

Controls Start-Up, Operation, Service, and Troubleshooting

SAFETY CONSIDERATIONS

Installing, starting up, and servicing this equipment can be hazardous due to system pressures, electrical components, and equipment location (roof, elevated structures, etc.). Only trained, qualified installers and service mechanics should install, start up, and service this equipment.

When working on this equipment, observe precautions in the literature, and on tags, stickers, and labels attached to the equipment, and any other safety precautions that apply. Follow all safety codes. Wear safety glasses and work gloves. Use care in handling, rigging, and setting this equipment, and in handling all electrical components.

A WARNING

Electrical shock can cause personal injury and death. Shut off all power to this equipment during installation and service. There may be more than one disconnect switch. Tag all disconnect locations to alert others not to restore power until work is completed.

A WARNING

This unit uses a microprocessor-based electronic control system. Do not use jumpers or other tools to short out components, or to bypass or otherwise depart from recommended procedures. Any short-to-ground of the control board or accompanying wiring may destroy the electronic modules or electrical components.

A WARNING

To prevent potential damage to heat exchanger tubes always run fluid through heat exchangers when adding or removing refrigerant charge. Use appropriate brine solutions in cooler fluid loops to prevent the freezing of heat exchangers when the equipment is exposed to temperatures below $32 \ F(0^{\circ} \ C)$.

DO NOT VENT refrigerant relief valves within a building. Outlet from relief valves must be vented outdoors in accordance with the latest edition of ANSI/ASHRAE (American National Standards Institute/American Society of Heating, Refrigeration and Air Conditioning Engineers) 15 (Safety Code for Mechanical Refrigeration). The accumulation of refrigerant in an enclosed space can displace oxygen and cause asphyxiation. Provide adequate ventilation in enclosed or low overhead areas. Inhalation of high concentrations of vapor is harmful and may cause heart irregularities, unconsciousness or death. Misuse can be fatal. Vapor is heavier than air and reduces the amount of oxygen available for breathing. Product causes eye and skin irritation. Decomposition products are hazardous.

A WARNING

DO NOT attempt to unbraze factory joints when servicing this equipment. Compressor oil is flammable and there is no way to detect how much oil may be in any of the refrigerant lines. Cut lines with a tubing cutter as required when performing service. Use a pan to catch any oil that may come out of the lines and as a gage for how much oil to add to system. DO NOT re-use compressor oil.

CONTENTS

	Page
SAFETY CONSIDERATIONS	1
GENERAL	
INTRODUCTION	
MAJOR SYSTEM COMPONENTS	
General	3
Main Base Board (MBB)	3
Expansion Valve (EXV) Board	3
Compressor Expansion Board (CXB)	3
Scrolling Marquee Display Energy Management Module (EMM)	3
Energy Management Module (EMM)	3
Enable/Off/Remote Contact Switch	3
Emergency On/Off Switch	3
Board Addresses	
Control Module Communication	
Carrier Comfort Network Interface	
OPERATING DATA	
• T1 — COOLER LEAVING FLUID SENSOR	
• T2 — COOLER ENTERING FLUID SENSOR	
• T3,T4 — SATURATED CONDENSING	Ж
TEMPERATURE SENSORS	
• T5,T6 — COOLER SUCTION TEMPERAT	IIRE
SENSORS	CKL
• T7.T8 — COMPRESSOR SUCTION GAS	
TEMPERATURE SENSORS	
• T9 — OUTDOOR-AIR TEMPERATURE SH	ENSOR
• T10 — REMOTE SPACE TEMPERATURE	
Thermostatic Expansion Valves (TXV)	15
Compressor Protection Control System	
(CPCS) or Control Relay (CR)	15
Compressor Ground Current Protection	Board
(CGF) and Control Relay (CR)	15
Elèctronic Expansion Valve (EXV) Energy Management Module	16
Capacity Control	10
ADDING ADDITIONAL UNLOADERS	10
 MINUTES LEFT FOR START 	
MINUTES OFF TIME	
LOADING SEQUENCE	

	CONTENTS (cont)
	• •
_	Page LEAD/LAC DETERMINATION
•	LEAD/LAG DETERMINATION
•	CAPACITY SEQUENCE DETERMINATION CAPACITY CONTROL OVERRIDES
Ц	caracii i control overrides
П	ead Pressure Control
	UNITS WITH TXV
D:	Jmpout
	EXV UNITS
	TXV UNITS
М	arquee Display Usage
S	ervice Test
C	onfiguring and Operating Dual Chiller
0	Control
Te	emperature Reset
Ċ	poling Set Point (4 to 20 mA)
	emand Limit
•	DEMAND LIMIT (2-Stage Switch Controlled)
	EXTERNALLY POWERED DEMAND LIMIT
•	(4 to 20 mA Controlled)
	DEMAND LIMIT (CCN Loadshed Controlled)
	· · · · · · · · · · · · · · · · · · ·
Τŀ	ROUBLESHOOTING
C	ompressor Protection Control System
_	(CPCS) Board
C	ompressor Ground Current (CGF) Board
	(30GTN,R and 30GUN,R130-210, 230A-315A,
	ànd 330A/B-420A/B)
E	KV Troubleshooting47
•	STEP 1 — CHECK PROCESSOR EXV OUTPUTS
•	STEP 2 — CHECK EXV WIRING
•	STEP 3 — CHECK RESISTANCE OF EXV MOTOR
	WINDINGS
•	STEP 4 — CHECK THERMISTORS THAT
	CONTROL EXV
•	STEP 5 — CHECK OPERATION OF THE EXV
Αl	arms and Alerts48
SI	ERVICE 53-65
	ectronic Components53
	ompressors53
•	COMPRESSOR REMOVAL
•	OIL CHARGE
C	poler53
•	COOLER REMOVAL
	REPLACING COOLER
•	SERVICING THE COOLER
C	ondenser Coils56
	ondenser Fans57
B	efrigerant Feed Components58
•	ELECTRONIC EXPANSION VALVE (EXV)
	MOISTURE-LIQUID INDICATOR
•	FILTER DRIER
•	LIQUID LINE SOLENOID VALVE
•	LIQUID LINE SOLENOID VALVE LIQUID LINE SERVICE VALVE
	nermistors
•	LOCATION 39
•	REPLACING THERMISTOR T2
•	REPLACING THERMISTOR 12 REPLACING THERMISTORS T1,T5,T6,T7, AND T8
•	
•	THERMISTORS T3 AND T4 THERMISTOR/TEMPERATURE SENSOR CHECK
•	THERMISTON TEMFERATURE SENSOR CHECK

Page	e
Safety Devices6	4
COMPRESSOR PROTECTION	
 LOW OIL PRESSURE PROTECTION 	
 CRANKCASE HEATERS 	
 COOLER PROTECTION 	
Relief Devices	5
 HIGH-SIDE PROTECTION 	
 LOW-SIDE PROTECTION 	
 PRESSURE RELIEF VALVES 	
Other Safeties 65	5
PRE-START-UP6	5
System Check	
START-UP AND OPERATION	
Actual Start-Up	
Operating Limitations6	6
• TEMPERATURES	_
• VOLTAGE	
 MINIMUM FLUID LOOP VOLUME 	
 FLOW RATE REQUIREMENTS 	
Operation Sequence6	7
Refrigerant Circuit6	7
FIELD WIRING	
APPENDIX A — CCN TABLES	
	9
APPENDIX B — FLUID PRESSURE DROP	_
CURVES 80-8'	
START-UP CHECKLIST	8

GENERAL

The model 30GTN,R chillers are air-cooled chillers utilizing refrigerant R-22. The model 30GUN,R chillers are air-cooled chillers utilizing refrigerant R-134a.

Unit sizes 230-420 are modular units which are shipped as separate sections (modules A and B). Installation instructions specific to these units are shipped inside the individual modules. See Tables 1A and 1B for a listing of unit sizes and modular combinations. For modules 230B-315B, follow all general instructions as noted for unit sizes 080-110. For all remaining modules, follow instructions for unit sizes 130-210.

INTRODUCTION

This publication contains Start-Up, Service, Controls, Operation, and Troubleshooting information for the 30GTN,R040-420 and 30GUN,R040-420 liquid chillers with ComfortLink controls.

The 30GTN,R and 30GUN,R040-420 chillers are equipped with electronic expansion valves (EXVs) or, on size 040-110 FIOP (factory-installed option) units, conventional thermostatic expansion valves (TXVs). The size 040-110 FIOP chillers are also equipped with liquid line solenoid valves (LLSV).

NOTE: TXVs are not available on modular units.

Differences in operations and controls between standard and 040-110 FIOP units are noted in appropriate sections in this publication. Refer to the Installation Instructions and the Wiring Diagrams for the appropriate unit for further details.

Table 1A — Unit Sizes and Modular Combinations (30GTN,R)

UNIT 30GTN,R	NOMINAL TONS	SECTION A UNIT 30GTN,R	SECTION B UNIT 30GTN,R
040	40	_	_
045	45	_	_
050	50	_	_
060	60	_	_
070	70	_	_
080	80		
090	90		
100	100		
110	110		
130	125		
150	145		
170	160		
190	180		1
210	200		
230	220	150	080
245	230	150	090
255	240	150	100
270	260	170	100
290	280	190	110
315	300	210	110
330	325	170	170
360	350	190	190/170*
390	380	210	190
420	400	210	210

*60 Hz units/50 Hz units.

Table 1B — Unit Sizes and Modular Combinations (30GUN,R)

UNIT 30GUN,R	NOMINAL TONS	SECTION A UNIT 30GUN,R	SECTION B UNIT 30GUN,R
040	26	_	_
045	28	_	_
050	34	_	_
060	42	_	_
070	48	_	_
080	55	_	_
090	59	_	_
100	66	_	_
110	72	_	_
130	84	_	_
150	99	_	_
170	110	_	_
190	122	_	_
210	134	_	_
230	154	150	080
245	158	150	090
255	165	150	100
270	176	170	100
290	193	190	110
315	206	210	110
330	219	170	170
360	243	190	190/170*
390	256	210	190
420	268	210	210

*60 Hz units/50 Hz units.

MAJOR SYSTEM COMPONENTS

General — The 30GTN,R and 30GUN,R air-cooled reciprocating chillers contain the *Comfort*LinkTM electronic control system that controls and monitors all operations of the chiller.

The control system is composed of several components as listed in the sections below. See Fig. 1 for typical control box drawing. See Fig. 2-4 for control schematics.

Main Base Board (MBB) — See Fig. 5. The MBB is the heart of the *Comfort*Link control system. It contains the major portion of operating software and controls the operation of the machine. The MBB continuously monitors input/output channel information received from its inputs and from all other modules. The MBB receives inputs from thermistors T1-T6, T9, and T10. See Table 2. The MBB also receives the feedback

inputs from compressors A1, A2, B1 and B2, and other status switches. See Table 3. The MBB also controls several outputs. Relay outputs controlled by the MBB are shown in Table 4. Information is transmitted between modules via a 3-wire communication bus or LEN (Local Equipment Network). The CCN (Carrier Comfort Network) bus is also supported. Connections to both LEN and CCN buses are made at TB3. See Fig. 5.

Expansion Valve (EXV) Board — The electronic expansion valve (EXV) board receives inputs from thermistors T7 and T8. See Table 2. The EXV board communicates with the MBB and directly controls the expansion valves to maintain the correct compressor superheat.

Compressor Expansion Board (CXB) — The CXB is included as standard on sizes 150-210 (60 Hz) and 130 (50 Hz) and associated modular units. The compressor expansion board (CXB) receives the feedback inputs from compressors A3, B3 and A4. See Table 3. The CXB board communicates the status to the MBB and controls the outputs for these compressors. An additional CXB is required for unit sizes 040-110, 130 (60 Hz), 230B-315B with additional unloaders.

Scrolling Marquee Display — This device is the keypad interface used for accessing chiller information, reading sensor values, and testing the chiller. The marquee display is a 4-key, 4-character, 16-segment LED (light-emitting diode) display. Eleven mode LEDs are located on the display as well as an Alarm Status LED. See Marquee Display Usage section on page 29 for further details.

Energy Management Module (EMM) — The EMM module is available as a factory-installed option or as a field-installed accessory. The EMM module receives 4 to 20 mA inputs for the temperature reset, cooling set point reset and demand limit functions. The EMM module also receives the switch inputs for the field-installed 2-stage demand limit and ice done functions. The EMM module communicates the status of all inputs with the MBB, and the MBB adjusts the control point, capacity limit, and other functions according to the inputs received.

Enable/Off/Remote Contact Switch — The Enable/Off/Remote Contact switch is a 3-position switch used to control the chiller. When switched to the Enable position the chiller is under its own control. Move the switch to the Off position to shut the chiller down. Move the switch to the Remote Contact position and a field installed dry contact can be used to start the chiller. The contacts must be rated for dry circuit application capable of handling a 24 vac load. In the Enable and Remote Contact (dry contacts closed) positions, the chiller is allowed to operate and respond to the scheduling configuration, CCN configuration and set point data. See Fig. 6.

Emergency On/Off Switch — The Emergency On/Off switch should only be used when it is required to shut the chiller off immediately. Power to the MBB, EMM, CXB, and marquee display is interrupted when this switch is off and all outputs from these modules will be turned off. The EXV board is powered separately, but expansion valves will be closed as a result of the loss of communication with the MBB. There is no pumpout cycle when this switch is used. See Fig. 6.

Reset Button — A reset button is located on the fuse/circuit breaker panel for unit sizes 130-210 and associated modules. The reset button must be pressed to reset either Circuit Ground Fault board in the event of a trip.

Board Addresses — The Main Base Board (MBB) has a 3-position Instance jumper that must be set to '1.' All other boards have 4-position DIP switches. All switches are set to 'On' for all boards.

Control Module Communication

RED LED — Proper operation of the control boards can be visually checked by looking at the red status LEDs (lightemitting diodes). When operating correctly, the red status LEDs should be blinking in unison at a rate of once every 2 seconds. If the red LEDs are not blinking in unison, verify that correct power is being supplied to all modules. Be sure that the Main Base Board (MBB) is supplied with the current software. If necessary, reload current software. If the problem still persists, replace the MBB. A red LED that is lit continuously or blinking at a rate of once per second or faster indicates that the board should be replaced.

GREEN LED — The MBB has one green LED. The Local Equipment Network (LEN) LED should always be blinking whenever power is on. All other boards have a LEN LED which should be blinking whenever power is on. Check LEN connections for potential communication errors at the board J3 and/or J4 connectors. Communication between modules is accomplished by a 3-wire sensor bus. These 3 wires run in parallel from module to module. The J4 connector on the MBB provides both power and communication directly to the marquee display only.

YELLOW LED — The MBB has one yellow LED. The Carrier Comfort Network (CCN) LED will blink during times of network communication.

Carrier Comfort Network (CCN) Interface -

The 30GTN,R chiller units can be connected to the CCN if desired. The communication bus wiring is a shielded, 3-conductor cable with drain wire and is supplied and installed in the field. The system elements are connected to the communication bus in a daisy chain arrangement. The positive pin of each system element communication connector must be wired to the positive pins of the system elements on either side of it. This is also required for the negative and signal ground pins of each system element. Wiring connections for CCN should be made at TB3. Consult the CCN Contractor's Manual for further information.

NOTE: Conductors and drain wire must be 20 AWG (American Wire Gage) minimum stranded, tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon, or polyethylene. An aluminum/polyester 100% foil shield and an outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of -20 C to 60 C is required. Wire manufactured by Alpha (2413 or 5463), American (A22503), Belden (8772), or Columbia (02525) meets the above mentioned requirements.

It is important when connecting to a CCN communication bus that a color coding scheme be used for the entire network to simplify the installation. It is recommended that red be used for the signal positive, black for the signal negative, and white for the signal ground. Use a similar scheme for cables containing different colored wires.

At each system element, the shields of its communication bus cables must be tied together. If the communication bus is entirely within one building, the resulting continuous shield must be connected to a ground at one point only. If the communication bus cable exits from one building and enters another, the shields must be connected to grounds at the lightning suppressor in each building where the cable enters or exits the building (one point per building only). To connect the unit to the network:

- 1. Turn off power to the control box.
- 2. Cut the CCN wire and strip the ends of the red (+), white (ground), and black (-) conductors. (Substitute appropriate colors for different colored cables.)
- 3. Connect the red wire to (+) terminal on TB3 of the plug, the white wire to COM terminal, and the black wire to the (-) terminal.
- 4. The RJ14 CCN connector on TB3 can also be used, but is only intended for temporary connection (for example, a laptop computer running Service Tool).

IMPORTANT: A shorted CCN bus cable will prevent some routines from running and may prevent the unit from starting. If abnormal conditions occur, unplug the connector. If conditions return to normal, check the CCN connector and cable. Run new cable if necessary. A short in one section of the bus can cause problems with all system elements on the bus.

Table 2 — Thermistor Designations

THERMISTOR NO.	PIN CONNECTION POINT	THERMISTOR INPUT		
T1	J8-13,14 (MBB)	Cooler Leaving Fluid		
T2	J8-11,12 (MBB)	Cooler Entering Fluid		
Т3	J8-21,22 (MBB)	Saturated Condensing Temperature, Ckt A		
T4	J8-15,16 (MBB)	Saturated Condensing Temperature, Ckt B		
Т5	J8-24,25 (MBB)	Cooler Suction Temperature, Ckt A (EXV Only)		
Т6	J8-18,19 (MBB)	Cooler Suction Temperature, Ckt B (EXV Only)		
Т7	J5-11,12 (EXV)	Compressor Suction Gas Temperature, Ckt A (EXV Only)		
Т8	J5-9,10 (EXV)	Compressor Suction Gas Temperature, Ckt B (EXV Only)		
Т9	J8-7,8 (MBB)	Outdoor-Air Temperature Sensor or Dual Chiller LWT Sensors (Accessory)		
T10	J8-5,6 (MBB)	Remote Space Temperature Sensor (Accessory)		

LEGEND

Electronic Expansion Valve

EXV — Electronic ExpansMBB — Main Base Board

Table 3 — Status Switches

STATUS SWITCH	PIN CONNECTION POINT	040-060 (50 Hz) 040-070 (60 Hz)	070 (50 Hz) 080, 230B	090-110, 245B-315B	130 (60 Hz)	130 (50 Hz) 150, 230A- 255A	170,190, 270A,290A, 330A/B, 360A/B, 390B	210, 315A, 390A, 420A/B
Oil Pressure, Ckt B	J7-1, 2 (MBB)	Not Used*	OPSB	OPSB	OPSB	OPSB	OPSB	OPSB
Oil Pressure, Ckt A	J7-3, 4 (MBB)	Not Used*	OPSA	OPSA	OPSA	OPSA	OPSA	OPSA
Remote On/Off	TB5-13, 14			Field-Ins	talled Relay	Closure		
Compressor Fault Signal, B3	J5-8, 12 (CXB)	Not Used	Not Used	Not Used	Not Used	Not Used	CR-B3	CR-B3
Compressor Fault Signal, B2	J9-2, 12 (MBB)	Not Used	Not Used	CPCS-B2	CR-B2	CR-B2	CR-B2	CR-B2
Compressor Fault Signal, B1	J9-8, 12 (MBB)	CR/CPCS-B1†	CPCS-B1	CPCS-B1	CR-B1	CR-B1	CR-B1	CR-B1
Compressor Fault Signal, A4	J5-5, 12 (CXB)	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used	CR-A4
Compressor Fault Signal, A3	J5-11, 12 (CXB)	Not Used	Not Used	Not Used	Not Used	CR-A3	CR-A3	CR-A3
Compressor Fault Signal, A2	J9-5, 12 (MBB)	Not Used	CPCS-A2	CPCS-A2	CR-A2	CR-A2	CR-A2	CR-A2
Compressor Fault Signal, A1	J9-11, 12 (MBB)	CR/CPCS-A1†	CPCS-A1	CPCS-A1	CR-A1	CR-A1	CR-A1	CR-A1

LEGEND

CPCS — Compressor Protection Control System

CR CXB MBB

Compressor Frotestari Control Relay
 Compressor Expansion Board
 Main Base Board
 Oil Pressure Switch, Circuit A or B

*The OPS can also be added as an accessory. †The CPCS can be added as an accessory.

Table 4 — Output Relay

RELAY NO.	DESCRIPTION
K1(MBB)	Energize Compressor A1 and OFM1 (040-110*) Energize Liquid Line Solenoid Valve for Ckt A (if used) (040-110*) Energize Compressor A1, OFM5, and OFM7 (130-210*)
K2 (MBB)	Energize Compressor B1 and OFM2 (040-110*) Energize Liquid Line Solenoid Valve for Ckt B (if used) (040-110*) Energize Compressor B1, OFM6, and OFM8 (130-210*)
K3 (MBB)	Energize Unloader A1 (040-170*) No Action (190-210*)
K4 (MBB)	Energize Unloader B1 (040-070†, 080-170*) No Action (190,210*)
K5 (MBB)	No Action (040-060, 50 Hz; 040-070, 60 Hz) Energize Compressor A2 (070, 50 Hz; 080-210*)
K6 (MBB)	No Action (040-080*) Energize Compressor B2 (090-210*)
K7 (MBB)	Alarm
K8 (MBB)	Cooler Pump
K9 (MBB)	Energize First Stage of Condenser Fans: 040-050 —OFM3 060-110* — OFM3, OFM4 130 (60 Hz) — OFM1,OFM2 Energize First Stage of Ckt A Condenser Fans: 130 (50 Hz), 150,170* — OFM1 190,210* —OFM1,OFM11
K10 (MBB)	Energize Second Stage of Condenser Fans: 040-050 — OFM4 060-090* — OFM5, OFM6 100,110* — OFM5,OFM6,OFM7,OFM8 130 (60 Hz) — OFM3,OFM4,OFM9,OFM10 Energize First Stage of Ckt B Condenser Fans: 130 (50 Hz), 150,170* — OFM2 190,210* — OFM2,OFM12
K11 (MBB)	Hot Gas Bypass
K1 (CXB)	No Action (040-110*; 130, 60 Hz) Energize Compressor A3 (130, 50 Hz; 150-210*)
K2 (CXB)	No Action (040-150*) Energize Compressor B3 (170-210*)
K3 (CXB)	Energize Compressor A4 (210*) Energize Accessory Unloader A2 (080-110*)
K4 (CXB)	Energize Accessory Unloader B2 (080-110*)
K5 (CXB)	Energize Second Stage of Ckt A Condenser Fans: 130 (50 Hz), 150-210* — OFM3,OFM9
K6 (CXB)	Energize Second Stage of Ckt B Condenser Fans: 130 (50 Hz), 150-210* — OFM4,OFM10

LEGEND

OFM - Outdoor-Fan Motor

*And associated modular units. †Field-installed accessory unloader.

LEGEND FOR FIG. 1-4

C CB Compressor Contactor Circuit Breaker CCN CGF Carrier Comfort Network

Compressor Ground Fault CHT - Cooler Heater Thermostat CKT CLHR CircuitCooler Heater Relay

 Compressor Protection and Control System
 Chilled Water Flow Switch **CPCS**

CWFS Chilled Water Pump Interlock **CWPI**

CR — Chilled Water Pump Interlock
CR — Control Relay
— Compressor Expansion Board
EQUIP GND — Equipment Ground
FB — Fuse Block
FC — Fan Contactor
FCB — Fan Circuit Breaker

 Factory-Installed Option Package
 Energy Management Module
 Electronic Expansion Valve FIOP EMM EXV FCB HPS LCS Fan Circuit Breaker High-Pressure Switch
 Loss-of-Charge Switch Local Equipment NetworkMain Base Board LEN **MBB** National Electrical Code **NEC** Outdoor-Air Temperature
Oil Pressure Switch

OAT OPS Oil Pressure Switch — Plug— Part Wind PL PW SN Sensor (Toroid) Space Temperature SPT TRAN Transformer

SW Switch — Terminal Block ΤВ **TDR** Time Delay Relay

TXV Thermostatic Expansion Valve

UL Unloader - Across-the-Line

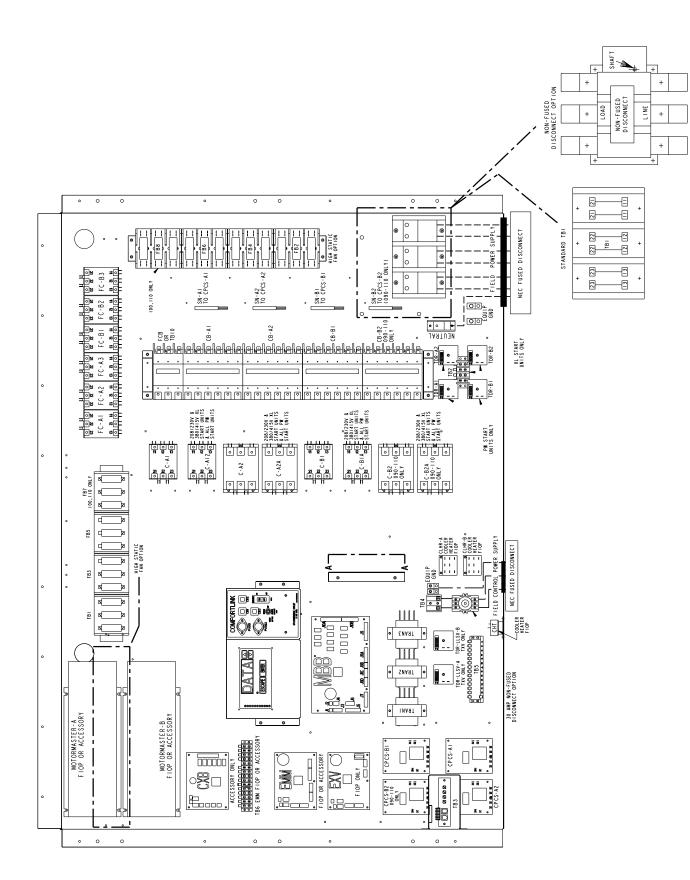


Fig. 1 — Typical Control Box (080-110 and Associated Modular Units Shown)

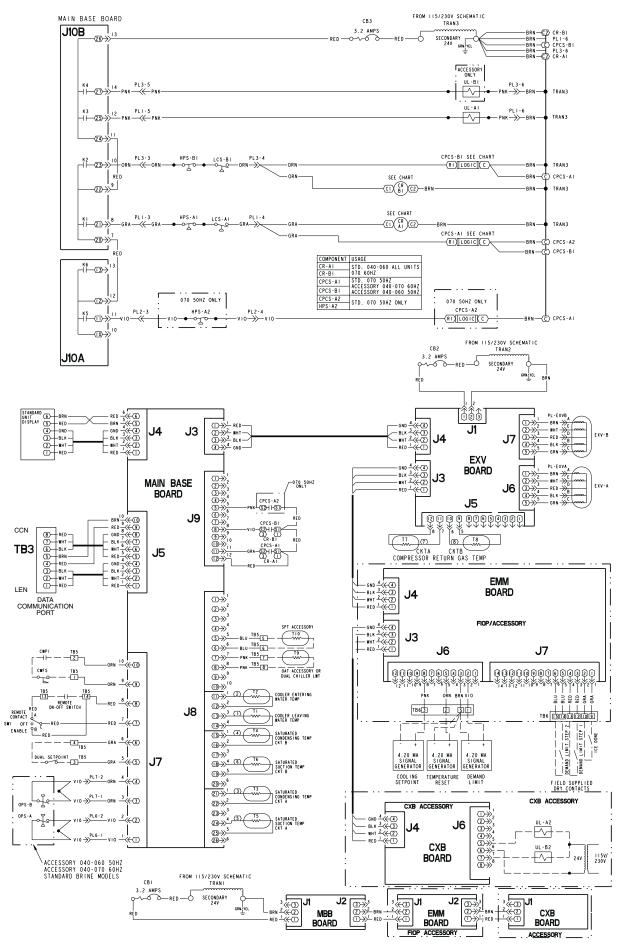


Fig. 2 — 24 V Control Schematic, Unit Sizes 040-070

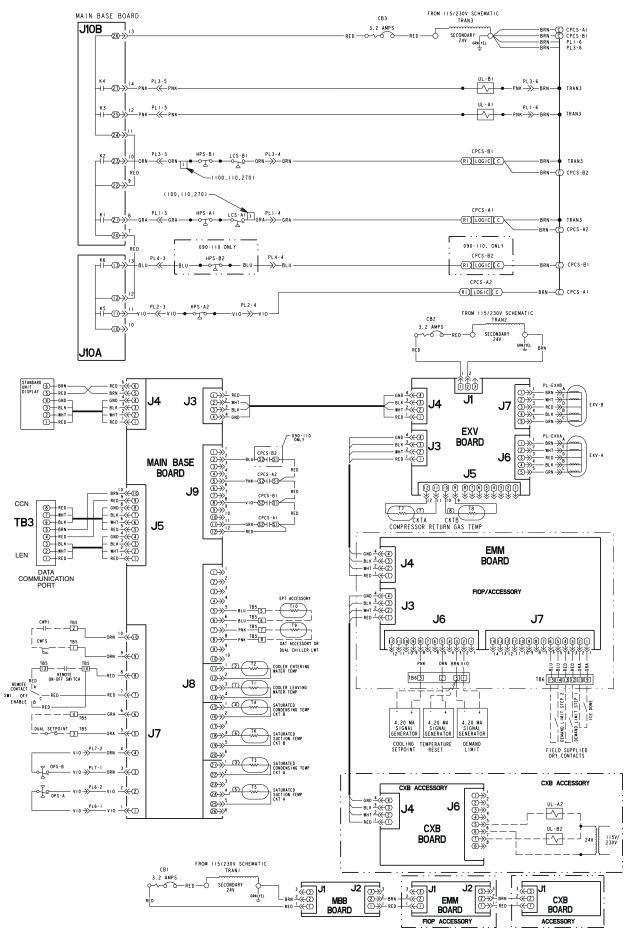


Fig. 3 — 24 V Control Schematic, Unit Sizes 080-110, 230B-315B

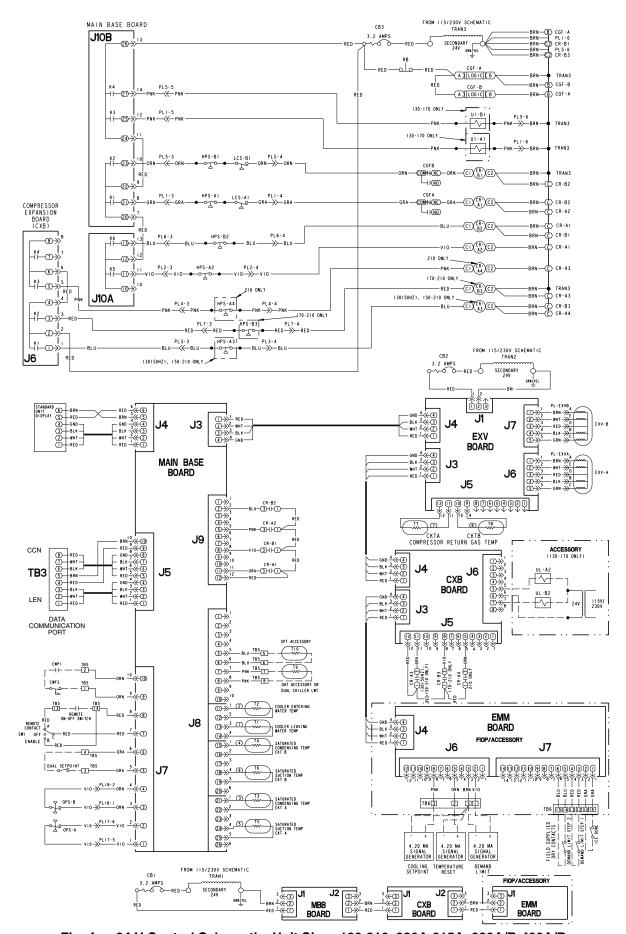


Fig. 4 — 24 V Control Schematic, Unit Sizes 130-210, 230A-315A, 330A/B-420A/B

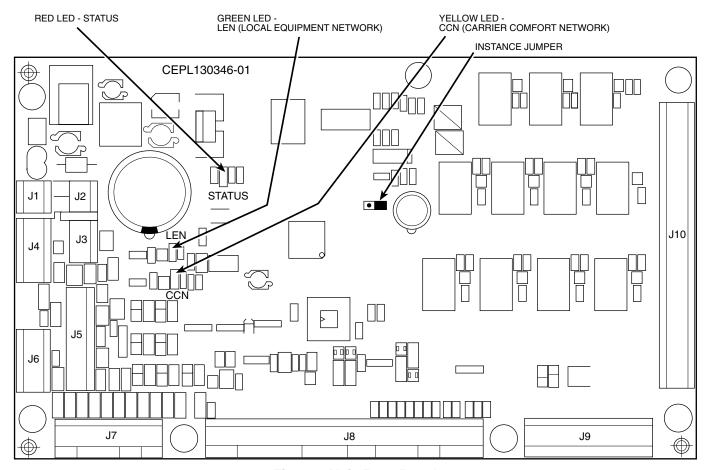


Fig. 5 — Main Base Board

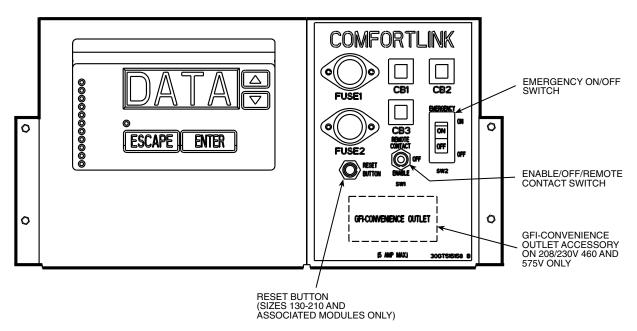
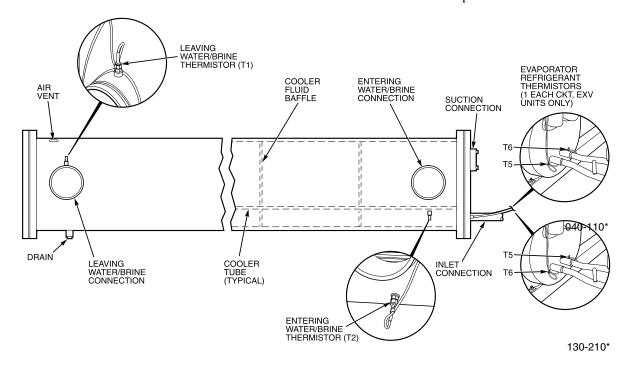


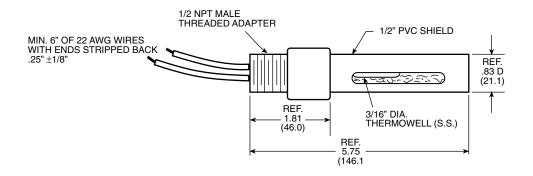
Fig. 6 — Enable/Off/Remote Contact Switch, Emergency On/Off Switch, and Reset Button Locations

OPERATING DATA

Sensors — The electronic control uses 4 to 10 thermistors to sense temperatures for controlling chiller operation. See Table 2. These sensors are outlined below. See Fig. 7-10 for thermistor locations. Thermistors T1-T9 are 5 k Ω at 77 F (25 C). Thermistors T1, T2, T3-T6 and T7-T9 have different temperature versus resistance and voltage drop performance. Thermistor T10 is 10 k Ω at 77 F (25 C) and has a different temperature vs resistance and voltage drop performance. See Thermistors section on page 59 for temperature-resistance-voltage drop characteristics.

T1 — COOLER LEAVING FLUID SENSOR — This thermistor is located in the leaving fluid nozzle. The thermistor probe is inserted into a friction-fit well.

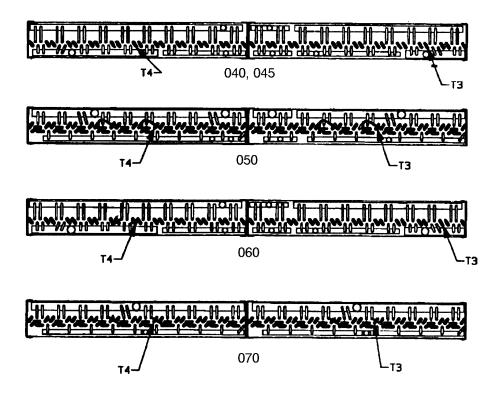

T2 — COOLER ENTERING FLUID SENSOR — This thermistor is located in the cooler shell in the first baffle space in close proximity to the cooler tube bundle.

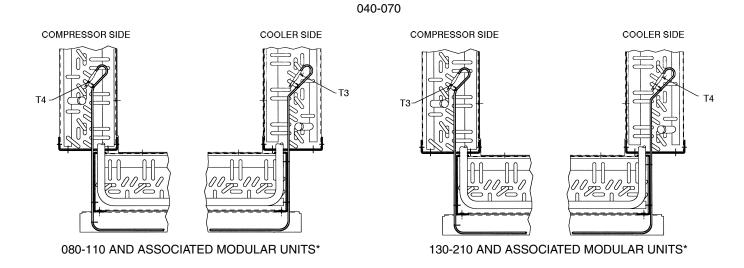

T3, T4 — SATURATED CONDENSING TEMPERATURE SENSORS — These 2 thermistors are clamped to the outside of a return bend of the condenser coils.

T5, T6 — COOLER SUCTION TEMPERATURE SENSORS — These thermistors are located next to the refrigerant inlet in the cooler head, and are inserted into a friction-fit well. The sensor well is located directly in the refrigerant path. These thermistors are not used on units with TXVs.

T7, T8 — COMPRESSOR SUCTION GAS TEMPERATURE SENSORS — These thermistors are located in the lead compressor in each circuit in a suction passage after the refrigerant has passed over the motor and is about to enter the cylinders. These thermistors are inserted into friction-fit wells. The sensor wells are located directly in the refrigerant path. These thermistors are not used on units with TXVs.

T9 — OUTDOOR-AIR TEMPERATURE SENSOR — Sensor T9 is an accessory sensor that is remotely mounted and used for outdoor-air temperature reset.




LEGEND

AWG — American Wire Gage EXV — Electronic Wire Gage

Fig. 7 — Cooler Thermistor Locations and Accessory Outdoor-Air Temperature Sensor Detail

^{*}And associated modular units.

*When thermistor is viewed from perspective where the compressor is on the left and the cooler is on the right.

Fig. 8 — Thermistor T3 and T4 Locations

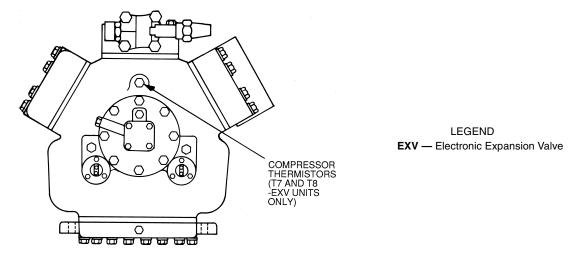


Fig. 9 — Compressor Thermistor Locations (T7 and T8)

Fig. 10 — Typical Thermistor Location (30GTN,R and 30GUN,R 210, 315A, 390A, 420A/B Shown)

T10 — REMOTE SPACE TEMPERATURE SENSOR — Sensor T10 (part no. HH51BX006) is an accessory sensor that is remotely mounted in the controlled space and used for space temperature reset. The sensor should be installed as a wall-mounted thermostat would be (in the conditioned space where it will not be subjected to either a cooling or heating source or direct exposure to sunlight, and 4 to 5 ft above the floor). The push button override button is not supported by the ComfortLinkTM Controls.

