

Installation Instructions

NOTE: Read the entire instruction manual before starting the installation.

TABLE OF CONTENTS

PAGE
SAFETY CONSIDERATIONS 1
General
RECEIVING AND INSTALLATION 5-8
Check Equipment 5
Identify Unit 5
Inspect Shipment
Provide Unit Support 5
Slab Mount
Provide Clearances
Place Unit 5
Select and Install Ductwork
Install Flanges for Ductwork Connections (50ZP060 only) . 5
Converting Horizontal Discharge Units to Downflow (Vertical
Discharge
Provide for Condensate Disposal
Install Electrical Connections
High Voltage Connections
Routing Power Leads into Unit
Connecting Ground Lead to Unit Ground
Routing Control Power Wires
Special Procedures for 208-V Operation
PRE-START-UP 9
START-UP
MAINTENANCE
TROUBLESHOOTING 14
START-UP CHECKLIST 14
NOTE: TO INSTALLER - Before the installation , REAL

NOTE: TO INSTALLER - Before the installation , READ THESE INSTRUCTIONS CAREFULLY AND COMPLETELY. Also, make sure the User's Manual is left with the unit after installation.

SAFETY CONSIDERATIONS

Improper installation adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock, or other conditions which may cause death, personal injury, or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product Refer to the individual instructions packaged with the kits or accessories when installing.

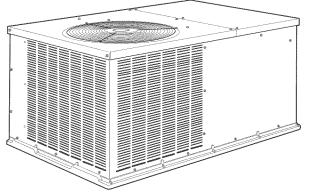
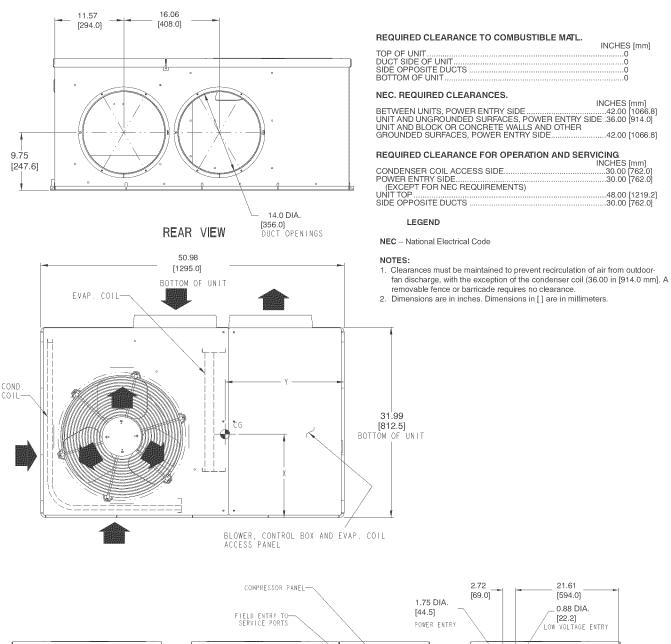


Fig. 1 - 50ZP (Size 036 Shown)

C00001

Follow all safety codes. Wear safety glasses, protective clothing, and work gloves. Use quenching cloth for brazing operations. Have a fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions included in literature and attached to the unit. Consult local building codes, the current editions of the National Electrical Code (NEC) NFPA 70. In Canada refer to the current editions of the Canadian Electrical

Recognize safety information. This is the safety-alert symbol \triangle When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury. Understand these signal words; DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which **will** result in severe personal injury or death. WARNING signifies hazards which **could** result in personal injury or death. CAUTION is used to identify unsafe practices which **may** result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which **will** result in enhanced installation, reliability, or operation.


A WARNING

ELECTRICAL SHOCK HAZARD

Code CSA C22.1.

Failure to follow this warning could result in personal injury or death.

Before installing or servicing system, always turn off main power to system and install lockout tag. There may be more than one disconnect switch.

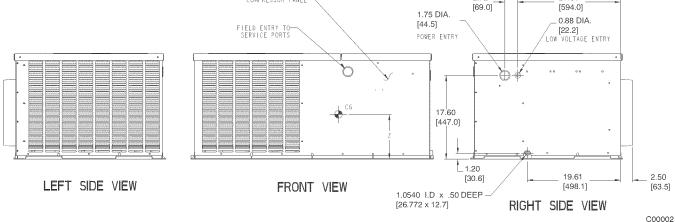
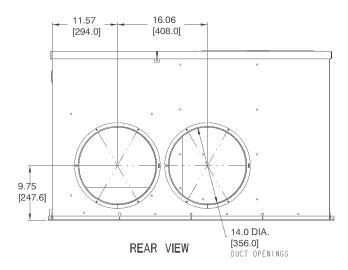



Fig. 2 - Base Unit Dimensions, 50ZP024-036

UNIT	ELECTRICAL CHARACTERISTICS	UNIT V	VEIGHT	CENTER OF GRAVITY IN. (MM)		
ONII	ELECTRICAL CHARACTERISTICS	lb	kg	X	Y	Z
50ZP024	208/230-1-60	219	99	355.6 (14.00)	508.0 (20.00)	241.3 (9.50)
50ZP030	208/230-1-60	226	103	355.6 (14.00)	508.0 (20.00)	241.3 (9.50)
50ZP036	208/230-1-60, 208/230-3-60	234	106	355.6 (14.00)	508.0 (20.00)	241.3 (9.50)

REQUIRED CLEARANCE TO COMBUSTIBLE MATL.

	INCHES MINI
TOP OF UNIT	0
DUCT SIDE OF UNIT	0
SIDE OPPOSITE DUCTS	0
BOTTOM OF UNIT	

NEC. REQUIRED CLEARANCES.

	INCHES [mm]
BETWEEN UNITS, POWER ENTRY SIDE	
UNIT AND UNGROUNDED SURFACES, POWER ENTRY	
UNIT AND BLOCK OR CONCRETE WALLS AND OTHER	
GROUNDED SURFACES, POWER ENTRY SIDE	42.00 [1066.8]

REQUIRED CLEARANCE FOR OPERATION AND SERVICING

REGULTED CELATIANCE I OT OF ENAMON AND SE	ITTOTION
CONDENSER COIL ACCESS SIDE	INCHES [mm]
CONDENSER COIL ACCESS SIDE	
POWER ENTRY SIDE	30.00 [762.0]
(EXCEPTEOR NEC REQUIREMENTS)	
UNIT TOP	48.00 [1219.2]
SIDE OPPOSITE DUCTS	30.00 [762.0]

LEGEND

NEC - National Electrical Code

NOTES:

- Clearances must be maintained to prevent recirculation of air from outdoorfan discharge, with the exception of the condenser coil (36.00 in [914.0 mm]. A removable fence or barricade requires no clearance.

