LabWindows'/CVI

Advanced Analysis Library
Reference Manual

July 1996 Edition

Part Number 320686C-01

© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.

Internet Support

GPIB: gpib.support@natinst.com
DAQ: dag.support@natinst.com

VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
Lookout: lookout.support@natinst.com
HiQ: hig.support@natinst.com

VISA: visa.support@natinst.com

FTP Site: ftp.natinst.com

Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

[g | FaxBack Support

(512) 418-1111

Q«"Zzo
Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

Q‘Z}
International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. Inthe event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREINNATIONAL INSTRUMENTS MAKES NO WARRANTIES EXPRESS OR IMPLIEDAND

SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

CUSTOMER S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART BNIATIONAL

INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMERNATIONAL INSTRUMENTS

WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATAPROFITS USE OF PRODUCTSOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES EVEN IF ADVISED OF THE POSSIBILITY THEREOF This limitation of the liability of

National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s
failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification

of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of
third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or

involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and
all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to
prevent serious injury or death should always continue to be used when National Instruments products are being
used. National Instruments products are NOT intended to be a substitute for any form of established process,
procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

Contents

ADOUL ThIS ManUAL.............cocooiiiiiec e Xi
Organization of ThiS ManUalcccooiiiiiiiiiierr e e e Xi
Conventions Used in ThiS Manual.............uueiiiiiiiiiiieei e Xi
Related DOCUMENTALIONuuiiiiiiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e e s e naanes Xii
Customer COMMUNICALIONuiieiieeee ettt e e e e e e e e e e et e et b e e e e e e e eeaeaaas Xiv

Chapter 1

Advanced Analysis Library OVEIVIEW...........cccccvcviiiieiieiiicececeeee e 1-1
PrOQUCT OVEIVIEW......ceiiiiiiiiiiee ettt e e e e e e e e e e et e et b ba bbb a e e e e e aeeaaaaas 1-1
The Advanced Analysis Library Function Panels............ccccccovvvviiiiiiiiiicciiie e 1-1

Reporting ANAlYSIS EITOIS.......uuuiiiiiiiiiie e eeaeannaees 1-9
About the Fast Fourier Transform (FFT)cooiiioiieieiciceeeeeeeins e 1-9
ADOUL WINAOWING ...ttt e e e e e e e e e 1-11
ADOUL Digital FIltEIS ..vuveeiiei e a e e e e 1-13
About Measurement FUNCLIONSouuuiuiiiiiiiiee e 1-17
ADOUL CUIVE FittING ...oeeeieieeeeeeeieie et e e e e e e e e e e e e eeeeeeneaennnnas 1-18

Chapter 2

Advanced Analysis Library Function Reference...........ccccooeviveiiiicieicenn, 2-1

ADSLD ..ottt e e e e e e e e e e 2-1
ACDCESHMALON ...ceeeeiieiiiiiieee et e e e e e e e e e e e e e eeeeeabnan e e as 2-1
N [0 1 PP PPPPPPPTP 2-2
Yo [0 124 5 TS 2-3
AOCHTRFIEIPI ...ttt 2-4
AMPPRASESPECIIUM ...ttt 2-5
ANOVALWAYooiiiiiiiiie ettt e e et e e e e e e e e e aeeeens 2-6

F N (@ Y VA T - 2-11
ANOVASBWAY ..ottt ettt e e e e e et eteaaaaaeaeeeens 2-20
ATDITTANYWAVE ...t e e e e e e b as 2-30
AUTOPOWETISPECIIUM ..o e e s 2-31
BACKSUD ... 2-32
Bessel CascadeCoOeSuiiiiiiiiici e 2-33
BESSEl G OB ... 2-35
BIKHAITISWIN .ttt e e e e e e e e as 2-36
BKMANWIN L. 2-37
B B P e 2-38
B B S .. e e 2-39
BW_CasCadECOET ...t 2-40
BW G 0BT .. a e 2-41
BV H P Lt 2-42
B L P e 2-43

[J National Instruments Corporation % LabWindows/CVI Advanced Analysis Library

Contents

(O TYor= T (=3 o] B[£=T ot (O 0 1= S 2-44
(@4 0 T =] o PP 2-45
C B S et 2-46
Ch_CasCadeC O ... oo e eeeaeae 2-47
@4 o T 0T P 2-49
(@ o T = | = USSP 2-50
(O o T PP PEP PP PPR T 2-51
4 01T o J OSSR PPPPPPPPPUURRTR 2-52
(@4 == i I 2-53
O [o TSRS 2-54
CoNtiNGENCY_TaADIEccoieeeeeeeee e e e e e e e e e e e 2-54
L7017 0] 1V USRS 2-58
COPYLD i ae 2-59
(701 =1 =1 (=P 2-59
(@70 1S3 =T o =T =T VA o 2-60
CrOSSPOWEISPECIIUM ...ttt e e e e e e e e e e nra e 2-61
CrOSSSPECIIUM .ttt et e e et e e e et e e e e e e e e e e eaan s 2-62
(@572 Y [0 SRRSO 2-63
(05792 ¥o [0 1t I I L PP PPPPPPPPUPPPPPR 2-64
L0 I3 VPSPPSR 2-65
CXDIVAD ...ttt et e e e e e e e e e e e e e 2-66
(097 { o J TP PPPPPTRRUPPPRPTN 2-66
CXLINEVLD .ottt e e e e e e e as 2-67
(54 I o PP PPPRRRPPPRRR 2-68
L9 { I o o TP 2-68
L0541/ | PP 2-69
CXMUILD ... r e e e e e e e e e e e e e e e e s s aanaaes 2-70
(510 1 P 2-70
(@ d L= o3 o 2-71
107651 0 | £ ST PUPPPPPTR 2-72
L0541 | o1 2-72
CXSUDLD ... 2-73
DT o | .4 = 1 2-74
DECONVOIVE. ... et e e et e e e e e e e e e eaene 2-75
1] (=T 0 1 = 0 O 2-76
=T (=] o[t PP 2-76
51V L PP PP TP 2-77
3 Y272 5 PSPPSR 2-78
1970 11 o Yo [T USRS 2-79
[= = PP 2-79
Bl B S et 2-80
ElIp_CasSCaU@COET 2-81
T o 1= SRS 2-83
1 | O PPPPPRR 2-84
Bl L P e 2-85
EQUI_RIPPIE. . 2-86

LabWindows/CVI Advanced Analysis Library Vi [J National Instruments Corporation

Contents

EQUIRPI_BPE ... e e e e e 2-89
EQUIRPI_BSE ...ttt e e e e e e e e e ees 2-91
EQUIRPI _HPE <. e 2-92
EQUIRPDI P e e e e e e as 2-93
=] N0 = AT/ T S 2-94
D d o | SRR 2-94
D4 & LAY T S PPUP 2-96
[] PSPPI 2-96
[PP PPPPPPPPPPPPRPN 2-97
e I PP PPPEPPRRRRR 2-98
1 O 1= T PPPPPPPPPPRTTPRR 2-99
FIatTOPWIN ettt e e e e e e e e e e e e e e eeeeeenenne 2-100
0] (o XYY o SRR 2-101
FOPWSUD ... e 2-101
e Lo Lo T (=T e 1 SR UORRR 2-102
GAUSSINOISE ...ttt e e e e e e e e 2-103
€= 0@ 1A o IS 2-104
7T o] IS | SR 2-105
(72T | IS 1 (O 0= 2-112
GetANAlYSISEITOISIIING ...coii e 2-113
o F= 10 1A o PP 2-114
[P T YA T o PSPPI 2-114
[11 (0 o = 2 USRS 2-115
[IRCASCAAEFIITEIING ... e e e e e e e eeeeeenees 2-116
1 (=T T T USSP 2-118
IMIPUISE ... e e e e e e e e et 2-119
IMPUISERESPONSE......cceeeeeeeeee et e e e e e e e e as 2-120
INEEGIALE ...t e e e 2-121
INVCIN_BPF .ottt 2-122
INVCN_BSF ..ottt e e e e e e e e e e e e e e e 2-123
INVCH_CasSCadECOET.......oeiiii e 2-124
INVCRN _C 0BT . e e e e e eaaaea 2-125
INVCN_HPE e e e e e e e e aeeas 2-126
1Y T I PP PPUPUPUURP 2-127
[N 1= FS PRSP ORUPPPUPPRN 2-128
1Y e PRI 2-129
IV HT L e e a e e e e as 2-130
TN Y = L RS 2-131
INVIN DSt ... it e e e e e e e e e e e e e st e e e e eeasa e e eeeeerans 2-132
A I] S TTRT 2-133
10700 G] S PP PPPPUUPPPPPPP 2-133
[T = OSSPSR 2-134
[T = 15T TSSO 2-136
[T S] OSSP 2-137
[T S I PP PPUPPPPPPPPR 2-138
(6T 0707/ o RSP RRPPPIPPN 2-139