Space temperature sensor wires are to be connected to terminals in the unit main control box. The space temperature sensor includes a terminal block (SEN) and a RJ11 female connector. The RJ11 connector is used to tap into the Carrier Comfort Network (CCN) at the sensor.

To connect the space temperature sensor (Fig. 11):

- 1. Using a 20 AWG (American Wire Gage) twisted pair conductor cable rated for the application, connect 1 wire of the twisted pair to one SEN terminal and connect the other wire to the other SEN terminal located under the cover of the space temperature sensor.
- 2. Connect the other ends of the wires to terminals 5 and 6 on TB5 located in the unit control box.

Units on the CCN can be monitored from the space at the sensor through the RJ11 connector, if desired. To wire the RJ11 connector into the CCN (Fig. 12):

IMPORTANT: The cable selected for the RJ11 connector wiring MUST be identical to the CCN communication bus wire used for the entire network. Refer to table below for acceptable wiring.

MANUFACTURER	PART NO.			
WANDFACTORER	Regular Wiring	Plenum Wiring		
Alpha	1895	_		
American	A21451	A48301		
Belden	8205	884421		
Columbia	D6451	_		
Manhattan	M13402	M64430		
Quabik	6130	_		

1. Cut the CCN wire and strip ends of the red (+), white (ground), and black (-) conductors. (If another wire color scheme is used, strip ends of appropriate wires.)

- 2. Insert and secure the red (+) wire to terminal 5 of the space temperature sensor terminal block.
- 3. Insert and secure the white (ground) wire to terminal 4 of the space temperature sensor.
- 4. Insert and secure the black (–) wire to terminal 2 of the space temperature sensor.
- 5. Connect the other end of the communication bus cable to the remainder of the CCN communication bus.

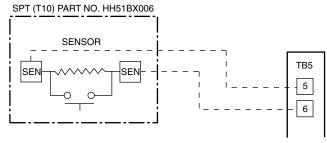


Fig. 11 — Typical Space Temperature Sensor Wiring

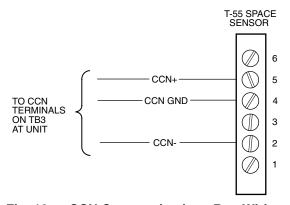


Fig. 12 — CCN Communications Bus Wiring to Optional Space Sensor RJ11 Connector

Thermostatic Expansion Valves (TXV) — Model 30GTN,R and 30GUN,R 040-110 units are available from the factory with conventional TXVs with liquid line solenoids. The liquid line solenoid valves are not intended to be a mechanical shut-off. When service is required, use the liquid line service valve to pump down the system.

NOTE: This option is not available for modular units.

The TXV is set at the factory to maintain approximately 8 to 12° F (4.4 to 6.7° C) suction superheat leaving the cooler by metering the proper amount of refrigerant into the cooler. All TXVs are adjustable, *but should not be adjusted unless absolutely necessary*. When TXV is used, thermistors T5, T6, T7, and T8 are not required.

The TXV is designed to limit the cooler saturated suction temperature to 55 F (12.8 C). This makes it possible for unit to start at high cooler fluid temperatures without overloading the compressor.

Compressor Protection Control System (CPCS [CPCS — Standard on Sizes 080-110 and Optional on Sizes 040-070]) or Control Relay (CR) — 30GTN,R and 30GUN,R 040-110 — Each compressor has its own CPCS module or CR. See Fig. 13 for CPCS module. The CPCS or CR is used to control and protect the compressors and crankcase heaters. The CPCS and CR provide the following functions:

- compressor contactor control/crankcase heater
- crankcase heater control
- compressor ground current protection (CPCS only)
- status communication to processor board
- · high-pressure protection

One large relay is located on the CPCS board. This relay controls the crankcase heater and compressor contactor, and also provides a set of signal contacts that the microprocessor monitors to determine the operating status of the compressor. If the processor board determines that the compressor is not operating properly through the signal contacts, it will lock the compressor off by deenergizing the proper 24-v control relay on the relay board. The CPCS board contains logic that can detect if the current-to-ground of any compressor winding exceeds 2.5 amps. If this condition occurs, the CPCS shuts down the compressor.

A high-pressure switch is wired in series between the MBB and the CR or CPCS. On compressor A1 and B1 a loss-of-charge switch is also wired in series with the high-pressure switch. If the high-pressure switch opens during operation of a compressor, the compressor will be stopped, the failure will be detected through the signal contacts, and the compressor will be locked off. If the lead compressor in either circuit is shut down by the high-pressure switch, loss-of-charge switch, ground current protector, or oil safety switch, all compressors in that circuit are shut down.

NOTE: The CR operates the same as the CPCS, except the ground current circuit protection is not provided.

Compressor Ground Current Protection Board (CGF) and Control Relay (CR) — The 30GTN,R and 30GUN,R 130-210, and associated modular units (see Table 1) contain one compressor ground current protection board (CGF) (see Fig. 14) for each refrigeration circuit. The CGF contains logic that can detect if the current-to-ground

of any compressor winding exceeds 2.5 amps. If this occurs, the lead compressor in that circuit is shut down along with other compressors in that circuit.

A high-pressure switch is wired in series between the MBB and the CR. On compressor A1 and B1 a loss-of-charge switch is also wired in series with the high-pressure switch. The lead compressor in each circuit also has the CGF contacts described above. If any of these switches open during operation of a compressor, the CR relay is deenergized, stopping the compressor and signaling the processor at the MBB-J9 inputs to lock out the compressor. If the lead compressor in either circuit is shut down by high-pressure switch, compressor ground fault, oil pressure switch, or the loss-of-charge switch, all compressors in that circuit are also shut down.

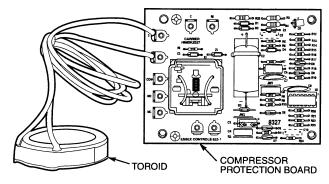


Fig. 13 — Compressor Protection Control System Module — Sizes 040-110

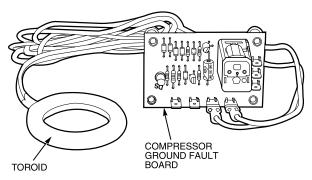


Fig. 14 — Compressor Ground Fault Module
— Sizes 130-210

Electronic Expansion Valve (EXV) (See

Fig. 15) — Standard units are equipped with a bottom seal EXV. This device eliminates the use of the liquid line solenoid pumpdown at unit shutdown. An O-ring has been added to bottom of orifice assembly to complete a seal in the valve on shutdown. This is not a mechanical shut-off. When service is required, use the liquid line service valve to pump down the system.

High pressure refrigerant enters bottom of valve where it passes through a group of machined slots in side of orifice assembly. As refrigerant passes through the orifice, it drops in pressure. To control flow of refrigerant, the sleeve slides up and down along orifice assembly, modulating the size of orifice. The sleeve is moved by a linear stepper motor that moves in increments controlled directly by the processor. As stepper motor rotates, the motion is translated into linear movement of lead screw. There are 1500 discrete steps with this combination. The valve orifice begins to be exposed at 320 steps. Since there is not a tight seal with the orifice and the sleeve, the minimum position for operation is 120 steps.

Two thermistors are used to determine suction superheat. One thermistor is located in the cooler and the other is located in the cylinder end of the compressor after refrigerant has passed over the motor. The difference between the 2 thermistors is the suction superheat. These machines are set up to provide approximately 5 to 7 F (2.8 to 3.9 C) superheat leaving the cooler. Motor cooling accounts for approximately 22 F (12.2 C) on 30GTN,R units and 16 F (8.9 C) on 30GUN,R units, resulting in a superheat entering compressor cylinders of approximately 29 F (16.1 C) for 30GTN,R units and 23 F (12.8 C) for 30GUN,R units.

Because the valves are controlled by the EXV module, it is possible to track the position of the valve. Valve position can be used to control head pressure and system refrigerant charge.

During initial start-up, the EXV module will drive each valve fully closed. After initialization period, valve position is controlled by the EXV module and the MBB.

The EXV is used to limit the maximum cooler saturated suction temperature to 55 F (12.8 C). This makes it possible for the chiller to start at high cooler fluid temperatures without overloading the compressor.

Energy Management Module (Fig. 16) — This factory-installed option or field-installed accessory is used for the following types of temperature reset, demand limit, and/or ice features:

- 4 to 20 mA leaving fluid temperature reset (requires field-supplied 4 to 20 mA generator)
- 4 to 20 mA cooling set point reset (requires fieldsupplied 4 to 20 mA generator)
- Discrete inputs for 2-step demand limit (requires fieldsupplied dry contacts capable of handling a 5 vdc, 1 to 20 mA load)
- 4 to 20 mA demand limit (requires field-supplied 4 to 20 mA generator)
- Discrete input for Ice Done switch (requires fieldsupplied dry contacts capable of handling a 5 vdc, 1 to 20 mA load)

See Demand Limit and Temperature Reset sections on pages 46 and 43 for further details.

Capacity Control — The control system cycles compressors, unloaders, and hot gas bypass solenoids to maintain the user-configured leaving chilled fluid temperature set point. Entering fluid temperature is used by the Main Base Board (MBB) to determine the temperature drop across the cooler and is used in determining the optimum time to add or subtract capacity stages. The chilled fluid temperature set point can be automatically reset by the return temperature reset or space and outdoor-air temperature reset features. It can also be reset from

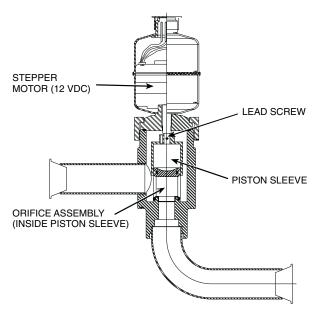


Fig. 15 — Electronic Expansion Valve (EXV)

an external 4 to 20 mA signal (requires Energy Management Module FIOP/accessory).

With the automatic lead-lag feature in the unit, the control determines which circuit will start first, A or B. At the first call for cooling, the lead compressor crankcase heater will be deenergized, a condenser fan will start, and the compressor will start unloaded.

NOTE: The automatic lead-lag feature is only operative when an even number of unloaders is present. The 040-070 units require an accessory unloader to be installed on the B1 compressor for the lead-lag feature to be in effect.

If the circuit has been off for 15 minutes, and the unit is a TXV unit, liquid line solenoid will remain closed during start-up of each circuit for 15 seconds while the cooler and suction lines are purged of any liquid refrigerant. For units with EXVs, the lead compressor will be signaled to start. The EXV will remain at minimum position for 10 seconds before it is allowed to modulate.

After the purge period, the EXV will begin to meter the refrigerant, or the liquid line solenoid will open allowing the TXV to meter the refrigerant to the cooler. If the off-time is less than 15 minutes, the EXV will be opened as soon as the compressor starts.

The EXVs will open gradually to provide a controlled startup to prevent liquid flood-back to the compressor. During startup, the oil pressure switch is bypassed for 2 minutes to allow for the transient changes during start-up. As additional stages of compression are required, the processor control will add them. See Tables 5A and 5B.

If a circuit is to be stopped, the control will first start to close the EXV or close the liquid line solenoid valve.

<u>For units with TXVs</u>, the lag compressor(s) will be shut down and the lead compressor will continue to operate for 10 seconds to purge the cooler of any refrigerant.

<u>For units with EXVs</u>, the lag compressor(s) will be shut down and the lead compressor will continue to run. After the lag compressor(s) has shut down, the EXV is signaled to close. The lead compressor will remain on for 10 seconds after the EXV is closed.

During both algorithms (TXV and EXV), all diagnostic conditions will be honored. If a safety trip or alarm condition is detected before pumpdown is complete, the circuit will be shut down.

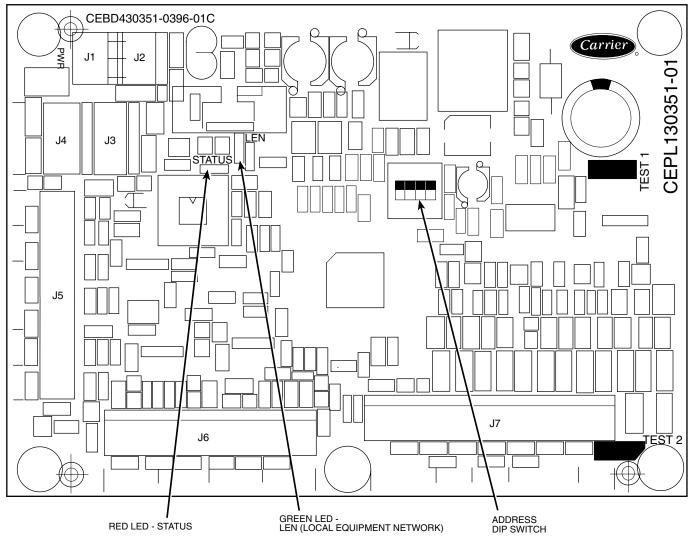


Fig. 16 — Energy Management Module

The capacity control algorithm runs every 30 seconds. The algorithm attempts to maintain the leaving chilled water temperature at the control point. Each time it runs, the control reads the entering and leaving fluid temperatures. The control determines the rate at which conditions are changing and calculates 2 variables based on these conditions. Next, a capacity ratio is calculated using the 2 variables to determine whether or not to make any changes to the current stages of capacity. This ratio

value ranges from -100 to +100%. If the next stage of capacity is a compressor, the control starts (stops) a compressor when the ratio reaches +100% (-100%). If the next stage of capacity is an unloader, the control deenergizes (energizes) an unloader when the ratio reaches +60% (-60%). Unloaders are allowed to cycle faster than compressors, to minimize the number of starts and stops on each compressor. A delay of 90 seconds occurs after each capacity step change.

Table 5A — Part Load Data Percent Displacement, Standard Units

UNIT LOADING SEQUENCE A LOADING SEQUENCE B						
30GTN,R 30GUN,R	CONTROL STEPS	% Displacement (Approx)	Compressors	% Displacement (Approx)	Compressors	
040 (60 Hz)	1 2	25 50	A1* A1	<u> </u>		
040 (60 HZ)	3	75	A1*, B1	_	_	
	4	100 24	A1,B1 A1*	<u> </u>	<u> </u>	
040 (50 Hz)	2	47	A1	_	_	
045 (60 Hz)	3 4	76 100	A1*,B1 A1,B1	_	_	
045 (50 H-)	1	31	A1*	_	_	
045 (50 Hz) 050 (60 Hz)	2 3 4	44 87	A1 A1*,B1	_	_	
		100	A1,B1	_		
050 (50 Hz)	1 2	28 42	A1* A1	_	_	
060 (60 Hz)	3 4	87 100	A1*,B1 A1,B1	_	_	
	1	33	A1,61 A1*	<u> </u>	<u> </u>	
060 (50 Hz) 070 (60 Hz)	2	50	A1	_	_	
070 (00 Hz)	3 4	83 100	A1*,B1 A1,B1	_	_ _	
	1	19	A1*	_	_	
070 (50 Hz)	2 3 4	27 65	A1 A1*,B1	_	_ _	
070 (30 112)	4 5	73 92	A1,B1 A1*,A2,B1	_	_	
	5 6	100	A1,A2,B1			
	1 2	22 34	A1* A1	30 44	B1* B1	
200 2007 (2011)	2 3	52	A1*,B1*	52	A1*,B1*	
080, 230B (60 Hz)	4 5	67 78	A1*,B1 A1,B1	63 78	A1,B1* A1,B1	
	6	89	A1*,A2,B1	85	A1,A2,B1*	
	7	100 17	A1,A2,B1 A1*	100 25	A1,A2,B1 B1*	
		25	A1	38	B1	
080, 230B (50 Hz)	2 3 4	42 54	A1*,B1* A1*,B1	42 50	A1*,B1* A1, B1*	
000, 230B (30 HZ)	5 6	62 79	A1,B1 A1*,A2,B1*	62 79	A1,B1	
	7	92	A1*,A2,B1	88	A1*,A2,B1* A1,A2,B1*	
	8	100 18	A1,A2,B1 A1*	100 18	A1,A2,B1 B1*	
		27	A1	27	B1	
	2 3 4	35 44	A1*,B1* A1*,B1	35 44	A1*,B1* A1,B1	
090, 245B (60 Hz)	5 6	53	A1,B1	53	A1,B1	
090, 245B (00 HZ)	7	56 65	A1*,A2,B1* A1*,A2,B1	62 71	A1*,B1*,B2 A1,B1*,B2	
	8 9	74 82	A1,A2,B1 A1*,A2,B1*,B2	80 82	A1,B1,B2 A1*,A2,B1*,B2	
	10	91	A1*,A2,B1,B2	91	A1,A2,B1*,B2	
-	11	100 14	A1,A2,B1,B2 A1	100 14	A1,A2,B1,B2 B1*	
	2	21	A1	21	B1	
	2 3 4 5 6 7	29 36	A1*,B1* A1*,B1	29 36	A1*,B1* A1,B1*	
090, 245B (50 Hz)	5	43	A1,B1	43	A1,B1	
090, 243B (30 HZ)	7	61 68	A1*,A2,B1* A1*,A2,B1	53 60	A1*,B1*,B2 A1,B1*,B2	
	8 9	75 86	A1,A2,B1 A1*,A2,B1*,B2	67 86	A1,B1,B2 A1*,A2,B1*,B2	
	10	93	A1*,A2,B1,B2	93	A1,A2,B1*,B2	
	11	100 16	A1,A2,B1,B2 A1*	100 16	A1,A2,B1,B2 A1*	
		23	A1	23	A1	
	2 3 4 5 6 7	31 39	A1*,B1* A1*,B1	31 39	A1*,B1* A1*,B1	
100, 255B,	5	46	A1,B1	46	A1,B1	
270B (60 Hz)	7	58 66	A1*,A2,B1* A1*,A2,B1	58 66	A1*,A2,B1* A1*,A2,B1	
	8 9	66 73 85	A1,A2,B1 A1*,A2,B1*,B2	73 85	A1,A2,B1 A1*,A2,B1*,B2	
	10	92	A1*,A2,B1,B2	92	A1*,A2,B1,B2	
	11	100	A1,A2,B1,B2	100	A1,A2,B1,B2	

 $^{^{\}star}$ Unloaded compressor.

Table 5A — Part Load Data Percent Displacement, Standard Units (cont)

UNIT CONTROL			EQUENCE A	LOADING SEQUENCE B		
30GTN,R 30GUN,R	STEPS	% Displacement (Approx)	Compressors	% Displacement (Approx)	Compressors	
100, 255B 270B (50 Hz)	1 2 3 4 5 6 7 8 9 10 11	13 20 26 33 40 57 63 70 87 93	A1* A1 A1*,B1* A1,B1 A1,B1 A1,A2,B1* A1,A2,B1 A1,A2,B1 A1*,A2,B1,B2 A1*,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2	13 20 26 33 40 57 63 70 87 93	B1* B1 A1*,B1* A1,B1 A1,B1 A1*,B1*,B2 A1,B1*,B2 A1,A2,B1*,B2 A1*,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1,B2	
110, 290B, 315B (60 Hz)	1 2 3 4 5 6 7 8 9 10 11	14 21 29 36 43 61 68 75 86 93	A1* A1 A1*,B1* A1*,B1 A1*,B1 A1,B A1*,A2,B1* A1*,A2,B1 A1,A2,B1 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2	14 21 29 36 43 53 60 67 86 93	B1* B1 A1*,B1* A1,B1* A1,B1 A1*,B1*,B2 A1,B1*,B2 A1,B1,B2 A1,A2,B1*,B2 A1,A2,B1,B2 A1,A2,B1,B2	
110, 290B, 315B (50 Hz)	1 2 3 4 5 6 7 8 9 10 11	17 25 33 42 50 58 67 75 83 92	A1* A1 A1*,B1* A1*,B1 A1*,B1 A1,A2,B1* A1*,A2,B1 A1,A2,B1 A1,A2,B1,B2 A1*,A2,B1,B2 A1,A2,B1,B2	17 25 33 42 50 58 67 75 83 92	B1* B1 A1*,B1* A1,B1* A1,B1 A1*,B1 A1*,B2 A1,B1*,B2 A1,B1,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1,B2	
130 (60 Hz)	1 2 3 4 5 6 7 8 9 10	14 21 28 35 42 58 64 71 87 93	A1* A1 A1* A1*,B1* A1*,B1 A1*,A2,B1* A1*,A2,B1 A1,A2,B1 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2	14 21 28 35 42 58 64 71 87 93	B1* B1 A1*,B1* A1,B1* B1,B1 A1*,B1*,B2 A1,B1*,B2 A1,G1,B2 A1,A2,B1*,B2 A1,A2,B1,B2 A1,A2,B1,B2	
130 (50 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14	10 14 26 35 39 44 53 57 69 78 82 87 96	A1* A1 A1*,B1* A1*,B1 A1*,B1 A1,B1 A1*,A2,B1* A1*,A2,B1 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,A3,B1*,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2	16 25 26 31 39 51 56 64 69 75 82 87 91	B1* B1 A1*,B1* A1,B1* A1,B1* A1,B1,B2 A1,B1,B2 A1,B1,B2 A1,A2,B1*,B2 A1,A2,B1,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2	
150, 230A, 245A, 255A (60 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13	11 15 29 38 42 44 53 58 71 80 85 86 95	A1* A1 A1*,B1* A1*,B1 A1*,B1 A1*,A2,B1* A1*,A2,B1 A1*,A2,B1 A1*,A2,B1,B2 A1*,A2,B3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1,A2,A3,B1,B2	18 27 29 33 42 55 60 69 71 75 85 86 91	B1* B1 A1*,B1* A1,B1* A1,B1 A1*,B2 A1,B1,B2 A1,B1,B2 A1,A2,B1*,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B3,B1,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1,B2	

^{*}Unloaded compressor.

Table 5A — Part Load Data Percent Displacement, Standard Units (cont)

UNITT	CONTROL	LOADING SEQUENCE A		LOADING SEQUENCE B		
30GTN,R 30GUN,R	STEPS	% Displacement (Approx)	Compressors	% Displacement (Approx)	Compressors	
150, 230A, 245A, 255A (50 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14	13 20 26 33 40 46 53 60 66 73 80 86 93	A1* A1 A1*,B1* A1*,B1 A1*,B1 A1,B1 A1*,A2,B1* A1*,A2,B1 A1,A2,B1 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2	13 20 26 33 40 46 53 60 66 73 80 86 93	B1* B1 A1*,B1* A1,B1* A1,B1 A1,B1 A1*,B2 A1,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2	
170, 270A, 330A/B (60 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	11 17 23 28 33 39 45 50 56 61 67 73 78 83 89 95	A1* A1 A1*,B1* A1*,B1* A1*,B1 A1*,A2,B1* A1*,A2,B1 A1,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B3,B1*,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1*,A2,A3,B1,B2	11 17 23 28 33 39 45 50 56 61 67 73 78 83 89 95	B1* B1 A1*,B1* A1,B1* A1,B1* A1,B1,B2 A1,B1,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3	
170, 270A, 330A/B, 360B (50 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	9 14 19 23 28 33 37 42 52 57 61 72 76 81 91 96	A1* A1 A1* A1,81* A1*,B1 A1*,B1 A1,A2,B1* A1,A2,B1 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3	9 14 19 23 28 38 47 52 57 61 72 76 81 91 96	B1* B1 A1*,B1* A1,B1* A1,B1* A1,B1 A1*,B1,B2 A1,B1,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1,B2,B3	
190, 290A, 360A/B, 390B (60 Hz)	1 2 3 4 5 6	13 25 41 56 78 100	A1 A1,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2,B3	13 25 41 56 78 100	B1 A1,B1 A1,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2,B3 A1,A2,A3,B1,B2,B3	
190, 290A, 360A, 390B (50 Hz)	1 2 3 4 5 6	17 33 50 67 83 100	A1 A1,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2,B3	17 33 50 67 83 100	B1 A1,B1 A1,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2,B3 A1,A2,A3,B1,B2,B3	
210, 315A, 390A, 420A/B (60 Hz)	1 2 3 4 5 6 7	11 25 36 56 67 86 100	A1 A1,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2,B3 A1,A2,A3,A4,B1,B2,B3	14 25 44 56 75 86 100	B1 A1,B1 A1,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,A4,B1,B2,B3	
210, 315A, 390A, 420A/B (50 Hz)	1 2 3 4 5 6 7	9 26 35 51 67 84 100	A1 A1,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2,B3 A1,A2,A3,A4,B1,B2,B3	16 26 42 51 67 84 100	B1 A1,B1 A1,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,A4,B1,B2,B3	

^{*}Unloaded compressor.

Table 5B — Part Load Data Percent Displacement, With Accessory Unloaders

UNIT	CONTROL	LOADING S	EQUENCE A	LOADING SI	EQUENCE B
30GTN,R 30GUN,R	CONTROL STEPS	% Displacement (Approx)	Compressors	% Displacement (Approx)	Compressors
040 (60 Hz)	1 2	25 50	A1* A1	25 50	B1* B1
040 (00 112)	3 4	75 100	A1*,B1 A1,B1	75 100	A1,B1* A1,B1
	1	24	A1*	21	B1†
040 (50 11-)	2 3	47 45	A1 A1*,B1†	37 53	B1* B1
040 (50 Hz) 045 (60 Hz)	4	61	A1*,B1*	45	A1*,B1†
, ,	5 6	84 100	A1,B1* A1,B1	61 84	A1*,B1* A1,B1*
	7	_	_	100	A1,B1
	1 2 3	18 31	A1† A1*	20 38	B1† B1*
045 (50 Hz)	3 4	44 38	A1 A1†,B1†	56 38	B1 A1†,B1†
050 (60 Hz)	5	51	A1*,B1†	51	A1*.B1†
	6 7	69 82	A1*,B1* A1,B1*	69 82	A1*,B1* A1,B1*
	8	100	A1,B1	100	A1,B1
	1 2	15 28	A1† A1*	18 38	B1† B1*
050 (50 Hz)	3 4	42 33	A1 A1†,B1†	58 33	B1 A1†,B1†
060 (60 Hz)	5	47	A1*,B1†	47	A1*,B1†
	6 7	67 80	A1*,B1* A1,B1*	67 80	A1*,B1* A1,B1*
	8	100	A1,B1	100	A1,B1
	1 2	16 33	A1† A1*	16 33	B1† B1*
060 (50 Hz)	3	50	A1	50	B1
070 (60 Hz)	4 5	31 49	A1†,B1† A1*,B1†	31 49	A1†,B1† A1*,B1†
	6 7	66 83	A1*,B1* A1,B1*	66 83	A1*,B1* A1,B1*
	8	100	A1,B1	100	A1,B1
	1 2	11 19	A1† A1*	15 31	B1† B1*
	3	27	A1	47	B1
	4 5	25 33	A1†,B1† A1*,B1†	25 33	A1†,B1† A1*,B1†
070 (50 Hz)	6 7	49 57	A1*,B1* A1,B1*	49 57	A1*,B1* A1,B1*
	8	73	A1.B1	73	A1,B1
	9 10	84 92	A1†,Á2,B1 A1*,A2,B1	68 84	A1,A2,B1† A1,A2,B1*
	11	100	A1,A2,B1	100	A1,A2,B1
	1 2	11 22	A1† A1*	15 30	B1† B1*
	3 4	34 41	A1 A1†,B1*	44 48	B1 A1,B1†
080, 230B (60 Hz)	5 6	55	A1†,B1	63	A1,B1*
	7	67 78	A1*,B1 A1,B1	78 85	A1,B1 A1,A2,B1*
	8 9	89 100	A1*,A2,B1 A1,A2,B1	100	A1,A2,B1 —
	1	8	A1†	13	B1†
	2 3 4	17 25	A1* A1	25 38	B1* B1
	4 5	25 33 46	A1†,B1* A1†,B1	50	A1,B1* A1,B1
080, 230B (50 Hz)	5 6 7	54	A1*,B1	62 67	A1*,A2,B1†
	7 8	62 71	A1,B1 A1†,A2,B1*	75 88	A1,A2,B1† A1,A2,B1*
	9	84	A1†,A2,B1	100	A1,A2,B1
	10 11	92 100	A1*,A2,B1 A1,A2,B1		
	1 2	9 18	A1† A1*	9	B1† B1*
	2 3 4	27 35	A1	18 27 35	B1
	4 5	44	A1†,B1 A1*,B1	44	A1,B1† A1,B1*
090, 245B (60 Hz)	5 6 7	53 56	A1,B1	53 62	A1,B1
, , ,	8	65	A1†,A2,B1 A1*,A2,B1	71	A1,B1†,B2 A1,B1*,B2
	9 10	74 82	A1,A2,B1 A1†,A2,B1,B2	80 82	A1,B1,B2 A1,A2,B1†,B2
	11	91	A1*,A2,B1,B2	91	A1,A2,B1*,B2
	12	100	A1,A2,B1,B2	100	A1,A2,B1,B2

NOTE: Some control steps will be skipped if they do not increase chiller capacity when staging up or decrease chiller capacity when staging down.

^{*}Unloaded compressor. †Two unloaders, both unloaded.

Table 5B — Part Load Data Percent Displacement, With Accessory Unloaders (cont)

UNIT	CONTROL	LOADING SI	EQUENCE A	LOADING S	EQUENCE B
30GTN,R 30GUN,R	CONTROL STEPS	% Displacement (Approx)	Compressors	% Displacement (Approx)	Compressors
090, 245B (50 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7 14 21 29 36 43 49 54 61 68 75 79 86 93 100	A1† A1* A1 A1 A1,B1 A1*,B1 A1,B1 A1,A2,B1† A1†,A2,B1* A1†,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1,B2 A1†,A2,B1,B2 A1*,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2	7 14 21 29 36 43 46 53 60 67 72 79 86 93 100	B1† B1* B1 A1,B1† A1,B1* A1,B1* A1,B1+,B2 A1,B1+,B2 A1,B1+,B2 A1,B1+,B2 A1,A2,B1+,B2 A1,A2,B1+,B2 A1,A2,B1+,B2 A1,A2,B1+,B2 A1,A2,B1+,B2 A1,A2,B1+,B2 A1,A2,B1+,B2
100, 255B, 270B (60 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14	8 16 23 31 39 46 50 58 66 73 77 85 92 100	A1† A1* A1 A1,B1 A1*,B1 A1*,B1 A1,A2,B1* A1†,A2,B1 A1*,A2,B1 A1*,A2,B1 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2	8 16 23 31 39 46 50 58 66 73 77 85 92 100	B1† B1* B1 A1,B1† A1,B1† A1,B1* A1,B1 †,B2 A1,B1*,B2 A1,B1*,B2 A1,B1,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1†,B2
100, 255B, 270B (50 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	7 13 20 26 33 40 43 50 57 63 70 74 80 89 93	A1† A1* A1 A1,B1 A1,B1 A1,B1 A1,A2,B1† A1,A2,B1* A1,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2	7 13 20 26 33 40 43 50 57 63 70 74 80 87 93	B1† B1* B1 A1,B1† A1,B1* A1,B1* A1†,B1†,B2 A1*,B1†,B2 A1,B1†,B2 A1,B1*,B2 A1,B1,B2 A1,B1,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1*,B2 A1,A2,B1*,B2
110, 290B, 315B (60 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7 14 21 29 36 43 47 54 61 68 75 79 86 93	A1† A1* A1 A1,B1 A1,B1 A1,B1 A1,A2,B1† A1,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2	7 14 21 29 36 43 46 53 60 67 72 79 86 93 100	B1† B1* B1 A1,B1† A1,B1† A1,B1* A1,B1+,B2 A1,B1+,B2 A1,B1+,B2 A1,B1,B2 A1,A2,B1+,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1+,B2 A1,A2,B1+,B2 A1,A2,B1+,B2
110, 290B, 315B (50 Hz)	1 2 3 4 5 6 7 8 9 10 11	8 17 25 33 42 50 58 67 75 83 92 100	A1† A1* A1 A1,B1 A1,B1 A1,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2	8 17 25 33 42 50 58 67 75 83 92 100	B1† B1* B1 A1,B1† A1,B1* A1,B1* A1,B1+,B2 A1,B1*,B2 A1,B1,B2 A1,B1,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1,B2

^{*}Unloaded compressor. †Two unloaders, both unloaded.

Table 5B — Part Load Data Percent Displacement, with Accessory Unloaders (cont)

UNIT	CONTROL	LOADING SI	EQUENCE A	LOADING SEQUENCE B		
30GTN,R 30GUN,R	STEPS	% Displacement (Approx)	Compressors	% Displacement (Approx)	Compressors	
130 (60 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	8 14 21 22 28 35 42 44 51 58 64 71 73 80 87 93 100	A1† A1* A1 A1 + A1 A1 + A1 + A1 + A1 + B1 A1 + A1 + B1 A1, B1 A1 + A2, B1 + A1 + A2, B1 A1, A2, B1 A1, A2, B1 + A1, A2, B1 + A1, A2, B1, B2 A1 + A1, A2, B1, B2 A1 + A2, B1, B2	8 14 21 22 28 35 42 44 51 58 64 71 73 80 87 93 100	B1† B1* B1 A1*,B1† A1,B1† A1,B1* A1,B1,B2 A1*,B1†,B2 A1,B1*,B2 A1,B1*,B2 A1,B1*,B2 A1,B1*,B2 A1,B1*,B2 A1,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2	
130 (50 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	6 10 14 22 31 35 39 40 49 53 57 65 74 78 82 83 91 96 100	A1† A1* A1 A1,B1* A1†,B1 A1†,B1 A1†,B1 A1,B1 A1†,A2,B1* A1†,A2,B1 A1,A2,B1 A1,A2,B1,B2 A1†,A2,B1,B2 A1†,A2,B1,B2 A1†,A2,A3,B1,B2 A1†,A2,A3,B1,B2 A1†,A2,A3,B1,B2 A1†,A2,A3,B1,B2	8 16 25 31 39 43 47 56 64 65 74 82 83 91 100 —	B1† B1* B1 A1,B1* A1,B1† A1,B1†,B2 A1,B1†,B2 A1,B1†,B2 A1,B1*,B2 A1,A2,B1†,B2 A1,A2,B1*,B2 A1,A2,A3,B1†,B2 A1,A2,A3,B1†,B2 A1,A2,A3,B1†,B2 A1,A2,A3,B1†,B2 A1,A2,A3,B1†,B2 A1,A2,A3,B1,B2 ————————————————————————————————————	
150, 230A, 245A, 255A (60 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	6 11 15 24 33 38 42 49 53 58 66 75 80 85 91 95 100	A1† A1* A1 A1,B1* A1,B1 A1,B1 A1,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2	9 18 27 33 42 46 51 60 69 75 86 91 100 — —	B1† B1* B1 A1,B1* A1,B1 A1,B1,B2 A1,B1†,B2 A1,B1†,B2 A1,B1,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2 ————————————————————————————————————	
150, 230A, 245A, 255A (50 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14	6 13 20 26 33 40 46 53 60 66 73 80 86 93	A1† A1* A1 A1,B1 A1,B1 A1,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2	6 13 20 26 33 40 46 53 60 66 73 80 86 93	B1† B1* B1 A1,B1† A1,B1† A1,B1* A1,B1,B2 A1,B1*,B2 A1,B1*,B2 A1,A2,B1†,B2 A1,A2,B1*,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1*,B2 A1,A2,A3,B1,B2	

^{*}Unloaded compressor. Two unloaders, both unloaded.

Table 5B — Part Load Data Percent Displacement, With Accessory Unloaders (cont)

UNIT	CONTROL	LOADING S	SEQUENCE A	LOADING SEQUENCE B		
30GTN,R 30GUN,R	STEPS	% Displacement (Approx)	Compressors	% Displacement (Approx)	Compressors	
170, 270A, 330A/B (60 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	6 11 17 17 23 28 33 34 39 45 50 51 56 61 67 67 73 78 83 84 89 95	A1† A1* A1 A1 + A1 A1 + A1 A1 + B1 A1 + B1 A1 + B1 A1 + B1 A1 + A2 + B1 + B2 A1 + A2 + B1 + B2 A1 + A2 + B1 + B2 A1 + A2 + A3 + B1 + B2 A1 + A2 + A3 + B1 + B2 A1 + A2 + A3 + B1 + B2 A1 + A2 + A3 + B1 + B2 A1 + A2 + A3 + B1 + B2 A1 + A2 + A3 + B1 + B2 A1 + A2 + A3 + B1 + B2 + B3	6 11 17 17 23 28 33 34 39 45 50 51 56 61 67 67 73 78 83 84 89 95	B1† B1* B1 A1*,B1† A1,B1† A1,B1† A1,B1* A1,B1,B2 A1,B1,B2 A1,B1,B2 A1,B1,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2,B3 A1,A2,B1*,B2,B3 A1,A2,B1*,B2,B3 A1,A2,B1*,B2,B3 A1,A2,B1*,B2,B3 A1,A2,B1*,B2,B3 A1,A2,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3	
170, 270A, 330A/B, 360B (50 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	5 9 14 14 19 23 28 28 28 33 37 42 43 48 52 57 61 63 67 72 76 81 82 87 91 96 100	A1† A1* A1 A1† A1,B1* A1,B1* A1,B1 A1,B1 A1,B1 A1,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3 A1,A2,A3,B1,B2,B3	5 9 14 14 19 23 28 29 34 38 43 47 48 52 57 61 63 67 72 76 81 82 87 91	B1† B1* B1 A1*,B1† A1,B1† A1,B1† A1,B1* A1,B1* A1,B1,B2 A1*,B1†,B2 A1,B1†,B2 A1,B1†,B2 A1,B1†,B2 A1,B1,B2 A1,B1,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1†,B2 A1,A2,B1†,B2,B3 A1*,A2,B1†,B2,B3 A1*,A2,B1†,B2,B3 A1,A2,B1†,B2,B3 A1,A2,B1†,B2,B3 A1,A2,B1†,B2,B3 A1,A2,B1†,B2,B3 A1,A2,B1†,B2,B3 A1,A2,B1†,B2,B3 A1,A2,B1†,B2,B3 A1,A2,A3,B1†,B2,B3	
190, 290A, 360A/B, 390B (60 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	9 13 18 21 25 33 37 41 49 53 56 71 74 78 93 96 100	A1* A1 A1*,B1* A1*,B1 A1*,B1 A1*,A2,B1* A1*,A2,B1 A1*,A2,B1 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,A3,B1*,B2 A1*,A2,A3,B1*,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2,B3 A1*,A2,A3,B1,B2,B3	9 13 18 21 25 33 37 41 49 53 56 71 74 78 93 96 100	B1* B1 A1*,B1* A1,B1* A1,B1 A1*,B1,B2 A1,B1,B2 A1,B1,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2,B3 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3	

^{*}Unloaded compressor. †Two unloaders, both unloaded.

