Cosmed does not assume the liability for interpretation mistakes of this documentation or for casual or consequential damages in connection with the provision, representation or use of this documentation. No parts of this manual may be reproduced or transmitted in any form without the express permission of COSMED Srl.

COSMED Software can be installed only in one device.

Excel is a registered trademark of Microsoft Corporation. DBIII is a registered trademark of Bordland International Inc. Lotus 123 is a registered trademark of Lotus Development Corporation .

K4 b² User manual, XII Edition 01/2005

Copyright © 1998 COSMED Copyright © 2003 COSMED

COSMED Srl - Italy http://www.cosmed.it Part N. C01508-02-91

Table of contents

Getting started		13
Importa	nt notices	14
	Intended use	14
	Warnings	14
Contrair	ndication	16
	Contraindications for the Spirometer tests	16
	Absolute contraindications	16
	Relative contraindications	16
	Contraindications for Bronchial provocation tests	16
	Absolute contraindications	16
	Relative contraindications	16
	Contraindications for Exercise testing	16
Environi	mental condition of use	17
Safety a	nd conformity	18
	Safety	18
	EMC	18
	Telemetry	18
	Quality Assurance	
	Medical Device Directive (CE mark)	
	FCC (only USA version)	
Keynote	°S	19
	Typographic keynotes	19
	Graphic keynotes	19
System o	overview	20
	Portable Unit (PU)	20
	Telemetry Data Transmission, Receiver Unit (RU)	20
	Battery Charger Unit (CU)	20
	Flowmeter	21
	Gas analysers	21
	PC Software	21
Before s	tarting	22
	Checking the packing contents	22
	K4 b ² standard packaging	22
Warrant	ly registration	23
	Register the product via software	23
	How to contact COSMED	23
	Complain, feedback and suggestions	23
Options	/Accessories	24
	Accessories	24
	Options	24
	Telemetry data transmission	24
	Spirometry Kit	24

PC conf	iguration required	25
Technic	al features	
	Portable Unit	26
	Receiver Unit	26
	Battery charger Unit	26
	Flowmeter	26
	Oxygen Sensor (O ₂)	26
	Carbon Dioxide Sensor (CO ₂)	26
	Humidity absorber	26
	Power Supply	26
	Environmental Sensors	26
leasurements		27
Pulmor	nary function tests and measured parameters	
	Breath by Breath exercise testing	
	Indirect Calorimetry	
	Lactate Threshold (V-Slope)	
	O2 Kinetics	29
	Spirometry Tests (option)	29
	FVC - Forced Vital Capacity	29
	VC/IVC - Slow Vital Capacity and Ventilato	ry pattern.29
	MVV - Maximum Voluntary Ventilation	
	Bronchoprovocation Response	30
nstallation		31
Installa	ition sequence	32
	Battery Charger Unit	
	Check voltage	
	Turn the Unit on	32
	Charge the batteries	
	Battery low	
	Portable Unit	
	Warm up	
	Warming-up the unit by main power	
	Turning on/off the portable unit	
	Connect the rechargeable battery	
	Receiver Unit	

Turning on/off the receiver unit35Receiver unit power supply35

	Fixing the K4 b ² to the patient	
Conne	cting the K4 b ² to the PC	39
	Connect the Portable Unit to the PC	
	Connect the Receiver Unit to the PC	
Softwa	re installation	40
	Installing the software	40
	Run the software	40
	PC port configuration	40
Softwa	re main features	
	Display	41
	Tool bar	41
	Show/hide the toolbar	41
	Dialog windows	41
	Use of the keyboard	41
	Use of the mouse	41
	Scroll bars	41
	On line help	41
	Software version	41

Calibration

43	3
Gas calibration procedures44	4
Running the Calibration program44	4
Log file44	
Setting reference values44	4
Set the reference values using the PC software44	4
Set the reference values using the Portable Unit4	5
Room air calibration4	5
Room air calibration using the PC software4	5
Room air calibration using the Portable Unit4	5
Reference gas calibration4	5
The calibration unit40	6
Reference gas calibration using the PC software40	6
Reference gas calibration using the Portable Unit4	6
Gas delay calibration4	.7
Delay calibration using the PC software47	7
Delay calibration using the Portable Unit47	.7
Print the calibration report48	8
Edit the calibration factors48	8
furbine calibration	9
Assembling the flowmeter for calibration49	.9
Calibrating the turbine49	.9
Turbine calibration using the PC software49	.9
Turbine calibration using the Portable Unit50	0
Checking the system signals51	1
The control panel	1
Using the control panel	1

Operating modes	53
K4 b ² Operating modes	54
Holter Data Recorder.	
Telemetry Data Trans	mission (option)54
Serial (Laboratory) St	ation54
Portable Unit User Interface di	agram55
Holter Data Recorder Mode	56
Operating sequence	
Warming-up th	e system56
Enter new patie	nt56
Calibrate and st	art the test56
Stop the test	
Transferring tes	t to PC57
Telemetry Data Transmission I	Node58
Operating sequence	
Warming-up th	e system58
Connect the rec	eiver unit to the PC58
Enable transmis	sion58
Enter new patie	nt58
Enable receptio	n on PC59
Calibrate and st	art the test59
Stop the test	60
Transferring tes	t to PC60
Serial Mode	61
Operating sequence	61
Warming-up th	e system61
Connect the Po	table unit to the PC61
Calibrate the sy	stem61
Enter patient da	ta61
Start the test	
Stop the test	
Database Management	63

tabase Mai	nagement	03
	Exercise testing patient's database	64
	Enter a new patient	64
	Find a patient	64
	Edit patient data	64
	Delete a patient	64
	Uploading tests from the Portable Unit	65
	Archive maintenance	
	Reorganise the archive	66
	Delete the archive	66
	Delete a test	66
	Backup and restore	66
	Backup	66
	Restore	66

Spirometry patient's database	67
Patient Card	67
Visit Card	67
Test Card	68
Import/export a Tests card	68
Diagnosis Database	68
Spirometry program settings	69
Graphs	69
Graphs Serial port	
*	69
Serial port	69 69

Exercise testing		71
Re	commendations for the exercise testing	72
	The evaluation of the cardiorespiratory function	72
	Precautions	72
	Laboratory	72
	Ending the test	72
	Preparing the patient	72
	Before testing	72
	Patient assent	73
	Ending the test	73
Re	al time test	74
	Start a test	74
	Abort the test without saving data	74
	End the test saving data	74
	View data in real-time	74
	View graphs in real-time	74
	Parameters to view	74
	Manual protocol	75
	Enter Load and Phase	75
	Set the markers	75
	Automatic protocol	75
	Modify the load during the test	75
	Set the BPM alarm	75
	Enter the BPM	75
Do	ata management	76
	Viewing data	76
	View data in table form	76
	Creating graphs	76
	View data in graph form	76
	Customise the graphs	77
	Switch from graph to data and vice versa	77
	Viewing predicted values	78
	View predicted values	78

