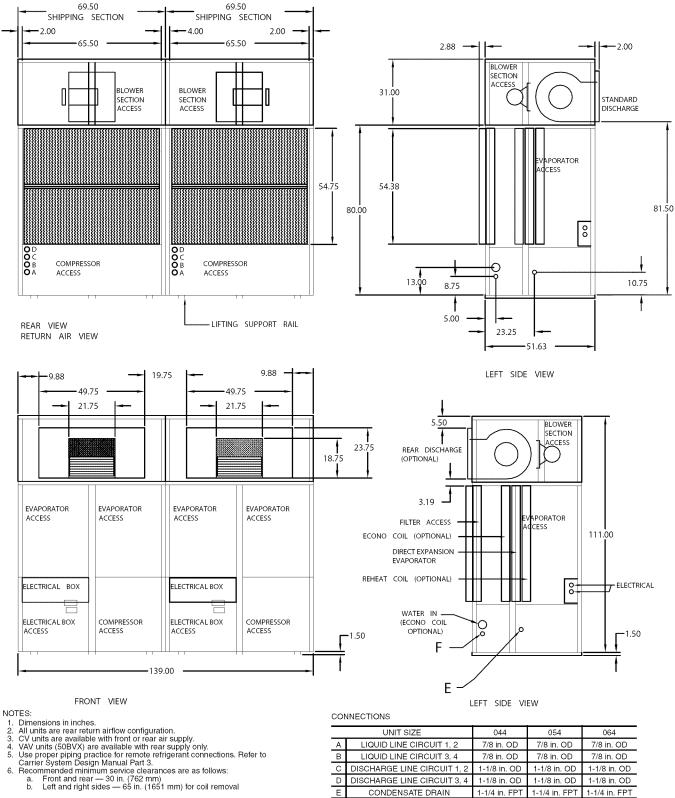

REPLACEMENT FILTERS : EIGHT (8) AT 17 x 27 x 4 INCHES.

NOTES:

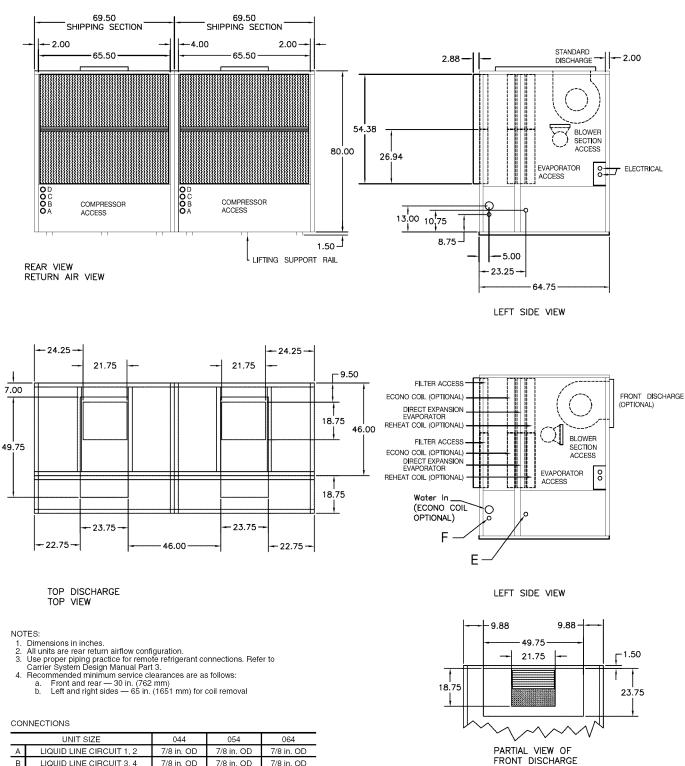

- Dimensions in inches.
 All units are rear return
 Recommended condel
 Use proper piping prace
- Dimensions in inches.
 All units are rear return airflow configuration.
 Recommended condenser match is ONE (1) 09DK034 (50/50 split).
 Use proper piping practice for remote refrigerant connections. Refer to Carrier System Design Manual Part 3.
 Recommended minimum service clearances are as follows:

 a. Front and rear 30 in. (762 mm)
 Left or right side 65 in. (1651 mm) for coil removal
 Side opposite coil removal 20 in. (508 mm)




LEFT SIDE VIEW

LEFT SIDE VIEW



FRONT DISCHARGE

D **DISCHARGE LINE CIRCUIT 3, 4** 1-1/8 in. OD 1-1/8 in. OD 1-1/8 in. OD Е CONDENSATE DRAIN 1-1/4 in. FPT 1-1/4 in. FPT 1-1/4 in. FPT F 1-1/4 in. FPT 1-1/4 in. FPT ECONOMIZER DRAIN 1-1/4 in. FPT REPLACEMENT FILTERS : SIXTEEN (16) AT 17 x 27 x 4 INCHES

	UNIT SIZE	044	054	064
Α	LIQUID LINE CIRCUIT 1, 2	7/8 in. OD	7/8 in. OD	7/8 in. OD
В	LIQUID LINE CIRCUIT 3, 4	7/8 in. OD	7/8 in. OD	7/8 in. OD
С	DISCHARGE LINE CIRCUIT 1, 2	1-1/8 in. OD	1-1/8 in. OD	1-1/8 in. OD
D	DISCHARGE LINE CIRCUIT 3, 4	1-1/8 in. OD	1-1/8 in. OD	1-1/8 in. OD
Е	CONDENSATE DRAIN	1-1/4 in. FPT	1-1/4 in. FPT	1-1/4 in. FPT
F	ECONOMIZER DRAIN	1-1/4 in. FPT	1-1/4 in. FPT	1-1/4 in. FPT
-				

REPLACEMENT FILTERS : SIXTEEN (16) AT 17 x 27 x 4 INCHES.

Fig. 11 — 50BVU,X044-064 (Low-Boy) Dimensions

NOTES:

Dimensions in inches [mm].
 Refer to base unit certified drawing for additional unit dimensions, service clearance, and alternate airflow configurations.

-

8.00

16.04 [407] LEFT SIDE VIEW

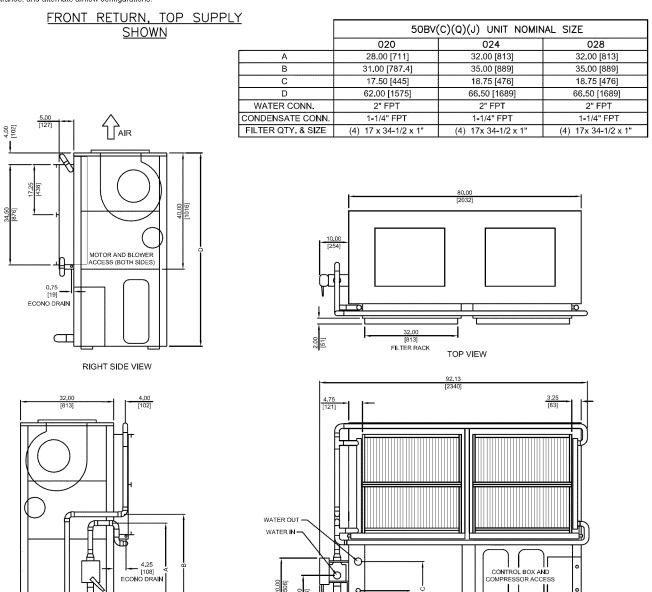


Fig. 12 — 50BVC, J, Q020-028 with Optional Waterside Economizer Dimensions

CONDENSATE DRAIN

8.75

FRONT VIEW

- ^{3.25} [83]

7.25 [184]

13.25

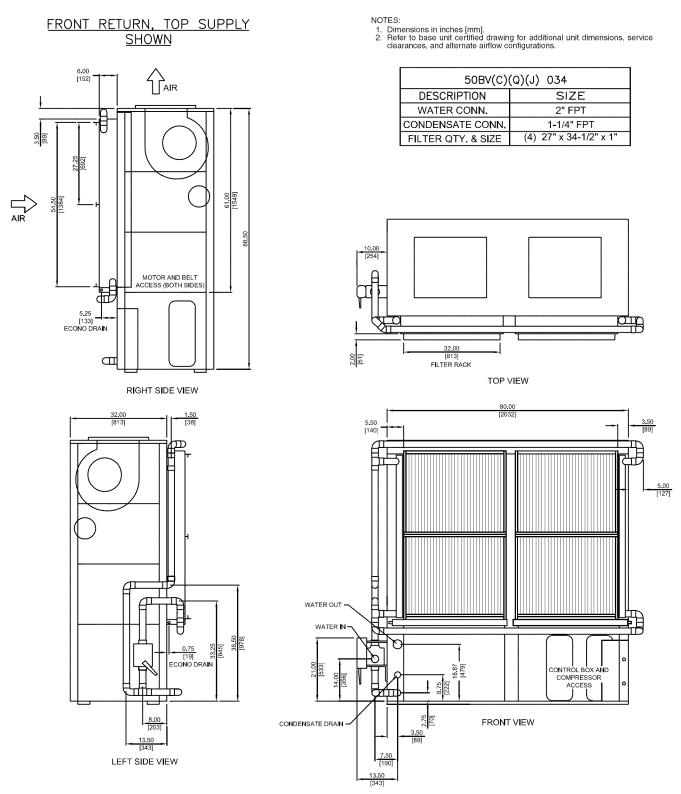
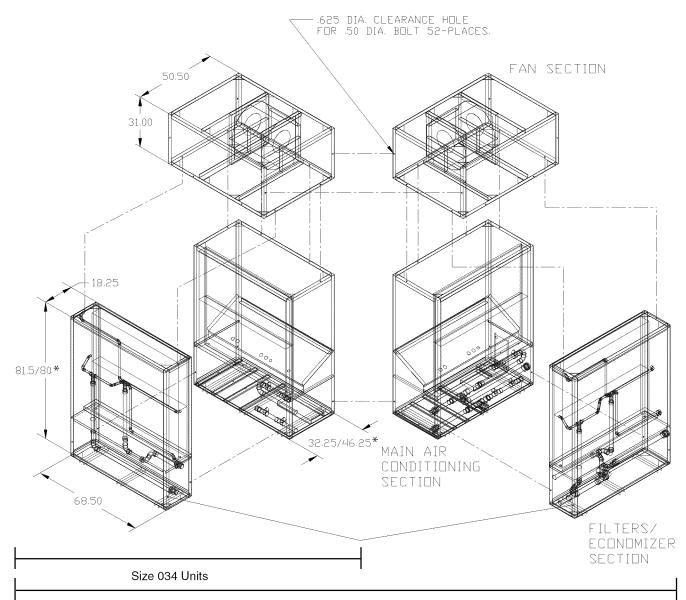



Fig. 13 — 50BVC, J, Q034 with Optional Waterside Economizer Dimensions

Size 044-064 Units

Shipping Weights (lb)

		HIGH-B	OY UNIT		LOW-BOY UNIT					
50BVT,U,V,W,X UNIT	034	044	054	064	034	044	054	064		
AIN AIR CONDITIONING SECTION (EACH)										
NUMBER OF SECTIONS	1	2	2	2	1	2	2	2		
SECTION WEIGHT	1450	1175	1550	1575	2100	1825	2200	2225		
REHEAT COIL OPTION	40	40	40	40	40	40	40	40		
FILTER/ECONOMIZER SECTION (EACH)										
NUMBER OF SECTIONS	1	2	2	2	1	2	2	2		
FILTER SECTION	310	310	310	310	310	310	310	310		
ECONOMIZER OPTION	200	200	200	200	200	200	200	200		
FAN SECTION (EACH)										
NUMBER OF SECTIONS	1	2	2	2		INCLU	DED IN			
FAN SECTION	650	650	650	650	AIR CONDITIONING SECTION		ION			
TOTAL UNIT										
NUMBER OF SECTIONS	3	6	6	6	2	4	4	4		
UNIT WITH OPTIONS	2650	4750	5500	5550	2650	4750	5500	5550		

*High-boy/low-boy.

Fig. 14 — Modular Shipping Weights — 50BVT,U,V,W,X

Table 3A — Physical Data — 50BVC,E,J,K,Q

	020	024	0.00	024
UNIT 50BVC,E,J,K,Q NOMINAL CAPACITY (Tons)	020 18	024 20	028 25	034 30
OPERATING WEIGHT (Ib)	10	20	2.5	
50BVC,Q50BVJ	11921227	13781413	14281473	16801725
50BVE50BVK COMPRESSOR	11101145	12901325 Copolar	13201365 nd Scroll	15201565
Quantity	2	l 2		2
Number of Refrigerant Circuits	2 8585	2	2 110110	2 140140
Oil (ounces) Ckt 1Ckt 2 REFRIGERANT TYPE	8585	110110	R-410A	140140
Expansion Device	TXV	I TXV	TXV	I TXV
Operating Charge (lb) Ckt 1Ckt 2	8.18.1	9.19.1	9.19.1	18.018.0
CONDENSER (50BVC,Q,J only) Quantity of Manifolded Circuits	2	Tube-in-Tu I 2	ibe Coaxial 2	2
Nominal Flow Rate (GPM)	54	60	75	90
Water Flow Range (GPM) Max. Water Working Pressure (PSIG)	36-72 400	40-80 400	50-100 400	60-120 400
Max. Refrig. Working Pressure (PSIG)	450 (600*)	450 (600*)	450 (600*)	450 (600*)
Min. Entering Water Temp. (°F) Max. Entering Water Temp. (°F)	50 110	50 110	50 110	50 110
Waterside Volume (gal)	3.6	4.0	5.0	6.0
EVAPORATOR COIL	0.44			
Rows…Fins/in. Total Face Area (sq ft)	314 18.1	314 18.1	314 18.1	314 22.0
EVAPORATOR FAN				
QuantitySize Type Drive	215x15 Belt	215x15 Belt	215x15 Belt	215x15 Belt
Nominal CFM	7200	8000	10,000	12,000
Std Motor QtyHPFrame Size	21.556 2256H	2256H	2356HZ	2556HZ
Alt 1 Motor QtyHPFrame Size Alt 2 Motor QtyHPFrame Size	2256HZ	2356HZ 2556HZ	2556HZ	_
Alt 3 Motor QtyHPFrame Size	2556HZ	1705	1705	—
Motor Nominal RPM (1.5, 2, 3, HP) Motor Nominal RPM (5 HP)	1725 3450	1725 3450	1725 3450	3450
Fan Drive RPM Range	750.050	750.050	750.050	
Std Fan Drive (1.5, 2, 3 HP) Std Fan Drive (5 HP)	753-952 967-1290	753-952 967-1290	753-952 967-1290	967-1290
Med Static Fan Drive (1.5, 2, 3 HP)	872-1071	872-1071	872-1071	—
Motor Bearing Type Maximum Allowable RPM	Ball 1300	Ball 1300	Ball 1300	Ball 1300
Motor Pulley Pitch Diameter	0747	0747	0747	
Std Fan Drive (1.5, 2, 3 HP) Std Fan Drive (5 HP)	3.7-4.7 2.9-3.9	3.7-4.7 2.9-3.9	3.7-4.7 2.9-3.9	2.9-3.9
Med Static Fan Drive (1.5, 2, 3 HP) Motor Shaft Diameter (in.) (1.5, 2 HP)	4.3-5.3	4.3-5.3	4.3-5.3	—
Motor Shaft Diameter (in.) (3, 5 HP)	5/ ₈ 7/ ₈	5/ ₈ 7/ ₈	7/8	7/8
Belt, QtyTypeLength (in.)			Ű	Ű
Std Fan Drive (1.5, 2 HP) Std Fan Drive (3 HP)	1B39 2B39	1B39 2B39	2B39	
Std Fan Drive (5 HP) Med Static Fan Drive (1.5, 2 HP)	2BX42 1B40	2BX42 1B40	2BX42	2BX42
Med Static Fan Drive (1.5, 2 HP) Med Static Fan Drive (3 HP)	2B40	2B40	2B40	_
Pulley Center Line Distance (in.) Speed Change Per Full Turn of	10.110.9	10.110.9	10.110.9	10.110.9
Moveable Pulley Flange (RPM)				
Std Fan Drive (1.5, 2, 3 HÞ) Std Fan Drive (5 HP)	33 54	33 54	33 54	 54
Med Static Fan Drive (1.5, 2, 3 HP)	54 33	33	33	—
Fan Shaft Diameter (in.)	1	1	1	1
HIGH PRESSURE SWITCHES (PSIG) Cutout	380 (420*) ± 10	380 (420*) ± 10	380 (420*) ± 10	380 (420*) ± 10
Reset (Auto)	300 (420*) ± 15	$300(420^{\circ}) \pm 15$	300 (420*) ± 15	$300(420^*) \pm 15$
LOW PRESSURE SWITCHES (PSIG)	20 (40*) + 2	20 (40*) + 2	20 (40*) + 2	20 (40*) + 2
Cutout Reset (Auto)	$20 (40^*) \pm 3$ $40 (60^*) \pm 5$	$\begin{array}{c} 20 \ (40^*) \pm 3 \\ 40 \ (60^*) \pm 5 \end{array}$	$\begin{array}{c} 20 \ (40^*) \pm 3 \\ 40 \ (60^*) \pm 5 \end{array}$	$\begin{array}{c} 20 \ (40^*) \pm 3 \\ 40 \ (60^*) \pm 5 \end{array}$
REMOTE REFRIGERANT CONNECTIONS	1			
(50BVE,K Only) Discharge (Hot Gas) Connection (in.) Qty…Size	21 ¹ / ₈	21 ¹ / ₈	211/8	211/8
Liquid Connection (in.) QtySize	27/8	27/8	27/8	27/8
RETURN AIR FILTERS				
QuantitySize (in.)	420x34.5x1	420x34.5x1	420x34.5x1	430x34.5x1
LEGEND	*R-410	A models.		

TXV — Thermostatic Expansion Valve

Table 3B — Physical Data — 50BVT,U,V,W,X

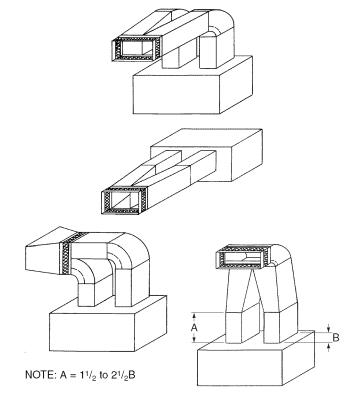
UNIT 50BVT,U,V,W,X	034	044	054	064
NOMINAL CAPACITY (Tons)	30	40	50	60
OPERATING WEIGHT (Ib)				
50BVT,V50BVW 50BVU50BVX	25802645 24202485	43344404 40944164	51985298 49385038	52305330 49705070
COMPRESSOR	E IEUE IOU		nd Scroll	10700070
Quantity Number of Refrigerant Circuits Oil (oz.)	2 2	4 4	4 4	4 4
Circuít 1Circuit 2 Circuit 3Circuit 4	140140 —	110110 110110	140140 140140	140140 140140
REFRIGERANT TYPE Expansion Device	тху	I TXV R-	22 I TXV	I TXV
Operating Charge (Ib) Circuit 1Circuit 2	18.018.0	10.010.0	18.018.0	18.018.0
Circuit 3Circuit 4 CONDENSER (50BVT,V,W only)		10.010.0 Tube-in-Tu	18.018.0 be Coaxial	18.018.0
Quantity of Manifolded Circuits	2	4	4	4
Nominal Flow Rate (GPM) Water Flow Range (GPM)	90 60-120	120 80-160	150 100-200	180 120-240
Max. Water Working Pressure (PSIG)	400	400	400	400
Max. Refrig. Working Pressure (PSIG) Min. Entering Water Temp. (°F)	450 50	450 50	450 50	450 50
Max. Entering Water Temp. (°F)	110	110	110	110
Waterside Volume (gal)	6.0	9.0	11.3	13.5
EVAPORATOR COIL RowsFins/in.	412	312	412	412
Total Face Area (sq ft)	23.2	46.4	46.4	46.4
EVAPORATOR FAN QuantitySize	118x18	218x18	218x18	218x18
Type Drive	Belt	Belt	Belt	Belt
Nominal CFM Motor Option 1 Qty…HP…Frame Size	12,000 17.5213T	16,000 27.5213T	20,000 27.5213T	24,000 27.5213T
Motor Option 2 QtvHPFrame Size	110215T	210215T	210215T	210215T
Motor Option 3 QtyHPFrame Size Motor Option 4 QtyHPFrame Size	115254T 120256T	215254T	215254T 220256T	215254T 220256T
Motor Nominal RPM	1750	1750	1750	1750
Fan Drive RPM Range Standard (7.5 HP)	780-960	780-960	780-960	780-960
Standard (10, 15, 20 HP), Med Static (7.5 HP)	805-991	805-991	805-991	805-991
Med Static (10, 15, 20 HP), High Static (7.5 HP) High Static (10, 15, 20 HP)	960-1146 1119-1335	960-1146 1119-1335	960-1146 1119-1335	960-1146 1119-1335
Motor Bearing Type	Ball	Ball	Ball	Ball
Maximum Allowable RPM Motor Pulley Pitch Diameter	1450	1450	1450	1450
Std Fan Drive (7.5 HP)	5.2-6.4	5.2-6.4	5.2-6.4	5.2-6.4
Std Fan Drive (10, 15, 20 HP), Med Static (7.5 HP)	4.8-6.0	4.8-6.0 5.8-7.0	4.8-6.0 5.8-7.0	4.8-6.0 5.8-7.0
Med Static Fan Drive (10, 15, 20 HP), High Static (7.5 HP) High Static Fan Drive (10, 15, 20 HP)	5.8-7.0 5.8-7.0	5.8-7.0	5.8-7.0	5.8-7.0
Motor Shaft Diameter (in.) (7.5, 10 HP)	1 ³ / ₈	1 ³ / ₈	1 ³ / ₈	1 ^{3/} 8
Motor Shaft Diameter (in.) (15, 20 HP) Belt, Qty…Type…Length (in.)	1 ⁵ /8	1 ⁵ / ₈	1 ⁵ /8	1 ^{5/} 8
Std Fan Drive (7.5 HP) ` Std Fan Drive (10, 15, 20 HP), Med Static (7.5 HP)	2B48	2B48	2B48	2B48
Med Static Fan Drive (10, 15, 20 HP), Med Static (7.5 HP) Med Static Fan Drive (10, 15, 20 HP), High Static 7.5 HP)	2B46 2B48	2B46 2B48	2B46 2B48	2B46 2B48
High Static Fan Drive (10, 15, 20 HP)	2B45	2B45	2B45	2B45
Pulley Center Line Distance (in.) Speed Change Per Full Turn of Moveable Pulley Flange (RPM)	10.2-11.4	10.2-11.4	10.2-11.4	10.2-11.4
Std Fan Drive (7.5 HP)	36	36	36	36
Std Fan Drive (10, 15, 20 HP), Med Static (7.5 HP) Med Static Fan Drive (10, 15, 20 HP), High Static (7.5 HP)	31 31	31 31	31 31	31 31
High Static Fan Drive (10, 15, 20 HP)	36	36	36	36
Fan Shaft Diameter (in.) HIGH PRESSURE SWITCHES (PSIG)	1 ⁷ / ₁₆			
Cutout	380 ± 10	380 ± 10	380 ± 10	380 ± 10
	300 ± 15	300 ± 15	300 ± 15	300 ± 15
LOW PRESSURE SWITCHES (PSIG) Cutout	20 ± 3	20 ± 3	20 ± 3	20 ± 3
Reset (Auto)	40 ± 5	40 ± 5	40 ± 5	40 ± 5
REMOTE REFRIGERANT CONNECTIONS (50BVU,X Only) Discharge (Hot Gas) Connection (in.) QtySize	211/8	41 ¹ / ₈	41 ¹ /8	41 ¹ /8
Liquid Connection (in.) QtySize	27/8	47/ ₈	47/8	47/8
RETURN AIR FILTERS	8 17v07v4	16 170704	16 170704	16 170794
QuantitySize (in.)	817x27x4	1617x27x4	1617x27x4	1617x27x4

ACOUSTICAL CONSIDERATIONS — Proper acoustical considerations are a critical part of every system's design and operation. Each system design and installation should be reviewed for its own unique requirements. For job specific requirements, contact an acoustical consultant for guidance and recommendations.

In general, to reduce noise, consider the following:

- Locate mechanical room and ducts away from noise sensitive locations. Whenever possible, work with the architect to locate the equipment rooms around the perimeters of restrooms, hallways, fire escapes, stair wells, etc., to reduce noise transmission. This allows not only for isolation from radiated sound but also enables the contractor to route duct systems around sensitive locations.
- Construct the equipment room of concrete block or use a double offset stud wall with interwoven insulation. Seal all penetrations.
- Design the system for low total static pressure.
- Use suitable vibration isolation pads or isolation springs according to the design engineer's specifications.
- A flexible canvas duct connector is recommended on both the supply and return air sides of units to be connected to system ductwork.
- Use a minimum of 15 ft of return ductwork between the last air terminal or diffuser and the unit.
- Insulate supply and return ducts with 2-in., 3-lb density insulation.
- Round duct is recommended. If rectangular ductwork is used, keep aspect ratios as small as possible (i.e., as close to square as possible).
- Avoid any direct line of sight from return air grilles into the unit's return. If return air is to be ducted to an equipment room, an elbow should be installed within the equipment room.
- Running a return air drop to near the floor of the room will aid in sound attenuation.
- Do not exceed the recommended supply duct velocity of 2,000 fpm.
- Do not exceed the recommended return duct velocity of 1,000 fpm.
- Use turning vanes on 90-degree elbows.
- Place isolation springs under each corner and under each compressor if utilized.

