Site Information

Wireless Mode - The mode of the wireless network currently in use.

Channel - The channel to which the wireless network devices are set.

WEP - The status of the WEP encryption security feature.

MAC - The MAC address of the wireless network's access point.

Surveyed at - The time at which the wireless network was scanned.

Refresh - Click the **Refresh** button to perform a new search for wireless devices.

Connect - To connect to one of the networks on the list, select the wireless network, and click the **Connect** button. If the wireless network has WEP encryption enabled, you will see the screen shown in Figure 7-5.

Figure 7-5

In the WEP drop-down box, select the type of WEP encryption used by the wireless network: **64-bit**, or **128-bit** WEP.

If the wireless network uses a passphrase, enter the passphrase in the *Passphrase* field. If the wireless network uses a WEP key, enter the WEP key in the *Key 1* field.

Click the **OK** button to complete the network connection and return to the *Site Survey* screen, or click the **Cancel** button to cancel the network connection and return to the *Site Survey* screen.

On the *Site Survey* screen, click the **X** (Close) button in the upper right corner to exit the WLAN Monitor.

Profiles

The *Profiles* screen (Figure 7-6) lets you save different configuration profiles for different network setups. You can also import or export profiles. The default profile holds the initial configuration saved when you ran the Setup Wizard.

Figure 7-6

Profile - Name of the connection profile.

SSID - The wireless network's unique name, as set in the connection profile.

Profile Information

Network Type - The mode of the wireless network currently in use.

Transfer Rate - The data transfer rate of the current connection. (In *Auto* mode, the Adapter dynamically shifts to the fastest data transfer rate possible at any given time.)

Channel - The channel to which the wireless network devices are set.

 \boldsymbol{WEP} - The status of the WEP encryption security feature.

Connect - To connect to a wireless network using a specific profile, select the profile, and click the **Connect** button.

Edit - Select a profile, and click the Edit button to change an existing profile.

New - Click the **New** button to create a new profile. See the next section, "Creating a New Profile," for detailed instructions.

Import - Click the Import button to import a profile that has been saved in another location. From the screen that appears (shown in Figure 7-7), select the appropriate file, and click the Open button.

Figure 7-7

Export - To save the profile(s) in a different location, click the Export button. On the screen that appears (Figure 7-8), direct Windows to the appropriate folder and click the **OK** button.

Figure 7-8

Delete - Click the **Delete** button to delete a profile.

Click the **X** (Close) button in the upper right corner to exit the WLAN Monitor.

Note: If you have more than one profile, all profiles will be automatically selected and exported to the same folder.

Creating a New Profile

- 1. On the *Profiles* screen, shown in Figure 7-6, click the **New** button to create a new profile.
- 2. When the *Create connection profile* screen appears (Figure 7-9), enter a name for the new profile. Click **OK** to save the profile name or click **Cancel** to return to the previous screen.

Figure 7-9

3. The *Choose a network type* screen (Figure 7-10) shows a choice of two wireless modes. Click the **Infrastructure Mode** radio button if you want your wireless computers to communicate with computers on your wired network via a wireless access point. Click the **Ad-Hoc Mode** radio button if you want multiple wireless computers to communicate directly with each other. Click the **Next** button to continue or the **Back** button to return to the previous screen.

Infrastructure Mode - This mode allows wireless and wired networks to communicate through an access point.

Ad-Hoc Mode - This mode allows wireless-equipped computers to communicate directly with each other. No access point is used.

Figure 7-10

4. The Wireless Settings screen (Figure 7-11) will appear. If you chose Infrastructure Mode, go to Step 5 now. If you chose Ad-Hoc Mode, select the correct operating channel for your network from the Channel dropdown menu. Then, select the Network Mode from the drop-down menu. Click the Next button, and go to Step 5. Click the Back button to change any settings.

Channel - The channel you choose should match the channel set on the other devices in your wireless network. If you are unsure about which channel to use, select the default channel (Channel 6).

Network Mode - Select **Mixed Mode**, and both Wireless-G and Wireless-B computers will be allowed on the network, but the speed will be reduced. Select **G-Only Mode** for maximum speed, but no Wireless-B users will be allowed on the network.