Anaer	robic (Lactate) Threshold detection	78
	View the Lactate Threshold	78
	Detect the Lactate Threshold	78
	Customise graphs for the LT viewing	78
Fittin	gs	79
	Fit a graph with a linear regression	79
	Fit a graph with a Mono-exponential regression	79
	Calculate the "Mean Value"	80
Oxyg	en Kinetic	80
	Run the O2 Kinetic function	80
Inform	nation about the Test	81
	View the Information	81
	Modify the information	81
Sumn	nary	81
	View the summary	81
Print	the data	81
	Print the current window	82
	Print the report	82
View	the report	82
Data Editing	_	83
	Editing values and input numerical values	83
	Data filtering	83
	Using the User fields	84
	Deleting steps	84
	Advanced Editing	84
	Restore the original test	85
	Overwrite the original test	85
Custo	mise the desktop	85
	Customise the display colours	85
Smart	edit	85
	Apply the graphical noise suppression	85
	Apply the threshold noise suppression	85
Custo	mise the parameters	86
	Create a new parameter	86
	Create a new predicted parameter	86
Expo	rting data	87
	Export a test	87
	DDE with Excel	87
Creating Test Pr	otocols	88
	Create a new protocol	88
Software configu	ration	89
Data	viewing	89
	Select the parameters to view	89
	Select the parameters to view during the test	89
	Sort the parameters	89
Stead	y State	89

Customise the Steady State detection criteria	89
Printout reports	90
Set up the printout	90
Select parameters to be printed	90
Customise the printout header	90
Electronic reports (*.pdf)	91
Print the current window	91
Print the customised report	91
Events management during exercise testing	92
Flow Volume loops	92
Flow Volume loop during the test	92
O2, CO2 vs Time	92
O2, CO2 vs Time during the test	92
O2 Saturation (optional)	93
O2 Saturation during the test	93
Spirogram	93
Spirogram during the test	93
View the events after the test	93
Raw data	93
Save Raw data	94

95

Resting Metabolic Rate Test

Metabolism	
Total Metabolic Rate	96
Resting Metabolic Rate (RMR)	96
Importance to measure RMR	96
Measure of the rest metabolic rate with indirect calorir	netry96
How to perform a RMR test	96
Recommendations	
Resting metabolic rate test using the face mask	97
Resting metabolic rate test using the canopy option	97
Performing a test using the face mask	
Calibrations	98
How to prepare a patient	98
Start the test	98
Viewing the test	99
How to modify the average interval	
Print	
Performing a test using the canopy option	102
Calibrations	
How to prepare the canopy and the patient	
Replacement of the power plug	
Connecting the Canopy	
How to prepare the patient	
Performing the test	
Viewing the test	104

How to modify the average interval	104
Print	104

Sub-maximal Exercise Testing105Introduction106Pre-test screening106Sub-maximal exercise testing107Considerations with sub-maximal exercise testing107Staffing108Test termination108Considerations for accuracy109Performing the test110An example of testing protocol110

Spirometry	111						
	Setting spirometry options112						
	Spirometry112						
	Automatic Interpretation						
	Quality control						
	Parameters manager						
	Predicted values manager						
	Predicteds set113						
	Set the current predicted114						
	Formula definition114						
	Page set-up115						
	Spirometry tests116						
	Forced Vital Capacity (pre)117						
	Recommendations117						
	Perform a FVC (pre) test117						
	Test encouragement117						
	Perform the FVC test with the encouragement						
	Slow Vital Capacity119						
	Perform a SVC test						
	Maximum Voluntary Ventilation120						
	Perform a MVV test						
	Bronchial Provocation Test121						
	Bronchodilator test						
	Methacholine and Histamine Bronchial provocation Tests121						
	Perform the test						
	Bronchial Provocation protocols Database122						
	Enter a new Bronchial provocation protocol in the archive						
	Viewing results123						
	Tests of the current patient						
	Delete a test						
	Printing results124						
	Printing Reports124						

Printing the active window	
To print the active window	
Printing a series of reports	
Electronic reports (*.pdf)	
Export data	
Export a test	

External devices

evices	127
GPS	
GPS initialisation	
Initialize the GPS	
Fixing the antenna to the subject	
Operating sequence	
Run a test with GPS	
Monitoring GPS parameters in real time	
Pulse Oximeter (option)	131
Operating Sequence	

System maintenance

133

		100
System mo	iintenance	134
	Cleaning and disinfection	134
	Preparing the disinfecting solution	134
	Cleaning the turbine flowmeter	135
	Precautions during the cleaning of the turbine	135
	Suggested disinfection solutions	135
	Masks cleaning and disinfection	135
	Disassembling the different parts of the mask	135
	Cleaning the mask	135
	Disinfecting the mask	136
	Permapure maintenance	136
	Inspections	136
	Replace the fuses	136
	_	

Appendix

139

Service - Warranty	140
Warranty and limitation of liability	140
Return goods policy for warranty or non warranty repair.	140
Repair Service Policy	141
Privacy Information	142
Personal data treatment and purposes	142
How your personal data are treated	142
The consent is optional, but	142
Holder of the treatment	142
Customer rights	142
Converting factors configuration	143
Calculations references	144

VO ₂ and VCO ₂ 14	14
Anaerobic threshold (modified V-Slope)14	14
O ₂ kinetics14	14
ATS 94 recommendations14	5
ATS recommendations14	15
Predicted values14	6
Automatic diagnosis (algorithm)14	17
Quality Control Messages14	17
References14	9
Gas Exchange References14	19
Indirect calorimetry14	19
Spirometry14	19
Sub-maximal testing14	19

Important notices

Intended use

The measurement of oxygen uptake during sport or real life activities is of great interest for the development of training programs and the study of their effects on elite athletes or for assessing the efficacy of a rehabilitation therapy.

A common method for assessing the effects of endurance training is the monitoring of various respiratory parameters during submaximal exercise.

One difficulty to achieve this goal during sport that cannot be simulated in the laboratory is to use a reliable and valid portable system to measure VO_2 and VCO_2 in a field setting.

Such a portable apparatus may also be useful to determine the energy cost of many sport and real life activities.

K4 b^2 is an electrical medical device designed to perform pulmonary function tests. It is to be used by physicians or by trained personnel on a physician responsibility.

Caution: Federal law restricts this device to sale by or on the order of a physician.

This equipment has been conceived with the aim of providing an auxiliary instrument allowing:

- the formulation of lung pathology diagnosis;
- important studies concerning human physiology;
- the collection of important information in sport medicine.

No responsibility attaches COSMED Srl for any accident happened after a wrong use of the device, such as:

- use by non qualified people;
- non respect of the device intended use;
- non respect of the hereunder reported precautions and instructions.

Warnings

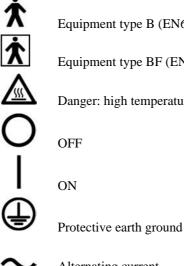
The device, the programme algorithms and the presentation of measured data have been developed according to the specifications of ATS (American Thoracic Society) and ERS (European Respiratory Society). Other international references have been followed when these were not available. All bibliography references are reported in Appendix.

The present handbook has been developed with respect of the European Medical Device Directive requirements which sort K4 b^2 within Class II a.

It is recommended to read carefully the following precautions before putting the device into operation.

The precautions reported below are of fundamental importance to assure the safety of all COSMED equipment users.