[J National Instruments Corporation vii LabWindows/CVI Advanced Analysis Library

Contents

] = 1 2-140
a1 Y20 2-141
[T] Y724 5 P 2-142
T T 2-143
LU oot e e e e a e e r e eat e rar e raa e eeaaas 2-144
= U D4 2-145
= DL 1T 1 5 2 2-146
Y = DY [T 12 2-147
Y 1= U PP 2-148
V=T 1= o 1 2-149
1o o [T 2-149
1Y [0 0 1 1= 1 | 2-150
U] 8 P 2-151
1 U] 2 P 2-152
I T 1 SRS RRUPPPRPIN 2-153
NEGLD .o e 2-153
NEtWOTKFUNCLIONS «..ceveccee e e e e e e e e e s e e eaaaaas 2-154
[N Lo o1 IR =T ol | 2-156
[N L0152 0= | 1 5 2 2-157
I L0] 1 g F=1 24 5 TR 2-158
POIYEVLD ...ttt s e e e e e e e e e e e e e et e e e s e e e e e e e eaeeeeeeeennnrnnes 2-159
POIYEV2D ...ttt e ettt e e e e e e e e e e e e eeeeaaaee 2-160
0] Y | SRR 2-162
POIYINTEIP .. e e e e e 2-163
POWErFreqUENCYESHMALE..........uuiiiiiiiie e e e e et e e e e e e e e e e e e e eeaeannnes 2-164
g 0 T 1 1 5 LT 2-166
U Y 2-167
(| ESY=] = T r= 1o [T 2-168
QSCAIELDcovvii e 2-170
QSCAIE2D ... 2-170
R AN e 2-171
RATINIEIP e 2-172
[=]t TR 2-174
[=112t 2-175
(RS T = R 2-176
RSNV =T = TP 2-177
LY TR 2-177
SAWLOOTNWAVE ... coviiieiii e e e e e e e eeas 2-178
Y o7= 1 L3 5 LR 2-179
ST o7= 112 5 L 2-180
Y= 1L=T0 LAY A1 g To [0 11 A 2-181
Y] 1 T 2-182
I 1 RN 2-183
S]] Lo 2-184
Y =] =11 (=] ¢ o 2-185
SINEWAVE ...ttt et e et e et e st e e b e s ea e e tb e e sa e s abeeenees 2-186

LabWindows/CVI Advanced Analysis Library viii [J National Instruments Corporation

Contents

00 PR 2-187
Y 01T 011 (U] PP SRR PPRR SRR 2-188
SPeCtrUMUNITCONVEISIONvvviiiiiiiee e e e e e e e ee e e e ettt s e s e e e e e e e e e e eeeeeeeaeennnnnns 2-188
Y 0] [01 (=] ¢ o TP PP TP PRRPPPPTN 2-192
10 o] 11 = U 2-193
SQUAIEWANVEot e ettt e e e e e eat e e e e e e et e e e e e entan e aaaeees 2-194
] (0| B TP PP PPPPPP 2-196
SUDBLD ...ttt et e e e e e e e e e e e e e e aaaana 2-196
SUDBZD ...t e e e e e e e e e e 2-197
ST U] 0151 0 1 LU 2-198
SUMILD ..ttt e e e e e e e e e e e e e e e e e et bt eeaeea s 2-199
SUMZD ..ttt ettt a it e raaaaaaes 2-199
B 5 ST PP 2-200
TOPOIA .. as 2-201
TOPOIAILD ...ttt e e 2-202
TORECT .. e 2-203
TORECTLD ..ottt e e e e e e e e e as 2-203
L= (o TP OPP PP 2-204
TraNSTEIFUNCHION ...ttt e e e e e e e e e e e e e e e e s s s 2-205
TTANSPOSE ...ttt ettt et e et e e e e e e e e e e e e e e e e een e aae 2-206
I >V o][2-206
THANGIEWAVE ... 2-207
THIVVIN © et e e e e e e e e e e ettt e e e e e e e as 2-208
L] 010 1 o PP UUPPPPPPPRRPPTRRRTN 2-209
UNWIAPLD ...t e et e e et e e e e e e era e e e eaaeeees 2-210
AV £z U= 1 g ol PR 2-210
WITENOISE ...ttt e e e e e e e e e e e e e e e e s bbb e ee e 2-211
LT TR = U PPPPREPPPRRR 2-212
WINA B S ... et e e e e e e e e e e e 2-213
WINA _HP .. r e e e e e e e aeaaaeaeeeeaaanns 2-215
WINA_LPF Lot 2-216
D G 1 PP PUPPPRPRRR 2-218
Appendix A
EFTON COUBS......ooeeceeee ettt sttt eae e A-1

Appendix B

CUStOMEr COMMUINICALION......eeeeeeeeeeee et B-1
(1[0 1S17= /SRS G-1
Y X oo —————————— -1

[J National Instruments Corporation iX LabWindows/CVI Advanced Analysis Library

Contents

Figures
Figure 1-1. A Windowed Spectrum in the ContinUOUS CaSecccceeeeeeeeiiiivieeeiiiiiiiieee e 1-12
Figure 1-2. Cascaded Filter StAgeS.......uuuuuuuuiiiiiiee e 1-15

Tables
Table 1-1. The Advanced Analysis Library FUNCION Tree..........cceeeeeeee i 1-1
Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically............ccccceennn.. A-1
Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically.................ccoeee. A-4

Equations

[0 U= T I O PPUUOT T 1-11
[0 U= AT T PSS 1-11
[0 U= AT I e PP PUTTT T 1-12
[0 U= 4T U 1-12
Lo [U =T I K TP UPUOTPT 1-12
[0 U= 4T 0 e TS 1-14
Lo [U =T I PP UPUOTRT 1-15
Lo TU =T o 2 PP PUOTRT 2-106
0 U= AT 2SS 2-107
EQUALION 2-3. e e e e e et e et b b e e e e e e e e e e e e e aatrrn s 2-107
[0 U= 4T 2 PSS 2-108

LabWindows/CVI Advanced Analysis Library X [J National Instruments Corporation

About This Manual

TheLabWindows/CVI Advanced Analysis Library Reference Mashesdribes the functions in
the LabWindows/CVI Advanced Analysis Library. To use this manual effectively, you should
be familiar with the material presented in tteoWindows/CVI User Manuadnd with the
LabWindows/CVI software. Please refer to taWindows/CVI User Manu&br specific
instructions on operating LabWindows/CVI.

Organization of This Manual

ThelLabWindows/CVI Advanced Analysis Library Reference Maswabanized as follows:

» Chapter 1Advanced Analysis Library Overviewontains a brief product overview and
general information about the Advanced Analysis Library functions and panels.

» Chapter 2Advanced Analysis Library Function Referenoentains a brief explanation of
each of the functions in the LabWindows/CVI Advanced Analysis Library. The
LabWindows/CVI Advanced Analysis Library functions are arranged alphabetically.

* Appendix A,Error Codes contains error codes returned by the Advanced Analysis Library
functions.

* Appendix B,Customer Communicatipeontains forms you can use to request help from
National Instruments or to comment on our products and manuals.

* TheGlossarycontains an alphabetical list and description of terms used in this manual,
including acronyms, abbreviations, metric prefixes, mnemonics, and symbols.

* Thelndexcontains an alphabetical list of key terms and topics in this manual, including the
page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes a parameter, menu item, return value, function panel item, or
dialog box button or option.

italic Italic text denotes emphasis, a cross reference, or an introduction to a key concept.

bold italic Bold italic text denotes a note, caution, or warning.

© National Instruments Corporation Xi LabWindows/CVI Advanced Analysis Library

About This Manual

monospace Text in this font denotes text or characters that you should literally enter from the

keyboard. Sections of code, programming examples, and syntax examples also
appear in this font. This font also is used for the proper names of disk drives,
paths, directories, programs, subprograms, subroutines, device names, variables,
filenames, and extensions, and for statements and comments taken from program
code.

italic Italic text in this font denotes that you must supply the appropriate words or

monospace values in the place of these items.

<>

»

Angle brackets enclose the name of a key. A hyphen between two or more key
names enclosed in angle brackets denotes that you should simultaneously press
the named keys, for example, <Ctrl-Alt-Delete>.

The» symbol leads you through nested menu items and dialog box options to
a final action. The sequenEde » Page Setup » Options » Substitute

Fonts directs you to pull down théile menu, select theage Setuptem,
selectOptions, and finally select th8ubstitute Fontsoption from the last

dialog box.

paths Paths in this manual are denoted using backslashes (\) to separate drive names,

directories, and files, as idrivename\dirLlname\dir2Zname\myfile

Acronyms, abbreviations, metric prefixes, mnemonics, and symbols, and terms are listed in the
Glossary

Related Documentation

The following documents contain information that you may find helpful as you use advanced
analysis functions.

Baher, HAnalog & Digital Signal ProcessindNew York: John Wiley & Sons. 1990.

