

Documentation

EL252x

Pulse Train Output Terminal, Incremental Encoder Simulation Terminal (Pulse Train)

Version: 3.6

Date: 2017-12-19

Table of contents

1	Forew	word	5
	1.1	Product overview Pulse Train Output Terminals	5
	1.2	Notes on the documentation	6
	1.3	Safety instructions	7
	1.4	Documentation Issue Status	8
	1.5	Version identification of EtherCAT devices	8
2	Produ	uct overview	13
	2.1	EL2521-xxxx	13
		2.1.1 EL2521 - Introduction	13
		2.1.2 EL2521 - Technical data	14
	2.2	EL2522-0000	
		2.2.1 EL2522 - Introduction	
		2.2.2 EL2522 - Technical data	
	2.3	Start Up	
3	Basic	s communication	17
	3.1	EtherCAT basics	17
	3.2	EtherCAT cabling – wire-bound	17
	3.3	General notes for setting the watchdog	18
	3.4	EtherCAT State Machine	20
	3.5	CoE Interface	22
	3.6	Distributed Clock	27
4	Mount	nting and Wiring	28
	4.1	Instructions for ESD protection	28
	4.2	Installation on mounting rails	28
	4.3	Installation instructions for enhanced mechanical load capacity	32
	4.4	Connection	32
		4.4.1 Connection system	
		4.4.2 Wiring	
	4.5	4.4.3 Shielding	
	4.5	Installation positions	
	4.6	Mounting of Passive Terminals	
	4.7	ATEX - Special conditions (standard temperature range)	
	4.8	ATEX Documentation	
	4.9	UL notice	
	4.10	LEDs and terminal connector assignments	
5		missioning	
	5.1	TwinCAT Quick Start	_
		5.1.1 TwinCAT 2	
	5.2	TwinCAT Development Environment	
	J.Z	5.2.1 Installation of the TwinCAT real-time driver	
		5.2.2 Notes regarding ESI device description	
		5.2.3 TwinCAT ESI Updater	83
		5.2.4 Distinction between Online and Offline	
		5.2.5 OFFLINE configuration creation	
		5.2.6 ONLINE configuration creation	89

		5.2.7	EtherCAT subscriber configuration	97
	5.3	Genera	I Notes - EtherCAT Slave Application	107
	5.4	EL2521	-XXXX	115
		5.4.1	Basic function principles	115
		5.4.2	Process data	127
		5.4.3	Normal operation mode	130
		5.4.4	Enhanced operation mode	138
	5.5	EL2522	2-0000	173
		5.5.1	Basic function principles	173
		5.5.2	Process Data	179
		5.5.3	Object description and parameterization	186
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 4-
		5.5.4	Connection of the EL2522 in the NC	212
6	Appen	0.0	Connection of the EL2522 in the NC	
6	Appen 6.1	dix		215
6		i dix Firmwa	re compatibility	215 215
6	6.1	i dix Firmwa		215 215 217
6	6.1	idix Firmwa Firmwa	re compatibilityre Update EL/ES/EM/EPxxxx	215 215 217 218
6	6.1	Firmwa Firmwa 6.2.1	re compatibilityre Update EL/ES/EM/EPxxxx	215 215 217 218 221
6	6.1	Firmwa Firmwa 6.2.1 6.2.2	re compatibilityre Update EL/ES/EM/EPxxxx	215 217 218 218 221 222
6	6.1	Firmwa 6.2.1 6.2.2 6.2.3	re compatibility re Update EL/ES/EM/EPxxxx Device description ESI file/XML Firmware explanation Updating controller firmware *.efw	215 217 218 218 221 222 223
6	6.1	Firmwa 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	re compatibility re Update EL/ES/EM/EPxxxx Device description ESI file/XML Firmware explanation Updating controller firmware *.efw FPGA firmware *.rbf	215 217 218 221 221 222 223 227

1 Foreword

1.1 Product overview Pulse Train Output Terminals

EL2521 [13]

1 Channel Pulse Train Output Terminal (RS422)

EL2521-0024 [13]

1 Channel Pulse Train Output Terminal (24 V_{DC})

EL2521-0025 [13]

1 Channel Pulse Train Output Terminal (24 V_{DC}, negative switching)

EL2521-0124 [13]

1 Channel Pulse Train Output Terminal (latch input, 24 V_{DC} output)

EL2522 [▶ 15]

2 Channel Incremental Encoder Simulation Terminal (pulse train)

1.2 Notes on the documentation

Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE®, XFC® and XTS® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, DE102004044764, DE102007017835 with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and patents: EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

1.3 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!

Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The safety instructions must be read carefully and followed without fail!

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of persons.

Risk of injury!

Failure to follow the safety instructions associated with this symbol endangers the life and health of persons.

Personal injuries!

Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

Attention

Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or equipment.

Note

Tip or pointer

This symbol indicates information that contributes to better understanding.

1.4 Documentation Issue Status

Version	Comment	
3.6	Update chapter "Commissioning"	
3.5	Update chapter "Technical data"	
	Update structure	
	Update chapter "Connection system" -> "Connection"	
	Update chapter "Firmware Update EL/ES/EM/EPxxxx"	
3.4	Update chapter "Technical data"	
	Addenda chapter "Instructions for ESD protection"	
3.3	Update chapter "Commissioning"	
3.2	Update chapter "Notes on the documentation"	
	Correction of Technical data	
	 Update chapter "TwinCAT 2.1x" -> "TwinCAT Development Environment" and "TwinCAT Quick Start" 	
	Update revision status	
3.1	Rename and rearrangement of chapter "Connection of the EL2522 in the NC"	
3.0	Revision/ Migration	
	EL2522 added	
2.8	Update chapter "Technical data"	
	Addenda chapter "Installation instructions for enhanced mechanical load capacity"	
	Update structure	
2.7	Update chapter "Functionality"	
2.6	Update Ramp distance control	
2.5	Update Technical data	
2.4	Firmware compatibility list and Technical data added	
2.3	Update LED description	
2.2	EL2521-0124 added	
2.1	EL2521-0024, EL2521-0025 added	
2.0	Technical data, CoE, PDO added	
1.0	Correction of technical data	
0.1	First provisional documentation for EL2521	

1.5 Version identification of EtherCAT devices

Designation

A Beckhoff EtherCAT device has a 14-digit designation, made up of

- family key
- type
- version
- revision

Example	Family	Туре	Version	Revision
EL3314-0000-0016	EL terminal (12 mm, non- pluggable connection level)	3314 (4-channel thermocouple terminal)	0000 (basic type)	0016
ES3602-0010-0017	ES terminal (12 mm, pluggable connection level)		0010 (high- precision version)	0017
CU2008-0000-0000	CU device	2008 (8-port fast ethernet switch)	0000 (basic type)	0000

Notes

- The elements mentioned above result in the **technical designation**. EL3314-0000-0016 is used in the example below.
- EL3314-0000 is the order identifier, in the case of "-0000" usually abbreviated to EL3314. "-0016" is the EtherCAT revision.
- · The order identifier is made up of
 - family key (EL, EP, CU, ES, KL, CX, etc.)
 - type (3314)
 - version (-0000)
- The **revision** -0016 shows the technical progress, such as the extension of features with regard to the EtherCAT communication, and is managed by Beckhoff.
 - In principle, a device with a higher revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation.
 - Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave Information) in the form of an XML file, which is available for download from the Beckhoff web site. From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. "EL5021 EL terminal, standard IP20 IO device with batch number and revision ID (since 2014/01)".
- The type, version and revision are read as decimal numbers, even if they are technically saved in hexadecimal.

Identification number

Beckhoff EtherCAT devices from the different lines have different kinds of identification numbers:

Production lot/batch number/serial number/date code/D number

The serial number for Beckhoff IO devices is usually the 8-digit number printed on the device or on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH

KK - week of production (CW, calendar week)

YY - year of production FF - firmware version

HH - hardware version

Example with

Ser. no.: 12063A02: 12 - production week 12 06 - production year 2006 3A - firmware version 3A 02 - hardware version 02

Exceptions can occur in the **IP67 area**, where the following syntax can be used (see respective device documentation):

Syntax: D ww yy x y z u

D - prefix designation

ww - calendar week

yy - year

x - firmware version of the bus PCB

- y hardware version of the bus PCB
- z firmware version of the I/O PCB
- u hardware version of the I/O PCB

Example: D.22081501 calendar week 22 of the year 2008 firmware version of bus PCB: 1 hardware version of bus PCB: 5 firmware version of I/O PCB: 0 (no firmware necessary for this PCB) hardware version of I/O PCB: 1

Unique serial number/ID, ID number

In addition, in some series each individual module has its own unique serial number.

See also the further documentation in the area

- IP67: EtherCAT Box
- · Safety: TwinSafe
- · Terminals with factory calibration certificate and other measuring terminals

Examples of markings

Fig. 1: EL5021 EL terminal, standard IP20 IO device with batch number and revision ID (since 2014/01)

Fig. 2: EK1100 EtherCAT coupler, standard IP20 IO device with batch number

Fig. 3: CU2016 switch with batch number

Fig. 4: EL3202-0020 with batch numbers 26131006 and unique ID-number 204418

Fig. 5: EP1258-00001 IP67 EtherCAT Box with batch number 22090101 and unique serial number 158102

Fig. 6: EP1908-0002 IP67 EtherCAT Safety Box with batch number 071201FF and unique serial number 00346070

Fig. 7: EL2904 IP20 safety terminal with batch number/date code 50110302 and unique serial number 00331701

Fig. 8: ELM3604-0002 terminal with ID number (QR code) 100001051 and unique serial number 44160201

2 Product overview

2.1 EL2521-xxxx

2.1.1 EL2521 - Introduction

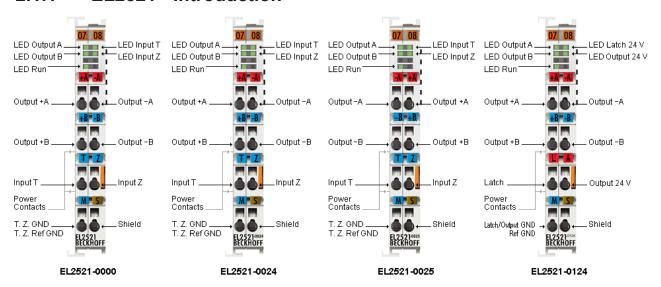


Fig. 9: EL2521 variants

1 Channel Pulse Train Output Terminal

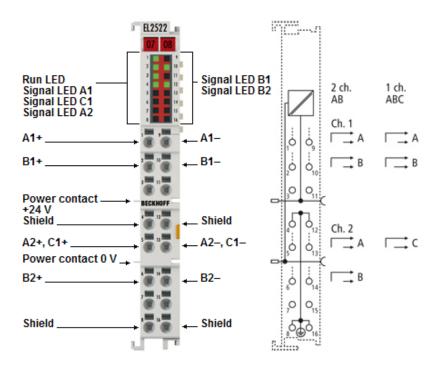
The EL2521-0000 terminal outputs a predefined sequence of pulses via two RS422 compatible differential outputs. The correlation between Channel A and B is adjustable, e.g. as encoder functionality. The pulse rate and the frequency is specified by the controller via a 16 bit value. The EtherCAT Terminals indicate their signal state by means of light emitting diodes. The LEDs are driven in time with the outputs and each displays an active output. The galvanic isolation from the E-bus is provided.

In the EL2521-0024 version the two output channels are implemented as potential-free FET switches and can be fed externally.

In the EL2521-0025 the two output channels are negative-switching, potential-free FET switches and can also be fed externally. Note the logic reversal in the control. A further variant of this version is the EL2521-0124 with a latch input and a 24 V output.

Quick links

- EtherCAT basics
- Commissioning [▶ 73]
- CoE description EL2521-00xx normal operation mode [▶ 130]
- CoE description EL2521-00xx enhanced operation mode [▶ 138]
- CoE description EL2521-0124 enhanced operation mode [▶ 155]
- Process data and operation modes [▶ 127]


2.1.2 EL2521 - Technical data

Technical data	EL2521-0000	EL2521-0024	EL2521-0124	EL2521-0025
Digital outputs	1 channel (2 differential outputs A, B)	1 channel (2 potential- free FET outputs)	1 channel (2 FET outputs) 1 x 24 V output	1 channel (2 potential-free FET outputs), negative switching
Digital inputs	2 (+T, +Z)		1 x latch input (524 V _{DC})	2 (+T, +Z)
Signal voltage	RS422 level	524 V _{DC} , external supply	24 V _{DC} , external supply	524 V _{DC} , external supply
Load type	RS422 and optocoupler, min. 220 Ω	variable		
Output current max. (per channel)	50 mA, RS485 specification	max. 1 A		
Switching threshold, "T" and "Z" inputs	High: >5 V (max. 24 VDC), Low: <1 V		
Base frequency	0 500 kHz, Default: 50	kHz		
Resolution	max. 15 bit			
Step size	10 mHz			
Voltage supply for electronic	via the E-bus			
Current consumption via E-bus	typ. 280 mA (load-depend	dent)		
Electrical isolation	500 V (E-bus/field voltage)			
Bit width in process image	def. 16 bit Data in, 16 bit Data out, 16 bit Control, 16 bit Status			
Configuration	via TwinCAT System Manager			
Weight	арргох. 55 g			
Permissible ambient tem- perature range during op- eration	0°C + 55°C			
Permissible ambient temperature range during storage	-25°C + 85°C			
Permissible relative humidity	95%, no condensation			
Dimensions (W x H x D)	approx. 15 mm x 100 mm	x 70 mm		
Mounting [▶ 28]	on 35 mm mounting rail of	onforms to EN 50022		
Vibration/shock resistance	conforms to EN 60068-2-	6 / EN 60068-2-27,		
	see also installation instru	uctions [32] for enhance	d mechanical load capacity	
EMC immunity/emission	conforms to EN 61000-6-			
Protection class	IP20			
Installation position	variable			
Approval	CE		CE	
	<u>ATEX [▶ 39]</u>		<u>cULus [▶ 41]</u>	
	<u>cULus [▶ 41]</u>			

2.2 EL2522-0000

2.2.1 EL2522 - Introduction

2 channel incremental encoder simulation terminal (pulse train)

The EL2522 incremental encoder simulation terminal (pulse train) outputs a frequency-modulable signal on two channels with four outputs.

The signal can be used to control motor drivers or other signal receivers, which are controlled by single cycles. As with the EL2521 the pulse sequence and pulse number can be specified directly via the process data in the frequency. Alternatively, the integrated travel distance control can be used. For each channel the operating mode (frequency modulation, pulse/direction specification and incremental encoder simulation) can be selected. In addition, the EL2522 can control three output channels in the ABC encoder simulation.

The EL2522 supports the basic operating modes of the EL2521 and has additional operating modes.

Quick links

- EtherCAT basics
- Commissioning [▶ 73]
- CoE description EL2522 [▶ 186]
- Process data and operation modes [▶ 179]

2.2.2 EL2522 - Technical data

Technical data	EL2522-0000
Digital outputs	alternatively: 2 channel (2 differential outputs A/A,B/B) or: 1 channel (3 differential outputs A/A, B/B, C/C)
Signal voltage	RS422 level
Load type	RS422 and optocoupler, min. 220 Ω
Output current max. (per channel)	50 mA, RS485 specification
Base frequency	0 4 MHz, Default: 50 kHz
Mark/space ratio	50 % (± 10 %)
Resolution	max. 15 bit
Step size	min. 10 ns (internal)
Voltage supply for electronic	via the E-bus
Current consumption via E-bus	120 mA typ.
Electrical isolation	500 V (E-bus/field voltage)
Bit width in process image	default 14 bytes Data in, 28 bytes Data out
Configuration	via TwinCAT System Manager
Weight	approx. 50 g
Permissible ambient temperature range during operation	0°C + 55°C
Permissible ambient temperature range during storage	-25°C + 85°C
Permissible relative humidity	95%, no condensation
Dimensions (W x H x D)	approx. 15 mm x 100 mm x 70 mm
Mounting [▶ 28]	on 35 mm mounting rail conforms to EN 60715
Vibration/shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27, see also installation instructions for enhanced mechanical load capacity [> 32]
EMC immunity/emission	conforms to EN 61000-6-2 / EN 61000-6-4
Protection class	IP20
Installation position	variable
Approval	CE
	<u>cULus [▶ 41]</u>

2.3 Start Up

For commissioning:

- mount the EL252x as described in the chapter Mounting and wiring [▶ 28]
- Configure the EL252x in TwinCAT as described in chapter Commissioning [49].

3 Basics communication

3.1 EtherCAT basics

Please refer to the chapter <u>EtherCAT System Documentation</u> for the EtherCAT fieldbus basics.

3.2 EtherCAT cabling – wire-bound

The cable length between two EtherCAT devices must not exceed 100 m. This results from the FastEthernet technology, which, above all for reasons of signal attenuation over the length of the cable, allows a maximum link length of 5 + 90 + 5 m if cables with appropriate properties are used. See also the <u>Design</u> recommendations for the infrastructure for EtherCAT/Ethernet.

Cables and connectors

For connecting EtherCAT devices only Ethernet connections (cables + plugs) that meet the requirements of at least category 5 (CAt5) according to EN 50173 or ISO/IEC 11801 should be used. EtherCAT uses 4 wires for signal transfer.

EtherCAT uses RJ45 plug connectors, for example. The pin assignment is compatible with the Ethernet standard (ISO/IEC 8802-3).

Pin	Color of conductor	Signal	Description
1	yellow	TD +	Transmission Data +
2	orange	TD -	Transmission Data -
3	white	RD +	Receiver Data +
6	blue	RD -	Receiver Data -

Due to automatic cable detection (auto-crossing) symmetric (1:1) or cross-over cables can be used between EtherCAT devices from Beckhoff.

Recommended cables

Suitable cables for the connection of EtherCAT devices can be found on the Beckhoff website!

E-Bus supply

A bus coupler can supply the EL terminals added to it with the E-bus system voltage of 5 V; a coupler is thereby loadable up to 2 A as a rule (see details in respective device documentation). Information on how much current each EL terminal requires from the E-bus supply is available online and in the catalogue. If the added terminals require more current than the coupler can supply, then power feed terminals (e.g. <u>EL9410</u>) must be inserted at appropriate places in the terminal strand.

The pre-calculated theoretical maximum E-Bus current is displayed in the TwinCAT System Manager. A shortfall is marked by a negative total amount and an exclamation mark; a power feed terminal is to be placed before such a position.

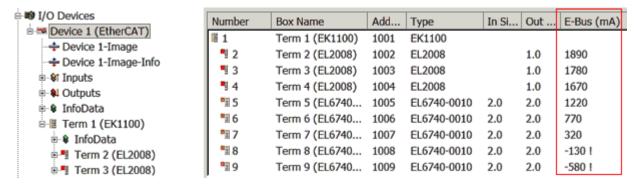


Fig. 10: System manager current calculation

Malfunction possible!

The same ground potential must be used for the E-Bus supply of all EtherCAT terminals in a terminal block!

3.3 General notes for setting the watchdog

ELxxxx terminals are equipped with a safety feature (watchdog) that switches off the outputs after a specifiable time e.g. in the event of an interruption of the process data traffic, depending on the device and settings, e.g. in OFF state.

The EtherCAT slave controller (ESC) in the EL2xxx terminals features 2 watchdogs:

SM watchdog (default: 100 ms)PDI watchdog (default: 100 ms)

SM watchdog (SyncManager Watchdog)

The SyncManager watchdog is reset after each successful EtherCAT process data communication with the terminal. If no EtherCAT process data communication takes place with the terminal for longer than the set and activated SM watchdog time, e.g. in the event of a line interruption, the watchdog is triggered and the outputs are set to FALSE. The OP state of the terminal is unaffected. The watchdog is only reset after a successful EtherCAT process data access. Set the monitoring time as described below.

The SyncManager watchdog monitors correct and timely process data communication with the ESC from the EtherCAT side.

PDI watchdog (Process Data Watchdog)

If no PDI communication with the EtherCAT slave controller (ESC) takes place for longer than the set and activated PDI watchdog time, this watchdog is triggered.

PDI (Process Data Interface) is the internal interface between the ESC and local processors in the EtherCAT slave, for example. The PDI watchdog can be used to monitor this communication for failure.

The PDI watchdog monitors correct and timely process data communication with the ESC from the application side.

The settings of the SM- and PDI-watchdog must be done for each slave separately in the TwinCAT System Manager.

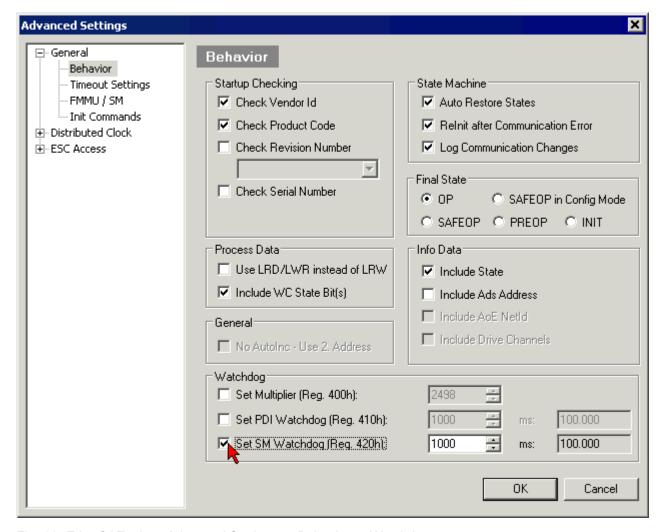


Fig. 11: EtherCAT tab -> Advanced Settings -> Behavior -> Watchdog

Notes:

- · the multiplier is valid for both watchdogs.
- each watchdog has its own timer setting, the outcome of this in summary with the multiplier is a resulting time.
- Important: the multiplier/timer setting is only loaded into the slave at the start up, if the checkbox is activated.

If the checkbox is not activated, nothing is downloaded and the ESC settings remain unchanged.

Multiplier

Multiplier

Both watchdogs receive their pulses from the local terminal cycle, divided by the watchdog multiplier:

1/25 MHz * (watchdog multiplier + 2) = 100 µs (for default setting of 2498 for the multiplier)

The standard setting of 1000 for the SM watchdog corresponds to a release time of 100 ms.

The value in multiplier + 2 corresponds to the number of basic 40 ns ticks representing a watchdog tick. The multiplier can be modified in order to adjust the watchdog time over a larger range.

Example "Set SM watchdog"

This checkbox enables manual setting of the watchdog times. If the outputs are set and the EtherCAT communication is interrupted, the SM watchdog is triggered after the set time and the outputs are erased. This setting can be used for adapting a terminal to a slower EtherCAT master or long cycle times. The default SM watchdog setting is 100 ms. The setting range is 0..65535. Together with a multiplier with a range of 1..65535 this covers a watchdog period between 0..~170 seconds.

Calculation

Multiplier = 2498 \rightarrow watchdog base time = 1 / 25 MHz * (2498 + 2) = 0.0001 seconds = 100 μ s SM watchdog = 10000 \rightarrow 10000 * 100 μ s = 1 second watchdog monitoring time

Undefined state possible!

The function for switching off of the SM watchdog via SM watchdog = 0 is only implemented in terminals from version -0016. In previous versions this operating mode should not be used.

Damage of devices and undefined state possible!

If the SM watchdog is activated and a value of 0 is entered the watchdog switches off completely. This is the deactivation of the watchdog! Set outputs are NOT set in a safe state, if the communication is interrupted.

3.4 EtherCAT State Machine

The state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). Depending upon the state, different functions are accessible or executable in the EtherCAT slave. Specific commands must be sent by the EtherCAT master to the device in each state, particularly during the bootup of the slave.

A distinction is made between the following states:

- Init
- · Pre-Operational
- · Safe-Operational and
- Operational
- Boot

The regular state of each EtherCAT slave after bootup is the OP state.

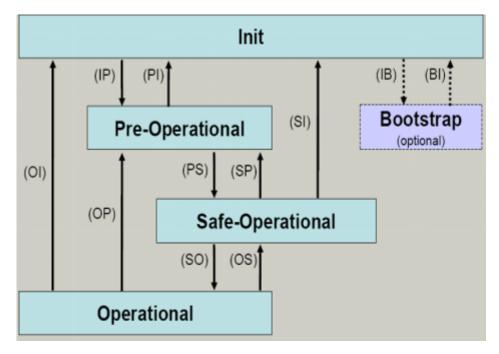


Fig. 12: States of the EtherCAT State Machine

Init

After switch-on the EtherCAT slave in the *Init* state. No mailbox or process data communication is possible. The EtherCAT master initializes sync manager channels 0 and 1 for mailbox communication.

Pre-Operational (Pre-Op)

During the transition between *Init* and *Pre-Op* the EtherCAT slave checks whether the mailbox was initialized correctly.

In *Pre-Op* state mailbox communication is possible, but not process data communication. The EtherCAT master initializes the sync manager channels for process data (from sync manager channel 2), the FMMU channels and, if the slave supports configurable mapping, PDO mapping or the sync manager PDO assignment. In this state the settings for the process data transfer and perhaps terminal-specific parameters that may differ from the default settings are also transferred.

Safe-Operational (Safe-Op)

During transition between *Pre-Op* and *Safe-Op* the EtherCAT slave checks whether the sync manager channels for process data communication and, if required, the distributed clocks settings are correct. Before it acknowledges the change of state, the EtherCAT slave copies current input data into the associated DP-RAM areas of the EtherCAT slave controller (ECSC).

In Safe-Op state mailbox and process data communication is possible, although the slave keeps its outputs in a safe state, while the input data are updated cyclically.

Outputs in SAFEOP state

The default set $\underline{\text{watchdog [}}\underline{\text{18]}}$ monitoring sets the outputs of the module in a safe state - depending on the settings in SAFEOP and OP - e.g. in OFF state. If this is prevented by deactivation of the watchdog monitoring in the module, the outputs can be switched or set also in the SAFEOP state.

Operational (Op)

Before the EtherCAT master switches the EtherCAT slave from *Safe-Op* to *Op* it must transfer valid output data.

In the *Op* state the slave copies the output data of the masters to its outputs. Process data and mailbox communication is possible.

Boot

In the Boot state the slave firmware can be updated. The Boot state can only be reached via the Init state.

In the *Boot* state mailbox communication via the *file access over EtherCAT* (FoE) protocol is possible, but no other mailbox communication and no process data communication.

3.5 CoE Interface

General description

The CoE interface (CANopen over EtherCAT) is used for parameter management of EtherCAT devices. EtherCAT slaves or the EtherCAT master manage fixed (read only) or variable parameters which they require for operation, diagnostics or commissioning.

CoE parameters are arranged in a table hierarchy. In principle, the user has read access via the fieldbus. The EtherCAT master (TwinCAT System Manager) can access the local CoE lists of the slaves via EtherCAT in read or write mode, depending on the attributes.

Different CoE parameter types are possible, including string (text), integer numbers, Boolean values or larger byte fields. They can be used to describe a wide range of features. Examples of such parameters include manufacturer ID, serial number, process data settings, device name, calibration values for analog measurement or passwords.

The order is specified in 2 levels via hexadecimal numbering: (main)index, followed by subindex. The value ranges are

- Index: 0x0000 ...0xFFFF (0...65535_{dez})
- SubIndex: 0x00...0xFF (0...255_{dez})

A parameter localized in this way is normally written as 0x8010:07, with preceding "x" to identify the hexadecimal numerical range and a colon between index and subindex.

The relevant ranges for EtherCAT fieldbus users are:

- 0x1000: This is where fixed identity information for the device is stored, including name, manufacturer, serial number etc., plus information about the current and available process data configurations.
- 0x8000: This is where the operational and functional parameters for all channels are stored, such as filter settings or output frequency.

Other important ranges are:

- 0x4000: In some EtherCAT devices the channel parameters are stored here (as an alternative to the 0x8000 range).
- 0x6000: Input PDOs ("input" from the perspective of the EtherCAT master)
- 0x7000: Output PDOs ("output" from the perspective of the EtherCAT master)

Note

Availability

Not every EtherCAT device must have a CoE list. Simple I/O modules without dedicated processor usually have no variable parameters and therefore no CoE list.

If a device has a CoE list, it is shown in the TwinCAT System Manager as a separate tab with a listing of the elements:

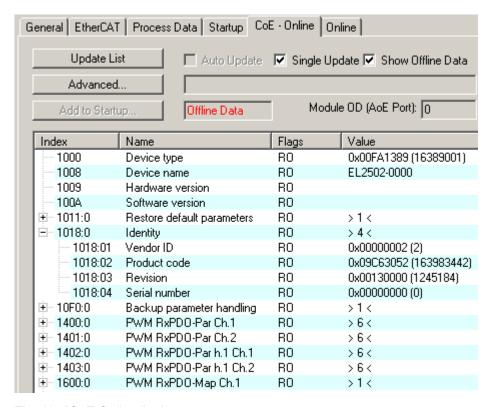


Fig. 13: "CoE Online " tab

The figure above shows the CoE objects available in device "EL2502", ranging from 0x1000 to 0x1600. The subindices for 0x1018 are expanded.

Data management and function "NoCoeStorage"

Some parameters, particularly the setting parameters of the slave, are configurable and writeable. This can be done in write or read mode

- via the System Manager (Fig. "CoE Online" tab) by clicking
 This is useful for commissioning of the system/slaves. Click on the row of the index to be parameterised and enter a value in the "SetValue" dialog.
- from the control system/PLC via ADS, e.g. through blocks from the TcEtherCAT.lib library
 This is recommended for modifications while the system is running or if no System Manager or
 operating staff are available.

Note

Data management

If slave CoE parameters are modified online, Beckhoff devices store any changes in a failsafe manner in the EEPROM, i.e. the modified CoE parameters are still available after a restart

The situation may be different with other manufacturers.

An EEPROM is subject to a limited lifetime with respect to write operations. From typically 100,000 write operations onwards it can no longer be guaranteed that new (changed) data are reliably saved or are still readable. This is irrelevant for normal commissioning. However, if CoE parameters are continuously changed via ADS at machine runtime, it is quite possible for the lifetime limit to be reached. Support for the NoCoeStorage function, which suppresses the saving of changed CoE values, depends on the firmware version. Please refer to the technical data in this documentation as to whether this applies to the respective device.

- If the function is supported: the function is activated by entering the code word 0x12345678 once in CoE 0xF008 and remains active as long as the code word is not changed. After switching the device on it is then inactive. Changed CoE values are not saved in the EEPROM and can thus be changed any number of times.
- Function is not supported: continuous changing of CoE values is not permissible in view of the lifetime limit.

Note

Startup list

Changes in the local CoE list of the terminal are lost if the terminal is replaced. If a terminal is replaced with a new Beckhoff terminal, it will have the default settings. It is therefore advisable to link all changes in the CoE list of an EtherCAT slave with the Startup list of the slave, which is processed whenever the EtherCAT fieldbus is started. In this way a replacement EtherCAT slave can automatically be parameterized with the specifications of the user.

If EtherCAT slaves are used which are unable to store local CoE values permanently, the Startup list must be used.

Recommended approach for manual modification of CoE parameters

- Make the required change in the System Manager
 The values are stored locally in the EtherCAT slave
- If the value is to be stored permanently, enter it in the Startup list.
 The order of the Startup entries is usually irrelevant.

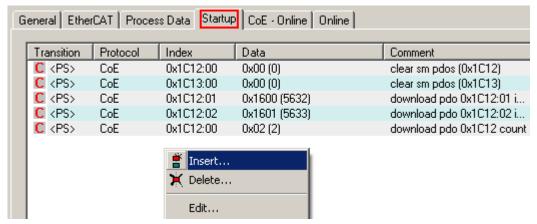


Fig. 14: Startup list in the TwinCAT System Manager

The Startup list may already contain values that were configured by the System Manager based on the ESI specifications. Additional application-specific entries can be created.

Online/offline list

While working with the TwinCAT System Manager, a distinction has to be made whether the EtherCAT device is "available", i.e. switched on and linked via EtherCAT and therefore **online**, or whether a configuration is created **offline** without connected slaves.

In both cases a CoE list as shown in Fig. "'CoE online' tab" is displayed. The connectivity is shown as offline/online.

- · If the slave is offline
 - The offline list from the ESI file is displayed. In this case modifications are not meaningful or possible.
 - · The configured status is shown under Identity.
 - No firmware or hardware version is displayed, since these are features of the physical device.
 - Offline is shown in red.

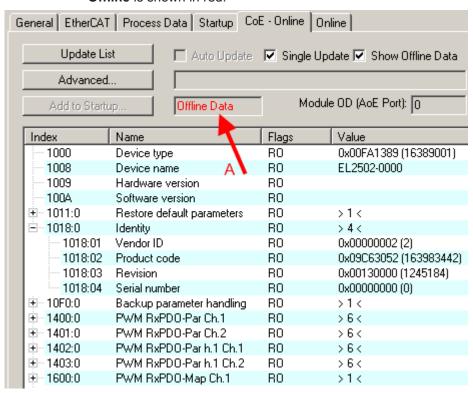


Fig. 15: Offline list

- · If the slave is online
 - The actual current slave list is read. This may take several seconds, depending on the size and cycle time.
 - · The actual identity is displayed
 - The firmware and hardware version of the equipment according to the electronic information is displayed
 - Online is shown in green.

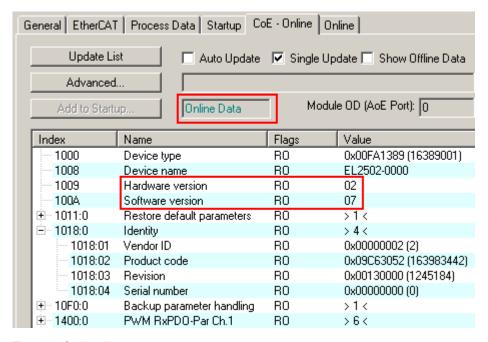


Fig. 16: Online list

Channel-based order

The CoE list is available in EtherCAT devices that usually feature several functionally equivalent channels. For example, a 4-channel analog 0..10 V input terminal also has 4 logical channels and therefore 4 identical sets of parameter data for the channels. In order to avoid having to list each channel in the documentation, the placeholder "n" tends to be used for the individual channel numbers.

In the CoE system 16 indices, each with 255 subindices, are generally sufficient for representing all channel parameters. The channel-based order is therefore arranged in $16_{dec}/10_{hex}$ steps. The parameter range 0x8000 exemplifies this:

- Channel 0: parameter range 0x8000:00 ... 0x800F:255
- Channel 1: parameter range 0x8010:00 ... 0x801F:255
- Channel 2: parameter range 0x8020:00 ... 0x802F:255
- •

This is generally written as 0x80n0.

Detailed information on the CoE interface can be found in the <u>EtherCAT system documentation</u> on the Beckhoff website.

3.6 Distributed Clock

The distributed clock represents a local clock in the EtherCAT slave controller (ESC) with the following characteristics:

- Unit 1 ns
- Zero point 1.1.2000 00:00
- Size *64 bit* (sufficient for the next 584 years; however, some EtherCAT slaves only offer 32-bit support, i.e. the variable overflows after approx. 4.2 seconds)
- The EtherCAT master automatically synchronizes the local clock with the master clock in the EtherCAT bus with a precision of < 100 ns.

For detailed information please refer to the EtherCAT system description.

4 Mounting and Wiring

4.1 Instructions for ESD protection

Destruction of the devices by electrostatic discharge possible!

The devices contain components at risk from electrostatic discharge caused by improper handling.

- ✓ Please ensure you are electrostatically discharged and avoid touching the contacts of the device directly.
- a) Avoid contact with highly insulating materials (synthetic fibers, plastic film etc.).
- b) Surroundings (working place, packaging and personnel) should by grounded probably, when handling with the devices.
- c) Each assembly must be terminated at the right hand end with an <u>EL9011</u> bus end cap, to ensure the protection class and ESD protection.

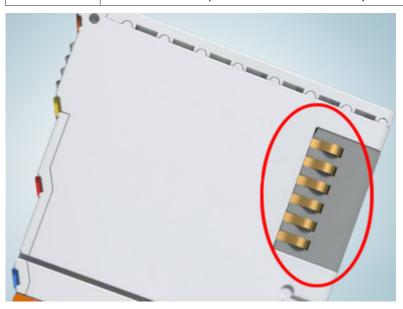


Fig. 17: Spring contacts of the Beckhoff I/O components

4.2 Installation on mounting rails

Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the Bus Terminals!

Assembly

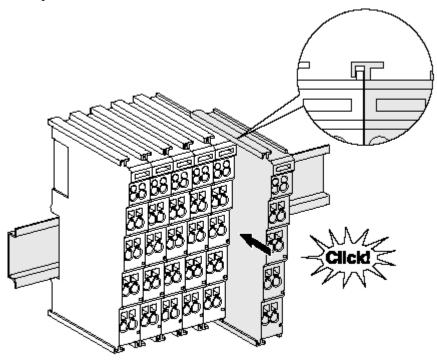


Fig. 18: Attaching on mounting rail

The Bus Coupler and Bus Terminals are attached to commercially available 35 mm mounting rails (DIN rails according to EN 60715) by applying slight pressure:

1. First attach the Fieldbus Coupler to the mounting rail.

Fixing of mounting rails

2. The Bus Terminals are now attached on the right-hand side of the Fieldbus Coupler. Join the components with tongue and groove and push the terminals against the mounting rail, until the lock clicks onto the mounting rail.

If the Terminals are clipped onto the mounting rail first and then pushed together without tongue and groove, the connection will not be operational! When correctly assembled, no significant gap should be visible between the housings.

Note

The locking mechanism of the terminals and couplers extends to the profile of the mounting rail. At the installation, the locking mechanism of the components must not come into conflict with the fixing bolts of the mounting rail. To mount the mounting rails with a height of 7.5 mm under the terminals and couplers, you should use flat mounting connections (e.g. countersunk screws or blind rivets).

Disassembly

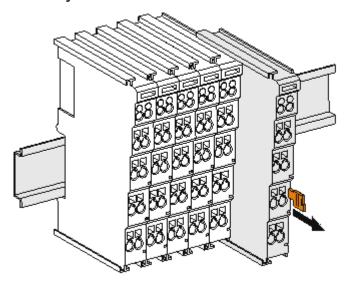


Fig. 19: Disassembling of terminal

Each terminal is secured by a lock on the mounting rail, which must be released for disassembly:

- 1. Pull the terminal by its orange-colored lugs approximately 1 cm away from the mounting rail. In doing so for this terminal the mounting rail lock is released automatically and you can pull the terminal out of the bus terminal block easily without excessive force.
- 2. Grasp the released terminal with thumb and index finger simultaneous at the upper and lower grooved housing surfaces and pull the terminal out of the bus terminal block.

Connections within a bus terminal block

The electric connections between the Bus Coupler and the Bus Terminals are automatically realized by joining the components:

- The six spring contacts of the K-Bus/E-Bus deal with the transfer of the data and the supply of the Bus Terminal electronics.
- The power contacts deal with the supply for the field electronics and thus represent a supply rail within
 the bus terminal block. The power contacts are supplied via terminals on the Bus Coupler (up to 24 V)
 or for higher voltages via power feed terminals.

Note

Power Contacts

During the design of a bus terminal block, the pin assignment of the individual Bus Terminals must be taken account of, since some types (e.g. analog Bus Terminals or digital 4-channel Bus Terminals) do not or not fully loop through the power contacts. Power Feed Terminals (KL91xx, KL92xx or EL91xx, EL92xx) interrupt the power contacts and thus represent the start of a new supply rail.

PE power contact

The power contact labeled PE can be used as a protective earth. For safety reasons this contact mates first when plugging together, and can ground short-circuit currents of up to 125 A.

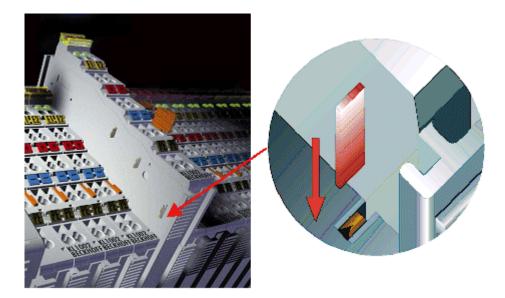


Fig. 20: Power contact on left side

Possible damage of the device

Note that, for reasons of electromagnetic compatibility, the PE contacts are capacitatively coupled to the mounting rail. This may lead to incorrect results during insulation testing or to damage on the terminal (e.g. disruptive discharge to the PE line during insulation testing of a consumer with a nominal voltage of 230 V). For insulation testing, disconnect the PE supply line at the Bus Coupler or the Power Feed Terminal! In order to decouple further feed points for testing, these Power Feed Terminals can be released and pulled at least 10 mm from the group of terminals.

Risk of electric shock!

The PE power contact must not be used for other potentials!

4.3 Installation instructions for enhanced mechanical load capacity

Risk of injury through electric shock and damage to the device!

Bring the Bus Terminal system into a safe, de-energized state before starting mounting, disassembly or wiring of the Bus Terminals!

Additional checks

The terminals have undergone the following additional tests:

Verification	Explanation
Vibration	10 frequency runs in 3 axes
	6 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude
	60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude
Shocks	1000 shocks in each direction, in 3 axes
	25 g, 6 ms

Additional installation instructions

For terminals with enhanced mechanical load capacity, the following additional installation instructions apply:

- · The enhanced mechanical load capacity is valid for all permissible installation positions
- Use a mounting rail according to EN 60715 TH35-15
- Fix the terminal segment on both sides of the mounting rail with a mechanical fixture, e.g. an earth terminal or reinforced end clamp
- The maximum total extension of the terminal segment (without coupler) is: 64 terminals (12 mm mounting with) or 32 terminals (24 mm mounting with)
- Avoid deformation, twisting, crushing and bending of the mounting rail during edging and installation of the rail
- The mounting points of the mounting rail must be set at 5 cm intervals
- · Use countersunk head screws to fasten the mounting rail
- The free length between the strain relief and the wire connection should be kept as short as possible. A distance of approx. 10 cm should be maintained to the cable duct.

4.4 Connection

4.4.1 Connection system

Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the Bus Terminals!

Overview

The Bus Terminal system offers different connection options for optimum adaptation to the respective application:

- The terminals of ELxxxx and KLxxxx series with standard wiring include electronics and connection level in a single enclosure.
- The terminals of ESxxxx and KSxxxx series feature a pluggable connection level and enable steady wiring while replacing.

• The High Density Terminals (HD Terminals) include electronics and connection level in a single enclosure and have advanced packaging density.

Standard wiring (ELxxxx / KLxxxx)

Fig. 21: Standard wiring

The terminals of ELxxxx and KLxxxx series have been tried and tested for years. They feature integrated screwless spring force technology for fast and simple assembly.

Pluggable wiring (ESxxxx / KSxxxx)

Fig. 22: Pluggable wiring

The terminals of ESxxxx and KSxxxx series feature a pluggable connection level.

The assembly and wiring procedure for the KS series is the same as for the ELxxxx and KLxxxx series. The KS/ES series terminals enable the complete wiring to be removed as a plug connector from the top of the housing for servicing.

The lower section can be removed from the terminal block by pulling the unlocking tab.

Insert the new component and plug in the connector with the wiring. This reduces the installation time and eliminates the risk of wires being mixed up.

The familiar dimensions of the terminal only had to be changed slightly. The new connector adds about 3 mm. The maximum height of the terminal remains unchanged.

A tab for strain relief of the cable simplifies assembly in many applications and prevents tangling of individual connection wires when the connector is removed.

Conductor cross sections between 0.08 mm² and 2.5 mm² can continue to be used with the proven spring force technology.

The overview and nomenclature of the product names for ESxxxx and KSxxxx series has been retained as known from ELxxxx and KLxxxx series.

High Density Terminals (HD Terminals)

Fig. 23: High Density Terminals

The Bus Terminals from these series with 16 terminal points are distinguished by a particularly compact design, as the packaging density is twice as large as that of the standard 12 mm Bus Terminals. Massive conductors and conductors with a wire end sleeve can be inserted directly into the spring loaded terminal point without tools.

Wiring HD Terminals

The High Density (HD) Terminals of the ELx8xx and KLx8xx series doesn't support pluggable wiring.

Ultrasonically "bonded" (ultrasonically welded) conductors

Note

Ultrasonically "bonded" conductors

It is also possible to connect the Standard and High Density Terminals with ultrasonically "bonded" (ultrasonically welded) conductors. In this case, please note the tables concerning the wire-size width below!

4.4.2 Wiring

Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the Bus Terminals!

Terminals for standard wiring ELxxxx/KLxxxx and for pluggable wiring ESxxxx/KSxxxx

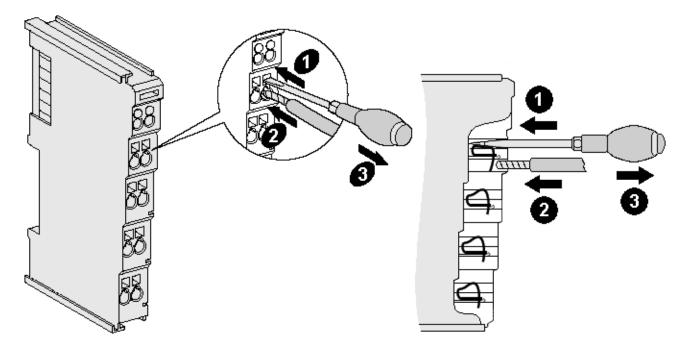


Fig. 24: Connecting a cable on a terminal point

Up to eight terminal points enable the connection of solid or finely stranded cables to the Bus Terminal. The terminal points are implemented in spring force technology. Connect the cables as follows:

- 1. Open a terminal point by pushing a screwdriver straight against the stop into the square opening above the terminal point. Do not turn the screwdriver or move it alternately (don't toggle).
- 2. The wire can now be inserted into the round terminal opening without any force.
- 3. The terminal point closes automatically when the pressure is released, holding the wire securely and permanently.

See the following table for the suitable wire size width.

Terminal housing	ELxxxx, KLxxxx	ESxxxx, KSxxxx
Wire size width (single core wires)	0.08 2.5 mm ²	0.08 2.5 mm ²
Wire size width (fine-wire conductors)	0.08 2.5 mm ²	0,08 2.5 mm ²
Wire size width (conductors with a wire end sleeve)	0.14 1.5 mm ²	0.14 1.5 mm ²
Wire stripping length	8 9 mm	9 10 mm

High Density Terminals (<u>HD Terminals [▶ 33]</u>) with 16 terminal points

The conductors of the HD Terminals are connected without tools for single-wire conductors using the direct plug-in technique, i.e. after stripping the wire is simply plugged into the terminal point. The cables are released, as usual, using the contact release with the aid of a screwdriver. See the following table for the suitable wire size width.

Terminal housing	High Density Housing
Wire size width (single core wires)	0.08 1.5 mm ²
Wire size width (fine-wire conductors)	0.25 1.5 mm ²
Wire size width (conductors with a wire end sleeve)	0.14 0.75 mm ²
Wire size width (ultrasonically "bonded" conductors)	only 1.5 mm ²
Wire stripping length	8 9 mm

4.4.3 Shielding

Shielding

Encoder, analog sensors and actors should always be connected with shielded, twisted paired wires.

4.5 Installation positions

Constraints regarding installation position and operating temperature range

Please refer to the technical data for a terminal to ascertain whether any restrictions regarding the installation position and/or the operating temperature range have been specified. When installing high power dissipation terminals ensure that an adequate spacing is maintained between other components above and below the terminal in order to guarantee adequate ventilation!

Optimum installation position (standard)

The optimum installation position requires the mounting rail to be installed horizontally and the connection surfaces of the EL/KL terminals to face forward (see Fig. "Recommended distances for standard installation position"). The terminals are ventilated from below, which enables optimum cooling of the electronics through convection. "From below" is relative to the acceleration of gravity.

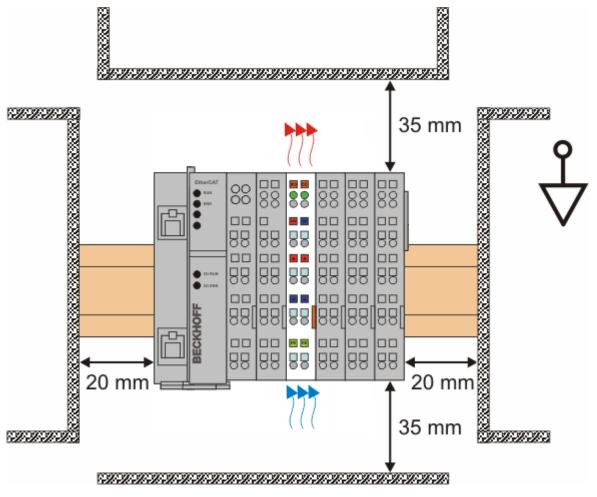


Fig. 25: Recommended distances for standard installation position

Compliance with the distances shown in Fig. "Recommended distances for standard installation position" is recommended.

Other installation positions

All other installation positions are characterized by different spatial arrangement of the mounting rail - see Fig "Other installation positions".

The minimum distances to ambient specified above also apply to these installation positions.

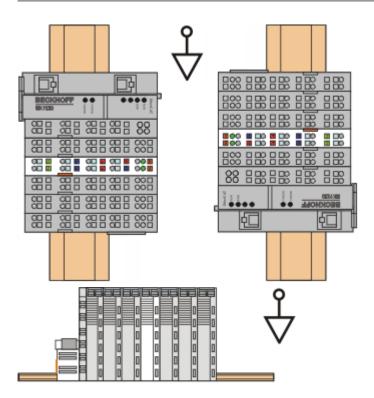


Fig. 26: Other installation positions

4.6 Mounting of Passive Terminals

Hint for mounting passive terminals

EtherCAT Terminals (ELxxxx / ESxxxx), which do not take an active part in data transfer within the bus terminal block are so called Passive Terminals. The Passive Terminals have no current consumption out of the E-Bus To ensure an optimal data transfer, you must not directly string together more than 2 Passive Terminals!

Examples for mounting passive terminals (highlighted)

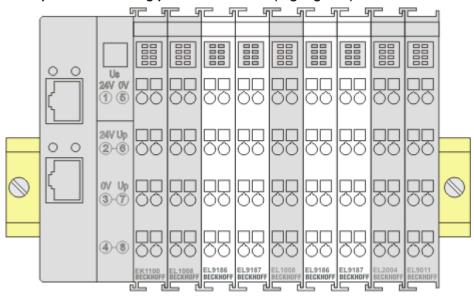


Fig. 27: Correct configuration

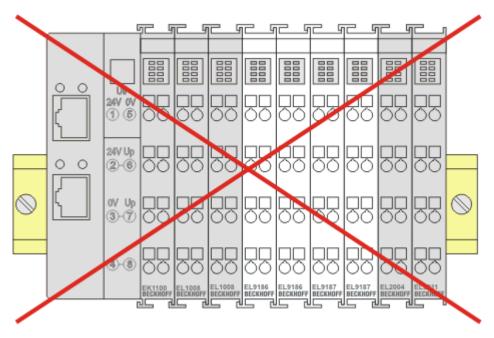


Fig. 28: Incorrect configuration

4.7 ATEX - Special conditions (standard temperature range)

Observe the special conditions for the intended use of Beckhoff fieldbus components with standard temperature range in potentially explosive areas (directive 94/9/EU)!