 2. Dimensions are in inches. Dimensions in [] are in millimeters.

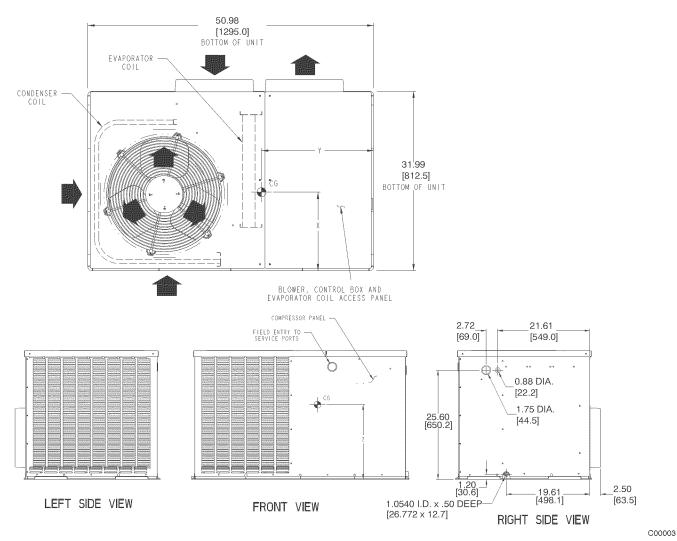
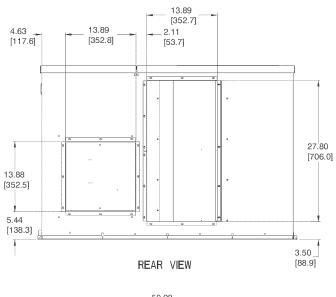



Fig. 3 - Base Unit Dimensions, 50ZP042, 048

UNIT	ELECTRICAL CHARACTERISTICS	UNIT W	UNIT WEIGHT		CENTER OF GRAVITY IN. (MM)		
ONT	LELOTHICAL CHARACTERISTICS	lb	kg	X	Y	Z	
50ZP042	208/230-1-60, 208/230-3-60	297	135	355.6 (14.00)	508.0 (20.00)	304.8 (12.00)	
50ZP048	208/230-1-60, 208/230-3-60	308	140	355.6 (14.00)	508.0 (20.00)	304.8 (12.00)	

REQUIRED CLEARANCE TO COMBUSTIBLE MATL.

	INCHES IMMI
TOP OF UNIT	0
DUCT SIDE OF UNIT	0
SIDE OPPOSITE DUCTS	0
BOTTOM OF LINIT	Ω

NEC. REQUIRED CLEARANCES.

	INCHES	[mm]
BETWEEN UNITS, POWER ENTRY SIDE	42.00	[1066.8]
UNIT AND UNGROUNDED SURFACES, POWER ENTRY S	SIDE .36.00	[914.0]
UNIT AND BLOCK OR CONCRETE WALLS AND OTHER		
GROUNDED SURFACES, POWER ENTRY SIDE	42.00	[1066.8]

REQUIRED CLEARANCE FOR OPERATION AND SERVICING INCHES [mm]

	INCHES IIIIII
CONDENSER COIL ACCESS SIDE	30.00 [762.0]
POWER ENTRY SIDE	1762.01
(EXCEPT FOR NEC REQUIREMENTS)	
UNIT TOP	48.00 [1219.2]
SIDE OPPOSITE DUCTS	30.00 [762.0]

LEGEND

NEC - National Electrical Code

NOTES:

 Clearances must be maintained to prevent recirculation of air from outdoorfan discharge, with the exception of the condenser coil (36.00 in [914.0 mm]. A removable fence or barricade requires no clearance.

C00004

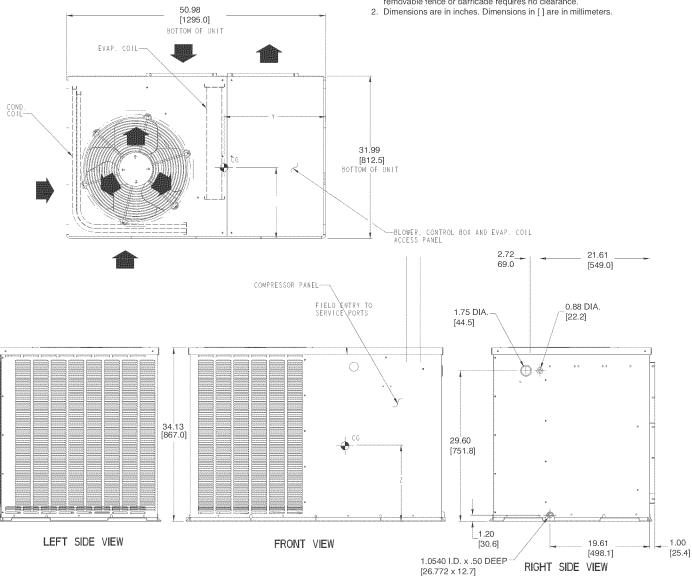


Fig. 4 - Base Unit Dimensions, 50ZP060

UNIT	ELECTRICAL CHARACTERISTICS	UNIT WEIGHT		CENTER OF GRAVITY IN. (MM)		IN. (MM)
ONIT	ELECTRICAL CHARACTERISTICS	lb	kg	X	Y	Z
50ZP060	208/230-1-60, 208/230-3-60	344	156	355.6 (14.00)	508.0 (20.00)	355.6 (14.00)

A CAUTION

CUT HAZARD

Failure to follow this caution may result in personal injury.

Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate clothing.

These instructions cover minimum requirements and conform to existing national standards and safety codes. In some instances, these instructions exceed certain local codes and ordinances, especially those that may not have kept up with changing residential construction practices. We require these instructions as a minimum for a safe installation.

GENERAL — 50ZP cooling units are fully self-contained and designed for outdoor installation. See Fig. 1. As shown in Fig. 2-4, units are shipped in a horizontal-discharge configuration for installation on a ground-level slab. All units can be field-converted to downflow discharge configurations for rooftop applications with a field-supplied plenum

RECEIVING AND INSTALLATION

Step 1 — Check Equipment

IDENTIFY UNIT — The unit model number and serial number are stamped on the unit identification plate. Check this information against shipping papers.

INSPECT SHIPMENT — Inspect for shipping damage while unit is still on shipping pallet. If unit appears to be damaged or is torn loose from its securing points, have it examined by transportation inspectors before removal. Forward claim papers directly to transportation company. Manufacturer is not responsible for any damage incurred in transit.

Check all items against shipping list. Immediately notify the nearest Carrier Air Conditioning office if any item is missing.

To prevent loss or damage, leave all parts in original packages until installation.

Step 2 — Provide Unit Support

SLAB MOUNT — Place the unit on a rigid, level surface, suitable to support the unit weight. The flat surface should extend approximately 2-in. (51 mm) beyond the unit casing on the 2 sides. The duct connection side and condensate drain connection sides should be flush with the edge of the flat surface. A concrete pad or a suitable fiberglass mounting pad is recommended.

A 6-in. (152 mm) wide gravel apron should be used around the flat surface to prevent airflow blockage by grass or shrubs. Do not secure the unit to the flat surface except where required by local codes.

The unit should be level to within 1/4 in. (6 mm). This is necessary for the unit drain to function properly.

Step 3 — Provide Clearances

The required minimum service clearances and clearances to combustibles are shown in Fig. 2-4. Adequate ventilation and condenser air must be provided.

The condenser fan pulls air through the condenser coil and discharges it through the fan on the top cover. Be sure that the fan discharge does not recirculate to the condenser coil. Do not locate the unit in either a corner or under an overhead obstruction. The minimum clearance under a partial overhang (such as a normal house overhang) is 48 in. (1219 mm) above the unit top. The maximum horizontal extension of a partial overhang must not exceed 48 in. (1219 mm).

Do not place the unit where water, ice, or snow from an overhang or roof will damage or flood the unit. The unit may be installed on wood flooring or on Class A, B, or C roof covering materials.

Step 4 — Place Unit

Unit can be moved with the handholds provided in the unit basepan. Refer to Table 1 for operating weights. Use extreme caution to prevent damage when moving the unit. Unit must remain in an upright position during all moving operations. The unit must be level for proper condensate drainage; the ground-level pad must be level before setting the unit in place. When a field-fabricated support is used, be sure that the support is level and that it properly supports the unit.

Step 5 — **Select and Install Ductwork**

The design and installation of the duct system must be in accordance with:

- the standards of the NFPA (National Fire Protection Association) for installation of nonresidence-type air conditioning and ventilating systems;
- NFPA90A or residence-type, NFPA90B; and/or local codes and residence-type, NFPA 90B;
- and/or local codes and ordinances.

Select and size ductwork, supply-air registers and return-air grilles according to ASHRAE (American Society of Heating, Refrigeration, and Air Conditioning Engineers) recommendations.

