
Manual

TC3 OPC UA

TwinCAT

2.6
2019-02-08
TF6100

Version:
Date:
Order No.:

Table of contents

TC3 OPC UA 3Version: 2.6

Table of contents
1 Foreword .. 7

1.1 Notes on the documentation.. 7
1.2 Safety instructions ... 8

2 Overview... 9
2.1 Scenarios... 9
2.2 OPC UA Server revision overview... 12
2.3 Version overview ... 12
2.4 Application examples... 14

2.4.1 Post-processing in the Cloud... 14

3 Installation.. 20
3.1 System requirements... 20
3.2 Installation (TC3) ... 22
3.3 Installation (TC2) ... 25
3.4 Installation Windows CE (TC3).. 28
3.5 Installation Windows CE (TC2).. 30
3.6 Licensing (TC3) ... 35
3.7 Licensing (TC2) ... 39

4 Technical introduction .. 40
4.1 Server .. 40

4.1.1 Overview.. 40
4.1.2 Quick start.. 41
4.1.3 PLC.. 43
4.1.4 C++ .. 75
4.1.5 I/O .. 94
4.1.6 Matlab/Simulink ... 106
4.1.7 File Transfer... 119
4.1.8 Security.. 121
4.1.9 Symbol Caching... 124
4.1.10 Miscellaneous .. 125

4.2 Client I/O.. 134
4.2.1 Overview.. 134
4.2.2 Quick start.. 135
4.2.3 Supported data types... 138
4.2.4 Adding nodes of a Server .. 139
4.2.5 Node attributes .. 140
4.2.6 Method call .. 141
4.2.7 StructuredTypes .. 144
4.2.8 Data recording ... 146
4.2.9 Security.. 147

4.3 Client PLCopen ... 149
4.3.1 Overview.. 149
4.3.2 Supported data types... 150
4.3.3 Best practice .. 150

Table of contents

TC3 OPC UA4 Version: 2.6

4.3.4 Security.. 164
4.4 Gateway .. 166

4.4.1 Overview.. 166
4.4.2 Quick start.. 167
4.4.3 Licensing.. 169
4.4.4 Scenarios... 169
4.4.5 Configurator ... 171
4.4.6 Migrating from Tx6120... 176
4.4.7 Security.. 178

4.5 Sample Client .. 180
4.5.1 Overview.. 180
4.5.2 Establishing a secure connection to OPC UA Server.. 181
4.5.3 Browsing the UA namespace .. 184
4.5.4 Using the Watchlist .. 185

5 Configuration ... 187
5.1 Setup Version 3.x.x ... 187

5.1.1 Overview.. 187
5.1.2 Data Access... 188
5.1.3 Historical Access ... 189
5.1.4 Server Security .. 189
5.1.5 Alarms and Conditions... 190
5.1.6 Online Panel .. 191

5.2 Setup Version 4.x.x ... 192
5.2.1 Overview.. 192
5.2.2 Creating a new project... 193
5.2.3 Select target device ... 194
5.2.4 Adding ADS devices .. 195
5.2.5 Downloading and uploading configurations ... 198
5.2.6 Importing and exporting configuration files .. 199
5.2.7 Configuring historical access ... 200
5.2.8 Configuring Alarms and Conditions ... 202
5.2.9 Configuring alarm texts.. 205
5.2.10 Configuring endpoints.. 206
5.2.11 Configuring certificate trust settings... 207
5.2.12 Configuring security settings.. 208
5.2.13 Restarting the server ... 216
5.2.14 Troubleshooting and logging ... 216

6 PLC API... 218
6.1 Function blocks.. 218

6.1.1 UA_Connect .. 218
6.1.2 UA_Disconnect .. 219
6.1.3 UA_GetNamespaceIndex .. 220
6.1.4 UA_HistoryUpdate ... 221
6.1.5 UA_MethodCall.. 223
6.1.6 UA_MethodGetHandle... 224

Table of contents

TC3 OPC UA 5Version: 2.6

6.1.7 UA_MethodReleaseHandle ... 225
6.1.8 UA_NodeGetHandle .. 226
6.1.9 UA_NodeGetHandleList .. 227
6.1.10 UA_NodeReleaseHandle... 228
6.1.11 UA_NodeReleaseHandleList ... 229
6.1.12 UA_Read ... 230
6.1.13 UA_ReadList.. 231
6.1.14 UA_Write ... 232

6.2 Data types ... 233
6.2.1 E_UAAttributeID .. 233
6.2.2 E_UADataType.. 234
6.2.3 E_UAIdentifierType.. 234
6.2.4 E_UASecurityMsgMode... 235
6.2.5 E_UASecurityPolicy... 235
6.2.6 E_UATransportProfile.. 235
6.2.7 ST_UASessionConnectInfo ... 235
6.2.8 ST_UAIndexRange.. 236
6.2.9 ST_UAMethodArgInfo.. 237
6.2.10 ST_UANodeID ... 237
6.2.11 ST_UANodeAdditionalInfo... 237
6.2.12 UAHADataValue .. 238
6.2.13 UAHAUpdateStatusCode .. 239

7 Samples.. 240

8 Appendix .. 241
8.1 Error diagnosis .. 241
8.2 OPC UA Client error codes ... 242
8.3 ADS Return Codes .. 243
8.4 Support and Service .. 246

Table of contents

TC3 OPC UA6 Version: 2.6

Foreword

TC3 OPC UA 7Version: 2.6

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE®, XFC® and XTS® are registered
trademarks of and licensed by Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, DE102004044764, DE102007017835
with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TC3 OPC UA8 Version: 2.6

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Overview

TC3 OPC UA 9Version: 2.6

2 Overview
OPC Unified Architecture (OPC UA) is the next generation of the familiar OPC standard. This is a globally
standardized communication protocol via which machine data can be exchanged irrespective of the
manufacturer and platform. OPC UA already integrates common security standards directly in the protocol.
Another major advantage of OPC UA over the conventional OPC standard is its independence from the
COM/DCOM system.

Detailed information on OPC UA can be found on the webpages of the OPC Foundation.

Components

The following software components have been integrated for Win32/64 and Windows CE-based systems:

Software component Description
OPC UA Server [} 40] Provides an OPC UA Server interface so that UA

clients can access the TwinCAT runtime.
OPC UA Client [} 149] Provides OPC UA Client functionality to enable

communication with other OPC UA Servers based on
PLCopen-standardized function blocks and an easy-
to-configure I/O device.

The following software components have been integrated for Win32/64-based systems:

Software component (Windows only) Description
OPC UA Configurator [} 187] Graphical user interface for configuring the TwinCAT

OPC UA Server
OPC UA Sample Client [} 180] Graphical sample implementation of an

OPC UA Client in order to carry out a first connection
test with the TwinCAT OPC UA Server.

OPC UA Gateway [} 166] Wrapper technology that provides both an OPC COM
DA Server interface and OPC UA Server aggregation
capabilities.

2.1 Scenarios
In the following, some scenarios will be illustrated in accordance with which the components can be
implemented and used, depending on the application case and infrastructure:

• OPC UA Server: Integrated in Industrial PC or Embedded PC [} 10]

• OPC UA Server: Runs on a central computer with connection to remote TwinCAT runtime(s). [} 11]

https://opcfoundation.org/

Overview

TC3 OPC UA10 Version: 2.6

• OPC UA Server: Access to BC Controller [} 11]

OPC UA Server: Integrated in Industrial PC or Embedded PC

Recommended scenario
This scenario describes how the TwinCAT OPC UA Server should be used under normal circum-
stances.

One of the biggest advantages of the TwinCAT OPC UA Server is that it can be integrated into even the
smallest embedded platform, e.g. the CX8000 series. Thanks to this integration, general handling is very
simple and convenient. OPC UA Clients, e.g. HMI or MES/ERP systems, can connect to the OPC UA Server
and read or write symbol information from the TwinCAT runtime.

The following software components and configurations run on the central server:

• Third party OPC UA Client, which may be an HMI, MES or ERP system, for example.

The following software components and configurations run on the Industrial PC or Embedded PC:

• The OPC UA Server automatically establishes a connection with the first local TwinCAT PLC runtime.
• TwinCAT runtime

This scenario has the following advantages:

• Network usage is optimized because it is based on OPC UA communication technologies, such as
OPC UA registrations.

• Memory usage is decentralized. Each device is only responsible for its own memory requirements.
• OPC UA features security mechanisms that are directly integrated in the protocol. This is very useful if

one of the Industrial PCs or Embedded PCs is connected via the internet, for example.

Overview

TC3 OPC UA 11Version: 2.6

OPC UA Server: Runs on a central computer with connection to remote TwinCAT runtime(s)

This scenario describes the conventional implementation of OPC Servers. Servers using the old OPC A
technology were often implemented on a central server instead of the Industrial PC on which TwinCAT
runtime was executed, in order to avoid DCOM configurations. (Remember: in contrast to OPC UA, OPC DA
is based on COM/DCOM technologies)

The following software components and configurations run on the central server:

• TwinCAT 3 ADS (or TwinCAT 2 CP) for the required ADS connectivity
• OPC UA Server with data access devices configured for remote TwinCAT runtimes
• ADS routes to remote TwinCAT runtimes
• Symbol files from any remote TwinCAT runtime
• OPC UA Client, which can be an HMI, MES or ERP system, for example.

The following software components and configurations run on the Industrial PC or Embedded PC:

• TwinCAT runtime
• ADS route to the central server

The more remote TwinCAT runtimes are connected to the central OPC UA Server, the higher the network
usage will be.

The OPC UA Server uses advanced ADS recording techniques to query the symbol values of the TwinCAT
runtime. The more symbols there are, the more cyclical queries are in progress. As a result, optimized
OPC UA communication only takes place locally on the central server (between OPC UA Client and
OPC UA Server).

This scenario has the following disadvantages compared to scenario 1:

• Network usage can be very high depending on the number of devices and symbols present.
• The memory requirement on the central server is very high because the OPC UA Server has to import

symbol information from every TwinCAT runtime.
• No security between the central server and TwinCAT runtime based on data encryption - ADS was

designed for high performance.
• The need to exchange symbol files between TwinCAT runtime and central server after each PLC

program modification.

OPC UA Server: Access to BC Controller

Although small BC controllers are not able to run their own OPC UA Server, they may nevertheless have
access to the PLC runtime executed on a remote BC Controller, such as a BC9191, and publish their symbol
values via OPC UA. In this scenario the OPC UA Server must run together with a TwinCAT 3 ADS (or
TwinCAT 2 CP) on another computer, and the scenario must be configured in the same way as scenario 2.

Overview

TC3 OPC UA12 Version: 2.6

2.2 OPC UA Server revision overview
The following revision overview shows important differences between the product versions. This information
is important when the software product undergoes a significant software update.

Important changes
in the version

Component Comments

All versions Arrays in a PLC program By default, array elements of a PLC array are not
displayed as separate nodes in the UA namespace.
Instead, only one node is used for the entire array,
and UA Clients can access each item through its
IndexRange. (See also: Use of arrays [} 71])

2.1 Enumerations in a PLC
program

By default, enumerations in a PLC program are not
displayed as Enum types in the UA namespace. In
the previous version these were simply Int16.

2.1 NamespaceName Since version 2.1, the NamespaceName is generated
based on the URI concept and always contains the
host name of the computer on which the UA Server is
running. In older versions the NamespaceName is
the same as the name defined in the configurator,
e.g. "PLC1". This information is particularly important
if a UA Client evaluates the NamespaceName in a
NamespaceIndex before accessing a node. For
compatibility purposes and to simplify the upgrade
without interfering with the UA Client, version 2.2 of
TwinCAT OPC UA Server provides a mechanism to
activate the old NamespaceName concept. (See
also: Server [} 40])

2.2 Structures in PLC Since version 2.2.x structures in a PLC program can
be accessed using a StructuredType in the UA
namespace. This allows UA Clients to interpret
element types in STRUCT. (See also:
StructuredTypes [} 68])

2.2 Namespace configuration of a
C++ module instance

Compared to older versions (up to 2.1.x), the UA
namespace of a C++ module was redesigned in
version 2.2.x to allow advanced functionality such as
method calls for a C++ module instance.

2.3 Version overview
The TwinCAT OPC UA supplement/function product is supplied in various setup versions, which reflect
different development states. For new projects it is recommended to change to the latest setup version in
order to be able to use all new product functions. Older setup versions are still available to download for
existing projects.

Two versions are currently available:

• Setup Version 3.x.x: Long-standing existing version, which already offers a variety of functions. This
version is still maintained with regard to optimizations.

• Setup Version 4.x.x: New version. Future developments and new product functionalities will only be
implemented in this version.

The following table provides an overview of the different versions with regard to their product functionalities.

Functionality 3.x.x 4.x.x Comments
Data Access PLC yes yes Enables read/write access to the TwinCAT 2/3

PLC
Data Access TcCOM yes yes Enables read/write access to TwinCAT 3

TcCOM modules

Overview

TC3 OPC UA 13Version: 2.6

Functionality 3.x.x 4.x.x Comments
Data Access I/O task yes yes Enables read/write access to the TwinCAT 2/3 I/

O task
Data Access BC
controllers

yes yes Enables read/write access to Beckhoff BC
controllers

Historical Access PLC yes yes Enables activation of variables from the
TwinCAT 2/3 PLC for historical access

Historical access TcCOM yes (only TC3 C+
+)

yes Enables activation of variables from a TwinCAT
3 TcCOM module for historical access

Historical Access I/O task no yes Enables activation of variables from a TwinCAT
2/3 I/O task for historical access

Historical Access BC
controllers

no yes Enables activation of variables from a Beckhoff
BC controller for historical access

Historical Access for
existing projects

no yes Enables activation of variables for historical
access without having to adapt the runtime
project

Alarms and conditions
PLC

yes yes Enables activation of variables from the
TwinCAT 2/3 PLC for alarms and conditions

Alarms and conditions
TcCOM

no yes Enables activation of variables from a TwinCAT
3 TcCOM module for alarms and conditions

Alarms and conditions I/O
Task

no yes Enables activation of variables from a TwinCAT
2/3 I/O task for alarms and conditions

Alarms and conditions BC
controllers

no yes Enables activation of variables from a Beckhoff
BC controller for alarms and conditions

Alarms and conditions for
existing projects

no yes Enables activation of variables for alarms and
conditions without having to adapt the runtime
project

PLC method calls yes yes OPC UA Server enables TwinCAT 3 PLC
methods to be activated and displayed as
OPC UA methods

TcCOM method calls yes (only TC3 C+
+)

yes OPC UA Server enables TwinCAT 3 C++
methods to be activated and displayed as
OPC UA methods

Security X509 certificates,
self-signed

yes yes,
configurable

Generation of self-signed certificates

Security X509 certificates,
custom

yes yes Enables the use of custom certificate
authorizations

Security user
authentication

yes yes OPC UA Server enables authentication of local
or domain users

Security access level
namespace level

no yes OPC UA Server allows definition of different
access levels at namespace level

Security access level
node level

no yes OPC UA Server allows definition of different
access levels at node level

Configurator in Visual
Studio

no yes -

Configurator remote
access

no yes Configurator allows remote configuration of
TwinCAT OPC UA Servers independent of the
operating system used on the target device.

Overview

TC3 OPC UA14 Version: 2.6

2.4 Application examples

2.4.1 Post-processing in the Cloud
The overall concept of providing a generic, standardized and callable interface in the cloud that accepts
incoming data for further analysis is based on an endpoint in the cloud, either a Windows-based virtual
machine or a real hardware running a Windows operating system, in addition to the decentralized clients that
call this service. In this documentation, this device is generally referred to as OPC UA Server (in the cloud).

Data logger

The documentation shows how computing resources in the Cloud can be accessed and how local TwinCAT
PLC devices can be connected in order to use these resources. As an initial example, this application case
can be applied to a typical data storage scenario in which decentralized TwinCAT PLC devices send data to
the cloud, in which the incoming data is stored in an SQL database via the TwinCAT Database Server.
Although the general scenario also involves sending data back and forth (i.e. sending parameters to the
cloud, performing calculations in the cloud, and then returning the computed results), this specific scenario
does not require the return of results from the cloud.

Overview

TC3 OPC UA 15Version: 2.6

System requirements: OPC UA Server (the cloud)

The cloud must be able to host one of the following operating system variants. Note that using virtualization
technology requires a more costly solution for 64-bit operating systems.

Device is a virtual machine
• 32-bit Windows operating system
• 64-bit Windows operating system with CPU core isolation (two cores required as a minimum)

Device is a dedicated hardware
• 32-bit Windows operating system
• 64-bit Windows operating system

In addition, the following software components must be installed on the device:

• TwinCAT 3 XAR (Runtime only) or XAE (Runtime and Engineering)
• TwinCAT 3 Function TF6100 OPC UA

Note that when installing a complete TwinCAT 3 XAE, additional configuration settings such as handling
licenses or the option of debugging the device directly in the cloud may be useful. The following software
components must be installed to store data in a central database received from a client:

• TwinCAT 3 Function TF6420 Database

System requirements: Decentralized OPC UA Client

The decentralized OPC UA Client is based on a TwinCAT 3 PLC runtime and can therefore be hosted on
any hardware configuration that supports the operation of a TwinCAT 3 PLC. In addition,
TwinCAT 3 Function TF6100 OPC UA must be installed on the client device in order to be able to use the
TwinCAT OPC UA Client to execute UA methods on the server in the cloud.

Technical description

The implementation of an OPC UA Server in the cloud is very application-specific. Beckhoff provides a
general architecture description, which is independent of the individual application. As an application
example, this article frequently refers a data aggregation scenario in which process data is transferred from
decentralized clients via OPC UA to a central server, where the data is collected in a central database. The

Overview

TC3 OPC UA16 Version: 2.6

advantage of OPC UA in this case is not only the standardized interface (and therefore to use this concept
for any type of OPC UA Client), but also the ability to secure the communication channel by using the
integrated security mechanism of OPC UA.

The TwinCAT OPC UA Server is used to disclose the methods defined in IEC61131-3 PLC to the OPC UA
namespace. These methods can be called by any TwinCAT OPC UA Client (based on the PLCopen function
blocks) or by third party OPC UA Clients.

Decentralized OPC UA Client

The main purpose of the OPC UA Client is to call methods on the remote server. The client is most probably
a TwinCAT-3-embedded device that fulfils the decentralized part of the application. For the data aggregation
example, this would mean querying process data and sending it to the server by calling a method.

Interface description (to the cloud)

As an interface to a centralized cloud system, there are only two methods provided by the server:

• int Send(data): This method forwards the data using an OPC UA method call and returns a JobID.
• int QueryState(jobID): Using the previously retrieved JobID, the client can cyclically query the current

status of the job. This could be omitted if the server in the cloud can handle all situations, or if the client
cannot help out in case of problems.

Communication between clients and the cloud can be secured by OPC UA's built-in security concepts, e.g.
by using client and server certificates to encrypt data communication.

The cloud

The OPC UA Server in the cloud is based on TwinCAT 3 PLC methods that are disclosed to the
OPC UA namespace. The PLC project contains the following three components:

• MethodCall provider: This component provides the above-mentioned send method, which collects data,
creates a JobID and places the data in the queue as different jobs. There may also be a QueryState
method to allow OPC UA Clients to query the current job status.

• Queue: The queue stores a list of jobs to be executed. Each job in the queue contains the following
information: {ID, Status, Data}. New elements (jobs) are added by the MethodCall provider and can be
deleted by it. The entire queue can be based on a hash table within the PLC program.

• Aggregator: The application that processes the jobs. It cyclically looks in the queue to see whether
there are any jobs to be processed. If this is the case, it takes over the job (sets the status to
"processed") and starts processing the job, e.g. connecting to a database via the function blocks of the
TwinCAT Database Server. Note that there can be more than one aggregator to enable parallel
processing of the queue.

Overview

TC3 OPC UA 17Version: 2.6

Sample

The following sample illustrates the scenario by executing simple jobs: Jobs can be presented to the server
by an OPC UA Client. In this sample, the job data consists of a definable time interval that is recorded by the
aggregator to complete the job. The sample consists of the following PLC components on the
OPC UA Server:

• ST_JobEntry: Represents a job in the queue. In terms of the data, the job only consists of a name and
a duration. A duration defines the length of time a job takes.

• E_JobState: Represents the status of a job. The sample implementation defines the following values:
QUEUED, PROCESSING, READY, FAILED and INVALID.

• LongTerm: Represents the MethodCall server (consisting of the methods Calc_Request and
Calc_Response) and the aggregator that processes the job (which is implemented in the function
block)

• FB_SpecialHashTableCtrl: Represents the queue in the form of a hash table, as reflected by PLC
examples from the Beckhoff Information System. Here, different methods for handling the queue are
provided (Add, Count, GetFirst, GetNext, Lookup, Remove, Reset).

Using the example

UA Expert could be used as a sample client to call the methods provided by the OPC UA Server in the cloud.
By calling the Calc_Request method, the client receives a JobID (or 0 for displaying an error):

Overview

TC3 OPC UA18 Version: 2.6

The client can query the JobState by calling the method Calc_Response with the JobID. In addition, the
previously set duration and the job name are returned for subsequent reference.

Installation

The following chapter describes the installation and configuration of each software component required on
the server in the cloud.

Runtime only

If the server does not host the engineering environment of TwinCAT 3, the TwinCAT 3 XAR installation must
be used. Note that in this case the entire handling for proper function involves several steps, and future
maintenance may be more difficult because the XAR installation lacks the programming and debugging
environment. In this scenario, the user must ensure that maintenance of the ADS routes between the actual
engineering computer (on which the PLC program for the server is developed) and the device that hosts the
server in the cloud must allow not only downloading and debugging of the PLC program, but also activation
of licenses for the TwinCAT 3 runtime. Note that you must open the firewall ports to enable ADS traffic. See

Overview

TC3 OPC UA 19Version: 2.6

the ADS documentation for more information. The TC3 License Request Generator tool was developed for
easier handling of TwinCAT 3 runtime licenses. It can be downloaded via the Beckhoff FTP server and
enables the creation of License Request Files and the import of License Response Files:

ftp.beckhoff.com/Software/TwinCAT/Unsupported_Utilities/TC3-LicenseGen/

Runtime and Engineering

This is the recommended setup scenario. The server in the cloud hosts a TwinCAT 3 runtime and the
corresponding engineering components to enable debugging and easier handling of the runtime system. In
this case it is necessary to install TwinCAT 3 XAE on the system.

Additional software

After successful installation of TwinCAT XAE or XAR, the following software components must be installed
and configured on the device:

TF6100 OPC UA

The TF6100 function installs an OPC UA Server (and Client) on the device. The server is required to provide
the OPC UA Clients with the PLC methods. When the PLC program is downloaded into the runtime, the
OPC UA Server automatically imports the first PLC runtime into its namespace. All variables and methods of
the PLC marked as available via OPC UA are imported into the OPC UA namespace and become available
to clients. Refer to the TF6100 documentation for more information.

TF6420 Database

If the server is to store the data received from the clients in a database, the TF6420 function must be used. It
provides generic function blocks for TwinCAT 3 PLCs for accessing the database, e.g. to insert values into a
database table. Install the TF6420 setup and consult the TF6420 documentation for more information on
using the corresponding function blocks.

Licensing

All TwinCAT 3 software products require a license to be available on the server. The license can be either a
7-day trial or an unlimited license. Licenses can be activated using the TwinCAT 3 XAE License Manager. If
a TwinCAT 3 XAR installation is used on the server, use the TC3 License Generator.

Installation

TC3 OPC UA20 Version: 2.6

3 Installation

3.1 System requirements

OPC UA Server

Technical data Description
Operating system Windows 7, 10

Windows CE 6/7
Windows Embedded Standard 2009
Windows Embedded 7
Windows Server 2008 R2
Windows Server 2012

Target platforms PC architecture (x86, x64)
.NET Framework 4.5.2 (only required for configurator)
TwinCAT Version TwinCAT 2, TwinCAT 3
TwinCAT installation level TwinCAT 2 CP, PLC, NC-PTP

TwinCAT 3 XAE, XAR, ADS
Required TwinCAT license TS6100 TwinCAT OPC UA (for TwinCAT 2)

TF6100 TC3 OPC UA (for TwinCAT 3)

OPC UA Client

Technical data Description
Operating system Windows 7, 10

Windows CE 6/7
Windows Embedded Standard 2009
Windows Embedded 7
Windows Server 2008 R2
Windows Server 2012

Target platforms PC architecture (x86, x64)
.NET Framework ---
TwinCAT version TwinCAT 2, TwinCAT 3
Minimum TwinCAT installation level TwinCAT 2 PLC, NC-PTP

TwinCAT 3 XAE, XAR
Required TwinCAT license TS6100 TwinCAT OPC UA (for TwinCAT 2)

TF6100 TC3 OPC UA (for TwinCAT 3)

OPC UA I/O Client

Technical data Description
Operating system Windows 7, 10

Windows CE 7
Windows Embedded 7
Windows Server 2008 R2
Windows Server 2012

Target platforms PC architecture (x86, x64)
.NET Framework 4.6 (only for namespace browser)

Installation

TC3 OPC UA 21Version: 2.6

Technical data Description
TwinCAT version TwinCAT 3.1 Build 4022.4
Minimum TwinCAT installation level TwinCAT 3 XAE, XAR
Required TwinCAT license TF6100 TC3 OPC UA

OPC UA Gateway

Technical data Description
Operating system Windows 7, 10

Windows Embedded Standard 2009
Windows Embedded 7
Windows Server 2008 R2
Windows Server 2012

Target platforms PC architecture (x86, x64)
.NET Framework ---
TwinCAT version ---
Minimum TwinCAT installation level ---
Required TwinCAT license ---

OPC UA Configurator

OPC UA Configurator Description
Operating system Windows 7, 10

Windows Embedded Standard 2009
Windows Embedded 7
Windows Server 2008 R2
Windows Server 2012

Target platforms PC architecture (x86, x64)
.NET Framework 4.5.2
TwinCAT version TwinCAT 2 (standalone tool, up to setup version 3)

TwinCAT 3 (Visual Studio integrated, from setup version 4)
Minimum TwinCAT installation level TwinCAT 2 CP, PLC, NC-PTP (standalone tool, up to setup version

3)
TwinCAT 3 XAE, XAR, ADS (standalone tool, up to setup version 3)
TwinCAT 3 XAE (Visual Studio integrated, from setup version 4)

Required TwinCAT license ---

UPC UA Sample Client

OPC UA Sample Client Description
Operating system Windows 7, 10

Windows Embedded 7
Windows Server 2008 R2
Windows Server 2012

Target platforms PC architecture (x86, x64)
.NET Framework 4.6
TwinCAT version ---
Minimum TwinCAT installation level ---
Required TwinCAT license ---

Installation

TC3 OPC UA22 Version: 2.6

3.2 Installation (TC3)
The following section describes how to install the TwinCAT 3 function TF6100 OPC UA for Windows-based
operating systems.

ü The TwinCAT 3 function setup file was downloaded from the Beckhoff website.
1. Run the setup file as administrator. To do this, select the command Run As Admin in the context menu

of the file.
ð The installation dialog opens.

2. Accept the end user licensing agreement and click Next.

Installation

TC3 OPC UA 23Version: 2.6

3. Enter your user data.

4. If you want to install the full version of the TwinCAT 3 function, select Complete as installation type. If
you want to install the TwinCAT 3 function components separately, select Custom.

Installation

TC3 OPC UA24 Version: 2.6

5. Select Next, then Install to start the installation.

ð A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.
6. Confirm the dialog with Yes.

Installation

TC3 OPC UA 25Version: 2.6

7. Select Finish to exit the setup.

ð The TwinCAT 3 function has been successfully installed and can be licensed (see Licensing (TC3) [} 35]

3.3 Installation (TC2)
The following section describes how to install the TwinCAT 2 Supplement TwinCAT OPC UA for Windows-
based operating systems.

• Download and install the setup file [} 25]

• After the installation [} 28]

Download and install the setup file

Like many other TwinCAT add-on products, OPC UA is available as a 30-day demo version or full version for
download from the Beckhoff website www.beckhoff.com.

ü The setup file for the TwinCAT 2 Supplement has been downloaded from the Beckhoff homepage.
1. Run the downloaded setup file TcOpcUaSvr.exe as an administrator. To do this, select the command

Run As Admin in the context menu of the file.
ð The installation dialog opens.

2. Select an installation language.

https://www.beckhoff.com

Installation

TC3 OPC UA26 Version: 2.6

3. Click Next and accept the license agreement.

Installation

TC3 OPC UA 27Version: 2.6

4. Enter your information. All fields are mandatory. If you want to install a 30-day demo, please enter
"DEMO" as license key.

Installation

TC3 OPC UA28 Version: 2.6

5. Click Install to start the installation.

6. Restart the computer to complete the installation.

After the installation

The TwinCAT add-on OPC UA is automatically configured during installation, and no further settings are
required for using this product. Further steps may include:

• Establish an initial connection to the installed UA server and test its configuration with the
OPC UA Sample Client. (See Sample Client [} 180])

• Personalize the UA server setup using the OPC UA Configurator. (See Configuration [} 187])
• Also, make sure your firewall opens TCP port 4840 because the OPC UC Server requires this port.

3.4 Installation Windows CE (TC3)
The following section describes how to install the TwinCAT 3 function TF6100 OPC UA on a Beckhoff
Embedded PC with Windows CE.

• Download and install the setup file [} 29]

• Transfer the CAB file to the Windows CE device [} 29]

• Run the CAB file on the Windows CE device [} 29]

If an older version of TF6100 is already installed on the Windows CE device, it can be updated:

• Software upgrade [} 30]

Installation

TC3 OPC UA 29Version: 2.6

Download and install the setup file

The executable file for Windows CE is part of the TF6100 OPC UA setup. This is made available on the
Beckhoff website www.beckhoff.com and automatically contains all versions for Windows XP, Windows 7
and Windows CE (x86 and ARM).

Download the setup and install the function as described in the section Installation.

After the installation, the installation folder contains three directories (one directory per hardware platform)

• CE-ARM: ARM-based Embedded PCs running Windows CE, e.g. CX8090, CX9020
• CE-X86: X86-based Embedded PCs running Windows CE, e.g. CX50xx, CX20x0
• Win32: Embedded PCs running Windows XP, Windows 7 or Windows Embedded Standard

The CE-ARM and CE-X86 directories contain the CAB files of the TwinCAT 3 function for Windows CE in
relation to the respective hardware platform of the Windows CE device.

Sample: "TF6310" installation folder

Transfer the CAB file to the Windows CE device

Transfer the corresponding executable file to the Windows CE device.

There are various options for transferring the executable file:

• via network shares
• via the integrated FTP server
• via ActiveSync
• via CF/SD cards

Further information can be found in the Beckhoff Information System in the "Operating Systems"
documentation (Embedded PC > Operating Systems > CE).

Run the CAB file on the Windows CE device

After transferring the CAB file to the Windows CE device, double-click the file there. Confirm the installation
dialog with OK. Then restart the Windows CE device.

After restarting the device, the files (Client and Server) are automatically loaded in the background and are
available.

The software is installed in the following directory on the Windows CE device:
\Hard Disk\TwinCAT\Functions\TF6310-TCP-IP

http://www.beckhoff.com
https://infosys.beckhoff.de/content/1031/sw_os/2018319627.html?id=3834872477266425954

Installation

TC3 OPC UA30 Version: 2.6

Software upgrade

If an older TF6100 version is already installed on the Windows CE device, carry out the following steps on
the Windows CE device to upgrade to a new version:

1. Open the CE Explorer by clicking Start > Run and entering "Explorer".
2. Navigate to \Hard Disk\TwinCAT\Functions\Tf6100-OPC-UA\Server or (in a second step) \Hard Disk

\TwinCAT\Functions\Tf6100-OPC-UA\Client.
3. Rename the fileTcOpcUaServer.exe or TcOpcUaClient.exe.
4. Restart the Windows CE device.
5. Transfer the new CAB file to the Windows CE device.
6. Run the CAB file on the Windows CE device and install the new version.
7. Delete the old (re-named) files.
8. Restart the Windows CE device.
ð The new version is active after the restart.

3.5 Installation Windows CE (TC2)
The following section describes how to install the TwinCAT 2 Supplement on a Beckhoff Embedded PC with
Windows CE, e.g. CX1000, CX1020, CX9000, CX9001, CX9010, CX8090, CP62xx or CP69xx.

• Download and install the setup file [} 30]

• Transfer the setup file to a Windows CE device [} 33]

• Run the setup file on the Windows CE device [} 33]

Installation on small embedded platforms (CX9001, CX9010)
Very small embedded devices may require some additional manual steps to install the CAB file.
These steps may include, for example, the deleting of unnecessary files from the memories of the
devices so that there is sufficient space to install all the files of the application.

Download and install the setup file

Just like many other TwinCAT supplementary products, OPC UA for CE is available as a download on the
Beckhoff homepage. To obtain the installation files for Windows CE, you must first install the downloaded
setup file on a host computer. This can be any Windows CE-based system.

1. Double-click the downloaded file TcOpcUaSvrCE.exe.
2. Select an installation language.

Installation

TC3 OPC UA 31Version: 2.6

3. Click Next and accept the license agreement.

Installation

TC3 OPC UA32 Version: 2.6

4. Enter your information. All fields are mandatory. Note that OPC UA for CE is not currently available as a
demo version. Therefore, you will need a valid license key to continue with the installation.

Installation

TC3 OPC UA 33Version: 2.6

5. Select Full as the installation type and click on Continue

6. Click Install to start the installation.
ð After installation you will find the setup files for Windows CE in the directory ...\TwinCAT\CE. This

directory contains setup files for the following CE platforms:
• TwinCAT OPC UA Client CE\I586: OPC UA Client (PLC library) for x86-based CPUs (such as CX10xx,

CP62xx, C69xx,...)
• TwinCAT OPC UA Client CE\ARMV4I: OPC UA Client (PLC library) for ARM-based CPUs (such as

CX9001, CX9010, CP6608, ...)
• TwinCAT OPC UA Server CE\I586: OPC UA Server for x86-based CPUs (such as CX10xx, CP62xx,

C69xx, ...)
• TwinCAT OPC UA Server CE\ARMV4I: OPC UA Server for ARM-based CPUs (such as CX9001,

CX9010, CP6608, ...)

Transfer the setup file to the Windows CE device

Transfer the corresponding executable file to the Windows CE device. There are various options for
transferring the setup file:

• from a shared folder
• via the integrated FTP server
• via ActiveSync
• via a CF card

Further information can be found in the Beckhoff Information System in the "Operating systems"
documentation (Embedded PC > Operating systems > CE)

Run the setup file on the Windows CE device

Execute the transferred setup file TcOpcUaSvrCe.xxxx.CAB on the CE device:

https://infosys.beckhoff.de/content/1031/sw_os/2018319627.html?id=4880775199055840320

Installation

TC3 OPC UA34 Version: 2.6

1. Navigate to the directory to which you have transferred the setup file.

2. Double-click the CAB file. If a message dialog box appears that says this program is not compatible with
the current operating system, make sure you are using the correct CAB file (ARM, I586) for your IPC/
Embedded PC.

3. If you are sure that the CAB file matches the Embedded PC/IPC, confirm this message dialog with Yes.

4. Select \Hard Disk\System\ as destination directory

5. Click OK to start the installation.

ð After installation, the setup file is automatically deleted.

Once you have installed the OPC UA Server, this component will be available after restarting your Windows
CE device.

Installation

TC3 OPC UA 35Version: 2.6

3.6 Licensing (TC3)
The TwinCAT 3 Function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

The licensing of a TwinCAT 3 Function is described below. The description is divided into the following
sections:

• Licensing a 7-day test version [} 35]

• Licensing a full version [} 36]

Further information on TwinCAT 3 licensing can be found in the “Licensing” documentation in the Beckhoff
Information System (TwinCAT 3 > Licensing).

Licensing a 7-day test version
1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. “TF6420: TC3 Database Server“).

6. Open the Order Information (Runtime) tab.

https://infosys.beckhoff.de/content/1033/tc3_licensing/index.html?id=4971678236866464095

Installation

TC3 OPC UA36 Version: 2.6

ð In the tabular overview of licenses, the previously selected license is displayed with the status
“missing”.

7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.
8. Enter the code exactly as it appears, confirm it and acknowledge the subsequent dialog indicating

successful activation.
ð In the tabular overview of licenses, the license status now indicates the expiration date of the license.

9. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Licensing a full version
1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

Installation

TC3 OPC UA 37Version: 2.6

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. “TE1300: TC3 Scope View Professional”).

6. Open the Order Information tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

A TwinCAT 3 license is generally linked to two indices describing the platform to be licensed:
System ID: Uniquely identifies the device
Platform level: Defines the performance of the device
The corresponding System Id and Platform fields cannot be changed.

Installation

TC3 OPC UA38 Version: 2.6

7. Enter the order number (License Id) for the license to be activated and optionally a separate order
number (Customer Id), plus an optional comment for your own purposes (Comment). If you do not
know your Beckhoff order number, please contact your Beckhoff sales contact.

8. Click the Generate File... button to create a License Request File for the listed missing license.
ð A window opens, in which you can specify where the License Request File is to be stored. (We

recommend accepting the default settings.)
9. Select a location and click Save.

ð A prompt appears asking whether you want to send the License Request File to the Beckhoff license
server for verification:

• Click Yes to send the License Request File. A prerequisite is that an email program is installed on your
computer and that your computer is connected to the internet. When you click Yes, the system
automatically generates a draft email containing the License Request File with all the necessary
information.

• Click No if your computer does not have an email program installed on it or is not connected to the
internet. Copy the License Request File onto a data storage device (e.g. a USB stick) and send the file
from a computer with internet access and an email program to the Beckhoff license server
(tclicense@beckhoff.com) by email.

10. Send the License Request File.
ð The License Request File is sent to the Beckhoff license server. After receiving the email, the server

compares your license request with the specified order number and returns a License Response File
by email. The Beckhoff license server returns the License Response File to the same email address
from which the License Request File was sent. The License Response File differs from the License
Request File only by a signature that documents the validity of the license file content. You can view
the contents of the License Response File with an editor suitable for XML files (e.g. “XML Notepad”).
The contents of the License Response File must not be changed, otherwise the license file becomes
invalid.

11. Save the License Response File.

Installation

TC3 OPC UA 39Version: 2.6

12. To import the license file and activate the license, click License Response File... in the Order
Information tab.

13. Select the License Response File in your file directory and confirm the dialog.

ð The License Response File is imported and the license it contains is activated.
Existing demo licenses will be removed.