- The certified components are to be installed in a suitable housing that guarantees a
 protection class of at least IP54 in accordance with EN 60529! The environmental conditions during use are thereby to be taken into account!
- If the temperatures during rated operation are higher than 70°C at the feed-in points of cables, lines or pipes, or higher than 80°C at the wire branching points, then cables must be selected whose temperature data correspond to the actual measured temperature values!
- Observe the permissible ambient temperature range of 0 to 55°C for the use of Beckhoff fieldbus components standard temperature range in potentially explosive areas!
- Measures must be taken to protect against the rated operating voltage being exceeded by more than 40% due to short-term interference voltages!
- The individual terminals may only be unplugged or removed from the Bus Terminal system if the supply voltage has been switched off or if a non-explosive atmosphere is ensured!
- The connections of the certified components may only be connected or disconnected if the supply voltage has been switched off or if a non-explosive atmosphere is ensured!
- The fuses of the KL92xx/EL92xx power feed terminals may only be exchanged if the supply voltage has been switched off or if a non-explosive atmosphere is ensured!
- Address selectors and ID switches may only be adjusted if the supply voltage has been switched off or if a non-explosive atmosphere is ensured!

Standards

The fundamental health and safety requirements are fulfilled by compliance with the following standards:

- EN 60079-0:2012+A11:2013
- EN 60079-15:2010

Marking

The Beckhoff fieldbus components with standard temperature range certified for potentially explosive areas bear one of the following markings:

II 3G KEMA 10ATEX0075 X Ex nA IIC T4 Gc Ta: 0 ... 55°C

or

II 3G KEMA 10ATEX0075 X Ex nC IIC T4 Gc Ta: 0 ... 55°C

EL252x Version: 3.6 39

4.8 **ATEX Documentation**

Note

Notes about operation of the Beckhoff terminal systems in potentially explosive areas (ATEX)

Pay also attention to the continuative documentation

Notes about operation of the Beckhoff terminal systems in potentially explosive areas (ATEX)

that is available in the download area of the Beckhoff homepage http://www.beckhoff.com!

4.9 UL notice

Application

Beckhoff EtherCAT modules are intended for use with Beckhoff's UL Listed EtherCAT System only.

Examination

For cULus examination, the Beckhoff I/O System has only been investigated for risk of fire and electrical shock (in accordance with UL508 and CSA C22.2 No. 142).

For devices with Ethernet connectors

Not for connection to telecommunication circuits.

Basic principles

Two UL certificates are met in the Beckhoff EtherCAT product range, depending upon the components:

UL certification according to UL508
 Devices with this kind of certification are marked by this sign:

Almost all current EtherCAT products (as at 2010/05) are UL certified without restrictions.

UL certification according to UL508 with limited power consumption
 The current consumed by the device is limited to a max. possible current consumption of 4 A. Devices with this kind of certification are marked by this sign:

Use 4 Amp. fuse or Class 2 power supply. See instructions.

Almost all current EtherCAT products (as at 2010/05) are UL certified without restrictions.

Application

If terminals certified with restrictions are used, then the current consumption at 24 V $_{\rm DC}$ must be limited accordingly by means of supply

- from an isolated source protected by a fuse of max. 4A (according to UL248) or
- from a voltage supply complying with NEC class 2.
 A voltage source complying with NEC class 2 may not be connected in series or parallel with another NEC class 2 compliant voltage supply!

These requirements apply to the supply of all EtherCAT bus couplers, power adaptor terminals, Bus Terminals and their power contacts.

4.10 LEDs and terminal connector assignments

Quick links

- <u>EL2521-0000</u> [▶ <u>42</u>]
- EL2521-0024 [43]
- EL2521-0124 [43]
- <u>EL2521-0025</u> [▶ <u>44</u>]
- EL2522-0000 [▶ 47]

EL2521-0000

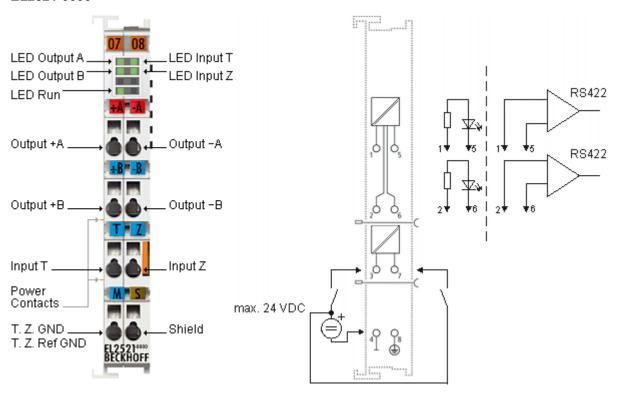


Fig. 29: EL2521-0000 pin assignment and sample connection

EL2521-0024

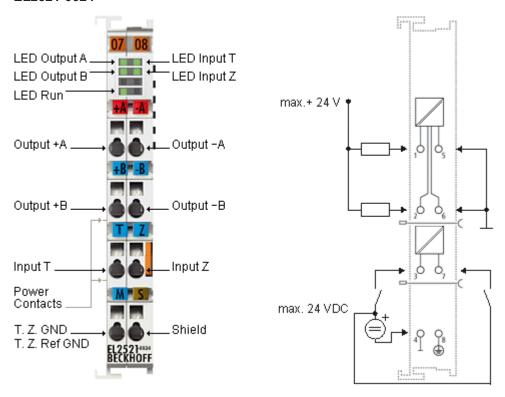


Fig. 30: EL2521-0024 pin assignment and sample connection

EL2521-0124

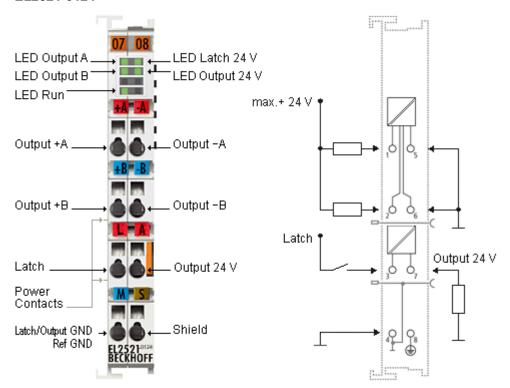


Fig. 31: EL2521-0124 pin assignment and sample connection

Pin assignment EL2521-0000, EL2521-0024

Terminal point		Description
Name	No.	
Output +A	1	Output +A
Output +B	2	Output +B
Input T	3	Input T
T.Z. GND/T.Z. Ref. GND	4	Signal ground for the outputs
Output -A	5	Output -A
Output -B	6	Output -B
Input Z	7	Input Z
Shield	8	Shield

Pin assignment EL2521-0124

Terminal point		Description
Name	No.	
Output +A	1	Output +A
Output +B	2	Output +B
Latch24 V	3	24 V latch input
Latch/Output GND Ref. GND	4	Signal ground for the outputs and for the latch input
Output -A	5	Output -A
Output -B	6	Output -B
Output 24 V	7	24 V output
Shield	8	Shield

EL2521-0025

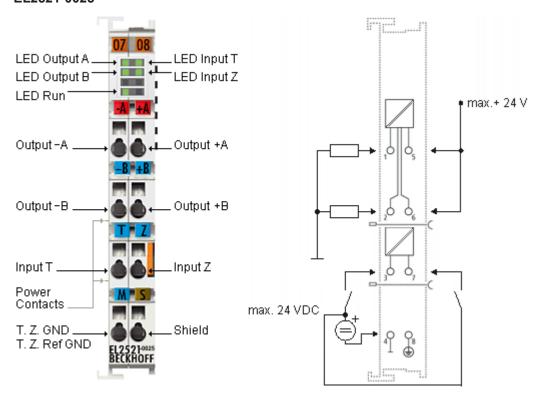


Fig. 32: EL2521-0025 pin assignment and sample connection

Pin assignment EL2521-0025

Terminal point		Description
Name	No.	
Output -A	1	Output -A
Output -B	2	Output -B
Input T	3	Input T
T.Z. GND/T.Z. Ref. GND	4	Signal ground for the outputs
Output +A	5	Output +A
Output +B	6	Output +B
Input Z	7	Input Z
Shield	8	Shield

LEDs (EL2521-xxxx)

LED	Color	Meaning		
Output A, B	green	The illumination of the LEDs for the active frequency outputs A or B at higher frequencies can only be perceived as a glow at half brightness.		
*Latch/ Output 24 V	green	Lights up when a signal is present.		
**Input T, Z	green	Lights up when a signal is present.		
RUN	green	This LED indicates the terminal's operating state:		
		off	State of the EtherCAT State Machine: INIT = initialization of the terminal	
		flashing	State of the EtherCAT State Machine: PREOP = function for mailbox communication and different standard-settings set	
		single flash	State of the EtherCAT State Machine: SAFEOP = verification of the Sync Manager channels Outputs remain in safe state	
		on	State of the EtherCAT State Machine: OP = normal operating state; mailbox and process data communication is possible	
		flickering/ flashing rapidly	State of the EtherCAT State Machine: BOOTSTRAP = function for firmware updates [* 217]	

^{*)} for EL2521-0124 only

Connecting the inputs

The optically isolated inputs are protected from overload by a current limiter. Without further external circuitry the operating voltage may lie between 5 and 24 V DC. The GND connection is the common ground for the two inputs, T and Z. The circuit diagram shows the internal circuitry of the two inputs:

EL252x Version: 3.6 45

^{**)} not for EL2521-0124

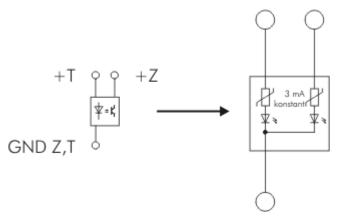


Fig. 33: Internal circuit of the inputs T and Z

Connection of the outputs

Circuit examples for output to A. The same principles apply to output B.

EL2521-0000

The outputs A and B of the EL2521 can be used in different connection modes. An integrated DC/DC converter supplies the outputs stage of the two channels, A and B, with an electrically isolated 5 V power supply.

Connection to RS422 receiver

The output can be operated as an RS422 output. The circuit generates the necessary differential signals.

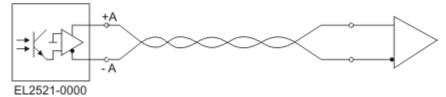


Fig. 34: EL2521-0000 on the RS422 Receiver

Connection to optocoupler (without external supply voltage)

The outputs can be used for direct connection of an optocoupler. The output stage supplies the necessary output current using an internal 5 V power supply.

Fig. 35: EL2521-0000, direct connection to an optocoupler

EL2521-0024, EL2521-0124

The operation with an external supply voltage depends on the hardware version of the terminal:

Connection to optocoupler (with external supply voltage)

For connection to inputs with a large input impedance, an external supply voltage (up to 24 V) can be used with the EL2521-0024 in order to create the necessary current.

Fig. 36: EL2521-0x24, wiring with external power source

EL2521-0124 ground potential

In the case of the EL2521-0124 the outputs -A and -B must be connected to the signal ground (pin 4) in order to avoid damage to the terminal (see fig. [▶ 43])!

EL2521-0025

Logic reversal with the EL2521-0025

When connecting the EL2521-0025, note the logic reversal in the wiring (see $\underline{\text{fig.}} \ [\triangleright 44]$)!

Connection to optocoupler (with external supply voltage)

For connection to inputs with a large input impedance, an external supply voltage (up to 24 V) can be used with the EL2521-0025 in order to create the necessary current. Due to the logic reversal, the positive voltage for driving the output current is to be connected to pin 5 or pin 6.

Fig. 37: EL2521-0025, wiring with external current source, logic reversal

EL2522-0000

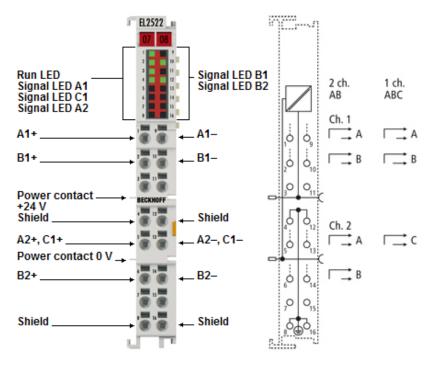


Fig. 38: EL2522 pin assignment and sample connection

Table 1: EL2522-0000 pin assignment

Terminal point		Description
Name	No.	
Output A1+	1	Output A1+
Output B1+	2	Output B1+
not connected	3	not connected
Shield	4	Shield, internally connected to pins 8, 12 and 16
Output A2+, C1+	5	Output A2+, C1+
Output B2+	6	Output B2+
not connected	7	not connected
Shield	8	Shield, internally connected to pins 4, 12 and 16
Output A1-	9	Output A1-
Output B1-	10	Output B1-
not connected	11	not connected
Shield	12	Shield, internally connected to pins 4, 8 and 16
Output A2-, C1-	13	Output A2-, C1-
Output B2-	14	Output B2-
not connected	15	not connected
Shield	16	Shield, internally connected to pins 4, 8 and 12

5 Commissioning

5.1 TwinCAT Quick Start

TwinCAT is a development environment for real-time control including multi-PLC system, NC axis control, programming and operation. The whole system is mapped through this environment and enables access to a programming environment (including compilation) for the controller. Individual digital or analog inputs or outputs can also be read or written directly, in order to verify their functionality, for example.

For further information please refer to http://infosys.beckhoff.com:

- EtherCAT Systemmanual:
 Fieldbus Components → EtherCAT Terminals → EtherCAT System Documentation → Setup in the TwinCAT System Manager
- TwinCAT 2 → TwinCAT System Manager → I/O Configuration
- In particular, TwinCAT driver installation:
 Fieldbus components → Fieldbus Cards and Switches → FC900x PCI Cards for Ethernet → Installation

Devices contain the terminals for the actual configuration. All configuration data can be entered directly via editor functions (offline) or via the "Scan" function (online):

- "offline": The configuration can be customized by adding and positioning individual components. These can be selected from a directory and configured.
 - The procedure for offline mode can be found under http://infosys.beckhoff.com:
 TwinCAT 2 → TwinCAT System Manager → IO Configuration → Adding an I/O Device
- "online": The existing hardware configuration is read
 - See also http://infosys.beckhoff.com:
 Fieldbus components → Fieldbus cards and switches → FC900x PCI Cards for Ethernet → Installation → Searching for devices

The following relationship is envisaged from user PC to the individual control elements:

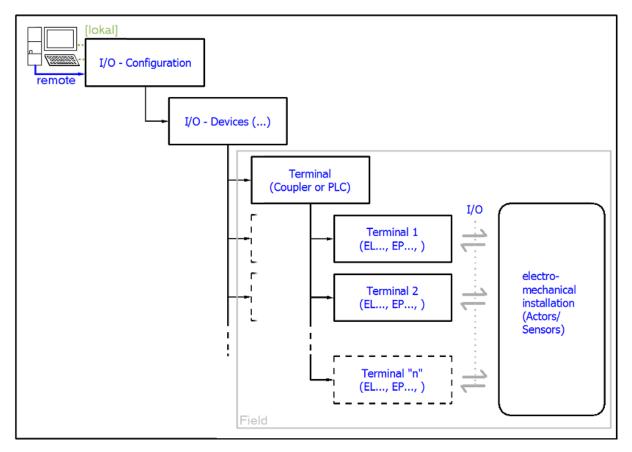


Fig. 39: Relationship between user side (commissioning) and installation

The user inserting of certain components (I/O device, terminal, box...) is the same in TwinCAT 2 and TwinCAT 3. The descriptions below relate to the online procedure.

Sample configuration (actual configuration)

Based on the following sample configuration, the subsequent subsections describe the procedure for TwinCAT 2 and TwinCAT 3:

- Control system (PLC) CX2040 including CX2100-0004 power supply unit
- Connected to the CX2040 on the right (E-bus):
 EL1004 (4-channel analog input terminal -10...+10 V)
- · Linked via the X001 port (RJ-45): EK1100 EtherCAT Coupler
- Connected to the EK1100 EtherCAT coupler on the right (E-bus):
 EL2008 (8-channel digital output terminal 24 V DC; 0.5 A)
- (Optional via X000: a link to an external PC for the user interface)

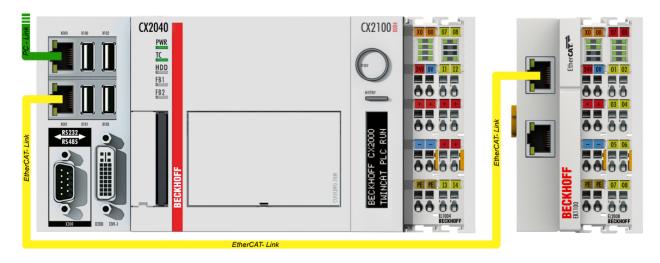


Fig. 40: Control configuration with Embedded PC, input (EL1004) and output (EL2008)

Note that all combinations of a configuration are possible; for example, the EL1004 terminal could also be connected after the coupler, or the EL2008 terminal could additionally be connected to the CX2040 on the right, in which case the EK1100 coupler wouldn't be necessary.

5.1.1 TwinCAT 2

Startup

TwinCAT basically uses two user interfaces: the TwinCAT System Manager for communication with the electromechanical components and TwinCAT PLC Control for the development and compilation of a controller. The starting point is the TwinCAT System Manager.

After successful installation of the TwinCAT system on the PC to be used for development, the TwinCAT 2 System Manager displays the following user interface after startup:

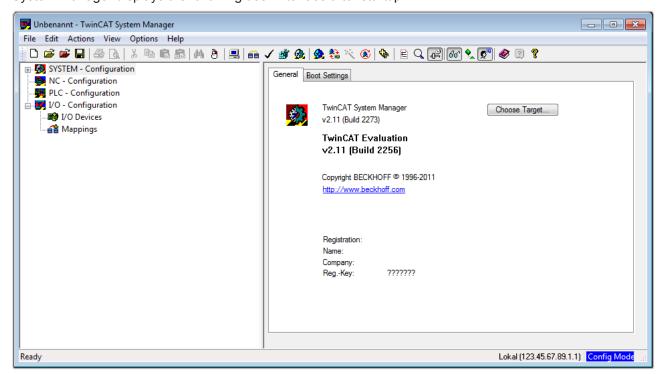


Fig. 41: Initial TwinCAT 2 user interface

Generally, TwinCAT can be used in local or remote mode. Once the TwinCAT system including the user interface (standard) is installed on the respective PLC, TwinCAT can be used in local mode and thereby the next step is "Insert Device [> 53]".

If the intention is to address the TwinCAT runtime environment installed on a PLC as development environment remotely from another system, the target system must be made known first. In the menu under

"Actions" → "Choose Target System...", via the symbol " or the "F8" key, open the following window:

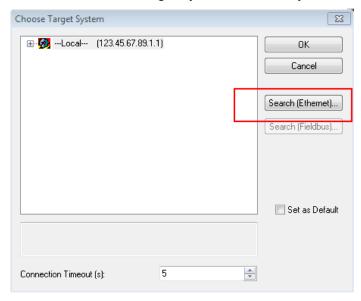


Fig. 42: Selection of the target system

Use "Search (Ethernet)..." to enter the target system. Thus a next dialog opens to either:

- enter the known computer name after "Enter Host Name / IP:" (as shown in red)
- perform a "Broadcast Search" (if the exact computer name is not known)
- enter the known computer IP or AmsNetID.

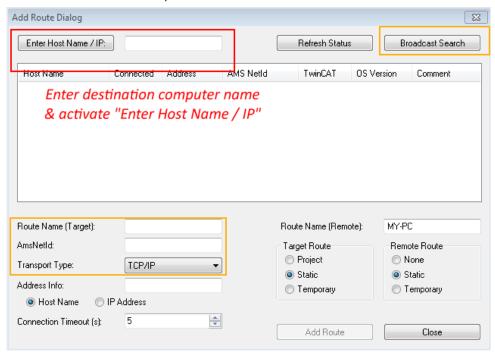
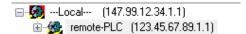



Fig. 43: Specify the PLC for access by the TwinCAT System Manager: selection of the target system

Once the target system has been entered, it is available for selection as follows (a password may have to be entered):

After confirmation with "OK" the target system can be accessed via the System Manager.

Adding devices

In the configuration tree of the TwinCAT 2 System Manager user interface on the left, select "I/O Devices" and then right-click to open a context menu and select "Scan Devices...", or start the action in the menu bar

via . The TwinCAT System Manager may first have to be set to "Config mode" via or via menu "Actions" → "Set/Reset TwinCAT to Config Mode..." (Shift + F4).



Fig. 44: Select "Scan Devices..."

Confirm the warning message, which follows, and select "EtherCAT" in the dialog:

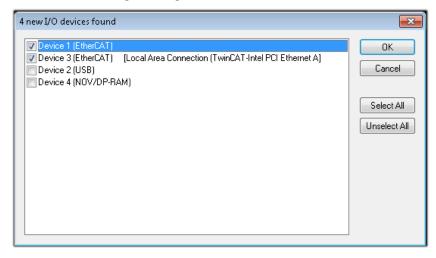


Fig. 45: Automatic detection of I/O devices: selection the devices to be integrated

Confirm the message "Find new boxes", in order to determine the terminals connected to the devices. "Free Run" enables manipulation of input and output values in "Config mode" and should also be acknowledged.

Based on the <u>sample configuration</u> [▶ <u>50</u>] described at the beginning of this section, the result is as follows:

EL252x Version: 3.6 53

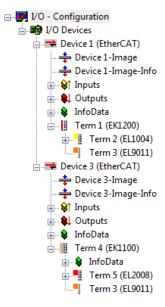


Fig. 46: Mapping of the configuration in the TwinCAT 2 System Manager

The whole process consists of two stages, which may be performed separately (first determine the devices, then determine the connected elements such as boxes, terminals, etc.). A scan can also be initiated by selecting "Device ..." from the context menu, which then reads the elements present in the configuration below:

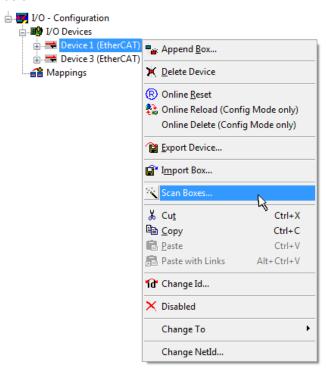


Fig. 47: Reading of individual terminals connected to a device

This functionality is useful if the actual configuration is modified at short notice.

Programming and integrating the PLC

TwinCAT PLC Control is the development environment for the creation of the controller in different program environments: TwinCAT PLC Control supports all languages described in IEC 61131-3. There are two text-based languages and three graphical languages.

Version: 3.6

· Text-based languages

- Instruction List (IL)
- Structured Text (ST)

· Graphical languages

- Function Block Diagram (FBD)
- Ladder Diagram (LD)
- The Continuous Function Chart Editor (CFC)
- Sequential Function Chart (SFC)

The following section refers to Structured Text (ST).

After starting TwinCAT PLC Control, the following user interface is shown for an initial project:

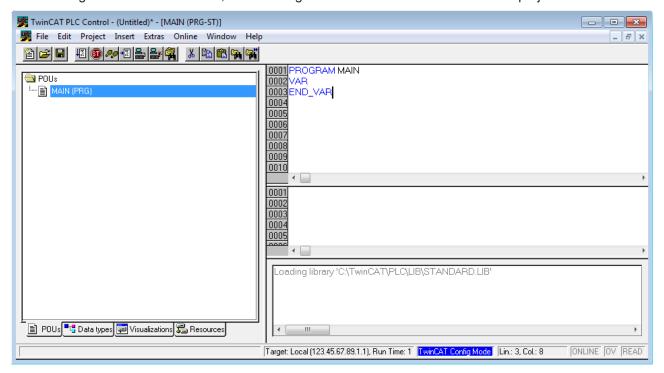


Fig. 48: TwinCAT PLC Control after startup

Sample variables and a sample program have been created and stored under the name "PLC example.pro":

EL252x Version: 3.6 55

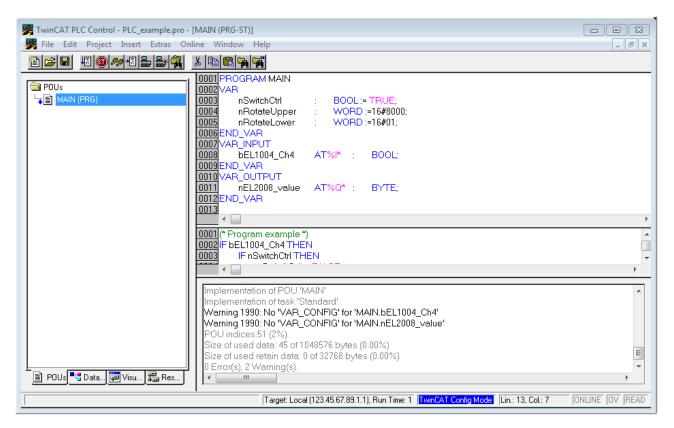


Fig. 49: Sample program with variables after a compile process (without variable integration)

Warning 1990 (missing "VAR_CONFIG") after a compile process indicates that the variables defined as external (with the ID "AT%I*" or "AT%Q*") have not been assigned. After successful compilation, TwinCAT PLC Control creates a "*.tpy" file in the directory in which the project was stored. This file (*.tpy) contains variable assignments and is not known to the System Manager, hence the warning. Once the System Manager has been notified, the warning no longer appears.

First, integrate the TwinCAT PLC Control project in the **System Manager** via the context menu of the PLC configuration; right-click and select "Append PLC Project...":

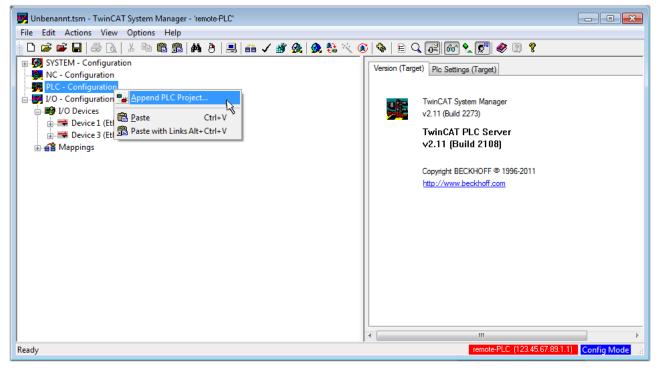


Fig. 50: Appending the TwinCAT PLC Control project

Select the PLC configuration "PLC_example.tpy" in the browser window that opens. The project including the two variables identified with "AT" are then integrated in the configuration tree of the System Manager:

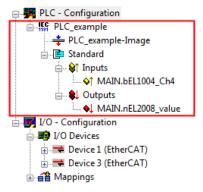


Fig. 51: PLC project integrated in the PLC configuration of the System Manager

The two variables "bEL1004_Ch4" and "nEL2008_value" can now be assigned to certain process objects of the I/O configuration.

Assigning variables

Open a window for selecting a suitable process object (PDO) via the context menu of a variable of the integrated project "PLC" example" and via "Modify Link..." "Standard":

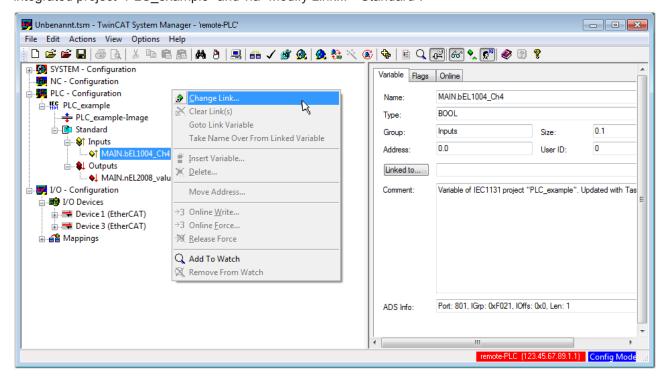


Fig. 52: Creating the links between PLC variables and process objects

In the window that opens, the process object for the variable "bEL1004_Ch4" of type BOOL can be selected from the PLC configuration tree:

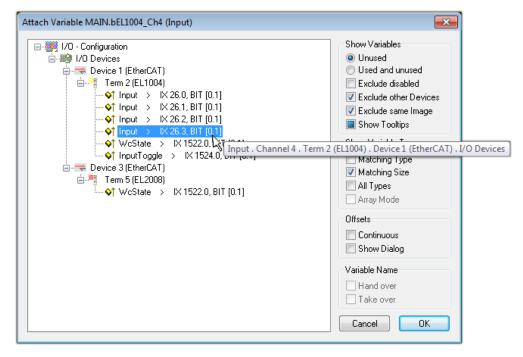


Fig. 53: Selecting PDO of type BOOL

According to the default setting, certain PDO objects are now available for selection. In this sample the input of channel 4 of the EL1004 terminal is selected for linking. In contrast, the checkbox "All types" must be ticked for creating the link for the output variables, in order to allocate a set of eight separate output bits to a byte variable. The following diagram shows the whole process:

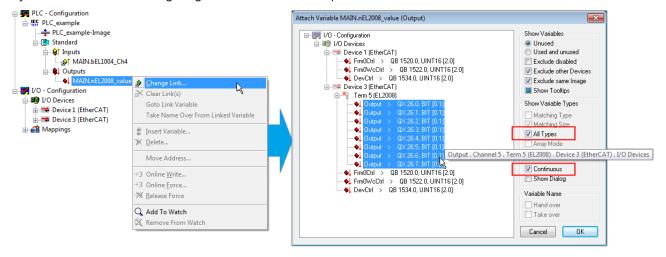


Fig. 54: Selecting several PDOs simultaneously: activate "Continuous" and "All types"

Note that the "Continuous" checkbox was also activated. This is designed to allocate the bits contained in the byte of the variable "nEL2008_value" sequentially to all eight selected output bits of the EL2008 terminal. In this way it is possible to subsequently address all eight outputs of the terminal in the program with a byte

corresponding to bit 0 for channel 1 to bit 7 for channel 8 of the PLC. A special symbol () at the yellow or red object of the variable indicates that a link exists. The links can also be checked by selecting a "Goto Link Variable" from the context menu of a variable. The object opposite, in this case the PDO, is automatically selected:

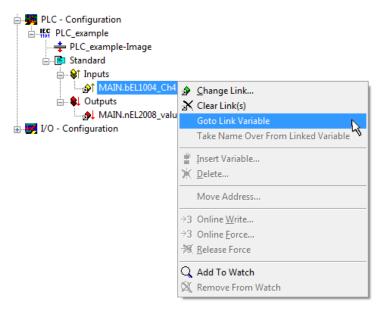


Fig. 55: Application of a "Goto Link" variable, using "MAIN.bEL1004 Ch4" as a sample

The process of assigning variables to the PDO is completed via the menu selection "Actions" \rightarrow "Generate

Mappings", key Ctrl+M or by clicking on the symbol

in the menu.

This can be visualized in the configuration:

The process of creating links can also take place in the opposite direction, i.e. starting with individual PDOs to variable. However, in this example it would then not be possible to select all output bits for the EL2008, since the terminal only makes individual digital outputs available. If a terminal has a byte, word, integer or similar PDO, it is possible to allocate this a set of bit-standardised variables (type "BOOL"). Here, too, a "Goto Link Variable" from the context menu of a PDO can be executed in the other direction, so that the respective PLC instance can then be selected.

Activation of the configuration

The allocation of PDO to PLC variables has now established the connection from the controller to the inputs and outputs of the terminals. The configuration can now be activated. First, the configuration can be verified

activated via (or via "Actions" → "Activate Configuration...") to transfer the System Manager settings to the runtime system. Confirm the messages "Old configurations are overwritten!" and "Restart TwinCAT system in Run mode" with "OK".

A few seconds later the real-time status RTime 0% is displayed at the bottom right in the System Manager. The PLC system can then be started as described below.

Starting the controller

Starting from a remote system, the PLC control has to be linked with the Embedded PC over Ethernet via "Online" \rightarrow "Choose Run-Time System...":

EL252x Version: 3.6 59

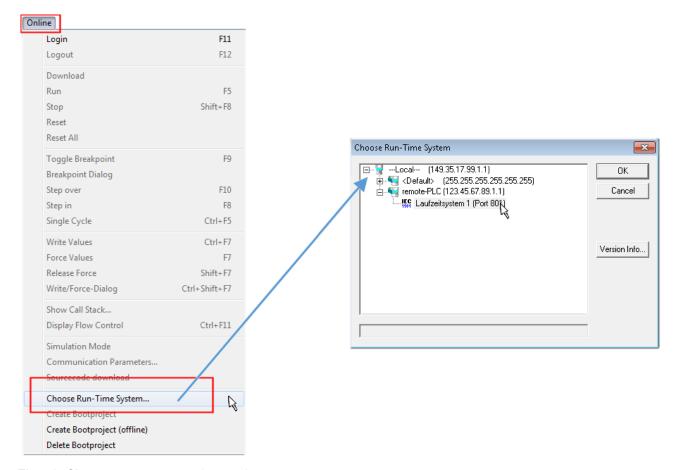


Fig. 56: Choose target system (remote)

In this sample "Runtime system 1 (port 801)" is selected and confirmed. Link the PLC with the real-time

system via menu option "Online" \rightarrow "Login", the F11 key or by clicking on the symbol $\stackrel{\blacksquare}{\blacksquare}$. The control program can then be loaded for execution. This results in the message "No program on the controller! Should the new program be loaded?", which should be acknowledged with "Yes". The runtime environment is ready for the program start:

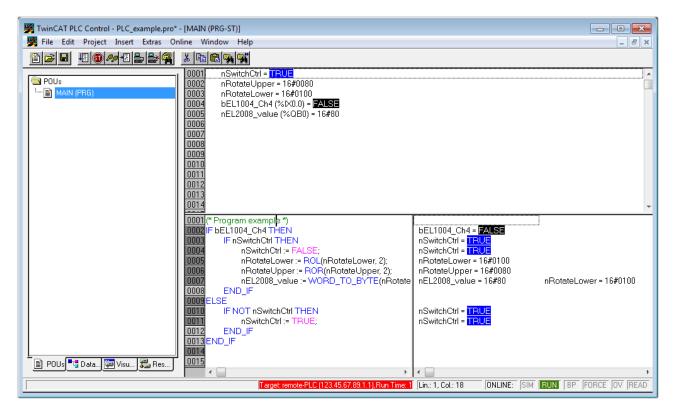


Fig. 57: PLC Control logged in, ready for program startup

The PLC can now be started via "Online" → "Run", F5 key or

5.1.2 TwinCAT 3

Startup

TwinCAT makes the development environment areas available together with Microsoft Visual Studio: after startup, the project folder explorer appears on the left in the general window area (cf. "TwinCAT System Manager" of TwinCAT 2) for communication with the electromechanical components.

After successful installation of the TwinCAT system on the PC to be used for development, TwinCAT 3 (shell) displays the following user interface after startup:

EL252x Version: 3.6 61

Fig. 58: Initial TwinCAT 3 user interface

First create a new project via New TwinCAT Project... (or under "File"→"New"→ "Project..."). In the following dialog make the corresponding entries as required (as shown in the diagram):

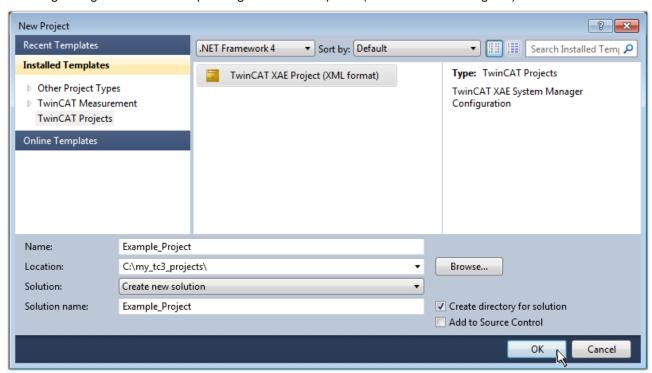
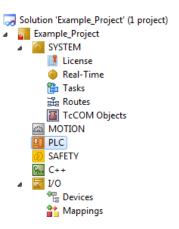
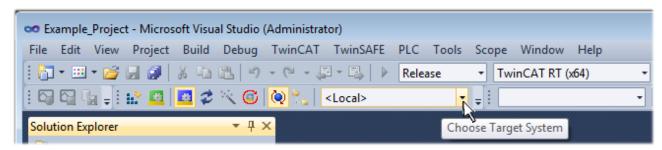
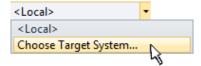


Fig. 59: Create new TwinCAT project

The new project is then available in the project folder explorer:


Fig. 60: New TwinCAT3 project in the project folder explorer

Generally, TwinCAT can be used in local or remote mode. Once the TwinCAT system including the user interface (standard) is installed on the respective PLC, TwinCAT can be used in local mode and thereby the next step is "Insert Device [> 64]".

If the intention is to address the TwinCAT runtime environment installed on a PLC as development environment remotely from another system, the target system must be made known first. Via the symbol in the menu bar:

expand the pull-down menu:

and open the following window:

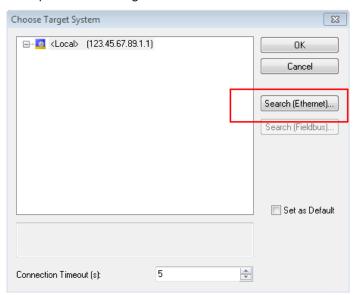


Fig. 61: Selection dialog: Choose the target system

Use "Search (Ethernet)..." to enter the target system. Thus a next dialog opens to either:

- enter the known computer name after "Enter Host Name / IP:" (as shown in red)
- perform a "Broadcast Search" (if the exact computer name is not known)
- · enter the known computer IP or AmsNetID.

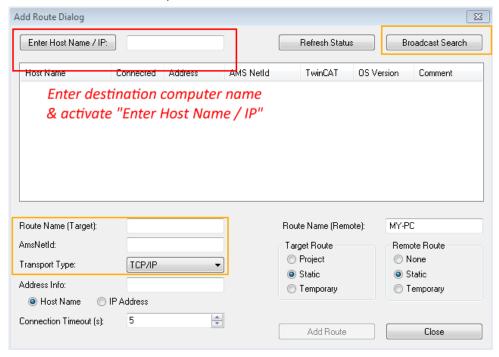
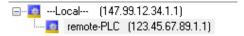
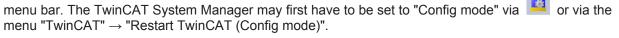



Fig. 62: Specify the PLC for access by the TwinCAT System Manager: selection of the target system

Once the target system has been entered, it is available for selection as follows (a password may have to be entered):



After confirmation with "OK" the target system can be accessed via the Visual Studio shell.

Adding devices

In the project folder explorer of the Visual Studio shell user interface on the left, select "Devices" within

element "I/O", then right-click to open a context menu and select "Scan" or start the action via in the

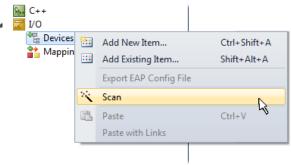


Fig. 63: Select "Scan"

Confirm the warning message, which follows, and select "EtherCAT" in the dialog:

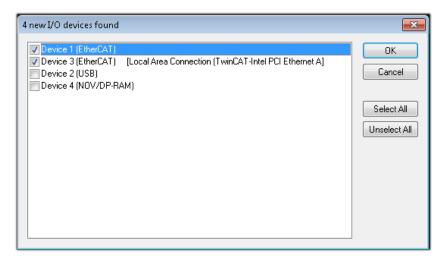


Fig. 64: Automatic detection of I/O devices: selection the devices to be integrated

Confirm the message "Find new boxes", in order to determine the terminals connected to the devices. "Free Run" enables manipulation of input and output values in "Config mode" and should also be acknowledged.

Based on the <u>sample configuration [▶ 50]</u> described at the beginning of this section, the result is as follows:

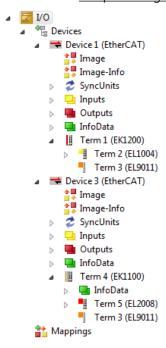


Fig. 65: Mapping of the configuration in VS shell of the TwinCAT3 environment

The whole process consists of two stages, which may be performed separately (first determine the devices, then determine the connected elements such as boxes, terminals, etc.). A scan can also be initiated by selecting "Device ..." from the context menu, which then reads the elements present in the configuration below:

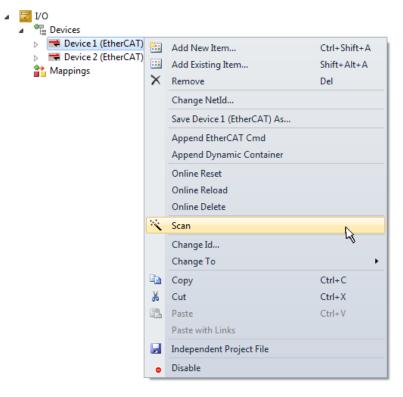


Fig. 66: Reading of individual terminals connected to a device

This functionality is useful if the actual configuration is modified at short notice.

Programming the PLC

TwinCAT PLC Control is the development environment for the creation of the controller in different program environments: TwinCAT PLC Control supports all languages described in IEC 61131-3. There are two text-based languages and three graphical languages.

- · Text-based languages
 - · Instruction List (IL)
 - Structured Text (ST)
- · Graphical languages
 - Function Block Diagram (FBD)
 - Ladder Diagram (LD)
 - The Continuous Function Chart Editor (CFC)
 - Sequential Function Chart (SFC)

The following section refers to Structured Text (ST).

In order to create a programming environment, a PLC subproject is added to the project sample via the context menu of "PLC" in the project folder explorer by selecting "Add New Item....":

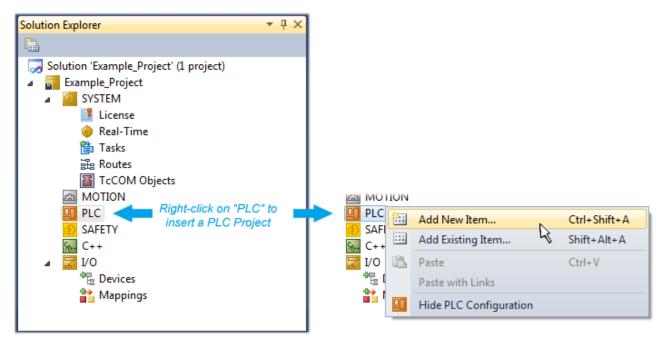


Fig. 67: Adding the programming environment in "PLC"

In the dialog that opens select "Standard PLC project" and enter "PLC_example" as project name, for example, and select a corresponding directory:

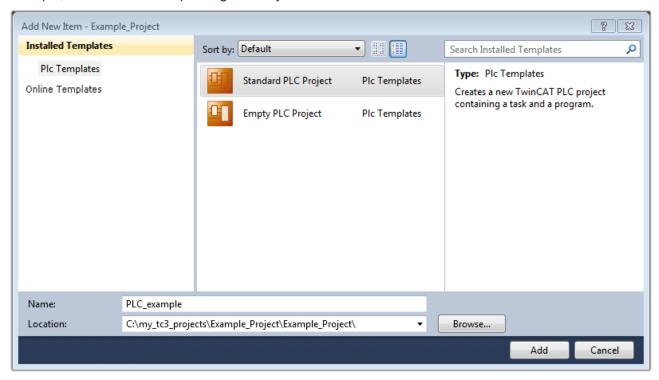


Fig. 68: Specifying the name and directory for the PLC programming environment

The "Main" program, which already exists by selecting "Standard PLC project", can be opened by double-clicking on "PLC example project" in "POUs". The following user interface is shown for an initial project:

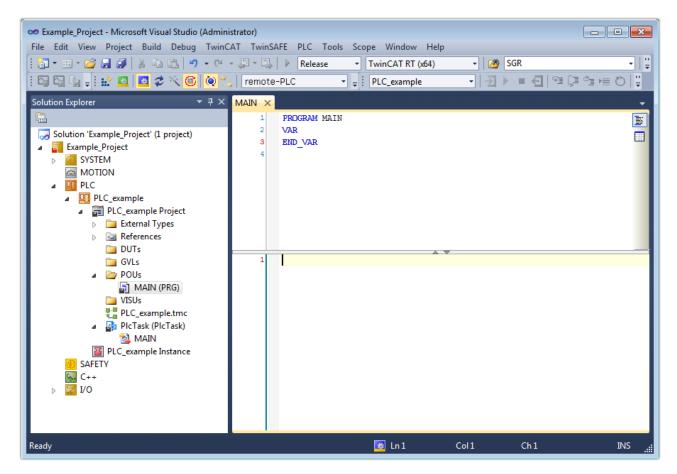


Fig. 69: Initial "Main" program of the standard PLC project

To continue, sample variables and a sample program have now been created:

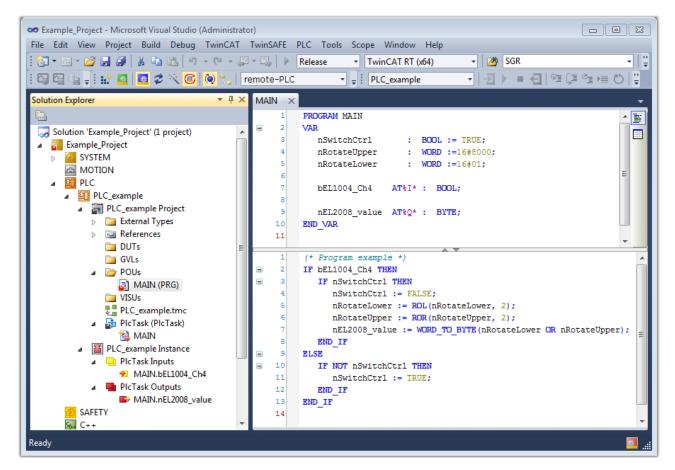


Fig. 70: Sample program with variables after a compile process (without variable integration)

The control program is now created as a project folder, followed by the compile process:

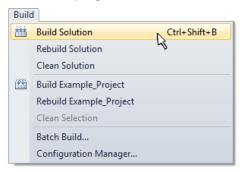
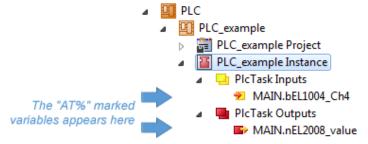



Fig. 71: Start program compilation

The following variables, identified in the ST/ PLC program with "AT%", are then available in under "Assignments" in the project folder explorer:

Assigning variables

Via the menu of an instance - variables in the "PLC" context, use the "Modify Link..." option to open a window for selecting a suitable process object (PDO) for linking:

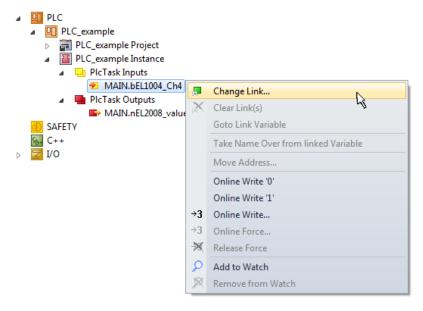


Fig. 72: Creating the links between PLC variables and process objects

In the window that opens, the process object for the variable "bEL1004_Ch4" of type BOOL can be selected from the PLC configuration tree:

Fig. 73: Selecting PDO of type BOOL

According to the default setting, certain PDO objects are now available for selection. In this sample the input of channel 4 of the EL1004 terminal is selected for linking. In contrast, the checkbox "All types" must be ticked for creating the link for the output variables, in order to allocate a set of eight separate output bits to a byte variable. The following diagram shows the whole process:

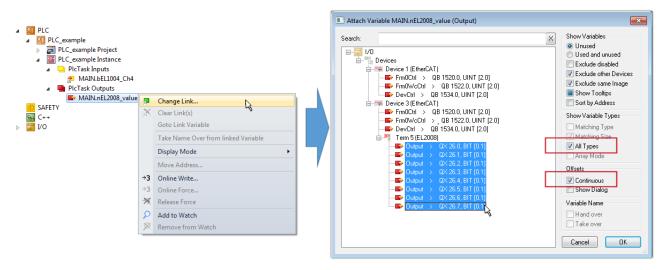


Fig. 74: Selecting several PDOs simultaneously: activate "Continuous" and "All types"

Note that the "Continuous" checkbox was also activated. This is designed to allocate the bits contained in the byte of the variable "nEL2008_value" sequentially to all eight selected output bits of the EL2008 terminal. In this way it is possible to subsequently address all eight outputs of the terminal in the program with a byte

corresponding to bit 0 for channel 1 to bit 7 for channel 8 of the PLC. A special symbol () at the yellow or red object of the variable indicates that a link exists. The links can also be checked by selecting a "Goto Link Variable" from the context menu of a variable. The object opposite, in this case the PDO, is automatically selected:

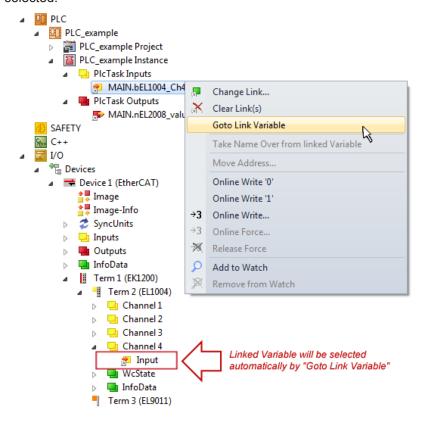


Fig. 75: Application of a "Goto Link" variable, using "MAIN.bEL1004_Ch4" as a sample

The process of creating links can also take place in the opposite direction, i.e. starting with individual PDOs to variable. However, in this example it would then not be possible to select all output bits for the EL2008, since the terminal only makes individual digital outputs available. If a terminal has a byte, word, integer or similar PDO, it is possible to allocate this a set of bit-standardised variables (type "BOOL"). Here, too, a "Goto Link Variable" from the context menu of a PDO can be executed in the other direction, so that the respective PLC instance can then be selected.

Activation of the configuration

The allocation of PDO to PLC variables has now established the connection from the controller to the inputs

and outputs of the terminals. The configuration can now be activated with "TwinCAT" in order to transfer settings of the development environment to the runtime system. Confirm the messages "Old configurations are overwritten!" and "Restart TwinCAT system in Run mode" with "OK". The corresponding assignments can be seen in the project folder explorer:

```
■ Mappings

PLC_example Instance - Device 3 (EtherCAT) 1

PLC_example Instance - Device 1 (EtherCAT) 1

| PLC_example Instance - Device 1 (EtherCAT) 1

| PLC_example Instance - Device 2 (EtherCAT) 1

| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (EtherCAT) 1
| PLC_example Instance - Device 3 (
```

A few seconds later the corresponding status of the Run mode is displayed in the form of a rotating symbol

at the bottom right of the VS shell development environment. The PLC system can then be started as described below.

Starting the controller

Select the menu option "PLC" → "Login" or click on to link the PLC with the real-time system and load the control program for execution. This results in the message "No program on the controller! Should the new program be loaded?", which should be acknowledged with "Yes". The runtime environment is ready for

program start by click on symbol , the "F5" key or via "PLC" in the menu selecting "Start". The started programming environment shows the runtime values of individual variables:

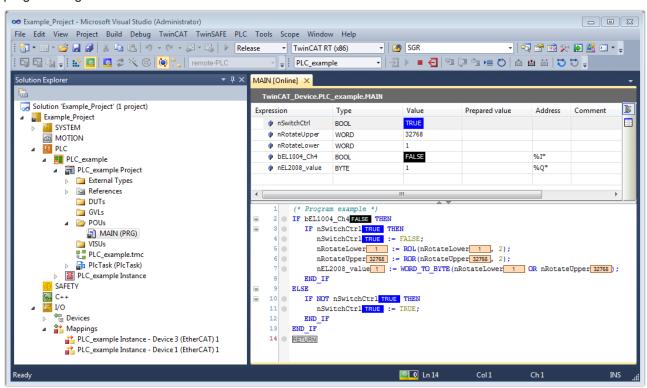


Fig. 76: TwinCAT development environment (VS shell): logged-in, after program startup

The two operator control elements for stopping and logout result in the required action (accordingly also for stop "Shift + F5", or both actions can be selected via the PLC menu).