Bates, D.M. and Watts, D.@®lonlinear Regression Analysis and its Applicatiddsw York:
John Wiley & Sons. 1988.

Bracewell, R.N. “Numerical TransformsStienceScience-248. 11 May 1990.

Burden, R.L. & Faires, J.DNumerical AnalysisThird Edition. Boston: Prindle, Weber &
Schmidt. 1985.

Chen, C.H. et aSignal Processing Handboolew York: Marcel Dekker, Inc. 1988.

DeGroot, M.Probability and Statistic2nd ed. Reading, Massachusetts: Addison-Wesley
Publishing Co. 1986.

Dowdy, S. and Wearden, Statistics for ResearcBnd ed. New York: John Wiley & Sons.
1991.

LabWindows/CVI Advanced Analysis Library Xi © National Instruments Corporation

About This Manual

* Dudewicz, E.J. and Mishra, S.Modern Mathematical Statisticblew York: John Wiley &
Sons, 1988.

* Duhamel, P. et al. “On Computing the Inverse DREEE Transactions on ASSRSSP-34
(1986): 1 (February).

* Dunn, O. and Clark, VApplied Statistics: Analysis of Variance and Regres<ad,ed. New
York: John Wiley & Sons. 1987.

» Elliot, D.F.Handbook of Digital Signal Processing Engineering Applicati@an Diego:
Academic Press. 1987.

» Harris, Fredric J. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform,”Proceedings of the IEEE-§&978)-1.

* Maisel, J.E. “Hilbert Transform Works With Fourier Transforms to Dramatically Lower
Sampling Rates.Personal Engineering and Instrumentation NeR&IN-7 (1990): 2
(February).

* Miller, I. and Freund, J.EBRrobability and Statistics for Engineefsnglewood Cliffs, N.J.:
Prentice-Hall, Inc. 1987.

* Neter, J. et alApplied Linear Regression ModeRichard D. Irwin, Inc. 1983.

* Neuvo, Y., Dong, C.-Y., and Mitra, S.K. “Interpolated Finite Impulse Response Filters,”
IEEE Transactions on ASSRSSP-32 (1984): 6 (June).

* O’'Nelll, M.A. “Faster Than Fast Fourier.” BYTE. (1988) (April).

* Oppenheim, A.V. & Schafer, R.VDiscrete-Time Signal Processingnglewood Cliffs, New
Jersey: Prentice Hall. 1989.

» Parks, T.W. and Burrus, C.Bigital Filter Design John Wiley & Sons, Inc.: New York.
1987.

» Pearson, C.ENumerical Methods in Engineering and Scieridew York: Van Nostrand
Reinhold Co. 1986.

* Press, W.H. et aNumerical Recipes in C: The Art of Scientific Comput®gmbridge:
Cambridge University Press. 1988.

* Rabiner, L.R. & Gold, BTheory and Application of Digital Signal Processiigglewood
Cliffs, New Jersey: Prentice Hall. 1975.

» Sorensen, H.V. et al. “On Computing the Split-Radix FFEEE Transactions on ASSP
ASSP-34 (1986):1 (February).

» Sorensen, H.V. et al. “Real-Valued Fast Fourier Transform AlgorithlBEE Transactions
on ASSPASSP-35 (1987): 6 (June).

» Stoer, J. and Bulirsch, Ritroduction to Numerical Analysi®lew York: Springer-Verlag.
1987.

© National Instruments Corporation Xiii LabWindows/CVI Advanced Analysis Library

About This Manual

* Vaidyanathan, P.RMultirate Systems and Filter Banksnglewood Cliffs, New Jersey:
Prentice Hall. 1993.

e Wichman, B. and Hill, D. “Building a Random-Number Generator: A Pascal routine for
very-long-cycle random-number sequenc&yYTE March 1987, pp 127-128.

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help you if you have
problems with them. To make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in Appen@iudBomer
Communicationat the end of this manual.

LabWindows/CVI Advanced Analysis Library Xiv © National Instruments Corporation

Chapter 1
Advanced Analysis Library Overview

This chapter contains a brief product overview and general information about the Advanced
Analysis Library functions and panels.

Product Overview

The LabWindows Advanced Analysis Library adds additional analysis functions to the
standard LabWindows/CVI Analysis Library. The Advanced Analysis Library includes
functions for signal generation, one-dimensional (1D) and two-dimensional (2D) array
manipulation, complex operations, signal processing, statistics, and curve-fitting.

The Advanced Analysis Library Function Panels

The Advanced Analysis Library function panels are grouped in a tree structure according to
the types of operations performed. The Advanced Analysis Library Function Tree is shown
in Table 1-1.

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The third-
level headings in plain text are the names of individual function panels. Each analysis

function panel generates one analysis function call. The names of the corresponding analysis
function calls are in bold italics to the right of the function panel names.

Table 1-1. The Advanced Analysis Library Function Tree

Analysis
Signal Generation

Impulse Impulse
Pulse Pulse
Ramp Ramp
Triangle Triangle
Sine Pattern SinePattern
Uniform Noise Uniform
White Noise WhiteNoise
Gaussian Noise GaussNoise
Arbitrary Wave ArbitraryWave
Chirp Chirp

(continues)

© National Instruments Corporation 11 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Overview Chapter 1

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Sawtooth Wave SawtoothWave
Sinc Waveform Sinc
Sine Wave SineWave
Square Wave SquareWave
Triangle Wave TriangleWave
Array Operations
1D Operations
1D Clear Array ClearlD
1D Set Array SetlD
1D Copy Array CopylD
1D Array Addition Add1D
1D Array Subtraction SublD
1D Array Multiplication MullD
1D Array Division DiviD
1D Absolute Value Abs1D
1D Negative Value NeglD
1D Linear Evaluation LinEvlD
1D Polynomial Evaluation PolyEvlD
1D Scaling ScalelD
1D Quick Scaling QScalelD
1D Maximum & Minimum MaxMinl1D
1D Sum of Elements SumlD
1D Product of Elements Prod1D
1D Array Subset SubsetlD
1D Reverse Array Order Reverse
1D Shift Array Shift
1D Clip Array Clip
1D Sort Array Sort
1D Vector Normalization NormallD
2D Operations
2D Array Addition Add2D
2D Array Subtraction Sub2D
2D Array Multiplication Mul2D
2D Array Division Div2D
2D Linear Evaluation LinEv2D
2D Polynomial Evaluation PolyEv2D
2D Scaling Scale2D
2D Quick Scaling QScale2D
2D Maximum & Minimum MaxMin2D
2D Sum of Elements Sum2D
2D Matrix Normalization Normal2D

LabWindows/CVI Advanced Analysis Library 1-2

© National Instruments Corporation

(continues)

Chapter 1

Advanced Analysis Library Overview

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Complex Operations

Complex Numbers
Complex Addition
Complex Subtraction
Complex Multiplication
Complex Division
Complex Reciprocal
Complex Square Root
Complex Logarithm
Complex Natural Log
Complex Power
Complex Exponential
Rectangular to Polar
Polar to Rectangular

1D Complex Operations
1D Complex Addition
1D Complex Subtraction
1D Complex Multiplication
1D Complex Division
1D Complex Linear Evaluation
1D Rectangular to Polar
1D Polar to Rectangular

Signal Processing

Frequency Domain
FFT
Inverse FFT
Real Valued FFT
Real Valued Inverse FFT
Power Spectrum
FHT
Inverse FHT
Cross Spectrum

Time Domain
Convolution
Correlation
Integration
Differentiate
Pulse Parameters
Decimate
Deconvolve
Unwrap Phase

CxAdd
CxSub
CxMul
CxDiv
CxRecip
CxSqrt
CxLog
CxLn
CxPow
CxExp
ToPolar
ToRect

CxAdd1D
CxSub1D
CxMullD
CxDivl1D
CxLinEv1D
ToPolarlD
ToRectlD

FFT

InVFFT

ReFFT
RelnvFFT
Spectrum

FHT

InVFHT
CrossSpectrum

Convolve
Correlate
Integrate
Difference
PulseParam
Decimate
Deconvolve
UnWraplD

© National Instruments Corporation 1-3

LabWindows/CVI Advanced Analysis Library

(continues)

Advanced Analysis Library Overview

Chapter 1

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

lIR Digital Filters
Cascade Filter Functions
Bessel Cascade Coeff

Butterworth Cascade Coeff
Chebyshev Cascade Coeff

Inv Chebyshev Cascade Coeff

Elliptic Cascade Coeffs
IIR Cascade Filtering

Bessel CascadeCoef
Bw_CascadeCoef
Ch_CascadeCoef
InvCh_CascadeCoef
Elp_CascadeCoef
[IRCascadeFiltering

Filter Information Utilities
Allocate Filter Information
Reset Filter Information ResetlIRFilter
Free Filter Information FreellRFilterPtr
Cascade to Direct CoefficientSascadeToDirectCoef