14. Restart the TwinCAT system.
ð The license becomes active when TwinCAT is restarted. The product can be used as a full version.

During the TwinCAT restart the license file is automatically copied to the directory ...\TwinCAT\3.1\Target
\License on the respective target system.

3.7 Licensing (TC2)
The licensing of the TwinCAT OPC UA for TwinCAT 2 takes place during the installation [} 25] by entering a
license key.

Technical introduction

TC3 OPC UA40 Version: 2.6

4 Technical introduction

4.1 Server

4.1.1 Overview
The TwinCAT OPC UA Server offers a standardized communication interface for accessing symbol values
from the TwinCAT PLC and C++ runtime or I/O task.

This part of the documentation describes the basic configuration of the TwinCAT OPC UA Server.

Topical areas:

• OPC UA Configurator: Graphical user interface for configuring the OPC UA Server
• OPC UA DA (Data Access): Access to TwinCAT PLC and IO task values via OPC UA
• OPC UA HA (Historical Access): Storage of historical data, e.g. in local RAM, in a file or in a database
• OPC UA AC (Alarms and Conditions): Condition Monitoring functions for PLC variables
• OPC UA Security: Security mechanisms that are integrated in OPC UA

See also: Quick start [} 41]

Advanced configuration

Additional configuration parameters may be necessary depending on the type of operating environment.

Extended topical areas:

• Configuration file [} 126]: Describes the configuration file ServerConfig.xml of the OPC UA Server.
This file should usually be edited via the OPC UA Configurator (see topics above).

Technical introduction

TC3 OPC UA 41Version: 2.6

• Configuration of PLC variables [} 71]: Provides an overview of all configurable options (via PLC
comments) on a PLC variable.

• Other ADS devices [} 127]: Describes how further TwinCAT devices can be integrated in the
namespace of the OPC UA Server.

• Several UA Servers [} 129]: Describes how to start several OPC UA Server instances on one device.

• UA over NAT [} 131]: Describes how OPC UA communication can be established via a NAT device,
e.g. a firewall or a router.

• Changing the handling of arrays in the OPC UA namespace [} 71]: Describes two presentation options
for PLC arrays in the OPC UA namespace.

4.1.2 Quick start
This quick start assumes that the OPC UA Server and the PLC runtime are installed on the same system.

Following successful installation and licensing, perform the following steps in order to establish an initial
connection to a PLC runtime via the OPC UA Server:

• Step 1: Configure PLC variables for the OPC UA access [} 41]

• Step 2: Configure the OPC UA namespace [} 41]

• Step 3: Establish a connection to the OPC UA Server [} 42]

Step 1: Configure PLC variables for the OPC UA access

Open an existing PLC project and insert the following comment before the selected variables.

TwinCAT 3 (with TMC import):
{attribute 'OPC.UA.DA' := '1'}
bVariable : BOOL;

TwinCAT 2 (with TPY import):
bVariable : BOOL; (*~ (OPC:1:some description) *)

Step 2: Configure the OPC UA namespace

By default, the OPC UA Server connects to the first PLC runtime on the local system (local = the same
system on which the OPC UA Server is installed) and uses its corresponding symbol file (TMC file) for
configuring the OPC UA namespace.

To ensure that the symbol file is automatically transferred to the PLC runtime, activate the download of the
symbol file in the settings of the PLC project.

Technical introduction

TC3 OPC UA42 Version: 2.6

Each time the PLC project is activated, the symbol file is automatically copied to the C:\TwinCAT\3.x\Boot
\Plc\ directory, where it is named after the corresponding ADS port of the PLC project, such as
"Port_851.tmc" for the first PLC runtime. The standard configuration of the OPC UA Server automatically
reads this symbol file at startup.

License
Check whether a license exists. In TwinCAT 3 you can enter a TF6100 license in the TwinCAT li-
cense management (see Licensing (TC3) [} 35]).

Activate the configuration and restart TwinCAT. Then log into the PLC runtime and start the PLC program.

Step 3: Establish a connection to the OPC UA Server

To connect from an OPC UA Client, the client must connect to the URL of the OPC UA Server. This URL is
described as follows:

opc.xxx://<ip or name>:port

• opc = predefined
• xxx = transport to OPC UA Server, e.g."tcp"
• port = port number of the OPC UA Server, e.g. 4840 (default)

Standard port 4840
Note that the standard port 4840 may be used by other OPC UA Servers, such as the Local Discov-
ery Server (LDS) from the OPC Foundation, which is used by some vendors with OPC UA software
packages.

Samples:
• opc.tcp://CX_0215AF:4840
• opc.tcp://172.16.2.80:4840

You will find the UA Sample Client provided in the Windows Start menu or in the product installation
directory, e.g. C:\TwinCAT\Functions\TF6100-OPC-UA\Win32\SampleClient\.

Technical introduction

TC3 OPC UA 43Version: 2.6

Start the UA Sample Client (with the command Run As Administrator on Windows systems with activated
UAC, e.g. Windows 7) and establish a connection with the URL of the OPC UA Server, e.g. opc.tcp://
localhost:4840, by clicking on Receive endpoints and then on Connect.

After successfully establishing the connection, you will find the PLC runtime "PLC1" with the published
variables (see step 1) in the UA namespace below the node "Objects".

4.1.3 PLC

4.1.3.1 Access to PLC runtime

This section describes how to configure the namespace of the OPC UA Server. The UA namespace
describes the structure into which the PLC variables are mapped. In order for a PLC variable to be reachable
via the UA namespace, it must be released in the PLC program.

Note that the OPC UA Server always connects by default to the first local PLC runtime system, therefore a
configuration is not necessary in most cases (see also Quick start [} 41]). Only in exceptional cases is a
separate configuration required, for example if further runtimes are to be displayed in the UA namespace or
if the PLC of a BC device needs to be accessed.

This section contains the following topics:

• General Information [} 43]

• Step 1: Selecting PLC variables to be publicly accessible via OPC UA [} 44]

• Step 2: Downloading the symbol description and activating it in the PLC project [} 46]

• [Optional] Step 3: Configuring the data access device in the OPC UA Server [} 48]

• Explicit hiding of variables [} 48]

General Information

Several parameters are available for configuring the OPC UA namespace and accessing PLC variables,
which have different effects depending on how the PLC runtime is displayed and how the communication
takes place.

You can define these parameters with the help of the OPC UA Configurator or directly in the configuration
file ServerConfig.xml.

The following table provides an overview of all parameters that are important when accessing a PLC
runtime:

Parameter Description Possible values
ADS Port Defines the ADS port under which the PLC runtime is

accessible. The ADS port can be read in the properties of
the PLC project.

800 (BC Controller)
801 (TwinCAT 2)
811 (TwinCAT 2)
…
851 (TwinCAT 3 -
standard)
852 (TwinCAT 3)
…

Technical introduction

TC3 OPC UA44 Version: 2.6

Parameter Description Possible values
AutoCfg Initially defines the type of target runtime used for the

communication, e.g. PLC, C++, I/O. A finer distinction can
subsequently be made within these categories.
Each AutoCfg option is available as an unfiltered or filtered
option. Filtered means the user can determine which PLC
symbols should be published via OPC UA through PLC
comments (see below). When using an unfiltered option,
each PLC symbol is published to OPC UA.

7 TwinCAT 2 (TPY)
8 TwinCAT 2 (TPY)
filtered
4040 TwinCAT 3
(TMC)
4041 TwinCAT 3
(TMC) filtered

AutoCfgSymFile Symbol file of the respective PLC runtime. By default, the
automatically generated symbol file of the first PLC runtime
of the local system is imported.

Path to the symbol file.
Points by default to the
symbol file (TMC) of
the first local PLC
runtime.

IoMode Defines the method for accessing symbols. This is
particularly important for accessing BC devices.

1 (access via handle -
default)
3 (Access to BC
Controller)

ArraySubItemLegacy
Support

By default, subelements of an array are not mapped as
separate nodes in the UA namespace. Instead, only the
array is mapped as a single element. Nonetheless,
UA Clients can access subelements via their
"IndexRange". (Some older OPC UA Clients do not yet
support this option).
The flag was introduced so that access is nevertheless
possible for these clients. It ensures that every array
position is displayed as a separate node in the UA
namespace. This leads to higher memory requirement of
the OPC UA Server.

0 (disabled - default)
1 (enabled)

Disabled Disables the PLC runtime in the UA namespace, so that
the corresponding node is not displayed.
It is advisable to enable this parameter if certain PLC
runtimes are not yet available at the time of project
planning, for example because the corresponding devices
are not yet connected to the network.

0 (disabled - default)
1 (enabled)

The following section uses a sample to illustrate how the variables can be imported from a PLC program into
the UA namespace. It is assumed that the OPC UA Server in its standard configuration (delivery state after
installation) and the PLC runtime are on the same computer.

AutoCfg options
The information contained in this article, including the following PLC comments/pragmas, is based
on TwinCAT 3 and must therefore be used with the AutoCfg options "4041 TwinCAT 3 (TMC) fil-
tered" (standard configuration).
Note that the AutoCfg options for TwinCAT 2 use a different PLC comment format (*~ (OPC:1:de-
scription) *), which is no longer used in TwinCAT 3, but is still available for compatibility by using
AutoCfg option "8".

Step 1: Selecting PLC variables to be publicly accessible via OPC UA

The OPC UA Server automatically establishes a connection to the first PLC runtime on the local system. The
PLC symbols marked in the PLC program (TwinCAT PLC control) for OPC UA are provided. They identify
the PLC symbols via a comment at the corresponding point (instance, structure, variable) in the PLC
program code (see following samples).

Sample 1

In this sample, the PLC variables bMemFlag1, bMemFlag2, bMemAlarm2 and iReadOnly are enabled via
OPC UA. The PLC variable bMemAlarm1 should not be accessible via the OPC UA Server. The PLC
program in PLC control then looks like the following, depending on the TwinCAT version you are using:

Technical introduction

TC3 OPC UA 45Version: 2.6

TwinCAT 3 (with TMC import):
{attribute 'OPC.UA.DA' := '1'}
bMemFlag1 : BOOL;

{attribute 'OPC.UA.DA' := '1'}
bMemFlag2 : BOOL;

bMemAlarm1 : BOOL;

{attribute 'OPC.UA.DA' := '1'}
bMemAlarm2 : BOOL;

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.Access' := '1'}
iReadOnly : INT;

TwinCAT 2 (with TPY import):
bMemFlag1 : BOOL; (*~ (OPC:1:some description) *)

bMemFlag2 : BOOL; (*~ (OPC:1:some description) *)

bMemAlarm1 : BOOL;

bMemAlarm2 : BOOL; (*~ (OPC:1:some description) *)

iReadOnly : INT; (*~ (OPC:1:some description)
 (OPC_PROP[0005]:1:read-only flag) *)

TPY formatting can also be used in TwinCAT 3 PLC projects for migration purposes, e.g. when a TwinCAT 2
project is to be conveniently converted into a TwinCAT 3 project.

Due of the additional comment OPC.UA.DA.Access the access level for the variable iReadOnly is set to
"ReadOnly". The various options can be found in the complete list of PLC comments (see List of attributes
and comments [} 71]).

To describe a variable in the UA namespace, insert a simple PLC comment after the corresponding variable,
e.g.

TwinCAT 3 (with TMC import):
{attribute 'OPC.UA.DA' := '1'}
bMemFlag1 : BOOL; (* Description for variable bMemFlag1 *)

TwinCAT 2 (with TPY import): Function not available

The comment automatically becomes the description attribute of the node in the UA namespace.

Sample 2:

Technical introduction

TC3 OPC UA46 Version: 2.6

In this sample, the two instances fbTest1 and fbTest2 of the function block FB_BLOCK1 should be available
via OPC UA. When an entire instance is released, all its symbols are also available via OPC UA. The PLC
program looks like the following:

TwinCAT 3 (with TMC import):
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 fbTest1 : FB_BLOCK1;
 fbTest2 : FB_BLOCK1;
END_VAR

FUNCTION_BLOCK FB_BLOCK1
VAR_INPUT
 {attribute 'OPC.UA.DA' := '1'}
 ni1 : INT;
 ni2 : INT;
END_VAR
VAR_OUTPUT
 {attribute 'OPC.UA.DA' := '1'}
 no1 : INT;
 no2 : INT;
END_VAR
VAR
 {attribute 'OPC.UA.DA' := '1'}
 nx1 : INT;
 nx2 : INT;
END_VAR

TwinCAT 2 (with TPY import):
PROGRAM MAIN
VAR
 fbTest1 : FB_BLOCK1; (*~ (OPC:1:some description) *)
 fbTest2 : FB_BLOCK1;
END_VAR

FUNCTION_BLOCK FB_BLOCK1
VAR_INPUT
 ni1 : INT; (*~ (OPC:1:some description) *)
 ni2 : INT;
END_VAR
VAR_OUTPUT
 no1 : INT; (*~ (OPC:1:some description) *)
 no2 : INT;
END_VAR
VAR
 nx1 : INT; (*~ (OPC:1:some description) *)
 nx2 : INT;
END_VAR

The instance fbTest1 is enabled for OPC UA, whereby all contained symbols are automatically enabled for
OPC UA, i.e. fbTest.ni1, fbTest.ni2, etc. The instance fbTest2 is not marked for OPC UA, but the three
variables contained in it - ni1, no1 and nx1 - were marked in the function block. They are therefore available
in all instances via OPC UA.

Step 2: Downloading the symbol description and activating it in the PLC project

The symbol file contains information about all PLC variables available in a PLC project. The OPC UA Server
needs this information to configure its namespace. By default, the current symbol information is automatically
downloaded to a symbol file. This is located in the project folder of the corresponding TwinCAT project. To
ensure that the symbol file is transferred to the target runtime, enable the download of the symbol file in the
settings of the PLC project.

TwinCAT 3:

Technical introduction

TC3 OPC UA 47Version: 2.6

TwinCAT 2:

When creating a boot project, the symbol file is automatically copied to the boot directory of the PLC runtime.
This file name provides information about the corresponding ADS port of the PLC runtime.

If the OPC UA Server and the PLC runtime are on the same system, all you have to do is restart the
OPC UA Server. The OPC UA Server is automatically configured to load the symbol file from the TwinCAT
boot directory and generate its namespace based on the symbol information contained in this file. If another
symbol file is to be used, you can configure it either in the OPC UA Configurator or directly in the file
ServerConfig.xml.

Technical introduction

TC3 OPC UA48 Version: 2.6

[Optional] Step 3: Configuring the data access device in the OPC UA Server

By default, the OPC UA Server connects to the first PLC runtime on the local system. If you want to publish
more than one PLC runtime in the UA namespace, you must configure additional data access devices in the
OPC UA Configurator. This may be necessary for the following scenarios:

• You have another (second or third) PLC runtime from which you want to publish symbol information to
OPC UA.

• You have another Industrial PC or Embedded PC whose PLC runtime and corresponding symbol
information you want to make publicly available to OPC UA.

To configure additional devices for data access, open the OPC UA Configurator and add new data access
devices.

Configure all further necessary parameters as described in the section General information [} 43]. If you are
configuring a remote Industrial PC or Embedded PC, you must enter the correct parameters for AdsNetId
and AdsPort and provide the corresponding symbol file of the PLC program on this PC.

Explicit hiding of symbols

In addition to the regular PLC attributes for activating a PLC symbol, such as variables, you can explicitly
exclude PLC symbols from publication in the OPC UA namespace. There may be several reasons for this:

• You want to publish a data structure, but not all its subelements (Sample 1).
• You have enabled a data structure in the definition and want to hide an individual instance of this data

structure (Sample 2).
• You want to speed up the startup of the OPC UA Server (Sample 3).

Sample 1:
{attribute 'OPC.UA.DA' := '1'}
TYPE ST_TEST :
STRUCT
 a : INT;
 {attribute 'OPC.UA.DA' := '0'}
 b : DINT;
END_STRUCT
END_TYPE

PROGRAM MAIN
VAR
 instance1 : ST_TEST;
 instance2 : ST_TEST;
END_VAR

In this case, the PLC attribute has been added to the structure definition, so that each instance of this
structure should be available on the OPC UA Server. Subelement b (and all its subelements, if b is another
data structure) will be excluded from publication on the OPC UA Server.

Sample 2:
{attribute 'OPC.UA.DA' := '1'}
TYPE ST_TEST :
STRUCT
 a : INT;
 b : DINT;
END_STRUCT
END_TYPE

PROGRAM MAIN

Technical introduction

TC3 OPC UA 49Version: 2.6

VAR
 instance1 : ST_TEST;
 {attribute 'OPC.UA.DA' := '0'}
 instance2 : ST_TEST;
END_VAR

Although the PLC attribute is added to the structure definition, which makes each instance of this structure
available on the OPC UA Server, instance2 receives the PLC attribute to disable this inheritance. This
means that only instance1 is available in the UA namespace, not instance2.

Sample 3:

During the start procedure the OPC UA Server reads the PLC symbol files to construct its namespace. To
this end, all the data structures found are completely read out in order to find and integrate all type
definitions. If an OPC.UA.DA:=0 PLC attribute is detected, the analysis of all subsequent subelements
stops, so that the startup can be considerably faster, depending on the size of the data structures.

4.1.3.2 Historical Access

This section describes the steps necessary to configure the variables in the namespace of the
OPC UA Server for Historical Access (HA).

Historical Access is an OPC UA function, in which the variable values are either stored permanently on a
data storage device (file or database) or in the device RAM, so that they can be retrieved later by the client.
The way in which the OPC UA Server reads and stores the variable values can be configured.

4.1.3.2.1 Setup Version 3.x.x

General

Perform the following steps once in order to activate a value curve of PLC variables via
OPC UA Historical Access.

• Activate Historical Access on the UA Server [} 49]

• Activate Historical Access in the TwinCAT PLC program [} 51]

• Activate Historical Access in the TwinCAT C++ module [} 52]

The section Display historical data [} 55] describes how you can call saved variable values via Historical
Access and display them in an OPC UA Client with the help of the UA Expert software.

Requirements

The following prerequisites apply to the use of Historical Access:

• The runtime system whose symbols are to be saved for Historical Access must be configured as Data
Access.

• In order to use an SQL Compact database as a storage medium, SQL Compact Runtime 3.5 SP2 must
be installed on the computer on which the OPC UA Server is running.

• OPC UA version 2.0 or higher must be installed to use an SQL Server database.
• SQL Compact databases are also supported under Windows CE.
• SQL Server databases are not supported under Windows CE.

Activate Historical Access on the UA Server

Various storage media can be used for storing historic values. These must be activated once in the
OPC UA Server. You can make the settings necessary for this with the help of the OPC UA Configurator or
in the ServerConfig.xml file. Once you have activated one or more storage media on the OPC UA Server, the
PLC program selects the storage medium to be used for each symbol.

The following four storage media are currently supported:

Technical introduction

TC3 OPC UA50 Version: 2.6

• Main memory: Stores the symbol values in the RAM of the device on which the OPC UA Server is
running.

• File: Saves the values in a file with the specified path.
• SQL Compact database: Stores the values in an SQL Compact database with specified path. In this

case, the SQL Compact Runtime 3.5 SP2 must be installed as a corresponding database version on
the OPC UA Server.

• SQL Server database: Stores the values in an SQL Server database specified with the parameters
server name, database name, user name and password.

Configuration with the help of the OPC UA Configurator:

Configuration directly via the ServerConfig.xml file:

Insert the XML tag shown below into the ServerConfig.xml file between
<OpcServerConfig><UaServerConfig> and </UaServerConfig></OpcServerConfig>.
<HaModes>
<HaMode Type="RAM"/>
<HaMode Type="File" DataStore="C:\Temp\"/>
<HaMode Type="SQLServerCompact" DbName="C:\Temp\TcOpcUaServer.sdf"/>
<HaMode Type=”SQLServer” Servername=”SERVERNAME\SQLEXPRESS” DbName=”TcOpcUaServer” User=”sa”
Pass=”123”/>
</HaModes>

The parameters required for the respective mode are:

Mode Required parameters
RAM Stores the values in the RAM of the device on which the OPC UA Server is

running. No further parameters are required. After restarting the device, the
stored values are no longer available. The storage medium is therefore not a
permanent medium.

File Stores the values in multiple files whose location is determined by the
DataStore parameter. Each symbol configured for this storage medium (see
step 2) is assigned its own file in this directory. In addition, there is a backup
copy of the file for each symbol, which is created when the buffer length (see
step 2) is reached. The contents of the data file are then saved as a backup
copy, and a new file is created.

SQL Server Compact Stores the values in an SQL Compact database whose location is defined with
the parameter DbName. The above requirements apply.

SQL Server Stores the values in an SQL Server database that is specified with the
parameters server name, DBName, user and pass.

Technical introduction

TC3 OPC UA 51Version: 2.6

Activate Historical Access in the TwinCAT PLC program

If a PLC runtime is configured as a data access device, the PLC variables that have been enabled for this
purpose in the PLC program by means of comments are automatically made available by the
OPC UA Server via OPC UA.

You can enable or disable individual variables for Historical Access in the same way as you can enable
variables for access via OPC UA. To do this, supplement an appropriate comment in the PLC program code
on the right of a symbol. The following parameters can be specified:

TwinCAT 3 (with TMC import):

Parameter Comment Description
Activate {attribute 'OPC.UA.DA' := '1'} Activates the data access symbol. This is

necessary to make the symbol available
for Historical Access.

Activating for HA {attribute 'OPC.UA.HA' := '1'} Activates the symbol for Historical
Access.

Storage medium {attribute 'OPC.UA.HA.Storage' := '1'} Specifies the storage medium to be used
for storing the symbol values (1 = RAM, 2
= File, 3 = SQL Compact Database, 4 =
SQL Database).

Sampling rate {attribute 'OPC.UA.HA.Sampling' := '50'} Defines the rate at which the variable
values are to be read from the controller
and stored on the corresponding storage
medium.
The OPC UA Server uses predefined
fixed sampling rates that can be used
here. You can expand the sampling rates
if necessary in the ServerConfig file.
However, this is not normally necessary,
and it is not advisable to change the
settings, unless there is a good reason.

Buffer length {attribute 'OPC.UA.HA.Buffer' := '10000'} Specifies the number of elements to
include in the buffer.

TwinCAT 2 (with TPY import):

Parameter Comment Description
Activate (*~ (OPC:1:some description) *) Activates the data access symbol. This is

necessary to make the symbol available
for Historical Access.

Storage medium (*~ (OPC_UA_PROP[5000]:1:RAM) *) Specifies the storage medium to be used
for storing the symbol values (1 = RAM, 2
= File, 3 = SQL Compact Database, 4 =
SQL Database).

Sampling rate (*~ (OPC_UA_PROP[5000]
[1]:50:SamplingRate) *)

Defines the rate at which the variable
values are to be read from the controller
and stored on the corresponding storage
medium.
The OPC UA Server uses predefined
fixed sampling rates that can be used
here. You can expand the sampling rates
if necessary in the ServerConfig file.
However, this is not normally necessary,
and it is not advisable to change the
settings, unless there is a good reason.

Buffer length (*~ (OPC_UA_PROP[5000]
[2]:5000:Buffer) *)

Specifies the number of elements to
include in the buffer.

Technical introduction

TC3 OPC UA52 Version: 2.6

The following excerpt from a PLC program describes the use of the parameters listed above using four PLC
variables:

TwinCAT 3 (with TMC import):
{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.HA' := '1'}
{attribute 'OPC.UA.HA.Storage' := '1'}
{attribute 'OPC.UA.HA.Sampling' := '5'}
{attribute 'OPC.UA.HA.Buffer' := '1000'}
_HistoryMem : UINT;

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.HA' := '1'}
{attribute 'OPC.UA.HA.Storage' := '2'}
{attribute 'OPC.UA.HA.Sampling' := '20'}
{attribute 'OPC.UA.HA.Buffer' := '200'}
_HistoryFile : UINT;

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.HA' := '1'}
{attribute 'OPC.UA.HA.Storage' := '3'}
{attribute 'OPC.UA.HA.Sampling' := '50'}
{attribute 'OPC.UA.HA.Buffer' := '10000'}
_HistoryDBcompact : UINT;

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.HA' := '1'}
{attribute 'OPC.UA.HA.Storage' := '4'}
{attribute 'OPC.UA.HA.Sampling' := '5'}
{attribute 'OPC.UA.HA.Buffer' := '1000000'}
_HistoryDB : UINT;

TwinCAT 2 (with TPY import):
_HistoryMem : UINT; (*~ (OPC:1:available for OPC UA Clients)
 (OPC_UA_PROP[5000]:1:Memory)
 (OPC_UA_PROP[5000][1]:5:SamplingRate)
 (OPC_UA_PROP[5000][2]:1000:Buffer) *)

_HistoryFile : UINT; (*~ (OPC:1:available for OPC UA Clients)
 (OPC_UA_PROP[5000]:2:File)
 (OPC_UA_PROP[5000][1]:20:SamplingRate)
 (OPC_UA_PROP[5000][2]:200:Buffer) *)

_HistoryDBcompact : UINT; (*~ (OPC:1:available for OPC UA Clients)
 (OPC_UA_PROP[5000]:3:SQLCompact)
 (OPC_UA_PROP[5000][1]:50:SamplingRate)
 (OPC_UA_PROP[5000][2]:10000:Buffer) *)

_HistoryDB : UINT; (*~ (OPC:1:available for OPC UA Clients)
 (OPC_UA_PROP[5000]:4:SQL)
 (OPC_UA_PROP[5000][1]:5:SamplingRate)
 (OPC_UA_PROP[5000][2]:1000000:Buffer) *)

Activate Historical Access in the TwinCAT C++ module

Each TwinCAT 3 C++ symbol whose history is to be recorded must be configured accordingly. Comparable
with the configuration of PLC symbols for Historical Access, the parameters for a C++ symbol must be
configured:

Parameter Comment Description
Activate OPC.UA.DA := 1 Activates the data access symbol. This

is necessary to make the symbol
available for Historical Access.

Activate HA OPC.UA.HA := 1 Activates the symbol for Historical
Access.

Storage medium OPC.UA.HA.Storage := 1 Specifies the storage medium to be
used for storing the symbol values (1 =
RAM, 2 = File, 3 = SQL Compact
Database, 4 = SQL Database).

Technical introduction

TC3 OPC UA 53Version: 2.6

Parameter Comment Description
Sampling rate OPC.UA.HA.Sampling := 50 Defines the rate at which the variable

values are to be read from the
controller and stored on the
corresponding storage medium.
The OPC UA Server uses predefined
fixed sampling rates that can be used
here. You can expand the sampling
rates if necessary in the ServerConfig
file. However, this is not normally
necessary, and it is not advisable to
change the settings, unless there is a
good reason.

Buffer length OPC.UA.HA.Buffer := 10000 Specifies the number of elements to
include in the buffer.

In TwinCAT 3 C++ these parameters are configured in the TMC code editor of the corresponding C++
module. Using the TMC code editor, navigate to the symbol to be enabled for Historical Access and add
these parameters to the Optional Properties of Symbol Properties. Make sure that you have selected the
Create symbol check box.

Technical introduction

TC3 OPC UA54 Version: 2.6

Requirements

Products Setup versions Target platform
TS6100, TF6100 3.x.x IPC or CX (x86, x64, ARM)

4.1.3.2.2 Setup Version 4.x.x

From setup version 4.x.x historical access can no longer be configured via attributes or comments. The
advantage of this is that the Historical Access functionality is now also available for runtimes that previously
did not support this, such as variables of a BC9191 Controller. Furthermore, a Historical Access
configuration can now also be carried out retrospectively, i.e. without having to adapt the PLC project.

The historical access configuration is now XML-based (TcUaHaConfig.xml) and can be carried out using the
OPC UA Server Configurator. The XML file is located in the same directory as TcOpcUaServer.exe.

See also:

• Configuration > Setup version 4.x.x > Overview [} 192] (OPC UA Server Configurator) and Configuring
historical access [} 200])

XML file structure (TCUaHaConfig.xml)
<HistoryConfig>
 <HistoryController>
 <HistoryAdapter Type="Volatile" Id="0" File="" Server="" Database="" User="" Password=""/>
 <HistoryAdapter Type="File" Id="1" File="historydb.dat" Server="" Database="" User=""
Password=""/>
 <HistoryAdapter Type="SQL" Id="2" File="" Server="" Database="database123" User="user"
Password="pwd"/>
 <HistoryAdapter Type="SQLCompact" Id="3" File="historydb.xyz" Server="" Database="" User=""
Password=""/>
 <HistoryAdapter Type="SQLCompact" Id="4" File="historydb2.xyz" Server="" Database="" User=""
Password=""/>
 </HistoryController>
 <HistoryNodes>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_SingleNode.nMyValue"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.nMyValue1"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.nMyValue2"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.fMyValue3"/>
 </HistoryNodes>
</HistoryConfig>

You can configure all supported data memory in the HistoryController area. The following locations are
currently supported:

• RAM ("Volatile")
• File
• SQL Compact
• SQL Server (not supported under Windows CE)

Each HistoryAdapter (except for "Volatile") can be used multiple times, e.g. if the historical values for
individual variables are to be stored in different data memories.

In the HistoryNodes area, the individual nodes are configured, assigned to a data memory and assigned a
SamplingRate and a maximum size for the ring buffer to be used in the data memory.

The attribute HistoryWriteable="true" ensures that the data memory for this node can be filled with
values via a HistoryUpdate() call. Such a call is provided, for example, by the TwinCAT OPC UA Client via
the function block UA_HistoryUpdate. If you configure a node with this attribute, then the server doesn't
normally "sample" the values itself, but receives them from other clients. In such a configuration the
SamplingRate is therefore usually 0.

Technical introduction

TC3 OPC UA 55Version: 2.6

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.1.3.2.3 Display historical data

Displaying Historical Access values in an OPC UA Client

The following step-by-step instructions describe how to configure the UA Expert software in order to access
historical data.

1. Start the UA Expert software and connect to the OPC UA Server.

Technical introduction

TC3 OPC UA56 Version: 2.6

2. Add a new History Trend View.

3. Browse the PLC1 namespace and use drag & drop to add the PLC variables _HistoryDB,
_HistoryDBcompact, _HistoryFast and _HistorySlowPersist.

Technical introduction

TC3 OPC UA 57Version: 2.6

ð You can now use the Start Time and End Time controls to specify the desired time period for which the
symbol values are to be displayed, or you can start a Cyclic Update for these variables if necessary.

4.1.3.3 Alarms and Conditions

The steps required to configure OPC UA Alarms and Conditions (A&C) on the OPC UA Server are described
in this section. The basic concept is independent of TwinCAT runtime, which means the configuration steps
for PLC, C++, TcCOM runtime or only I/O task are the same.

OPC UA Alarms and Conditions (Part 9 of the OPC UA specification) describes a model for monitoring
process values and outputting alarms and events when a runtime symbol changes its state.

Requirements

The following requirements apply to the use of OPC UA Alarms and Conditions:

• The runtime symbol to be monitored must be available in the namespace.
• The OPC UA Client must support Alarms and Conditions. In this section UA Expert (from Unified

Automation) is used as the reference UA Client.

General Information

Execute the following steps once to release a symbol for Alarms and Conditions:

Technical introduction

TC3 OPC UA58 Version: 2.6

• Step 1: Activating runtime symbol for data access [} 58] (so that the symbol is generally accessible
via OPC UA.)

• Step 2: Activating A&C for a symbol [} 58]

• Step 3: Transferring your own user data with an event [} 59]

• Step 4: Triggering an event using the FireEvent method [} 60]

• Step 5: Configuring multilingual alarm texts [} 62]

• Step 6: Registering A&C with a reference OPC UA Client [} 62]

These steps are explained in more detail below. At the end of this section you will find information about
receiving configured alarms via A&C with the UA Expert Reference Client.

Supported alarm types

The implementation of OPC UA Alarms and Conditions currently supports the following alarm types:

• LimitAlarmType: Define different limits for a symbol. If a limit is reached, the UA Server issues an
alarm.

• OffNormalAlarmType: Define a value that is "normal". If the current value deviates from the "normal"
value, the UA Server issues an alarm.

Step 1: Activating runtime symbol for data access

A variable must be available in the OPC UA Server in order for it to be configured for A&C. To do this in the
case of a PLC variable, provide it with an attribute (see Access to PLC runtime [} 43]).

Step 2: Activating A&C for a symbol

You can configure a runtime symbol for A&C with the OPC UA Server Configurator. The Configurator has a
simple graphical user interface for editing the XML file on which it is based. Depending on the setup version
the configurator is available in two variants: standalone [} 190] and integrated in Visual Studio [} 202].

The following program extract shows an example of this XML file to better understand the general behavior
and structure of the A&C implementation.
<TcUaAcConfig>
 <ConditionController Name="ConditionController1" >
 <Condition Name="Counter" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter1" />
 </Condition>
 <Condition Name="Switch" Severity="500">
 <OffNormalAlarmType Normal="0" MessageNormal="100" MessageOffNormal="20" />
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.bSwitch" />
 </Condition>
 <Condition Name="Struct" Severity="300">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.stStruct" />
 </Condition>
 </ConditionController>
 <ConditionController Name="ConditionController2" >
 <Condition Name="Counter2" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter2" />
 </Condition>
 </ConditionController>
</TcUaAcConfig>

A "condition" defines the runtime symbol to be monitored and the alarm limits and texts. Each condition is
organized in a so-called "ConditionController", the object that the OPC UA Clients subsequently subscribe to.

Technical introduction

TC3 OPC UA 59Version: 2.6

When creating a condition, you must specify the NamespaceName (NS) and NodeID for referring to the
UA node to be monitored. The Configurator provides a simple browsing mechanism for selecting a node. In
XML, the placeholder [NodeName] in NamespaceName can be used to switch the XML file between different
hardware systems. NamespaceName always contains the host name of the IPC or Embedded PC on which
the OPC UA Server is running. If [NodeName] is selected, this tag will be replaced by the host name of the
current IPC or Embedded PC on which the UA Server is running.

SamplingRate determines how often the UA Server should request a value from the node to determine
whether one of the alarm limits has been reached.

The alarm texts are identified by an ID. The ID uniquely identifies an alarm text from the resource file (see
Step 5: Configuring multilingual alarm texts [} 62]).

Step 3: Transferring own user data with an alarm

Alarms can contain fields with their own user data, which complement the data output with the alarm. These
user data fields can be created and filled out in the runtime application. To do this, create a STRUCT and
name its first element "value". In case of an alarm, all the following elements are then sent in an additional
user data field.

Sample PLC application:
TYPE ST_CustomStruct :
STRUCT
 value : INT;
 data : ST_SomeStruct;
END_STRUCT
END_TYPE

TYPE ST_SomeStruct :
STRUCT
 Data1 : INT;
 Data2 : REAL;
 Data3 : LREAL;
END_STRUCT
END_TYPE

The instance of ST_CustomStruct is then enabled for data access via the regular mechanism, e.g. in
TwinCAT 3: To do this the STRUCT must be activated as a StructuredType [} 68].
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCustomStruct : ST_CustomStruct;
END_VAR

When logging on to a ConditionController, the OPC UA Clients must subscribe to special
AlarmConditionTypes, i.e. "BkUaLimitAlarmType" and "BkUaOffNormalAlarmType", so that they can receive
the special user data fields when an alarm is received.

Technical introduction

TC3 OPC UA60 Version: 2.6

The OPC UA Client then receives the user data in the fields BkUaEventData and BkUaEventValue of the
incoming alarm. In the above sample, these are the value of the PLC variables and the user data
represented by the PLC structure ST_SomeStruct.

Step 4: Triggering an event using the FireEvent method

Each ConditionController includes a FireEvent method with which the OPC UA Clients can trigger a general
event with user-defined EventFields.

Technical introduction

TC3 OPC UA 61Version: 2.6

If the method is executed, an event is output on the OPC UA Server. Other OPC UA Clients can receive
these events when they subscribe to the corresponding ConditionController.

The user-defined EventFields are appended to the event as "UserEventData". This data can be received by
OPC UA Clients that are logged on to the SimpleEventType "UserEventType".

Technical introduction

TC3 OPC UA62 Version: 2.6

Step 5: Configuring multilingual alarm texts

The A&C implementation in the OPC UA Server supports the use of multilingual alarm texts. The alarm text
that is used depends on the language with which the UA Client connects to the Server.

Alarm texts are configured in XML files. There is a separate file for each language. These files are located in
the res (Resource) folder on the OPC UA Server. With the configurator you can simply add or remove alarm
texts without having to directly edit the XML files. Each alarm text has its own ID, which occurs only once in
the file.

Sample:
<TcOpcUaSvrRes Lang="en">
 <Text ID="0">Text not available</Text>
 <Text ID="1">Some alarm text</Text>
 <Text ID="2">Value is High range</Text>
 <Text ID="3">Value is HighHigh range</Text>
 <Text ID="4">Value is OffNormal</Text>
 ...
</TcOpcUaSvrRes>

Step 6: Registering A&C with a reference OPC UA Client

An OPC UA Client must log on to a ConditionController so that it can receive events for conditions that are
configured for this particular ConditionController. The UA Expert provides functions for subscribing to and
receiving UA events.

After you have started the UA Expert and established a connection with the OPC UA Server, add a new
document view, Event View, to your working area.

Technical introduction

TC3 OPC UA 63Version: 2.6

You can then subscribe to a ConditionController by dragging the corresponding object in Event View. The
events for this ConditionController are displayed in the Event Window.

It may be necessary to subscribe to special alarm and/or event types in order to receive all fields of an
incoming event or alarm.

4.1.3.4 Method Call

Method calls are a fundamental part of the OPC UA specification. With the introduction of these
functionalities into the PLC world, TwinCAT 3 offers the possibility of efficiently executing RPC calls in the
IEC61131 world and thus reduces the classic handshake patterns for communication between devices. The
OPC UA Server imports PLC methods such as OPC UA methods via its TMC import.

IEC61131 method
Although the PLC method appears to be a normal method in the UA namespace, it is still an
IEC61131 method that runs within the real-time context and therefore falls under the context of a
real-time task. The PLC developer must therefore take precautions so that the execution time of the
method matches the task cycle time.