ASSEMBLING MODULAR UNITS — 50BVT,U,V,W,X 30 to 60 ton units ship in the number of pieces shown in Table 2. Reassemble the unit. Use the loose hardware provided in the main air-conditioning section and the instructions below.


- 1. The filter/economizer section ships bolted to the main airconditioning section and can be removed in the field. When reattaching the filter/economizer section to the main air-conditioning section, place the filter side of the filter/economizer section facing out and away from the main air conditioning section.
- 2. If the unit has 2 filter/economizer and 2 main airconditioning sections (40 through 60 ton units), bolt the remaining filter/economizer section and main airconditioning section together, as in Step 1.
- 3. For units with 2 filter/economizer and 2 main airconditioning sections, use the provided unions to assemble the water connections between the 2 additional sections joined in Step 2.
- 4. For units with multiple air conditioning sections, connect the condensate drain hoses from the "B" side of the unit to the drain manifold on the "A" side of the unit.
- 5. For unit sizes 044-064, connect power wiring from the main terminal block in the "A" side of the unit to the power terminal block in the "B" side of the unit.

6. For VAV units only, connect the plenum tubing, coiled behind the VAV control panel, to the bulkhead fittings located in the discharge of the supply fan. This connects the high pressure supply to the high side of the duct high static pressure switch.

Remove all shipping blocks, if any, under blower housing or damage to the fan may occur.

Step 3 — **Install Ductwork** — The VAV units must use a "pair of pants" configuration as shown in Fig. 15. Refer to the Carrier System Design Manual or ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers) standards for the recommended duct connection to unit with 2 fans.

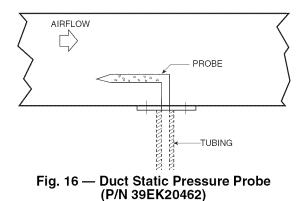
Fig. 15 — Typical Fan Discharge Connections for Multiple Fan Units

A supply air outlet collar and return air duct flange are provided on all units to facilitate duct connections. Refer to dimensional drawings (Fig. 2-14) for connection sizes and locations.

A flexible canvas duct connector is recommended on both supply and return air sides of the units to be connected to the system ductwork.

All metal ductwork should be adequately insulated to avoid heat loss or gain and to prevent condensation from forming on the duct walls. Uninsulated ductwork is not recommended, as the unit's performance will be adversely affected.

Do not connect discharge ducts directly to the blower outlet(s). The factory filter should be left in place on a free return system.


If the unit will be installed in a new installation, the duct system should be designed in accordance with the System Design Manual, Part 2 and with ASHRAE (American Society of Heating, Refrigeration and Air Conditioning Engineers) procedures for duct sizing. If the unit will be connected to an existing duct system, check that the existing duct system has the capacity to handle the required airflow for the unit application at an acceptable system static pressure. If the existing duct system is too small, larger ductwork must be installed.

The duct system and diffusers should be sized to handle the design airflow volumes quietly. To maximize sound attenuation of the unit's blower(s), the supply and return air plenums should be insulated for a length of at least 15 ft from the unit. Direct line of sight from return air grilles into the unit's return should be avoided. If return air is to be ducted to an equipment room, an elbow should be installed within the equipment room. Running a return air drop to near the floor of the room will aid in sound attenuation. Avoid transmitting vibrations generated by the movement of air in the ducting to the walls of the building. This is especially important where ductwork penetrates walls. The maximum recommended return air velocity is 1,000 fpm. Lower return air velocities will result in lower sound power levels. The use of round supply duct plenums should be considered, as it will significantly reduce low frequency sound at the equipment room. If rectangular supply plenums are used, the aspect ratio of the duct should be kept as small as possible (i.e., as close to square as possible). The large, flat surface areas associated with large aspect ratio duct systems will transmit sound to the space, and the potential for duct-generated noise is increased. The maximum recommended supply air duct velocity is 2,000 fpm.

Units with two fans should have a properly designed "pair of pants" duct connection. An adequate straight length of ducting from the unit should be allowed before elbows are installed. If connecting an elbow directly to the fan outlet, a minimum straight length of 2 fan diameters from the fan outlet is recommended. Elbows should turn in the direction of fan rotation, if possible. Abrupt turns will generate air turbulence and excessive noise. Turning vanes should be used in all short radius bends. Ensure that ducting does not obstruct access to the unit for routine servicing.

DUCT STATIC PRESSURE PROBE AND TUBING (VAV Only) — On VAV systems, the duct static pressure sensor and tubing are field-mounted. The sensor tubing sensing point should be located near the end of the main supply trunk duct in a position free from turbulence effects and at least 10 duct diameters downstream and 4 duct diameters upstream from any major transitions or branch take-offs. Incorrectly placing the sensing point could result in improper operation of the entire VAV system.

Install the factory-supplied duct static pressure probe with the tip facing into the airflow. See Fig. 16.

Use 1/4-in. OD approved polyethylene tubing for up to 50 ft (3/8-in. OD for 50 to 100 ft) to connect the probe to the bulkhead fitting mounted above the unit display panel (Fig. 17). Carefully route the tubing from the probe to this

bulkhead fitting.

The static pressure control should be adjusted so that, at full airflow, all of the remote VAV terminal boxes receive the minimum static pressure required plus any downstream resistance. Control the system to the lowest static pressure set point that will satisfy airflow requirements. Lower static pressure set points reduce total required brake horsepower and reduce generated sound levels.

DUCT HIGH-STATIC (DHS) LIMIT SWITCH (VAV Only) — The duct high static limit switch is a mechanical safety that prevents duct overpressurization. The switch is located on the side of the VAV low voltage control panel (Fig. 18) and is factory set at 3 in. wg. To make an adjustment using an accurate differential pressure gage, connect low side and high side to gage and pressure source. Place a voltmeter across common and normally open contacts. Rotate the adjustment knob (Fig. 19) clockwise to increase pressure setting and counterclockwise to decrease pressure setting. When the bottom of the adjustment knob is approximately 1/8-in. from the switch body, the switch will trip at approximately 3 in. wg.

IMPORTANT: Use tubing that complies with local codes. Improper location or installation of the supply duct pressure tubing will result in unsatisfactory unit operation and poor performance.

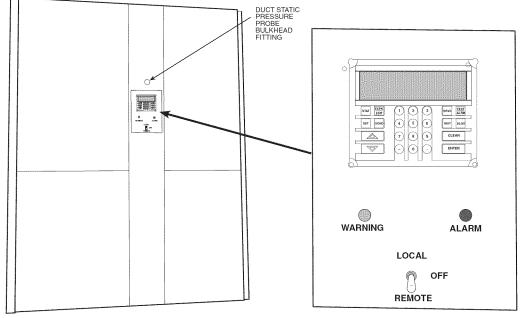
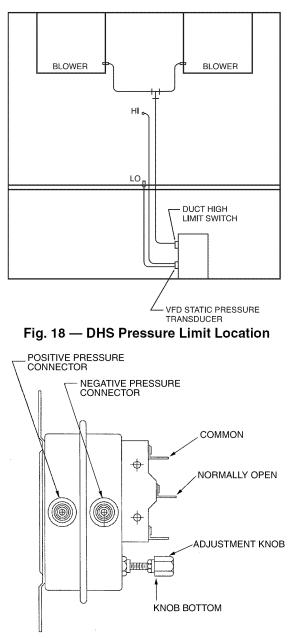



Fig. 17 — Display Panel Location on Unit Front Panel

Step 4 — Make Piping Connections

CONDENSER WATER PIPING (Water-Cooled Only) — Always follow national and local codes when installing water piping to ensure a safe and proper installation. Connections to the unit should incorporate vibration eliminators to reduce noise and vibration to the building, and shutoff valves to facilitate servicing.

Prior to connecting the unit(s) to the condenser water system, the system should be flushed to remove foreign material that could cause condenser fouling. Install a screen strainer with a minimum of 20 mesh ahead of the condenser inlet to prevent condenser fouling and internal condenser tube damage from foreign material.

Supply and return water piping must be at least as large as the unit connections, and larger for long runs. Refer to the System Design Manual, Part 3, and standard piping practice, when sizing, planning, and routing water piping. See dimension drawings (Fig. 2-14) for water connection sizes and locations.

Units are furnished standard with a copper heat exchanger. A cupronickel heat exchanger is also available as a

factory-installed option. Copper is adequate for closed loop systems where good quality water is available. In conditions where scale formation or water treatment is questionable, the optional cupronickel heat exchanger should be used. Where the water is especially corrosive or could lead to excessive fouling, intermediate plate frame heat exchangers are recommended.

Galvanized pipe or fittings are not recommended with 50BV units due to the possibility of galvanic corrosion caused by dissimilar metals. When selecting piping materials, use only approved piping materials that meet applicable codes and that will handle the temperatures and pressures that may be experienced in the application. Piping systems will sweat if low temperature fluid is used in the system. For these applications, supply and return water piping should be insulated to protect from condensation damage. The minimum recommended entering water temperature to the unit is 50 F.

The unit is capable of operating with entering water temperatures as low as 50 F, without the need for head pressure control. If the entering water temperature is expected to be lower, or more stable unit operation is desired, a field-supplied water-regulating valve may be used.

This unit has multiple independent refrigerant circuits with separate condensers. The individual condensers are manifolded together on the waterside to provide easy, single-point water connections. In order to achieve proper head pressure control when a water-regulating valve is used, a temperature-actuated valve is recommended. This allows any of the independent refrigerant circuits to operate while still modulating condenser water flow in response to loop water temperature.

A glycol solution should be used if ambient temperatures are expected to fall below freezing or if the loop water temperature is below 50 F while operating in the reverse cycle heating mode (heat pump units only). Refer to Table 4, which lists freezing points of glycol at different concentrations. A minimum concentration of 20% is recommended. Water pressure drop will increase and unit performance will decrease with increasing glycol concentrations.

Units with factory-installed waterside economizers have cooling water passing through the economizer and condenser in series while operating in the economizer mode. During normal operation, water bypasses the economizer coil.

Table 4 — Glycol Freezing Points

% GLYCOL	FREEZE POINT (° F)			
	Ethylene Glycol	Proplylene Glycol		
20	18	19		
30	7	9		
40	-7	-5		
50	-28	-27		

All manual flow valves used in the system should be of the ball valve design. Globe or gate valves must not be used due to high pressure drops and poor throttling characteristics.

Do not exceed recommended condenser fluid flow rates shown in Tables 5A and 5B. Serious damage or erosion of the heat exchanger tubes could occur. Piping systems should not exceed 10 fps fluid velocities to ensure quietness and tube wall integrity. Refer to Tables 5A and 5B for condenser water pressure drop versus flow rate. Flow rates outside of the published range should not be used.

Ball valves should be installed in the supply and return lines for unit isolation and water flow balancing.

Table 5A — Condenser Pressure Drop
50BVC,J,Q Units

FLOW RATE	SIZE 020	SIZE 024	SIZE 028	SIZE 034					
(gpm)	Pressure Drop (ft wg)								
35	9.1	—	—	—					
40	11.2	6.0	—	_					
45	13.5	7.5	—	_					
50	15.9	9.1	9.1	_					
55	18.4	10.9	10.9						
60	21.1	12.8	12.8	10.8					
65	23.9	14.8	14.9	12.7					
70	27.4	17.0	17.2	14.7					
75	—	19.3	19.6	16.9					
80	80 — 21.7		22.2	19.2					
85	_	_	24.9	21.7					
90	—	—	27.8	24.3					
95	—	_	30.8	27.1					
100	—	_	34.0	30.0					
105	_	_	—	33.1					
110	—	_	_	36.3					
115	_	_	—	39.7					
120	_	_	_	43.2					

GPM — Flow Rate **PD** — Pressure Drop (ft wg) PD

Table 5B — Condenser Pressure Drop 50BVT,V,W Units

FLOW RATE	SIZE 034	SIZE 044	SIZE 054	SIZE 064					
(gpm)		Pressure Drop (ft wg)							
60	8.7	—	—	—					
70	11.9	_	—	_					
80	15.5	6.3	—	—					
90	19.6	8.0	—	_					
100	24.2	9.9	6.0	—					
110	29.3	12.0	7.3	—					
120	34.9	14.3	8.7	8.7					
130	—	16.7	10.2	10.2					
140	—	19.4	11.8	11.8					
150	—	22.3	13.6	13.6					
160	—	25.3	15.5	15.5					
170	—	—	17.4	17.4					
180	—	—	19.6	19.6					
190	—	—	21.8	21.8					
200	_	—	24.2	24.2					
210	_	_	—	26.6					
220	_	—	—	29.2					
230	_	_	—	31.9					
240	_	—	_	34.8					

LEGEND

GPM — Flow Rate **PD** — Pressure Drop (ft wg) PD

Pressure and temperature ports are recommended in both the supply and return lines for system flow balancing. These openings should be 5 to 10 pipe diameters from the unit water connections. For thorough mixing and temperature stabilization, wells in the water piping should extend at least 1/2 pipe diameter into the pipe. Measuring the condenser waterside pressure drop and referring to Tables 5A and 5B can help to properly set the water flow rate.

Improper fluid flow due to valving, piping, or improper pump operation constitutes abuse that may result in voiding of unit warranty. The manufacturer will not be responsible for damages or failures resulting from improper piping design or piping material selection.

EVAPORATOR CONDENSATE DRAIN - The condensate drain connection is $1^{1/4}$ -in. FPT and is located on the same side of the unit as the condenser water connections. See dimension drawings (Fig. 2-14) for exact location.

Drain lines should be pitched away from the unit with a minimum slope of $1/_8$ -in. per foot and conform to all local and national codes.

A trap must be installed in the condensate line to ensure free condensate flow (units are not internally trapped). A vertical air vent is sometimes required to avoid air pockets.

Install a condensate-trapping drain line at the units drain connection. See Fig. 20 for correct drain layout.

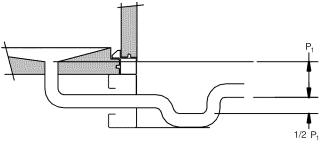


Fig. 20 — Condensate Drain Layout

When calculating trap depth, remember that it is not the total static pressure but the upstream or downstream static resistance that is trapped against. For instance, when calculating the trap depth for a cooling coil condensate pan, trap against the coil pressure drop in that coil section and any other pressure drops upstream of it.

If calculating the trap depth for the cooling coil, use the total static pressure drop (coil plus any other components upstream of it) plus 1 in. (P_1 = negative static pressure + 1 in.), as shown in Fig. 21.

Traps must store enough condensate to prevent losing the drain seal at start-up. The "Minimum $1/2 P_1$ " dimension ensures that enough condensate is stored.

Drain pans should be cleaned periodically to avoid the build-up of dirt and bacterial growth.

HOT WATER HEATING COIL (Optional) - A factory-installed one or 2-row hot water heating coil is available as an option. The coil is supplied with hot water from a boiler through separate piping from the condenser water loop. All controls for heating operation are field-supplied.

Piping should be in accordance with accepted industry standards and all components rated for the system pressure expected. Pipe the coils so that they will drain, and provide a drain and vent.

Always connect the supply to the top of the coil, and the return to the bottom. Refer to Fig. 2-14 for hot water supply and return piping locations.

Water coils should not be subjected to entering air temperatures below 38 F to prevent coil freeze-up. If air temperatures across the coil are going to be below this value, use a glycol or brine solution. Use a solution with the lowest concentration that will match the coldest air expected. Excess concentrations will greatly reduce coil capacity.

The return air duct system should be carefully designed to get adequate mixing of the return air and outdoor air streams to prevent cold spots on the coil that could freeze.

A 2 or 3-way, field-supplied modulating control valve, or a simple 2-position on-off valve may be used to control water flow. Select the valve based on the control valve manufacturer's recommendations for size and temperature rating. Select the control valve CV based on pressure drop and flow rate through the coil. This information is available from the VPACBuilder software program or Tables 6A and 6B.

Table 6A — Hot Water Pressure Drop 50BVC,E,J,K,Q Units

FLOW RATE	SIZE 020	SIZE 024	SIZE 028	SIZE 034				
(gpm)		Pressure Drop (ft wg)						
10	0.7	0.7	0.7	—				
15	1.5	1.5	1.5	—				
20	2.6	2.6	2.6					
25	4.0	4.0	4.0	_				
30	5.8	5.8	5.8	0.1				
35	7.8	7.8	7.8	0.1				
40	10.2	10.2	10.2	0.1				
45	12.9	12.9	12.9	0.2				
50	15.8	15.8	15.8	0.2				
55	_	_	_	0.3				
60				0.3				
65	—	—	—	0.4				

LEGEND

GPM — Flow Rate **PD** — Pressure Drop (ft wg)

Table 6B — Hot Water Pressure Drop 50BVT,U,V,W,X Units

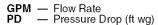
FLOW RATE	SIZE 034	SIZE 044	SIZE 054	SIZE 064				
(gpm)	Pressure Drop (ft wg)							
45	2.4	—	—	—				
50	3.0	-	—	-				
55	3.6							
60	4.3	1						
65	5.0							
70	5.7	1						
75	6.6							
80	7.4	1						
85	8.4							
90	9.3	2.5	2.5	2.5				
100		3.1	3.1	3.1				
110		3.7	3.7	3.7				
120		4.4	4.4	4.4				
130		5.1	5.1	5.1				
140		5.9	5.9	5.9				
150	_	6.7	6.7	6.7				
160	_	7.6	7.6	7.6				
170	_	8.6	8.6	8.6				
180		9.6	9.6	9.6				

LEGEND

GPM - Flow Rate

PD Pressure Drop (ft wg)

Pipe sizes should be selected based on the head pressure available from the pump. Water velocity should not exceed 8 fps. Design the piping system for approximately 3 ft of loss per 100 equivalent ft of pipe. The piping system should allow for expansion and minimize vibration between the unit and piping system.


WATER ECONOMIZER (Optional) - The optional waterside economizer (pre-cooling coil) is factory-installed and piped internally, in series with the condenser water circuit (Fig. 21). A diverting valve and factory controls are included with the option. Only one set of field connections needs to be made for condenser water and economizer water. In addition, when the unit is shipped with the economizer option, the economizer drain must be connected to a separate trap. Follow the same steps for the economizer drain as described for the evaporator condensate drain. An Aquastat is used to modulate water flow through the economizer. The controller is mounted to the low voltage control box. Electrical connections are factory installed and wired. The remote bulb is shipped internal to the unit and requires field mounting. Care should be taken not to dent the bulb or miscalibration may occur. The Aquastat has a temperature range adjustment (-30 F to 100 F) and is field set. See Fig. 2-14 for connection locations and sizes. See Tables 7A and 7B for economizer waterside pressure drop data.

The waterside economizer can also be ordered without factory-installed piping or controls. This offers additional flexibility for specific applications. In this case, the coil is factory mounted, but all supply and return piping and controls are field supplied.

Table 7A — Economizer Pressure Drop Curve (ft wg), 50BVC,E,J,K,Q Units

FLOW RATE	SIZE 020	SIZE 024	SIZE 028	SIZE 034				
(gpm)	Pressure Drop (ft wg)							
35	8.9	—	_					
40	11.5	11.0	—					
45	14.4	13.8	_	—				
50	17.6	16.9	16.9					
55	21.1	20.4	20.4	_				
60	24.9	24.1	24.1	3.5				
65	29.0	28.1	28.2	4.1				
70	34.4	32.5	32.5	4.7				
75	_	37.1	37.2	5.4				
80	—	42.1	42.1	6.1				
85	_	—	47.4	6.9				
90	—	—	52.9	7.7				
95	_	—	58.7	8.5				
100		_	64.9	9.4				
105	_	—	_	10.3				
110		—	—	11.3				
115	_	—	_	12.3				
120		—	_	13.4				

LEGEND

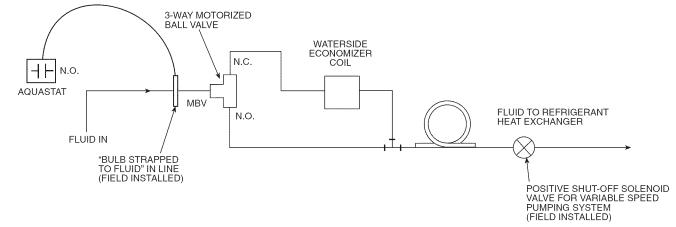


Fig. 21 — Optional Water Economizer

Table 7B — Economizer Pressure Drop Curve (ft wg), 50BVT,U,V,W,X Units

FLOW RATE	SIZE 034	SIZE 044	SIZE 054	SIZE 064			
(gpm)	Pressure Drop (ft wg)						
60	13.1	—	—	—			
70	17.9	_	—	_			
80	23.5	5.8	—	—			
90	29.8	7.3	—	_			
100	36.9	9.1	9.0	—			
110	44.8	11.0	11.0	_			
120	53.4	13.1	13.1	13.1			
130	_	15.4	15.4	15.4			
140	—	17.9	17.9	17.9			
150	_	20.6	20.6	20.6			
160	—	23.5	23.5	23.5			
170	_	_	26.6	26.5			
180	—	_	29.8	29.8			
190	—	_	33.3	33.2			
200	_	_	36.9	36.8			
210	—	_	_	40.7			
220	_	_	_	44.7			
230	—	_	_	48.9			
240	—		—	53.3			

LEGEND

PD — Pressure Drop (ft wg)

REMOTE REFRIGERANT PIPING (Remote Air-Cooled Only) — Carrier 50BVE,K,U,X units are supplied without condensers. To complete the installation, these units must be field connected to a suitable remote condenser. The 50BV units from 18 to 30 tons contain 2 equally sized independent refrigerant circuits. Units from 40 to 60 tons have 4 separate equal capacity refrigerant circuits. It is important that the condenser circuiting be properly matched to the 50BV unit circuiting. Otherwise, unsatisfactory operation will result. Carrier will not be responsible for improperly matched remote condenser selections. Recommended condenser matches are shown in Table 8.

Table 8 — Recommended Condenser Matches for 50BVE,K,U,X Units

50BV	NO. OF CKTS	CONDENSER(S)	CONDENSER CIRCUITING
020	2	09DK020 (1)	50/50%
024	2	09DK024 (1)	50/50%
028	2	09DK028 (1)	50/50%
034	2	09DK034 (1)	50/50%
044	4	09DK024 (2)	50/50% (each)
054	4	09DK028 (2)	50/50% (each)
064	4	09DK034 (2)	50/50% (each)

Install the air-cooled condenser or condensers according to the installation instructions provided with the condenser(s). Connection locations and sizes for the hot gas and liquid lines on the 50BV units are shown in Fig. 2-14, 22 and 23. For 50BV units up to 30 tons, there will be 2 hot gas lines and 2 liquid lines to install between the unit and the condenser. Above 30 tons, 4 hot gas lines and 4 liquid lines will be installed between the unit and the 2 condensers. Refer to the System Design Manual, Part 3 for standard refrigerant piping techniques. Also see the air-cooled condenser installation instructions for additional guidance.

Remote air-cooled 50BV units (only) are shipped with a dry nitrogen holding charge. After refrigerant connections are made, release nitrogen, evacuate, leak test, and charge the system as described in Charging the System in the Maintenance section of this manual.

Above Condenser

Step 5 — **Complete Electrical Connections** — Verify that electrical requirements listed on the unit nameplate match available power supply. The unit voltage must be within the range shown in Tables 9A and 9B and phases must be balanced within 2%. Contact the local power company for line voltage corrections. Never operate a motor where a phase imbalance in supply voltage is greater than 2%.

GPM — Flow Rate

For an unbalanced 3-phase supply voltage, use the following formula to determine the percent of voltage imbalance: Percent Voltage Imbalance

$$= 100 \text{ x}$$
 max voltage deviation from average voltage

average voltage

Example: Supply voltage is 460-3-60.

$$AB = 452 V$$

$$BC = 464 V$$

$$AC = 455 V$$

$$Average Voltage = \frac{452 + 464 + 455}{3}$$

$$= \frac{1371}{3}$$

$$= 457$$

Determine maximum deviation from average voltage: (AB) 457 - 452 = 5 V

(BC) 464 - 457 = 7 V(AC) 457 - 455 = 2 V

Maximum deviation is 7 V.

Determine percent of voltage imbalance: 7 57 = 100 x -% Voltage Imbalan

$$rce = 100 \text{ x} - \frac{7}{45}$$

= 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If supply voltage phase imbalance is more than 2%, contact the local electric utility company immediately.

POWER WIRING - Properly sized fuses or HACR (Heating, Air Conditioning and Refrigeration) circuit breakers must be installed for branch circuit protection, according to the national and applicable local codes. See unit nameplate and Tables 9A and 9B for maximum overcurrent protection size.

These units are provided with single point, main power supply terminal blocks. Refer to Fig. 2-14 for conduit connection locations. Connect the power leads as indicated on the unit wiring diagrams (found in the Troubleshooting section) and be certain to connect the ground lead to the ground lug in the unit high voltage electrical box. Refer to Tables 9A and 9B for unit electrical data.