Use the duct flanges provided on the supply- and return-air openings on the side of the unit. See Fig. 2-4 for connection sizes and locations. The 14-in. (356 mm) round duct collars (size 024-048 units) are shipped inside the unit attached to the indoor blower. They are field-installed and must be removed from the indoor cavity prior to start-up, even if they are not used for installation.

INSTALL FLANGES FOR DUCTWORK CONNECTIONS (50ZP060 ONLY) — The 50ZP060 units are shipped with flanges which must be field-installed on the unit.

To install unit flanges:

- Five pieces of flange are shipped on the return-air opening of the unit. Remove the flanges from the shipping position. See Fig. 5. Screws are field-supplied.
- 2. One piece of flange is used as it is shipped (straight). Bend the other 4 pieces at right angles.
- Install the straight flange on the right side of the return-air opening in holes provided. See Fig. 6. Flanges should stick out from unit to allow for connection of ductwork.
- Install 2 hand-formed flanges onto return air opening in holes provided to form a rectangle around the return air opening.
- Install remaining 2 hand-formed flanges around discharge air opening in holes provided.
- 6. Ductwork can now be attached to flanges.

When designing and installing ductwork, consider the following:

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in damage to unit components.

When connecting ductwork to units, do not drill deeper than 3/4 in. (19.1 mm) in shaded area shown in Fig. 7 or coil may be damaged.

- All units should have field-supplied filters installed in the return-air side of the unit. Recommended sizes for filters are shown in Table 1.
- Avoid abrupt duct size increases and reductions. Abrupt change
 in duct size adversely affects air performance. Use flexible
 connectors between ductwork and unit to prevent transmission of
 vibration. Use suitable gaskets to ensure weathertight and airtight
 seal.

- Size ductwork for cooling air quantity (CFM).
- Insulate and weatherproof all external ductwork. Insulate and cover with a vapor barrier all ductwork passing through conditioned spaces. Follow latest Sheet Metal and Air Conditioning Contractors National Association (SMACNA) and Air Conditioning Contractors Association (ACCA) minimum installation standards for residential heating and air conditioning systems.
- Secure all ducts to building structure. Flash, weatherproof, and vibration-isolate duct openings in wall or roof according to good construction practices.

Fig. 8 shows a typical duct system with 50ZP unit installed.

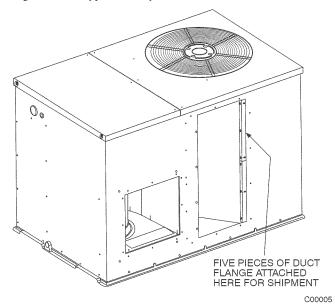


Fig. 5 - Shipping Location of Duct Flanges (Size 060 Only)

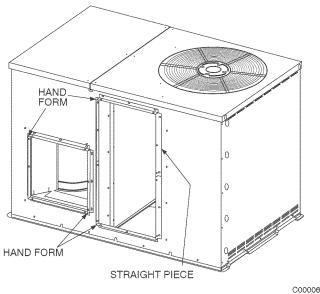


Fig. 6 - Flanges Installed on 50ZP060 Units

<u>Converting Horizontal Discharge Units to Downflow</u> (Vertical) <u>Discharge</u>

A WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Before performing service or maintenance operations on the system, turn off main power to unit and install lockout tag.

Units are dedicated side supply products. They are not convertible to vertical air supply. A field-supplied plenum must be used to convert to vertical air discharge.

Step 6 — **Provide for Condensate Disposal**

NOTE: Be sure that condensate-water disposal methods comply with local codes, restrictions, and practices.

Unit removes condensate through a 1–3/64 -in. (26.6 mm) ID hole which is located at the end of the unit. See Fig. 2-4 for location of condensate connection.

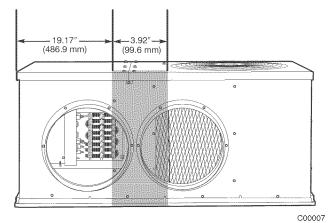


Fig. 7 - Area Not to Be Drilled More Than 3/4-in.

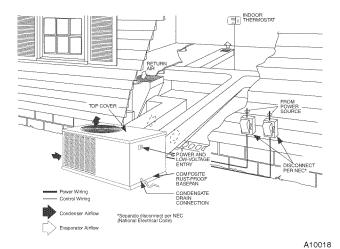
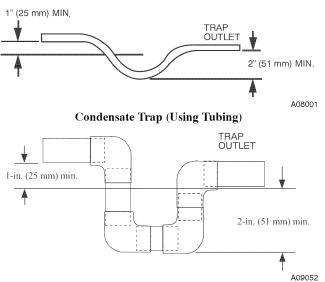



Fig. 8 - Typical Installation

Table 1 – Physical Data

DART COTO	204	•		0.40	040	
UNIT 50ZP	024	030	036	042	048	060
SHIPPING WEIGHT (Ibs)	268	275	284	347	358	394
(kg)	122	125	129	157	162	179
COMPRESSOR TYPE			Re	ciprocating		
REFRIGERANT				R-22		
Charge (lb)	2.8	3.9	4.7	4.4	6.1	7.5
(kg)	1.3	1.8	2.1	2.0	2.8	3.4
REFRIGERANT METERING DEVICE				trol™ Device		
CONDENSER COIL			Copper Tubes	, Aluminum Plat	e Fins	
RowsFins/in.	117	117	217	117	217	217
Face Area (sq ft)	6.7	7.9	6.2	11.1	8.6	10.7
CONDENSER-FAN				Propeller		
MOTOR CFM	1600	2000	2000	2600	2600	2800
Nominal Rpm	825	1100	1100	1100	1100	1100
Motor Hp	1/8	1/4	1/4	1/4	1/4	1/4
Diameter (in.)	20	20	20	20	20	20
(mm)	508	508	508	508	508	508
EVAPORÀTOR COIL			Copper Tubes	, Aluminum Plat	e Fins	
RowsFins/in.	215	315	315	315	315	415
Face Area (sq ft)	2.8	2.8	3.1	3.9	4.3	4.9
EVAPORATOR FAN MOTOR			D	irect Drive		
Blower Motor Size (in.)	10x8	10x8	10x8	10x9	10x9	10x10
(mm)	254 x 203	254 x 203	254 x 203	254 x 229	254 x 229	254 x 254
Nominal CFM	800	1000	1200	1400	1600	1850
Rpm Range	550-1000	550-1000	800-1050	800-1050	1000-1100	950-1100
Number of Speeds	3	3	3	3	2	3*, 2*
Factory Speed Setting	Low	Med	Low	Med	Low	Low
Motor Hp	1/4	1/4	1/2	1/2	3/4	1
CONNECTING DUCT SIZES			Round			Square
Supply Air (in.)			14			13.9 x 13.9
(mm)			356			353 x 353
Return Air (in.)			14			13.9 x 27.8
(mm)			356			353 x 706
FIELD-SUPPLIED RETURN-AIR FILTER†						555 X 7 55
Throwaway (in.)	24 x 24	24 x 24	24 x 24	24 x 24	24 x 30	24x30
(mm)	610 x 610	610 x 610	610 x 610	610 x 610	610 x 762	610 x 762
(min)		010 x 010	010 x 010	310 X 010		010 x 702

†Required filter sizes shown are based on the AHRI (Air Conditioning, Heating and Refrigeration Institute) rated airflow at a velocity of 300 ft/min for throwaway type or 450 ft/min for high capacity type. Recommended filters are 1 –in. (25 mm) thick.