Methods in IEC61131-3

Methods in the IEC61131 world are always configured below a function block. At high-level language level,
the function block can be regarded as the surrounding class of the method. You have to declare the method
itself with a special PLC attribute so that the TwinCAT system knows that the method is to be activated for a
remote method call.
{attribute 'TcRpcEnable':='1'}
METHOD M_Sum : INT
VAR_INPUT
 a : INT;
 b : INT;
END_VAR

Technical introduction

TC3 OPC UA64 Version: 2.6

Filtered or unfiltered mode

Depending on the import mode used, you also have to activate the surrounding function block for the OPC
UA access. This can be done by using the normal PLC attributes for OPC UA access.

Note that you only need to use the PLC attributes if the filtered mode is used to enable symbols from the
PLC to be accessed via OPC UA. This is the default setting of the OPC UA Server.

Sample:

The method M_Sum is located in the function block FB_Mathematics. The declaration of the function block
instance uses the PLC attribute that has enabled the function block and thus the method for OPC UA
access.
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA':='1'}
 fbMathematics : FB_Mathematics;
END_VAR

4.1.3.5 AnalogItemTypes

AnalogItemTypes are part of the OPC UA specification and allow meta information such as units to be
attached to a variable. You can define these items of meta information in the form of PLC attributes in the
TwinCAT 3 PLC.

The following parameters can be set:

• EngineeringUnits: Units defined by the OPC UA specification
• EURange: Maximum value range of the variables
• InstrumentRange: Normal value range of the variables
• WriteBehavior: Behavior if the value range is exceeded during a write operation.

The following sample shows how the fillLevel variable is configured as an AnalogItemType. The following
parameters are hereby set:

• Unit: 20529 ("Percent", defined in the OPC UA specification)
• Max. value range: 0 to 100
• Normal value range: 10 to 90
• Write behavior: 1 (Clamping)

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.AnalogItemType' := '1'}
{attribute 'OPC.UA.DA.AnalogItemType.EngineeringUnits' := '20529'}
{attribute 'OPC.UA.DA.AnalogItemType.EURange' := '0:100'}
{attribute 'OPC.UA.DA.AnalogItemType.InstrumentRange' := '10:90'}
{attribute 'OPC.UA.DA.AnalogItemType.WriteBehavior' := '1'}
fillLevel : UINT;

EngineeringUnits can be configured using the IDs specified in OPC UA (Part 8 of the OPC UA specification).
The IDs are based on the widely used and accepted "Codes for Units of Measurement (Recommendation
N.20)" published by the "United Nations Center for Trade Facilitation and Electronic Business".
CommonCode, which specifies the three-digit alphanumeric ID, is converted by OPC UA according to
specification into an Int32 value and referenced (extract from OPC UA specification v1.02, pseudo-code):
Int32 unitId = 0;
Int32 c;
for (i=0; i<=3;i++)
{
 c = CommonCode[i];
 if (c == 0)
 break; // end of Common Code
 unitId = unitId << 8; // shift left
 unitId = unitId | c; // OR operation
}

Technical introduction

TC3 OPC UA 65Version: 2.6

Write behavior

When writing an AnalogItemType variable, you can define how the OPC UA Server should handle the new
value in relation to the value range. The following options are available:

• 0: All values are allowed and are accepted during a write operation.
• 1: The value to be written is truncated according to the value range.
• 2: The value to be written is rejected if it exceeds the value range.

4.1.3.6 Type system

One of the biggest advantages of OPC UA is the meta-model, which can be used to provide base types as
well as to extend the type system with custom models. The same mechanism is used to represent real
objects (nodes) so that OPC UA Clients can determine an object type.

The OPC UA Server publishes type information from the IEC61131 world in its namespace. This includes not
only base types such as BOOL, INT, DINT, or REAL, but also extended type information such as the current
class (function block) or structure that represents an object.

Type information

Type information is part of the UA namespace. The OPC UA Server extends the basic type information as
follows:

• Local type information that is only valid for one runtime is stored in the same namespace as the
runtime symbols.

• Global type information that can be valid for different runtimes is stored in a separate global
namespace.

The type system is also virtually available and can be viewed in the Types area of the OPC UA Server:

Every non-standard data type is entered in the BeckhoffCtrlTypes area.

Basic principles

Assuming the TwinCAT 3 PLC consists of a PLC program with different STRUCTs. Each STRUCT is
represented as a node in a UA namespace, with each element of the structure as a subordinate node.

In this sample the STRUCT stSampleStruct consists of three subordinate elements: one variable nValue1 of
the type INT, one variable bValue2 of the type BOOL and a further STRUCT stSubStruct, which contains
only one subordinate element (variable nValue of the type INT).

Technical introduction

TC3 OPC UA66 Version: 2.6

The structure itself is a regular variable in the UA namespace and has the data type ByteString. The clients
can therefore simply be connected to the root element (the structure itself), and its values can be read/
written by interpreting the ByteString. To simplify the interpretation of each subordinate element, the type
system contains more information about the structure itself, primarily in the instance reference:

In addition, the type system contains more information about ST_SampleStruct:

And in the references of ST_SampleStruct:

Overall, the type system can offer very useful information if a Client wants to interpret the structure further.

Technical introduction

TC3 OPC UA 67Version: 2.6

Object-orientated extensions

Assuming the TwinCAT 3 PLC runtime contains a PLC program whose structure can be visualized as
follows:

The two function blocks Scanner and Drive are derived from the base class Device by using object-oriented
extensions of IEC61131-3. The MAIN program now contains the following declarations:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA':='1'}
 Scanner1 : Scanner;
 {attribute 'OPC.UA.DA':='1'}
 Scanner2 : Scanner;
 {attribute 'OPC.UA.DA':='1'}
 DriveX : Drive;
END_VAR

All three objects are of type Device, but also of their special data type. The OPC UA Server imports the
objects as follows:

The basic data type can now be determined in the reference of each object, e.g. object Scanner1:

Technical introduction

TC3 OPC UA68 Version: 2.6

According to the basic IEC61131 program, the object Scanner1 is of the data type Scanner and also shows
which variables are contained and what type the variable is: input, output or internal (local) variable. The
diagram above shows that not only the variables of the actual function block are displayed here, but also the
derived variables of the base class. The entire IEC61131-3 inheritance chain is represented in the UA
namespace.

4.1.3.7 StructuredTypes

StructuredTypes allow you to read or write structures without interpreting each byte, because the UA Server
returns the information type of each element of the structure. Based on complex functions in modern
OPC UA SDKs, OPC UA Clients can search and interpret this structural information.

From version 2.2.x of the OPC UA Server, structures of the TwinCAT 3 runtime (TMC and TMI import only)
are generated as a StructuredType in the UA namespace.

Sample:

STRUCT ST_Communication:
TYPE ST_Communication :
STRUCT
 a : INT;
 b : INT;
 c : INT;
END_STRUCT
END_TYPE

Program MAIN:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCommunication : ST_Communication;
END_VAR

Filtered mode
If filters are used to make symbols available via OPC UA, a STRUCT or function block must be fully
available in the UA namespace in order to be displayed as a StructuredType.

Pointers and references
If pointers and references are used in the structure, then they cannot be converted into a Struc-
turedType. The OPC UA Server then illustrates these structures as regular FolderTypes with the
corresponding member variables.

The instance stCommunication is then displayed in the UA namespace as a StructuredType:

Technical introduction

TC3 OPC UA 69Version: 2.6

Alternatively, the STRUCT definition can also be assigned the PLC attribute to make all instances of
STRUCT available as StructuredType.
{attribute 'OPC.UA.DA.StructuredType' := '1'}
TYPE ST_Communication :
STRUCT
 a : INT;
 b : INT;
 c : INT;
END_STRUCT
END_TYPE

In order to deactivate StructuredType of a certain instance, use the following attribute:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '0'}
 stCommunication : ST_Communication;
END_VAR

Function block StructuredType

In addition, each function block of the TwinCAT 3 PLC also contains a child node, FunctionBlock, which
contains the entire function block as a StructuredType.

Sample:

Technical introduction

TC3 OPC UA70 Version: 2.6

Function block:
FUNCTION_BLOCK FB_FunctionBlock
VAR_INPUT
 Input1 : INT;
 Input2 : LREAL;
END_VAR
VAR_OUTPUT
 Output1 : LREAL;
END_VAR

Instance of the function block:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 fbFunctionBlock : FB_FunctionBlock;
END_VAR

Instance of the function block in the OPC UA namespace:

FunctionBlock node with StructuredType:

Alternatively, the function block can also receive a PLC attribute to make all instances of the function block
available as StructuredType.
{attribute 'OPC.UA.DA.StructuredType' := '1'}
FUNCTION_BLOCK FB_FunctionBlock
VAR_INPUT
 Input1 : INT;
 Input2 : LREAL;
END_VAR
VAR_OUTPUT
 Output1 : LREAL;
END_VAR

In order to deactivate StructuredType of a certain instance, use the following attribute:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '0'}
 fbFunctionBlock : FB_FunctionBlock;
END_VAR

Technical introduction

TC3 OPC UA 71Version: 2.6

Maximum size of the structure
The maximum size of a structure is 16 kByte by default. Each STRUCT constantly exchanges data
with the basic ADS device, i.e. a large ADS message is sent with each read/write command of a
StructuredType. To prevent the ADS router from being flooded with large messages, the maximum
size is limited. You can change this specification in the file ServerConfig.xml. To do this, the key
<MaxStructureSize> must be added to OpcServerConfig\UaServerConfig\, and a new value for the
maximum size of a structure must be set in bytes. If a structure exceeds <MaxStructureSize>, it is
imported as FolderType, where each structure item is available as a single node.

4.1.3.8 Use of arrays

By default arrays are regarded as individual nodes in the UA namespace. This means that if you define, for
example, an array dyn_BOOL[10] in the PLC (and have also enabled it for OPC UA), it will subsequently
appear in the UA namespace as follows:

The advantage of this approach is a considerable reduction in the complexity of the UA namespace and in
memory consumption, since not every position of an array needs to be made available as an individual node
in the namespace. However, modern UA Clients can continue to access the individual array positions via the
so-called "RangeOffset".

In order to support older UA Clients that don’t offer this feature, however, you can also make the positions of
an array available as individual nodes in the UA namespace. It is illustrated as follows:

This setting is available by activating the Legacy Array Handling option in the UA Configurator within the
respective namespace configuration.

Depending on the scope of the PLC project, the UA namespace can become significantly more complex,
which in turn is reflected in an increased memory utilization of the UA Server.

Changes to the settings listed above only become active after restarting the UA Server.

4.1.3.9 List of attributes and comments

The runtime variables for various OPC UA functions (e.g. data access or historical access) are configured
directly in the PLC program or in the TMC code editor (if using TwinCAT 3 C++). The advantage is that PLC
developers can decide directly in the program with which they are familiar whether and how a variable is to
be enabled for OPC UA. You activate a variable by inserting a comment and the corresponding OPC UA tag
in front of the variable, e.g.:

TwinCAT 3 PLC (TMC):
{attribute 'OPC.UA.DA' := '1'}
bVariable : BOOL;

TwinCAT 2 PLC (TPY):
bVariable : BOOL; (*~ (OPC:1:available)*)

You can find a detailed description of the use of attributes and comments in the sections concerning the
corresponding runtime components:

Technical introduction

TC3 OPC UA72 Version: 2.6

• PLC [} 43]

• C++ [} 75]

• I/O [} 94]

• Matlab/Simulink [} 106]

The following table shows an overview of all definable tags and their meaning. The subsections of the
corresponding function contain a detailed description of the functional principle.

TwinCAT 3 (TMC):

OPC UA function PLC tag C++ TMC code editor
(Optional features)

Meaning

Data Access (DA) {attribute 'OPC.UA.DA' :=
'0'}

Name: OPC.UA.DA
Value: 0

Locks a variable for
OPC UA, whereupon it is no
longer visible in the UA
namespace.

Data Access (DA) {attribute 'OPC.UA.DA' :=
'1'}

Name: OPC.UA.DA
Value: 1

Enables a variable for
OPC UA, whereupon it
becomes visible in the UA
namespace. This tag must
always be set if you want to
use a variable for UA.

Data Access (DA) {attribute
'OPC.UA.DA.Access' := 'x'}

Name: OPC.UA.DA.Access
Value: see right column

Sets read/write access for a
variable, depending on
parameter "x".
0 = none
1 = read-only
2 = write access only
3 = read and write access
(default if no tag is used)

Data Access (DA) {attribute
'OPC.UA.DA.Description' :=
'x'}

Name:
OPC.UA.DA.Description
Value: see right column

Sets a text for the OPC UA
attribute "Description".

Data Access (DA) {attribute
'OPC.UA.DA.StructuredTyp
e' := '0'}

Name:
OPC.UA.DA.StructuredTyp
e
Value: 0

Disables StructuredType for
a STRUCT or a function
block

Data Access (DA) {attribute
'OPC.UA.DA.StructuredTyp
e' := '1'}

Name:
OPC.UA.DA.StructuredTyp
e
Value: 1

Enables StructuredType for
a STRUCT or a function
block

Data Access {attribute
'OPC.UA.DA.Status' :=
'quality'}

Name: OPC.UA.DA.Status
Value: quality

Manually define the
StatusCode of a symbol in
the UA namespace. Only
for data structures. The
value "quality" specifies
which DINT subelement of
the data structure
determines the
StatusCode . See
corresponding article in the
documentation for more
information.

Historical Access
(HA) [} 49]

{attribute 'OPC.UA.HA' :=
'1'}

Name: OPC.UA.HA
Value: 1

Enables a variable for
Historical Access. Must be
used with {attribute
'OPC.UA.DA' := '1'}.

Technical introduction

TC3 OPC UA 73Version: 2.6

OPC UA function PLC tag C++ TMC code editor
(Optional features)

Meaning

Historical Access
(HA) [} 49]

{attribute
'OPC.UA.HA.Storage' := 'x'}

Name: OPC.UA.HA.Storage
Value: see right column

Defines the storage location
for Historical Access,
depending on parameter "x"
1 = RAM
2 = File
3 = SQL Compact
Database
4 = SQL Server Database

Historical Access
(HA) [} 49]

{attribute
'OPC.UA.HA.Sampling' :=
'x'}

Name:
OPC.UA.HA.Sampling
Value: see right column

Determines the sampling
rate at which the variable
values are to be stored, in
[ms] depending on the
parameter "x"

Historical Access
(HA) [} 49]

{attribute
'OPC.UA.HA.Buffer' := 'x'}

Name: OPC.UA.HA.Buffer
Value: see right column

Defines the maximum
number of values that
remain in the data memory,
depending on the
parameter "x".

TwinCAT 2 (TPY):

OPC UA function PLC tag Meaning
Data Access (DA) (*~ (OPC:0:not available) *) Locks a variable for OPC UA, whereupon

it is no longer visible in the UA
namespace.

Data Access (DA) (*~ (OPC:1:available) *) Enables a variable for OPC UA,
whereupon it becomes visible in the UA
namespace. This tag must always be set
if you want to use a variable for UA.

Data Access (DA) (*~ (OPC_PROP[0005]:1: read-only) *) Sets the write protection for a variable.
Must be used together with (*~ (OPC: 1:
available) *).

Data Access (DA) (*~ (OPC_UA_PROP[5100] : x: Alias
name) *)

Specifies x as node name in the UA
namespace, so-called alias mapping.

Historical Access (HA)
[} 49]

(*~ (OPC_UA_PROP[5000]:x:Storage
media) *)

Enables a variable for "Historical
Access". Must be used together with (*~
(OPC: 1: available) *). x defines the
storage medium for saving the data
values:
1 = RAM
2 = File
3 = SQL Compact Database
4 = SQL Server Database

Historical Access (HA)
[} 49]

(*~ (OPC_UA_PROP[5000]
[1]:x:SamplingRate) *)

Determines the sampling rate at which
the variable values are to be stored, in
[ms] depending on the parameter "x"

Historical Access (HA)
[} 49]

(*~ (OPC_UA_PROP[5000][2]:x:Buffer) *) Defines the maximum number of values
that remain in the data memory,
depending on the parameter "x".

Technical introduction

TC3 OPC UA74 Version: 2.6

4.1.3.10 StatusCode

The OPC UA Server enables a PLC application to change the OPC UA StatusCode.

Perform the following steps to configure and affect the StatusCode of a variable:

• Creating a PLC structure [} 74]

• Overwriting StatusCode [} 74]

Creating a PLC structure

So that the data consistency is guaranteed, the concept of changing the OPC UA StatusCode is based on
StructuredTypes (see StructuredTypes [} 68]). Each variable whose UA StatusCode is to be affected must
be included in a STRUCT.

Create a new STRUCT and add a PLC attribute before the STRUCT definition. The STRUCT contains the
variable itself and a variable of the data type DINT, which represents the StatusCode and to which reference
is made in the attribute in front of the STRUCT definition.
{attribute 'OPC.UA.DA.STATUS' := 'quality'}
TYPE ST_StatusCodeOverride :
STRUCT
 value : REAL;
 quality: DINT;
END_STRUCT
END_TYPE

Now create an instance of this STRUCT, for example in the MAIN program, and add the regular PLC
attribute so that this instance becomes available via OPC UA.
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 stStatusCodeOverride : ST_StatusCodeOverride;
END_VAR

This instance is now available inside the OPC UA namespace as a StructuredType.

Overwriting StatusCode

To overwrite the UA StatusCode for the STRUCT, simply edit the value of the variable "quality". If you set
this, for example, to "-2147155968", the StatusCode of the STRUCT changes to "BadCommunicationError".

Technical introduction

TC3 OPC UA 75Version: 2.6

The value must be determined according to the definition in the OPC UA specification.

The following table lists only some of the available StatusCodes and their corresponding decimal
representation. Consult the official OPC UA specification for a more comprehensive list of the StatusCodes.

StatusCode Hex Decimal
BadUnexpectedError 0x80010000 -2147418112
BadInternalError 0x80020000 -2147352576
BadCommunicationError 0x80050000 -2147155968
BadTimeout 0x800A0000 -2146828288
BadServiceNotSupported 0x800B0000 -2146762752

UA StatusCodes
When calculating the decimal representation of other UA StatusCodes on the basis of their hexa-
decimal representation, make sure that your computer is set to DWORD, e.g. the Windows com-
puter ("Programmer" view).

4.1.4 C++

4.1.4.1 Access to C++ runtime

This section describes how to configure the namespace of the TwinCAT OPC UA Server in order to obtain
access to the symbols of a TwinCAT 3 C++ module. For this you can either use the OPC UA Configurator or
carry out the configuration directly in the file ServerConfig.xml of the OPC UA Server.

This section contains the following topics:

• Step 1: Project-related settings [} 75]

• Step 2: Configuring the UA Server [} 76]

Step 1: Project-related settings

To configure certain symbols contained in an instance of a C++ module in such a way that they are
accessible via OPC UA, the following settings are necessary in the corresponding C++ module instance in
TwinCAT XAE.

1. The OPC UA Server requires the TMI symbol file, which is not passed to the target runtime by default.
Enable the transfer by setting the following options:

Technical introduction

TC3 OPC UA76 Version: 2.6

ð The generated TMI file is named after the Object ID, e.g. "Obj_01010020.tmi" and stored in the
TwinCAT boot directory, e.g. C:\TwinCAT\Boot\Tmi\.

2. Select which symbols are to be made accessible to the corresponding variables by checking the Create
symbol checkbox in the TMC code generator. Then execute the TMC CodeGenerator.

Step 2: Configuring the UA Server

You can configure and parameterize the access to TwinCAT 3 C++ modules simply with the help of the
OPC UA Configurator. To do this, add a new device of the type "CPP TwinCAT 3 (TMI) filtered" in the Data
Access area.

The Symbol File field must point to the TMI file created for the C++ module instance. This TMI file is located
in the TwinCAT boot directory, e.g. C:\TwinCAT\Boot\Tmi\, and is named after the ObjectID of the
TwinCAT 3 C++ module instance.

The configurable parameters describe the following functions:

Parameter Description Possible values
ADS Port Defines the ADS port under which the C++ module

instance is accessible. The ADS port can be read in the
properties of the C++ task.

351
352
…

Technical introduction

TC3 OPC UA 77Version: 2.6

Parameter Description Possible values
AutoCfg First defines the type of the target runtime used for

communication, e.g. PLC, C++, I/O. A further distinction
can then be made within these categories.
Each AutoCfg option is available as an unfiltered or filtered
option. Filtered means the user can determine which C++
symbols are made publicly accessible via OPC UA. When
using an unfiltered option, each C++ symbol is published
to OPC UA.

4020 CPP TwinCAT 3
(TMI)
4021 CPP TwinCAT 3
(TMI) filtered

AutoCfgSymFile Symbol file (TMI) of the corresponding C++ module
instance.

Path to the symbol file.
(TMI)

IoMode Defines the method for accessing symbols. 1 (access via handle -
default)

ArraySubItemLegacy
Support

By default, subelements of an array are not mapped as
separate nodes in the UA namespace. Instead, only the
array is mapped as a single element. Nonetheless,
UA Clients can access subelements via their
"IndexRange". (Some older OPC UA Clients do not yet
support this option).
The flag was introduced so that access is nevertheless
possible for these clients. It ensures that every array
position is displayed as a separate node in the UA
namespace. This leads to higher memory requirement of
the OPC UA Server.

0 (disabled - default)
1 (enabled)

Disabled Disables the C++ module instance in the UA namespace,
so that the corresponding node is not displayed.
It is advisable to enable this parameter if certain C++
runtimes are not yet available at the time of project
planning, for example because the corresponding devices
are not yet connected to the network.

0 (disabled - default)
1 (enabled)

4.1.4.2 Historical Access

4.1.4.2.1 Setup Version 4.x.x

From setup version 4.x.x historical access can no longer be configured via attributes or comments. The
advantage of this is that the Historical Access functionality is now also available for runtimes that previously
did not support this, such as variables of a BC9191 Controller. Furthermore, a Historical Access
configuration can now also be carried out retrospectively, i.e. without having to adapt the PLC project.

The historical access configuration is now XML-based (TcUaHaConfig.xml) and can be carried out using the
OPC UA Server Configurator. The XML file is located in the same directory as TcOpcUaServer.exe.

See also:

• Configuration > Setup version 4.x.x > Overview [} 192] (OPC UA Server Configurator) and Configuring
historical access [} 200])

XML file structure (TCUaHaConfig.xml)
<HistoryConfig>
 <HistoryController>
 <HistoryAdapter Type="Volatile" Id="0" File="" Server="" Database="" User="" Password=""/>
 <HistoryAdapter Type="File" Id="1" File="historydb.dat" Server="" Database="" User=""
Password=""/>
 <HistoryAdapter Type="SQL" Id="2" File="" Server="" Database="database123" User="user"
Password="pwd"/>
 <HistoryAdapter Type="SQLCompact" Id="3" File="historydb.xyz" Server="" Database="" User=""
Password=""/>
 <HistoryAdapter Type="SQLCompact" Id="4" File="historydb2.xyz" Server="" Database="" User=""
Password=""/>
 </HistoryController>

Technical introduction

TC3 OPC UA78 Version: 2.6

 <HistoryNodes>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_SingleNode.nMyValue"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.nMyValue1"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.nMyValue2"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.fMyValue3"/>
 </HistoryNodes>
</HistoryConfig>

You can configure all supported data memory in the HistoryController area. The following locations are
currently supported:

• RAM ("Volatile")
• File
• SQL Compact
• SQL Server (not supported under Windows CE)

Each HistoryAdapter (except for "Volatile") can be used multiple times, e.g. if the historical values for
individual variables are to be stored in different data memories.

In the HistoryNodes area, the individual nodes are configured, assigned to a data memory and assigned a
SamplingRate and a maximum size for the ring buffer to be used in the data memory.

The attribute HistoryWriteable="true" ensures that the data memory for this node can be filled with
values via a HistoryUpdate() call. Such a call is provided, for example, by the TwinCAT OPC UA Client via
the function block UA_HistoryUpdate. If you configure a node with this attribute, then the server doesn't
normally "sample" the values itself, but receives them from other clients. In such a configuration the
SamplingRate is therefore usually 0.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.1.4.2.2 Display historical data

Displaying Historical Access values in an OPC UA Client

The following step-by-step instructions describe how to configure the UA Expert software in order to access
historical data.

Technical introduction

TC3 OPC UA 79Version: 2.6

1. Start the UA Expert software and connect to the OPC UA Server.

Technical introduction

TC3 OPC UA80 Version: 2.6

2. Add a new History Trend View.

3. Browse the PLC1 namespace and use drag & drop to add the PLC variables _HistoryDB,
_HistoryDBcompact, _HistoryFast and _HistorySlowPersist.

Technical introduction

TC3 OPC UA 81Version: 2.6

ð You can now use the Start Time and End Time controls to specify the desired time period for which the
symbol values are to be displayed, or you can start a Cyclic Update for these variables if necessary.

4.1.4.3 Alarms and Conditions

The steps required to configure OPC UA Alarms and Conditions (A&C) on the OPC UA Server are described
in this section. The basic concept is independent of TwinCAT runtime, which means the configuration steps
for PLC, C++, TcCOM runtime or only I/O task are the same.

OPC UA Alarms and Conditions (Part 9 of the OPC UA specification) describes a model for monitoring
process values and outputting alarms and events when a runtime symbol changes its state.

Requirements

The following requirements apply to the use of OPC UA Alarms and Conditions:

• The runtime symbol to be monitored must be available in the namespace.
• The OPC UA Client must support Alarms and Conditions. In this section UA Expert (from Unified

Automation) is used as the reference UA Client.

General Information

Execute the following steps once to release a symbol for Alarms and Conditions:

Technical introduction

TC3 OPC UA82 Version: 2.6

• Step 1: Activating runtime symbol for data access [} 82] (so that the symbol is generally accessible
via OPC UA.)

• Step 2: Activating A&C for a symbol [} 82]

• Step 3: Transferring your own user data with an event [} 83]

• Step 4: Triggering an event using the FireEvent method [} 84]

• Step 5: Configuring multilingual alarm texts [} 86]

• Step 6: Registering A&C with a reference OPC UA Client [} 86]

These steps are explained in more detail below. At the end of this section you will find information about
receiving configured alarms via A&C with the UA Expert Reference Client.

Supported alarm types

The implementation of OPC UA Alarms and Conditions currently supports the following alarm types:

• LimitAlarmType: Define different limits for a symbol. If a limit is reached, the UA Server issues an
alarm.

• OffNormalAlarmType: Define a value that is "normal". If the current value deviates from the "normal"
value, the UA Server issues an alarm.

Step 1: Activating runtime symbol for data access

A variable must be available in the OPC UA Server in order for it to be configured for A&C. To do this in the
case of a PLC variable, provide it with an attribute (see Access to PLC runtime [} 43]).

Step 2: Activating A&C for a symbol

You can configure a runtime symbol for A&C with the OPC UA Server Configurator. The Configurator has a
simple graphical user interface for editing the XML file on which it is based. Depending on the setup version
the configurator is available in two variants: standalone [} 190] and integrated in Visual Studio [} 202].

The following program extract shows an example of this XML file to better understand the general behavior
and structure of the A&C implementation.
<TcUaAcConfig>
 <ConditionController Name="ConditionController1" >
 <Condition Name="Counter" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter1" />
 </Condition>
 <Condition Name="Switch" Severity="500">
 <OffNormalAlarmType Normal="0" MessageNormal="100" MessageOffNormal="20" />
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.bSwitch" />
 </Condition>
 <Condition Name="Struct" Severity="300">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.stStruct" />
 </Condition>
 </ConditionController>
 <ConditionController Name="ConditionController2" >
 <Condition Name="Counter2" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter2" />
 </Condition>
 </ConditionController>
</TcUaAcConfig>

A "condition" defines the runtime symbol to be monitored and the alarm limits and texts. Each condition is
organized in a so-called "ConditionController", the object that the OPC UA Clients subsequently subscribe to.

Technical introduction

TC3 OPC UA 83Version: 2.6

When creating a condition, you must specify the NamespaceName (NS) and NodeID for referring to the
UA node to be monitored. The Configurator provides a simple browsing mechanism for selecting a node. In
XML, the placeholder [NodeName] in NamespaceName can be used to switch the XML file between different
hardware systems. NamespaceName always contains the host name of the IPC or Embedded PC on which
the OPC UA Server is running. If [NodeName] is selected, this tag will be replaced by the host name of the
current IPC or Embedded PC on which the UA Server is running.

SamplingRate determines how often the UA Server should request a value from the node to determine
whether one of the alarm limits has been reached.

The alarm texts are identified by an ID. The ID uniquely identifies an alarm text from the resource file (see
Step 5: Configuring multilingual alarm texts [} 86]).

Step 3: Transferring own user data with an alarm

Alarms can contain fields with their own user data, which complement the data output with the alarm. These
user data fields can be created and filled out in the runtime application. To do this, create a STRUCT and
name its first element "value". In case of an alarm, all the following elements are then sent in an additional
user data field.

Sample PLC application:
TYPE ST_CustomStruct :
STRUCT
 value : INT;
 data : ST_SomeStruct;
END_STRUCT
END_TYPE

TYPE ST_SomeStruct :
STRUCT
 Data1 : INT;
 Data2 : REAL;
 Data3 : LREAL;
END_STRUCT
END_TYPE

The instance of ST_CustomStruct is then enabled for data access via the regular mechanism, e.g. in
TwinCAT 3: To do this the STRUCT must be activated as a StructuredType [} 88].
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCustomStruct : ST_CustomStruct;
END_VAR

When logging on to a ConditionController, the OPC UA Clients must subscribe to special
AlarmConditionTypes, i.e. "BkUaLimitAlarmType" and "BkUaOffNormalAlarmType", so that they can receive
the special user data fields when an alarm is received.

Technical introduction

TC3 OPC UA84 Version: 2.6

The OPC UA Client then receives the user data in the fields BkUaEventData and BkUaEventValue of the
incoming alarm. In the above sample, these are the value of the PLC variables and the user data
represented by the PLC structure ST_SomeStruct.

Step 4: Triggering an event using the FireEvent method

Each ConditionController includes a FireEvent method with which the OPC UA Clients can trigger a general
event with user-defined EventFields.

Technical introduction

TC3 OPC UA 85Version: 2.6

If the method is executed, an event is output on the OPC UA Server. Other OPC UA Clients can receive
these events when they subscribe to the corresponding ConditionController.

The user-defined EventFields are appended to the event as "UserEventData". This data can be received by
OPC UA Clients that are logged on to the SimpleEventType "UserEventType".

Technical introduction

TC3 OPC UA86 Version: 2.6

Step 5: Configuring multilingual alarm texts

The A&C implementation in the OPC UA Server supports the use of multilingual alarm texts. The alarm text
that is used depends on the language with which the UA Client connects to the Server.

Alarm texts are configured in XML files. There is a separate file for each language. These files are located in
the res (Resource) folder on the OPC UA Server. With the configurator you can simply add or remove alarm
texts without having to directly edit the XML files. Each alarm text has its own ID, which occurs only once in
the file.

Sample:
<TcOpcUaSvrRes Lang="en">
 <Text ID="0">Text not available</Text>
 <Text ID="1">Some alarm text</Text>
 <Text ID="2">Value is High range</Text>
 <Text ID="3">Value is HighHigh range</Text>
 <Text ID="4">Value is OffNormal</Text>
 ...
</TcOpcUaSvrRes>

Step 6: Registering A&C with a reference OPC UA Client

An OPC UA Client must log on to a ConditionController so that it can receive events for conditions that are
configured for this particular ConditionController. The UA Expert provides functions for subscribing to and
receiving UA events.

After you have started the UA Expert and established a connection with the OPC UA Server, add a new
document view, Event View, to your working area.

Technical introduction

TC3 OPC UA 87Version: 2.6

You can then subscribe to a ConditionController by dragging the corresponding object in Event View. The
events for this ConditionController are displayed in the Event Window.

It may be necessary to subscribe to special alarm and/or event types in order to receive all fields of an
incoming event or alarm.

4.1.4.4 Method Call

Method calls are a fundamental part of the OPC UA specification. With the introduction of these
functionalities into the PLC world, TwinCAT 3 offers the possibility of efficient execution of RPC calls in the C
++ real-time context and thus reduces the classic handshake patterns for communication between devices.
The OPC UA Server imports C++ methods such as OPC UA methods via its TMI import.

Real-time method
Although the C++ method appears to be a normal method in the UA namespace, it is still a real-time
method that runs within the real-time context and therefore falls under the context of a real-time
task. The TwinCAT C++ developer must therefore take precautions so that the execution time of the
method matches the task cycle time.

Technical introduction

TC3 OPC UA88 Version: 2.6

Methods in TwinCAT 3 C++

TwinCAT modules could implement interfaces with predefined methods (see TcCOM modules). The method
itself must be enabled for RPC calls during its definition (see TwinCAT Module Class Wizard documentation)
so that the OPC UA Server knows that it is ready for execution.

So that the return value of the method is available, the corresponding option Include Return Value must be
activated. Note that the interface under which the method was created must be implemented.

Filtered or unfiltered mode

Depending on the import mode used, you have to declare the method for the access via OPC UA. This can
be done by using the TMC Code editor and the usual OPC UA attributes as optional properties.

4.1.4.5 StructuredTypes

StructuredTypes allow you to read or write structures without interpreting each byte, because the UA Server
returns the information type of each element of the structure. Based on complex functions in modern
OPC UA SDKs, OPC UA Clients can search and interpret this structural information.

From version 2.2.x of the OPC UA Server, structures of the TwinCAT 3 runtime (TMC and TMI import only)
are generated as a StructuredType in the UA namespace.

Sample:

STRUCT ST_Communication:

Technical introduction

TC3 OPC UA 89Version: 2.6

TYPE ST_Communication :
STRUCT
 a : INT;
 b : INT;
 c : INT;
END_STRUCT
END_TYPE

Program MAIN:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCommunication : ST_Communication;
END_VAR

Filtered mode
If filters are used to make symbols available via OPC UA, a STRUCT or function block must be fully
available in the UA namespace in order to be displayed as a StructuredType.

Pointers and references
If pointers and references are used in the structure, then they cannot be converted into a Struc-
turedType. The OPC UA Server then illustrates these structures as regular FolderTypes with the
corresponding member variables.

The instance stCommunication is then displayed in the UA namespace as a StructuredType:

Technical introduction

TC3 OPC UA90 Version: 2.6

Alternatively, the STRUCT definition can also be assigned the PLC attribute to make all instances of
STRUCT available as StructuredType.
{attribute 'OPC.UA.DA.StructuredType' := '1'}
TYPE ST_Communication :
STRUCT
 a : INT;
 b : INT;
 c : INT;
END_STRUCT
END_TYPE

In order to deactivate StructuredType of a certain instance, use the following attribute:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '0'}
 stCommunication : ST_Communication;
END_VAR

Function block StructuredType

In addition, each function block of the TwinCAT 3 PLC also contains a child node, FunctionBlock, which
contains the entire function block as a StructuredType.

Sample:

Function block:
FUNCTION_BLOCK FB_FunctionBlock
VAR_INPUT
 Input1 : INT;
 Input2 : LREAL;
END_VAR
VAR_OUTPUT
 Output1 : LREAL;
END_VAR

Instance of the function block:

Technical introduction

TC3 OPC UA 91Version: 2.6

PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 fbFunctionBlock : FB_FunctionBlock;
END_VAR

Instance of the function block in the OPC UA namespace:

FunctionBlock node with StructuredType:

Alternatively, the function block can also receive a PLC attribute to make all instances of the function block
available as StructuredType.
{attribute 'OPC.UA.DA.StructuredType' := '1'}
FUNCTION_BLOCK FB_FunctionBlock
VAR_INPUT
 Input1 : INT;
 Input2 : LREAL;
END_VAR
VAR_OUTPUT
 Output1 : LREAL;
END_VAR

In order to deactivate StructuredType of a certain instance, use the following attribute:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '0'}
 fbFunctionBlock : FB_FunctionBlock;
END_VAR

Maximum size of the structure
The maximum size of a structure is 16 kByte by default. Each STRUCT constantly exchanges data
with the basic ADS device, i.e. a large ADS message is sent with each read/write command of a
StructuredType. To prevent the ADS router from being flooded with large messages, the maximum
size is limited. You can change this specification in the file ServerConfig.xml. To do this, the key
<MaxStructureSize> must be added to OpcServerConfig\UaServerConfig\, and a new value for the
maximum size of a structure must be set in bytes. If a structure exceeds <MaxStructureSize>, it is
imported as FolderType, where each structure item is available as a single node.

Technical introduction

TC3 OPC UA92 Version: 2.6

4.1.4.6 List of attributes and comments

The runtime variables for various OPC UA functions (e.g. data access or historical access) are configured
directly in the PLC program or in the TMC code editor (if using TwinCAT 3 C++). The advantage is that PLC
developers can decide directly in the program with which they are familiar whether and how a variable is to
be enabled for OPC UA. You activate a variable by inserting a comment and the corresponding OPC UA tag
in front of the variable, e.g.:

TwinCAT 3 PLC (TMC):
{attribute 'OPC.UA.DA' := '1'}
bVariable : BOOL;

TwinCAT 2 PLC (TPY):
bVariable : BOOL; (*~ (OPC:1:available)*)

You can find a detailed description of the use of attributes and comments in the sections concerning the
corresponding runtime components:

• PLC [} 43]

• C++ [} 75]

• I/O [} 94]

• Matlab/Simulink [} 106]

The following table shows an overview of all definable tags and their meaning. The subsections of the
corresponding function contain a detailed description of the functional principle.

TwinCAT 3 (TMC):

OPC UA function PLC tag C++ TMC code editor
(Optional features)

Meaning

Data Access (DA) {attribute 'OPC.UA.DA' :=
'0'}

Name: OPC.UA.DA
Value: 0

Locks a variable for
OPC UA, whereupon it is no
longer visible in the UA
namespace.

Data Access (DA) {attribute 'OPC.UA.DA' :=
'1'}

Name: OPC.UA.DA
Value: 1

Enables a variable for
OPC UA, whereupon it
becomes visible in the UA
namespace. This tag must
always be set if you want to
use a variable for UA.

Data Access (DA) {attribute
'OPC.UA.DA.Access' := 'x'}

Name: OPC.UA.DA.Access
Value: see right column

Sets read/write access for a
variable, depending on
parameter "x".
0 = none
1 = read-only
2 = write access only
3 = read and write access
(default if no tag is used)

Data Access (DA) {attribute
'OPC.UA.DA.Description' :=
'x'}

Name:
OPC.UA.DA.Description
Value: see right column

Sets a text for the OPC UA
attribute "Description".