5.2 TwinCAT Development Environment

The Software for automation TwinCAT (The Windows Control and Automation Technology) will be distinguished into:

- TwinCAT 2: System Manager (Configuration) & PLC Control (Programming)
- TwinCAT 3: Enhancement of TwinCAT 2 (Programming and Configuration takes place via a common Development Environment)

Details:

- TwinCAT 2:
 - Connects I/O devices to tasks in a variable-oriented manner
 - Connects tasks to tasks in a variable-oriented manner
 - Supports units at the bit level
 - Supports synchronous or asynchronous relationships
 - Exchange of consistent data areas and process images
 - Datalink on NT Programs by open Microsoft Standards (OLE, OCX, ActiveX, DCOM+, etc.)
 - Integration of IEC 61131-3-Software-SPS, Software- NC and Software-CNC within Windows NT/2000/XP/Vista, Windows 7, NT/XP Embedded, CE
 - Interconnection to all common fieldbusses
 - More...

Additional features:

- TwinCAT 3 (eXtended Automation):
 - Visual-Studio®-Integration
 - Choice of the programming language
 - Supports object orientated extension of IEC 61131-3
 - Usage of C/C++ as programming language for real time applications
 - · Connection to MATLAB®/Simulink®
 - Open interface for expandability
 - Flexible run-time environment
 - Active support of Multi-Core- und 64-Bit-Operatingsystem
 - Automatic code generation and project creation with the TwinCAT Automation Interface
 - · More...

Within the following sections commissioning of the TwinCAT Development Environment on a PC System for the control and also the basically functions of unique control elements will be explained.

Please see further information to TwinCAT 2 and TwinCAT 3 at http://infosys.beckhoff.com.

5.2.1 Installation of the TwinCAT real-time driver

In order to assign real-time capability to a standard Ethernet port of an IPC controller, the Beckhoff real-time driver has to be installed on this port under Windows.

This can be done in several ways. One option is described here.

In the System Manager call up the TwinCAT overview of the local network interfaces via Options \rightarrow Show Real Time Ethernet Compatible Devices.

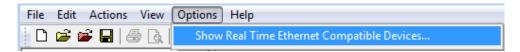


Fig. 77: System Manager "Options" (TwinCAT 2)

This have to be called up by the Menü "TwinCAT" within the TwinCAT 3 environment:

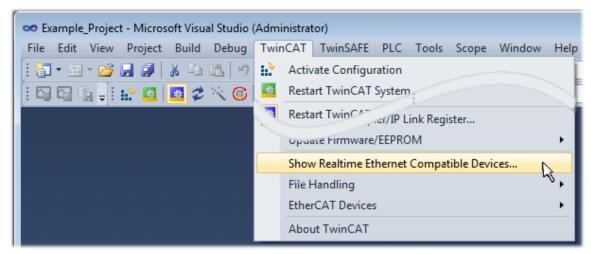


Fig. 78: Call up under VS Shell (TwinCAT 3)

The following dialog appears:

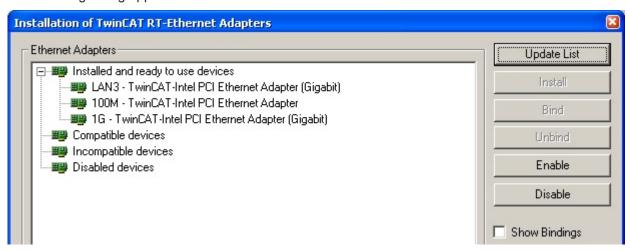


Fig. 79: Overview of network interfaces

Interfaces listed under "Compatible devices" can be assigned a driver via the "Install" button. A driver should only be installed on compatible devices.

A Windows warning regarding the unsigned driver can be ignored.

Alternatively an EtherCAT-device can be inserted first of all as described in chapter Offline configuration creation, section "Creating the EtherCAT device" [> 84] in order to view the compatible ethernet ports via its EtherCAT properties (tab "Adapter", button "Compatible Devices…"):

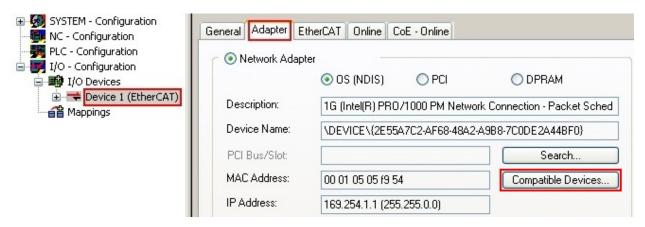


Fig. 80: EtherCAT device properties(TwinCAT 2): click on "Compatible Devices..." of tab "Adapter"

TwinCAT 3: the properties of the EtherCAT device can be opened by double click on "Device .. (EtherCAT)" within the Solution Explorer under "I/O":

After the installation the driver appears activated in the Windows overview for the network interface (Windows Start \rightarrow System Properties \rightarrow Network)

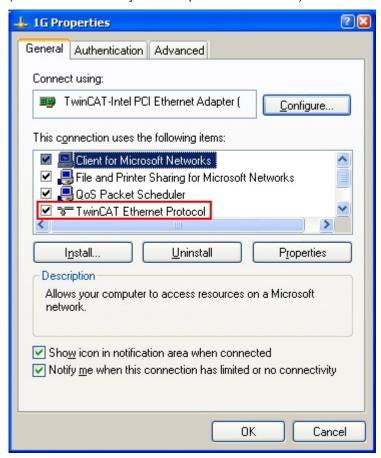


Fig. 81: Windows properties of the network interface

A correct setting of the driver could be:

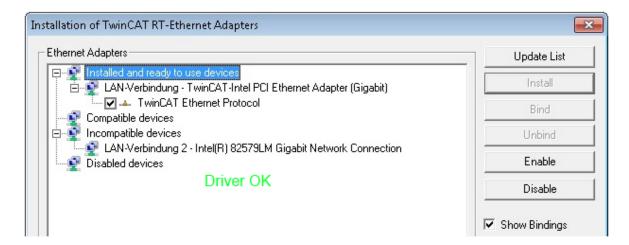


Fig. 82: Exemplary correct driver setting for the Ethernet port

Other possible settings have to be avoided:

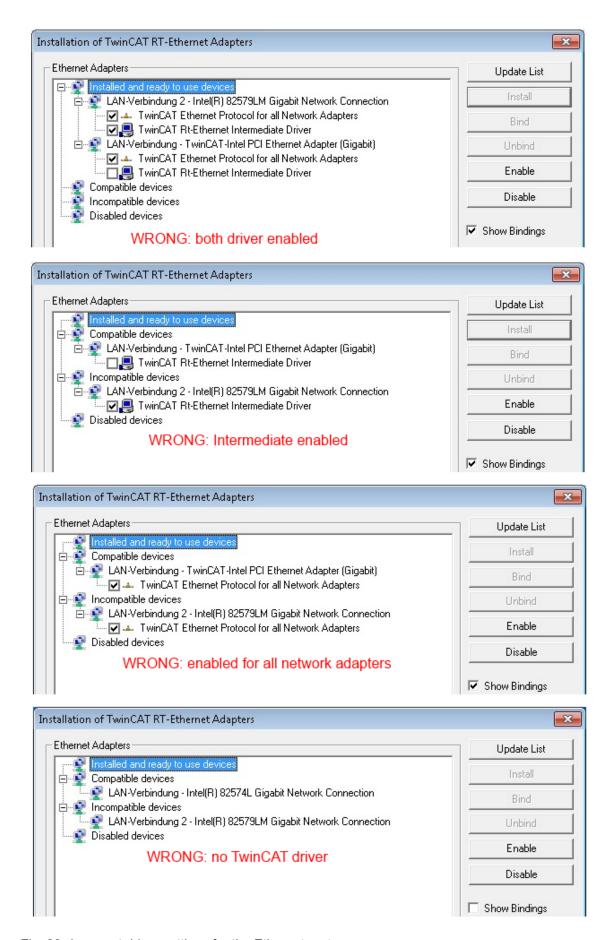


Fig. 83: Incorrect driver settings for the Ethernet port

IP address of the port used

Note

IP address/DHCP

In most cases an Ethernet port that is configured as an EtherCAT device will not transport general IP packets. For this reason and in cases where an EL6601 or similar devices are used it is useful to specify a fixed IP address for this port via the "Internet Protocol TCP/IP" driver setting and to disable DHCP. In this way the delay associated with the DHCP client for the Ethernet port assigning itself a default IP address in the absence of a DHCP server is avoided. A suitable address space is 192.168.x.x, for example.

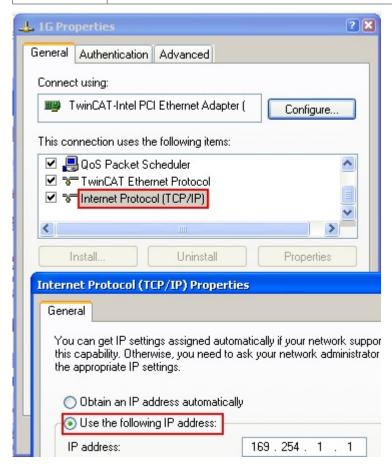


Fig. 84: TCP/IP setting for the Ethernet port

5.2.2 Notes regarding ESI device description

Installation of the latest ESI device description

The TwinCAT EtherCAT master/System Manager needs the device description files for the devices to be used in order to generate the configuration in online or offline mode. The device descriptions are contained in the so-called ESI files (EtherCAT Slave Information) in XML format. These files can be requested from the respective manufacturer and are made available for download. An *.xml file may contain several device descriptions.

The ESI files for Beckhoff EtherCAT devices are available on the <u>Beckhoff website</u>.

The ESI files should be stored in the TwinCAT installation directory.

Default settings:

- TwinCAT 2: C:\TwinCAT\IO\EtherCAT
- TwinCAT 3: C:\TwinCAT\3.1\Config\lo\EtherCAT

The files are read (once) when a new System Manager window is opened, if they have changed since the last time the System Manager window was opened.

A TwinCAT installation includes the set of Beckhoff ESI files that was current at the time when the TwinCAT build was created.

For TwinCAT 2.11/TwinCAT 3 and higher, the ESI directory can be updated from the System Manager, if the programming PC is connected to the Internet; by

- TwinCAT 2: Option → "Update EtherCAT Device Descriptions"
- TwinCAT 3: TwinCAT → EtherCAT Devices → "Update Device Descriptions (via ETG Website)..."

The <u>TwinCAT ESI Updater [83]</u> is available for this purpose.

ESI

The *.xml files are associated with *.xsd files, which describe the structure of the ESI XML files. To update the ESI device descriptions, both file types should therefore be updated.

Device differentiation

EtherCAT devices/slaves are distinguished by four properties, which determine the full device identifier. For example, the device identifier EL2521-0025-1018 consists of:

- · family key "EL"
- name "2521"
- type "0025"
- · and revision "1018"

Fig. 85: Identifier structure

The order identifier consisting of name + type (here: EL2521-0010) describes the device function. The revision indicates the technical progress and is managed by Beckhoff. In principle, a device with a higher revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation. Each revision has its own ESI description. See further notes [> 8].

Online description

If the EtherCAT configuration is created online through scanning of real devices (see section Online setup) and no ESI descriptions are available for a slave (specified by name and revision) that was found, the System Manager asks whether the description stored in the device should be used. In any case, the System Manager needs this information for setting up the cyclic and acyclic communication with the slave correctly.

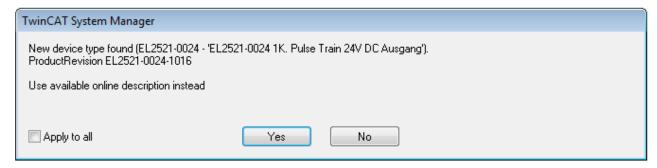


Fig. 86: OnlineDescription information window (TwinCAT 2)

In TwinCAT 3 a similar window appears, which also offers the Web update:

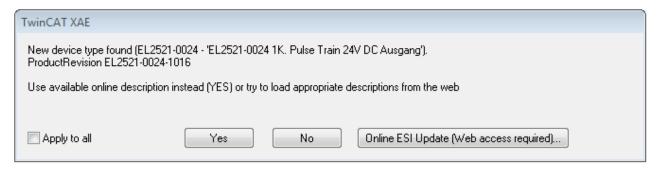


Fig. 87: Information window OnlineDescription (TwinCAT 3)

If possible, the Yes is to be rejected and the required ESI is to be requested from the device manufacturer. After installation of the XML/XSD file the configuration process should be repeated.

Changing the 'usual' configuration through a scan

- ✓ If a scan discovers a device that is not yet known to TwinCAT, distinction has to be made between two cases. Taking the example here of the EL2521-0000 in the revision 1019
- a) no ESI is present for the EL2521-0000 device at all, either for the revision 1019 or for an older revision. The ESI must then be requested from the manufacturer (in this case Beckhoff).
- b) an ESI is present for the EL2521-0000 device, but only in an older revision, e.g. 1018 or 1017
 - In this case an in-house check should first be performed to determine whether the spare parts stock allows the integration of the increased revision into the configuration at all. A new/higher revision usually also brings along new features. If these are not to be used, work can continue without reservations with the previous revision 1018 in the configuration. This is also stated by the Beckhoff compatibility rule.

Refer in particular to the chapter 'General notes on the use of Beckhoff EtherCAT IO components' and for manual configuration to the chapter 'Offline configuration creation' [\ 84].

If the OnlineDescription is used regardless, the System Manager reads a copy of the device description from the EEPROM in the EtherCAT slave. In complex slaves the size of the EEPROM may not be sufficient for the complete ESI, in which case the ESI would be *incomplete* in the configurator. Therefore it's recommended using an offline ESI file with priority in such a case.

The System Manager creates for online recorded device descriptions a new file "OnlineDescription0000...xml" in its ESI directory, which contains all ESI descriptions that were read online.

OnlineDescriptionCache000000002.xml

Fig. 88: File OnlineDescription.xml created by the System Manager

Is a slave desired to be added manually to the configuration at a later stage, online created slaves are indicated by a prepended symbol ">" in the selection list (see Figure "Indication of an online recorded ESI of EL2521 as an example").

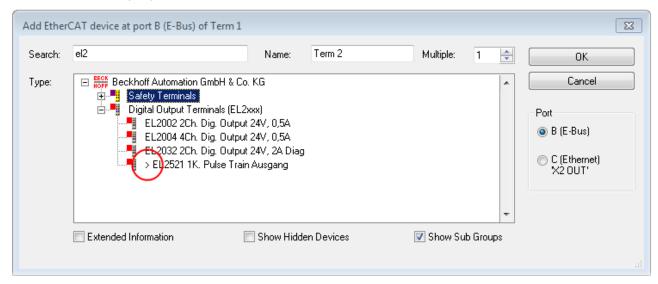
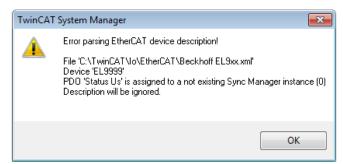


Fig. 89: Indication of an online recorded ESI of EL2521 as an example

If such ESI files are used and the manufacturer's files become available later, the file OnlineDescription.xml should be deleted as follows:

- · close all System Manager windows
- · restart TwinCAT in Config mode
- · delete "OnlineDescription0000...xml"
- · restart TwinCAT System Manager

This file should not be visible after this procedure, if necessary press <F5> to update


OnlineDescription for TwinCAT 3.x

In addition to the file described above "OnlineDescription0000...xml", a so called EtherCAT cache with new discovered devices is created by TwinCAT 3.x, e.g. under Windows 7:

C:\User\[USERNAME]\AppData\Roaming\Beckhoff\TwinCAT3\Components\Base\EtherCATCache.xml (Please note the language settings of the OS!) You have to delete this file, too.

Faulty ESI file

If an ESI file is faulty and the System Manager is unable to read it, the System Manager brings up an information window.

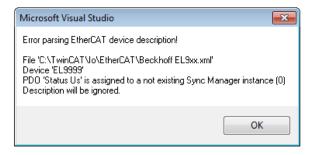


Fig. 90: Information window for faulty ESI file (left: TwinCAT 2; right: TwinCAT 3)

Reasons may include:

- Structure of the *.xml does not correspond to the associated *.xsd file \rightarrow check your schematics
- Contents cannot be translated into a device description \rightarrow contact the file manufacturer

5.2.3 TwinCAT ESI Updater

For TwinCAT 2.11 and higher, the System Manager can search for current Beckhoff ESI files automatically, if an online connection is available:

Fig. 91: Using the ESI Updater (>= TwinCAT 2.11)

The call up takes place under:

"Options" → "Update EtherCAT Device Descriptions"

Selection under TwinCAT 3:

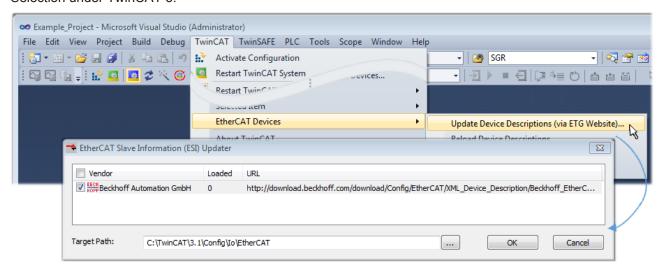


Fig. 92: Using the ESI Updater (TwinCAT 3)

The ESI Updater (TwinCAT 3) is a convenient option for automatic downloading of ESI data provided by EtherCAT manufacturers via the Internet into the TwinCAT directory (ESI = EtherCAT slave information). TwinCAT accesses the central ESI ULR directory list stored at ETG; the entries can then be viewed in the Updater dialog, although they cannot be changed there.

The call up takes place under:

"TwinCAT" → "EtherCAT Devices" → "Update Device Description (via ETG Website)...".

5.2.4 Distinction between Online and Offline

The distinction between online and offline refers to the presence of the actual I/O environment (drives, terminals, EJ-modules). If the configuration is to be prepared in advance of the system configuration as a programming system, e.g. on a laptop, this is only possible in "Offline configuration" mode. In this case all components have to be entered manually in the configuration, e.g. based on the electrical design.

If the designed control system is already connected to the EtherCAT system and all components are energised and the infrastructure is ready for operation, the TwinCAT configuration can simply be generated through "scanning" from the runtime system. This is referred to as online configuration.

In any case, during each startup the EtherCAT master checks whether the slaves it finds match the configuration. This test can be parameterised in the extended slave settings. Refer to <u>note "Installation of</u> the latest ESI-XML device description" [▶ 79].

For preparation of a configuration:

- the real EtherCAT hardware (devices, couplers, drives) must be present and installed
- the devices/modules must be connected via EtherCAT cables or in the terminal/ module strand in the same way as they are intended to be used later

- the devices/modules be connected to the power supply and ready for communication
- TwinCAT must be in CONFIG mode on the target system.

The online scan process consists of:

- detecting the EtherCAT device [89] (Ethernet port at the IPC)
- detecting the connected EtherCAT devices [90]. This step can be carried out independent of the
 preceding step
- troubleshooting [▶ 93]

The scan with existing configuration [> 94] can also be carried out for comparison.

5.2.5 OFFLINE configuration creation

Creating the EtherCAT device

Create an EtherCAT device in an empty System Manager window.

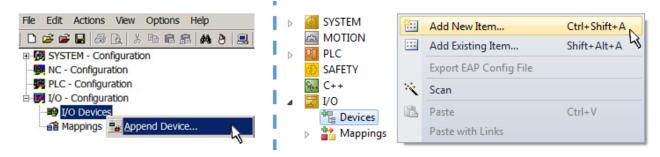


Fig. 93: Append EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)

Select type 'EtherCAT' for an EtherCAT I/O application with EtherCAT slaves. For the present publisher/subscriber service in combination with an EL6601/EL6614 terminal select "EtherCAT Automation Protocol via EL6601".

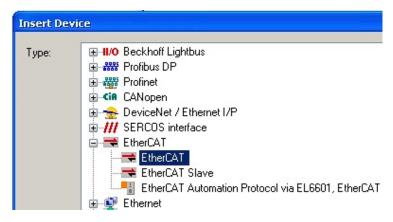


Fig. 94: Selecting the EtherCAT connection (TwinCAT 2.11, TwinCAT 3)

Then assign a real Ethernet port to this virtual device in the runtime system.

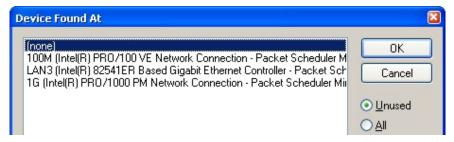


Fig. 95: Selecting the Ethernet port

This query may appear automatically when the EtherCAT device is created, or the assignment can be set/modified later in the properties dialog; see Fig. "EtherCAT device properties (TwinCAT 2)".

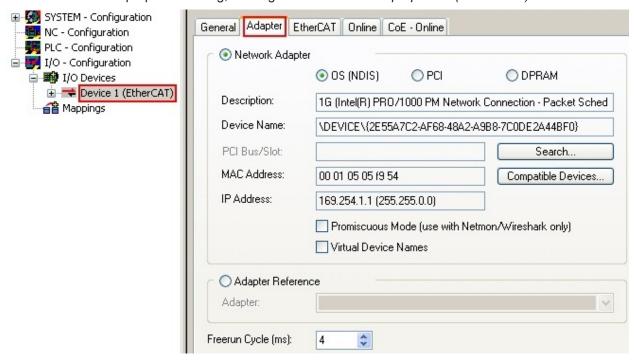
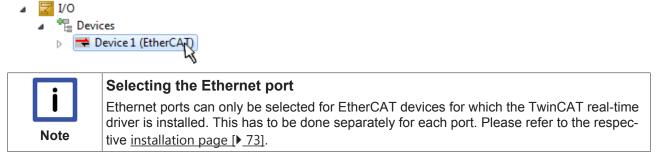



Fig. 96: EtherCAT device properties (TwinCAT 2)

TwinCAT 3: the properties of the EtherCAT device can be opened by double click on "Device .. (EtherCAT)" within the Solution Explorer under "I/O":

Defining EtherCAT slaves

Further devices can be appended by right-clicking on a device in the configuration tree.

Fig. 97: Appending EtherCAT devices (left: TwinCAT 2; right: TwinCAT 3)

The dialog for selecting a new device opens. Only devices for which ESI files are available are displayed.

Only devices are offered for selection that can be appended to the previously selected device. Therefore the physical layer available for this port is also displayed (Fig. "Selection dialog for new EtherCAT device", A). In the case of cable-based Fast-Ethernet physical layer with PHY transfer, then also only cable-based devices are available, as shown in Fig. "Selection dialog for new EtherCAT device". If the preceding device has several free ports (e.g. EK1122 or EK1100), the required port can be selected on the right-hand side (A).

Overview of physical layer

• "Ethernet": cable-based 100BASE-TX: EK couplers, EP boxes, devices with RJ45/M8/M12 connector

• "E-Bus": LVDS "terminal bus", "EJ-module": EL/ES terminals, various modular modules

The search field facilitates finding specific devices (since TwinCAT 2.11 or TwinCAT 3).

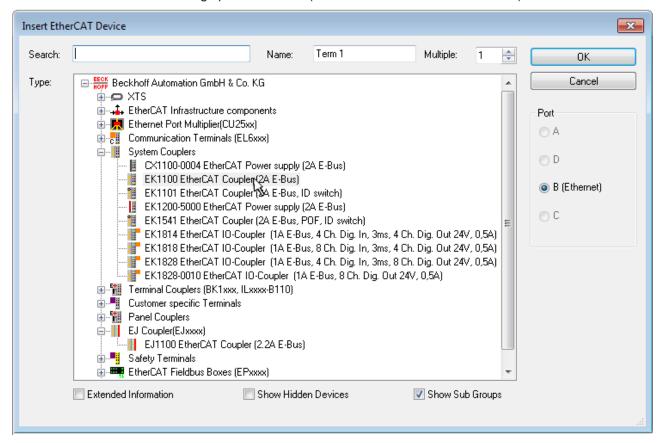


Fig. 98: Selection dialog for new EtherCAT device

By default only the name/device type is used as selection criterion. For selecting a specific revision of the device the revision can be displayed as "Extended Information".

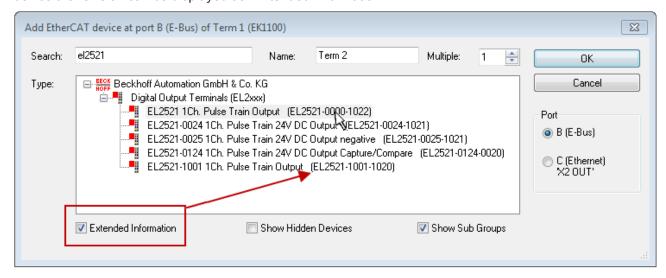


Fig. 99: Display of device revision

In many cases several device revisions were created for historic or functional reasons, e.g. through technological advancement. For simplification purposes (see Fig. "Selection dialog for new EtherCAT device") only the last (i.e. highest) revision and therefore the latest state of production is displayed in the selection dialog for Beckhoff devices. To show all device revisions available in the system as ESI descriptions tick the "Show Hidden Devices" check box, see Fig. "Display of previous revisions".

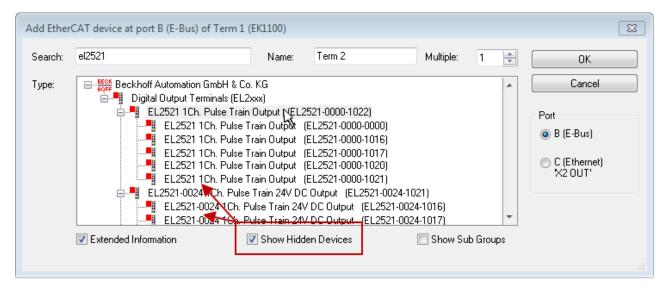


Fig. 100: Display of previous revisions

Device selection based on revision, compatibility

The ESI description also defines the process image, the communication type between master and slave/device and the device functions, if applicable. The physical device (firmware, if available) has to support the communication queries/settings of the master. This is backward compatible, i.e. newer devices (higher revision) should be supported if the EtherCAT master addresses them as an older revision. The following compatibility rule of thumb is to be assumed for Beckhoff EtherCAT Terminals/ Boxes/ EJ-modules:

device revision in the system >= device revision in the configuration

This also enables subsequent replacement of devices without changing the configuration (different specifications are possible for drives).

Example:

If an EL2521-0025-**1018** is specified in the configuration, an EL2521-0025-**1018** or higher (-**1019**, -**1020**) can be used in practice.

Fig. 101: Name/revision of the terminal

If current ESI descriptions are available in the TwinCAT system, the last revision offered in the selection dialog matches the Beckhoff state of production. It is recommended to use the last device revision when creating a new configuration, if current Beckhoff devices are used in the real application. Older revisions should only be used if older devices from stock are to be used in the application.

In this case the process image of the device is shown in the configuration tree and can be parameterised as follows: linking with the task, CoE/DC settings, plug-in definition, startup settings, ...

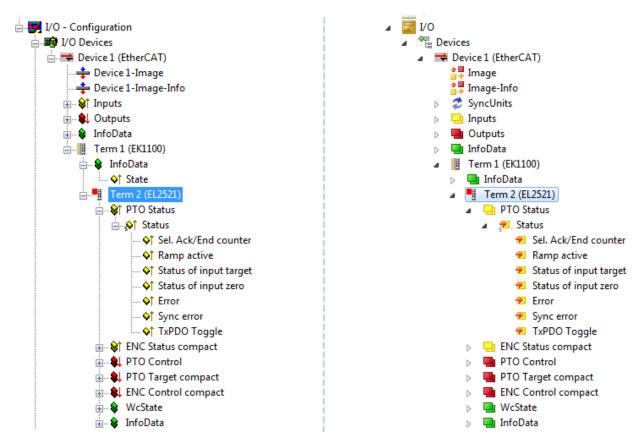


Fig. 102: EtherCAT terminal in the TwinCAT tree (left: TwinCAT 2; right: TwinCAT 3)

5.2.6 ONLINE configuration creation

Detecting/scanning of the EtherCAT device

The online device search can be used if the TwinCAT system is in CONFIG mode. This can be indicated by a symbol right below in the information bar:

- on TwinCAT 2 by a blue display "Config Mode" within the System Manager window: Config Mode
- on TwinCAT 3 within the user interface of the development environment by a symbol 🛂 .

TwinCAT can be set into this mode:

- TwinCAT 2: by selection of in the Menubar or by "Actions" → "Set/Reset TwinCAT to Config Mode..."
- TwinCAT 3: by selection of in the Menubar or by "TwinCAT" → "Restart TwinCAT (Config Mode)"

Online scanning in Config mode

The online search is not available in RUN mode (production operation). Note the differentiation between TwinCAT programming system and TwinCAT target system.

The TwinCAT 2 icon () or TwinCAT 3 icon () within the Windows-Taskbar always shows the TwinCAT mode of the local IPC. Compared to that, the System Manager window of TwinCAT 2 or the user interface of TwinCAT 3 indicates the state of the target system.

Fig. 103: Differentiation local/target system (left: TwinCAT 2; right: TwinCAT 3)

Right-clicking on "I/O Devices" in the configuration tree opens the search dialog.

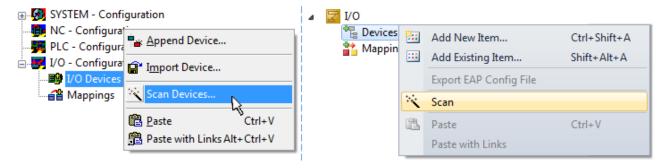


Fig. 104: Scan Devices (left: TwinCAT 2; right: TwinCAT 3)

This scan mode attempts to find not only EtherCAT devices (or Ethernet ports that are usable as such), but also NOVRAM, fieldbus cards, SMB etc. However, not all devices can be found automatically.

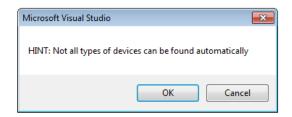


Fig. 105: Note for automatic device scan (left: TwinCAT 2; right: TwinCAT 3)

Ethernet ports with installed TwinCAT real-time driver are shown as "RT Ethernet" devices. An EtherCAT frame is sent to these ports for testing purposes. If the scan agent detects from the response that an EtherCAT slave is connected, the port is immediately shown as an "EtherCAT Device".

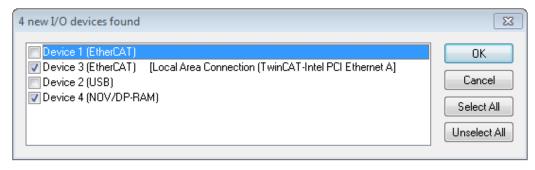


Fig. 106: Detected Ethernet devices

Via respective checkboxes devices can be selected (as illustrated in Fig. "Detected Ethernet devices" e.g. Device 3 and Device 4 were chosen). After confirmation with "OK" a device scan is suggested for all selected devices, see Fig.: "Scan query after automatic creation of an EtherCAT device".

Note

Selecting the Ethernet port

Ethernet ports can only be selected for EtherCAT devices for which the TwinCAT real-time driver is installed. This has to be done separately for each port. Please refer to the respective installation page [> 73].

Detecting/Scanning the EtherCAT devices

Online scan functionality

During a scan the master queries the identity information of the EtherCAT slaves from the slave EEPROM. The name and revision are used for determining the type. The respective devices are located in the stored ESI data and integrated in the configuration tree in the default state defined there.

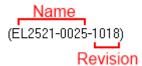


Fig. 107: Example default state

Slave scanning in practice in series machine production

The scanning function should be used with care. It is a practical and fast tool for creating an initial configuration as a basis for commissioning. In series machine production or reproduction of the plant, however, the function should no longer be used for the creation of the configuration, but if necessary for comparison [> 94] with the defined initial configuration. Background: since Beckhoff occasionally increases the revision version of the delivered products for product maintenance reasons, a configuration can be created by such a scan which (with an identical machine construction) is identical according to the device list; however, the respective device revision may differ from the initial configuration.

Example:

Company A builds the prototype of a machine B, which is to be produced in series later on. To do this the prototype is built, a scan of the IO devices is performed in TwinCAT and the initial configuration 'B.tsm' is created. The EL2521-0025 EtherCAT terminal with the revision 1018 is located somewhere. It is thus built into the TwinCAT configuration in this way:

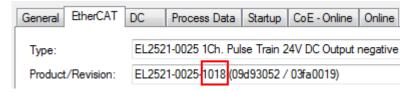


Fig. 108: Installing EthetCAT terminal with revision -1018

Likewise, during the prototype test phase, the functions and properties of this terminal are tested by the programmers/commissioning engineers and used if necessary, i.e. addressed from the PLC 'B.pro' or the NC. (the same applies correspondingly to the TwinCAT 3 solution files).

The prototype development is now completed and series production of machine B starts, for which Beckhoff continues to supply the EL2521-0025-0018. If the commissioning engineers of the series machine production department always carry out a scan, a B configuration with the identical contents results again for each machine. Likewise, A might create spare parts stores worldwide for the coming series-produced machines with EL2521-0025-1018 terminals.

After some time Beckhoff extends the EL2521-0025 by a new feature C. Therefore the FW is changed, outwardly recognizable by a higher FW version and **a new revision -1019**. Nevertheless the new device naturally supports functions and interfaces of the predecessor version(s); an adaptation of 'B.tsm' or even 'B.pro' is therefore unnecessary. The series-produced machines can continue to be built with 'B.tsm' and 'B.pro'; it makes sense to perform a <u>comparative scan [> 94]</u> against the initial configuration 'B.tsm' in order to check the built machine.

However, if the series machine production department now doesn't use 'B.tsm', but instead carries out a scan to create the productive configuration, the revision **-1019** is automatically detected and built into the configuration:

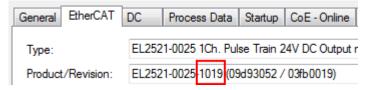


Fig. 109: Detection of EtherCAT terminal with revision -1019

This is usually not noticed by the commissioning engineers. TwinCAT cannot signal anything either, since virtually a new configuration is created. According to the compatibility rule, however, this means that no EL2521-0025-**1018** should be built into this machine as a spare part (even if this nevertheless works in the vast majority of cases).

In addition, it could be the case that, due to the development accompanying production in company A, the new feature C of the EL2521-0025-1019 (for example, an improved analog filter or an additional process data for the diagnosis) is discovered and used without in-house consultation. The previous stock of spare part devices are then no longer to be used for the new configuration 'B2.tsm' created in this way.Þ if series machine production is established, the scan should only be performed for informative purposes for comparison with a defined initial configuration. Changes are to be made with care!

If an EtherCAT device was created in the configuration (manually or through a scan), the I/O field can be scanned for devices/slaves.

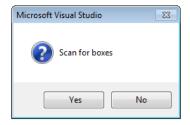


Fig. 110: Scan query after automatic creation of an EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)

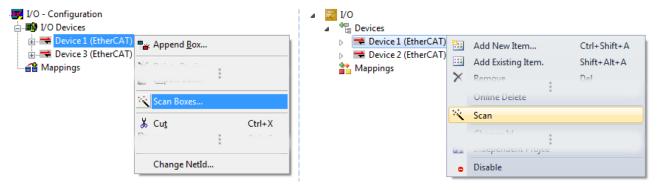


Fig. 111: Manual triggering of a device scan on a specified EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)

In the System Manager (TwinCAT 2) or the User Interface (TwinCAT 3) the scan process can be monitored via the progress bar at the bottom in the status bar.

Fig. 112: Scan progressexemplary by TwinCAT 2

The configuration is established and can then be switched to online state (OPERATIONAL).

Fig. 113: Config/FreeRun query (left: TwinCAT 2; right: TwinCAT 3)

In Config/FreeRun mode the System Manager display alternates between blue and red, and the EtherCAT device continues to operate with the idling cycle time of 4 ms (default setting), even without active task (NC, PLC).

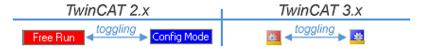


Fig. 114: Displaying of "Free Run" and "Config Mode" toggling right below in the status bar

Fig. 115: TwinCAT can also be switched to this state by using a button (left: TwinCAT 2; right: TwinCAT 3)

The EtherCAT system should then be in a functional cyclic state, as shown in Fig. "Online display example".

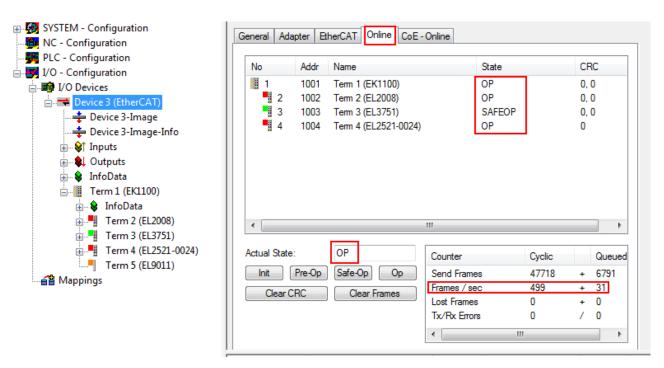


Fig. 116: Online display example

Please note:

- · all slaves should be in OP state
- · the EtherCAT master should be in "Actual State" OP
- · "frames/sec" should match the cycle time taking into account the sent number of frames
- · no excessive "LostFrames" or CRC errors should occur

The configuration is now complete. It can be modified as described under manual procedure [> 84].

Troubleshooting

Various effects may occur during scanning.

- An **unknown device** is detected, i.e. an EtherCAT slave for which no ESI XML description is available. In this case the System Manager offers to read any ESI that may be stored in the device. This case is described in the chapter "Notes regarding ESI device description".
- · Device are not detected properly

Possible reasons include:

- faulty data links, resulting in data loss during the scan
- slave has invalid device description

The connections and devices should be checked in a targeted manner, e.g. via the emergency scan. Then re-run the scan.

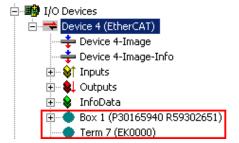


Fig. 117: Faulty identification

In the System Manager such devices may be set up as EK0000 or unknown devices. Operation is not possible or meaningful.

Scan over existing Configuration

Change of the configuration after comparison

With this scan (TwinCAT 2.11 or 3.1) only the device properties vendor (manufacturer), device name and revision are compared at present! A 'ChangeTo' or 'Copy' should only be carried out with care, taking into consideration the Beckhoff IO compatibility rule (see above). The device configuration is then replaced by the revision found; this can affect the supported process data and functions.

If a scan is initiated for an existing configuration, the actual I/O environment may match the configuration exactly or it may differ. This enables the configuration to be compared.

Fig. 118: Identical configuration (left: TwinCAT 2; right: TwinCAT 3)

If differences are detected, they are shown in the correction dialog, so that the user can modify the configuration as required.

Fig. 119: Correction dialog

It is advisable to tick the "Extended Information" check box to reveal differences in the revision.

Colour	Explanation
green	This EtherCAT slave matches the entry on the other side. Both type and revision match.
blue	This EtherCAT slave is present on the other side, but in a different revision. This other revision can have other default values for the process data as well as other/additional functions. If the found revision is higher than the configured revision, the slave may be used provided compatibility issues are taken into account.
	If the found revision is lower than the configured revision, it is likely that the slave cannot be used. The found device may not support all functions that the master expects based on the higher revision number.
light blue	This EtherCAT slave is ignored ("Ignore" button)
red	This EtherCAT slave is not present on the other side.
	 It is present, but in a different revision, which also differs in its properties from the one specified. The compatibility principle then also applies here: if the found revision is higher than the configured revision, use is possible provided compatibility issues are taken into account, since the successor devices should support the functions of the predecessor devices. If the found revision is lower than the configured revision, it is likely that the slave cannot be used. The found device may not support all functions that the master expects based on the higher revision number.

Note

Device selection based on revision, compatibility

The ESI description also defines the process image, the communication type between master and slave/device and the device functions, if applicable. The physical device (firmware, if available) has to support the communication queries/settings of the master. This is backward compatible, i.e. newer devices (higher revision) should be supported if the EtherCAT master addresses them as an older revision. The following compatibility rule of thumb is to be assumed for Beckhoff EtherCAT Terminals/ Boxes/ EJ-modules:

device revision in the system >= device revision in the configuration

This also enables subsequent replacement of devices without changing the configuration (different specifications are possible for drives).

Example:

If an EL2521-0025-**1018** is specified in the configuration, an EL2521-0025-**1018** or higher (-**1019**, -**1020**) can be used in practice.

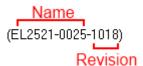


Fig. 120: Name/revision of the terminal

If current ESI descriptions are available in the TwinCAT system, the last revision offered in the selection dialog matches the Beckhoff state of production. It is recommended to use the last device revision when creating a new configuration, if current Beckhoff devices are used in the real application. Older revisions should only be used if older devices from stock are to be used in the application.

In this case the process image of the device is shown in the configuration tree and can be parameterised as follows: linking with the task, CoE/DC settings, plug-in definition, startup settings, ...

EL252x Version: 3.6 95

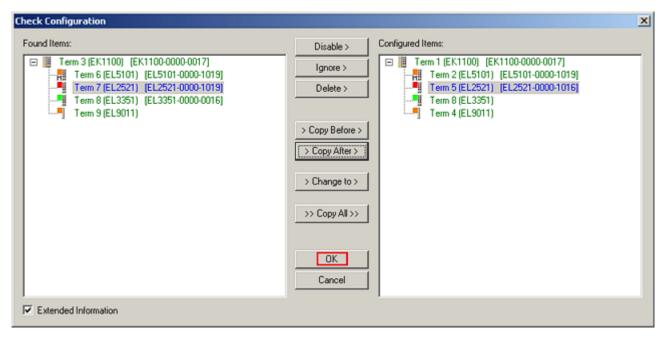


Fig. 121: Correction dialog with modifications

Once all modifications have been saved or accepted, click "OK" to transfer them to the real *.tsm configuration.

Change to Compatible Type

TwinCAT offers a function "Change to Compatible Type..." for the exchange of a device whilst retaining the links in the task.

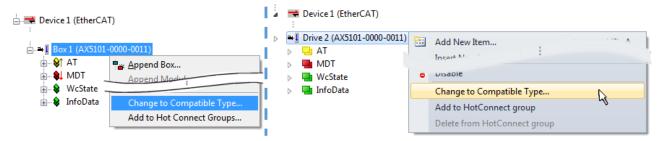


Fig. 122: Dialog "Change to Compatible Type..." (left: TwinCAT 2; right: TwinCAT 3)

This function is preferably to be used on AX5000 devices.

Change to Alternative Type

The TwinCAT System Manager offers a function for the exchange of a device: Change to Alternative Type

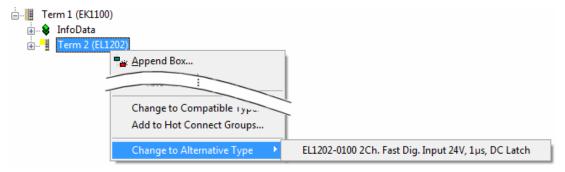


Fig. 123: TwinCAT 2 Dialog Change to Alternative Type

If called, the System Manager searches in the procured device ESI (in this example: EL1202-0000) for details of compatible devices contained there. The configuration is changed and the ESI-EEPROM is overwritten at the same time – therefore this process is possible only in the online state (ConfigMode).

5.2.7 EtherCAT subscriber configuration

In the left-hand window of the TwinCAT 2 System Manager or the Solution Explorer of the TwinCAT 3 Development Environment respectively, click on the element of the terminal within the tree you wish to configure (in the example: EL3751 Terminal 3).

Fig. 124: Branch element as terminal EL3751

In the right-hand window of the TwinCAT System manager (TwinCAT 2) or the Development Environment (TwinCAT 3), various tabs are now available for configuring the terminal. And yet the dimension of complexity of a subscriber determines which tabs are provided. Thus as illustrated in the example above the terminal EL3751 provides many setup options and also a respective number of tabs are available. On the contrary by the terminal EL1004 for example the tabs "General", "EtherCAT", "Process Data" and "Online" are available only. Several terminals, as for instance the EL6695 provide special functions by a tab with its own terminal name, so "EL6695" in this case. A specific tab "Settings" by terminals with a wide range of setup options will be provided also (e.g. EL3751).

"General" tab

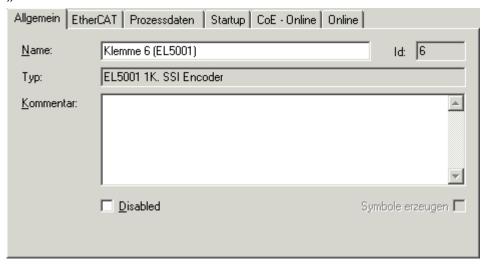


Fig. 125: "General" tab

NameName of the EtherCAT deviceIdNumber of the EtherCAT deviceTypeEtherCAT device typeCommentHere you can add a comment (e.g. regarding the

system).

Disabled Here you can deactivate the EtherCAT device.

Create symbols Access to this EtherCAT slave via ADS is only

Access to this EtherCAT slave via ADS is only available if this control box is activated.

EL252x Version: 3.6 97

"EtherCAT" tab

Allgemein EtherCAT	Prozessdaten Startup	CoE - Online Online
Тур:	EL5001 1K. SSI Encoder	
Produkt / Revision:	EL5001-0000-0000	
Auto-Inc-Adresse:	FFFB	
EtherCAT-Adresse:	1006	Weitere Einstellungen
Vorgänger-Port:	Klemme 5 (EL5001) - B	▽
http://www.beckhoff.de/german/default.htm?EtherCAT/EL5001.htm		

Fig. 126: "EtherCAT" tab

Type EtherCAT device type

Product/Revision Product and revision number of the EtherCAT device

Auto Inc Addr.

Auto increment address of the EtherCAT device. The auto increment address can be used for addressing each EtherCAT device in the communication ring through its physical position. Auto increment addressing is used during the start-up phase when the EtherCAT master allocates addresses to the EtherCAT devices. With auto increment addressing the first EtherCAT slave in the ring has the address 0000_{hex}. For each further slave the address is

decremented by 1 (FFFF_{hex}, FFFE_{hex} etc.).

Fixed address of an EtherCAT slave. This address is allocated by the EtherCAT master during the start-up phase. Tick the control box to the left of the input field

in order to modify the default value.

Previous Port

Name and port of the EtherCAT device to which this device is connected. If it is possible to connect this device with another one without changing the order of the EtherCAT devices in the communication ring, then this combination field is activated and the EtherCAT device to which this device is to be

connected can be selected.

Advanced Settings This button opens the dialogs for advanced settings.

The link at the bottom of the tab points to the product page for this EtherCAT device on the web.

"Process Data" tab

EtherCAT Addr.

Indicates the configuration of the process data. The input and output data of the EtherCAT slave are represented as CANopen process data objects (Process Data Objects, PDOs). The user can select a PDO via PDO assignment and modify the content of the individual PDO via this dialog, if the EtherCAT slave supports this function.

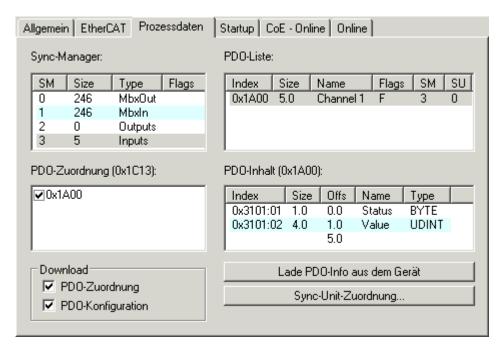


Fig. 127: "Process Data" tab

The process data (PDOs) transferred by an EtherCAT slave during each cycle are user data which the application expects to be updated cyclically or which are sent to the slave. To this end the EtherCAT master (Beckhoff TwinCAT) parameterizes each EtherCAT slave during the start-up phase to define which process data (size in bits/bytes, source location, transmission type) it wants to transfer to or from this slave. Incorrect configuration can prevent successful start-up of the slave.

For Beckhoff EtherCAT EL, ES, EM, EJ and EP slaves the following applies in general:

- The input/output process data supported by the device are defined by the manufacturer in the ESI/XML description. The TwinCAT EtherCAT Master uses the ESI description to configure the slave correctly.
- The process data can be modified in the system manager. See the device documentation. Examples of modifications include: mask out a channel, displaying additional cyclic information, 16-bit display instead of 8-bit data size, etc.
- In so-called "intelligent" EtherCAT devices the process data information is also stored in the CoE directory. Any changes in the CoE directory that lead to different PDO settings prevent successful startup of the slave. It is not advisable to deviate from the designated process data, because the device firmware (if available) is adapted to these PDO combinations.

If the device documentation allows modification of process data, proceed as follows (see Figure "Configuring the process data").

- · A: select the device to configure
- B: in the "Process Data" tab select Input or Output under SyncManager (C)
- · D: the PDOs can be selected or deselected
- H: the new process data are visible as linkable variables in the system manager
 The new process data are active once the configuration has been activated and TwinCAT has been restarted (or the EtherCAT master has been restarted)
- E: if a slave supports this, Input and Output PDO can be modified simultaneously by selecting a so-called PDO record ("predefined PDO settings").

EL252x Version: 3.6 99

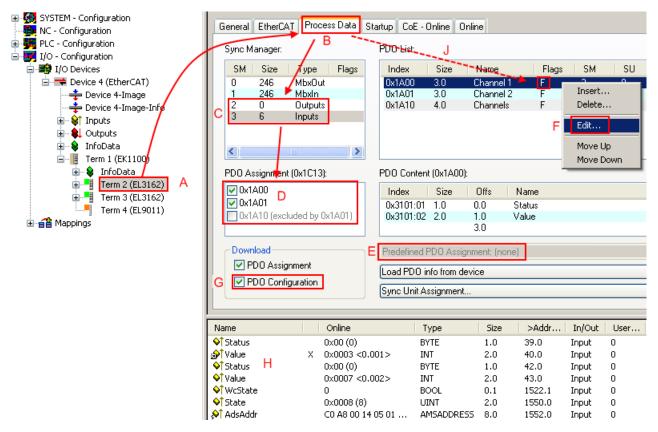


Fig. 128: Configuring the process data

Manual modification of the process data

According to the ESI description, a PDO can be identified as "fixed" with the flag "F" in the PDO overview (Fig. "Configuring the process data", J). The configuration of such PDOs cannot be changed, even if TwinCAT offers the associated dialog ("Edit"). In particular, CoE content cannot be displayed as cyclic process data. This generally also applies in cases where a device supports download of the PDO configuration, "G". In case of incorrect configuration the EtherCAT slave usually refuses to start and change to OP state. The System Manager displays an "invalid SM cfg" logger message: This error message ("invalid SM IN cfg" or "invalid SM OUT cfg") also indicates the reason for the failed start.

A detailed description [105] can be found at the end of this section.

"Startup" tab

The Startup tab is displayed if the EtherCAT slave has a mailbox and supports the CANopen over EtherCAT (CoE) or Servo drive over EtherCAT protocol. This tab indicates which download requests are sent to the mailbox during startup. It is also possible to add new mailbox requests to the list display. The download requests are sent to the slave in the same order as they are shown in the list.