One-step Filter Functions

AlloclIRFilterPtr

Lowpass Butterworth Bw_LPF
Highpass Butterworth Bw_HPF
Bandpass Butterworth Bw_BPF
Bandstop Butterworth Bw_BSF
Lowpass Chebyshev Ch_LPF
Highpass Chebyshev Ch_HPF
Bandpass Chebyshev Ch_BPF
Bandstop Chebyshev Ch_BSF
Lowpass Inverse Chebyshev InvCh_LPF
Highpass Inverse Chebyshev InvCh_HPF
Bandpass Inverse Chebyshev InvCh_BPF
Bandstop Inverse Chebyshev InvCh_BSF
Lowpass Elliptic Elp_LPF
Highpass Elliptic Elp_HPF
Bandpass Elliptic Elp_BPF
Bandstop Elliptic Elp_BSF

Old-Style Filter Functions

Bessell Coefficients
Butterworth Coefficients
Chebyshev Coefficients

Bessell _Coef
Bw_Coef
Ch_Coef

Inverse Chebyshev Coefficients InvCh_Coef

Elliptic Coefficients Elp_Coef
lIR Filtering [IRFiltering
FIR Digital Filters
Lowpass Window Filters wind_LPF
Highpass Window Filters Wind_HPF
Bandpass Window Filters wind_BPF

LabWindows/CVI Advanced Analysis Library

1-4

(continues)

© National Instruments Corporation

Chapter 1

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Advanced Analysis Library Overview

Bandstop Window Filters
Lowpass Kaiser Window
Highpass Kaiser Window
Bandpass Kaiser Window
Bandstop Kaiser Window
General Equi-Ripple FIR
Lowpass Equi-Ripple FIR
Highpass Equi-Ripple FIR
Bandpass Equi-Ripple FIR
Bandstop Equi-Ripple FIR
FIR Coefficients
Windows
Triangular Window
Hanning Window
Hamming Window
Blackman Window
Kaiser Window
Blackman-Harris Window
Tapered Cosine Window
Exact Blackman Window
Exponential Window
Flat Top Window
Force Window
General Cosine Window
Measurement
AC/DC Estimator
Amplitude/Phase Spectrum
Auto Power Spectrum
Cross Power Spectrum
Impulse Response
Network Functions
Power Frequency Estimate
Scaled Window
Spectrum Unit Conversion
Transfer Function
Statistics
Basics
Mean
Standard Deviation
Variance
Root Mean Squared Value
Moments about the Mean

wind_BSF
Ksr_LPF
Ksr_ HPF
Ksr_BPF

Ksr BSF
Equi_Ripple
EquiRpl_LPF
EquiRpl_HPF
EquiRpl_BPF
EquiRpl_BSF
FIR_Coef

Triwin
HanWin
HamWin
BkmanWin
Ksrwin
BlkHarrisWin
CosTaperedWin
ExBkmanWin
ExpWin
FlatTopWin
ForceWin
GenCosWin

ACDCEstimator
AmpPhaseSpectrum
AutoPowerSpectrum
CrossPowerSpectrum
ImpulseResponse
NetworkFunctions
PowerFrequencyEstimate
ScaledWindow
SpectrumUnitConversion
TransferFunction

Mean
StdDev
Variance
RMS
Moment

© National Instruments Corporation

1-5

(continues)

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Overview

Chapter 1

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Median
Mode
Histogram
Probability Distributions
Normal Distribution
T-Distribution
F-Distribution
Chi-Square Distribution
Inv. Normal Distribution
Inv. T-Distribution
Inv. F-Distribution
Inv. Chi-SquareDist.
Analysis of Variance
One-way ANOVA
Two-way ANOVA
Three-way ANOVA
Nonparametric Statistics
Contingency Table
Curve Fitting
Linear Fit
Exponential Fit
Polynomial Fit
General Least Squares Fit
Non-Linear Fit
OldStyle Function
Gen Least Squares Fit Coeff
Interpolation
Polynomial Interpolation
Rational Interpolation
Spline Interpolation
Spline Interpolant
Vector & Matrix Algebra
Dot Product
Matrix Multiplication
Matrix Inversion
Transpose
Determinant
Trace
Solution of Linear Equations
LU Decomposition
Forward Substitution
Backward Substitution
Get Error String

Median
Mode
Histogram

N_Dist
T_Dist

F Dist
XX_Dist
InvN_ Dist
InvT_Dist
InvF_Dist
InvXX_Dist

ANOVA1Way
ANOVA2Way
ANOVA3Way

Contingency_Table

LinFit

ExpFit
PolyFit
GenLSFit
NonLinear Fit

GenLSFitCoef

Polyinterp
RatInterp
Spinterp
Spline

DotProduct
MatrixMul
InvMatrix
Transpose
Determinant
Trace
LinEqgs

LU

ForwSub
BackSub
GetAnalysisErrorString

LabWindows/CVI Advanced Analysis Library 1-6

© National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

The classes and subclasses in the function tree are described as follows.

- TheSignal Generationfunction panels initialize arrays with predefined patterns.

. TheArray Operations function panels perform arithmetic operations on 1D and 2D
arrays.

1D Operations a subclass of Array Operations, contains function panels that perform
1D array arithmetic.

2D Operations a subclass of Array Operations, contains function panels that perform
2D array arithmetic.

. TheComplex Operationsfunction panels perform complex arithmetic operations.
These function panels can operate on complex scalars or 1D arrays. The real and
imaginary parts of complex numbers are processed separately.

Complex Numbers a subclass of Complex Operations, contains function panels that
perform scalar complex arithmetic.

1D Complex Operations a subclass of Complex Operations, contains function
panels that perform complex arithmetic on 1D complex arrays.

. TheSignal Processindunction panels perform data analysis in the frequency domain,
time domain, or by using digital filters.

Frequency Domain a subclass of Signal Processing, contains function panels that
perform transformations between the time domain and the frequency domain, and
perform analysis in the frequency domain.

Time Domain, a subclass of Signal Processing, contains function panels that perform
direct time series analysis of signals.

IIR Digital Filters , a subclass of Signal Processing, contains function panels that
perform infinite impulse response (lIR) digital filtering on signals by mapping analog
specifications into digital specifications. This subclass contains Butterworth,
Chebyshev, inverse Chebyshev, and elliptic filters.

FIR Digital Filters , a subclass of Signal Processing, contains function panels that
perform the designs of finite impulse response (FIR) filters. These functions do not
actually perform the digital filtering. This subclass contains window and equi-ripple
FIR filters.

Windows, a subclass of Signal Processing, contains function panels that create
windows that are frequently used to smooth data and reduce truncation effects in data
acquisition applications.

© National Instruments Corporation 1-7 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Overview Chapter 1

- TheMeasurementfunction panels perform spectrum analysis using real units such as
hertz and seconds.

- TheStatisticsfunction panels perform basic statistics functions.

— Basics a subclass of Statistics, contains function panels that use various common
methods to describe a set of data.

— Probability Distributions , a subclass of Statistics, contains function panels that
operate as cumulative distribution functions from various probability distributions,
and other function panels that operate as corresponding inverse functions.

— Analysis of Variance a subclass of Statistics, contains function panels that perform
various analysis of variance in various statistical models.

— Nonparametric Statistics a subclass of Statistics, contains a function panel that
analyzes data without assuming that the data is normally distributed.

- TheCurve Fitting function panels perform curve fitting using least squares techniques.
Linear, exponential, polynomial, and nonlinear fits are available.

- Thelnterpolation function panels take a set of points at which a function is known and
guess the value the function takes at some specific intermediate point.

. TheVector & Matrix Algebra function panels perform vector and matrix operations.
Vectors and matrices are represented by 1D and 2D arrays, respectively.

The online help with each panel contains specific information about operating each function
panel.

Hints For Using Advanced Analysis Function Panels

With the analysis function panels, you can interactively manipulate scalars and arrays of data.
You will often find it helpful to use the Advanced Analysis Library function panels in
conjunction with the User Interface Library functions panels to view the results of analysis
routines. When using the Advanced Analysis Library function panels, keep the following
things in mind:

- The speed with which analysis functions are performed is greatly affected by the
computer on which you are operating LabWindows/CVI. A numeric coprocessor can
greatly decrease the execution time of floating-point computations. If you are using an
Advanced Analysis Library function panel and nothing seems to happen for an inordinate
amount of time, keep the constraints of your hardware in mind.

LabWindows/CVI Advanced Analysis Library 1-8 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

- LabWindows/CVI can perform many analysis routines for arrays in place; that is, input
and output values are stored in the same array. This is important to remember when you
are processing large amounts of data. Large double-precision arrays consume a lot of
memory. If the results you want do not require that you keep the original array or
intermediate arrays of data, perform analysis operations in place where possible.

- The Interactive window maintains a record of generated code. If you forget to keep the
code from a function panel, you can cut and paste code between the Interactive and
Program windows.

Reporting Analysis Errors

Each analysis function returns an integer error code. If the function is properly executed, the
function returns a zero. Otherwise, an appropriate error value is returned.