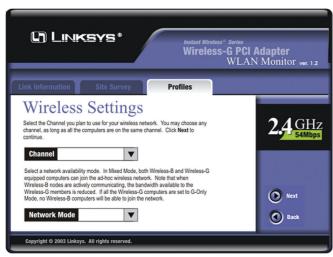


Figure 7-11

5. The *Network Setting* screen (Figure 7-12) will appear.

If your network has a DHCP server, click the radio button next to **Obtain** an **IP** address automatically (**DHCP**). Click the **Next** button to continue, or click the **Back** button to return to the previous screen.

If your network does not have a DHCP server, click the radio button next to **Specify the IP address**. Enter an **IP Address**, **Subnet Mask**, **Default Gateway**, and **DNS** appropriate for your network. Enter each address in this format: **xxx.xxx.xxx** (the x's represent the numbers that make up each address). You must specify the IP Address and Subnet Mask on this screen. If you are unsure about the Default Gateway and DNS addresses, then leave these fields alone.

IP Address - This IP Address must be unique to your network.

Subnet Mask - The Adapter's Subnet Mask must be the same as your wired network's Subnet Mask.

Default Gateway - Enter the IP address of your network's Gateway here.

DNS - Enter the DNS addresses of your Ethernet (wired) network here.

Click the **Next** button to continue or the **Back** button to return to the previous screen.

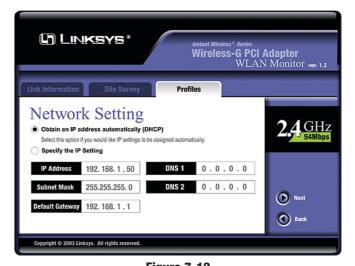


Figure 7-12

6. The *Security Settings* screen (Figure 7-13) will appear. Enable or disable Wired Equivalent Privacy (WEP) encryption for your wireless network. If you enable WEP, enter a Passphrase or WEP key. Click the **Next** button to continue or the **Back** button to return to the previous screen.

WEP (Disabled/64 bits WEP/128 bits WEP) - If you do not want to use WEP encryption, choose Disabled. To use WEP encryption (recommended to increase network security), select 64 bits or 128 bits WEP from the drop-down menu, and enter either a Passphrase or WEP key.

Passphrase - Instead of manually entering WEP keys, you can enter a Passphrase, so that a WEP key is automatically generated. It is case-sensitive and should not be longer than 16 alphanumeric characters. This passphrase must match the passphrase of your wireless network and is compatible with other Linksys wireless products only. (If you have any non-Linksys wireless products, enter the WEP key(s) manually on those products.)

Key 1 - This WEP key must match the WEP key of your wireless network. If you are using 64-bit WEP encryption, then the key must consist of exactly 10 hexadecimal characters. If you are using 128-bit WEP encryption, then the key must consist of exactly 26 hexadecimal characters. Valid hexadecimal characters are "0" to "9" and "A" to "F".

Figure 7-13

7. The Confirm New Settings screen (Figure 7-14) will appear. To save the new settings, click the Yes button. To cancel the settings and return to the **Profiles** screen, click the No button. To edit the new settings, click the Back button.

Figure 7-14

8. The *Congratulations* screen (Figure 7-15) will appear next. Click **Activate new settings now** to implement the new settings immediately and return to the *Link Information* screen. Click **Activate new settings later** to keep the current settings active, and return to the *Profiles* screen so that you can edit your profile or create another profile.

Figure 7-15

You have successfully created a connection profile. Click the X (Close) button in the upper right corner to exit the WLAN Monitor.

Appendix A: Troubleshooting

Common Problems and Solutions

This chapter provides solutions to problems that may occur during the installation and operation of the Wireless-G PCI Adapter. Read the descriptions below to solve your problems. If you can't find an answer here, check the Linksys website at www.linksys.com.

- 1. The Wireless-G PCI Adapter does not work properly.
 - Reinsert the Wireless-G PCI Adapter into your PC's PCI slot.
 - Right click on My Computer and select Properties. Select the device manager and click on the Network Adapter. You will find the Wireless-G PCI Adapter if it is installed successfully. If you see the yellow exclamation mark, the resources are conflicting. You will see the status of the Wireless-G PCI Adapter. If there is a yellow question mark, please check the following:
 - Make sure that your PC has a free IRQ (Interrupt ReQuest, a hardware interrupt on a PC.)
 - Make sure that you have inserted the right adapter and installed the proper driver.