- 1. This user manual is to be considered as a part of the medical device and should always be kept on hand.
- 2. Safety, measure accuracy and precision can be assured only:


• using the accessories described in the manual or given with the device. Actually non recommended accessories can affect safety unfavourable. Before using non recommended accessories it is necessary to get in touch with the manufacturer;

• ordinary equipment maintenance, inspections, disinfection and cleaning are performed in the way and with the frequency described;

• any modification or fixing is carried out by qualified personnel;

• the environmental conditions and the electrical plants where the device operates are in compliance with the specifications of the manual and the present regulations concerning electrical plants. In particular grounding reliability and leakage current suppression can only be assured when the device three – wire receptacle is connected to a yellow - green return connected to earth ground. Attempting to defeat the proper connection of the ground wire is dangerous for users and equipment.

- 3. Before powering the system, check the power cables and the plugs. Damaged electrical parts must be replaced immediately by authorised personnel.
- Large gas cylinders, which may be given by the manufacturer or purchased by the 4. customer, should be secured with cylinder safety chains or safety stands.
- 5. When removing the protective cap, inspect the cylinder valve for damaged threads, dirt, oil or grease. Remove any dust or dirt with a clean cloth. If oil or grease is present on the valve of a cylinder which contains oxygen, do not attempt to use. Such combustible substances in contact with oxygen are explosive.
- 6. Be certain that the materials of the pressure regulators are chemically compatible with the intended gas service before installation. Inspect the regulator for the proper connection and note the ranges of the pressure gauges. Also examine the physical condition of the regulator including threads and fittings. Remove any dust or dirt from the regulator or cylinder valve with a clean cloth. Do not install a regulator on a cylinder valve containing oxygen if grease or oil is present on either. Such substances in contact with oxygen are explosive.
- 7. Cleaning residue, particulates, and other contaminates (including pieces of torn or broken components) in the breathing circuit pose a safety risk to the patient during testing procedures. Aspiration of contaminates can potentially be life-threatening. Use disposable anti-bacterial filters or disinfect each part in contact with the patient before each test.
- 8. You must follow all the cleaning procedures in System Maintenance, and you must thoroughly inspect the components after cleaning and before each patient test.
- 9. This device is not suitable for use in presence of flammable anaesthetics. It is not an AP nor an APG device (according to the EN 60 601-1 definitions).
- 10. Keep the device away from heat and flame source, flammable or inflammable liquids or gases and explosive atmospheres.
- 11. In accordance with their intended use K4 b^2 is not to be handled together with other medical devices unless it is clearly declared by the manufacturer itself.
- 12. It is recommended to use a computer with electromagnetic compatibility CE marking and with low radiation emission displays.
- 13. It is necessary to make the PC, connected to the K4 b^2 , compliant with EN 60601-1 by means of an isolation transformer.
- 14. Graphical symbols used in accordance to present specifications are described here below:

Equipment type B (EN60601-1)

Equipment type BF (EN60601-1)

Danger: high temperature

Alternating current

Contraindication

The physical strain to execute the respiratory manoeuvre is contraindicated in case of some symptoms or pathology. The following list is not complete and must be considered as a piece of mere information.

Contraindications for the Spirometer tests

Absolute contraindications

For FVC, VC and MVV tests:

• Post-operating state from thoracic surgery

For FVC tests:

- Severe instability of the airways (such as a destructive bronchial emphysema)
- Bronchial non-specific marked hypersensitivity
- Serious problems for the gas exchange (total or partial respiratory insufficiency)

Relative contraindications

For FVC tests:

- spontaneous post-pneumothorax state
- arterial-venous aneurysm
- strong arterial hypertension
- pregnancy with complications at the 3rd month.
- For MVV test:
- hyperventilation syndrome

Contraindications for Bronchial provocation tests

The bronchial provocation tests must be executed according to the doctor's discretion. There are not data that reveal specific contraindication for the bronchial provocation test through inhalation.

The modern standard processes have been revealing secure in several clinical studies. However it is recommendable to respect the following contraindications:

Absolute contraindications

- Serious bronchial obstruction (FEV1 in adults)
- Recent myocardium infarct
- Recent vascular-cerebral accident
- Known arterial aneurysm
- Incapacity for understanding the provocation test procedures and its implications.

Relative contraindications

- Bronchial obstruction caused by the respiratory manoeuvre.
- Moderate or serious bronchial obstruction. For ex. FEV1 < 1.51 in men and FEV1 in women < than 1.21.
- Recent infection in the superior air tracts
- During the asthmatic re-acuting
- Hypertension
- Pregnancy
- A pharmacology treatment epilepsy

Contraindications for Exercise testing

Read carefully the exercise testing chapter.

Environmental condition of use

COSMED units have been conceived for operating in medically utilised rooms without potential explosion hazards.

The units should not be installed in vicinity of x-ray equipment, motors or transformers with high installed power rating since electric or magnetic interferences may falsify the result of measurements or make them impossible. Due to this the vicinity of power lines is to be avoided as well.

Cosmed equipment are not AP not APG devices (according to EN 60601-1): they are not suitable for use in presence of flammable anaesthetic mixtures with air, oxygen or nitrogen protoxide.

If not otherwise stated in the shipping documents, Cosmed equipment have been conceived for operating under normal environmental temperatures and conditions [IEC 601-1(1988)/EN 60 601-1 (1990)].

- Temperature range 10° C (50° F) and 40° C (104° F).
- Relative humidity range 20% to 80%
- Atmospheric Pressure range 700 to 1060 mBar
- Avoid to use it in presence of noxious fumes or dusty environment and near heat sources.
- Do not place near heat sources.
- Cardiopulmonary resuscitation emergency equipment accessible.
- Adequate floor space to assure access to the patient during exercise testing.
- Adequate ventilation in the room.

Safety and conformity

Safety

IEC 601-1 (1988) /EN 60 601-1 (1990);

Find reported below the complete classification of the device:

- Class I type B device
- Protection against water penetration: IP00, ordinary equipment unprotected against water penetration
- Non sterile device
- Device not suitable in the presence of flammable anaesthetics;
- Continuous functioning equipment;

EMC

The system meets the EMC Directive 89/336 EN 60601-1-2 EN 55011 Class B (emission), IEC 1000-4-2, IEC 1000-4-3, IEC 1000-4-4

Telemetry

I-ETS 300 220, CEPT T/R 01-04

pr ETS RES 0908 (CE type conformity)

Transmission frequency and output power can be changed upon request according to the destination country requirements.

Quality Assurance

UNI EN ISO 9001:2000 (Registration n° 387-A Cermet)

Medical Device Directive (CE mark)

MDD 93/42/EEC (Notified Body 0476). Class IIa

FCC (only USA version)

FCC ID: SN7-K4B2T-USA (transmitter)

FCC ID: SN7-K4B2R-USA (receiver)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

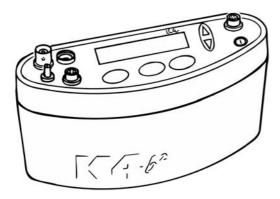
Keynotes

Here are the keynotes used to make the manual easier to read.