Data Access (DA) {attribute
'OPC.UA.DA.StructuredTyp
e' := '0'}

Name:
OPC.UA.DA.StructuredTyp
e
Value: 0

Disables StructuredType for
a STRUCT or a function
block

Technical introduction

TC3 OPC UA 93Version: 2.6

OPC UA function PLC tag C++ TMC code editor
(Optional features)

Meaning

Data Access (DA) {attribute
'OPC.UA.DA.StructuredTyp
e' := '1'}

Name:
OPC.UA.DA.StructuredTyp
e
Value: 1

Enables StructuredType for
a STRUCT or a function
block

Data Access {attribute
'OPC.UA.DA.Status' :=
'quality'}

Name: OPC.UA.DA.Status
Value: quality

Manually define the
StatusCode of a symbol in
the UA namespace. Only
for data structures. The
value "quality" specifies
which DINT subelement of
the data structure
determines the
StatusCode . See
corresponding article in the
documentation for more
information.

Historical Access
(HA) [} 49]

{attribute 'OPC.UA.HA' :=
'1'}

Name: OPC.UA.HA
Value: 1

Enables a variable for
Historical Access. Must be
used with {attribute
'OPC.UA.DA' := '1'}.

Historical Access
(HA) [} 49]

{attribute
'OPC.UA.HA.Storage' := 'x'}

Name: OPC.UA.HA.Storage
Value: see right column

Defines the storage location
for Historical Access,
depending on parameter "x"
1 = RAM
2 = File
3 = SQL Compact
Database
4 = SQL Server Database

Historical Access
(HA) [} 49]

{attribute
'OPC.UA.HA.Sampling' :=
'x'}

Name:
OPC.UA.HA.Sampling
Value: see right column

Determines the sampling
rate at which the variable
values are to be stored, in
[ms] depending on the
parameter "x"

Historical Access
(HA) [} 49]

{attribute
'OPC.UA.HA.Buffer' := 'x'}

Name: OPC.UA.HA.Buffer
Value: see right column

Defines the maximum
number of values that
remain in the data memory,
depending on the
parameter "x".

TwinCAT 2 (TPY):

OPC UA function PLC tag Meaning
Data Access (DA) (*~ (OPC:0:not available) *) Locks a variable for OPC UA, whereupon

it is no longer visible in the UA
namespace.

Data Access (DA) (*~ (OPC:1:available) *) Enables a variable for OPC UA,
whereupon it becomes visible in the UA
namespace. This tag must always be set
if you want to use a variable for UA.

Data Access (DA) (*~ (OPC_PROP[0005]:1: read-only) *) Sets the write protection for a variable.
Must be used together with (*~ (OPC: 1:
available) *).

Data Access (DA) (*~ (OPC_UA_PROP[5100] : x: Alias
name) *)

Specifies x as node name in the UA
namespace, so-called alias mapping.

Technical introduction

TC3 OPC UA94 Version: 2.6

OPC UA function PLC tag Meaning
Historical Access (HA)
[} 49]

(*~ (OPC_UA_PROP[5000]:x:Storage
media) *)

Enables a variable for "Historical
Access". Must be used together with (*~
(OPC: 1: available) *). x defines the
storage medium for saving the data
values:
1 = RAM
2 = File
3 = SQL Compact Database
4 = SQL Server Database

Historical Access (HA)
[} 49]

(*~ (OPC_UA_PROP[5000]
[1]:x:SamplingRate) *)

Determines the sampling rate at which
the variable values are to be stored, in
[ms] depending on the parameter "x"

Historical Access (HA)
[} 49]

(*~ (OPC_UA_PROP[5000][2]:x:Buffer) *) Defines the maximum number of values
that remain in the data memory,
depending on the parameter "x".

4.1.5 I/O

4.1.5.1 Access to IO task

This section describes how you can make IO task variables accessible via the data access functions of the
TwinCAT OPC UA Server.

This section contains the following topics:

• General Information [} 94]

• Step 1: Configure a TwinCAT I/O task to enable symbol handling. [} 95]

• Step 2: Add the I/O task to the OPC UA namespace [} 96]

General Information

You can publish the variables of a task with process image via OPC UA.

The way in which the variables are displayed and how they are communicated with is determined by various
parameters. You can define these parameters with the help of the OPC UA Configurator or directly in the
configuration file ServerConfig.xml.

The following table provides an overview of all parameters that are important when accessing the I/O task.

Technical introduction

TC3 OPC UA 95Version: 2.6

Parameter Description Possible values
ADS Port Defines the ADS port under which the I/O task is

accessible. The ADS port can be read out in the properties
of the I/O task.

301
302
…

AutoCfg Initially defines the type of target runtime used for the
communication, e.g. PLC, C++, I/O. A finer distinction can
subsequently be made within these categories.
Each AutoCfg option is available as an unfiltered or filtered
option. Filtered means that users can determine which I/O
variables are made publicly available to the OPC UA via
comments. When using an unfiltered option, each task
variable is published to OPC UA.

107 I/O TwinCAT 2/3
108 I/O TwinCAT 2/3
filtered

AutoCfgSymFile Specifies the path of the CurrentConfig.xml file, which is
normally located in the folder C:\TwinCAT\3.1\Boot\.

Path of
CurrentConfig.xml

Disabled Disables the I/O task in the UA namespace, so that the
corresponding node is not displayed. It is advisable to
enable this parameter if certain runtimes are not yet
available at the time of project planning, for example,
because the corresponding devices are not yet connected
to the network.

0 (disabled - default)
1 (enabled)

The following steps describe how to import variables from an I/O task into the UA namespace. This requires
the OPC UA Server and the runtime to be on the same computer.

Step 1: Configure a TwinCAT I/O task to enable symbol handling.

Open the I/O task settings and enable the Create symbols option. At this point, note the ADS port of the I/O
task (in the example, this is 301).

TwinCAT 3:

TwinCAT 2:

Technical introduction

TC3 OPC UA96 Version: 2.6

Step 2: Add the I/O task to the OPC UA namespace

Configure the OPC UA Server so that it offers access to the I/O task. Using the OPC UA Configurator, add a
new "IO TwinCAT 2/3" device and configure its settings for AdsNetId, AdsPort and SymbolFile (path to the
CurrentConfig.xml file).

After setting the corresponding properties, restart the OPC UA Server to enable these settings.

4.1.5.2 Historical Access

4.1.5.2.1 Setup Version 4.x.x

From setup version 4.x.x historical access can no longer be configured via attributes or comments. The
advantage of this is that the Historical Access functionality is now also available for runtimes that previously
did not support this, such as variables of a BC9191 Controller. Furthermore, a Historical Access
configuration can now also be carried out retrospectively, i.e. without having to adapt the PLC project.

The historical access configuration is now XML-based (TcUaHaConfig.xml) and can be carried out using the
OPC UA Server Configurator. The XML file is located in the same directory as TcOpcUaServer.exe.

See also:

• Configuration > Setup version 4.x.x > Overview [} 192] (OPC UA Server Configurator) and Configuring
historical access [} 200])

XML file structure (TCUaHaConfig.xml)
<HistoryConfig>
 <HistoryController>
 <HistoryAdapter Type="Volatile" Id="0" File="" Server="" Database="" User="" Password=""/>
 <HistoryAdapter Type="File" Id="1" File="historydb.dat" Server="" Database="" User=""
Password=""/>

Technical introduction

TC3 OPC UA 97Version: 2.6

 <HistoryAdapter Type="SQL" Id="2" File="" Server="" Database="database123" User="user"
Password="pwd"/>
 <HistoryAdapter Type="SQLCompact" Id="3" File="historydb.xyz" Server="" Database="" User=""
Password=""/>
 <HistoryAdapter Type="SQLCompact" Id="4" File="historydb2.xyz" Server="" Database="" User=""
Password=""/>
 </HistoryController>
 <HistoryNodes>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_SingleNode.nMyValue"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.nMyValue1"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.nMyValue2"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.fMyValue3"/>
 </HistoryNodes>
</HistoryConfig>

You can configure all supported data memory in the HistoryController area. The following locations are
currently supported:

• RAM ("Volatile")
• File
• SQL Compact
• SQL Server (not supported under Windows CE)

Each HistoryAdapter (except for "Volatile") can be used multiple times, e.g. if the historical values for
individual variables are to be stored in different data memories.

In the HistoryNodes area, the individual nodes are configured, assigned to a data memory and assigned a
SamplingRate and a maximum size for the ring buffer to be used in the data memory.

The attribute HistoryWriteable="true" ensures that the data memory for this node can be filled with
values via a HistoryUpdate() call. Such a call is provided, for example, by the TwinCAT OPC UA Client via
the function block UA_HistoryUpdate. If you configure a node with this attribute, then the server doesn't
normally "sample" the values itself, but receives them from other clients. In such a configuration the
SamplingRate is therefore usually 0.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.1.5.2.2 Display historical data

Displaying Historical Access values in an OPC UA Client

The following step-by-step instructions describe how to configure the UA Expert software in order to access
historical data.

Technical introduction

TC3 OPC UA98 Version: 2.6

1. Start the UA Expert software and connect to the OPC UA Server.

Technical introduction

TC3 OPC UA 99Version: 2.6

2. Add a new History Trend View.

3. Browse the PLC1 namespace and use drag & drop to add the PLC variables _HistoryDB,
_HistoryDBcompact, _HistoryFast and _HistorySlowPersist.

Technical introduction

TC3 OPC UA100 Version: 2.6

ð You can now use the Start Time and End Time controls to specify the desired time period for which the
symbol values are to be displayed, or you can start a Cyclic Update for these variables if necessary.

4.1.5.3 Alarms and Conditions

The steps required to configure OPC UA Alarms and Conditions (A&C) on the OPC UA Server are described
in this section. The basic concept is independent of TwinCAT runtime, which means the configuration steps
for PLC, C++, TcCOM runtime or only I/O task are the same.

OPC UA Alarms and Conditions (Part 9 of the OPC UA specification) describes a model for monitoring
process values and outputting alarms and events when a runtime symbol changes its state.

Requirements

The following requirements apply to the use of OPC UA Alarms and Conditions:

• The runtime symbol to be monitored must be available in the namespace.
• The OPC UA Client must support Alarms and Conditions. In this section UA Expert (from Unified

Automation) is used as the reference UA Client.

General Information

Execute the following steps once to release a symbol for Alarms and Conditions:

Technical introduction

TC3 OPC UA 101Version: 2.6

• Step 1: Activating runtime symbol for data access [} 101] (so that the symbol is generally accessible
via OPC UA.)

• Step 2: Activating A&C for a symbol [} 101]

• Step 3: Transferring your own user data with an event [} 102]

• Step 4: Triggering an event using the FireEvent method [} 103]

• Step 5: Configuring multilingual alarm texts [} 105]

• Step 6: Registering A&C with a reference OPC UA Client [} 105]

These steps are explained in more detail below. At the end of this section you will find information about
receiving configured alarms via A&C with the UA Expert Reference Client.

Supported alarm types

The implementation of OPC UA Alarms and Conditions currently supports the following alarm types:

• LimitAlarmType: Define different limits for a symbol. If a limit is reached, the UA Server issues an
alarm.

• OffNormalAlarmType: Define a value that is "normal". If the current value deviates from the "normal"
value, the UA Server issues an alarm.

Step 1: Activating runtime symbol for data access

A variable must be available in the OPC UA Server in order for it to be configured for A&C. To do this in the
case of a PLC variable, provide it with an attribute (see Access to PLC runtime [} 43]).

Step 2: Activating A&C for a symbol

You can configure a runtime symbol for A&C with the OPC UA Server Configurator. The Configurator has a
simple graphical user interface for editing the XML file on which it is based. Depending on the setup version
the configurator is available in two variants: standalone [} 190] and integrated in Visual Studio [} 202].

The following program extract shows an example of this XML file to better understand the general behavior
and structure of the A&C implementation.
<TcUaAcConfig>
 <ConditionController Name="ConditionController1" >
 <Condition Name="Counter" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter1" />
 </Condition>
 <Condition Name="Switch" Severity="500">
 <OffNormalAlarmType Normal="0" MessageNormal="100" MessageOffNormal="20" />
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.bSwitch" />
 </Condition>
 <Condition Name="Struct" Severity="300">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.stStruct" />
 </Condition>
 </ConditionController>
 <ConditionController Name="ConditionController2" >
 <Condition Name="Counter2" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter2" />
 </Condition>
 </ConditionController>
</TcUaAcConfig>

A "condition" defines the runtime symbol to be monitored and the alarm limits and texts. Each condition is
organized in a so-called "ConditionController", the object that the OPC UA Clients subsequently subscribe to.

Technical introduction

TC3 OPC UA102 Version: 2.6

When creating a condition, you must specify the NamespaceName (NS) and NodeID for referring to the
UA node to be monitored. The Configurator provides a simple browsing mechanism for selecting a node. In
XML, the placeholder [NodeName] in NamespaceName can be used to switch the XML file between different
hardware systems. NamespaceName always contains the host name of the IPC or Embedded PC on which
the OPC UA Server is running. If [NodeName] is selected, this tag will be replaced by the host name of the
current IPC or Embedded PC on which the UA Server is running.

SamplingRate determines how often the UA Server should request a value from the node to determine
whether one of the alarm limits has been reached.

The alarm texts are identified by an ID. The ID uniquely identifies an alarm text from the resource file (see
Step 5: Configuring multilingual alarm texts [} 105]).

Step 3: Transferring own user data with an alarm

Alarms can contain fields with their own user data, which complement the data output with the alarm. These
user data fields can be created and filled out in the runtime application. To do this, create a STRUCT and
name its first element "value". In case of an alarm, all the following elements are then sent in an additional
user data field.

Sample PLC application:
TYPE ST_CustomStruct :
STRUCT
 value : INT;
 data : ST_SomeStruct;
END_STRUCT
END_TYPE

TYPE ST_SomeStruct :
STRUCT
 Data1 : INT;
 Data2 : REAL;
 Data3 : LREAL;
END_STRUCT
END_TYPE

The instance of ST_CustomStruct is then enabled for data access via the regular mechanism, e.g. in
TwinCAT 3: To do this the STRUCT must be activated as a StructuredType [} 88].
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCustomStruct : ST_CustomStruct;
END_VAR

When logging on to a ConditionController, the OPC UA Clients must subscribe to special
AlarmConditionTypes, i.e. "BkUaLimitAlarmType" and "BkUaOffNormalAlarmType", so that they can receive
the special user data fields when an alarm is received.

Technical introduction

TC3 OPC UA 103Version: 2.6

The OPC UA Client then receives the user data in the fields BkUaEventData and BkUaEventValue of the
incoming alarm. In the above sample, these are the value of the PLC variables and the user data
represented by the PLC structure ST_SomeStruct.

Step 4: Triggering an event using the FireEvent method

Each ConditionController includes a FireEvent method with which the OPC UA Clients can trigger a general
event with user-defined EventFields.

Technical introduction

TC3 OPC UA104 Version: 2.6

If the method is executed, an event is output on the OPC UA Server. Other OPC UA Clients can receive
these events when they subscribe to the corresponding ConditionController.

The user-defined EventFields are appended to the event as "UserEventData". This data can be received by
OPC UA Clients that are logged on to the SimpleEventType "UserEventType".

Technical introduction

TC3 OPC UA 105Version: 2.6

Step 5: Configuring multilingual alarm texts

The A&C implementation in the OPC UA Server supports the use of multilingual alarm texts. The alarm text
that is used depends on the language with which the UA Client connects to the Server.

Alarm texts are configured in XML files. There is a separate file for each language. These files are located in
the res (Resource) folder on the OPC UA Server. With the configurator you can simply add or remove alarm
texts without having to directly edit the XML files. Each alarm text has its own ID, which occurs only once in
the file.

Sample:
<TcOpcUaSvrRes Lang="en">
 <Text ID="0">Text not available</Text>
 <Text ID="1">Some alarm text</Text>
 <Text ID="2">Value is High range</Text>
 <Text ID="3">Value is HighHigh range</Text>
 <Text ID="4">Value is OffNormal</Text>
 ...
</TcOpcUaSvrRes>

Step 6: Registering A&C with a reference OPC UA Client

An OPC UA Client must log on to a ConditionController so that it can receive events for conditions that are
configured for this particular ConditionController. The UA Expert provides functions for subscribing to and
receiving UA events.

After you have started the UA Expert and established a connection with the OPC UA Server, add a new
document view, Event View, to your working area.

Technical introduction

TC3 OPC UA106 Version: 2.6

You can then subscribe to a ConditionController by dragging the corresponding object in Event View. The
events for this ConditionController are displayed in the Event Window.

It may be necessary to subscribe to special alarm and/or event types in order to receive all fields of an
incoming event or alarm.

4.1.6 Matlab/Simulink

4.1.6.1 Access to Matlab/Simulink modules

This section describes how to use TwinCAT 3 TMI files for TcCOM modules to construct the namespace of
the OPC UA Server.

This section contains the following topics:

• General Information [} 106]

• Generating and importing a TMI file for TcCom modules [} 106]

• Filtered or unfiltered mode [} 109]

General Information

If you use TwinCAT 3 C++ or the Matlab/Simulink integration, you can generate a symbol file (TMI file) for
the arising TcCom modules from the TwinCAT 3 XAE.

The OPC UA Server imports this TMI file and generates its namespace using the symbol information
contained in the file. The namespace can then consist of variables (= symbols) that are contained in the
respective TcCom module.

The import of TMI files is configured in the OPC UA Configurator.

Generating and importing a TMI file for TcCom modules

In order for a TMI file to be generated and for TwinCAT to automatically copy the TMI file to the target
system, enable the option Copy TMI to Target in the settings of the TcCOM module:

Technical introduction

TC3 OPC UA 107Version: 2.6

After activating the project, the boot directory of the target system contains the TMI file for the TcCOM
module. This file can then be imported into the OPC UA namespace with the help of the
OPC UA Configurator.

The configured OPC UA namespace then contains a representation of the Matlab/Simulink block diagram:

Technical introduction

TC3 OPC UA108 Version: 2.6

Technical introduction

TC3 OPC UA 109Version: 2.6

Filtered or unfiltered mode

Note that there is currently no filtered mode for generic TcCOM module instances. Filtered mode is only
possible for TwinCAT 3 C++ module instances if the TMC Code Editor is used. TwinCAT Matlab/Simulink
integration offers several filter options. These are described in the documentation TE1400 in section Data
exchange.

If a generic TcCOM module instance (e.g. a Matlab/Simulink module) is to be imported, the unfiltered option
must be used and therefore all symbols of the modules are published in the OPC UA namespace.

Technical introduction

TC3 OPC UA110 Version: 2.6

4.1.6.2 Historical Access

4.1.6.2.1 Setup Version 4.x.x

From setup version 4.x.x historical access can no longer be configured via attributes or comments. The
advantage of this is that the Historical Access functionality is now also available for runtimes that previously
did not support this, such as variables of a BC9191 Controller. Furthermore, a Historical Access
configuration can now also be carried out retrospectively, i.e. without having to adapt the PLC project.

The historical access configuration is now XML-based (TcUaHaConfig.xml) and can be carried out using the
OPC UA Server Configurator. The XML file is located in the same directory as TcOpcUaServer.exe.

See also:

• Configuration > Setup version 4.x.x > Overview [} 192] (OPC UA Server Configurator) and Configuring
historical access [} 200])

XML file structure (TCUaHaConfig.xml)
<HistoryConfig>
 <HistoryController>
 <HistoryAdapter Type="Volatile" Id="0" File="" Server="" Database="" User="" Password=""/>
 <HistoryAdapter Type="File" Id="1" File="historydb.dat" Server="" Database="" User=""
Password=""/>
 <HistoryAdapter Type="SQL" Id="2" File="" Server="" Database="database123" User="user"
Password="pwd"/>
 <HistoryAdapter Type="SQLCompact" Id="3" File="historydb.xyz" Server="" Database="" User=""
Password=""/>
 <HistoryAdapter Type="SQLCompact" Id="4" File="historydb2.xyz" Server="" Database="" User=""
Password=""/>
 </HistoryController>
 <HistoryNodes>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_SingleNode.nMyValue"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.nMyValue1"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.nMyValue2"/>
 <HistoryNode HistoryWriteable="true" SamplingRate="0" MaxSamples="100000" AdapterId="0"
NS="urn:BeckhoffAutomation:Ua:PLC1" NodeId="s=PRG_HA_MultipleNodes.fMyValue3"/>
 </HistoryNodes>
</HistoryConfig>

You can configure all supported data memory in the HistoryController area. The following locations are
currently supported:

• RAM ("Volatile")
• File
• SQL Compact
• SQL Server (not supported under Windows CE)

Each HistoryAdapter (except for "Volatile") can be used multiple times, e.g. if the historical values for
individual variables are to be stored in different data memories.

In the HistoryNodes area, the individual nodes are configured, assigned to a data memory and assigned a
SamplingRate and a maximum size for the ring buffer to be used in the data memory.

The attribute HistoryWriteable="true" ensures that the data memory for this node can be filled with
values via a HistoryUpdate() call. Such a call is provided, for example, by the TwinCAT OPC UA Client via
the function block UA_HistoryUpdate. If you configure a node with this attribute, then the server doesn't
normally "sample" the values itself, but receives them from other clients. In such a configuration the
SamplingRate is therefore usually 0.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

Technical introduction

TC3 OPC UA 111Version: 2.6

4.1.6.2.2 Display historical data

Displaying Historical Access values in an OPC UA Client

The following step-by-step instructions describe how to configure the UA Expert software in order to access
historical data.

1. Start the UA Expert software and connect to the OPC UA Server.

Technical introduction

TC3 OPC UA112 Version: 2.6

2. Add a new History Trend View.

3. Browse the PLC1 namespace and use drag & drop to add the PLC variables _HistoryDB,
_HistoryDBcompact, _HistoryFast and _HistorySlowPersist.

Technical introduction

TC3 OPC UA 113Version: 2.6

ð You can now use the Start Time and End Time controls to specify the desired time period for which the
symbol values are to be displayed, or you can start a Cyclic Update for these variables if necessary.

4.1.6.3 Alarms and Conditions

The steps required to configure OPC UA Alarms and Conditions (A&C) on the OPC UA Server are described
in this section. The basic concept is independent of TwinCAT runtime, which means the configuration steps
for PLC, C++, TcCOM runtime or only I/O task are the same.

OPC UA Alarms and Conditions (Part 9 of the OPC UA specification) describes a model for monitoring
process values and outputting alarms and events when a runtime symbol changes its state.

Requirements

The following requirements apply to the use of OPC UA Alarms and Conditions:

• The runtime symbol to be monitored must be available in the namespace.
• The OPC UA Client must support Alarms and Conditions. In this section UA Expert (from Unified

Automation) is used as the reference UA Client.

General Information

Execute the following steps once to release a symbol for Alarms and Conditions:

Technical introduction

TC3 OPC UA114 Version: 2.6

• Step 1: Activating runtime symbol for data access [} 114] (so that the symbol is generally accessible
via OPC UA.)

• Step 2: Activating A&C for a symbol [} 114]

• Step 3: Transferring your own user data with an event [} 115]

• Step 4: Triggering an event using the FireEvent method [} 116]

• Step 5: Configuring multilingual alarm texts [} 118]

• Step 6: Registering A&C with a reference OPC UA Client [} 118]

These steps are explained in more detail below. At the end of this section you will find information about
receiving configured alarms via A&C with the UA Expert Reference Client.

Supported alarm types

The implementation of OPC UA Alarms and Conditions currently supports the following alarm types:

• LimitAlarmType: Define different limits for a symbol. If a limit is reached, the UA Server issues an
alarm.

• OffNormalAlarmType: Define a value that is "normal". If the current value deviates from the "normal"
value, the UA Server issues an alarm.

Step 1: Activating runtime symbol for data access

A variable must be available in the OPC UA Server in order for it to be configured for A&C. To do this in the
case of a PLC variable, provide it with an attribute (see Access to PLC runtime [} 43]).

Step 2: Activating A&C for a symbol

You can configure a runtime symbol for A&C with the OPC UA Server Configurator. The Configurator has a
simple graphical user interface for editing the XML file on which it is based. Depending on the setup version
the configurator is available in two variants: standalone [} 190] and integrated in Visual Studio [} 202].

The following program extract shows an example of this XML file to better understand the general behavior
and structure of the A&C implementation.
<TcUaAcConfig>
 <ConditionController Name="ConditionController1" >
 <Condition Name="Counter" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter1" />
 </Condition>
 <Condition Name="Switch" Severity="500">
 <OffNormalAlarmType Normal="0" MessageNormal="100" MessageOffNormal="20" />
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.bSwitch" />
 </Condition>
 <Condition Name="Struct" Severity="300">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.stStruct" />
 </Condition>
 </ConditionController>
 <ConditionController Name="ConditionController2" >
 <Condition Name="Counter2" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter2" />
 </Condition>
 </ConditionController>
</TcUaAcConfig>

A "condition" defines the runtime symbol to be monitored and the alarm limits and texts. Each condition is
organized in a so-called "ConditionController", the object that the OPC UA Clients subsequently subscribe to.

Technical introduction

TC3 OPC UA 115Version: 2.6

When creating a condition, you must specify the NamespaceName (NS) and NodeID for referring to the
UA node to be monitored. The Configurator provides a simple browsing mechanism for selecting a node. In
XML, the placeholder [NodeName] in NamespaceName can be used to switch the XML file between different
hardware systems. NamespaceName always contains the host name of the IPC or Embedded PC on which
the OPC UA Server is running. If [NodeName] is selected, this tag will be replaced by the host name of the
current IPC or Embedded PC on which the UA Server is running.

SamplingRate determines how often the UA Server should request a value from the node to determine
whether one of the alarm limits has been reached.

The alarm texts are identified by an ID. The ID uniquely identifies an alarm text from the resource file (see
Step 5: Configuring multilingual alarm texts [} 118]).

Step 3: Transferring own user data with an alarm

Alarms can contain fields with their own user data, which complement the data output with the alarm. These
user data fields can be created and filled out in the runtime application. To do this, create a STRUCT and
name its first element "value". In case of an alarm, all the following elements are then sent in an additional
user data field.

Sample PLC application:
TYPE ST_CustomStruct :
STRUCT
 value : INT;
 data : ST_SomeStruct;
END_STRUCT
END_TYPE

TYPE ST_SomeStruct :
STRUCT
 Data1 : INT;
 Data2 : REAL;
 Data3 : LREAL;
END_STRUCT
END_TYPE

The instance of ST_CustomStruct is then enabled for data access via the regular mechanism, e.g. in
TwinCAT 3: To do this the STRUCT must be activated as a StructuredType [} 88].
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCustomStruct : ST_CustomStruct;
END_VAR

When logging on to a ConditionController, the OPC UA Clients must subscribe to special
AlarmConditionTypes, i.e. "BkUaLimitAlarmType" and "BkUaOffNormalAlarmType", so that they can receive
the special user data fields when an alarm is received.

Technical introduction

TC3 OPC UA116 Version: 2.6

The OPC UA Client then receives the user data in the fields BkUaEventData and BkUaEventValue of the
incoming alarm. In the above sample, these are the value of the PLC variables and the user data
represented by the PLC structure ST_SomeStruct.

Step 4: Triggering an event using the FireEvent method

Each ConditionController includes a FireEvent method with which the OPC UA Clients can trigger a general
event with user-defined EventFields.

Technical introduction

TC3 OPC UA 117Version: 2.6

If the method is executed, an event is output on the OPC UA Server. Other OPC UA Clients can receive
these events when they subscribe to the corresponding ConditionController.

The user-defined EventFields are appended to the event as "UserEventData". This data can be received by
OPC UA Clients that are logged on to the SimpleEventType "UserEventType".

Technical introduction

TC3 OPC UA118 Version: 2.6

Step 5: Configuring multilingual alarm texts

The A&C implementation in the OPC UA Server supports the use of multilingual alarm texts. The alarm text
that is used depends on the language with which the UA Client connects to the Server.

Alarm texts are configured in XML files. There is a separate file for each language. These files are located in
the res (Resource) folder on the OPC UA Server. With the configurator you can simply add or remove alarm
texts without having to directly edit the XML files. Each alarm text has its own ID, which occurs only once in
the file.

Sample:
<TcOpcUaSvrRes Lang="en">
 <Text ID="0">Text not available</Text>
 <Text ID="1">Some alarm text</Text>
 <Text ID="2">Value is High range</Text>
 <Text ID="3">Value is HighHigh range</Text>
 <Text ID="4">Value is OffNormal</Text>
 ...
</TcOpcUaSvrRes>

Step 6: Registering A&C with a reference OPC UA Client

An OPC UA Client must log on to a ConditionController so that it can receive events for conditions that are
configured for this particular ConditionController. The UA Expert provides functions for subscribing to and
receiving UA events.

After you have started the UA Expert and established a connection with the OPC UA Server, add a new
document view, Event View, to your working area.

Technical introduction

TC3 OPC UA 119Version: 2.6

You can then subscribe to a ConditionController by dragging the corresponding object in Event View. The
events for this ConditionController are displayed in the Event Window.

It may be necessary to subscribe to special alarm and/or event types in order to receive all fields of an
incoming event or alarm.

4.1.7 File Transfer

4.1.7.1 Access to files and folders via OPC UA

From OPC UA specification version 1.02, OPC UA contains a specialized ObjectType for file transfer, which
is described in Appendix C of the specification. This special ObjectType called "FileType" describes the
information model for the data transfer. Files can be modeled as simple variables in OPC UA with
ByteStrings. FileType is a file with methods for accessing the file. The OPC UA specification provides further
information about FileType and the structure and handling of the underlying methods and properties for
accessing a file in the OPC UA namespace.

Beckhoff has implemented a generic way to load files and folders from a local hard disk into the OPC UA
namespace. Each file is represented by a FileType and allows read and write operations for this file. In
addition, each folder contains a CreateFile() method to create new files on the hard disk and a separate
FolderPath to specify the actual path to the folder on the OPC UA Server.

Technical introduction

TC3 OPC UA120 Version: 2.6

FileTransfer in the OPC UA Server Device Manager
Only the OPC UA Server of the Beckhoff Device Manager (IPC diagnostics) has this function. The
TwinCAT OPC UA Server also provides some parts of this file transfer. However, the general func-
tion that enables disclosure of all files and folders is only available in the OPC UA Server, which is
part of the device manager that is automatically available on every Beckhoff Industrial PC or Em-
bedded PC. See the Device manager documentation for more information.

Configuration

FileType objects are created in a separate namespace called "FileTransfer". An XML file (files.xml) is used to
configure this namespace and to select the files and folders available via OPC UA. The file must be located
in the same directory as the executable file of the OPC UA Server. The system must be restarted in order to
activate the configuration. The XML file contains information about the folder path and a search mask that
defines which files are published in the OPC UA namespace:
<Files>
 <FolderObject DisplayName="TwinCAT">
 <FolderObject DisplayName="3.1">
 <FolderObject DisplayName="Boot" Path="c:/TwinCAT/3.1/Boot" Search="*.*" >
 <FolderObject DisplayName="Plc" Path="c:/TwinCAT/3.1/Boot/Plc" Search="*.*" ></FolderObject>
 <FolderObject DisplayName="Tmi" Path="c:/TwinCAT/3.1/Boot/Tmi" Search="*.*" ></FolderObject>
 </FolderObject>
 </FolderObject>
 </FolderObject>
</Files>

Sample: Reading a file with UA Expert

General file handling is described in Appendix C of the OPC UA specification. Reading a file via UA can be
divided into the following steps:

• Calling the Open method of a file. This method returns a file handle that must be saved for later
access. The mode defines whether the file is read or written to (see File modes [} 121]).

http://infosys.beckhoff.com/content/1033/devicemanager/

Technical introduction

TC3 OPC UA 121Version: 2.6

• Determining the file size with the property "Size". In this way, the entire file can be read when the Read
method is called.

• Calling the Read method. Inserting the file handle and file size as inputs. Selecting the destination
folder in which the file contents are to be saved AFTER the method call.

• Calling the Close method to enable the file handle.

File modes

The following table shows all available file modes.

Field Bit Description
Read 1 The file is opened for reading. If this bit is not set, Read cannot be

executed.
Write 4 The file is opened for writing. If this bit is not set, Write cannot be

executed.
EraseExisting 6 The existing file contents are deleted, and an empty file is made

available.
Append 10 The file is opened and positioned at the end, otherwise it is moved to

the beginning. This position can be changed with SetPosition.

4.1.8 Security

4.1.8.1 Overview

Security was a central requirement in the development of OPC UA. It is addressed in various areas:

• Encryption
• Integrity
• Authentication

The confidentiality of the exchanged information is secured by the encryption of the exchanged messages.
Modern cryptographic algorithms are used for this. In order to be able to cope with future security
requirements as well, even stronger and more modern algorithms can subsequently be added to an
application without changing the protocol.

Different security levels can be selected according to the requirements of the respective application. In some
areas it is sufficient to sign the messages in order to prevent changes being made by third parties, while
additional encryption of the messages is necessary in other cases where the data must also not be read by
third parties.

TF6100 OPC UA offers the following security levels (security endpoints) that clients can connect to:

• None: No security
• Sign: signed messages
• Sign & Encrypt: signed and encrypted messages

The signing of messages prevents a third party from changing the contents of a message. This prevents, for
example, a write statement to open a switch being falsified by a third party and the switch being closed
instead.

OPC UA applications identify themselves via so-called software and application instance certificates. With
the aid of software certificates it is possible to grant certain client applications extended access to the
information on an OPC UA Server, for example for the engineering of an OPC UA Server. Application
instance certificates can be used to ensure that an OPC UA Server communicates only with preconfigured
clients. A client can ensure by means of the server’s application instance certificate that it is speaking to the
correct server (similar to the certificates of a Web browser). The taking into account of these certificates is
optional, i.e. an OPC UA server can also grant the same access to each client, depending on the user rights.

Technical introduction

TC3 OPC UA122 Version: 2.6

The TwinCAT OPC UA Client and TwinCAT OPC UA Server generate a self-signed certificate during the first
startup process. This certificate consists of a private key and a public key. The private key is saved in the
\PKI\CA\private directory and the corresponding public key in the \PKI\CA\certs directory. Any
OPC UA Client wishing to establish a secure connection with the Server via one of the security endpoints
(Sign, Sign&Encrypt) must know the public key of the OPC UA Server. Conversely the OPC UA Server must
know the Client’s public key. This so-called key exchange is described in the following sections:

• Authentication [} 122]

• Certificate exchange [} 122]

• Access rights [} 123]

4.1.8.2 Authentication

In addition to certificate exchange, the TwinCAT OPC UA Server offers the option of authentication via user
name/password. An OPC UA Client must then use a valid user name/password combination for successful
connection to the server.

The TwinCAT OPC UA Server uses mechanisms of the operating system for validating user names and
passwords. If the computer on which the TwinCAT OPC UA Server is running is a member of a Windows
domain (e.g. Active Directory), a request is made to the corresponding domain controller. If the computer is a
single device, the local user database of the operating system is checked.

The configuration of the TwinCAT OPC UA Server allows two settings:

• Enable/Disable anonymous access (without user authentication)
• Enable/Disable user name/password validation

You can make both settings in the OPC UA Server Configurator.

4.1.8.3 Certificate exchange

The communication between an OPC UA Client and an OPC UA Server can optionally be secured by
communication with a secure endpoint. By default, both the TwinCAT OPC UA Server and the
TwinCAT OPC UA Client generate a machine-specific, self-signed certificate for authentication the first time
they are started.

If you want to use such an encrypted communication connection in your environment, you need to establish
a trust relationship between OPC UA Server and OPC UA Client.

Technical introduction

TC3 OPC UA 123Version: 2.6

Trust settings on the server

If you want to authenticate one or more OPC UA Clients to the OPC UA Server via certificates, the
OPC UA Server must trust the public keys of the clients. This can be done via the file system, for example.
The server manages the trust settings for certificates via the file system.

• Trusted certificates: %InstallDir%\Server\PKI\CA\trusted\certs
• Rejected certificates: %InstallDir%\Server\PKI\CA\rejected\certs

By moving client certificates between these directories, the trust settings can be adjusted accordingly.

Reading a client certificate

A simple way of accessing the client certificate is described below. To do this, you establish a connection to
the UA Server using a secure endpoint (for example, Basic128Rsa15/Sign&Encrypt) without first copying the
client certificate to the UA Server. This connection is naturally rejected by the UA Server, since it does not
trust the UA Client at this point in time. In this case, the TwinCAT OPC UA Client would return the error
0xE4DD0102, for example. However, after rejecting the connection request, the UA Server stores a copy of
the client certificate in the above-mentioned "Rejected" directory. The name of the certificate corresponds to
the "Thumbprint" of the certificate and can thus be clearly assigned to the client certificate. You can now
move this file directly to the above-mentioned "Trusted" directory so that the UA Server can trust the
UA Client and accept the connection for all other connection requests.

Announcing OPC UA Servers to the OPC UA Client

Depending on the OPC UA Client employed, different steps may need to be taken so that the OPC UA Client
trusts the OPC UA Server. Typically, for client applications with a graphical user interface, a warning
message is displayed the first time you connect to the server, whereby the server certificate can then be
classified as trustworthy.

The following instruction is therefore only valid for the TwinCAT OPC UA Client.

The public key of the OPC UA Server is located in the following directory as a DER file: %InstallDir%\Server
\PKI\CA\own\certs

In the case of the TwinCAT OPC UA Client, copy the file into the corresponding "Trusted" directory:
%InstallDir%\Client\PKI\CA\certs

4.1.8.4 Access rights

The TwinCAT OPC UA Server enables the configuration of permissions at namespace and node level. This
allows you to fine-granulate the access to ADS devices (for example, to different PLC runtimes) as well as
variables. These security settings are available for all ADS devices that can be displayed in the server
namespace.

Technical introduction

TC3 OPC UA124 Version: 2.6

See also:

Configuration > Setup version 4.x.x. > Configuration of the security settings in the configurator [} 208].

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.1.9 Symbol Caching
From version 3.2 (file version) the server application creates a binary cache file when a TwinCAT symbol file
(TMC file) is loaded for the first time.

Depending on the size of the symbol file and the underlying hardware architecture, the parsing of a symbol
file can take a very long time, leading to a lengthy start-up time of the server process. Each symbol file must
be parsed at least twice in order to compile information on the type system and all instances. In order to
ensure that the server will start faster next time, a cache file is created containing information about all the
TwinCAT symbols that are to be exported to the namespace of the server.