If the Wireless-G PCI Adapter does not function after attempting the above steps, remove the adapter and do the following:

- Uninstall the driver software from your PC.
- Restart your PC and repeat the hardware and software installation as specified in this User Guide.
- 2. I cannot communicate with the other computers linked via Ethernet in the Infrastructure configuration.
 - Make sure that the PC to which the Wireless-G PCI Adapter is associated is powered on.
 - Make sure that your Wireless-G PCI Adapter is configured on the same channel and with the same security options as with the other computers in the Infrastructure configuration.

Frequently Asked Questions

ation over a network.

Can I run an application from a remote computer over the wireless network?

This will depend on whether or not the application is designed to be used over a network. Consult the application's user guide to determine if it supports oper-

Can I play computer games with other members of the wireless network?

Yes, as long as the game supports multiple players over a LAN (local area network). Refer to the game's user guide for more information.

What is the IEEE 802.11b standard?

It is one of the IEEE standards for wireless networks. The 802.11b standard allows wireless networking hardware from different manufacturers to communicate, provided that the hardware complies with the 802.11b standard. The 802.11b standard states a maximum data transfer rate of 11Mbps and an operating frequency of 2.4GHz.

What IEEE 802.11b features are supported?

The product supports the following IEEE 802.11b functions:

- CSMA/CA plus Acknowledge protocol
- Multi-Channel Roaming
- Automatic Rate Selection
- RTS/CTS feature
- Fragmentation
- Power Management

What is ad-hoc mode?

When a wireless network is set to ad-hoc mode, the wireless-equipped computers are configured to communicate directly with each other. The ad-hoc wireless network will not communicate with any wired network.

What is infrastructure mode?

When a wireless network is set to infrastructure mode, the wireless network is configured to communicate with a wired network through a wireless access point.

What is roaming?

Roaming is the ability of a portable computer user to communicate continuously while moving freely throughout an area greater than that covered by a single access point. Before using the roaming function, the workstation must make sure that it is the same channel number with the access point of dedicated coverage area.

To achieve true seamless connectivity, the wireless LAN must incorporate a number of different functions. Each node and access point, for example, must always acknowledge receipt of each message. Each node must maintain contact with the wireless network even when not actually transmitting data. Achieving these functions simultaneously requires a dynamic RF networking technology that links access points and nodes. In such a system, the user's end node undertakes a search for the best possible access to the system. First, it evaluates such factors as signal strength and quality, as well as the message load currently being carried by each access point and the distance of each access point to the wired backbone. Based on that information, the node next selects the right access point and registers its address. Communications between end node and host computer can then be transmitted up and down the backbone.

As the user moves on, the end node's RF transmitter regularly checks the system to determine whether it is in touch with the original access point or whether it should seek a new one. When a node no longer receives acknowledgment from its original access point, it undertakes a new search. Upon finding a new access point, it then re-registers, and the communication process continues.

What is ISM band?

The FCC and their counterparts outside of the U.S. have set aside bandwidth for unlicensed use in the ISM (Industrial, Scientific and Medical) band. Spectrum in the vicinity of 2.4 GHz, in particular, is being made available worldwide. This presents a truly revolutionary opportunity to place convenient high-speed wireless capabilities in the hands of users around the globe.

What is Spread Spectrum?

Spread Spectrum technology is a wideband radio frequency technique developed by the military for use in reliable, secure, mission-critical communications systems. It is designed to trade off bandwidth efficiency for reliability, integrity, and security. In other words, more bandwidth is consumed than in the case of narrowband transmission, but the trade-off produces a signal that is, in effect, louder and thus easier to detect, provided that the receiver knows the parameters of the spread-spectrum signal being broadcast. If a receiver is not tuned to the right frequency, a spread-spectrum signal looks like background noise. There are two main alternatives, Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS).

What is DSSS? What is FHSS? And what are their differences?

Frequency-Hopping Spread-Spectrum (FHSS) uses a narrowband carrier that changes frequency in a pattern that is known to both transmitter and receiver. Properly synchronized, the net effect is to maintain a single logical channel. To

an unintended receiver, FHSS appears to be short-duration impulse noise. Direct-Sequence Spread-Spectrum (DSSS) generates a redundant bit pattern for each bit to be transmitted. This bit pattern is called a chip (or chipping code). The longer the chip, the greater the probability that the original data can be recovered. Even if one or more bits in the chip are damaged during transmission, statistical techniques embedded in the radio can recover the original data without the need for retransmission. To an unintended receiver, DSSS appears as low power wideband noise and is rejected (ignored) by most narrowband receivers.