Typographic keynotes

These are the typographic keynotes used in the manual.

Style	Description					
Bold	indicates a control or a key to be pressed.					
"Italic"	indicates a messages shown by the firmware.					


Graphic keynotes

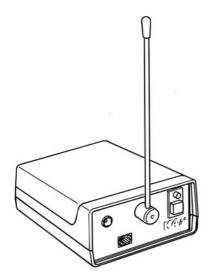
These are the graphic keynotes used in the manual.

Illustration	Description						
START	shows the button to click in the software to activate the related feature.						

System overview

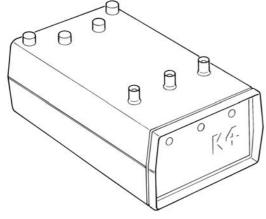
Portable Unit (PU)

It is fixed to the patient during the test by an anatomic harness. The PU contains the O_2 and CO_2 analyzers, sampling pump, UHF transmitter, barometric sensors and electronics. It is powered by the rechargeable battery fixed to the back side of the harness.


K4 b² is also provided with a small display, the PU shows in real time the following parameters: VT, VE, VO₂, VCO₂, R, HR, Rf Marker, battery charge level, temperature and barometric pressure.

USA and Japan versions have the antenna not detachable from the portable unit.

Besides data processing and presentation, the Portable Unit has the following functions:


- Patient data input
- Environment data input (humidity)
- Gas and turbine calibration (automatic)
- Memory functions
- Tests data management
- Data loading to a PC (via RS232)

Telemetry Data Transmission, Receiver Unit (RU)

The RU consists of a small unit connected to a PC through the RS 232 serial port. The transmission is achieved by a miniaturized transmitter module located inside the Portable Unit.

Battery Charger Unit (CU)

The CU allows the simultaneously charge of the 3 Ni-Cd batteries and to supply the PU during the warm up time.

Flowmeter

The system uses a bi-directional digital turbine. It opposes a very low resistance to flow (<0,7 cmH₂O/l/s to 12 l/s). The air passing through the helical conveyors, takes a spiral motion which causes the rotation of the turbine rotor. The rolling blade interrupts the infrared light beamed by the three diodes of the optoelectronic reader. Every interruption represents 1/6 turn of the rotor, this allows to measure the number of turn in the time.

Gas analysers

The O_2 and CO_2 analysers are temperature-controlled and the internal pressure and expired flow are monitored for an higher reliability if the measurements.

The K4 b² uses Nafion Permapure ® which is a semipermeable capillary tube capable of removing the humidity in excess without altering the gas concentrations..

The analysers calibration is automatic and shows both graphically and numerically the flow and concentration signals and the accuracy of the baseline/gain.

PC Software

The PC software, running on WindowsTM, allows the user to manage data stored in the Portable Unit or transmitted to PC. Here following a list of the main features available:

• Test data management.

•

- Viewing data in table and graphic form
- Automatic and manual detection of anaerobic threshold (modified V-slope method).
- On-line data presentation during tests.
- Advanced data elaboration (filtering, smoothing, built in spread-sheet features).
- O₂ Kinetics (O₂ deficit, O₂ debt and time constant in both rising and falling edge of a constant load exercise test).
- Flow-Volume loops during the test and overlapped on the rest FVC.
- Real time display of the O₂ and CO₂ waveforms during the test.
- Control of any ergometer provided with a RS232 interface.
- Custom fittings (linear and exponential).
- Spirometry (FVC, VC, IVC, MVV).
- File exporting in three different formats (Lotus 123TM, ExcelTM, ASCII).
- Automatic detection of the "Steady State".
- Adding parameters and predicted equations trough the "Formula Editor" tool-kit.
- DDE with Microsoft Excel.
- Customizing software environments (colours, printed parameters...).
- Help on line.

Before starting

Before operating the K4 b^2 we strongly recommend to check the equipment and register you as a customer.

Checking the packing contents

Make sure that the package contains the items listed below. In case of missing or damaged parts, please contact Cosmed technical assistance.

K4 b² standard packaging

a: Non telemetric version

b: Internat. telemetric version

c: USA telemetric version

d: Japan telemetric version

Code	(version)	Qty a	b	с	d	Description (see note by side)
C0095	50-01-04	1				K4 b ² Portable Unit
C0095	52-01-04		1			K4 b ² Portable Unit
C0095	52-02-04			1		K4 b ² Portable Unit
C0094	49-01-04				1	K4 b ² Portable Unit
C0159	99-01-04		1		1	K4 b ² Receiver Unit
C0159	99-02-04			1		K4 b ² Receiver Unit
C0026	50-01-04	1	1	1	1	K4 b ² Battery Charger Unit
C0157	70-01-06		1			Antenna
C0034	42-01-12		1			Antenna cable
C0212	20-01-05	2	2	2	2	Turbine Ø 28mm
C0220	00-01-11	1	1	1	1	Kit optoelectronic reader K4 b ²
A 800	900 001	2	2	2	2	Head cap for the adult masks
C0221	10-01-08	1	1	1	1	Permapure L73cm
C0212	25-01-10	1	1	1	1	Mask mouth/nose breath adult S
C0213	35-01-10	1	1	1	1	Mask mouth/nose breath adult M
C0214	45-01-10	1	1	1	1	Mask mouth/nose breath adult L
A 661	200 001	1	1	1	1	HR elastic belt
A 661	200 002	1	1	1	1	HR polar transmitter
A 182	320 001	2	2	2	2	Anti moisture filter
C0146	50-01-06	1	1	1	1	RH/TA probe
A 362	060 001	1	1	1	1	Power cord Schuko 2m
C0150	07-01-12	1	1	1	1	RS232 cable K4 b ²
C0065	59-01-12	1	1	1	1	Cigar light adapter
A 410	110 002		4	4	4	Battery size AA 1,5V
C0210	00-01-06	3		3	3	Battery pack TX K4 b ²
C0210	00-02-06		3			Battery pack TX K4 b ²
C0034	41-01-12	2	2	1	1	Cable power supply BNCxRF
C0157	77-01-12		1	1	1	Cable power supply RX unit
C0192	29-01-08	1	1	1	1	Harness K4 b ² adult
C0114	43-01-98	1	1	1	1	Velcro strips (set 8 pieces)
C0180	00-01-05	1	1	1	1	Kit gas calibration
C0150)9-01-30	1	1	1	1	Carrying case
C0158	38-01-20	1	1	1	1	Holder Portable Unit
A 680	023 500	2	2	2	2	Time lag fuses 5x20 250V T500mA
A 680	044 500	1	1	1	1	Fuses 6,3x32 250V F5A
C0179	90-01-36	1	1	1	1	PC software
C0199	99-02-DC	1	1	1	1	Conformity declaration
C0006	67-02-94	1	1	1	1	Registration card
C0150)8-02-91	1	1	1	1	K4 b ² User Manual

Warranty registration

Before using the system, please take a moment to fill in the registration form and the warranty and return them to COSMED, by doing this you are eligible to the customers assistance service.

For further information, please refer to the enclosed registration and warranty form. If the form is not enclosed in the packaging, please contact directly COSMED.