The cache file is created in a compressed binary format that can be loaded and edited more efficiently than
an XML-based symbol file and is saved in the /symbolfiles/ subdirectory of the server. As long as the source
symbol file does not change, the cache file will be used by the server in place of the symbol file.

If the source symbol file changes (on account of the checksum inside the file), a new cache file is created.

The standard start-up process of the server consists of the following steps:

1. The server application loads the configuration file TcUaDaConfig.xml, which contains a list of all the
namespaces (TwinCAT runtimes) that are to be created.

2. The server application loads each TMC symbol file from the configuration and checks whether a bi-
nary cache file has already been created for this symbol file.

3. If no binary cache file has been created yet, the server parses the symbol file and creates a corre-
sponding cache file.

4. If a binary cache file has already been created, the server validates the checksum of the symbol file
and compares it with the checksum of the cache file to determine whether changes have been made
in comparison with the symbol file (e.g. due to a new or updated PLC program).

5. If the checksums differ, the symbol file is parsed again and a new cache file is created.
6. If the checksums are the same, the binary cache file is loaded instead of the symbol file.

This work sequence is normally completely transparent, as it is executed automatically in the background as
the default behavior of the OPC UA Server. However, you can change the behavior of the Server in step no.
5 via the following configuration option in the file TcUaDaConfig.xml:
<CacheFileMode>...</CacheFileMode>

This configuration option can have the following values:

no_cache Deactivates the cache file
dont_update Creates a cache file, but does not update the file if the contents of the symbol file change
always_create Creates a new cache file at each start

The "dont_update" option can be useful if, for example, all OPC UA symbols are saved in a PLC library.
Even though the PLC application that uses the library can change (which leads to a changed symbol file),
this does not negatively affect the OPC UA namespace. A new cache file therefore does not necessarily
have to be created.

Technical introduction

TC3 OPC UA 125Version: 2.6

4.1.10 Miscellaneous

4.1.10.1 Endpoints and default port

By default, TwinCAT OPC UA Server provides the following endpoints and standard port for OPC UA Clients
to connect to:

Standard port
Note that the standard port 4840 may be used by other OPC UA Servers, such as the Local Discov-
ery Server (LDS) from the OPC Foundation, which is used by some vendors with OPC UA software
packages.

Endpoint Description
None - None No security
Basic128Rsa15 - Sign &
Encrypt

Signature and encryption of messages for medium security requirements.
Requires certificate exchange and trust lists management.

See also: Server > Security [} 121]
Basic256 - Sign & Encrypt Signature and encryption of messages for medium to high security

requirements. Requires more computing time (higher CPU requirements).
Requires certificate exchange and trust lists management.

See also: Server > Security [} 121]

4.1.10.2 Generating NamespaceURI

The NamespaceURI is important for the unique identification of a node in the UA namespace. Each NodeID
consists of a NamespaceIndex, an IdentifierType and a identifier. Since the NamespaceIndex can be
dynamically generated by an OPC UA Server, a UA Client should always use the static NamespaceURI to
resolve it into its actual NamespaceIndex. All NamespaceURIs and their corresponding NamespaceIndex
items are listed in the so-called NamespaceArray of an OPC UA Server.

For more information about the NamespaceArray and its contents see How to determine communication
parameters [} 150].

For each TwinCAT runtime, the NamespaceURI is generated according to the following naming scheme:

urn:[NodeName]:BeckhoffAutomation:Ua:[Name]
• [NodeName] stands for the host name of the computer on which the TwinCAT OPC UA Server is running
• [Name] is a string that can be defined via the configuration file of the server or via the

TwinCAT OPC UA Configurator.

Note that older versions of the OPC UA Server do not use the URI-based format to generate the
NamespaceURI, but merely the <Name> attribute, as was defined in the configuration file of the server.
Because this may be an insurmountable change when upgrading from older versions, the OPC UA Server
offers a so-called Legacy URI format change, which you can activate for every TwinCAT runtime in the
configuration file of the Server or via the OPC UA Configurator.

Technical introduction

TC3 OPC UA126 Version: 2.6

<UaNodeManager>
 <Name>PLC1</Name>
 <AdsPort>851</AdsPort>
 <AdsNetId>127.0.0.1.1.1</AdsNetId>
 <AdsTimeout>2000</AdsTimeout>
 <AdsTimeSuspend>20000</AdsTimeSuspend>
 <AutoCfg>4041</AutoCfg>
 <IoMode>1</IoMode>
 <AutoCfgSymFile>C:\TwinCAT\3.1\Boot\Plc\Port_851.tmc</AutoCfgSymFile>
 <Disabled>0</Disabled>
 <ArraySubItemLegacySupport>0</ArraySubItemLegacySupport>
 <MaxGetHandle>100</MaxGetHandle>
 <ReleaseAdsVarHandles>0</ReleaseAdsVarHandles>
 <LegacyUriFormat>1</LegacyUriFormat>
</UaNodeManager>

If the legacy URI format change is set to "0", the Namespace Name is generated according to the scheme
described above. If it is set to "1", the Namespace Name is then the same as the XML tag <Name> and is
thus generated in the same way as in older versions of the OPC UA Server.

4.1.10.3 Editing the configuration file

You can make all settings for the OPC UA Server with the help of the OPC UA Configurator, which is
delivered via the setup from UA Server version 1.6.80 (see Configuration > Setup version 3.x.x > Overview
[} 187]). The Configurator facilitates the configuration of the UA Server via its configuration file
ServerConfig.xml. The configuration file contains a hierarchical, XML-based structure of all configurable
parameters of the UA Server. The following figure illustrates the structure of the file by way of example:

Technical introduction

TC3 OPC UA 127Version: 2.6

In general, the use of the OPC UA Configurator is recommended, as this can help to avoid errors during
configuration.

The configuration file ServerConfig.xml is always located in the same directory as TcOpcUaServer.exe, for
example:

• Windows XP / 7 with TwinCAT 2: %TwinCATDIR%\OPC\UA\
• Windows XP / 7 with TwinCAT 3: %TwinCATDIR%\Functions\TF6100-OPC-UA\Win32\Server\
• Windows CE TwinCAT 2: HardDisk\System
• Windows CE TwinCAT 3: HardDisk\TwinCAT\Functions\TF6100-OPC-UA\Server\

4.1.10.4 Configuring several TwinCAT runtimes

You can optionally add further TwinCAT ADS devices to the UA namespace. Through the configuration of
the namespace the OPC UA Server knows which TwinCAT ADS device (e.g. PLC, IO task, C++ runtime,
etc.) is to be made available via the OPC UA Server and shows its symbol information in the UA namespace
accordingly. This configuration only needs to be done once.

Adding/removing further ADS devices to/from the UA namespace

The TwinCAT OPC UA Server is configured by default such that it connects to the first PLC runtime of the
local system. In order to make further ADS devices or further runtimes available via the UA namespace,
carry out the following steps:

• If the device to be added is a local device:
◦ Add the remote device for configuring the OPC UA Server, e.g. via the OPC UA Configurator or by

directly editing the ServerConfig.xml file
• If the device to be added is a remote device:

◦ Manufacture ADS routes between the computer on which the OPC UA Server is running and the
remote system

Technical introduction

TC3 OPC UA128 Version: 2.6

◦ Add the remote device to the configuration of the OPC UA Server, e.g. via the OPC UA Configurator
or by directly editing ServerConfig.xml file

Using the OPC UA Configurator

Use the OPC UA Configurator to add further ADS devices to the UA namespace.

In the Data Access area of the OPC UA Configurator you can manage the ADS devices integrated in the UA
namespace, add new devices or remove existing devices.

To add a device, first select the device type from the associated drop-down list (e.g."8 (PLC): Subset)"), then
click Add. An additional entry is added to the list of the ADS devices. Make the required settings. If you want
to enable the configuration immediately, click Activate on the Configuration menu.

Depending on the device to be added, you have to make different settings for the individual parameters (see
Configuration > Setup version 3.x.x > Data Access [} 188]).

Note that you must restart the OPC UA Server for the changes to take effect. You can also do this via the
Configurator by selecting Restart from the Server menu. Alternatively you can also restart TwinCAT.

[Optional] Editing ServerConfig.xml

Alternatively, you can edit the ServerConfig.xml file directly to add additional ADS devices to the UA
namespace. In this configuration file there is a section, UaNodeManager, which defines the access to an
ADS device in each case, e.g.:

Technical introduction

TC3 OPC UA 129Version: 2.6

Depending on the device to be added, you have to make different settings for the individual parameters (see
Configuration > Setup version 3.x.x > Data Access [} 188]).

Note that you must restart the OPC UA Server for the changes to take effect. You can also do this via the
Configurator by selecting Restart from the Server menu. Alternatively you can also restart TwinCAT.

4.1.10.5 Configuring several Server instances

It is possible to install several TwinCAT OPC UA Servers on one system. The configuration steps necessary
for this are described in this section. The configuration is identical under Windows CE and Windows XP-
based operating systems and consists of the following steps:

• Step 1: Installing the TwinCAT OPC UA Server [} 130]

• Step 2: Copying of the installed UA Server files into a new directory [} 130]

• Step 3: Adaptation of the configuration file of the second UA Server [} 130]

Only the paths for the two operating system variants are different. Differences are pointed out in the
description of the individual steps.

The TwinCAT OPC UA Server enables OPC UA to be used directly from the PLC level. An ADS
server was integrated into the product for this so that PLC programmers can transmit data by func-
tion block over OPC UA. If you would like to have several TwinCAT OPC UA Servers running in
parallel on one system, then please note that only the first instance of the UA Server can be ad-
dressed by function block.

Technical introduction

TC3 OPC UA130 Version: 2.6

Step 1: Installing the TwinCAT OPC UA Server

The initial installation of the TwinCAT OPC UA Server is carried out via the setup file available on the
Beckhoff FTP server. The UA Server is installed by default in the following directory:

• Windows XP: %TwinCATDIR%\Function\TF6100-OPC-UA\Win32\Server\
• Windows CE: HDD\System

Step 2: Copying of the installed UA Server files into a new directory

The installed UA Server files must be copied to a new directory. Create a new directory named "Server2" in a
folder of your choice, e.g.

• Windows XP: %TWINCATDIR%\Function\TF6100-OPC-UA\Win32\Server2\
• Windows CE: HDD\System\UA2

Copy the contents of the original folder into the newly created directory. The contents of this folder look like
this:

Step 3: Adaptation of the configuration file of the second UA Server

So that the second UA Server uses a different TCP port, you have to adapt its configuration file once. To do
this, open the file ServerConfig.xml with a text editor of your choice, e.g. Notepad.

Further information on the configuration file of the UA Server can be found in the section Editing the
configuration file [} 126].

Technical introduction

TC3 OPC UA 131Version: 2.6

1. In this file, search for the entry <Url>opc.tcp://[NodeName]:4840</Url> below the node <UaEndpoint>
and change its port number (4840) to a TCP port of your choice, e.g. "4849":

2. In addition, adapt the node <ServerInstanceUri>[NodeName]/Beckhoff/TcOpcUaServer/ 1 </
ServerInstanceUri> and issue a new number, e.g.:

ð You can now start the second TwinCAT OPC UA Server by executing the file:
• Windows XP: %TWINCATDIR%\Function\TF6100-OPC-UA\Win32\Server2\TcOpcUaServer.exe -

console

4.1.10.6 Configuring firewalls

To make OPC UA communication also possible via a NAT device, e.g. an Internet router, this device must be
able to forward the UA port used to the TwinCAT OPC UA Server (so-called "port forwarding"). By default the
TwinCAT OPC UA Server is configured for UA communication via the TCP port 4840; however, you can
adapt this configuration yourself if necessary, either via the server configuration file [} 126] or using the
OPC UA Configurator [} 187]. The following figure illustrates the relationship between port forwarding and the
UA Server.

Technical introduction

TC3 OPC UA132 Version: 2.6

In this example, the OPC UA Client establishes a UA connection to the NAT device via TCP port 4840,
which then forwards this communication connection to the TwinCAT OPC UA Server via port forwarding. The
NAT device thus only needs to forward the UA port configured in the TwinCAT OPC UA Server to the target
device. The port used by the UA Server can either be viewed in the server configuration file [} 126] or
conveniently through the UA Configurator [} 187](in delivery state this is always TCP port 4840). For the
appropriate configuration of your NAT device for port forwarding please refer to its documentation.

4.1.10.7 Configuring the namespace

As of version 2.1.x, the TwinCAT OPC UA Server offers separate configuration of the namespace containing
the following functionalities:

• Management of the server configuration file ServerConfig.xml (read/write access) of the
OPC UA Server

• Certificate management for trusted/rejected client certificates

Technical introduction

TC3 OPC UA 133Version: 2.6

Management of the server configuration file

The server configuration file ServerConfig.xml is published in the namespace as a regular OPC UA FileType
and therefore offers the corresponding methods and properties for gaining access to the file.

Management of client certificates

Each client certificate known to the server is published in the namespace as an OPC UA certificate type.
Certificates are divided into "rejected" and "trusted" certificates, which is represented by a separate folder in
the namespace.

A certificate can be moved between the trust lists by calling the Move() method.

In addition, various properties provide additional information about the certificates themselves for easier
identification.

Technical introduction

TC3 OPC UA134 Version: 2.6

Using the namespace configuration

The namespace configuration can only be used by authenticated users. This means that an OPC UA Client
must authenticate itself with the OPC UA Server by providing a valid username/password combination. Valid
user names are either local users or users from a Windows domain if the computer running the
OPC UA Server is a member of a Windows domain.

In its configuration file the OPC UA Server provides the following XML tags for configuring the access to the
namespace configuration:
<ServerConfigNamespace Exposed="True" MinUserlevel="14" />
<Users>
 <User Level="15">Administrator</User>
 <User Level="10">domain\RegularUser</User>
</Users>

In the above example, the local user name "Administrator" is allowed to access the namespace
configuration, whereas the user account "domain\RegularUser" of the Windows domain may not access this
namespace because the user level is too low.

4.2 Client I/O

4.2.1 Overview
This function requires TwinCAT 3.1 Build 4022.4 or higher.

The TwinCAT OPC UA Client is also integrated as an I/O driver and is available as such in the TwinCAT I/O
configuration. This not only shortens the engineering time required to establish the OPC UA connection to a
remote server, it also enables the implementation of many application cases, such as the creation of protocol
bridges that are simple to configure.

First of all, add a virtual device container to the configuration and then an OPC UA Client object.

Technical introduction

TC3 OPC UA 135Version: 2.6

After you have created the OPC UA I/O Client object, you can configure its connection to an
OPC UA Target Server and add variables, methods and structures to the process image. The process of
data exchange with a target server is reduced to a simple method of mapping process variables.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.2.2 Quick start
The following instructions enable you to make a quick start with the OPC UA I/O Client. In the instructions a
PLC project will be created that enables a variable via the OPC UA Server (for the simulation of a UA Server)
and reads the enabled variable in again via the OPC UA I/O Client. This can of course be divided between
two projects and two controllers.

Enabling variables for a server

For simulation, the OPC UA Server should be used in this quick start.

1. Create a new TwinCAT project and add a new PLC project to the project.
2. Create a new variable "nQuickStartOut" of data type INT in the PLC project. This should be the variable

that is enabled via the OPC UA Server.

3. Set the OPC UA attribute [} 43] for this variable in order to be able to enable the variable via the
OPC UA Server.

4. Activate the check box for the download of the TMC file.
5. Activate the configuration.
ð The variable is enabled for the server.

Configuring the I/O UA Client
1. In the same PLC project, create another variable "nQuickStartIn" of data type INT and define it as an

input variable (AT%I*). This should be the variable that the OPC UA Client I/O device links to the server
variable through mapping.

2. Compile the project so that the input variable is available in the PLC process image.
3. Add a new "Virtual OPC UA Device".

Technical introduction

TC3 OPC UA136 Version: 2.6

4. Add a new "OPC UA Client" to the device and open its settings.
5. Navigate to the Settings tab. Enter the server URL of the OPC UA Server. In this sample this is

"opc.tcp://localhost:4840".
6. Click Add Nodes.
7. Navigate to the shared variable "nQuickStartOut" on the OPC UA Server (located under PLC1 > MAIN)

and select it. The variable is now added to the process image of the "Virtual OPC UA Device".

8. Expand the newly added variable in the process image and double-click on Input > Value. Link the
variable to the variable "nQuickStartIn" from the PLC process image.

9. Activate the configuration.

Technical introduction

TC3 OPC UA 137Version: 2.6

ð You should now find the configuration shown below. The two process image variables nQuickStartIn
and nQuickStartOut are linked to each other.

Technical introduction

TC3 OPC UA138 Version: 2.6

10. After activating the configuration, log in to the PLC program.

You can also view the current value in the process image mapping.

11. You can use the settings on the OPC UA Client to modify parameters such as the sampling rate.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.2.3 Supported data types
The OPC UA Client enables direct access to an OPC UA Server from a real-time logic. For the reading and
writing of data, the data type of the OPC UA node must be assigned to the TwinCAT environment (mapping).
This assignment is described below.

Basic data types

The assignment of the basic data types is described in PLCopen OPC UA Information Model for IEC
61131-3.

OPC UA data type PLC data type
Boolean BOOL
SByte SINT
Byte USINT
Int16 INT
Int32 DINT
String STRING

http://www.plcopen.org/pages/tc4_communication/forms/before_downloading.htm
http://www.plcopen.org/pages/tc4_communication/forms/before_downloading.htm

Technical introduction

TC3 OPC UA 139Version: 2.6

OPC UA data type PLC data type
USint BYTE
Float REAL
Double LREAL
UInt16 UINT
UInt32 UDINT
Int64 LINT
UInt64 ULINT
DateTime DT

You can use the mapping both on the OPC UA Client PLCopen function block and on the OPC UA I/O
Client.

Derived data types

OPC UA defines basic data types. Other data types are derived from these.

On the client side, access to all UA data types is only possible with PLC data types. Data types derived from
the basic data types are also supported from TcOpcUaClient version 2.1.0.36 or higher.

Currently supported non-base data types on the client side are:

• Counter (use UDINT in PLC)

In addition, the OPC UA I/O Client supports structured data types (StructuredTypes) if the structured data
type does not incorporate any non-supported data type (e.g. in a member variable). The following list
provides an overview of the data types that are not currently supported:

• ByteString
• NodeID
• LocalizedText (and thus AnalogItemTypes, DiscreteItemTypes)

4.2.4 Adding nodes of a Server
To add nodes of an OPC UA Target Server to the process image of the OPC UA I/O Client, you can use the
namespace browser that is integrated in the I/O Client.

Open the Settings tab of the client configuration and click on the Add Nodes button to open the namespace
browser.

The namespace browser dialog automatically establishes a connection with the Target Server by using the
specified connection parameters.

Technical introduction

TC3 OPC UA140 Version: 2.6

Within the namespace browser you can activate and deactivate the check boxes in order to add nodes to the
process image or remove them from it. Each selected node is shown in the process image as an input or
output variable.

The input variable reads data from the node and contains the last value received from the node. The output
variable writes data to the node if a value has been set.

4.2.5 Node attributes
If you double-click on a node in the process image, you will see the UA attributes with their current values as
they were at the time of opening the window.

Technical introduction

TC3 OPC UA 141Version: 2.6

Further variables that can be used for diagnostic purposes are added to the process image using the check
box Provide timestamp and status code variables.

4.2.6 Method call
The OPC UA I/O Client supports the call of server methods. You can add a method to the process image like
any other variable. The "input arguments" of the method are then available as output variables in the process
image, whereas the "output arguments" are added as input variables. Additional input and output variables,
e.g. bExecute, bBusy, bError, are added to the process image so that the method can be called.

Sample: Method on the server

Technical introduction

TC3 OPC UA142 Version: 2.6

Sample: Method after addition to the process image

You can then create a mapping between the input/output variables and the PLC variables.

Technical introduction

TC3 OPC UA 143Version: 2.6

Calling of a method

To call a method, set the output variable bExecute to TRUE. You can check whether the method call has
been completed and whether it was successful via the input variables nErrorID, bDone, bBusy and bError.

Technical introduction

TC3 OPC UA144 Version: 2.6

4.2.7 StructuredTypes
The OPC UA I/O Client supports read/write procedures with structured data types (StructuredTypes). You
can also add StructuredTypes to the process image like any other variable. When adding a StructuredType
to the process image, the type to be parsed is added to the TwinCAT type system so that, for example, it can
simply be used by a PLC application.

Sample: StructuredType on the server

In this sample the server contains a node of the structured data type "Person", which contains various
member variables (Name, Height, Weight, Gender).

Sample: StructuredTypes in the process image

Technical introduction

TC3 OPC UA 145Version: 2.6

After you have added a node to the process image, the process image contains the node and also the
structural information of the type, e.g. whether individual member variables of the node should be read or
written.

StructuredTypes in the TwinCAT type system

The data type is added to the TwinCAT type system. The "Value" tree items then have this data type.

You can also view the data type in the TwinCAT type system under SYSTEM > Type System.

To distinguish the data type from other data types you can add a prefix in the settings of the OPC UA Client.

Mapping a StructuredType

Since every StructuredType is added to the TwinCAT type system, the mapping of the variables is simple.
Create an input/output variable of this data type and subsequently a mapping.

Technical introduction

TC3 OPC UA146 Version: 2.6

4.2.8 Data recording
Sampling rates are configured in each case on a device basis. The configuration is opened by double-
clicking on the OPC UA Client device. The Process Data Configuration area shows various parameters for
influencing the speed of data recording by a server.

Technical introduction

TC3 OPC UA 147Version: 2.6

Parameter Description
Read Cycle Time Specifies how fast variables are cyclically read.
Write Cycle Time Defines how often a write command is triggered on the OPC UA channel. If a

variable value changes several times within a specific cycle time, only the last
value is written to the OPC UA channel.

ReadList Read commands on the OPC UA channel are bundled to save bandwidth. This
parameter specifies how many variables are recorded in a single read command
on the OPC UA channel. The labeling behind it indicates how many read
commands arise from the current configuration.

Array Single Write On activation, every write process is executed as a single write command on the
OPC UA channel.

4.2.9 Security

4.2.9.1 Overview

Security was a central requirement in the development of OPC UA. It is addressed in various areas:

• Encryption
• Integrity
• Authentication

The confidentiality of the exchanged information is secured by the encryption of the exchanged messages.
Modern cryptographic algorithms are used for this. In order to be able to cope with future security
requirements as well, even stronger and more modern algorithms can subsequently be added to an
application without changing the protocol.

Different security levels can be selected according to the requirements of the respective application. In some
areas it is sufficient to sign the messages in order to prevent changes being made by third parties, while
additional encryption of the messages is necessary in other cases where the data must also not be read by
third parties.

TF6100 OPC UA offers the following security levels (security endpoints) that clients can connect to:

• None: No security
• Sign: signed messages
• Sign & Encrypt: signed and encrypted messages

The signing of messages prevents a third party from changing the contents of a message. This prevents, for
example, a write statement to open a switch being falsified by a third party and the switch being closed
instead.

OPC UA applications identify themselves via so-called software and application instance certificates. With
the aid of software certificates it is possible to grant certain client applications extended access to the
information on an OPC UA Server, for example for the engineering of an OPC UA Server. Application
instance certificates can be used to ensure that an OPC UA Server communicates only with preconfigured
clients. A client can ensure by means of the server’s application instance certificate that it is speaking to the
correct server (similar to the certificates of a Web browser). The taking into account of these certificates is
optional, i.e. an OPC UA server can also grant the same access to each client, depending on the user rights.

Technical introduction

TC3 OPC UA148 Version: 2.6

The TwinCAT OPC UA Client and TwinCAT OPC UA Server generate a self-signed certificate during the first
startup process. This certificate consists of a private key and a public key. The private key is saved in the
\PKI\CA\private directory and the corresponding public key in the \PKI\CA\certs directory. Any
OPC UA Client wishing to establish a secure connection with the Server via one of the security endpoints
(Sign, Sign&Encrypt) must know the public key of the OPC UA Server. Conversely the OPC UA Server must
know the Client’s public key. This so-called key exchange is described in the following sections:

• Authentication [} 122]

• Certificate exchange [} 148]

• Access rights [} 123]

4.2.9.2 Certificate exchange

The communication between an OPC UA Client and an OPC UA Server can optionally be secured by
communication with a secure endpoint. By default, both the TwinCAT OPC UA Server and the
TwinCAT OPC UA Client generate a machine-specific, self-signed certificate for authentication the first time
they are started.

If you want to use such an encrypted communication connection in your environment, you need to establish
a trust relationship between OPC UA Server and OPC UA Client.

Trust settings on the server

If you want to authenticate one or more OPC UA Clients to the OPC UA Server via certificates, the
OPC UA Server must trust the public keys of the clients. This can be done via the file system, for example.
The server manages the trust settings for certificates via the file system.

• Trusted certificates: %InstallDir%\Server\PKI\CA\trusted\certs
• Rejected certificates: %InstallDir%\Server\PKI\CA\rejected\certs

By moving client certificates between these directories, the trust settings can be adjusted accordingly.

Reading a client certificate

A simple way of accessing the client certificate is described below. To do this, you establish a connection to
the UA Server using a secure endpoint (for example, Basic128Rsa15/Sign&Encrypt) without first copying the
client certificate to the UA Server. This connection is naturally rejected by the UA Server, since it does not
trust the UA Client at this point in time. In this case, the TwinCAT OPC UA Client would return the error
0xE4DD0102, for example. However, after rejecting the connection request, the UA Server stores a copy of
the client certificate in the above-mentioned "Rejected" directory. The name of the certificate corresponds to
the "Thumbprint" of the certificate and can thus be clearly assigned to the client certificate. You can now
move this file directly to the above-mentioned "Trusted" directory so that the UA Server can trust the
UA Client and accept the connection for all other connection requests.

Technical introduction

TC3 OPC UA 149Version: 2.6

Announcing OPC UA Servers to the OPC UA Client

Depending on the OPC UA Client employed, different steps may need to be taken so that the OPC UA Client
trusts the OPC UA Server. Typically, for client applications with a graphical user interface, a warning
message is displayed the first time you connect to the server, whereby the server certificate can then be
classified as trustworthy.

The following instruction is therefore only valid for the TwinCAT OPC UA Client.

The public key of the OPC UA Server is located in the following directory as a DER file: %InstallDir%\Server
\PKI\CA\own\certs

In the case of the TwinCAT OPC UA Client, copy the file into the corresponding "Trusted" directory:
%InstallDir%\Client\PKI\CA\certs

4.3 Client PLCopen

4.3.1 Overview
The TwinCAT OPC UA Client offers several options for communicating directly with one or more
OPC UA Servers from the control logic. On the one hand, an OPC UA interface is available directly from the
PLC, in which a connection to an OPC UA Server can be initiated via PLCopen standardized function blocks.
On the other there is an OPC UA Client I/O device that offers a simple mapping-based interface.

PLC function blocks

The following table provides an overview of the functionalities offered:

Functionality Description Relevant function blocks
Connect/Disconnect Establishment and disconnection of

connections to OPC UA Servers.
UA_Connect
UA_Disconnect

Polling (Read/Write) Reading and writing of variables in
the UA namespace in the polling
mode. Contains no subscriptions.

UA_Connect
UA_Disconnect
UA_Read
UA_Write
UA_GetNamespaceIndex
UA_NodeGetHandle
UA_NodeReleaseHandle

Method Call Execution of methods in the UA
namespace.

UA_Connect
UA_Disconnect
UA_MethodGetHandle
UA_MethodReleaseHandle
UA_MethodCall

Security Establishment of an encrypted
connection to an OPC UA Server.

UA_Connect
UA_Disconnect

The interfaces of each function block are described in the section PLC API [} 218].

I/O device

Further information on the TwinCAT OPC UA Client I/O device can be found in the section I/O > Quick start
[} 135].

Technical introduction

TC3 OPC UA150 Version: 2.6

4.3.2 Supported data types
The OPC UA Client enables direct access to OPC UA Servers from the real-time logic. To read and write
data, the data types must be assigned to both environments (mapping). This assignment is described below.

Basic data types

The assignment of the basic data types is described in PLCopen OPC UA Information Model for IEC
61131-3.

OPC UA data type PLC data type
Boolean BOOL
SByte SINT
Byte USINT
Int16 INT
Int32 DINT
String STRING
USint BYTE
Float REAL
Double LREAL
UInt16 UINT
UInt32 UDINT
Int64 LINT
UInt64 ULINT
DateTime DT

Derived data types

OPC UA defines basic data types. Other data types are derived from these.

On the client side, access to all UA data types is only possible with PLC data types. Data types derived from
the basic data types are also supported from TcOpcUaClient version 2.1.0.36 or higher.

Currently supported non-base data types on the client side are:

• Counter (use UDINT in PLC)

Access to arrays

When creating a node handle, the system checks the possibilities to access the node. Further checks are
performed during reading and writing.

To access array nodes and input and output parameters of method calls, certain conditions must be fulfilled.

• For accessing nodes: The array dimension and data length must match the data provided when
reading and writing.

• Reading strings: If just one string exceeds the specified length for PLC strings, the read process fails.
• Only array dimensions up to three levels are supported.

4.3.3 Best practice

4.3.3.1 How to determine communication parameters

In general a graphic OPC UA Client is used to determine the attributes of a node or methods that have to be
used together with the PLC function blocks, e.g.:

• Node Identifier [} 151]

http://www.plcopen.org/pages/tc4_communication/forms/before_downloading.htm
http://www.plcopen.org/pages/tc4_communication/forms/before_downloading.htm

Technical introduction

TC3 OPC UA 151Version: 2.6

• Node namespace index and corresponding namespace URI [} 151]

• Node Data Type [} 152]

• Node ID and Object Node ID methods [} 153]

The following documentation uses the generic OPC UA Client UA Expert as an example. This client can be
purchased from the Unified Automation website: www.unified-automation.com.

Node Identifier

A general task consists of reading or writing variables that are generally referred to as nodes in the context
of OPC UA.

Nodes can be marked with the following three attributes:

• NamespaceIndex: Namespace in which the node is located, e.g. the PLC runtime
• Identifier: Unique identifier of the node within its namespace
• IdentifierType: Type of node: String, Guid and Numeric

These attributes represent the so-called NodeID – the representation of a node on an OPC UA Server – and
are required by some function blocks.

With the help of UA Expert you can simply determine the attributes of a node by establishing a connection to
the OPC UA Server and browsing to the desired node. The attributes are then visible in the Attributes panel.

Sample:

Node NamespaceIndex and corresponding NamespaceURI

According to the OPC UA specification, the namespace index (as shown above) can be a dynamically
generated value. Therefore, OPC UA Clients must always use the corresponding namespace URI to resolve
the NamespaceIndex before a node handle is detected.

Use the UA_GetNamespaceIndex [} 220] function block to obtain the NamespaceIndex for a NamespaceURI.
The NamespaceURI required for this can be determined with the help of UA Expert by establishing a
connection to the OPC UA Server and browsing to the NamespaceArray node.

This node contains information about all namespaces registered on the OPC UA Server. The corresponding
NamespaceURIs are visible in the Attributes panel.

Sample:

http://www.unified-automation.com

Technical introduction

TC3 OPC UA152 Version: 2.6

A NodeID in which the NamespaceIndex is 5 is shown in the sample in the section Node Identifier [} 151].
According to the NamespaceArray shown in the figure, the corresponding NamespaceURI is urn://SVENG-
NB04/BeckhoffAutomation/Ua/PLC1. This URI can now be used for the function block
UA_GetNamespaceIndex. The OPC UA Server ensures that the URI always remains the same, even after a
restart. As the NamespaceIndex shown can change, however, the NamespaceURI should always be used in
combination with the UA_GetNamespaceIndex function block for later use with other function blocks, e.g.
UA_Read [} 230], UA_Write [} 232], to resolve the correct NamespaceIndex.

Node DataType

The data type of a node is required in order to see which PLC data type needs to be used in order to assign
a read value or write it to a node. With the help of UA Expert you can simply determine the data type of a
node by establishing a connection to the OPC UA Server and browsing to the desired node. The data type is
then visible in the Attributes panel.

Sample:

In this case the data type (DataType) is "Int16". This must be assigned to an equivalent data type in the PLC,
e.g. "INT".

The PLCopen IEC61131 - to - OPC UA specification describes the defined data type mapping. The following
table is an excerpt from this specification:

IEC61131 elementary data types OPC UA built-in data types
BOOL Boolean
SINT SByte
USINT Byte
INT Int16
UINT UInt16
DINT Int32
UDINT UInt32
LINT Int64
ULINT UInt64

Technical introduction

TC3 OPC UA 153Version: 2.6

IEC61131 elementary data types OPC UA built-in data types
BYTE Byte
WORD UInt16
DWORD UInt32
LWORD UInt64
REAL Float
LREAL Double
STRING String
CHAR Byte
WSTRING String
WCHAR UInt16
DT
DATE_AND_TIME

DateTime

DATE DateTime
TOD
TIME_OF_DAY

DateTime

TIME Double

Method NodeID and Object NodeID

When calling methods from the OPC UA namespace, two identifiers are required if the method handle is
captured using the function block UA_MethodGetHandle [} 224]:

• ObjectNodeID: Identifies the UA object that contains the method
• MethodNodeID: Identifies the method itself

With the help of UA Expert you can simply determine both NodeIDs by establishing a connection to the OPC
UA Server and browsing to the desired method or the desired UA object that contains the method.

Sample – M_Mul method:

The method identifier is then visible in the Attributes panel.

Sample – fbMathematics object:

Technical introduction

TC3 OPC UA154 Version: 2.6

The object identifier is then visible in the Attributes panel.

4.3.3.2 How to establish a connection

The following section describes how you use the TcX_PLCopen_OpcUa function block to establish a
connection to a local or remote OPC UA Server. This connection can then be used to call other functions,
such as read or write nodes, or call methods.

This section contains the following topics:

• Overview [} 154]

• Schematic workflow [} 154]

• General notes [} 155]

• Code snippet [} 155]

Overview

The following function blocks are required to establish a connection to an OPC UA Server and to interrupt
the session later: UA_Connect [} 218], UA_Disconnect [} 219].

First read the section How to determine communication parameters [} 150] to better understand
certain UA functionalities (e.g. how to determine node identifiers).

Schematic workflow

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

Technical introduction

TC3 OPC UA 155Version: 2.6

General notes

The UA_Connect function block requires the following information in order to be able to establish a
connection to a local or remote OPC UA Server:

• Server URL
• Session Connect Information

The server URL basically consists of a prefix, a hostname and a port. The prefix describes the OPC UA
transport protocol that should be used for the connection, e.g."opc.tcp://" for a binary TCP connection
(default). The host name or IP address part describes the address information of the OPC UA target server,
e.g. "192.168.1.1" or "CX-12345". The port number is the target port of the OPC UA Server, e.g. "4840".
Overall the server URL may then look like this: opc.tcp://CX-12345:4840.

Code snippet

Declaration:
(* Declarations for UA_Connect *)
fbUA_Connect : UA_Connect;
SessionConnectInfo : ST_UASessionConnectInfo;
nConnectionHdl : DWORD;

(* Declarations for UA_Disconnect *)
fbUA_Disconnect : UA_Disconnect;

(* Declarations for state machine and output handling *)
iState : INT;
bDone : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrorID : DWORD;

Implementation:
CASE iState OF

 0:
 bError := FALSE;
 nErrorID := 0;
 SessionConnectInfo.tConnectTimeout := T#1M;
 SessionConnectInfo.tSessionTimeout := T#1M;
 SessionConnectInfo.sApplicationName := '';
 SessionConnectInfo.sApplicationUri := '';
 SessionConnectInfo.eSecurityMode := eUASecurityMsgMode_None;
 SessionConnectInfo.eSecurityPolicyUri := eUASecurityPolicy_None;
 SessionConnectInfo.eTransportProfileUri := eUATransportProfileUri_UATcp;
 stNodeAddInfo.nIndexRangeCount := nIndexRangeCount;
 stNodeAddInfo.stIndexRange := stIndexRange;
 iState := iState + 1;

 1:
 fbUA_Connect(
 Execute := TRUE,
 ServerURL := ‘opc.tcp://192.168.1.1:4840’,
 SessionConnectInfo := SessionConnectInfo,
 Timeout := T#5S,
 ConnectionHdl => nConnectionHdl);
 IF NOT fbUA_Connect.Busy THEN
 fbUA_Connect(Execute := FALSE);
 IF NOT fbUA_Connect.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_Connect.ErrorID;
 nConnectionHdl := 0;
 iState := 0;
 END_IF
 END_IF

 2:
 fbUA_Disconnect(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl);

 IF NOT fbUA_Disconnect.Busy THEN
 fbUA_Disconnect(Execute := FALSE);

Technical introduction

TC3 OPC UA156 Version: 2.6

 IF NOT fbUA_Disconnect.Error THEN
 iState := 0;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_Disconnect.ErrorID;
 iState := 0;
 nConnectionHdl := 0;
 END_IF
 END_IF

END_CASE

4.3.3.3 How to read nodes

The following section describes how you use the TcX_PLCopen_OpcUa function block to read out an
OPC UA node from a local or remote OPC UA Server.

This section contains the following topics:

• Overview [} 156]

• Schematic workflow [} 156]

• General notes [} 156]

• Code snippet [} 157]

Overview

The following function blocks are required to establish a connection to an OPC UA Server, to read UA nodes
and to interrupt the session later: UA_Connect [} 218], UA_GetNamespaceIndex [} 220], UA_NodeGetHandle
[} 226], UA_Read [} 230], UA_NodeReleaseHandle [} 228], UA_Disconnect [} 219].

First of all, read the section How to determine communication parameters [} 150] so as to be able
to understand certain UA functions better (e.g. how NodeIdentifiers can be determined) as well as
the section How to establish a connection [} 154].

Schematic workflow

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

General notes
• The UA_Connect function block requires the following information to establish a connection to a local

or remote OPC UA Server (see also How to establish a connection [} 154]):
◦ Server URL
◦ Session Connect Information

Technical introduction

TC3 OPC UA 157Version: 2.6

• The UA_GetNamespaceIndex function block requires a connection handle (from UA_Connect) and a
NamespaceURI for resolution in a NamespaceIndex, which will be used later by UA_NodeGetHandle
to obtain a node handle (see also How to determine communication parameters [} 150]).

• The UA_NodeGetHandle function block requires a connection handle (from UA_Connect) and the
NodeID (from a ST_UANodeID) in order to obtain a node handle (see also How to determine
communication parameters [} 150]).