Table 5B — Part Load Data Percent Displacement, With Accessory Unloaders (cont)

UNIT LOADING SEQUENCE A LOADING SEQUENCE B								
UNIT 30GTN,R	CONTROL	% Displacement		% Displacement				
30GUN,R	STEPS	(Approx)	Compressors	(Approx)	Compressors			
	1 2 3 4 5 6 7	11 11 22 28 33 39 44	A1* A1 A1*,B1* A1*,B1 A1,B1 A1*,A2,B1* A1*,A2,B1	11 17 22 28 33 39 44	B1* B1 A1*,B1* A1,B1* A1,B1 A1*,B2 A1,B1*,B2			
190, 290A, 360A, 390B (50 Hz)	8 9 10 11 12 13 14 15 16	50 55 61 67 72 78 83 89 94	A1,A2,B1 A1*,A2,B1*,B2 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,A3,B1*,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2,B3 A1*,A2,A3,B1,B2,B3	50 55 61 67 72 78 83 89 94	A1,B1,B2 A1*,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1*,A2,B1*,B2,B3 A1,A2,B1*,B2,B3 A1*,A2,A3,B1*,B2,B3 A1*,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3			
210, 315A, 390A, 420A/B (60 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	8 11 17 22 25 28 33 36 48 52 56 59 63 67 78 83 86 92 97	A1* A1 A1* A1 A1*,B1* A1,B1 A1,B1 A1,B1 A1,A2,B1 A1*,A2,B1 A1,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2,B3 A1*,A2,A3,B1,B2,B3 A1*,A2,A3,A4,B1,B2,B3 A1*,A2,A3,A4,B1,B2,B3 A1*,A2,A3,A4,B1,B2,B3 A1*,A2,A3,A4,B1,B2,B3	9 14 17 21 25 37 40 44 48 51 56 67 71 75 78 82 86 92 96 100	B1* B1 A1*,B1* A1,B1* A1,B1* A1,B1*,B2 A1,B1*,B2 A1,B1,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1,B2 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3			
210, 315A, 390A, 420A/B (50 Hz)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7 9 17 23 26 27 32 35 43 48 51 59 65 67 75 81 84 92 97	A1* A1 A1*,B1* A1*,B1* A1*,B1 A1*,B1 A1*,A2,B1* A1*,A2,B1 A1*,A2,B1,B2 A1*,A2,B1,B2 A1*,A2,A3,B1*,B2 A1*,A2,A3,B1*,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2 A1*,A2,A3,B1,B2,B3 A1*,A2,A3,B1,B2,B3 A1*,A2,A3,A4,B1,B2,B3 A1*,A2,A3,A4,B1,B2,B3 A1*,A2,A3,A4,B1,B2,B3 A1*,A2,A3,A4,B1,B2,B3 A1*,A2,A3,A4,B1,B2,B3	11 16 17 20 26 34 36 42 43 46 51 59 62 67 75 78 84 92 94	B1* B1 A1*,B1* A1,B1* A1,B1* A1,B1,B2 A1,B1*,B2 A1,B1*,B2 A1,A2,B1*,B2 A1,A2,B1*,B2 A1,A2,B1,B2 A1,A2,B1,B2 A1,A2,B1,B2,B3 A1,A2,B1,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3 A1,A2,A3,A4,B1*,B2,B3			

^{*}Unloaded compressor. †Two unloaders, both unloaded.

ADDING ADDITIONAL UNLOADERS — See Table 6 below for required hardware.

Follow accessory instructions for installation. Connect unloader coil leads to PINK wires in compressor A1/B1 junction box. Configuration items CA.UN and CB.UN in the OPT1 sub-mode of the configuration mode must be changed to match the new number of unloaders. Two unloaders cannot be used with hot gas bypass on a single circuit.

MINUTES LEFT FOR START — This value is displayed only in the network display tables (using Service Tool or ComfortWORKS® software) and represents the amount of time to elapse before the unit will start its initialization routine. This value can be zero without the machine running in many situations. This can include being unoccupied, ENABLE/OFF/ REMOTE CONTACT switch in the OFF position, CCN not allowing unit to start, Demand Limit in effect, no call for cooling due to no load, and alarm or alert conditions present. If the machine should be running and none of the above are true, a minimum off time (DELY, see below) may be in effect. The machine should start normally once the time limit has expired.

MINUTES OFF TIME (DELY, Configuration Mode under OPT2) — This user configurable time period is used by the control to determine how long unit operation is delayed after power is applied/restored to the unit. Typically, this time period is configured when multiple machines are located on a single site. For example, this gives the user the ability to prevent all the units from restarting at once after a power failure. A value of zero for this variable does not mean that the unit should be running.

LOADING SEQUENCE — The 30GTN,R and 30GUN,R compressor efficiency is greatest at partial load. Therefore, the following sequence list applies to capacity control.

The next compressor will be started with unloaders energized on both lead compressors.

All valid capacity combinations using unloaders will be used as long as the total capacity is increasing.

LEAD/LAG DETERMINATION (LLCS, Configuration Mode under OPT2) — This is a configurable choice and is factory set to be automatic (for sizes 080-420) or Circuit A leading (for 040-070 sizes). For 040-070 sizes, the value can be changed to Automatic or Circuit B only if an accessory unloader is added to compressor B1. For 080-420 sizes, the value can be changed to Circuit A or Circuit B leading, as desired. Set at automatic, the control will sum the current number of logged circuit starts and one-quarter of the current operating hours for each circuit. The circuit with the lowest sum is started first. Changes to which circuit is the lead circuit and which is the lag are also made when total machine capacity is at 100% or when

there is a change in the direction of capacity (increase or decrease) and each circuit's capacity is equal.

CAPACITY SEQUENCE DETERMINATION (LOAD, Configuration Mode under OPT2) — This is configurable as equal circuit loading or staged circuit loading with the default set at equal. The control determines the order in which the steps of capacity for each circuit are changed. This control choice does NOT have any impact on machines with only 2 compressors.

CAPACITY CONTROL OVERRIDES — The following overrides will modify the normal operation of the routine.

<u>Deadband Multiplier</u> — The user configurable Deadband Multiplier (Z.GN, Configuration Mode under SLCT) has a default value of 1.0. The range is from 1.0 to 4.0. When set to other than 1.0, this factor is applied to the capacity Load/Unload Factor. The larger this value is set, the longer the control will delay between adding or removing stages of capacity. Figure 17 shows how compressor starts can be reduced over time if the leaving water temperature is allowed to drift a larger amount above and below the set point. This value should be set in the range of 3.0 to 4.0 for systems with small loop volumes.

First Stage Override — If the current capacity stage is zero, the control will modify the routine with a 1.2 factor on adding the first stage to reduce cycling. This factor is also applied when the control is attempting to remove the last stage of capacity.

Slow Change Override — The control prevents the capacity stages from being changed when the leaving fluid temperature is close to the set point (within an adjustable deadband) and moving towards the set point.

Ramp Loading (CRMP, Configuration Mode under SLCT) — Limits the rate of change of leaving fluid temperature. If the unit is in a Cooling mode and configured for Ramp Loading, the control makes 2 comparisons before deciding to change stages of capacity. The control calculates a temperature difference between the control point and leaving fluid temperature. If the difference is greater than 4° F (2.2° C) and the rate of change (°F or °C per minute) is more than the configured Cooling Ramp Loading value (CRMP), the control does not allow any changes to the current stage of capacity.

<u>Low Entering Fluid Temperature Unloading</u> — When the entering fluid temperature is below the control point, the control will attempt to remove 25% of the current stages being used. If exactly 25% cannot be removed, the control removes an amount greater than 25% but no more than necessary. The lowest stage will not be removed.

Table 6 — Required	Hardware for	 Additional 	Unloaders
--------------------	--------------	--------------------------------	-----------

UNIT 30GTN,GTR,GUN,GUR	COMP.	FACTORY STANDARD	ADDITIONAL UNLOADERS	UNLOADER PACKAGE*	SOLENOID COIL	CXB ACCESSORY†
040 (60 Hz)	A1	1	0	N/A	N/A	Not Required
040 (60 HZ)	B1	0	1	06EA-660138	EF19ZE024	Not Required
(!)	A1	1	0	N/A	N/A	Not Required
040 (50 Hz) 045 (60 Hz)	B1	0	1	06EA-660138	EF19ZE024	Not hequired
043 (00 112)	l bi	U	2	00EA-000130	Not Required	30GT-911031
()	A1	1	1		EF19ZE024	Not Required
045 (50 Hz) 050-070	B1	0	1	06EA-660138	EF19ZE024	Not Required
000 0.0		U	2	•	Not Required	30GT-911031
080-110**	A1	1	1	06EA-660138	Not Required	30GT-911031
130 (60 Hz)	B1	1	1	00EA-000130	Not nequired	3001-911031
130 (50 Hz)	A1	1	1	06EA-660138	EF19ZE024	Not Required
150-210**´	B1	1	1	00EA-000138	EF19ZE0Z4	Not hequired

LEGEND

CBX — Compressor Expansion Board

*Requires one per additional unloader. †2 solenoid coils are included in the CXB Accessory. **And associated modular units.

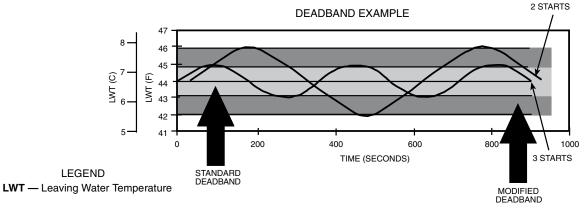


Fig. 17 — Deadband Multiplier

Low Cooler Suction Temperature — To avoid freezing the cooler, the control will compare the circuit Cooler Suction temperature (T5/T6) with a predetermined freeze point. If the cooler fluid selected is Water, the freeze point is 34 F (1.1 C). If the cooler fluid selected is Brine, the freeze point is 8° F (4.4 ° C) below the cooling set point (or lower of two cooling set points in dual set point configurations). If the cooler suction temperature is 24° to 29° F (13.3° to 16.1° C) below the cooler leaving water temperature and is also 2° F (1.1° C) less than the freeze point for 5 minutes, Mode 7 (Circuit A) or Mode 8 (Circuit B) is initiated and no additional capacity increase is allowed. The circuit will be allowed to run in this condition. If the cooler suction temperature is more than 30° F (16.7° C) below the cooler leaving water temperature and is also 2° F (1.1° C) below the freeze point for 10 minutes, the circuit will be stopped without going through pumpdown.

<u>Cooler Freeze Protection</u> — The control will try to prevent shutting the chiller down on a Cooler Freeze Protection alarm by removing stages of capacity. The control uses the same freeze point logic as described in the Low Cooler Suction Temperature section above. If the cooler leaving fluid temperature is less than the freeze point plus 2.0° F (1.1° C), the control will immediately remove one stage of capacity. This can be repeated once every 30 seconds.

MOP (Maximum Operating Pressure) Override — The control monitors saturated condensing and suction temperature for each circuit. Based on a maximum operating set point (saturated suction temperature), the control may lower the EXV position when system pressures approach the set parameters.

Head Pressure Control

COMFORTLINKTM UNITS (With EXV) — The Main Base Board (MBB) controls the condenser fans to maintain the lowest condensing temperature possible, and thus the highest unit efficiency. The fans are controlled by the saturated condensing temperature set from the factory. The fans can also be controlled by a combination of the saturated condensing temperature, EXV position and compressor superheat. Fan control is a configurable decision and is determined by the Head Pressure Control Method (HPCM) setting in the Configuration Mode under the OPT1 sub-mode. For EXV control (HPCM = 1), when the position of the EXV is fully open, T3 and T4 are less than 78 F (25.6 C), and superheat is greater than 40 F (22.2 C), fan stages will be removed. When the valve is less than 40% open, or T3 and T4 are greater than 113 F (45 C), fan stages will be added. At each change of the fan stage, the system will wait one minute to allow the head pressure to stabilize unless either T3 or T4 is greater than 125 F (51.6 C), in which case all MBB-controlled fans will start immediately. This method allows the unit to run at very low condensing temperatures at part load.

During the first 10 minutes after circuit start-up, MBB-controlled fans are not turned on until T3 and T4 are greater than the head pressure set point plus 10 F (5.6 C). If T3 and T4 are greater than 95 F (35 C) just prior to circuit start-up, all MBB-controlled fan stages are turned on to prevent excessive discharge pressure during pull-down. Fan sequences are shown in Fig. 17.

UNITS WITH TXV — The logic to cycle MBB-controlled fans is based on saturated condensing temperature only, as sensed by thermistors T3 and T4 (see Fig. 8 and 10). When either T3 or T4 exceeds the head pressure set point, the MBB will turn on an additional stage of fans. For the first 10 minutes of each circuit operation, the head pressure set point is raised by 10° F (5.6° C). It will turn off a fan stage when T3 and T4 are both below the head pressure set point by 35° F (19.4° C). At each change of a fan stage the control will wait for one minute for head pressure to stabilize unless T3 and T4 is greater than 125 F (51.6 C), in which case all MBB-controlled fans start immediately. If T3 and T4 are greater than 95 F (35.0 C) just prior to circuit start-up, all MBB-controlled fan stages are turned on to prevent excessive discharge pressure during pull-down. Fan sequences are shown in Fig. 18.

Motormaster® Option — For low-ambient operation, the lead fan(s) in each circuit can be equipped with the Motormaster III head pressure controller option or accessory. Wind baffles and brackets must be field-fabricated for all units using accessory Motormaster III controls to ensure proper cooling cycle operation at low-ambient temperatures. The fans controlled are those that are energized with the lead compressor in each circuit. All sizes use one controller per circuit. Refer to Fig. 18 for condenser fan staging information.

Pumpout

EXV UNITS — When the lead compressor in each circuit is started or stopped, that circuit goes through a pumpout cycle to purge the cooler and refrigerant suction lines of refrigerant. If a circuit is starting within 15 minutes of the last shutdown, the pumpout cycle will be skipped.

The pumpout cycle starts immediately upon starting the lead compressor and keeps the EXV at minimum position for 10 seconds. The EXV is then opened an additional percentage and compressor superheat control begins. At this point, the EXV opens gradually to provide a controlled start-up to prevent liquid flood-back to the compressor.

At shutdown, the pumpout cycle continuously closes the EXV until all lag compressors are off and the EXV is at 0%. The lead compressor continues to run for an additional 10 seconds and is then shut off.

TXV UNITS — Pumpout is based on timed pumpout. On a command for start-up, the lead compressor starts. After 15 seconds, the liquid line solenoid opens. At shutdown, the liquid line solenoid closes when the lead compressor has stopped.

FAN ARRANGEMENT	FAN NO.	FAN RELAY	NORMAL CONTROL
30GTN,R040-050 30GUN,R040-050	1	_	Compressor No. A1
	2	_	Compressor No. B1
$\begin{bmatrix} \overrightarrow{O} \times \overrightarrow{O} & (3) & (1) \\ \overrightarrow{O} \times \overrightarrow{O} & (4) & (2) \end{bmatrix}$	3	1	First Stage of Condenser Fans
§ 4 (2)	4	2	Second Stage of Condenser Fans
30GTN,R060-090, 230B, 245B 30GUN,R060-090, 230B, 245B	1	_	Compressor No. A1
d (5) (3) (1)	2	_	Compressor No. B1
	3, 4	1	First Stage of Condenser Fans
$\begin{bmatrix} \overline{8}^{2} \\ 6 \end{bmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$	5, 6	2	Second Stage of Condenser Fans
30GTN,R100,110, 255B-315B 30GUN,R100,110, 255B-315B	1	_	Compressor No. A1
5 (7)(5)(3)(1)	2	_	Compressor No. B1
	3, 4	1	First Stage of Condenser Fans
8 6 4 2	5, 6, 7, 8	2	Second Stage of Condenser Fans
30GTN,R130 (60 Hz), 30GUN,R130 (60 Hz)	5, 7	_	Compressor No. A1
POWER	6, 8	_	Compressor No. B1
	1, 2	1	First Stage of Condenser Fans
	3, 4, 9, 10	2	Second Stage of Condenser Fans
30GTN,R130 (50 Hz), 150-210, 230A-315A, 330A/B-420A/B†	5, 7	_	Compressor No. A1
30GUN,R130 (50 Hz), 150-210, 230A-315A, 330A/B-420A/B†	6, 8	_	Compressor No. B1
POWER	1, 11	1	First Stage of Condenser Fans, Circuit A
2 4 6 8 10 12	3, 9	2	Second Stage of Condenser Fans, Circuit A
	2, 12	3	First Stage of Condenser Fans, Circuit B
	4, 10	4	Second Stage of Condenser Fans, Circuit B

Fig. 18 — Condenser Fan Sequence

^{*}Control box. †Fan numbers 11 and 12 do not apply to 30GTN,R and 30GUN,R 130-170 and associated modular units (see Table 1).

Marquee Display Usage (See Fig. 19 and Tables 7-25) — The Marquee display module provides the user interface to the *Comfort*LinkTM control system. The display has up and down arrow keys, an <u>ESCAPE</u> key, and an <u>ENTER</u> key. These keys are used to navigate through the different levels of the display structure. See Table 7. Press the <u>ESCAPE</u> key until the display is blank to move through the top 11 mode levels indicated by LEDs on the left side of the display.

Pressing the ESCAPE and ENTER keys simultaneously will scroll a clear language text description across the display indicating the full meaning of each display acronym. Pressing the ESCAPE and ENTER keys when the display is blank (Mode LED level) will return the Marquee display to its default menu of rotating display items. In addition, the password will be disabled requiring that it be entered again before changes can be made to password protected items.

Clear language descriptions in English, Spanish, French, or Portuguese can be displayed when properly configuring the LANG variable in the Configuration mode, under DISP submode. See Table 16.

NOTE: When the LANG variable is changed to 1, 2, or 3, all appropriate display expansions will immediately change to the new language. No power-off or control reset is required when reconfiguring languages.

When a specific item is located, the display will flash showing the operator, the item, followed by the item value and then followed by the item units (if any). Press the <code>ENTER</code> key to stop the display at the item value. Items in the Configuration and Service Test modes are password protected. The display will flash PASS and WORD when required. Use the <code>ENTER</code> and arrow keys to enter the 4 digits of the password. The default password is 1111. The password can only be changed through CCN devices such as ComfortWORKS® and Service Tool.

Changing item values or testing outputs is accomplished in the same manner. Locate and display the desired item. Press ENTER to stop the display at the item value. Press the ENTER key again so that the item value flashes. Use the arrow keys to change the value or state of an item and press the ENTER key to accept it. Press the ESCAPE key and the item, value, or units display will resume. Repeat the process as required for other items.

See Tables 7-25 for further details.

Service Test (See Table 9) — Both main power and control circuit power must be on.

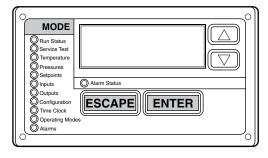
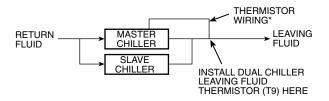


Fig. 19 — Scrolling Marquee Display

The Service Test function should be used to verify proper operation of compressors, unloaders, hot gas bypass (if installed), cooler pump and remote alarm relays, EXVs and condenser fans. To use the Service Test mode, the Enable/Off/Remote Contact switch must be in the OFF position. Use the display keys and Table 9 to enter the mode and display TEST. Press ENTER twice so that OFF flashes. Enter the password if required. Use either arrow key to change the TEST value to the On position and press ENTER. Switch the Enable/Off/Remote Contact switch to the Enable position (Version 2.3 and later). Press ESCAPE and the button to enter the OUTS or COMP sub-mode.


Test the condenser fan, cooler pump, and alarm relays by changing the item values from OFF to ON. These discrete outputs are turned off if there is no keypad activity for 10 minutes. Use arrow keys to select desired percentage when testing expansion valves. When testing compressors, the lead compressor must be started first. All compressor outputs can be turned on, but the control will limit the rate by staging one compressor per minute. Compressor unloaders and hot gas bypass relays/ solenoids (if installed) can be tested with compressors on or off. The relays under the COMP sub-mode will stay on for 10 minutes if there is no keypad activity. Compressors will stay on until they are turned off by the operator. The Service Test mode will remain enabled for as long as there is one or more compressors running. All safeties are monitored during this test and will turn a compressor, circuit or the machine off if required. Any other mode or sub-mode can be accessed, viewed, or changed during the TEST mode. The MODE item (Run Status mode under sub-mode VIEW) will display "0" as long as the Service mode is enabled. The TEST sub-mode value must be changed back to OFF before the chiller can be switched to Enable or Remote contact for normal operation.

Configuring and Operating Dual Chiller Control (See Table 18) — The dual chiller routine is available for the control of two units supplying chilled fluid on a common loop. This control is designed for a parallel fluid flow arrangement only. One chiller must be configured as the master chiller, the other as the slave chiller. An additional leaving fluid temperature thermistor (Dual Chiller LWT) must be installed as shown in Fig. 20 and connected to the master chiller. See Field Wiring section for Dual Chiller LWT sensor wiring.

To configure the two chillers for operation, follow the example shown in Table 18. The master chiller will be configured with a slave chiller at address 6. Also in this example, the master chiller will be configured to use Lead/Lag Balance to even out the chiller runtimes weekly. The Lag Start Delay feature will be set to 10 minutes. The master and slave chillers cannot have the same CCN address (CCNA, Configuration mode under OPT2). Both chillers must have the control method variable (CTRL, Configuration mode under OPT2) set to '3.' In addition, the chillers must both be connected together on the same CCN bus. Connections can be made to the CCN screw terminals on TB3 in both chillers. The master chiller will determine which chiller will be Lead and which will be Lag. The master chiller controls the slave chiller by forcing the slave chiller's CCN START/STOP variable (CHIL_S_S), control point (CTPT) and demand limit (DEM LIM).

The master chiller is now configured for dual chiller operation. To configure the slave chiller, only the LLEN and MSSL variables need to be set. Enable the Lead/Lag chiller enable variable (LLEN) as shown Table 18. Similarly, set the Master/Slave Select variable (MSSL) to SLVE. The variables LLBL, LLBD, an LLDY are not used by the slave chiller.

Refer to Field Wiring section on page 67 for wiring information.

*Depending on piping sizes, use either:

— HH79NZ014 sensor and 10HB50106801 well (3-in. sensor/well)

— HH79NZ029 sensor and 10HB50106802 well (4-in. sensor/well)

Fig. 20 — Dual Chiller Thermistor Location

Table 7 — Marquee Display Menu Structure

RUN STATUS	SERVICE TEST	TEMPERATURES	PRESSURES	SET POINTS	INPUTS	OUTPUTS	CONFIGURATION	TIME CLOCK	OPERATING MODES	ALARMS
Auto Display (VIEW)	Manual Mode On/Off (TEST)	Unit Temperatures (UNIT)	Ckt A Pressures (PRC.A)	Cooling (COOL)	Unit Discrete (GEN.I)	Unit Discrete (GEN.O)	Display (DISP)	Unit Time (TIME)	Modes (MODE)	Current (CRNT)
Machine Hours/Starts (RUN)	Ckt A/B Outputs (OUTS)	Ckt A Temperatures (CIR.A)	Ckt B Pressures (PRC.B)	Heating (HEAT)	Ckt A/B (CRCT)	Ckt A (CIR.A)	Machine (UNIT)	Unit Date (DATE)		Reset Alarms (RCRN)
Compressor Run Hours (HOUR)	Compressor Tests (COMP)	Ckt B Temperatures (CIR.B)		Head Pressure (HEAD)	Unit Analog (4-20)	Ckt B (CIR.B)	Options 1 (OPT1)	Schedule (SCHD)		Alarm History (HIST)
Compressor Starts (STRT)							Options 2 (OPT2)			Reset History (RHIS)
Software Version (VERS)							Temperature Reset (RSET)			
							Set Point Select (SLCT)			

LEGEND

Ckt — Circuit

Table 8 — Run Status Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	RANGE	ITEM EXPANSION	COMMENT
VIEW	ENTER	EWT	0 - 100 F (–18 - 38 C)	ENTERING FLUID TEMP	
		LWT	0 - 100 F (–18 - 38 C)	LEAVING FLUID TEMP	
		SETP	0 - 100 F (–18 - 38 C)	ACTIVE SETPOINT	
		СТРТ	0 - 100 F (-18 - 38 C)	CONTROL POINT	
	V	STAT	0 - 7	CONTROL MODE	0 = Service Test 1 = Off Local 2 = Off CCN 3 = Off Time Clock 4 = Off Emergency 5 = On Local 6 = On CCN 7 = On Time Clock
		occ	NO-YES	OCCUPIED	
		MODE	NO-YES	OVERRIDE MODE IN EFFECT	
	lacksquare	CAP	0 - 100%	PERCENT TOTAL CAPACITY	
		STGE	0 - 30	REQUESTED STAGE	
		ALRM	0 - 25	CURRENT ALARMS & ALERTS	
	\overline{lack}	TIME	00.00 - 23.59	TIME OF DAY	
		MNTH	1 - 12	MONTH OF YEAR	1 = Jan., 2 = Feb
		DATE	1 - 31	DAY OF MONTH	
		YEAR	0 - 9999	YEAR OF CENTURY	
RUN	ENTER	HRS.U	0 - 999999	MACHINE OPERATING HOURS	
		STR.U	0 - 999999	MACHINE STARTS	
HOUR	ENTER	HRS.A	0 - 999999	CIRCUIT A RUN HOURS	
	\overline{lack}	HRS.B	0 - 999999	CIRCUIT B RUN HOURS	
		HR.A1	0 - 999999	COMPRESSOR A1 RUN HOURS	
		HR.A2	0 - 999999	COMPRESSOR A2 RUN HOURS	
	\overline{lack}	HR.A3	0 - 999999	COMPRESSOR A3 RUN HOURS	
	\overline{lack}	HR.A4	0 - 999999	COMPRESSOR A4 RUN HOURS	
	\overline{lack}	HR.B1	0 - 999999	COMPRESSOR B1 RUN HOURS	
		HR.B2	0 - 999999	COMPRESSOR B2 RUN HOURS	
		HR.B3	0 - 999999	COMPRESSOR B3 RUN HOURS	
		HR.B4	0 - 999999	COMPRESSOR B4 RUN HOURS	
STRT	ENTER	ST.A1	0 - 999999	COMPRESSOR A1 STARTS	
	\overline{lack}	ST.A2	0 - 999999	COMPRESSOR A2 STARTS	
	\overline{lack}	ST.A3	0 - 999999	COMPRESSOR A3 STARTS	
	\overline{lack}	ST.A4	0 - 999999	COMPRESSOR A4 STARTS	
	\overline{lack}	ST.B1	0 - 999999	COMPRESSOR B1 STARTS	
	\overline{lack}	ST.B2	0 - 999999	COMPRESSOR B2 STARTS	
	\overline{lack}	ST.B3	0 - 999999	COMPRESSOR B3 STARTS	
	\overline{lack}	ST.B4	0 - 999999	COMPRESSOR B4 STARTS	
VERS	ENTER	MBB		CESR-131170-XX-XX	
		EXV		CESR-131172-XX-XX	
		СХВ		CESR-131173-XX-XX	
		EMM		CESR-131174-XX-XX	
		MARQ		CESR-131171-XX-XX	
		NAV		CESR-131227-XX-XX	

Table 9 — Service Test Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	RANGE	ITEM EXPANSION	COMMENT
TEST	ENTER	TEST	OFF-ON	SERVICE TEST MODE	Use to Enable/Disable Manual Mode
OUTS	ENTER	LLS.A	OPEN-CLSE	LIQ. LINE SOLENOID VALVE	TXV units only
		EXV.A	0 - 100%	EXV % OPEN	
		LLS.B	OPEN-CLSE	LIQ. LINE SOLENOID VALVE	TXV units only
		EXV.B	0 - 100%	EXV % OPEN	
		FAN1	OFF-ON	FAN 1 RELAY	Fan 3: (040-050) Fans 3, 4: (060-110, 230B-315B) Fans 1, 2: (130 [60 Hz]) Fans 1: (130 [50 Hz], 150, 170, 230A-270A, 330A/B, 360B [50 Hz]) Fans 1, 11: (190-210, 290A, 315A, 360A, 360B [60 Hz], 390A/B-420A/B)
		FAN2	OFF-ON	FAN 2 RELAY	Fan 4: (040-050) Fans 5, 6: (060-090, 230B-245B) Fans 5, 6, 7, 8: (100, 110, 255B-315B) Fans 3, 4, 9, 10: (130 [60 Hz]) Fan 2: (130 [50 Hz], 150, 170, 230A-270A, 330A/B, 360B [50 Hz]) Fans 2, 12: (190-210, 290A, 315A, 360A, 360B [60 Hz], 390A/B-420A/B)
		FAN3	OFF-ON	FAN 3 RELAY	Fans 3, 9: (130 [50 Hz], 150-210, 230A-315A, 330A/B-420A/B)
		FAN4	OFF-ON	FAN 4 RELAY	Fans 4, 10: (130 [50 Hz], 150-210, 230A-315A, 330A/B-420A/B)
		CLR.P	OFF-ON	COOLER PUMP RELAY	
		CND.P	OFF-ON	CONDENSER PUMP RELAY	
		RMT.A	OFF-ON	REMOTE ALARM RELAY	
COMP	ENTER	CC.A1	OFF-ON	COMPRESSOR A1 RELAY	
		CC.A2	OFF-ON	COMPRESSOR A2 RELAY	
		CC.A3	OFF-ON	COMPRESSOR A3 RELAY	
		CC.A4	OFF-ON	COMPRESSOR A4 RELAY	
		UL.A1	OFF-ON	UNLOADER A1 RELAY	
		UL.A2	OFF-ON	UNLOADER A2 RELAY	
		HGBP	OFF-ON	HOT GAS BYPASS RELAY	
		CC.B1	OFF-ON	COMPRESSOR B1 RELAY	
		CC.B2	OFF-ON	COMPRESSOR B2 RELAY	
		CC.B3	OFF-ON	COMPRESSOR B3 RELAY	
		CC.B4	OFF-ON	COMPRESSOR B4 RELAY	
		UL.B1	OFF-ON	UNLOADER B1 RELAY	
		UL.B2	OFF-ON	UNLOADER B2 RELAY	

LEGEND

EXV — Electronic Expansion Valve

Table 10 — Temperature Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	RANGE	ITEM EXPANSION	COMMENT
UNIT	ENTER	CEWT	-40 - 245 F (-40 - 118 C)	COOLER ENTERING FLUID	
		CLWT	-40 - 245 F (-40 - 118 C)	COOLER LEAVING FLUID	
		OAT	-40 - 245 F (-40 - 118 C)	OUTSIDE AIR TEMPERATURE	
		SPT	-40 - 245 F (-40 - 118 C)	SPACE TEMPERATURE	
		CNDE	-40 - 245 F (-40 - 118 C)	CONDENSER ENTERING FLUID	
		CNDL	-40 - 245 F (-40 - 118 C)	CONDENSER LEAVING FLUID	
		DLWT	-40 - 245 F (-40 - 118 C)	LEAD/LAG LEAVING FLUID	
CIR.A	ENTER	SCT.A	-40 - 245 F (-40 - 118 C)	SATURATED CONDENSING TMP	
		SST.A	-40 - 245 F (-40 - 118 C)	SATURATED SUCTION TEMP	
		SGT.A	-40 - 245 F (-40 - 118 C)	COMPRESSOR SUCTION GAS TEMP	
		SUP.A	–40 - 245 Δ F (–40 - 118 Δ C)	SUCTION SUPERHEAT TEMP	
CIR.B	ENTER	SCT.B	-40 - 245 F (-40 - 118 C)	SATURATED CONDENSING TMP	
		SST.B	-40 - 245 F (-40 - 118 C)	SATURATED SUCTION TEMP	
		SGT.B	-40 - 245 F (-40 - 118 C)	COMPRESSOR SUCTION GAS TEMP	
		SUP.B	–40 - 245 Δ F (–40 - 118 Δ C)	SUCTION SUPERHEAT TEMP	

Table 11 — Pressure Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	RANGE	ITEM EXPANSION	COMMENT
PRC.A	ENTER	DP.A	0-900 Psig	DISCHARGE PRESSURE	Pressure is converted from SCT.A.
	▼	SP.A	0-900 Psig	SUCTION PRESSURE	Pressure is converted from SST.A.
PRC.B	ENTER	DP.B	0-900 Psig	DISCHARGE PRESSURE	Pressure is converted from SCT.B.
	V	SP.B	0-900 Psig	SUCTION PRESSURE	Pressure is converted from SST.B.

Table 12 — Set Point Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	RANGE	ITEM EXPANSION	COMMENT
COOL	ENTER	CSP.1	–20 - 70 F (–29 - 21 C)	COOLING SETPOINT 1	Default 44 F
		CSP.2	–20 - 70 F (–29 - 21 C)	COOLING SETPOINT 2	Default 44 F
		CSP.3	–20 - 32 F (–29 - 0° C)	ICE SETPOINT	Default 32 F
HEAT		HSP.1	80 - 140 F (27 - 60 C)	HEATING SETPOINT 1	Not Supported
		HSP.2	80 - 140 F (27 - 60 C)	HEATING SETPOINT 2	Not Supported
HEAD	ENTER	HD.P.A	80 - 140 F (27 - 60 C)	HEAD PRESSURE SETPOINT A	Default 113 F
		HD.P.B	80 - 140 F (27 - 60 C)	HEAD PRESSURE SETPOINT B	Default 113 F

Table 13 — Reading and Changing Chilled Fluid Set Point

SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY	RANGE	ITEM EXPANSION	COMMENT
COOL	ENTER	CSP.1	44.0 °F	–20-70 F	COOLING SETPOINT 1	Default: 44 F 38-70 F Flud = 1 14-70 F Flud = 2 -20-70 F Flud = 3
	ENTER		44.0 °F	–20-70 F		Scrolling stops
	ENTER		44.0 °F	–20-70 F		Value flashes
				–20-70 F		Select 46.0
	ENTER		46.0 °F	–20-70 F		Change accepted
	ENTER	CSP.1	46.0 °F	–20-70 F	COOLING SETPOINT 1	Item/Value/Units scrolls again

Table 14 — Inputs Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	RANGE	ITEM EXPANSION	COMMENT
GEN.I	ENTER	STST	STRT-STOP	START/STOP SWITCH	Enable/Off/Remote Contact Switch Input
		FLOW	OFF-ON	COOLER FLOW SWITCH	
		CND.F	OFF-ON	CONDENSER FLOW SWITCH	
		DLS1	OFF-ON	DEMAND LIMIT SWITCH 1	
		DLS2	OFF-ON	DEMAND LIMIT SWITCH 2	
		ICED	OFF-ON	ICE DONE	
		DUAL	OFF-ON	DUAL SETPOINT SWITCH	
CRCT	ENTER	FKA1	OFF-ON	COMPRESSOR A1 FEEDBACK	
		FKA2	OFF-ON	COMPRESSOR A2 FEEDBACK	
		FKA3	OFF-ON	COMPRESSOR A3 FEEDBACK	
		FKA4	OFF-ON	COMPRESSOR A4 FEEDBACK	
		OIL.A	OPEN-CLSE	OIL PRESSURE SWITCH A	
		LPS.A	OPEN-CLSE	LOW PRESSURE SWITCH	Not applicable (040-420)
		FKB1	OFF-ON	COMPRESSOR B1 FEEDBACK	
		FKB2	OFF-ON	COMPRESSOR B2 FEEDBACK	
		FKB3	OFF-ON	COMPRESSOR B3 FEEDBACK	
		FKB4	OFF-ON	COMPRESSOR B4 FEEDBACK	
		OIL.B	OPEN-CLSE	OIL PRESSURE SWITCH B	
		LPS.B	OPEN-CLSE	LOW PRESSURE SWITCH	Not applicable (040-420)
4-20	ENTER	DMND	0 - 24 mA	4-20 mA DEMAND SIGNAL	
		RSET	0 - 24 mA	4-20 mA RESET SIGNAL	
		CSP	0 - 24 mA	4-20 mA COOLING SETPOINT	
		HSP	0 - 24 mA	4-20 mA HEATING SETPOINT	

Table 15 — Outputs Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	RANGE	ITEM EXPANSION	COMMENT
GEN.O	ENTER	FAN1	OFF-ON	FAN 1 RELAY	
		FAN2	OFF-ON	FAN 2 RELAY	
		FAN3	OFF-ON	FAN 3 RELAY	
		FAN4	OFF-ON	FAN 4 RELAY	
		C.PMP	OFF-ON	COOLER PUMP RELAY	
		H.GAS	OFF-ON	HOT GAS BYPASS RELAY	
		CNDP	OFF-ON	CONDENSER PUMP RELAY	
CIR.A	ENTER	CC.A1	OFF-ON	COMPRESSOR A1 RELAY	
		CC.A2	OFF-ON	COMPRESSOR A2 RELAY	
		CC.A3	OFF-ON	COMPRESSOR A3 RELAY	
		CC.A4	OFF-ON	COMPRESSOR A4 RELAY	
	lacksquare	ULA1	OFF-ON	UNLOADER A1 RELAY	
		ULA2	OFF-ON	UNLOADER A2 RELAY	TXV units only
		LLS.A	OPEN-CLSE	LIQUID LINE SOLENOID VLV	EXV units only
		EXV.A	0 - 100%	EXV % OPEN	
CIR.B	ENTER	CC.B1	OFF-ON	COMPRESSOR B1 RELAY	
		CC.B2	OFF-ON	COMPRESSOR B2 RELAY	
	lacksquare	CC.B3	OFF-ON	COMPRESSOR B3 RELAY	
		CC.B4	OFF-ON	COMPRESSOR B4 RELAY	
		ULB1	OFF-ON	UNLOADER B1 RELAY	
		ULB2	OFF-ON	UNLOADER B2 RELAY	
	lacksquare	LLS.B	OPEN-CLSE	LIQUID LINE SOLENOID VLV	TXV units only
		EXV.B	0 - 100%	EXV % OPEN	EXV units only

LEGEND

EXV — Electronic Expansion Valve TXV — Thermostatic Expansion Valve

Table 16 — Configuration Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	MARQUEE DISPLAY RANGE	NAVIGATOR DISPLAY RANGE	ITEM EXPANSION	COMMENT
DISP	ENTER	TEST	OFF-ON	OFF-ON	TEST DISPLAY LEDS	
		METR	OFF-ON	OFF-ON	METRIC DISPLAY	Off = English On = Metric
		LANG	0-3	ENGLISH ESPANOL FRANCAIS PORTUGUES	LANGUAGE SELECTION	Default: 0 0 = English 1 = Espanol 2 = Francais 3 = Portugues

LEGEND

CCN — Carrier Comfort Network
EMM — Energy Management Module
EXV — Electronic Expansion Valve
LCW — Leaving Chilled Water

Table 16 — Configuration Mode and Sub-Mode Directory (cont)