Condensate Trap (Using PVC Piping) Fig. 9 - Condensate Trap

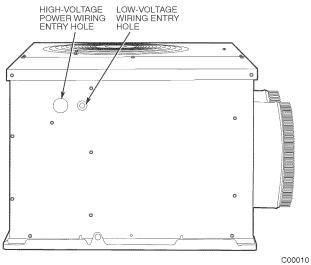


Fig. 10 - Unit Electrical Connection Entry Holes

Condensate water can be drained directly onto the roof in rooftop installations (where permitted) or onto a gravel apron in ground level installations. Install a field-supplied condensate trap at end of condensate connection to ensure proper drainage. Make sure that the outlet of the trap is at least 1 in. (25 mm) lower than the drain-pan condensate connection to prevent the pan from overflowing. See Fig. 9. Prime the trap with water. When using a gravel apron, make sure it slopes away from the unit.

If the installation requires draining the condensate water away from the unit, install a 2-in. (51 mm) trap using a 3/4 -in. OD tubing or pipe. See Fig. 9. Make sure that the outlet of the trap is at least 1 in. (25 mm) lower than the unit drain-pan condensate connection to prevent the pan from overflowing. Prime the trap with water. Connect a drain tube using a minimum of 3/4 -in. PVC, 3/4 -in. CPVC, or 3/4 -in. copper pipe (all field supplied). Do not undersize the tube. Pitch the drain tube downward at a slope of at least 1 in. (25 mm) for every 10 ft (3 m) of horizontal run. Be sure to check the drain tube for leaks. Prime trap at the beginning of the cooling season start-up. Allowable glues for condensate trap connection are: Standard ABS, CPVC, or PVC cement.

Step 7 — Install Electrical Connections

A WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

The unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of an electrical wire connected to the unit ground screw in the control compartment, or conduit approved for electrical ground when installed in accordance with NEC, ANSI/NFPA 70 American National Standards Institute/ National Fire Protection Association (latest edition) (in Canada, Canadian Electrical Code CSA C22.1) and local electrical codes.

A CAUTION

UNIT COMPONENT DAMAGE HAZARD

Failure to follow this caution may result in damage to the unit being installed.

- Make all electrical connections in accordance with NEC ANSI/NFPA 70 (latest edition) and local electrical codes governing such wiring. In Canada, all electrical connections must be in accordance with CSA standard C22.1 Canadian Electrical Code Part 1 and applicable local codes. Refer to unit wiring diagram.
- Use only copper conductor for connections between field-supplied electrical disconnect switch and unit. DO NOT USE ALUMINUM WIRE.
- 3. Be sure that high-voltage power to unit is within operating voltage range indicated on unit rating plate. On 3-phase units, ensure phases are balanced within 2 percent. Consult local power company for correction of improper voltage and/or phase imbalance.
- Do not damage internal components when drilling through any panel to mount electrical hardware, conduit, etc.

HIGH-VOLTAGE CONNECTIONS — The unit must have a separate electrical service with a field-supplied, waterproof disconnect switch mounted at, or within sight from the unit. Refer to the unit rating plate for maximum fuse/circuit breaker size and minimum circuit amps (ampacity) for wire sizing.

The field-supplied disconnect may be mounted on the unit over the high-voltage inlet hole. See Fig. 2-4.

Operation of unit on improper line voltage constitutes abuse and may cause unit damage that could affect warranty.

ROUTING POWER LEADS INTO UNIT — Use only copper wire between disconnect and unit. The high-voltage leads should be in a conduit until they enter the unit; conduit termination at the unit must be watertight. Run the high-voltage leads through the hole on the control box side of the unit (see Fig. 10 for location). When the leads are inside the unit, run leads to the control box (Fig. 11). For single-phase units, connect leads to the black and yellow wires; for 3-phase units, connect the leads to the black, yellow, and blue wires (see Fig. 12).

CONNECTING GROUND LEAD TO UNIT GROUND — Refer to Fig. 11 and 12. Connect the ground lead to the chassis using the unit ground lug in the control box.

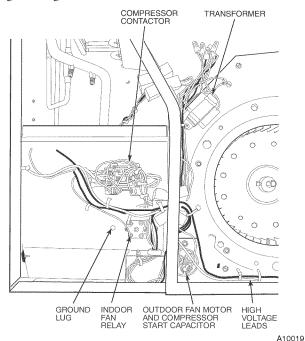


Fig. 11 - Control Box Wiring

3-PHASE CONNECTIONS TO DISCONNECT PER NEC

UNIT GROUND

GROUND

LEAD

LEAD

LEAD

A

BLK - 7

PER NEC

L. - - - - - A

PER NEC

CO0012

Fig. 12 - Line Power Connections

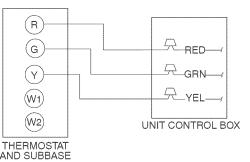


Fig. 13 - Control Connections

C00013

ROUTING CONTROL POWER WIRES — Form a drip-loop with the thermostat leads before routing them into the unit. Route the thermostat leads through grommeted hole provided in unit (see Fig. 10) into unit control box. Connect thermostat leads to unit control power leads as shown in Fig. 13.

Route thermostat wires through grommet providing a drip-loop at the panel. Connect low-voltage leads to the thermostat as shown in Fig. 13.

The unit transformer supplies 24-v power for complete system. Transformer is factory wired for 230-v operation. If supply voltage is 208 v, rewire transformer primary as described in the Special Procedures for 208-v Operation section below.

SPECIAL PROCEDURES FOR 208-V OPERATION

A WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Before performing service or maintenance operations on the system, turn off main power to unit and install lockout tag.

- Remove wirenut from connection of ORG wire to BLK wire. Disconnect the ORG transformer-primary lead from the BLK wire. Save wirenut. See unit wiring label.
- Remove the wirenut from the terminal on the end of the RED transformer-primary lead.
- 3. Save the wirenut.
- Connect the RED lead to the BLK wire from which the ORG lead was disconnected. Insulate with wirenut from Step 1.
- 5. Using the wirenut removed from the RED lead, insulate the loose terminal on the ORG lead.
- 6. Wrap the wirenuts with electrical tape so that the metal terminals cannot be seen.

Indoor blower-motor speeds may need to be changed for 208-v operation. Refer to Indoor Airflow and Airflow Adjustments section.

PRE-START-UP

A WARNING

FIRE, EXPLOSION, ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death and/or property damage.

- Follow recognized safety practices and wear protective goggles when checking or servicing refrigerant system.
- Relieve and recover all refrigerant from system before touching or disturbing anything inside terminal box if refrigerant leak is suspected around compressor terminals.
- 3. Never attempt to repair soldered connection while refrigerant system is under pressure.
- 4. Do not use torch to remove any component. System contains oil and refrigerant under pressure.
- 5. To remove a component, wear protective goggles and proceed as follows:
 - a. Shut off electrical power to unit and install lockout tag.
 - b. Relieve and reclaim all refrigerant from system using both high- and low-pressure ports.
 - c. Cut component connecting tubing with tubing cutter and remove component from unit.
 - d. Carefully unsweat remaining tubing stubs when necessary. Oil can ignite when exposed to flame.

Use the Start-Up Checklist supplied at the end of this book and proceed as follows to inspect and prepare the unit for initial start-up:

- 1. Remove all access panels.
- Read and follow instructions on all DANGER, WARNING, CAUTION, and INFORMATION labels attached to, or shipped with, unit. Make the following inspections:
 - a. Inspect for shipping and handling damages such as broken lines, loose parts, disconnected wires, etc.
 - b. Inspect for oil at all refrigerant tubing connections and on unit base. Detecting oil generally indicates a refrigerant leak. Leak-test all refrigerant tubing connections using electronic leak detector, or liquid-soap solution. If a refrigerant leak is detected, see following Check for Refrigerant Leaks section.
 - Inspect all field- and factory-wiring connections. Be sure that connections are completed and tight.
 - d. Inspect coil fins. If damaged during shipping and handling, carefully straighten fins with a fin comb.
- 3. Verify the following conditions:
 - a. Make sure that outdoor-fan blade is correctly positioned in fan orifice. Top edge of blade should be 3.125 in. down from condenser outlet grille. See Condenser Fan section.
 - b. Make sure that air filter is in place.
 - Make sure that condensate drain pan and trap are filled with water to ensure proper drainage.
 - Make sure that all tools and miscellaneous loose parts have been removed.