Would the information be intercepted while transmitting on air?

WLAN features two-fold protection in security. On the hardware side, as with Direct Sequence Spread Spectrum technology, it has the inherent security feature of scrambling. On the software side, WLAN offers the encryption function (WEP) to enhance security and access control.

What is WEP?

WEP is Wired Equivalent Privacy, a data privacy mechanism based on a 64-bit or 128-bit shared key algorithm, as described in the IEEE 802.11 standard.

28 29

Appendix B: Glossary

802.11b - One of the IEEE standards for wireless networking hardware. Products that adhere to a specific IEEE standard will work with each other, even if they are manufactured by different companies. The 802.11b standard specifies a maximum data transfer rate of 11Mbps, an operating frequency of 2.4GHz, and WEP encryption for security. 802.11b networks are also referred to as Wi-Fi networks.

802.11g - A proposed, but as yet unratified extension of the IEEE 802.11 standard for wireless networking hardware. The draft 802.11g specifications used by Linksys specify a maximum data transfer rate of 54Mbps using OFDM modulation, an operating frequency of 2.4GHz, backward compatibility with IEEE 802.11b devices, and WEP encryption for security.

Adapter - Printed circuit board that plugs into a PC to add to capabilities or connectivity to a PC. In a networked environment, a network interface card is the typical adapter that allows the PC or server to connect to the intranet and/or Internet.

Ad-hoc Network - An ad-hoc network is a group of computers, each with a wireless adapter, connected as an independent 802.11 wireless LAN. Ad-hoc wireless computers operate on a peer-to-peer basis, communicating directly with each other without the use of an access point. Ad-hoc mode is also referred to as an Independent Basic Service Set (IBSS) or as peer-to-peer mode, and is useful at a departmental scale or SOHO operation.

Backbone - The part of a network that connects most of the systems and networks together and handles the most data.

Bandwidth - The transmission capacity of a given facility, in terms of how much data the facility can transmit in a fixed amount of time; expressed in bits per second (bps).

Bit - A binary digit. The value - 0 or 1-used in the binary numbering system. Also, the smallest form of data.

BSS (Basic Service Set) - An infrastructure network connecting wireless devices to a wired network using a single access point.

CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) - In local area networking, this is the CSMA technique that combines slotted time-division multiplexing with carrier sense multiple access/collision detection (CSMA/CD) to avoid having collisions occur a second time. This works best if the time allocated is short compared to packet length and if the number of situations is small.

CTS (Clear To Send) - An RS-232 signal sent from the receiving station to the transmitting station that indicates it is ready to accept data.

Default Gateway - The routing device used to forward all traffic that is not addressed to a station within the local subnet.

DHCP (**D**ynamic Host Configuration Protocol) - A protocol that lets network administrators manage centrally and automate the assignment of Internet Protocol (IP) addresses in an organization's network. Using the Internet's set of protocol (TCP/IP), each machine that can connect to the Internet needs a unique IP address. When an organization sets up its computer users with a connection to the Internet, an IP address must be assigned to each machine. Without DHCP, the IP address must be entered manually at each computer and, if computers move to another location in another part of the network, a new IP address must be entered. DHCP lets a network administrator supervise and distribute IP addresses from a central point and automatically sends a new IP address when a computer is plugged into a different place in the network.

DHCP uses the concept of a "lease" or amount of time that a given IP address will be valid for a computer. The lease time can vary depending on how long a user is likely to require the Internet connection at a particular location. It's especially useful in education and other environments where users change frequently. Using very short leases, DHCP can dynamically reconfigure networks in which there are more computers than there are available IP addresses.

DHCP supports static addresses for computers containing Web servers that need a permanent IP address.

DNS - The domain name system (DNS) is the way that Internet domain name are located and translated into Internet Protocol (IP) addresses. A domain name is a meaningful and easy-to-remember "handle" for an Internet address.

Domain - A subnetwork comprised of a group of clients and servers under the control of one security database. Dividing LANs into domains improves performance and security.

Driver - A workstation or server software module that provides an interface between a network interface card and the upper-layer protocol software running in the computer; it is designed for a specific card, and is installed during the initial installation of a network-compatible client or server operating system.