	NOMINAL	VOLTAGE COMPRESSOR INDOOR FAN M						MOTOR	PO	DISCONNECT															
UNIT SIZE	VOLTAGE	RA	NGE	No	No. 1 No. 2		lo. 2			SUF	PLY	SIZE													
50BVC,E,J,K,Q	(3 Ph, 60 Hz)	Min	Мах	RLA	LRA	RLA	LRA	Qty	HP (ea)	FLA (ea)	МСА	МОСР	FLA												
									1.5	5.0	84.0	110	75.8												
	208/230	187	253	32.9	195	32.9	195	2	2	6.4	86.8	110	78.6												
	200/230	107	200	52.8	195	52.9	195	195 2	3	9.0	92.0	110	83.8												
									5	12.2	98.4	110	90.2												
									1.5	2.5	42.1	50	38.0												
020	460	414	506	16.5	95	16.5	95	2	2	3.2	43.5	50	39.4												
	400	414	500	10.5	95	10.5	95	2	3	4.5	46.1	50	42.0												
									5	6.1	49.3	50	45.2												
									1.5	2.0	34.6	45	31.2												
	575	518	633	13.6	80	12.6		2	2	2.0	34.6	45	31.2												
	575	1 310	033	13.0	80	80	13.6	13.6	80	80	2	3	3.6	37.8	45	34.4									
														5	5.4	41.4	45	38.0							
			253						2	6.4	88.4	120	80.0												
	208/230	187		253	253	253	253	253	253	253	253	33.6	225	33.6	3 225	2	3	9.0	93.6	120	85.2				
		ľ																			5	12.2	100.0	120	91.6
									2	3.2	48.3	60	43.6												
024	460	414	506	18.6	114	18.6	114	2	3	4.5	50.85	60	46.2												
				1						5	6.1	54.05	60	49.4											
									2	2.0	34.6	45	31.2												
	575	518	633	13.6	80	13.6	80	2	3	3.6	37.8	45	34.4												
									5	5.4	41.4	45	38.0												
	008/020	187	050	50.6	045	53.6	245	0	3	9.0	138.6	190	125.2												
	208/230	187	253	53.6	245	53.6	245	2	5	12.2	145.0	190	131.6												
000	400	414	500	00.7	105	00.7	105	0	3	4.5	55.6	70	50.4												
028	460	414	506	20.7	125	20.7	125	2	5	6.1	58.8	70	53.6												
	575	510	000	10.4	100	10.4	100	0	3	3.6	44.1	60	40.0												
	575	518	633	16.4	100	16.4	100	2	5	5.4	47.7	60	43.6												
	208/230	187	253	59.1	425	59.1	425	2	5	12.2	157.4	200	142.6												
034	460	414	506	26.4	187	26.4	187	2	5	6.1	71.6	90	65.0												
	575	518	633	20.5	148	20.5	148	2	5	5.4	56.9	70	51.8												

Table 9A — Electrical Data — 50BVC, E, J, K, Q

LEGEND

Full Load Amps

HP

 Full Load Ampe
 Horsepower
 Locked Rotor Ampe
 Minimum Circuit Ar
 Maximum Overcurr
 Rated Load Amps Horsepower Locked Rotor Amps LRA

MCA Minimum Circuit Amps Maximum Overcurrent Protection MOCP

RLA

	NOMINAL	VOLTAGE COMPRESSOR RANGE No. 1 / No. 2 No. 3 / No. 4					INDOOR FAN MOTOR				WER	DISCONNE										
UNIT SIZE)BVT,U,V,W,X	VOLTAGE (3 Ph, 60 Hz)	Min	Max	No. 1	/ No. 2	No. 3	No. 4	Qty	HP	FLA	MCA	PPLY MOCP	SIZE									
									(ea) 7.5	(ea) 19.4	159.4	200	143.8									
									10	25.8	165.8	200	143.8									
	208/230	187	253	62.2	376	—	—	1	15	38.6	178.6	225	163.0									
									20	49.6	189.6	250	174.0									
									7.5	49.0 9.7	71.8	230 90	64.9									
									10	9.7 12.9	75.0	100	68.1									
034	460	414	506	27.6	178	—	—	1	15	12.3	81.4	100	74.5									
									20	24.8	86.9	110	80.0									
									7.5	7.8	53.9	70	48.8									
									10	10.3	56.4	70	51.3									
	575	518	633	20.5	148	—	—	1	15	15.4	61.5	80	56.4									
									20	19.4	65.9	80	60.8									
									7.5	19.0	217.3	250	206.8									
	208/230	187	253	42.0	239	42.0	239	2	10	25.8	230.1	250	219.6									
	200/200		200	42.0	200	42.0	200	2	15	38.6	255.7	250	245.2									
									7.5	9.7	101.0	110	96.2									
044 460	460	414	506	19.2	125	19.2	125	2	10	12.9	107.4	110	102.6									
	400	414	500	13.2	125	13.2	125	2	15	12.3	120.2	125	115.4									
									7.5	7.8	68.3	80	65.2									
	575	518	633	12.4	80	12.4	80	2	10	10.3	73.3	80	70,2									
	575	010	000	000	000	033	033	14.7	12.7		12.1		-	15	15.4	83.5	90	80.4				
									7.5	19.4	239.0	250	227.2									
		208/230 187									10	25.8	251.8	250	240.0							
	208/230		187 2	187	187	187	187	187	187	187	187	187	253	47.1	318	47.1	7.1 318	2	15	38.6	277.4	300
									20	49.6	299.4	300	287.6									
									7.5	9.7	115.5	125	109,8									
									10	12.9	121.9	125	116.2									
054	460	414	506	22.6	158	58 22.6	22.6	158	158 2	2	15	19.3	134.7	120	129.0							
									20	24.8	145.7	150	140.0									
									7.5	7.8	89.1	100	84.8									
									10	10.3	94.1	100	89.8									
	575	518	633	17.3	125	17.3	125	2	15	15.4	104.3	110	100.0									
									20	19.8	113.1	110	108.8									
									7.5	19.4	303.2	350	287,6									
									10	25.8	316.0	350	300.4									
	208/230	187	253	62.2	376	62.2	376	2	15	38.6	341.6	400	326.0									
									20	49.6	363.6	400	348.0									
									7.5	9.7	136.7	150	129.8									
									10	9.7 12.9	143.1	150	129.0									
064	460	414	506	27.6	178	27.6	178	2	15	12.3	155.9	150	149.0									
									20	24.8	166.9	175	143.0									
									7.5	7.8	100.3	110	97.6									
									10	10.3	102.7	110	102.6									
	575	518	633	20.5	148	20.5	148	2	15	15.4	117.9	125	112.8									
	1	1	1		1	1			20	19.4	126.7	125	112.6									

Table 9B — Electrical Data — 50BVT,U,V,W,X

FLA HP LRA

MCA — Minimum Circuit Amps MOCP — Maximum Overcurrent Protection RLA — Rated Load Amps

Full Load Amps
Horsepower
Locked Rotor Amps

<u>Modular Units</u> — For units with multiple main airconditioning sections, connect the high voltage compressor power wiring to the line side of the high voltage terminal block in the second section's high voltage electrical box. This wiring is located in the upper portion of the compressor compartment.

Connect the low voltage wiring, located in the compressor compartment, between the two air conditioning sections using the quick connects provided.

For the supply fan motor, connect the 3-phase high voltage wiring, coiled behind the high voltage panel, to the line side of the supply fan motor terminal block located in the fan compartment. For VAV units, connect the 3-phase high voltage wiring to the line side of VFD.

For units with multiple fans, connect the control power wiring with the quick connects provided at the fan compartment junction.

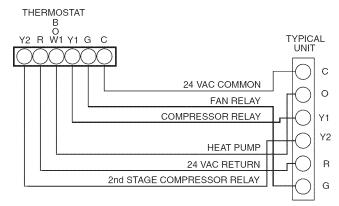
CONTROL WIRING (CV Only) — A standard commercial thermostat controls constant volume units. These units turn compressors on or off in response to zone temperature. The 50BV units provide 2 stages of cooling.

<u>50BVC,E,Q020-034 and 50BVT,U,V034 Only</u> — These models have 2 independent refrigerant circuits, each capable of being staged independently. Thermostat wiring is connected to the 6-position low voltage terminal block located in the unit electrical box. The 50BV units have a 24-VAC control transformer, which provides power to the control circuit and to the thermostat. The thermostat connections and their functions are as follows:

- C Transformer 24-v ac Common
- O Reversing Valve (heat pumps only)
- Y1 1st Stage Compressor Contactor
- Y2 2nd Stage Compressor Contactor
- R Transformer 24-v ac Hot
- G Indoor Fan Contactor

Select an appropriate commercial thermostat that has 2 stages of cooling control. If the unit is a heat pump, make sure the thermostat is capable of heat pump control. Any of the Debonair® series commercial thermostats will meet the requirements, and are available in a variety of attractive styles, in programmable and non-programmable versions.

Install the thermostat in the space where the temperature is being controlled, according to the instructions provided with the thermostat.



Before wiring the thermostat to the unit, make sure that main power to the unit has been disconnected. Failure to heed this warning could result in personal injury.

To wire the thermostat:

- 1. Connect the 'C' terminal from the 50BV unit to the 'C' terminal on the thermostat.
- 2. Wire the 'Y1' and 'Y2' terminals from the 50BV unit to the 'Y1' and 'Y2' terminals, respectively, at the thermostat.
- 3. Make a connection between the 'G' terminal on the unit and the 'G' terminal on the thermostat.
- 4. Attach a wire from the 'R' terminal at the unit to the 'R' terminal at the thermostat.
- 5. 50BVQ and 50BVV ONLY: If the unit is a heat pump, connect a final wire from terminal 'O' on the heat pump unit to the 'W1/O/B' terminal at the thermostat. Configure the thermostat for heat pump operation using the installation instructions provided with the thermostat. Set the reversing valve polarity of the thermostat to 'O'.

See Fig. 24 for typical thermostat wiring.

Fig. 24 — Typical Wiring 18 to 30 Ton Units (Two-Stage Cooling Units)

<u>50BVT.U.V044-064 Only</u> — Units larger than 30 tons have 4 independent refrigerant circuits.

These units can be controlled using a standard commercial, 2-stage thermostat. In this case, the first stage of cooling will turn on compressors 1 and 2, and the second stage will turn on compressors 3 and 4. It is also possible to have 4 stages of cooling, using a suitable field-supplied control method.

For 2-stage thermostat wiring, refer to Fig. 25. Jumpers must be installed between the G and O terminals in Modules A and B. A field-supplied, 24-v pilot relay should be used to energize Y2 on Module B whenever Y1 is energized on Module A. Similarly, a field-supplied 24-v pilot relay should be installed to energize Y4 on Module B whenever Y3 on Module A is energized (Y2 stage of thermostat calls for cooling).

Finally, verify that transformer phasing is consistent between Modules A and B.

REMOTE CONDENSER FAN CONTACTOR WIR-ING — For units up to 30 tons, one remote condenser is required. Install a field-supplied 24-v pilot relay (Aux relay) between Y1 and C. This will energize the FC contactor on the remote condenser whenever there is a call for cooling.

For 40 to 60 ton units, 2 remote condensers are required. Be sure to make piping connections so that compressors 1 and 2 are connected to condenser 1, and compressors 3 and 4 are connected to condenser 2. Use an additional set of NO (normally open) contacts on PR1 to energize FC1 on condenser 1, and a set of NO contacts on PR2 to energize FC1 on condenser 2.

CONTROL WIRING (VAV Only) — The VAV units are designed to operate either with a building management system or stand alone (local control).

<u>Carrier Comfort Network® Control Wiring</u> — The CC6400 Control Module connects to the Carrier Comfort Network (CCN) bus in a daisy chain arrangement. Negative pins on each component must be connected to respective negative pins and likewise positive pins on each component must be connected to respective positive pins. The controller signal pins must be wired to the signal ground pins. Wiring connections for CCN must be made at the 3-pin plug.

At any baud rate (9600, 19200, 38400 baud), the number of controllers is limited to 239 devices maximum. Bus length may not exceed 4000 ft, with no more than 60 total devices on any 1000-ft section. Optically isolated RS-485 repeaters are required every 1000 ft.

NOTE: Carrier device default is 9600 baud.

The CCN communication bus wiring is field supplied and field installed. It consists of shielded 3-conductor cable with drain (ground) wire. The cable selected must be identical to the CCN communication bus wire used for the entire network. See Table 10 for cable recommendations.

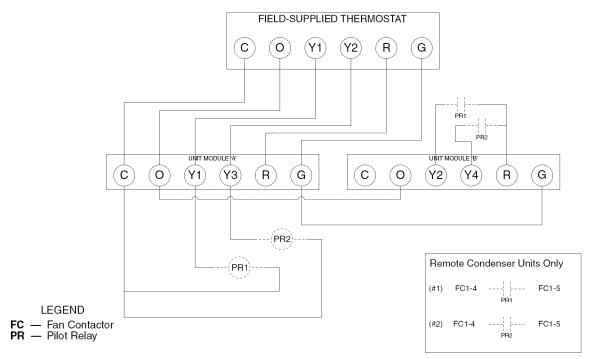


Fig. 25 — Typical Wiring 40 to 60 Ton Units (Two-Stage Cooling)

Table 10 —	Recommen	ded Cables
------------	----------	------------

MANUFACTURER	PART NUMBER
Alpha	2413 or 5463
American	A22503
Belden	8772
Columbia	02525

NOTE: Conductors and drain wire must be at least 20 AWG (American Wire Gage), stranded, and tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon[®]*, or polyethylene. An aluminum/polyester 100% foil shield and an outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of -20 C to 60 C is required.

The communication bus shields must be tied together at each system element. If the communication bus is entirely within one building, the resulting continuous shield must be connected to ground at only one single point. If the communication bus cable exits from one building and enters another building, the shields must be connected to the grounds at a lightning suppressor in each building (one point only).

<u>Wiring Control Devices</u> — Standard controls require no field wiring.

Standard controls for VAV applications include: duct static pressure (DSP), duct high static limit switch (DHS), compressor status (CSMUX), supply fan start/stop (SF), and supply fan speed (SPEED).

Field-installed devices and the factory-supplied supply air temperature sensor (required) will be wired to the field terminal block (TB2) provided. Refer to Fig. 26 and the following descriptions. This terminal is located in the control panel as shown in Fig. 27 and 28.

*Teflon is a registered trademark of E.I. du Pont de Nemours and Company.

SUPPLY AIR TEMPERATURE SENSOR (SAT) — The supply air temperature sensor (Fig. 29) is used to measure the temperature of the air leaving the unit. The sensor should be located in the supply air duct, about 1 ft from the unit discharge connection (Fig. 30). On units with 2 fans, locate the sensor approximately 5 duct diameters downstream from "pair of pants" duct connection, allowing for adequate mixing of supply air.

Mount the sensor as follows:

- 1. Remove the cover of the sensor junction box.
- 2. Drill a $7/_{16}$ -in. hole at the selected location.
- 3. Install the sensor through the hole and secure using 2 no. 8 screws (provided). Do not overtighten.
- 4. Connect the sensor to the control box. Use an 18 or 20 AWG, 2 conductor, twisted pair cable. This cable is suitable for distances of up to 500 feet.

Connect the field wires to the supply air sensor using wire nuts or closed end style crimp connectors. Do not cut the sensor leads. Use the full length of lead supplied on the sensor.

In the control box, remove the jacket from the cable. Route the sensor wires over to the right hand side of the field terminal block (TB2). Strip the insulation back about 1/4-in. from each conductor. Connect the two wires to terminals 101 and 102 (SAT) on the terminal board. Polarity is not a consideration. See Table 11 for resistance vs. temperature values.

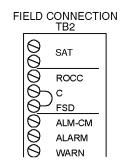


Fig. 26 — Field Terminal Block

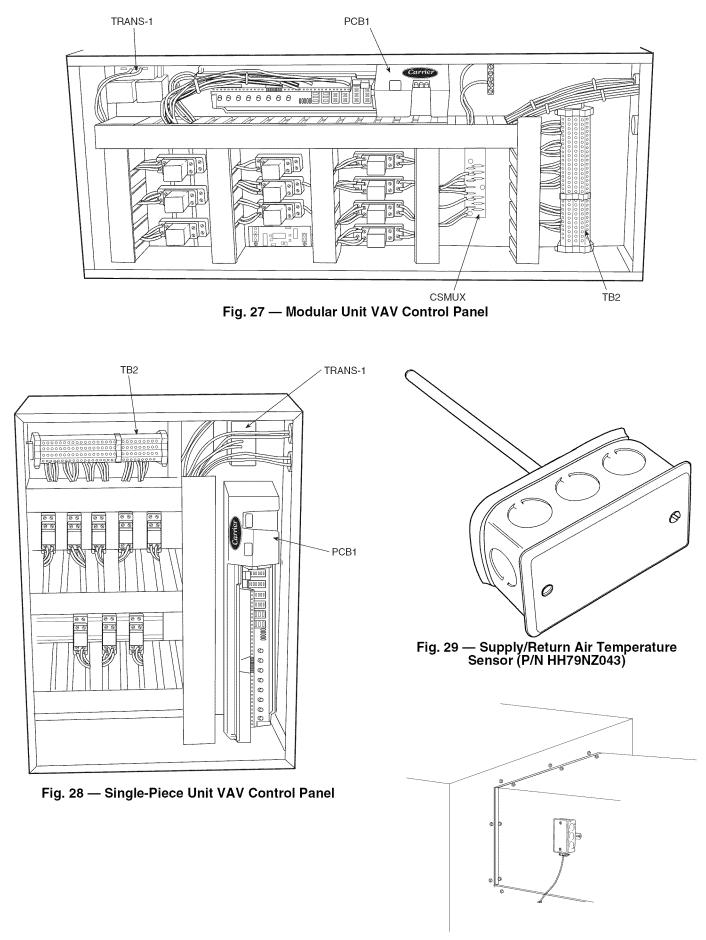
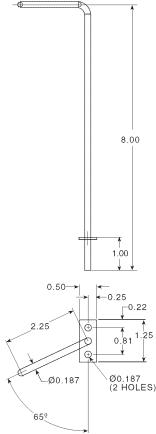


Fig. 30 — Supply-Air Temperature Sensor Installation (Unit Discharge Location)

Table 11 — Thermistor Resistance vs Temperature Values for Supply-Air Temperature Sensor (10 Kilo- ohm)

TEMP	TEMP	RESISTANCE
(C)	(F)	(Ohms)
-40	-40	335,651
-35	-31	242,195
-30	-22	176,683
-25	-13	130,243
-20	-4	96,974
-15	-4 5	72,895
-10	14	55,298
-5	23	42.315
0	32	32,651
-5 0 5	41	25,395
10	50	19,903
15	59	15,714
20	68	12,494
25	77	10,000
30	86	8,056
35	95	6,530
40	104	5,325
45	113	4,367
50	122	3,601
55	131	2,985
60	140	2,487
65	149	2,082
70	158	1,752

SMOKE DETECTOR/FIRE ALARM SHUTDOWN (FSD) — To allow a smoke detector to shut the 50BV down, remove the jumper from FSD to C and wire these terminals to a set of normally closed contacts on the smoke detector.


ALARM (ALARM) AND WARNING (WARN) OUT-PUTS — Two dry contacts output a discrete signal when the alarm and warning lights on the display are lit. To pick up the alarm output signal, wire between the ALARM and ALM-CM terminals. To pick up the warning output signal, wire between the WARN and ALM-CM terminals.

REMOTE OCCUPANCY (ROCC) — The 50BV unit may be commanded by another control system or a twist timer to become occupied and run when a set of dry contacts close. In order for this to occur, wire the contacts to ROCC and C and set the Local/Off/Remote switch to REMOTE.

RETURN AIR TEMPERATURE SENSOR (RAS) — The return/mixed air temperature sensor is a 5 kiloohm temperature sensor used as the space control point. For every degree that the RAS is below the set point, the supply air set point will be reset by the configured value in the custom configured RESET RATIO. Refer to Table 12 and Fig. 31.

Table 12 — Thermistor Resistance vs Temperature Values for Return-Air Temperature Sensor (5 kiloohm)

TEMP (C)	TEMP (F)	RESISTANCE (Ohms)
-40	-40	167,835
-35	-31	121,098
-30	-22	88,340
-25	-13	65,121
-20	-4 5	48,487
-15	5	36,447
-10	14	27,648
-5	23	21,157
0 5	32	16,325
	41	12,697
10	50	9,952
15	59	7,857
20	68	6,247
25	77	5,000
30	86	4,028
35	95	3,265
40	104	2,662
45	113	2,183
50	122	1,801
55	131	1,493
60	140	1,244
65	149	1,041
70	158	876
75	167	740
80	176	628

NOTE: All dimensions are in inches.

Fig. 31 — Return Air Temperature Sensor (P/N HH79NZ079)

Wire the sensor to PCB1 connector J3, terminals 15 and 16. Change custom configuration as instructed in Configure the Custom Programming Selections section. Changing this configuration to YES changes the EWT input to be used as return air temperature input.

START-UP

General — Complete the Start-Up Checklist on page CL-1 before attempting system start-up.

CRANKCASE HEATERS — The 50BVT,U,V,W,X034-064 units include crankcase heaters. Crankcase heaters are energized as long as there is power to the unit and the compressor is not operating.

Wait 24 hours before starting the compressors to permit warming by the crankcase heaters.

AFTER 24 hours, continue with the procedures below.

CONFIRM THE INPUT POWER PHASE SEQUENCE — The input power phase rotation sequence must be L1-L2-L3 = ABC (or forward or clockwise) as indicated with a phase rotation meter. Incorrect input phase rotation will cause the compressors to rotate in reverse, which results in no cooling capacity.

IMPORTANT: On VAV units, fan rotation direction can NOT be used for the phase sequence check; fan rotation for VAV units with a variable speed drive is independent of the unit input wiring sequence.

If the compressor is rotating in the wrong direction, it may: emit increased noise; shut down due to internal overload protection; have only a small decrease in suction pressure when it starts; or have only a small increase in discharge pressure when it starts. Also, no cooling will be produced at the evaporator. If any of these conditions occurs, refer to the Service section to correct the compressor rotation before continuing.

INTERNAL WIRING — Check all electrical connections in unit control boxes; tighten as required.

RETURN-AIR FILTERS - Check that correct filters are installed in filter tracks (see Tables 3A and 3B). Do not operate unit without return-air filters.

COMPRESSOR MOUNTING --- Compressors are internally spring mounted. Do not loosen or remove compressor holddown bolts.

REFRIGERANT SERVICE PORTS - Each refrigerant system has a total of 2 Schrader-type service gage ports per circuit. One port is located on the suction line, and one on the compressor discharge line. Be sure that caps on the ports are tight.

CV Unit Start-Up

EVAPORATOR FAN - Fan belt and variable pitch motor pulleys are factory installed. See Tables 13-20 for fan performance data. Be sure that fans rotate in the proper direction.

COOLING — Set the space thermostat to OFF position. Turn on unit power. Set space thermostat to COOL and the fan to AUTO. Adjust the thermostat temperature setting below room temperature. Compressor 1 starts on closure of contactor (compressors 1 and 2 on 4-circuit units with 2-stage thermostat).

Adjust the thermostat to an even lower setting until the thermostat energizes Y2 (the second cooling stage). Compressor 2 starts on closure of contactor (compressors 3 and 4 on 4-circuit units with 2-stage thermostat).

Adjust the thermostat temperature to a setting just below room temperature. The second stage of cooling should turn off.

Set the thermostat temperature above room temperature. All compressors and the unit fan should now be off.

HEATING (Heat Pump Units Only) - Follow the same sequence as for cooling (above), except set the space thermostat to HEAT, and instead of adjusting the thermostat below room temperature, adjust it above. Verify that the compressors turn on and the unit runs in reverse cycle mode.

Set the thermostat below room temperature and confirm that the compressors and fan turn off.

Table 13 — Fa	n Performance —	50BVC,E,Q020
---------------	-----------------	--------------

AIRFLOW					AVAI	LABLE E	XTERN	AL STATI	C PRES	SURE (ir	n. wg)				
(cfm)		0.2			0.4			0.6			0.8		1.0		
(,	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500		-	-	-	-		623	459	0.52	-	-		Ŧ	<u> </u>	—
5000							638	545	0.61	<u> </u>					
5500						<u> </u>	655	641	0.72	725	755	0.85		<u> </u>	<u> </u>
6000				608	641	0.72	676	755	0.85	742	878	0.99	807	1001	1.13
6500	. <u></u> .	<u> </u>		636	755	0.85	699	878	0.99	761	1010	1.14	821	1142	1.29
7000	604	774	0.87	666	906	1.02	726	1029	1.16	784	1170	1.32	841	1311	1.48
7500	634	916	1.03	693	1057	1.19	750	1189	1.34	805	1330	1.50	858	1480	1.67
8000	667	1085	1.22	723	1226	1.38	777	1377	1.55	829	1526	1.72	880	1676	1.89
8500	700	1273	1.43	753	1423	1.60	804	1573	1.77	853	1732	1.95	902	1836	2.13
9000	735	1480	1.67	785	1638	1.84	833	1745	2.02	881	1908	2.21	927	2071	2.40

AIRFLOW					AVAI	LABLE E	XTERN	AL STATI	C PRES	SURE (ir	n. wg)				
(cfm)		1.2			1.4			1.6			1.8			2.0	
(111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500		-		-	1	—		-	1	-	<u> </u>	-	_	-	
5000	<u> </u>						<u></u> ;								
5500															
6000						<u> </u>									
6500	881	1283	1.44			<u> </u>									
7000	897	1451	1.63	951	1601	1.80						<u> </u>			
7500	911	1629	1.83	963	1727	2.00	1014	1881	2.18						
8000	930	1781	2.07	979	1935	2.24	1028	2098	2.43	1076	2260	2.62	1124	2422	2.81
8500	950	1989	2.31	997	2152	2.50	1043	2323	2.69	1089	2485	2.88	1134	2697	3.09
9000	973	2233	2.59	1018	2404	2.79	1062	2576	2.99	1106	2779	3.18	1149	2960	3.39

LEGEND

Bhp — Brake Horsepower Input to Supply Fan Watts — Input Power to Supply Fan Motor

NOTES:

1. Units are available with the following motor and drive combinations: 1.5, 2, 3, 5 HP standard drive; 1.5, 2, 3 HP medium static drive.