SUB-MODE	KEYPAD ENTRY	ITEM	MARQUEE DISPLAY RANGE	NAVIGATOR DISPLAY RANGE	ITEM EXPANSION	COMMENT
UNIT	ENTER	TYPE	1 - 5	AIR COOLED WATER COOLED SPLIT HEAT MACHINE HEAT RECLAIM	UNIT TYPE	Default: 1 1 = Air Cooled 2 = Water Cooled 3 = Split System 4 = Heat Machine 5 = Heat Reclaim
		TONS	15 - 300	15 - 300	UNIT SIZE	
		CAP.A	0 - 100%	0 - 100%	CIRCUIT A % CAPACITY	
		CMP.A	1 - 4	1 - 4	NUMBER CIRC A COMPRESSOR	
		CYL.A	4, 6	4, 6	COMPRESSOR A1 CYLINDERS	
		CMP.B	1 - 4	1 - 4	NUMBER CIRC B COMPRESSOR	
		CYL.B	4, 6	4, 6	COMPRESSOR B1 CYLINDERS	
		EXV	NO-YES	NO-YES	EXV MODULE INSTALLED	
		SH.SP	10 - 40 Δ F (6 - 22 Δ C)	10 - 40 Δ F (6 - 22 Δ C)	EXV SUPERHEAT SETPOINT	Default 29 = 30GTN,R 23 = 30GUN,R
		SH.OF	–20 - 20 Δ F (–11 - 11 Δ C)	–20 - 20 ∆ F (–11 - 11 ∆ C)	EXV SUPERHEAT OFFSET	Default: 0
		REFG	1, 2	1, 2	REFRIGERANT	1 = R-22 (30GTN,R) 2 = R-134a (30GUN,R)
		FAN.S	1 - 4	2 STAGE IND 3 STAGE IND 2 STAGE COM 3 STAGE COM	FAN STAGING SELECT	1 = 2 Stage Independent 2 = 3 Stage Independent 3 = 2 Stage Common 4 = 3 Stage Common (Not supported for air cooled)
OPT1	ENTER	FLUD	1 - 3	1 - 3	COOLER FLUID	1 = Water 2 = Med. Brine 3 = Low Brine
Ť	lacksquare	HGB.S	NO-YES	NO-YES	HOT GAS BYPASS SELECT	
		HPCM	1 - 4	EXV CONTROL SETPOINT CONTROL SET A EXV B EXV A SET B	HEAD PRESS. CONT. METHOD	Default:2 1 = EXV Control 2 = Set Point Control 3 = Set Point Circuit A, EXV Circuit B 4 = Set Point Circuit B, EXV Circuit A
		HPCT	0 - 2	NO CONTROL AIR COOLED WATER COOLED	HEAD PRESS. CONTROL TYPE	Default: 1 0 = No Control 1 = Air Cooled 2 = Water Cooled
		MMR.S	NO-YES	NO-YES	MOTORMASTER SELECT	
		PRTS	NO-YES	NO-YES	PRESSURE TRANSDUCERS	Default: NO Not Supported
	lacksquare	PMP.I	OFF-ON	OFF-ON	COOLER PUMP INTERLOCK	Default: ON
		CPC	OFF-ON	OFF-ON	COOLER PUMP CONTROL	Default: OFF
		CNP.I	OFF-ON	OFF-ON	CONDENSER PUMP INTERLOCK	Default: OFF Not Applicable
		CNPC	0 - 2	NO CONTROL ON WITH MODE ON WITH COMP	CONDENSER PUMP CONTROL	Default: 0 0 = Not Controlled 1 = On with Occupied Mode 2 = On with Compressors
		CWT.S	NO-YES	NO-YES	CONDENSER FLUID SENSORS	Default: NO Not Applicable
		CA.UN	0 - 2	0 - 2	NO. CIRCUIT A UNLOADERS	
		CB.UN	0 - 2	0 - 2	NO. CIRCUIT B UNLOADERS	
		EMM	NO-YES	NO-YES	EMM MODULE INSTALLED	
OPT2	ENTER	CTRL	0 - 3	SWITCH 7 DAY OCC OCCUPANCY CCN	CONTROL METHOD	0 = Switch 1 = 7-Day Schedule 2 = Occupancy Schedule 3 = CCN
		CCNA	1 - 239	1 - 239	CCN ADDRESS	Default: 1
t		CCNB	0 - 239	0 - 239	CCN BUS NUMBER	Default: 0

LEGEND

CCN — Carrier Comfort Network
EMM — Energy Management Module
EXV — Electronic Expansion Valve
LCW — Leaving Chilled Water

Table 16 — Configuration Mode and Sub-Mode Directory (cont)

SUB-MODE	KEYPAD ENTRY	ITEM	MARQUEE DISPLAY RANGE	NAVIGATOR DISPLAY RANGE	ITEM EXPANSION	COMMENT
OPT2 (cont)	V	BAUD	1-5	2400 4800 9600 19,200 38,400	CCN BAUD RATE	Default: 3 1 = 2400 2 = 4800 3 = 9600 4 = 19,200 5 = 38,400
		LOAD	1 - 2	EQUAL STAGED	LOADING SEQUENCE SELECT	Default: 1 1 = Equal 2 = Staged
	▼	LLCS	1 - 3	AUTOMATIC CIR A LEADS CIR B LEADS	LEAD/LAG CIRCUIT SELECT	Default: 1 (Size 080-420); 2 (Size 040-070) 1 = Automatic 2 = Circuit A Leads 3 = Circuit B Leads
	lacksquare	LCWT	2 - 60 Δ F (–16 - 16 Δ C)	2 - 60 ∆ F (−16 - 16 ∆ C)	HIGH LCW ALERT LIMIT	Default: 60
		DELY	0 - 15	0 - 15	MINUTES OFF TIME	Default: 0
	lacksquare	ICE.M	ENBL-DSBL	ENBL-DSBL	ICE MODE ENABLE	Default: DSBL
RSET	ENTER	CRST	0 - 4	NO RESET 4-20 INPUT OUT AIR TEMP RETURN FLUID SPACE TEMP	COOLING RESET TYPE	0 = No report 2 = 4 to 20 mA input 3 = Return fluid 4 = Space temperature
		CRT1	0° - 125 F (–18 - 52 C)	0° - 125 F (–18 - 52 C)	NO COOL RESET TEMP	Default: 125 F
		CRT2	0° - 125 F (–18 - 52 C)	0° - 125 F (–18 - 52 C)	FULL COOL RESET TEMP	Default: 0° F
	lacksquare	DGRC	–30 - 30 Δ F (–17 - 17 Δ C)	–30 - 30 Δ F (–17 - 17 Δ C)	DEGREES COOL RESET	Default: 0° F
	lacksquare	HRST	0 - 4	0 - 4	HEATING RESET TYPE	Not Supported
	lacksquare	HRT1	0° - 125 F (–18 - 52 C)	0° - 125 F (–18 - 52 C)	NO HEAT RESET TEMP	Not Supported
	•	HRT2	0° - 125 F (–18 - 52 C)	0° - 125 F (–18 - 52 C)	FULL HEAT RESET TEMP	Not Supported
	lacksquare	DGRH	–30 - 30 Δ F (–17 - 17 Δ C)	−30 - 30 Δ F (−17 - 17 Δ C)	DEGREES HEAT RESET	Not Supported
	•	DMDC	0 - 3	0 - 3	DEMAND LIMIT SELECT	Default: 0
	•	DM20	0 - 100%	0 - 100%	DEMAND LIMIT AT 20 mA	Default: 100%
	lacksquare	SHNM	0 - 99	0 - 99	LOADSHED GROUP NUMBER	Default: 0
	lacksquare	SHDL	0 - 60%	0 - 60%	LOADSHED DEMAND DELTA	Default: 0
	lacksquare	SHTM	0 - 120	0 - 120	MAXIMUM LOADSHED TIME	Default: 60 minutes
	lacksquare	DLS1	0 - 100%	0 - 100%	DEMAND LIMIT SWITCH 1	Default: 80%
	lacksquare	DLS2	0 - 100%	0 - 100%	DEMAND LIMIT SWITCH 2	Default: 50%
	•	LLEN	ENBL-DSBL	ENBL-DSBL	LEAD/LAG CHILLER ENABLE	Default: DSBL
	•	MSSL	SLVE-MAST	SLVE-MAST	MASTER/SLAVE SELECT	Default: Master
		SLVA	0 - 239	0 - 239	SLAVE ADDRESS	Default: 0
		LLBL	ENBL-DSBL	ENBL-DSBL	LEAD/LAG BALANCE SELECT	Default: DSBL
		LLBD	40 - 400HRS	40 - 400HRS	LEAD/LAG BALANCE DELTA	Default: 168 hours
		LLDY	0 - 30 MIN	0 - 30 MIN	LAG START DELAY	Default: 5 minutes

Table 16 — Configuration Mode and Sub-Mode Directory (cont)

SUB-MODE	KEYPAD ENTRY	ITEM	MARQUEE DISPLAY RANGE	NAVIGATOR DISPLAY RANGE	ITEM EXPANSION	COMMENT
SLCT	ENTER	CLSP	0 - 5	DUAL SWITCH DUAL 7 DAY DUAL CCN OCC 4-20 INPUT EXTERNAL POT	COOLING SETPOINT SELECT	Default: 0 0 = Single 1 = Dual Switch 2 = Dual 7 Day 3 = Dual CCN Occupancy 4 = 4-20 Input 5 = Set Point Potentiometer
	lacksquare	HTSP	0 - 4	0 - 4	HEATING SETPOINT SELECT	Not Supported
	lacksquare	RL.S	ENBL-DSBL	ENBL-DSBL	RAMP LOAD SELECT	Default: DSBL
				0.2 - 2.0° F (0.1 - 1.1° C)	COOLING RAMP LOADING	Default: 1.0
		HRMP	0.2 - 2.0° F (0.1 - 1.1° C)	0.2 - 2.0° F (0.1 - 1.1° C)	HEATING RAMP LOADING	Not Supported
		HCSW	COOL-HEAT	COOL-HEAT	HEAT COOL SELECT	Not Supported
	•	Z.GN	1.0 - 4.0	1.0 - 4.0	DEADBAND MULTIPLIER	Default: 1.0

Table 17 — Example of Temperature Reset (Return Fluid) Configuration

SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY	ITEM EXPANSION	COMMENT
RSET	ENTER	CRST	0	COOLING RESET TYPE	0 = No reset 1 = 4 to 20 mA input 2 = Outdoor Air Temp 3 = Return Fluid 4 = Space Temperature
	ENTER		0		Scrolling stops
	ENTER		0		Value flashes
			3		Select 3
	ENTER		3		Change accepted
	ENTER	CRST	3		Item/Value/Units scrolls again
		CRT1	125	NO COOL RESET TEMP	Range: 0° to 125 F
	ENTER		125		Scrolling stops
	ENTER		125		Value flashes
	lacksquare		10		Select 10
	ENTER		10		Change accepted
	ESCAPE	CRT1	10		Item/Value/Units scrolls again
	lacksquare	CRT2	0	FULL COOL RESET TEMP	Range: 0° to 125 F
	ENTER		0		Scrolling stops
	ENTER		0		Value flashes
			2		Select 2
	ENTER		2		Change accepted
	ESCAPE	CRT2	2		Item/Value/Units scrolls again
	lacksquare	DGRC	0	DEGREES COOL RESET	Range: -30 to 30 F
	ENTER		0		Scrolling stops
	ENTER		0		Value flashes
			8		Select 8
	ENTER		8		Change accepted
	ESCAPE	DGRC	8		Item/Value/Units scrolls again

NOTE: The example above shows how to configure the chiller for temperature reset based on chiller return fluid. The chiller will be configured for no reset at a cooler ΔT (EWT-LWT) of 10 F (5.6 C) and a full reset of 8 F (4.4 C) at a cooler ΔT of 2 F (1.1 C).

Table 18A — Example of Configuring Dual Chiller Control (Master Chiller)

SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY	ITEM EXPANSION	COMMENT
RSET	ENTER	CRST	0	COOLING RESET TYPE	
		LLDY	5	LAG START DELAY	
	ENTER		5		Scrolling stops
	ENTER		5		Value flashes
			10		Select 10
	ENTER		10		Change accepted
	ESCAPE	LLDY	10		
		LLBD	168	LEAD/LAG BALANCE DELTA	No change needed. Default set for weekly changeover
		LLBL	DSBL	LEAD/LAG BALANCE SELECT	
	ENTER		DSBL		Scrolling stops
	ENTER		DSBL		Value flashes
			ENBL		Select Enable
	ENTER		ENBL		Change accepted
	ESCAPE	LLBL	ENBL		
		SLVA	0	SLAVE ADDRESS	
	ENTER		0		Scrolling stops
	ENTER		0		Value flashes
			6		Select 6
	ENTER		6		Change accepted
	ESCAPE	SLVA	6		
-		MSSL	MAST	MASTER/SLAVE SELECT	No change needed. Default set for Master

Table 18B — Example of Configuring Dual Chiller Control (Slave Chiller)

SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY	ITEM EXPANSION	COMMENT
RSET	ENTER	CRST	0	COOLING RESET TYPE	
		LLDY	5	LAG START DELAY	
		LLBD	168	LEAD/LAG BALANCE DELTA	No change needed. Default set for weekly changeover
		LLBL	DSBL	LEAD/LAG BALANCE SELECT	
		SLVA	0	SLAVE ADDRESS	
		MSSL	MAST	MASTER/SLAVE SELECT	Default set for Master
	ENTER	MAST			Scrolling stops
	ENTER	MAST			Value flashes
		SLVE			Select SLVE
	ENTER	SLVE			Change accepted
		MSSL			Item/Value/Units scrolls again
		LLEN	DSBL	LEAD/LAG CHILLER ENABLE	
	ENTER		DSBL		Scrolling stops
	ENTER		DSBL		Value flashes
			ENBL		Select enable
	ENTER	LLEN	ENBL		Change accepted
	ESCAPE	LLEN	ENBL	LEAD/LAG CHILLER ENABLE	Item/Value/Units scrolls again

Table 19 — Example of Compressor Lead/Lag Configuration

SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY	ITEM EXPANSION	COMMENT
OPT2	ENTER	CTRL	0	CONTROL METHOD	
		CCNA	1		
		CCNB	0		
		BAUD	3		
		LOAD	1		
		LLCS	1	LEAD/LAG CIRCUIT SELECT	DEFAULT: 1 (Size 080-420)
	ENTER		1		Scrolling stops
	ENTER		1		Value flashes
			3		Select 3 (See note below)
	ENTER		3		Change accepted
	ESCAPE	LLCS	3	LEAD/LAG CIRCUIT SELECT	Item/Value/Units scrolls again

NOTE: Options 1 and/or 3 not valid for sizes 040-070 without Circuit B accessory unloader installed.

Table 20 — Time Clock Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	ITEM RANGE	ITEM EXPANSION	COMMENT
TIME	ENTER	HH.MM	00.00 - 23.59	HOUR AND MINUTE	Military (00.00-23.59)
DATE	ENTER	MNTH	1 - 12	MONTH	1=Jan, 2=Feb, etc.
	lacksquare	DOM	1 - 31	DATE OF MONTH	
		DAY	1 - 7	DAY OF WEEK	1=Mon, 2=Tue, etc.
	lacksquare	YEAR	0000 - 9999	YEAR OF CENTURY	
SCHD	ENTER	MON.O	00.00 - 23.59	MONDAY OCCUPIED TIME	Default: 00.00
	lacksquare	MON.U	00.00 - 23.59	MONDAY UNOCCUPIED TIME	Default: 00.00
	lacksquare	TUE.O	00.00 - 23.59	TUESDAY OCCUPIED TIME	Default: 00.00
	lacksquare	TUE.U	00.00 - 23.59	TUESDAY UNOCCUPIED TIME	Default: 00.00
	lacksquare	WED.O	00.00 - 23.59	WEDNESDAY OCCUPIED TIME	Default: 00.00
	lacksquare	WED.U	00.00 - 23.59	WEDNESDAY UNOCC TIME	Default: 00.00
	lacksquare	THU.O	00.00 - 23.59	THURSDAY OCCUPIED TIME	Default: 00.00
	lacksquare	THU.U	00.00 - 23.59	THURSDAY UNOCCUPIED TIME	Default: 00.00
	lacksquare	FRI.O	00.00 - 23.59	FRIDAY OCCUPIED TIME	Default: 00.00
	lacksquare	FRI.U	00.00 - 23.59	FRIDAY UNOCCUPIED TIME	Default: 00.00
	lacksquare	SAT.O	00.00 - 23.59	SATURDAY OCCUPIED TIME	Default: 00.00
	lacksquare	SAT.U	00.00 - 23.59	SATURDAY UNOCCUPIED TIME	Default: 00.00
	lacksquare	SUN.O	00.00 - 23.59	SUNDAY OCCUPIED TIME	Default: 00.00
	lacksquare	SUN.U	00.00 - 23.59	SUNDAY UNOCCUPIED TIME	Default: 00.00

Table 21 — Setting an Occupied Time Schedule

SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY	ITEM EXPANSION	COMMENT
SCHD	ENTER	MON.O	00.00	MONDAY OCCUPIED TIME	TIME IN MILITARY FORMAT (HH.MM)
	ENTER		00.00		Scrolling stops
	ENTER		00.00		Hours flash
			07.00		Select 7 AM
	ENTER		07.00		Change accepted, minutes flash
			07.30		Select 30
	ENTER		07.30		Change accepted
	ESCAPE	MON.O	07.30	MONDAY OCCUPIED TIME	Item/Value/Units scrolls again

Table 22 — Operating Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	RANGE	ITEM EXPANSION	COMMENT
MODE	ENTER	MD01	OFF-ON	FSM CONTROLLING CHILLER	
	lacksquare	MD02	OFF-ON	WSM CONTROLLING CHILLER	
ŀ	lacksquare	MD03	OFF-ON	MASTER/SLAVE CONTROL	
	lacksquare	MD04	OFF-ON	LOW SOURCE PROTECTION	Not Supported
ŀ	lacksquare	MD05	OFF-ON	RAMP LOAD LIMITED	
ŀ	▼	MD06	OFF-ON	TIMED OVERRIDE IN EFFECT	
ŀ	▼	MD07	OFF-ON	LOW COOLER SUCTION TEMPA	
ŀ	V	MD08	OFF-ON	LOW COOLER SUCTION TEMPB	
ŀ	▼	MD09	OFF-ON	SLOW CHANGE OVERRIDE	
ļ	V	MD10	OFF-ON	MINIMUM OFF TIME ACTIVE	
ļ	\overline{lack}	MD11	OFF-ON	LOW SUCTION SUPERHEAT A	
ŀ	▼	MD12	OFF-ON	LOW SUCTION SUPERHEAT B	
ŀ	▼	MD13	OFF-ON	DUAL SETPOINT	
ŀ	lacksquare	MD14	OFF-ON	TEMPERATURE RESET	
ŀ	▼	MD15	OFF-ON	DEMAND LIMIT IN EFFECT	
ļ	V	MD16	OFF-ON	COOLER FREEZE PROTECTION	
Ī	V	MD17	OFF-ON	LO TMP COOL/HI TMP HEAT	
Ī	lacksquare	MD18	OFF-ON	HI TMP COOL/LO TMP HEAT	
Ī	<u> </u>	MD19	OFF-ON	MAKING ICE	
Ī	V	MD20	OFF-ON	STORING ICE	
Ī	lacksquare	MD21	OFF-ON	HIGH SCT CIRCUIT A	
ļ		MD22	OFF-ON	HIGH SCT CIRCUIT B	

LEGEND

FSM — Flotronic™ System Manager
SCT — Saturated Condensing Temperature
WSM — Water System Manager

41

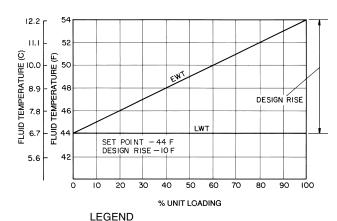
Table 23 — Operating Modes

MODE NO.	ITEM EXPANSION	DESCRIPTION
01	FSM CONTROLLING CHILLER	Flotronic™ System Manager (FSM) is controlling the chiller.
02	WSM CONTROLLING CHILLER	Water System Manager (WSM) is controlling the chiller.
03	MASTER/SLAVE CONTROL	Lead/Lag Chiller control is enabled.
04	LOW SOURCE PROTECTION	Not currently supported.
05	RAMP LOAD LIMITED	Ramp load (pulldown) limiting in effect. In this mode, the rate at which leaving fluid temperature is dropped is limited to a predetermined value to prevent compressor overloading. See CRMP set point in the Set Point Select (SLCT section of the Configuration mode. The pulldown limit can be modified, if desired, to any rate from 0.2° F to 2° F (0.1° to 1° C)/minute.
06	TIMED OVERRIDE IN EFFECT	Timed override is in effect. This is a 1 to 4 hour temporary override of the programmed schedule, forcing unit to Occupied mode. Override can be implemented with unit under Local (Enable) or CCN control. Override expires after each use.
07	LOW COOLER SUCTION TEMP A	Circuit A capacity may be limited due to operation of this mode. Control wil attempt to correct this situation for up to 10 minutes before shutting the circuit down. The control may decrease capacity when attempting to correct this problem. See Alarms and Alerts section for more information.
08	LOW COOLER SUCTION TEMP B	Circuit B capacity may be limited due to operation of this mode. Control wil attempt to correct this situation for up to10 minutes before shutting the circuit down. The control may decrease capacity when attempting to correct this problem. See Alarms and Alerts section for more information.
09	SLOW CHANGE OVERRIDE	Slow change override is in effect. The leaving fluid temperature is close to and moving towards the control point.
10	MINIMUM OFF TIME ACTIVE	Chiller is being held off by Minutes Off Time (DELY) found under Options 2 (OPT2) section of Configuration mode.
11	LOW SUCTION SUPERHEAT A	Circuit A capacity may be limited due to operation of this mode. Control wil attempt to correct this situation for up to 5 minutes before shutting the circuit down. See Alarms and Alerts section for more information.
12	LOW SUCTION SUPERHEAT B	Circuit B capacity may be limited due to operation of this mode. Control wil attempt to correct this situation for up to 5 minutes before shutting the circuit down. See Alarms and Alerts section for more information.
13	DUAL SET POINT	Dual set point mode is in effect. Chiller controls to CSP.1 during occupied periods and CSP.2 during unoccupied periods. Both CSP.1 and CSP.2 are located under COOL in the Set Point mode.
14	TEMPERATURE RESET	Temperature reset is in effect. In this mode, chiller is using temperature reset to adjust leaving fluid set point upward and is currently controlling to the modified set point. The set point can be modified based on return fluid outdoor-air-temperature, space temperature, or 4 to 20 mA signal.
15	DEMAND LIMIT IN EFFECT	Demand limit is in effect. This indicates that the capacity of the chiller is being limited by demand limit control option. Because of this limitation, the chiller may not be able to produce the desired leaving fluid temperature Demand limit can be controlled by switch inputs or a 4 to 20 mA signal.
16	COOLER FREEZE PROTECTION	Cooler fluid temperatures are approaching the Freeze point (see Alarms and Alerts section for definition). The chiller will be shut down when either fluid temperature falls below the Freeze point.
17	LO TMP COOL/HI TMP HEAT	Chiller is in Cooling mode and the rate of change of the leaving fluid is neg ative and decreasing faster than -0.5° F per minute. Error between leaving fluid and control point exceeds fixed amount. Control will automatically unload the chiller if necessary.
18	HI TMP COOL/LO TMP HEAT	Chiller is in Cooling mode and the rate of change of the leaving fluid is positive and increasing. Error between leaving fluid and control point exceeds fixed amount. Control will automatically load the chiller if necessary to better match the increasing load.
19	MAKING ICE	Chiller is in an unoccupied mode and is using Ice Set Point 3 (CSP.3) to make ice. The ice done input to the Energy Management Module (EMM) is open
20	STORING ICE	Chiller is in an unoccupied mode and is controlling to Cooling Set Point 2 (CSP.2). The ice done input to the Energy Management Module (EMM) is closed.
21	HIGH SCT CIRCUIT A	Chiller is in a cooling mode and the Saturated Condensing temperature react by sensor T3 is greater than 140 F (60 C). No additional stages of capacity will be added. Chiller may be unloaded if SCT continues to rise to avoid high pressure switch trips by reducing condensing temperature.
22	HIGH SCT CIRCUIT B	Chiller is in a cooling mode and the Saturated Condensing temperature react by sensor T4 is greater than 140 F (60 C). No additional stages of capacity will be added. Chiller may be unloaded if SCT continues to rise to avoid high pressure switch trips by reducing condensing temperature.

Table 24 — Alarms Mode and Sub-Mode Directory

SUB-MODE	KEYPAD ENTRY	ITEM	ITEM EXPANSION	COMMENT
CRNT	ENTER	AXXX or TXXX	CURRENTLY ACTIVE ALARMS	Alarms are shown as AXXX. Alerts are shown as TXXX.
RCRN	ENTER	YES/NO	RESET ALL CURRENT ALARMS	
HIST	ENTER	AXXX or TXXX	ALARM HISTORY	Alarms are shown as AXXX. Alerts are shown as TXXX.
RHIS	ENTER	YES/NO	RESET ALARM HISTORY	

Table 25 — Example of Reading and Clearing Alarms


SUB-MODE	KEYPAD ENTRY	ITEM	ITEM EXPANSION	COMMENT
CRNT	ENTER	AXXX or TXXX	CURRENTLY ACTIVE ALARMS	ACTIVE ALARMS (AXXX) OR ALERTS (TXXX) DISPLAYED.
CRNT	ESCAPE			
RCRN	lacksquare	NO		Use to clear active alarms/alerts
·	ENTER	NO		NO Flashes
·		YES		Select YES
	ENTER	NO		Alarms/alerts clear, YES changes to NO

Temperature Reset — The control system is capable of handling leaving-fluid temperature reset based on return cooler fluid temperature. Because the change in temperature through the cooler is a measure of the building load, the return temperature reset is in effect an average building load reset method. The control system is also capable of temperature reset based on outdoor-air temperature (OAT), space temperature (SPT), or from an externally powered 4 to 20 mA signal. Accessory sensors must be used for OAT and SPT reset (HH79NZ073 for OAT and HH51BX006 for SPT). The Energy Management Module (EMM) must be used for temperature reset using a 4 to 20 mA signal.

To use the return reset, four variables must be configured. In the Configuration mode under the sub-mode RSET, items CRST, CRT1, CRT2, and DGRC must be set properly. See Table 26 on page 44 for correct configuration. See Fig. 2-4 for wiring details.

Under normal operation, the chiller will maintain a constant leaving fluid temperature approximately equal to the chilled fluid set point. As the cooler load varies, the entering cooler fluid will change in proportion to the load as shown in Fig. 21. Usually the chiller size and leaving-fluid temperature set point are selected based on a full-load condition. At part load, the fluid temperature set point may be colder than required. If the leaving fluid temperature was allowed to increase at part load, the efficiency of the machine would increase.

Return temperature reset allows for the leaving temperature set point to be reset upward as a function of the return fluid temperature or, in effect, the building load.

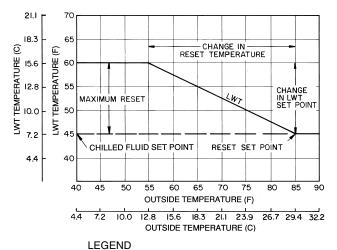
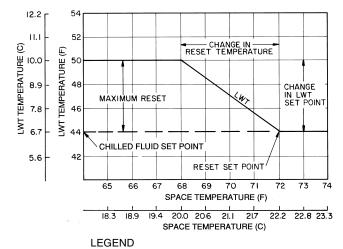
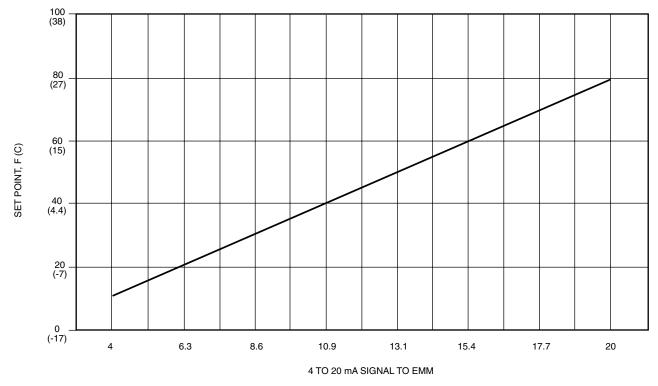

EWT — Entering Water (Fluid) Temperature
LWT — Leaving Water (Fluid) Temperature

Fig. 21 — Standard Chilled Fluid Temperature Control — No Reset


Table 26 — Configuring Temperature Reset

MODE	KEYPAD ENTRY	SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY	ITEM EXPANSION	COMMENT
	ENTER	DISP	ENTER	TEST	ON/OFF	TEST DISPLAY LEDS	
		UNIT	ENTER	TYPE		UNIT TYPE	
	lacksquare	OPT1	ENTER	FLUD		COOLER FLUID	
		OPT2	ENTER	CTRL		CONTROL METHOD	
CONFIGURATION		RSET	ENTER	CRST		COOLING RESET TYPE	0 = No Reset 1 = 4 to 20 mA Input (EMM required) (Connect to EMM J6-2,5) 2 = Outdoor-Air Temperature (Connect to TB5-7,8) 3 = Return Fluid 4 = Space Temperature (Connect to TB5-5,6)
			•	CRT1	XXX.X F	NO COOL RESET TEMP	Default: 125 F (51.7 C) Range: 0° to125 F Set to 4.0 for CRST= 1
				CRT2	XXX.X F	FULL COOL RESET TEMP	Default: 0° F (–17.8 C) Range: 0° to 125 F Set to 20.0 for CRST=1
			•	DGRC	XX.X °F	DEGREES COOL RESET	Default: 0° F (0° C) Range: -30 to 30° F (-16.7 to 16.7° C)

The following are examples of outdoor air and space temperature resets:


LWT — Leaving Water (Fluid) Temperature

LWT — Leaving Water (Fluid) Temperature

Cooling Set Point (4 to 20 mA) — A field supplied and generated, externally powered 4 to 20 mA signal can be used to provide the leaving fluid temperature set point. Connect the signal to TB6-3,5 (+,-). See Table 27 for instructions to

enable the function. Figure 22 shows how the 4 to 20 mA signal is linearly calculated on an overall $10\ F$ to $80\ F$ range for fluid types (Configuration mode, sub-mode OPT1, item FLUD) $1\ or\ 2$.

EMM — Energy Management Module

Fig. 22 — Cooling Set Point (4 to 20 mA)

Table 27 — Menu Configuration of 4 to 20 mA Cooling Set Point Control

MODE (RED LED)	KEYPAD ENTRY	SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY	ITEM EXPANSION	COMMENT
CONFIGURATION	ENTER	DISP					
		UNIT					
		OPT1					
		OPT2					
		RSET					
		SLCT	ENTER	CLSP	0	COOLING SETPOINT SELECT	
			ENTER		0		Scrolling Stops
			ENTER		0		Flashing '0'
					4		Select '4'
			ENTER		4		Change Accepted

Demand Limit — Demand Limit is a feature that allows the unit capacity to be limited during periods of peak energy usage. There are 3 types of demand limiting that can be configured. The first type is through 2-stage switch control, which will reduce the maximum capacity to 2 user-configurable percentages. The second type is by 4 to 20 mA signal input which will reduce the maximum capacity linearly between 100% at a 4 mA input signal (no reduction) down to the user-configurable level at a 20 mA input signal. The third type uses the CNN Loadshed module and has the ability to limit the current operating capacity to maximum and further reduce the capacity if required.

NOTE: The 2-stage switch control and 4 to 20 mA input signal types of demand limiting require the Energy Management Module (EMM).

To use Demand Limit, select the type of demand limiting to use. Then configure the Demand Limit set points based on the type selected.

DEMAND LIMIT (2-Stage Switch Controlled) — To configure Demand Limit for 2-stage switch control set the Demand Limit Select (DMDC) to 1. Then configure the 2 Demand Limit Switch points (DLS1 and DLS2) to the desired capacity limit. See Table 28. Capacity steps are controlled by 2 relay switch inputs field wired to TB6 as shown in Fig. 2-4.

For Demand Limit by 2-stage switch control, closing the first stage demand limit contact will put the unit on the first demand limit level. The unit will not exceed the percentage of capacity entered as Demand Limit Switch 1 set point. Closing contacts on the second demand limit switch prevents the unit from exceeding the capacity entered as Demand Limit Switch

2 set point. The demand limit stage that is set to the lowest demand takes priority if both demand limit inputs are closed. If the demand limit percentage does not match unit staging, the unit will limit capacity to the closest capacity stage.

To disable demand limit configure the DMDC to 0. See Table 28.

EXTERNALLY POWERED DEMAND LIMIT (4 to 20 mA Controlled) — To configure Demand Limit for 4 to 20 mA control set the Demand Limit Select (DMDC) to 2. Then configure the Demand Limit at 20 mA (DM20) to the maximum loadshed value desired. The control will reduce allowable capacity to this level for the 20 mA signal. See Table 28 and Fig. 23.

DEMAND LIMIT (CCN Loadshed Controlled) — To configure Demand Limit for CCN Loadshed control set the Demand Limit Select (DMDC) to 3. Then configure the Loadshed Group Number (SHNM), Loadshed Demand Delta (SHDL), and Maximum Loadshed Time (SHTM). See Table 28.

The Loadshed Group number is established by the CCN system designer. The MBB will respond to a Redline command from the Loadshed control. When the Redline command is received, the current stage of capacity is set to the maximum stages available. Should the loadshed control send a Loadshed command, the MBB will reduce the current stages by the value entered for Loadshed Demand delta. The Maximum Loadshed Time defines the maximum length of time that a loadshed condition is allowed to exist. The control will disable the Redline/Loadshed command if no Cancel command has been received within the configured maximum loadshed time limit.

Table 28 — Configuring Demand Limit

MODE	KEYPAD ENTRY	SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY	ITEM EXPANSION	COMMENT
CONFIGURATION	ENTER	DISP	ENTER	TEST	ON/OFF	Test Display LEDs	
	lacksquare	UNIT	ENTER	TYPE	Х	Unit Type	
	lacksquare	OPT1	ENTER	FLUD	Х	Cooler Fluid	
	lacksquare	OPT2	ENTER	CTRL	Х	Control Method	
	lacksquare	RSET	ENTER	CRST	Х	Cooling Reset Type	
				CRT1	XXX.X °F	No Cool Reset Temperature	
				CRT2	XXX.X °F	Full Cool Reset Temperature	
				DGRC	XX.X ΔF	Degrees Cool Reset	
			•	DMDC	х	Demand Limit Select	Default: 0 0 = None 1 = Switch 2 = 4 to 20 mA Input 3 = CCN Loadshed
				DM20	XXX %	Demand Limit at 20 mA	Default: 100% Range: 0 to 100
				SHNM	XXX	Loadshed Group Number	Default: 0 Range: 0 to 99
			•	SHDL	XXX%	Loadshed Demand Delta	Default: 0% Range: 0 to 60%
			•	SHTM	XXX MIN	Maximum Loadshed Time	Default: 60 min. Range: 0 to 120 min.
			•	DLS1	XXX %	Demand Limit Switch 1	Default: 80% Range: 0 to 100%
				DLS2	XXX%	Demand Limit Switch 2	Default: 50% Range: 0 to 100%

NOTE: Heating reset values skipped in this example.

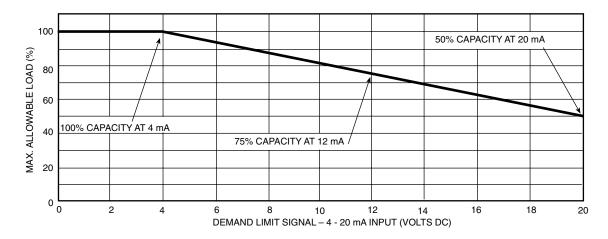


Fig. 23 — 4 to 20 mA Demand Limiting

TROUBLESHOOTING

Compressor Protection Control System (CPCS) Board — The compressor protection board controls the compressor and compressor crankcase heater.

The ground current protection is provided by the compressor board.

The large relay located on the board is used to provide a feedback signal to the Main Base Board.

The operation of the compressor board can be checked using the Service Test procedure. When the Service Test step is turned on, the compressor board is energized. All safeties are continuously monitored. The crankcase heater will be turned off and the compressor contactor will be turned on. The feedback contacts will close and the Main Base Board (MBB) will read the feedback status.

If the board does not perform properly, use standard wiring troubleshooting procedures to check the wiring for open circuits. Refer to Alarms and Alerts section on page 48 for alarm or alert codes for possible causes for failure.

If a compressor short-to-ground exists, the compressor board may detect the short before the circuit breaker trips. If this is suspected, check the compressor for short-to-ground failures with an ohmmeter. The ground current is sensed with a current toroid (coil) around all 3 or 6 wires between the main terminal block and the compressor circuit breaker(s).

Compressor Ground Current (CGF) Board (30GTN,R and 30GUN,R 130-210, 230A-315A, and 330A/B-420A/B) — One board is used for each circuit of these units. Each board receives input from up to 4 toroids wired in series, one toroid per compressor. With 24 v supplied at terminals A and B, a current imbalance (compressor ground current) sensed by any toroid causes the NC (normally closed) contacts to open, shutting down the lead compressor in the affected circuit. All other compressors in that circuit shut down as a result. The NC contacts remain open until the circuit is reset by momentarily deenergizing the board using the push-button switch.

If the NC contacts open, it is necessary to remove toroids from the T1-T2 circuit to determine which toroid is causing the trip. The chiller circuit can then be put back on line after the circuit breaker of the faulty compressor is opened. The compressor problem can then be diagnosed by normal trouble-shooting procedures.

EXV Troubleshooting — If it appears that the EXV is not properly controlling operating suction pressure or superheat, there are a number of checks that can be made using

the quick test and initialization features built into the $Comfort Link^{TM}$ control.

Follow the procedure below to diagnose and correct EXV problems.

STEP 1 — CHECK PROCESSOR EXV OUTPUTS — Check EXV output signals at the J6 and J7 terminals of the EXV board.

Turn unit power off. Connect the positive lead of the meter to terminal 3 on connector J6 on the EXV board. Set meter for approximately 20 vdc. Turn unit power on. Enter and enable the Service Test mode. Locate the appropriate EXV under 'OUTS.' Select the desired percentage and press Enter to move the valve. The valve will overdrive in both directions when either 0% or 100% are entered. During this time, connect the negative test lead to terminals 1, 2, 4, and 5 in succession. The voltage should fluctuate at each pin. If it remains constant at a voltage or at 0 v, replace the EXV board. If the outputs are correct, then check the EXV.

To test Circuit B outputs, follow the same procedure above, except connect the positive lead of the meter to terminal 3 on connector J7 on the EXV board and the negative lead to terminals 1, 2, 4, and 5 in succession.

STEP 2 — CHECK EXV WIRING — Check wiring to EXVs from J6 and J7 connectors on EXV board.

- 1. Check color coding and wire connections. Make sure that wires are connected to correct terminals at J6 and J7 connectors and EXV plug connections. Check for correct wiring at driver board input and output terminals. See Fig. 2-4.
- Check for continuity and tight connection at all pin terminals.
- Check plug connections at J6 and J7 connectors and at EXVs. Be sure EXV connections are not crossed.

STEP 3 — CHECK RESISTANCE OF EXV MOTOR WINDINGS — Remove connector at J6 and/or J7 of EXV board and check resistance between common lead (red wire, terminal D) and remaining leads A, B, C, and E. Resistance should be 25 ohms ± 2 ohms. Check all leads to ground for shorts.