Fig. 129: "Startup" tab

Column	Description
Transition	Transition to which the request is sent. This can either be
	 the transition from pre-operational to safe-operational (PS), or
	 the transition from safe-operational to operational (SO).
	If the transition is enclosed in "<>" (e.g. <ps>), the mailbox request is fixed and cannot be modified or deleted by the user.</ps>
Protocol	Type of mailbox protocol
Index	Index of the object
Data	Date on which this object is to be downloaded.
Comment	Description of the request to be sent to the mailbox

Move Up	This button moves the selected request up by one position in the list.
Move Down	This button moves the selected request down by one position in the list.
New	This button adds a new mailbox download request to be sent during startup.
Delete	This button deletes the selected entry.
Edit	This button edits an existing request.

"CoE - Online" tab

The additional *CoE - Online* tab is displayed if the EtherCAT slave supports the *CANopen over EtherCAT* (CoE) protocol. This dialog lists the content of the object list of the slave (SDO upload) and enables the user to modify the content of an object from this list. Details for the objects of the individual EtherCAT devices can be found in the device-specific object descriptions.

EL252x Version: 3.6 101

Fig. 130: "CoE - Online" tab

Object list display

Column	Descripti	on	
Index	Index and	Index and sub-index of the object	
Name	Name of the object		
Flags	RW	The object can be read, and data can be written to the object (read/write)	
	RO	The object can be read, but no data can be written to the object (read only)	
	Р	An additional P identifies the object as a process data object.	
Value	Value of the object		

Update List

Auto Update

Advanced

The *Update list* button updates all objects in the displayed list

If this check box is selected, the content of the objects is updated automatically.

The *Advanced* button opens the *Advanced Settings* dialog. Here you can specify which objects are displayed in the list.

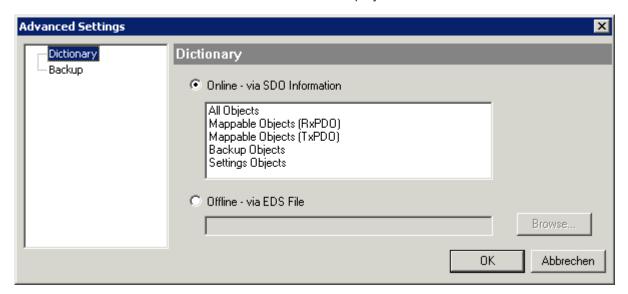


Fig. 131: Dialog "Advanced settings"

Online - via SDO Information	If this option button is selected, the list of the objects included in the object list of the slave is uploaded from the slave via SDO information. The list below can be used to specify which object types are to be uploaded.
Offline - via EDS File	If this option button is selected, the list of the objects included in the object list is read from an EDS file provided by the user.

EL252x Version: 3.6 103

"Online" tab

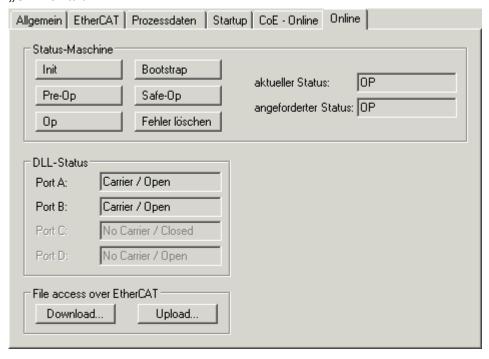


Fig. 132: "Online" tab

State Machine

Init	This button attempts to set the EtherCAT device to the <i>Init</i> state.
Pre-Op	This button attempts to set the EtherCAT device to the <i>pre-operational</i> state.
Ор	This button attempts to set the EtherCAT device to the <i>operational</i> state.
Bootstrap	This button attempts to set the EtherCAT device to the <i>Bootstrap</i> state.
Safe-Op	This button attempts to set the EtherCAT device to the <i>safe-operational</i> state.
Clear Error	This button attempts to delete the fault display. If an EtherCAT slave fails during change of state it sets an error flag.
	Example: An EtherCAT slave is in PREOP state (preoperational). The master now requests the SAFEOP

Current State Requested State state (safe-operational). If the slave fails during change of state it sets the error flag. The current state is now displayed as ERR PREOP. When the *Clear Error* button is pressed the error flag is cleared, and the current state is displayed as PREOP again.

Indicates the current state of the EtherCAT device.

Indicates the state requested for the EtherCAT device.

DLL Status

Indicates the DLL status (data link layer status) of the individual ports of the EtherCAT slave. The DLL status can have four different states:

Status	Description
No Carrier / Open	No carrier signal is available at the port, but the port is open.
No Carrier / Closed	No carrier signal is available at the port, and the port is closed.
Carrier / Open	A carrier signal is available at the port, and the port is open.
Carrier / Closed	A carrier signal is available at the port, but the port is closed.

File Access over EtherCAT

Download

With this button a file can be written to the EtherCAT device.

Upload

With this button a file can be read from the EtherCAT device.

"DC" tab (Distributed Clocks)

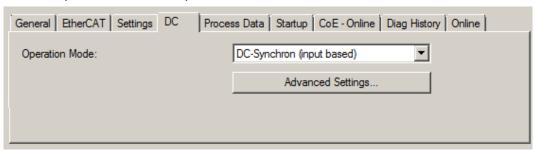


Fig. 133: "DC" tab (Distributed Clocks)

Operation Mode Options (optional):

- FreeRun
- SM-Synchron
- · DC-Synchron (Input based)
- DC-Synchron

Advanced Settings... Advanced settings for readjustment of the real time determinant TwinCAT-

clock

Detailed information to Distributed Clocks are specified on http://infosys.beckhoff.com:

 $\textbf{Fieldbus Components} \rightarrow \textbf{EtherCAT Terminals} \rightarrow \textbf{EtherCAT System documentation} \rightarrow \textbf{EtherCAT basics} \rightarrow \textbf{Distributed Clocks}$

5.2.7.1 Detailed description of Process Data tab

Sync Manager

Lists the configuration of the Sync Manager (SM).

If the EtherCAT device has a mailbox, SM0 is used for the mailbox output (MbxOut) and SM1 for the mailbox input (MbxIn).

SM2 is used for the output process data (outputs) and SM3 (inputs) for the input process data.

If an input is selected, the corresponding PDO assignment is displayed in the PDO Assignment list below.

PDO Assignment

PDO assignment of the selected Sync Manager. All PDOs defined for this Sync Manager type are listed here:

EL252x Version: 3.6 105

- If the output Sync Manager (outputs) is selected in the Sync Manager list, all RxPDOs are displayed.
- If the input Sync Manager (inputs) is selected in the Sync Manager list, all TxPDOs are displayed.

The selected entries are the PDOs involved in the process data transfer. In the tree diagram of the System Manager these PDOs are displayed as variables of the EtherCAT device. The name of the variable is identical to the Name parameter of the PDO, as displayed in the PDO list. If an entry in the PDO assignment list is deactivated (not selected and greyed out), this indicates that the input is excluded from the PDO assignment. In order to be able to select a greyed out PDO, the currently selected PDO has to be deselected first.

Note

Activation of PDO assignment

- ✓ If you have changed the PDO assignment, in order to activate the new PDO assignment.
- a) the EtherCAT slave has to run through the PS status transition cycle (from pre-operational to safe-operational) once (see Online tab [▶ 104]),
- b) and the System Manager has to reload the EtherCAT slaves

button for TwinCAT 2 or button for TwinCAT 3)

PDO list

List of all PDOs supported by this EtherCAT device. The content of the selected PDOs is displayed in the PDO Content list. The PDO configuration can be modified by double-clicking on an entry.

Column	Descript	tion	
Index	PDO ind	PDO index.	
Size	Size of th	he PDO in bytes.	
Name	If this PD	Name of the PDO. If this PDO is assigned to a Sync Manager, it appears as a variable of the slave with this parameter as the name.	
Flags	F	Fixed content: The content of this PDO is fixed and cannot be changed by the System Manager.	
	M	Mandatory PDO. This PDO is mandatory and must therefore be assigned to a Sync Manager! Consequently, this PDO cannot be deleted from the PDO Assignment list	
SM	Sync Manager to which this PDO is assigned. If this entry is empty, this PDO does not take part in the process data traffic.		
SU	Sync unit to which this PDO is assigned.		

PDO Content

Indicates the content of the PDO. If flag F (fixed content) of the PDO is not set the content can be modified.

Download

If the device is intelligent and has a mailbox, the configuration of the PDO and the PDO assignments can be downloaded to the device. This is an optional feature that is not supported by all EtherCAT slaves.

PDO Assignment

If this check box is selected, the PDO assignment that is configured in the PDO Assignment list is downloaded to the device on startup. The required commands to be sent to the device can be viewed in the <u>Startup</u> [▶ 100] tab.

PDO Configuration

If this check box is selected, the configuration of the respective PDOs (as shown in the PDO list and the PDO Content display) is downloaded to the EtherCAT slave.

5.3 General Notes - EtherCAT Slave Application

This summary briefly deals with a number of aspects of EtherCAT Slave operation under TwinCAT. More detailed information on this may be found in the corresponding sections of, for instance, the <u>EtherCAT</u><u>System Documentation</u>.

Diagnosis in real time: WorkingCounter, EtherCAT State and Status

Generally speaking an EtherCAT Slave provides a variety of diagnostic information that can be used by the controlling task.

This diagnostic information relates to differing levels of communication. It therefore has a variety of sources, and is also updated at various times.

Any application that relies on I/O data from a fieldbus being correct and up to date must make diagnostic access to the corresponding underlying layers. EtherCAT and the TwinCAT System Manager offer comprehensive diagnostic elements of this kind. Those diagnostic elements that are helpful to the controlling task for diagnosis that is accurate for the current cycle when in operation (not during commissioning) are discussed below.

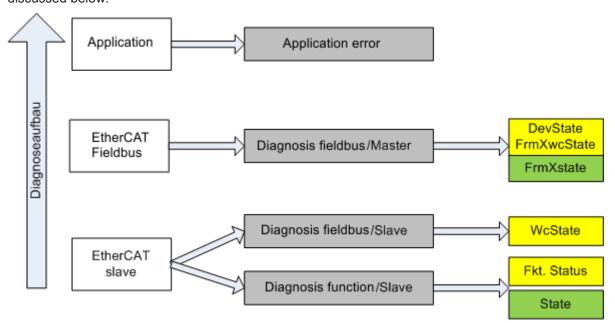


Fig. 134: Selection of the diagnostic information of an EtherCAT Slave

In general, an EtherCAT Slave offers

 communication diagnosis typical for a slave (diagnosis of successful participation in the exchange of process data, and correct operating mode)
 This diagnosis is the same for all slaves.

as well as

function diagnosis typical for a channel (device-dependent)
 See the corresponding device documentation

The colors in Fig. "Selection of the diagnostic information of an EtherCAT Slave" also correspond to the variable colors in the System Manager, see Fig. "Basic EtherCAT Slave Diagnosis in the PLC".

Colour	Meaning
yellow	Input variables from the Slave to the EtherCAT Master, updated in every cycle
red	Output variables from the Slave to the EtherCAT Master, updated in every cycle
green	Information variables for the EtherCAT Master that are updated acyclically. This means that it is possible that in any particular cycle they do not represent the latest possible status. It is therefore useful to read such variables through ADS.

Fig. "Basic EtherCAT Slave Diagnosis in the PLC" shows an example of an implementation of basic EtherCAT Slave Diagnosis. A Beckhoff EL3102 (2-channel analogue input terminal) is used here, as it offers both the communication diagnosis typical of a slave and the functional diagnosis that is specific to a channel. Structures are created as input variables in the PLC, each corresponding to the process image.

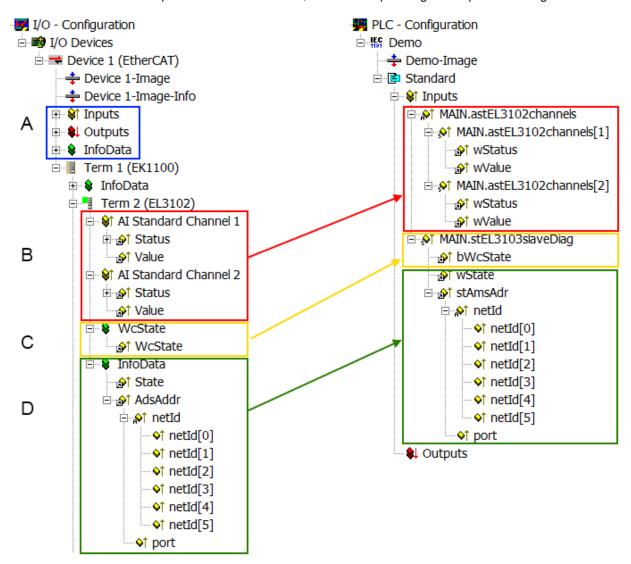


Fig. 135: Basic EtherCAT Slave Diagnosis in the PLC

The following aspects are covered here:

Code	Function	Implementation	Application/evaluation
A	The EtherCAT Master's diagnostic information		At least the DevState is to be evaluated for the most recent cycle in the PLC.
	updated acyclically (yellow) or provided acyclically (green).		The EtherCAT Master's diagnostic information offers many more possibilities than are treated in the EtherCAT System Documentation. A few keywords:
			CoE in the Master for communication with/through the Slaves
			Functions from TcEtherCAT.lib
			Perform an OnlineScan
В	In the example chosen (EL3102) the EL3102 comprises two analogue input channels that transmit a single function status for the most recent cycle.	the bit significations may be found in the device documentation other devices may supply more information, or none that is typical of a slave	In order for the higher-level PLC task (or corresponding control applications) to be able to rely on correct data, the function status must be evaluated there. Such information is therefore provided with the process data for the most recent cycle.
С	For every EtherCAT Slave that has cyclic process data, the Master displays, using what is known as a WorkingCounter, whether the slave is participating successfully and without error in the cyclic exchange of process data. This important, elementary information is therefore provided for the most recent cycle in the System Manager 1. at the EtherCAT Slave, and, with identical contents 2. as a collective variable at the EtherCAT Master (see Point A) for linking.	WcState (Working Counter) 0: valid real-time communication in the last cycle 1: invalid real-time communication This may possibly have effects on the process data of other Slaves that are located in the same SyncUnit	In order for the higher-level PLC task (or corresponding control applications) to be able to rely on correct data, the communication status of the EtherCAT Slave must be evaluated there. Such information is therefore provided with the process data for the most recent cycle.
D	Diagnostic information of the EtherCAT Master which, while it is represented at the slave for linking, is actually determined by the Master for the Slave concerned and represented there. This information cannot be characterized as real-time, because it • is only rarely/never changed, except when the system starts up • is itself determined acyclically (e.g. EtherCAT Status)	State current Status (INITOP) of the Slave. The Slave must be in OP (=8) when operating normally. AdsAddr The ADS address is useful for communicating from the PLC/task via ADS with the EtherCAT Slave, e.g. for reading/writing to the CoE. The AMS-NetID of a slave corre- sponds to the AMS-NetID of the EtherCAT Master; communication with the individual Slave is possible via the port (= EtherCAT address).	Information variables for the EtherCAT Master that are updated acyclically. This means that it is possible that in any particular cycle they do not represent the latest possible status. It is therefore possible to read such variables through ADS.

Diagnostic information

It is strongly recommended that the diagnostic information made available is evaluated so that the application can react accordingly.

CoE Parameter Directory

The CoE parameter directory (CanOpen-over-EtherCAT) is used to manage the set values for the slave concerned. Changes may, in some circumstances, have to be made here when commissioning a relatively complex EtherCAT Slave. It can be accessed through the TwinCAT System Manager, see Fig. "EL3102, CoE directory":

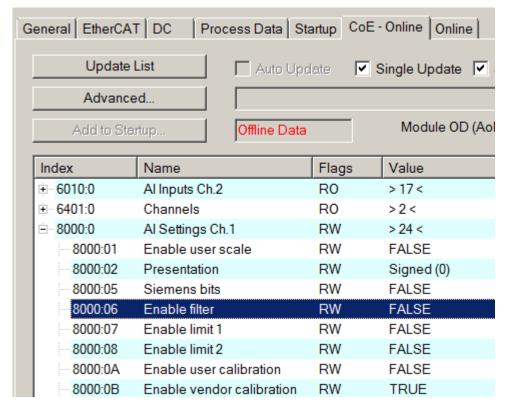


Fig. 136: EL3102, CoE directory

EtherCAT System Documentation

The comprehensive description in the <u>EtherCAT Basics Coefficient</u> Interface) must be observed!

A few brief extracts:

- Whether changes in the online directory are saved locally in the slave depends on the device. EL terminals (except the EL66xx) are able to save in this way.
- The user must manage the changes to the StartUp list.

Commissioning aid in the TwinCAT System Manager

Commissioning interfaces are being introduced as part of an ongoing process for EL/EP EtherCAT devices. These are available in TwinCAT System Managers from TwinCAT 2.11R2 and above. They are integrated into the System Manager through appropriately extended ESI configuration files.

Fig. 137: Example of commissioning aid for a EL3204

This commissioning process simultaneously manages

- · CoE Parameter Directory
- · DC/FreeRun mode
- · the available process data records (PDO)

Although the "Process Data", "DC", "Startup" and "CoE-Online" that used to be necessary for this are still displayed, it is recommended that, if the commissioning aid is used, the automatically generated settings are not changed by it.

The commissioning tool does not cover every possible application of an EL/EP device. If the available setting options are not adequate, the user can make the DC, PDO and CoE settings manually, as in the past.

EtherCAT State: automatic default behaviour of the TwinCAT System Manager and manual operation

After the operating power is switched on, an EtherCAT Slave must go through the following statuses

- INIT
- PREOP
- SAFEOP
- OP

to ensure sound operation. The EtherCAT Master directs these statuses in accordance with the initialization routines that are defined for commissioning the device by the ES/XML and user settings (Distributed Clocks (DC), PDO, CoE). See also the section on "Principles of <u>Communication, EtherCAT State Machine [> 20]</u>" in this connection. Depending how much configuration has to be done, and on the overall communication, booting can take up to a few seconds.

The EtherCAT Master itself must go through these routines when starting, until it has reached at least the OP target state.

The target state wanted by the user, and which is brought about automatically at start-up by TwinCAT, can be set in the System Manager. As soon as TwinCAT reaches the status RUN, the TwinCAT EtherCAT Master will approach the target states.

Standard setting

The advanced settings of the EtherCAT Master are set as standard:

- · EtherCAT Master: OP
- Slaves: OP
 This setting applies equally to all Slaves.

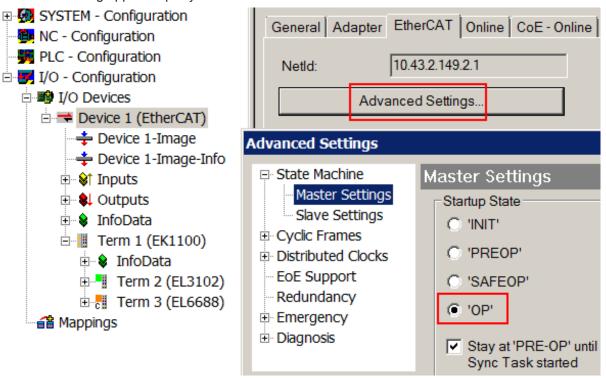


Fig. 138: Default behaviour of the System Manager

In addition, the target state of any particular Slave can be set in the "Advanced Settings" dialogue; the standard setting is again OP.

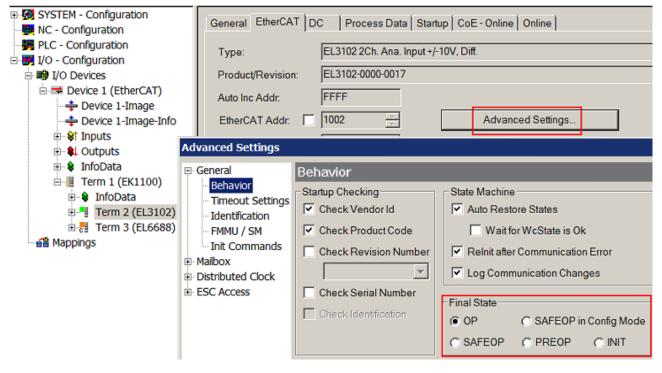


Fig. 139: Default target state in the Slave

Manual Control

There are particular reasons why it may be appropriate to control the states from the application/task/PLC. For instance:

- · for diagnostic reasons
- · to induce a controlled restart of axes
- · because a change in the times involved in starting is desirable

In that case it is appropriate in the PLC application to use the PLC function blocks from the *TcEtherCAT.lib*, which is available as standard, and to work through the states in a controlled manner using, for instance, *FB EcSetMasterState*.

It is then useful to put the settings in the EtherCAT Master to INIT for master and slave.

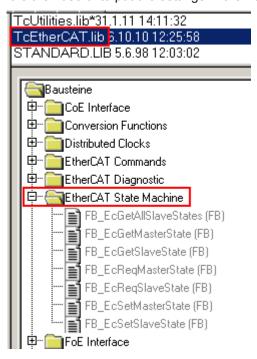


Fig. 140: PLC function blocks

Note regarding E-Bus current

EL/ES terminals are placed on the DIN rail at a coupler on the terminal strand. A Bus Coupler can supply the EL terminals added to it with the E-bus system voltage of 5 V; a coupler is thereby loadable up to 2 A as a rule. Information on how much current each EL terminal requires from the E-bus supply is available online and in the catalogue. If the added terminals require more current than the coupler can supply, then power feed terminals (e.g. EL9410) must be inserted at appropriate places in the terminal strand.

The pre-calculated theoretical maximum E-Bus current is displayed in the TwinCAT System Manager as a column value. A shortfall is marked by a negative total amount and an exclamation mark; a power feed terminal is to be placed before such a position.

General Adapter EtherCAT Online CoE - Online									
NetId:	10.43.2.149.2.1		,	Advanced Settings					
Number	Box Name	Address	Туре	In Size	Out S	E-Bus (
1	Term 1 (EK1100)	1001	EK1100						
<mark>-</mark> 2	Term 2 (EL3102)	1002	EL3102	8.0		1830			
¶ 3	Term 4 (EL2004)	1003	EL2004		0.4	1730			
4	Term 5 (EL2004)	1004	EL2004		0.4	1630			
"= 5	Term 6 (EL7031)	1005	EL7031	8.0	8.0	1510			
- 6	Term 7 (EL2808)	1006	EL2808		1.0	1400			
" 7	Term 8 (EL3602)	1007	EL3602	12.0		1210			
-1 8	Term 9 (EL3602)	1008	EL3602	12.0		1020			
" 9	Term 10 (EL3602)	1009	EL3602	12.0		830			
1 0	Term 11 (EL3602)	1010	EL3602	12.0		640			
1 1	Term 12 (EL3602)	1011	EL3602	12.0		450			
12	Term 13 (EL3602)	1012	EL3602	12.0		260			
1 3	Term 14 (EL3602)	1013	EL3602	12.0		70			
₫ 14	Term 3 (EL6688)	1014	EL6688	22.0		-240 !			

Fig. 141: Illegally exceeding the E-Bus current

From TwinCAT 2.11 and above, a warning message "E-Bus Power of Terminal..." is output in the logger window when such a configuration is activated:

Message

E-Bus Power of Terminal 'Term 3 (EL6688)' may to low (-240 mA) - please check!

Fig. 142: Warning message for exceeding E-Bus current

Caution! Malfunction possible!

The same ground potential must be used for the E-Bus supply of all EtherCAT terminals in a terminal block!

5.4 EL2521-xxxx

5.4.1 Basic function principles

Operating modes of the EL2521

Through the further development of the EL2521 an enhanced operating mode is available (from Firmware 03 / Hardware 02 [] which can be parameterized in the TwinCAT System Manager, depending on the hardware used.

Older EL2521 terminals do not support this enhanced operating mode.

Version	PDO settings	FW/HW	ESI	Process data	CoE parameters
normal operating mode	Legacy (MDP 252)	up to 02/01	from EL2521- 0000-00 00	Input process data (counter value) in CoE object 0x6000 [▶ 137] Output process data (frequency value) in CoE object 0x7000 [▶ 138]	Feature bits and settings in CoE objects 0x8000 [▶ 133], 0x8001 [▶ 134] and 8800
				PDO assignment in 1A00, 1600	
enhanced operating mode	Standard 16 bit (MDP 253/511) Standard 32 bit (MDP 253/511)	from 03/02	from EL2521- 0000-10 16	Changes to the normal operating mode Distributed clocks support Inputs / outputs in CoE-object 0x6010 [▶ 152] / 0x7010 [▶ 154]	Feature bits and settings in CoE object 0x8010 [▶ 140]
				Inputs / outputs in CoE- object <u>0x6020 [▶ 153]</u> / <u>0x7020 [▶ 154]</u>	
				PDO Assignment in 0x1A01, 0x1A02, 0x1A05 or 0x1601, 0x1602, 0x1604, 0x1605, 1607	

The PDO selection specifies the operating mode in which the EL2521-xxxx is to operate:

```
Predefined PDO Assignment: 'Standard 16 Bit (MDP 253/511)'
Predefined PDO Assignment: (none)
Predefined PDO Assignment: 'Legacy (MDP 252)'
Predefined PDO Assignment: 'Standard 16 Bit (MDP 253/511)'
Predefined PDO Assignment: 'Standard 32 Bit (MDP 253/511)'
```

Fig. 143: Predefined PDO selection in the TwinCAT System Manager

Irrespective of the hardware/firmware version, an EL2521 newly integrated into the system registers itself in the normal operating mode (cf. chapter Process data, delivery state [▶ 127])

During commissioning, a decision must be taken regarding which operating mode the EL2521 should be placed in. This depends on the desired configuration and naturally on the existing hardware version - a terminal with a version earlier than <u>firmware 03 / hardware 02 [▶ 8]</u>, for example, will not support any configuration in the enhanced operating mode, since the corresponding objects do not exist.

Compatibility in the case of service

An EL2521 employed and projected in enhanced operating mode cannot be replaced by an EL2521 with an older hardware version (<03)!

Note

Note

Process data monitoring

- WcState: if ≠ 0, this EtherCAT device does not take part in the process data traffic
- State: if ≠ 8, the EtherCAT device is not in OP (operational) status
- TxPDO State, SyncError: if ≠ 0, then no valid process data are available, e.g. caused by broken wire
- TxPDO Toggle: If this bit toggles, a new set of process data is available

EL2521 input impedance

The input imedance of the selected destination circuit must not overload the EL2521-0000 due to the potentials in accordance with RS422 can not be reached then.

Delivery state

The delivery state of the EL2521 is the operating mode frequency modulation with a base frequency of 50 kHz and 15 bit resolution.

For testing in the delivery state, PDO setting *Standard 16-bit*, the output frequency can simply be set to a value >0, then the EL2521-xxxx starts outputting signals.

The number of pulses output is read back into a 16 bit register. The counter overflows with a message to the controller; this is indicated by the status word $\underline{SW.3}$ [\blacktriangleright 131] or index $\underline{0x6020:05}$ [\blacktriangleright 153], overflow or $\underline{SW.2}$ [\blacktriangleright 131] or index $\underline{0x6020:04}$ [\blacktriangleright 153] (underflow). In parallel to these two bits, $\underline{SW.6}$ [\blacktriangleright 131] or index $\underline{0x6010:07}$ [\blacktriangleright 152] is set as a general error bit. This makes the extension to more than 16 bit easier for the controller software to handle. Furthermore, the overflow can be read from the diagnostic object $\underline{0xA000:01}$ [\blacktriangleright 138] (internal 32 bit extension). The counter can be cleared by bit 5 in the control word ($\underline{CW.5}$ [\blacktriangleright 130]). The counter is cleared in the delivery state with a rising edge (feature bit set in index $\underline{0x8000:05}$ [\blacktriangleright 133]); this function is level-controlled if the feature bit in index $\underline{0x8000:05}$ [\blacktriangleright 133] = 0. If the feature bit in index $\underline{0x8000:08}$ [\blacktriangleright 133] = 1, then the counter is set to a value specified in index $\underline{0x8800:01}$ [\blacktriangleright 135] by bit 5 in the control word ($\underline{CW.5}$ [\blacktriangleright 130]).

Operating mode selection and output pattern

Operating mode selection. Apart from the operating mode FM (Frequency Modulation, index 0x8000:0E [\blacktriangleright 133] or 0x8010:0E [\blacktriangleright 140] = 0_{dec}), the EL2521 can also be used for stepper motor control with pulse direction specification (Frq-Cnt pulse mode, index 0x8000:0E [\blacktriangleright 133] or 0x8010:0E [\blacktriangleright 140] = 1_{dec}). A further operation mode is incremental encoder simulation (index 0x8000:0E [\blacktriangleright 133] or 0x8010:0E [\blacktriangleright 140] = 2_{dec}). It is possible to connect the terminal's output to an incremental encoder input directly. Such inputs are present on many servo drives and frequency converters. The pulse pattern is output through channels A and B. The necessary operation mode can be configured via the feature object 0x8000:0E [\blacktriangleright 133] or 0x8010:0E [\blacktriangleright 140]. The operating modes differ primarily between the positive logic modes 0, 1 and 2 and the negative logic modes 4, 5 and 6. The negative logic can be activated with index 0x8000:0E [\blacktriangleright 133] or 0x8010:10 [\blacktriangleright 140]. Operating modes 2 and 6 simulate an incremental encoder, and permit direct connection to an evaluation unit such as a servo drive or frequency converter with an incremental encoder input.

Operating mode	Function
	Clockwise rotation Counter clockwise rotation
Frequency modulation positive logic (BA0)	A A
	В
Pulse-direction control positive logic (BA1)	A JULY LANGE
	В
Incremental encoder positive logic (BA2)	AA
	В
Frequency modulation negative logic (BA4)	A 717171
	В ————————————————————————————————————
Pulse-direction control negative logic (BA5)	A 74444
	В
Incremental encoder negative logic (BA6)	A 7
	В

Ramp function

An internal ramp increases/lowers the current frequency to the preset maximum frequency with the preset parameters in index 0x8800:02 [▶ 135]; it is activated by index 0x8000:06 [▶ 133] or 0x8010:06 [▶ 140].

Note

CoE parameters

Depending on operating mode, normal or enhanced, the parameters from the objects 0x8000, 0x8001, 0x8800 or 0x8010 are to be used.

The base frequency of the ramp can be selected by index 0x8000:07 [\blacktriangleright 133] or 0x8010:07 [\blacktriangleright 140]. Bit 1 of the status word (SW.1 [\blacktriangleright 131]) or index 0x6010:02 [\blacktriangleright 152] is set when a ramp is traversed. The deactivation of this function, which can also take place during operation via CW.1 [\blacktriangleright 130] or index 0x7010:02 [\blacktriangleright 154], results in the enabling of CW.0 [\blacktriangleright 130] or index 0x7010:01 [\blacktriangleright 154]. This allows the user to quickly change the base frequency during operation; if CW.0 [\blacktriangleright 130] or index 0x7010:01 [\blacktriangleright 154] = 1 (confirmation by SW.0 [\blacktriangleright 131] or index 0x6010:01 [\blacktriangleright 152]), then base frequency 2 in object 0x8001:03 [\blacktriangleright 134] or 0x8010:13 [\blacktriangleright 140] is used instead of base frequency 1 in object 0x8001:02 [\blacktriangleright 134] or 0x8010:12 [\blacktriangleright 140] (CW.0 [\blacktriangleright 130] or index 0x7010:01 [\blacktriangleright 154] = 0). The input signals T and Z are transferred by the terminal directly to the controller in the status word (SW.4 [\blacktriangleright 131] / SW.5 [\blacktriangleright 131]) or index 0x6010:05 [\blacktriangleright 152] / 0x6010:06 [\blacktriangleright 152]. The signals are not given any internal pre-processing.

The terminal offers a facility for soft starting and stopping. Using index 0x8001:04 [\blacktriangleright 134] or 0x8010:14 [\blacktriangleright 140] the ramp gradient for starting can be set with an accuracy of 10 or 1000 Hz/sec (index 0x8000:07 [\blacktriangleright 133] or 0x8010:07 [\blacktriangleright 140]). Index 0x8001:05 [\blacktriangleright 134] or 0x8010:15 [\blacktriangleright 140] has the same function for stopping. The process data can be modified during transit of the ramp (CW.2 [\blacktriangleright 130] or index 0x7010:03 [\blacktriangleright 154]), and the terminal then takes the new value as its target frequency.

Resolution

The base frequencies are specified with a resolution of 1 Hz per bit (base frequency 1: index <u>0x8001:02</u> [▶ <u>134</u>] or <u>0x8010:12</u> [▶ <u>140</u>] or base frequency 2: index <u>0x8001:03</u> [▶ <u>134</u>] or <u>0x8010:13</u> [▶ <u>140</u>]). The terminal operates internally at 16 MHz with a resolution of 32 bits. This corresponds to a theoretical minimum step size of 0.0037 Hz/step over the entire frequency range. The output stage allows a maximum frequency of 500 kHz to be output.

Travel distance control

The travel distance control function is available in both *normal* and *enhanced* operating mode. Starting from the current counter value, a target counter value is automatically driven to and the corresponding level is output at the outputs. The output frequency thereby changes in accordance with the current counter value. When the given counter contents have been reached, the terminal switches the frequency to zero.

The sequence is determined by several factors, see figure. Before parameterizing the travel distance control, it is recommended to carry out a CoE reset "Restoring the delivery state [> 228]" in order to rule out side effects.

The sequence and the associated parameters are listed in following table; in *enhanced operating mode* some parameters are no longer in the CoE, but can be linked as process data.

Phase		normal operating mode	enhanced operating mode
Parameterizatio n	Activate travel distance control	0x8000:0A = TRUE	0x8010:0A = TRUE
	Basic ramp frequency (10 Hz / 1 KHz)	0x8000:07 = ?	0x8010:07 = ?
	Ramp time constant "rising" t1 [Δ/sec]	0x8001:04 = ?	0x8010:14 = ?
	Maximum driving frequency f1	0x8800:02 = ?	
	Ramp time constant "falling" t3 [Δ/sec]	0x8001:05 = ?	0x8010:15 = ?
	(> 1.1 * ramp time constant t1!)		
	Output frequency f2	0x8001:07 = ?	0x8010:17 = ?
Trip	Specify target position	0x8800:01 = ?	PDO: TargetCounterValue = ?
	Trip start	CW.2 = TRUE	PDO: Control.GoCounter = TRUE
	Maximum driving frequency f1		PDO: FrequencyValue <> 0
Reset		CW.2 = FALSE	PDO: FrequencyValue = 0
			PDO: Control.GoCounter = FALSE

In the case of travel distance control in *enhanced operating mode*, the "Go counter" bit must be set at the same time or before specifying the "Frequency value". If the "Go counter" bit is not set and the "Frequency value" is not equal to 0, then travel distance control is NOT active and clock pulses are already output!

Ramp time constant

The "real" ramp time results from the multiplication of the basic ramp frequency with that of the rising/falling ramp time constant.

Steepness of the falling ramp

In order to travel to a destination with precision, it is necessary that the time constant for the falling ramp is greater than that of the rising ramp by a certain factor. This is necessary so that the slowing down frequency is reached before the final counter state, so that the terminal does not drive up to the end point at full speed. To explain in more detail: the EL2521 calculates the number of steps that are still to be taken in time t2 from time t1 and from the number of steps that have been taken. The calculation for stopping assumes the same number of steps as that found for starting up. The downward ramp must be a little steeper. approx. 10%, so that it is possible to reach the destination exactly in the remaining time t3 + t4 + t5. This relationship changes with the maximum frequency.

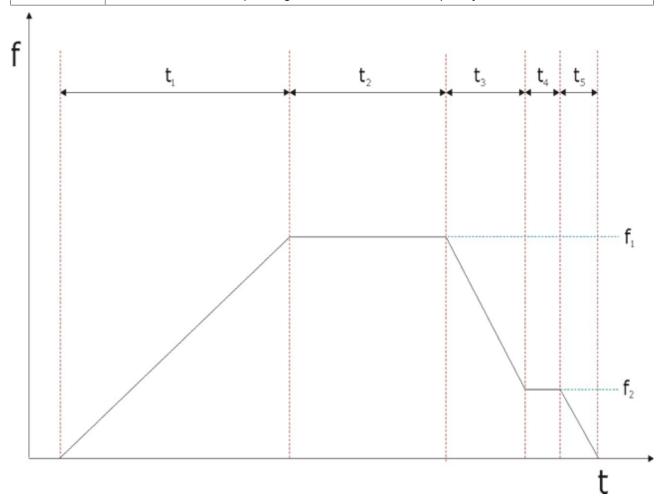


Fig. 144: Phases of the travel distance control

By way of example, the recording of a short real travel distance ramp is shown here together with the example program.

https://infosys.beckhoff.com/content/1033/el252x/Resources/zip/1850209803.zip

The short step sequence resets the current counter value to 0 and then drives to the target position 65. In the System Manager file the EL2521-xxxx is set to the appropriate CoE values for this example via the StartUp parameters.

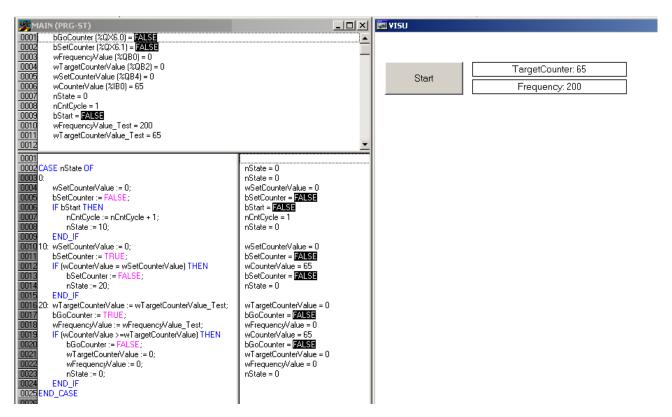


Fig. 145: Example travel distance control program

The result is the output of a variable frequency up to the target position 65.

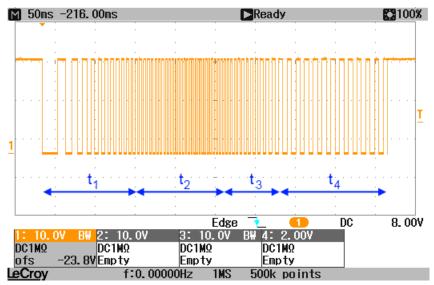


Fig. 146: Oscilloscope recording of the pulse sequence

Relative data

The output frequency depends on the base frequency set in the objects $0 \times 8001:02$ [\triangleright 134] or $0 \times 8010:12$ [\triangleright 140] to $0 \times 8001:03$ [\triangleright 134] or $0 \times 8010:13$ [\triangleright 140] and the process data (see table).

Example:

Output frequency = base frequency x process data / 32767 Highest resolution = 125 mHz

Base frequency = 100,000 Hz (maximum selected output frequency) Process data = 0x00FF (255_{dec}) Output frequency = 778.22 Hz

Process data		Output value
	0x0000 (0 _{dec})	0% DC
	0x3FFF (16383 _{dec})	50% of the base frequency, rotation to the right
	0x7FFF (32767 _{dec})	100% of the base frequency, rotation to the right
Two's complement	0xC000 (-16384 _{dec})	50% of the base frequency, rotation to the left
	0x8000 (-32768 _{dec})	100% of the base frequency, rotation to the left
Sign / amount representation	0xBFFF (-16383 _{dec})	50% of the base frequency, rotation to the left
	0xFFFF (-32767 _{dec})	100% of the base frequency, rotation to the left

Direct data

There is a possibility to directly input the frequency (object $0x8000:08 \ [\triangleright 133]$ or $0x8010:08 \ [\triangleright 140]$). Here, the process data are multiplied by the factor from object $0x8001:06 \ [\triangleright 134]$ or $0x8010:16 \ [\triangleright 140]$ and written directly to the synthesis chip.

Example:

Output frequency = frequency factor x process data x 10 mHz Highest resolution = 10 mHz

Frequency factor = 100 Process data = 0x00FF (255_{dec}) Output frequency = 255 Hz

Distributed Clocks (DC)

EtherCAT and Distributed Clocks

A basic introduction into EtherCAT and distributed clocks is available for download from the Beckhoff website: the "Distributed clocks system description".

The EL2521 supports the distributed clocks function. In order for the EL2521 to be able to make the current process data available in time before the arrival of the querying EtherCAT datagram, a suitable signal must be generated cyclically within the terminal. This signal can be triggered in the EL2521 through two events: the SyncManager (SM) and the distributed clock (DC). Under operating mode selection the following options are available (see Figure "DC tab"):

- FreeRun/SM synchronous
 The SynManager event occurs when an EtherCAT frame successfully exchanges process data with
 the EL2521. The current process data are thus cyclically processed, frame-triggered, but with the low
 temporal jitter of the Ethernet frame.
- DC-synchronous
 In DC operating mode determination of the process data processing is triggered cyclically at constant intervals through the integrated DC unit, synchronous with the bus cycle as standard. More uniform polling offers higher-quality data for a higher-level control algorithm, for example. In the EL2521 the SYNC0 signal acts as trigger.

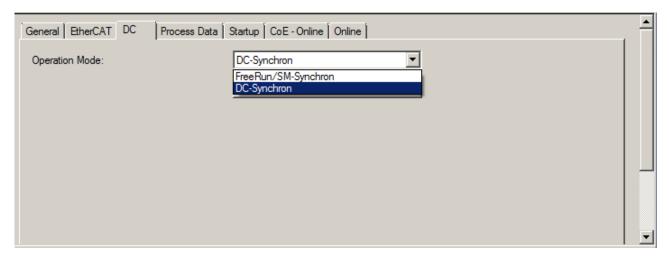


Fig. 147: DC tab (Distributed Clocks)

When DC Synchronous operating mode is activated TwinCAT selects settings that ensure reliable operation of the EL2521 with current data. This means that the processing of the current process data is started by the SYNC0 signal at highly constant intervals and in good time – i.e. with an adequate safety buffer – before the retrieving EtherCAT datagram.

The SYNC0 signal can be shifted along the time axis as required through associated dialogs (right/later and left/earlier) by specifying a user-defined shift time, see Fig. "Advanced Settings for Distributed Clocks".

- Through a shift to the right (positive shift value), the processing of the process data takes place later –
 regarded relatively from the PLC the degree of currentness is thus increased. However, this increases
 the risk that the provision may not be finished in time before the arrival of EtherCAT frame, so that no
 current value is available in this cycle.
- Through a shift to the left (negative shift value) the processing of the process data takes place earlier –
 the degree of currentness is thus decreased; however, the safety buffer is increased before the arrival
 of the EtherCAT datagram. This setting may be useful in systems with high real-time jitter, if no
 Industrial PCs from Beckhoff are used for control purposes, for example.

Attention! Risk of device damage!

The mentioned notes and information should be used advisedly. The EtherCAT master automatically allocates SYNC0 and SYNC1 settings that support reliable and timely process data acquisition. User intervention at this point may lead to undesired behavior. If these settings are changed in the System Manager, no plausibility checks are carried out on the software side. Correct function of the terminal with all conceivable setting options cannot be quaranteed.

Default setting

The cyclic writing of the outputs is triggered by the SYNC0 pulse (interrupt) from the DC in the EL2521. The EtherCAT master sets the Sync Unit Cycle time value to the PLC cycle time and therefore the EtherCAT cycle time as standard. Refer to Figure "Advanced Settings for Distributed Clock": 4000µs = 4 ms, as TwinCAT is in configuration mode.

EL2521 DC settings

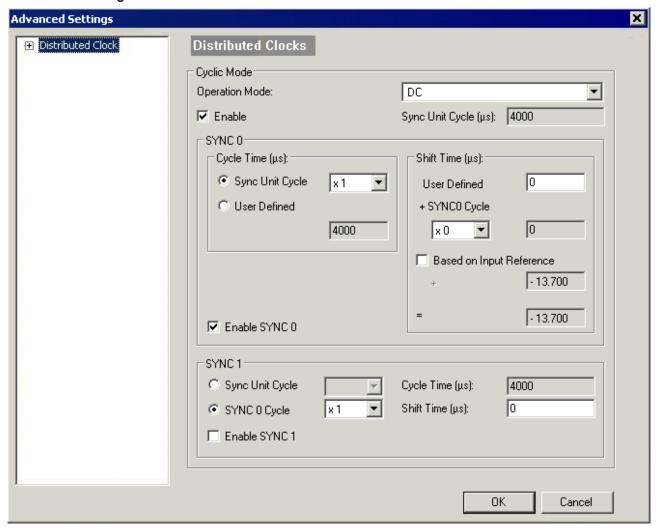


Fig. 148: Advanced Settings for Distributed Clock (DC), EL2521 terminal

- SYNC0
 - Sync unit cycle: a multiple of the bus cycle time. The process data are periodically processed at this interval (in µs).
- User-defined
 Arbitrary number up to 2³² ns ≈ 4.3 secs. Decimal point values are possible.
- · Shift Time

The Shift Time can be used to shift the SYNC0 pulse for this EL2521 relative to other terminals and the global SYNC pulse in nanosecond steps. If the outputs of multiple EL2521 terminals are to be written at the same time, the same value must be entered here.

- · Based on Input Reference
 - If this option is activated an additional Input Shift is added to the configurable terminal-specific SYNC0 shift (user-defined). This value is calculated and made available by the EtherCAT master (SysMan/Solution Explorer \rightarrow Device (EtherCAT): tab EtherCAT \rightarrow Advanced Settings \rightarrow Distributed Clocks \rightarrow Input Shift Time, see respective Figures). As a result, *all* the input terminals in the system (EL1xxx, EL3xxx) read their inputs as close as possible to the time of the EtherCAT frame that will fetch them, thereby supplying the most recent possible input data to the controller.
- Enable SYNC0
 Automatic activated in DC Synchronous operating mode.
- SYNC1
 Additional SYNC pulse, derived from SYNC0 or from the DC itself. Not required by the EL2521.

DC settings for EtherCAT master

Higher-level distributed clock parameters can be modified under advanced settings for the EtherCAT master. Refer also to the basic introduction to the topic of EtherCAT and Distributed Clocks; download: the "Distributed Clocks system description".

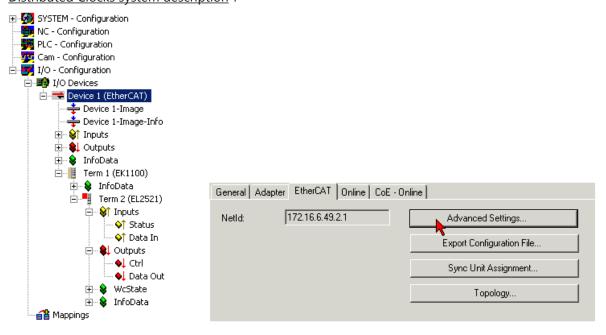


Fig. 149: EtherCAT Master, EtherCAT tab, Advanced Settings

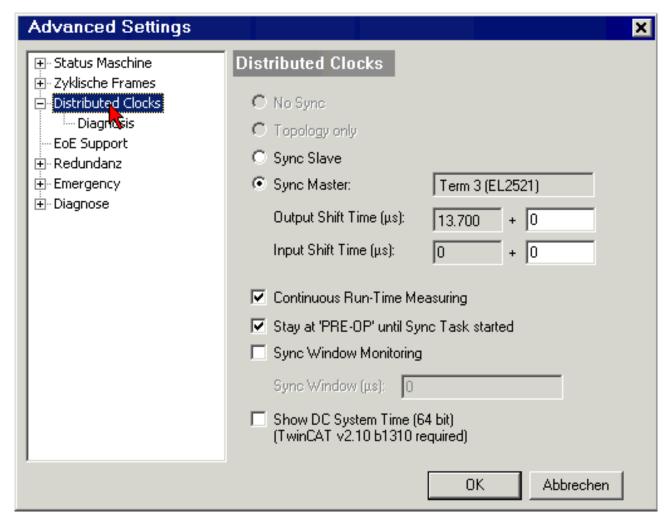


Fig. 150: EtherCAT Master, Advanced Settings, Distributed Clock

Code Word

Code Word

The vendor reserves the authority for the basic calibration of the terminals. The code word is therefore at present reserved.

Notes on EL2521-0124

The EL2521-0124 has a latch input and a 24 V compare output, which both operate in connection with the position value.

Explanation on the basis of the associated process data:

Latch input, identical function as in the case of EL encoder terminals

- PDO ENC Status (input)
 - External latch valid
 - Status of external latch (current status of the latch input)
 - Latch value
- PDO ENC Control (output)
 - Enable latch extern on positive edge
 - Enable latch extern on negative edge

Compare output 'PLS' (Programmable Limit Switch)

- · PLS Control:
 - 'Enable PLS':
 - = 0 Output can be switched manually via 'Outputs'
 - = 1 Automatic switching function has control of the output
 - Output
 - Switches the output (no function if 'Enable PLS' =1)
 - Switch-on value
 - Switch-on value (the output is switched on when the counter reaches this value)
 - Switch-off value
 Switch-off value (the output is switched off when the counter reaches this value)

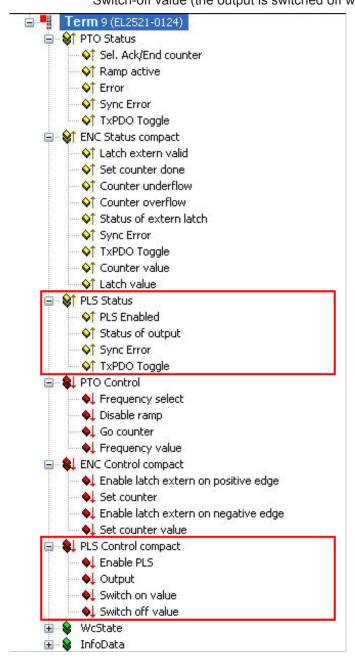


Fig. 151: Process data EL2521-0124

5.4.2 Process data

The process data selection in the System Manager specifies the mode of operation of the EL2521-xxxx. The process data can be set according to the tables below for inputs and outputs either individually by hand or via the predefined PDO selection with a single click.

Predefined PDO Assignment: 'Standard 16 Bit (MDP 253/511)'
Predefined PDO Assignment: (none)
Predefined PDO Assignment: 'Legacy (MDP 252)'
Predefined PDO Assignment: 'Standard 16 Bit (MDP 253/511)'
Predefined PDO Assignment: 'Standard 32 Bit (MDP 253/511)'

Fig. 152: predefined PDO selection in the TwinCAT System Manager

Three process data records are available for the EL2521-xxxx and are listed in following table.