Register the product via software

Together with the PC software, a registration software is supplied. With this software it is possible to fill in an electronic form with the customer information.

- 1. To run the software, double click on the icon **Registration** or select **Registration...** from **?** menu.
- 2. Type the requested information and click **Send...** to send the form via e-mail to COSMED.

How to contact COSMED

For any information you may need, please contact the manufacturer directly at the following address:

COSMED S.r.l. Via dei Piani di Monte Savello, 37 P.O. Box n. 3 00040 - Pavona di Albano Rome - ITALY Voice: +39 (06) 931.5492 Fax: +39 (06) 931.4580 email: customersupport@cosmed.it Internet: http://www.cosmed.it

Complain, feedback and suggestions

If you have any complain, feedback information or suggestion, please inform us at complain@cosmed.it.

Options/Accessories

Accessories

Code	Quantity	Description
C02150-01-11	. 1	Adapter Spirometry kit x opto-reader 2000
C00600-01-11	. 1	3 liters syringe for flows and volume calibration
C02115-01-10) 1	Adult face mask with x Turbine 2000
C01278-01-30) 1	Mask mouth/nose breath ID28 paediatric L
C01277-01-30) 1	Mask mouth/nose breath ID28 paediatric S
A 800 900 004	4 1	Paediatric Headcap

Options

Telemetry data transmission

The optional Telemetry data transmission allows the researcher to transmit data on line to a PC up to a distance of 800 meters. All signals are in real time transmitted via radio to the RU to be saved and displayed on-line to any PC.

Spirometry Kit

Optional software and accessories designed for performing screening Spirometry such as Forced Vital Capacity, Slow Vital Capacity, Maximum Voluntary Ventilation and broncho-challenge tests.

PC configuration required

- Pentium II 350 MHz.
- Windows 98, XP.
- 64 Mb RAM .
- CD drive.
- VGA, SVGA monitor.
- Serial Port RS 232 available (2 serial ports in case of Ergometer control). An USB port can replace one RS232 serial port, if using the USB-RS232 adaptor (Cosmed code A 388 410 001).
- Any Mouse and Printer compatible with the MS WindowsTM operative system.
- PC conform to European Directive 89/336 EMC

Technical features

Portable Unit

Memory	16,000 breaths
Display LCD	2 lines x 16 characters
Keyboard:	waterproof, 6 keys
Serial Port	RS 232C
Power supply:	Ni-MH rechargeable batteries 3 hours endurance
Thermometer:	0-50°C
Barometer:	53-106 Кра
Dimensions PU :	170x55x100 mm,
Dimensions battery:	120x20x80 mm
Weight:	400g

Receiver Unit

Transmission range:	800 meters
Battery:	4 x 1.5 V AA
Dimension:	170 x 48 x 90 mm
Weight:	550 g
PC interface:	RS 232

Battery charger Unit

Power supply	120V - 240 V
Power consumption	25 W

Flowmeter

Type:	Bidirectional digital turbine Ø 28 mm
Flow Range:	0,03-20 L/sec
Accuracy:	$\pm 2\%$
Resistance:	<0.7 cmH ₂ O s/L @ 12 L/s
Ventilation Range:	0-300 litres x min

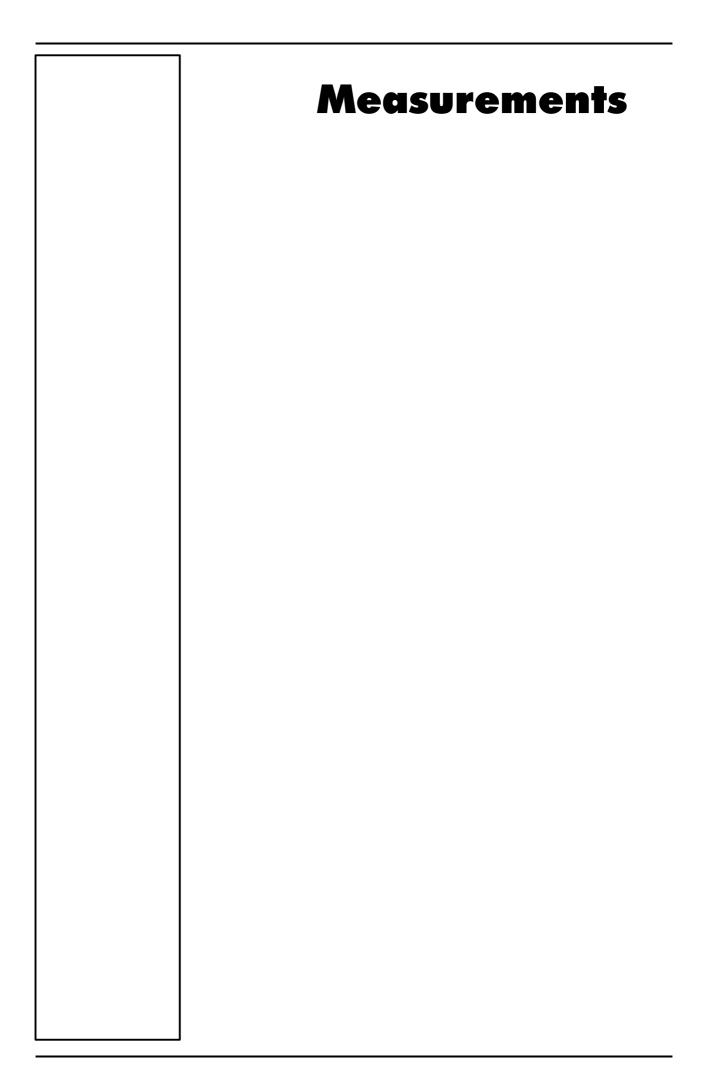
Oxygen Sensor (O₂)

Response time:	<150 ms
Range:	7-24% O ₂
Accuracy:	$\pm 0.02\%$ O ₂

Carbon Dioxide Sensor (CO₂)

Response time:	<150 ms
Range:	0-8%
Accuracy:	±0.01%

Humidity absorber


Capillary of Nafion (Permapure ®)

Power Supply

Voltage: $100V-240V \pm 10\%$; 50/60HzPower consumption60W

Environmental Sensors

Temperature:	0-50°C
Barometer:	400-800 mmHg
Humidity:	0-100%

Pulmonary function tests and measured parameters

Breath by Breath exercise testing

Symbol	UM	Parameter
VO2	ml/min	Oxygen Uptake
VCO2	ml/min	Carbon Dioxide production
Vt	1	Tidal Volume
FetO2	%	End Tidal O2
FetCO2	%	End Tidal CO2
R		Respiratory Quotient
VE	l/min	Ventilation
HR	1/min	Heart Rate
Qt	1	Cardiac output
AT		Anaerobic Threshold
VE	l/min	Ventilation
SV	l/min	Stroke volume
RF	1/min	Respiratory Frequency
FeO2, FeCO2	%	Averaged expiratory concentration of O2 e CO
VE/VO2		ventilatory equivalent for O2
VE/VCO2		ventilatory equivalent for CO2
VO2/HR	ml/beat	Oxygen pulse
VO2/Kg	ml/min/Kg	VO2 per Kg
Ti, Te, Ti/Ttot	sec	time breaths
Vd/Vt		Vd/Vt ratio
PaCO2	mmHg	arterial PCO2 (estimated)
P(a-et)CO2	mmHg	Delta PaCO2 – PetCO2