STEP 4 — CHECK THERMISTORS THAT CONTROL EXV — Check thermistors that control processor output voltage pulses to the EXVs. Circuit A thermistor is T7, and circuit B thermistor is T8. Refer to Fig. 9 and 10 for location.

1. Refer to Thermistors section on page 59 for details on checking thermistor calibration.

Make sure that thermistor leads are connected to the proper pin terminals at the J5 connector on EXV board and that thermistor probes are located in proper position in the refrigerant circuit.

When these checks have been completed, the actual operation of the EXV can be checked by using the procedures outlined in Step 5 — Check Operation of the EXV section below. STEP 5 — CHECK OPERATION OF THE EXV — Use the following procedure to check the actual operation of the EXVs. The ENABLE/OFF/REMOTE contact switch must be in the OFF position.

- Close the liquid line service valve for the circuit to be checked and run through the appropriate service test to pump down the low side of the system. Run lead compressor for at least 30 seconds to ensure all refrigerant has been pumped from the low side and that the EXV has been driven fully open (1500 steps).
 - NOTE: Do not use the Emergency ON-OFF switch to recycle the control during this step.
- Turn off the compressor circuit breaker(s) and the control circuit power and then turn the Emergency ON/OFF switch to the OFF position. Close compressor service valves and remove any remaining refrigerant from the low side of the system.
- Carefully loosen the 2-1/8 in. nut. Do not twist the valve. Remove the motor canister from the valve body using caution to avoid damage to the o-ring seal. If the EXV plug was disconnected during this process reconnect it after the motor canister is removed.
- 4. Note position of lead screw (see Fig. 15). If valve has responded properly to processor signals in Step 5.1 above, the lead screw should be fully retracted.
- 5. Recycle the control by turning the Emergency ON-OFF switch to the ON position. This puts the control in initialization mode. During the first 60 seconds of the initialization mode, each valve is driven to the fully closed position (1500 steps) by the processor. Observe the movement of the lead screw. It should be smooth and uniform from the fully retracted (open) to the fully extended (closed) position.
- 6. When the test has been completed, carefully reassemble expansion valve. Apply a small amount of O-ring grease to the housing seal O-ring before installing the motor canister. Be careful not to damage the O-ring. Tighten the motor nut to 15 to 25 lb-ft (20 to 34 N-m). Evacuate the low side of the open refrigerant circuit. Open compressor service valves and close compressor circuit breakers.

Open liquid line service valve. Check for any refrigerant leaks. Turn the ENABLE/OFF/REMOTE switch back to ENABLE or REMOTE and allow the unit to operate. Verify proper unit operation.

NOTE: The EXV orifice is a screw-in type and may be removed for inspection and cleaning. Once the motor canister is removed the orifice can be removed by using the orifice removal tool (part no. TS429). A slot has been cut in the top of the orifice to facilitate removal. Turn orifice counterclockwise to remove. A large screwdriver may also be used.

When cleaning or reinstalling orifice assembly be careful not to damage orifice assembly seals. The bottom seal acts as a liquid shut-off, replacing a liquid line solenoid valve. If the bottom seal should become damaged it can be replaced. Remove the orifice. Remove the old seal. Using the orifice as a guide, add a small amount of O-ring grease, to the underside of the orifice. Be careful not to plug the vent holes. Carefully set the seal with the O-ring into the orifice. The O-ring grease will hold the seal in place. If the O-ring grease is not used, the seal O-ring will twist and bind when the orifice is screwed into the EXV base. Install the orifice and seal assembly. Remove the orifice to verify that the seal is properly positioned. Clean any O-ring grease from the bottom of the orifice. Reinstall the orifice and tighten to 100 in.-lb (11 N-m). Apply a small amount of O-ring grease to the housing seal O-ring before installing the motor canister. Reinstall the motor canister assembly. Tighten the motor nut to 15 to 25 ft-lb (20 to 34 N-m).

Alarms and Alerts — These are warnings of abnormal or fault conditions, and may cause either one circuit or the whole unit to shut down. They are assigned code numbers as described in Table 29.

Automatic alarms will reset without operator intervention if the condition corrects itself. The following method must be used to reset manual alarms:

Before resetting any alarm, first determine the cause of the alarm and correct it. Enter the Alarms mode indicated by the LED on the side of the Scrolling Marquee Display. Press ENTER and until the sub-menu item RCRN "RESET ALL CURRENT ALARMS" is displayed. Press ENTER. The control will prompt the user for a password, by displaying PASS and WORD. Press ENTER to display the default password, 1111. Press ENTER for each character. If the password has been changed, use the arrow keys to change each individual character. Toggle the display to "YES" and press ENTER. The alarms will be reset.

Table 29 — Alarm and Alert Codes

ALARM/ ALERT CODE	ALARM OR ALERT	DESCRIPTION	WHY WAS THIS ALARM GENERATED?	ACTION TAKEN BY CONTROL	RESET METHOD	PROBABLE CAUSE
T051	Alert	Circuit A, Compressor 1 Failure	Compressor feedback signal does not match relay state	Circuit A shut down.	Manual	High-pressure or loss-of- charge switch open, faulty control relay or CPCS board, loss of condenser air, liquid valve closed, operation beyond capability.
T052	Alert	Circuit A, Compressor 2 Failure	Compressor feedback signal does not match relay state	Circuit A shut down. Circuit restarted in 1 minute. Com- pressor A2 not used until alarm is reset.	Manual	High-pressure switch open, faulty control relay or CPCS board, loss of condenser air, liquid valve closed, operation beyond capability.
T053	Alert	Circuit A, Compressor 3 Failure	Compressor feedback signal does not match relay state	Circuit A shut down. Circuit restarted in 1 minute. Com- pressor A3 not used until alarm is reset.	Manual	High-pressure switch open, faulty control relay or CPCS board, loss of condenser air, liquid valve closed, operation beyond capability.
T054	Alert	Circuit A, Compressor 4 Failure	Compressor feedback signal does not match relay state	Circuit A shut down. Circuit restarted in 1 minute. Com- pressor A4 not used until alarm is reset.	Manual	High-pressure switch open, faulty control relay or CPCS board, loss of condenser air, liquid valve closed, operation beyond capability.
T055	Alert	Circuit B, Compressor 1 Failure	Compressor feedback signal does not match relay state	Circuit B shut down.	Manual	High-pressure or loss-of- charge switch open, faulty control relay or CPCS board, loss of condenser air, liquid valve closed, operation beyond capability.
T056	Alert	Circuit B, Compressor 2 Failure	Compressor feedback signal does not match relay state	Circuit B shut down. Circuit restarted in 1 minute. Com- pressor B2 not used until alarm is reset.	Manual	High-pressure switch open, faulty control relay or CPCS board, loss of condenser air, liquid valve closed, operation beyond capability.
T057	Alert	Circuit B, Compressor 3 Failure	Compressor feedback signal does not match relay state	Circuit B shut down. Circuit restarted in 1 minute. Com- pressor B3 not used until alarm is reset.	Manual	High-pressure switch open, faulty control relay or CPCS board, loss of condenser air, liquid valve closed, operation beyond capability.
A060	Alarm	Cooler Leaving Fluid Thermistor Failure (T1)	Thermistor outside range of -40 to 245 F (-40 to 118 C)	Chiller shutdown after pumpdown complete.	Automatic	Thermistor failure, damaged cable/wire or wiring error.
A061	Alarm	Cooler Entering Fluid Thermistor Failure (T2)	Thermistor outside range of –40 to 245 F (–40 to 118 C)	Chiller shutdown after pumpdown complete.	Automatic	Thermistor failure, damaged cable/wire or wiring error.
T064	Alert	Circuit A Saturated Condensing Thermistor Failure (T3)	Thermistor outside range of –40 to 245 F (–40 to 118 C)	Circuit A shutdown after pumpdown complete.	Automatic	Thermistor failure, damaged cable/wire or wiring error.
T065	Alert	Circuit B Saturated Con- densing Thermistor Failure (T4)	Thermistor outside range of –40 to 245 F (–40 to 118 C)	Circuit B shutdown after pumpdown complete.	Automatic	Thermistor failure, damaged cable/wire or wiring error.
T066	Alert	Circuit A Saturated Suction Thermistor Failure (T5)	Thermistor outside range of –40 to 245 F (–40 to 118 C)	Circuit A shutdown after pumpdown complete. (EXV only)	Automatic	Thermistor failure, damaged cable/wire or wiring error.
T067	Alert	Circuit B Saturated Suction Thermistor Failure (T6)	Thermistor outside range of –40 to 245 F (–40 to 118 C)	Circuit B shutdown after pumpdown complete. (EXV only).	Automatic	Thermistor failure, damaged cable/wire or wiring error.
T068	Alert	Compressor A1 Suction Gas Thermistor Failure (T7)	Thermistor outside range of –40 to 245 F (–40 to 118 C)	Circuit A shutdown after pumpdown complete. (EXV only).	Automatic	Thermistor failure, damaged cable/wire or wiring error.
T069	Alert	Compressor B1 Suction Gas Thermistor Failure (T8)	Thermistor outside range of –40 to 245 F (–40 to 118 C)	Circuit B shutdown after pumpdown complete. (EXV only).	Automatic	Thermistor failure, damaged cable/wire or wiring error.
T073	Alert	Outside Air Thermistor Failure (T9)	Thermistor outside range of -40 to 245 F (-40 to 118 C)	Temperature reset disabled. Chiller runs under normal control/set points.	Automatic	Thermistor failure, damaged cable/wire or wiring error.
T074	Alert	Space Temperature Thermistor Failure (T10)	Thermistor outside range of –40 to 245 F (–40 to 118 C)	Temperature reset disabled. Chiller runs under normal control/set points.	Automatic	Thermistor failure, damaged cable/wire or wiring error.
T077	Alert	Circuit A Saturated Suction Temperature exceeds Cooler Leaving Fluid Temperature	Saturated suction is greater than leaving fluid temperature for more than 5 minutes	Circuit A shutdown after pumpdown complete.	Automatic	Faulty expansion valve or EXV board, faulty cooler suction thermistor (T5) or leaving fluid thermistor (T1).
T078	Alert	Circuit B Saturated Suction Temperature exceeds Cooler Leaving Fluid Temperature	Saturated suction is greater than leaving fluid temperature for more than 5 minutes	Circuit B shutdown after pumpdown complete	Automatic	Faulty expansion valve or EXV board, faulty cooler suc- tion thermistor (T6) or leav- ing fluid thermistor (T1).
T079	Alert	Lead/Lag Thermistor Failure	Thermistor outside range of –40 to 245 F (–40 to 118 C)	Lead/lag algorithm runs using Master LWT sensor Master is lead chiller.	Automatic	Dual chiller LWT thermistor failure, damaged cable/wire or wiring error.

Table 29 — Alarm and Alert Codes (cont)

ALERT CODE	ALARM OR ALERT	DESCRIPTION	WHY WAS THIS ALARM GENERATED?	ACTION TAKEN BY CONTROL	RESET METHOD	PROBABLE CAUSE
T112	Alert	Circuit A High Suction Superheat	If EXV is greater than 98%, suction superheat is greater than 75 F (41.7 C) and saturated suction temperature is less than MOP for 5 minutes	Circuit A shutdown after pumpdown complete.	Manual	Faulty expansion valve or EXV board, low refrigerant charge, plugged fil- ter drier, faulty suc- tion gas thermistor (T7) or cooler ther- mistor (T5).
T113	Alert	Circuit B High Suction Superheat	If EXV is greater than 98% suction superheat is greater than 75 F (41.7 C) and saturated suction temperature is less than MOP for 5 minutes	Circuit B shutdown after pumpdown complete.	Manual	Faulty expansion valve or EXV board, low refrigerant charge, plugged fil- ter drier, faulty suc- tion gas thermistor (T8) or cooler ther- mistor (T6).
T114	Alert	Circuit A Low Suction Superheat	If EXV is greater than 10%, and either suction superheat is less than superheat set point –10 F (5.6 C) or saturated suction temperature is greater than MOP for 5 minutes	Circuit A shutdown after pumpdown complete.	Automatic restart after first daily occurrence. Manual restart thereafter.	Faulty expansion valve or EXV board, faulty suction gas thermistor (T7) or cooler thermistor (T5).
T115	Alert	Circuit B Low Suction Superheat	If EXV is greater than 10%, and either suction superheat is less than superheat set point –10 F (5.6 C) or saturated suction temperature is greater than MOP for 5 minutes	Circuit B shutdown after pumpdown complete.	Automatic restart after first daily occurrence. Manual restart thereafter.	Faulty expansion valve or EXV board, faulty suction gas thermistor (T8) or cooler thermistor (T6).
T116	Alert	Circuit A Low Cooler Suction Temperature	temperature is 24 to 29° F (13.3 to 16.1° C) below cooler LWT and is also 2° F (1.1° C) less than freeze*	 Mode 7 initiated. No additional capacity increases. Alert not tripped. Circuit shutdown without going through pumpdown. 	Automatic reset if corrected. Manual	Faulty expansion valve or EXV board, low refrigerant charge, plugged fil- ter drier, faulty suc- tion gas thermistor (T7) or cooler ther- mistor (T5), low cooler fluid flow.
T117	Alert	Circuit B Low Cooler Suction Temperature	temperature is 24 to 29°F (13.3 to 16.1° C) below cooler LWT and is also 2°F (1.1° C) less than freeze*	Mode 8 initiated. No additional capacity increases. Alert not tripped. Circuit shutdown without going through pumpdown.	Automatic reset if corrected. Manual	Faulty expansion valve or EXV board, low refrigerant charge, plugged fil- ter drier, faulty suc- tion gas thermistor (T8) or cooler ther- mistor (T6), low cooler fluid flow.
T118	Alert	Circuit A Low Oil Pressure	Oil pressure switch open after 1 minute of continu- ous operation	Circuit shutdown without going through pumpdown.	Manual	Oil pump failure, low oil level, switch fail- ure or compressor circuit breaker tripped.
T119	Alert	Circuit B Low Oil Pressure	Oil pressure switch open after 1 minute of continu- ous operation	Circuit shutdown without going through pumpdown.	Manual	Oil pump failure, low oil level, switch fail- ure or compressor circuit breaker tripped.

LEGEND

LEGEND

CCN — Carrier Comfort Network

CPCS — Compressor Protection Control System

CXB — Compressor Expansion Board

EMM — Energy Management Module

EWT — Entering Fluid Temperature

EXV — Electronic Expansion Valve

FSM — Flotronic™ System Manager

LCW — Leaving Chilled Water

LWT — Leaving Fluid Temperature

MBB — Main Base Board

MOP — Maximum Operating Pressure

WSM — Water System Manager

*Freeze is defined as 34° F (1.1 C) for water. For brine fluids, freeze is CSP.1 –8° F (4.4 C) for single set point and lower of CSP.1 or CSP.2 –8° F (4.4 C) for dual set point configuration.

Table 29 — Alarm and Alert Codes (cont)

ALARM/ ALERT CODE	ALARM OR ALERT	DESCRIPTION	WHY WAS THIS ALARM GENERATED?	ACTION TAKEN BY CONTROL	RESET METHOD	PROBABLE CAUSE
A150	Alarm	Emergency Stop	CCN emergency stop command received	Chiller shutdown without going through pumpdown.	Automatic once CCN command for EMSTOP returns to normal	CCN Network command.
A151	Alarm	Illegal Configuration	One or more of the illegal configurations exists.	Chiller is not allowed to start.	Manual once configuration errors are corrected	Configuration error. See Note on page 52.
A152	Alarm	Unit Down Due to Failure	Both circuits are down due to alarms/alerts.	Chiller is unable to run.	Automatic once alarms/alerts are cleared that pre- vent the chiller from starting.	Alarm notifies user that chiller is100% down.
T153	Alert	Real Time Clock Hardware Failure	Internal clock on MBB fails	Occupancy sched- ule will not be used. Chiller defaults to Local On mode.	Automatic when correct clock control restarts.	Time/Date/Month/ Day/Year not prop- erly set.
A154	Alarm	Serial EEPROM Hardware Failure	Hardware failure with MBB	Chiller is unable to run.	Manual	Main Base Board failure.
T155	Alert	Serial EEPROM Storage Failure	Configuration/storage failure with MBB	No Action	Manual	Potential failure of MBB. Download current operating software. Replace MBB if error occurs again.
A156	Alarm	Critical Serial EEPROM Storage Failure	Configuration/storage failure with MBB	Chiller is not allowed to run.	Manual	Main Base Board failure.
A157	Alarm	A/D Hardware Failure	Hardware failure with peripheral device	Chiller is not allowed to run.	Manual	Main Base Board failure.
T170	Alert	Loss of Communica- tion with CXB	MBB loses communica- tion with CXB	Compressors A3, A4 and B3 and unloaders A2/B2 unable to operate.	Automatic	Wiring error, faulty wiring or failed CXB module.
A172	Alarm	Loss of Communication with EXV	MBB loses communication with EXV	Chiller shutdown without going through pumpdown.	Automatic	Wiring error, faulty wiring or failed EXV module.
T173	Alert	Loss of Communica- tion with EMM	MBB loses communica- tion with EMM	4 to 20 mA temperature reset disabled. Demand Limit set to 100%. 4 to 20 mA set point disabled.	Automatic	Wiring error, faulty wiring or failed Energy Manage- ment Module (EMM).
T174	Alert	4 to 20 mA Cooling Set Point Input Fail- ure	If configured with EMM and input less than 2 mA or greater than 22 mA	Set point function disabled. Chiller controls to CSP.1.	Automatic	Faulty signal generator, wiring error, or faulty EMM.
T176	Alert	4 to 20 mA Tempera- ture Reset Input Failure	If configured with EMM and input less than 2 mA or greater than 22 mA	Reset function dis- abled. Chiller returns to normal set point control.	Automatic	Faulty signal generator, wiring error, or faulty EMM.
T177	Alert	4 to 20 mA Demand Limit Input Failure	If configured with EMM and input less than 2 mA or greater than 22 mA	Demand limit function disabled. Chiller returns to 100% demand limit control.	Automatic	Faulty signal generator, wiring error, or faulty EMM.
A200	Alarm	Cooler Pump Inter- lock Failure to Close at Start-Up	Interlock not closed within 5 minutes after unit is started	Cooler pump shut off. Chiller shutdown without going through pumpdown.	Manual	Failure of cooler pump, flow switch, or interlock.
A201	Alarm	Cooler Pump Inter- lock Opened During Normal Operation	Interlock opens during operation	Cooler pump shut off. Chiller shutdown without going through pumpdown.	Manual	Failure of cooler pump, flow switch, or interlock.
A202	Alarm	Cooler Pump Inter- lock Closed When Pump is Off	If configured for cooler pump control and inter- lock closes while cooler pump relay is off	Chiller is not allowed to start.	Manual	Failure of cooler pump relay or interlock, welded contacts.

Table 29 — Alarm and Alert Codes (cont)

ALARM/ ALERT CODE	ALARM OR ALERT	DESCRIPTION	WHY WAS THIS ALARM GENERATED?	ACTION TAKEN BY CONTROL	RES METHOD	PROBABLE CAUSE
T203	Alert	Loss of Communication with Slave Chiller	Master MBB loses communication with Slave MBB	Dual chiller control dis- abled. Chiller runs as a stand-alone machine.	Automatic	Wiring error, faulty wiring, failed Slave MBB module, power loss at Slave chiller, wrong slave address.
T204	Alert	Loss of Communica- tion with Master Chiller	Slave MBB loses com- munication with Master MBB	Dual chiller control dis- abled. Chiller runs as a stand-alone machine	Automatic	Wiring error, faulty wir- ing, failed Master MBB module, power loss at Master chiller.
T205	Alert	Master and Slave Chiller with Same Address	Master and slave chiller have the same CCN address (CCN.A)	Dual chiller routine dis- abled. Master/slave run as stand-alone chillers.	Automatic	CCN Address for both- chillers is the same. Must be different. Check CCN.A under the OPT2 sub-mode in configuration at both chillers.
T206	Alert	High Leaving Chilled Water Temperature	LWT read is greater than LCW Alert Limit, plus control point and Total capacity is 100% and LWT is greater than LWT reading one minute ago	Alert only. No action taken.	Automatic	Building load greater than unit capacity, low water/brine flow or compressor fault. Check for other alarms/alerts.
A207	Alarm	Cooler Freeze Protection	Cooler EWT or LWT is less than freeze*	Chiller shutdown with- out going through pumpdown. Cooler pump continues to run (if control enabled).	Automatic for first occurrence of day. Manual reset thereafter.	Faulty thermistor (T1/T2), low water flow.
A208	Alarm	Low Cooler Fluid Flow	Cooler EWT is less than LWT by 3° F (1.7° C) for 1 minute after a circuit is started	Chiller shutdown with- out going through pumpdown. Cooler pump shut off (if control enabled).	Manual	Faulty cooler pump, low water flow, plugged fluid strainer.
T950	Alert	Loss of Communication with WSM	No communications have been received by MBB within 5 minutes of last transmission	WSM forces removed. Chiller runs under own control.	Automatic	Failed module, wiring error, failed transformer, loose connection plug, wrong address.
T951	Alert	Loss of Communica- tion with FSM	No communications have been received by MBB within 5 minutes of last transmission	FSM forces removed. Chiller runs under own control.	Automatic	Failed module, wiring error, failed transformer, loose connection plug, wrong address.
-	LECEND	<u> </u>	<u> </u>	NOTE: The following tob	<u> </u>	

LEGEND

CCN — Carrier Comfort Network
CPCS — Compressor Protection Control System
CXB — Compressor Expansion Board
EMM — Energy Management Module
EXV — Electronic Expansion Valve
FSM — Flotronic™ System Manager
LCW — Leaving Chilled Water
LWT — Leaving Fluid Temperature
MBB — Main Base Board
MOP — Maximum Operating Pressure
WSM — Water System Manager

NOTE: The following table shows illegal configurations:

1	Unit type = 0.
2	4 Compressors in a circuit with 2 unloaders.
3	4 Compressors in a circuit with 1 unloader and hot gas bypass.
4	2 Unloaders and hot gas bypass in a circuit.
5	More than one compressor difference between circuits (e.g., 4 compressors in Ckt A, 2 in Ckt B).
6	Water cooled units with optional thermistors and configured for head pressure control.
7	Split system chillers with optional thermistors and configured for head pressure control.
8	Low temperature brine selected for air cooled chillers or split systems with air cooled head pressure control.
9	Water cooled unit configured for air cooled head pressure control.
10	Air cooled head pressure control with common fan staging and different head pressure control methods for each circuit (EXV controlled vs. set point controlled).
11	Lead/lag enabled, Master selected and Cooling Set Point select is LWT POT.
12	Water cooled or split units (units types 2, 3, 4) with more than one compressor on a circuit.
13	Condenser pump interlock enabled on air cooled unit.
14	Unit type changed.
15	Low pressure set points out of range.
16	Cooler fluid type is water and ice mode is enabled.

^{*}Freeze is defined as 34° F (1.1 C) for water. For brine fluids, freeze is CSP.1 -8° F (4.4 C) for single set point and lower of CSP.1 or CSP.2 -8° F (4.4 C) for dual set point configuration.

SERVICE

ELECTRIC SHOCK HAZARD.

Turn off all power to unit before servicing. The ENABLE/OFF/REMOTE CONTACT switch on control panel does *not* shut off control power; *use field disconnect*.

Electronic Components

CONTROL COMPONENTS — Unit uses an advanced electronic control system that normally does not require service. For details on controls refer to Operating Data section.

30GTN,R AND 30GUN,R 040-110, AND 230B-315B UNIT CONTROL BOX — When facing compressors, main control box is at left end of unit. All incoming power enters through main box. Control box contains power components and electronic controls.

Outer panels are hinged and latched for easy opening. Remove screws to remove inner panels. Outer panels can be held open for service and inspection by using door retainer on each panel. To use door retainers: remove bottom pin from door retainer assembly, swing retainer out horizontally, and engage pin in one of the retainer ears and the hinge assembly.

30GTN,R AND 30GUN,R 130-210, 230A-315A, AND 330A/B-420A/B UNIT CONTROL AND MAIN POWER BOXES — The main power box is on the cooler side of the unit, and the control box is on the compressor side. Outer panels are hinged and latched for easy opening. Remove screws to remove inner panels.

Compressors — If lead compressor on either refrigerant circuit becomes inoperative for any reason, circuit is locked off and cannot be operated due to features built into the electronic control system. *Do not attempt to bypass controls to force compressors to run*.

COMPRESSOR REMOVAL — Access to the oil pump end of the compressor is from the compressor side of the unit. Access to the motor end of the compressor is from the inside of the unit. All compressors can be removed from the compressor side of the unit.

IMPORTANT: All compressor mounting hardware and support brackets removed during servicing must be reinstalled prior to start-up.

Compressor(s)

Following the installation of the new compressor:

Tighten discharge valves to —

	COMPTEDED (D)
20 to 25 ft-lb (27 to 34 N-m)	06E250
80 to 90 ft-lb (109 to 122 N-m)	06E265,275,299
Tighten suction valves to —	
80 to 90 ft-lb (109 to 122 N-m)	06E250
90 to 120 ft-lb (122 to 163 N-m)	06E265,275,299
Tighten the following fittings to —	
120 inlb (13.5 N-m)	High-Pressure Switch

OIL CHARGE (Refer to Table 30) — All units are factory charged with oil. Acceptable oil level for each compressor is from $^{1}/_{8}$ to $^{3}/_{8}$ -in. of sight glass (see Fig. 35).

When additional oil or a complete charge is required, use only Carrier-approved compressor oil.

30GTN,R approved oils are as follows:

Petroleum Specialties, Inc. — Cryol 150 (factory oil charge)

Texaco, Inc. — Capella WF-32 Witco Chemical Co. — Suniso 3GS

30GUN,R approved polyolester (POE) oils are as follows:

- Mobil Artic EAL 68
- Castrol SW68
- ICI Emkarate RL68H
- Lubrizol 29168 (Texaco HFC Capella 68NA)
- CPI Solest 68

Table 30 — Oil Charge

COMPRESSOR	OIL REQUIRED				
COMPRESSOR	Pts	L			
06E250	14	6.6			
06E265	19	9.0			
06E275	19	9.0			
06E299	19	9.0			

Do not reuse drained oil or any oil that has been exposed to atmosphere.

Cooler — The cooler is easily accessible from the cooler side of the unit. The refrigerant feed components are accessible from the control box end of the unit.

COOLER REMOVAL — Cooler can be removed from the cooler side of the unit as follows:

A CAUTION

Open and tag all electrical disconnects before any work begins. Note that cooler is heavy and both fluid-side and refrigerant-side may be under pressure.

- 1. To ensure the refrigerant is in the condenser, follow this procedure:
 - a. Open the circuit breakers and close the discharge valves for the lag compressors in both circuits.

A CAUTION

Do not close the discharge valve of an operating compressor. Severe damage to the compressor can result.

- b. After the lag compressor discharge service valves have been closed, close the liquid line service valve for one circuit. Allow the lead compressor to pump down that circuit until it reaches approximately 10 to 15 psig (68.8 to 103.2 kPa).
- c. As soon as the system reaches that pressure, shut down the lead compressor by opening the compressor circuit breaker, then quickly close the discharge service valve for that compressor.
- d. Repeat the procedure for the other circuit.
- 2. Close the shutoff valves, if installed, in the cooler fluid lines. Remove the cooler fluid piping.
- 3. Cooler may be under pressure. Open the air vent at the top of the cooler, and open the drain on the bottom of the cooler (near the leaving fluid outlet) to drain the cooler. Both the drain and the air vent are located on the leaving fluid end of cooler. See Fig. 24. Remove the cooler waterside strainer.
- 4. Disconnect the conduit and cooler heater wires, if equipped. Remove all thermistors from the cooler, being sure to label all thermistors as they are removed. Thermistor T1 is a well-type thermistor, and thermistor T2 is immersed directly in the fluid. See Fig. 24.
- Remove the insulation on the refrigerant connection end of the cooler.
- Unbolt the suction flanges from the cooler head. Save the bolts.

- Remove the liquid lines by breaking the silver-soldered joints at the cooler liquid line nozzles.
- 8. On 30GTN,GTR and 30GUN,R 080-110 and 230B-315B units, remove the vertical support(s) under the condenser coil in front of the cooler. *Provide temporary support as needed*. Save all screws for reinstallation later.
- Remove the screws in the cooler feet. Slide the cooler slightly to the left to clear the refrigerant tubing. Save all screws.

Removing the cooler can be accomplished in one of 2 ways, depending on the jobsite. Either continue sliding the cooler toward the end of the unit opposite the tubing and carefully remove, or pivot the cooler and remove it from the cooler side of the unit.

REPLACING COOLER — To replace the cooler:

- 1. Insert new cooler carefully into place. Reattach the screws into the cooler feet (using saved screws).
 - On 30GTN,GTR and 30GUN,GUR080-110 and 230B-315B units, reattach the 2 vertical supports under the condenser coil in front of the cooler using screws saved.
- Replace the liquid lines and solder at the cooler liquid line nozzles.
- Rebolt the suction flanges onto the cooler head using bolts saved during removal. Use new gaskets for the suction line flanges. Use compressor oil to aid in gasket sealing and tighten the suction flange bolts to 70 to 90 ft-lb (94 to 122 N-m).
 - NOTE: The suction flange has a 4-bolt pattern. See Carrier specified parts for replacement part number, if necessary.
- 4. Using adhesive, reinstall the cooler insulation on the refrigerant connection end of the cooler.
- 5. Reinstall the thermistors. Refer to Thermistors section on page 59, and install as follows:
 - a. Apply pipe sealant to the ¹/₄-in. NPT threads on the replacement coupling for the fluid side, and install it in place of the original.

A CAUTION

Do not use the packing nut to tighten the coupling. Damage to the ferrules will result.

- Reinstall thermistor T1 well, and insert thermistor T1 into well.
- c. Install thermistor T2 (entering fluid temperature) so that it is not touching an internal refrigerant tube, but so that it is close enough to sense a freeze condition. The recommended distance is ¹/₈ in. (3.2 mm) from the cooler tube. Tighten the packing nut finger tight, and then tighten 1¹/₄ turns more using a back-up wrench.
- Install the cooler heater and conduit (if equipped), connecting the wires as shown in the unit wiring schematic located on the unit.
- Close the air vent at the top of the cooler, and close the drain on the bottom of the cooler near the leaving fluid outlet. Both the drain and the air vent are located on the leaving fluid end of the cooler. See Fig. 24.
- 8. Reconnect the cooler fluid piping and strainer, and open the shutoff valves (if installed). Purge the fluid of all air before starting unit.
- Open the discharge service valves, close the circuit breakers, and open the liquid line service valves for the compressors.

SERVICING THE COOLER — When cooler heads and partition plates are removed, tube sheets are exposed showing ends of tubes.

A CAUTION

Certain tubes in the 10HB coolers cannot be removed. Eight tubes in the bundle are secured inside the cooler to the baffles and *cannot be removed*. These tubes are marked by a dimple on the tube sheet. See Fig. 25. *If any of these tubes have developed a leak, plug the tube(s) as described under Tube Plugging section on page 55*.

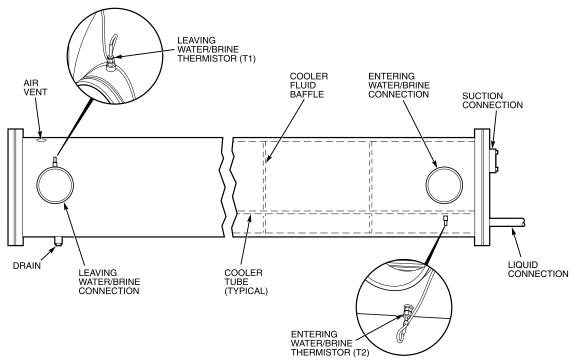
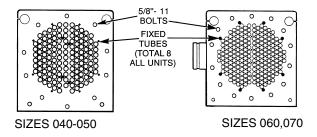
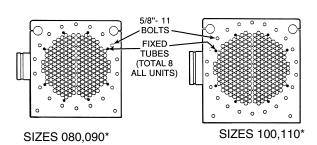
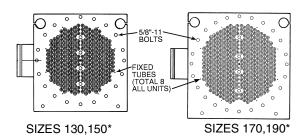





Fig. 24 — Cooler Thermistor Locations

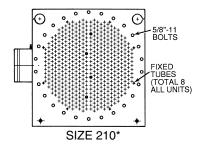


Fig. 25 — Typical Tube Sheets, Cover Off (Non-Removable Tubes)

<u>Tube Plugging</u> — A leaky tube can be plugged until retubing can be done. The number of tubes plugged determines how soon cooler *must* be retubed. Tubes plugged in the following locations will affect the performance of the unit: Any tube in the area, particularly the tube that thermistor T2 is adjacent to, will affect unit reliability and performance. Thermistor T2 is used in the freeze protection algorithm for the controller. If several tubes require plugging, check with your local Carrier representative to find out how number and location can affect unit capacity.

Figure 26 shows an Elliott tube plug and a cross-sectional view of a plug in place.

A CAUTION

Use extreme care when installing plugs to prevent damage to the tube sheet section between the holes.

Retubing (See Table 31) — When retubing is to be done, obtain service of qualified personnel experienced in boiler maintenance and repair. Most standard procedures can be followed when retubing the 10HB coolers. An 8% crush is recommended when rolling replacement tubes into the tubesheet. An 8% crush can be achieved by setting the torque on the gun at 48 to 50 in.-lb (5.4 to 5.6 N-m).

The following Elliott Co. tube rolling tools are required:

B3400 Expander Assembly

B3401 Cage

B3405 Mandrel

B3408 Rolls

Place one drop of Loctite No. 675 or equivalent on top of tube prior to rolling. This material is intended to "wick" into the area of the tube that is not rolled into the tube sheet, and prevent fluid from accumulating between the tube and the tube sheet.

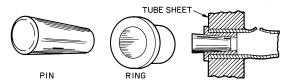


Fig. 26 — Elliott Tube Plug

Table 31 — Plugs

COMPONENTS FOR PLUGGING	PART NUMBER
For Tubes Brass Pin	853103-500*
Brass Ring	853002-570*
For Holes without Tubes Brass Pin	853103-1*
Brass Ring	853002-631*
Loctite	No. 675†
Locquic	"N"†

^{*}Order directly from: Elliott Tube Company, Dayton, Ohio. †Can be obtained locally.

Tube information follows:

	ш.	111111
• Tube sheet hole diameter	0.631	16.03
• Tube OD	0.625	16.03 15.87 14.76
• Tube ID after rolling	0.581	14.76
(includes expansion due	to	to 14.94
to clearance)	0.588	14.94

mm

NOTE: Tubes next to gasket webs must be flush with tube sheet (both ends).

Tightening Cooler Head Bolts

Gasket Preparation — When reassembling cooler heads, always use new gaskets. Gaskets are neoprene-based and are brushed with a light film of compressor oil. Do not soak gasket or gasket deterioration will result. Use new gaskets within 30 minutes to prevent deterioration. Reassemble cooler nozzle end or plain end cover of the cooler with the gaskets. Torque all cooler bolts to the following specification and sequence:

1. Install all bolts finger tight.

Bolt tightening sequence is outlined in Fig. 27. Follow the numbering or lettering sequence so that pressure is evenly applied to gasket.

^{*}And associated modular units (see Tables 1A and 1B).

- 3. Apply torque in one-third steps until required torque is reached. Load *all* bolts to each one-third step before proceeding to next one-third step.
- 4. No less than one hour later, retighten all bolts to required torque values.
- After refrigerant is restored to system, check for refrigerant leaks with soap solution or Halide device.
- 6. Replace cooler insulation.

Condenser Coils

COIL CLEANING — For standard aluminum, copper and pre-coated aluminum fin coils, clean the coils with a vacuum cleaner, fresh water, compressed air, or a bristle brush (not wire). Units installed in corrosive environments should have coil cleaning as part of a planned maintenance schedule. In this type of application, all accumulations of dirt should be cleaned off the coil.

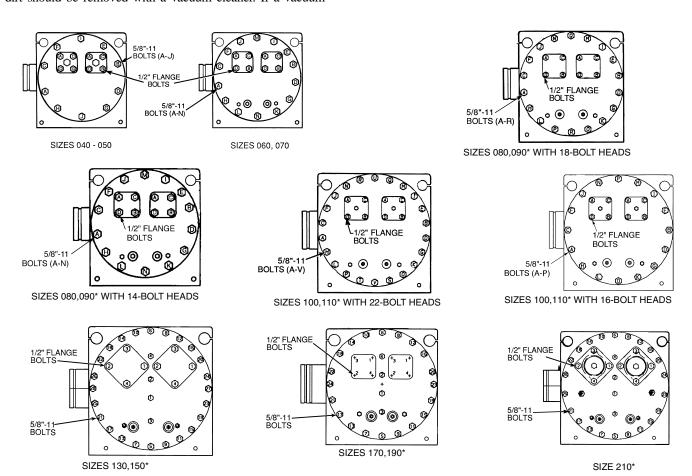
A CAUTION

Do not use high-pressure water or air to clean coils — fin damage may result.

CLEANING E-COATED COILS — Follow the outlined procedure below for proper care, cleaning and maintenance of E-coated aluminum or copper fin coils:

<u>Coil Maintenance and Cleaning Recommendations</u> — Routine cleaning of coil surfaces is essential to maintain proper operation of the unit. Elimination of contamination and removal of harmful residues will greatly increase the life of the coil and extend the life of the unit.

<u>Remove Surface Loaded Fibers</u> — Surface loaded fibers or dirt should be removed with a vacuum cleaner. If a vacuum


cleaner is not available, a soft brush may be used. In either case, the tool should be applied in the direction of the fins. Coil surfaces can be easily damaged (fin edges bent over) if the tool is applied across the fins.

NOTE: Use of a water stream, such as a garden hose, against a surface loaded coil will drive the fibers and dirt into the coil. This will make cleaning efforts more difficult. Surface loaded fibers must be completely removed prior to using low velocity clean water rinse.

<u>Periodic Clean Water Rinse</u> — A periodic clean water rinse is very beneficial for coils that are applied in coastal or industrial environments. However, it is very important that the water rinse is made with very low velocity water stream to avoid damaging the fin edges. Monthly cleaning as described below is recommended.

Routine Cleaning of Coil Surfaces — Monthly cleaning with *Enviro-Shield*TM Coil cleaner is essential to extend the life of coils. It is recommended that all coils, including standard aluminum, pre-coated, copper/copper or E-coated coils are cleaned with the *Enviro-Shield* Coil Cleaner as described below. Coil cleaning should be part of the units regularly scheduled maintenance procedures to ensure long life of the coil. Failure to clean the coils may result in reduced durability in the environment.

Enviro-Shield Coil Cleaner is non-flammable, hypoallergenic, non-bacterial, USDA accepted biodegradable and 100% ecologically safe agent that will not harm the coil or surrounding components such as electrical wiring, painted metal surfaces or insulation. Use of non-recommended coil cleaners is strongly discouraged since coil and unit durability could be affected.

^{*}And associated modular units.