The return value will correspond to one of the enumeration values of the type
AnalysisLibErType declared in the header fimalysis.h . The analysis functions
are declared in the header file with this return type so that the function panel controls for
return values will display the symbolic name instead of the integer value of the error code.
By declaring a variable with the typgenalysisLibErType , the Variables window
displays its value as a symbolic name instead of as an integer.

You can find a list of error codes in AppendixByor Codes

About the Fast Fourier Transform (FFT)

The functions in the Frequency Domain subclass are based upon the discrete implementation
and optimization of the Fourier Transform integral. The Discrete Fourier Transform (DFT)
of a complex sequence X containing n elements is obtained using the following formula:

n-1
Y, :z X *e#w o fori = 0, 1,..., n-1
k=0

where Yis the ith element of the DFT of X anfl= /-1

The DFT of X also results in a complex sequence Y of n elements. Similarly, the Inverse
Discrete Fourier Transform (IDFT) of a complex sequence Y containirglements is
obtained using the following formula.

n-1
X =(1/n)zYk *@Pkin - fori = 0,1, .., n-1
k=0

where Xis the ith element of the IDFT of Y angl= /-1

© National Instruments Corporation 1-9 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Overview Chapter 1

The discrete implementation of the DFT is a numerically intense process. However, it is
possible to implement a fast algorithm when the size of the sequence is a power of two.
These algorithms are known as FFTs, and can be found in many introductory texts to digital
signal processing (DSP).

The current algorithm implemented in the LabWindows/CVI Advanced Analysis Library is
known as the Split-Radix algorithm. This algorithm is highly efficient because it minimizes
the number of multiplications, has the form of the Radix-4 algorithm, and the efficiency of
the Radix-8 algorithm. The resulting complex FFT sequence has the conventional DSP
format as described here.

If there are n number of elements in the complex sequende=ani, then the output of the
FFT is organized as follows:

Y, DC component

Y, Positive first harmonic

Y, Positive second harmonic
Y.k_1 Positive k-1 harmonic

Y, Nyquist frequency

Y. Negative k-1 harmonic

Y.n_2 Negati\'/e second harmonic
Y., Negative first harmonic

The following conventions and restrictions apply to the functions in the Frequency Domain
section:

All arrays must be a power of twor=2M m=1, 2, 3, ...,12.

Complex sequences are manipulated using two arrays. One array represents the real
elements. The other array represents the imaginary elements.

The following notation is used to describe the FFT operations performed in the Frequency
Domain class:

Y = FFT {X}, the sequenc¥ is theFFT of the sequence

Y = FFT-1{X}, the sequenc¥ is the inverse FFT of the sequente

X is usually a complex array but can be treated as a real array.

LabWindows/CVI Advanced Analysis Library 1-10 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

About Windowing

Almost every application requires you to use finite length signals. This requires that
continuous signals be truncated, using a process called windowing.

The simplest window is a rectangular window. Because this window requires no special
effort it is commonly referred to as the no window option. Remember, however, that a
discrete signal and its spectrum is always affected by a windowx_ heta digitized time-
domain waveform that has a finite lengthnofw, is a window sequence of n points. The
windowed output is calculated as follows:

Yi =X T W (1-1)

If X, Y, and W are the spectra of x, y, and w, respectively, the time-domain multiplication in
equation (1-1) is equivalent to the convolution shown as follows:

Y =X0W, (1-2)

Convolving with the window spectrum always distorts the original signal spectrum in some
way. A window spectrum consists of a big main lobe and several side lobes.

The main lobe is the primary cause of lost frequency resolution. When two signal spectrum
lines are too close to each other, they may fall in the width of the main lobe, causing the
output of the windowed signal spectrum to have only one spectrum line. Use a window with
a narrower main lobe to reduce the loss of frequency resolution. It has been shown that a
rectangular window has the narrowest main lobe, so that it provides the best frequency
resolution.

The side lobes of a window function affect frequency leakage. A signal spectrum line will
leak into the adjacent spectrum if the side lobes are large. Once again, the leakage results
from the convolution process. Select a window with relatively smaller side lobes to reduce
spectral leakage. Unfortunately, a narrower main lobe and smaller side lobes are mutually
exclusive. For this reason, selecting a window function is application dependent. An
example of a windowed spectrum in the continuous case is shown in Figure 1-1.

© National Instruments Corporation 1-11 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Overview Chapter 1

HaRl;

Signal Spectrum Window Spectrum

Windowed Signal Spectrum

Figure 1-1. A Windowed Spectrum in the Continuous Case

The original signal spectrum is convolved with the window spectrum and the output is a
smeared version of the original signal spectrum. In this example, you can still see four
distinctive peaks from the original signal, but each peak is smeared and the frequency leakage
effect is clear.

Window definitions used in National Instruments analysis libraries are designed in such a
way that the window operations in the time domain are exactly equivalent to the operations
of the same window in the frequency domain. To meet this requirement, the windows are not
symmetrical in the time domain, that is:

W, % W, (1-3)

where N is the window length. They are usually symmetrical in the frequency domain,
however. For example, the Hamming window definition uses the formula:

w, = 0.54 - 0.46 cos(#/N) (1-4)
Other manufacturers may use a slightly different definition, such as:

w = 0.54 - 0.46 cos(#/(N-1)) (1-5)
The difference is small ¥ is large.

Equation (1-4) is not symmetrical in the time domain, but it ensures that the time domain
windowing is equivalent to the frequency domain windowing. If you want to have a
perfectly symmetrical sequence in the time domain, you must write your own windowing
function using formula (1-5).

LabWindows/CVI Advanced Analysis Library 1-12 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

The choice of a window depends on the application. For most applications, the Hamming or
Hanning windows deliver good performance.

About Digital Filters

There are two types of digital filters in the LabWindows/CVI Advanced Analysis Library:

Finite Impulse Response (FIR) filters and Infinite Impulse Response (lIR) filters. FIR filters
have a linear phase response. IIR filters generally have a nonlinear phase response, but offer
much better amplitude response.

The choice of a particular type of filter depends upon the application. If you desire a linear
phase response, choose one of the FIR filters. If performance and better amplitude response
is more important, chose an IIR filter. No matter what type of filter you choose, enter a
sampling frequency and other cutoff frequencies when designing your filter. You can design
a digital filter using a normalized sampling frequency. The LabWindows/CVI Advanced
Analysis Library provides a sampling frequency parameter so that you don't need to
normalize other frequencies.

FIR Filters

The FIR filter is a set of filter coefficients that alters the signal spectrum when convolving
with the signal. Let, be the filter coefficientsy, be the input signal, ang be the output in
the following formula:

K-1
y, =Y %, *c., i=0,1,... N-1
l; k k

LabWindows/CVI implements the formula using the convolution fund@ionvolve . The
purpose of an FIR filter is to design the coefficieptsRemember that no filtering is

actually performed in an FIR filter function. You must subsequenthCaail/olve to

perform the filtering. The advantage of doing this is that once you have obtained the filter
coefficients, you can use them repeatedly without redesigning the filter.

If you have never used an FIR filter before, start with a window FIR filter. These filters are
easy to design, though other techniques may design a better filter with the same number of
coefficients.

Choose the window to be used in a window FIR filter with the paraMéreiType.

WindType determines the amount of attenuation the window filter can achieve. It also
determines the transitional bandwidth of the window filter. The transitional bandwidth is
defined as the frequency range from the specified cutoff frequency to the point where the
desired attenuation is obtained. A bigger transitional bandwidth usually gives better

© National Instruments Corporation 1-13 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Overview Chapter 1

attenuation. Use a Kaiser window FIR filter for choosing windows that are not available
from WindType.

If you are experienced in using filters and you want to design an optimal FIR filter, use the
LabWindows/CVI Advanced Analysis LibraBqui_Ripple function. These filters are

based on the general Parks-McClellan algorithm, that in turn is based on an alternation
theorem in the polynomial approximation. As the name suggests, the frequency response of
anEqui_Ripple filter has equal ripples within each specified frequency band. The ripples
can be different in different bands depending on the weighting factors.

You have to specify more parameters when uBiqgi_Ripple filters. For each

frequency band, specify the starting and ending points, the amplitude response and a
weighting factor associated with the amplitude response of that band. A weighting factor of
1 is usually sufficient for all bands, but you can select different weighting factors. A bigger
weighting factor results in a smaller ripple in the corresponding frequency band; a smaller
weighting factor results in a larger ripple.

If you want to design an optimal FIR multiband filter, (lowpass, highpass, bandpass and
bandstop), but do not want to specify the weighting factorEgseéRpl_LPF

EquiRpl_HPF , EquiRpl_BPF , andEquiRpl_BSF . These filters calEqui_Ripple
internally but have simplified input parameters.

Caution: TheEqui_Ripple filter design does not always converge. In some cases, it
will fail and give erroneous results. It is extremely important that you verify the
filter design after obtaining the filter coefficients.