START-UP

Use the Start-Up Checklist supplied at the end of this book, and proceed as follows:

Step 1 — Check for Refrigerant Leaks

LOCATE AND REPAIR REFRIGERANT LEAKS AND CHARGE THE UNIT AS FOLLOWS:

- 1. Using both high- and low-pressure ports, locate leaks and reclaim remaining refrigerant to relieve system pressure.
- 2. Repair leak following accepted practices.

NOTE: Install a filter drier whenever the system has been opened for repair.

- 3. Check system for leaks using an approved method.
- 4. Evacuate refrigerant system and reclaim refrigerant if no additional leaks are found.
- 5. Charge unit with R-22 refrigerant, using a volumetric-charging cylinder or accurate scale. Refer to unit rating plate for required charge. Be sure to add extra refrigerant to compensate for internal volume of field-installed filter drier.

Step 2 — Start-Up Cooling Section and Make Adjustments

CHECKING COOLING CONTROL OPERATION — Start and check the unit for proper cooling control operation as follows:

- Place room thermostat SYSTEM switch in OFF position.
 Observe that blower motor starts when FAN switch is placed in ON position and shuts down when FAN switch is placed in AUTO position.
- Place SYSTEM switch in COOL position and FAN switch in AUTO position. Set cooling control below room temperature. Observe that compressor, condenser fan, and evaporator blower motors start. Observe that cooling cycle shuts down when control setting is satisfied.
- 3. When using an automatic changeover room thermostat, place both SYSTEM and FAN switches in AUTO. positions. Observe that unit operates in Cooling mode when temperature control is set to "call for cooling" (below room temperature).

Step 3 — Refrigerant Charge

Amount of refrigerant charge is listed on unit nameplate (also refer to Table 1). Refer to Carrier Refrigerant Service Techniques Manual, Refrigerants section.

Unit panels must be in place when unit is operating during charging procedure.

NO CHARGE — Use standard evacuating techniques. After evacuating system, weigh in the specified amount of refrigerant (refer to Table 1).

LOW CHARGE COOLING — Use Cooling Charging Charts, Fig. 14-19. Vary refrigerant until the conditions of the appropriate chart are met. Note that charging charts are different from the type normally used. Charts are based on charging the units to the correct superheat for the various operating conditions. Accurate pressure gage and temperature sensing device are required.

To measure suction pressure, perform the following:

- 1. Connect the pressure gage to the service port on the suction line.
- Mount the temperature sensing device on the suction line and insulate it so that outdoor ambient temperature does not affect the reading. Indoor-air cfm must be within the normal operating range of the unit.

TO USE COOLING CHARGING CHARTS

- Take the outdoor ambient temperature and read the suction pressure gage.
- Refer to appropriate chart to determine what the suction temperature should be.
- 3. If suction temperature is high, add refrigerant. If suction temperature is low, carefully recover some of the charge.
- 4. Recheck the suction pressure as charge is adjusted. EXAMPLE: (Fig. 14)

 Outdoor Temperature85°F (29°C)

 Suction Pressure80 psig

Suction Temperature should be70°F (21°C) (Suction Temperature may vary ± 5 ° F. [2.8°C])

If Chargemaster® charging device is used, temperature and pressure readings must be accomplished using the charging chart.

Step 4 — **Indoor Airflow and Airflow Adjustments**

NOTE: For cooling operation, the recommended airflow is 350 to 450 CFM for each 12,000 Btuh of rated cooling capacity.

Table 2 shows dry coil air delivery for horizontal discharge units. Tables 3-NO TAG show pressure drops.

NOTE: Be sure that all supply- and return-air grilles are open, free from obstructions, and adjusted properly.

A WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Disconnect electrical power to the unit and install lockout tag before changing blower speed.

Airflow can be changed by changing the lead connections of the blower motor.

Units 50ZP024,036,048, and 060 blower motors are factory wired for low speed operation. Units 50ZP030 and 042 are factory wired for medium speed operation.

FOR 208/230-V — The motor leads are color-coded as follows:

3-SPEED	2-SPEED
black = high speed	black = high speed
blue = medium speed	
red = low speed	red = low speed

To change the speed of the blower motor (BM), remove the fan motor speed leg lead from the indoor (evaporator) fan relay (IFR) and replace with lead for desired blower motor speed. Insulate the removed lead to avoid contact with chassis parts.

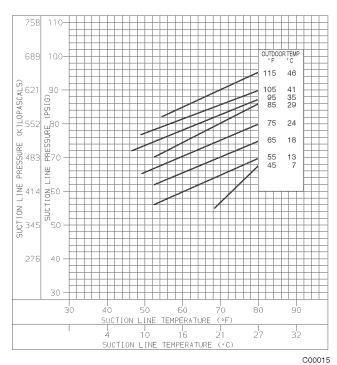


Fig. 14 - Cooling Charging Chart, 50ZP024

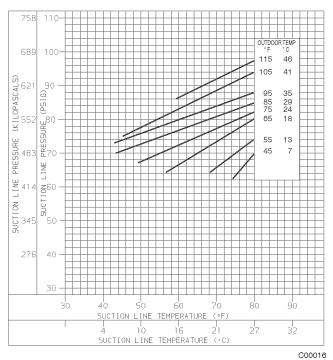


Fig. 15 - Cooling Charging Chart, 50ZP030 Units

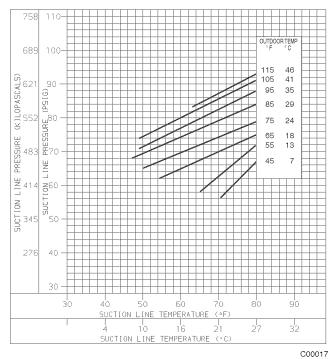


Fig. 16 - Cooling Charging Chart, 50ZP036 Units

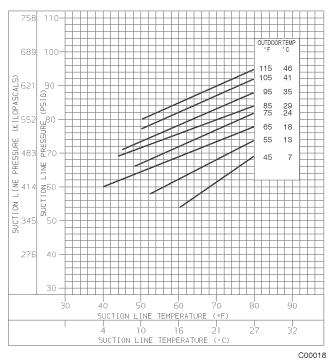


Fig. 17 - Cooling Charging Chart, 50ZP042 Units

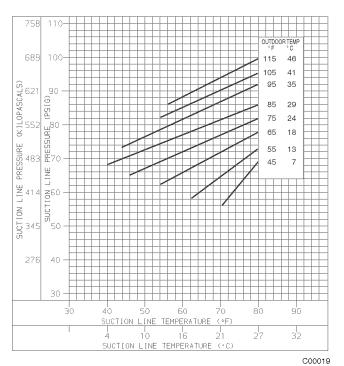


Fig. 18 - Cooling Charging Chart, 50ZP042 Units

Fig. 19 - Cooling Charging Chart, 50ZP060 Units

Step 5 — Unit Controls

All compressors have the following internal-protection controls. HIGH-PRESSURE RELIEF VALVE — This valve opens when the pressure differential between the low and high side becomes excessive.

COMPRESSOR OVERLOAD — This overload interrupts power to the compressor when either the current or internal temperature become excessive, and automatically resets when the internal temperature drops to a safe level. This overload may require up to 60 minutes (or longer) to reset; therefore, if the internal overload is suspected of being open, disconnect the electrical power to the unit and check the circuit through the overload with an ohmmeter or continuity tester.

Step 6 — **Sequence of Operation**

FAN OPERATION — The FAN switch on the thermostat controls indoor fan operation. When the FAN switch is placed in the ON position, the IFR (indoor-fan relay) is energized through the G terminal on the thermostat. The normally-open contacts close, which then provide power to the indoor (evaporator) fan motor (IFM). The IFM will run continuously when the FAN switch is set to ON.