Fig. 27 — Cooler Head Bolt Tightening Sequence (Typical Tube Sheet)

Enviro-ShieldTM Coil Cleaner Application Equipment

- 2¹/₂ Gallon Garden Sprayer
- Water Rinse with Low Velocity Spray Nozzle

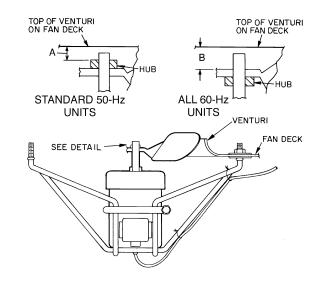
Enviro-Shield Coil Cleaner Application Instructions

- Although Enviro-Shield Coil cleaner is harmless to humans, animals, and marine life, proper eye protection such as safety glasses is recommended during mixing and application.
- Remove all surface loaded fibers and dirt with a vacuum cleaner as described above.
- Thoroughly wet finned surfaces with clean water and a low velocity garden hose being careful not to bend fins.
- Mix Enviro-Shield Coil Cleaner in a 2¹/₂ gallon garden sprayer according to the instructions included with the Enzyme Cleaner. The optimum solution temperature is 100 F.

NOTE: <u>DO NOT USE</u> water in excess of 130 F as the enzymatic activity will be destroyed.

- Thoroughly apply Enviro-Shield Coil cleaner solution to all coil surfaces including finned area, tube sheets and coil headers.
- Hold garden sprayer nozzle close to finned areas and apply cleaner with a vertical, up-and-down motion. Avoid spraying in horizontal pattern to minimize potential for fin damage.
- Ensure cleaner thoroughly penetrates deep into finned areas.
- Interior and exterior finned areas must be thoroughly cleaned.
- Finned surfaces should remain wet with cleaning solution for 10 minutes.
- Ensure surfaces are not allowed to dry before rinsing. Reapply cleaner as needed to ensure 10-minute saturation is achieved.
- Thoroughly rinse all surfaces with low velocity clean water using downward rinsing motion of water spray nozzle. Protect fins from damage from the spray nozzle.

A CAUTION


Harsh Chemical and Acid Cleaners — Harsh chemical, household bleach or acid cleaners should not be used to clean outdoor or indoors coils of any kind. These cleaners can be very difficult to rinse out of the coil and can accelerate corrosion at the fin/tube interface where dissimilar materials are in contact. If there is dirt below the surface of the coil, use the *Enviro-Shield* Coil Cleaner as described above

<u>High Velocity Water or Compressed Air</u> — High velocity water from a pressure washer, garden hose or compressed air <u>should never be used</u> to clean a coil. The force of the water or air jet will bend the fin edges and increase airside pressure drop. Reduced unit performance or nuisance unit shutdown may occur.

Condenser Fans — Each fan is supported by a formed wire mount bolted to fan deck and covered with a wire guard. The exposed end of fan motor shaft is protected from weather by grease. If fan motor must be removed for service or replacement, be sure to regrease fan shaft and reinstall fan guard. For proper performance, fan should be positioned as in Fig. 28A and 28B (standard and low-noise applications). Tighten setscrews to 15 ± 1 ft-lb $(20 \pm 1.3 \text{ N-m})$.

If the unit is equipped with the high-static fan option, the fan must be set from the top of the fan deck to the plastic ring or center of the fan to a distance of 2.13 in. \pm 0.12 in. (54 \pm 3 mm). This is different from standard fans, since there is no area available to measure from the top of the orifice ring to the fan hub itself. See Fig. 29.

IMPORTANT: Check for proper fan rotation (clockwise viewed from above). If necessary, switch any 2 power leads to reverse fan rotation.

		FAN TYPE
DIMENSION	Standard	Low Noise 60 Hz Only (Optional)
Α	0.50" (13 mm)	1.50" (38 mm)
В	0.88" (22 mm)	1.13" (29 mm)

NOTE: Fan rotation is clockwise as viewed from top of unit.

Fig. 28A — Condenser Fan Adjustment — Standard 50 and 60 Hz Units and 60 Hz Low Noise Fan Option Units

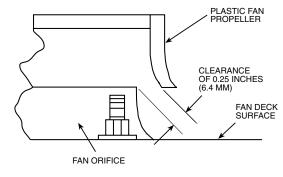
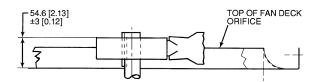



Fig. 28B — Condenser Fan Adjustment — 50 Hz Low Noise Fan Option Units

NOTE: Dimensions are in millimeters. Dimensions in $[\]$ are in inches.

Fig. 29 — Condenser Fan Adjustment, Units with High-Static Fan Operation

Refrigerant Feed Components — Each circuit has all necessary refrigerant controls.

ELECTRONIC EXPANSION VALVE (EXV) — A cutaway view of valve is shown in Fig. 30.

High-pressure liquid refrigerant enters valve through bottom. A series of calibrated slots have been machined in side of orifice assembly. As refrigerant passes through orifice, pressure drops and refrigerant changes to a 2-phase condition (liquid and vapor). To control refrigerant flow for different operating conditions, a sleeve moves up and down over orifice and modulates orifice size. A sleeve is moved by a linear stepper motor. Stepper motor moves in increments and is controlled directly by EXV module. As stepper motor rotates, motion is transferred into linear movement by lead screw. Through stepper motor and lead screw, 1500 discrete steps of motion are obtained. The large number of steps and long stroke results in very accurate control of refrigerant flow. The minimum position for operation is 120 steps.

The EXV module controls the valve. The lead compressor in each circuit has a thermistor located in the suction manifold after the compressor motor and a thermistor located in a well where the refrigerant enters the cooler. The thermistors measure the temperature of the superheated gas entering the compressor cylinders and the temperature of the refrigerant entering the cooler. The difference between the temperature of the superheated gas and the cooler suction temperature is the superheat. The EXV module controls the position of the electronic expansion valve stepper motor to maintain superheat set point.

The superheat leaving cooler is approximately 3° to 5° F (2° to 3° C), or less.

Because EXV status is communicated to the Main Base Board (MBB) and is controlled by the EXV modules (see Fig. 31), it is possible to track the valve position. By this means, head pressure is controlled and unit is protected against loss of charge and a faulty valve. During initial start-up, EXV is fully closed. After initialization period, valve position is tracked by the EXV module by constantly monitoring amount of valve movement.

The EXV is also used to limit cooler saturated suction temperature to 50 F (10 C). This makes it possible for the chiller to start at higher cooler fluid temperatures without overloading the compressor. This is commonly referred to as MOP (maximum operating pressure).

If it appears that EXV is not properly controlling circuit operation to maintain correct superheat, there are a number of checks that can be made using test functions and initialization features built into the microprocessor control. See Service Test section on page 29 to test EXVs.

NOTE: The EXV orifice is a screw-in type and may be removed for inspection and cleaning. Once the motor canister is removed the orifice can be removed by using the orifice removal tool (part no. TS429). A slot has been cut in the top of the orifice to facilitate removal. Turn orifice counterclockwise to remove. A large screwdriver may also be used.

When cleaning or reinstalling orifice assembly be careful not to damage orifice assembly seals. The bottom seal acts as a liquid shut-off, replacing a liquid line solenoid valve. If the bottom seal should become damaged it can be replaced. Remove the orifice. Remove the old seal. Using the orifice as a guide, add a small amount of O-ring grease, to the underside of the orifice. Be careful not to plug the vent holes. Carefully set the seal with the O-ring into the orifice. The O-ring grease will hold the seal in place. If the O-ring grease is not used, the seal O-ring will twist and bind when the orifice is screwed into the EXV base. Install the orifice and seal assembly. Remove the orifice to verify that the seal is properly positioned. Clean any O-ring grease from the bottom of the orifice. Reinstall the orifice and tighten to 100 in.-lb (11 N-m). Apply a small amount

of O-ring grease to the housing seal O-ring before installing the motor canister. Reinstall the motor canister assembly. Tighten the motor nut to 15 to 25 ft-lb (20 to 34 N-m).

Check EXV operation using test functions described in the Service Test section on page 29.

MOISTURE-LIQUID INDICATOR — Clear flow of liquid refrigerant indicates sufficient charge in system. Bubbles in the sight glass indicate undercharged system or presence of noncondensables. Moisture in system measured in parts per million (ppm), changes color of indicator:

Green — moisture is below 45 ppm; Yellow-green (chartreuse) — 45 to 130 ppm (caution); Yellow (wet) — above 130 ppm.

Change filter drier at first sign of moisture in system.

IMPORTANT: Unit must be in operation at least 12 hours before moisture indicator can give an accurate reading. With unit running, indicating element must be in contact with liquid refrigerant to give true reading.

FILTER DRIER — Whenever moisture-liquid indicator shows presence of moisture, replace filter drier(s). There is one filter drier on each circuit. Refer to Carrier Standard Service Techniques Manual, Chapter 1, Refrigerants, for details on servicing filter driers.

LIQUID LINE SOLENOID VALVE — All TXV units have a liquid line solenoid valve to prevent liquid refrigerant migration to low side of system during the off cycle.

LIQUID LINE SERVICE VALVE — This valve is located immediately ahead of filter drier, and has a ¹/₄-in. Schrader connection for field charging. In combination with compressor discharge service valve, each circuit can be pumped down into the high side for servicing.

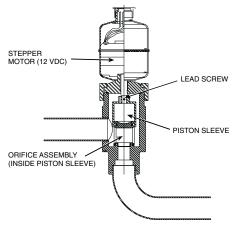
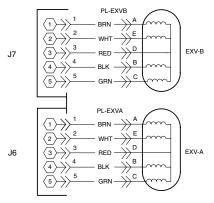



Fig. 30 — Electronic Expansion Valve (EXV)

ELECTRONIC EXPANSION VALVES (EXVs)

Fig. 31 — Printed Circuit Board Connector

Thermistors — Electronic control uses 4 to 10 thermistors to sense temperatures used to control the operation of chiller.

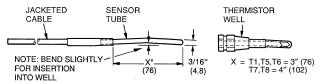
Thermistors T1-T9 vary in their temperature vs resistance and voltage drop performance. Thermistor T10 is a 10 k Ω input channel and has a different set of temperature vs resistance and voltage drop performance. Resistances at various temperatures are listed in Tables 32A-33B.

LOCATION — General locations of thermistor sensors are shown in Fig. 7-10. See Table 2 for pin connection points.

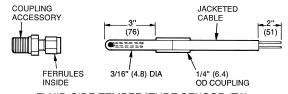
A CAUTION

Sensor T2 is installed directly in the fluid circuit. Relieve all pressure or drain fluid before removing.

REPLACING THERMISTOR T2


- Remove and discard original sensor and coupling. Do not disassemble new coupling. Install assembly as received. See Fig. 32.
- Apply pipe sealant to ¹/₄-in. NPT threads on replacement coupling, and install in place of original. Do not use the packing nut to tighten coupling. Damage to ferrules will result.
- 3. Thermistor T2 (entering fluid temperature) should not be touching an internal refrigerant tube, but should be close enough to sense a freeze condition. Recommended distance is ¹/₈ in. (3.2 mm) from cooler tube. Tighten packing nut finger tight to position ferrules, then tighten 1¹/₄ turns more using a back-up wrench. Ferrules are now attached to the sensor, which can be withdrawn from coupling for service.

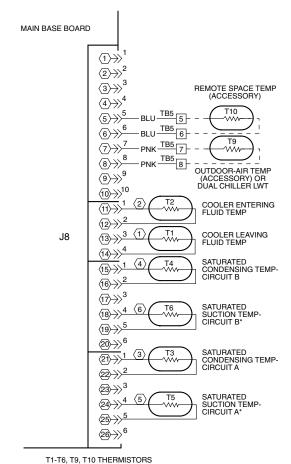
REPLACING THERMISTORS T1, T5, T6, T7, AND T8 — Add a small amount of thermal conductive grease to thermistor well. Thermistors are friction-fit thermistors, which must be slipped into wells located in the cooler leaving fluid nozzle for T1, in the cooler head for T5 and T6 (EXV units only), and in the compressor pump end for T7 and T8 (EXV units only).


THERMISTORS T3 AND T4 — These thermistors are located on header end of condenser coil. They are clamped on a return bend.

THERMISTOR/TEMPERATURE SENSOR CHECK — A high quality digital volt-ohmmeter is required to perform this check.

1. Connect the digital voltmeter across the appropriate thermistor terminals at the J8 terminal strip on the Main Base Board for thermistors T1-T6, T9, T10; or the J5 terminal strip on the EXV Board for thermistors T7 and T8 (see Fig. 33). Using the voltage reading obtained, read the sensor temperature from

FLUID-SIDE TEMPERATURE SENSOR (T1) AND REFRIGERANT TEMPERATURE SENSOR (T5, T6, T7, T8)


FLUID-SIDE TEMPERATURE SENSOR (T2)

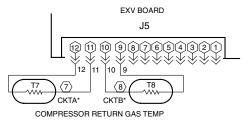

NOTE: Dimensions in () are in millimeters.

Fig. 32 — Thermistors (Temperature Sensors)

Tables 32A-33B. To check thermistor accuracy, measure temperature at probe location with an accurate thermocouple-type temperature measuring instrument. Insulate thermocouple to avoid ambient temperatures from influencing reading. Temperature measured by thermocouple and temperature determined from thermistor voltage reading should be close, $\pm~5^{\circ}$ F (3° C) if care was taken in applying thermocouple and taking readings.

2. If a more accurate check is required, unit must be shut down and thermistor removed and checked at a known temperature (freezing point or boiling point of water) using either voltage drop measured across thermistor at the J8 or J5 terminals, by determining the resistance with chiller shut down and thermistor disconnected from J8 or J5. Compare the values determined with the value read by the control in the Temperatures mode using the Marquee display.

T7, T8 THERMISTORS

LEGEND

LWT — Leaving Fluid Temperature

*Not used on units with TXV (Thermostatic Expansion Valve) FIOP (Factory-Installed Option).

Fig. 33 — Thermistor Connections to J5 and J8
Processor Boards

Table 32A — 5K Thermistor Temperature (F) vs Resistance/Voltage VOLTAGE DROP A FOR THERMISTORS T1, T2, T7-T9 VOLTAGE DROP B FOR THERMISTORS T3-T6

TEMP (F)	VOLTAGE DROP A (V)	VOLTAGE DROP B (V)	RESISTANCE (Ohms)	TEMP (F)	VOLTAGE DROP A (V)	VOLTAGE DROP B (V)	RESISTANCE (Ohms)	TEMP (F)	VOLTAGE DROP A (V)	VOLTAGE DROP B (V)	RESISTANCE (Ohms)
-25	3.699	4.538	98,010	59	1.982	2.200	7,686	143	0.511	0.525	1,190
-24	3.689	4.523	94,707	60	1.956	2.168	7,665	144	0.502	0.515	1,165
-23 -22	3.679 3.668	4.508 4.493	91,522 88,449	61 62	1.930 1.905	2.137 2.105	7,468 7,277	145 146	0.494 0.485	0.506 0.497	1,141 1,118
-21	3.658	4.476	85,486	63	1.879	2.074	7,091	147	0.477	0.489	1,095
-20	3.647	4.460	82,627	64	1.854	2.043	6,911	148	0.469	0.480	1,072
-19	3.636	4.444	79,871	65 66	1.829 1.804	2.013 1.982	6,735 6,564	149 150	0.461 0.453	0.471 0.463	1,050 1,029
–18 –17	3.624 3.613	4.427 4.409	77,212 74,648	67	1.779	1.952	6,399	151	0.433	0.455	1,029
-16	3.601	4.391	72,175	68	1.754	1.923	6,238	152	0.438	0.447	986
-15	3.588	4.373	69,790	69	1.729	1.893	6,081	153	0.430	0.449	965
–14 –13	3.576 3.563	4.354 4.335	67,490 65,272	70 71	1.705 1.681	1.864 1.835	5,929 5,781	154 155	0.423 0.416	0.432 0.424	945 925
-13 -12	3.550	4.316	63,133	72	1.656	1.806	5,637	156	0.408	0.417	906
-11	3.536	4.296	61,070	73	1.632	1.778	5,497	157	0.402	0.410	887
–10 –9	3.523 3.509	4.276 4.255	59,081 57,162	74 75	1.609 1.585	1.749 1.722	5,361 5,229	158 159	0.395 0.388	0.403 0.396	868 850
-9 -8	3.494	4.233	55,311	76	1.562	1.694	5,101	160	0.381	0.389	832
-7	3.480	4.213	53,526	77	1.538	1.667	4,976	161	0.375	0.382	815
-6	3.465	4.191	51,804	78 79	1.516 1.493	1.640 1.613	4,855 4,737	162 163	0.369 0.362	0.376 0.369	798 782
–5 –4	3.450 3.434	4.169 4.146	50,143 48,541	80	1.493	1.587	4,622	164	0.356	0.363	765
-3	3.418	4.123	46,996	81	1.448	1.561	4,511	165	0.350	0.357	750
-2	3.402	4.100	45,505	82 83	1.426 1.404	1.535	4,403 4,298	166 167	0.344 0.339	0.351 0.345	734 719
-1 0	3.386 3.369	4.076 4.052	44,066 42,679	84	1.382	1.510 1.485	4,196	167 168	0.333	0.339	719
1	3.352	4.027	41,339	85	1.361	1.460	4,096	169	0.327	0.333	690
2 3	3.335 3.317	4.002 3.976	40,047 38,800	86 87	1.340 1.319	1.436 1.412	4,000 3,906	170 171	0.322 0.317	0.327 0.322	677 663
3 4	3.299	3.951	36,600 37,596	88	1.298	1.388	3,814	172	0.317	0.322	650
5	3.281	3.924	36,435	89	1.278	1.365	3.726	173	0.306	0.311	638
6 7	3.262 3.243	3.898 3.871	35,313	90 91	1.257 1.237	1.342 1.319	3,640 3,556	174 175	0.301 0.296	0.306 0.301	626 614
8	3.243	3.844	34,231 33,185	92	1.217	1.296	3,474	176	0.291	0.295	602
9	3.205	3.816	32,176	93	1.198	1.274	3.395	177	0.286	0.291	591
10 11	3.185 3.165	3.788 3.760	31,202	94 95	1.179 1.160	1.253 1.231	3,318 3,243	178 179	0.282 0.277	0.286 0.281	581 570
12	3.145	3.731	30,260 29,351	96	1.141	1.210	3,170	180	0.277	0.276	561
13	3.124	3.702	28,473	97	1.122	1.189	3,099	181	0.268	0.272	551
14	3.103 3.082	3.673 3.643	27,624 26,804	98 99	1.104 1.086	1.169 1.148	3,031 2,964	182 183	0.264 0.259	0.267 0.263	542 533
15 16	3.062	3.613	26,004	100	1.068	1.128	2,898	184	0.255	0.258	524
17	3.038	3.583	25,245	101	1.051	1.109	2,835	185	0.251	0.254	516
18	3.016 2.994	3.552 3.522	24,505 23,789	102 103	1.033 1.016	1.089 1.070	2,773 2,713	186 187	0.247 0.243	0.250 0.246	508 501
19 20	2.994	3.490	23,769	103	0.999	1.051	2,655	188	0.239	0.240	494
21	2.949	3.459	22,427	105	0.983	1.033	2,597	189	0.235	0.238	487
22	2.926 2.903	3.428 3.396	21,779 21,153	106 107	0.966 0.950	1.015 0.997	2,542 2,488	190 191	0.231 0.228	0.234 0.230	480 473
23 24	2.879	3.364	20,547	108	0.934	0.980	2,436	192	0.224	0.226	467
25	2.856	3.331	19,960	109	0.918	0.963	2,385	193	0.220	0.223	461
26	2.832	3.299 3.266	19,393 18.843	110 111	0.903 0.888	0.946 0.929	2,335 2,286	194 195	0.217 0.213	0.219 0.216	456 450
27 28	2.808 2.784	3.234	18,311	112	0.873	0.923	2,239	196	0.210	0.210	445
29	2.759	3.201	17,796	113	0.858	0.896	2,192	197	0.206	0.209	439
30 31	2.735	3.168 3.134	17,297 16,814	114 115	0.843 0.829	0.881 0.865	2,147 2,103	198 199	0.203 0.200	0.205 0.202	434 429
31	2.710 2.685	3.134	16.346	116	0.815	0.850	2,103 2,060 2,018	200	0.197	0.199	424
33	2.660	3.068	15,892	117	0.801	0.835	2,018	201	0.194	0.196	419
34 35	2.634 2.609	3.034 3.000	15,453 15,027	118 119	0.787 0.774	0.820 0.805	1,977 1,937	202 203	0.191 0.188	0.192 0.189	415 410
36	2.583	2.966	14,614	120	0.761	0.791	1.898	204	0.185	0.186	405
37	2.558	2.933	14,214	121	0.748	0.777	1.860	205	0.182	0.183	401
38 39	2.532 2.506	2.899 2.865	13,826 13,449	122 123	0.735 0.723	0.763 0.750	1,822 1,786	206 207	0.179 0.176	0.181 0.178	396 391
40	2.480	2.831	13,084	124	0.710	0.736	1.750	208	0.173	0.175	386
41	2.454	2.797	12,730	125 126	0.698	0.723 0.710	1,715 1,680	209 210	0.171	0.172	382 377
42 43	2.428 2.402	2.764 2.730	12,387 12,053	126 127	0.686 0.674	0.710	1.647	210 211	0.168 0.165	0.169 0.167	377 372
44	2.376	2.696	11,730	128	0.663	0.685	1.614	212	0.163	0.164	367
45 46	2.349	2.662	11,416	129 130	0.651 0.640	0.673 0.661	1,582 1,550	213 214	0.160 0.158	0.162 0.159	361 356
46 47	2.323 2.296	2.628 2.594	11,112 10,816	130	0.640	0.650	1.519	215	0.155	0.157	350
48	2.270	2.561	10,529	132	0.618	0.638	1.489	216	0.153	0.154	344
49 50	2.244	2.527	10,250	133 134	0.608 0.597	0.627 0.616	1,459 1,430	217 218	0.151 0.148	0.152 0.150	338 332
50 51	2.217 2.191	2.494 2.461	9,979 9,717	134 135	0.597 0.587	0.616	1.401	218 219	0.148 0.146	0.150	332
52	2.165	2.427	9,461	136	0.577	0.594	1.373	220	0.144	0.145	318
53 54	2.138	2.395	9,213	137 138	0.567 0.557	0.584 0.573	1,345	221 222	0.142 0.140	0.143 0.141	311 304
54 55	2.112 2.086	2.362 2.329	8,973 8,739	138	0.548	0.563	1,318 1,291	223	0.140	0.141	297
56	2.060	2.296	8,511	140	0.538	0.553	1.265	224	0.135	0.136	289
57 58	2.034 2.008	2.264 2.232	8,291 8,076	141 142	0.529 0.520	0.543 0.534	1,240 1,214	225	0.133	0.134	282
- 30	۵.000	۲.۲ ۷۲	0,070	172	0.020	∪.∪∪ ⊤	1, ∠1-7				

Table 32B — 5K Thermistor Temperature (C) vs Resistance/Voltage (cont)
VOLTAGE DROP A FOR THERMISTORS T1, T2, T7-T9
VOLTAGE DROP B FOR THERMISTORS T3-T6

TEMP (C)	VOLTAGE DROP A (V)	VOLTAGE DROP B (V)	RESISTANCE (Ohms)	TEMP (C)	VOLTAGE DROP A (V)	VOLTAGE DROP B (V)	RESISTANCE (Ohms)	TEMP (C)	VOLTAGE DROP A (V)	VOLTAGE DROP B (V)	RESISTANCE (Ohms)
-32	3.705	4.547	100,260	15	1.982	2.200	7,855	62	0.506	0.519	1,158
-31	3.687	4.520	94,165	16	1.935	2.143	7,499	63	0.490	0.502	1,118
-30	3.668	4.493	88,480	17	1.889	2.087	7,161	64	0.475	0.487	1,079
-29	3.649	4.464	83,170	18	1.844	2.031	6,840 6,536	65	0.461	0.471	1,041
-28	3.629	4.433	78,125	19	1.799	1.976	6,536	66	0.447	0.457	1,006
-27	3.608	4.402	73,580	20	1.754	1.923	6,246	67	0.433	0.443	971
-26	3.586	4.369	69,250	21	1.710	1.870	5,971	68	0.420	0.429	938
-25	3.563	4.335	65,205	22	1.666	1.817	5,710	69	0.407	0.415	906
-24	3.539	4.300	65,205 61,420 57,875	23	1.623	1.766	5,461 5,225 5,000	70	0.395	0.403	876
-23	3.514	4.264	57,875	24	1.580	1.716	5,225	71	0.383	0.390	836
-22	3.489	4.226	1 54.555	25	1.538	1.667	5,000	72	0.371	0.378	805
-21	3.462	4.187	51,450	26	1.497	1.619	4,786	73	0.360	0.367	775
-20	3.434	4.146	48,536	27	1.457	1.571	4,583	74	0.349	0.355	747
-19	3.406	4.104	45,807	28	1.417	1.525	4,389	75	0.339	0.345	719
-18	3.376	4.061	43,247	29	1.378	1.480	4,204 4,028	76	0.329	0.334 0.324	693
-17	3.345	4.017	40,845	30	1.340 1.302	1.436	4,028 3,861	77 78	0.319	0.324	669
-16	3.313	3.971	38,592	31 32	1.302	1.393 1.351	3,701	78 79	0.309 0.300	0.314 0.305	645 623
-15	3.281	3.924	38,476	32 33	1.205	1.351	3,701	79 80	0.300	0.305	602
-14	3.247	3.876 3.827	34,489 32,621	33 34	1.194	1.270	3,549 3,404	81	0.291	0.295	583
–13 –12	3.212 3.177	3.827	32,621	34 35	1.194	1.270	3,404 3,266	82	0.263	0.267	564
-12 -11	3.177	3.777 3.725	29,216	36	1.126	1.193	3,200	83	0.274	0.276	547
-11 -10	3.140	3.673	27,633	37	1.093	1.156	3,104	84	0.258	0.262	531
-10 -9	3.065	3.619	26,202	38	1.061	1.120	3,008 2,888	85	0.251	0.254	516
-9 -8	3.025	3.564	24,827	39	1.030	1.085	2,773	86	0.244	0.247	502
_0 _7	2.985	3.509	23,532	40	0.999	1.051	2,663	87	0.237	0.239	489
	2.945	3.453	22,313	41	0.969	1.019	2,559	88	0.230	0.239 0.232	477
– 5	2.903	3.396	21,163	42	0.940	0.987	2,663 2,559 2,459	89	0.223	0.226	466
-4	2.860	3.338	20,079	43	0.912	0.956	2.363	90	0.217	0.219	456
– 3	2.817	3.279	19.058	44	0.885	0.926	2,272	91	0.211	0.213	446
– 2	2.774	3.221	19,058 18,094	45	0.858	0.896	2.184	92	0.204	0.207	436
-1	2.730	3.161	17,184	46	0.832	0.868	2,101	93	0.199	0.201	427
Ó	2.685	3.101	16.325	47	0.807	0.841	2,021	94	0.193	0.195	419
1	2.639	3.041	15,515	48	0.782	0.814	1,944	95	0.188	0.189	410
2	2.593	2.980	14,749	49	0.758	0.788	1,871	96	0.182	0.184	402
3	2.547	2.919	14,026	50	0.735	0.763	1,801	97	0.177	0.179	393
4	2.500	2.858	13,342 12,696	51	0.713	0.739	1,734	98	0.172	0.174	385
5	2.454	2.797	12,696	52	0.691	0.716	1,670	99	0.168	0.169	376
6	2.407	2.737	12,085	53	0.669	0.693	1,609	100	0.163	0.164	367
7	2.360	2.675	11,506	54	0.649	0.671	1,550	101	0.158	0.160	357
8	2.312	2.615	10,959	55	0.629	0.650	1,493 1,439	102	0.154	0.155	346
. 9	2.265	2.554	10,441	56	0.610	0.629	1,439	103	0.150	0.151	335
10	2.217	2.494	9,949	57	0.591	0.609	1,387 1,337	104	0.146	0.147	324
11	2.170	2.434	9,485	58	0.573	0.590	1,337	105	0.142	0.143	312
12	2.123	2.375	9,044	59	0.555	0.571	1,290	106	0.138	0.139	299
13	2.076	2.316	8,627	60	0.538	0.553	1,244	107	0.134	0.135	285
14	2.029	2.258	8,231	61	0.522	0.536	1,200				

Table 33A — 10K Thermistor Temperatures (°F) vs Resistance/Voltage Drop (For Thermistor T10)

TEMP (F)	VOLTAGE DROP (V)	RESISTANCE (Ohms)	TEMP (F)	VOLTAGE DROP (V)	RESISTANCE (Ohms)	TEMP (F)	VOLTAGE DROP (V)	RESISTANCE (Ohms)
-25 -24	4.758	196,453	61 62	2.994	14,925	147 148	0.890	2,166 2,124
-23	4.750 4.741	189,692 183,300	63	2.963 2.932	14,549 14,180	149	0.876 0.862	2,083
–22 –21	4.733 4.724	177,000 171.079	64 65	2.901 2.870	13,824 13,478	150 151	0.848 0.835	2,043 2,003
-20	4.715	165,238	66	2.839	13,139	152	0.821	1,966
–19 –18	4.705 4.696	159,717 154,344	67 68	2.808 2.777	12,814 12,493	153 154	0.808 0.795	1,928 1,891
−17 −16	4.686 4.676	149,194 144,250	69 70	2.746 2.715	12,187 11,884	155 156	0.782 0.770	1,855 1,820
-15	4.665	139,443	71	2.684	11,593	157	0.758	1,786
–14 –13	4.655 4.644	134,891 130,402	72 73	2.653 2.622	11,308 11,031	158 159	0.745 0.733	1,752 1,719
-12	4.633	126,183	74	2.592	10,764	160	0.722	1,687
–11 –10	4.621 4.609	122,018 118,076	75 76	2.561 2.530	10,501 10,249	161 162	0.710 0.699	1,656 1,625
-9 -8	4.597 4.585	114,236 110,549	77 78	2.500 2.470	10,000 9,762	163 164	0.687 0.676	1,594 1,565
-7	4.572	107,006	79	2.439	9,526	165	0.666	1,536
–6 –5	4.560 4.546	103,558 100,287	80 81	2.409 2.379	9,300 9,078	166 167	0.655 0.645	1,508 1,480
-4 -3	4.533	97,060	82	2.349	8,862	168	0.634	1,453
-3 -2	4.519 4.505	94,020 91,019	83 84	2.319 2.290	8,653 8,448	169 170	0.624 0.614	1,426 1,400
–1 0	4.490 4.476	88,171 85,396	85 86	2.260 2.231	8,251 8,056	171 172	0.604 0.595	1,375 1,350
1	4.461	82,729	87	2.202	7,869	173	0.585	1,326
2 3	4.445 4.429	80,162 77,662	88 89	2.173 2.144	7,685 7,507	174 175	0.576 0.567	1,302 1,278
3 4 5	4.413 4.397	75,286 72,940	90 91	2.115 2.087	7,333 7,165	176 177	0.558 0.549	1,255 1,233
6	4.380	70,727	92	2.059	6,999	178	0.540	1,211
7 8	4.363 4.346	68,542 66,465	93 94	2.030 2.003	6,838 6,683	179 180	0.532 0.523	1,190 1,169
9	4.328	64,439	95	1.975	6,530	181	0.515	1,148
10 11	4.310 4.292	62,491 60,612	96 97	1.948 1.921	6,383 6,238	182 183	0.507 0.499	1,128 1,108
12 13	4.273 4.254	58,781 57,039	98 99	1.894 1.867	6,098 5,961	184 185	0.491 0.483	1,089 1,070
14	4.235	55,319	100	1.841	5,827	186	0.476	1,052
15 16	4.215 4.195	53,693 52,086	101 102	1.815 1.789	5,698 5,571	187 188	0.468 0.461	1,033 1,016
17	4.174	50,557	103 104	1.763	5,449	189 190	0.454	998 981
18 19	4.153 4.132	49,065 47,627	105	1.738 1.713	5,327 5,210	191	0.447 0.440	964
20 21	4.111 4.089	46,240 44,888	106 107	1.688 1.663	5,095 4,984	192 193	0.433 0.426	947 931
22	4.067	43,598	108	1.639	4,876	194	0.419	915
23 24	4.044 4.021	42,324 41,118	109 110	1.615 1.591	4,769 4,666	195 196	0.413 0.407	900 885
25 26	3.998 3.975	39,926 38,790	111 112	1.567 1.544	4,564 4,467	197 198	0.400 0.394	870 855
27	3.951	37,681	113	1.521	4,370	199	0.388	841
28 29	3.927 3.903	36,610 35,577	114 115	1.498 1.475	4,277 4.185	200 201	0.382 0.376	827 814
30	3.878	34,569	116	1.453	4,096	202	0.370	800
31 32	3.853 3.828	33,606 32,654	11 <i>7</i> 118	1.431 1.409	4,008 3,923	203 204	0.365 0.359	787 774
33 34	3.802 3.776	31,752 30,860	119 120	1.387 1.366	3,840 3,759	205 206	0.354 0.349	762 749
35 36	3.750	30,009	121	1.345	3.681	207	0.343	737 725
36 37 38	3.723 3.697	29,177 28,373 27,597	122 123	1.324 1.304	3,603 3,529 3,455	208 209	0.338 0.333 0.328	714
38 39	3.670 3.654	27,597	124 125	1.284 1.264	3,455	210 211	0.328 0.323	702 691
40	3.615	26,838 26,113	126	1.244	3,383 3,313	212	0.318	680
41 42	3.587 3.559	25,396 24,715	127 128	1.225 1.206	3,244 3,178	213 214	0.314 0.309	670 659
43 44	3.531 3.503	24,042 23,399	129 130	1.187 1.168	3,112 3,049	215 216	0.305 0.300	649 639
45	3.474	22,770 22,161	131	1.150	2,986 2,926	217	0.296	629
46 47	3.445 3.416	22,161 21.573	132 133	1.132 1.114	2,926 2.866	218 219	0.292 0.288	620 610
48 49	3.387 3.357	21,573 20,998 20,447	134 135	1.096 1.079	2,866 2,809	220 221	0.284	601 592
50	3.328	19,903	136	1.062	2,752 2,697	222	0.279 0.275	583
51 52	3.298 3.268	19,386 18,874	137 138	1.045 1.028	2,643 2,590	223 224	0.272 0.268	574 566
53 54	3.238	18,384	139	1.012	2,539 2,488	225	0.264	557
54 55	3.208 3.178	17,904 17,441	140 141	0.996 0.980	2,488 2,439			
55 56 57	3.147	16,991 16,552	142 143	0.965 0.949	2,391 2,343			
57 58	3.117 3.086	16,131	144	0.934	2,297			
59 60	3.056 3.025	15,714 15,317	145 146	0.919 0.905	2,253 2,209			
	0.023	10,017	140	0.303	۵,۷05			

Table 33B — 10K Thermistor Temperatures (°C) vs Resistance/Voltage Drop (For Thermistor T10)

TEMP (C)	VOLTAGE DROP (V)	RESISTANCE (Ohms)	TEMP (C)	VOLTAGE DROP (V)	RESISTANCE (Ohms)	TEMP (C)	VOLTAGE DROP (V)	RESISTANCE (Ohms)
-32	4.762	200,510	15	3.056	15.714	62	0.940	2,315
-31	4.748	188,340	16	3.000	15,000	63	0.913	2,235
-30	4.733	177,000	17	2.944	14,323	64	0.887	2,157
-29	4.716	166,342	18	2.889	13,681	65	0.862	2,083
-28	4.700	156.404	19	2.833	13.071	66	0.837	2,011
<u>-27</u>	4.682	147,134	20	2.777	12,493	67	0.813	1,943
-26	4.663	138,482	21	2.721	11.942	68	0.790	1,876
–25	4.644	130,402	22	2.666	11,418	69	0.767	1,813
-24	4.624	122,807	23	2.610	10,921	70	0.745	1,752
-23	4.602	115,710	24	2.555	10,449	71	0.724	1,693
-22	4.580	109,075	25	2.500	10,000	72	0.703	1,637
-21	4.557	102,868	26	2.445	9,571	73	0.683	1,582
-20	4.533	97,060	27	2.391	9.164	74	0.663	1,530
-19	4.508	91,588	28	2.337	8,776	75	0.645	1,480
-18	4.482	86,463	29	2.284	8,407	76	0.626	1,431
-17	4.455	81,662	30	2.231	8,056	77	0.608	1,385
-16	4.426	77.162	31	2.178	7.720	78	0.591	1.340
-15	4.397	72,940	32	2.127	7,401	79	0.574	1,297
-14	4.367	68,957	33	2.075	7.096	80	0.558	1,255
-13	4.335	65,219	34	2.025	6,806	81	0.542	1,215
-12	4.303	61,711	35	1.975	6,530	82	0.527	1,177
-11	4.269	58,415	36	1.926	6,266	83	0.512	1,140
-10	4.235	55,319	37	1.878	6,014	84	0.497	1,104
–9	4.199	52,392	38	1.830	5,774	85	0.483	1,070
-8 -7	4.162	49,640	39	1.784	5,546	86	0.470	1,037
	4.124	47,052	40	1.738	5,327	87	0.457	1,005
-6	4.085	44,617	41	1.692	5,117	88	0.444	974
– 5	4.044	42,324	42	1.648	4,918	89	0.431	944
-4	4.003	40,153	43	1.605	4,727	90	0.419	915
-3 -2 -1	3.961	38,109	44	1.562	4,544	91	0.408	889
-2	3.917	36,182	45	1.521	4,370	92	0.396	861
	3.873	34,367	46	1.480	4,203	93	0.386	836
Q	3.828	32,654	47	1.439	4,042	94	0.375	811
1	3.781	31,030	48	1.400	3,889	95	0.365	787
2 3	3.734	29,498	49	1.362	3,743	96	0.355	764
3	3.686	28,052	50	1.324	3,603	97	0.345	742
4 5	3.637	26,686	51	1.288	3,469	98	0.336	721
5	3.587	25,396	52	1.252	3,340	99	0.327	700
<u>6</u>	3,537	24,171	53	1.217	3,217	100	0.318	680
7	3.485	23,013	54	1.183	3,099	101	0.310	661
8	3.433	21,918	55	1.150	2,986	102	0.302	643
9	3.381	20,883	56	1.117	2,878	103	0.294	626
10	3.328	19,903	57	1.086	2,774	104	0.287	609
11	3.274	18,972	58	1.055	2,675	105	0.279	592
12	3.220	18,090	59	1.025	2,579	106	0.272	576
13	3.165	17,255	60	0.996	2,488	107	0.265	561
14	3.111	16,474	61	0.968	2,400			

Safety Devices — Chillers contain many safety devices and protection logic built into electronic control. Following is a brief summary of major safeties.

COMPRESSOR PROTECTION

<u>Circuit Breaker</u> — One manual-reset, calibrated-trip magnetic circuit breaker for each compressor protects against overcurrent. Do not bypass or increase size of a breaker to correct problems. Determine cause for trouble and correct before resetting breaker. Circuit breaker must-trip amps (MTA) are listed on individual circuit breakers, and on unit label diagrams.