IIR Filters

Mathematically, an IIR digital filter assumes the following form:

1 [No-1 N,-1 N
Yo =—0) bi% -) ayd
% D‘Z" o kzl kD (1-6)

wherea,andb, are the filter coefficients. The current filter outgutiepends upon the
current and previous valugs and previous outpw,. Ify # 0O, its effect on the subsequent
points persists indefinitely. This is why these filters are called infinite impulse response
filters.

Filters implemented using the structure defined by equation (1-6) directly are known as direct
form IIR filters. Direct form implementations are often sensitive to errors introduced by
coefficient quantization and by computational, precision limits. Additionally, a filter

designed to be stable can become unstable with increasing coefficient length, which is
proportional to filter order.

LabWindows/CVI Advanced Analysis Library 1-14 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

A less sensitive structure can be obtained by breaking up the direct form transfer function
into lower order sections, or filter stages. The direct form transfer function of the filter given
by equation (1-6) (witla, = 1) can be written as a ratioofransforms, as follows:

by tbyzte gy, MY

H(z
(7 (N.=D)

1-7)

- -1
l+az "+t 4

By factoring equation (1-7) into second-order sections, the transfer function of the filter
becomes a product of second-order filter functions

Ng -1 =2
by +0y 7"+ B, Z
-1 2

1 1+a,z + 9,7

H(z) =

whereN, = [N, /2[Jis the largest integer N, /2, andN,> N,. This new filter structure can be
described as a cascade of second-order filters.

X[i] o&——— stage 1 stage 2 stage Ng|—o ¥[i]

Cascaded Filter Stages
Figure 1-2. Cascaded Filter Stages

Each individual stage is implemented using the direct form Il filter structure because it
requires a minimum number of arithmetic operations and a minimum number of delay
elements (internal filter states). Each stage has one input, one output, and two past internal
states §[i —1] ands[i —2]).

If n is the number of samples in the input sequence, the filtering operation proceeds as in the
following equations:

Yoli] = X[i],

slil =y i 1] —a,sfi -1] —a,8[i 2], k=1,2,..N;
yk[i] = bOkSK[i] + blkSK[i '1] + bZkSK[i - 2]1 k= 112""’Ns
il =y Jil

for each sample=0, 1, 2,..n-1.

For filters with a single cutoff frequency (lowpass and highpass), second-order filter stages
can be designed directly. The overall lIR lowpass or highpass filter contains cascaded
second-order filters.

© National Instruments Corporation 1-15 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Overview Chapter 1

For filters with two cutoff frequencies (bandpass and bandstop), fourth-order filter stages are
a more natural form. The overall IIR bandpass or bandstop filter is cascaded fourth-order
filters. The filtering operation for fourth-order stages proceeds as in the following equations:

yoli] = Xqil,

S<[|] = yk—l[i _1] —a, Sk[i _1] _asz<[i _2] _a3kSK[i _3] _a4|§<[i - 4]
k=1,2,..N,

yk[i] = bOkSK[i] + blkSK[i _1] +b2|§<[i - 2] +b3|§<[i - 3] +b4|§<[i - 4]1
k=1,2,..N,

yli] =y, dil.

Notice that in the case of fourth-order filter stadéss [(N_+1)/4C]

The IIR filters provided in the LabWindows/CVI Advanced Analysis Library are derived
from analog filters. There are four major types of IIR filters:

Butterworth filters
Chebyshev filters

Inverse Chebyshev filters
Elliptic filters

Lowpass, highpass, bandpass and bandstop filters are designed for each type of filter. The
frequency response of a Butterworth filter is characterized by a smooth response at all
frequencies and a monotonic decrease from the specified cut-off frequencies. Butterworth
filters are maximally flat in the passband and zero in the stopband. The rolloff between the
passband and stopband is slow, so that a lower order Butterworth filter does not provide a
good approximation of an ideal filter.

Chebyshev filters have equal ripples in the passband and a monotonically decreasing
magnitude response in the stopband. These filters have much sharper rolloffs than
Butterworth filters. The inverse Chebyshev filters are similar to Chebyshev filters, except
that the ripple occurs in the stopband and the frequency response is flat in the passband.

If ripples are allowable in both the passband and the stopband, use elliptic filters. Elliptic
filters have the sharpest rolloffs for the same order compared with Butterworth or Chebyshev
filters.

LabWindows/CVI Advanced Analysis Library 1-16 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

About Measurement Functions

Measurement functions perform DFT-based and FFT-based analysis with signal acquisition
for frequency measurement applications as seen in typical frequency measurement
instruments such as dynamic signal analyzers.

Several measurement functions perform commonly-used time domain to frequency domain
transformations such as amplitude and phase spectrum, signal power spectrum, network
transfer function, and so on. Other supportive measurement functions perform scaled time-
domain windowing and power and frequency estimation, among other functions.

You can use the measurement functions for the following applications.

- Spectrum analysis applications
— Amplitude and phase spectrum
— Power spectrum
— Scaled time domain window

— Power and frequency estimate

- Network (frequency response) and dual channel analysis applications
— Transfer function
— Impulse response function
— Network functions (including coherence)

— Cross power spectrum

The DFT, FFT, and power spectrum are useful for measuring the frequency content of
stationary or transient signals. The FFT provides the average frequency content of the signal
over the entire time that the signal was acquired. For this reason, you use the FFT mostly for
stationary signal analysis (when the signal is not significantly changing in frequency content
over the time that the signal is acquired), or when you want only the average energy at each
frequency line. A large class of measurement problems falls in this category. For measuring
frequency information that changes during the acquisition, you should use joint time-
frequency analysis.

The measurement functions are built on top of the signal processing functions and have the
following characteristics that model the behavior of traditional benchtop frequency analysis
instruments.

. Assumed Real-world time-domain signal input.

- Outputs in magnitude and phase, scaled in units where appropriate, ready for immediate
graphing.

© National Instruments Corporation 1-17 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Overview Chapter 1

Single-sided spectrums from DC tSuamp“nngreq”e”C)/

Sampling period to frequency interval conversion for graphing with appropriate X-axis
units (in Hertz).

Corrections for the windows being used applied where appropriate.

Scaled Windows; Each window gives same peak spectrum amplitude result within its
amplitude accuracy constraints.

Viewing of power or amplitude spectrum in various unit formats including decibels and
spectral density unit§v?/Hz, /Y H) and so on.

About Curve Fitting

The algorithm used to find the best curve fit in the Curve Fitting class is the Least Squares
method. The purpose of the algorithm is to find the curve coefficients a, which minimize the
squared error e(a) in the following formula:

e@=) Y- f(X,a)f

where (4, a) is the function representing the desired curve.

You can find the coefficierd by solving the linear system of equations generated by the
following formula:

0
—e(@)=0
a (a)
Given a set oh sample points (X, y) represented by the sequences X and Y, the curve-fitting
functions determine the coefficients that best represent the data. The best fit Z is an array of
expected values given the coefficients and the X set of values. Thus you can express Z as a
function of X and the following coefficients:

Z=1(X, a)

When you have established the best fit values, you can obtain the mean squared error (mse)
by applying the following formula.

mse:ni1 (Z -Y) In

LabWindows/CVI Advanced Analysis Library 1-18 © National Instruments Corporation

Chapter 2
Advanced Analysis Library Function
Reference

This chapter contains a brief explanation of each of the functions in the LabWindows/CVI
Advanced Analysis Library. The LabWindows/CVI Advanced Analysis Library functions are
arranged alphabetically.

Abs1D
int status = Abs1D(double X[] ,int n,double Yy[]);
Purpose

Finds the absolute value of tkénput array. The operation can be performed in place; that is,
andy can be the same array.

Parameters
Input X double-precision array input array
integer number of elements
Output y double-precision array absolute value of input array
Return Value
status integer refer to error codes in
Appendix A

ACDCEstimator

int status = ACDCEstimator (double x[] ,int n, double *acEstimate
double *dcEstimate);

Purpose

Computes an estimation of the AC and DC contents of the input sigedhe input signal,
usually in volts.

© National Instruments Corporation 2-1 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

acEstimate (Vrms) is the estimate of the input signal AC content in volts rms, if the input
signal is in volts.

dcEstimate (V) is the estimate of the input signal DC content in volts, if the input signal is in
volts.

Parameters
Input X double-precision array| contains the time-domain signal,
usually in volts. At least three cycles
of the signal must be contained in this
array for a valid estimate.
n integer number of elements in the input arrgy.
Output acEstimate |double-precision contains the estimate of the AC level of

the input signal in volts rms if the input
signal is volts.

dcEstimate |double-precision contains the estimate of the DC levgl of
the input signal in the same units as
the input signal.

Return Value

status integer refer to error codes in Appendix A

Addl1D
int status = Add1D(double x[] ,double y[] ,int n,double Z[]);
Purpose

Adds one-dimensional (1D) arrays. THelement of the output array is obtained using the
following formula.