Indirect Calorimetry

Symbol	UM	Parameter
EE	Kcal/day	Energy Expenditure
EE/BSA	Kcal/day/m ²	Energy Expenditure/Body surface area
EE/Kg	Kcal/day/Kg	Energy Expenditure pro Kg
FAT	Kcal/day	Fats
СНО	Kcal/day	Carbohydrate
PRO	Kcal/day	Protein
FAT%	%	% Fat
CHO%	%	% Carbohydrate
PRO%	%	% Protein
npRQ		Respiratory quotient not protein

Lactate Threshold (V-Slope)

Symbol	UM	Description		
VO ₂ @ LT	l/m	Lactate (Anaerobic)	Threshold	STPD
R @ LT		Respiratory Quotient	@ LT	
Time @ LT	hh:mm:ss	Time @ LT		
VCO ₂	ml/min	CO2 output @ LT	STPD	
VE	l/min	Ventilation @ LT	BTPS	

|--|

O2 Kinetics

Parameter	UM	Calculation
O ₂ deficit	l/m	VO2@work*tau
O ₂ debt	l/m	VO2'@work*tau

Spirometry Tests (option)

FVC - Forced Vital Capacity

Symbol	UM	Parameter
FVC	1	Forced Expiratory Vital Capacity
FEV1	1	Forced Expiratory Volume in 1 sec
FEV1/FVC%	%	FEV1 as a percentage of FVC
PEF	l/sec	Peak Expiratory Flow
FEV0.5	1	Forced Expiratory Volume in 0.5 sec
FEV6	1	Forced Expiratory Volume in 6 sec
FEV1/FEV6	%	FEV1 as a percentage of FEV6
FEV6/FVC%	%	FEV6 as a percentage of FVC
Best FVC	1	Best Forced Expiratory Vital Capacity
Best FEV1	1	Best Forced Expiratory Volume in 1 sec
Best PEF	l/sec	Best Peak Expiratory Flow
Vmax25%	l/sec	Expiratory Flow when 75% of the FVC remains to be exhaled
Vmax50%	l/sec	Expiratory Flow when 50% of the FVC remains to be exhaled
Vmax75%	l/sec	Expiratory Flow when 25% of the FVC remains to be exhaled
FEF25-75%	l/sec	Mid-exp flow between 25-75% FVC
FET100%	sec	Forced expiratory time
FEV2	1	Forced Expiratory Volume in 2 sec
FEV3	1	Forced Expiratory Volume in 3 sec
FEV2/FVC%	%	FEV2 as a percentage of FVC
FEV3/FVC%	%	FEV3 as a percentage of FVC
FEV1/VC%	%	Tiffenau index
FEF50-75%	l/sec	Mid-exp flow between 50-75% FVC
FEF75-85%	l/sec	Mid-exp flow between 75-85% FVC
FEF0.2-1.2%	l/sec	Mid-exp flow between 0.21 - 1.21
FiVC	L	Inspiratory Forced Vital Capacity
FiF25-75%	l/sec	Forced mid-inspiratory flow
FiV1	l/sec	Forced Inspiratory Volume in 1 sec
PIF	l/sec	Peak Inspiratory Flow
VEXT	ml	Extrapolated Volume (back extrapolation)
PEFT	msec	Time to PEF (10% - 90%)

VC/IVC - Slow Vital Capacity and Ventilatory pattern

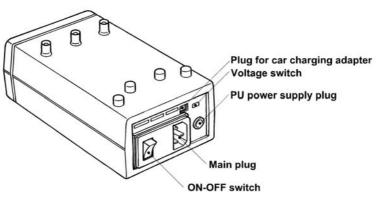
Symbol	UM	Parameter
EVC	1	Expiratory Vital Capacity
IVC	1	Inspiratory Vital Capacity
ERV	1	Expiratory Reserve Volume
IRV	1	Inspiratory Reserve Volume
IC	1	Inspiratory Capacity

VE	l/min	Expiratory Minute Ventilation
Vt	1	Tidal Volume
Rf	1/min	Respiratory Frequency
Ti	sec	Duration of Inspiration
Те	sec	Duration of Expiration
Ttot	sec	Duration of Total breathing cycle
Ti/Ttot		Ti/Ttot ratio
Vt/ti	l/sec	Vt/ti ratio

MVV - Maximum Voluntary Ventilation

Symbol	UM	Parameter
MVV	l/min	Maximum Voluntary Ventilation
MVt	1	Tidal Volume (during MVV)
MRf	1/min	Maximum Respiratory frequency
MVVt	sec	MVV duration time

Bronchoprovocation Response


UM	Parameter
%	Fall in FEV1 from baseline or post diluent
%	Fall in Vmax50% from baseline or post diluent
	Provocative dose causing FEV1 to fall 10% from baseline
	Provocative dose causing FEV1 to fall 15% from baseline
	Provocative dose causing FEV1 to fall 20% from baseline
	%

Installation

Installation sequence

Before starting operating with the system make sure to meet the environmental and operational conditions reported in Chapter 1.

Battery Charger Unit

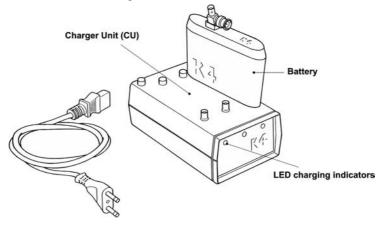
The Battery Charger Unit allows the following functions:

- Charge 3 rechargeable batteries simultaneously.
- Charge batteries by means of the car lighter plug.
- Supply the K4 b² Portable Unit directly by the main power.

Check voltage

The Battery Charger Unit is provided with a switch that allows to change the voltage according to the following values:

- 115V 50-60 Hz (100V-120V)
- 220V 50-60 Hz (200V-240V)


To change setting, move the switch on the new voltage by using a small screwdriver or a pen.

Turn the Unit on

- 1. Connect the Charger Unit to the main plug.
- 2. Turn on the Unit by pressing the orange power switch.

Charge the batteries

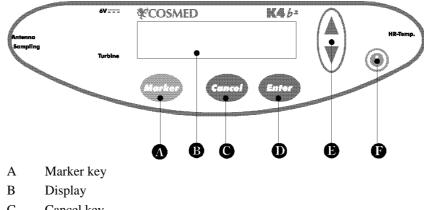
- 1. Insert the batteries into the places on the top of the unit as shown in the illustration below.
- 2. The small green LED placed on the front panel warns the charge in progress. The battery is charged when the light signal placed on the front panel of the Charger Unit starts blinking.

Note: USA and Japan versions have not the antenna connector on the battery.

Warning: Before turning the Battery Charger Unit on, check the voltage switch selected meets your main voltage.

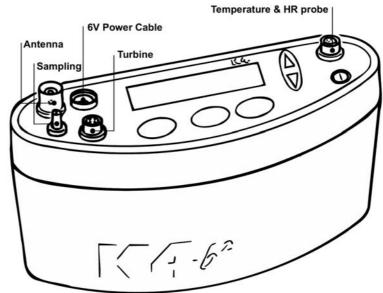
Battery low

It is recommended to charge batteries before each test. When the batteries are low the warning message is prompted on the PU by two beeps for an half charged battery and three beeps for a complete discharged battery.