DSSS (Direct-Sequence Spread Spectrum) - DSSS generates a redundant bit pattern for all data transmitted. This bit pattern is called a chip (or chipping code). Even if one or more bits in the chip are damaged during transmission, statistical techniques embedded in the receiver can recover the original data without the need for retransmission. To an unintended receiver, DSSS appears as low power wideband noise and is rejected (ignored) by most narrowband receivers. However, to an intended receiver (i.e. another wireless LAN endpoint), the DSSS signal is recognized as the only valid signal, and interference is inherently rejected (ignored).

Encryption - A security method that applies a specific algorithm to data in order to alter the data's appearance and prevent other devices from reading the information.

Ethernet - IEEE standard network protocol that specifies how data is placed on and retrieved from a common transmission medium. Has a transfer rate of 10 Mbps. Forms the underlying transport vehicle used by several upper-level protocols, including TCP/IP and XNS.

FHSS (Frequency Hopping Spread Spectrum) - FHSS continuously changes (hops) the carrier frequency of a conventional carrier several times per second according to a pseudo-random set of channels. Because a fixed frequency is not used, and only the transmitter and receiver know the hop patterns, interception of FHSS is extremely difficult.

Fragmentation - Breaking a packet into smaller units when transmitting over a network medium that cannot support the original size of the packet.

Gateway - A device that interconnects networks with different, incompatible communications protocols.

Hardware - Hardware is the physical aspect of computers, telecommunications, and other information technology devices. The term arose as a way to distinguish the "box" and the electronic circuitry and components of a computer from the program you put in it to make it do things. The program came to be known as the software.

Hop - The link between two network nodes.

IEEE (The Institute of Electrical and Electronics Engineers) - The IEEE describes itself as "the world's largest technical professional society, promoting the development and application of electrotechnology and allied sciences for the benefit of humanity, the advancement of the profession, and the well-being of our members."

The IEEE fosters the development of standards that often become national and international standards. The organization publishes a number of journals, has many local chapters, and several large societies in special areas, such as the IEEE Computer Society.

Infrastructure Network - An infrastructure network is a group of computers or other devices, each with a wireless adapter, connected as an 802.11 wireless LAN. In infrastructure mode, the wireless devices communicate with each other and to a wired network by first going through an access point. An infrastructure wireless network connected to a wired network is referred to as a Basic Service Set (BSS). A set of two or more BSS in a single network is referred to as an Extended Service Set (ESS). Infrastructure mode is useful at a corporation scale, or when it is necessary to connect the wired and wireless networks.

IP (Internet **P**rotocol) - The method or protocol by which data is sent from one computer to another on the Internet. It is a standard set of rules, procedures, or conventions relating to the format and timing of data transmission between two computers that they must accept and use to be able to understand each other.

IP Address - In the most widely installed level of the Internet Protocol (IP) today, an IP address is a 32-binary digit number that identifies each sender or receiver of information that is sent in packet across the Internet. When you request an HTML page or send e-mail, the Internet Protocol part of TCP/IP includes your IP address in the message (actually, in each of the packets if more than one is required) and sends it to the IP address that is obtained by looking up the domain name in the Uniform Resource Locator you requested or in the e-mail address you're sending a note to. At the other end, the recipient can see the IP address of the Web page requestor or the e-mail sender and can respond by sending another message using the IP address it received.

IRQ (Interrupt ReQuest) - A hardware interrupt on a PC. There are 16 IRQ lines used to signal the CPU that a peripheral event has started or terminated. Except for PCI devices, two devices cannot use the same line.

ISM band - The FCC and their counterparts outside of the U.S. have set aside bandwidth for unlicensed use in the ISM (Industrial, Scientific and Medical) band. Spectrum in the vicinity of 2.4 GHz, in particular, is being made available worldwide. This presents a truly revolutionary opportunity to place convenient high-speed wireless capabilities in the hands of users around the globe.

LAN (Local Area Network) - A group of computers and associated devices that share a common communications line and typically share the resources of a single processor or server within a small geographic area (for example, within an office building).

MAC (Media Access Control) Address - A unique number assigned by the manufacturer to any Ethernet networking device, such as a network adapter, that allows the network to identify it at the hardware level.

Mbps (Megabits per second) - One million bits per second; unit of measurement for data transmission.

Motherboard - A motherboard is the physical arrangement in a computer that contains the computer's basic circuitry and components.