Z =Xy,

The operation can be performed in place; tha ¢ésn be the same array as eithery.

LabWindows/CVI Advanced Analysis Library 2-2 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input array
y double-precision array input array
n integer number of elements to be adged
Output z double-precision array result array
Return Value
status integer refer to error codes in
Appendix A

Add2D
int status = Add2D(void *x,void *y,int n,int m,void *z);
Purpose

Adds two-dimensional (2D) arrays. Thg, (") element of the output array is obtained using the
following formula.

Z;=X%; Y,

The operation can be performed in place; that ¢en be the same array as eithery.
Parameters

Input X double-precision 2D array| input array
double-precision 2D array| input array
n integer number of elements in first
dimension
m integer number of elements in second
dimension
Output z double-precision 2D array| result array

Return Value

status integer refer to error codes in Appendix A

© National Instruments Corporation 2-3 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

AlloclIRFilterPtr
lIRFilterPtr filterinformation = AlloclIRFilterPtr (int type,int order);
Purpose

Allocates and initializes thidterinformation structure, returning a pointer to the filter
structure for use with the IIR cascade filter coefficient design calls.

You input the type of the filter (lowpass, highpass, bandpass, or bandstop) and the order. This
function will allocate the filter structure as well as the internal coefficient arrays and internal
filter state array.

Parameters
Input | type integer Controls the filter type of IR filter coefficients
LOWPASS =0 (default)
HIGHPASS =1
BANDPASS =2
BANDSTOP =3
order integer Specifies the order of the IIR filter.
Default Value: 3

Return Value

filterInformation lIRFilterPtr Pointer to the filter structure. When an error
occursfilterinformation is zero.

Parameter Discussion

filteriInformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. Call this function to alloddterinformation before
calling one of the cascade IIR filter design functions.

The definition of the filter structure is as follows:

typedef struct {
intnum type; /* type of filter (Ip,hp,bp,bs) */
intnum order; /* order of filter */
inthum reset; /*0 - don't reset, 1 - reset */
inthum na; /* number of a coefficients */
floatnum *a; /* pointer to a coefficients */
inthum nb; /* number of b coefficients */
floatnum *b; /* pointer to b coefficients */
inthum ns; /* number of internal states */
floatnum *s; /* pointer to internal state array */
} *lIRFilterPtr;

LabWindows/CVI Advanced Analysis Library 2-4 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

AmpPhaseSpectrum

int status = AmpPhaseSpectrunfdouble x[] ,int n,int unwrap, double dt,
double ampSpectruni] , double
phaseSpectrunf] , double *df);

Purpose

Computes the single-sided, scaled amplitude and phase spectra of a time-domain signal, X. The
amplitude spectrum is computed as

|IFFT(X)/ n
and is converted to single-sided form. The phase spectrum is computed as
phase[FFT(X)]

and is also converted to single-sided form.

Parameters
Input X double-precision array] Contains the time-domain signal.
integer The number of elements in the inpulf
array. Valid Values: Powers of 2.
unwrap integer Controls the unwrapping of the phase
spectrum.

Valid values for unwrap:
1: enable phase unwrapping
0: disable phase unwrapping
(-rt<phases +).
dt double-precision The sample period of the time-domain

signal, usually in seconds.
dt = 14s, where fs is the sampling

frequency of the time-domain signal.

(continues)

© National Instruments Corporation 2-5 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters (Continued)

Output |ampSpectrum |double-precision array | ampSpectrumis the single-sided
amplitude spectrum magnitude in volts
RMS if the input signal is in volts. If
the input signal is not in volts, the
results are in input signal units RMS|
This array must be at least2 element;
long.

phaseSpectrum | double-precision array | PhaseSpectrumis the single-sided
phase spectrum in radians. This array
must be at least/2 elements long.

df double-precision Points to the frequency interval, in
hertz, ifdt is in seconds.
*df = 1/(n*dt)

\"4}

Return Value

status integer refer to error codes in Appendix A

ANOVA1Way

int status = ANOVA1Way (double y[] ,int level] ,int n,int k, double *ssg
double *msa double *f, double *sig, double *sse
double *mse double *ts9);

Purpose

Takes an array of experimental observations made at various levels of some factor (with at least
one observation per factor) and performs a one-way analysis of variance in the fixed effect
model.

The one-way analysis of variance is a test to determine whether the level of the factor has an
effect on the experimental outcome.

LabWindows/CVI Advanced Analysis Library 2-6 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input y double-precision array experimental observations
level integer array the"ielement tells in what level of
the factor the"iobservation falls
n integer the total number of observations
k integer the total number of levels of the
factor
Output ssa double-precision sum of squares due to the factoy
msa double-precision mean square due to the factor
f double-precision calculated F-value
sig double-precision the level of significance at which
the null hypothesis must be
rejected
sse double-precision sum of squares due to random
fluctuation
mse double-precision mean square due to random
fluctuation
tss double-precision total sum of squares
Return Value
status integer refer to error codes in Appendix A

Using This Function

Factors and Levels

A factor is a way of categorizing data. Data is categorized into levels, beginning with level 0.
For example, if you are performing some measurement on individuals, such as counting the
number of sit-ups they can perform, one such categorization method is age. For age, one might
have three levels, as given below.

Level Ages
6 years to 10 years

0:
1 11 years to 15 years
2: 16 years to 20 years

© National Instruments Corporation 2-7 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

The Statistical Model

Each experimental outcome is expressed as the sum of three parts while performing the analysis
of variance. Let ym be the i observation from thélilevel. Each observation is written:

Yim =HTA; T &,

where
W is a standard effect
a is the effect of thée"ilevel of the factor

€. 1S a random fluctuation

Assumptions

Assume that the populations of measurements at each level are normally distributed with mean
aj and varianc@a2. Assume that the meaagsum to zero. Finally, assume that for each i and

m, & m is normally distributed with mean 0 and variaope.

The Hypothesis

Test the (null) hypothesis thai= 0 fori =0, 1, ..., k-1 (wherk is the total number of levels).

In other words, assume from the start that the levels have no effect on the experimental outcome,
then look for evidence to the contrary.

The General Method

Break up the total sum of squates a measure of the total variation of the data from the overall
population mean, into component sums of squares, which may be attributed to different sources.

You now have

tss = ssa + sse
wheressais a measure of variation that is attributed to the factor, and wheisea measure of
variation that is attributed to random fluctuation. Divide by appropriate numbers to obtain the
averagesnsaandmse If there is much variation caused by the faatsawill be larger
relative tomse The ratiof will also be larger relative tmse
If the null hypothesis is true, the rafits taken from an F distribution with k-1 and n-k degrees

of freedom, from which you can calculate probabilities. Given a partiGdayis the
probability that in sampling from this distribution you get a value largerfthan

LabWindows/CVI Advanced Analysis Library 2-8 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Testing the Hypothesis

This function generates a numbeso that, if the hypothesis is true, that number is from an F-
distribution with k-1 and n-k degrees of freedom. The function also calculates the probability

that a number taken from this F-distribution is larger fhahhis is the output parametsig:

sig = Prob(x>f)
where xis from F(k-1, n-k).
Use the probabilitgig to determine when to reject the hypothesis. To do so, choose a level of
significance for the hypothesis. The level of significance is how likely you want it to be that you
reject the hypothesis when it is true, and so the level of significance should be small (0.05 is a
common choice). Keep in mind that the smaller the level of significance, the more hesitant you

are to reject the hypothesis.

The hypothesis is rejected when the output paramejés less than the chosen level of
significance.

Formulas
Let yi m be the N observation made at thelevel for m = 0,1, ...,;and i = 0,1, ...k.

Let n = the number of observations at théevel.

1%
YI = T'II_ Yim
m=0
k-1
Ym :1 ylm
k&
1k—]_ ni—l
=— yi,m
N> mZO
T=n*Y
Then
k WZD Y2
ssa= Z O—0-—
SOn O n

mse= ssa/(k-1)

© National Instruments Corporation 2-9 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

k-1 n-1 k wz D
sse= im—)y O—0
2 27" 2
mse= sse/(n-k)
k-1 n-1 Y2
tss= Yo ——
f = msa/mse wheref is from an F-distribution with (k-1) and (n-k) degrees of
freedom.
Example

Suppose that researchers want to know whether the amount of rainfall affects the yield of a crop.
The factor (rainfall) is divided into three levels (k=3) as given below.

Level Rainfall (factor)
0 2 inches
1 3inches
2 4 inches

The researchers set up 10 plots in various geographical locations chosen so that each plot
receives a different amount of rainfall. They record the following information.