Sync Manager (SM)

PDO assignment of the SyncManager

SM3, PD0	SM3, PDO Assignment 0x1C13, inputs								
Index	assigned to PDO setting	Index of excluded PDOs	Size (byte.bit)	Name	PDO content				
0x1A00 (default)	Legacy (MDP 252)	0x1A01 0x1A02 0x1A05	4.0	Inputs	Index <u>0x6000:01</u> [▶ <u>137</u>] - Status Index <u>0x6000:02</u> [▶ <u>137</u>] - Data in				
0x1A01	Standard 16 bit (MDP 253/511) Standard 32 bit (MDP 253/511)	0x1A00	2.0	PTO Status	Index $0x6010:01$ [▶ 152] - Sel. Ack./End counter Index $0x6010:02$ [▶ 152] - Ramp active Index $0x6010:05$ [▶ 152] - Status of input target Index $0x6010:06$ [▶ 152] - Status of input zero Index $0x6010:07$ [▶ 152] - Error Index $0x10:07$ [▶ 152] - Error Index $0x10:07$ [▶ 146] - TxPDO Toggle				
0x1A02	Standard 16 bit (MDP 253/511)	0x1A00 0x1A05	4.0	ENC Status compact	Index $0x6020:03$ [\blacktriangleright 153] - Set counter done Index $0x6020:04$ [\blacktriangleright 153] - Counter underflow Index $0x6020:05$ [\blacktriangleright 153] - Counter overflow Index $0x1C32:20$ - Sync error $0x1802:09$ [\blacktriangleright 146] - TxPDO Toggle Index $0x6020:11$ [\blacktriangleright 153] - Counter value				
0x1A05	Standard 32 bit (MDP 253/511)	0x1A00 0x1A02	6.0	ENC Status	Index $0x6020:03$ [▶ 153] - Set counter done Index $0x6020:04$ [▶ 153] - Counter underflow Index $0x6020:05$ [▶ 153] - Counter overflow Index $0x1020:05$ [▶ 153] - Counter overflow Index $0x1020:05$ [▶ 146] - TxPDO Toggle Index $0x6020:11$ [▶ 153] - Counter value				

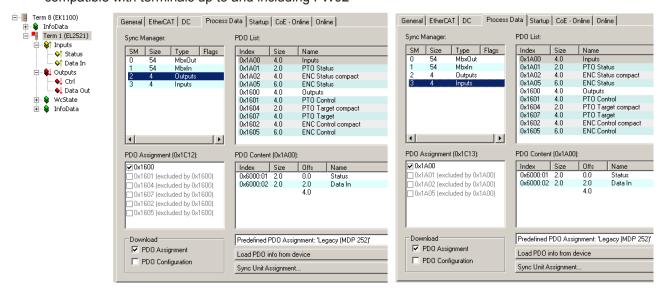
SM2, PD	SM2, PDO assignment 0x1C12, outputs									
Index	assigned to PDO setting	Index of excluded PDOs	Size (byte.bit)	Name	PDO content					
0x1600 (default)	Legacy (MDP 252)	0x1601 0x1604 0x1607 0x1602 0x1605	4.0	Inputs	Index <u>0x7000:01</u> [▶ <u>138</u>] - Ctrl Index <u>0x7000:02</u> [▶ <u>138</u>] - Data out					
0x1601	Standard 16 bit (MDP 253/511) Standard 32 bit (MDP 253/511)	0x1600	4.0	PTO Control	Index <u>0x7010:01</u> [▶ <u>154</u>] - Frequency select Index <u>0x7010:02</u> [▶ <u>154</u>] - Disable ramp Index <u>0x7010:03</u> [▶ <u>154</u>] - Go counter Index <u>0x7010:11</u> [▶ <u>154</u>] - Frequency value					
0x1604	Standard 16 bit (MDP 253/511)	0x1600 0x1607 0x1605	2.0	PTO Target compact	Index <u>0x7010:12</u> [▶ <u>154]</u> - Target counter value					
0x1607	Standard 32 bit (MDP 253/511)	0x1600 0x1604 0x1602	4.0	PTO Target	Index <u>0x7010:12</u> [▶ <u>154]</u> - Target counter value					
0x1602	Standard 16 bit (MDP 253/511)	0x1600 0x1607 0x1605	4.0	ENC Control compact	Index <u>0x7020:03</u> [▶ <u>154</u>] - Set counter Index <u>0x7020:11</u> [▶ <u>154</u>] - Set counter value					
0x1605	Standard 32 bit (MDP 253/511)	0x1600 0x1604 0x1602	6.0	ENC Control	Index <u>0x7020:03 [▶ 154]</u> - Set counter Index <u>0x7020:11 [▶ 154]</u> - Set counter value					

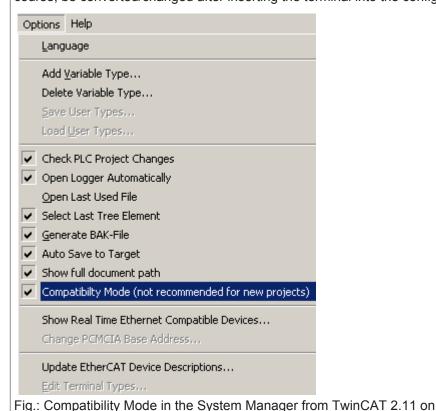
Process data setting options

The extent of process data can be set via the Process Data tab as described below.

PDO setting 1: Legacy (MDP 252)

- preset standard configuration in TwinCAT 2.10 (see note below for more up-to-date TwinCAT versions)
- to be used only in normal operating mode
- · compatible with terminals up to and including FW02




Fig. 153: Process data and PDO assignment Legacy (MDP 252)

Standard configuration in TwinCAT

The further development of the EL2521-xxxx from FW03 also necessitates a new process image, which is to be used preferentially in new systems. Therefore the standard configuration from TwinCAT 2.11 onwards is normally PDO setting 2 (see below), with which an EL2521-xxxx inserted manually or by scanning appears in the configuration. For reasons of compatibility with existing software, however, some customers require PDO setting 1 "Legacy MDP253" to appear as the standard configuration, even for newly created configurations. In this case the so-called compatibility flag is to be set in the System Manager. Legacy is then selected as the standard PDO configuration. Nevertheless the PDO can, of course, be converted/changed after inserting the terminal into the configuration.

PDO setting 2: Standard 16 bit (MDP 253/511)

- preset standard configuration in TwinCAT 2.11, TwinCAT 3
- to be used only in enhanced operating mode
- · so-called compact process image, since it has only 16-bit-wide variables
- allows linking to NC axes according to MDP 253, subprofile 511

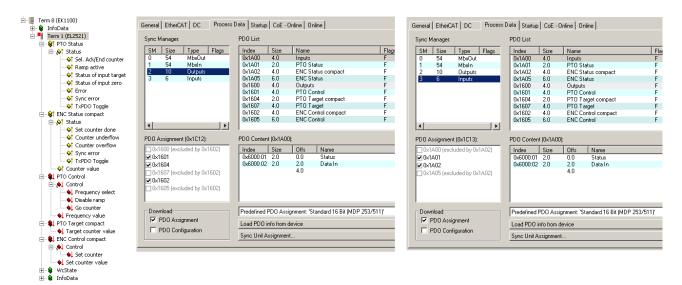


Fig. 154: Process data and PDO assignment standard 16-bit (MDP 253/511)

PDO setting 3: Standard 32 bit (MDP 253/511)

- · to be used only in enhanced operating mode
- · 32-bit-wide variables
- allows linking to NC axes according to MDP 253, subprofile 511

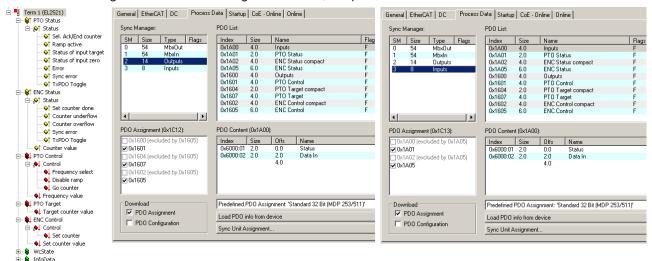


Fig. 155: Process data and PDO assignment standard 32-bit (MDP 253/511)

5.4.3 Normal operation mode

5.4.3.1 EL2521-0000

5.4.3.1.1 Control and status word

Control word

The control word (CW) is located in the output process image, and is transmitted from the controller to the terminal.

Bit	CW.15	CW.14	CW.13	CW.12	CW.11	CW.10	CW.9	CW.8
Name	-	-	-	-	-	-	-	-

Bit	CW.7	CW.6	CW.5	CW.4	CW.3	CW.2	CW.1	CW.0
Name	-	-	CNT_CLR	-	-	GO_COUNTER	RAMP_DIS	FREQ_SEL

Legend

Bit	Name	Description	Description					
CW.8 - CW.15	-	-	reserved					
CW.7	-	-	reserved					
CW.6	-	-	reserved					
CW.5	CNT_CLR	1 _{bin}	The counter value is cleared or set by this bit (index $0x8000:08 \ [\triangleright 133]$). Any over-flow/underflow bits that have been set are also cleared by this bit.					
			This process can be edge-controlled or level-controlled (index <u>0x8000:05</u> [▶ <u>1331</u>).					
CW.4	-	-	reserved					
CW.3	-	-	reserved					
CW.2	GO_COUNTER	1 _{bin}	If travel distance control is activated (index <u>0x8000:0A</u> [▶ <u>133]</u>), a specified counter value is driven to if the bit is set.					
CW.1	RAMP_DIS	1 _{bin}	The ramp function is disabled despite active index <u>0x8000:06</u> [▶ <u>133]</u> ; if the travel distance control is active it is aborted by this bit.					
CW.0	FREQ_SEL	O _{bin} / 1 _{bin}	Fast toggling of the base frequency (only if ramp function is deactivated) 0 _{bin} = base frequency 1 (index 0x8001:02 [**\ldot 134]) bin = base frequency 2 (index 0x8001:03 [**\ldot 134])					

Status word

The status word (SW) is located in the input process image, and is transmitted from terminal to the controller.

Bit	SW.15	SW.14	SW.13	SW.12	SW.11	SW.10	SW.9	SW.8
Name	-	-	-	-	-	-	-	-
Bit	SW.7	SW.6	SW.5	SW.4	SW.3	SW.2	SW.1	SW.0
Name	-	ERROR	INPUT_Z	INPUT_T	OVERFLOW	UNDERFLOW	RAMP_ACTIVE	SEL_ACK/ END_COUNT ER

Legend

Bit	Name	Descr	iption
SW.8 - SW.15	-	-	reserved
SW.7	-	-	reserved
SW.6	ERROR	1 _{bin}	General error bit, is set together with overrange and underrange
SW.5	INPUT_Z	1 _{bin}	Status of the input INPUT_Z
SW.4	INPUT_T	1 _{bin}	Status of the input INPUT_T
SW.3	OVERFLOW	1 _{bin}	This bit is set if the 16-bit counter overflows (65535 -> 0). It is reset when the counter exceeds one third of its measuring range (21845 -> 21846) or immediately an underflow occurs.
SW.2	UNDERFLOW	1 _{bin}	This bit is set if the 16-bit counter underflows (0 -> 65535). It is reset when the counter drops below two thirds of its measuring range (43690 -> 43689) or immediately an overflow occurs.
SW.1	RAMP_ACTIVE	1 _{bin}	Ramp is currently being followed
SW.0	SEL_ACK/ END_COUNTER	1 _{bin}	Confirms the change of base frequency. if travel distance control is activated: target counter value reached

5.4.3.1.2 Object description and parameterization

EtherCAT XML Device Description

The display matches that of the CoE objects from the EtherCAT XML Device Description. We recommend downloading the latest XML file from the <u>download area of the Beckhoff</u> <u>website</u> and installing it according to installation instructions.

Note

Parameterization via the CoE list (CAN over EtherCAT)

The terminal is parameterized via the CoE - Online tab (double-click on the respective object) or via the Process Data tab (allocation of PDOs). Please note the following general <u>CoE information [> 22]</u> when using/manipulating the CoE parameters:

- · Keep a startup list if components have to be replaced
- Differentiation between online/offline dictionary, existence of current XML description
- "CoE-Reload" for resetting the changes

Introduction

The CoE overview contains objects for different intended applications:

- Objects required for parameterization [132] during commissioning
- Objects intended for regular operation [▶ 135], e.g. through ADS access.
- Objects for indicating internal settings [▶ 135] (may be fixed)

The following section first describes the objects required for normal operation, followed by a complete overview of missing objects.

5.4.3.1.2.1 Objects for commissioning

Index 0x1011 Restore default parameters

Index (hex)	Name	Meaning	Data type	Flags	Default
	Restore default parameters	Restore default parameters	UINT8	RO	0x01 (1 _{dec})
1011:01	001	If this object is set to " 0x64616F6C " in the set value dialog, all backup objects are reset to their delivery state.	UINT32	RW	0x0000000 (0 _{dec})

Index 0x8000 Feature bits

Index (hex)	Name	Meaning	Data type	Flags	Default
8000:0	Feature bits	Max. subindex	UINT8	RO	0x0F (15 _{dec})
8000:02	Emergency ramp active	TRUE If the watchdog timer responds, the terminal ramps with the time constant set in object 8001:08 [134] to the value set in object 8001:01 [134]. FALSE	BOOLEAN	RW	0x00 (0 _{dec})
8000:03	Watchdog timer de-	The function is deactivated The SM watchdog is evaluated here.	BOOLEAN	D\\\	0x00 (0 _{dec})
8000.03	active	TRUE The watchdog timer is deactivated FALSE The watchdog timer is activated in the delivery state. Either the manufacturer's of the user's switch-on value is output if the watchdog overflows.	BOOLEAN	KVV	OXOO (O _{dec})
8000:04	Sign/amount representation	TRUE The output value is displayed in magnitude-sign format: $-2_{\rm dec} = 0x8002$ $-1_{\rm dec} = 0x8001$ $1_{\rm dec} = 0x0001$ $2_{\rm dec} = 0x0002$ FALSE The output value is output as signed integer in the two's complement: $-2_{\rm dec} = 0xFFFE$ $-1_{\rm dec} = 0xFFFF$ $1_{\rm dec} = 0x0001$ $2_{\rm dec} = 0x0002$	BOOLEAN	RW	0x00 (0 _{dec})
8000:05	Rising edge clears/ sets counter	TRUE The counter is cleared/set on a rising edge of the Counter_Clear bit in the control word (CW.5 [> 130]) FALSE The counter is cleared/set on a positive level of the Counter_Clear bit in the control word (CW.5 [> 130])	BOOLEAN	RW	0x01 (1 _{dec})
8000:06	Ramp function active	TRUE Ramp function activated [117] FALSE Ramp function deactivated [117] The ramp controller should only be deactivated if a higher-level controller (e.g. NC controller) takes over the control of travel distance and frequency.	BOOLEAN	RW	0x01 (1 _{dec})
8000:07	Ramp base frequency	O _(dec) Ramp base frequency: 10 Hz (pull-down menu) 1 _(dec) Ramp base frequency: 1 kHz (pull-down menu)	BIT1	RW	0x00 (0 _{dec})
8000:08	Direct input mode	TRUE Direct input mode [121] Relative input mode [120]	BOOLEAN	RW	0x00 (0 _{dec})

Index (hex)	Name	Meaning	Data type	Flags	Default
8000:09	Users switch-on- value on wdt	TRUE Behavior with triggered watchdog timer: User's switch-on value FALSE Behavior with triggered watchdog timer: Manufacturer's switch-on value	BOOLEAN	RW	0x00 (0 _{dec})
8000:0A	Travel distance control active	TRUE Travel distance control activated [118] FALSE Travel distance control deactivated [118]	BOOLEAN	RW	0x00 (0 _{dec})
8000:0B	Rising edge sets counter	TRUE Rising edge sets counter FALSE Rising edge clears counter	BOOLEAN	RW	0x00 (0 _{dec})
8000:0E	Operating mode	O _(dec) Frequency modulation operating mode [▶ 116] (pull-down menu) 1 _(dec) Pulse direction specification operating mode [▶ 116] (pull-down menu) 2 _(dec) Incremental encoder operating mode [▶ 116] (pull-down menu)	BIT2	RW	0x00 (0 _{dec})
8000:0F	Negative logic	TRUE Negative logic FALSE Positive logic	BOOLEAN	RW	0x00 (0 _{dec})

Index 0x8001 User settings

Index (hex)	Name	Meaning	Data type	Flags	Default
8001:0	User settings	Max. subindex	UINT8	RO	0x08 (8 _{dec})
8001:01	Users switch- on-value	User switch-on value (frequency)	UINT16	RW	0x0000 (0 _{dec})
8001:02	Base frequency 1	Base frequency 1 = 50000 Hz	UINT32	RW	0x0000C350 (50000 _{dec})
8001:03	Base frequency 2	Base frequency 2 = 100000 Hz	UINT32	RW	0x000186A0 (100000 _{dec})
8001:04	Ramp time	Ramp time constant (rising, [1/sec])	UINT16	RW	0x03E8 (1000 _{dec})
	constant (rising)	The "real" ramp time is obtained by the multiplication of the ramp base frequency by this ramp time constant.			
8001:05	Ramp time constant (falling)	Ramp time constant (falling, [1/sec])	UINT16	RW	0x03E8 (1000 _{dec})
		The "real" ramp time is obtained by the multiplication of the ramp base frequency by this ramp time constant.			
8001:06	Frequency factor (Digit x 10 mHz)	Frequency factor (direct input, digit x 10 mHz)	UINT16	RW	0x0064 (100 _{dec})
8001:07	Slowing down frequency	Slowing down frequency, travel distance control	UINT16	RW	0x0032 (50 _{dec})
8001:08	Ramp time constant (emergency)	Ramp time constant for controlled switch-off; User switch-on value is driven to (object 8001:01 [▶ 134])	UINT16	RW	0x03E8 (1000 _{dec})

Index 0x8800 Volatile settings

Index (hex)	Name	Meaning	Data type	Flags	Default
8800:0	Volatile settings	Max. subindex	UINT8	RO	0x02 (2 _{dec})
8800:01	Target counter state	Target counter state	UINT32	RW	0x0000000 (0 _{dec})
	Maximum frequency	Maximum frequency	UINT16	RW	0x0000 (0 _{dec})

5.4.3.1.2.2 Objects for regular operation

In normal operating mode the EL2521 has no such objects.

5.4.3.1.2.3 Standard objects (0x1000-0x1FFF)

The standard objects have the same meaning for all EtherCAT slaves.

Index 0x1000 Device type

Index (hex)	Name	Meaning	Data type	Flags	Default
1000:0	type	Device type of the EtherCAT slave: the Lo- Word contains the CoE profile used (5001). The Hi-Word contains the module profile according to the modular device profile.	UINT32	RO	0x00001389 (5001 _{dec})

Index 0x1008 Device name

Index (hex)	Name	Meaning	Data type	Flags	Default
1008:0	Device	Device name of the EtherCAT slave	STRING	RO	EL2521-0000
	name				

Index 0x1009 Hardware version

Index (hex)	Name	Meaning	Data type	Flags	Default
1009:0	Hardware version	Hardware version of the EtherCAT slave	STRING	RO	01

Index 0x100A Software version

Index (hex)	Name	Meaning	Data type	Flags	Default
100A:0	Software version	Firmware version of the EtherCAT slave	STRING	RO	02

Index 0x1018 Identity

Index (hex)	Name	Meaning	Data type	Flags	Default
1018:0	Identity	Information for identifying the slave	UINT8	RO	0x04 (4 _{dec})
1018:01	Vendor ID	Vendor ID of the EtherCAT slave	UINT32	RO	0x30520002 (810680322 _{dec})
1018:02	Product code	Product code of the EtherCAT slave	UINT32	RO	0x000009D9 (2521 _{dec})
1018:03	Revision	Revision number of the EtherCAT slave; the low word (bit 0-15) indicates the special terminal number, the high word (bit 16-31) refers to the device description	UINT32	RO	0x0000000 (0 _{dec})
1018:04	Serial number	Serial number of the EtherCAT slave; the low byte (bit 0-7) of the low word contains the year of production, the high byte (bit 8-15) of the low word contains the week of production, the high word (bit 16-31) is 0	UINT32	RO	0x0000000 (0 _{dec})

Index 0x1600 Outputs

Index (hex)	Name	Meaning	Data type	Flags	Default
1600:0	RxPDO- Map	PDO Mapping RxPDO 1	UINT8	RO	0x02 (2 _{dec})
1600:01	RxPDO- Mapping Element 1: Ctrl	1. PDO Mapping entry (object 0x7000 (Outputs), entry 0x01 (Ctrl))	UINT32	RO	0x7000:01, 16
1600:02	RxPDO- Mapping Element 2: Data out	2. PDO Mapping entry (object 0x7000 (Outputs), entry 0x02 (Data Out))	UINT32	RO	0x7000:02, 16

Index 0x1A00 Inputs

Index (hex)	Name	Meaning	Data type	Flags	Default
1A00:0	TxPDO- Map	PDO Mapping TxPDO 1	UINT8	RO	0x02 (2 _{dec})
1A00:01	TxPDO- Mapping Element 1: Status	1. PDO Mapping entry (object 0x6000 (Inputs), entry 0x01 (Status))	UINT32	RO	0x6000:01, 16
1A00:02	TxPDO- Mapping Element 2: Data in	2. PDO Mapping entry (object 0x6000 (Inputs), entry 0x02 (Data In))	UINT32	RO	0x6000:02, 16

Index 0x1C00 Sync manager type

Index (hex)	Name	Meaning	Data type	Flags	Default
1C00:0	Sync manager type	Using the sync managers	UINT8	RO	0x04 (4 _{dec})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dec})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dec})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dec})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dec})

Index 0x1C01 Process data format

Index (hex)	Name	Meaning	Data type	Flags	Default
1C01:0	Process data format		UINT16	RW	0x0100 (256 _{dec})

Index 0x1C12 SM 0002 RxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x01 (1 _{dec})
1C12:01	Assigned RxPDO	1. allocated RxPDO (contains the index of the associated RxPDO mapping object)	UINT16	RW	0x1600 (5632 _{dec})

Index 0x1C13 TxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x01 (1 _{dec})
1C13:01	Assigned TxPDO	1. allocated TxPDO (contains the index of the associated TxPDO mapping object)	UINT16	RW	0x1A00 (6656 _{dec})

5.4.3.1.2.4 Profile-specific objects (0x6000-0xFFFF)

The profile-specific objects have the same meaning for all EtherCAT slaves that support the profile 5001.

Index 0x6000 Inputs

Index (hex)	Name	Meaning	Data type	Flags	Default
6000:0	Inputs	Max. subindex	UINT8	RO	0x02 (2 _{dec})
6000:01	Status	Status word [130]	UINT16	RO	0x0000 (0 _{dec})
6000:02	Data In	Input process data (counter value)	UINT16	RO	0x0000 (0 _{dec})

Index 0x7000 Outputs

Index (hex)	Name	Meaning	Data type	Flags	Default
7000:0	Outputs	Max. subindex	UINT8	RO	0x02 (2 _{dec})
7000:01	Ctrl	Control Word [▶ 130]	UINT16	RO	0x0000 (0 _{dec})
7000:02	Data Out	Output process data (frequency value)	UINT16	RO	0x0000 (0 _{dec})

Index 0xA000 Diagnostic parameter

Index (hex)	Name	Meaning	Data type	Flags	Default
A000:0	Diagnostic parameter	Max. subindex	UINT8	RO	0x01 (1 _{dec})
A000:01	Counter extension	Counter extension	UINT16	RO	0x0000 (0 _{dec})

Index 0xF000 Profile settings

Index (hex)	Name	Meaning	Data type	Flags	Default
F000:0	Modular device profile	General information for the modular device profile	UINT8	RO	0x02 (2 _{dec})
F000:01	Module index distance	Index spacing of the objects of the individual channels	UINT16	RO	0x0010 (16 _{dec})
F000:02	Maximum number of modules	Number of channels	UINT16	RO	0x0001 (1 _{dec})

Index 0xF008 Code word

Index (hex)	Name	Meaning	Data type	Flags	Default
F008:0	Code word	currently reserved	UINT32	RW	0x00000000 (0 _{dec})

5.4.4 Enhanced operation mode

5.4.4.1 EL2521-0000, EL2521-0024, EL2521-0025

5.4.4.1.1 Object description and parameterization - enhanced operation mode

EtherCAT XML Device Description

The display matches that of the CoE objects from the EtherCAT XML Device Description. We recommend downloading the latest XML file from the <u>download area of the Beckhoff</u> <u>website</u> and installing it according to installation instructions.

Parameterization via the CoE list (CAN over EtherCAT)

The terminal is parameterized via the CoE - Online tab (double-click on the respective object) or via the Process Data tab (allocation of PDOs). Please note the following general CoE information [• 22] when using/manipulating the CoE parameters:

- · Keep a startup list if components have to be replaced
- Differentiation between online/offline dictionary, existence of current XML description
- "CoE-Reload" for resetting the changes

Introduction

The CoE overview contains objects for different intended applications:

- Objects required for parameterization [139] during commissioning
- Objects intended for regular operation [▶ 142], e.g. through ADS access.
- Objects for indicating internal settings [▶ 142] (may be fixed)

The following section first describes the objects required for normal operation, followed by a complete overview of missing objects.

5.4.4.1.1.1 Objects for commissioning

Index 0x1011 Restore default parameters

Index (hex)	Name	Meaning	Data type	Flags	Default
1011:0	Restore default parameters	Restore default parameters	UINT8	RO	0x01 (1 _{dec})
1011:01	001	If this object is set to " 0x64616F6C " in the set value dialog, all backup objects are reset to their delivery state.	UINT32	RW	0x0000000 (0 _{dec})

Index 0x8010 PTO Settings

Index (hex)	Name	Meaning	Data type	Flags	Default
8010:0	PTO Settings	Max. Subindex	UINT8	RO	0x18 (24 _{dec})
8010:02	Emergency ramp active	TRUE If the watchdog timer responds, the terminal ramps with the time constant set in object 8001:08	BOOLEAN	RW	0x00 (0 _{dec})
		8010:18 [> 140] to the value set in object 8001:01			
		<u>8010:11 [▶ 140]</u>			
		FALSE The function is deactivated			
8010:03	Watchdog timer deactive	The SM watchdog is evaluated here.	BOOLEAN	RW	0x00 (0 _{dec})
		TRUE The watchdog timer is deactivated			
		FALSE			
		The watchdog timer is activated in the delivery state. Either the manufacturer's of the user's switch-on value is output if the watchdog overflows.			
8010:04	Sign/amount representation	TRUE	BOOLEAN	RW	0x00 (0 _{dec})
	representation	The output value is displayed in magnitude-sign format: -2 _{dec} = 0x8002			
		-1 _{dec} = 0x8001 1 _{dec} = 0x0001 2 _{dec} = 0x0002			
		FALSE			
		The output value is output as signed integer in the two's complement:			
		-2 _{dec} = 0xFFFE -1 _{dec} = 0xFFFF 1 _{dec} = 0x0001 2 _{dec} = 0x0002			

Index (hex)	Name	Meaning	Data type	Flags	Default
8010:06	Ramp function active	TRUE Ramp function activated [117] FALSE Ramp function deactivated [117]	BOOLEAN	RW	0x01 (1 _{dec})
		The ramp controller should only be deactivated if a higher-level controller (e.g. NC controller) takes over the control of travel distance and frequency.			
8010:07	Ramp base frequency	0 _(dec) Ramp base frequency: 10 Hz (pull-down menu)	BIT1	RW	0x00 (0 _{dec})
		1 _(dec) Ramp base frequency: 1 kHz (pull-down menu)			
8010:08	Direct input mode	TRUE Direct input mode Relative input mode [▶ 120]	BOOLEAN	RW	0x00 (0 _{dec})
8010:09	Users switch- on-value on wdt	TRUE Behavior with triggered watchdog timer: User's switch- on value	BOOLEAN	RW	0x00 (0 _{dec})
		FALSE Behavior with triggered watchdog timer: Manufacturer's switch-on value			
8010:0A	Travel distance control active	TRUE <u>Travel distance control activated [118]</u> FALSE	BOOLEAN	RW	0x00 (0 _{dec})
		Travel distance control deactivated [118]			
8010:0E	Operating mode	0 _(dec) <u>Frequency modulation operating mode [▶ 116]</u> (pull-down menu)	BIT2	RW	0x00 (0 _{dec})
		1 _(dec) Pulse direction specification operating mode [▶ 116] (pull-down menu) 2 _(dec) Incremental encoder operating mode [▶ 116] (pull-down			
8010:10	Negative logic	menu) TRUE Negative logic	BOOLEAN	RW	0x00 (0 _{dec})
		FALSE Positive logic			
8010:11	Users switch- on-value	User switch-on value (frequency)	UINT16	RW	0x0000 (0 _{dec})
8010:12	Base frequency 1	Base frequency 1 = 50000 Hz	UINT32	RW	0x0000C350 (50000 _{dec})
8010:13	Base frequency 2	Base frequency 2 = 100000 Hz	UINT32	RW	0x000186A0 (100000 _{dec})
8010:14	Ramp time constant (rising)	Ramp time constant (rising)	UINT16	RW	0x03E8 (1000 _{dec})
8010:15	Ramp time constant (fall-ing)	Ramp time constant (falling)	UINT16	RW	0x03E8 (1000 _{dec})
8010:16	Frequency factor (Digit x 10mHz)	Frequency factor (direct input, digit x 10mHz)	UINT16	RW	0x0064 (100 _{dec})
8010:17	Slowing down frequency	Slowing down frequency, travel distance control	UINT16	RW	0x0032 (50 _{dec})
8010:18	Ramp time constant (emergency)	Ramp time constant for controlled switch-off; User switch-on value is driven to (object 8001:01	UINT16	RW	0x03E8 (1000 _{dec})
	, ,,	8010:11 [140])			

5.4.4.1.1.2 Objects for regular operation

In enhanced operating mode the EL2521 has no such objects.

5.4.4.1.1.3 Standard objects (0x1000-0x1FFF)

The standard objects have the same meaning for all EtherCAT slaves.

Index 0x1000 Device type

Index (hex)	Name	Meaning	Data type	Flags	Default
1000:0	type	Device type of the EtherCAT slave: the Lo- Word contains the CoE profile used (5001). The Hi-Word contains the module profile according to the modular device profile.	UINT32	RO	0x00001389 (5001 _{dec})

Index 0x1008 Device name

Index (hex)	Name	3	Data type	Flags	Default
1008:0	Device name	Device name of the EtherCAT slave	STRING	RO	EL2521

Index 0x1009 Hardware version

Index (hex)	Name	3	Data type	Flags	Default
1009:0	Hardware version	Hardware version of the EtherCAT slave	STRING	RO	05

Index 0x100A Software version

Index (hex)	Name	3	Data type	Flags	Default
100A:0	Software version	Firmware version of the EtherCAT slave	STRING	RO	06

Index 0x1018 Identity

Index (hex)	Name	Meaning	Data type	Flags	Default
1018:0	Identity	Information for identifying the slave	UINT8	RO	0x04 (4 _{dec})
1018:01	Vendor ID	Vendor ID of the EtherCAT slave	UINT32	RO	0x00000002 (2 _{dec})
1018:02	Product code	Product code of the EtherCAT slave	UINT32	RO	0x09D93052 (165228626 _{dec})
1018:03	Revision	Revision number of the EtherCAT slave; the low word (bit 0-15) indicates the special terminal number, the high word (bit 16-31) refers to the device description	UINT32	RO	0x03F80000 (66584576 _{dec})
1018:04	Serial number	Serial number of the EtherCAT slave; the low byte (bit 0-7) of the low word contains the year of production, the high byte (bit 8-15) of the low word contains the week of production, the high word (bit 16-31) is 0	UINT32	RO	0x0000000 (0 _{dec})

Index 0x10F0 Backup parameter handling

Index (hex)	Name		Data type	Flags	Default
10F0:0	•	Information for standardized loading and saving of backup entries	UINT8	RO	0x01 (1 _{dec})
10F0:01	Checksum	Checksum across all backup entries of the EtherCAT slave	UINT32	RO	0x00000000 (0 _{dec})

Index 0x1400 RxPDO-Par

Index (hex)	Name		Data type	Flags	Default
1400:0	RxPDO- Par	PDO Parameter RxPDO 1	UINT8	RO	0x06 (6 _{dec})
1400:06		, ,	OCTET- STRING[10]		01 16 04 16 07 16 02 16 05 16

Index 0x1401 PTO RxPDO-Par Control

Index (hex)	Name		Data type	Flags	Default
1401:0	PTO RxPDO- Par Control		UINT8	RO	0x06 (6 _{dec})
1401:06		- - - - - - - - - -	OCTET- STRING[10]		00 16 00 00 00 00 00 00 00 00

Index 0x1402 ENC RxPDO-Par Control compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1402:0	ENC RxPDO- Par Control compact	PDO Parameter RxPDO 3	UINT8	RO	0x06 (6 _{dec})
1402:06	RxPDOs	Specifies the RxPDOs (index (hex) of RxPDO mapping objects) that must not be transferred together with RxPDO 3	OCTET- STRING[10]		00 16 05 16 07 16 00 00 00 00

Index 0x1404 PTO RxPDO-Par Target compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1404:0	PTO RxPDO- Par Target compact	PDO Parameter RxPDO 5	UINT8	RO	0x06 (6 _{dec})
1404:06	Exclude RxPDOs	Specifies the RxPDOs (index (hex) of RxPDO mapping objects) that must not be transferred together with RxPDO 5	OCTET- STRING[10]		00 16 05 16 07 16 00 00 00 00

Index 0x1405 ENC RxPDO-Par Control

Index (hex)	Name	9	Data type	Flags	Default
1405:0	ENC RxPDO- Par Control	PDO Parameter RxPDO 6	UINT8	RO	0x06 (6 _{dec})
1405:06	RxPDOs		OCTET- STRING[10]		00 16 02 16 04 16 00 00 00 00

Index 0x1407 PTO RxPDO-Par Target

Index (hex)	Name	Meaning	Data type	Flags	Default
1407:0	PTO RxPDO- Par Target	PDO Parameter RxPDO 8	UINT8	RO	0x06 (6 _{dec})
1407:06	Exclude RxPDOs	Specifies the RxPDOs (index (hex) of RxPDO mapping objects) that must not be transferred together with RxPDO 8	OCTET- STRING[10]		00 16 02 16 04 16 00 00 00 00

Index 0x1600 RxPDO-Map

Index (hex)	Name	Meaning	Data type	Flags	Default
1600:0	RxPDO- Map	PDO Mapping RxPDO 1	UINT8	RO	0x02 (2 _{dec})
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (Outputs), entry 0x01 (Ctrl))	UINT32	RO	0x7000:01, 16
1600:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (Outputs), entry 0x02 (Data Out))	UINT32	RO	0x7000:02, 16

Index 0x1601 PTO RxPDO-Map Control

Index (hex)	Name	Meaning	Data type	Flags	Default
1601:0	PTO RxPDO- Map Control	PDO Mapping RxPDO 2	UINT8	RO	0x06 (6 _{dec})
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (PTO Outputs), entry 0x01 (Frequency select))	UINT32	RO	0x7010:01, 1
1601:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (PTO Outputs), entry 0x02 (Disable ramp))	UINT32	RO	0x7010:02, 1
1601:03	SubIndex 003	3. PDO Mapping entry (object 0x7010 (PTO Outputs), entry 0x03 (Go counter))	UINT32	RO	0x7010:03, 1
1601:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1601:05	SubIndex 005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1601:06	SubIndex 006	6. PDO Mapping entry (object 0x7010 (PTO Outputs), entry 0x11 (Frequency value))	UINT32	RO	0x7010:11, 16

Index 0x1602 ENC RxPDO-Map Control compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1602:0	ENC RxPDO- Map Control compact	PDO Mapping RxPDO 3	UINT8	RO	0x05 (5 _{dec})
1602:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1602:02	SubIndex 002	2. PDO Mapping entry (object 0x7020 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x7020:03, 1
1602:03	SubIndex 003	3. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1602:04	SubIndex 004	4. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1602:05	SubIndex 005	5. PDO Mapping entry (object 0x7020 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7020:11, 16

Index 0x1604 PTO RxPDO-Map Target compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1604:0	PTO RxPDO- Map Target compact	PDO Mapping RxPDO 5	UINT8	RO	0x01 (1 _{dec})
1604:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (PTO Outputs), entry 0x12 (Target counter value))	UINT32	RO	0x7010:12, 16

Index 0x1605 ENC RxPDO-Map Control

Index (hex)	Name	Meaning	Data type	Flags	Default
1605:0	ENC RxPDO- Map Control	PDO Mapping RxPDO 6	UINT8	RO	0x05 (5 _{dec})
1605:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1605:02	SubIndex 002	2. PDO Mapping entry (object 0x7020 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x7020:03, 1
1605:03	SubIndex 003	3. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1605:04	SubIndex 004	4. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1605:05	SubIndex 005	5. PDO Mapping entry (object 0x7020 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7020:11, 32

Index 0x1607 PTO RxPDO-Map Target

Index (hex)	Name		Data type	Flags	Default
1607:0	PTO RxPDO- Map Target		UINT8	RO	0x01 (1 _{dec})
1607:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (PTO Outputs), entry 0x12 (Target counter value))	UINT32	RO	0x7010:12, 32

Index 0x1800 TxPDO-Par

Index (hex)	Name	Meaning	Data type	Flags	Default
1800:0	TxPDO-Par	PDO Parameter TxPDO 1	UINT8	RO	0x06 (6 _{dec})
1800:06	TxPDOs	Specifies the TxPDOs (index (hex) of TxPDO mapping objects) that must not be transferred together with TxPDO 1	OCTET- STRING[6]	RO	01 1A 02 1A 05 1A

Index 0x1801 PTO TxPDO-Par Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1801:0	PTO TxPDO-Par Status	PDO Parameter TxPDO 2	UINT8	RO	0x09 (9 _{dec})
1801:06	TxPDOs	Specifies the TxPDOs (index (hex) of TxPDO mapping objects) that must not be transferred together with TxPDO 2	OCTET- STRING[6]	RO	00 1A 00 00 00 00
1801:09	TxPDO- Toggle	The TxPDO toggle is toggled with each update the corresponding input data	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x1802 ENC TxPDO-Par Status compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1802:0	ENC TxPDO-Par Status compact	PDO Parameter TxPDO 3	UINT8	RO	0x09 (9 _{dec})
1802:06	Exclude TxPDOs	Specifies the TxPDOs (index (hex) of TxPDO mapping objects) that must not be transferred together with TxPDO 3	OCTET- STRING[6]	RO	05 1A 00 1A 00 00
1802:09	TxPDO- Toggle	The TxPDO toggle is toggled with each update the corresponding input data	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x1805 ENC TxPDO-Par Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1805:0	ENC TxPDO-Par Status	PDO Parameter TxPDO 6	UINT8	RO	0x09 (9 _{dec})
1805:06	Exclude TxPDOs	Specifies the TxPDOs (index (hex) of TxPDO mapping objects) that must not be transferred together with TxPDO 6	OCTET- STRING[6]	RO	02 1A 00 1A 00 00
1805:09	TxPDO- Toggle	The TxPDO toggle is toggled with each update the corresponding input data	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x1A00 TxPDO-Map

Index (hex)	Name		Data type	Flags	Default
1A00:0	TxPDO- Map	PDO Mapping TxPDO 1	UINT8	RO	0x02 (2 _{dec})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (Inputs), entry 0x01 (Status))	UINT32	RO	0x6000:01, 16
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (Inputs), entry 0x02 (Data In))	UINT32	RO	0x6000:02, 16

Index 0x1A01 PTO TxPDO-Map Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1A01:0	PTO TxPDO- Map Status	PDO Mapping TxPDO 2	UINT8	RO	0x0A (10 _{dec})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (PTO Inputs), entry 0x01 (Sel. Ack/End counter))	UINT32	RO	0x6010:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (PTO Inputs), entry 0x02 (Ramp active))	UINT32	RO	0x6010:02, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (PTO Inputs), entry 0x05 (Status of input target))	UINT32	RO	0x6010:05, 1
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (PTO Inputs), entry 0x06 (Status of input zero))	UINT32	RO	0x6010:06, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (object 0x6010 (PTO Inputs), entry 0x07 (Error))	UINT32	RO	0x6010:07, 1
1A01:07	SubIndex 007	7. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (object 0x1801 (PTO TxPDO-Par Status), entry 0x09 (TxPDO-Toggle))	UINT32	RO	0x1801:09, 1

Index 0x1A02 ENC TxPDO-Map Status compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1A02:0	ENC TxPDO- Map Status compact	PDO Mapping TxPDO 3	UINT8	RO	0x0A (10 _{dec})
1A02:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A02:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6020:03, 1
1A02:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6020:04, 1
1A02:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6020:05, 1
1A02:05	SubIndex 005	5. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A02:06	SubIndex 006	6. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A02:07	SubIndex 007	7. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A02:08	SubIndex 008	8. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A02:09	SubIndex 009	9. PDO Mapping entry (object 0x1802 (ENC TxPDO-Par Status compact), entry 0x09 (TxPDO-Toggle))	UINT32	RO	0x1802:09, 1
1A02:0A	SubIndex 010	10. PDO Mapping entry (object 0x6020 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6020:11, 16

Index 0x1A05 ENC TxPDO-Map Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1A05:0	ENC TxPDO- Map Status	PDO Mapping TxPDO 6	UINT8	RO	0x0A (10 _{dec})
1A05:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A05:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6020:03, 1
1A05:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6020:04, 1
1A05:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6020:05, 1
1A05:05	SubIndex 005	5. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A05:06	SubIndex 006	6. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A05:07	SubIndex 007	7. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A05:08	SubIndex 008	8. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A05:09	SubIndex 009	9. PDO Mapping entry (object 0x1805 (ENC TxPDO-Par Status), entry 0x09 (TxPDO-Toggle))	UINT32	RO	0x1805:09, 1
1A05:0A	SubIndex 010	10. PDO Mapping entry (object 0x6020 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6020:11, 32

Index 0x1C00 Sync manager type

Index (hex)	Name	Meaning	Data type	Flags	Default
1C00:0	Sync manager type	Using the sync managers	UINT8	RO	0x04 (4 _{dec})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dec})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dec})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dec})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dec})

Index 0x1C12 RxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x01 (1 _{dec})
1C12:01	SubIndex 001	1. allocated RxPDO (contains the index (hex) of the associated RxPDO mapping object)	UINT16	RW	0x1600 (5632 _{dec})
1C12:02	SubIndex 002	2. allocated RxPDO (contains the index (hex) of the associated RxPDO mapping object)	UINT16	RW	0x0000 (0 _{dec})
1C12:03	SubIndex 003	3. allocated RxPDO (contains the index (hex) of the associated RxPDO mapping object)	UINT16	RW	0x0000 (0 _{dec})

Index 0x1C13 TxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x01 (1 _{dec})
1C13:01	SubIndex 001	1. allocated TxPDO (contains the index (hex) of the associated TxPDO mapping object)	UINT16	RW	0x1A00 (6656 _{dec})
1C13:02	SubIndex 002	2. allocated TxPDO (contains the index (hex) of the associated TxPDO mapping object)	UINT16	RW	0x0000 (0 _{dec})

Index 0x1C32 SM output parameter

Index (hex)	Name	Meaning	Data type	Flags	Default
1C32:0	SM output pa- rameter	Synchronization parameters for the outputs	UINT8	RO	0x20 (32 _{dec})
1C32:01	Sync mode	Current synchronization mode:	UINT16	RW	0x0001 (1 _{dec})
		0: Free Run			
		1: Synchronous with SM 2 event			
		2: DC-Mode - Synchronous with SYNC0 Event			
		3: DC-Mode - Synchronous with SYNC1 event			
1C32:02	Cycle time	Cycle time (in ns):	UINT32	RW	0x001E8480
		Free Run: Cycle time of the local timer			(2000000 _{dec})
		Synchronous with SM 2 event: Master cycle time			
		DC mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Time between SYNC0 event and output of the outputs (in ns, DC mode only)	UINT32	RO	0x00000000 (0 _{dec})
1C32:04	Sync modes	Supported synchronization modes:	UINT16	RO	0xC007 (49159 _{dec})
	supported	Bit 0 = 1: free run is supported			
		Bit 1 = 1: Synchronous with SM 2 event is supported			
		Bit 2-3 = 01: DC mode is supported			
		Bit 4-5 = 10: Output shift with SYNC1 event (only DC mode)			
		 Bit 14 = 1: dynamic times (measurement through writing of <u>1C32:08</u> [* <u>150</u>]) 			
1C32:05	Minimum cy- cle time	Minimum cycle time (in ns)	UINT32	RO	0x0000000 (0 _{dec})
1C32:06	Calc and copy time	Minimum time between SYNC0 and SYNC1 event (in ns, DC mode only)	UINT32	RO	0x0000000 (0 _{dec})
1C32:08	Command	0: Measurement of the local cycle time is stopped	UINT16	RW	0x0000 (0 _{dec})
		1: Measurement of the local cycle time is started			
		The entries $\underline{1C32:03}$ [\blacktriangleright $\underline{150}$], $\underline{1C32:05}$ [\blacktriangleright $\underline{150}$], $\underline{1C32:06}$ [\blacktriangleright $\underline{150}$], $\underline{1C32:09}$ [\blacktriangleright $\underline{150}$], $\underline{1C33:03}$ [\blacktriangleright $\underline{151}$], $\underline{1C33:06}$ [\blacktriangleright $\underline{150}$], $\underline{1C33:09}$ [\blacktriangleright $\underline{151}$] are updated with the maximum measured values. For a subsequent measurement the measured values are reset			
1C32:09	Delay time	Time between SYNC1 event and output of the outputs (in ns, DC mode only)	UINT32	RO	0x00000000 (0 _{dec})
1C32:0B	SM event missed counter	Number of missed SM events in OPERATIONAL (DC mode only)	UINT16	RO	0x0000 (0 _{dec})
1C32:0C	Cycle ex- ceeded counter	Number of occasions the cycle time was exceeded in OP- ERATIONAL (cycle was not completed in time or the next cycle began too early)	UINT16	RO	0x0000 (0 _{dec})
1C32:0D	Shift too short counter	Number of occasions that the interval between SYNC0 and SYNC1 event was too short (DC mode only)	UINT16	RO	0x0000 (0 _{dec})
1C32:20	Sync error	The synchronization was not correct in the last cycle (outputs were output too late; DC mode only)	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x1C33 SM input parameter

Index (hex)	Name	Meaning	Data type	Flags	Default
1C33:0	SM input pa- rameter	Synchronization parameters for the inputs	UINT8	RO	0x20 (32 _{dec})
1C33:01	Sync mode	Current synchronization mode: • 0: Free Run • 1: Synchronous with SM 3 event (no outputs available) • 2: DC - Synchronous with SYNC0 Event • 3: DC - Synchronous with SYNC1 Event • 34: Synchronous with SM 2 event (outputs available)	UINT16	RW	0x0022 (34 _{dec})
1C33:02	Cycle time	as <u>1C32:02</u> [▶ <u>150]</u>	UINT32	RW	0x001E8480 (2000000 _{dec})
1C33:03	Shift time	Time between SYNC0 event and reading of the inputs (in ns, only DC mode)	UINT32	RO	0x0000000 (0 _{dec})
1C33:04	Sync modes supported	Supported synchronization modes: Bit 0: free run is supported Bit 1: synchronous with SM 2 event is supported (outputs available) Bit 1: synchronous with SM 3 event is supported (no outputs available) Bit 2-3 = 01: DC mode is supported Bit 4-5 = 01: input shift through local event (outputs available) Bit 4-5 = 10: input shift with SYNC1 event (no outputs available) Bit 14 = 1: dynamic times (measurement through writing of 1C32:08 [▶ 150] or 1C33:08 [▶ 151])	UINT16	RO	0xC007 (49159 _{dec})
1C33:05	Minimum cy- cle time	as <u>1C32:05 [▶ 150]</u>	UINT32	RO	0x00000000 (0 _{dec})
1C33:06	Calc and copy time	Time between reading of the inputs and availability of the inputs for the master (in ns, only DC mode)	UINT32	RO	0x0000000 (0 _{dec})
1C33:08	Command	as <u>1C32:08</u> [> <u>150</u>]	UINT16	RW	0x0000 (0 _{dec})
1C33:09	Delay time	Time between SYNC1 event and reading of the inputs (in ns, only DC mode)	UINT32	RO	0x0000000 (0 _{dec})
1C33:0B	SM event missed counter	as <u>1C32:11 [▶ 150]</u>	UINT16	RO	0x0000 (0 _{dec})
1C33:0C	Cycle ex- ceeded counter	as <u>1C32:12</u> [▶ <u>150]</u>	UINT16	RO	0x0000 (0 _{dec})
1C33:0D	Shift too short counter	as <u>1C32:13</u> [▶ <u>150]</u>	UINT16	RO	0x0000 (0 _{dec})
1C33:20	Sync error	as <u>1C32:32 [▶ 150]</u>	BOOLEAN	RO	0x00 (0 _{dec})

5.4.4.1.1.4 Profile-specific objects (0x6000-0xFFFF)

The profile-specific objects have the same meaning for all EtherCAT slaves that support the profile 5001.

Index 0x6000 Inputs

Index (hex)	Name	3	Data type	Flags	Default
,	1			D0	000 (0)
6000:0	Inputs	Max. subindex	UINT8	RO	0x02 (2 _{dec})
6000:01	Status	Status word [130]	UINT16	RO	0x0000 (0 _{dec})
6000:02	Data In	Input process data (counter value, index (hex)	UINT16	RO	0x0000 (0 _{dec})
		<u>6020:11 [▶ 153]</u>)			

Index 0x6010 PTO Inputs

Index (hex)	Name	Meaning	Data type	Flags	Default
6010:0	PTO Inputs	Max. subindex	UINT8	RO	0x10 (16 _{dec})
6010:01	Sel. Ack/ End counter	Confirms the change of base frequency. if travel distance control is activated: target counter value reached	BOOLEAN	RO	0x00 (0 _{dec})
6010:02	Ramp active	Ramp is currently being followed	BOOLEAN	RO	0x00 (0 _{dec})
6010:05	Status of input target	Status of the input TARGET (T)	BOOLEAN	RO	0x00 (0 _{dec})
6010:06	Status of input zero	Status of the input ZERO (Z)	BOOLEAN	RO	0x00 (0 _{dec})
6010:07	Error	General error bit, is set together with overrange and underrange	BOOLEAN	RO	0x00 (0 _{dec})
6010:0E	Sync Error	The Sync error bit is only required for Distributed Clocks mode. It indicates whether a synchronization error has occurred during the previous cycle.	BOOLEAN	RO	0x00 (0 _{dec})
6010:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x6020 ENC Inputs

Index (hex)	Name	Meaning	Data type	Flags	Default
6020:0	ENC Inputs	Max. subindex	UINT8	RO	0x16 (22 _{dec})
6020:03	Set counter done	Counter was set.	BOOLEAN	RO	0x00 (0 _{dec})
6020:04	Counter underflow	This bit is set if the 16 bit counter underflows (0 -> 65535). It is reset when the counter drops below two thirds of its measuring range (43690 -> 43689) or immediately an overflow occurs.	BOOLEAN	RO	0x00 (0 _{dec})
6020:05	Counter overflow	This bit is set if the 16 bit counter overflows (65535 -> 0). It is reset when the counter exceeds one third of its measuring range (21845 -> 21846) or immediately an underflow occurs.	BOOLEAN	RO	0x00 (0 _{dec})
6020:0E	Sync Error	The Sync error bit is only required for Distributed Clocks mode. It indicates whether a synchronization error has occurred during the previous cycle.	BOOLEAN	RO	0x00 (0 _{dec})
6020:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	0x00 (0 _{dec})
6020:11	Counter value	meter reading	UINT32	RO	0x00000000 (0 _{dec})

Index 0x7000 Outputs

Index (hex)	Name	Meaning	Data type	Flags	Default
7000:0	Outputs	Max. Subindex	UINT8	RO	0x02 (2 _{dec})
7000:01	Ctrl	Control-Word [130]	UINT16	RO	0x0000 (0 _{dec})
7000:02	Data Out	Output process data (frequency value, index (hex) 7010:11 [154])	UINT16	RO	0x0000 (0 _{dec})

Index 0x7010 PTO Outputs

Index (hex)	Name	Meaning	Data type	Flags	Default
7010:0	PTO Outputs	Max. Subindex	UINT8	RO	0x12 (18 _{dec})
7010:01	Frequency select	Fast toggling of the base frequency (only if ramp function is deactivated) 0 _{bin} = base frequency 1 (object 8001:02	BOOLEAN	RO	0x00 (0 _{dec})
		8010:12 [▶ 140]) 1 _{bin} = base frequency 2 (object 8001:03			
		<u>8010:13 [▶ 140])</u>			
7010:02	Disable ramp	The ramp function is disabled despite active index 8000:06	BOOLEAN	RO	0x00 (0 _{dec})
		8010:06 [▶ 140]; if the travel distance control is active it is aborted by this bit.			
7010:03	Go counter	If travel distance control is activated (object 8000:0A	BOOLEAN	RO	0x00 (0 _{dec})
		8010:0A [▶ 140]), a specified counter value is driven to if the bit is set.			
7010:11	Frequency value	Frequency value	UINT16	RO	0x0000 (0 _{dec})
7010:12	Target counter value	Target counter value	UINT32	RO	0x0000000 (0 _{dec})

Index 0x7020 ENC Outputs

Index (hex)	Name	Meaning	Data type	Flags	Default
7020:0	ENC Outputs	Max. subindex	UINT8	RO	0x11 (17 _{dec})
7020:03	Set counter	Set counter	BOOLEAN	RO	0x00 (0 _{dec})
7020:11	Set counter value	Counter value to be set via index (hex) 7020:03 [▶ 154]	UINT32	RO	0x00000000 (0 _{dec})

Index 0xA000 Diagnostic parameter

Index (hex)	Name	3	Data type	Flags	Default
A000:0	Diagnostic parameter	Max. subindex	UINT8	RO	0x01 (1 _{dec})
A000:01	Counter extension	Counter extension	UINT16	RO	0x0000 (0 _{dec})

Index 0xF000 Modular device profile

Index (hex)	Name		Data type	Flags	Default
F000:0	Modular device profile	General information for the modular device profile	UINT8	RO	0x02 (2 _{dec})
F000:01		Index spacing of the objects of the individual channels	UINT16	RO	0x0010 (16 _{dec})
F000:02	Maximum number of modules	Number of channels	UINT16	RO	0x0003 (3 _{dec})

Index 0xF008 Code word

Index (hex)	Name	Meaning	Data type	Flags	Default
F008:0	Code word	currently reserved	UINT32	RW	0x0000000 (0 _{dec})

Index 0xF010 Module list

Index (hex)	Name		Data type	Flags	Default
F010:0	Module list	Max. subindex	UINT8	RW	0x03 (3 _{dec})
F010:01	SubIndex 001	-	UINT32	RW	0x00000FC (252 _{dec})
F010:02	SubIndex 002	-	UINT32	RW	0x000000FD (253 _{dec})
F010:03	SubIndex 003	-	UINT32	RW	0x000001FF (511 _{dec})

5.4.4.2 EL2521-0124

5.4.4.2.1 Object description and parameterization - enhanced operation mode

Note

EtherCAT XML Device Description

The display matches that of the CoE objects from the EtherCAT XML Device Description. We recommend downloading the latest XML file from the <u>download area of the Beckhoff website</u> and installing it according to installation instructions.