Network - A system that transmits any combination of voice, video and/or data between users.

Node - A network junction or connection point, typically a computer or work station.

OFDM - Developed for wireless applications, Orthogonal Frequency Division Multiplexing (OFDM) technology offers superior performance-increased data rates and more reliable transmissions-than previous technologies, such as DSSS. OFDM is a scheme in which numerous signals of different frequencies are combined to form a single signal for transmission on the medium.

OFDM works by breaking one high-speed data stream into a number of lower-speed data streams, which are then transmitted in parallel. Each lower speed stream is used to modulate a subcarrier. Essentially, this creates a multi-carrier transmission by dividing a wide frequency band or channel into a number of narrower frequency bands or sub-channels. OFDM is also used for other applications, including powerline networking.

Packet - A unit of data routed between an origin and a destination in a network.

Passphrase - Used much like a password, a passphrase simplifies the WEP encryption process by automatically generating the WEP encryption keys for Linksys products.

PCI (Peripheral Component Interconnect) - A peripheral bus commonly used in PCs, Macintoshes and workstations. It was designed primarily by Intel and first appeared on PCs in late 1993. PCI provides a high-speed data path between the CPU and peripheral devices (video, disk, network, etc.). There are typically three or four PCI slots on the motherboard. In a Pentium PC, there is generally a mix of PCI and ISA slots or PCI and EISA slots. Early on, the PCI bus was known as a "local bus."

PCI provides "plug and play" capability, automatically configuring the PCI cards at startup. When PCI is used with the ISA bus, the only thing that is generally required is to indicate in the CMOS memory which IRQs are already in use by ISA cards. PCI takes care of the rest.

PCI allows IRQs to be shared, which helps to solve the problem of limited IRQs available on a PC. For example, if there were only one IRQ left over after ISA devices were given their required IRQs, all PCI devices could share it. In a PCI-only machine, there cannot be insufficient IRQs, as all can be shared.

Plug-and-Play - The ability of a computer system to configure expansion boards and other devices automatically without requiring the user to turn off the system during installation.

Port - A pathway into and out of the computer or a network device such as a switch or router. For example, the serial and parallel ports on a personal computer are external sockets for plugging in communications lines, modems and printers.

Roaming - In an infrastructure mode wireless network, this refers to the ability to move out of one access point's range and into another and transparently reassociate and reauthenticate to the new access point. This reassociation and reauthentication should occur without user intervention and ideally without interruption to network connectivity. A typical scenario would be a location with multiple access points, where users can physically relocate from one area to another and easily maintain connectivity.

RTS (Request To Send) - An RS-232 signal sent from the transmitting station to the receiving station requesting permission to transmit.

Server - Any computer whose function in a network is to provide user access to files, printing, communications, and other services.

Software - Instructions for the computer. A series of instructions that performs a particular task is called a "program." The two major categories of software are "system software" and "application software." System software is made up of control programs such as the operating system and database management system (DBMS). Application software is any program that processes data for the user.

A common misconception is that software is data. It is not. Software tells the hardware how to process the data.

SOHO (Small Office/Home Office) - Market segment of professionals who work at home or in small offices.

Spread Spectrum - Spread Spectrum technology is a wideband radio frequency technique developed by the military for use in reliable, secure, mission-critical communications systems. It is designed to trade off bandwidth efficiency for reliability, integrity, and security. In other words, more bandwidth is consumed than in the case of narrowband transmission, but the trade off produces a signal that is, in effect, louder and thus easier to detect, provided that the receiver knows the parameters of the spread-spectrum signal being broadcast. If a receiver is not tuned to the right frequency, a spread-spectrum signal looks like background noise. There are two main alternatives, Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS).

SSID (Service Set **ID**entifier) - A unique name shared among all points in a wireless network. The SSID must be identical for each point in the wireless network and is case-sensitive.

Storage - The semi-permanent or permanent holding place for digital data.

Subnet Mask - The method used for splitting IP networks into a series of subgroups, or subnets. The mask is a binary pattern that is matched up with the IP address to turn part of the host ID address field into a field for subnets.

Switch - 1. A data switch connects computing devices to host computers, allowing a large number of devices to share a limited number of ports. 2. A device for making, breaking, or changing the connections in an electrical circuit.