As soon as the message appears, you must change batteries immediately since the system has only few minutes of endurance still available. The system allows to change the battery during testing as well.

During the test, it is possible to monitor the battery status in real time by selecting **Information** from **View** menu.

Portable Unit

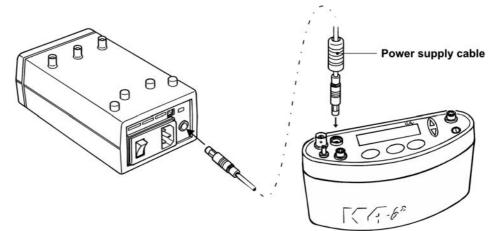

The PU can be supplied either by the Charger Unit or by rechargeable batteries. It is recommended during Warm-up to supply it exclusively by the Charger Unit time in order to save the battery used normally during the test.

The control panel of the Portable Unit is mainly composed by a keyboard, and 4 plugs for power supply, turbine, antenna, heart frequency and sampling tube connections. The following illustrations show in detail the control panel.

- C Cancel key
- D Enter key
- E Scroll up/down key
- F On/Off switch

Note: USA and Japan versions have the antenna not detachable from the portable unit.

Important: In order to ensure accurate gas measurements, you must wait for a warming-up time before operating the K4 b². During this period the PU must be turned on for at least 45 minutes.

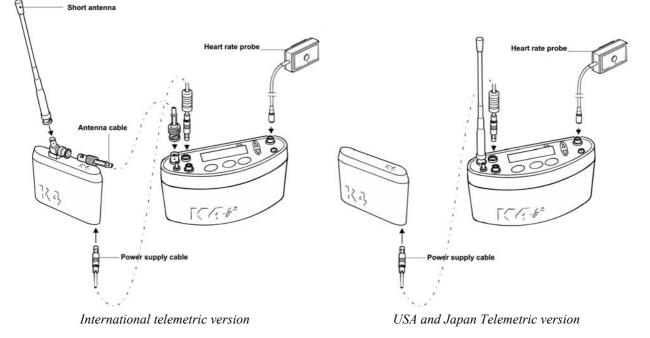

Warning: Supply K4 b² with Charger Unit for warming up only.

Warm up

The K4 b^2 uses O_2 and CO_2 heated sensors. We strongly recommend at least 45 minutes warm-up time at an ambient temperature of 20°C. More time is necessary if the environmental temperature is lower. Calibration or testing before warm-up time is completed, can cause wrong results.

Warming-up the unit by main power

- 1. Connect the Charger Unit to the main power by the AC power cable.
- 2. Connect the power-supply cable both in the Charger Unit and K4 b^2 as shown below and turn both the units on.

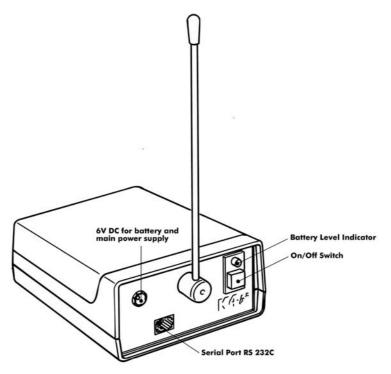


Turning on/off the portable unit

To turn the K4 b^2 on or off press the **on/off** key.

Connect the rechargeable battery

Plug the power supply cable into the battery socket as shown in the following illustration.



Sometimes you might need to change the battery during the test. To do this you must change the battery in the shorter time possible. The Portable Unit does not transmit data while it is not powered.

Warning: During testing make sure to change the battery as fast as possible, since a long time could compromise the reliability of measurements.

Receiver Unit

Optionally the K4 b^2 is provided with a transmitter board (located inside the K4 b^2 unit) and a Receiver Unit to monitor "on-line" exercise tests performed either in the field or in the lab. All data measured by the K4 b^2 are transmitted "breath by breath" to the Receiver Unit in real time. The RU (illustrated below) must be connected to a Personal Computer with any RS 232 serial port to display data "on-line" in the management software. The transmission range is 800 meters in open field. However during transmission the test is stored in the memory of the K4 b^2 Unit so that, in case of transmission interference no data is lost.

Turning on/off the receiver unit

To turn the receiver unit on or off use the switch on the front side of the unit.

Receiver unit power supply

The K4 b^2 Receiver Unit is provided with four 1.5 V AA batteries. Before turning the unit on be sure that batteries are charged. If the status battery indicator blinks red you must replace the 4 batteries. The unit can be also supplied by 6V DC power through the cable provided in the equipment.

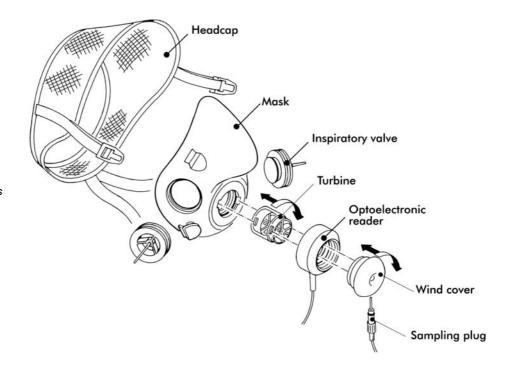
The receiver unit can be supplied by two different sources:

- by the Battery Charger Unit: connect the units by the 6V DC cable.
- by 4 AA 1,5V batteries.

Calibration Gas Cylinder

In order to calibrate the sensors you need to have available calibration cylinder with the following gas concentration:

Cylinder	Recommended Gas mixture	
Calibration	O ₂ 16%, CO ₂ 5%, N ₂ Balance	
For the calibration procedure, see the Calibration chapter.		


Connecting the K4 b² to the patient

K4 b^2 is a portable system with a total weight lower than 1 kg. Cosmed has developed a special harness to fix the unit to any subject. The harness consists of a belt that can be adjusted to fit different sizes and positions. I.e. if you need to test cyclist or rower athletes we recommend to locate both units (K4 b^2 and battery) on the back of the subject to increase comfort and to avoid any obstacles during movements. For this reasons plates are provided with the harness and they can be easily removed and placed in different positions.

Assemble the mask and the flowmeter

K4 b^2 is provided with a turbine flowmeter that can be easily disassembled for allowing cleaning and disinfection.

- 1. Plug the turbine in the mask adapter by pushing and rotating it clock-wise till you feel a stop.
- 2. Insert the optoelectronic reader over the turbine and press it till the mask.
- 3. Plug the wind cover as described in point 1.
- 4. Plug the sampling tube in the little hole located in the optoelectronic-electronic reader.
- 5. Plug the turbine cable in the Turbine plug control panel of the K4 b^2 .

Notice: In order to preserve items composing the mask, it's recommended to grease periodically O-rings in the optoelectronic reader with Silicone compound grease.