• The UA_Read function block requires a connection handle (from UA_Connect), a node handle (from
UA_NodeGetHandle) and a pointer to the target variable (where the read value is to be saved). Make
sure that the target variable has the correct data type (see How to determine communication
parameters [} 150]).

• The UA_NodeReleaseHandle function block requires a connection handle (from UA_Connect) and a
node handle (from UA_NodeGetHandle).

Code snippet

Declaration:
(* Declarations for UA_GetNamespaceIndex *)
fbUA_GetNamespaceIndex : UA_GetNamespaceIndex;
nNamespaceIndex : UINT;

(* Declarations for UA_NodeGetHandle *)
fbUA_NodeGetHandle : UA_NodeGetHandle;
NodeID : ST_UANodeID;
nNodeHdl : DWORD;

(* Declarations for UA_Read *)
fbUA_Read : UA_Read;
stIndexRange : ARRAY [1..nMaxIndexRange] OF ST_UAIndexRange;
nIndexRangeCount : UINT;
stNodeAddInfo : ST_UANodeAdditionalInfo;
sNodeIdentifier : STRING(MAX_STRING_LENGTH) := 'MAIN.nCounter';
nReadData : INT;
cbDataRead : UDINT;

(* Declarations for UA_NodeReleaseHandle *)
fbUA_NodeReleaseHandle : UA_NodeReleaseHandle;

Implementation:
CASE iState OF
 0:
 [...]

 2: (* GetNS Index *)
 fbUA_GetNamespaceIndex(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NamespaceUri := sNamespaceUri,
 NamespaceIndex => nNamespaceIndex
);
 IF NOT fbUA_GetNamespaceIndex.Busy THEN
 fbUA_GetNamespaceIndex(Execute := FALSE);
 IF NOT fbUA_GetNamespaceIndex.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_GetNamespaceIndex.ErrorID;
 iState := 6;
 END_IF
 END_IF

 3: (* UA_NodeGetHandle *)
 NodeID.eIdentifierType := eUAIdentifierType_String;
 NodeID.nNamespaceIndex := nNamespaceIndex;
 NodeID.sIdentifier := sNodeIdentifier;
 fbUA_NodeGetHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeID := NodeID,
 NodeHdl => nNodeHdl);
 IF NOT fbUA_NodeGetHandle.Busy THEN
 fbUA_NodeGetHandle(Execute := FALSE);
 IF NOT fbUA_NodeGetHandle.Error THEN

Technical introduction

TC3 OPC UA158 Version: 2.6

 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_NodeGetHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

 4: (* UA_Read *)
 fbUA_Read(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeHdl := nNodeHdl,
 cbData := SIZEOF(nReadData),
 stNodeAddInfo := stNodeAddInfo,
 pVariable := ADR(nReadData));
 IF NOT fbUA_Read.Busy THEN
 fbUA_Read(Execute := FALSE, cbData_R => cbDataRead);
 IF NOT fbUA_Read.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_Read.ErrorID;
 iState := 6;
 END_IF
 END_IF

 5: (* Release Node Handle *)
 fbUA_NodeReleaseHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeHdl := nNodeHdl);
 IF NOT fbUA_NodeReleaseHandle.Busy THEN
 fbUA_NodeReleaseHandle(Execute := FALSE);
 IF NOT fbUA_NodeReleaseHandle.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_NodeReleaseHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

 6:
 [...]

END_CASE

4.3.3.4 How to write nodes

The following section describes how you use the TcX_PLCopen_OpcUa function block to write values in an
OPC UA node from a local or remote OPC UA Server.

This section contains the following topics:

• Overview [} 158]

• Schematic workflow [} 159]

• General notes [} 159]

• Code snippet [} 159]

Overview

The following function blocks are required to establish a connection to an OPC UA Server, write UA nodes
and subsequently interrupt the session: UA_Connect [} 218], UA_GetNamespaceIndex [} 220],
UA_NodeGetHandle [} 226], UA_Write [} 232], UA_NodeReleaseHandle [} 228], UA_Disconnect [} 219].

First of all, read the section How to determine communication parameters [} 150] so as to be able
to understand certain UA functions better (e.g. how NodeIdentifiers can be determined) as well as
the section How to establish a connection [} 154].

Technical introduction

TC3 OPC UA 159Version: 2.6

Schematic workflow

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

General notes
• The UA_Connect function block requires the following information to establish a connection to a local

or remote OPC UA Server (see also How to establish a connection [} 154]):
◦ Server URL
◦ Session Connect Information

• The UA_GetNamespaceIndex function block requires a connection handle (from UA_Connect) and a
NamespaceURI for resolution in a NamespaceIndex, which will be used later by UA_NodeGetHandle
to obtain a node handle (see also How to determine communication parameters [} 150]).

• The UA_NodeGetHandle function block requires a connection handle (from UA_Connect) and the
NodeID (from a ST_UANodeID) in order to obtain a node handle (see also How to determine
communication parameters [} 150]).

• The UA_Write function block requires a connection handle (from UA_Connect), a node handle (from
UA_NodeGetHandle) and a pointer to a variable containing the value that is to be written. Make sure
that the target variable has the correct data type (see How to determine communication parameters
[} 150]).

• The UA_NodeReleaseHandle function block requires a connection handle (from UA_Connect) and a
node handle (from UA_NodeGetHandle).

Code snippet

Declaration:
(* Declarations for UA_GetNamespaceIndex *)
fbUA_GetNamespaceIndex : UA_GetNamespaceIndex;
nNamespaceIndex : UINT;

(* Declarations for UA_NodeGetHandle *)
fbUA_NodeGetHandle : UA_NodeGetHandle;
NodeID : ST_UANodeID;
nNodeHdl : DWORD;

(* Declarations for UA_Write *)
fbUA_Write : UA_Write;
stIndexRange : ARRAY [1..nMaxIndexRange] OF ST_UAIndexRange;
nIndexRangeCount : UINT;
stNodeAddInfo : ST_UANodeAdditionalInfo;
sNodeIdentifier: STRING(MAX_STRING_LENGTH) := 'MAIN.nNumber';
nWriteData: INT := 42;

(* Declarations for UA_NodeReleaseHandle *)
fbUA_NodeReleaseHandle : UA_NodeReleaseHandle;

Technical introduction

TC3 OPC UA160 Version: 2.6

Implementation:
CASE iState OF
 0:
 [...]

 2: (* GetNS Index *)
 fbUA_GetNamespaceIndex(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NamespaceUri := sNamespaceUri,
 NamespaceIndex => nNamespaceIndex
);
 IF NOT fbUA_GetNamespaceIndex.Busy THEN
 fbUA_GetNamespaceIndex(Execute := FALSE);
 IF NOT fbUA_GetNamespaceIndex.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_GetNamespaceIndex.ErrorID;
 iState := 6;
 END_IF
 END_IF

 3: (* UA_NodeGetHandle *)
 NodeID.eIdentifierType := eUAIdentifierType_String;
 NodeID.nNamespaceIndex := nNamespaceIndex;
 NodeID.sIdentifier := sNodeIdentifier;
 fbUA_NodeGetHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeID := NodeID,
 NodeHdl => nNodeHdl);
 IF NOT fbUA_NodeGetHandle.Busy THEN
 fbUA_NodeGetHandle(Execute := FALSE);
 IF NOT fbUA_NodeGetHandle.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_NodeGetHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

 4: (* UA_Write *)
 fbUA_Write(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeHdl := nNodeHdl,
 stNodeAddInfo := stNodeAddInfo,
 cbData := SIZEOF(nWriteData),
 pVariable := ADR(nWriteData));
 IF NOT fbUA_Write.Busy THEN
 fbUA_Write(
 Execute := FALSE,
 pVariable := ADR(nWriteData));
 IF NOT fbUA_Write.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_Write.ErrorID;
 iState := 6;
 END_IF
 END_IF

 5: (* Release Node Handle *)
 fbUA_NodeReleaseHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeHdl := nNodeHdl);
 IF NOT fbUA_NodeReleaseHandle.Busy THEN
 fbUA_NodeReleaseHandle(Execute := FALSE);
 IF NOT fbUA_NodeReleaseHandle.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_NodeReleaseHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

Technical introduction

TC3 OPC UA 161Version: 2.6

 6:
 [...]

END_CASE

4.3.3.5 How to call methods

The following section describes how you use the TcX_PLCopen_OpcUa function block to call methods on a
local or remote OPC UA Server.

This section contains the following topics:

• Overview [} 161]

• Schematic workflow [} 161]

• General notes [} 161]

• Code snippet [} 162]

Overview

The following function blocks are required to connect to an OPC UA Server, call UA methods, and
subsequently interrupt the session: UA_Connect [} 218], UA_GetNamespaceIndex [} 220],
UA_MethodGetHandle [} 224], UA_MethodCall [} 223], UA_MethodReleaseHandle [} 225], UA_Disconnect
[} 219].

First of all, read the section How to determine communication parameters [} 150] so as to be able
to understand certain UA functions better (e.g. how MethodIdentifier can be determined) as well as
the section How to establish a connection [} 154].

Schematic workflow

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

General notes
• The UA_Connect function block requires the following information to establish a connection to a local

or remote OPC UA Server (see also How to establish a connection [} 154]):
◦ Server URL
◦ Session Connect Information

• The UA_GetNamespaceIndex function block requires a connection handle (from UA_Connect) and a
NamespaceURI for resolution in a NamespaceIndex, which will be used later by UA_NodeGetHandle
to obtain a node handle (see also How to determine communication parameters [} 150]).

Technical introduction

TC3 OPC UA162 Version: 2.6

• The UA_MethodGetHandle function block requires a connection handle (from UA_Connect), an
ObjectNodeID and a MethodNodeID in order to obtain a method handle (see also How to determine
communication parameters [} 150]).

• The UA_MethodCall function block requires a connection handle (from UA_Connect), a method handle
(from UA_MethodGetHandle) and information about the input and output arguments of the method that
is to be called. Information about the input arguments is represented by the input parameters
pInputArgInfo and pInputArgData of UA_MethodCall. Information about the output parameters is
represented by the pOutputArgInfo and pOutputArgData input parameters of UA_MethodCall. The
input parameter pOutputArgInfoAndData then represents a pointer to a structure containing the results
of the method call, including all output parameters. In the following code snippet the pInputArgInfo and
pInputArgData parameters are calculated and created in the M_Init method.

• The UA_NodeReleaseHandle function block requires a connection handle (from UA_Connect) and a
method handle (from UA_MethodGetHandle).

Code snippet

M_Init initialization method of the function block containing the UA method call
MEMSET(ADR(nInputData),0,SIZEOF(nInputData));
nArg := 1;

(********** Input parameter 1 **********)
InputArguments[nArg].DataType := eUAType_Int16;
InputArguments[nArg].ValueRank := -1; (* Scalar = -1 or Array *)
InputArguments[nArg].ArrayDimensions[1] := 0; (* Number of Dimension in case its an array *)
InputArguments[nArg].nLenData := SIZEOF(numberIn1); (* Length if its a STRING *)
IF nOffset + SIZEOF(numberIn1) > nInputArgSize THEN
 bInputDataError := TRUE;
 RETURN;
ELSE
 MEMCPY(ADR(nInputData)+nOffset,ADR(numberIn1),SIZEOF(numberIn1)); (* VALUE in BYTES FORM *)
 nOffset := nOffset + SIZEOF(numberIn1);
END_IF
nArg := nArg + 1;

(********** Input parameter 2 **********)
InputArguments[nArg].DataType := eUAType_Int16;
InputArguments[nArg].ValueRank := -1; (* Scalar = -1 or Array *)
InputArguments[nArg].ArrayDimensions[1] := 0; (* Number of Dimension in case its an array *)
InputArguments[nArg].nLenData := SIZEOF(numberIn2); (* Length if its a STRING *)
IF nOffset + SIZEOF(numberIn2) > nInputArgSize THEN
 bInputDataError := TRUE;
 RETURN;
ELSE
 MEMCPY(ADR(nInputData)+nOffset,ADR(numberIn2),SIZEOF(numberIn2));(* VALUE in BYTES FORM *)
 nOffset := nOffset + SIZEOF(numberIn2);
END_IF

cbWriteData := nOffset;

Declaration:
(* Declarations for UA_GetNamespaceIndex *)
fbUA_GetNamespaceIndex : UA_GetNamespaceIndex;
nNamespaceIndex : UINT;

(* Declarations for UA_MethodGetHandle *)
fbUA_MethodGetHandle: UA_MethodGetHandle;
ObjectNodeID: ST_UANodeID;
MethodNodeID: ST_UANodeID;
nMethodHdl: DWORD;

(* Declarations for UA_MethodCall *)
fbUA_MethodCall: UA_MethodCall;
sObjectNodeIdIdentifier : STRING(MAX_STRING_LENGTH) := 'MAIN.fbMathematics';
sMethodNodeIdIdentifier : STRING(MAX_STRING_LENGTH) := 'MAIN.fbMathematics#M_Mul';
nAdrWriteData: PVOID;
numberIn1: INT := 42; // change according to input value and data type
numberIn2: INT := 42; // change according to input value and data type
numberOutPro: DINT; // result (output parameter of M_Mul())
cbWriteData: UDINT; // calculated automatically by M_Init()
InputArguments: ARRAY[1..2] OF ST_UAMethodArgInfo; // change according to input parameters
stOutputArgInfo: ARRAY[1..1] OF ST_UAMethodArgInfo; // change according to output parameters
stOutputArgInfoAndData: ST_OutputArgInfoAndData;
nInputData: ARRAY[1..4] OF BYTE; // numberIn1(INT16)(2) + numberIn2(INT16)(2)

Technical introduction

TC3 OPC UA 163Version: 2.6

nOffset: UDINT; // calculated by M_Init()
nArg: INT; // used by M_Init()

(* Declarations for UA_MethodReleaseHandle *)
fbUA_MethodReleaseHandle: UA_MethodReleaseHandle;

Implementation:
CASE iState OF
 0:
 [...]

 2: (* GetNS Index *)
 fbUA_GetNamespaceIndex(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NamespaceUri := sNamespaceUri,
 NamespaceIndex => nNamespaceIndex);
 IF NOT fbUA_GetNamespaceIndex.Busy THEN
 fbUA_GetNamespaceIndex(Execute := FALSE);
 IF NOT fbUA_GetNamespaceIndex.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_GetNamespaceIndex.ErrorID;
 iState := 7;
 END_IF
 END_IF

 3: (* Get Method Handle *)
 ObjectNodeID.eIdentifierType := eUAIdentifierType_String;
 ObjectNodeID.nNamespaceIndex := nNamespaceIndex;
 ObjectNodeID.sIdentifier := sObjectNodeIdIdentifier;
 MethodNodeID.eIdentifierType := eUAIdentifierType_String;
 MethodNodeID.nNamespaceIndex := nNamespaceIndex;
 MethodNodeID.sIdentifier := sMethodNodeIdIdentifier;

 M_Init();

 IF bInputDataError = FALSE THEN
 iState := iState + 1;
 ELSE
 bBusy := FALSE;
 bError := TRUE;
 nErrorID := 16#70A; //out of memory
 END_IF

 4: (* Method Get Handle *)
 fbUA_MethodGetHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 ObjectNodeID := ObjectNodeID,
 MethodNodeID := MethodNodeID,
 MethodHdl => nMethodHdl);
 IF NOT fbUA_MethodGetHandle.Busy THEN
 fbUA_MethodGetHandle(Execute := FALSE);
 IF NOT fbUA_MethodGetHandle.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_MethodGetHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

 5: (* Method Call *)
 stOutputArgInfo[1].nLenData := SIZEOF(stOutputArgInfoAndData.pro);
 fbUA_MethodCall(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 MethodHdl := nMethodHdl,
 nNumberOfInputArguments := nNumberOfInputArguments,
 pInputArgInfo := ADR(InputArguments),
 cbInputArgInfo := SIZEOF(InputArguments),
 pInputArgData := ADR(nInputData),
 cbInputArgData := cbWriteData,
 pInputWriteData := 0,
 cbInputWriteData := 0,
 nNumberOfOutputArguments := nNumberOfOutputArguments,
 pOutputArgInfo := ADR(stOutputArgInfo),

Technical introduction

TC3 OPC UA164 Version: 2.6

 cbOutputArgInfo := SIZEOF(stOutputArgInfo),
 pOutputArgInfoAndData := ADR(stOutputArgInfoAndData),
 cbOutputArgInfoAndData := SIZEOF(stOutputArgInfoAndData));
 IF NOT fbUA_MethodCall.Busy THEN
 fbUA_MethodCall(Execute := FALSE);
 IF NOT fbUA_MethodCall.Error THEN
 iState := iState + 1;
 numberOutPro := stOutputArgInfoAndData.pro;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_MethodCall.ErrorID;
 iState := 6;
 END_IF
 END_IF

 6: (* Release Method Handle *)
 fbUA_MethodReleaseHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 MethodHdl := nMethodHdl);
 IF NOT fbUA_MethodReleaseHandle.Busy THEN
 fbUA_MethodReleaseHandle(Execute := FALSE);
 bBusy := FALSE;
 IF NOT fbUA_MethodReleaseHandle.Error THEN
 iState := 7;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_MethodReleaseHandle.ErrorID;
 iState := 7;
 END_IF
 END_IF

 7:
 [...]

END_CASE

4.3.4 Security

4.3.4.1 Overview

Security was a central requirement in the development of OPC UA. It is addressed in various areas:

• Encryption
• Integrity
• Authentication

The confidentiality of the exchanged information is secured by the encryption of the exchanged messages.
Modern cryptographic algorithms are used for this. In order to be able to cope with future security
requirements as well, even stronger and more modern algorithms can subsequently be added to an
application without changing the protocol.

Different security levels can be selected according to the requirements of the respective application. In some
areas it is sufficient to sign the messages in order to prevent changes being made by third parties, while
additional encryption of the messages is necessary in other cases where the data must also not be read by
third parties.

TF6100 OPC UA offers the following security levels (security endpoints) that clients can connect to:

• None: No security
• Sign: signed messages
• Sign & Encrypt: signed and encrypted messages

The signing of messages prevents a third party from changing the contents of a message. This prevents, for
example, a write statement to open a switch being falsified by a third party and the switch being closed
instead.

Technical introduction

TC3 OPC UA 165Version: 2.6

OPC UA applications identify themselves via so-called software and application instance certificates. With
the aid of software certificates it is possible to grant certain client applications extended access to the
information on an OPC UA Server, for example for the engineering of an OPC UA Server. Application
instance certificates can be used to ensure that an OPC UA Server communicates only with preconfigured
clients. A client can ensure by means of the server’s application instance certificate that it is speaking to the
correct server (similar to the certificates of a Web browser). The taking into account of these certificates is
optional, i.e. an OPC UA server can also grant the same access to each client, depending on the user rights.

The TwinCAT OPC UA Client and TwinCAT OPC UA Server generate a self-signed certificate during the first
startup process. This certificate consists of a private key and a public key. The private key is saved in the
\PKI\CA\private directory and the corresponding public key in the \PKI\CA\certs directory. Any
OPC UA Client wishing to establish a secure connection with the Server via one of the security endpoints
(Sign, Sign&Encrypt) must know the public key of the OPC UA Server. Conversely the OPC UA Server must
know the Client’s public key. This so-called key exchange is described in the following sections:

• Authentication [} 122]

• Certificate exchange [} 165]

• Access rights [} 123]

4.3.4.2 Certificate exchange

The communication between an OPC UA Client and an OPC UA Server can optionally be secured by
communication with a secure endpoint. By default, both the TwinCAT OPC UA Server and the
TwinCAT OPC UA Client generate a machine-specific, self-signed certificate for authentication the first time
they are started.

If you want to use such an encrypted communication connection in your environment, you need to establish
a trust relationship between OPC UA Server and OPC UA Client.

Trust settings on the server

If you want to authenticate one or more OPC UA Clients to the OPC UA Server via certificates, the
OPC UA Server must trust the public keys of the clients. This can be done via the file system, for example.
The server manages the trust settings for certificates via the file system.

• Trusted certificates: %InstallDir%\Server\PKI\CA\trusted\certs
• Rejected certificates: %InstallDir%\Server\PKI\CA\rejected\certs

By moving client certificates between these directories, the trust settings can be adjusted accordingly.

Technical introduction

TC3 OPC UA166 Version: 2.6

Reading a client certificate

A simple way of accessing the client certificate is described below. To do this, you establish a connection to
the UA Server using a secure endpoint (for example, Basic128Rsa15/Sign&Encrypt) without first copying the
client certificate to the UA Server. This connection is naturally rejected by the UA Server, since it does not
trust the UA Client at this point in time. In this case, the TwinCAT OPC UA Client would return the error
0xE4DD0102, for example. However, after rejecting the connection request, the UA Server stores a copy of
the client certificate in the above-mentioned "Rejected" directory. The name of the certificate corresponds to
the "Thumbprint" of the certificate and can thus be clearly assigned to the client certificate. You can now
move this file directly to the above-mentioned "Trusted" directory so that the UA Server can trust the
UA Client and accept the connection for all other connection requests.

Announcing OPC UA Servers to the OPC UA Client

Depending on the OPC UA Client employed, different steps may need to be taken so that the OPC UA Client
trusts the OPC UA Server. Typically, for client applications with a graphical user interface, a warning
message is displayed the first time you connect to the server, whereby the server certificate can then be
classified as trustworthy.

The following instruction is therefore only valid for the TwinCAT OPC UA Client.

The public key of the OPC UA Server is located in the following directory as a DER file: %InstallDir%\Server
\PKI\CA\own\certs

In the case of the TwinCAT OPC UA Client, copy the file into the corresponding "Trusted" directory:
%InstallDir%\Client\PKI\CA\certs

4.4 Gateway

4.4.1 Overview
The TwinCAT OPC UA Gateway is the latest addition to the TS6100/TF6100 software product. It not only
includes a conventional OPC DA interface for connecting older OPC COM DA applications to the
TwinCAT OPC UA Server and can therefore be regarded as the successor of the old
TwinCAT OPC DA Server (TS6120/TF6120), it also offers an OPC UA interface for converting several basic
TwinCAT OPC UA Servers to a central OPC UA Server.

Technical introduction

TC3 OPC UA 167Version: 2.6

4.4.2 Quick start
The TS6100/TF6100 setup automatically installs the TwinCAT OPC UA Gateway and registers the
application as a Windows service. The setup automatically configures access to a TwinCAT OPC UA Server
running on the same computer as the gateway.

If more than one OPC UA Server is added to the gateway, or if the server is running on a different computer,
the standard configuration has to be modified. Use the Configurator [} 171] to configure these settings.

Configuration of the TwinCAT OPC UA Server
Check the configuration of the OPC UA Server and make sure that it is operating as expected be-
fore continuing.

For further information regarding the configuration of the OPC UA Server, read the Quick start [} 41]
in the section "OPC UA Server".

Quick start – OPC COM DA

To connect an OPC COM DA Client to the gateway, start the client and establish a connection to the
following ProgId:
UnifiedAutomation.UaGateway.1

Technical introduction

TC3 OPC UA168 Version: 2.6

When browsing the gateway, one or more OPC UA Servers will be visible in the namespace of the gateway.

Quick start – OPC UA

The gateway not only offers an OPC COM DA interface, but also allows the aggregation of one or more
OPC UA Servers. The gateway also opens an OPC UA interface for this purpose. The gateway can be
accessed via the following OPC UA Server URL:
opc.tcp://[HostnameOrIpAddressOrLocalhost]:48050

Technical introduction

TC3 OPC UA 169Version: 2.6

The namespace of the gateway then contains all underlying TwinCAT OPC UA Servers.

4.4.3 Licensing
The TwinCAT OPC UA Gateway is supplied free of charge. No further license purchase is required.

Note that the gateway component can only be used for connecting to TwinCAT OPC UA Servers. The
software prevents connections to third-party UA Servers. The Unified Automation UA Gateway is
recommended where the environment necessitates the connection with a UA Server from a third party. It can
be purchased from http://www.unified-automation.com.

4.4.4 Scenarios
On account of the open and flexible PC-based automation technology from Beckhoff, the OPC UA Gateway
can be operated and installed in different ways. The following section describes the various setup scenarios
and explains the advantages and disadvantages of each configuration.

http://www.unified-automation.com

Technical introduction

TC3 OPC UA170 Version: 2.6

Gateway and UA Server on the same computer

In this scenario, the gateway and the UA Server are installed on the same computer. The gateway is
configured with the standard settings in order to establish a connection with the local OPC UA Server with
the following Server URL: opc.tcp://localhost:4840.

This scenario only works on non-Windows CE devices.

The TwinCAT OPC UA Server is also available for Windows CE, but the gateway is only available for "big"
Windows platforms.

Gateway and UA Server on different computers

In this scenario, the gateway and the UA Server are installed on different computers. The gateway is
configured for the establishment of a connection with the remote OPC UA Server by defining the latter's
corresponding Server URL, e.g. opc.tcp://192.168.1.1:4840.

The OPC UA Server may be installed on a small embedded device (e.g. a CX8090 with Windows CE), while
the gateway component is installed on a separate big Windows platform, e.g. a central server device.

Gateway connected to multiple UA Server devices

Please note that, regardless of the scenarios described above, it is also possible to connect other
TwinCAT OPC UA Servers to the gateway. For example, the gateway can be configured to access the
following servers:

• the local TwinCAT OPC UA Server (e.g. opc.tcp://localhost:4840)
• a remote TwinCAT OPC UA Server (e.g. opc.tcp://192.168.1.1:4840)
• another remote TwinCAT OPC UA Server (e.g. opc.tcp://192.168.1.21:4841)
• ...

Technical introduction

TC3 OPC UA 171Version: 2.6

4.4.5 Configurator

4.4.5.1 Overview

The UA Gateway Administration Tool is a graphic user interface for the configuration of the gateway.

The tool is opened via the context menu of the gateway symbol in the Windows taskbar. After starting the
administration tool via the command Administrate UaGateway, the graphic user interface appears.

The interface offers several configuration options:

• General settings [} 171]

• Additional UA Servers [} 173]

• Additional endpoints [} 174]

• OPC COM DA settings [} 175]

4.4.5.2 General settings

The General tab displays general settings of the UA Gateway.

Technical introduction

TC3 OPC UA172 Version: 2.6

Autostart

In this area you can configure the autostart behavior of the UA Gateway.

Activate UaGateway Runtime Process to start the UA Gateway Service automatically when the computer is
switched on.

Activate the Notification Area Icon to start the symbol of the notification area when a user logs on.

Launching User

The UA Gateway is executed as a Windows NT service. This service is assigned a specific user context so
that COM/DCOM can be properly configured. The user you select is assigned to the UA Gateway service. In
addition, the user is granted a LogOnAsService right (so he/she can start the service) and is added to a local

Technical introduction

TC3 OPC UA 173Version: 2.6

user group ("UaGatewayUsers"). This group is added to the Access Control List (ACL) of the local machine.
For proper COM/DCOM configuration you must add to this group all the users who are permitted to start and
access the UA Gateway.

Configuration Permissions

It is possible to allow only certain users to change the configuration of the UA Gateway, i.e. to add or remove
connections to basic servers. You can choose from the following settings:

Everyone Any user (including users anonymously logged on to UA) who can contact the UA
Gateway can change the configuration.

Limit to operating system
users

Only local users and users within the same domain can change the configuration.

Limit to users of this
group

Only users within a specific group to change the configuration. If not all available
groups are displayed in the Group drop-down list (or a newly created group is
missing), use the Refresh button to read this group again.

Remote DCOM Access

When Allow Remote Connection to UaGateway OPC COM Server is enabled, DCOM port 135 and the
executable UA Gateway are added to the firewall exception list.

If Allow starting UaGateway by DCOM Clients is disabled, DCOM clients cannot start the UA Gateway. In
this case, UA Gateway can still be started or stopped using the Notification Area Icon or the Start menu
entries.

UA Discovery Registration (UA Local Discovery Server)

Activate Register at Local Discovery Server if the UA Gateway is to be registered with the OPC UA LDS
(Local Discovery Server), if one is installed.

4.4.5.3 Additional UA Servers

The Configured UA Servers tab offers options for the configuration of the underlying OPC UA Servers. By
default the gateway already establishes a connection with the local OPC UA Server (which is running on the
same computer).

Technical introduction

TC3 OPC UA174 Version: 2.6

To configure or remove further OPC UA Servers from the configuration, click on the Plus and Minus buttons
in the lower right-hand corner and then Apply to save the changes.

4.4.5.4 Additional endpoints

The UA Endpoints tab shows the settings for the UA endpoint configuration.

The UA endpoint is the connection information that a UA Client requires to connect to the gateway.

General

Use the checkboxes to specify the logon methods that a client can use to connect to your UA Gateway.

Technical introduction

TC3 OPC UA 175Version: 2.6

Endpoints

Here you can define all settings required for different UA endpoints. The endpoint is configured with default
settings as standard. These represent a single UA endpoint offering two security options: None and
Basic128RSsa15.

The None security option allows every UA Client to connect to the UA Gateway. This configuration is only
recommended during commissioning and testing. In a production environment this configuration should be
switched off.

The various configuration elements are described in the following sections.

Network configuration

Endpoint URL This is the endpoint URL of the UA Gateway as seen in FindServers and
GetEndpoint calls.

Protocol This is the protocol used for this endpoint.
Host name/IP This is the host name of the UA Gateway (it can also be the IP address of the

PC running the UA Gateway).
Network adapter This is the network adapter to be used for binding. The available options are:
All Binding is to be applied to all IP addresses of the computer. The endpoint will

be accessible via the given port on all IP addresses.
Network adapter Select a network adapter and an IP address (below) to bind only to that

address. The endpoint will only be accessible to clients that establish a
connection with the selected IP address.

Local only With this selection, the UA Gateway only establishes a binding with the
loopback adapter. The endpoint can only be reached by clients running on the
same machine as the UA Gateway.

Port This is the TCP port of the endpoint (normally 48050).

Security

In this area you can configure the supported security settings of the endpoint. Select the checkboxes for the
security options you want to apply to a specific endpoint. For options other than "None", the available
message security mode(s) must be specified. Signing ensures that messages cannot be changed and that
they are exchanged between applications that have established a connection. Encryption guarantees that no
one can read the messages.

4.4.5.5 OPC COM DA settings

The OPC DA (COM) tab shows the settings for the configuration of the COM DA Server of the UA Gateway.

The following section describes how to configure the COM DA Server of the UA Gateway using the
administration tool.

General

ItemIDs of the COM DA Server are formed from the URI namespace and the identifier of the variable node in
the OPC UA address space. The namespace part can be omitted in the case of a single namespace.

In the Default Name Space drop-down field you can specify the default namespace with the namespace of
a basic OPC server. The ItemIDs of this particular namespace can then be reached by specifying the
identifier only, because the default namespace is automatically added internally when an element is
accessed. This feature can be used to reconfigure all ItemIDs in the client that accesses the UA
Gateway server, if the latter serves as a tunnel solution for a basic COM DA Server, while maintaining the
ItemIDs of the original COM DA Server.

In the second drop-down field the Timestamp Source can be defined. The following options are available:

Internal The time stamps are generated by the OPC COM DA Server.

Technical introduction

TC3 OPC UA176 Version: 2.6

SourceTimestamp The SourceTimestamps are used as time stamps provided by the
OPC COM DA Server.

ServerTimestamp The ServerTimestamps are used as time stamps provided by the
OPC COM DA Server.

Properties mapping from UA to COM DA

When connecting to the UA Gateway's OPC COM DA Server, all six standard properties (DataType, Value,
Quality, TimeStamp, AccessRights and ScanRate) are automatically assigned. Underlying OPC Servers can
provide further properties (e.g. user-defined properties, DI properties, etc.). These properties can be
assigned to vendor-specific properties (PropertyID ≧ 5000) in the COM DA Server of the UA Gateway.

These vendor-specific PropertyIDs are automatically assigned when the properties are requested for the first
time. This dialog allows you to change the assigned PropertyIDs or configure how the OPC UA properties in
the UA Gateway address space are assigned to the vendor-specific COM DA properties. You have to define
the property name on the UA side and the namespace of the property in the UA Gateway and assign it to the
COM DA PropertyIDs. When connecting to the UA Gateway's COM DA server, you can navigate through the
available properties (QueryAvailableProperties) of a single OPCItem and then you will be able to see the
associated properties as they have been configured (in the range of vendor-specific PropertyIDs above
5000).

Press the [+] or [-] key respectively to add or remove a certain property. To change the contents of a
particular field, double-click it and enter the required values. Double-clicking a value in the UA Property
NameSpace URI column displays a drop-down menu where you can make a selection.

If you add a new property by pressing [+], the values of the last entry are copied to the new line and the
PropertyID is automatically incremented.

4.4.6 Migrating from Tx6120
One of the primary purposes of the UA Gateway is to provide a sustainable connectivity in order to replace
the Tx6120 OPC DA supplement/function. Observe the following notes if you wish to migrate
Tx6120 OPC DA to UA Gateway.

Standard configuration

The standard configuration of the UA Gateway automatically establishes a connection with the local
OPC UA Server and offers the OPC DA Clients an OPC DA interface. For a connection based on this
standard configuration, the OPC DA clients must consider the following points:

• The default ProgID of the UA Gateway is "UnifiedAutomation.Gateway.1". The
TwinCAT OPC DA Server uses a different ProgID ("Beckhoff.TwinCATOpcServerDA").

• The UA Gateway always uses a ProgID instead of multiple clones.
• The ItemIdentifier of an OPC symbol is generated differently in the UA Gateway. This behavior can be

changed.

Changing the syntax of an ItemIdentifier

The syntax used by the UA Gateway for ItemIdentifier can be changed so that the latter corresponds more to
the type of the TwinCAT OPC DA Server. By default, the UA Gateway uses a different syntax to that of the
TwinCAT OPC DA Server when creating its identifiers.

Technical introduction

TC3 OPC UA 177Version: 2.6

UA Gateway sample:

Sample TwinCAT OPC DA Server:

The UA Gateway uses a prefix so that the underlying OPC UA Client from which the variable originates can
be clearly identified.

The following steps are required to configure the UA Gateway so that it forms its identifiers in roughly the
same way as the TwinCAT OPC DA Server. The functionality has been implemented to simplify the
migration process.

1. Open the UA Gateway configuration file
C:\Program Files (x86)\UnifiedAutomation\UaGateway\bin\uagateway.config.xml

2. Look for the following XML tags in the XML file:
<OpcServerConfig>
 <ComDaServerConfig>
 <ComDaNamespaceUseAlias>false</ComDaNamespaceUseAlias>
 </ComDaServerConfig>
</OpcServerConfig>

3. If the XML tag ComDaNamespaceUseAlias is set to "true", user-defined prefixes can be specified. To do
this, look for the following XML tag in the same XML file:

<OpcServerConfig>
 <UaServerConfig>
 <ConfiguredNamespaces>
 ...
 </ConfiguredNamespaces
 </UaServerConfig>
</OpcServerConfig>

4. In this XML structure, identify the TwinCAT OPC UA Server namespace. By default, it should read as
follows:

<OpcServerConfig>
 <UaServerConfig>
 <ConfiguredNamespaces>
 ...
 <Namespace>
 <Index>...</Index>
 <Uri>TcOpcUaServer/urn:Hostname:BeckhoffAutomation:Ua:PLC1</Uri>
 <AllowRenameUri>false</AllowRenameUri>

Technical introduction

TC3 OPC UA178 Version: 2.6

 <UniqueId>TcOpcUaServer#TcOpcUaServer/urn:Hostname:BeckhoffAutomation:Ua:PLC1</UniqueId>
 <ComAlias>...</ComAlias>
 </Namespace>
 ...
 </ConfiguredNamespaces
 </UaServerConfig>
</OpcServerConfig>

5. On your computer, the placeholder "..." may look different. Set <ComAlias> to your preferred prefix, for
example "PLC1". The identifiers are then created with the prefix "PLC1".

4.4.7 Security

4.4.7.1 Overview

Security was a central requirement in the development of OPC UA. It is addressed in various areas:

• Encryption
• Integrity
• Authentication

The confidentiality of the exchanged information is secured by the encryption of the exchanged messages.
Modern cryptographic algorithms are used for this. In order to be able to cope with future security
requirements as well, even stronger and more modern algorithms can subsequently be added to an
application without changing the protocol.

Different security levels can be selected according to the requirements of the respective application. In some
areas it is sufficient to sign the messages in order to prevent changes being made by third parties, while
additional encryption of the messages is necessary in other cases where the data must also not be read by
third parties.

TF6100 OPC UA offers the following security levels (security endpoints) that clients can connect to:

• None: No security
• Sign: signed messages
• Sign & Encrypt: signed and encrypted messages

The signing of messages prevents a third party from changing the contents of a message. This prevents, for
example, a write statement to open a switch being falsified by a third party and the switch being closed
instead.

OPC UA applications identify themselves via so-called software and application instance certificates. With
the aid of software certificates it is possible to grant certain client applications extended access to the
information on an OPC UA Server, for example for the engineering of an OPC UA Server. Application
instance certificates can be used to ensure that an OPC UA Server communicates only with preconfigured
clients. A client can ensure by means of the server’s application instance certificate that it is speaking to the
correct server (similar to the certificates of a Web browser). The taking into account of these certificates is
optional, i.e. an OPC UA server can also grant the same access to each client, depending on the user rights.

Technical introduction

TC3 OPC UA 179Version: 2.6

The TwinCAT OPC UA Client and TwinCAT OPC UA Server generate a self-signed certificate during the first
startup process. This certificate consists of a private key and a public key. The private key is saved in the
\PKI\CA\private directory and the corresponding public key in the \PKI\CA\certs directory. Any
OPC UA Client wishing to establish a secure connection with the Server via one of the security endpoints
(Sign, Sign&Encrypt) must know the public key of the OPC UA Server. Conversely the OPC UA Server must
know the Client’s public key. This so-called key exchange is described in the following sections:

• Authentication [} 122]

• Certificate exchange [} 179]

• Access rights [} 123]

4.4.7.2 Certificate exchange

The communication between an OPC UA Client and an OPC UA Server can optionally be secured by
communication with a secure endpoint. By default, both the TwinCAT OPC UA Server and the
TwinCAT OPC UA Client generate a machine-specific, self-signed certificate for authentication the first time
they are started.

If you want to use such an encrypted communication connection in your environment, you need to establish
a trust relationship between OPC UA Server and OPC UA Client.