Note

Parameterization via the CoE list (CAN over EtherCAT)

The terminal is parameterized via the CoE - Online tab (double-click on the respective object) or via the Process Data tab (allocation of PDOs). Please note the following <u>general CoE information [• 22]</u> when using/manipulating the CoE parameters:

- Keep a startup list if components have to be replaced
- Differentiation between online/offline dictionary, existence of current XML description
- "CoE-Reload" for resetting the changes

Introduction

The CoE overview contains objects for different intended applications:

- Objects required for parameterization [▶ 156] during commissioning
- Objects intended for regular operation [▶ 158], e.g. through ADS access.

• Objects for indicating internal settings [▶ 158] (may be fixed)

The following section first describes the objects required for normal operation, followed by a complete overview of missing objects.

5.4.4.2.1.1 Objects for commissioning

Index 0x1011 Restore default parameters

Index (hex)	Name	Meaning	Data type	Flags	Default
1011:0	Restore default parameters	Restore default parameters	UINT8	RO	0x01 (1 _{dec})
1011:01	001	If this object is set to "0x64616F6C" in the set value dialog, all backup objects are reset to their delivery state.	UINT32	RW	0x0000000 (0 _{dec})

Index 0x8000 PTA Settings

Index (hex)	Name	Meaning	Data type	Flags	Default
8000:0	PTO Settings	Max. subindex	UINT8	RO	0x18 (24 _{dec})
8000:02	Emergency ramp active	TRUE If the watchdog timer responds, the terminal ramps with the time constant set in object 8000:18 [▶ 157] to the value set in object 8000:11 [▶ 157]. FALSE The function is deactivated	BOOLEAN	RW	0x00 (0 _{dec})
8000:03	Watchdog	TRUE	BOOLEAN	RW	0x00 (0 _{dec})
0000.03	timer deactive	The watchdog timer is deactivated FALSE The watchdog timer is activated in the delivery state. Either the manufacturer's of the user's switch-on value is output if the watchdog overflows.	BOCLEAN	T	OXOO (O _{dec})
8000:04	Sign/amount representation	TRUE The output value is displayed in magnitude-sign format: -2 _{dec} = 0x8002 -1 _{dec} = 0x8001 1 _{dec} = 0x0001 2 _{dec} = 0x0002	BOOLEAN	RW	0x00 (0 _{dec})
		FALSE The output value is output as signed integer in the two's complement: -2 _{dec} = 0xFFFE -1 _{dec} = 0xFFFF 1 _{dec} = 0x0001 2 _{dec} = 0x0002			
8000:06	Ramp function active		BOOLEAN	RW	0x01 (1 _{dec})
		Ramp function deactivated [117]			
8000:07	Ramp base frequency	0 _(dec) Ramp base frequency: 10 Hz (pull-down menu) 1 _(dec) Ramp base frequency: 1 kHz (pull-down menu)	BIT1	RW	0x00 (0 _{dec})
80:008	Direct input mode	TRUE Direct input mode Relative input mode [▶ 120]	BOOLEAN	RW	0x00 (0 _{dec})
8000:09	Users switch- on-value on wdt	TRUE Behavior with triggered watchdog timer: User's switchon value FALSE Behavior with triggered watchdog timer: Manufacturer's switch-on value	BOOLEAN	RW	0x00 (0 _{dec})
8000:0A	Travel dis- tance control active	TRUE Travel distance control activated [▶ 118] FALSE Travel distance control deactivated [▶ 118]	BOOLEAN	RW	0x00 (0 _{dec})
8000:0B	Output set active low	Inversion of the output logic for output 24 V 0: HIGH level in switched state 1: LOW level in switched state	BOOLEAN	RW	0x00 (0 _{dec})

Index (hex)	Name	Meaning	Data type	Flags	Default
8000:0E	Operating mode	O _(dec) Frequency modulation operating mode [▶ 116] (pull-down menu) 1 _(dec) Pulse direction specification operating mode [▶ 116] (pull-down menu) 2 _(dec) Incremental encoder operating mode [▶ 116] (pull-down menu)	BIT2	RW	0x00 (0 _{dec})
8000:10	Negative logic	TRUE Negative logic FALSE Positive logic	BOOLEAN	RW	0x00 (0 _{dec})
8000:11	Users switch- on-value	User switch-on value (frequency)	UINT16	RW	0x0000 (0 _{dec})
8000:12	Base frequency 1	Base frequency 1 = 50000 Hz	UINT32	RW	0x0000C350 (50000 _{dec})
8000:13	Base frequency 2	Base frequency 2 = 100000 Hz	UINT32	RW	0x000186A0 (100000 _{dec})
8000:14	Ramp time constant (rising)	Ramp time constant (rising)	UINT16	RW	0x03E8 (1000 _{dec})
8000:15	Ramp time constant (fall-ing)	Ramp time constant (falling)	UINT16	RW	0x03E8 (1000 _{dec})
8000:16	Frequency factor (Digit x 10mHz)	Frequency factor (direct input, digit x 10mHz)	UINT16	RW	0x0064 (100 _{dec})
8000:17	Slowing down frequency	Slowing down frequency, travel distance control	UINT16	RW	0x0032 (50 _{dec})
8000:18	Ramp time constant (emergency)	Ramp time constant for controlled switch-off; User switch-on value is driven to (object 8000:11 [▶ 157])	UINT16	RW	0x03E8 (1000 _{dec})

5.4.4.2.1.2 Objects for regular operation

In enhanced operating mode the EL2521-0124 has no such objects.

5.4.4.2.1.3 Standard objects (0x1000-0x1FFF)

The standard objects have the same meaning for all EtherCAT slaves.

Index 0x1000 Device type

Index (hex)	Name	Meaning	Data type	Flags	Default
1000:0	Device type	Device type of the EtherCAT slave: the Lo- Word contains the CoE profile used (5001). The Hi-Word contains the module profile according to the modular device profile.	UINT32		0x00001389 (5001 _{dec})

Index 0x1008 Device name

Index (hex)	Name	Meaning	Data type	Flags	Default
1008:0	Device name	Device name of the EtherCAT slave	STRING	RO	EL2521-0124

Index 0x1009 Hardware version

Index (hex)	Name	3	Data type	Flags	Default
1009:0	Hardware version	Hardware version of the EtherCAT slave	STRING	RO	03

Index 0x100A Software version

Index (hex)	Name	3	Data type	Flags	Default
100A:0	Software	Firmware version of the EtherCAT slave	STRING	RO	01
	version				

Index 0x1018 Identity

Index (hex)	Name	Meaning	Data type	Flags	Default
1018:0	Identity	Information for identifying the slave	UINT8	RO	0x04 (4 _{dec})
1018:01	Vendor ID	Vendor ID of the EtherCAT slave	UINT32	RO	0x00000002 (2 _{dec})
1018:02	Product code	Product code of the EtherCAT slave	UINT32	RO	0x09D93052 (165228626 _{dec})
1018:03	Revision	Revision number of the EtherCAT slave; the low word (bit 0-15) indicates the special terminal number, the high word (bit 16-31) refers to the device description	UINT32	RO	0x0010007C (1048700 _{dec})
1018:04	Serial number	Serial number of the EtherCAT slave; the low byte (bit 0-7) of the low word contains the year of production, the high byte (bit 8-15) of the low word contains the week of production, the high word (bit 16-31) is 0	UINT32	RO	0x0000000 (0 _{dec})

Index 0x10F0 Backup parameter handling

Index (hex)	Name		Data type	Flags	Default
10F0:0	Backup parameter handling	Information for standardized loading and saving of backup entries	UINT8	RO	0x01 (1 _{dec})
10F0:01	Checksum	Checksum across all backup entries of the EtherCAT slave	UINT32	RO	0x00000000 (0 _{dec})

Index 0x1401 ENC RxPDO-Par Control compact

Index (hex)	Name	Meaning	Data type	Flags	Default
	ENC RxPDO- Par Control compact		UINT8	RO	0x06 (6 _{dec})
	Exclude RxPDOs	- - - - - - - - - -	OCTET- STRING[6]	RO	04 16 05 16 06 16

Index 0x1402 PLS RxPDO-Par Control compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1402:0	PLS RxPDO- Par Control compact		UINT8	RO	0x06 (6 _{dec})
1402:06	Exclude RxPDOs	- - - - - - - - - -	OCTET- STRING[6]	RO	04 16 05 16 06 16

Index 0x1403 PTO RxPDO-Par Target compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1403:0	PTO RxPDO- Par Target compact	PDO Parameter RxPDO 4	UINT8	RO	0x06 (6 _{dec})
1403:06	Exclude RxPDOs	Specifies the RxPDOs (index of RxPDO mapping objects) that must not be transferred together with RxPDO 4	OCTET- STRING[6]	RO	04 16 05 16 06 16

Index 0x1404 ENC RxPDO-Par Control

Index (hex)	Name	Meaning	Data type	Flags	Default
	ENC RxPDO- Par Control		UINT8	RO	0x06 (6 _{dec})
1404:06	RxPDOs	- - - - - - - - - -	OCTET- STRING[6]	RO	01 16 02 16 03 16

Index 0x1405 PLS RxPDO-Par Control

Index (hex)	Name	Meaning	Data type	Flags	Default
	PLS RxPDO- Par Control		UINT8	RO	0x06 (6 _{dec})
1405:06	RxPDOs		OCTET- STRING[6]	RO	01 16 02 16 03 16

Index 0x1406 PTO RxPDO-Par Target

Index (hex)	Name	Meaning	Data type	Flags	Default
1406:0	PTO RxPDO- Par Target	PDO Parameter RxPDO 7	UINT8	RO	0x06 (6 _{dec})
1406:06	Exclude RxPDOs	Specifies the RxPDOs (index of RxPDO mapping objects) that must not be transferred together with RxPDO 7	OCTET- STRING[6]	RO	01 16 02 16 03 16

Index 0x1600 PTO RxPDO-Map Control

Index (hex)	Name	Meaning	Data type	Flags	Default
1600:0	PTO RxPDO- Map Control	PDO Mapping RxPDO 1	UINT8	RO	0x06 (6 _{dec})
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (PTO Outputs), entry 0x01 (Frequency select))	UINT32	RO	0x7000:01, 1
1600:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (PTO Outputs), entry 0x02 (Disable ramp))	UINT32	RO	0x7000:02, 1
1600:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (PTO Outputs), entry 0x03 (Go counter))	UINT32	RO	0x7000:03, 1
1600:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1600:05	SubIndex 005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1600:06	SubIndex 006	6. PDO Mapping entry (object 0x7000 (PTO Outputs), entry 0x11 (Frequency value))	UINT32	RO	0x7000:11, 16

Index 0x1601 ENC RxPDO-Map Control compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1601:0	ENC RxPDO- Map Control compact	PDO Mapping RxPDO 2	UINT8	RO	0x07 (7 _{dec})
1601:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1601:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (ENC Outputs), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7010:02, 1
1601:03	SubIndex 003	3. PDO Mapping entry (object 0x7010 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x7010:03, 1
1601:04	SubIndex 004	4. PDO Mapping entry (object 0x7010 (ENC Outputs), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7010:04, 1
1601:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1601:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1601:07	SubIndex 007	7. PDO Mapping entry (object 0x7010 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7010:11, 16

Index 0x1602 PLS RxPDO-Map Control compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1602:0	PLS RxPDO- Map Control compact	PDO Mapping RxPDO 3	UINT8	RO	0x07 (7 _{dec})
1602:01	SubIndex 001	1. PDO Mapping entry (object 0x7020 (PLS Outputs), entry 0x01 (Enable PLS))	UINT32	RO	0x7020:01, 1
1602:02	SubIndex 002	2. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1602:03	SubIndex 003	3. PDO Mapping entry (object 0x7020 (PLS Outputs), entry 0x04 (Output))	UINT32	RO	0x7020:04, 1
1602:04	SubIndex 004	4. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1602:05	SubIndex 005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1602:06	SubIndex 006	6. PDO Mapping entry (object 0x7020 (PLS Outputs), entry 0x11 (Switch on value))	UINT32	RO	0x7020:11, 16
1602:07	SubIndex 007	7. PDO Mapping entry (object 0x7020 (PLS Outputs), entry 0x12 (Switch off value))	UINT32	RO	0x7020:12, 16

Index 0x1603 PTO RxPDO-Map Target compact

Index (hex)	Name		Data type	Flags	Default
1603:0	PTO RxPDO- Map Target compact		UINT8	RO	0x01 (1 _{dec})
1603:01		1. PDO Mapping entry (object 0x7000 (PTO Outputs), entry 0x12 (Target counter value))	UINT32	RO	0x7000:12, 16

Index 0x1604 ENC RxPDO-Map Control

Index (hex)	Name	Meaning	Data type	Flags	Default
1604:0	ENC RxPDO- Map Control	PDO Mapping RxPDO 5	UINT8	RO	0x07 (7 _{dec})
1604:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1604:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (ENC Outputs), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7010:02, 1
1604:03	SubIndex 003	3. PDO Mapping entry (object 0x7010 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x7010:03, 1
1604:04	SubIndex 004	4. PDO Mapping entry (object 0x7010 (ENC Outputs), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7010:04, 1
1604:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1604:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1604:07	SubIndex 007	7. PDO Mapping entry (object 0x7010 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7010:11, 32

Index 0x1605 PLS RxPDO-Map Control

Index (hex)	Name	Meaning	Data type	Flags	Default
1605:0	PLS RxPDO- Map Control	PDO Mapping RxPDO 6	UINT8	RO	0x07 (7 _{dec})
1605:01	SubIndex 001	1. PDO Mapping entry (object 0x7020 (PLS Outputs), entry 0x01 (Enable PLS))	UINT32	RO	0x7020:01, 1
1605:02	SubIndex 002	2. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1605:03	SubIndex 003	3. PDO Mapping entry (object 0x7020 (PLS Outputs), entry 0x04 (Output))	UINT32	RO	0x7020:04, 1
1605:04	SubIndex 004	4. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1605:05	SubIndex 005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1605:06	SubIndex 006	6. PDO Mapping entry (object 0x7020 (PLS Outputs), entry 0x11 (Switch on value))	UINT32	RO	0x7020:11, 32
1605:07	SubIndex 007	7. PDO Mapping entry (object 0x7020 (PLS Outputs), entry 0x12 (Switch off value))	UINT32	RO	0x7020:12, 32

Index 0x1606 PTO RxPDO-Map Target

Index (hex)	Name		Data type	Flags	Default
1606:0	PTO RxPDO- Map Target		UINT8	RO	0x01 (1 _{dec})
1606:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (PTO Outputs), entry 0x12 (Target counter value))	UINT32	RO	0x7000:12, 32

Index 0x1801 ENC TxPDO-Par Status compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1801:0	ENC TxPDO-Par Status compact	PDO Parameter TxPDO 2	UINT8	RO	0x09 (9 _{dec})
1801:06	Exclude TxPDOs	Specifies the TxPDOs (index of TxPDO mapping objects) that must not be transferred together with TxPDO 2	OCTET- STRING[2]	RO	04 1A
1801:09	TxPDO Toggle	The TxPDO toggle is toggled with each update the corresponding input data	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x1804 ENC TxPDO-Par Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1804:0	ENC TxPDO-Par Status	PDO Parameter TxPDO 5	UINT8	RO	0x09 (9 _{dec})
1804:06	TxPDOs	Specifies the TxPDOs (index of TxPDO mapping objects) that must not be transferred together with TxPDO 5	OCTET- STRING[2]	RO	01 1A
1804:09	TxPDO Toggle	The TxPDO toggle is toggled with each update the corresponding input data	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x1A00 PTO TxPDO-Map Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1A00:0	PTO TxPDO- Map Status	PDO Mapping TxPDO 1	UINT8	RO	0x08 (8 _{dec})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (PTO Inputs), entry 0x01 (Sel. Ack/End counter))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (PTO Inputs), entry 0x02 (Ramp active))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (PTO Inputs), entry 0x07 (Error))	UINT32	RO	0x6000:07, 1
1A00:05	SubIndex 005	5. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1A00:06	SubIndex 006	6. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A00:07	SubIndex 007	7. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x1800, entry 0x09)	UINT32	RO	0x1800:09, 1

Index 0x1A01 ENC TxPDO-Map Status compact

Index (hex)	Name	Meaning	Data type	Flags	Default
1A01:0	ENC TxPDO- Map Status compact	PDO Mapping TxPDO 2	UINT8	RO	0x0D (13 _{dec})
1A01:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x02 (Latch extern valid))	UINT32	RO	0x6010:02, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6010:03, 1
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6010:04, 1
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6010:05, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A01:07	SubIndex 007	7. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x0D (Status of extern latch))	UINT32	RO	0x6010:0D, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A01:0B	SubIndex 011	11. PDO Mapping entry (object 0x1801 (ENC TxPDO-Par Status compact), entry 0x09 (TxPDO Toggle))	UINT32	RO	0x1801:09, 1
1A01:0C	SubIndex 012	12. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6010:11, 16
1A01:0D	SubIndex 013	13. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6010:12, 16

Index 0x1A02 PLS TxPDO-Map Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1A02:0	PLS TxPDO- Map Status	PDO Mapping TxPDO 3	UINT8	RO	0x07 (7 _{dec})
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (PLS Inputs), entry 0x01 (PLS Enabled))	UINT32	RO	0x6020:01, 1
1A02:02	SubIndex 002	2. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A02:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (PLS Inputs), entry 0x04 (Status of output))	UINT32	RO	0x6020:04, 1
1A02:04	SubIndex 004	4. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9
1A02:05	SubIndex 005	5. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A02:06	SubIndex 006	6. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A02:07	SubIndex 007	7. PDO Mapping entry (object 0x1802, entry 0x09)	UINT32	RO	0x1802:09, 1

Index 0x1A04 ENC TxPDO-Map Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1A04:0	ENC TxPDO- Map Status	PDO Mapping TxPDO 5	UINT8	RO	0x0D (13 _{dec})
1A04:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A04:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x02 (Latch extern valid))	UINT32	RO	0x6010:02, 1
1A04:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6010:03, 1
1A04:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6010:04, 1
1A04:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6010:05, 1
1A04:06	SubIndex 006	6. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A04:07	SubIndex 007	7. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A04:08	SubIndex 008	8. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x0D (Status of extern latch))	UINT32	RO	0x6010:0D, 1
1A04:09	SubIndex 009	9. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A04:0A	SubIndex 010	10. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A04:0B	SubIndex 011	11. PDO Mapping entry (object 0x1804 (ENC TxPDO-Par Status), entry 0x09 (TxPDO Toggle))	UINT32	RO	0x1804:09, 1
1A04:0C	SubIndex 012	12. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6010:11, 32
1A04:0D	SubIndex 013	13. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6010:12, 32

Index 0x1C00 Sync manager type

Index (hex)	Name	Meaning	Data type	Flags	Default
1C00:0	Sync manager type	Using the sync managers	UINT8	RO	0x04 (4 _{dec})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dec})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dec})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dec})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dec})

Index 0x1C12 RxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x03 (3 _{dec})
1C12:01	SubIndex 001	1. allocated RxPDO (contains the index of the associated RxPDO mapping object)	UINT16	RW	0x1600 (5632 _{dec})
1C12:02	SubIndex 002	2. allocated RxPDO (contains the index of the associated RxPDO mapping object)	UINT16	RW	0x1601 (5633 _{dec})
1C12:03	SubIndex 003	3. allocated RxPDO (contains the index of the associated RxPDO mapping object)	UINT16	RW	0x1602 (5634 _{dec})
1C12:04	SubIndex 004	4. allocated RxPDO (contains the index of the associated RxPDO mapping object)	UINT16	RW	0x0000 (0 _{dec})

Index 0x1C13 TxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x03 (3 _{dec})
1C13:01	SubIndex 001	allocated TxPDO (contains the index of the associated TxPDO mapping object)	UINT16	RW	0x1A00 (6656 _{dec})
1C13:02	SubIndex 002	2. allocated TxPDO (contains the index of the associated TxPDO mapping object)	UINT16	RW	0x1A01 (6657 _{dec})
1C13:03	SubIndex 003	3. allocated TxPDO (contains the index of the associated TxPDO mapping object)	UINT16	RW	0x1A02 (6658 _{dec})

Index 0x1C32 SM output parameter

Index (hex)	Name	Meaning	Data type	Flags	Default
1C32:0	SM output pa- rameter	Synchronization parameters for the outputs	UINT8	RO	0x20 (32 _{dec})
1C32:01	Sync mode	Current synchronization mode:	UINT16	RW	0x0001 (1 _{dec})
		0: Free Run			
		1: Synchronous with SM 2 event			
		2: DC-Mode - Synchronous with SYNC0 Event			
		3: DC-Mode - Synchronous with SYNC1 event			
1C32:02	Cycle time	Cycle time (in ns):	UINT32	RW	0x001E8480 (2000000 _{dec})
		Free Run: Cycle time of the local timer			(200000 _{dec})
		Synchronous with SM 2 event: Master cycle time			
		DC mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Time between SYNC0 event and output of the outputs (in ns, DC mode only)	UINT32	RO	0x0000000 (0 _{dec})
1C32:04	Sync modes supported	Supported synchronization modes:	UINT16	RO	0xC007 (49159 _{dec})
	supported	Bit 0 = 1: free run is supported			
		Bit 1 = 1: Synchronous with SM 2 event is supported			
		Bit 2-3 = 01: DC mode is supported			
		Bit 4-5 = 10: Output shift with SYNC1 event (only DC mode)			
		• Bit 14 = 1: dynamic times (measurement through writing of 1C32:08 [▶ 168])			
1C32:05	Minimum cy- cle time	Minimum cycle time (in ns)	UINT32	RO	0x0000000 (0 _{dec})
1C32:06	Calc and copy time	Minimum time between SYNC0 and SYNC1 event (in ns, DC mode only)	UINT32	RO	0x0000000 (0 _{dec})
1C32:07	Minimum de- lay time		UINT32	RO	0x00000000 (0 _{dec})
1C32:08	Command	0: Measurement of the local cycle time is stopped	UINT16	RW	0x0000 (0 _{dec})
		1: Measurement of the local cycle time is started			
		The entries $\underline{1C32:03}$ [\blacktriangleright 168], $\underline{1C32:05}$ [\blacktriangleright 168], $\underline{1C32:06}$ [\blacktriangleright 168], $\underline{1C32:09}$ [\blacktriangleright 168], $\underline{1C33:03}$ [\blacktriangleright 169], $\underline{1C33:06}$ [\blacktriangleright 168], $\underline{1C33:09}$ [\blacktriangleright 169] are updated with the maximum measured values. For a subsequent measurement the measured values are reset			
1C32:09	Maximum De- lay time	Time between SYNC1 event and output of the outputs (in ns, DC mode only)	UINT32	RO	0x00000000 (0 _{dec})
1C32:0B	SM event missed counter	Number of missed SM events in OPERATIONAL (DC mode only)	UINT16	RO	0x0000 (0 _{dec})
1C32:0C	Cycle ex- ceeded counter	Number of occasions the cycle time was exceeded in OPERATIONAL (cycle was not completed in time or the next cycle began too early)	UINT16	RO	0x0000 (0 _{dec})
1C32:0D	Shift too short counter	Number of occasions that the interval between SYNC0 and SYNC1 event was too short (DC mode only)	UINT16	RO	0x0000 (0 _{dec})
1C32:20	Sync error	The synchronization was not correct in the last cycle (outputs were output too late; DC mode only)	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x1C33 SM input parameter

Index (hex)	Name	Meaning	Data type	Flags	Default
1C33:0	SM input parameter	Synchronization parameters for the inputs	UINT8	RO	0x20 (32 _{dec})
1C33:01	Sync mode	 Current synchronization mode: 0: Free Run 1: Synchronous with SM 3 event (no outputs available) 2: DC - Synchronous with SYNC0 Event 3: DC - Synchronous with SYNC1 Event 34: Synchronous with SM 2 event (outputs available) 	UINT16	RW	0x0022 (34 _{dec})
1C33:02	Cycle time	as <u>1C32:02 [▶ 168]</u>	UINT32	RW	0x001E8480 (2000000 _{dec})
1C33:03	Shift time	Time between SYNC0 event and reading of the inputs (in ns, only DC mode)	UINT32	RO	0x00000000 (0 _{dec})
1C33:04	modes supported	 Bit 0: free run is supported Bit 1: synchronous with SM 2 event is supported (outputs available) Bit 1: synchronous with SM 3 event is supported (no outputs available) Bit 2-3 = 01: DC mode is supported Bit 4-5 = 01: input shift through local event (outputs available) Bit 4-5 = 10: input shift with SYNC1 event (no outputs available) Bit 14 = 1: dynamic times (measurement through writing of 1C32:08 [▶ 168] or 1C33:08 [▶ 169]) 	UINT16	RO	0xC007 (49159 _{dec})
1C33:05	Minimum cycle time	as <u>1C32:05 [▶ 168]</u>	UINT32	RO	0x00000000 (0 _{dec})
1C33:06 1C33:07	Calc and copy time Minimum	Time between reading of the inputs and availability of the inputs for the master (in ns, only DC mode)	UINT32	RO	0x00000000 (0 _{dec})
1C33:08	delay time Command	as 1C32:08 [▶ 168]	UINT16	RW	0x0000 (0 _{dec})
1C33:09	Maximum Delay time	Time between SYNC1 event and reading of the inputs (in ns, only DC mode)	UINT32	RO	0x00000000 (0 _{dec})
1C33:0B 1C33:0 C	SM event missed counter Cycle exceeded counter	as <u>1C32:11</u> [> <u>168</u>] as <u>1C32:12</u> [> <u>168</u>]	UINT16 UINT16	RO	0x0000 (0 _{dec})
1C33:0 D	Shift too short counter	as <u>1C32:13</u> [> <u>168]</u>	UINT16	RO	0x0000 (0 _{dec})
1C33:20	Sync error	as <u>1C32:32 [▶ 168]</u>	BOOLEAN	RO	0x00 (0 _{dec})

5.4.4.2.1.4 Profile-specific objects (0x6000-0xFFFF)

The profile-specific objects have the same meaning for all EtherCAT slaves that support the profile 5001.

Index 0x6000 PTO Inputs

Index (hex)	Name	Meaning	Data type	Flags	Default
6000:0	PTO Inputs	Max. subindex	UINT8	RO	0x10 (16 _{dec})
6000:01	Sel. Ack/ End counter	Confirms the change of base frequency. if travel distance control is activated: target counter value reached	BOOLEAN	RO	0x00 (0 _{dec})
6000:02	Ramp active	Ramp is currently being followed	BOOLEAN	RO	0x00 (0 _{dec})
6000:07	Error	General error bit, is set together with overrange and underrange	BOOLEAN	RO	0x00 (0 _{dec})
6000:0E	Sync error	The Sync error bit is only required for Distributed Clocks mode. It indicates whether a synchronization error has occurred during the previous cycle.	BOOLEAN	RO	0x00 (0 _{dec})
6000:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x6010 ENC Inputs

Index (hex)	Name	Meaning	Data type	Flags	Default
6010:0	ENC Inputs	Max. Subindex	UINT8	RO	0x12 (18 _{dec})
6010:02	Latch extern valid	The counter value was locked by the external latch input.	BOOLEAN	RO	0x00 (0 _{dec})
		The data with the index $\underline{6010:12}$ [\blacktriangleright 171] correspond to the latched value with the bit set. In order to re-activate the latch input, index $\underline{7010:02}$ [\blacktriangleright 172] or object index $\underline{7010:04}$ [\blacktriangleright 172] must first be cancelled and then set again.			
6010:03	Set counter done	Counter was set.	BOOLEAN	RO	0x00 (0 _{dec})
6010:04	Counter underflow	This bit is set if the 16 bit counter underflows (0 -> 65535). It is reset when the counter drops below two thirds of its measuring range (43690 -> 43689) or immediately an overflow occurs.	BOOLEAN	RO	0x00 (0 _{dec})
6010:05	Counter overflow	This bit is set if the 16 bit counter overflows (65535 -> 0). It is reset when the counter exceeds one third of its measuring range (21845 -> 21846) or immediately an underflow occurs.	BOOLEAN	RO	0x00 (0 _{dec})
6010:0D	Status of extern latch	The status of the latch input	BOOLEAN	RO	0x00 (0 _{dec})
6010:0E	Sync error			RO	0x00 (0 _{dec})
6010:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	0x00 (0 _{dec})
6010:11	Counter value	Counter value	UINT32	RO	0x00000000 (0 _{dec})
6010:12	Latch value	Latch value	UINT32	RO	0x00000000 (0 _{dec})

Index 0x6020 PLS Inputs

Index (hex)	Name	Meaning	Data type	Flags	Default
6020:0	PLS Inputs	Max. subindex	UINT8	RO	0x10 (16 _{dec})
6020:01	PLS Enabled	Automatic counting function activated	BOOLEAN	RO	0x00 (0 _{dec})
6020:04	Status of output	Status of the output	BOOLEAN	RO	0x00 (0 _{dec})
6020:0E	Sync error	The Sync error bit is only required for Distributed Clocks mode. It indicates whether a synchronization error has occurred during the previous cycle.	BOOLEAN	RO	0x00 (0 _{dec})
6020:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x7000 PTO Outputs

Index (hex)	Name	Meaning	Data type	Flags	Default
7000:0	PTO Outputs	Max. Subindex	UINT8	RO	0x12 (18 _{dec})
7000:01	Frequency select	Fast toggling of the base frequency (only if ramp function is deactivated) 0_{bin} = base frequency 1 (object 8000:12 [\triangleright 157]) 1_{bin} = base frequency 2 (object 8000:13 [\triangleright 157])	BOOLEAN	RO	0x00 (0 _{dec})
7000:02	Disable ramp	The ramp function is disabled despite active object 8000:06 [▶ 157]; if the travel distance control is active it is aborted by this bit.	BOOLEAN	RO	0x00 (0 _{dec})
7000:03	Go counter	If travel distance control is activated (object 8000:0A [* 157]), a specified counter value is driven to if the bit is set.	BOOLEAN	RO	0x00 (0 _{dec})
7000:11	Frequency value	Frequency value	UINT16	RO	0x0000 (0 _{dec})
7000:12	Target counter value	Target counter value	UINT32	RO	0x0000000 (0 _{dec})

Index 0x7010 ENC Outputs

Index (hex)	Name	Meaning	Data type	Flags	Default
7010:0	ENC Outputs	Max. subindex	UINT8	RO	0x11 (17 _{dec})
7010:02	Enable latch extern on positive edge	Activate external latch with positive edge.	BOOLEAN	RO	0x00 (0 _{dec})
7010:03	Set counter	Set counter	BOOLEAN	RO	0x00 (0 _{dec})
7010:04	Enable latch extern on negative edge		BOOLEAN	RO	0x00 (0 _{dec})
7010:11	Set counter value	This is the counter value to be set via "Set counter" (index <u>7010:03</u> [▶ <u>172</u>]).	UINT32	RO	0x0000000 (0 _{dec})

Index 0x7020 PLS Outputs

Index (hex)	Name	Meaning	Data type	Flags	Default
7020:0	PLS Outputs	Max. subindex	UINT8	RO	0x12 (18 _{dec})
7020:01	Enable PLS	Activate automatic counting function BOOLEAN Re		RO	0x00 (0 _{dec})
7020:04	Output	Signal at the output	BOOLEAN	RO	0x00 (0 _{dec})
7020:11	Switch on value	Counter value at which the 24 V output is switched on		RO	0x00000000 (0 _{dec})
7020:12	Switch off value	Counter value at which the 24 V output is switched off	UINT32	RO	0x0000000 (0 _{dec})

Index 0xF000 Modular device profile

Index (hex)	Name		Data type	Flags	Default
F000:0	Modular device profile	General information for the modular device profile	UINT8	RO	0x02 (2 _{dec})
F000:01		Index spacing of the objects of the individual channels	UINT16	RO	0x0010 (16 _{dec})
F000:02	Maximum number of modules	Number of channels	UINT16	RO	0x0003 (3 _{dec})

Index 0xF008 Code word

Index (hex)	Name	Meaning	Data type	Flags	Default
F008:0	Code word	currently reserved	UINT32	RW	0x0000000 (0 _{dec})

Index 0xF010 Module list

Index (hex)	Name		Data type	Flags	Default
F010:0	Module list	Max. subindex	UINT8	RW	0x03 (3 _{dec})
F010:01	SubIndex 001	reserved	UINT32	RW	0x000000FD (253 _{dec})
F010:02	SubIndex 002	reserved	UINT32	RW	0x000001FF (511 _{dec})
F010:03	SubIndex 003	reserved	UINT32	RW	0x00000200 (512 _{dec})

5.5 EL2522-0000

5.5.1 Basic function principles

Operating modes of the EL2522

In addition to the "enhanced operating mode" known from the EL2521, the EL2522 also supports an "enhanced operating mode with continuous position specification" and an "enhanced operating mode with continuous position specification and arrival time".

As an extension to the EL2521, the EL2522 offers the "enhanced operating mode" in single-channel or single operating mode with A-, B- and C-track (zero track / reference) or in 2-channel or double operating mode, each with A- and B-track.

Version	PDO settings	Comments	<u>FW/HW</u> [▶ 215]	ESI	Process data	CoE pa- rameters
Legacy	formerly MDP 252	not available for the EL2522	-	-	-	-
enhanced operating mode	1 Ch. Standard 16 Bit (MDP 253/511) 2 Ch. Standard 16 Bit (MDP 253/511) 1 Ch. Standard 32 Bit (MDP 253/511) 2 Ch. Standard 32 Bit (MDP 253/511)	1 Ch.: with C-track	from 02	from EL2522-0000 -0000	PDO Assignment Inputs: 1A00, 1A02 Outputs: 1600, 1602, 160A	Feature bits and settings in CoE objects (hex) 8000, 8010,
enhanced operating mode with continuous position specification	1 Ch. Standard 32 Bit (MDP 253/511), contin- ues position 2 Ch. Standard 32 Bit (MDP 253/511), contin- ues position	1 Ch.: with C-track; path without ramp, DC-Synchronous must be selected	from 02	from EL2522-0000	PDO Assignment Inputs: 1A03 Outputs: 160B, 1601	8020 and 8030
enhanced operating mode with continuous position specification and arrival time	1 Ch. Standard 32 Bit (MDP 253/511), continues position, with arrival time 2 Ch. Standard 32 Bit (MDP 253/511), continues position, with arrival time	1 Ch.: with C-track; path without ramp, specification of arrival time possible (target time); DC-Synchro- nous must be selected	from 02	from EL2522-0000	PDO Assignment Inputs: 1A03 Outputs: 160B, 1601, 1604	

Output modes of the EL2522

The EL2522 has three different output modes. A choice can be made between the output modes "Frequency modulation (value: 0)", "Pulse direction specification (value: 1)" and "Incremental encoder (value: 2)" via index 0x8000 [\blacktriangleright 187]:0E for incremental encoder 1 or index 0x8010 [\blacktriangleright 188]:0E for incremental encoder 2. In addition, the EL2522 operates cycle-synchronously when using the "continuous position" PDO presets and thus generates pinpoint output control clock signals synchronously with the task cycle. With the additional selection "continuous position w. arrival time", a target time in which a target position is to be reached is specified instead of a frequency. The clock signals are also output cycle-synchronously in this case, too, as long as this specification is within the plausible range.

Output modes	Meaning	Index <u>0x8000</u> [▶ <u>187]</u> :0E value	
Frequency modulation	Only one channel is active per direction, on which a frequency-modulated signal is output. The clockwise direction is realized via channel A, the counter clockwise direction via channel B.		Operating mode Rotation to right Rotation to left Frequency modulation A B
Pulse direction setting	The direction is controlled by channel B. The clockwise direction is represented by a low level and the counter clockwise direction by a high level. The actual signal, conversely, is output in modulated form via channel A.	1	Operating mode Rotation to right Rotation to left Puls direction A Control B
Incremental encoder	The direction is defined by the shifting of channels A and B. If channel A leads by 90°, this indicates a "forward" movement. If channel B leads by 90°, this indicates a "reverse" movement. In the 1-channel variant the C-track (zero track) can additionally be output.	2	Operating mode Rotation to right Rotation to left Incremental - A encoder B C* *EL2522 only

Note

Process data monitoring

- WcState: if ≠ 0, this EtherCAT device does not take part in the process data traffic
- State: if ≠ 8, the EtherCAT device is not in OP (operational) status
- TxPDO state, SyncError: if ≠ 0, then no valid process data are available, e.g. caused by broken wire
- TxPDO Toggle: If this bit toggles, a new set of process data is available

Delivery state

Independent of the hardware/firmware version, an EL2522 newly integrated in the system registers itself in the operating mode "2-channel standard 32-bit (MDP 253/511)".

Enhanced operating mode: Incremental encoder simulation

The "enhanced operating mode (253/511)" is the enhanced operating mode familiar from the EL2521. Please refer to the corresponding chapter of the EL2521 (see also chapter <u>EL2521 function [▶ 115]</u>) for an explanation of the functionality and the steps necessary for commissioning.

Unlike the EL2521, it is possible to choose between a 1-channel and a 2-channel operating mode (single or double operation). In 1-channel operating mode a C-track is output in addition to the A- and B-tracks. In 2-channel operating mode two outputs are offered per channel, each with an A- and a B-track. Both behave in the same way as the known 1-channel operating mode.

Enhanced operating mode: Incremental encoder simulation with continuous position specification.

In the operating modes 1-channel standard 32-bit, continuous position, and 2-channel standard 32-bit, continuous position, the EL2522 can simulate an incremental encoder with A-, B- and C-tracks (1-channel or single operating mode) or two independent incremental encoders (2-channel or double operating mode), each with an A- and a B-track. As previously with the EL2521 there is also a choice here between the output modes incremental encoder, frequency modulation or pulse direction control.

Basically, the clock signals are output here cycle-synchronously (necessary selection in the EL2522 DC settings: DC-synchronous).

After selection of the respective PDO assignment, the associated process data are represented in accordance with the following illustration.

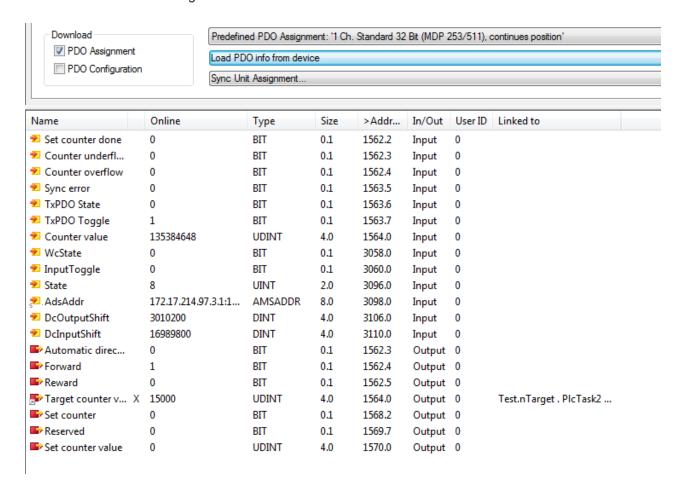
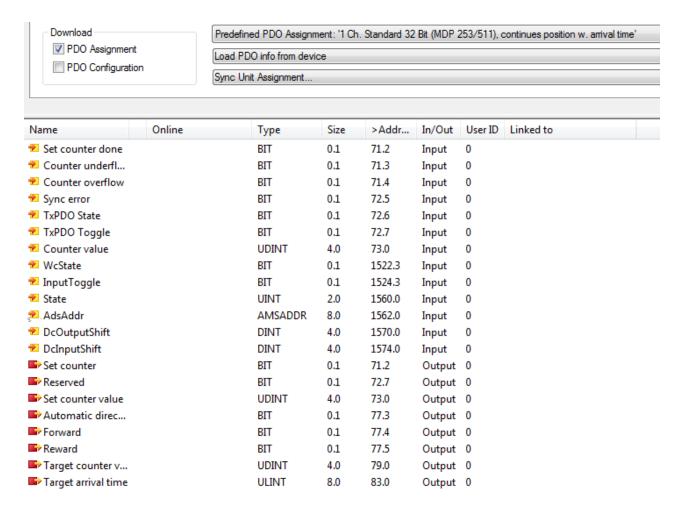


Fig. 2: Representation of the process data according to the PDO selection "1-channel standard 32-bit, continuous position" in the TwinCAT System Manager.


The output value "Target counter value" is written with the desired target position for the next cycle. Depending on the current position (input value "Counter Value"), the EL2522 calculates the frequency necessary for reaching the desired position in the next cycle. A fixed running direction can be specified by the output bits "Forward" and "Reverse". If the "Automatic direction" bit is set, the terminal selects the running direction depending on the position difference (actual and target value) in favor of the shorter distance.

If 2-channel mode is in use, the process data for the second incremental encoder are added analogously to those for the first.

Enhanced operating mode: Incremental encoder simulation with continuous position specification and arrival time

In addition to the functions mentioned above, it is possible in the operating mode "continuous position specification and arrival time" to define when the target position should be reached. Consequently, the calculation no longer takes place with the specification of the target position to be reached in the next cycle, but taking into account an arrival time specified by the user instead.

Representation of the process data according to the PDO selection "1-channel standard 32-bit, continuous position w. arrival time" in the TwinCAT System Manager.

The desired target time for reaching the target position can be specified by the output value "Target Arrival Time". The frequency is then calculated accordingly. If the calculated frequency should be higher than the set maximum frequency ("Base Frequency 1": incremental encoder 1: index 0x8000 [\blacktriangleright 187]:12 or incremental encoder 2: index 0x8010 [\blacktriangleright 188]:12), then the frequency is limited to this value and the target position is accordingly reached at a later time.

Note

Use of micro-increments

When using micro-increments, care must be taken that the internal 100 MHz is not exceeded. Example: -cycle time 1 ms - 15-bit micro-increments. If three "genuine" increments should be output in a cycle, that is already (3 x 2^{15}) / 1 ms = approx. 98 MHz.

Note

Setting the counter value / zero calibration (A/B adaptation)

The counter value can be manually set. To do this, the desired counter value must be entered in the index 0x7020 [\triangleright 210]:11 (Set counter Value). If index 0x7020 [\triangleright 210]:03 (Set Counter) is now set, the counter value is adopted. At the same time, the parameters for the running direction must be set to FALSE (Automatic Direction, Forward, Backward, 0x7000 [\triangleright 209]:04 – 0x7000 [\triangleright 209]:06). If the counter value is set to "0", the C-track goes into the "high" state. The behavior of channels A and B in this case can be defined by index 80x0:01 "Adapt A/B on position set". By default the value is FALSE; the position of the C-track relative to A and B is then not changed. If the value is set to TRUE, channels A and B are both set to high. Consequently, a change of state occurs on both channels!

Function: automatic adoption of the target value

In the enhanced operating modes "continuous position specification" and "continuous position specification with arrival time" a threshold value (object 0x8020.px/b.189]:1A for incremental encoder 1, object 0x8030[**\ldots \overline{189} \overline{189} \overline{1}:1A for incremental encoder 2) can be specified for the automatic adoption of setpoints. If the difference between the setpoint and the actual value exceeds this preset threshold value, the actual value will be overwritten with the setpoint on the next Sync; i.e. the value of the target counter is directly adopted as the counter value WITHOUT incremental encoder clock signals being output.

- → The following steps must be performed in order to use this function.
 - 1. Activate "DC-Synchronous"
 - 2. Activate PDOs <u>0x1A03</u> [▶ <u>202</u>] (Input) and <u>0x1603</u> [▶ <u>196</u>] (Output)
 - 3. Set the threshold value

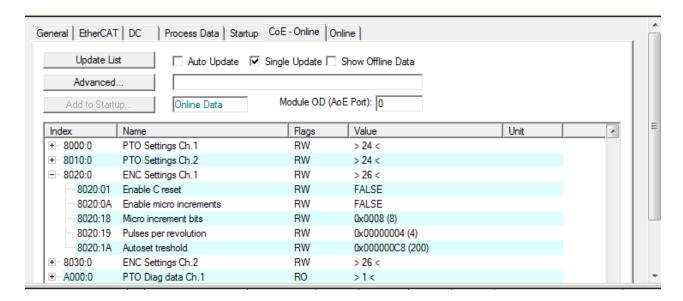


Fig. 4: Threshold setting in object 0x8020:1A [▶ 189] for incremental encoder 1

Example:

- 0x8020:1A = "Autoset treshold" = 0x00000100
 - (→ the value is >=1: Autoset Threshold, "Automatic setting" is activated)
- Cycle n (setting the target counter value):
 - "Target counter value" = 0x00000200
 - "Counter value" = 0x00000000
- → threshold for automatic setting is exceeded; NO clock signals will be output at the output of the terminal.
 - The "Target counter Value" is directly adopted into the "Counter value".
 - "Target counter value" = 0x00000200
 - "Counter value" = 0x00000200
 - Cycle n+1 (resetting the target counter value):
 - "Target counter value" = 0x00000220
 - "Counter value" = 0x00000200

The threshold (0x00000100) is NOT overwritten with the difference between target counter value and current counter value (in this case the value: 0x20) for automatic setting. Therefore clock signals are output at the output of the terminal until the target counter value is reached.

- Cycle n+2 (continuation in this operation mode with further target counter values):
 - "Target counter value" = 0x????????
 - "Counter value" = 0x00000220

This function accordingly enables the counter value to be set directly as an alternative to using the object 0x7020:03 (or 0x7030:03) "Set counter".

It is recommended to use the function of the automatic adoption of the setpoint only in special exceptional cases!

Initialization

The actual value is initialized during the transition from SafeOp to Op. The current setpoint is adopted here as the actual value.

Note

Exceeding the maximum frequency

If the set maximum frequency is exceeded when calculating the necessary frequency for reaching the target position within the foreseen period, the maximum frequency is adopted. This leads to "extended" travel distances and should be taken into account and if necessary checked accordingly. The maximum frequency can be set via index 0x8010:12 / 0x8020 [> 189]:12 (Base Frequency 1).

5.5.2 Process Data

The process data selection in the System Manager specifies the mode of operation of the EL2522.

The process data are entered individually by hand or as "Predefined PDO Assignment" via the "Process Data" tab.

When selecting the EL2522 in the System Manager, the appropriate operation mode can be selected in accordance with the table above by clicking on the "Process Data" tab and selecting the preset PDO assignments.

```
Predefined PDO Assignment: '1 Ch. Standard 32 Bit (MDP 253/511), continues position'

Predefined PDO Assignment: (none)
Predefined PDO Assignment: '1 Ch. Standard 16 Bit (MDP 253/511)'
Predefined PDO Assignment: '2 Ch. Standard 16 Bit (MDP 253/511)'
Predefined PDO Assignment: '1 Ch. Standard 32 Bit (MDP 253/511)'
Predefined PDO Assignment: '2 Ch. Standard 32 Bit (MDP 253/511)'
Predefined PDO Assignment: '1 Ch. Standard 32 Bit (MDP 253/511), continues position'
Predefined PDO Assignment: '1 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time'
Predefined PDO Assignment: '2 Ch. Standard 32 Bit (MDP 253/511), continues position'
Predefined PDO Assignment: '2 Ch. Standard 32 Bit (MDP 253/511), continues position'
Predefined PDO Assignment: '2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time'
```

Fig. 156: "Predefined PDO-Assignment" – excerpt from the TwinCAT System Manager on the "Process Data" tab of the EL2522

Eight process data records are available for the EL2522-0000 and are listed in following table on the basis of the CoE objects used.