TCP (Transmission Control Protocol) - A method (protocol) used along with the IP (Internet Protocol) to send data in the form of message units (datagram) between network devices over a LAN or WAN. While IP takes care of handling the actual delivery of the data (routing), TCP takes care of keeping track of the individual units of data (called packets) that a message is divided into for efficient delivery over the network. TCP is known as a "connection oriented" protocol due to requiring the receiver of a packet to return an acknowledgment of receipt to the sender of the packet resulting in transmission control.

TCP/IP (Transmission Control Protocol/Internet Protocol) - The basic communication language or set of protocols for communications over a network (developed specifically for the Internet). TCP/IP defines a suite or group of protocols and not only TCP and IP.

Throughput - The amount of data moved successfully from one place to another in a given time period.

Topology - A network's topology is a logical characterization of how the devices on the network are connected and the distances between them. The most common network devices include hubs, switches, routers, and gateways. Most large networks contain several levels of interconnection, the most important of which include edge connections, backbone connections, and wide-area connections.

WAN (Wide Area Network)- A communications network that covers a relatively large geographic area, consisting of two or more LANs. Broadband communication over the WAN is often through public networks such as the telephone (DSL) or cable systems, or through leased lines or satellites. In its most basic definition, the Internet could be considered a WAN.

WEP (Wired Equivalent Privacy) - A data privacy mechanism based on a 64-bit or 128-bit shared key algorithm, as described in the IEEE 802.11 standard.

WLAN (Wireless Local Area Network) - A group of computers and associated devices that communicate with each other wirelessly.

Appendix C: Specifications

Standards: Draft 802.11g, 802.11b

Modulation: 802.11b: CCK (11 Mbps), DQPSK (2 Mbps),

DBPSK (1 Mbps); 802.11g: 0FDM

Channels:

802.11b, 11 Channels (USA) draft 802.11g 13 Channels (Europe)

14 Channels (Japan)

Network Protocol: TCP/IP, IPX, NDIS 4, NDIS 5, NDIS 5.1, NetBEUI

Interface: PCI

Transmit Power: 15 dBm

Sensitivity: -80 dBm

LED: ACT

WEP Key Bits: 64-Bit and 128-Bit

Environmental

Dimensions: 4.8" x 8.66" x 0.91"

(122 mm x 220 mm x 23 mm)

Unit Weight: 4.5 oz. (0.13 kg)

Power: 3.3V

Certifications: FCC

Operating Temp.: 32°F to 150°F (0°C to 65°C)

Storage Temp.: -40°F to 185°F (-40°C to 85°C)

Operating Humidity: 0% to 95%, Non-Condensing

Storage Humidity: 0% to 95%, Non-Condensing

Appendix D: Warranty Information

BE SURE TO HAVE YOUR PROOF OF PURCHASE AND A BARCODE FROM THE PRODUCT'S PACKAGING ON HAND WHEN CALLING. RETURN REQUESTS CANNOT BE PROCESSED WITHOUT PROOF OF PURCHASE.

IN NO EVENT SHALL LINKSYS' LIABILITY EXCEED THE PRICE PAID FOR THE PRODUCT FROM DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THE PRODUCT, ITS ACCOMPANYING SOFTWARE, OR ITS DOCUMENTATION. LINKSYS DOES NOT OFFER REFUNDS FOR ANY PRODUCT.

LINKSYS OFFERS CROSS SHIPMENTS, A FASTER PROCESS FOR PROCESSING AND RECEIVING YOUR REPLACEMENT. LINKSYS PAYS FOR UPS GROUND ONLY. ALL CUSTOMERS LOCATED OUTSIDE OF THE UNITED STATES OF AMERICA AND CANADA SHALL BE HELD RESPONSIBLE FOR SHIPPING AND HANDLING CHARGES. PLEASE CALL LINKSYS FOR MORE DETAILS.

Appendix E: Contact Information

For help with the installation or operation of the Wireless-G PCI Adapter, contact Linksys Technical Support at one of the phone numbers or Internet addresses below.

Sales Information 800-546-5797 (LINKSYS)

Technical Support 800-326-7114

RMA (Return Merchandise

Authorization) Issues www.linksys.com (or call 949-271-5461)

Fax 949-265-6655

E-mail support@linksys.com
Web http://www.linksys.com

FTP Site ftp.linksys.com

http://www.linksys.com

© Copyright 2003 Linksys, All Rights Reserved.