For 1.5, 2, 3 HP standard drives, the drive range is 753 to 952 rpm. For medium static drives, the drive range is 872 to 1071 rpm. For 5 HP standard drives, the drive range is 967 to 1290 rpm.

2. Italics indicates field-supplied drive required.

Do not operate in shaded area. 3.

4. Static pressure losses must be applied to external static pressure before entering the fan performance table.

Interpolation is permitted, extrapolation is not.

Fan performance is based on filter, unit casing and wet coil 6. losses.

Bhp values are per fan. Watts values are per motor. Unit has 2 supply fans and 2 motors.

Table 14 — Fan Performance — 50BVC, E, Q024

AIRFLOW					AVAII	LABLE E	XTERN	AL STATI	C PRES	SURE (ir	ո. wg)				
(cfm)		0.2			0.4			0.6			0.8			1.0	
(,	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
5,000					-	<u> </u>	638	545	0.61			<u> </u>			<u> </u>
5,500							655	641	0.72	725	755	0.85			
6,000				608	641	0.72	676	755	0.85	742	878	0.99	807	1001	1.13
6,500				636	755	0.85	699	878	0.99	761	1010	1.14	821	1142	1.29
7,000	604	774	0.87	666	906	1.02	726	1029	1.16	784	1170	1.32	841	1311	1.48
7,500	634	916	1.03	693	1057	1.19	750	1189	1.34	805	1330	1.50	858	1480	1.67
8,000	667	1085	1.22	723	1226	1.38	777	1377	1.55	829	1526	1.72	880	1676	1.89
8,500	700	1273	1.43	753	1423	1.60	804	1573	1.77	853	1732	1.95	902	1836	2.13
9,000	735	1480	1.67	785	1638	1.84	833	1745	2.02	881	1908	2.21	927	2071	2.40
9,500	769	1713	1.93	816	1827	2.12	863	1989	2.31	908	2152	2.50	952	2323	2.69
10,000	802	1908	2.21	848	2080	2.41	892	2251	2.61	936	2422	2.81	978	2624	3.01

AIRFLOW					AVAI	LABLE E	XTERN	AL STATI	C PRES	SURE (ir	n. wg)				
(cfm)		1.2			1.4			1.6			1.8			2.0	
(,	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
5,000	<u> </u>	<u> </u>						1		-	-		-	_	-
5,500									<u> </u>		<u> </u>				
6,000															
6,500	881	1283	1.44	<u> </u>			1					<u> </u>			
7,000	897	1451	1.63	951	1601	1.80									<u> </u>
7,500	911	1629	1.83	963	1727	2.00	1014	1881	2.18			<u> </u>			
8,000	930	1781	2.07	979	1935	2.24	1028	2098	2.43	1076	2260	2.62	1124	2422	2.81
8,500	950	1989	2.31	997	2152	2.50	1043	2323	2.69	1089	2485	2.88	1134	2697	3.09
9,000	973	2233	2.59	1018	2404	2.79	1062	2576	2.99	1106	2779	3.18	1149	2960	3.39
9,500	996	2494	2.89	1039	2697	3.09	1081	2879	3.30	1123	3060	3.51	1165	3251	3.73
10,000	1020	2806	3.22	1061	2988	3.42	1102	3178	3.64	1142	3360	3.85	1182	3559	4.08

Bhp — Brake Horsepower Input to Supply Fan Watts — Input Power to Supply Fan Motor

NOTES:

 Units are available with the following motor and drive combina-tions: 2, 3, and 5 HP standard drive; 2, 3 HP medium static drive.

For 2, 3 HP standard drives, the drive range is 753 to 952 rpm. For medium static drives, the drive range is 872 to 1071 rpm. For 5 HP standard drives, the drive range is 967 to 1290 rpm.

2. Italics indicates field-supplied drive required.

- 3. Do not operate in shaded area.
- Static pressure losses must be applied to external static pressure before entering the fan performance table.
 Interpolation is permitted, extrapolation is not.
 Fan performance is based on filter, unit casing and wet coil losses

- real personlosses.Bhp values are *per fan.* Watts values are *per motor.* Unit has 2 supply fans and 2 motors.

					AVAII	LABLE E	XTERN/	AL STATI	C PRES	SURE (ir	ո. wg)				
AIRFLOW (cfm)		0.2			0.4			0.6			0.8			1.0	
(enn)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,250				624	678	0.79	689	797	0.92	753	917	1.06	815	1045	1.21
7,000	604	751	0.87	666	880	1.02	726	999	1.16	784	1136	1.32	841	1273	1.48
7,500	634	889	1.03	693	1027	1.19	750	1155	1.34	805	1291	1.50	858	1437	1.67
8,000	667	1054	1.22	723	1191	1.38	777	1337	1.55	829	1482	1.72	880	1627	1.89
8,500	700	1237	1.43	753	1382	1.60	804	1528	1.77	853	1682	1.95	902	1836	2.13
9,000	735	1437	1.67	785	1591	1.84	833	1745	2.02	881	1908	2.21	927	2071	2.40
9,500	769	1664	1.93	816	1827	2.12	863	1989	2.31	908	2152	2.50	952	2323	2.69
10,000	802	1908	2.21	848	2080	2.41	892	2251	2.61	936	2422	2.81	978	2624	3.01
10,500	835	2179	2.53	879	2350	2.73	921	2531	2.93	963	2742	3.14	1004	2924	3.35
11,000	870	2467	2.86	912	2688	3.08	952	2870	3.29	992	3060	3.51	1032	3251	3.73
11,500	904	2824	3.24	944	3015	3.46	983	3206	3.67	1022	3405	3.90	1060	3605	4.13
12,000	937	3169	3.63	976	3369	3.86	1014	3569	4.09	1051	3777	4.33	1088	3985	4.57
12,500	972	3550	4.07	1010	3759	4.31	1046	3967	4.55	1082	4184	4.80	<u> </u>	<u> </u>	<u>.</u>

					AVAI	LABLE E	XTERN/	AL STATI	C PRES	SURE (ir	n. wg)				
AIRFLOW (cfm)		1.2			1.4			1.6			1.8			2.0	
(enn)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,250	877	1173	1.36		<u> </u>		—	<u> </u>	<u> </u>	<u> </u>			<u> </u>		
7,000	897	1410	1.63	951	1555	1.80									
7,500	911	1582	1.83	963	1727	2.00	1014	1881	2.18						
8,000	930	1781	2.07	979	1935	2.24	1028	2098	2.43	1076	2260	2.62	1124	2422	2.81
8,500	950	1989	2.31	997	2152	2.50	1043	2323	2.69	1089	2485	2.88	1134	2697	3.09
9,000	973	2233	2.59	1018	2404	2.79	1062	2576	2.99	1106	2779	3.18	1149	2960	3.39
9,500	996	2494	2.89	1039	2697	3.09	1081	2879	3.30	1123	3060	3.51	1165	3251	3.73
10,000	1020	2806	3.22	1061	2988	3.42	1102	3178	3.64	1142	3360	3.85	1182	3559	4.08
10,500	1044	3106	3.56	1084	3296	3.78	1123	3496	4.01	1161	3686	4.23	1200	3886	4.45
11,000	1070	3451	3.95	1109	3641	4.17	1146	3840	4.40	1184	4049	4.64	1220	4248	4.87
11,500	1097	3804	4.36	1134	4012	4.60	1170	4221	4.84	1206	—	_	· · · · · · · · · · · · · · · · · · ·		
12,000	1124	4193	4.81	<u> </u>									<u> </u>		
12,500			<u></u>								<u> </u>				

Bhp—Brake Horsepower Input to Supply FanWatts—Input Power to Supply Fan Motor

NOTES:

1. Units are available with 3 or 5 HP standard drive or 3 HP medium static drive.

For 3 HP standard drives, the drive range is 753 to 952 rpm. For medium static drives, the drive range is 872 to 1071 rpm. 5 HP standard drives have drive range of 967 to 1290 rpm.

2. Italics indicates field-supplied drive required.

3. Do not operate in shaded area.

Static pressure losses must be applied to external static pressure before entering the fan performance table.
 Interpolation is permitted, extrapolation is not.
 Fan performance is based on filter, unit casing and wet coil losses.

losses.

Bhp values are *per fan.* Watts values are *per motor.* Unit has 2 supply fans and 2 motors.

Table 16 — Fan Performance — 50BVC, E, Q034

					AVAI	LABLE E	EXTERN/	AL STATI	C PRES	SURE (in	ı. wg)				
AIRFLOW (cfm)		0.2			0.4			0.6			0.8			1.0	
(enn)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
9,000	639	1187	1.36	693	1334	1.53	745	1490	1.71	795	1646	1.89	843	1802	2.07
9,500	665	1362	1.56	717	1518	1.74	766	1674	1.92	814	1839	2.11	861	2004	2.30
10,000	693	1555	1.78	743	1720	1.97	791	1894	2.17	836	2058	2.36	881	2232	2.56
10,500	721	1775	2.03	769	1949	2.23	815	2122	2.43	859	2296	2.63	902	2478	2.84
11,000	749	2004	2.30	795	2186	2.51	840	2369	2.71	882	2551	2.92	924	2742	3.14
11,500	777	2259	2.59	822	2451	2.81	864	2642	3.03	906	2833	3.25	946	3024	3.47
12,000	805	2533	2.90	848	2733	3.13	889	2933	3.36	929	3133	3.59	968	3333	3.82
12,500	835	2842	3.26	877	3042	3.49	917	3251	3.73	955	3460	3.97	993	3668	4.20
13,000	865	3169	3.63	905	3378	3.87	944	3596	4.12	981	3813	4.37	1018	4021	4.61
13,500	894	3514	4.03	933	3741	4.29	971	3958	4.54	1007	4184	4.80			
14,000	924	3895	4.46	961	4121	4.72	998	4356	4.99		<u></u>	<u> </u>	—		<u> </u>

					AVAI	LABLE E	EXTERN/	AL STATI	C PRES	SURE (ir	i. wg)				
AIRFLOW (cfm)		1.2			1.4			1.6			1.8			2.0	
(enii)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
9,000	890	1958	2.24	936	2122	2.43	982	2296	2.63	1026	2460	2.82	1071	2642	3.03
9,500	906	2168	2.48	950	2341	2.68	994	2515	2.88	1037	2688	3.08	1079	2870	3.29
10,000	925	2405	2.76	967	2578	2.96	1009	2760	3.16	1051	2942	3.37	1092	3124	3.58
10,500	944	2660	3.05	986	2842	3.26	1026	3024	3.47	1066	3215	3.68	1105	3405	3.90
11,000	965	2924	3.35	1004	3115	3.57	1043	3315	3.80	1082	3505	4.02	1120	3705	4.25
11,500	985	3224	3.69	1024	3414	3.91	1062	3614	4.14	1099	3813	4.37	1136	4021	4.61
12,000	1006	3532	4.05	1044	3732	4.28	1080	3940	4.52	1117	4148	4.75	1152	4356	4.99
12,500	1030	3877	4.44	1066	4085	4.68	1102	4302	4.93						
13,000	1053	4239	4.86												
13,500	1			<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>		<u></u>		<u></u>
14,000													<u> </u>		<u> </u>

Bhp—Brake Horsepower Input to Supply FanWatts—Input Power to Supply Fan Motor

NOTES:

Unit is available with 5 HP standard drive only. The drive range is 967 to 1290 rpm.
 Italics indicates field-supplied drive required.

3. Do not operate in shaded area.

Static pressure losses must be applied to external static pressure before entering the fan performance table.
 Interpolation is permitted, extrapolation is not.
 Fan performance is based on filter, unit casing and wet coil losses.
 Ben values are per fan Wetter und

Bhp values are *per fan.* Watts values are *per motor.* Unit has 2 supply fans and 2 motors.

Table 17 — Fan Performance — 50BVT,U,V034

AIRFLOW (cfm)		AVAILABLE EXTERNAL STATIC PRESSURE (in. wg)														
		0.2			0.4			0.6			0.8			1.0		
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	
9,000	564	3,167	3.76	605	3,483	4.13	645	3,798	4.51	683	4,112	4.88	718	4,392	5.21	
9,500	590	3,666	4.35	629	3,999	4.74	667	4,331	5.14	704	4,671	5.54	738	4,977	5.90	
10,000	617	4,226	5.01	655	4,584	5.44	691	4,933	5.85	726	5,282	6.27	761	5,654	6.71	
10,500	643	4,820	5.72	678	5,194	6.16	713	5,583	6.62	747	5,963	7.07	780	6,263	7.51	
11,000	669	5,503	6.53	704	5,901	7.00	737	6,298	7.47	770	6,612	7.93	802	7,005	8.40	
11,500	696	6,236	7.40	729	6,577	7.89	761	6,987	8.38	792	7,388	8.86	823	7,798	9.36	
12,000	722	6,952	8.34	754	7,380	8.85	784	7,798	9.36	815	8,225	9.87	845	8,510	10.38	
12,500	750	7,816	9.38	780	8,260	9.91	810	8,561	10.44	839	8,990	10.97	868	9,427	11.50	
13,000	777	8,595	10.49	806	9,050	11.04	835	9,504	11.59	863	9,949	12.14	891	10,403	12.69	
13,500	804	9,572	11.68	832	10,043	12.25	860	10,514	12.83	887	10,985	13.40	914	11,447	13.96	
14,000	832	10,634	12.97	859	11,122	13.57	886	11,610	14.16	912	12,097	14.76	938	12,585	15.35	
14,500	859	11,747	14.33	885	12,217	14.90	911	12,756	15.56	936	13,260	16.18	962	13,765	16.79	
15,000	886	12,953	15.80	911	13,474	16.44	936	13,996	17.07	961	14,517	17.71	986	15,038	18.34	

AIRFLOW (cfm)		AVAILABLE EXTERNAL STATIC PRESSURE (in. wg)													
	1.2			1.4			1.6			1.8			2.0		
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
9,000	751	4,663	5.53	785	4,933	5.85	817	5,212	6.18	849	5,512	6.54	881	5,804	6.89
9,500	771	5,264	6.25	802	5,574	6.61	834	5,866	6.96	864	6,166	7.31	895	6,394	7.67
10,000	792	5,963	7.07	822	6,272	7.44	852	6,498	7.80	882	6,804	8.16	911	7,118	8.54
10,500	812	6,603	7.92	841	6,926	8.31	870	7,240	8.69	899	7,563	9.07	927	7,885	9.46
11,000	833	7,388	8.86	861	7,720	9.26	889	8,051	9.66	917	8,253	10.07	944	8,578	10.46
11,500	854	8,199	9.84	882	8,441	10.30	909	8,784	10.72	936	9,127	11.13	962	9,469	11.55
12,000	874	8,921	10.88	903	9,332	11.38	930	9,701	11.83	955	10,060	12.27	981	10,420	12.71
12,500	896	9,855	12.02	924	10,283	12.54	951	10,702	13.06	976	11,079	13.51	1001	11,456	13.97
13,000	919	10,857	13.24	945	11,302	13.79	972	11,747	14.33	997	12,166	14.84	1022	12,551	15.31
13,500	941	11,918	14.54	967	12,380	15.10	993	12,850	15.67	1018	13,303	16.23	1042	13,722	16.74
14,000	964	13,064	15.94	990	13,551	16.53	1015	14,030	17.11	1040	14,517	17.71	1064	14,979	18.27
14,500	987	14,269	17.41	1011	14,765	18.01	1036	15,261	18.62	1060	15,765	19.23	1084	16,260	19.83
15,000	1010	15,560	18.98	1034	16,081	19.62		-19986 <u></u> 19880		<u> </u>		<u></u>			<u> </u>

LEGEND

Bhp—Brake Horsepower Input to Supply FanWatts—Input Power to Supply Fan Motor

NOTES:

- Unit is available with the following motor and drive combina-tions: 7.5, 10, 15, 20 HP standard drive; 7.5, 10, 15, 20 HP medium-static drive; 7.5, 10, 15, 20 HP high-static drive. For 7.5 HP standard drives, the drive range is 780 to 960 rpm. For 10, 15, 20 HP standard and 7.5 HP medium-static drives, the drive range is 805 to 991 rpm. For 10, 15, 20 HP

medium-static and 7.5 HP high-static drives the drive range is 960 to 1146 rpm. For 10, 15, 20 HP high-static drives the drive range is 1119 to 1335 rpm.

- 2. Italics indicates field-supplied drive required.
- Do not operate in shaded area. 3.
- 4. Static pressure losses must be applied to external static pressure before entering the fan performance table.
- 5. Interpolation is permitted, extrapolation is not.
- 6. Fan performance is based on filter, unit casing and wet coil losses.
- 7. This unit has one supply fan and one fan motor.

Table 17 — Fan Performance — 50BVT,U,V034 (cont)

		AVAILABLE EXTERNAL STATIC PRESSURE (in. wg)														
AIRFLOW (cfm)		2.2			2.4			2.6			2.8			3.0		
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	
9,000	912	6,095	7.23	943	6,324	7.59	974	6,629	7.95	1005	6,943	8.33	1035	7,266	8.72	
9,500	925	6,690	8.03	955	6,996	8.39	984	7,310	8.77	1013	7,624	9.15	1042	7,955	9.54	
10,000	940	7,423	8.91	969	7,746	9.29	997	8,060	9.67	1025	8,253	10.07	1053	8,578	10.46	
10,500	955	8,199	9.84	982	8,390	10.23	1010	8,715	10.63	1037	9,041	11.03	1063	9,375	11.44	
11,000	971	8,913	10.87	998	9,238	11.27	1024	9,572	11.68	1050	9,915	12.09	1076	10,257	12.51	
11,500	988	9,812	11.97	1014	10,155	12.39	1040	10,506	12.82	1065	10,848	13.23	1090	11,207	13.67	
12,000	1006	10,771	13.14	1031	11,130	13.58	1056	11,490	14.02	1080	11,849	14.45	1104	12,217	14.90	
12,500	1025	11,824	14.42	1050	12,191	14.87	1074	12,568	15.33	1097	12,944	15.79	1121	13,320	16.25	
13,000	1045	12,936	15.78	1069	13,320	16.25	1092	13,714	16.73	1115	14,098	17.20	1138	14,492	17.68	
13,500	1065	14,124	17.23	1088	14,526	17.72	1110	14,927	18.21	1133	15,329	18.70	1155	15,731	19.19	
14,000	1086	15,397	18.78	1108	15,816	19.29	1131	16,235	19.80							
14,500											<u> </u>		<u> </u>			
15,000	<u> </u>		<u> </u>			<u> </u>			<u> </u>			<u> </u>			<u> </u>	

AIRFLOW (cfm)		AVAILABLE EXTERNAL STATIC PRESSURE (in. wg)														
		3.2			3.4			3.6			3.8			4.0		
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	
9,000	1065	7,606	9.13	1095	7,946	9.53		ļ					—	—		
9,500	1071	8,286	9.94	1100	8,493	10.36	1128	8,835	10.78	1157	9,195	11.22	1185	9,564	11.67	
10,000	1081	8,904	10.86	1108	9,247	11.28	1136	9,598	11.71	1163	9,958	12.15	1190	10,326	12.60	
10,500	1090	9,718	11.85	1116	10,060	12.27	1143	10,411	12.70	1169	10,771	13.14	1195	11,139	13.59	
11,000	1102	10,608	12.94	1127	10,959	13.37	1153	11,319	13.81	1178	11,678	14.25	1203	12,046	14.69	
11,500	1115	11,558	14.10	1139	11,918	14.54	1164	12,286	14.99	1188	12,653	15.43	1212	13,038	15.90	
12,000	1128	12,585	15.35	1152	12,953	15.80	1176	13,329	16.26	1200	13,705	16.72	1223	14,090	17.19	
12,500	1144	13,697	16.71	1167	14,073	17.17	1190	14,457	17.64	1213	14,850	18.12	1236	15,235	18.58	
13,000	1160	14,876	18.15	1183	15,269	18.63	1205	15,662	19.11	1227	16,064	19.60				
13,500	1177	16,132	19.68						1			1		—	<u> </u>	
14,000									-			<u> </u>				
14,500	<u> </u>			<u> </u>								<u> </u>				
15,000		;	<u> </u>				<u> </u>		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				

- Bhp—Brake Horsepower Input to Supply FanWatts—Input Power to Supply Fan Motor

NOTES:

- 1. Unit is available with the following motor and drive combina-tions: 7.5, 10, 15, 20 HP standard drive; 7.5, 10, 15, 20 HP medium-static drive; 7.5, 10, 15, 20 HP high-static drive.
 - For 7.5 HP standard drives, the drive range is 780 to 960 rpm. For 10, 15, 20 HP standard and 7.5 HP medium-static drives, the drive range is 805 to 991 rpm. For 10, 15, 20 HP

medium-static and 7.5 HP high-static drives the drive range is 960 to 1146 rpm. For 10, 15, 20 HP high-static drives the drive range is 1119 to 1335 rpm.

- 2. Italics indicates field-supplied drive required.
- Do not operate in shaded area. 3.
- 4. Static pressure losses must be applied to external static pressure before entering the fan performance table.
- 5. Interpolation is permitted, extrapolation is not.
- Fan performance is based on filter, unit casing and wet coil 6. losses.
- 7. This unit has one supply fan and one fan motor.

Table 18 — Fan Performance — 50BVT,U,V044

					AVAI	LABLE E	XTERN	AL STATI	C PRES	SURE (ir	. wg)				
AIRFLOW (cfm)		0.2			0.4			0.6			0.8			1.0	
(enii)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
12,000	403	1057	1.25	461	1271	1.51	512	1458	1.73	561	1644	1.95	608	1838	2.18
12,500	413	1173	1.39	470	1395	1.66	519	1591	1.89	567	1785	2.12	613	1980	2.35
13,000	423	1280	1.52	478	1520	1.80	527	1723	2.04	573	1927	2.29	618	2130	2.53
13,500	436	1422	1.69	489	1661	1.97	537	1883	2.23	582	2086	2.47	626	2297	2.73
14,000	446	1546	1.83	498	1803	2.14	546	2033	2.41	589	2253	2.67	632	2465	2.92
14,500	459	1706	2.02	509	1962	2.33	557	2209	2.62	599	2438	2.89	640	2658	3,15
15,000	469	1847	2.19	518	2121	2.52	565	2385	2.83	607	2614	3.10	647	2843	3.37
16,000	495	2200	2.61	541	2482	2.94	585	2772	3.29	627	3036	3.60	665	3272	3.88
17,000	518	2570	3.05	562	2878	3.41	604	3176	3.77	645	3474	4.12	681	3736	4.43
17,500	531	2781	3.30	573	3097	3.67	614	3404	4.04	654	3710	4.40	691	3990	4.73
18,000	543	3001	3.56	584	3325	3.94	625	3640	4.32	664	3955	4.69	700	4252	5.04
19,000	568	3474	4.12	607	3815	4.53	646	4147	4.92	684	4488	5.32	720	4820	5.72
19,500	580	3728	4.42	619	4077	4.84	657	4418	5.24	693	4767	5.66	729	5107	6.06

					AVAI	LABLE E	EXTERN.	AL STATI	C PRES	SURE (in	ı. wg)				
AIRFLOW (cfm)		1.2			1.4			1.6			1.8			2.0	
(enn)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
12,000	654	2042	2.42	700	2262	2.68							-		
12,500	657	2183	2.59	702	2403	2.85	745	2640	3.13		<u> </u>				
13,000	661	2341	2.78	704	2561	3.04	746	2790	3.31	<u> </u>					
13,500	668	2517	2.99	709	2737	3.25	750	2974	3.53	791	3220	3.82			<u></u>
14,000	673	2693	3.19	713	2913	3.46	753	3150	3.74	792	3395	4.03			<u> </u>
14,500	680	2886	3.42	719	3115	3.69	758	3351	3.98	796	3605	4.28	834	3859	4.33
15,000	686	3079	3.65	724	3316	3.93	762	3553	4.21	799	3806	4.52	836	4069	4.57
16,000	702	3518	4.17	739	3771	4.47	774	4016	4.76	810	4278	5.08	844	4540	5.11
17,000	717	3990	4.73	752	4252	5.04	786	4514	5.36	820	4785	5.68	853	5055	5.70
17,500	726	4252	5.04	760	4523	5.37	794	4793	5.69	827	5064	6.01	859	5353	6.02
18,000	735	4523	5.37	768	4802	5.70	801	5072	6.02	833	5371	6.37	865	5662	6.37
19,000	753	5107	6.06	785	5415	6.42	816	5707	6.77	848	5998	7.12	878	6298	7.09
19,500	762	5433	6.45	794	5733	6.80	825	6033	7.16	855	6263	7.51	885	6568	7.48

					AVAI	LABLE E	XTERN	AL STATI	C PRES	SURE (in	. wg)				
AIRFLOW (cfm)		2.2			2.4			2.6			2.8			3.0	
(enn)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
12,000	_	1		<u> </u>	1	-					-	<u> </u>			
12,500						1									
13,000	<u> </u>		—	<u> </u>								<u> </u>		<u> </u>	—
13,500			—		—	Ŧ	—								<u> </u>
14,000						-									<u> </u>
14,500	871	4130	4.90	—			T				—				-
15,000	872	4340	5.15												-
16,000	879	4811	5.71	913	5099	6.05	947	5415	6.42	980	5724	6.79			—
17,000	886	5353	6.35	919	5645	6.70	951	5945	7.05	983	6254	7.42	1015	6507	7.81
17,500	891	5645	6.70	923	5936	7.04	955	6245	7.41	986	6481	7.78	1017	6795	8.15
18,000	897	5945	7.05	928	6245	7.41	959	6481	7.78	989	6786	8.14	1020	7109	8.53
19,000	908	6525	7.83	938	6830	8.19	968	7135	8.56	997	7449	8.94	1027	7772	9.32
19,500	915	6865	8.24	944	7170	8.60	973	7484	8.98	1002	7807	9.37	1031	8129	9.75

Bhp—Brake Horsepower Input to Supply FanWatts—Input Power to Supply Fan Motor

NOTES:

Unit is available with the following motor and drive com-binations: 7.5, 10, 15 HP standard drive; 7.5, 10, 15 HP medium-static drive; 7.5, 10, 15 HP high-static drive.