Sync Manager (SM)

Process data setting options

The extent of process data can be set via the Process Data tab as described below (2-level incremental encoder settings are presented only):

PDO assignment of the SyncManager

	O Assignment 0x1C13, in				
Index	assigned to PDO setting	PDOs	Size (byte.bit)	Name	PDO content
0x1A00	1 Ch. Standard 16 Bit (MDP 253/511) 1 Ch. Standard 32 Bit (MDP 253/511)	0x1A01, 0x1A03, 0x1A04, 0x1A05	2.0	PTO Status Ch. 1	Index 0x6000:01 - Sel. Ack/End counter Index 0x6000:02 - Ramp active Index 0x6000:07 - Error
	2 Ch. Standard 16 Bit (MDP 253/511)	0x1A03, 0x1A05			Index 0x6000:0E - Sync error Index 0x6000:10 - TxPDO Toggle
0x1A01	2 Ch. Standard 16 Bit (MDP 253/511)		2.0	PTO Status Ch. 2	
0x1A02	1 Ch. Standard 16 Bit (MDP 253/511)	0x1A01, 0x1A03, 0x1A04, 0x1A05	4.0	ENC Status compact Ch. 1	Index 0x6020:03 - Set counter done Index 0x6020:04 - Counter underflow
	2 Ch. Standard 16 Bit (MDP 253/511)	0x1A03, 0x1A05			Index 0x6020:05 - Counter overflow Index 0x6020:0E - Sync error
0x1A03	1 Ch. Standard 32 Bit (MDP 253/511)	0x1A01, 0x1A02, 0x1A04, 0x1A05	6.0	ENC Status Ch. 1	Index 0x6020:0F - TxPDO State Index 0x6020:10 - TxPDO Toggle Index 0x6020:11 - Counter value
	1 Ch. Standard 32 Bit (MDP 253/511), continues position 1 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1A05			
	2 Ch. Standard 32 Bit (MDP 253/511), continues position	0x1A00, 0x1A01, 0x1A02, 0x1A04			
0x1A04	2 Ch. Standard 16 Bit (MDP 253/511)	0x1A03, 0x1A05	4.0	ENC Status compact Ch. 2	
0x1A05	2 Ch. Standard 32 Bit (MDP 253/511)	0x1A02, 0x1A04	6.0	ENC Status Ch. 2	
	2 Ch. Standard 32 Bit (MDP 253/511), continues position 2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	·			

SM2, PD	M2, PDO assignment 0x1C12, outputs						
Index	assigned to PDO setting	Index of excluded PDOs	Size (byte.bit)	Name	PDO content		
0x1600	1 Ch. Standard 16 bit (MDP 253/511)	0x1601, 0x1603, 0x1604, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160B, 0x160C, 0x160D	4.0	PTO Control Ch. 1	Index 0x7000:01 - Frequency select Index 0x7000:02 - Disable ramp Index 0x7000:03 - Go counter Index 0x7000:11 - Frequency value		
	2 Ch. Standard 16 Bit (MDP 253/511)	0x1601, 0x1603, 0x1604, 0x1606, 0x1608, 0x1609, 0x160B, 0x160D					
	1 Ch. Standard 32 Bit (MDP 253/511)	0x1601, 0x1602, 0x1604, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C, 0x160D					
	2 Ch. Standard 32 Bit (MDP 253/511)	0x1601, 0x1602, 0x1604, 0x1606, 0x1607, 0x1609, 0x160A, 0x160C					
0x1601	1 Ch. Standard 32 Bit (MDP 253/511), continues position	0x1600, 0x1602, 0x1604, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C, 0x160D	6.0	PTO Control Position Ch. 1	0x7000:04 - Automatic direction 0x7000:05 - Forward 0x7000:06 - Backward 0x7000:12 - Target counter value		
	1 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1600, 0x1602, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C, 0x160D					
	2 Ch. Standard 32 Bit (MDP 253/511), continues position	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C					
	2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C					
0x1602	1 Ch. Standard 16 Bit (MDP 253/511)	0x1601, 0x1603, 0x1604, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160B, 0x160C, 0x160D	2.0	PTO Target compact Ch. 1	0x7000:12 - Target counter value		
	2 Ch. Standard 16 Bit (MDP 253/511)	0x1601, 0x1603, 0x1604, 0x1606, 0x1608, 0x1609, 0x160B, 0x160D					
0x1603	1 Ch. Standard 32 Bit (MDP 253/511)	0x1601, 0x1602, 0x1604, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C, 0x160D	4.0	PTO Target Ch. 1	0x7000:12 - Target counter value		
	2 Ch. Standard 32 Bit (MDP 253/511)	0x1601, 0x1602, 0x1604, 0x1606, 0x1607, 0x1609, 0x160A, 0x160C					

	OO assignment 0x1C12, ou	·	Cina	Nama	DDO content	
ndex	assigned to PDO setting	Index of excluded PDOs	Size (byte.bit)	Name	PDO content	
)x1604	1 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1600, 0x1602, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C, 0x160D	8.0	PTO Arrival Ch. 1	0x7000:13 - Target arrival time	
	2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C				
0x1605	2 Ch. Standard 16 Bit (MDP 253/511)	0x1601, 0x1603, 0x1604, 0x1606, 0x1608, 0x1609, 0x160B, 0x160D	4.0	PTO Control Ch. 2	Index 0x7010:01 - Frequency select Index 0x7010:02 - Disable ramp Index 0x7010:03 - Go counter Index 0x7010:11 - Frequency value	
	2 Ch. Standard 32 Bit (MDP 253/511)	0x1601, 0x1602, 0x1604, 0x1606, 0x1607, 0x1609, 0x160A, 0x160C				
)x1606	2 Ch. Standard 32 Bit (MDP 253/511), continues position	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C	6.0	PTO Control Position Ch. 2	0x7010:04 - Automatic direction 0x7010:05 - Forward 0x7010:06 - Backward 0x7010:12 - Target counter value	
	2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C				
)x1607	2 Ch. Standard 16 Bit (MDP 253/511)	0x1601, 0x1603, 0x1604, 0x1606, 0x1608, 0x1609, 0x160B, 0x160D	2.0	PTO Target compact Ch. 2	0x7010:12 - Target counter value	
)x1608	2 Ch. Standard 32 Bit (MDP 253/511)	0x1601, 0x1602, 0x1604, 0x1606, 0x1607, 0x1609, 0x160A, 0x160C	4.0	PTO Target Ch. 2	0x7010:12 - Target counter value	
)x1609	2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C	8.0	PTO Arrival Ch. 2	0x7010:13 - Target arrival time	
)x160A	1 Ch. Standard 16 Bit (MDP 253/511)	0x1601, 0x1603, 0x1604, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160B, 0x160C, 0x160D	4.0	ENC Control compact Ch. 1	0x7020:03 - Set counter (0x7020:10 - Reserved) 0x7020:11 - Set counter value	
	2 Ch. Standard 16 Bit (MDP 253/511)	0x1601, 0x1603, 0x1604, 0x1606, 0x1608, 0x1609, 0x160B, 0x160D				

SM2, PD	SM2, PDO assignment 0x1C12, outputs						
Index	assigned to PDO setting	Index of excluded PDOs	Size (byte.bit)	Name	PDO content		
0x160B	1 Ch. Standard 32 Bit (MDP 253/511)	0x1601, 0x1602, 0x1604, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C, 0x160D	6.0 ENC Control Ch. 1	ENC Control Ch. 1	0x7020:03 - Set counter (0x7020:10 - Reserved) 0x7020:11 - Set counter value		
	2 Ch. Standard 32 Bit (MDP 253/511)	0x1601, 0x1602, 0x1604, 0x1606, 0x1607, 0x1609, 0x160A, 0x160C					
	1 Ch. Standard 32 Bit (MDP 253/511), continues position	0x1600, 0x1602, 0x1604, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C, 0x160D					
	1 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1600, 0x1602, 0x1605, 0x1606, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C, 0x160D					
	2 Ch. Standard 32 Bit (MDP 253/511), continues position	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C					
	2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C					
0x160C	2 Ch. Standard 16 Bit (MDP 253/511)	0x1601, 0x1603, 0x1604, 0x1606, 0x1608, 0x1609, 0x160B, 0x160D	4.0	ENC Control compact Ch. 2	0x7030:03 - Set counter (0x7030:10 - Reserved) 0x7030:11 - Set counter value		
0x160D	2 Ch. Standard 32 Bit (MDP 253/511)	0x1601, 0x1602, 0x1604, 0x1606, 0x1607, 0x1609, 0x160A, 0x160C	6.0	ENC Control Ch. 2	0x7030:03 - Set counter (0x7030:10 - Reserved) 0x7030:11 - Set counter value		
	2 Ch. Standard 32 Bit (MDP 253/511), continues position	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C					
	2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	0x1600, 0x1602, 0x1603, 0x1604, 0x1605, 0x1607, 0x1608, 0x1609, 0x160A, 0x160C					

PDO setting: 1 Ch. Standard 16 Bit (MDP 253/511)

- preset standard configuration in TwinCAT 2.11, TwinCAT 3
- so-called compact process image since it has only 16-bit-wide variables
- allows linking to NC axes according to MDP 253, subprofile 511
- · C-track within output mode incremental encoder

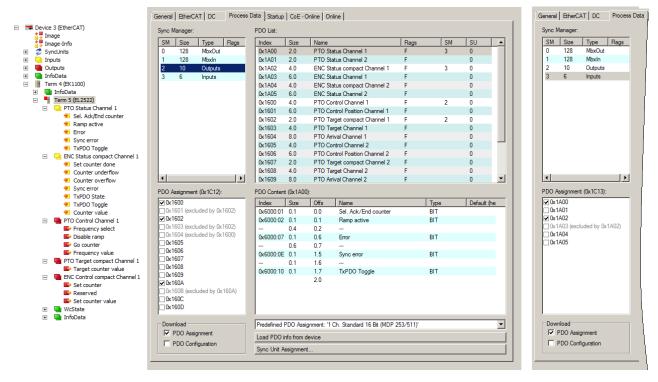


Fig. 157: Process data and PDO-allocation: Standard 16 Bit (MDP 253/511)

PDO setting: 1 Ch. Standard 32 Bit (MDP 253/511), continues position

- · 32-bit-wide variables
- allows linking to NC axes according to MDP 253, subprofile 511
- continuous positioning / Output pulses cycle-synchronously
- · Additional output of C-track within output mode incremental encoder (single operation mode only)

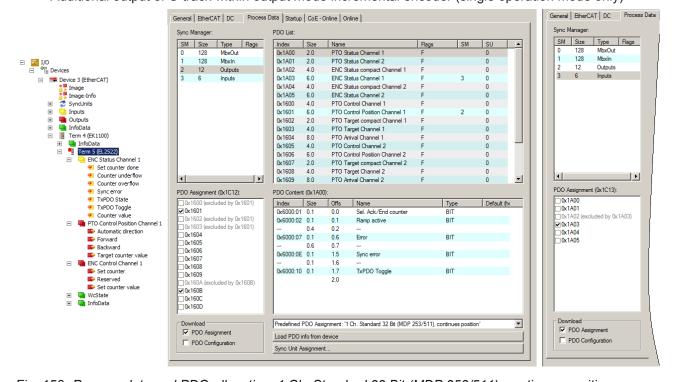


Fig. 158: Process data and PDO-allocation: 1 Ch. Standard 32 Bit (MDP 253/511), continues position

PDO setting: 2 Ch. Standard 32 Bit (MDP 253/511), continues position

• 32-bit-wide variables

- · allows linking to NC axes according to MDP 253, subprofile 511
- · continuous positioning / output pulses cycle-synchronously
- · double operation mode

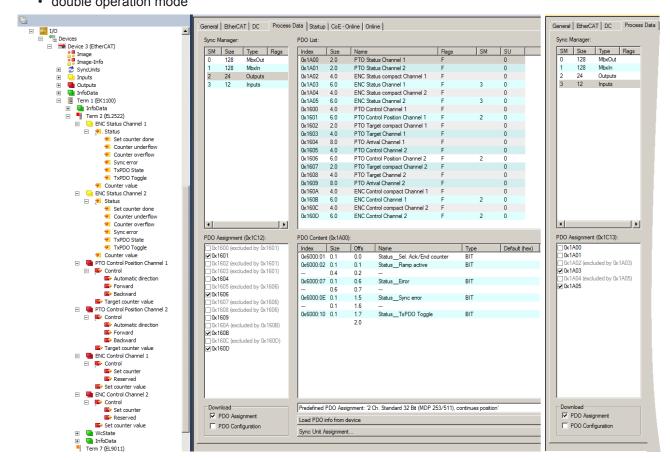


Fig. 159: Process data and PDO-allocation: 2 Ch. Standard 32 Bit (MDP 253/511), continues position

PDO setting: 2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time

- · 32-bit-wide variables
- · allows linking to NC axes according to MDP 253, subprofile 511
- · continuous positioning / output pulses cycle-synchronously
- · specification of arrival time
- · double operation mode

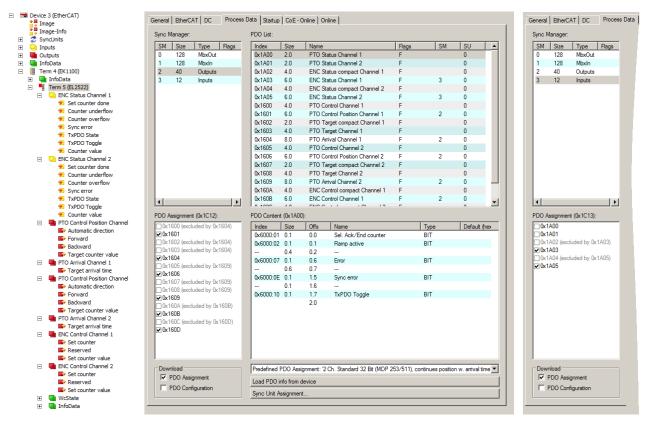


Fig. 160: *Process data and PDO-allocation:* 2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time

5.5.3 Object description and parameterization

Note

EtherCAT XML Device Description

The display matches that of the CoE objects from the EtherCAT XML Device Description. We recommend downloading the latest XML file from the <u>download area of the Beckhoff website</u> and installing it according to installation instructions.

Parameterization via the CoE list (CAN over EtherCAT)

The terminal is parameterized via the CoE - Online tab (double-click on the respective object) or via the Process Data tab (allocation of PDOs). Please note the following general CoE information [> 22] when using/manipulating the CoE parameters:

- Keep a startup list if components have to be replaced
- Differentiation between online/offline dictionary, existence of current XML description
- "CoE-Reload" for resetting the changes

Introduction

The CoE overview contains objects for different intended applications:

- Objects required for parameterization [▶ 187] during commissioning
- Objects intended for regular operation [> 212], e.g. through ADS access
- Objects for indicating internal settings [▶ 190] (may be fixed)

The following section first describes the objects required for normal operation, followed by a complete overview of missing objects.

5.5.3.1 Objects for commissioning

Index 0x8000 PTO Settings Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
8000:0	PTO Set- tings Ch.1	Max. subindex	UINT8	RO	0x18 (24 _{dec})
8000:01	Adapt A/B on position set	If the counter value is set to "0", the C-track goes into the "high" state. The behavior of channels A and B can be defined in this case. By default the value is FALSE; the position of the C-track relative to A and B is then not changed. If the value is set to TRUE, channels A and B are both set to high. Consequently, a change of state occurs on both channels!	BOOLEAN	RW	0x00 (0 _{dec})
8000:02	Emergency ramp active	TRUE If the watchdog timer responds, the terminal ramps with the time constant set in object 8ppx:18 to the value set in object 8ppx:11. FALSE The function is deactivated	BOOLEAN	RW	0x00 (0 _{dec})
8000:03	Watchdog timer deac- tive	TRUE The watchdog timer is deactivated FALSE The watchdog timer is activated in the delivery state. Either the manufacturer's of the user's switch-on value is output if the watchdog overflows.	BOOLEAN	RW	0x00 (0 _{dec})
8000:04	Sign/amount representation	TRUE The output value is displayed in magnitude-sign format: -2dec= 0x8002 -1dec= 0x8001 1dec= 0x0001 2dec= 0x0002 FALSE The output value is output as a signed integer in two's complement: -2dec= 0xFFFE -1dec= 0xFFFF 1dec= 0x0001 2dec= 0x0002	BOOLEAN	RW	0x00 (0 _{dec})
8000:06	Ramp func- tion active	TRUE Ramp function activated FALSE Ramp function deactivated	BOOLEAN	RW	0x01 (1 _{dec})
8000:07	Ramp base frequency	permitted values: 0 10 Hz 1 1 kHz	BIT1	RW	0x00 (0 _{dec})
8000:08	Direct input mode	TRUE Direct input mode FALSE Relative input mode	BOOLEAN	RW	0x00 (0 _{dec})
8000:09	Users switch-on- value on wdt	TRUE Behavior with triggered watchdog timer: User's switch-on value FALSE Behavior with triggered watchdog timer: Manufacturer's switch-on value	BOOLEAN	RW	0x00 (0 _{dec})
8000:0A	Travel distance control active	TRUE Travel distance control activated FALSE Travel distance control deactivated	BOOLEAN	RW	0x00 (0 _{dec})
8000:0E	Operating mode	permitted values: 0 Frequency mod. 1 Pulse-dir. ctrl 2 Incremental enc.	BIT2	RW	0x00 (0 _{dec})
8000:10	Negative logic	TRUE Negative logic FALSE Positive logic	BOOLEAN	RW	0x00 (0 _{dec})
8000:11	Users switch-on- value	User switch-on value (frequency)	UINT16	RW	0x0000 (0 _{dec})
8000:12	Base frequency 1	Base frequency 1 = 50000 Hz	UINT32	RW	0x0000C350 (50000 _{dec})
8000:13	Base frequency 2	Base frequency 2 = 100000 Hz	UINT32	RW	0x000186A0 (100000 _{dec})
8000:14	Ramp time constant (rising)	Ramp time constant (rising)	UINT16	RW	0x03E8 (1000 _{dec})

Index (hex)	Name	Meaning	Data type	Flags	Default
8000:15	Ramp time constant (falling)	Ramp time constant (falling)	UINT16	RW	0x03E8 (1000 _{dec})
8000:16	Frequency factor (Digit x 10mHz)	Frequency factor (direct input, digit x 10mHz)	UINT16	RW	0x0064 (100 _{dec})
8000:17	Slowing down fre- quency	Slowing down frequency, travel distance control	UINT16	RW	0x0032 (50 _{dec})
8000:18	Ramp time constant (emergency)	Ramp time constant for controlled switch-off; user's switch-on value is driven to (object 8pp0:11)	UINT16	RW	0x03E8 (1000 _{dec})

Index 0x8010 PTO Settings Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
8010:0	PTO Set- tings Ch.2	Max. Subindex	UINT8	RO	0x18 (24 _{dec})
8010:01	Adapt A/B on position set	If the counter value is set to "0", the C-track goes into the "high" state. The behavior of channels A and B can be defined in this case. The behavior of channels A and B can be defined in this case. If the value is set to TRUE, channels A and B are both set to high. Consequently, a change of state occurs on both channels!	BOOLEAN RW		0x00 (0 _{dec})
8010:02	Emergency ramp active	TRUE If the watchdog timer responds, the terminal ramps with the time constant set in object 8ppx:18 to the value set in object 8ppx:11. FALSE The function is deactivated	BOOLEAN	RW	0x00 (0 _{dec})
8010:03	Watchdog timer deac- tive	TRUE The watchdog timer is deactivated FALSE The watchdog timer is activated in the delivery state. Either the manufacturer's of the user's switch-on value is output if the watchdog overflows.	BOOLEAN	RW	0x00 (0 _{dec})
8010:04	Sign/amount representation	TRUE The output value is displayed in magnitude-sign format: -2dec= 0x8002 -1dec= 0x8001 1dec= 0x0001 2dec= 0x0002 FALSE The output value is output as a signed integer in two's complement: -2dec= 0xFFFE -1dec= 0xFFFF 1dec= 0x0001 2dec= 0x0002	BOOLEAN	RW	0x00 (0 _{dec})
8010:06	Ramp func- tion active	TRUE Ramp function activated FALSE Ramp function deactivated	BOOLEAN	RW	0x01 (1 _{dec})
8010:07	Ramp base	permitted values:	BIT1	RW	0x00 (0 _{dec})
	frequency	0 10 Hz			
		1 1 kHz			
8010:08	Direct input mode	TRUE Direct input mode FALSE Relative input mode	BOOLEAN	RW	0x00 (0 _{dec})
8010:09	Users switch-on- value on wdt	TRUE Behavior with triggered watchdog timer: User's switch-on value FALSE Behavior with triggered watchdog timer: Manufacturer's switch-on value	BOOLEAN	RW	0x00 (0 _{dec})
8010:0A	Travel distance control active	TRUE Travel distance control activated FALSE Travel distance control deactivated	BOOLEAN	RW	0x00 (0 _{dec})
8010:0E	Operating	permitted values:	BIT2	RW	0x00 (0 _{dec})
	mode	0 Frequency mod.			
		1 Pulse-dir. ctrl			
		2 Incremental enc.			
8010:10	Negative logic	TRUE Negative logic FALSE Positive logic	BOOLEAN	RW	0x00 (0 _{dec})
8010:11	Users switch-on- value	User switch-on value (frequency)	UINT16	RW	0x0000 (0 _{dec})
8010:12	Base frequency 1	Base frequency 1 = 50000 Hz	UINT32	RW	0x0000C35 0 (50000 _{dec})
8010:13	Base frequency 2	Base frequency 2 = 100000 Hz	UINT32	RW	0x000186A 0 (100000 _{dec})
8010:14	Ramp time constant (rising)	Ramp time constant (rising)	UINT16	RW	0x03E8 (1000 _{dec})

Index (hex)	Name	Meaning	Data type	Flags	Default
8010:15	Ramp time constant (falling)	Ramp time constant (falling)	UINT16	RW	0x03E8 (1000 _{dec})
8010:16	Frequency factor (Digit x 10mHz)	Frequency factor (direct input, digit x 10mHz)	UINT16	RW	0x0064 (100 _{dec})
8010:17	Slowing down fre- quency	Slowing down frequency, travel distance control	UINT16	RW	0x0032 (50 _{dec})
8010:18	Ramp time constant (emergency)	Ramp time constant for controlled switch-off; user's switch-on value is driven to (object 8pp0:11)	UINT16	RW	0x03E8 (1000 _{dec})

Index 0x8020 ENC Settings Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
8020:0	ENC Settings Ch.1	Max. subindex	UINT8	RO	0x1A (26 _{dec})
8020:01	Enable C reset	The counter is reset via the C-track	BOOLEAN	RW	0x00 (0 _{dec})
8020:0A	Enable micro increments	The counter is more highly resolved with the bits specified in 0x8pp0:16	BOOLEAN	RW	0x00 (0 _{dec})
8020:18	Micro increment bits	If 8pp0:0A enabled: number of micro increment bits	UINT16	RW	0x0008 (8 _{dec})
8020:19	Pulses per revolution	If C-reset active: Number of increments "per revolution". At 1024 the counter counts	UINT32	RW	0x00000400 (1024 _{dec})
8020:1A	Autoset treshold	If the difference between "Target counter value" and "Counter value" exceeds this threshold, no output takes place. 0: function for automatic setting is inactive	UINT32	RW	0x00000000 (0 _{dec})

Index 0x8030 ENC Settings Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
8030:0	ENC Settings Ch.2	Max. subindex	UINT8	RO	0x1A (26 _{dec})
8030:01	Enable C reset	The counter is reset via the C-track	BOOLEAN	RW	0x00 (0 _{dec})
8030:0A	Enable micro increments	The counter is more highly resolved with the bits specified in 0x8pp0:16	BOOLEAN	RW	0x00 (0 _{dec})
8030:18	Micro increment bits	If 8pp0:0A enabled: number of micro increment bits	UINT16	RW	0x0008 (8 _{dec})
8030:19	Pulses per revolution	If C-reset active: Number of increments "per revolution". At 1024 the counter counts	UINT32	RW	0x00000400 (1024 _{dec})
8030:1A	Autoset treshold	If the difference between "Target counter value" and "Counter value" exceeds this threshold, no output takes place. 0: function for automatic setting is inactive	UINT32	RW	0x0000000 (0 _{dec})

5.5.3.2 Standard objects (0x1000-0x1FFF)

The standard objects have the same meaning for all EtherCAT slaves.

Index 0x1000 Device type

Index (hex)	Name	Meaning	Data type	Flags	Default
1000:0	Device type	Device type of the EtherCAT slave: the Lo- Word contains the CoE profile used (5001). The Hi-Word contains the module profile according to the modular device profile.	UINT32	_	0x00001389 (5001 _{dec})

Index 0x1008 Device name

Index (hex)	Name	3	Data type	Flags	Default
1008:0	Device name	Device name of the EtherCAT slave	STRING	RO	EL2522

Index 0x1009 Hardware version

Index (hex)	Name	3	Data type	Flags	Default
1009:0	Hardware version	Hardware version of the EtherCAT slave	STRING	RO	00

Index 0x100A Software version

Index (hex)	Name	3	Data type	Flags	Default
100A:0	Software version	Firmware version of the EtherCAT slave	STRING	RO	06

Index 0x1011 Restore default parameters

Index (hex)	Name	Meaning	Data type	Flags	Default
1011:0	Restore default parameters	Restore default parameters	UINT8	RO	0x01 (1 _{dec})
1011:01		If this object is set to "0x64616F6C" in the set value dialog, all backup objects are reset to their delivery state.	UINT32	RW	0x0000000 (0 _{dec})

Index 0x1018 Identity

Index (hex)	Name	Meaning	Data type	Flags	Default
1018:0	Identity	Information for identifying the slave	UINT8	RO	0x04 (4 _{dec})
1018:01	Vendor ID	Vendor ID of the EtherCAT slave	UINT32	RO	0x00000002 (2 _{dec})
1018:02	Product code	Product code of the EtherCAT slave	UINT32	RO	0x09DA3052 (165294162 _{dec})
1018:03	Revision	Revision number of the EtherCAT slave; the low word (bit 0-15) indicates the special terminal number, the high word (bit 16-31) refers to the device description	UINT32	RO	0x0000000 (0 _{dec})
1018:04	Serial number	Serial number of the EtherCAT slave; the low byte (bit 0-7) of the low word contains the year of production, the high byte (bit 8-15) of the low word contains the week of production, the high word (bit 16-31) is 0	UINT32	RO	0x0000000 (0 _{dec})

Index 0x10F0 Backup parameter handling

Index (hex)	Name	Meaning	Data type	Flags	Default
10F0:0	Backup parameter handling	Information for standardized loading and saving of backup entries	UINT8	RO	0x01 (1 _{dec})
10F0:01	Checksum	Checksum across all backup entries of the EtherCAT slave	UINT32	RO	0x00000000 (0 _{dec})

Index 0x1400 PTO RxPDO-Par Control Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1400:0	PTO RxPDO- Par Control Ch.1	PDO Parameter RxPDO 1	UINT8	RO	0x06 (6 _{dec})
1400:06	RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 1	OCTET- STRING[6]	RO	01 16 04 16 00 00

Index 0x1401 PTO RxPDO-Par Control Position Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1401:0	PTO RxPDO- Par Control Position Ch.1	PDO Parameter RxPDO 2	UINT8	RO	0x06 (6 _{dec})
1401:06		Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 2	OCTET- STRING[6]	RO	00 16 02 16 03 16

Index 0x1402 PTO RxPDO-Par Target compact Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1402:0	PTO RxPDO- Par Target compact Ch.1	PDO Parameter RxPDO 3	UINT8	RO	0x06 (6 _{dec})
1402:06	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 3	OCTET- STRING[6]	RO	01 16 03 16 00 00

Index 0x1403 PTO RxPDO-Par Target Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1403:0	PTO RxPDO- Par Target Ch.1	PDO Parameter RxPDO 4	UINT8	RO	0x06 (6 _{dec})
1403:06	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 4	OCTET- STRING[6]	RO	01 16 02 16 00 00

Index 0x1404 PTO RxPDO-Par Arrival Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
	PTO RxPDO- Par Arrival Ch.1	PDO Parameter RxPDO 5	UINT8	RO	0x06 (6 _{dec})
1	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 5	OCTET- STRING[6]	RO	00 16 02 16 03 16

Index 0x1405 PTO RxPDO-Par Control Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1405:0	PTO RxPDO- Par Control Ch.2	PDO Parameter RxPDO 6	UINT8	RO	0x06 (6 _{dec})
1405:06	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 6	OCTET- STRING[6]	RO	06 16 09 16 00 00

Index 0x1406 PTO RxPDO-Par Control Position Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1406:0	PTO RxPDO- Par Control Position Ch.2	PDO Parameter RxPDO 7	UINT8	RO	0x06 (6 _{dec})
1406:06	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 7	OCTET- STRING[6]	RO	05 16 07 16 08 16

Index 0x1407 PTO RxPDO-Par Target compact Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1407:0	PTO RxPDO- Par Target compact Ch.2	PDO Parameter RxPDO 8	UINT8	RO	0x06 (6 _{dec})
1407:06	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 8	OCTET- STRING[6]	RO	06 16 08 16 00 00

Index 0x1408 PTO RxPDO-Par Target Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1408:0	PTO RxPDO- Par Target Ch.2	PDO Parameter RxPDO 9	UINT8	RO	0x06 (6 _{dec})
1408:06	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 9	OCTET- STRING[6]	RO	06 16 07 16 00 00

Index 0x1409 PTO RxPDO-Par Arrival Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1409:0	PTO RxPDO- Par Arrival Ch.2	PDO Parameter RxPDO 10	UINT8	RO	0x06 (6 _{dec})
1409:06	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 10	OCTET- STRING[6]	RO	05 16 07 16 08 16

Index 0x140A ENC RxPDO-Par Control compact Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
140A:0	ENC RxPDO- Par Control compact Ch.1	PDO Parameter RxPDO 11	UINT8	RO	0x06 (6 _{dec})
140A:06		Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 11	OCTET- STRING[6]	RO	0B 16 00 00 00 00

Index 0x140B ENC RxPDO-Par Control Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
140B:0	ENC RxPDO- Par Control Ch.1	PDO Parameter RxPDO 12	UINT8	RO	0x06 (6 _{dec})
140B:06	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 12	OCTET- STRING[6]	RO	0A 16 00 00 00 00

Index 0x140C ENC RxPDO-Par Control compact Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
	ENC RxPDO- Par Control compact Ch.2	PDO Parameter RxPDO 13	UINT8	RO	0x06 (6 _{dec})
140C:06	RxPDOs		OCTET- STRING[6]	RO	0D 16 00 00 00 00

Index 0x140D ENC RxPDO-Par Control Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
140D:0	ENC RxPDO- Par Control Ch.2	PDO Parameter RxPDO 14	UINT8	RO	0x06 (6 _{dec})
140D:06	Exclude RxPDOs	Specifies the RxPDOs (index 0x of RxPDO mapping objects) that must not be transferred together with RxPDO 14	OCTET- STRING[6]	RO	OC 16 00 00 00 00

Index 0x1600 PTO RxPDO-Map Control Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1600:0	PTO RxPDO- Map Control Ch.1	PDO Mapping RxPDO 1	UINT8	RO	0x05 (5 _{dec})
1600:01	SubIndex 0x001	1. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x01 (Frequency select))	UINT32	RO	0x7000:01, 1
1600:02	SubIndex 0x002	2. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x02 (Disable ramp))	UINT32	RO	0x7000:02, 1
1600:03	SubIndex 0x003	3. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x03 (Go counter))	UINT32	RO	0x7000:03, 1
1600:04	SubIndex 0x004	4. PDO Mapping entry (13 bits align)	UINT32	RO	0x0000:00, 13
1600:05	SubIndex 0x005	5. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x11 (Frequency value))	UINT32	RO	0x7000:11, 16

Index 0x1601 PTO RxPDO-Map Control Position Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1601:0	PTO RxPDO- Map Control Position Ch.1	PDO Mapping RxPDO 2	UINT8	RO	0x06 (6 _{dec})
1601:01	SubIndex 0x001	1. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1601:02	SubIndex 0x002	2. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x04 (Automatic direction))	UINT32	RO	0x7000:04, 1
1601:03	SubIndex 0x003	3. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x05 (Forward))	UINT32	RO	0x7000:05, 1
1601:04	SubIndex 0x004	4. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x06 (Reward))	UINT32	RO	0x7000:06, 1
1601:05	SubIndex 0x005	5. PDO Mapping entry (10 bits align)	UINT32	RO	0x0000:00, 10
1601:06	SubIndex 0x006	6. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x12 (Target counter value))	UINT32	RO	0x7000:12, 32

Index 0x1602 PTO RxPDO-Map Target compact Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1602:0	PTO RxPDO- Map Target compact Ch.1	PDO Mapping RxPDO 3	UINT8	RO	0x01 (1 _{dec})
1602:01	SubIndex 0x001	1. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x12 (Target counter value))	UINT32	RO	0x7000:12, 16

Index 0x1603 PTO RxPDO-Map Target Ch.1

Index (hex)	Name		Data type	Flags	Default
1603:0	PTO RxPDO- Map Target Ch.1		UINT8	RO	0x01 (1 _{dec})
1603:01	SubIndex 0x001	1. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x12 (Target counter value))	UINT32	RO	0x7000:12, 32

Index 0x1604 PTO RxPDO-Map Arrival Ch.1

Index (hex)	Name		Data type	Flags	Default
1604:0	PTO RxPDO- Map Arrival Ch.1	PDO Mapping RxPDO 5	UINT8	RO	0x01 (1 _{dec})
1604:01	SubIndex 0x001	1. PDO Mapping entry (object 0x7000 (PTO Outputs Ch.1), entry 0x13 (Target arrival time))	UINT32	RO	0x7000:13, 64

Index 0x1605 PTO RxPDO-Map Control Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1605:0	PTO RxPDO- Map Control Ch.2	PDO Mapping RxPDO 6	UINT8	RO	0x05 (5 _{dec})
1605:01	SubIndex 0x001	1. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x01 (Frequency select))	UINT32	RO	0x7010:01, 1
1605:02	SubIndex 0x002	2. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x02 (Disable ramp))	UINT32	RO	0x7010:02, 1
1605:03	SubIndex 0x003	3. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x03 (Go counter))	UINT32	RO	0x7010:03, 1
1605:04	SubIndex 0x004	4. PDO Mapping entry (13 bits align)	UINT32	RO	0x0000:00, 13
1605:05	SubIndex 0x005	5. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x11 (Frequency value))	UINT32	RO	0x7010:11, 16

Index 0x1606 PTO RxPDO-Map Control Position Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1606:0	PTO RxPDO- Map Control Position Ch.2	PDO Mapping RxPDO 7	UINT8	RO	0x06 (6 _{dec})
1606:01	SubIndex 0x001	1. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1606:02	SubIndex 0x002	2. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x04 (Automatic direction))	UINT32	RO	0x7010:04, 1
1606:03	SubIndex 0x003	3. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x05 (Forward))	UINT32	RO	0x7010:05, 1
1606:04	SubIndex 0x004	4. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x06 (Reward))	UINT32	RO	0x7010:06, 1
1606:05	SubIndex 0x005	5. PDO Mapping entry (10 bits align)	UINT32	RO	0x0000:00, 10
1606:06	SubIndex 0x006	6. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x12 (Target counter value))	UINT32	RO	0x7010:12, 32

Index 0x1607 PTO RxPDO-Map Target compact Ch.2

Index (hex)	Name		Data type	Flags	Default
1607:0	PTO RxPDO- Map Target compact Ch.2	PDO Mapping RxPDO 8	UINT8	RO	0x01 (1 _{dec})
1607:01	SubIndex 0x001	1. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x12 (Target counter value))	UINT32	RO	0x7010:12, 16

Index 0x1608 PTO RxPDO-Map Target Ch.2

Index (hex)	Name		Data type	Flags	Default
1608:0	PTO RxPDO- Map Target Ch.2		UINT8	RO	0x01 (1 _{dec})
1608:01	SubIndex 0x001	1. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x12 (Target counter value))	UINT32	RO	0x7010:12, 32

Index 0x1609 PTO RxPDO-Map Arrival Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1609:0	PTO RxPDO- Map Arrival Ch.2	PDO Mapping RxPDO 10	UINT8	RO	0x01 (1 _{dec})
1609:01	SubIndex 0x001	1. PDO Mapping entry (object 0x7010 (PTO Outputs Ch.2), entry 0x13 (Target arrival time))	UINT32	RO	0x7010:13, 64

Index 0x160A ENC RxPDO-Map Control compact Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
160A:0	ENC RxPDO- Map Control compact Ch.1	PDO Mapping RxPDO 11	UINT8	RO	0x05 (5 _{dec})
160A:01	SubIndex 0x001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
160A:02	SubIndex 0x002	2. PDO Mapping entry (object 0x7020 (ENC Outputs Ch.1), entry 0x03 (Set counter))	UINT32	RO	0x7020:03, 1
160A:03	SubIndex 0x003	3. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
160A:04	SubIndex 0x004	4. PDO Mapping entry (object 0x7020 (ENC Outputs Ch.1), entry 0x10 (Reserved))	UINT32	RO	0x7020:10, 1
160A:05	SubIndex 0x005	5. PDO Mapping entry (object 0x7020 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7020:11, 16

Index 0x160B ENC RxPDO-Map Control Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
160B:0	ENC RxPDO- Map Control Ch.1	PDO Mapping RxPDO 12	UINT8	RO	0x05 (5 _{dec})
160B:01	SubIndex 0x001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
160B:02	SubIndex 0x002	2. PDO Mapping entry (object 0x7020 (ENC Outputs Ch.1), entry 0x03 (Set counter))	UINT32	RO	0x7020:03, 1
160B:03	SubIndex 0x003	3. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
160B:04	SubIndex 0x004	4. PDO Mapping entry (object 0x7020 (ENC Outputs Ch.1), entry 0x10 (Reserved))	UINT32	RO	0x7020:10, 1
160B:05	SubIndex 0x005	5. PDO Mapping entry (object 0x7020 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7020:11, 32

Index 0x160C ENC RxPDO-Map Control compact Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
160C:0	ENC RxPDO- Map Control compact Ch.2	PDO Mapping RxPDO 13	UINT8	RO	0x05 (5 _{dec})
160C:01	SubIndex 0x001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
160C:02	SubIndex 0x002	2. PDO Mapping entry (object 0x7030 (ENC Outputs Ch.2), entry 0x03 (Set counter))	UINT32	RO	0x7030:03, 1
160C:03	SubIndex 0x003	3. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
160C:04	SubIndex 0x004	4. PDO Mapping entry (object 0x7030 (ENC Outputs Ch.2), entry 0x10 (Reserved))	UINT32	RO	0x7030:10, 1
160C:05	SubIndex 0x005	5. PDO Mapping entry (object 0x7030 (ENC Outputs Ch.2), entry 0x11 (Set counter value))	UINT32	RO	0x7030:11, 16

Index 0x160D ENC RxPDO-Map Control Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
160D:0	ENC RxPDO- Map Control Ch.2	PDO Mapping RxPDO 14	UINT8	RO	0x05 (5 _{dec})
160D:01	SubIndex 0x001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
160D:02	SubIndex 0x002	2. PDO Mapping entry (object 0x7030 (ENC Outputs Ch.2), entry 0x03 (Set counter))	UINT32	RO	0x7030:03, 1
160D:03	SubIndex 0x003	3. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
160D:04	SubIndex 0x004	4. PDO Mapping entry (object 0x7030 (ENC Outputs Ch.2), entry 0x10 (Reserved))	UINT32	RO	0x7030:10, 1
160D:05	SubIndex 0x005	5. PDO Mapping entry (object 0x7030 (ENC Outputs Ch.2), entry 0x11 (Set counter value))	UINT32	RO	0x7030:11, 32

Index 0x1802 ENC TxPDO-Par Status compact Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1802:0	ENC TxPDO-Par Status compact Ch.1	PDO Parameter TxPDO 3	UINT8	RO	0x06 (6 _{dec})
1802:06	TxPDOs	Specifies the TxPDOs (index 0x of TxPDO mapping objects) that must not be transferred together with TxPDO 3	OCTET- STRING[2]	RO	03 1A

Index 0x1803 ENC TxPDO-Par Status Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1803:0	ENC TxPDO-Par Status Ch.1	PDO Parameter TxPDO 4	UINT8	RO	0x06 (6 _{dec})
1803:06		Specifies the TxPDOs (index 0x of TxPDO mapping objects) that must not be transferred together with TxPDO 4	OCTET- STRING[2]	RO	02 1A

Index 0x1804 ENC TxPDO-Par Status compact Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1804:0	ENC TxPDO-Par Status compact Ch.2	PDO Parameter TxPDO 5	UINT8	RO	0x06 (6 _{dec})
1804:06		Specifies the TxPDOs (index 0x of TxPDO mapping objects) that must not be transferred together with TxPDO 5	OCTET- STRING[2]	RO	05 1A

Index 0x1805 ENC TxPDO-Par Status Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1805:0	ENC TxPDO-Par Status Ch.2	PDO Parameter TxPDO 6	UINT8	RO	0x06 (6 _{dec})
1805:06	TxPDOs	Specifies the TxPDOs (index 0x of TxPDO mapping objects) that must not be transferred together with TxPDO 6	OCTET- STRING[2]	RO	04 1A

Index 0x1A00 PTO TxPDO-Map Status Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1A00:0	PTO TxPDO- Map Status Ch.1	PDO Mapping TxPDO 1	UINT8	RO	0x0A (10 _{dec})
1A00:01	SubIndex 0x001	1. PDO Mapping entry (object 0x6000 (PTO Inputs Ch.1), entry 0x01 (Sel. Ack/End counter))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 0x002	2. PDO Mapping entry (object 0x6000 (PTO Inputs Ch.1), entry 0x02 (Ramp active))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 0x003	3. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A00:04	SubIndex 0x004	4. PDO Mapping entry (object 0x6000 (PTO Inputs Ch.1), entry 0x07 (Error))	UINT32	RO	0x6000:07, 1
1A00:05	SubIndex 0x005	5. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1A00:06	SubIndex 0x006	6. PDO Mapping entry (object 0x6000 (PTO Inputs Ch.1), entry 0x0E (Sync error))	UINT32	RO	0x6000:0E, 1
1A00:07	SubIndex 0x007	7. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A00:08	SubIndex 0x008	8. PDO Mapping entry (object 0x6000 (PTO Inputs Ch.1), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6000:10, 1
1A00:09	SubIndex 0x009	9. PDO Mapping entry (object 0x6000 (PTO Inputs Ch.1), entry 0x11 ())	UINT32	RO	0x6000:11, 1
1A00:0A	SubIndex 0x010	10. PDO Mapping entry (15 bits align)	UINT32	RO	0x0000:00, 15

Index 0x1A01 PTO TxPDO-Map Status Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1A01:0	PTO TxPDO- Map Status Ch.2	PDO Mapping TxPDO 2	UINT8	RO	0x0A (10 _{dec})
1A01:01	SubIndex 0x001	1. PDO Mapping entry (object 0x6010 (PTO Inputs Ch.2), entry 0x01 (Sel. Ack/End counter))	UINT32	RO	0x6010:01, 1
1A01:02	SubIndex 0x002	2. PDO Mapping entry (object 0x6010 (PTO Inputs Ch.2), entry 0x02 (Ramp active))	UINT32	RO	0x6010:02, 1
1A01:03	SubIndex 0x003	3. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A01:04	SubIndex 0x004	4. PDO Mapping entry (object 0x6010 (PTO Inputs Ch.2), entry 0x07 (Error))	UINT32	RO	0x6010:07, 1
1A01:05	SubIndex 0x005	5. PDO Mapping entry (6 bits align)	UINT32	RO	0x0000:00, 6
1A01:06	SubIndex 0x006	6. PDO Mapping entry (object 0x6010 (PTO Inputs Ch.2), entry 0x0E (Sync error))	UINT32	RO	0x6010:0E, 1
1A01:07	SubIndex 0x007	7. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A01:08	SubIndex 0x008	8. PDO Mapping entry (object 0x6010 (PTO Inputs Ch.2), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6010:10, 1
1A01:09	SubIndex 0x009	9. PDO Mapping entry (object 0x6010 (PTO Inputs Ch.2), entry 0x11 ())	UINT32	RO	0x6010:11, 1
1A01:0A	SubIndex 0x010	10. PDO Mapping entry (15 bits align)	UINT32	RO	0x0000:00, 15

Index 0x1A02 ENC TxPDO-Map Status compact Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1A02:0	ENC TxPDO- Map Status compact Ch.1	PDO Mapping TxPDO 3	UINT8	RO	0x09 (9 _{dec})
1A02:01	SubIndex 0x001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A02:02	SubIndex 0x002	2. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6020:03, 1
1A02:03	SubIndex 0x003	3. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6020:04, 1
1A02:04	SubIndex 0x004	4. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6020:05, 1
1A02:05	SubIndex 0x005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A02:06	SubIndex 0x006	6. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x0E (Sync error))	UINT32	RO	0x6020:0E, 1
1A02:07	SubIndex 0x007	7. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x0F (TxPDO State))	UINT32	RO	0x6020:0F, 1
1A02:08	SubIndex 0x008	8. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6020:10, 1
1A02:09	SubIndex 0x009	9. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6020:11, 16

Index 0x1A03 ENC TxPDO-Map Status Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1A03:0	ENC TxPDO- Map Status Ch.1	PDO Mapping TxPDO 4	UINT8	RO	0x09 (9 _{dec})
1A03:01	SubIndex 0x001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A03:02	SubIndex 0x002	2. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6020:03, 1
1A03:03	SubIndex 0x003	3. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6020:04, 1
1A03:04	SubIndex 0x004	4. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6020:05, 1
1A03:05	SubIndex 0x005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A03:06	SubIndex 0x006	6. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x0E (Sync error))	UINT32	RO	0x6020:0E, 1
1A03:07	SubIndex 0x007	7. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x0F (TxPDO State))	UINT32	RO	0x6020:0F, 1
1A03:08	SubIndex 0x008	8. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6020:10, 1
1A03:09	SubIndex 0x009	9. PDO Mapping entry (object 0x6020 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6020:11, 32

Index 0x1A04 ENC TxPDO-Map Status compact Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1A04:0	ENC TxPDO- Map Status compact Ch.2	PDO Mapping TxPDO 5	UINT8	RO	0x09 (9 _{dec})
1A04:01	SubIndex 0x001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A04:02	SubIndex 0x002	2. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x03 (Set counter done))	UINT32	RO	0x6030:03, 1
1A04:03	SubIndex 0x003	3. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x04 (Counter underflow))	UINT32	RO	0x6030:04, 1
1A04:04	SubIndex 0x004	4. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x05 (Counter overflow))	UINT32	RO	0x6030:05, 1
1A04:05	SubIndex 0x005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A04:06	SubIndex 0x006	6. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x0E (Sync error))	UINT32	RO	0x6030:0E, 1
1A04:07	SubIndex 0x007	7. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x0F (TxPDO State))	UINT32	RO	0x6030:0F, 1
1A04:08	SubIndex 0x008	8. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6030:10, 1
1A04:09	SubIndex 0x009	9. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x11 (Counter value))	UINT32	RO	0x6030:11, 16

Index 0x1A05 ENC TxPDO-Map Status Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1A05:0	ENC TxPDO- Map Status Ch.2	PDO Mapping TxPDO 6	UINT8	RO	0x09 (9 _{dec})
1A05:01	SubIndex 0x001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A05:02	SubIndex 0x002	2. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x03 (Set counter done))	UINT32	RO	0x6030:03, 1
1A05:03	SubIndex 0x003	3. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x04 (Counter underflow))	UINT32	RO	0x6030:04, 1
1A05:04	SubIndex 0x004	4. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x05 (Counter overflow))	UINT32	RO	0x6030:05, 1
1A05:05	SubIndex 0x005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A05:06	SubIndex 0x006	6. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x0E (Sync error))	UINT32	RO	0x6030:0E, 1
1A05:07	SubIndex 0x007	7. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x0F (TxPDO State))	UINT32	RO	0x6030:0F, 1
1A05:08	SubIndex 0x008	8. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6030:10, 1
1A05:09	SubIndex 0x009	9. PDO Mapping entry (object 0x6030 (ENC Inputs Ch.2), entry 0x11 (Counter value))	UINT32	RO	0x6030:11, 32

Index 0x1C00 Sync manager type

Index (hex)	Name	Meaning	Data type	Flags	Default
1C00:0	Sync manager type	Using the sync managers	UINT8	RO	0x04 (4 _{dec})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dec})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dec})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dec})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dec})

Index 0x1C12 RxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x06 (6 _{dec})
1C12:01	Subindex 001	1. allocated RxPDO (contains the index 0x of the associated RxPDO mapping object)	UINT16	RW	0x1600 (5632 _{dec})
1C12:02	Subindex 002	2. allocated RxPDO (contains the index 0x of the associated RxPDO mapping object)	UINT16	RW	0x1603 (5635 _{dec})
1C12:03	Subindex 003	3. allocated RxPDO (contains the index 0x of the associated RxPDO mapping object)	UINT16	RW	0x1605 (5637 _{dec})
1C12:04	Subindex 004	4. allocated RxPDO (contains the index 0x of the associated RxPDO mapping object)	UINT16	RW	0x1608 (5640 _{dec})
1C12:05	Subindex 005	5. allocated RxPDO (contains the index 0x of the associated RxPDO mapping object)	UINT16	RW	0x160B (5643 _{dec})
1C12:06	Subindex 006	6. allocated RxPDO (contains the index 0x of the associated RxPDO mapping object)	UINT16	RW	0x160D (5645 _{dec})

Index 0x1C13 TxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x04 (4 _{dec})
1C13:01	Subindex 001	1. allocated TxPDO (contains the index 0xof the associated TxPDO mapping object)	UINT16	RW	0x1A00 (6656 _{dec})
1C13:02	Subindex 002	2. allocated TxPDO (contains the index 0xof the associated TxPDO mapping object)	UINT16	RW	0x1A01 (6657 _{dec})
1C13:03	Subindex 003	3. allocated TxPDO (contains the index 0xof the associated TxPDO mapping object)	UINT16	RW	0x1A03 (6659 _{dec})
1C13:04	Subindex 004	4. allocated TxPDO (contains the index 0xof the associated TxPDO mapping object)	UINT16	RW	0x1A05 (6661 _{dec})

Index 0x1C32 SM output parameter

Index (hex)	Name	Meaning	Data type	Flags	Default
1C32:0	SM output pa- rameter	Synchronization parameters for the outputs	UINT8	RO	0x20 (32 _{dec})
1C32:01	Sync mode	Current synchronization mode:	UINT16	RW	0x0001 (1 _{dec})
1C32:02	Cycle time	Cycle time (in ns): Free Run: Cycle time of the local timer Synchronous with SM 2 event: Master cycle time DC-Mode: SYNC0/SYNC1 Cycle Time	UINT32	RW	0x000F4240 (1000000 _{dec})
1C32:03	Shift time	Time between SYNC0 event and output of the outputs (in ns, DC mode only)	UINT32	RO	0x0000000 (0 _{dec})
1C32:04	Sync modes supported	Supported synchronization modes: • Bit 0 = 1: free run is supported • Bit 1 = 1: Synchronous with SM 2 event is supported • Bit 2-3 = 01: DC mode is supported • Bit 4-5 = 10: Output shift with SYNC1 event (only DC mode) • Bit 14 = 1: dynamic times (measurement through writing of 1C32:08 [▶ 205])	UINT16	RO	0x4C07 (19463 _{dec})
1C32:05	Minimum cy- cle time	Minimum cycle time (in ns)	UINT32	RO	0x000186A0 (100000 _{dec})
1C32:06	Calc and copy time	Minimum time between SYNC0 and SYNC1 event (in ns, DC mode only)	UINT32	RO	0x00000000 (0 _{dec})
1C32:07 1C32:08	Minimum de- lay time Command	0: Measurement of the local cycle time is stopped 1: Measurement of the local cycle time is	UINT32 UINT16	RO RW	0x00000000 (0 _{dec})
		the entries 1C32:03 [▶ 205], 1C32:05 [▶ 205], 1C32:06 [▶ 205], 1C32:09 [▶ 205], 1C33:03 [▶ 206], 1C33:06 [▶ 205], 1C33:09 [▶ 206] are updated with the maximum measured values. For a subsequent measurement the measured values are reset			
1C32:09	Maximum de- lay time	Time between SYNC1 event and output of the outputs (in ns, DC mode only)	UINT32	RO	0x0000000 (0 _{dec})
1C32:0B	SM event missed counter	Number of missed SM events in OPERATIONAL (DC mode only)	UINT16	RO	0x0000 (0 _{dec})
1C32:0C	Cycle ex- ceeded counter	Number of occasions the cycle time was exceeded in OPERATIONAL (cycle was not completed in time or the next cycle began too early)	UINT16	RO	0x0000 (0 _{dec})
1C32:0D	Shift too short counter	Number of occasions that the interval between SYNC0 and SYNC1 event was too short (DC mode only)	UINT16	RO	0x0000 (0 _{dec})
1C32:20	Sync error	The synchronization was not correct in the last cycle (outputs were output too late; DC mode only)	BOOLEAN	RO	0x00 (0 _{dec})