Trust settings on the server

If you want to authenticate one or more OPC UA Clients to the OPC UA Server via certificates, the
OPC UA Server must trust the public keys of the clients. This can be done via the file system, for example.
The server manages the trust settings for certificates via the file system.

• Trusted certificates: %InstallDir%\Server\PKI\CA\trusted\certs
• Rejected certificates: %InstallDir%\Server\PKI\CA\rejected\certs

By moving client certificates between these directories, the trust settings can be adjusted accordingly.

Reading a client certificate

A simple way of accessing the client certificate is described below. To do this, you establish a connection to
the UA Server using a secure endpoint (for example, Basic128Rsa15/Sign&Encrypt) without first copying the
client certificate to the UA Server. This connection is naturally rejected by the UA Server, since it does not
trust the UA Client at this point in time. In this case, the TwinCAT OPC UA Client would return the error
0xE4DD0102, for example. However, after rejecting the connection request, the UA Server stores a copy of
the client certificate in the above-mentioned "Rejected" directory. The name of the certificate corresponds to
the "Thumbprint" of the certificate and can thus be clearly assigned to the client certificate. You can now
move this file directly to the above-mentioned "Trusted" directory so that the UA Server can trust the
UA Client and accept the connection for all other connection requests.

Technical introduction

TC3 OPC UA180 Version: 2.6

Announcing OPC UA Servers to the OPC UA Client

Depending on the OPC UA Client employed, different steps may need to be taken so that the OPC UA Client
trusts the OPC UA Server. Typically, for client applications with a graphical user interface, a warning
message is displayed the first time you connect to the server, whereby the server certificate can then be
classified as trustworthy.

The following instruction is therefore only valid for the TwinCAT OPC UA Client.

The public key of the OPC UA Server is located in the following directory as a DER file: %InstallDir%\Server
\PKI\CA\own\certs

In the case of the TwinCAT OPC UA Client, copy the file into the corresponding "Trusted" directory:
%InstallDir%\Client\PKI\CA\certs

4.5 Sample Client

4.5.1 Overview
As of version 1.6.80 of the TwinCAT OPC UA Server, a small "UA Sample Client" program is automatically
installed. The program enables you to browse the OPC UA namespace and to test the UA Server
installation. It is located in the Windows Start menu and in the installation directory of the Supplement/
Function. You can run the program both directly on the UA Server and on a computer in your network.

The UA Sample Client currently offers the following features:

• Connecting to the OPC UA Server

• Establishing a secure connection with OPC UA Server (see Establishing a secure connection to
OPC UA Server [} 181])

• Browsing the UA namespace of an OPC UA Server (see Browsing the UA namespace [} 184])
• Adding a UA node from the namespace to the watchlist, which reads the value of the node regularly

(see Using the Watchlist [} 185])

This application is only an OPC UA Sample Client. It does not offer any sophisticated functionalities, but has
been developed to provide users with an easy-to-use interface for carrying out initial tests on the
OPC UA Server

To start the application, run the UA SampleClient.exe file with the Run as Admin option.

Endpoints of the OPC UA Server

The UA Sample Client first connects itself to a specified server URL. The client acquires all endpoints of the
OPC UA Server (see Endpoints drop-down list). The list returned to the server then contains more
information about all the available endpoints the client can connect to. Each endpoint can contain the host
name of the OPC UA Server instead of the IP address. The client then uses the information from the
endpoint to connect to the server.

If the name solution does not work on the user's network, the client cannot connect. If the endpoint to which
you want the client to connect contains the host name of the server, make sure that the name solution works
on your network and that the host name is accessible on the server.

Technical introduction

TC3 OPC UA 181Version: 2.6

4.5.2 Establishing a secure connection to OPC UA Server
1. Enter the URL of an OPC UA Server in the upper text field of the UA Sample Client.
2. Click the Get Endpoints button.

Technical introduction

TC3 OPC UA182 Version: 2.6

ð The endpoints provided by the UA Server are then displayed in the Endpoints drop-down list.

3. In this sample, select the entry "<SomeName>/Beckhoff/TcOpcUaServer/1[Basic128Rsa15,
SignAndEncrypt] [opc.tcp://<SomeName>:4840]" and click Connect.
You must copy the public key from the certificate of the UA Sample Client to the UA Server so that it
"trusts" the Sample Client. Otherwise, the connection attempt is rejected by the UA Server via the secure

Technical introduction

TC3 OPC UA 183Version: 2.6

channel ("BadSecureChannelClosed"). Further information on the certificate management with the
OPC UA Server can be found in the section Certificate exchange [} 179].

Technical introduction

TC3 OPC UA184 Version: 2.6

ð You can now use the Browser in the left half of the window to navigate through the UA namespace.

4.5.3 Browsing the UA namespace
When a successful connection has been established you can use the Browser in the left half of the
UA Sample Client to navigate through the UA namespace. Below the node PLC1 you will find the currently
running PLC program, and you can display the variables declared there and released for UA.

Technical introduction

TC3 OPC UA 185Version: 2.6

4.5.4 Using the Watchlist
You can insert PLC variables from the UA namespace into a watchlist, for example to have their values read
cyclically by the UA Sample Client. To do this, open the context menu of a variable and select Add to
Watchlist. The variable is then transferred to the watchlist and its values are automatically read out cyclically
from the PLC.

Technical introduction

TC3 OPC UA186 Version: 2.6

Configuration

TC3 OPC UA 187Version: 2.6

5 Configuration

5.1 Setup Version 3.x.x

5.1.1 Overview
This section describes the use of the TwinCAT OPC UA Configurator. The OPC UA Configurator
parameterizes the OPC UA Server, or rather is a graphical user interface for configuring the
ServerConfig.xml file. It provides the following configuration options:

• Adding/removing devices for data access (PLC runtimes, TwinCAT 3 C++ instances, I/O tasks)
• Activation/deactivation of Historical Access
• Activation/deactivation of anonymous accesses or user name/password authentication
• Restart or shutdown of the OPC UA Server

On starting the OPC UA Configurator, the currently active configuration of the OPC UA Server is
automatically loaded, which is located as standard in the \%InstallDir%\Server\ directory as the
ServerConfig.xml file. However, you can also load, save and activate other ServerConfig.xml files via the
menu.

The user interface of the OPC UA Configurator consists of the following sections:

• Menu section (Menu): Saving and activation of configurations
• Categories section (Category): Grouping of the individual parameters into various categories, e.g. Data

Access
• Parameters section (Parameters): Individual parameters for activating/deactivating certain features

Further information on the individual configuration parameters can be found in the descriptions of the
individual categories:

• Data Access [} 188]

• Historical Access [} 189]

• Server Security [} 189]

• Alarms and Conditions [} 190]

Configuration

TC3 OPC UA188 Version: 2.6

• Online Panel [} 191]

5.1.2 Data Access
The Data Access tab shows the configuration setting for TwinCAT runtime devices. This is where you
configure a device if it is to be available via OPC UA.

Setting Description
Name Display name of the TwinCAT runtime in the OPC UA namespace
AdsNetId AmsNetId of the TwinCAT runtime. 127.0.0.1.1.1 for a local runtime or the

corresponding AmsNetId of a remote device.
ADS routes must be configured when communicating with a remote device.

AdsPort AdsPort of the TwinCAT runtime, e.g. 851 for the first TwinCAT 3 PLC runtime.
SymbolFile Symbol file containing information about all available variables and object

instances of the runtime.
AdsTimeout Timeout setting when communicating with the target runtime.

It is recommended to leave this setting at the default value.
AdsTimeSuspend TimeSuspend setting when communicating with the target runtime.

It is recommended to leave this setting at the default value. TimeSuspend
timeout is triggered when a target runtime is temporarily unavailable. The
OPC UA Server starts a new communication attempt after TimeSuspend.

Type Type of the target runtime with which the OPC UA Server is to communicate,
e.g. TwinCAT 3 PLC, TwinCAT 2 PLC,...

AccessMode The access mode is normally only required if the OPC UA Server is to
communicate with a runtime hosted on a Beckhoff BC/BX device. In this case the
corresponding setting must be activated. Otherwise the default setting can be
adopted.

LegacyArrayHandling Enable this setting if obsolete OPC UA Clients require array elements to be
available as separate UA nodes.

LegacyUriFormat Activates various naming schemes for the generation of NamespaceUri as
described in the section Generating NamespaceURI [} 125].

ReleaseHandles Enables the release of handles for TwinCAT runtime symbols when UaClients no
longer "need" a node. This is the case when a node is removed from the
monitoring (DeleteMonitoredItem) or when the monitoring mode of an element is
disabled.

ForceIdentifierCase Applies only to types TPY and SYM. Forces the names of all nodes to be case-
sensitive.

Disabled Click the checkbox to disable the runtime so that it does not appear in the
OPC UA namespace.

Further information on runtime-specific parameters can be found in the section Server [} 40].

Configuration

TC3 OPC UA 189Version: 2.6

5.1.3 Historical Access
The Historical Access tab shows the general settings for the configuration of historical access. This is
where you activate and configure the storage media that are to be used for historical access.

Further information on historical access can be found in the section Server [} 40].

5.1.4 Server Security
The Server Security tab shows the general settings for the security and endpoint mechanisms of the
OPC UA Server.

Settings Description
User Identity Enable or disable a specific user identity, such as disabling the

Anonymous Access checkbox to force user authentication.
Endpoints Enables or disables certain endpoints, such as disabling the "No

Security" endpoint to force UA Clients to connect to the "Sign and
Encrypt" endpoint.

Configuration namespace Facilitates enabling or disabling of the Configuration namespace
[} 132] and setting of a specific security level, which is required to
access this namespace (user authentication required).

Configuration

TC3 OPC UA190 Version: 2.6

Settings Description
User Management Enables configuration of existing user accounts and sets an access

level for each account. Access levels are currently used only for
configuring access to the Configuration namespace [} 132]. Note
that the user account - if the computer on which the OPC UA Server
is running is a member of a Windows domain - may also be an
account in that domain.

Client certificates Allows you to move OPC UA Client certificates between the trust
lists "Rejected" and "Accepted". Client certificates can be easily
identified, trusted, or rejected when the clients are connected to one
of the secure endpoints.

5.1.5 Alarms and Conditions
The Alarms and Conditions (A&C) configurator is a separate graphic tool. It creates an XML-based
configuration file with which the OPC UA Server creates its A&C configuration.

The A&C Configurator is located in the installation directory of TwinCAT OPC UA: C:\TwinCAT\Functions
\TF6100-OPC-UA\Win32\ConfiguratorAc.

Configuration

TC3 OPC UA 191Version: 2.6

Use of the A&C Configurator
1. Connect to the OPC UA Server whose Alarms and Conditions are to be configured. To do this, enter the

server URL and select an endpoint to which you want the Configurator to connect.
2. When the connection is established and the namespace of the server is visible, create one or more

ConditionControllers. A ConditionController is an administrative unit that contains the current alarm
configuration in the form of one or more conditions.

3. Select a ConditionController and create one or more conditions by dragging variables to be monitored
into the Conditions window in the lower right corner and storing them there.

4. Follow the instructions in the Quick Start Guide for the Configurator step-by-step.

5.1.6 Online Panel
The Online Panel extends the OPC UA Configurator by OPC UA Client functions. It enables you to connect
locally or remotely to an OPC UA Server for the purpose of obtaining diagnostic or management functions.

Configuration

TC3 OPC UA192 Version: 2.6

Area/tab Description
Server information Provides general diagnostic information on the device currently connected to the

OPC UA Server. Possible useful information:
• License status
• Number of currently created OPC UA Client sessions
• Number of available nodes (calculation may take some time)
• Server version

Server logging Provides functions for activating a log file on the OPC UA Server. However, this
should only be used if it has been recommended by Beckhoff support, as the
creation of the log file can impair general system performance.

Device States Provides diagnostic information on every ADS device configured on the
OPC UA Server. This information can be very helpful if you need to check the
connection to an ADS device. A common configuration problem can be that the
corresponding symbol file (TPY, TMC) cannot be loaded by the OPC UA Server.
In this case, the Device States panel issues a corresponding error message.

5.2 Setup Version 4.x.x

5.2.1 Overview
The TF6100 setup (version 4.x.x and higher) contains the latest version of the OPC UA Server Configurator.
This was integrated in Microsoft Visual Studio as a separate project type to provide an integrated and
consistent engineering concept. You can configure all the different facets of the OPC UA Server and in doing
so also use source control mechanisms such as Team Foundation Server or Subversion Integrations.

Toolbar

The toolbar of the OPC UA Configurator can be used to establish a connection with a local or remote
TwinCAT OPC UA Server. All configuration settings can then be implemented for the selected server.

Configuration

TC3 OPC UA 193Version: 2.6

If the toolbar is not displayed, you can add it to the user interface via the menu View > Toolbars.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

5.2.2 Creating a new project
The project package of the OPC UA Configurator integrates itself in the so-called connectivity package. You
can select this when creating a new Visual Studio project.

Project template "TwinCAT Connectivity Project":

Project template "TwinCAT OPC-UA Server Project":

Configuration

TC3 OPC UA194 Version: 2.6

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

5.2.3 Select target device
The OPC UA Configurator enables the complete parameterization of the Server via OPC UA. In much the
same way as in the TwinCAT XAE system, you can select a target OPC UA Server via the toolbar.

All settings in the configuration are then implemented for this OPC UA Server. The basis for this is the so-
called configuration namespace of the server (see Configuring the namespace [} 132]).

Configuration

TC3 OPC UA 195Version: 2.6

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

5.2.4 Adding ADS devices
The OPC UA Server can "talk" to one of more ADS devices. To establish a connection, a route to the
respective ADS device is required. In the OPC UA Configurator, ADS devices are created, configured and
thus announced to the OPC UA Server in the Data Access facet.

New ADS devices are added to the configuration via the context menu command Add new Device Type.

When the command is executed, a dialog box opens in which connection parameters can be configured for
this device, e.g. AMS Net ID, ADS port or the symbol file.

Configuration

TC3 OPC UA196 Version: 2.6

You can subsequently modify the connection parameters if necessary via the Properties window in Visual
Studio.

Selecting the symbol file

Symbol files that are present on the selected target device can be imported directly. These symbol files can
be stored either in the TwinCAT boot directory or in the symbol directory of the OPC UA Server. You can
select the files via the corresponding dialog during the symbol file configuration.

Configuration

TC3 OPC UA 197Version: 2.6

The TwinCAT OPC UA File Explorer can be connected to either the local TwinCAT directory or the remote
boot directory. The latter can be read in via the configuration namespace of the server (see Configuring the
namespace [} 132]).

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

Configuration

TC3 OPC UA198 Version: 2.6

5.2.5 Downloading and uploading configurations
Via the configurator you can initiate the download/upload of complete server configurations as well as
loading every single facet (data access, historical access, etc.) individually to the target device and opening it
there. The functions necessary for this are integrated both in the toolbar and in the context menu of the
respective facet.

Opening a configuration from the target device

You can open the configuration of the selected target device via the corresponding button in the toolbar.

See also: Select target device [} 194]

Activating the configuration on a target device

You can download the currently opened configuration to the selected target device using the corresponding
button in the toolbar.

See also: Select target device [} 194]

Opening a partial configuration

You can open the partial configuration of the selected target device using the command Read
Configuration from Target in the context menu of a certain facet of the configuration.

See also: Select target device [} 194]

Downloading a partial configuration

You can download the partial configuration to the selected target device using the command Write
Configuration to Target in the context menu of a certain facet of the configuration.

Configuration

TC3 OPC UA 199Version: 2.6

See also: Select target device [} 194]

5.2.6 Importing and exporting configuration files
The context menu commands enable the import/export of configuration files of the OPC UA Server.

Importing a partial configuration

You can import the partial configuration (e.g. historical access) from an XML configuration file using the
command Import UA Configuration in the context menu of a certain facet of the configuration.

Configuration

TC3 OPC UA200 Version: 2.6

Exporting a partial configuration

You can export the partial configuration (e.g. historical access) to an XML configuration file using the
command Export UA Configuration in the context menu of a certain facet of the configuration.

5.2.7 Configuring historical access
To configure Historical Access, you must first set up the History Adapters. These are the different locations
for storing historical data, such as RAM, file, SQL Server.

Configuration

TC3 OPC UA 201Version: 2.6

History adapters are added to the configuration using the context menu command Add new History
Adapter.

Depending on the adapter type you have to specify further parameters, e.g. the desired file storage path or
the access data for the SQL Server.

After you have created a history adapter you can add the desired variables to the adapter. These variables
must already exist on the selected OPC UA Server when the engineering is implemented. You can use the
integrated OPC UA Target Browser to select the variables and then add the variables from the target
browser to the history adapter by drag & drop.

Additional parameters can be specified in the properties window of the newly added variable, e.g. the
desired SamplingRate or the size of the ring buffer to be used in the History Adapter.

Configuration

TC3 OPC UA202 Version: 2.6

See also: Select target device [} 194]

5.2.8 Configuring Alarms and Conditions
In order to configure Alarms and Conditions (A&C) you must first set up the Condition Controllers. These are
container units that group together alarms.

Condition Controllers are added to the configuration using the context menu command Add New Condition
Controller.

After you have created a Condition Controller, you can add the desired variables to the controller and
monitor them in the sense of alarms and conditions. A condition is created for each variable, which specifies
the parameters for monitoring. These variables must already exist on the selected OPC UA Server when the
engineering is implemented. You can use the integrated OPC UA Target Browser to select the variables
and then add the variables from the target browser to the Condition Controller by drag & drop.

Configuration

TC3 OPC UA 203Version: 2.6

In the dialog window which then opens you can define the condition type and further parameters for the
monitoring, e.g. SamplingRate and Severity.

Depending on the selected condition type you can specify additional parameters in the properties window of
the condition. The threshold values for the respective condition type are displayed as individual entries in the
tree view of the configuration. Here too, you can configure the corresponding parameters in the properties
window.

Subsequently you have to define the alarm texts that are to be sent to the OPC UA Client when a condition
is triggered. The section Configuring alarm texts [} 205] describes how alarm texts are created. You can
drag and drop the alarm texts onto the respective threshold value of a condition.

Configuration

TC3 OPC UA204 Version: 2.6

Alarm type OffNormal

With an alarm type OffNormal you define a normal value that a variable should usually have. An alarm is
triggered if the variable value deviates from this.

After configuring the normal value you must select the alarm texts to be sent in the Resources area and drag
and drop them onto the respective threshold value of the condition.

Alarm type Limit

With an alarm type Limit you define different threshold values upon whose reaching an alarm is to be sent.

After configuring the threshold values you must select the alarm texts to be sent in the Resources area and
drag and drop them onto the respective threshold value of the condition.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

See also: Select target device [} 194]

Configuration

TC3 OPC UA 205Version: 2.6

5.2.9 Configuring alarm texts
The OPC UA Configurator enables the (multilingual) management of alarm texts that are used, for example,
with Alarms and Conditions [} 202]. The configuration of the alarm texts takes place in the Resources facet.
Each alarm text is identified by a unique ID. Multiple language texts can then be assigned to this ID.

You can create so-called "resource items" using the context menu command Add new Resource Item.

You add new language items to a resource item using the command Add new Language Item in the
resource item's context menu.

Configuration

TC3 OPC UA206 Version: 2.6

You can further parameterize a language item, e.g. the language text and the assigned language, in the
properties window. When you define the language the associated LocaleID is automatically set. The
LocaleID is requested by the OPC UA Client to indicate in which language it expects alarm texts.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

5.2.10 Configuring endpoints
The endpoints of the OPC UA Server indicate which security mechanisms are to be used during the
connection establishment of a client. These range from "unencrypted" to "encrypted and signed", based on
different key strengths.

Configuration

TC3 OPC UA 207Version: 2.6

The endpoints can be activated and deactivated using the configurator. It may be useful to deactivate the
unencrypted endpoint so that all clients can only connect themselves with valid certificates that are classified
as trustworthy.

The endpoints are configured directly at the level of the OPC UA Server project. By double-clicking on the
project you can make the corresponding settings on the UA Endpoints tab. The settings become effective
after an activation of the configuration and a subsequent restart of the server (see Downloading and
uploading configurations [} 198] and Restarting the server [} 216]).

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

5.2.11 Configuring certificate trust settings
The Configurator facilitates management of the client certificates on the server. In the project settings you
can classify the certificates as trustworthy or refuse them on the UA Endpoints tab in the Client certificates
area.

After an OPC UA Client has attempted to connect to a secure server endpoint for the first time, the client
certificate is deposited on the server and declared "rejected". The server administrator can subsequently
enable the certificate. A subsequent connection attempt of the client with a secured endpoint will then be
successful.

Configuration

TC3 OPC UA208 Version: 2.6

5.2.12 Configuring security settings
The OPC UA Server enables the configuration of permissions at namespace and node level. This allows you
to fine-granulate the access to ADS devices (for example, to different PLC runtimes) as well as variables.
These security settings are available for all ADS devices that can be displayed in the server namespace.

Configuration

The permissions are configured on the basis of an XML-based configuration file (TcUaSecurityConfig.xml),
which is located in the same directory as the server. The configuration file consists of the three areas
"Users", "Groups" and "AccessInfos".

Configuration

TC3 OPC UA 209Version: 2.6

Users

In the "Users" area you can configure user accounts that are to be accepted by the OPC UA Server as
logins. There are three different authentication methods:

OS (recommended
authentication method)

The mechanisms of the operating system are used to validate user name and
password. The user account is subject completely to the control of the
operating system and/or domain.

Server (not recommended) User name and password are known only to the OPC UA Server. Both pieces
of information are stored in plain text in the XML file.

None Only the user name of the server is evaluated, the password is ignored.

Users can be configured with a tag <DefaultAccess> that specifies the standard access of the user to a
certain namespace.

Users can be members of one or more groups. You can specify this using the MemberOf attribute. In case
of memberships of several groups, separate the groups by a semicolon.

Groups

In order to enable a simpler configuration with several user accounts, you can combine the users into
groups.

Groups can also be configured with a tag <DefaultAccess>.

You can nest groups using the MemberOf attribute. In case of memberships of several groups, separate the
groups by a semicolon.

Configuration

TC3 OPC UA210 Version: 2.6

AccessInfos

If a fine-granular setting of permissions at the node level is to be implemented, then <AccessInfos> can be
configured additionally, which specify the access permissions on nodes. Access rights can be passed on to
subelements. Although AccessInfos allow the most fine-grained configuration of permissions, such a
configuration can quickly become confusing. Therefore, check whether configuring access rights at the
namespace level (see above) is not sufficient.

The AccessInfo for a node contains the following settings:

NS configures the NamespaceName in which the node is localized
Id configures the identifier of the node, including the IdentifierType (e.g. s = String)
Depth inheritance level of permissions (-1 for infinite)
User/Group user or group that is to be given access to this node, including the AccessLevels

AccessInfos can be configured by dragging & dropping variables from the Target Browser. The configurable
permissions are cumulative.

Example configuration

Let's take the following simple control program. The variables are already published in the OPC UA
namespace of the server. The OPC UA Server is initially in the delivery state.

Configuration

TC3 OPC UA 211Version: 2.6

Access restrictions

Access to the server is to be restricted for clients as follows:

• Anonymous access is to be deactivated.
• There is to be a user - "Administrator" - who has full access to the complete server.
• There is to be a user - "User1" - who only has read access to MAIN.Instance1. The user should not

come from the operating system here, but should only be used internally in the server.
• There is to be a user - "User2" - who only has read access to MAIN.Instance2. The user should not

come from the operating system here, but should only be used internally in the server.
• General access permissions are to be configured for all users via a group called "Users".

Settings

The configuration of the OPC UA Server is set as follows:

Configuration

TC3 OPC UA212 Version: 2.6

Settings for the user "Administrator":

Settings for the user "User1":

Settings for the user "User2":

Configuration

TC3 OPC UA 213Version: 2.6

Settings for AccessInfos "MAIN.Instance1":

Settings for AccessInfos "MAIN.Instance2":

Configuration

TC3 OPC UA214 Version: 2.6

Settings for the group "Users":

The user group is equipped both with basic access to required server and type system namespaces and with
read and browse permissions to the PLC1 namespace.

Result

Following activation of the configuration, the namespace of the server for "User1" looks like the following
after establishment of a connection:

Configuration

TC3 OPC UA 215Version: 2.6

The user has only read rights to the node "Instance1", which is clear from the attribute UserAccessLevel:

The user "Administrator", conversely, has full access rights to all elements of the namespace:

Configuration

TC3 OPC UA216 Version: 2.6

5.2.13 Restarting the server
The OPC UA Configurator enables the triggering of a restart of the OPC UA Server. This can be done locally
or remotely and refers to the selected target device.

Loss of connection
A restart of the OPC UA Server always leads to a loss of the connection of all connected clients.

The restart is triggered via the toolbar.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

See also: Select target device [} 194]

5.2.14 Troubleshooting and logging
For an advanced diagnosis you can activate the logging function of the OPC UA Server.

Writing the log file
Activating the logging function on the server causes a log file to be written on the file system. Make
sure that there is sufficient memory space available and set the logging parameters accordingly
(number of log files, size per log file).

Configuration

TC3 OPC UA 217Version: 2.6

Performance and timing behavior
Activation of the logging function will change the timing behavior of the OPC UA Server. As a result
there may be losses of speed, depending on the platform and project.

The logging function is activated using the Activate button on the Online Panel tab in the project
configurator. You can activate the function locally or remotely depending on the selected target device. The
logging function remains active until it is deactivated again via the configurator or until the OPC UA Server is
restarted.

Activate App Trace

In most cases it is sufficient to create a so-called "AppTrace". The following applies: The higher the "trace
level", the more detailed (and more) data is written.

Activate Stack Trace

In a few cases it is also necessary to create a so-called "StackTrace". The same applies here: The higher the
"trace level", the more detailed (and more) data is written.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

See also: Selecting a target device [} 194]

PLC API

TC3 OPC UA218 Version: 2.6

6 PLC API

6.1 Function blocks

6.1.1 UA_Connect

This function block establishes an OPC UA Remote connection to another OPC UA Server, which is
specified via ServerUrl and SessionConnectInfo. The function block returns a connection handle that can be
used for other function blocks, such as UA_Read.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ServerUrl : STRING(MAX_STRING_LENGTH);
 SessionConnectInfo : ST_UASessionConnectInfo;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ServerUrl: OPC UA Server URL, i.e. 'opc.tcp://172.16.3.207:4840' or 'opc.tcp://CX_0193BF:4840'.

SessionConnectInfo: Connection information (see ST_UASessionConnectInfo [} 235])

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds. ST_UASessionConnectInfo.tSessionTimeout must be shorter than this timeout.

VAR_OUTPUT
VAR_OUTPUT
 ConnectionHdl : DWORD;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

ConnectionHdl: OPC UA connection handle.

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
included in ErrorID.

ErrorID: Contains the command-specific error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

PLC API

TC3 OPC UA 219Version: 2.6

Development environment Target platform PLC libraries to include
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.1.2 UA_Disconnect

This function block closes an OPC UA Remote connection to another OPC UA Server. The connection is
specified via its connection handle.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_OUTPUT
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
contained in nErrID.

ErrorID: Contains the command-specific error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

PLC API

TC3 OPC UA220 Version: 2.6

6.1.3 UA_GetNamespaceIndex

This function block collects the namespace index for a namespace URI. The namespace index is required
for identifying symbols, for example, if the function blocks UA_Read [} 230]or UA_Write [} 232]are used.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NamespaceUri : STRING(MAX_STRING_LENGTH);
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

NamespaceUri: Namespace URI to be resolved. For the TwinCAT OPC UA Server, this is "PLC1" for the
first PLC runtime.

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_OUTPUT
VAR_OUTPUT
 NamespaceIndex : UINT;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

NamespaceIndex: Namespace Index of the given namespace URI. This can be used in other function
blocks, e.g. UA_NodeGetHandle or UA_MethodGetHandle.

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
included in ErrorID.

ErrorID: Contains the command-specific error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

PLC API

TC3 OPC UA 221Version: 2.6

6.1.4 UA_HistoryUpdate

This function block sends historical data via OPC UA to a server that supports the OPC UA HistoryUpdate
function, e.g. the TwinCAT OPC UA Server. With one call you can transfer a large number of values
including time stamps to the server for a node handle. The server ensures that the values transmitted are
saved in a data memory and are available via Historical Access.

The function block can be instanced several times if values of several node handles (different variables) are
to be transmitted.

Operation with TwinCAT OPC UA Server

The function block is well suited if you use Historical Access in the TwinCAT OPC UA Server and want to
make data available from a certain time interval in which, for example, a special machine state prevailed.
Values for the desired period can be purposefully transmitted.

If on the other hand values are sent cyclically and are to be made available in the server via Historical
Access, then the Historical Access function on the server side [} 54] is better suited, as in this case you only
have to configure the recording node in the configurator and set the desired sampling rate.

See also: Program sample TF6100_OPCUA_HASample [} 240]

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdl : DWORD;
 PerformInsert : BOOL;
 PerformReplace : BOOL;
 DataValueCount : UINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

PLC API

TC3 OPC UA222 Version: 2.6

NodeHdl: Node handle that was previously output by the function block UA_NodeGetHandle [} 226].

PerformInsert: The default is TRUE.

PerformReplace: The default is FALSE. If a value for the given time stamp already exists in the history, it is
to be replaced if the option PerformReplace is set (= TRUE). Currently this option can only be selected for
SQL adapters. Other adapters do not support the option.

DataValueCount: Defines the number of values transferred. A maximum number of 1000 values is
supported.

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_IN_OUT
VAR_IN_OUT
 DataValues : ARRAY[*] OF UAHADataValue;
 ValueErrorIDs : ARRAY[*] OF DWORD;
END_VAR

DataValues (read-only): All collected values are transferred in the form of a field of the type
UAHADataValue [} 238]. The length of the field is not prescribed, but it must correspond at least to the
specification of DataValueCount. Internally the values are accessed only for reading.

ValueErrorIDs (write-only): After execution of the command this field contains an error code for each value.
The length of the field must correspond at least to the specification of DataValueCount. If one or more values
report an error, it is also signaled via the outputs Error and ErrorID of the function block. With the help of this
field you can then determine which error has occurred for which value. The error code 16#80000000, for
example, signalizes a failed operation, meaning that the value could not be written.

VAR_OUTPUT
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
included in ErrorID.

ErrorID: Contains the command-specific ADS error code of the most recently executed command.

Number of values transferred
The larger the number, the greater the required computing effort and thus the longer the PLC exe-
cution time when executing the command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1.4022.27 Win32, Win64, WinCE-x86 Tc3_PLCopen_OpcUa

>= v3.1.8.0

PLC API

TC3 OPC UA 223Version: 2.6

6.1.5 UA_MethodCall

This function block calls a method on a remote UA Server. The method is determined by a connection and a
method handle. The former can be queried by UA_Connect [} 218], the latter by UA_MethodGetHandle
[} 224].

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 MethodHdl : DWORD;
 nNumberOfInputArguments : UDINT;
 pInputArgInfo : POINTER TO ST_UAMethodArgInfo;
 cbInputArgInfo : UDINT;
 pInputArgData : PVOID;
 cbInputArgData : UDINT;
 pInputWriteData : PVOID;
 cbInputWriteData : UDINT;
 nNumberOfOutputArguments : UDINT;
 pOutputArgInfo : POINTER TO ST_UAMethodArgInfo;
 cbOutputArgInfo : UDINT;
 pOutputArgInfoAndData : PVOID;
 cbOutputArgInfoAndData : UDINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

MethodHdl: Method handle, previously output by the function block UA_MethodGetHandle [} 224].

nNumberOfInputArguments: Number of input parameters.

pInputArgInfo: Points to the buffer address where input parameter information is stored in the form of an
array ST_UAMethodArgInfo.

cbInputArgInfo: Size of the buffer where the input parameter information is stored.

pInputArgData: Points to the buffer address where input parameters (constant length) are stored.

cbInputArgData: Size of the input buffer where input parameters (with constant length) are stored.

pInputWriteData: Pointer to buffer address where input parameters (dynamic length) are stored.

cbInputWriteData: Size of the input buffer where input parameters (with dynamic length) are stored.

nNumberOfOutputArguments: Number of output parameters.

PLC API

TC3 OPC UA224 Version: 2.6

pOutputArgInfo: Points to the buffer address where output parameter information is stored as array
ST_UAMethodArgInfo.
nLenData is required to determine the target memory of the individual output parameters. The other
elements can be set in such a way that a type check of the returned parameters takes place or remains
undefined.

cbOutputArgInfo: Size of the buffer where the input parameter information is stored.

pOutputArgInfoAndData: Points to the buffer address where the output parameters are to be saved as a
BYTE array. The BYTE array contains the number of output parameters as DINT, four reserved bytes and
parameter information as ARRAY OF ST_UAMethodArgInfo [} 237] (with the length of the output
parameters), followed by pure data. Note that the data is packed as 1-byte alignment.

cbOutputArgInfoAndData: Size of the buffer in which the output parameters are to be saved as a BYTE
array.

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_OUTPUT
VAR_OUTPUT
 cbRead_R : UDINT;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
END_VAR

cbRead_R: Counts all the bytes received.

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
contained in nErrID.

ErrorID: Contains the command-specific error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

6.1.6 UA_MethodGetHandle

This function block collects a handle for a UA method, which can then be used to call a method using
UA_MethodCall [} 223].

PLC API

TC3 OPC UA 225Version: 2.6

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 ObjectNodeID : ST_UANodeID;
 MethodNodeID : ST_UANodeID;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

ObjectNodeID: Object node ID of the method to be called. (Type: ST_UANodeID [} 237])

MethodNodeID: Method node ID of the method to be called. Corresponds to the ID attribute in the UA
namespace. (Type: UA_Connect [} 218])

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_OUTPUT
VAR_OUTPUT
 MethodHdl : DWORD;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
END_VAR

MethodHdl: Returns a method handle that can be used to call a method via UA_MethodCall [} 223].

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
contained in nErrID.

ErrorID: Contains the command-specific error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

6.1.7 UA_MethodReleaseHandle

This function block releases the specified method handle.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;

PLC API

TC3 OPC UA226 Version: 2.6

 MethodHdl : DWORD;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

MethodHdl: Method handle previously output by the function block UA_MethodGetHandle [} 224].

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_OUTPUT
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
END_VAR

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
contained in nErrID.

ErrorID: Contains the command-specific ADS error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

6.1.8 UA_NodeGetHandle

This function block retrieves a node handle for a given symbol in UA namespace. The symbol will be
specified by a connection handle and its node ID.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeID : ST_UANodeID;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

Node ID: Unique addressing of the UA node, consisting of Identifier, IdentifierType and NamespaceIndex,
which are resolved from a NamespaceName, e.g. by means of the method UA_GetNamespaceIndex [} 220].

PLC API

TC3 OPC UA 227Version: 2.6

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_OUTPUT
VAR_OUTPUT
 NodeHdl : DWORD;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

NodeHdl: Node handle that can be used for other function blocks, such as UA_Read or UA_Write.

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs do not accept new commands as long as Busy is TRUE. It is not the connection time
that is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
included in ErrorID.

ErrorID: Contains the command-specific ADS error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.1.9 UA_NodeGetHandleList

This function block queries node handles for nodes in the UA namespace.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeIDCount : UINT;
 NodeIDs : ARRAY[1..nMaxNodeIDsInList] OF ST_UANodeID;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

NodeIDCount: Number of nodes for which a node handle is required.

NodeIDs: Array of NodeIDs created with struct ST_UANodeID [} 237].

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

PLC API

TC3 OPC UA228 Version: 2.6

VAR_OUTPUT
VAR_OUTPUT
 NodeHdls : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
 NodeErrorIDs : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
 cbData_R : UDINT;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

NodeHdls: Array of requested node handles.

NodeErrorIDs: Array of error IDs if no node handles are available.

cbData_R: Size of the data read.

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
in nErrID.

ErrorID: Contains the error ID if an error occurs.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.1.10 UA_NodeReleaseHandle

This function block releases a node handle.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdl : DWORD;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

NodeHdl: Node handle to be released.

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

PLC API

TC3 OPC UA 229Version: 2.6

VAR_OUTPUT
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
included in ErrorID.

ErrorID: Contains the command-specific ADS error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.1.11 UA_NodeReleaseHandleList

This function block releases several node handles.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdlCount : UINT;
 NodeHdls : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

NodeHdlCount: Number of node handles.

NodeHdls: Array of node handles to be released.

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_OUTPUT
VAR_OUTPUT
 NodeErrorIDs : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

PLC API

TC3 OPC UA230 Version: 2.6

NodeErrorIDs: Array of error IDs if a node handle could not be released.

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
in nErrID.

ErrorID: Contains the error ID if an error occurs.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.1.12 UA_Read

This function block reads values from a given node and connection handle.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdl : DWORD;
 stNodeAddInfo : ST_UANodeAdditionalInfo;
 pVariable : PVOID;
 cbData : UDINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

NodeHdl: Node handle previously output by the function block UA_NodeGetHandle [} 226].

stNodeAddInfo: Defines additional information, such as which attribute is read from the UA namespace
(default: 'Value' attribute) or which index range is to be used. Specified by STRUCT
ST_UANodeAdditionalInfo [} 237].

pVariable: Pointer to data memory, where the read data should be stored.

cbData: Determines the size of the data to be read.

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

PLC API

TC3 OPC UA 231Version: 2.6

VAR_OUTPUT
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
 cbData_R : UDINT;
END_VAR

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
contained in nErrID.

ErrorID: Contains the command-specific ADS error code of the most recently executed command.

cbData_R: Number of bytes to be read.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.1.13 UA_ReadList

This function block reads values from several given node and connection handles.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdlCount : UINT;
 NodeHdls : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
 stNodeAddInfo : ARRAY[1..nMaxNodeIDsInList] OF ST_UANodeAdditionalInfo;
 pVariable : PVOID;
 cbData : ARRAY[1..nMaxNodeIDsInList] UDINT;
 cbDataTotal : UDINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

NodeHdlCount: Number of node handles stored in the input variable NodeHdls.

NodeHdls: Array of node handles previously received by the function block UA_NodeGetHandle [} 226] or
UA_NodeGetHandleList [} 227].

PLC API

TC3 OPC UA232 Version: 2.6

stNodeAddInfo: Defines additional information, such as which attribute is read from the UA namespace
(default: 'Value' attribute) or which index range is to be used. Specified by STRUCT
ST_UANodeAdditionalInfo [} 237].

pVariable: Pointer to data memory, where the read data should be stored.

cbData: Determines the size of the data to be read.

cbDataTotal: Total size of the data to be received.