For 7.5 HP standard drives, the drive range is 780 to 960 rpm. For 10, 15 HP standard and 7.5 HP medium-static drives, the drive range is 805 to 991 rpm. For 10, 15 HP medium-static and 7.5 HP high-static drives the drive range is 960 to 1146 rpm. For 10, 15 HP high-static drives the drive range is 1119 to 1335 rpm.

2. Italics indicates field-supplied drive required.

3. Do not operate in shaded area.

4. Static pressure losses must be applied to external static pressure before entering the fan performance table.

5. Interpolation is permitted, extrapolation is not.

6. Fan performance is based on filter, unit casing and wet coil losses.

Bhp values are *per fan.* Watts values are *per motor.* Unit has 2 supply fans and 2 motors.

Table 19 — Fan Performance — 50BVT,U,V054

					AVAI	LABLE E	EXTERN/	AL STATI	C PRES	SURE (ir	ı. wg)				
AIRFLOW (cfm)		0.2			0.4			0.6			0.8			1.0	
(enn)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
15,000	489	1953	2.32	537	2227	2.64	582	2473	2.93	623	2711	3.22	663	2939	3.49
16,000	513	2315	2.75	559	2596	3.08	603	2878	3.41	642	3132	3.72	680	3369	4.00
17,000	540	2728	3.24	583	3027	3.59	624	3325	3.94	663	3605	4.28	699	3868	4.59
18,000	564	3167	3.76	605	3483	4.13	645	3798	4.51	683	4112	4.88	718	4392	5.21
18,500	578	3413	4.05	618	3745	4.44	657	4069	4.83	694	4392	5.21	729	4680	5.55
19,000	590	3666	4.35	629	3999	4.74	667	4331	5.14	704	4671	5.54	738	4977	5,90
19,500	604	3938	4.67	642	4278	5.08	679	4628	5.49	715	4968	5.89	749	5299	6.29
20,000	617	4226	5.01	655	4584	5.44	691	4933	5.85	726	5282	6.27	761	5654	6.71
20,500	629	4505	5.34	665	4872	5.78	701	5238	6.21	736	5618	6.67	770	5980	7.09
21,000	643	4820	5.72	678	5194	6.16	713	5583	6.62	747	5963	7.07	780	6263	7.51
22,000	669	5503	6.53	704	5901	7.00	737	6298	7.47	770	6612	7.93	802	7005	8.40
23,000	696	6236	7.40	729	6577	7.89	761	6987	8.38	792	7388	8.86	823	7798	9.36
24,000	722	6952	8.34	754	7380	8.85	784	7798	9.36	815	8225	9.87	845	8510	10.38

					AVAI	LABLE E	XTERN	AL STATI	C PRESS	SURE (ir	n. wg)				
AIRFLOW (cfm)		1.2			1.4			1.6			1.8			2.0	
(enn)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
15,000	701	3167	3.76	739	3413	4.05	777	3658	4.34	814	3,911	4.64	850	4,174	4.95
16,000	717	3623	4.30	753	3868	4.59	789	4121	4.89	824	4,383	5.20	858	4,654	5.52
17,000	734	4121	4.89	769	4383	5.20	803	4645	5.51	837	4,915	5.83	870	5,194	6.16
18,000	751	4663	5.53	785	4933	5.85	817	5212	6.18	849	5,512	6.54	881	5,804	6.89
18,500	762	4968	5.89	794	5247	6.22	826	5548	6.58	857	5,839	6.93	889	6,130	7.27
19,000	771	5264	6.25	802	5574	6.61	834	5866	6.96	864	6,166	7.31	895	6,394	7.67
19,500	781	5618	6.67	812	5919	7.02	843	6219	7.38	873	6,446	7.73	903	6,743	8.09
20,000	792	5963	7.07	822	6272	7.44	852	6498	7.80	882	6,804	8.16	911	7,118	8.54
20,500	801	6307	7.48	831	6542	7.85	860	6856	8.23	890	7,170	8.60	918	7,484	8.98
21,000	812	6603	7.92	841	6926	8.31	870	7240	8.69	899	7,563	9.07	927	7,885	9.46
22,000	833	7388	8.86	861	7720	9.26	889	8051	9.66	917	8,253	10.07	944	8,578	10.46
23,000	854	8199	9.84	882	8441	10.30	909	8784	10.72	936	9,127	11.13	962	9,469	11.55
24,000	874	8921	10.88	903	9332	11.38	930	9701	11.83	955	10,060	12.27	981	10,420	12.71

Bhp—Brake Horsepower Input to Supply FanWatts—Input Power to Supply Fan Motor

NOTES:

1. Unit is available with the following motor and drive com-binations: 7.5, 10, 15, 20 HP standard drive; 7.5, 10, 15, 20 HP medium-static drive; 7.5, 10, 15, 20 HP high-static drive.

For 7.5 HP standard drives, the drive range is 780 to 960 rpm. For 10, 15, 20 HP standard and 7.5 HP medium-static drives, the drive range is 805 to 991 rpm. For 10, 15, 20 HP medium-static and 7.5 HP high-static drives the drive range is 960 to 1146 rpm. For 10, 15, 20 HP high-static drives the drive range is 1119 to 1335 rpm. 2. Italics indicates field-supplied drive required.

3. Do not operate in shaded area.

4. Static pressure losses must be applied to external static pressure before entering the fan performance table. Interpolation is permitted, extrapolation is not.

5.

6. Fan performance is based on filter, unit casing and wet coil losses.

Bhp values are *per fan*. Watts values are *per motor*. Unit has 2 supply fans and 2 motors.

Table 19 — Fan Performance — 50BVT,U,V054 (cont)

					AVAI	_ABLE E	XTERN	AL STATI	C PRES	SURE (ir	n. wg)				
AIRFLOW (cfm)		2.2			2.4			2.6			2.8			3.0	
(enii)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
15,000	886	4,444	5.27	922	4,741	5.62	958	5,046	5.99	993	5,380	6.38		-	
16,000	893	4,924	5.84	927	5,212	6.18	961	5,539	6.57	994	5,857	6.95	-		
17,000	903	5,495	6.52	935	5,795	6.87	967	6,095	7.23	999	6,341	7.61	1031	6,664	8.00
18,000	912	6,095	7.23	943	6,324	7.59	974	6,629	7.95	1005	6,943	8.33	1035	7,266	8.72
18,500	919	6,359	7.63	950	6,664	8.00	980	6,970	8.36	1010	7,284	8.74	1039	7,606	9.13
19,000	925	6,690	8.03	955	6,996	8.39	984	7,310	8.77	1013	7,624	9.15	1042	7,955	9.54
19,500	932	7,048	8.46	962	7,362	8.83	991	7,676	9.21	1019	7,999	9.60	1047	8,330	9.99
20,000	940	7,423	8.91	969	7,746	9.29	997	8,060	9.67	1025	8,253	10.07	1053	8,578	10.46
20,500	946	7,798	9.36	975	8,121	9.74	1003	8,304	10.13	1030	8,630	10.53	1057	8,955	10.92
21,000	955	8,199	9.84	982	8,390	10.23	1010	8,715	10.63	1037	9,041	11.03	1063	9,375	11.44
22,000	971	8,913	10.87	998	9,238	11.27	1024	9,572	11.68	1050	9,915	12.09	1076	10,257	12.51
23,000	988	9,812	11.97	1014	10,155	12.39	1040	10,506	12.82	1065	10,848	13.23	1090	11,207	13.67
24,000	1006	10,771	13.14	1031	11,130	13.58	1056	11,490	14.02	1080	11,849	14.45	1104	12,217	14.90

					AVAI	LABLE E	XTERN	AL STATI	C PRES	SURE (ir	n. wg)				
AIRFLOW (cfm)		3.2			3.4			3.6			3.8			4.0	
(ciiii)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
15,000	-	-					<u></u>	-		<u></u>		-		_	
16,000	<u> </u>									<u> </u>		—			
17,000	1062	7,005	8.40	1093	7,353	8.82							—		
18,000	1065	7,606	9.13	1095	7,946	9.53								<u> </u>	
18,500	1069	7,946	9.53	1098	8,286	9.94	1127	8,501	10.37	1156	8,861	10.81		— ·	<u> </u>
19,000	1071	8,286	9.94	1100	8,493	10.36	1128	8,835	10.78	1157	9,195	11.22	1185	9,564	11.67
19,500	1076	8,518	10.39	1104	8,861	10.81	1132	9,212	11.24	1159	9,572	11.68	1187	9,932	12.12
20,000	1081	8,904	10.86	1108	9,247	11.28	1136	9,598	11.71	1163	9,958	12.15	1190	10,326	12.60
20,500	1084	9,298	11.34	1112	9,641	11.76	1138	9,992	12.19	1165	10,343	12.62	1191	10,711	13.07
21,000	1090	9,718	11.85	1116	10,060	12.27	1143	10,411	12.70	1169	10,771	13.14	1195	11,139	13.59
22,000	1102	10,608	12.94	1127	10,959	13.37	1153	11,319	13.81	1178	11,678	14.25	1203	12,046	14.69
23,000	1115	11,558	14.10	1139	11,918	14.54	1164	12,286	14.99	1188	12,653	15.43	1212	13,038	15.90
24,000	1128	12,585	15.35	1152	12,953	15.80	1176	13,329	16.26	1200	13,705	16.72	1223	14,090	17.19

Bhp—Brake Horsepower Input to Supply FanWatts—Input Power to Supply Fan Motor

NOTES:

Unit is available with the following motor and drive combina-tions: 7.5, 10, 15, 20 HP standard drive; 7.5, 10, 15, 20 HP medium-static drive; 7.5, 10, 15, 20 HP high-static drive.

For 7.5 HP standard drives, the drive range is 780 to 960 rpm. For 10, 15, 20 HP standard and 7.5 HP medium-static drives, the drive range is 805 to 991 rpm. For 10, 15, 20 HP medium-static and 7.5 HP high-static drives the drive range is 960 to 1146 rpm. For 10, 15, 20 HP high-static drives the drive range is 1119 to 1335 rpm. 2. Italics indicates field-supplied drive required.

3. Do not operate in shaded area.

4. Static pressure losses must be applied to external static pres-Sure before entering the fan performance table. Interpolation is permitted, extrapolation is not. Fan performance is based on filter, unit casing and wet coil

5.

6. losses.

Bhp values are *per fan*. Watts values are *per motor*. Unit has 2 supply fans and 2 motors.

Table 20 — Fan Performance — 50BVT,U,V064

					AVAII	LABLE E	XTERN/	AL STATI	C PRES	SURE (ir	ո. wg)				
AIRFLOW (cfm)		0.2			0.4			0.6			0.8			1.0	
(enn)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
18,000	564	3,167	3.76	605	3,483	4.13	645	3,798	4.51	683	4,112	4.88	718	4,392	5.21
19,000	590	3,666	4.35	629	3,999	4.74	667	4,331	5.14	704	4,671	5.54	738	4,977	5.90
20,000	617	4,226	5.01	655	4,584	5.44	691	4,933	5.85	726	5,282	6.27	761	5,654	6.71
21,000	643	4,820	5.72	678	5,194	6.16	713	5,583	6.62	747	5,963	7.07	780	6,263	7.51
22,000	669	5,503	6.53	704	5,901	7.00	737	6,298	7.47	770	6,612	7.93	802	7,005	8.40
23,000	696	6,236	7.40	729	6,577	7.89	761	6,987	8.38	792	7,388	8.86	823	7,798	9.36
24,000	722	6,952	8.34	754	7,380	8.85	784	7,798	9.36	815	8,225	9.87	845	8,510	10.38
25,000	750	7,816	9.38	780	8,260	9.91	810	8,561	10.44	839	8,990	10.97	868	9,427	11.50
26,000	777	8,595	10.49	806	9,050	11.04	835	9,504	11.59	863	9,949	12.14	891	10,403	12.69
27,000	804	9,572	11.68	832	10,043	12.25	860	10,514	12.83	887	10,985	13.40	914	11,447	13.96
28,000	832	10,634	12.97	859	11,122	13.57	886	11,610	14.16	912	12,097	14.76	938	12,585	15.35
29,000	859	11,747	14.33	885	12,251	14.94	911	12,756	15.56	936	13,260	16.18	962	13,765	16.79

					AVAI	LABLE E	XTERN	AL STATI	C PRES	SURE (ir	n. wg)				
AIRFLOW (cfm)		1.2			1.4			1.6			1.8			2.0	
(0111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
18,000	751	4,663	5.53	785	4,933	5.85	817	5,212	6.18	849	5,512	6.54	881	5,804	6.89
19,000	771	5,264	6.25	802	5,574	6.61	834	5,866	6.96	864	6,166	7.31	895	6,394	7.67
20,000	792	5,963	7.07	822	6,272	7.44	852	6,498	7.80	882	6,804	8.16	911	7,118	8.54
21,000	812	6,603	7.92	841	6,926	8.31	870	7,240	8.69	899	7,563	9.07	927	7,885	9.46
22,000	833	7,388	8.86	861	7,720	9.26	889	8,051	9.66	917	8,253	10.07	944	8,578	10.46
23,000	854	8,199	9.84	882	8,441	10.30	909	8,784	10.72	936	9,127	11.13	962	9,469	11.55
24,000	874	8,921	10.88	903	9,332	11.38	930	9,701	11.83	955	10,060	12.27	981	10,420	12.71
25,000	896	9,855	12.02	924	10,283	12.54	951	10,702	13.06	976	11,079	13.51	1001	11,456	13.97
26,000	919	10,857	13.24	945	11,302	13.79	972	11,747	14.33	997	12,166	14.84	1022	12,551	15.31
27,000	941	11,918	14.54	967	12,380	15.10	993	12,850	15.67	1018	13,303	16.23	1042	13,722	16.74
28,000	964	13,064	15.94	990	13,551	16.53	1015	14,030	17.11	1040	14,517	17.71	1064	14,979	18.27
29,000	987	14,269	17.41	1011	14,765	18.01	1036	15,261	18.62	1060	15,765	19.23	1084	16,260	19.83

Bhp — Brake Horsepower Input to Supply Fan Watts — Input Power to Supply Fan Motor

NOTES:

Unit is available with the following motor and drive combina-tions: 7.5, 10, 15, 20 HP standard drive; 7.5, 10, 15, 20 HP medium-static drive; 7.5, 10, 15, 20 HP high-static drive.

For 7.5 HP standard drives, the drive range is 780 to 960 rpm. For 10, 15, 20 HP standard and 7.5 HP medium-static drives, the drive range is 805 to 991 rpm. For 10, 15, 20 HP medium-static and 7.5 HP high-static drives the drive range is 960 to 1146 rpm. For 10, 15, 20 HP high-static drives the drive range is 1119 to 1335 rpm.

2. Italics indicates field-supplied drive required.

3. Do not operate in shaded area.

4. Static pressure losses must be applied to external static pres-Sure before entering the fan performance table.
 Interpolation is permitted, extrapolation is not.

Fan performance is based on filter, unit casing and wet coil losses.

7. Bhp values are *per fan.* Watts values are *per motor.* Unit has 2 supply fans and 2 motors.

Table 20 — Fan Performance — 50BVT,U,V064 (cont)

					AVAI	LABLE E	XTERN	AL STATI	C PRES	SURE (ir	ո. wg)				
AIRFLOW (cfm)		2.2			2.4			2.6			2.8			3.0	
(enii)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
18,000	912	6,095	7.23	943	6,324	7.59	974	6,629	7.95	1005	6,943	8.33	1035	7,266	8.72
19,000	925	6,690	8.03	955	6,996	8.39	984	7,310	8.77	1013	7,624	9.15	1042	7,955	9.54
20,000	940	7,423	8.91	969	7,746	9.29	997	8,060	9.67	1025	8,253	10.07	1053	8,578	10.46
21,000	955	8,199	9.84	982	8,390	10.23	1010	8,715	10.63	1037	9,041	11.03	1063	9,375	11.44
22,000	971	8,913	10.87	998	9,238	11.27	1024	9,572	11.68	1050	9,915	12.09	1076	10,257	12.51
23,000	988	9,812	11.97	1014	10,155	12.39	1040	10,506	12.82	1065	10,848	13.23	1090	11,207	13.67
24,000	1006	10,771	13.14	1031	11,130	13.58	1056	11,490	14.02	1080	11,849	14.45	1104	12,217	14.90
25,000	1025	11,824	14.42	1050	12,191	14.87	1074	12,568	15.33	1097	12,944	15.79	1121	13,320	16.25
26,000	1045	12,936	15.78	1069	13,320	16.25	1092	13,714	16.73	1115	14,098	17.20	1138	14,492	17.68
27,000	1065	14,124	17.23	1088	14,526	17.72	1110	14,927	18.21	1133	15,329	18.70	1155	15,731	19.19
28,000	1086	15,397	18.78	1108	15,816	19.29	1131	16,235	19.80					-	
29,000	<u> </u>				<u> </u>			<u> </u>			<u> </u>				1999 <u></u> 1999 -

					AVAI	LABLE E	XTERN	AL STATI	C PRES	SURE (ir	n. wg)				
AIRFLOW (cfm)		3.2			3.4			3.6			3.8			4.0	
(enn)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
18,000	1065	7,606	9.13	1095	7,946	9.53	<u> </u>								
19,000	1071	8,286	9.94	1100	8,493	10.36	1128	8,835	10.78	1157	9,195	11.22	1185	9,564	11.67
20,000	1081	8,904	10.86	1108	9,247	11.28	1136	9,598	11.71	1163	9,958	12.15	1190	10,326	12.60
21,000	1090	9,718	11.85	1116	10,060	12.27	1143	10,411	12.70	1169	10,771	13.14	1195	11,139	13.59
22,000	1102	10,608	12.94	1127	10,959	13.37	1153	11,319	13.81	1178	11,678	14.25	1203	12,046	14.69
23,000	1115	11,558	14.10	1139	11,918	14.54	1164	12,286	14.99	1188	12,653	15.43	1212	13,038	15.90
24,000	1128	12,585	15.35	1152	12,953	15.80	1176	13,329	16.26	1200	13,705	16.72	1223	14,090	17.19
25,000	1144	13,697	16.71	1167	14,073	17.17	1190	14,457	17.64	1213	14,850	18.12	1236	15,235	18.58
26,000	1160	14,876	18.15	1183	15,269	18.63	1205	15,662	19.11	1227	16,064	19.60			
27,000	1177	16,132	19.68									<u> </u>			
28,000							<u> </u>					· · · · · · · · · · · · · · · · · · ·			
29,000	_					·						<u> </u>			

Bhp — Brake Horsepower Input to Supply Fan Watts — Input Power to Supply Fan Motor

NOTES:

Unit is available with the following motor and drive combina-tions: 7.5, 10, 15, 20 HP standard drive; 7.5, 10, 15, 20 HP medium-static drive; 7.5, 10, 15, 20 HP high-static drive.

For 7.5 HP standard drives, the drive range is 780 to 960 rpm. For 10, 15, 20 HP standard and 7.5 HP medium-static drives, the drive range is 805 to 991 rpm. For 10, 15, 20 HP medium-static and 7.5 HP high-static drives the drive range is 960 to 1146 rpm. For 10, 15, 20 HP high-static drives the drive range is 1119 to 1335 rpm.

2. Italics indicates field-supplied drive required.

Do not operate in shaded area. З. 192893

Static pressure losses must be applied to external static pres-4. Sure before entering the fan performance table.
 Interpolation is permitted, extrapolation is not.

- Fan performance is based on filter, unit casing and wet coil losses. 6.
- Bhp values are *per fan.* Watts values are *per motor.* Unit has 2 supply fans and 2 motors.

VAV Unit Start-Up

PERFORM AUTOMATIC RUN TEST — The 50BVJ,K, W,X unit controls are programmed with an automatic run test that checks connection and operation of major components. To perform the run test:

Verify that the control display (LID [Local Interface Display] device/system monitor) interface cable is connected to internal jack on main controller; that the fire alarm/shutdown switch input (FSD) has a factory jumper or field input; and that the Local/Off/Remote switch is set to the REMOTE position (Fig. 17).

NOTE: When the Local/Off/Remote switch is in the REMOTE position, the controller time schedule is pre-set (from the factory) as unoccupied. This means that the unit will not turn on until the run test is enabled. However, if the controller schedule has already been modified in the field, and the current time of day is occupied, then the supply fan will start. The run test will shut the fan down when it begins. The run test will complete and then the supply fan will automatically restart.

NOTE: If the Local/Off/Remote switch is in the OFF position, it is normal for the red alarm light on the display panel to be lit, indicating that the unit is disabled.

NOTE: If the light stays on when the switch is moved to REMOTE, or if any other problems occur during the run test, refer to the Troubleshooting section of this manual.

To perform the run test:

1. Turn unit power on.

The LID display will show the controller identification, time, and date (Fig. 32):

OMNIZONE VPAC

hh:mm mm-dd-yy

- Press 3 and then <u>SET</u>. The LID display will show: Controller Password
- 3. Press ENTER. The LID display will show:

Log in to Controller

Enter Password

NOTE: The LID display has two modes: Edit mode and Status/Maintenance mode. If the LID display is in Edit mode, then the display will only show the word "password." Press the <u>EXPN/EDIT</u> key to toggle to the Status mode.

Press the EXPN/EDIT to display:

Log in to Controller

Enter Password

- 4. Key in the password and press ENTER. NOTE: The default password is 1111.
- The LID display will show: Log in to Controller Logged In
- 6. Press 37 ALGO. The display will show: Custom Program
- Press ENTER. The display will show:
 2.0 Global Dictionary
 OMNIZONE
- Press <u>EXPN/EDIT</u> (NOTE: Display will flash and is now in edit mode.) The display will show:
 2.0 Global Dictionary OMNIZONE

- Press ENTER. The display will show: Compressor Stages
 2.00 (sizes 020-034)
 4.00 (sizes 044-064)
- If the number of compressor stages displayed is incorrect, then enter the correct number. Input 2.00 for sizes 020-034 or 4.00 for sizes 044-064, then Press ENTER. The display will show: Compressor Stages

2.00 (sizes 020-034)

4.00 (sizes 044-064)

- 11. Press STAT. The LID display will show: Hardware Points
- 12. Press STAT again. The LID display will show: Software Points
- 13. Press ENTER. The LID display will show: Compressor 1 Status
- Press 6 times. The LID display will show: Factory/Field Test Stop
- Press 1 then ENTER, The LID display will show: Factory/Field Test Start

NOTE: At this point, the yellow warning light on the display panel will be lit and will stay on throughout the run test. After each successful step, the red alarm light will blink once.

16. The control module will now check if there is input from DHS, FSD, SAT, DSP, and CSMUX.

If the control does not receive open/closed/in range/in range/in range, the red alarm LED will go on and the test will stop.

If the inputs are okay, the red alarm LED blinks once and the test continues.

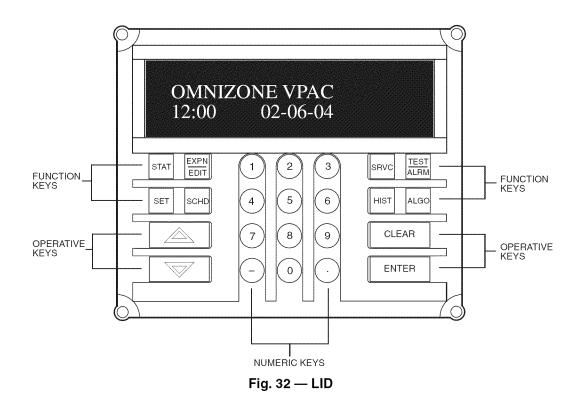
- 17. Next, the control forces the supply fan (SF) and all of the compressors (COMP) off, and waits 15 seconds.
- 18. The control forces SF on and SPEED to 20 percent and then waits 30 seconds.

If the VFD display shows: 12.0 Hz, the remote and auto LEDs blink, and the fan goes on, then the red LED on the control module blinks once and the test continues.

19. The control forces SF on and SPEED to 35 percent and then waits 30 seconds.

If the VFD display shows: 21.0 Hz, the remote and auto LEDs blink, and the fan goes on, then the red LED on the control module blinks once and the test continues.

20. The control forces SF off then waits 15 seconds. If the VFD display shows: Off, the remote and auto LEDs are off, and the fan goes off, then the red LED on the control module blinks once and the test continues.


NOTE: The steps below will be completed for the number of compressors configured.

21. The control forces CMP1 (compressor 1) on then waits 5 seconds.

If CSMUX is not in range, the red LED will go on and the test will stop.

If CSMUX is in range, the red LED blinks once and the test continues.