Index 1C33 SM input parameter

Index (hex)	Name	Meaning	Data type	Flags	Default	
1C33:0	SM input pa- rameter	Synchronization parameters for the inputs	UINT8	RO	0x20 (32 _{dec})	
1C33:01	Sync mode	Current synchronization mode:	UINT16	RW	0x0022 (34 _{dec})	
		0: Free Run				
		1: Synchronous with SM 3 event (no outputs available)				
		2: DC - Synchronous with SYNC0 Event				
		3: DC - Synchronous with SYNC1 Event				
		 34: Synchronous with SM 2 event (outputs available) 				
1C33:02	Cycle time	as <u>1C32:02 [▶ 205]</u>	UINT32	RW	0x000F4240 (1000000 _{dec})	
1C33:03	Shift time	Time between SYNC0 event and reading of the inputs (in ns, only DC mode)	UINT32	RO	0x00000000 (0 _{dec})	
1C33:04	Sync modes	Supported synchronization modes:	UINT16	RO	0x4C07 (19463 _{dec})	
	supported	Bit 0: free run is supported				
		Bit 1: synchronous with SM 2 event is supported (outputs available)				
		Bit 1: synchronous with SM 3 event is supported (no outputs available)				
		Bit 2-3 = 01: DC mode is supported				
		Bit 4-5 = 01: input shift through local event (outputs available)				
		Bit 4-5 = 10: input shift with SYNC1 event (no outputs available)				
		 Bit 14 = 1: dynamic times (measurement through writing of <u>1C32:08 [▶ 205]</u> or <u>1C33:08 [▶ 206]</u>) 				
1C33:05	Minimum cy- cle time	as <u>1C32:05</u> [> <u>205</u>]	UINT32	RO	0x000186A0 (100000 _{dec})	
1C33:06	Calc and copy time	Time between reading of the inputs and availability of the inputs for the master (in ns, only DC mode)	UINT32	RO	0x00000000 (0 _{dec})	
1C33:07	Minimum de- lay time		UINT32	RO	0x0000000 (0 _{dec})	
1C33:08	Command	as <u>1C32:08 [* 205]</u>	UINT16	RW	0x0000 (0 _{dec})	
1C33:09	Maximum de- lay time	Time between SYNC1 event and reading of the inputs (in ns, only DC mode)	UINT32	RO	0x00000000 (0 _{dec})	
1C33:0B	SM event missed counter	as <u>1C32:11 [▶ 205]</u>	UINT16	RO	0x0000 (0 _{dec})	
1C33:0C	Cycle ex- ceeded counter	as <u>1C32:12 [▶ 205]</u>	UINT16	RO	0x0000 (0 _{dec})	
1C33:0D	Shift too short counter	as <u>1C32:13 [▶ 205]</u>	UINT16	RO	0x0000 (0 _{dec})	
1C33:20	Sync error	as <u>1C32:32 [> 205]</u>	BOOLEAN	RO	0x00 (0 _{dec})	

5.5.3.3 Profile-specific objects (0x6000-0xFFFF)

Index 0x6000 PTO Inputs Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
6000:0	PTO Inputs Ch.1		UINT8	RO	0x10 (16 _{dec})
6000:01	Sel. Ack/ End counter	Confirms the change of base frequency. if travel distance control is activated: target counter value reached	BOOLEAN	RO	0x00 (0 _{dec})
6000:02	Ramp active	Ramp is currently being followed	BOOLEAN	RO	0x00 (0 _{dec})
6000:07	Error	General error bit, is set together with overrange and underrange	BOOLEAN	RO	0x00 (0 _{dec})
6000:0E	Sync error	The Sync error bit is only required for DC mode. It indicates whether a synchronization error has occurred during the previous cycle.	BOOLEAN	RO	0x00 (0 _{dec})
6000:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x6010 PTO Inputs Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
6010:0	PTO Inputs Ch.2	Max. Subindex	UINT8	RO	0x10 (16 _{dec})
6010:01	Sel. Ack/ End counter	Confirms the change of base frequency. if travel distance control is activated: target counter value reached	BOOLEAN	RO	0x00 (0 _{dec})
6010:02	Ramp active	Ramp is currently being followed	BOOLEAN	RO	0x00 (0 _{dec})
6010:07	Error	General error bit, is set together with overrange and underrange	BOOLEAN	RO	0x00 (0 _{dec})
6010:0E	Sync error	The Sync error bit is only required for DC mode. It indicates whether a synchronization error has occurred during the previous cycle.	BOOLEAN	RO	0x00 (0 _{dec})
6010:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	0x00 (0 _{dec})

Index 0x6020 ENC Inputs Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
6020:0	ENC Inputs Ch.1		UINT8	RO	0x11 (17 _{dec})
6020:03	Set counter done	The counter was set	BOOLEAN	RO	0x00 (0 _{dec})
6020:04	Counter underflow	Counter underflow.	BOOLEAN	RO	0x00 (0 _{dec})
6020:05	Counter overflow	Counter overflow.	BOOLEAN	RO	0x00 (0 _{dec})
6020:0E	Sync error	The Sync error bit is only required for DC mode. It indicates whether a synchronization error has occurred during the previous cycle.	BOOLEAN	RO	0x00 (0 _{dec})
6020:0F	TxPDO State	Validity of the data of the associated TxPDO (0 = valid, 1 = invalid).	BOOLEAN	RO	0x00 (0 _{dec})
6020:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	0x00 (0 _{dec})
6020:11	Counter value	The counter value.	UINT32	RO	0x00000000 (0 _{dec})

Index 0x6030 ENC Inputs Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
6030:0	ENC Inputs Ch.2	Max. subindex	UINT8	RO	0x11 (17 _{dec})
6030:03	Set counter done	The counter was set	BOOLEAN	RO	0x00 (0 _{dec})
6030:04	Counter underflow	Counter underflow.	BOOLEAN	RO	0x00 (0 _{dec})
6030:05	Counter overflow	Counter overflow.	BOOLEAN	RO	0x00 (0 _{dec})
6030:0E	Sync error	The Sync error bit is only required for DC mode. It indicates whether a synchronization error has occurred during the previous cycle.	BOOLEAN	RO	0x00 (0 _{dec})
6030:0F	TxPDO State	Validity of the data of the associated TxPDO (0 = valid, 1 = invalid).	BOOLEAN	RO	0x00 (0 _{dec})
6030:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	0x00 (0 _{dec})
6030:11	Counter value	The counter value.	UINT32	RO	0x00000000 (0 _{dec})

Index 0x7000 PTO Outputs Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
7000:0	PTO Outputs Ch.1	Max. Subindex	UINT8	RO	0x13 (19 _{dec})
7000:01	Frequency select	Fast toggling of the base frequency (only if ramp function is deactivated) 0bin = base frequency 1 (object 8pp0:12) 1bin = base frequency 2 (object 8pp0:13)	BOOLEAN	RO	0x00 (0 _{dec})
7000:02	Disable ramp	The ramp function is disabled despite active index 8pp0:06.	BOOLEAN	RO	0x00 (0 _{dec})
7000:03	Go counter	If travel distance control is activated (object 8pp0:0A), a specified counter value is driven to if the bit is set.	BOOLEAN	RO	0x00 (0 _{dec})
7000:04	Automatic direction	The shortest direction is automatically determined	BOOLEAN	RW	0x00 (0 _{dec})
7000:05	Forward	Manual specification of the output direction. ("Automatic direction" may not be set)	BOOLEAN	RW	0x00 (0 _{dec})
7000:06	Backward	Manual specification of the output direction. ("Automatic direction" may not be set)	BOOLEAN	RW	0x00 (0 _{dec})
7000:11	Frequency value	Output frequency	UINT16	RO	0x0000 (0 _{dec})
7000:12	Target counter value	Target counter value	UINT32	RO	0x0000000 (0 _{dec})
7000:13	Target arrival time	DC time at which the target counter value should be reached	UINT64	RO	

Index 0x7010 PTO Outputs Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
7010:0	PTO Outputs Ch.2	Max. subindex	UINT8	RO	0x13 (19 _{dec})
7010:01	Frequency select	Fast toggling of the base frequency (only if ramp function is deactivated) 0bin = base frequency 1 (object 8pp0:12) 1bin = base frequency 2 (object 8pp0:13)	BOOLEAN	RO	0x00 (0 _{dec})
7010:02	Disable ramp	The ramp function is disabled despite active index 8pp0:06.	BOOLEAN	RO	0x00 (0 _{dec})
7010:03	Go counter	If travel distance control is activated (object 8pp0:0A), a specified counter value is driven to if the bit is set.	BOOLEAN	RO	0x00 (0 _{dec})
7010:04	Automatic direction	The shortest direction is automatically determined	BOOLEAN	RW	0x00 (0 _{dec})
7010:05	Forward	Manual specification of the output direction. ("Automatic direction" may not be set)	BOOLEAN	RW	0x00 (0 _{dec})
7010:06	Backward	Manual specification of the output direction. ("Automatic direction" may not be set)	BOOLEAN	RW	0x00 (0 _{dec})
7010:11	Frequency value	Output frequency	UINT16	RO	0x0000 (0 _{dec})
7010:12	Target counter value	Target counter value	UINT32	RO	0x0000000 (0 _{dec})
7010:13	Target arrival time	DC time at which the target counter value should be reached	UINT64	RO	

Index 0x7020 ENC Outputs Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
7020:0	ENC Outputs Ch.1	Max. subindex	UINT8	RO	0x11 (17 _{dec})
7020:03	Set counter	Set the counter value	BOOLEAN	RO	0x00 (0 _{dec})
7020:10	Reserved		BOOLEAN	RO	0x00 (0 _{dec})
7020:11		This is the counter value to be set by 0x7pp0:03	UINT32	RO	0x00000000 (0 _{dec})

Index 0x7030 ENC Outputs Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
7030:0	ENC Outputs Ch.2	Max. subindex	UINT8	RO	0x11 (17 _{dec})
7030:03	Set counter	Set the counter value	BOOLEAN	RO	0x00 (0 _{dec})
7030:10	Reserved		BOOLEAN	RO	0x00 (0 _{dec})
7030:11		This is the counter value to be set by 0x7pp0:03	UINT32	RO	0x0000000 (0 _{dec})

Index 0xA000 PTO Diag data Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
A000:0	PTO Diag data Ch.1	Max. subindex	UINT8	RO	0x01 (1 _{dez})
A000:01	Overspeed counter	Increments, if within the next cycle the calculated target position does not correlate with the actual position.	UINT16	RO	0x0000 (0 _{dez})
		Possible causes:			
		The output frequency will be limited by the respective "Base frequency 1"			
		Micro-increments are active and the "internal 100MHz" will be exceeded			

Index 0xA010 PTO Diag data Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
A010:0	PTO Diag data Ch.2	Max. subindex	UINT8	RO	0x01 (1 _{dez})
A010:01	Overspeed counter	Increments, if within the next cycle the calculated target position does not correlate with the actual position.	UINT16	RO	0x0000 (0 _{dez})
		Possible causes:			
		The output frequency will be limited by the respective "Base frequency 1"			
		Micro-increments are active and the "internal 100MHz" will be exceeded			

Index 0xF000 Modular device profile

Index (hex)	Name	Meaning	Data type	Flags	Default
F000:0	Modular device profile	General information for the modular device profile	UINT8	RO	0x02 (2 _{dec})
F000:01	Module index distance	Index spacing of the objects of the individual channels	UINT16	RO	0x0010 (16 _{dec})
F000:02	Maximum number of modules	Number of channels	UINT16	RO	0x0004 (4 _{dec})

Index 0xF008 Code word

Index (hex)	Name	Meaning	Data type	Flags	Default
F008:0	Code word	currently reserved	UINT32	RW	0x00000000 (0 _{dec})

Index 0xF010 Module list

Index (hex)	Name		Data type	Flags	Default
F010:0	Module list	Max. subindex	UINT8	RW	0x04 (4 _{dec})
F010:01	SubIndex 0x001	Profile number 253	UINT32	RW	0x000000FD (253 _{dec})
F010:02	SubIndex 0x002	Profile number 253	UINT32	RW	0x000000FD (253 _{dec})
F010:03	SubIndex 0x003	Profile number 511	UINT32	RW	0x000001FF (511 _{dec})
F010:04	SubIndex 0x004	Profile number 511	UINT32	RW	0x000001FF (511 _{dec})

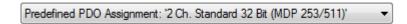
5.5.3.4 Objects for regular operation

In enhanced operating mode the EL2522 has no such objects.

5.5.4 Connection of the EL2522 in the NC

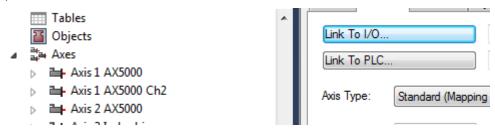
Required Firmware (FW) Version and TwinCAT Version

At least FW Version 07 is required for Connection of terminal EL2522 to the NC;

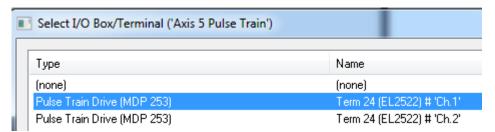

TwinCAT-Versions:

- up to TC 2.11 R3 Build 2250
- up to TC 3.1 Build 4018.16 (recommended)

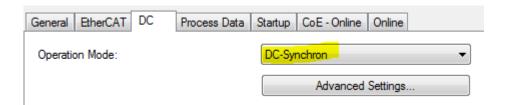
Procedure


When EL2522 terminal was added to TwinCAT-IO, the procedure is as follows:

1. Select a specific EL2522 operating mode



2. Link the non-referenced axes to the terminal

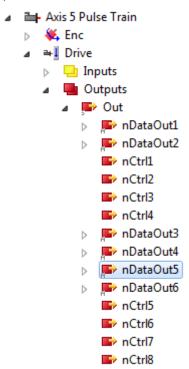


b)

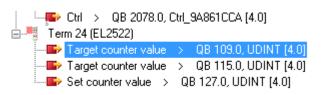
3. Set distributed clock: "DC-Synchronous" on "DC" tab

4. Set the frequency of the terminal in order to achieve the required velocity.

OUUU. 1U	rvegative logic	L/AA	FALSE
8000:11	Users switch-on-value	RW	0x0000 (0)
8000:12	Base frequency 1	RW	0x003D0900 (4000000)
8000:13	Base frequency 2	RW	0x000186A0 (100000)

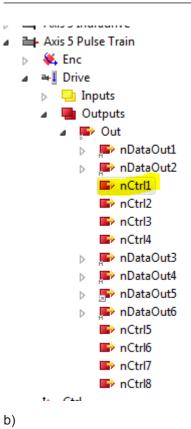

When using no up to date FW or rather not up dated TwinCAT versions, accordingly to the "Continues Position" Mode the following should be noticed, if applicable:

- · Update the NC driver
- · Add axis to the NC


As soon as (between step 2. And 3.):

• Link Axis/Drive/nOutData5 to the "Target Counter Value" of the terminal

a)



• Link Axis/Drive/nCtrl1 to "Automatic Direction" of the terminal

a)

Attach Variable nCtrl1 (Output) Show Variables Search: X Unused StartTime > QB 2202.0, ULINT [8.0] Used and unused Term 24 (EL2522) Exclude disabled G Control > QB 107.0, Control_E45F3D55 [2:0] ▼ Exclude other Devices Autor Exclude same Image Forward > QX 107.4, BIT [0.1] Show Tooltips Backward > QX 107.5, BIT [0.1] G Control > QB 113.0, Control_E45F3D55 [2.0] Sort by Address Automatic direction > QX 113.3, BIT [0.1] Show Variable Types Forward > QX 113.4, BIT [0.1] Matching Type Backward > QX 113.5, BIT [0,1] Matching Size Target counter value > QB 115.0, UDINT [4.0] Control > QB 119.0, Control_D2C7898C [2.0] V All Types

Variable Size Mismatch Linked Variable: Automatic direction

c)

6 Appendix

6.1 Firmware compatibility

Beckhoff EtherCAT devices are delivered with the latest available firmware version. Compatibility of firmware and hardware is mandatory; not every combination ensures compatibility. The overview below shows the hardware versions on which a firmware can be operated.

Note

- It is recommended to use the newest possible firmware for the respective hardware.
- Beckhoff is not under any obligation to provide customers with free firmware updates for delivered products.

Risk of damage to the device!

Pay attention to the instructions for firmware updates on the <u>separate page [* 217]</u>. If a device is placed in BOOTSTRAP mode for a firmware update, it does not check when downloading whether the new firmware is suitable. This can result in damage to the device! Therefore, always make sure that the firmware is suitable for the hardware version!

EL2521			
Hardware (HW)	Firmware	Revision No.	Date of release
02	03	EL2521-0000-0016	2008/08
02 - 05	04		2008/09
	05		2008/09
05 – 14*	06	EL2521-0000-0018	2009/01
	07	EL2521-0000-0019	2011/01
	08		2011/04
	09		2011/04
	10		2012/04
		EL2521-0000-0020	2012/05
		EL2521-0000-0021	2012/07
	11*		2014/05
		EL2521-0000-0022	2014/11

EL2521-0024			
Hardware (HW)	Firmware	Revision No.	Date of release
05 - 14*	06	EL2521-0024-0016/17	2009/01
	07	EL2521-0024-0018	2011/01
	08		2011/04
	09		2011/04
	10		2012/04
		EL2521-0024-0019	2012/05
		EL2521-0024-0020	2012/07
	11*		2014/05
		EL2521-0024-0021	2014/11

EL2521-0124			
Hardware (HW)	Firmware	Revision No.	Date of release
05 - 06	01	EL2521-0124-0016	2009/09
	02		2010/03
	03	EL2521-0124-0017	2010/06
06 -14*	04	EL2521-0124-0018	2011/01
	05		2011/05
		EL2521-0124-0019	2012/05
		EL2521-0124-0020	2012/07
	06*		2014/06

EL2521-0025	521-0025		
Hardware (HW)	Firmware	Revision No.	Date of release
00 - 06*	06	EL2521-0025-0016/17	2009/12
	07	EL2521-0025-0018	2011/01
	08		2011/04
	09		2011/04
	10		2012/04
		EL2521-0025-0019	2012/05
		EL2521-0025-0020	2012/07
	11*		2014/05
		EL2521-0025-0021	2014/11

EL2521-1001	1-1001		
Hardware (HW)	Firmware	Revision No.	Date of release
02	03	EL2521-1001-0016	2008/08
02 - 05	04		2008/09
	05		2008/09
05 - 13*	06	EL2521-1001-0017	2009/01
	07	EL2521-1001-0018	2011/01
	08		2011/04
	09		2011/04
	10		2012/04
		EL2521-1001-0019	2012/05
		EL2521-1001-0020	2012/07
	11*		2014/05

EL2522-0000			
Hardware (HW)	Firmware	Revision No.	Date of release
00 – 02*	01	EL2522-0000-0016	2013/12
	02	EL2522-0000-0017	2014/08
	03	EL2522-0000-0018	2014/09
	04	EL2522-0000-0019	2015/01
	05	EL2522-0000-0020	2015/01
	06	EL2522-0000-0021	2015/01
	07*	EL2522-0000-0022	2015/07

^{*)} This is the current compatible firmware/hardware version at the time of the preparing this documentation. Check on the Beckhoff web page whether more up-to-date <u>documentation</u> is available.

6.2 Firmware Update EL/ES/EM/EPxxxx

This section describes the device update for Beckhoff EtherCAT slaves from the EL/ES, EM, EK and EP series. A firmware update should only be carried out after consultation with Beckhoff support.

Storage locations

An EtherCAT slave stores operating data in up to 3 locations:

- Depending on functionality and performance EtherCAT slaves have one or several local controllers for processing I/O data. The corresponding program is the so-called **firmware** in *.efw format.
- In some EtherCAT slaves the EtherCAT communication may also be integrated in these controllers. In this case the controller is usually a so-called **FPGA** chip with *.rbf firmware.
- In addition, each EtherCAT slave has a memory chip, a so-called **ESI-EEPROM**, for storing its own device description (ESI: EtherCAT Slave Information). On power-up this description is loaded and the EtherCAT communication is set up accordingly. The device description is available from the download area of the Beckhoff website at (http://www.beckhoff.de). All ESI files are accessible there as zip files.

Customers can access the data via the EtherCAT fieldbus and its communication mechanisms. Acyclic mailbox communication or register access to the ESC is used for updating or reading of these data.

The TwinCAT System Manager offers mechanisms for programming all 3 parts with new data, if the slave is set up for this purpose. Generally the slave does not check whether the new data are suitable, i.e. it may no longer be able to operate if the data are unsuitable.

Simplified update by bundle firmware

The update using so-called **bundle firmware** is more convenient: in this case the controller firmware and the ESI description are combined in a *.efw file; during the update both the firmware and the ESI are changed in the terminal. For this to happen it is necessary

- for the firmware to be in a packed format: recognizable by the file name, which also contains the revision number, e.g. ELxxxx-xxxx_REV0016_SW01.efw
- for password=1 to be entered in the download dialog. If password=0 (default setting) only the firmware update is carried out, without an ESI update.
- for the device to support this function. The function usually cannot be retrofitted; it is a component of many new developments from year of manufacture 2016.

Following the update, its success should be verified

- ESI/Revision: e.g. by means of an online scan in TwinCAT ConfigMode/FreeRun this is a convenient
 way to determine the revision
- · Firmware: e.g. by looking in the online CoE of the device

Risk of damage to the device!

Note the following when downloading new device files

- **Attention**
- Firmware downloads to an EtherCAT device must not be interrupted
- Flawless EtherCAT communication must be ensured. CRC errors or LostFrames must be avoided.
- The power supply must adequately dimensioned. The signal level must meet the specification.

In the event of malfunctions during the update process the EtherCAT device may become unusable and require re-commissioning by the manufacturer.

6.2.1 Device description ESI file/XML

Attention regarding update of the ESI description/EEPROM

Some slaves have stored calibration and configuration data from the production in the EEP-ROM. These are irretrievably overwritten during an update.

The ESI device description is stored locally on the slave and loaded on start-up. Each device description has a unique identifier consisting of slave name (9 characters/digits) and a revision number (4 digits). Each slave configured in the System Manager shows its identifier in the EtherCAT tab:

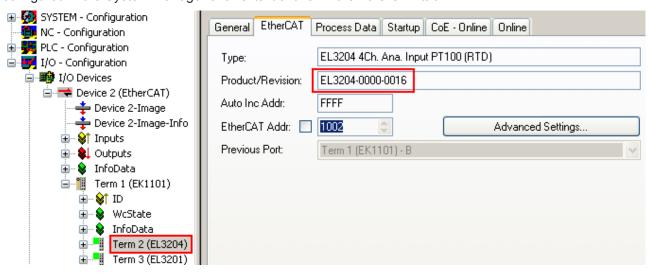


Fig. 161: Device identifier consisting of name EL3204-0000 and revision -0016

The configured identifier must be compatible with the actual device description used as hardware, i.e. the description which the slave has loaded on start-up (in this case EL3204). Normally the configured revision must be the same or lower than that actually present in the terminal network.

For further information on this, please refer to the <a>EtherCAT system documentation.

Update of XML/ESI description

The device revision is closely linked to the firmware and hardware used. Incompatible combinations lead to malfunctions or even final shutdown of the device. Corresponding updates should only be carried out in consultation with Beckhoff support.

Display of ESI slave identifier

The simplest way to ascertain compliance of configured and actual device description is to scan the EtherCAT boxes in TwinCAT mode Config/FreeRun:

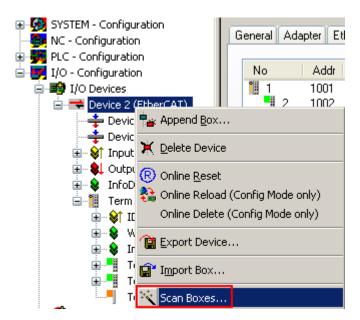


Fig. 162: Scan the subordinate field by right-clicking on the EtherCAT device in Config/FreeRun mode

If the found field matches the configured field, the display shows

Fig. 163: Configuration is identical

otherwise a change dialog appears for entering the actual data in the configuration.

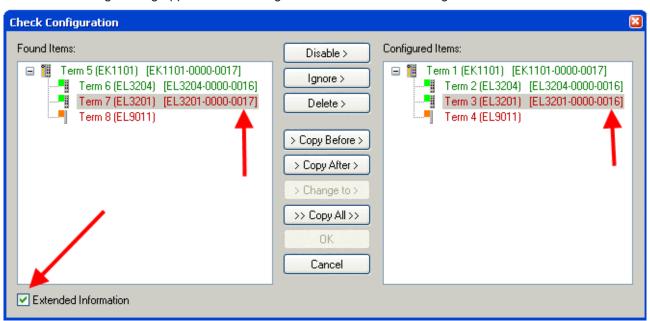


Fig. 164: Change dialog

In this example in Fig. *Change dialog*, an EL3201-0000-**0017** was found, while an EL3201-0000-**0016** was configured. In this case the configuration can be adapted with the *Copy Before* button. The *Extended Information* checkbox must be set in order to display the revision.

Changing the ESI slave identifier

The ESI/EEPROM identifier can be updated as follows under TwinCAT:

- Trouble-free EtherCAT communication must be established with the slave.
- · The state of the slave is irrelevant.
- Right-clicking on the slave in the online display opens the EEPROM Update dialog, Fig. EEPROM Update

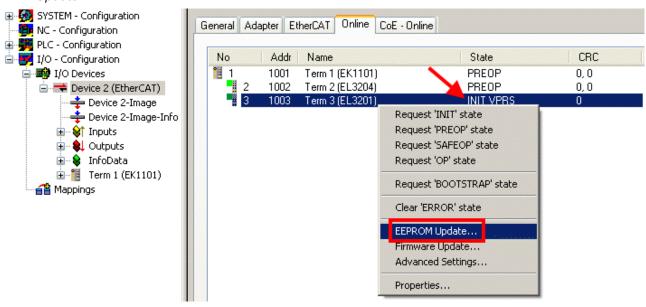


Fig. 165: EEPROM Update

The new ESI description is selected in the following dialog, see Fig. Selecting the new ESI. The checkbox Show Hidden Devices also displays older, normally hidden versions of a slave.

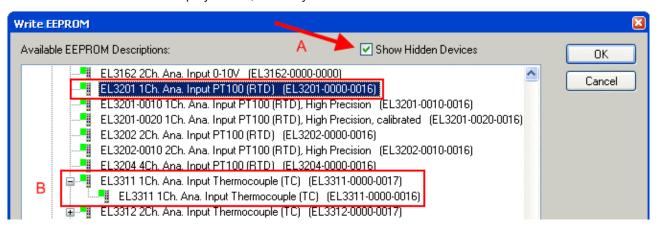


Fig. 166: Selecting the new ESI

A progress bar in the System Manager shows the progress. Data are first written, then verified.

The change only takes effect after a restart.

Most EtherCAT devices read a modified ESI description immediately or after startup from the INIT. Some communication settings such as distributed clocks are only read during power-on. The EtherCAT slave therefore has to be switched off briefly in order for the change to take effect.

6.2.2 Firmware explanation

Determining the firmware version

Determining the version on laser inscription

Beckhoff EtherCAT slaves feature serial numbers applied by laser. The serial number has the following structure: **KK YY FF HH**

KK - week of production (CW, calendar week)

YY - year of production

FF - firmware version

HH - hardware version

Example with ser. no.: 12 10 03 02:

12 - week of production 12

10 - year of production 2010

03 - firmware version 03

02 - hardware version 02

Determining the version via the System Manager

The TwinCAT System Manager shows the version of the controller firmware if the master can access the slave online. Click on the E-Bus Terminal whose controller firmware you want to check (in the example terminal 2 (EL3204)) and select the tab *CoE Online* (CAN over EtherCAT).

Note

CoE Online and Offline CoE

Two CoE directories are available:

• online: This is offered in the EtherCAT slave by the controller, if the EtherCAT slave supports this. This CoE directory can only be displayed if a slave is connected and operational. • offline: The EtherCAT Slave Information ESI/XML may contain the default content of the CoE. This CoE directory can only be displayed if it is included in the ESI (e.g. "Beckhoff EL5xxx.xml").

The Advanced button must be used for switching between the two views.

In Fig. *Display of EL3204 firmware version* the firmware version of the selected EL3204 is shown as 03 in CoE entry 0x100A.

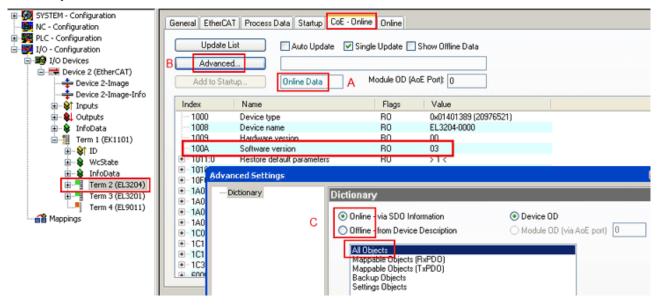


Fig. 167: Display of EL3204 firmware version

In (A) TwinCAT 2.11 shows that the Online CoE directory is currently displayed. If this is not the case, the Online directory can be loaded via the *Online* option in Advanced Settings (B) and double-clicking on *AllObjects*.

6.2.3 Updating controller firmware *.efw

CoE directory

The Online CoE directory is managed by the controller and stored in a dedicated EEPROM, which is generally not changed during a firmware update.

Switch to the Online tab to update the controller firmware of a slave, see Fig. Firmware Update.

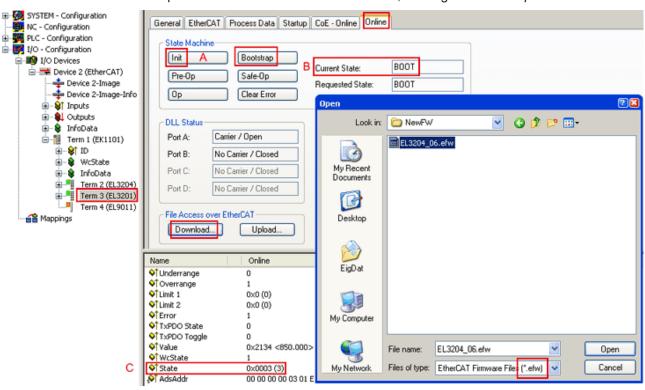
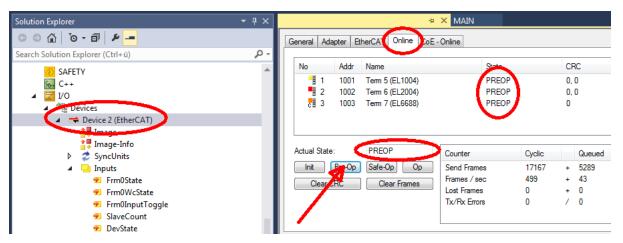
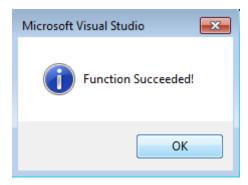


Fig. 168: Firmware Update

Proceed as follows, unless instructed otherwise by Beckhoff support. Valid for TwinCAT 2 and 3 as EtherCAT master.


• Switch TwinCAT system to ConfigMode/FreeRun with cycle time >= 1 ms (default in ConfigMode is 4 ms). A FW-Update during real time operation is not recommended.



Switch EtherCAT Master to PreOP

- Switch slave to INIT (A)
- · Switch slave to BOOTSTRAP
- · Check the current status (B, C)
- · Download the new *efw file (wait until it ends). A pass word will not be neccessary usually.

- · After the download switch to INIT, then PreOP
- · Switch off the slave briefly (don't pull under voltage!)
- Check within CoE 0x100A, if the FW status was correctly overtaken.

6.2.4 FPGA firmware *.rbf

If an FPGA chip deals with the EtherCAT communication an update may be accomplished via an *.rbf file.

- · Controller firmware for processing I/O signals
- FPGA firmware for EtherCAT communication (only for terminals with FPGA)

The firmware version number included in the terminal serial number contains both firmware components. If one of these firmware components is modified this version number is updated.

Determining the version via the System Manager

The TwinCAT System Manager indicates the FPGA firmware version. Click on the Ethernet card of your EtherCAT strand (Device 2 in the example) and select the *Online* tab.

The Reg:0002 column indicates the firmware version of the individual EtherCAT devices in hexadecimal and decimal representation.

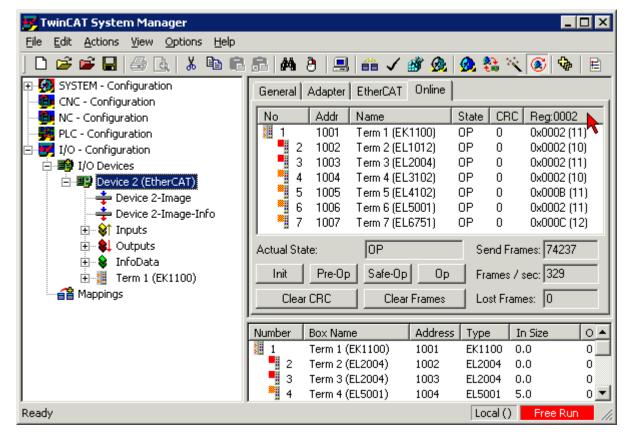


Fig. 169: FPGA firmware version definition

If the column Reg:0002 is not displayed, right-click the table header and select Properties in the context menu.

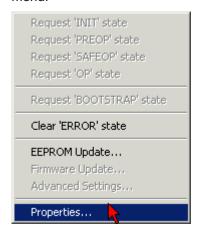


Fig. 170: Context menu Properties

The Advanced Settings dialog appears where the columns to be displayed can be selected. Under Diagnosis/Online View select the '0002 ETxxxx Build' check box in order to activate the FPGA firmware version display.

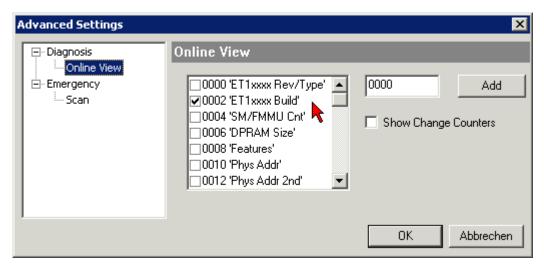


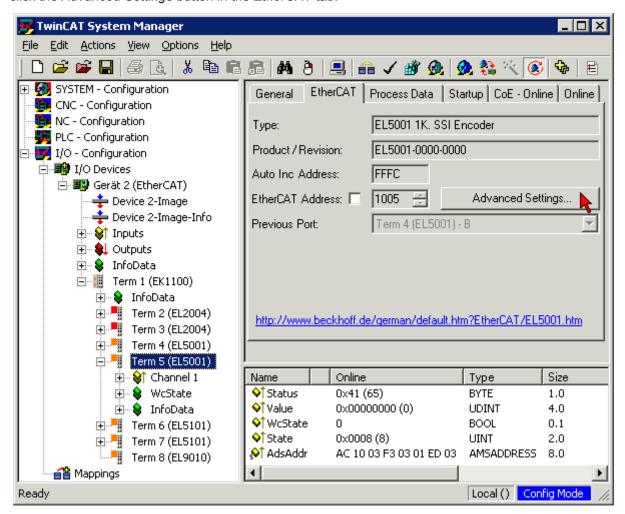
Fig. 171: Dialog Advanced Settings

Update

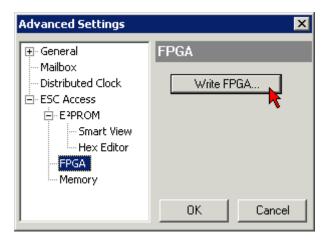
For updating the FPGA firmware

- of an EtherCAT coupler the coupler must have FPGA firmware version 11 or higher;
- of an E-Bus Terminal the terminal must have FPGA firmware version 10 or higher.

Older firmware versions can only be updated by the manufacturer!


Updating an EtherCAT device

The following sequence order have to be met if no other specifications are given (e.g. by the Beckhoff support):


• Switch TwinCAT system to ConfigMode/FreeRun with cycle time >= 1 ms (default in ConfigMode is 4 ms). A FW-Update during real time operation is not recommended.

 In the TwinCAT System Manager select the terminal for which the FPGA firmware is to be updated (in the example: Terminal 5: EL5001) and click the Advanced Settings button in the EtherCAT tab:



The Advanced Settings dialog appears. Under ESC Access/E²PROM/FPGA click on Write FPGA button:

• Select the file (*.rbf) with the new FPGA firmware, and transfer it to the EtherCAT device:

- Wait until download ends
- Switch slave current less for a short time (don't pull under voltage!). In order to activate the new FPGA firmware a restart (switching the power supply off and on again) of the EtherCAT device is required.
- · Check the new FPGA status

Risk of damage to the device!

A download of firmware to an EtherCAT device must not be interrupted in any case! If you interrupt this process by switching off power supply or disconnecting the Ethernet link, the EtherCAT device can only be recommissioned by the manufacturer!

6.2.5 Simultaneous updating of several EtherCAT devices

The firmware and ESI descriptions of several devices can be updated simultaneously, provided the devices have the same firmware file/ESI.

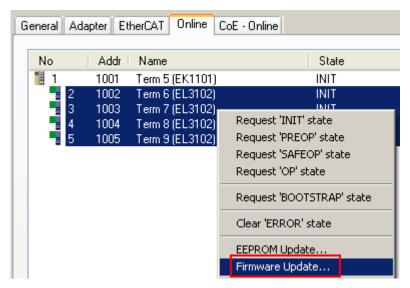


Fig. 172: Multiple selection and firmware update

Select the required slaves and carry out the firmware update in BOOTSTRAP mode as described above.

6.3 Restoring the delivery state

To restore the delivery state for backup objects in ELxxxx terminals, the CoE object Restore default parameters, *SubIndex 001* can be selected in the TwinCAT System Manager (Config mode) (see Fig. Selecting the Restore default parameters PDO)

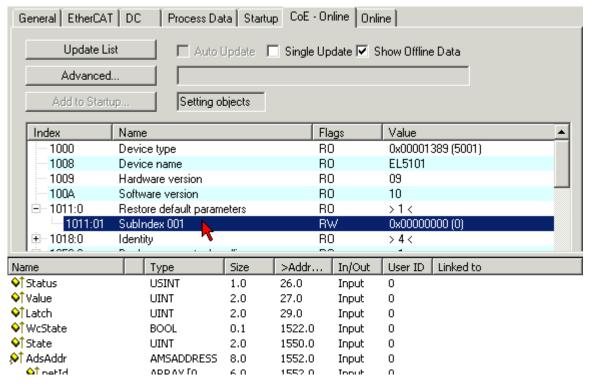


Fig. 173: Selecting the Restore default parameters PDO

Double-click on SubIndex 001 to enter the Set Value dialog. Enter the value **1684107116** in field *Dec* or the value **0x64616F6C** in field *Hex* and confirm with *OK* (Fig. *Entering a restore value in the Set Value dialog*). All backup objects are reset to the delivery state.

Fig. 174: Entering a restore value in the Set Value dialog

Alternative restore value

In some older terminals the backup objects can be switched with an alternative restore value: Decimal value: 1819238756, Hexadecimal value: 0x6C6F6164An incorrect entry for the restore value has no effect.

6.4 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for <u>local support and service</u> on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages:

http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20 33415 Verl Germany

Phone: +49(0)5246/963-0
Fax: +49(0)5246/963-198
e-mail: info@beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- support
- · design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

 Hotline:
 +49(0)5246/963-157

 Fax:
 +49(0)5246/963-9157

 e-mail:
 support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- · repair service
- · spare parts service
- · hotline service

 Hotline:
 +49(0)5246/963-460

 Fax:
 +49(0)5246/963-479

 e-mail:
 service@beckhoff.com

List of illustrations

Fig. 1	EL5021 EL terminal, standard IP20 IO device with batch number and revision ID (since 2014/01)
Fig. 2	EK1100 EtherCAT coupler, standard IP20 IO device with batch number
Fig. 3	CU2016 switch with batch number
Fig. 4	EL3202-0020 with batch numbers 26131006 and unique ID-number 204418
Fig. 5	EP1258-00001 IP67 EtherCAT Box with batch number 22090101 and unique serial number 158102
Fig. 6	EP1908-0002 IP67 EtherCAT Safety Box with batch number 071201FF and unique serial number 00346070
Fig. 7	EL2904 IP20 safety terminal with batch number/date code 50110302 and unique serial number 00331701
Fig. 8	ELM3604-0002 terminal with ID number (QR code) 100001051 and unique serial number 44160201
Fig. 9	EL2521 variants
Fig. 10	System manager current calculation
Fig. 11	EtherCAT tab -> Advanced Settings -> Behavior -> Watchdog
Fig. 12	States of the EtherCAT State Machine
Fig. 13	"CoE Online " tab
Fig. 14	Startup list in the TwinCAT System Manager
Fig. 15	Offline list
Fig. 16	Online list
Fig. 17	Spring contacts of the Beckhoff I/O components
Fig. 18	Attaching on mounting rail
Fig. 19	Disassembling of terminal
Fig. 20	Power contact on left side
Fig. 21	Standard wiring
Fig. 22	Pluggable wiring
Fig. 23	High Density Terminals
Fig. 24	Connecting a cable on a terminal point
Fig. 25	Recommended distances for standard installation position
Fig. 26	Other installation positions
Fig. 27	Correct configuration
Fig. 28	Incorrect configuration
Fig. 29	EL2521-0000 pin assignment and sample connection
Fig. 30	EL2521-0024 pin assignment and sample connection
Fig. 31	EL2521-0124 pin assignment and sample connection
Fig. 32	EL2521-0025 pin assignment and sample connection
Fig. 33	Internal circuit of the inputs T and Z
Fig. 34	EL2521-0000 on the RS422 Receiver
Fig. 35	EL2521-0000, direct connection to an optocoupler
Fig. 36	EL2521-0x24, wiring with external power source
Fig. 37	EL2521-0025, wiring with external current source, logic reversal
Fig. 38	EL2522 pin assignment and sample connection
Fig. 39	Relationship between user side (commissioning) and installation
Fig. 40	Control configuration with Embedded PC, input (EL1004) and output (EL2008)
Fig. 41	Initial TwinCAT 2 user interface

Fig. 42	Selection of the target system	52
Fig. 43	Specify the PLC for access by the TwinCAT System Manager: selection of the target system	52
Fig. 44	Select "Scan Devices"	53
Fig. 45	Automatic detection of I/O devices: selection the devices to be integrated	53
Fig. 46	Mapping of the configuration in the TwinCAT 2 System Manager	54
Fig. 47	Reading of individual terminals connected to a device	54
Fig. 48	TwinCAT PLC Control after startup	55
Fig. 49	Sample program with variables after a compile process (without variable integration)	56
Fig. 50	Appending the TwinCAT PLC Control project	56
Fig. 51	PLC project integrated in the PLC configuration of the System Manager	57
Fig. 52	Creating the links between PLC variables and process objects	57
Fig. 53	Selecting PDO of type BOOL	58
Fig. 54	Selecting several PDOs simultaneously: activate "Continuous" and "All types"	58
Fig. 55	Application of a "Goto Link" variable, using "MAIN.bEL1004_Ch4" as a sample	59
Fig. 56	Choose target system (remote)	60
Fig. 57	PLC Control logged in, ready for program startup	61
Fig. 58	Initial TwinCAT 3 user interface	62
Fig. 59	Create new TwinCAT project	62
Fig. 60	New TwinCAT3 project in the project folder explorer	63
Fig. 61	Selection dialog: Choose the target system	63
Fig. 62	Specify the PLC for access by the TwinCAT System Manager: selection of the target system	64
Fig. 63	Select "Scan"	64
Fig. 64	Automatic detection of I/O devices: selection the devices to be integrated	65
Fig. 65	Mapping of the configuration in VS shell of the TwinCAT3 environment	65
Fig. 66	Reading of individual terminals connected to a device	66
Fig. 67	Adding the programming environment in "PLC"	67
Fig. 68	Specifying the name and directory for the PLC programming environment	67
Fig. 69	Initial "Main" program of the standard PLC project	68
Fig. 70	Sample program with variables after a compile process (without variable integration)	69
Fig. 71	Start program compilation	69
Fig. 72	Creating the links between PLC variables and process objects	70
Fig. 73	Selecting PDO of type BOOL	70
Fig. 74	Selecting several PDOs simultaneously: activate "Continuous" and "All types"	71
Fig. 75	Application of a "Goto Link" variable, using "MAIN.bEL1004_Ch4" as a sample	71
Fig. 76	TwinCAT development environment (VS shell): logged-in, after program startup	72
Fig. 77	System Manager "Options" (TwinCAT 2)	74
Fig. 78	Call up under VS Shell (TwinCAT 3)	74
Fig. 79	Overview of network interfaces	74
Fig. 80	EtherCAT device properties(TwinCAT 2): click on "Compatible Devices…" of tab "Adapter"	75
Fig. 81	Windows properties of the network interface	75
Fig. 82	Exemplary correct driver setting for the Ethernet port	76
Fig. 83	Incorrect driver settings for the Ethernet port	77
Fig. 84	TCP/IP setting for the Ethernet port	78
Fig. 85	Identifier structure	79
Fig. 86	OnlineDescription information window (TwinCAT 2)	80
Fig. 87	Information window OnlineDescription (TwinCAT 3)	80

Version: 3.6

Fig.	00	File OnlineDescription.xmi created by the System Manager	δI
Fig.	89	Indication of an online recorded ESI of EL2521 as an example	81
Fig.	90	Information window for faulty ESI file (left: TwinCAT 2; right: TwinCAT 3)	81
Fig.	91	Using the ESI Updater (>= TwinCAT 2.11)	83
Fig.	92	Using the ESI Updater (TwinCAT 3)	83
Fig.	93	Append EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)	84
Fig.	94	Selecting the EtherCAT connection (TwinCAT 2.11, TwinCAT 3)	84
Fig.	95	Selecting the Ethernet port	84
Fig.	96	EtherCAT device properties (TwinCAT 2)	85
Fig.	97	Appending EtherCAT devices (left: TwinCAT 2; right: TwinCAT 3)	85
Fig.	98	Selection dialog for new EtherCAT device	86
Fig.	99	Display of device revision	86
Fig.	100	Display of previous revisions	87
Fig.	101	Name/revision of the terminal	87
Fig.	102	EtherCAT terminal in the TwinCAT tree (left: TwinCAT 2; right: TwinCAT 3)	88
Fig.	103	Differentiation local/target system (left: TwinCAT 2; right: TwinCAT 3)	89
Fig.	104	Scan Devices (left: TwinCAT 2; right: TwinCAT 3)	89
Fig.	105	Note for automatic device scan (left: TwinCAT 2; right: TwinCAT 3)	90
Fig.	106	Detected Ethernet devices	90
Fig.	107	Example default state	90
Fig.	108	Installing EthetCAT terminal with revision -1018	91
Fig.	109	Detection of EtherCAT terminal with revision -1019	91
Fig.	110	Scan query after automatic creation of an EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)	92
Fig.	111	Manual triggering of a device scan on a specified EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)	92
Fig.	112	Scan progressexemplary by TwinCAT 2	92
Fig.	113	Config/FreeRun query (left: TwinCAT 2; right: TwinCAT 3)	92
Fig.	114	Displaying of "Free Run" and "Config Mode" toggling right below in the status bar	92
Fig.	115	TwinCAT can also be switched to this state by using a button (left: TwinCAT 2; right: TwinCAT 3)	92
Fig.	116	Online display example	93
Fig.	117	Faulty identification	93
Fig.	118	Identical configuration (left: TwinCAT 2; right: TwinCAT 3)	94
Fig.	119	Correction dialog	94
Fig.	120	Name/revision of the terminal	95
Fig.	121	Correction dialog with modifications	96
Fig.	122	Dialog "Change to Compatible Type" (left: TwinCAT 2; right: TwinCAT 3)	96
Fig.	123	TwinCAT 2 Dialog Change to Alternative Type	96
Fig.	124	Branch element as terminal EL3751	97
Fig.	125	"General" tab	97
Fig.	126	"EtherCAT" tab	98
Fig.	127	"Process Data" tab	99
Fig.	128	Configuring the process data	100
Fig.	129	"Startup" tab	101
Fig.	130	"CoE – Online" tab	102
Fig.	131	Dialog "Advanced settings"	103

Fig.	132	"Online" tab	104
Fig.	133	"DC" tab (Distributed Clocks)	105
Fig.	134	Selection of the diagnostic information of an EtherCAT Slave	107
Fig.	135	Basic EtherCAT Slave Diagnosis in the PLC	108
Fig.	136	EL3102, CoE directory	110
Fig.	137	Example of commissioning aid for a EL3204	111
		Default behaviour of the System Manager	
Fig.	139	Default target state in the Slave	112
Fig.	140	PLC function blocks	113
Fig.	141	Illegally exceeding the E-Bus current	114
Fig.	142	Warning message for exceeding E-Bus current	114
Fig.	143	Predefined PDO selection in the TwinCAT System Manager	115
Fig.	144	Phases of the travel distance control	119
Fig.	145	Example travel distance control program	120
Fig.	146	Oscilloscope recording of the pulse sequence	120
Fig.	147	DC tab (Distributed Clocks)	122
Fig.	148	Advanced Settings for Distributed Clock (DC), EL2521 terminal	123
Fig.	149	EtherCAT Master, EtherCAT tab, Advanced Settings	124
Fig.	150	EtherCAT Master, Advanced Settings, Distributed Clock	125
Fig.	151	Process data EL2521-0124	126
Fig.	152	predefined PDO selection in the TwinCAT System Manager	127
Fig.	153	Process data and PDO assignment Legacy (MDP 252)	128
Fig.	154	Process data and PDO assignment standard 16-bit (MDP 253/511)	130
Fig.	155	Process data and PDO assignment standard 32-bit (MDP 253/511)	130
Fig.	156	"Predefined PDO-Assignment" – excerpt from the TwinCAT System Manager on the "Process Data" tab of the EL2522	179
Fig.	157	Process data and PDO-allocation: Standard 16 Bit (MDP 253/511)	184
Fig.	158	Process data and PDO-allocation: 1 Ch. Standard 32 Bit (MDP 253/511), continues position	184
Fig.	159	Process data and PDO-allocation: 2 Ch. Standard 32 Bit (MDP 253/511), continues position	185
Fig.	160	Process data and PDO-allocation: 2 Ch. Standard 32 Bit (MDP 253/511), continues position w. arrival time	186
Fig.	161	Device identifier consisting of name EL3204-0000 and revision -0016	218
Fig.	162	Scan the subordinate field by right-clicking on the EtherCAT device in Config/FreeRun mode .	219
Fig.	163	Configuration is identical	219
Fig.	164	Change dialog	219
Fig.	165	EEPROM Update	220
Fig.	166	Selecting the new ESI	220
Fig.	167	Display of EL3204 firmware version	221
Fig.	168	Firmware Update	222
Fig.	169	FPGA firmware version definition	224
Fig.	170	Context menu Properties	224
Fig.	171	Dialog Advanced Settings	225
Fig.	172	Multiple selection and firmware update	227
Fig.	173	Selecting the Restore default parameters PDO	228
Fig.	174	Entering a restore value in the Set Value dialog	228