30GTN,R and 30GUN,R070 (50 Hz), 080-110 and 230B-315B Compressor Protection Board (CPCS) — The CPCS is used to control and protect compressors and crankcase heaters. Board provides following features:

- compressor contactor control
- crankcase heater control
- ground current protection
- status communication to processor board
- high-pressure protection

One large relay is located on CPCS that controls crankcase heater and compressor contactor. In addition, this relay provides a set of contacts that the microprocessor monitors to determine operating status of compressor. If the MBB determines that compressor is not operating properly through signal contacts, control locks compressor off.

The CPCS contains logic that can detect if current-toground of any winding exceeds 2.5 amps; if so, compressor shuts down.

A high-pressure switch with a trip pressure of 426 ± 7 psig $(2936 \pm 48$ kPa) is mounted on each compressor; switch setting is shown in Table 34. Switch is wired in series with the CPCS. If switch opens, CPCS relay opens, processor detects it through signal contacts, and compressor locks off. A loss-of-charge switch is also wired in series with the high-pressure switch and CPCS.

If any of these switches opens during operation, the compressor stops and the failure is detected by the MBB when signal contacts open. If lead compressor in either circuit is shut down by high-pressure switch, ground current protector, loss of charge switch, or oil pressure switch, all compressors in the circuit are locked off.

30GTN,R and 30GUN,R 130-210, 230A-315A and 330A/B-420A/B — A control relay in conjunction with a ground fault module replaces the function of the CPCS (above). To reset, press the push-button switch (near the Marquee display).

Table 34 — Pressure Switch Settings, psig (kPa)

SWITCH	CUTOUT	CUT-IN
High Pressure 30GTN,R Units	426 ± 7 (2936 ± 48)	320 ± 20 (2205 ± 138)
High Pressure 30GUN,R Units	280 ± 10 (1830 ± 69)	180 ± 20 (1240 ± 138)
Loss-of-Charge	7 (48.2)	22 (151.6)

LOW OIL PRESSURE PROTECTION — Lead compressor in each circuit is equipped with a switch to detect low oil pressure. Switch is connected directly to processor board. Switch is set to open at approximately 5 psig (35 kPa) and to close at 9 psig (62 kPa) maximum. If switch opens when compressor is running, CR or processor board stops all compressors in circuit. During start-up, switch is bypassed for 2 minutes.

CRANKCASE HEATERS — Each compressor has a 180-w crankcase heater to prevent absorption of liquid refrigerant by oil in crankcase when compressor is not running. Heater power

source is auxiliary control power, independent of main unit power. This assures compressor protection even when main unit power disconnect switch is off.

IMPORTANT: Never open any switch or disconnect that deenergizes crankcase heaters unless unit is being serviced or is to be shut down for a prolonged period. After a prolonged shutdown or service, energize crankcase heaters for 24 hours before starting unit.

COOLER PROTECTION

<u>Freeze Protection</u> — Cooler can be wrapped with heater cables as shown in Fig. 34, which are wired through an ambient temperature switch set at 36 F (2 C). Entire cooler is covered with closed-cell insulation applied over heater cables. Heaters plus insulation protect cooler against low ambient temperature freeze-up to 0° F (-18 C).

IMPORTANT: If unit is installed in an area where ambient temperatures fall below 32 F (0° C), it is recommended that inhibited ethylene glycol or other suitable corrosion-inhibitive antifreeze solution be used in chilled-liquid circuit.

Low Fluid Temperature — Main Base Board is programmed to shut chiller down if leaving fluid temperature drops below 34 F (1.1 C) for water or more than 8° F (4.4° C) below set point for brine units. The unit will shut down without a pumpout. When fluid temperature rises to 6° F (3.3° C) above leaving fluid set point, safety resets and chiller restarts. Reset is automatic as long as this is the first occurrence.

Loss of Fluid Flow Protection — Main Base Board contains internal logic that protects cooler against loss of cooler flow. Entering and leaving fluid temperature sensors in cooler detect a no-flow condition. Leaving sensor is located in leaving fluid nozzle and entering sensor is located in first cooler baffle space in close proximity to cooler tubes, as shown in Fig. 34. When there is no cooler flow and the compressors start, leaving fluid temperature does not change. However, entering fluid temperature drops rapidly as refrigerant enters cooler through EXV. Entering sensor detects this temperature drop and when entering temperature is 3° F (1.6° C) below leaving temperature, unit stops and is locked off.

<u>Loss-of-Charge</u> — A pressure switch connected to high side of each refrigerant circuit protects against total loss-of-charge. Switch settings are listed in Table 34. If switch is open, unit cannot start; if it opens during operation, unit locks out and cannot restart until switch is closed. Low charge is also monitored by the processor when an EXV is used. The loss-of-charge switch is wired in series with the high-pressure switch on each circuit's lead compressor.

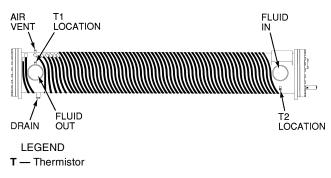


Fig. 34 — Cooler Heater Cables

Relief Devices — Fusible plugs are located in each circuit to protect against damage from excessive pressures.

HIGH-SIDE PROTECTION — One device is located between condenser and filter drier; a second is on filter drier. These are both designed to relieve pressure on a temperature rise to approximately 210 F (99 C).

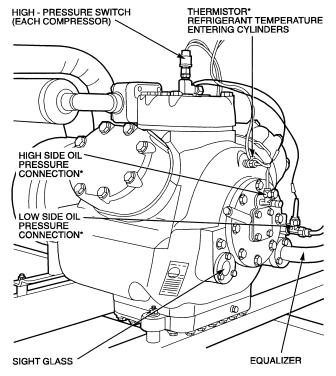
LOW-SIDE PROTECTION — A device is located on suction line and is designed to relieve pressure on a temperature rise to approximately 170 F (77 C).

PRESSURE RELIEF VALVES (208/230, 460, 575 v; 60 Hz Units Only) — Valves are installed in each circuit (one per circuit). The valves are designed to relieve at 450 psig (3103 kPa). *These valves should not be capped*. If a valve relieves, it should be replaced. If valve is not replaced, it may relieve at a lower pressure, or leak due to trapped dirt from the system which may prevent resealing.

The pressure relief valves are equipped with a $^{3}/_{8}$ -in. SAE flare for field connection. Some local building codes require that relieved gases be removed. This connection will allow conformance to this requirement.

Other Safeties — There are several other safeties that are provided by microprocessor control. For details refer to Alarms and Alerts section on page 48.

PRE-START-UP


IMPORTANT: Before beginning Pre-Start-Up or Start-Up, complete Start-Up Checklist for *Comfort*LinkTM Chiller Systems at end of this publication (page CL-1). The Checklist assures proper start-up of a unit, and provides a record of unit condition, application requirements, system information, and operation at initial start-up.

Do not attempt to start the chiller until following checks have been completed.

System Check

- Check all auxiliary components, such as the chilled fluid circulating pump, air-handling equipment, or other equipment to which the chiller supplies liquid. Consult manufacturer's instructions. If the unit has field-installed accessories, be sure all are properly installed and wired correctly. Refer to unit wiring diagrams.
- Backseat (open) compressor suction and discharge shutoff valves. Close valves one turn to allow refrigerant pressure to reach the test gages.
- 3. Open liquid line service valves.
- 4. Fill the chiller fluid circuit with clean water (with recommended inhibitor added) or other noncorrosive fluid to be cooled. Bleed all air out of high points of system. An air vent is included with the cooler. If outdoor temperatures are expected to be below 32 F (0° C), sufficient inhibited ethylene glycol or other suitable corrosion-inhibited antifreeze should be added to the chiller water circuit to prevent possible freeze-up.
- 5. Check tightness of all electrical connections.
- 6. Oil should be visible in the compressor sight glass. See Fig. 35. An acceptable oil level in the compressor is from ¹/₈ in. to ³/₈ in. of sight glass. Adjust the oil level as required. No oil should be removed unless the crankcase

- heater has been energized for at least 24 hours. See Oil Charge section on page 53 for Carrier-approved oils.
- 7. Electrical power source must agree with unit nameplate.
- 8. Crankcase heaters must be firmly locked into compressors, and must be on for 24 hours prior to start-up.
- 9. Fan motors are 3 phase. Check rotation of fans during the service test. Fan rotation is clockwise as viewed from top of unit. If fan is not turning clockwise, reverse 2 of the power wires. For low noise fan option on 50 Hz chillers, fans rotate counterclockwise as viewed from top of unit. If fan is not turning counterclockwise, reverse 2 of the power wires.
- 10. Check compressor suspension. Mounting rails must be floating freely on the springs.
- 11. Perform service test to verify proper settings.

*Lead compressor only.

Fig. 35 — Compressor Connections (Lead Compressor Shown)

START-UP AND OPERATION

NOTE: Refer to Start-Up Checklist on pages CL-1 to CL-8.

Actual Start-Up — Actual start-up should be done only under supervision of a qualified refrigeration mechanic.

- 1. Be sure all service valves are open. Units are shipped from factory with suction, discharge, and liquid line service valves closed.
- 2. Using the Marquee display, set leaving-fluid set point (CSP.1 is Set Point mode under sub-mode COOL). No cooling range adjustment is necessary.
- 3. If optional control functions or accessories are being used, the unit must be properly configured. Refer to Operating Data section for details.
- 4. Start chilled fluid pump.
- 5. Turn ENABLE/OFF/REMOTE CONTACT switch to ENABLE position.
- 6. Allow unit to operate and confirm that everything is functioning properly. Check to see that leaving fluid temperature agrees with leaving set point (CSP.1 or CSP.2), or if reset is used, with the control point (CTPT) in the Run Status mode under the sub-mode VIEW.

Operating Limitations

TEMPERATURES (See Table 35) — If unit is to be used in an area with high solar radiation, mounted position should be such that control box is not exposed to direct solar radiation. Exposure to direct solar radiation could affect the temperature switch controlling cooler heaters.

Table 35 — Temperature Limits for Standard Units

TEMPERATURE	F	С
Maximum Ambient Temperature	125	52
Minimum Ambient Temperature	0	-18
Maximum Cooler EWT*	95	35
Maximum Cooler LWT	70	21
Minimum Cooler LWT†	38	3.3

LEGEND

EWT — Entering Fluid (Water) Temperature **LWT** — Leaving Fluid (Water) Temperature

*For sustained operation, EWT should not exceed 85 F (29.4 C). †Unit requires modification below this temperature.

<u>Low-Ambient Operation</u> — If operating temperatures below 0° F (-18 C) are expected, refer to separate installation instructions for low-ambient operation using accessory Motormaster® III control. Contact your Carrier representative for

NOTE: Wind baffles and brackets must be field-fabricated for all units using accessory Motormaster III controls to ensure proper cooling cycle operation at low-ambient temperatures. See Installation Instructions shipped with the Motormaster III accessory for more details.

A CAUTION

Brine duty application (below 38 F [3.3 C] LCWT) for chiller normally requires factory modification. Contact your Carrier representative for applicable LCWT range for standard water-cooled chiller in a specific application.

VOLTAGE

Main Power Supply — Minimum and maximum acceptable supply voltages are listed in the Installation Instructions.

Unbalanced 3-Phase Supply Voltage — *Never operate a motor* where a phase imbalance between phases is greater than 2%. To determine percent voltage imbalance:

% Voltage Imbalance = 100 x

max voltage deviation from avg voltage average voltage

The maximum voltage deviation is the largest difference between a voltage measurement across 2 legs and the average across all 3 legs.

Example: Supply voltage is 240-3-60.

AB = 243 v

BC = 236 v

AC = 238 v

1. Determine average voltage:

Average voltage =
$$\frac{243 + 236 + 238}{3}$$

= $\frac{717}{3}$
= 239

2. Determine maximum deviation from average voltage:

(AB) 243 - 239 = 4 v

(BC) 239 – 236 = 3 v

(AC) 239 – 238 = 1 v

Maximum deviation is 4 v.

3. Determine percent voltage imbalance:

% Voltage Imbalance =
$$100 \text{ x} \frac{4}{239}$$

$$= 1.7\%$$

This voltage imbalance is satisfactory as it is below the maximum allowable of 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately. Do not operate unit until imbalance condition is corrected.

<u>Control Circuit Power</u> — Electronic control includes logic to detect low control circuit voltage. Acceptable voltage ranges are shown in the Installation Instructions.

MINIMUM FLUID LOOP VOLUME — To obtain proper temperature control, loop fluid volume must be at least 3 gallons per ton (3.25 L per kW) of chiller nominal capacity for air conditioning and at least 6 gallons per ton (6.5 L per kW) for process applications or systems that must operate at low ambient temperatures (below 32 F [0° C]). Refer to application information in Product Data literature for details.

FLOW RATE REQUIREMENTS — Standard chillers should be applied with nominal flow rates approximating those listed in Table 36. Higher or lower flow rates are permissible to obtain lower or higher temperature rises. Minimum flow rates must be exceeded to assure turbulent flow and proper heat transfer in the cooler.

A CAUTION

Operation below minimum flow rate could subject tubes to frost pinching in tube sheet, resulting in failure of cooler.

Consult application data section in the Product Data literature and job design requirements to determine flow rate requirements for a particular installation.

Table 36 — Nominal and Minimum Cooler Fluid Flow Rates

UNIT SIZE 30GTN,R AND 30GUN,R		INAL RATE*	MINIMUM FLOW RATE (See Notes)		
AND SUGUN,A	Gpm	L/s	Gpm	L/s	
040	86	5.43	36.8	2.32	
045	101	6.37	37.7	2.38	
050	123	7.76	37.7	2.38	
060	151	9.53	47.5	3.00	
070	173	10.91	47.5	3.00	
080,230B	192	12.11	66.7	4.20	
090,245B	216	13.62	59.5	3.75	
100,255B,270B	240	15.14	84.1	5.30	
110,290B,315B	264	16.65	84.1	5.30	
130	300	18.9	110	6.9	
150,230A-255A	348	21.9	110	6.9	
170,270A,330A/B, 360B (50 Hz)	384	24.2	120	7.5	
190,290A,360A/B (60 Hz), 360A (50 Hz), 390B	432	27.2	120	7.5	
210,315A,390A,420A/B	480	30.2	148	9.3	

LEGEND

ARI — Air Conditioning and Refrigeration Institute

Gpm — Gallons per minute (U.S.)
L/s — Liters per second

L/s — Liters per secon
N — Liters per kW
V — Gallons per ton

*Nominal flow rates required at ARI conditions are 44 F (6.7 C) leaving-fluid temperature, 54 F (12.2 C) entering-fluid temperature, 95 F(35 C) ambient. Fouling factor is .00001 ft 2 · hr · F/Btu (.000018 m 2 · K/W). NOTES:

 Minimum flow based on 1.0 fps (0.30 m/s) velocity in cooler without special cooler baffling.

Minimum Loop Volumes:
 Gallons = V x ARI Cap. in tons
 Liters = N x ARI Cap. in kW

APPLICATION	V	N
Normal Air Conditioning	3	3.25
Process Type Cooling	6 to 10	6.5 to 10.8
Low Ambient Unit Operation	6 to 10	6.5 to 10.8

Operation Sequence — During unit off cycle, crankcase heaters are energized. If ambient temperature is below 36 F (2 C), cooler heaters (if equipped) are energized.

The unit is started by putting the ENABLE/OFF/REMOTE CONTACT switch in ENABLE or REMOTE position. When the unit receives a call for cooling (either from the internal control or CCN network command or remote contact closure), the unit stages up in capacity to maintain the cooler fluid set point. The first compressor starts $1^{1}/_{2}$ to 3 minutes after the call for cooling.

The lead circuit can be specifically designated or randomly selected by the controls, depending on how the unit is field configured (for 040-070 sizes, Circuit A leads unless an accessory unloader is installed on Circuit B). A field configuration is also available to determine if the unit should stage up both circuits equally or load one circuit completely before bringing on the other.

When the lead circuit compressor starts, the unit starts with a pumpout routine. On units with the electronic expansion valve (EXV), compressor starts and continues to run with the EXV at minimum position for 10 seconds to purge the refrigerant lines and cooler of refrigerant. The EXV then moves to 23% and the compressor superheat control routine takes over, modulating the valve to feed refrigerant into the cooler.

On units with thermostatic expansion valve (TXV) (30GTN,R and 30GUN,R 040,045 units with brine option), head pressure control is based on set point control. When the lead compressor starts, the liquid line solenoid valve (LLSV) is

kept closed for 15 seconds by a time delay relay. The microprocessor stages fans to maintain the set point temperature specified by the controller. There is no pumpout sequence during shutdown of TXV controlled chillers.

On all other units (EXV units), the head pressure is controlled by fan cycling. The desired head pressure set point is entered, and is controlled by EXV position or saturated condensing temperature measurement (T3 and T4). For proper operation, maintain set point of 113 F (45 C) as shipped from factory. The default head pressure control method is set point control. The head pressure control can also be set to EXV control or a combination of the 2 methods between circuits.

For all units, if temperature reset is being used, the unit controls to a higher leaving-fluid temperature as the building load reduces. If demand limit is used, the unit may temporarily be unable to maintain the desired leaving-fluid temperature because of imposed power limitations.

On EXV units, when the occupied period ends, or when the building load drops low enough, the lag compressors shut down. The lead compressors continue to run as the EXV closes, and until the conditions of pumpout are satisfied. If a fault condition is signaled requiring immediate shutdown, pumpout is omitted.

Loading sequence for compressors is shown in Tables 5A and 5B.

Refrigerant Circuit

LEAK TESTING — Units are shipped with complete operating charge of refrigerant R-22 for 30GTN,R and R-134a for 30GUN,R (see Physical Data tables supplied in the chiller's installation instructions) and should be under sufficient pressure to conduct a leak test. If there is no pressure in the system, introduce enough nitrogen to search for the leak. Repair the leak using good refrigeration practices. After leaks are repaired, system must be evacuated and dehydrated.

REFRIGERANT CHARGE (Refer to Physical Data tables supplied in the chiller's installation instructions) — Immediately ahead of filter drier in each circuit is a factory-installed liquid line service valve. Each valve has a ¹/₄-in. Schrader connection for charging liquid refrigerant.

<u>Charging with Unit Off and Evacuated</u> — Close liquid line service valve before charging. Weigh in charge shown on unit nameplate (also in Physical Data tables supplied in the chiller's installation instructions). Open liquid line service valve; start unit and allow it to run several minutes fully loaded. Check for a clear sight glass. Be sure clear condition is liquid and not vapor.

Charging with Unit Running — If charge is to be added while unit is operating, all condenser fans and compressors must be operating. It may be necessary to block condenser coils at low ambient temperatures to raise condensing pressure to approximately 280 psig (1931 kPa) to turn all condenser fans on. Do not totally block a coil to do this. Partially block all coils in uniform pattern. Charge each circuit until sight glass shows clear liquid, then weigh in amount over a clear sight glass as listed in Physical data tables supplied in chiller's installation instructions.

IMPORTANT: When adjusting refrigerant charge, circulate fluid through cooler continuously to prevent freezing and possible damage to the cooler. Do not overcharge, and never charge liquid into low-pressure side of system.

FIELD WIRING

Field wiring is shown in Fig. 36-41.

LEGEND FOR FIG. 36-41

ALM CWFS CWP Alarm Chilled Water Flow Switch Chilled Water Pump Chilled Water Pump Interlock CWPI CXB HGBPS Compressor Expansion Board Hot Gas Bypass Switch LWT Leaving Fluid Temperature MBB Main Base Board OAT SPT Outdoor-Air Temperature Sensor Remote Space Temperature Sensor SW Switch ТВ Terminal Block UL Unloader Field Supplied Wiring Factory Wiring

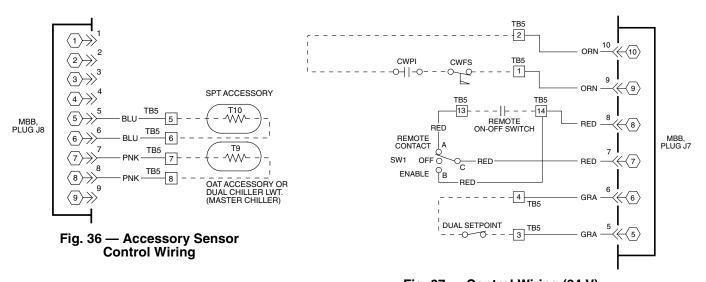


Fig. 37 — Control Wiring (24 V)

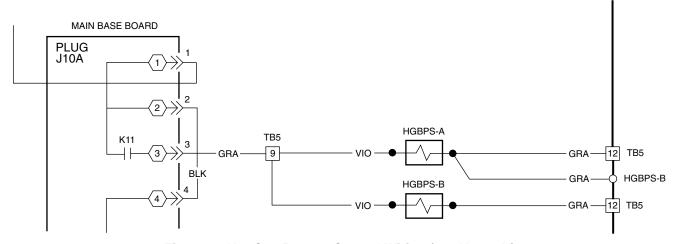


Fig. 38 — Hot Gas Bypass Control Wiring (115 V, 230 V)

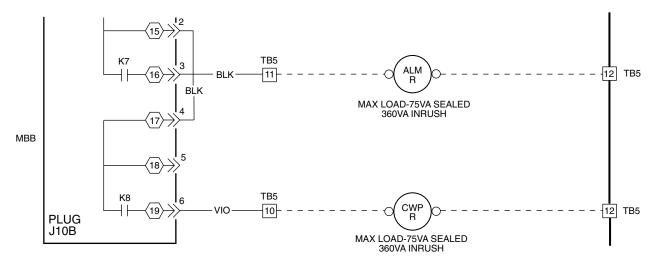


Fig. 39 — Chilled Water Pump Control Wiring and Remote Alarm 115 V Relay Wiring

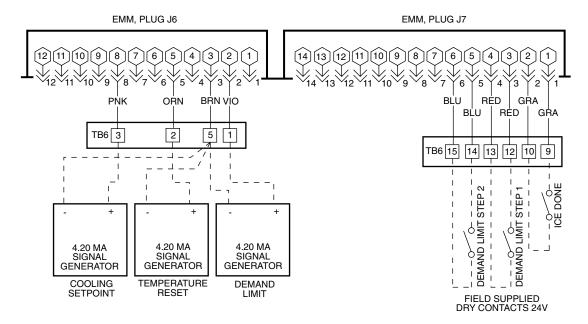


Fig. 40 — Energy Management Module (EMM) Wiring

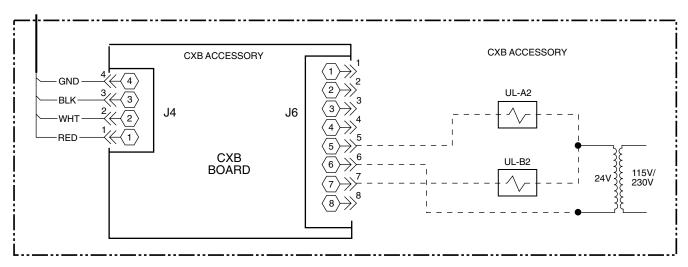


Fig. 41 — Compressor Expansion Board (CXB) Accessory Wiring

APPENDIX A — CCN TABLES

UNIT (Configuration Settings)

	DESCRIPTION	STATUS	DEFAULT	UNITS	POINT
1	Unit Type	1 = Air Cooled 2 = Water Cooled 3 = Split System 4 = Heat Machine 5 = Air Cooled Heat Reclaim	1		UNIT_TYP
2	Unit Size	20 to 300	*	TONS	SIZE
3	Circuit A1% Capacity	0 to 100	*	%	CAP_A
4	Number Circ A Compressor	1 to 4	*		NUMCA
5	Compressor A1 Cylinders	4 or 6	*		NUM_CYLA
6	Number Circ B Compressor	1 to 4	*		NUMCB
7	Compressor B1 Cylinders	4 or 6	*		NUM_CYLB
8	EXV Module Installed	No/Yes	Yes		EXV_BRD
9	EXV Superheat Setpoint	10 to 40	29.0 (30GTN,R) 23.0 (30GUN,R)	^F	SH_SP
10	EXV MOP	40 to 80	50.0	°F	MOP_SP
11	EXV Superheat Offset	-20 to 20	0.0	^F	SH_OFFST
12	EXV Circ. A Min Position	0 to 100	8.0	%	EXVAMINP
13	EXV Circ. B Min Position	0 to 100	8.0	%	EXVBMINP
14	Refrigerant	1 = R22 2 = R134A	1 (30GTN,R) 2 (30GUN,R)		REFRIG_T
15	Low Pressure Setpoint	3 to 60	10.0	PSI	LOW_PRES
16	Fan Staging Select	1 = 2 Stage indpt. 2 = 3 Stage indpt. 3 = 2 Stage common 4 = 3 Stage common	*		FAN_TYPE

OPTIONS1 (Options Configuration)

-	DESCRIPTION	STATUS	DEFAULT	POINT
1	Cooler Fluid	1 = Water 2 = Med. Brine 3 = Low Brine	1	FLUIDTYP
2	Hot Gas Bypass Select	No/Yes	No	HGBV_FLG
3	Head Press. Cont. Method	1 = EXV controlled 2 = Setpoint control 3 = Setpoint-A, EXV-B 4 = EXV-A, Setpoint-B	2	HEAD_MET
4	Head Press. Control Type	0 = None 1 = Air Cooled 2 = Water Cooled	1	HEAD_TYP
5	Motormaster Select	No/Yes	No	MTR_TYPE
6	Pressure Transducers	Off/On	Off	PRESS_TY
8	Cooler Pump Control	Off/On	Off	CPC
9	Condenser Pump Interlock	Off/On	Off	CND_LOCK
10	Condenser Pump Control	0 = No control 1 = On with Mode 2 = On with Compressors	0	CNPC
11	Condenser Fluid Sensors	No/Yes	No	CD_TEMP
12	No. Circuit A Unloaders	0-2	*	NUNLA
13	No. Circuit B Unloaders	0-2	*	NUNLB
14	EMM Module Installed	No/Yes	No	EMM_BRD

^{*}Unit size dependent.

APPENDIX A — CCN TABLES (cont)

CONFIGURATION SCREEN (TYPE 10)

OPTIONS2 (Options Configuration)

	DESCRIPTION	STATUS	DEFAULT	UNITS	POINT
1	Control Method	0 = Switch 1 = 7 day sched. 2 = Occupancy 3 = CCN	0		CONTROL
2	Loading Sequence Select	1 = Equal loading 2 = Staged loading	1		SEQ_TYPE
3	Lead/Lag Circuit Select	1 = Automatic 2 = Circuit A leads 3 = Circuit B leads	*		LEAD_TYP
4	Cooling Setpoint Select	0 = Single 1 = Dual, remote switch controlled 2 = Dual, 7-day occupancy 3 = Dual CCN occupancy 4 = 4-20 mA input 5 = External POT	0		CLSP_TYP
5	Heating Setpoint Select	0 = Single 1 = Dual, remote switch controlled 2 = Dual, 7 day occupancy 3 = Dual CCN occupancy 4 = 4-20 mA input	0		HTSP_TYP
6	Ramp Load Select	Enable/Disable	Disable		RAMP_EBL
7	Heat Cool Select	Cool/Heat	Cool		HEATCOOL
8	High LCW Alert Limit	2 to 60	60.0	^F	LCW_LMT
9	Minutes off time	0 to 15	0	min	DELAY
10	Deadband Multiplier	1.0 to 4.0	1.0		Z_GAIN
11	Ice Mode Enable	Enable/Disable	Disable		ICE_CNFG

DISPLAY (STDU SETUP)

	DESCRIPTION	STATUS	DEFAULT	UNITS	POINT
1	Service Password	nnnn	1111		PASSWORD
2	Password Enable	Enable/Disable	Enable		PASS_EBL
3	Metric Display	Off/On	Off		DISPUNIT
4	Language Selection	0 = ENGLISH 1 = FRANCAIS 2 = ESPANOL 3 = PORTUGUES	0		LANGUAGE

SCHEDOVR (TIMED OVERRIDE SETUP)

	DESCRIPTION	STATUS	DEFAULT	UNITS	POINT
1	Schedule Number	0-99	0		SCHEDNUM
2	Override Time Limit	0-4	0	hours	OTL
3	Timed Override Hours	0-4	0	hours	OTL_EXT
4	Timed Override	Yes/No	No		TIMEOVER

ALARMDEF (Alarm Definition Table)

	DESCRIPTION	STATUS	DEFAULT	UNITS	POINT
1	Alarm Routing Control	00000000	00000000		ALRM_CNT
2	Equipment Priority	0 to 7	4		EQP_TYPE
3	Comm Failure Retry Time	1 to 240	10	min	RETRY_TM
4	Re-alarm Time	1 to 255	30	min	RE-ALARM
5	Alarm System Name	XXXXXXXX	Chiller		ALRM_NAM

^{*}Unit size dependent.

RESETCON (Temperature Reset and Demand Limit)

	DESCRIPTION	STATUS	DEFAULT	UNITS	POINT
1	COOLING RESET				
2	Cooling Reset Type	0 = No Reset 1 = 4-20 ma input 2 = External temp-OAT 3 = Return fluid 4 = External temp-SPT	0		CRST_TYP
3	No Cool Reset Temp	0 to 125	125.0	°F	CT_NO
4	Full Cool Reset Temp	0 to 125	0.0	°F	CT_FULL
5	Degrees Cool Reset	-30 to 30	0.0	^F	CT_DEG
6					
7	HEATING RESET				
8	Heating Reset Type	0 = No Reset 1 = 4-20 ma input 2 = External temp — OAT 3 = Return fluid 4 = External temp — SPT	0		HRST_TYP
9	No Heat Reset Temp	0 to 125	0.0		HT_NO
10	Full Heat Reset Temp	0 to 125	125.0	%	HT_FULL
11	Degrees Heat Reset	-30 to 30	0.0	min	HT_DEG
12					
13	DEMAND LIMIT				
14	Demand Limit Select	0 = None 1 = External switch input 2 = 4-20 ma input 3 = Loadshed	0		DMD_CTRL
15	Demand Limit at 20 mA	0 to 100	100	%	DMT20MA
16	Loadshed Group Number	0 to 99	0		SHED_NUM
17	Loadshed Demand Delta	0 to 60	0	%	SHED_DEL
18	Maximum Loadshed Time	0 to 120	60	min	SHED_TIM
19	Demand Limit Switch 1	0 to 100	80	%	DLSWSP1
20	Demand Limit Switch 2	0 to 100	50	%	DLSWSP2
21					
22	LEAD/LAG				
23	Lead/Lag Chiller Enable	Enable/Disable	Disable		LL_ENA
24	Master/Slave Select	Slave/Master	Master		MS_SEL
25	Slave Address	0 to 239	0		SLV_ADDR
26	Lead/Lag Balance Select	Enable/Disable	Disable		LL_BAL
27	Lead/Lag Balance Delta	40 to 400	168	hours	LL_BAL_D
28	Lag Start Delay	0 to 30	5	mins	LL_DELAY

BRODEFS (Broadcast POC Definition Table)

	DESCRIPTION	STATUS	DEFAULT	UNITS	POINT
1	CCN Time/Date Broadcast	Yes/No	No		CCNBC
2	CCN OAT Broadcast	Yes/No	No		OATBC
3	Global Schedule Broadcast	Yes/No	No		GSBC
4	CCN Broadcast Acker	Yes/No	No		CCNBCACK
5	Daylight Savings Start				
6	Month	1 to 12	4		STARTM
7	Week	1 to 5	1		STARTW
8	Day	1 to 7	7		STARTD
9	Minutes to add	0 to 99	60	min	MINADD
10	Daylight Savings Stop				
11	Month	1 to 12	10		STOPM
12	Week	1 to 5	5		STOPW
13	Day	1 to 7	7		STOPD
14	Minutes to subtract	0 to 99	60	min	MINSUB

A_UNIT (General Unit Parameters)

	DESCRIPTION	STATUS	UNITS	POINT	FORCEABLE
1	Control Mode	0 = Service 1 = OFF - local 2 = OFF-CCN 3 = OFF-time 4 = Emergency 5 = ON-local 6 = ON-CCN 7 = ON-time		STAT	N
2	Occupied	Yes/No		OCC	N
3	CCN Chiller	Start/Stop		CHIL_S_S	Υ
4	Alarm State	Normal		ALM	N
5	Active Demand Limit	0-100	%	DEM_LIM	Y
6	Override Modes in Effect	Yes/No		MODE	N
7	Percent Total Capacity	0-100	%	CAP_T	N
8	Requested Stage	nn		STAGE	N
9	Active Setpoint	snnn.n	°F	SP	N
10	Control Point	snnn.n	°F	CTRL_PNT	Y
11	Entering Fluid Temp	snnn.n	°F	EWT	N
12	Leaving Fluid Temp	snnn.n	°F	LWT	N
13	Emergency Stop	Enable/Emstop		EMSTOP	Y
14	Minutes Left for Start	nn	min	MIN_LEFT	N
15	Heat Cool Select	Heat/Cool		HEATCOOL	Υ

CIRCA_AN (Circuit A Analog Parameters)

	DESCRIPTION	STATUS	UNITS	POINT	FORCEABLE
1	Circuit A Analog Values				
2	Percent Total Capacity	0-100	%	CAPA_T	N
3	Percent Available Cap	0-100	%	CAPA_A	N
4	Discharge Pressure	nnn.n	PSI	DP_A	N
5	Suction Pressure	nnn.n	PSI	SP_A	N
6	Saturated Condensing Tmp	snnn.n	°F	TMP_SCTA	N
7	Saturated Suction Temp	snnn.n	°F	TMP_SSTA	N
8	Compressor Suction Temp	snnn.n	°F	CTA_TMP	N
9	Suction Superheat Temp	snnn.n	^F	SH_A	N
10	EXV % Open	0-100.0	%	EXV_A	N

CIRCA_DIO (Circuit A Discrete Parameters)

	DESCRIPTION	STATUS	UNITS	POINT	FORCEABLE
1	CIRC. A DISCRETE OUTPUTS				
2	Compressor A1 Relay	ON/OFF		K_A1_RLY	N
3	Compressor A2 Relay	ON/OFF		K_A2_RLY	N
4	Compressor A3 Relay	ON/OFF		K_A3_RLY	N
5	Compressor A4 Relay	ON/OFF		K_A4_RLY	N
6	Unloader A1 Relay	ON/OFF		UNL_A1	N
7	Unloader A2 Relay	ON/OFF		UNL_A2	N
8	Liq. Line Solenoid Valve	OPEN/CLOSE		LLSV_A	N
9	Hot Gas Bypass Relay	ON/OFF		HGB	N
10					
11	CIRC. A DISCRETE INPUTS				
12	Compressor A1 Feeback	ON/OFF		K_A1_FBK	N
13	Compressor A2 Feedback	ON/OFF		K_A2_FBK	N
14	Compressor A3 Feedback	ON/OFF		K_A3_FBK	N
15	Compressor A4 Feedback	ON/OFF		K_A4_FBK	N
16	Oil Pressure Switch A	OPEN/CLOSE		OILSW_A	N
17	Low Pressure Switch A	OPEN/CLOSE		LPS_A	N

CIRCB_AN (Circuit B Analog Parameters)

	DESCRIPTION	STATUS	UNITS	POINT	FORCEABLE
1	Circuit B Analog Values				
2	Percent Total Capacity	0-100	%	CAPB_T	N
3	Percent Available Cap	0-100	%	CAPB_A	N
4	Discharge Pressure	nnn.n	PSI	DP_B	N
5	Suction Pressure	nnn.n	PSI	SP_B	N
6	Saturated Condensing Tmp	snnn.n	°F	TMP_SCTB	N
7	Saturated Suction Temp	snnn.n	°F	TMP_SSTB	N
8	Compressor Suction Temp	snnn.n	°F	CTB_TMP	N
9	Suction Superheat Temp	snnn.n	^F	SH_B	N
10	EXV % Open	0-100.0	%	EXV_B	N

CIRCBDIO (Circuit B Discrete Parameters)

	DESCRIPTION	STATUS	UNITS	POINT	FORCEABLE
1	CIRC. B DISCRETE OUTPUTS				
2	Compressor B1 Relay	ON/OFF		K_B1_RLY	N
3	Compressor B2 Relay	ON/OFF		K_B2_RLY	N
4	Compressor B3 Relay	ON/OFF		K_B3_RLY	N
5	Compressor B4 Relay	ON/OFF		K_B4_RLY	N
6	Unloader B1 Relay	ON/OFF		UNL_B1	N
7	Unloader B2 Relay	ON/OFF		UNL_B2	N
8	Liq. Line Solenoid Valve	ON/OFF		LLSV_B	N
9	Hot Gas Bypass Relay	ON/OFF		HGB	N
10					
11	CIRC. B DISCRETE INPUTS				
12	Compressor B1 Feedback	ON/OFF		K_B1_FBK	N
13	Compressor B2 Feedback	ON/OFF		K_B2_FBK	N
14	Compressor B3 Feedback	ON/OFF		K_B3_FBK	N
15	Compressor B4 Feedback	ON/OFF		K_B4_FBK	N
16	Oil Pressure Switch B	OPEN/CLOSE		OILSW_B	N
17	Low Pressure Switch B	OPEN/CLOSE		LPS_B	N

OPTIONS (Unit Parameters)

	DESCRIPTION	STATUS	UNITS	POINT	FORCEABLE
1	FANS				
2	Fan 1 Relay	ON/OFF		FAN_1	N
3	Fan 2 Relay	ON/OFF		FAN_2	N
4	Fan 3 Relay	ON/OFF		FAN_3	N
5	Fan 4 Relay	ON/OFF		FAN_4	N
6					
7	UNIT ANALOG VALUES				
8	Cooler Entering Fluid	snnn.n	°F	COOL_EWT	N
9	Cooler Leaving Fluid	snnn.n	°F	COOL_LWT	N
10	Condensing Entering Fluid	snnn.n	°F	COND_EWT	N
11	Condenser Leaving Fluid	snnn.n	°F	COND_LWT	N
12	Lead/Lag Leaving Fluid	snnn.n	°F	DUAL_LWT	N
13					
14	TEMPERATURE RESET				
15	4-20 mA Reset Signal	nn.n	mA	RST_MA	N
16	Outside Air Temperature	snnn.n	°F	OAT	Υ
17	Space Temperature	snnn.n	°F	SPT	Υ
18					
19	DEMAND LIMIT				
20	4-20 mA Demand Signal	n.nn		LMT_MA	N
21	Demand Limit Switch 1	ON/OFF		DMD_SW1	N
22	Demand Limit Switch 2	ON/OFF		DMD_SW2	N
23	CCN Loadshed Signal	0 = Normal 1 = Redline 2 = Shed		OL_STAT	N
24					
25	PUMPS				
26	Cooler Pump Relay	ON/OFF		COOL_PMP	
27	Condenser Pump Relay	ON/OFF		COND_PMP	N
28					
29	MISCELLANEOUS				
30	Dual Setpoint Switch	ON/OFF		DUAL_IN	N
31	Cooler LWT Setpoint	snn.n	°F	LWR_SP	N
32	Cooler Flow Switch	ON/OFF		COOLFLOW	N
33	Condenser Flow Switch	ON/OFF		CONDFLOW	N
34	Ice Done	ON/OFF		ICE	N

STRTHOUR

	DESCRIPTION	STATUS	UNITS	POINT
1	Machine Operating Hours	nnnnn	hours	HR_MACH
2	Machine Starts	nnnnn		CY_MACH
3				
4	Circuit A Run Hours	nnnnn	hours	HR_CIRA
5	Compressor A1 Hours	nnnnn	hours	HR_A1
6	Compressor A2 Hours	nnnnn	hours	HR_A2
7	Compressor A3 Hours	nnnnn	hours	HR_A3
8	Compressor A4 Hours	nnnnn	hours	HR_A4
9	Circuit B Run Hours	nnnnn	hours	HR_CIRB
10	Compressor B1 Hours	nnnnn	hours	HR_B1
11	Compressor B2 Hours	nnnnn	hours	HR_B2
12	Compressor B3 Hours	nnnnn	hours	HR_B3
13	Compressor B4 Hours	nnnnn	hours	HR_B4
14				
15	Circuit A Starts	nnnnn		CY_CIRA
16	Compressor A1 Starts	nnnnn		CY_A1
17	Compressor A2 Starts	nnnnn		CY_A2
18	Compressor A3 Starts	nnnnn		CY_A3
19	Compressor A4 Starts	nnnnn		CY_A4
20	Circuit B Starts	nnnnn		CY_CIRB
21	Compressor B1 Starts	nnnnn		CY_B1
22	Compressor B2 Starts	nnnnn		CY_B2
23	Compressor B3 Starts	nnnnn		CY_B3
24	Compressor B4 Starts	nnnnn		CY_B4

ALARMS

	DESCRIPTION	STATUS	UNITS	POINT
1	Active Alarm #1	Axxx or Txxx		ALARM01C
2	Active Alarm #2	Axxx or Txxx		ALARM02C
3	Active Alarm #3	Axxx or Txxx		ALARM03C
4	Active Alarm #4	Axxx or Txxx		ALARM04C
5	Active Alarm #5	Axxx or Txxx		ALARM05C
6	Active Alarm #6	Axxx or Txxx		ALARM06C
7	Active Alarm #7	Axxx or Txxx		ALARM07C
8	Active Alarm #8	Axxx or Txxx		ALARM08C
9	Active Alarm #9	Axxx or Txxx		ALARM09C
10	Active Alarm #10	Axxx or Txxx		ALARM10C
11	Active Alarm #11	Axxx or Txxx		ALARM11C
12	Active Alarm #12	Axxx or Txxx		ALARM12C
13	Active Alarm #13	Axxx or Txxx		ALARM13C
14	Active Alarm #14	Axxx or Txxx		ALARM14C
15	Active Alarm #15	Axxx or Txxx		ALARM15C
16	Active Alarm #16	Axxx or Txxx		ALARM16C
17	Active Alarm #17	Axxx or Txxx		ALARM17C
18	Active Alarm #18	Axxx or Txxx		ALARM18C
19	Active Alarm #19	Axxx or Txxx		ALARM19C
20	Active Alarm #20	Axxx or Txxx		ALARM20C
21	Active Alarm #21	Axxx or Txxx		ALARM21C
22	Active Alarm #22	Axxx or Txxx		ALARM22C
23	Active Alarm #23	Axxx or Txxx		ALARM23C
24	Active Alarm #24	Axxx or Txxx		ALARM24C
25	Active Alarm #25	Axxx or Txxx		ALARM25C

NOTE: Alerts will displayed as Txxx.