22. The control forces CMP1 off.

23. The control forces CMP2 (compressor 2) on then waits 5 seconds.

If CSMUX is not in range, the red LED will go on and the test will stop.

If CSMUX is in range, the red LED blinks once and the test continues.

- 24. The control forces CMP2 off.
- 25. The control forces CMP3 (compressor 3) on, if configured, then waits 5 seconds.

If CSMUX is not in range, the red LED will go on and the test will stop.

If CSMUX is in range, the red LED blinks once and the test continues.

- 26. The control forces CMP3 off.
- 27. The control forces CMP4 (compressor 4) on, if configured, then waits 5 seconds.

The LID display shows:

Factory/Field Test

Stop

Both the yellow and red LEDs will go off.

- 28. The control forces CMP4 off.
- 29. The run test is complete.

CHECK VFD — The VFD is factory wired and programmed for proper operation with the unit controls; no installation or service adjustments are normally required. At unit start-up, the VFD's LED will display "0.0 Hz." Refer to Fig. 33.

POWER UP LID DISPLAY — After completing the automatic run test, perform the following procedures to change the controller password, set the controller clock, configure schedules, set parameters, view settings, and view alarm history.

1. Set the Remote/Local/Off switch on the front of the unit to the OFF position. This prevents operation of the fan and compressors while still providing power to the unit controls. NOTE: When the switch is in the OFF position, the red alarm LED will be lit; this is normal.

- 2. If the unit access panel (for power and controls) is still on the unit, remove it in order to view the control modules during start-up.
- 3. Switch the main unit power disconnect to ON.

When power is applied to the OmnizoneTM system control panel, the red LED on the top front of the processor module will flash at a rapid pace (about twice a second) for the first 30 to 60 seconds. This rapid flash will then be replaced by a slower pace of about once per second.

The green LED below the red LED will start flashing. The green LED indicates input/output communications for accessory input output modules and the LID display.

The yellow LED will flash when the controller is broadcasting CCN messages to a laptop or other computer.

The third LED from the bottom of the controller (PCB1) will light.

The LID display will show the controller identification, time and date as shown below.

OMNIZONE VPAC

hh:mm mm-dd-yy

LOG ON TO THE LID DISPLAY — To log on to the LID display, perform the following procedure:

- Press 3 and then <u>SET</u>. The LID display will show: Controller Password
- 2. Press ENTER. The LID display will show:

Log in to Controller

Enter Password

NOTE: The LID display has two modes: Edit mode and Status/Maintenance mode. Edit mode allows the user to change settings on the configurations screens. Status/ Maintenance mode only allows the user to look at the settings.

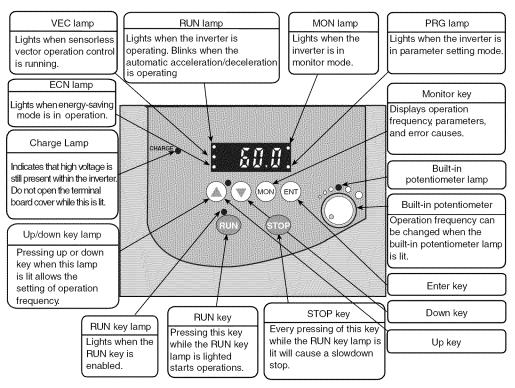


Fig. 33 — 50BV VFD Display

If the LID display is in Edit mode, then the display will only show the word "password." Press the <u>EXPN/EDIT</u> key to toggle to the Status mode. Make sure the LID display shows:

Log in to Controller

Enter Password

- Key in the password and press ENTER. NOTE: The default password is 1111.
- 4. The LID display will show:

Log in to Controller

Logged In

NOTE: The user will be automatically logged off after 15 minutes of non-use.

CHANGE THE DEFAULT PASSWORD — To change the default password, perform the following procedure:

NOTE: The password must have already been entered to perform this procedure.

- Press 3 and then <u>SET</u>. The LID display will show: Controller Password
- Press ENTER . The LID display will show: Log in to Controller Logged in
- 3. Press <u>EXPN/EDIT</u>. The LID display will show: Password

1111 (default password, or previous password entered)

4. Enter the new password (up to 6 digits) and press <u>ENTER</u>. The LID display will show: Password

(password just entered)

NOTE: Remember this password; write it down.

5. Press CLEAR twice to leave the password screen and return to the default display screen.

SET THE CLOCK — The user must be logged in to set the clock. To set the clock, perform the following procedure:

- 1. Press 1 and then <u>SET</u>. The LID display will show: Set Clock
- Press ENTER . The LID display will show: No Maintenance NOTE: There is no maintenance information regarding setting the clock.
- Press <u>EXPN/EDIT</u>. The LID display will show: Time 00:00
- 4. Enter the time. The time is entered in military time (for example 14.59 for 2.59 pm). Press ENTER then press the button. The LID display will show: Day of Week
 - 1
- 5. Enter the day of week. The numbers 1 through 7 correspond to the days of the week (1 = MON, 2 = TUE, 3 = WED, 4 = THUR, 5 = FRI, 6 = SAT, 7 = SUN). Press ENTER then press ▼. The LID display will show: Month

1

6. Enter the number of the corresponding month (1 through 12). Press ENTER then press . The LID display will show:

Day
1

- 7. Enter the day of the month. Press ENTER then press Year
 Year
 - 95
- Enter the last two digits of the current year. Press ENTER then press . The LID display will show: Update Clock No
- 9. Press 1 and then ENTER to update the clock. The LID display will flash. Press CLEAR twice to view the default display and the clock should update to the input time and date.

CONFIGURE SCHEDULES — Schedules are one method of starting and stopping the unit at specified intervals. To configure the schedules, perform the following procedure:

- 1. Press 1 and then <u>SCHD</u>. The LID display will show: Occupancy Algorithm
- Press ENTER . The LID display will show: Time Schedule Enter to Select
- 3. Press ENTER. If the LID display shows "MODE 0," then the user is in Maintenance mode and the LID display is showing the maintenance information for the occupancy schedule. Press EXPN/EDIT to enter the configuration mode. The LID display will show:

Manual Override Hours

0 hours

This is the first configuration for each occupancy algorithm and is used to put the schedule in or out of occupancy override for the number of hours entered.

Press will show:

Period 1: Day of week

00000000

The eight digits represent the certain days of the week or holidays this period should apply to: M, Tu, W, Th, F, Sa, Su, and Hol, respectively. Enter a series of 0s or 1s with a 1 corresponding to the days that this period should apply to and a 0 for the days that this schedule should not apply to. As an example, entering 11111000 would make the schedule apply to days Monday through Friday and not apply to Saturday, Sunday, or Holidays.

- Press the button. The LID display will show: Period 1 occupied from 00:00
- Input the occupancy start time for this period. NOTE: 12.00 represents 12:00 pm.
- 7. Press the rightarrow to input the occupied to time for period 1.
- 8. Input the days and times for periods 2 through 8 as required.
- 9. Press CLEAR to leave the occupancy programming.

PROGRAM SET POINTS — To program the set points, perform the following procedure:

- 1. Press 2 and then <u>SCHD</u>. The LID display will show: Setpoint Schedule
- Press ENTER . The LID display will show: Supply Fan Status SETPT01

- 3. Press ENTER.
- 4. If "No Maintenance" is displayed, press <u>EXPN/EDIT</u> to view the set point information. The LID display will show:

Occupied Lo Setpoint

0.30 in. H2O

This is the pressure set point below which the fan is considered to be off.

5. Press 🕎 . The LID display will show:

Occupied Hi Setpoint

0.40 in. H2O

This is the pressure set point above which the fan is considered to be on.

The down or up arrow will also display the unoccupied low and high temperature set points. These values should be kept the same as the occupied values.

 To view set points 02-09, use the following sequence: Press 2 and then <u>SCHD</u>. The LID display will show:

Setpoint Schedule Press ENTER . The LID display will show:

Supply Fan Status

SETPT01

Press v to scroll down to the desired set point. Press ENTER to select.

To view another point, press CLEAR once to move up one menu level. Then press to scroll down to the desired set point and press ENTER to select.

7. Pressing the <u>CLEAR</u> button will take the user out of the set point configuration mode.

Set point functions are as follows:

Setpoint 02 (VAVRESETbaseline) internally coordinates the supply air set point reset in several of the algorithms and cannot be modified.

Setpoint 03 (Heat/Cool Mode & Reset) is used for comparison by the unit to return air, space temperature, or average space temperature through linkage to determine when to start reset of the supply air when occupied, when to turn on heat and disable cooling when occupied, and when to bring the unit on for unoccupied heating or cooling.

Setpoint 05 (Supply Static Pressure) is used to set the supply air static pressure the unit should maintain. Only the Occupied Low set point may be modified. The other values will change to the Occupied Low value shortly after it is modified so that all the values remain the same. The set point in the static pressure control algorithm will also follow and cannot be modified in the algorithm configuration screens.

Setpoint 06 (Supply Air Temperature) is the supply air temperature set point. Only the Occupied Low set point may be modified. The other values will change to the Occupied Low value shortly after it is modified so that all the values remain the same. The set point in DX VAV staging and some of the other algorithms will also follow and cannot be modified in the algorithm configuration screens.

Table 21 lists the available controller set points and their default values. Refer to 50BV,XJ Controls, Operation and Troubleshooting manual for additional set point descriptions.

Table 21 — Controller Set Points

DESCRIPTION DISPLAY SCREENS	VALUE	UNITS	STATUS	FORCE	NAME
OMNIZONE:SETPT01: Supply fan Status Occupied Lo Setpoint Occupied Hi Setpoint Unoccupied Hi Setpoint Unoccupied Hi Setpoint	0.3 0.4 0.3 0.4	in. H2O in. H2O in. H2O in. H2O			OccLow OccHgh UnOccLow UnOccHgh
OMNIZONE:SETPT02: VAVRESETbaseline Occupied Lo Setpoint Occupied Hi Setpoint Unoccupied Hi Setpoint Unoccupied Hi Setpoint	0 0 0 0	dF dF dF			OccLow OccHgh UnOccLow UnOccHgh
OMNIZONE:SETPT03: Heat/Cool Mode & Reset Occupied Lo Setpoint Occupied Hi Setpoint Unoccupied Lo Setpoint Unoccupied Hi Setpoint	70 74 55 85	dF dF dF			OccLow OccHgh UnOccLow UnOccHgh
OMNIZONE:SETPT04: Head Pressure Control Occupied Lo Setpoint Occupied Hi Setpoint Unoccupied Lo Setpoint Unoccupied Hi Setpoint	225 225 225 225 225	PSIG PSIG PSIG PSIG			OccLow OccHgh UnOccLow UnOccHgh
OMNIZONE:SETPT05: Supply Static Pressure Occupied Lo Setpoint Occupied Hi Setpoint Unoccupied Lo Setpoint Unoccupied Hi Setpoint	1.5 1.5 1.5 1.5	in. H2O in. H2O in. H2O in. H2O			OccLow OccHgh UnOccLow UnOccHgh
OMNIZONE:SETPT06: Supply Air Temperature Occupied Lo Setpoint Occupied Hi Setpoint Unoccupied Lo Setpoint Unoccupied Hi Setpoint	55 55 55 55	성			OccLow OccHgh UnOccLow UnOccHgh
OMNIZONE:SETPT07: Building Static Pressure Occupied Lo Setpoint Occupied Hi Setpoint Unoccupied Lo Setpoint Unoccupied Hi Setpoint	0.02 0.02 0.02 0.02	in. H2O in. H2O in. H2O in. H2O			OccLow OccHgh UnOccLow UnOccHgh
OMNIZONE:SETPT08: BSP raw control Occupied Lo Setpoint Occupied Hi Setpoint Unoccupied Lo Setpoint Unoccupied Hi Setpoint	12.32 12.32 12.32 12.32 12.32	ma ma ma			OccLow OccHgh UnOccLow UnOccHgh
OMNIZONE:SETPT09: Humidity Control Occupied Lo Setpoint Occupied Hi Setpoint Unoccupied Lo Setpoint Unoccupied Hi Setpoint	0 99 0 99	%RH %RH %RH %RH			OccLow OccHgh UnOccLow UnOccHgh

CHECK SYSTEM PARAMETERS — To check system parameters, press the STAT button. The LID display will show: "Hardware Points". Press ENTER to view the hardware points. The user can navigate up and down through the points with the **and vers**.

Press 2 and $\overline{\text{STAT}}$ to display the software points. The user can navigate up and down through the points with the \blacktriangle and \checkmark keys.

Refer to Tables 22 and 23 for hardware and software points.

Table 22 — Controller Hardware Points

.....

_

-

DESCRIPTION DISPLAY SCREENS	VALUE	UNITS	STATUS	FORCE	NAME
OMNIZONE:HWP01-32:					
Hardware points Table 1 Supply Air Temperature	67	dF			SAT
Duct Static Pressure	0.2	in. H2O			DSP
Comp. Status MUX	1.86	Volts			CSMUX
Fire Alarm/ShutDown	Enable	VOIIO			FSD
Cond. Water Flow Switch	Yes				CDWF
Remote Occupancy	Disable				ROCC
Duct High Press. Switch	Normal				DHS
Entering Water Temp.	69.9	dF			EWT
Compressor 1 Relay	Stop				CMP1
Compressor 2 Relay	Stop				CMP2
Compressor 3 Relay	Stop				CMP3
Compressor 4 Relay	Stop				CMP4
Supply Fan/VFD	Stop				SF
VFD Speed Signal	0	%			SPEED
Non Critical Fault Critical Fault	Off Off				WARN ALARM
Mixed/Return Air Temp	77.2	dF			MA RA
Dirty Filter Status	Clean	ur			FLTS
Phase Loss Protection	Normal				PHASE
Ext. Supply Air Reset	0	dF			RESET
Water Econ. FreezeStat	Normal				FREEZ
Space Reset Sensor	79.2	dF			SPT
VFD Bypass Enable	Disable				BYPAS
Head Pressure(Comp1)	118.76	PSIG			PRES
Ventilation Request	Close				VENTR
VAV Terminals Control	No				TRMCT
2-position/Econo Valve	0	%		A	ECONO
Reverse/Head Press Ctrl Hot Water Valve	100	%		Control	MVLV HWV
Heat Interlock Relay	0 Off	70			HIR
Bypass Start_Stop	Stop				BPS S
VAV Terminals Open MAX	Close				
•	01000				
OMNIZONE:HWP33-64:					
Hardware points table 2 Cooling Tower Sump					
Temp.	57.5	dF			TWR
Building Static Milliamp	12.51	ma			BSP
Condenser Leaving Water	70.3	dF			LWT
Indoor Air Quality	587.21				IAQ
Indoor Relative Humidity	49.7	%			IRH
Outdoor Air Temp.	76.1	dF			OAT
Heat Stage 1	Off				HEAT1
Heat Stage 2	Off				HEAT2
Heat Stage 3	Off				HEAT3
Heat Stage 4	Off Off				HEAT4 PUMP
Pump Request Cooling Tower Request	Off				TOWER
Exhaust Fan	0	%			EXH
Ext. Dehumidification	Stop	/0			DEHUM
Ext. Benamamouton	otop				DENOM

Table 23 — Software Points

DESCRIPTION DISPLAY SCREENS	VALUE	UNITS	STATUS	FORCE	NAME
OMNIZONE:SWP65-96: Software Points Compressor 1 Status Compressor 2 Status Compressor 3 Status Compressor 4 Status Bypass Acc Panel Secure DX VAVRESET control Factory/Field Test Building Static Pressure Time Clock Cooling Supply Fan Status Ok to run Fan OK Fan + Sup. Fan Stat Fan + Cond. Water Flow Equipment Mode Activate Evacuation	0.03 Off Disable Off No FALSE FALSE	dF in. H2O		Control	CLO1 CLO2 CLO3 CLO4 BP_SAFE VAVRESET FLDTST BSP_IN TIMCLOCK COOLOK COOLOK SFS OKFAN SF_SFS FAN_CDWF MODE EVAC
Space Control Point Mod. Econ Enabled Head Pressure Control Economizer Control		dF		Control Control	CTRLPT ECON_OK HEAD ECONPT
Temp. Compressor Cooling Duct Static Failure Compressor 1 Alarm Compressor 2 Alarm Compressor 3 Alarm Compressor 4 Alarm Cond. Flow Alarm Status	Disable Normal Normal Normal Normal Normal			Control	COMPRES DSP_ALM C1_ALM C2_ALM C3_ALM C4_ALM CDWF_ST

DISPLAY ALARM HISTORY — If the controller is indicating there are alarms, the user can view the alarm history by pressing the <u>HIST</u> button. The LID display will show "Alarm History." Press <u>ENTER</u>. The LID display will show the date and type of alarm.

As an example, if the LID display shows:

ALARM — 10:55 02-11-04

SFS

That display indicates that on 02-11-04 at 10:55 a.m. the supply fan was either on when it had not been commanded on or was off when it was commanded on.

The user can view other stored alarms by pressing the up and down arrows. The twenty-four most recent alarms are stored.

CONFIGURE CUSTOM PROGRAMMING SELEC-TIONS — To configure the custom programming selections, perform the following procedure:

- 1. Press 37 ALGO. The LID display will show: Custom Program
- Press ENTER . The LID display will show:
 2.0 Global Dictionary
 OMNIZONE
- 3. Press <u>ENTER</u>. The display indicates "No Data." Press <u>CLEAR</u> then press <u>EXPN/EDIT</u>. Press <u>ENTER</u> again. The LID display should now show:

Compressor Stages 2.00 (sizes 020-034) 4.00 (sizes 044-064)

- 4. Press 7 times. The display will show: 0 = RAT, 1 = MAT 2 = NONE
 - 0.00
- Press 2 then ENTER. The display will show:
 0 = RAT, 1 = MAT 2 = NONE
 2.00
- 6. If RAS is installed at EWT input, press 3 times. The display will show:
 - EWT Reset 0 = NO, 1 = YES 0.00
- Press 1 then ENTER . The display will now show: EWT Reset 0 - NO, 1 = YES 1.00
- 8. Use the down and up arrows to select the other configuration parameters as required. See Table 24 for a list of configuration parameters.

Table 24 — Configuration Parameters

DESCRIPTION	VALUE	UNITS	NAME
Compressor Stages	2.00		NUM_CMP
Reset Ratio	3.00	dF	RSET_RTO
CDWF 0=NO,1=YES	0.00		CDFW SWT
*ECON 0=NO,1=YES	0.00		EWT_SNS
EWT Reset 0=NO,1=YES	0.00		EWT_RST
*MOD.VLV 0=NO,1=YES	0.00		MOD_ECON
*0=CONST.,1=VARIABLE	0.00		FLOW_TYP
0=RAT,1=MAT 2=NONE	2.00		MARA_SNS
PHASE 0=NO,1=YES	0.00		PHAS_SWT
*FREEZ 0=NO,1=YES	0.00		FREZ_SWT
*ENABLE ECON.	68.00	dF	ECON_SET
SPT 0=NO,1=YES	0.00		SPT_SNS
PRES 0=NO,1=YES	0.00		PRES_SNS
TWR 0=NO,1=YES	0.00		TWR_SNS
LWT 0=NO,1=YES	0.00		LWT_SNS
IAQ 0=NO,1=YES	0.00		IAQ_SNS
IRH 0=NO,1=YES	0.00		IRH_SNS
BSP 0=NO,1=YES	0.00		BSP_SNS
BSP Range	1.00	in. H2O	BSP_RNG
BSP LOW VALUE	-0.50	in. H2O	BSP_LOW

*Not used.

SET CONTROLLER ADDRESS — To set the address of the OmnizoneTM system control panel controller, perform the following procedure:

- 1. Press 7 and then <u>SRVC</u>. Press <u>ENTER</u> and then <u>EXPN/EDIT</u>.
- 2. Type in the CCN element number and press ENTER .
- 3. Press the volume button. Type in the CCN bus number and press ENTER.

LOG OFF FROM CONTROLLER — To log off from the OMNIZONE system control panel controller Press 3 and then <u>SET</u>. The controller password will be displayed.

1. Press ENTER. The display should show:

Log in to Controller

Logged in

If this is not displayed, Press EXPN/EDIT until it is displayed.

 Press the button. The LID display will show: Log out of Controller Press 1. Press ENTER to log off.

Sequence of Operation (CV Only) — The following sequence applies to constant volume units only.

Cooling is initiated when the set point in the remote thermostat is not met (space temperature is higher than set point). The unit sequence of operation is as follows:

The 50BV units can be remotely authorized to be controlled by the thermostat through the optional energy management system relay (EMS). The coil is powered by the energy management (building automation) system whose contacts are in series with the 'R' 24-v ac terminal with potential across 'C' (transformer common). With this terminal open, power will be interrupted to the thermostat. Closure of this contact will allow the 50BV unit to operate from the thermostat.

Contact closure at the 'G' terminal will provide power to the supply fan contactor, energizing the supply fan. The supply fan will be off during unoccupied schedule, depending upon the features of the thermostat used. The 'O' terminal energizes the reversing valve (heat pump units only). Typically 'Y1' will also be energized at this time for cooling operation. During the second stage of cooling, 'Y2' will be initialized after a minimum run time and after there is a differential from set point plus a deadband or a proportional plus integral calculation, which is based upon demand and the length of time spacetemperature is greater than set point. Additional assurance is provided by a delay on make timer in the second stage compressor contactor circuit to avoid dual compressor in-rush starting current.

For 4 compressor units, a call for the first stage of cooling will turn on compressors 1 and 2. The second stage of cooling will turn on compressors 3 and 4.

Heating mode (heat pump models only) follows the same sequence as above except that the reversing valve is not energized.

WATER ECONOMIZER COOLING — The unit diverts condenser inlet waterflow through an optional economizer coil to precool evaporator entering airflow. If the entering water temperature is colder than the setting on the aquastat, and the return-air temperature is warmer than the setting on the return-air thermostat, the 3-way diverting valve will direct water to the economizer coil.

Economizer water flow is in series with the condensers allowing compressor operation while the economizer is operating.

Sequence of Operation (VAV Only) — The following control sequence of operation for the VAV units describes the various sequences that occur depending upon the way an operation is triggered and which software control points are involved.

SUPPLY FAN — The supply fan can be activated in any of the following ways:

- · Unoccupied space or return air temperature demand
- Unoccupied linkage demand
- Local time schedule (TIMCLOCK software point)
- Remote occupancy (ROCC software point)
- Remote-off-local switch in the local mode
- Enabled by schedule

Once one of the above conditions exists, either TIME-CLOCK or ROCC indicates ON or enable. The software point OKFAN will turn on followed by the points TRMCT for air terminal control and PUMP and TOWER to request condenser water flow and temperature control. Approximately 20 to 30 seconds later, the supply fan (SF) point will turn ON and the VFD output SPEED will increase. The SPEED point will output a signal, determined by a PID (proportional integral derivative loop) calculation, based on the duct static pressure (DSP) input and the supply static pressure setpoint in SETPT05.

Once the supply fan is running and the static pressure increases above the supply fan status setpoint in SETPT01, the supply fan status point (SFS) will indicate ON and the software point SF_SFS will indicate TRUE.

<u>Enabled By Unoccupied Demand</u> — A software point "space control point" will display the current value of the sensor used to determine unoccupied demand. The EWT sensor provides this function for the 50BV unit. The display is based on the sensors installed and the configuration of these sensors in the custom configuration, or the status of linkage.

If there is no RAS connected to the EWT input, the space control point will display a default value of 75 F. This value is above the default occupied cooling set point and below the unoccupied cooling set point. If this condition exists, supply air reset from a sensor and unoccupied unit operation will not occur.

If the unit is configured to use an RAS sensor for the Space Control Point or if linkage is active and the space has unoccupied demand, the software point OKFAN will turn on followed by the software points TRMCT for air terminal control and PUMP and TOWER to request condenser water flow and temperature control. Approximately 20 to 30 seconds later the SF point will turn ON and then the VFD output SPEED will increase. If unoccupied demand is the reason the fan is on, a control force will appear next to the OKFAN point. Otherwise, there should not be a force on that point.

If the fan is running due to unoccupied heating or cooling demand, either the space temperature (if installed), return-air temperature, or average linkage temperature must rise or drop to within half way between the occupied and unoccupied set points in order for the fan to turn back off.

Enabled by Switching to Local Mode — When the switch is placed in the Local mode the ROCC point will indicate enable. If ROCC is ENABLED a software routine will override the occupancy schedule so that TIMECLOCK will also turn on. When ROCC is turned off the TIMECLOCK point will turn off within 60 seconds.

<u>Supply Fan Shutdown</u> — If the unoccupied demand is satisfied and TIMECLOCK and ROCC are off and disabled, OKFAN will turn off, SF_SFS will turn off, Tower and PUMP will turn off, and then 5 minutes later the SF point will turn off and the VFD speed will go to 0%.

During the 5-minute delay, the cooling and heating routines become disabled. This delay allows a compressor that may have just started to run for its 5-minute minimum on time with the supply fan on. For example, if the staging routine had just started Compressor 3 at the time the OKFAN point changed to OFF, the cooling routine would become disabled and compressors 1 and 2 would shut off right away. Compressor three would continue to run for its minimum on time of 5 minutes. The fan continues running until all compressors meet the minimum on time and run with a load, preventing them from shutting down due to a safety.

COMPRESSOR COOLING — If the fan is on and there is no demand for heat, the Equipment mode (MODE) will be COOL, and Cooling (COOLOK) will switch to ENABLE.