When the FAN switch is set to AUTO, the thermostat deenergizes the IFR (provided there is not a call for cooling). The contacts open and the IFM is deenergized. The IFM will be energized only when there is a call for cooling.

NOTE: 50ZP030 and 060 units are equipped with a time-delay relay. On these units, the indoor fan remains on for 30 seconds after G or Y is deenergized.

COOLING — On a call for cooling, the compressor contactor (C) and the IFR are energized through the Y and G terminals of the thermostat. On units with a compressor time-delay relay, there is a 5-minute (± 45 sec) delay between compressor starts. Energizing the compressor contactor supplies power to the compressor and the outdoor (condenser) fan motor (OFM). Energizing the IFR provides power to the IFM.

When the need for cooling has been satisfied, the OFM, compressor, and IFM (FAN on AUTO) are deenergized. If the unit is equipped with a 30-second delay, the indoor fan will remain energized for 30 seconds after the compressor is deenergized (030 and 060 units only).

MAINTENANCE

To ensure continuing high performance, and to reduce the possibility of premature equipment failure, periodic maintenance must be performed on this equipment. This cooling unit should be inspected at least once each year by a qualified service person. To troubleshoot cooling of units, refer to Troubleshooting chart in back of book.

NOTE: TO EQUIPMENT OWNER: Consult your local dealer about the availability of a maintenance contract.

A WARNING

PERSONAL INJURY AND UNIT DAMAGE HAZARD

Failure to follow this warning could result in personal injury or death and possible unit component damage.

The ability to properly perform maintenance on this equipment requires certain expertise, mechanical skills, tools and equipment. If you do not possess these, do not attempt to perform any maintenance on this equipment, other than those procedures recommended in the Owner's Manual.

The minimum maintenance requirements for this equipment are as follows:

- 1. Inspect air filter(s) each month. Clean or replace when necessary
- Inspect indoor coil, outdoor coil, drain pan, and condensate drain each cooling season for cleanliness. Clean when necessary.
- Inspect blower motor and wheel for cleanliness each cooling season. Clean when necessary.
- Check electrical connections for tightness and controls for proper operation each cooling season. Service when necessary.
- Check the drain channel in the top cover periodically for blockage (leaves, insects). Clean as needed.

C00020

A WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow these warnings could result in personal injury or death:

- Turn off electrical power and install lockout tag to the unit before performing any maintenance or service on this unit.
- 2. Use extreme caution when removing panels and parts.
- Never place anything combustible either on or in contact with the unit.

Step 1 — Air Filter

IMPORTANT: Never operate the unit without a suitable air filter in the return-air duct system. Always replace the filter with the same dimensional size and type as originally installed. See Table 1 for recommended filter sizes.

Inspect air filter(s) at least once each month and replace (throwaway-type) or clean (cleanable-type) at least twice during each cooling season or whenever the filters become clogged with dust and lint.

Replace filters with the same dimensional size and type as originally provided, when necessary.

Step 2 — **Unit Top Removal (Condenser-Coil Side)**

NOTE: When performing maintenance or service procedures that require removal of the unit top, be sure to perform all of the routine maintenance procedures that require top removal, including coil inspection and cleaning, and condensate drain pan inspection and cleaning.

A WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Disconnect electrical power, and install lockout tag to the unit before removing top.

Only qualified service personnel should perform maintenance and service procedures that require unit top removal.

Refer to the following top removal procedures:

- 1. Remove 7 screws on unit top cover surface. (Save all screws.)
- 2. Remove 2 screws on unit top cover flange. (Save all screws.)
- 3. Lift top from unit carefully. Set top on edge and make sure that top is supported by unit side that is opposite duct (or plenum) side.
- Carefully replace and secure unit top to unit, using screws removed in Steps 1 and 2, when maintenance and/or service procedures are completed.

Step 3 — Evaporator Blower and Motor

For longer life, operating economy, and continuing efficiency, clean accumulated dirt and grease from the blower wheel and motor annually.

A WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Disconnect electrical power, and install lockout tag to the unit before cleaning and lubricating the blower motor and wheel.

To clean the blower wheel:

- 1. Access the blower assembly as follows:
 - a. Remove top access panel.
 - Remove 3 screws that hold blower orifice ring to blower housing. Save screws.
 - c. Loosen setscrew(s) which secure wheel to motor shaft.
- 2. Remove and clean blower wheel as follows:
 - a. Lift wheel from housing. When handling and/or cleaning blower wheel, be sure not to disturb balance weights (clips) on blower wheel vanes.
 - b. Remove caked-on dirt from wheel and housing with a brush. Remove lint and/or dirt accumulations from wheel and housing with vacuum cleaner, using a soft brush attachment. Remove grease and oil with a mild solvent.
 - c. Reassemble blower into housing. Place upper orifice
 ring on blower to judge location of the blower wheel.
 Blower wheel should be approximately 0.2-in. (5 mm)
 below bottom of orifice ring when centered correctly.
 Be sure setscrews are tightened on motor and are not on
 round part of shaft.
 - d. Set upper orifice ring in place with 3 screws removed in step 1.
 - e. Replace top access panel.

Step 4 — Condenser Coil, Evaporator Coil, and Condensate Drain Pan

Inspect the condenser coil, evaporator coil, and condensate drain pan at least once each year. Proper inspection and cleaning requires the removal of the unit top. See Unit Top Removal section above.

The coils are easily cleaned when dry; therefore, inspect and clean the coils either before or after each cooling season. Remove all obstructions (including weeds and shrubs) that interfere with the airflow through the condenser coil. Straighten bent fins with a fin comb. If coated with dirt or lint, clean the coils with a vacuum cleaner, using a soft brush attachment. Be careful not to bend the fins. If coated with oil or grease, clean the coils with a mild detergent-and-water solution. Rinse coils with clear water, using a garden hose. Be careful not to splash water on motors, insulation, wiring, or air filter(s). For best results, spray condenser-coil fins from inside to outside the unit. On units with an outer and inner condenser coil, be sure to clean between the coils. Be sure to flush all dirt and debris from the unit base.

Inspect the drain pan and condensate drain line when inspecting the coils. Clean the drain pan and condensate drain by removing all foreign matter from the pan. Flush the pan and drain tube with clear water. Do not splash water on the insulation, motor, wiring, or air filter(s). If the drain tube is restricted, clear it with a "plumbers snake" or similar probe device. Ensure that the auxiliary drain port above the drain tube is also clear.

Step 5 — Condenser Fan

A CAUTION

UNIT OPERATION HAZARD

Failure to follow this caution may result in damage to unit components.

Keep the condenser fan free from all obstructions to ensure proper cooling operation. Never place articles on top of unit.

- 1. Shut off unit power supply.
- Remove condenser-fan assembly (grille, motor, motor cover, and fan) by removing screws and flipping assembly onto unit top cover.
- 3. Loosen fan hub setscrews.
- 4. Adjust fan height as shown in Fig. 20.
- 5. Tighten setscrews.
- 6. Replace condenser-fan assembly.

Step 6 — Electrical Controls and Wiring

Inspect and check the electrical controls and wiring annually. Be sure to turn off the electrical power to the unit.

Remove the top panel to locate all the electrical controls and wiring. Check all electrical connections for tightness. Tighten all screw connections. If any smoky or burned connections are noticed, disassemble the connection, clean all the parts, restrip the wire end and reassemble the connection properly and securely.

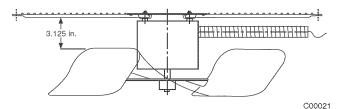


Fig. 20 - Condenser-Fan Adjustment

After inspecting the electrical controls and wiring, replace all the panels. Start the unit, and observe at least one complete cooling cycle to ensure proper operation. If discrepancies are observed in operating cycle, or if a suspected malfunction has occurred, check each electrical component with the proper electrical instrumentation. Refer to the unit wiring label when making these checkouts.