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_OUTPUT
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
 cbData_R : UDINT;
END_VAR

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
in nErrID.

ErrorID: Contains the command-specific ADS error code of the most recently executed command.

cbData_R: Number of bytes read

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.1.14 UA_Write

This function block writes values to a given node and connection handle.

VAR_INPUT
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdl : DWORD;
 stNodeAddInfo : ST_UANodeAdditionalInfo;
 pVariable : PVOID;

PLC API

TC3 OPC UA 233Version: 2.6

 cbData : UDINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Execute: The command is triggered by a positive edge at this input.

ConnectionHdl: Connection handle previously output by the function block UA_Connect [} 218].

NodeHdl: Node handle previously output by the function block UA_NodeGetHandle [} 226].

stNodeAddInfo: Defines additional information, e.g. which IndexRange or which attribute is to be written (by
default, the' Value' attribute is used). Specified by STRUCT ST_UANodeAdditionalInfo [} 237].

pVariable: Pointer to data to be written.

cbData: Sets the size of the values to be written.

Timeout: Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

VAR_OUTPUT
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Done: Switches to TRUE if the function block was executed successfully.

Busy: TRUE until the function block has executed a command, at the most for the duration of the "Timeout"
at the input. The inputs accept no new command as long as Busy = TRUE. It is not the connection time that
is monitored but the reception time.

Error: Switches to TRUE if an error occurs while executing a command. The command-specific error code is
included in ErrorID.

ErrorID: Contains the command-specific ADS error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2 Data types

6.2.1 E_UAAttributeID
TYPE E_UAAttributeID:
(
 eUAAI_NodeID := 1,
 eUAAI_NodeClass := 2,
 eUAAI_BrowseName := 3,
 eUAAI_DisplayName := 4,
 eUAAI_Description := 5,
 eUAAI_WriteMask := 6,
 eUAAI_UserWriteMask := 7,
 eUAAI_IsAbstract := 8,
 eUAAI_Symmetric := 9,
 eUAAI_InverseName := 10,
 eUAAI_ContainsNoLoops := 11,
 eUAAI_EventNotifier := 12,
 eUAAI_Value := 13,
 eUAAI_DataType := 14,
 eUAAI_ValueRank := 15,

PLC API

TC3 OPC UA234 Version: 2.6

 eUAAI_ArrayDimensions := 16
)DINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2.2 E_UADataType
TYPE E_UADataType:
(
 eUAType_Undefinied := -1,
 eUAType_Null := 0,
 eUAType_Boolean := 1,
 eUAType_SByte := 2,
 eUAType_Byte := 3,
 eUAType_Int16 := 4,
 eUAType_UInt16 := 5,
 eUAType_Int32 := 6,
 eUAType_UInt32 := 7,
 eUAType_Int64 := 8,
 eUAType_UInt64 := 9,
 eUAType_Float := 10,
 eUAType_Double := 11,
 eUAType_String := 12,
 eUAType_DateTime := 13,
 eUAType_Guid := 14,
 eUAType_ByteString := 15,
 eUAType_XmlElement := 16,
 eUAType_NodeId := 17,
 eUAType_ExpandedNodeId := 18,
 eUAType_StatusCode := 19,
 eUAType_QualifiedName := 20,
 eUAType_LocalizedText := 21,
 eUAType_ExtensionObject := 22,
 eUAType_DataValue := 23,
 eUAType_Variant := 24,
 eUAType_DiagnosticInfo := 25
)DINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2.3 E_UAIdentifierType
TYPE E_UAIdentifierType:
(
 eUAIdentifierType_String := 1,
 eUAIdentifierType_Numeric := 2,
 eUAIdentifierType_GUID := 3,
 eUAIdentifierType_Opaque := 4
)DINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

PLC API

TC3 OPC UA 235Version: 2.6

6.2.4 E_UASecurityMsgMode
TYPE E_UASecurityMsgMode:
(
 eUASecurityMsgMode_BestAvailable := 0,
 eUASecurityMsgMode_None := 1,
 eUASecurityMsgMode_Sign := 2,
 eUASecurityMsgMode_Sign_Encrypt := 3
)DINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2.5 E_UASecurityPolicy
TYPE E_UASecurityPolicy:
(
 eUASecurityPolicy_BestAvailable := 0
 eUASecurityPolicy_None := 1,
 eUASecurityPolicy_Basic128 := 2,
 eUASecurityPolicy_Basic128Rsa15 := 3,
 eUASecurityPolicy_Basic256 := 4
)DINT;
END_TYPE

None: Guideline for configurations with minimal security requirements.

Basic128: Guideline for configurations with low to medium security requirements.

Basic128Rsa15: Defines a security guideline for configurations with moderate to high security requirements.

Basic256: Defines a security policy for configurations with high security requirements.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2.6 E_UATransportProfile
TYPE E_UATransportProfile:
(
 eUATransportProfileUri_UATcp := 1,
 eUATransportProfileUri_WSHttpBinary := 2,
 eUATransportProfileUri_WSHttpXmlOrBinary := 3,
 eUATransportProfileUri_WSHttpXml := 4
)DINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2.7 ST_UASessionConnectInfo
TYPE ST_UASessionConnectInfo:
STRUCT
 sApplicationUri : STRING(MAX_STRING_LENGTH);

PLC API

TC3 OPC UA236 Version: 2.6

 sApplicationName : STRING(MAX_STRING_LENGTH);

 eSecurityMode : E_UASecurityMsgMode;
 eSecurityPolicyUri : E_UASecurityPolicy;
 eTransportProfileUri : E_UATransportProfile;

 tSessionTimeout : TIME;
 tConnectTimeout : TIME;
END_STRUCT
END_TYPE

sApplicationUri: Application Uri maximum string length 255.
From TcUAClient 2.0.0.14 this will automatically be specified by the certificate as defined in the PLCOpen
specification.

sApplicationName: Application name with a maximum string length of 255.

eSecurityMode: Security message mode. For available modes see E_UASecurityMsgMode [} 235].

eSecurityPolicyUri: Security policy Uri. For available security policy Uri see E_UASecurityPolicy [} 235].

eTransportProfileUri: Transport profile Uri. For available transport profile Uri see E_UATransportProfile
[} 235];

nSessionTimeout: Session timeout value.

nConnectTimeout: Connection timeout value.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2.8 ST_UAIndexRange
TYPE ST_UAIndexRange:
STRUCT
 nStartIndex : UDINT;
 nEndIndex : UDINT;
END_STRUCT
END_TYPE

nStartIndex: Start index of the data.

nEndIndex: End index of the data.

For all dimensions:

• StartinIndex and EndIndex must be assigned.
• StartIndex must be smaller than EndIndex.
• To be able to access all elements in a dimension, StartIndex and EndIndex must be assigned in the

dimension depending on the total number of elements.
• Individual elements of a dimension can be selected by specifying the same StartIndex and EndIndex.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

PLC API

TC3 OPC UA 237Version: 2.6

6.2.9 ST_UAMethodArgInfo
TYPE ST_UAMethodArgInfo:
STRUCT
 DataType : E_UADataType := -1;
 ValueRank : DINT := 2147483647;
 ArrayDimensions : ARRAY[1..3] OF UDINT := [0,0,0];
 nLenData : DINT;
END_STRUCT
END_TYPE

DataType: Defines the UA data type for the method parameter. (Type: E_UADataType [} 234])

ValueRank: Determines whether the parameter is scalar (-1) or array.

ArrayDimensions: If the parameter is an array, it specifies the dimensions of the array. Each element
determines the length per dimension.

nLenData: Specifies the length of the argument. For output information STRUCT only requests this element.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2.10 ST_UANodeID
TYPE ST_UANodeID:
STRUCT
 nNamespaceIndex : UINT;
 nReserved : ARRAY [1..2] OF BYTE; //fill bytes
 sIdentifier : STRING(MAX_STRING_LENGTH);
 eIdentifierType : E_UAIdentifierType;
END_STRUCT
END_TYPE

nNamespaceIndex: Namespace index under which the node is available. Can be determined with the
function block UA_GetNamespaceIndex [} 220].

sIdentifier: Identifier as shown in the UA namespace (attribute' Identifier').

eIdentifierType: Variable type, described by E_UAIdentifierType [} 234].

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2.11 ST_UANodeAdditionalInfo
TYPE ST_UANodeAdditionalInfo:
STRUCT
 eAttributeID : E_UAAttributeID;
 nIndexRangeCount : UINT;
 nReserved : ARRAY[1..2] OF BYTE; // fill bytes
 stIndexRange : ARRAY[1..nMaxIndexRange] OF ST_UAIndexRange;
END_STRUCT
END_TYPE

eAttributeID: Specifies the ID of the OPC UA attribute. eUAAI_Value is used by default. (Type:
E_UAAttributeID [} 233])

nIndexRangeCount: Determines how many index ranges are used in stIndexRange.

PLC API

TC3 OPC UA238 Version: 2.6

stIndexRange: Specifies an index range for reading values from an array. (Type: ST_UAIndexRange [} 236])

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
TwinCAT 2.11 R3 Build 2245 Win32, CE-X86, CE-ARM Tc2_PLCopen_OpcUa

6.2.12 UAHADataValue
This function block acts as a data object. An instance represents a value for the OPC UA Historical Access
function. A whole field of these values is transferred to the UA_HistoryUpdate [} 221] function block on
calling.

Declaration
aDataValues : ARRAY [1..50] OF UAHADataValue(ValueSize:=SIZEOF(LREAL));

Each data object is initialized with the expected size (in bytes) of the value.

Properties

Value (PVOID): Specifies the address of a variable containing the desired value. This is usually assigned
with the help of the operator ADR(). The value itself is hereby assigned at the same time and copied into the
data object.

StatusCode (UAHAUpdateStatusCode [} 239]): Indicates the status code of the value.

SourceTimeStamp (ULINT): Indicates the time stamp of the source in UTC format. This can be determined
with the help of the function F_GetSystemTime (Tc2_System PLC library).

ServerTimeStamp (ULINT): Indicates the time stamp of the OPC UA Server in UTC format. This function is
not currently supported.

Data type size of the value
The size of the data type used is already indicated and thus defined in the declaration of the data
object. This size is taken as the basis when assigning a value later.
Values of the type STRING are accordingly also saved and transmitted with a fixed initialized size.
An indication of the current text length cannot be made.

Sample
{attribute 'OPC.UA.DA' := '1'}
fMyValue : LREAL; // Variable for HistorcalAccess
aDataValues : ARRAY [1..50] OF UAHADataValue(ValueSize:=SIZEOF(LREAL));

fMyValue := 27.75;
aDataValues[1].Value := ADR(fMyValue);
aDataValues[1].StatusCode := UAHAUpdateStatusCode.HistorianRaw;
aDataValues[1].SourceTimeStamp := F_GetSystemTime();

In this sample a field of 50 values is defined, of which each is represented by a data object. The current
content of the variable fMyValue (= 27.75) is assigned to the first value.

The field can now be filled by means of further assignments in subsequent PLC cycles.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1.4022.27 Win32, Win64, WinCE-x86 Tc3_PLCopen_OpcUa

>= v3.1.8.0

PLC API

TC3 OPC UA 239Version: 2.6

6.2.13 UAHAUpdateStatusCode
A status code is assigned to each data value transferred using the OPC UA Historical Access function. This
is a property of the object UAHADataValue [} 238].

Enumeration
{attribute 'qualified_only'}
TYPE UAHAUpdateStatusCode :
(
 HistorianRaw := 0, // A raw data value.
 HistorianCalculated := 1, // A data value which was calculated.
 HistorianInterpolated := 2, // A data value which was interpolated.
 Reserved := 3, // Undefined.
 HistorianPartial := 4, // A data value which was calculated with an incomplete interval.
 HistorianExtraData := 8, // A raw data value that hides other data at the same timestamp.
 HistorianMultiValue := 16 // Multiple values match the Aggregate criteria (i.e. multiple minim
um values at different timestamps within the same interval).
) UDINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1.4022.27 Win32, Win64, WinCE-x86 Tc3_PLCopen_OpcUa

>= v3.1.8.0

Samples

TC3 OPC UA240 Version: 2.6

7 Samples
Overview

Sample Cate-
gory

TwinCAT
Version

Description Download

TF6100 Server and
Client sample

Server
Client

TC3
(>=3.1.4020.
0)

The sample includes a PLC for
providing variables for the
TwinCAT OPC UA Server (Data
Access). Furthermore, it includes
samples of the use of the function
blocks UA_Read, UA_Write,
UA_ReadList and UA_MethodCall
(Tc3_PLCopen_OpcUa).

https://
infosys.beckhoff.com/
content/1033/
TF6100_Tc3_OpcUa/
Resources/
zip/5757068683.zip

TF6100 Client function
block UA_HistoryUpdate

Client TC3 The sample includes a PLC for the
use of the function block
UA_HistoryUpdate
(Tc3_PLCopen_OpcUa)

https://
infosys.beckhoff.com/
content/1033/
TF6100_Tc3_OpcUa/
Resources/
zip/5972050315.zip

TS6100 Client function
blocks

Client TC2 Samples of the use of the function
blocks UA_Read and UA_Write

https://
infosys.beckhoff.com/
content/1033/
TF6100_Tc3_OpcUa/
Resources/
zip/4695969163.zip

TS6100 Server Historical
Access

Server TC2 Historical Access: PLC sample
program

https://
infosys.beckhoff.com/
content/1033/
TF6100_Tc3_OpcUa/
Resources/
zip/4695967499.zip

https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5757068683.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5757068683.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5757068683.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5757068683.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5757068683.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5757068683.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5972050315.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5972050315.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5972050315.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5972050315.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5972050315.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/5972050315.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695969163.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695969163.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695969163.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695969163.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695969163.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695969163.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695967499.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695967499.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695967499.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695967499.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695967499.zip
https://infosys.beckhoff.com/content/1033/TF6100_Tc3_OpcUa/Resources/zip/4695967499.zip

Appendix

TC3 OPC UA 241Version: 2.6

8 Appendix

8.1 Error diagnosis
The following table provides some helpful information for troubleshooting.

TwinCAT OPC UA Server

Behavior Notes
An OPC UA Client does not see the PLC
namespace

TF6100 Setup version 3.x and lower: This status indicates
a missing license. Check whether you have activated a
valid TF6100 license.

An OPC UA Client is assigned the StatusCode
0x810e0000 when reading nodes.

TF6100 Setup version 4.x: This status indicates a missing
license. Check whether you have activated a valid TF6100
license.

The variables released via comments/attributes
are not displayed in the OPC UA Server.

Check whether the symbol file has been correctly
transferred to the controller (e.g. check boxes in the PLC
project), verify that it exists in the boot directory and that
the path to the symbol file in the configuration file of the
server refers to the correct symbol file. You can also use
the DeviceState Node in the respective namespace to
check any error messages that may have occurred. An
entry is made here if the symbol file was not found.
Also check that the comments/attributes are spelled
correctly.

The server does not comply with the sampling
rate/publishing interval required by the
OPC UA Client.

OPC UA Client/Server is not a real-time protocol, i.e. there
is no guarantee that the server will always meet 100% of
the sampling rate or publishing interval required by the
client. The available sampling rates and publishing
intervals can be viewed in the server configuration file and
modified if required (<AvailableSamplingRates> and
<MinPublishingInterval>).

An OPC UA Client cannot connect to the server
although the server is displayed in the Windows
Task Manager. The error message "Host
unreachable" (or similar) appears.

Check whether firewall settings prevent communication
with the server. The server port must be open for incoming
TCP communication so that a client can connect.

An OPC UA Client sees the server's endpoints,
but a connection with them fails with the error
message "Host unreachable".

Check that the name resolution in your network is working
properly and that the server is accessible under its host
name. Even if the OPC UA Client apparently connects to
the IP address of the server (e.g.
opc.tcp://192.168.0.1:4840) to access the server's
endpoints, the server always returns its own host name in
its endpoints. If the client connects directly to one of the
endpoints, it will use the host name of the server again. If
the name resolution does not work, the connection fails.

An OPC UA Client sees the endpoints of the
server, but a connection to a secure endpoint
fails. The error message
"BadSecurityChecksFailed" appears.

Check whether the server trusts the client certificate. The
required configuration steps can be found in section
Certificate exchange [} 122].

When using an SQL server to store Historical
Access information, the values are not added to
the SQL database.

Check the access data to the SQL Server and verify that
the SQL Server is also accessible in the network. Also
make sure that you are using a "Big Windows" operating
system on the TwinCAT OPC UA Server, since SQL
Server cannot be used for Historical Access under
Windows CE (although SQL Compact is OK).

Appendix

TC3 OPC UA242 Version: 2.6

Behavior Notes
When reading variables, an OPC UA Client
receives the error message "BadDeviceFailure".

This is an indication that the associated ADS device
cannot be reached, for example if no PLC program has
been started. Check the connectivity with the ADS device
and make sure that the appropriate runtime is active.

Arrays are not displayed in the namespace with
full resolution

By default, arrays of simple data types are not displayed in
expanded form in the namespace. However, individual
array indices can still be addressed using the IndexRange
function of OPC UA. An OPC UA Client should therefore
support this function. If this is not the case, an option
switch in the configuration file of the server can be used to
display an array in expanded form, so that each individual
array element can be addressed as a separate node. This
option switch is described in Use of arrays [} 71].

8.2 OPC UA Client error codes
The function blocks of the TwinCAT OPC UA Client have their own error codes, which indicate the
occurrence of an error and use an ErrorID to display further information about the problem that has occurred.
TwinCAT ADS error messages (ADS Return Codes [} 243]) with the HighWord 0x0000 and custom error
messages from the client or the PLC library with the HighWord 0xE4DD can occur.

Possible TwinCAT ADS errors include the following:

Hex Name Description
0x 0000 0705 DEVICE_INVALIDSIZE Parameter size not correct
0x 0000 0706 DEVICE_INVALIDDATA Invalid parameter values
0x 0000 070A DEVICE_NOMEMORY Not enough memory

This error code list shows the possible custom error values:

Hex Name Description
0x E4DD 0001 UAC_E_FAIL UA service call failed
0x E4DD 0100 UAC_E_CONNECTED Server already connected
0x E4DD 0101 UAC_E_CONNECT General error when establishing a connection
0x E4DD 0102 UAC_E_UASECURITY UA security could not be set up
0x E4DD 0103 UAC_E_ITEMEXISTS Element ID already exists
0x E4DD 0104 UAC_E_ITEMNOTFOUND Element does not exist
0x E4DD 0105 UAC_E_ITEMTYPE Invalid or unsupported item type
0x E4DD 0106 UAC_E_CONVERSION Variable types cannot be converted
0x E4DD 0107 UAC_E_SUSPENDED Device hangs. Please try again later...
0x E4DD 0108 UAC_E_TYPE_NOT_SUPPORTED Conversion variable type is not supported.
0x E4DD 0109 UAC_E_NSNAME_NOTFOUND No namespace with the specified name found.
0x E4DD 0110 UAC_E_CONNECT_NOTFOUND Connection failed: Target host could not be

found.
0x E4DD 0111 UAC_E_TIMEOUT Timeout: i.e. target host does not respond
0x E4DD 0112 UAC_E_INVALIDHDL Session handle invalid
0x E4DD 0113 UAC_E_INVALIDNODEID UA node ID unknown
0x E4DD 0114 UAC_E_INVAL_IDENTIFIER_TYPE Identifier type of UaNodeId invalid
0x E4DD 0115 UAC_E_IDENTIFIER_NOTSUPP Identifier type UaNodeId is not supported
0x E4DD 0116 UAC_E_INVAL_NODE_HDL Invalid node handle
0x E4DD 0117 UAC_E_UAREADFAILED UA read failed for unknown reasons
0x E4DD 0118 UAC_E_UAWRITEFAILED UA write failed for unknown reasons
0x E4DD 0119 UAC_E_INVAL_NODEMETHOD_HDL Invalid method handle

Appendix

TC3 OPC UA 243Version: 2.6

Hex Name Description
0x E4DD 011A UAC_E_CALL_FAILED Call failed, cause unknown
0x E4DD 011B UAC_E_CALLDECODE_FAILED Successful call, decoding return value failed
0x E4DD 011C UAC_E_NOTMAPPEDTYPE Unassigned data type in return value
0x E4DD 011D UAC_E_CALL_FAILED_BADINTERNAL Call failed with UA_BadInternal

0x E4DD 011E UAC_E_METHODIDINVALID Unknown MethodID (returned on call, even if
provided by GetMethodHdl)

0x E4DD 011F UAC_E_TOOMUCHDIM Method call has returned parameters with more
than 3 dimensions; not supported.

0x E4DD 0120 UAC_E_CALL_FAILED_INVALIDARG Call failed with
OpcUa_BadInvalidArgument

0x E4DD 0121 UAC_E_CALL_FAILED_TYPEMISMATC
H

Call failed with
UAC_E_CALL_FAILED_TYPEMISMATCH

0x E4DD 0122 UAC_E_CALL_FAILED_OUTOFRANGE Call failed with
UAC_E_CALL_FAILED_OUTOFRANGE

0x E4DD 0123 UAC_E_CALL_FAILED_BADSTRUCTU
RE

Call failed with
OpcUa_BadStructureMissing

0x E4DD 0124 UAC_E_CALL_TYPEMISMATCH_OUTP
ARAM

Call successful, but type of output information
provided does not match

0x E4DD 0125 UAC_E_NONVALIDTYPEINFO Node has insufficient type information
0x E4DD 0126 UAC_E_INVALIDATTRIBID Access to invalid node attribute
0x E4DD 0128 UAC_E_NOTSUPPORTED The command is not supported by the

connected UaServer, e.g. when calling
UA_HistoryUpdate.

0x E4DE 0100 UAC_E_INVALID_ARRAY_LENGTH An invalid array length not matching
DataValueCount was assigned to
UA_HistoryUpdate.

0x E4DE 0101 UAC_E_INVALID_DATASIZE A data value with an invalid data type size was
assigned to UA_HistoryUpdate. All assigned
DataValues must be of the same data type.

0x E4DE 0102 UAC_E_SUBERROR A lower-level error was output for at least one
of the transferred data values. See
ValueErrorIDs at UA_HistoryUpdate.

8.3 ADS Return Codes
Error codes: 0x000 [} 243]..., 0x500 [} 244]..., 0x700 [} 244]..., 0x1000 [} 245]...

Global Error Codes

Hex Dec Description
0x0 0 no error
0x1 1 Internal error
0x2 2 No Rtime
0x3 3 Allocation locked memory error
0x4 4 Insert mailbox error
0x5 5 Wrong receive HMSG
0x6 6 target port not found
0x7 7 target machine not found
0x8 8 Unknown command ID
0x9 9 Bad task ID
0xA 10 No IO
0xB 11 Unknown ADS command
0xC 12 Win 32 error

Appendix

TC3 OPC UA244 Version: 2.6

Hex Dec Description
0xD 13 Port not connected
0xE 14 Invalid ADS length
0xF 15 Invalid AMS Net ID
0x10 16 Low Installation level
0x11 17 No debug available
0x12 18 Port disabled
0x13 19 Port already connected
0x14 20 ADS Sync Win32 error
0x15 21 ADS Sync Timeout
0x16 22 ADS Sync AMS error
0x17 23 ADS Sync no index map
0x18 24 Invalid ADS port
0x19 25 No memory
0x1A 26 TCP send error
0x1B 27 Host unreachable
0x1C 28 Invalid AMS fragment

Router Error Codes

Hex Dec Name Description
0x500 1280 ROUTERERR_NOLOCKEDMEMORY No locked memory can be allocated
0x501 1281 ROUTERERR_RESIZEMEMORY The size of the router memory could not be changed
0x502 1282 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of possible

messages. The current sent message was rejected
0x503 1283 ROUTERERR_DEBUGBOXFULL The mailbox has reached the maximum number of possible

messages.
The sent message will not be displayed in the debug monitor

0x504 1284 ROUTERERR_UNKNOWNPORTTYPE Unknown port type
0x505 1285 ROUTERERR_NOTINITIALIZED Router is not initialized
0x506 1286 ROUTERERR_PORTALREADYINUSE The desired port number is already assigned
0x507 1287 ROUTERERR_NOTREGISTERED Port not registered
0x508 1288 ROUTERERR_NOMOREQUEUES The maximum number of Ports reached
0x509 1289 ROUTERERR_INVALIDPORT Invalid port
0x50A 1290 ROUTERERR_NOTACTIVATED TwinCAT Router not active

General ADS Error Codes

Hex Dec Name Description
0x700 1792 ADSERR_DEVICE_ERROR error class <device error>
0x701 1793 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by server
0x702 1794 ADSERR_DEVICE_INVALIDGRP invalid index group
0x703 1795 ADSERR_DEVICE_INVALIDOFFSET invalid index offset
0x704 1796 ADSERR_DEVICE_INVALIDACCESS reading/writing not permitted
0x705 1797 ADSERR_DEVICE_INVALIDSIZE parameter size not correct
0x706 1798 ADSERR_DEVICE_INVALIDDATA invalid parameter value(s)
0x707 1799 ADSERR_DEVICE_NOTREADY device is not in a ready state
0x708 1800 ADSERR_DEVICE_BUSY device is busy
0x709 1801 ADSERR_DEVICE_INVALIDCONTEXT invalid context (must be in Windows)
0x70A 1802 ADSERR_DEVICE_NOMEMORY out of memory
0x70B 1803 ADSERR_DEVICE_INVALIDPARM invalid parameter value(s)
0x70C 1804 ADSERR_DEVICE_NOTFOUND not found (files, ...)
0x70D 1805 ADSERR_DEVICE_SYNTAX syntax error in command or file
0x70E 1806 ADSERR_DEVICE_INCOMPATIBLE objects do not match
0x70F 1807 ADSERR_DEVICE_EXISTS object already exists
0x710 1808 ADSERR_DEVICE_SYMBOLNOTFOUND symbol not found
0x711 1809 ADSERR_DEVICE_SYMBOLVERSIONINVAL symbol version invalid

0x712 1810 ADSERR_DEVICE_INVALIDSTATE server is in invalid state
0x713 1811 ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported

Appendix

TC3 OPC UA 245Version: 2.6

Hex Dec Name Description
0x714 1812 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid

0x715 1813 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered
0x716 1814 ADSERR_DEVICE_NOMOREHDLS no more notification handles
0x717 1815 ADSERR_DEVICE_INVALIDWATCHSIZE size for watch too big
0x718 1816 ADSERR_DEVICE_NOTINIT device not initialized
0x719 1817 ADSERR_DEVICE_TIMEOUT device has a timeout
0x71A 1818 ADSERR_DEVICE_NOINTERFACE query interface failed
0x71B 1819 ADSERR_DEVICE_INVALIDINTERFACE wrong interface required
0x71C 1820 ADSERR_DEVICE_INVALIDCLSID class ID is invalid
0x71D 1821 ADSERR_DEVICE_INVALIDOBJID object ID is invalid
0x71E 1822 ADSERR_DEVICE_PENDING request is pending
0x71F 1823 ADSERR_DEVICE_ABORTED request is aborted
0x720 1824 ADSERR_DEVICE_WARNING signal warning
0x721 1825 ADSERR_DEVICE_INVALIDARRAYIDX invalid array index
0x722 1826 ADSERR_DEVICE_SYMBOLNOTACTIVE symbol not active
0x723 1827 ADSERR_DEVICE_ACCESSDENIED access denied
0x724 1828 ADSERR_DEVICE_LICENSENOTFOUND missing license
0x725 1829 ADSERR_DEVICE_LICENSEEXPIRED license expired
0x726 1830 ADSERR_DEVICE_LICENSEEXCEEDED license exceeded
0x727 1831 ADSERR_DEVICE_LICENSEINVALID license invalid
0x728 1832 ADSERR_DEVICE_LICENSESYSTEMID license invalid system id
0x729 1833 ADSERR_DEVICE_LICENSENOTIMELIMIT license not time limited
0x72A 1834 ADSERR_DEVICE_LICENSEFUTUREISSUE license issue time in the future
0x72B 1835 ADSERR_DEVICE_LICENSETIMETOLONG license time period to long
0x72c 1836 ADSERR_DEVICE_EXCEPTION exception occured during system start
0x72D 1837 ADSERR_DEVICE_LICENSEDUPLICATED License file read twice
0x72E 1838 ADSERR_DEVICE_SIGNATUREINVALID invalid signature
0x72F 1839 ADSERR_DEVICE_CERTIFICATEINVALID public key certificate
0x740 1856 ADSERR_CLIENT_ERROR Error class <client error>
0x741 1857 ADSERR_CLIENT_INVALIDPARM invalid parameter at service
0x742 1858 ADSERR_CLIENT_LISTEMPTY polling list is empty
0x743 1859 ADSERR_CLIENT_VARUSED var connection already in use
0x744 1860 ADSERR_CLIENT_DUPLINVOKEID invoke ID in use
0x745 1861 ADSERR_CLIENT_SYNCTIMEOUT timeout elapsed
0x746 1862 ADSERR_CLIENT_W32ERROR error in win32 subsystem
0x747 1863 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value
0x748 1864 ADSERR_CLIENT_PORTNOTOPEN ads-port not opened
0x750 1872 ADSERR_CLIENT_NOAMSADDR internal error in ads sync
0x751 1873 ADSERR_CLIENT_SYNCINTERNAL hash table overflow
0x752 1874 ADSERR_CLIENT_ADDHASH key not found in hash
0x753 1875 ADSERR_CLIENT_REMOVEHASH no more symbols in cache
0x754 1876 ADSERR_CLIENT_NOMORESYM invalid response received
0x755 1877 ADSERR_CLIENT_SYNCRESINVALID sync port is locked

RTime Error Codes

Hex Dec Name Description
0x1000 4096 RTERR_INTERNAL Internal fatal error in the TwinCAT real-time system
0x1001 4097 RTERR_BADTIMERPERIODS Timer value not vaild
0x1002 4098 RTERR_INVALIDTASKPTR Task pointer has the invalid value ZERO
0x1003 4099 RTERR_INVALIDSTACKPTR Task stack pointer has the invalid value ZERO
0x1004 4100 RTERR_PRIOEXISTS The demand task priority is already assigned
0x1005 4101 RTERR_NOMORETCB No more free TCB (Task Control Block) available. Maximum

number of TCBs is 64
0x1006 4102 RTERR_NOMORESEMAS No more free semaphores available. Maximum number of

semaphores is 64
0x1007 4103 RTERR_NOMOREQUEUES No more free queue available. Maximum number of queue is

64

Appendix

TC3 OPC UA246 Version: 2.6

Hex Dec Name Description
0x100D 4109 RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied
0x100E 4110 RTERR_EXTIRQNOTDEF No external synchronization interrupt applied
0x100F 4111 RTERR_EXTIRQINSTALLFAILED The apply of the external synchronization interrupt failed
0x1010 4112 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0x1017 4119 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported
0x1018 4120 RTERR_VMXDISABLED Intel VT-x extension is not enabled in system BIOS
0x1019 4121 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension
0x101A 4122 RTERR_VMXENABLEFAILS Enabling Intel VT-x fails

TCP Winsock Error Codes

Hex Dec Description
0x274d 10061 A connection attempt failed because the connected party did not properly respond after a period of time,

or established connection failed because connected host has failed to respond.
0x2751 10065 No connection could be made because the target machine actively refused it. This error normally occurs when

you try to connect to a service which is inactive on a different host - a service without a server application.
0x274c 10060 No route to a host.

A socket operation was attempted to an unreachable host
Further Winsock error codes: Win32 Error Codes

8.4 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages:
http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49(0)5246/963-0
Fax: +49(0)5246/963-198
e-mail: info@beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49(0)5246/963-157
Fax: +49(0)5246/963-9157

http://www.beckhoff.de/english/support/default.htm
http://www.beckhoff.com
http://www.beckhoff.com/english/download/default.htm

Appendix

TC3 OPC UA 247Version: 2.6

e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49(0)5246/963-460
Fax: +49(0)5246/963-479
e-mail: service@beckhoff.com

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions

	2 Overview
	2.1 Scenarios
	2.2 OPC UA Server revision overview
	2.3 Version overview
	2.4 Application examples
	2.4.1 Post-processing in the Cloud

	3 Installation
	3.1 System requirements
	3.2 Installation (TC3)
	3.3 Installation (TC2)
	3.4 Installation Windows CE (TC3)
	3.5 Installation Windows CE (TC2)
	3.6 Licensing (TC3)
	3.7 Licensing (TC2)

	4 Technical introduction
	4.1 Server
	4.1.1 Overview
	4.1.2 Quick start
	4.1.3 PLC
	4.1.3.1 Access to PLC runtime
	4.1.3.2 Historical Access
	4.1.3.2.1 Setup Version 3.x.x
	4.1.3.2.2 Setup Version 4.x.x
	4.1.3.2.3 Display historical data

	4.1.3.3 Alarms and Conditions
	4.1.3.4 Method Call
	4.1.3.5 AnalogItemTypes
	4.1.3.6 Type system
	4.1.3.7 StructuredTypes
	4.1.3.8 Use of arrays
	4.1.3.9 List of attributes and comments
	4.1.3.10 StatusCode

	4.1.4 C++
	4.1.4.1 Access to C++ runtime
	4.1.4.2 Historical Access
	4.1.4.2.1 Setup Version 4.x.x
	4.1.4.2.2 Display historical data

	4.1.4.3 Alarms and Conditions
	4.1.4.4 Method Call
	4.1.4.5 StructuredTypes
	4.1.4.6 List of attributes and comments

	4.1.5 I/O
	4.1.5.1 Access to IO task
	4.1.5.2 Historical Access
	4.1.5.2.1 Setup Version 4.x.x
	4.1.5.2.2 Display historical data

	4.1.5.3 Alarms and Conditions

	4.1.6 Matlab/Simulink
	4.1.6.1 Access to Matlab/Simulink modules
	4.1.6.2 Historical Access
	4.1.6.2.1 Setup Version 4.x.x
	4.1.6.2.2 Display historical data

	4.1.6.3 Alarms and Conditions

	4.1.7 File Transfer
	4.1.7.1 Access to files and folders via OPC UA

	4.1.8 Security
	4.1.8.1 Overview
	4.1.8.2 Authentication
	4.1.8.3 Certificate exchange
	4.1.8.4 Access rights

	4.1.9 Symbol Caching
	4.1.10 Miscellaneous
	4.1.10.1 Endpoints and default port
	4.1.10.2 Generating NamespaceURI
	4.1.10.3 Editing the configuration file
	4.1.10.4 Configuring several TwinCAT runtimes
	4.1.10.5 Configuring several Server instances
	4.1.10.6 Configuring firewalls
	4.1.10.7 Configuring the namespace

	4.2 Client I/O
	4.2.1 Overview
	4.2.2 Quick start
	4.2.3 Supported data types
	4.2.4 Adding nodes of a Server
	4.2.5 Node attributes
	4.2.6 Method call
	4.2.7 StructuredTypes
	4.2.8 Data recording
	4.2.9 Security
	4.2.9.1 Overview
	4.2.9.2 Certificate exchange

	4.3 Client PLCopen
	4.3.1 Overview
	4.3.2 Supported data types
	4.3.3 Best practice
	4.3.3.1 How to determine communication parameters
	4.3.3.2 How to establish a connection
	4.3.3.3 How to read nodes
	4.3.3.4 How to write nodes
	4.3.3.5 How to call methods

	4.3.4 Security
	4.3.4.1 Overview
	4.3.4.2 Certificate exchange

	4.4 Gateway
	4.4.1 Overview
	4.4.2 Quick start
	4.4.3 Licensing
	4.4.4 Scenarios
	4.4.5 Configurator
	4.4.5.1 Overview
	4.4.5.2 General settings
	4.4.5.3 Additional UA Servers
	4.4.5.4 Additional endpoints
	4.4.5.5 OPC COM DA settings

	4.4.6 Migrating from Tx6120
	4.4.7 Security
	4.4.7.1 Overview
	4.4.7.2 Certificate exchange

	4.5 Sample Client
	4.5.1 Overview
	4.5.2 Establishing a secure connection to OPC UA Server
	4.5.3 Browsing the UA namespace
	4.5.4 Using the Watchlist

	5 Configuration
	5.1 Setup Version 3.x.x
	5.1.1 Overview
	5.1.2 Data Access
	5.1.3 Historical Access
	5.1.4 Server Security
	5.1.5 Alarms and Conditions
	5.1.6 Online Panel

	5.2 Setup Version 4.x.x
	5.2.1 Overview
	5.2.2 Creating a new project
	5.2.3 Select target device
	5.2.4 Adding ADS devices
	5.2.5 Downloading and uploading configurations
	5.2.6 Importing and exporting configuration files
	5.2.7 Configuring historical access
	5.2.8 Configuring Alarms and Conditions
	5.2.9 Configuring alarm texts
	5.2.10 Configuring endpoints
	5.2.11 Configuring certificate trust settings
	5.2.12 Configuring security settings
	5.2.13 Restarting the server
	5.2.14 Troubleshooting and logging

	6 PLC API
	6.1 Function blocks
	6.1.1 UA_Connect
	6.1.2 UA_Disconnect
	6.1.3 UA_GetNamespaceIndex
	6.1.4 UA_HistoryUpdate
	6.1.5 UA_MethodCall
	6.1.6 UA_MethodGetHandle
	6.1.7 UA_MethodReleaseHandle
	6.1.8 UA_NodeGetHandle
	6.1.9 UA_NodeGetHandleList
	6.1.10 UA_NodeReleaseHandle
	6.1.11 UA_NodeReleaseHandleList
	6.1.12 UA_Read
	6.1.13 UA_ReadList
	6.1.14 UA_Write

	6.2 Data types
	6.2.1 E_UAAttributeID
	6.2.2 E_UADataType
	6.2.3 E_UAIdentifierType
	6.2.4 E_UASecurityMsgMode
	6.2.5 E_UASecurityPolicy
	6.2.6 E_UATransportProfile
	6.2.7 ST_UASessionConnectInfo
	6.2.8 ST_UAIndexRange
	6.2.9 ST_UAMethodArgInfo
	6.2.10 ST_UANodeID
	6.2.11 ST_UANodeAdditionalInfo
	6.2.12 UAHADataValue
	6.2.13 UAHAUpdateStatusCode

	7 Samples
	8 Appendix
	8.1 Error diagnosis
	8.2 OPC UA Client error codes
	8.3 ADS Return Codes
	8.4 Support and Service