COMRES triggers the compressor staging routine that controls the number of compressors energized. Units are equipped with 2 or 4 compressors piped in separate refrigerant circuits, and staged On/Off in a fixed sequential manner (compressor no. 1 through compressor no. 4). The compressor control routine uses a PID calculation to determine the percentage of cooling required, from 1 to 100%. Demand for the PID calculation is determined from the supply air temperature and the supply air setpoint (SETPT06).

Compressor cooling (COMPRES) will be turned off for any of the following reasons:

- There is no condenser water flow (CDWF is Off).
- MODE changes to heat.
- OKFAN turns off during normal shut down.

During normal compressor operation the minimum on time is 5 minutes and the minimum off time is 5 minutes.

WATER ECONOMIZER COOLING — The unit diverts condenser inlet waterflow through an optional economizer coil to precool evaporator entering airflow. If the entering water temperature is colder than the setting on the aquastat, and the return-air temperature is warmer than the setting on the return-air thermostat, the three-way diverting valve will direct water to the economizer coil.

Economizer water flow is in series with the condensers, allowing compressor operation while the economizer is operating.

NOTE: The return-air thermostat (RAT) is separate from the RAS sensor.

COOLING RESET — The 5 kiloohm temperature sensor will be used as the space control point. If this variable goes below the occupied high set point in the HEAT/COOL MODE AND RESET set point (SETPT03), then for each degree that the space control point is below the set point value, the supply air set point will be reset by the value configured in the custom configuration RESET RATIO.

Diagnostic Features (CV Only) — The main control board (MCB) in the constant volume units has 2 LEDs that provide diagnostic information. Refer to the Troubleshooting section for a detailed description of the LED codes.

VAV Control and VFD Diagnostics — Refer to the 50BV,XJ Controls Operation and Troubleshooting manual for detailed information about diagnosing and correcting control and VFD messages.

SERVICE

Improper phase sequence will cause scroll compressor failure due to reverse rotation.

Signs of miswire are:

- Excessive noise
- Reverse rotation of 3 phase indoor fan
- Rapid temperature rise on suction tube
- No pressure differential

Correct immediately. Shut off power at disconnect and switch any 2 power leads at unit terminal block or pigtails.

Compressor Rotation — To determine whether or not the compressor is rotating in the proper direction:

- 1. Connect service gages to suction and discharge pressure fittings.
- 2. Energize the compressor.

The suction pressure should drop and the discharge pressure should rise, as is normal on any start-up. If the suction pressure does not drop and the discharge pressure does not rise to normal levels:

- 3. Turn off power to the unit and tag disconnect.
- 4. Reverse any 2 of the unit power leads.

Reapply power to the unit. The suction and discharge pressure levels should now move to their normal start-up levels.

Also, check that the fan is rotating in the proper direction.

NOTE: When the compressor is rotating in the wrong direction, the unit makes an elevated level of noise and does not provide cooling.

Fan Motor Replacement — If required, replace the fan motor with an equal or better type and efficiency motor with equal horsepower. The motor must be rated for a VFD or inverter application. Do not change the horsepower unless there is a system design requirement change and VFD size analysis.

CHECK/CHANGE VFD OUTPUT CURRENT LIMIT — The VFD provides additional fan motor protection by limiting the output current to a programmed value. This value has been factory set according to the factory-installed motor and VFD sizing options.

If the VFD and/or motor is replaced, the VFD setup mode parameter "tHr1" should be reprogrammed to the following calculated values for optimum motor protection and operating range:

For VFD size about equal to motor:

tHr1 = 100*motor nameplate Amps / VFD rated output Amps

MAINTENANCE

Cleaning Unit Exterior — Unit exterior panels should be wiped down using a damp soft cloth or sponge with a mixture of warm water and a mild detergent.

Coil Cleaning — Hot water, steam, and direct expansion coils must be cleaned at least once a year to maintain peak performance. Dirty coils can contribute to decreased heating or cooling capacity and efficiency, increased operating costs, and compressor problems on direct expansion systems. Dirt, grease, and other oils can also reduce the wettability of the coil surfaces, which can result in moisture blow-off from cooling coils and resulting water leakage problems. If the grime on the surface of the coils becomes wet, which commonly occurs with cooling coils, microbial growth (mold) can result, causing foul odors and health related indoor air quality problems.

Coils can become dirty over a period of time, especially if air filter maintenance is neglected. Coils should be inspected regularly and cleaned when necessary. Clean coils with a vacuum cleaner, fresh water, compressed air, or a bristle brush (not wire). Do **not** use high-pressure water or air. Damage to fins may result. Backflush coil to remove debris. Commercial coil cleaners may also be used to help remove grease and dirt. Steam cleaning is NOT recommended. After cleaning, use a fin comb of the correct fin spacing when straightening mashed or bent coil fins.

Units installed in corrosive environments should be cleaned as part of a planned maintenance schedule. In this type of application, all accumulations of dirt should be cleaned off the coil.

Inspection — Check coil baffles for tight fit to prevent air from bypassing the coil. Check panels for air leakage, particularly those sealing the fan and coil compartments. Check for loose electrical connections, compressor oil levels, proper refrigerant charge, and refrigerant piping leaks. Before start-up, be sure all optional service valves are open.

Air Filters — The 50BV single-piece units come with 1-in. filters. The standard 1-in. filters provide lower pressure drop and longer filter service intervals. The 50BV modular units come with 4-in. filters.

Inspect air filters every 30 days and replace filters as necessary.

Replacement filters should have a minimum efficiency rating of MERV 6 per ASHRAE rating procedures and be rated for up to 625 fpm velocity. Job requirements or local codes may specify higher minimum ratings.

Condensate Drains — Clean the drain line and unit drain pan at the start of each cooling season. Check flow by pouring water into the drain.

Water-Cooled Condensers — Water-cooled condensers may require cleaning of the scale (water deposits) due to improperly maintained closed-loop water systems. Sludge build-up may need to be cleaned in an open tower system due to inducted contaminants.

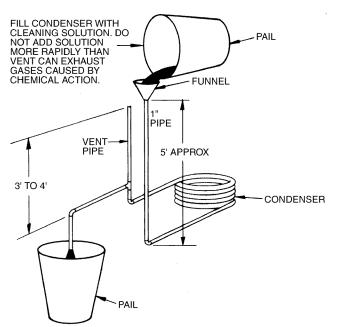
Local water conditions may cause excessive fouling or pitting of tubes. Condenser tubes should be cleaned at least once a year, or more often if the water is contaminated.

Proper water treatment can minimize tube fouling and pitting. If such conditions are anticipated, water treatment analysis is recommended. Refer to the System Design Manual, Part 5, for general water conditioning information.

Follow all safety codes. Wear safety glasses and rubber gloves when using inhibited hydrochloric acid solution. Observe and follow acid manufacturer's instructions.

Isolate the supply and return water connections when removing piping to the condenser.

Clean condensers with an inhibited hydrochloric acid solution. The acid can stain hands and clothing, attack concrete, and, without inhibitor, can attack steel. Cover surroundings to guard against splashing. Vapors from vent pipe are not harmful, but take care to prevent liquid from being carried over by the gases.


Warm solution acts faster, but cold solution is just as effective if applied for a longer period. GRAVITY FLOW METHOD (Fig. 34) — Do not add solution faster than the vent can exhaust the generated gases.

When condenser is full, allow the solution to remain overnight then drain the condenser and flush with clean water. Follow acid manufacturer's instructions.

FORCED CIRCULATION METHOD (Fig. 35) — Fully open the vent pipe when filling the condenser. The vent may be closed when the condenser is full and the pump is operating.

Regulate the flow to the condenser with a supply line valve. If the pump is the non-overloading type, the valve may be fully closed while the pump is running.

For average scale deposit, allow the solution to remain in the condenser overnight. For heavy scale deposit, allow a full 24 hours. Drain the condenser and flush with clean water. Follow acid manufacturer's instructions.

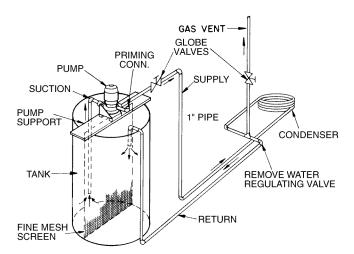


Fig. 35 — Forced Circulation Method

Fan Motor Lubrication — The fan motor was properly lubricated at the time of manufacture. Lubricate the fan motor(s) with SAE-20 non-detergent electric oil.

IMPORTANT: PILLOW BLOCK STYLE FAN BEAR-INGS: Bearings have been prelubricated with high quality grease. Bearings must be relubricated once every 6 months or every 2500 hours of operation whichever comes first.

Fan Bearing Lubrication — Inspect the fan bearings for proper lubrication every 6 month or 2500 hours of operation, whichever comes first. Standard units have grease fittings on the fan shaft bearings, located on each side of the blower wheel. Lubricate bearings with a lithium-based grease (NLGI Grade 2).

Fan Sheaves — Factory-supplied drives are pre-aligned and tensioned, however, it is recommended that the belt tension and alignment be checked before starting the unit. Always check the drive alignment after adjusting belt tension.

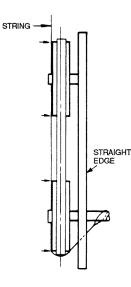
To install sheaves on the fan or motor shaft:

- 1. Isolate power to the unit.
- 2. Remove side unit access panel(s).
- 3. Remove any rust-preventive coating on the fan shaft.
- 4. Make sure the shaft is clean and free of burrs. Add grease or lubricant to bore of sheave before installing.
- 5. Mount sheave on the shaft; to prevent bearing damage, do not use excessive force.

Each factory-assembled fan, shaft, and drive sheave assembly is precision aligned and balanced. If excessive unit vibration occurs after field replacement of sheaves, the unit should be rebalanced. To change the drive ratio, follow the steps in the Evaporator Fan Performance Adjustment section (page 51).

After 1 to 3 minutes of operation, check the belt tension. Also check tension frequently during the first 24 hours of operation and adjust if necessary. Periodically check belt tension throughout the run-in period, which is normally the initial 72 hours of operation.

ALIGNMENT — Make sure that fan shafts and motor shafts are parallel and level. The most common causes of misalignment are nonparallel shafts and improperly located sheaves. Where shafts are not parallel, belts on one side are drawn tighter and pull more than their share of the load. As a result, these belts wear out faster, requiring the entire set to be replaced before it has given maximum service. If misalignment is in the sheave, belts enter and leave the grooves at an angle, causing excessive belt and sheave wear.


<u>Shaft Alignment</u> — Check shaft alignment by measuring the distance between the shafts at 3 or more locations. If the distances are equal, then the shafts are parallel.

Sheave Alignment

- 1. To check the location of the fixed sheaves on the shafts, use a straightedge or a piece of string. If the sheaves are properly aligned, the string will touch them at the points indicated by the arrows in Fig. 36. Rotate each sheave a half revolution to determine whether the sheave is wobbly or the drive shaft is bent. Correct any misalignment.
- 2. With sheaves aligned, tighten cap screws evenly and progressively.

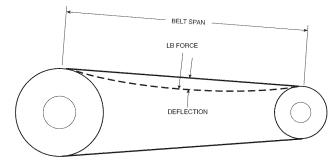
NOTE: There should be a $\frac{1}{8}$ -in. to $\frac{1}{4}$ -in. gap between the mating part hub and the bushing flange. If the gap is closed, the bushing is probably the wrong size.

3. With taper-lock bushed hubs, be sure the bushing bolts are tightened evenly to prevent side-to-side pulley wobble. Check by rotating sheaves and rechecking sheave alignment. When substituting field-supplied sheaves for factory-supplied sheaves, only the motor sheave should be changed.

FIXED SHEAVE Fig. 36 — Sheave Alignment

Evaporator Fan Performance Adjustment -

To change fan speeds from factory settings:


- 1. Shut off unit power supply.
- 2. Loosen nuts on the 4 carriage bolts in the mounting base. Using adjusting bolts and plate, slide the motor and remove the belt.
- 3. Loosen movable-pulley flange setscrew.
- 4. Screw the movable flange toward the fixed flange to increase speed, and away from the fixed flange to decrease speed. Increasing the fan speed increases the load on the motor. Do not exceed the maximum speed specified in Tables 3A and 3B.
- 5. Set the movable flange at nearest keyway of the pulley hub and tighten the setscrew. (See Tables 3A and 3B for speed change for each full turn of pulley flange.)
- 6. Replace and tighten the belts (see Belt Tension Adjustment section).
- 7. Restore power to the unit.

To align fan and motor pulleys:

- 1. Loosen fan pulley setscrews.
- 2. Slide fan pulley along fan shaft.
- 3. Make angular alignment by loosening motor from mounting plate.
- 4. Restore power to unit.

BELT TENSION ADJUSTMENT — Using a gage, apply 4 lb of force to the center of the belt and adjust the tension until a deflection of $1/_{64}$ -in. is achieved for every inch of shaft center distance. See Fig. 37.

Ideal belt tension is the lowest value under which belt slip will not occur at peak load conditions.

Fig. 37 — Fan Belt Tension

Charging the System

REMOTE AIR-COOLED UNITS — The 50BVE,K,U,X units are shipped with a holding charge of dry nitrogen. Remote condensers, interconnecting piping, and refrigerant to charge the system are all field supplied.

To evacuate the system, refer to GTAC II, Module 4, Dehydration for Proper Evacuation and Dehydration Techniques.

To charge the 50BVE,K,U,X systems:

1. Add an initial minimum refrigerant charge after evacuation to allow the unit to start. Refer to Tables 25A and 25B. Additional refrigerant will be added based on the length of interconnecting piping and vertical separation between the indoor unit and the condenser(s).

Table 25A — Minimum Operating Charge (lb), 50BVE,K Units Matched with 09DK Condensers

UNIT SIZE	020	024	028	034
Circuit 12	8.18.1	9.19.1	9.19.1	1818

Table 25B — Minimum Operating Charge (lb), 50BVU,X Units Matched with 09DK Condensers

UNIT SIZE	034	044	054	064
Circuit 12	1818	1010	1818	1818
Circuit 34	-	1010	1818	1818

- 2. To finish charging the system, make sure the unit is running at full-load operating conditions. Charge to a clear sight glass. Refer to GTAC II, Module 5, Charging, Recovery, Recycling and Reclamation and the Refrigerant Service Techniques manual for proper charging techniques.
- 3. Add 10 lb of R-22 or R-410A over a clear sight glass to flood subcooler section of the condenser coils.
- 4. Alternately, and as a double-check, when properly charged at full-load operating conditions, there should be 15 F subcooling entering the TXV (the difference between saturated condenser temperature and actual liquid temperature entering the TXV).

Compressor Oil — All units are factory charged with oil. It is not necessary to add oil unless compressor(s) is removed from the unit. If necessary, oil can be removed/charged via Schrader fitting. Operate the system at high evaporator temperature prior to oil recharge to assist oil return to the compressor(s) from other system components. If necessary, recharge the system as shown in Table 26.

Table 26 — Oil Recharge

50BV UNIT	SIZE	COMPRESSOR	OIL RECHARGE (oz)	OIL TYPE	PART NUMBER
	020	ZR94KC	81		
C,E,	024	ZR108KC	106		
Q,J,K	028	ZR144KC	106	3GS 150 viscosity yellow mineral oil	
	034	ZR19M3	137		P903-0101
	034	ZR19M3	137		P903-0101
T,U, V,W,X	044	ZR125KC	106		
V,Ŵ,X	054	ZR16M3	137		
	064	ZR19M3	137		

TROUBLESHOOTING

Refer to Tables 27-29 to determine the possible cause of the problem and the associated procedure necessary to correct it. See Fig. 38-47 for unit and control wiring.

PROBLEM	POSSIBLE CAUSE
Control modules do not have lights when unit power is on.	Transformer open. Circuit breaker open. Power wiring open. Module failure.
Control display does not light up when unit power is on.	Connection location. Interface cable open. Display failure.
Run test will not start.	Pre-existing ALARM (red)? Not "Logged in" with password. Switch not in local.
WARN (yellow) LED does not light during run test.	Wiring open. Lamp failure. Control module failure.
ALARM (red) LED does not light during run test.	Wiring open. Lamp open. Control module failure.
Run test stops, ALARM (red) LED light is lit after it blinks once.	Bypass switch to LINE. Mode switch to OFF. Duct high pressure switch open. Fire shutdown input or jumper open. Supply air temp out of range. Duct static pressure sensor out of range. Compressor resistor board wiring error or failure.
Fan does not start/ALARM (red) LED blinks 2 times.	Fan relay failure.
Run test stop, ALARM (red) LED is lit after blinking 3 times.	Wiring open. VFD connection error. VFD setup error. Fan relay failure. Current isolator failure. Control module failure.
Run test stop, ALARM (red) LED is lit after it blinks 4 times. Fan does not increase speed.	VFD connection error. VFD setup error. Current isolator load adjustment too low.
Fan does not stop after ALARM (red) LED blinks 5 times.	Fan relay failure.
Fan rotation is backwards.	VFD to motor wiring sequence error. VFD setup error.
Run test stop, ALARM (red) LED is lit after blinking 6 times. Compressor 1 does not start.	Wiring open. Compressor resistor board wiring error or failure. High pressure switch, low pressure switch, coil frost switch, or compressor protection module open. Compressor relay failure. Contactor failure. Control module failure. No refrigerant charge.
Run test stop, ALARM (red) LED is lit after blinking 7 times. Compressor 2 does not start.	Wiring open. Compressor resistor board wiring error or failure. High pressure switch, low pressure switch, coil frost switch, or compressor protection module open. Compressor relay failure. Contactor failure. Control module failure. No refrigerant charge.
Run test stop, ALARM (red) LED is lit after blinking 8 times. Compressor 3 does not start.	Wiring open. Compressor resistor board wiring error or failure. High pressure switch, low pressure switch, coil frost switch, or compressor protection module open. Compressor relay failure. Contactor failure. Control module failure. No refrigerant charge.
Run test stop, ALARM (red) LED is lit after blinking 9 times. Compressor 4 does not start.	Wiring open. Compressor resistor board wiring error or failure. High pressure switch, low pressure switch, coil frost switch, or compressor protection module open. Compressor relay failure. Contactor failure. Control module failure. No refrigerant charge.
Compressor rotation is backwards.	Field power wiring sequence error. Compressor power wiring sequence error.
"C" message in I/O status display.	No input signal or communication failure.
"Service" message in I/O status display.	Value is forced from 6400 keypad entry.
"Supervisor" message in I/O status display.	Value is forced from network communication (i.e., PC).
ALARM (red) LED always on, will not enter run test.	SAT, DSP, CSMUX, DHS, or PHASE input values. Mode switch OFF.

Table 27 — Ru	n Test Troubleshoot	ing (VAV Units Only)
---------------	---------------------	----------------------

NOTE: For more information on VAV controls, refer to the 50BV,XJ Controls Operation and Troubleshooting Manual.

Table 28 — Unit Troubleshooting

PROBLEM	POSSIBLE CAUSE	CORRECTION PROCEDURE
Unit Will Not Start.	Loss of unit power	Check power source. Check fuses, circuit breakers, disconnect switch. Check electrical contacts.
	Unit voltage not correct	Check and correct.
	Open fuse	Check for short circuit in unit.
	Open protection device	Check relays (phase monitor option), contacts, pressure switches.
	Unit or motor contactor out of order	Test and replace if necessary.
Fan Does Not Operate.	Contactor or relay overload or out of order	Test and replace if necessary.
·	VFD not running	Perform VFD diagnostic test.
	Motor defective	Test and replace if necessary.
	Broken belt	Replace belt.
	Loose electrical contact	Tighten contact.
Compressor is Noisy, But	Under voltage	Check and correct.
Will Not Start.	Defect in compressor motor	Replace compressor.
	Missing phase	Check and correct.
	Compressor seized	Check and replace if necessary.
Compressor Starts.	Compressor or contact defect	Test and replace if necessary.
But Does Not Continue	Unit is under charged	Check and correct any leaks. Add refrigerant.
to Run.	Unit is too big	Check load calculation.
	Compressor is overloaded	Check protection device and replace. Check for missing phase. Check TXV. Check temperature in suction discharge line.
Unit is Noisy.	Compressor noise	Check TXV and replace if necessary. Compressor rotation incorrect; check and correct. Check internal noise.
	Tube vibration or condenser water problem	Check and correct.
	Unit panel or part vibrating	Check and tighten appropriate part.
Unit Runs Continuously,	Unit is too small	Check load calculation.
But Has Low Capacity.	Low refrigerant or noncondensing gas present	Check for leaks and add refrigerant or gas as necessary.
	Compressor defect	Check pressure and amps. Replace if necessary.
	Insufficient flow of refrigerant in evaporator	Check filter drier and replace if necessary. Check TXV and adjust or replace if necessary. Check position of TXV bulb and equalizer.
	Oil in evaporator	Drain evaporator.
	Low airflow	Check filters, and clean or replace as necessary. Check coils, and clean as necessary. Check for restrictions in ductwork. Check fan rotation and adjust. Check fan motor. Check belts for wear.
High Discharge Pressure.	Low waterflow in condenser	Purge air.
-	Dirty condenser tubes.	Clean condenser.
	High temperature in condenser water	Check water tower fans and pumps.
	Overcharged	Check and reclaim excess charge. Adjust subcooling.
	Noncondensing gas present	Verify and correct.

LEGEND

TXV — Thermostatic Expansion Valve **VFD** — Variable Frequency Drive

Table 29 — CV Units LED Diagnostic Codes

NO. OF BLINKS	DESCRIPTION
1	1st Stage High-Pressure Lockout
2	1st Stage Low-Pressure Lockout
3	2nd Stage High-Pressure Lockout
4	2nd Stage Low-Pressure Lockout
5	Freeze Protection Lockout*
6	Condensate Overflow Lockout*

*Freeze protection and condensate overflow lockout require optional

sensors. NOTE: The main control board has a red LED (light-emitting diode) for fault indication and will blink a code as described above. Count the number of blinks to determine the lockout condition.

Forcing and Clearing an Input or Output (VAV

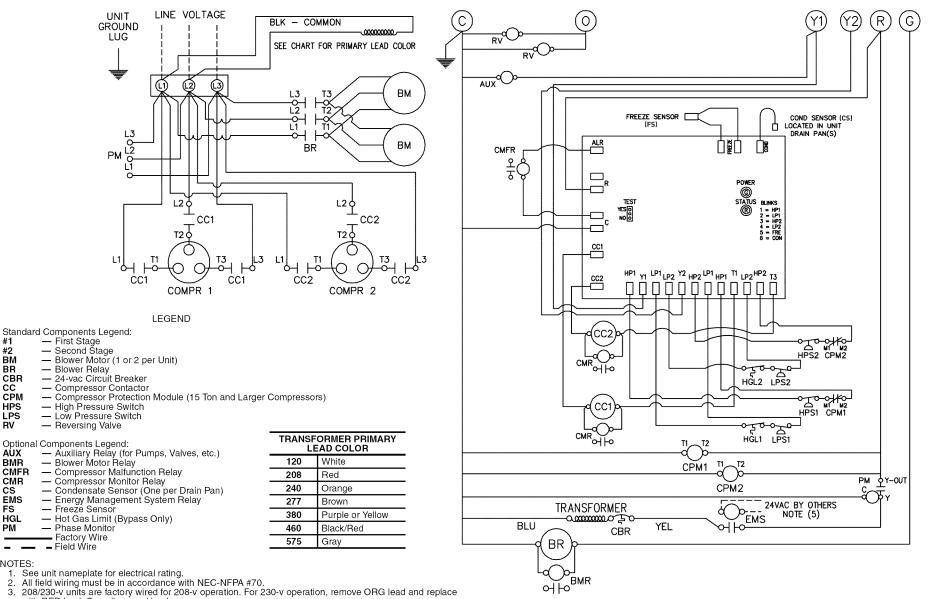

Only) - During unit operation and/or troubleshooting, it may be necessary or desirable to clear an input or output. Tables 30 and 31 describe the procedure for forcing and clearing inputs and outputs.

Table 30 — Forcing an Input or Output

STEP NO. INSTRUCTION/ACTION	RESULT
1. Press 3, SET, ENTER.	"Controller Password"
2. Press ENTER.	"Log in to Controller" "Enter Password"
3. Press 1111, ENTER.	"Log in to Controller" "Logged in"
4. Press STAT.	"Hardware Points"
5. Press ENTER.	"Supply Air Temperature"
6. Press down arrow to obtain desired item.	(NOTE: Order is PCB1 I/O, PCB2 I/O, PCB3 I/O.)
7. Key in force value (1=on/start, 0 = off/stop), ENTER.	Force value/status "Service"

Table 31 — Clearing a Forced Input or Output

STEP NO. INSTRUCTION/ACTION	RESULT
1. Press 3, SET, ENTER.	"Controller Password"
2. Press ENTER.	"Log in to Controller" "Enter Password"
3. Press 1111, ENTER.	"Log in to Controller" "Logged in"
4. Press STAT.	"Hardware Points"
5. Press ENTER.	"Supply Air Temperature"
6. Press down arrow to obtain desired item.	(NOTE: Order is PCB1 I/O, PCB2 I/O, PCB3 I/O.)
7. Press CLEAR, ENTER.	Auto value/status (NOTE: "Service" must be gone.)

- with RED lead. Cap all unused leads.
- void unit warranty.
- 5.
- sure bypass, and 5-second second stage delay.
- Setting the UPM board test mode jumper to yes reduces all time delays to 5 seconds. "Freeze" pins on UPM board must be jumped if freeze sensor is not installed. 7.
- 8.