NOTE: Refer to the Sequence of Operation section, as an aid in determining proper control operation.

Step 7 — Refrigerant Circuit

Inspect all refrigerant tubing connections and the unit base for oil accumulations annually. Detecting oil generally indicates a refrigerant leak.

If oil is detected or if low cooling performance is suspected, leak-test all refrigerant tubing using an electronic leak-detector, or liquid-soap solution. If a refrigerant leak is detected, refer to Check for Refrigerant Leaks section

If no refrigerant leaks are found and low cooling performance is suspected, refer to Refrigerant Charge section.

Step 8 — Evaporator Airflow

The cooling airflow does not require checking unless improper performance is suspected. If a problem exists, be sure that all supply- and return-air grilles are open and free from obstructions, and that the air filter is clean. When necessary, refer to Indoor Airflow and Airflow Adjustments section to check the system airflow.

Step 9 — **Metering Devices**

Refrigerant metering devices are fixed orifices and are located in the inlet header to the evaporator coil.

Step 10 — Liquid Line Strainer

The liquid line strainer (to protect metering device) is made of wire mesh and is located in the liquid line on the inlet side of the metering device.

TROUBLESHOOTING

Refer to the Troubleshooting Chart (Table 5) for troubleshooting information.

START-UP CHECKLIST

Use the Start-Up Checklist at the back of this manual.

Table 2 – Dry Coil Air Delivery* Horizontal Discharge (Deduct 10% for 208 Volt Operation)

Unit	Motor	Air	External Static Pressure (IN. W.C.)									
	Speed	Delivery	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
	1	Watts	288	285	282	279	274	268	261	-	-	
024	Low	Cfm	875	820	802	734	668	582	478	-	-	
	Med	Watts	390	383	378	369	360	350	340	-	-	
		Cfm	1131	1090	1038	978	917	830	721	-	-	
	I II ada	Watts	528	520	510	495	480	460	450	-	-	
	High	Cfm	1391	1338	1285	1200	1115	1018	920	-	-	
	1	Watts	288	285	282	279	274	268	261	-	-	
	Low	Cfm	875	820	802	734	668	582	478	-	-	
000	3 4I	Watts	390	383	378	369	360	350	340	-	-	
030	Med	Cfm	1131	1090	1038	978	917	830	721	-	-	
	110.1	Watts	528	520	510	495	480	460	450	-	-	
	High	Cfm	1891	1338	1285	1200	1115	1018	920	-	-	
	1	Watts	450	435	420	400	380	335	326	311	-	
	Low	Cfm	1231	1218	1204	1120	1008	950	863	751	-	
	9.6I	Watts	470	450	445	410	388	359	338	321	-	
036	Med	Cfm	1302	1264	1205	1163	1081	940	873	783	-	
	High	Watts	660	635	610	575	540	505	485	460	-	
		Cfm	1700	1660	1581	1450	1297	1190	1095	999	-	
	Low	Watts	478	458	440	411	378	350	327	317	-	
		Cfm	1303	1270	1224	1179	1126	1022	911	816	-	
		Watts	481	468	450	438	404	370	338	320	735	
042	Med	Cfm	1310	1280	1241	1181	1110	1022	943	811	-	
		Watts	-	798	678	647	618	578	540	500	-	
	High	Cfm	-	1736	1688	1618	1510	1421	1309	1187	1060	
	 .	Watts	-	-	801	760	730	688	650	600	570	
	Low	Cfm	-	_	1898	1841	1757	1682	1564	1429	1365	
048		Watts	-	-	870	842	818	782	696	632	628	
	High	Cfm	-	_	2000	1903	1799	1718	1625	1446	1333	
		Watts	890	850	810	790	735	680	580	480	422	
	Low	Cfm	1834	1820	1791	1762	1703	1640	1415	1159	950	
060† 2		Watts	1040	1018	1000	950	890	835	790	650	580	
Speed	Med	Cfm	2230	2102	2025	1960	1901	1855	1752	1468	1121	
	High	Watts	1073	1038	1001	958	896	840	800	691	575	
		Cfm	2230	2202	2160	2122	2052	1926	1791	1588	1202	
	Low	Watts	1058	1008	942	891	860	828	750	700	630	
		Cfm	2384	2200	2197	2071	1989	1889	1820	1729	1640	
060 3		Watts	1266	1086	1021	1002	977	924	860	819	700	
Speed	Med	Cfm	2724	2476	2392	2344	2262	2132	2001	1910	1820	
Opecu	I II ada	Watts	1301	1216	1197	1127	1058	1011	979	869	870	
	High	Cfm	2760	2618	2543	2423	2292	2169	2056	1943	1832	

^{*} Air delivery values are based on operating voltage of 230 v dry coil, without filter. Deduct wet coil, filter pressure drops to obtain external static pressure available for ducting.

See Tables 3-NO TAG.

NOTES:

2. Dashes indicate portions of the table that are beyond the blower motor capacity or are not recommended.

Table 3 – Wet Coil Pressure Drop

UNIT SIZE 50ZP	AIRFLOW (CFM)	PRESSURE DROP (IN. W.C.)
	600	0.02
024	700	0.05
024	800	0.06
	900	0.07
	900	0.06
030	1000	0.06
	1200	0.08
	1000	0.07
036	1200	0.09
030	1400	0.11
	1600	0.12
	1000	0.04
042	1200	0.06
042	1400	0.08
	1600	0.09
	1400	0.07
048	1600	0.08
	1800	0.09
	1700	0.07
nen	1800	0.08
060	2100	0.09
	2300	0.10

Table 4 – Filter Pressure Drop (IN. W.C.)

							,				
UNIT SIZE 50ZP	FILTER SIZE IN. (mm)	CFM									
UNIT SIZE SUZP		500	600	700	800	900	1000	1100	1200	1300	1400
024-042	24 x 24 (610 x 610)	0.06	0.07	0.08	0.08	0.09	0.09	0.09	0.10	0.11	0.12
048, 060	24 x 30 (610 x 762)	-	-	-	-	-	-	-	-	0.08	0.09

UNIT SIZE 50ZP	FILTER SIZE IN. (mm)	CFM								
01111 SIZE 30ZF		1500	1600	1700	1800	1900	2000	2100	2200	2300
024-042	24 x 24 (610 x 610)	0.14	0.15	-	-	-	-	-	-	-
048, 060	24 x 30 (610 x 762)	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18

^{1.} Do not operate the unit at a cooling airflow that is less than 350 cfm for each 12,000 Btuh of rated cooling capacity. Evaporator coil frosting may occur at airflows below this point.