CURRMODS

	DESCRIPTION	STATUS	UNITS	POINT
1	FSM controlling chiller	ON/OFF		MODE_1
2	WSM controlling chiller	ON/OFF		MODE_2
3	Master/Slave control	ON/OFF		MODE_3
4	Low source protection	ON/OFF		MODE_4
5	Ramp Load Limited	ON/OFF		MODE_5
6	Timed Override in effect	ON/OFF		MODE_6
7	Low Cooler Suction TempA	ON/OFF		MODE_7
8	Low Cooler Suction TempB	ON/OFF		MODE_8
9	Slow Change Override	ON/OFF		MODE_9
10	Minimum OFF Time	ON/OFF		MODE_10
11	Low Suction Superheat A	ON/OFF		MODE_11
12	Low Suction Superheat B	ON/OFF		MODE_12
13	Dual Setpoint	ON/OFF		MODE_13
14	Temperature Reset	ON/OFF		MODE_14
15	Demand Limit in effect	ON/OFF		MODE_15
16	Cooler Freeze Prevention	ON/OFF		MODE_16
17	Lo Tmp Cool/Hi Tmp Heat	ON/OFF		MODE_17
18	Hi Tmp Cool/Lo Tmp Heat	ON/OFF		MODE_18
19	Making Ice	ON/OFF		MODE_19
20	Storing Ice	ON/OFF		MODE_20
21	High SCT Circuit A	ON/OFF		MODE_21
22	High SCT Circuit B	ON/OFF		MODE_22

SETPOINT

	DESCRIPTION	STATUS	UNITS	POINT	DEFAULTS
1	COOLING				
2	Cool Setpoint 1	-20 to 70	°F	CSP1	44
3	Cool Setpoint 2	-20 to 70	°F	CSP2	44
4	Ice Setpoint	-20 to 32	°F	CSP3	32
5					
6	HEATING				
7	Heat Setpoint 1	80 to 140	°F	HSP1	100
8	Heat Setpoint 2	80 to 140	°F	HSP2	100
9					
10	RAMP LOADING				
11	Cooling Ramp Loading	0.2 to 2.0	°F/min	CRAMP	1.0
12	Heating Ramp Loading	0.2 to 2.0	°F/min	HRAMP	1.0
13					
14	HEAD PRESSURE				
15	Head Pressure Setpoint A	80 to 140	°F	HSP_A	113
16	Head Pressure Setpoint B	80 to 140	°F	HSP_B	113

LOADFACT

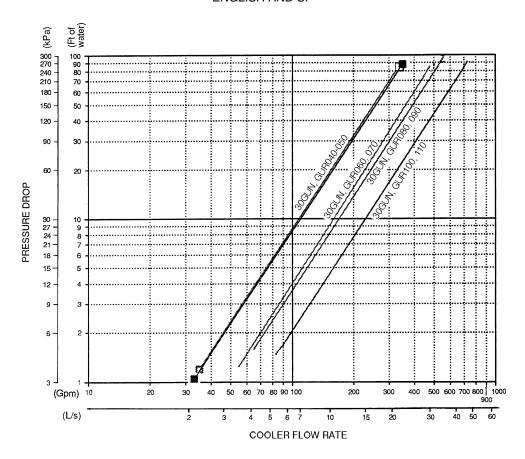
	DESCRIPTION	STATUS	UNITS	POINT
1	CAPACITY CONTROL			
2	Load/Unload Factor	snnn.n	%	SMZ
3	Control Point	snnn.n	°F	CTRL_PNT
4	Leaving Water Temp	snnn.n	°F	LWT

VERSIONS

	DESCRIPTION	STATUS	UNITS	POINT
1	MBB	CESR-131170 nn-nn		
2	EXV	CESR-131172 nn-nn		
3	CXB	CESR131173- nn-nn		
4	EMM	CESR131174- nn-nn		
5	MARQ	CESR131171- nn-nn		
6	NAV	CESR131227- nn-nn		

CSM/FSM EQUIPMENT TABLE (Type 621H, Block 2)

LINE	DESCRIPTION	POINT
1	Chiller Status 0 = Chiller is off 1 = Valid run state in CCN mode 2 = Recycle active 3 = Chiller is in Local Mode 4 = Power Fail Restart in Progress 5 = Shutdown due to fault 6 = Communication Failure	CHILSTAT
2	Lag Status	LAGSTAT
3	Percent Total Capacity Running	CAP_T
4	Service Runtime	HR_MACH
5	unused	
6	unused	
7	unused	
8	Power Fail Auto Restart	ASTART
9	Percent Available Capacity On	CAP_A

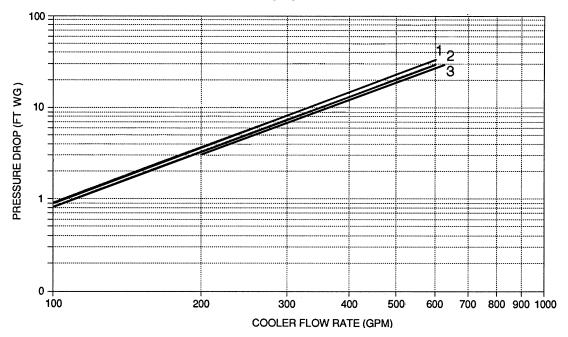

WSM EQUIPMENT PART COOL SOURCE MAINTENANCE TABLE SUPERVISOR MAINTENANCE TABLE

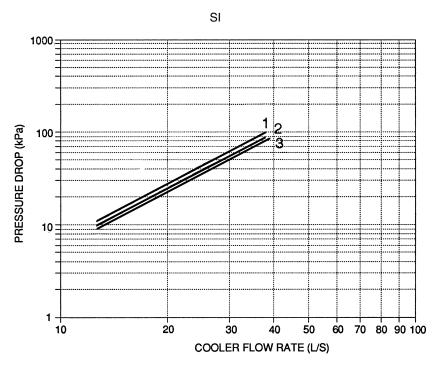
DESCRIPTION	STATUS	POINT
WSM Active?	Yes	WSMSTAT
Chilled water temp	snn.n °F	CHWTEMP
Equipment status	On	CHLRST
Commanded state	Enable/Disable/None	CHLRENA
CHW setpoint reset value	nn.n^F	CHWRVAL
Current CHW setpoint	snn.n °F	CHWSTPT

OCCUPANCY MAINTENANCE TABLE OCCUPANCY SUPERVISORY

DESCRIPTION	STATUS	POINT
Current Mode (1=Occup.)	0,1	MODE
Current Occup. Period #	0-8	PER-NO
Timed-Override in Effect	Yes/No	OVERLAST
Time-Override Duration	0-4 hours	OVR_HRS
Current Occupied Time	hh:mm	STRTTIME
Current Unoccupied Time	hh:mm	ENDTIME
Next Occupied Day		NXTOCDAY
Next Occupied Time	hh:mm	NXTOCTIM
Next Unoccupied Day		NXTUNDAY
Next Unoccupied Time	hh:mm	NXTUNTIM
Previous Unoccupied Day		NXTUNDAY
Previous Unoccupied Time	hh:mm	PRVUNTIM

Cooler Fluid Pressure Drop Curves — 30GUN,GUR040-110 ENGLISH AND SI

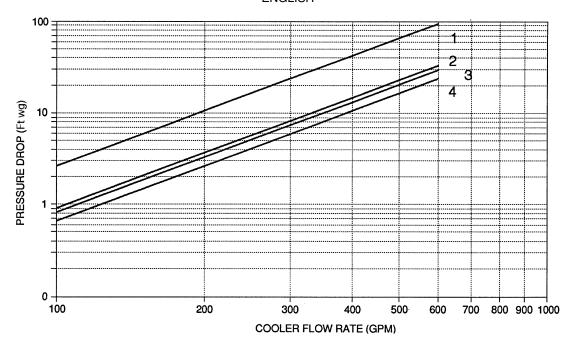


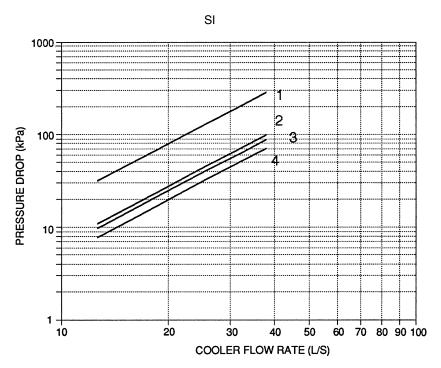

LEGEND

■ — 040 □ — 045,050

NOTE: Ft of water = $2.31 \times \text{change in psig.}$

${\bf Cooler\ Fluid\ Pressure\ Drop\ Curves-30GUN,GUR130-210}$ **ENGLISH**

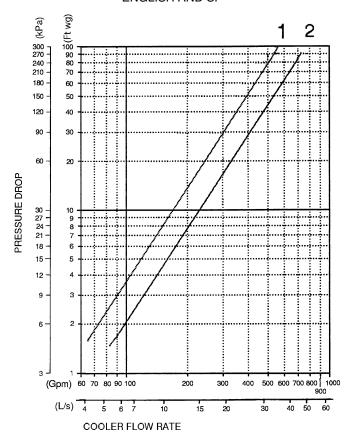



COOLER PRESSURE DROP KEY

- 1 30GUN,GUR130,150 2 30GUN,GUR170,190 3 30GUN,GUR210

NOTE: Ft of water = $2.31 \times \text{change in psig.}$

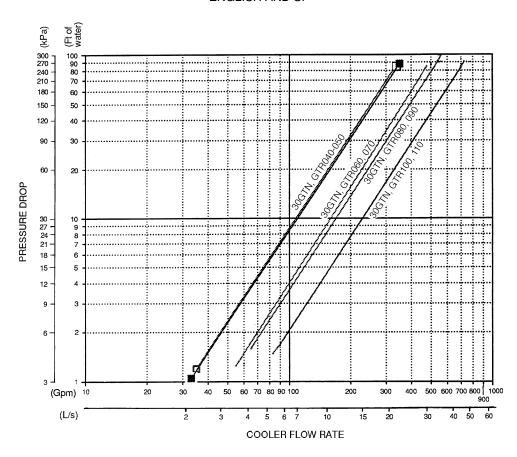
Cooler Fluid Pressure Drop Curves — 30GUN,GUR230A-255A, 270A/B-420A/B **ENGLISH**



COOLER PRESSURE DROP KEY

- 1 Module B 30GUN,GUR270
- **2** Module A 30GUN,GUR230-255
- 3 Module A 30GUN,GUR270,330 Module B 30GUN,GUR330,360 (50 Hz)
- **4** Module A 30GUN,GUR290,315,360 (50 or 60 Hz), 390, and 420 Module B 30GUN,GUR360 (60 Hz), 390, and 420

${\bf Cooler\ Fluid\ Pressure\ Drop\ Curves-30GUN, GUR230B-315B}$ **ENGLISH AND SI**

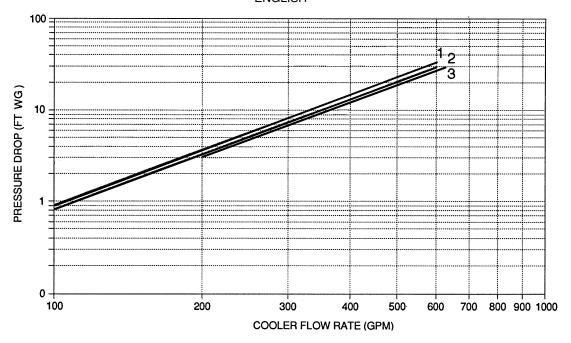


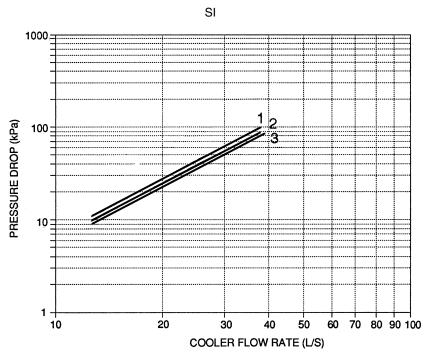
COOLER PRESSURE DROP KEY

- Module B 30GUN,GUR230,245
 Module B 30GUN,GUR255,290,315

NOTE: Ft of water = 2.31 x change in psig.

Cooler Fluid Pressure Drop Curves — 30GTN,GTR040-110 ENGLISH AND SI

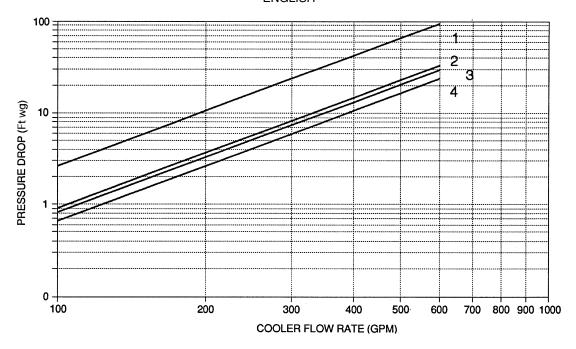


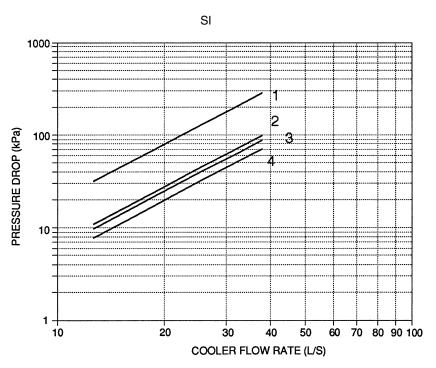

LEGEND

■ — 040 □ — 045,050

NOTE: Ft of water = $2.31 \times change in psig.$

Cooler Fluid Pressure Drop Curves — 30GTN,GTR130-210 **ENGLISH**

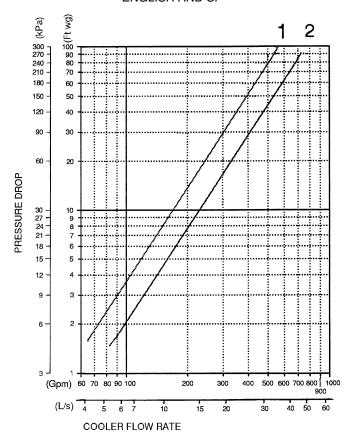



COOLER PRESSURE DROP KEY

- 1 30GTN,GTR130,150 2 30GTN,GTR170,190 3 30GTN,GTR210

NOTE: Ft of water = $2.31 \times \text{change in psig.}$

Cooler Fluid Pressure Drop Curves — 30GTN,GTR230A-420A, 270B, 330B-420B **ENGLISH**



COOLER PRESSURE DROP KEY

- 1 Module B 30GTN,GTR270
- 2 Module A 30GTN,GTR230-255
- 3 Module A 30GTN,GTR270,330 Module B 30GTN,GTR330,360 (50 Hz)
- 4 Module A 30GTN,GTR290,315,360 (50 or 60 Hz), 390, and 420 Module B 30GTN,GTR360 (60 Hz), 390, and 420

Cooler Fluid Pressure Drop Curves — 30GTN,GTR230B, 245B, 255B, 290B, 315B ENGLISH AND SI

COOLER PRESSURE DROP KEY

- 1 Module B 30GTN,GTR230,245 2 Module B — 30GTN,GTR255,290,315
- NOTE: Ft of water = 2.31 x change in psig.

SERVICE TRAINING

Packaged Service Training programs are an excellent way to increase your knowledge of the equipment discussed in this manual, including:

• Unit Familiarization

• Maintenance

• Installation Overview

• Operating Sequence

A large selection of product, theory, and skills programs are available, using popular video-based formats and materials. All include video and/or slides, plus companion book.

Classroom Service Training which includes "hands-on" experience with the products in our labs can mean increased confidence that really pays dividends in faster troubleshooting and fewer callbacks. Course descriptions and schedules are in our catalog.

CALL FOR FREE CATALOG 1-800-962-9212

[] Packaged Service Tr	aining []	Classroom	Service	Training
---	-----------------------	----------	---	-----------	---------	----------

Copyright 2000 Carrier Corporation

CUT ALONG DOTTED LINE

START-UP CHECKLIST FOR *COMFORT*LINK™ CHILLER SYSTEMS (Remove and use for job file)

Preliminary Information	
JOB NAME	
LOCATION	
INSTALLING CONTRACTOR	
DISTRIBUTOR	
START-UP PERFORMED BY	
	SERIAL NO
COMPRESSORS:	
CIRCUIT A	CIRCUIT B
1) MODEL NO.	1) MODEL NO.
SERIAL NO.	SERIAL NO.
MTR NO.	MTR NO.
2) MODEL NO.	2) MODEL NO.
SERIAL NO.	SERIAL NO.
MTR NO.	MTR NO.
3) MODEL NO.	3) MODEL NO.
SERIAL NO.	SERIAL NO.
MTR NO.	MTR NO.
4) MODEL NO. SERIAL NO.	-
MTP NO	-
WITH NO.	-
COOLER:	
MODEL NO.	MANUFACTURED BY
SERIAL NO.	DATE
TYPE OF EXPANSION VALVES (check one): EXV	TXV
AIR-HANDLING EQUIPMENT:	
MANUFACTURER	
	_ SERIAL NO
	RIES

В.	Preliminary Equipment Check (Check box if complete)					
	IS THERE ANY SHIPPING DAMA	\GE?	_ IF SO, WI	HERE		
	WILL THIS DAMAGE PREVENT UNIT START-UP?					
	☐ HAVE COMPRESSOR BASE I			PROPERLY ADJUS	TED?	
	☐ CHECK POWER SUPPLY. DO					
	□ HAS THE CIRCUIT PROTECT (refer to Installation Instructions		D AND INST	ALLED PROPERLY?		
	□ ARE THE POWER WIRES TO (refer to Installation Instructions		D AND INST	ALLED PROPERLY?		
	☐ HAS THE GROUND WIRE BE	EN CONNECTE)?			
	☐ ARE ALL TERMINALS TIGHT	?				
	CHECK AIR SYSTEMS (Check	box if complete)				
	☐ ALL AIR HANDLERS OPERAT	ING? (refer to air	-handling eq	uipment Installation	and Start-Up Instructions)	
	□ ALL CHILLED FLUID VALVES	OPEN?				
	☐ ALL FLUID PIPING CONNECT	FED PROPERLY?	?			
	□ ALL AIR BEEN VENTED FROM THE COOLER LOOP?					
	□ CHILLED WATER (FLUID) PUMP (CWP) OPERATING WITH THE CORRECT ROTATION?					
	CWP MOTOR AMPERAGE:	Rated		Actual		
	PUMP PRESSURE:	Inlet		Outlet		
C.	Unit Start-Up (insert check mark	as each item is c	ompleted)			
	☐ CHILLER HAS BEEN PROPER FLUID PUMP STARTER.	RLY INTERLOCK	ED WITH TH	HE AUXILIARY CON	FACTS OF THE CHILLED	
	□ UNIT IS SUPPLIED WITH COI (115 V FOR 208/230, 460, ANI				ITS)	
	☐ CRANKCASE HEATERS HAVI	E BEEN ENERGI	ZED FOR A	MINIMUM OF 24 HC	DURS PRIOR TO START-UP.	
	□ COMPRESSOR OIL LEVEL IS	CORRECT.				
	□ BOTH LIQUID LINE SERVICE	VALVES ARE BA	ACKSEATED			
	□ ALL COMPRESSOR DISCHARGE SERVICE VALVES ARE BACKSEATED.					
	□ ALL COMPRESSOR SUCTIO	N SERVICE VAL	VES ARE BA	CKSEATED.		
	☐ LOOSEN COMPRESSOR SHI	PPING HOLDDC	WN BOLTS.			
	□ LEAK CHECK THOROUGHLY EXVs, TXVs, SOLENOID VAI HEADS, WITH ELECTRONIC	LVES, FILTER D	RIERS, FUS			
	LOCATE, REPAIR, AND REPORT	Γ ANY REFRIGE	RANT LEAKS	S		

C.	Unit Start-Up (cont)
	□ CHECK VOLTAGE IMBALANCE: AB AC BC
	AB + AC + BC (divided by 3) = AVERAGE VOLTAGE = V
	MAXIMUM DEVIATION FROM AVERAGE VOLTAGE =
	VOLTAGE IMBALANCE = (MAX. DEVIATION) AVERAGE VOLTAGE x 100 = % VOLTAGE IMBALANCE
	IF OVER 2% VOLTAGE IMBALANCE, DO NOT ATTEMPT TO START CHILLER!
	CALL LOCAL POWER COMPANY FOR ASSISTANCE.
	☐ INCOMING POWER VOLTAGE TO CHILLER MODULES IS WITHIN RATED UNIT VOLTAGE RANGE.
	SYSTEM FLUID VOLUME IN LOOP: TYPE SYSTEM:
	AIR CONDITIONING — MINIMUM 3 GAL PER NOMINAL TON (3.25 L PER kW) = GAL (L)
	PROCESS COOLING — MINIMUM 6 GAL PER NOMINAL TON (6.50 L PER kW) = GAL (L)
	CHECK PRESSURE DROP ACROSS COOLER.
	FLUID ENTERING COOLER: PSIG (kPa)
	FLUID LEAVING COOLER: PSIG (kPa)
	(PSIG DIFFERENCE) x 2.31 = FT OF FLUID PRESSURE DROP =
	PLOT COOLER PRESSURE DROP ON PERFORMANCE DATA CHART (LOCATED IN PRODUCT DATA LITERATURE) TO DETERMINE TOTAL GPM (L/s).
	TOTAL GPM (L/s) = UNIT'S RATED MIN GPM (L/s) =
	GPM (L/s) PER TON = UNIT'S RATED MIN PRESSURE DROP = (Refer to product data literature.)
	JOB'S SPECIFIED GPM (L/s) (if available):
	NOTE: IF UNIT HAS LOW FLUID FLOW, FIND SOURCE OF PROBLEM: CHECK FLUID PIPING, IN-LINE FLUID STRAINER, SHUT-OFF VALVES, CWP ROTATION, ETC.
	COOLER LOOP FREEZE PROTECTION IF REQUIRED:
	GALLONS (LITERS) ADDED:
	PIPING INCLUDES ELECTRIC TAPE HEATERS (Y/N):
	VISUALLY CHECK MAIN BASE BOARD AND EXV BOARD FOR THE FOLLOWING:
	□ INSPECT ALL THERMISTORS AND EXV CABLES FOR POSSIBLE CROSSED WIRES.
	☐ CHECK TO BE SURE ALL WELL-TYPE THERMISTORS ARE FULLY INSERTED INTO THEIR RESPECTIVE WELLS.
	□ ALL CABLES AND PIN CONNECTORS TIGHT?
	☐ ALL EXV, EMM, AND CXB BOARDS (IF INSTALLED) AND DISPLAY CONNECTIONS TIGHT?

UNIT (Configuration Settings)

ITEM	DESCRIPTION	STATUS	UNITS	VALUE
TYPE	Unit Type	1 = Air Cooled 2 = Water Cooled 3 = Split System 4 = Heat Machine 5 = Air Cooled Heat Reclaim		
TONS	Unit Size	15 to 300	TONS	
CAP.A	Circuit A1% Capacity	0 to 100	%	
CMP.A	Number Circ A Compressor	1 to 4		
CYL.A	Compressor A1 Cylinders	4 or 6		
CMP.B	Number Circ B Compressor	1 to 4		
CYL.B	Compressor B1 Cylinders	4 or 6		
EXV	EXV Module Installed	No/Yes		
SH.SP	EXV Superheat Setpoint	10 to 40	^F	
SH.OF	EXV Superheat Offset	-20 to 20	^F	
REFG	Refrigerant	1 = R22 2 = R134A		
FAN.S	Fan Staging Select	1 = 2 Stage indpt. 2 = 3 Stage indpt. 3 = 2 Stage common 4 = 3 Stage common		

PRESS ESCAPE KEY TO DISPLAY 'UNIT'. PRESS DOWN ARROW KEY TO DISPLAY 'OPT1'. PRESS ENTER KEY. RECORD CONFIGURATION INFORMATION BELOW:

OPTIONS1 (Options Configuration)

ITEM	DESCRIPTION	STATUS	VALUE
FLUD	Cooler Fluid	1 = Water 2 = Med. Brine 3 = Low Brine	
HGB.S	Hot Gas Bypass Select	No/Yes	
HPCM	Head Press. Cont. Method	1 = EXV controlled 2 = Setpoint controlled 3 = Setpoint-A, EXV-B 4 = EXV-A, Setpoint-B	
HPCT	Head Press. Control Type	0 = None 1 = Air Cooled 2 = Water Cooled	
MMR.S	Motormaster Select	No/Yes	
PRTS	Pressure Transducer	No/Yes	
PMP.I	Cooler Pump Interlock	Off/On	
CPC	Cooler Pump Control	Off/On	
CNP.I	Condenser Pump Interlock	Off/On	
CNPC	Condenser Pump Control	0 = No Control 1 = On with Mode 2 = On with Compressor(s)	
CWT.S	Condenser Fluid Sensors	No/Yes	
CA.UN	No. Circuit A Unloaders	0-2	
CB.UN	No. Circuit B Unloaders	0-2	
EMM	EMM Module Installed	No/Yes	

PRESS ESCAPE KEY TO DISPLAY 'OPT1'. PRESS DOWN ARROW KEY TO DISPLAY 'OPT2'. PRESS ENTER KEY.

RECORD CONFIGURATION INFORMATION BELOW:

OPTIONS2 (Options Configuration)

ITEM	DESCRIPTION	STATUS	UNITS	VALUE
CTRL	Control Method	0 = Switch 1 = 7 day sched. 2 = Occupancy 3 = CCN		
CCNA	CCN Address	1 to 239		
CCNB	CCN Bus Number	0 to 239		
BAUD	CCN Baud Rate	1 = 240 2 = 480 3 = 9600 4 = 19,200 5 = 38,400		
LOAD	Loading Sequence Select	1 = Equal loading 2 = Staged loading		
LLCS	Lead/Lag Circuit Select	1 = Automatic 2 = Circuit A leads 3 = Circuit B leads		
LCWT	High LCW Alert Limit	2 to 60	^F	
DELY	Minutes off time	0 to 15	min.	
ICE.M	Ice Mode Enable	Enable/Disable		

PRESS ESCAPE KEY TO DISPLAY 'OPT2'. PRESS DOWN ARROW KEY TO DISPLAY 'RSET'. PRESS ENTER KEY.

RECORD CONFIGURATION INFORMATION BELOW:

RESETCON (Temperature Reset and Demand Limit)

ITEM	DESCRIPTION	STATUS	UNITS	VALUE
	COOLING RESET			
CRST	Cooling Reset Type	0 = No Reset 1 = 4-20 mA input 2 = External temp-OAT 3 = Return fluid 4 = External temp-SPT		
CRT1	No Cool Reset Temp	0 to 125	°F	
CRT2	Full Cool Reset Temp	0 to 125	°F	
DGRC	Degrees Cool Reset	-30 to 30	^F	
HRST	Heating Reset Type	0 = No Reset 1 = 4-20 mA input 2 = External temp-OAT 3 = Return fluid 4 = External temp-SPT		
HRT1	No Heat Reset Temp	Not Supported	°F	
HRT2	Full Heat Reset Temp	Not Supported	°F	
DGRH	Degrees Heat Reset	-30 to 30	^F	
	DEMAND LIMIT			
DMDC	Demand Limit Select	0 = None 1 = External switch input 2 = 4-20 ma input 3 = Loadshed	0	
DM20	Demand Limit at 20mA	0 to 100	%	
SHNM	Loadshed Group Number	0 to 99		
SHDL	Loadshed Demand Delta	0 to 60	%	
SHTM	Maximum Loadshed Time	0 to 120	min	
DLS1	Demand Limit Switch 1	0 to 100	%	
DLS2	Demand Limit Switch 2	0 to 100	%	
	LEAD/LAG			
LLEN	Lead/Lag Chiller Enable	Enable/Disable		
MSSL	Master/Slave Select	Slave/Master		
SLVA	Slave Address	0 to 239		
LLBL	Lead/Lag Balance Select	Enable/Disable		
LLBD	Lead/Lag Balance Delta	40 to 400	hours	
LLDY	Lag Start Delay	0 to 30	min	

PRESS ESCAPE KEY TO DISPLAY 'RSET'. PRESS DOWN ARROW KEY TO DISPLAY 'SLCT'. PRESS ENTER KEY.

RECORD CONFIGURATION INFORMATION BELOW:

SLCT (Heating Cooling Setpoint Select)

ITEM	DESCRIPTION	STATUS	UNITS	VALUE
CLSP	Cooling Setpoint Select	0 = Single 1 = Dual Switch 2 = Dual Clock 3 = 4 to 20 mA Input 4 = 4-20 mA Input 5 = External Setpoint Potentiometer		
HTSP	Heating Setpoint Select	0 = Single 1 = Dual Switch 2 = Dual 7 day schedule 3 = Dual CCN occupancy 4 = 4-20 mA Input 5 = Setpoint Potentiometer		
RL.S	Ramp Load Select	Enable/Disable		
CRMP	Cooling Ramp Loading	0.2 to 2.0		
HRMP	Heating Ramp Loading	0.2 to 2.0		
HCSW	Heat Cool Select	Cool/Heat		
Z.GN	Deadband Multiplier	1.0 to 4.0		

PRESS ESCAPE KEY SEVERAL TIMES TO GET TO THE MODE LEVEL (BLANK DISPLAY). USE THE ARROW KEYS TO SCROLL TO THE SET POINT LED. PRESS ENTER TO DISPLAY SETPOINTS. RECORD CONFIGURATION INFORMATION BELOW:

SETPOINT

SUB-MODE	ITEM	DESCRIPTION	STATUS	UNITS	VALUE
COOL	CSP.1	Cooling Setpoint 1	-20 to 70	°F	
	CSP.2	Cooling Setpoint 2	-20 to 70	°F	
	CSP.3	Cooling Setpoint 3	-20 to 32	°F	
HEAT	HSP.1	Heating Setpoint 1	80 to 140	°F	
	HSP.2	Heating Setpoint 2	80 to 140	°F	
HEAD	HD.P.A	Head Pressure Setpoint A	80 to 140	°F	
	HD.P.B	Head Pressure Setpoint B	80 to 140	°F	

USE ARROW/ESCAPE KEYS TO ILLUMINATE TEMPERATURES LED. PRESS ENTER TO DISPLAY 'UNIT'. PRESS ENTER AND USE THE ARROW KEYS TO RECORD TEMPERATURES FOR T1 AND T2 BELOW. RECORD T9 AND T10 IF INSTALLED. RECORD CONDENSER ENTERING AND LEAVING FLUID TEMPERATURES IF INSTALLED. PRESS ESCAPE TO DISPLAY 'UNIT' AGAIN AND PRESS THE DOWN ARROW KEY TO DISPLAY 'CIR.A'. PRESS ENTER AND USE THE ARROW KEYS TO RECORD TEMPERATURE FOR T3 (30GTN,R ONLY). USING A DC VOLTMETER, MEASURE AND RECORD THE VOLTAGE FOR EACH THERMISTOR AT THE LOCATION SHOWN. FOR MODELS WITH QUICKSET, RECORD THE TEMPERATURES ACCORDING TO THE DC VOLTAGES USING TABLES 32A-33B.

	TEMPERATURE	VDC	BOARD LOCATION
T1 (CLWT)			MBB, J8 PINS 13,14
T2 (CEWT)			MBB, J8 PINS 11,12
T3 (SCT.A)			MBB, J8 PINS 21,22
T9 (OAT)			MBB, J8 PINS 7,8
T10 (SPT)			MBB, J8 PINS 5,6
(CNDE)			MBB, J8 PINS 1,2
(CNDL)			MBB, J8 PINS 3,4

USE ESCAPE/ARROW KEYS TO ILLUMINATE CONFIGURATION LED. PRESS ENTER TO DISPLAY 'DISP'. PRESS ENTER AGAIN TO DISPLAY 'TEST' FOLLOWED BY 'OFF'. PRESS ENTER TO STOP DISPLAY AT 'OFF' AND ENTER AGAIN SO 'OFF' DISPLAY FLASHES. 'PASS' AND 'WORD' WILL FLASH IF PASSWORD NEEDS TO BE ENTERED. PRESS ENTER TO DISPLAY PASSWORD FIELD AND USE THE ENTER KEY FOR EACH OF THE FOUR PASSWORD DIGITS. USE ARROW KEYS IF PASSWORD IS OTHER THAN STANDARD. AT FLASHING 'OFF' DISPLAY, PRESS THE UP ARROW KEY TO DISPLAY 'ON' AND PRESS ENTER. ALL LED SEGMENTS AND MODE LEDS WILL LIGHT UP. PRESS ESCAPE TO STOP THE TEST. PRESS ESCAPE TO RETURN TO THE 'DISP' DISPLAY. PRESS THE ESCAPE KEY AGAIN AND USE THE ARROW KEYS TO ILLUMINATE THE SERVICE TEST LED. PRESS ENTER TO DISPLAY 'TEST'. PRESS ENTER TO STOP DISPLAY AT 'OFF' AND ENTER AGAIN SO 'OFF' FLASHES. PRESS THE UP ARROW KEY AND ENTER TO ENABLE THE MANUAL MODE. PRESS ESCAPE AND DISPLAY NOW SAYS 'TEST' 'ON'.

PRESS THE DOWN ARROW TO DISPLAY 'OUTS'. PRESS THE ENTER KEY TO DISPLAY 'LLS.A'. PRESS THE ENTER KEY TO STOP DISPLAY AT 'OFF' AND ENTER AGAIN SO 'OFF' FLASHES. PRESS THE UP ARROW KEY AND ENTER TO TURN THE OUTPUT ON. PRESS ENTER SO THE 'ON' DISPLAY FLASHES, PRESS THE DOWN ARROW KEY AND THEN ENTER TO TURN THE OUTPUT OFF. OUTPUTS WILL ALSO BE TURNED OFF OR SENT TO 0% WHEN ANOTHER OUTPUT IS TURNED ON. CHECK OFF THE FOLLOWING THAT APPLY AFTER BEING TESTED:

LLS.A	N/A	EXV.A	
LLS.B	N/A	EXV.B	
FAN1		FAN2	
FAN3		FAN4	
CLR.P	(TB5 — 10,12)	CND.P	N/A
RMT.A	(TB5 — 11,12)		

USE ESCAPE KEY TO RETURN TO 'OUTS' DISPLAY. PRESS DOWN ARROW TO DISPLAY 'COMP'. PRESS ENTER KEY TO DISPLAY 'CC.A1'. NOTE THAT UNLOADERS AND HOT GAS BYPASS SOLENOIDS CAN BE TESTED BOTH WITH AND WITHOUT COMPRESSOR(S) RUNNING. MAKE SURE ALL SERVICE VALVES ARE OPEN AND COOLER/CONDENSER PUMPS HAVE BEEN TURNED ON BEFORE STARTING COMPRESSORS. CHECK OFF EACH ITEM AFTER SUCCESSFUL TEST. THE CONTROL WILL ONLY START ONE COMPRESSOR PER MINUTE. WHEN AT THE DESIRED ITEM, PRESS THE ENTER KEY TWICE TO MAKE THE 'OFF' FLASH. PRESS THE UP ARROW KEY AND ENTER TO TURN THE OUTPUT ON.

CC.A1	CC.A2	
CC.A3	CC.A4	
UL.A1	UL.A2	
HGBP		
CC.B1	CC.B2	
CC.B3	CC.B4	
UL.B1	UL.B2	

CHECK AND ADJUST SUPERHEAT AS REQUIRED.

All Units:

MEASURE THE FOLLOWING (MEASURE WHILE MACHINE IS IN STABLE OPERATING CONDITION):

	CIRCUIT A	CIRCUIT B
DISCHARGE PRESSURE		
SUCTION PRESSURE		
OIL PRESSURE		
DISCHARGE LINE TEMP		
SUCTION LINE TEMP		
SATURATED COND TEMP (T3/T4)		
SATURATED SUCT TEMP (T5/T6)		
SUCTION GAS TEMP (T7/T8)		
COOLER ENT FLUID (T2)		
COOLER LVG FLUID (T1)		

Copyright 2000 Carrier Corporation