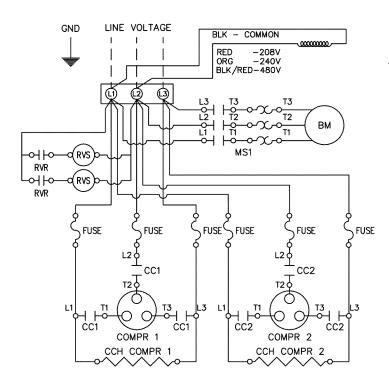
Fig. 38 — 50BVC, E, Q020-034 Constant Volume Wiring Schematic

#1

#2

BM

- BR — 24-vac Circuit Breaker CBR
- CC - Compressor Contactor
- CPM - Compressor Protection Module (15 Ton and Larger Compressors)
- HPS - High Pressure Switch
- LPS - Low Pressure Switch
- RV - Reversing Valve


Optional Components Legend: A

UX	 Auxiliary 	Relay	(for Pumps.	, Valves,

- BMR - Blower Motor Relay
- CMFR CMR
- cs
- EMS
- FS - Freeze Sensor
- Hot Gas Limit (Bypass Only) HGL
- ΡM - Phase Monitor
- Field Wire _
- NOTES:

- 1. See unit nameplate for electrical rating.
- 3. 208/230-v units are factory wired for 208-v operation. For 230-v operation, remove ORG lead and replace
- 4. Check phase rotation on all scroll compressor units. Reverse rotation will damage the compressor and
- For alternative EMS coil voltages, consult factory.

6. UPM board includes built in 30 to 60-second random start, 5-minute delay on break, 90-second low pres-

Optional Components Legend:

- CMFR Compressor Malfunction Relay CMR Compressor Monitor Relay
- EMS

 Energy Management System Relay
 Freeze/Condensate Sensor Relay FSR Freeze/Condensate Sensor Module (includes FSR)

Condensate Sensor Freeze Sensor

- Crankcase Heater (When Supplied)
 Compressor Protection Module СРМ HPS - High Pressure Switch
- LPS - Low Pressure Switch

Standard Components Legend:

- First Stage

— Second Štage

- Blower Motor

- Blower Relay

- 24-vac Circuit Breaker

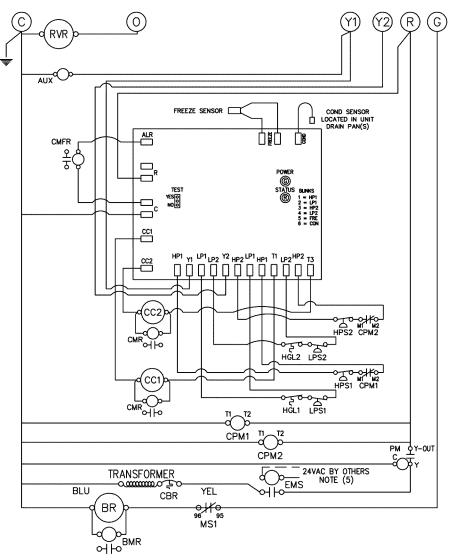
- Compressor Contactor

- MS - Motor Starter
- Reversing Valve Relay (Heat Pumps Only)
 Reversing Valve Solenoid (Heat Pumps Only) **BVB**
- RVS
- Factory Wire - Field Wire _
- NOTES:

#1 #2

ВM

BR


cc

CBR

CCH

- See unit nameplate for electrical rating.
 All field wiring must be in accordance with NEC-NFPA #70.
- 3. 208/230-v units are factory wired for 230-v operation. For 208-v operation, remove ORG lead and replace with RED lead. Cap all unused leads.
- 4. Check phase rotation on all scroll compressor units. Reverse rotation will damage the compressor and void unit warranty.
- For alternative EMS coil voltages, consult factory.
- 6. UPM board includes built in 30 to 60-second random start, 5-minute delay on break, 90-second low pressure bypass, and 5-second second stage delay. 7. Setting the test mode jumper to yes reduces all time delays to 5 seconds.

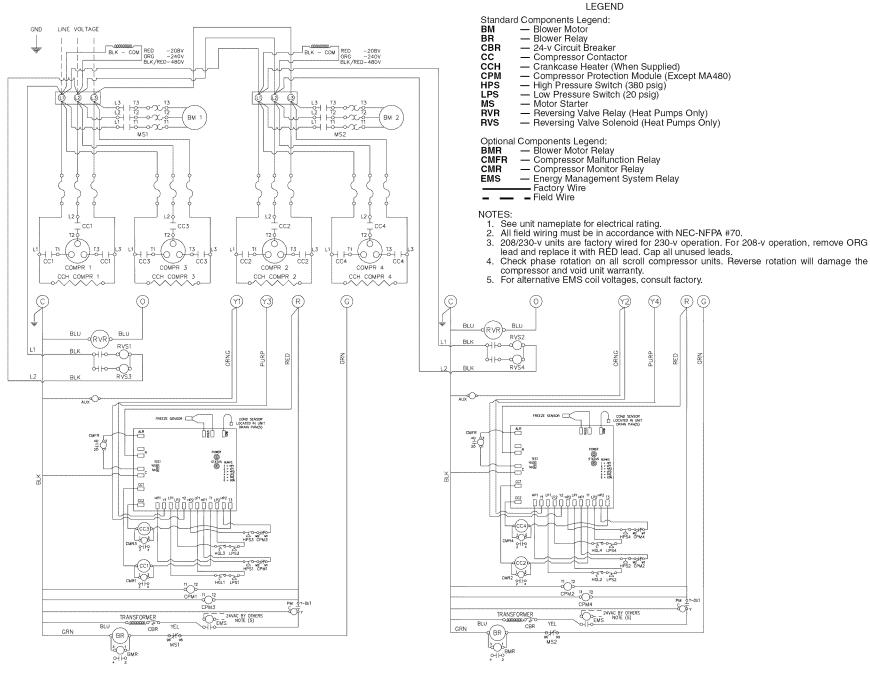
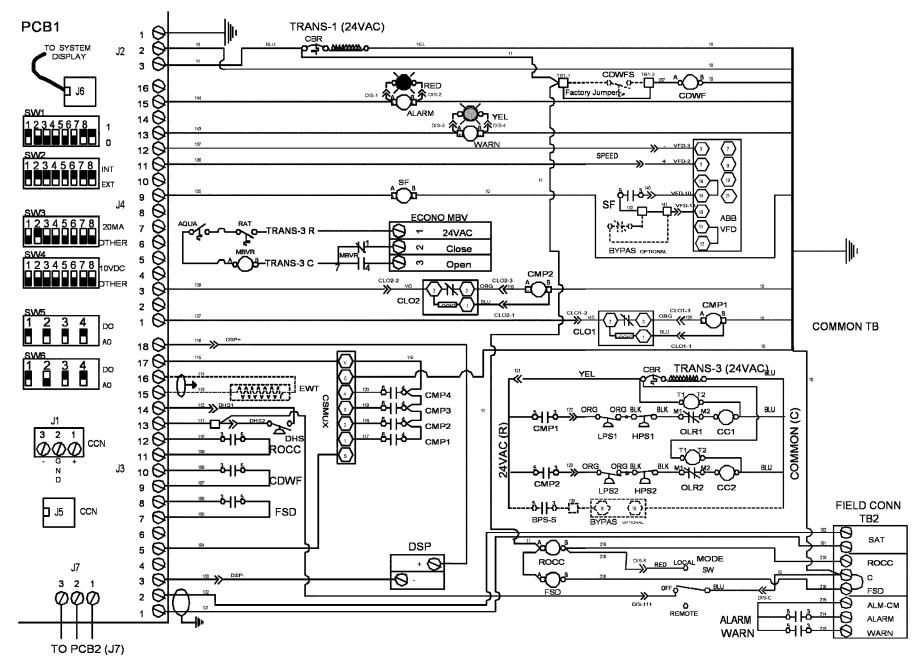



Fig. 40 — 50BVT,U,V044-064 Constant Volume Wiring Schematic

NOTE: Jumper installed for condenser water flow switch when not supplied.

Fig. 41 — 50BVJ,K020-034 Variable Air Volume Low Voltage Schematic

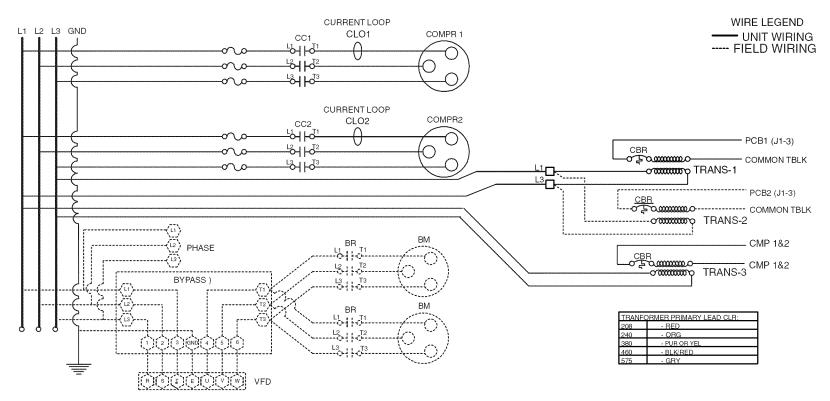
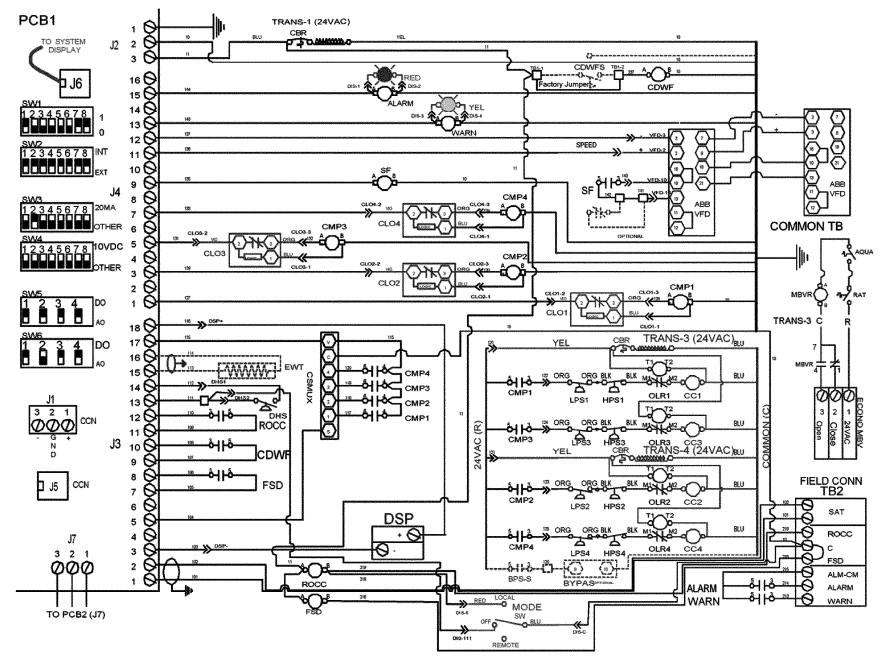



Fig. 42 — 50BVJ,K020-034 Variable Air Volume High Voltage Schematic

NOTE: Jumper installed for condenser water flow switch when not supplied.

Fig. 43 — 50BVW,X034-064 Variable Air Volume Low Voltage Schematic

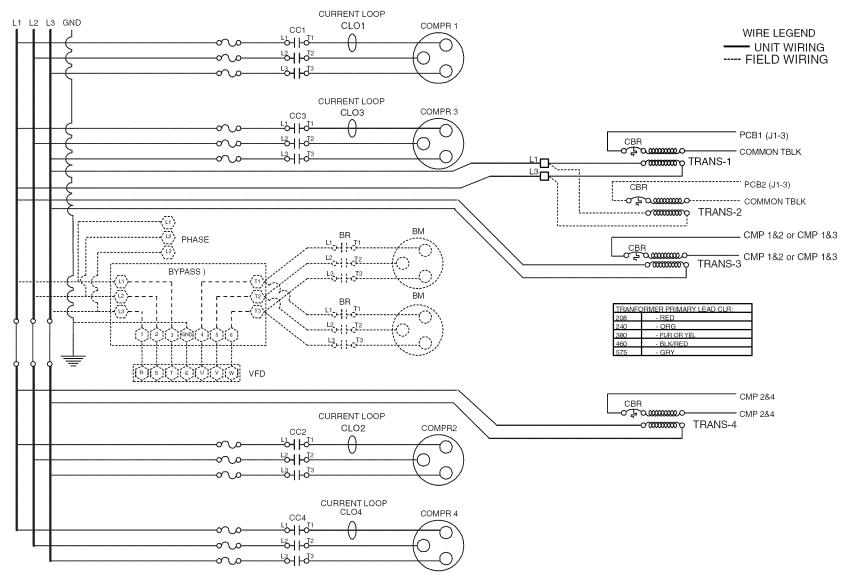


Fig. 44 — 50BVW,X034-064 Variable Air Volume High Voltage Schematic

61

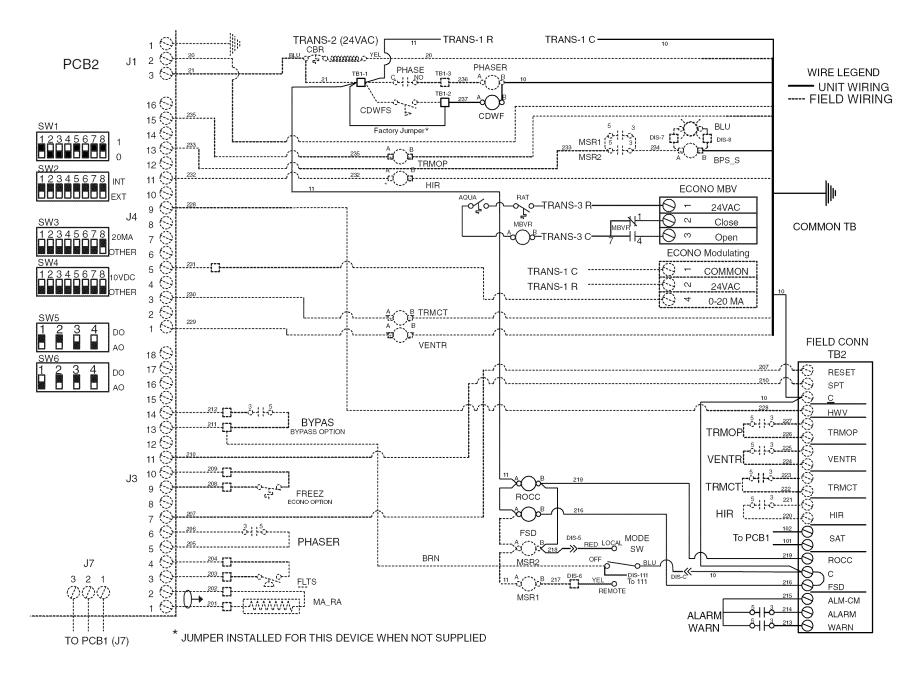


Fig. 45 — 50BVJ,K,W,X Field-Installed Low Voltage Schematic (PCB 2 Module)

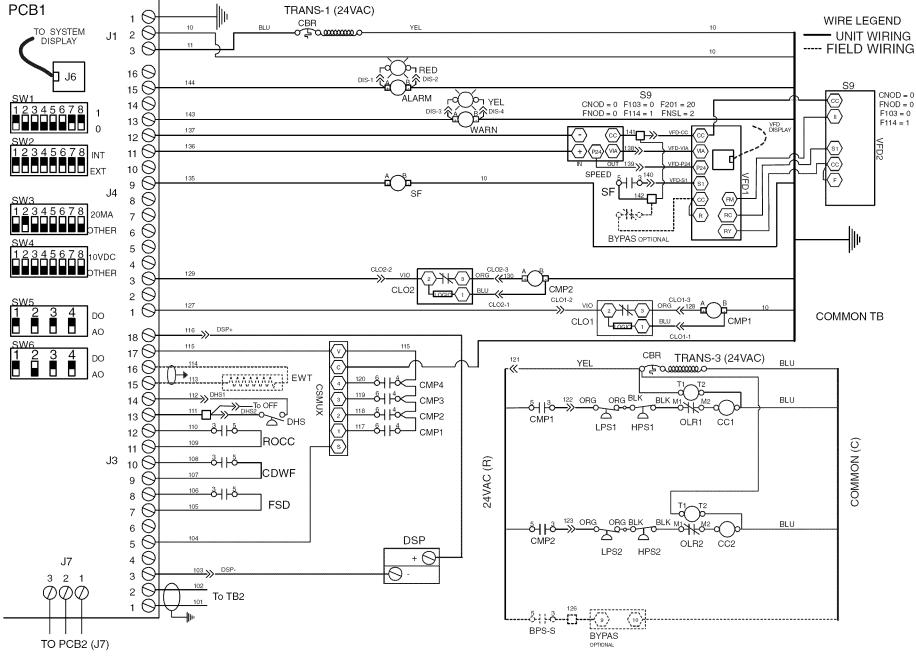
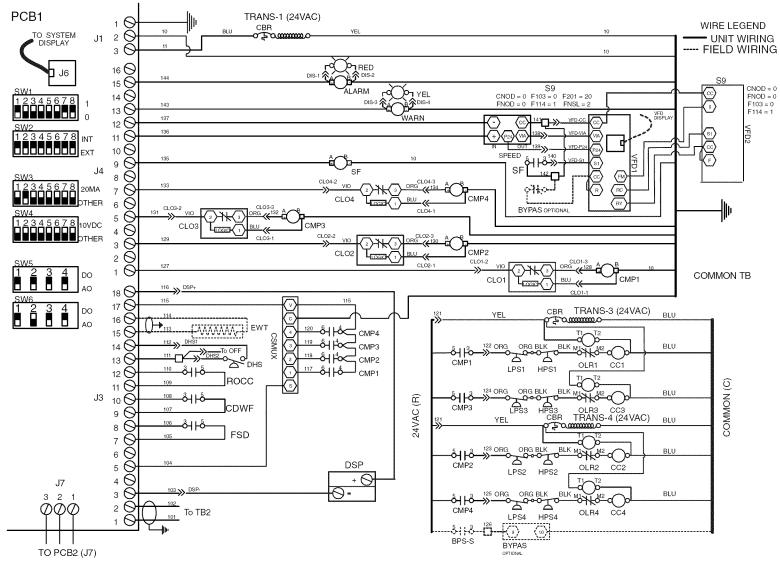



Fig. 46 — 50BVJ,K Field-Installed Low Voltage Schematic (PCB 1 Module)

LEGEND AND NOTES FOR FIG. 41-47

LEGEND

ALARM — Unit Alarm Relay (Critical Fault)	LPS	_	Low Refrigerant Pressure Switch
ALM-CM— Alarm/Warning Relay Common	MA_RA	—	Mixed/Return Air Temperature Sensor
AO — Analog Output	MBVR	—	Motorized Ball Valve Relay
AQUA — Aquastat	MSR	—	Local/Remote Control Relays
BM — Blower Motor	OLR		Compressor Motor Protector
BPS_S — Fan Start/Stop Relay (VFD Bypass Mode)	PCB1		Unit Control Board
BR — Blower Relay	PCB2,3		I/O Expansion Board
BYPAS — VFD Bypass Control	PHASE		Phase/Rotation Monitor
CBR — Circuit Breaker	PHASER		Phase Monitor Relay
CC — Compressor Contactor	RAT		Return Air Thermostat
CCN — Carrier Comfort Network®	RESET		External Reset
CDWF — Condenser Waterflow Relay	ROCC		Remote Occupancy
CDWFS — Condenser Waterflow Switch	SAT		Supply Air Temp. Sensor
CLO — Compressor Lockout Control	SPT	—	Space/Zone Temperature Sensor
CMP — Compressor Control Relay	SF	—	Supply Fan Start/Stop Relay
COMPR — Compressor	SPEED	—	0-10 VDC Signal Isolator for VFD
CSMUX — Signal Multiplexer-Comp Status	sw		Switch
DHS — Duct High Static Limit Switch	T		Transformer
DO — Digital Output	TB2		Terminal Block for Field Connections
DSP — Duct Static Pressure Transducer	TRANS		Transformer
ECONO — Economizer Valve/Damper Control	TRMCT		VAV Terminals Control
EWT — Entering Water Temperature Sensor	TRMOP		VAV Terminals Open
FLTS — Filter Status Switch	VENTR		Ventilation Output
FREEZ — Freeze Thermostat (Water Economizer)	VFD		Variable Frequency Drive
FSD — Fire Alarm/Shutdown	WARN	_	Unit Warning Relay (Non-Critical Fault)
GND — Ground		-	Factory Wiring
HIR — Heat Interlock Relay			Field Wiring
HPS — High Refrigerant Pressure Switch			i loid thing

- NOTES:

 Partial wiring shown on both power and control diagrams.
 Class 2 transformer TRANS-1 is wired into separate circuit. Do not interconnect other transformers or circuits; circuit separation or compressor transformers from low voltage control panel transformers shall be maintained.

 Shielded wire shall have drain wire connected to VFD ground screw. The floating end of the drain wire shall be insulated.
 Shielded wire shall have drain wire connected to the control panel, adjacent to the PCB. The floating end of the drain wire shall be insulated.

Copyright 2008 Carrier Corporation

START-UP CHECKLIST

(Fill out this form on Start-Up and file in job folder)

I. PRELIMINARY INFORMATION:	
50BV UNIT: MODEL NO SE	RIAL NO
START-UP DATE:	
II. PRE-START-UP:	
VERIFY ALL SHIPPING MATERIALS HAVE BEEN REMC	OVED FROM THE UNIT
IS THERE ANY SHIPPING DAMAGE?	IF SO, WHERE
WILL THIS DAMAGE PREVENT UNIT START-UP?	(Y/N)
CHECK POWER SUPPLY. DOES IT AGREE WITH UNIT?	(Y/N)
HAS THE GROUND WIRE BEEN CONNECTED?	(Y/N)
HAS THE CIRCUIT PROTECTION BEEN SIZED AND INS	TALLED PROPERLY? (Y/N)
ARE THE POWER WIRES TO THE UNIT SIZED AND INS	TALLED PROPERLY? (Y/N)
HAS THE CORRECT INPUT POWER PHASE SEQUENCE	BEEN CONFIRMED WITH A METER? (Y/N)
HAS THE FAN AND MOTOR PULLEY BEEN CHECKED F AND DOES THE FAN BELT HAVE PROPER TENSION?	FOR PROPER ALIGNMENT (Y/N)
HAS WATER BEEN PLACED IN DRAIN PAN TO CONFIRM	M PROPER DRAINAGE? (Y/N)
ARE PROPER AIR FILTERS IN PLACE AND CLEAN?	(Y/N)
VERIFY THAT THE UNIT IS INSTALLED WITHIN LEVEL	LING TOLERANCES (Y/N)
CONTROLS	
HAS THE DUCT STATIC PRESSURE PROBE BEEN INSTA	ALLED? (Y/N)
HAVE CONTROL CONNECTIONS BEEN MADE AND CH	ECKED? (Y/N)
ARE ALL WIRING TERMINALS (including main power sup	ply) TIGHT? (Y/N)
HAS AUTOMATIC RUN TEST BEEN COMPLETED?	(Y/N)
HAS THE VFD CHECKOUT BEEN COMPLETED?	(Y/N)
PIPING	
HAVE LEAK CHECKS BEEN MADE AT COMPRESSOR, Valves), SOLENOID VALVES, FILTER DRIERS, AND FUSI	CONDENSER, EVAPORATOR, TXVs (Thermostatic Expansion BLE PLUGS WITH A LEAK DETECTOR? (Y/N)
HAVE WATER AND STEAM VALVES BEEN OPENED (to f	fill piping and heat exchangers)?(Y/N)
HAS AIR PURGE BEEN PERFORMED? (Y/N)	
ELECTRICAL	
CHECK VOLTAGE IMBALANCE	
LINE-TO-LINE VOLTS: AB V AC	V BC V
(AB + AC + BC)/3 = AVERAGE VOLTAGE =	V
MAXIMUM DEVIATION FROM AVERAGE VOLTAGE =	V
VOLTAGE IMBALANCE = 100 X (MAX DEVIATION)/(AV AGE IMBALANCE, DO NOT ATTEMPT TO START SYSTE	VERAGE VOLTAGE) = % (IF OVER 2% VOLT EM; CALL LOCAL POWER COMPANY FOR ASSISTANCE.)

III. START-UP:

CHECK FAN SPEED AND RECORD.

AFTER AT LEAST 15 MINUTES RUNNING TIME, RECORD THE FOLLOWING MEASUREMENTS:

	CIRCUIT 1	CIRCUIT 2	CIRCUIT 3	CIRCUIT 4
SUCTION PRESSURE				
SATURATED SUCTION TEMP				
SUCTION LINE TEMP				
SUPERHEAT DEGREES				
DISCHARGE PRESSURE				
SATURATED CONDENSING				
LIQUID LINE TEMP				
SUBCOOLING DEGREES				
LIQUID SIGHT GLASS (CLEAR/BUBBLES)				
ENTERING CONDENSER-WATER TEMP				
LEAVING CONDENSER-WATER TEMP				
EVAP ENTERING-AIR DB (dry bulb) TEMP				
EVAP LEAVING-AIR DB TEMP				
EVAP LEAVING-AIR WB TEMP				
COMPRESSOR AMPS:				
Ll				
L2				
 L3		-		
SUPPLY FAN AMPS:				
Ll				
L2			-	
L3			-	
NOTES:				

CUT ALONG DOTTED LINE

CUT ALONG DOTTED LINE

Copyright 2008 Carrier Corporation