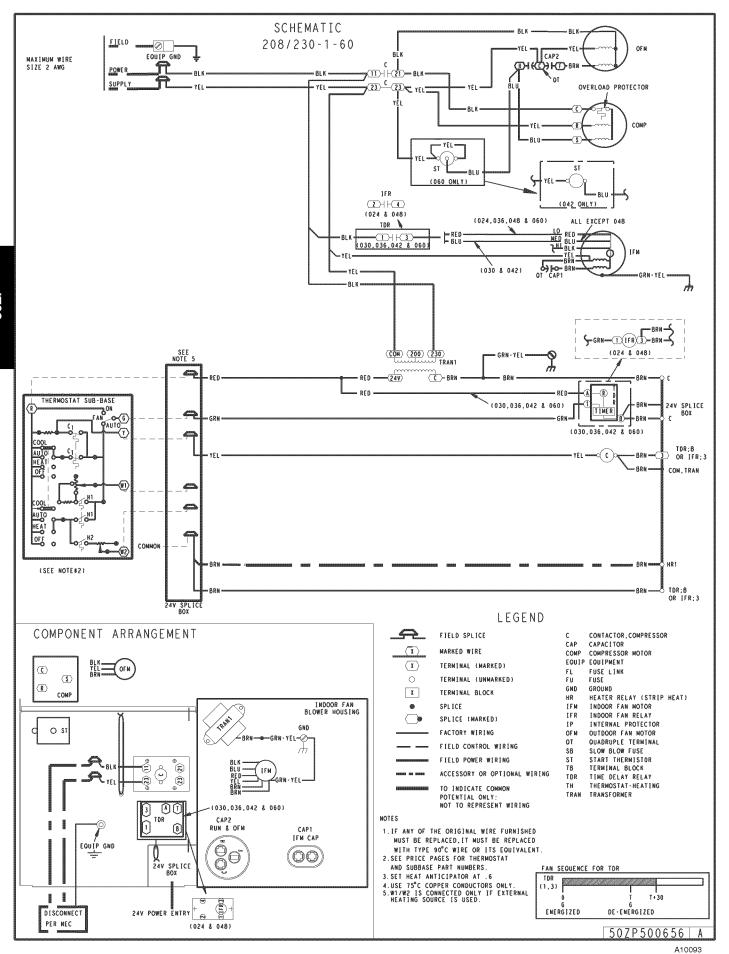


Fig. 21 - 50ZP 208/230-1 Wiring Diagram

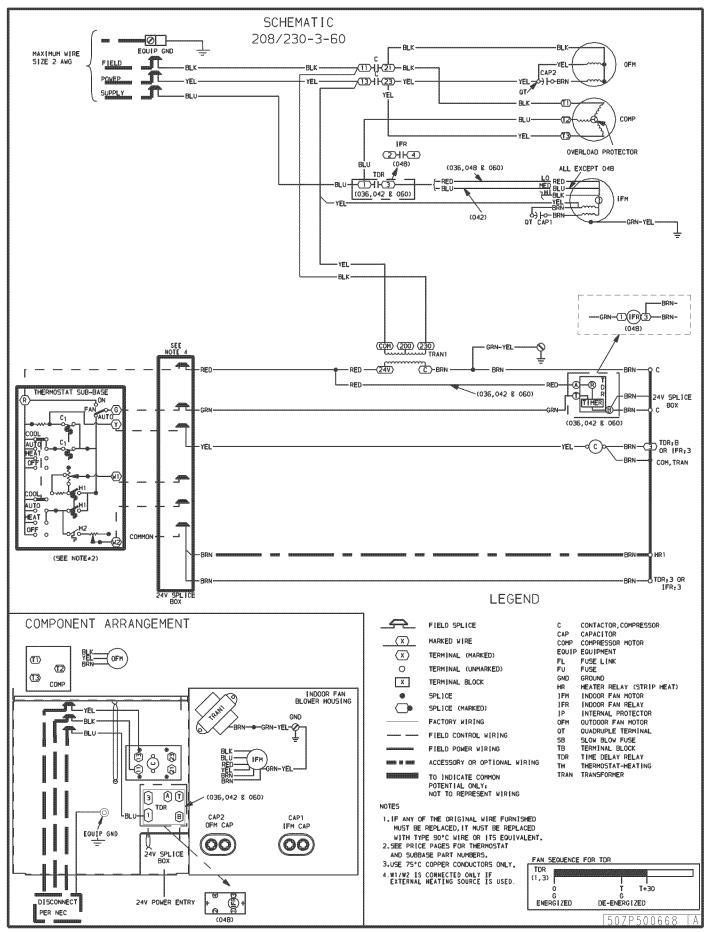


Fig. 22 - 50ZP 208/230-3 Wiring Diagram

A10094

Table 5 - Troubleshooting Chart

SYMPTOM	Table 5 – Troubleshooting Chart CAUSE	REMEDY			
	Power failure	Call power company			
	Fuse blown or circuit breaker tripped	Replace fuse or reset circuit breaker			
Compressor and outdoor fan	Defective contactor, transformer, control relay, or high-pressure, or low-pressure switch	Replace component			
will not start	Insufficient line voltage	Determine cause and correct			
	Incorrect or faulty wiring	Check wiring diagram and rewire correctly			
	Thermostat setting too low/too high	Reset thermostat setting			
	Faulty wiring or circuit Loose connections in compressor	Check wiring and repair or replace			
	Compressor motor burned out, seized, or	Determine cause			
	internal overload open	Replace compressor			
Compressor will not start but condenser fan runs	Defective run capacitor, overload, or PTC (positive temperature coefficient) thermistor	Determine cause and replace			
	One leg of 3-phase power dead	Replace fuse or reset circuit breaker Determine cause			
	Low input voltage	Determine cause and correct			
	Refrigerant overcharge or undercharge	Recover refrigerant, evacuate system, and re- charge to capacities shown on rating plate			
	Defective compressor	Replace and determine cause			
Compressor cycles (other than normally sat-	Insufficient line voltage	Determine cause and correct			
isfying) cooling/heating calls	Blocked outdoor coil	Determine cause and correct			
	Defective run/start capacitor, overload or start relay	Determine cause and replace			
	Faulty outdoor fan motor or capacitor	Replace			
	Restriction in refrigerant system	Locate restriction and remove			
	Dirty air filter	Replace filter			
	Unit undersized for load	Decrease load or increase unit size			
	Thermostat temperature set too low	Reset thermostat setting			
Compressor operates continuously	Low refrigerant charge	Locate leak, repair, and recharge			
	Air in system	Recover refrigerant, evacuate system, and recharge			
	Outdoor coil dirty or restricted	Clean coil or remove restriction			
	Dirty air filter	Replace filter			
	Dirty indoor or outdoor coil	Clean coil			
Excessive head pressure	Refrigerant overcharged	Recover excess refrigerant			
Excessive flead pressure	Air in system	Recover refrigerant, evacuate system, and re- charge			
	Indoor or outdoor air restricted or air short-cycling	Determine cause and correct			
Head pressure too low	Low refrigerant charge	Check for leaks, repair and recharge			
	Restriction in liquid tube	Remove restriction			
Excessive suction pressure	Refrigerant overcharged	Recover excess refrigerant			
	Dirty air filter Low refrigerant charge	Replace filter Check for leaks, repair and recharge			
	Metering device or low side restricted	Remove source of restriction			
Suction pressure too low	Insufficient coil airflow	Check filter–replace if necessary			
	Temperature too low in conditioned area	Reset thermostat setting			
	Outdoor ambient below 55°F (13°C)	Install low-ambient kit			
	Filter drier restricted	Replace			

START-UP CHECKLIST (REMOVE AND STORE IN JOB FILE)

	2		
II. PRE-START-UP			
Verify that all packing m	aterials have been r	removed from unit	t.
Verify that condensate co			
Check all electrical conn	actions and termina	le for tightness	
Check wire proximity to	refrigerant tubes ar	nd sheet metal edg	es.
Check wire proximity to Check that indoor (indoor Verify that unit installation	or) air filter is clean	and in place.	,
Verify that unit installation	on is level.	1	
Check fan wheel propell	er for location in he	ousing and setscrey	w tightness.
III. START-UP			
Supply Voltage: L1-L2	L2-L3	L3-L1	
Supply Voltage: L1-L2 Compressor Amps: L1(C)	L2(S)	L3(R)	
Indoor Fan Amps:	Outdoor Fan Am	nps:	
	_	•	
TEMPERATURE-Cooling N	Mode		
Outdoor Air Temperature:	DB	WB	
Return-Air Temperature:	DB	WB	
Outdoor Air Temperature: Return-Air Temperature: Cooling Supply Air:	DB	WB	
		_	
PRESSURES-Cooling Mode	е		
Refrigerant Suction	psig		
Suction Line Temp*			
Refrigerant Discharge	psig		
Discharge Temp†			
*Measured at suction inlet to o	compressor		
†Measured at liquid line leaving			