Using the "Ultimate Seal"

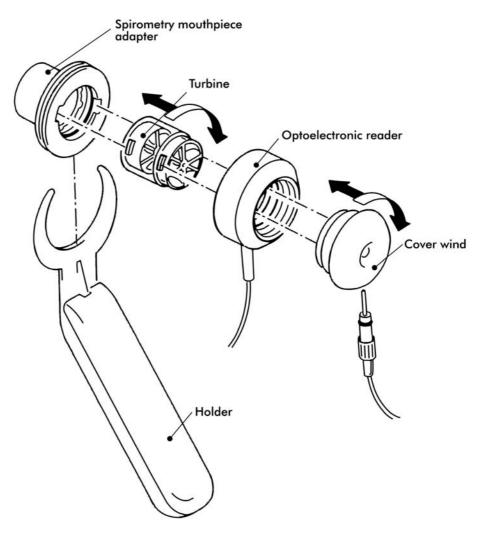
The "ultimate seal" is a moulded of Elasto-Gel, a glycerine based hydrogel. This product is a unique polymer gel that forms an intimate seal between the face and the mask. It has to be used for mask applications on hard to seal faces and where leaks are not tolerated.

- Will not irritate the skin
- Contains no adhesives.
- Has no odour
- Will not dry out
- Single patient use

Notice: Avoid the exposure to the sun. Do not put the seal into the water.

Apply the seal to the mask

Apply seal to clean, residue-free mask only and follow the instructions below:


- 1. Remove the plastic tray from the bag. Peel off clear film and retain for later use.
- 2. While holding tray align the nose area of mask to nose area of Ultimate Seal[™] gel. Press together and roll mask down over the surface of the gel seal attaching it to the mask and releasing it from the tray.
- 3. If needed, adjust the position of the seal, aligning it with the outer perimeter of the mask sealing surface.
- 4. The mask is now ready to be placed on the subject's face.

To remove seal on mask

- The Ultimate SealTM have been conceived for a single patient use only, it can not be cleaned or sterilised.
- If mask requires cleaning for a new patient application then pull off and dispose of the Ultimate SealTM.
- To keep the seal clean between use, keep it attached to the mask and place the clear film against the Ultimate $Seal^{TM}$ gel on the mask. When the seal becomes discoloured or opaque (approximately two weeks) dispose of the current seal and replace it with a new one.

Assembling the flowmeter for spirometry tests

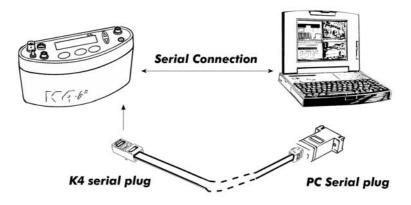
In case the spirometry kit option is purchased assemble the turbine as shown in the illustration below.

Fixing the K4 b^2 to the patient

- 1. Fix the heart belt to the patient's box thorax.
- 2. Fix the K4 b^2 unit to the front of the harness. Do the same operation with the battery on the back .
- 3. Connect the battery cable to the 6V plug of the K4 b² control panel. Be sure that the red plug, that repairs the plug from water or sweat drops, is on the Portable Unit side.
- 4. Connect the antenna cable to the Antenna plug of Portable Unit control panel.
- 5. Insert the heart frequency receiver and temperature probe cable in the HR-Temp plug placed on the control panel.
- 6. Insert the male connector of the turbine in the Turbine plug on the control panel.
- 7. Fix the power supply cables, antenna and turbine on the right side of the jacket with the velcro stripes provided in the equipment. Fix the heart frequency probe on the left side.

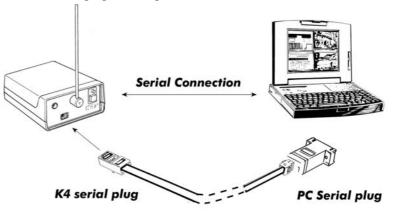
Note: USA and Japan versions differ from the picture because of the antenna placement.

Notice: Be sure to fix the Heart rate probe on the left side, while the other cables have to be fixed on the right side. This must be done for avoiding interferences between cables.


Notice: Fix all cables with the velcro strips provided with the equipment.

Connecting the K4 b² to the PC

K4 b^2 can be connected to any PC provided with serial port in order to monitor "online" physiological data during any kind of activity.


Connect the Portable Unit to the PC

Connect the K4 b^2 Portable Unit to a serial port available in the PC. Be sure to set the K4 b^2 software to the proper serial port for the transmission.

Connect the Receiver Unit to the PC

Connect the telemetry module to a serial port available in the PC. Be sure to set the K4 b^2 software to the proper serial port for the transmission.

Software installation

The software is made of two programs: one for the ergometry and the other one for the spirometry (option). The two programs share the same archive and use the same program for the system calibration, even if they are used for performing completely different tests.

Installing the software

Notice: The software is copy-protected. Install the software from the original disk.

- 1. Select Run... from Windows Start menu.
- 2. Insert the disk in the proper drive.
- 3. In the Command line, type <name of the drive>:\install.
- 4. Click on **OK** (or press **ENTER** key).
- 5. The program will load up a dialog box and ask for a directory where to be installed.
- 6. When the installation is over, the program will advise you with a message indicating that the installation has been successfully completed, click on **End**.

Note: the directory for the Spiro software must be the same of the K4 b^2 (ergo).

Run the software

- 1. In the Windows **Start** menu, open the Program Group in which the software was installed.
- 2. Click the $K4 b^2$ icon.

PC port configuration

The first time the software is used, it is necessary to configure the communication port with the PC (USB, COM1, COM2,...).

For further details, see the chapter Database management.

Software main features

Display	
Display	The program may contain several windows. The active window is highlighted with a different colour of the caption. Some functions of the program are "active window" sensitive (Print, right key of the mouse).
Tool bar	
	Many of the functions that may be selected from the menu can be activated more rapidly by clicking with the mouse on the corresponding icon in the tool bar. Positioning the mouse cursor on one of the buttons of the toolbar (if the option Hints is enabled), the description of the corresponding function is shown in a label.
	Show/hide the toolbar Select Toolbar from Options menu in order to show or hide the toolbar.
Dialog windows	The typical operating environment of Microsoft Windows is the Dialog box. This window is provided with a series of fields in which input the information.
	Use of the keyboard
	• To move the cursor among fields, press the Tab key until you reach the desired field.
	• Press the Enter key to confirm the information input on the dialog box or press the Esc key to cancel changes.
	Use of the mouse
	• To move the cursor among fields, move the mouse on the desired field and left- click.
	• Click on the OK button with the Left button of the mouse to confirm the information input on the dialog box or click on Cancel button to cancel changes.
Scroll bars	
	Some windows are provided with scroll bars that help to see data exceeding the window space available.
	• To move the scroll bar row by row click the scroll arrows at the end of the scroll bars
	• To move the scroll bar page by page click on the grey area at both sides of the scroll fields
On line help	
•	COSMED K4 b^2 Help is a complete on-line reference tool that you can use at any time. Help is especially useful when you need information quickly or when the user manual is not available. Help contains a description of each command and dialog box, and explains many procedures for accomplishing common tasks.
	To get the Help on line, press the F1 key.
Software version	To know the software version and the serial number of the software, select About from ? menu.