Level Bushels produced from each plot
0 128 122 126 124

1 140 141 143

2 120 118 123

To perform a one-way analysis using tkieOVA1Wayunction, all the numbers of bushels are
stored in a double-precision arnayf size 10. The integer arrégvel records the levels in which
observations were made. For any particular i, these arrays are set suglistitiae yumber of
bushels produced by a plotin levefor example,

level= 0

y, =128, 122, 126, or 124

are valid combinations. Therefore, the input arrpagsdlevel in this example could be set up for
the ANOVAl1Wayunction as follows.

y =128, 122, 126, 124, 140, 141, 143, 120, 118, 123
level=0,0,0,0,1,1,1,2,2,2

LabWindows/CVI Advanced Analysis Library 2-10 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Running the code given in the examples below produces the following result.
sig=0.0000239

For a level of significance such as 0.05, AMOVA1Wayesults show that the researchers must
reject the hypothesis that the rainfall has no effect on the yield of the crop. In other words, the
rainfall does affect the crop yield.

Example

double y[10], ssa, msa, f, sig, sse, mse, tss;
int level[10];

int k;

int status;

k=3; /* three levels for rainfall */
/* Read in recorded data y(10), level[10] */
status = ANOVA1Way(y, level, 10, k, &ssa, &msa, &f, &sig, &sse, &mse, &tss);

ANOVA2Way

int status = ANOVA2Way (double y[] ,int levelA[] ,int levelB[] ,int N,int L,
int a, int b,void *info,double *sigA, double *sigB,
double *sigAB);

Purpose

Takes an array of experimental observations made at various levels of two factors and performs a
two-way analysis of variance in any of the following models.

» Fixed effects with no interaction and one observation perlcell per specified levels and
b of the factors A and B respectively)

» Fixed effects with interaction anid>1 observations per cell

» Either of the mixed-effects models (where one factor is taken to have a fixed effect but the
other is taken to have a random effect) with interactionLaridobservations per cell

* Random effects with interaction ahd1 observations per cell

Any ANOVA looks for evidence that the factors (or interactions among the factors) have a

significant effect on experimental outcomes. What varies among models is the method for
finding significance.

© National Instruments Corporation 2-11 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters

Input y double-precision array array of experimental data of N|& *|b
*L elements

levelA |integer array the"ielement tells in what level of
factor A the T observation falls

levelB integer array the"ielement tells in what level of
factor B the | observation falls

N integer the total number of observations
L integer the number of observations per cell

a integer the number of levels in factor A. This
parameter is negative if A is a randomn
effect

b integer the number of levels in factor B. Th|s
parameter is negative if B is a randomn
effect

Output |info double-precision 2D array| a4 by 4 matrix as follows:
ssa dofa msa fa
ssb dofb msb fb
ssab dofab msab fab
sse dofe mse 0.0

where ss designates sums of square

dof designates degrees of freedom @
ss, ms designates mean squares,
and f designates F-distributions

(depending on the statistical model)

SigA double-precision level of significance at which
hypothesis (A) must be rejected

sigB double-precision level of significance at which
hypothesis (B) must be rejected

SigAB double-precision level of significance at which
hypothesis (AB) must be rejected

-~

Return Value

status integer refer to error codes in
Appendix A

LabWindows/CVI Advanced Analysis Library 2-12 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Using This Function

Factors, Levels and Cells

A factor is a way of categorizing data. Data is categorized into levels, beginning with level 0.
For example, if you are performing some measurement on individuals, such as counting the
number of sit-ups they can perform, one such categorization method is age. For factor age, one
might have three levels, given below.

0: 6 yearsto 10 years
1. 11 yearsto 15 years
2: 16 years to 20 years

Another possible factor is eye color, with the following levels.

blue
brown
green
hazel

In this example, an analysis of variance seeks evidence that the ages and eye color of the
subjects have an effect on the number of sit-ups performed.

A cell of data consists of all those experimental observations that fall in particular levels of the
two factors. In this instance, a cell might consist of those observations made on hazel-eyed
individuals between 11 and 15 years old. The number of observations that fall in each cell must
be some constant numbeithat does not vary between cells.

Random and Fixed Effects

A factor is taken as a random effect when the factor has a large population of levels about which
you want to draw conclusions, but that cannot be sampled at all levels. Levels are sampled at
random in the hope of generalizing about all levels.

A factor is taken as a fixed effect when the factor can be sampled from all levels about which you
want to draw conclusions.

The input parametesandb represent the number of levels in factors A and B, respectively. If
factor A is to be random, satto a negative value. If factor B is to be randompsiet a negative
value. Notice that if there is only one observation per cell, ®atidb must be positive (that is,
model 1 is used).

© National Instruments Corporation 2-13 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

The General Method

Each of the models breaks up the total sum of squares (tss, a measure of the total variation of the
data from the overall population mean) into some number of component sums of squares. In
model 1,

tss = ssa + ssb + sse
whereas in models 2 through 4

tss = ssa + ssb + ssab + sse.
Each component of the sums is a measure of variation attributed to a certain factor or interaction
among the factors. The component ssa is a measure of the variation due to factor A, ssb is a
measure of the variation due to factor B, ssab is a measure of the variation due to the interaction

between factors A and B, and sse is a measure of the variation due to random fluctuation. Notice
that with model 1 there is no ssab term. This is what is meant by "no interaction".

If factor A has a strong effect on the experimental observations, msa will be relatively large.
Specific ratios of these averages are considered because you know how they are statistically
distributed. You can therefore determine how likely it is that factor A is as relatively large as it is.

The Statistical Model

Let yp,q,rbe the " observation at thelhand dh levels of A and B, respectively,

where
r=0,1, ..., L-1.

Model 1. Express each observation as the sum of four components, so that
Yp.ar=H+0p+Bq+epqr

wherep represents a standard effect present in each obserwsfi@presents the effect of the
pth level of factor ABq represents the effect of th# ¢pvel of factor B, andp g ris a random
fluctuation.

Models 2, 3, and 4Express each observation as the sum of five components, so that
Yp,a.r=H+0p+Bg+ @B)p,q+Ep,qr

wherep represents a standard effect present in each obserwsfi@presents the effect of the
pth level of factor ABq represents the effect of th# ¢pvel of factor B, andp g ris a random
fluctuation. In addition,dB)p, qrepresents the effect of the interaction betweentthieye! of
factor A and the §§ level of factor B.

LabWindows/CVI Advanced Analysis Library 2-14 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Assumptions

« Assume that for each p, g andg,q,ris normally distributed with mean 0 and variaoeé.

» If a factor such as A is fixed, assume that the populations of measurements at each level are
normally distributed with meamp and varianc@a2. Notice that all the populations at each
of the levels are taken to have the same variance. In addition, it is assumed thatall the
means sum to zero. An analogous assumption is made for B.

 If afactor such as A is random, assume that the effect of the level of Adige#,a random
variable normally distributed with mean 0 and variaogé. An analogous assumption is
made for B.

« If all of the factors, such as A and B, associated with the effect of an interadbipn, are
fixed, assume that the populations of measurements at each level are normally distributed
with mean @)p qand varianceag?. For any fixed p, thea3)p,q means sum to zero when
summing over all g. Similarly, for any fixed q tteejp ¢ means sum to zero when summing
over all p.

 If any of the factors, such as A and B, associated with the effect of an intera@)gp &re
random, then the effect is taken to be a random variable normally distributed with mean 0
and varianceag?. If A is fixed but B is random, assume additionally that for any fixed q,
the @B)p,qmeans sum to zero when summing over all p. Similarly, if B is fixed but A is
random, assume additionally that for any fixed p, tf){ ¢ means sum to zero when
summing over all g.

» All effects taken to random variables are assumed to be independent.

The Hypotheses

Each of the following hypotheses are different ways of saying that a factor or an interaction
among factors has no effect on experimental outcomes. Start by assuming that there are no
effects and then seek evidence to contradict these assumptions. The three hypotheses are as
follows.

» For (A),ap= 0 for all levels of p if factor A is fixedya2 = O if factor A is random
* For (B),Bq= 0 for all levels of q if factor B is fixedyg2 = 0 if factor B is random
« For (AB), @B)p,q= 0 for all levels of p and q if both factors A and B are fixegs2 = 0 if

either factor A or factor B is random. (This does not apply to model 1. In model 1, there is
no interaction and the associated output parameters are superfluous.)

© National Instruments Corporation 2-15 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Testing the Hypotheses

For each hypothesis, the function generates a number so that, if the hypothesis is true, that
number will be from a particular F-distribution.

For example, in model 1, fa = msa/mse (associated with hypothesis (A)) is from an F-distribution
with a-1 and (a-1)(b-1) degrees of freedom (F(a-1, (a-1)(b-1))), given that hypothesis (A) is true.
In models 2, 3, and 4, fa=msa/mse (associated with hypothesis (A)) is from an F-distribution
with a-1 and ab(L-1) degrees of freedom (F(a-1, ab(L-1))), given that hypothesis (A) is true. The
function calculates the probability that a number taken from a particular F-distribution is larger
than the F-value. For example,

SigA =Prob(X > fa)
where X is from F(a-1, (a-1)(b-1)).

Use the probabilitiesigA, sigB, andsigAB to determine when to reject the associated

hypotheses (A), (B), and (AB). To make this determination, choose a level of significance for
each hypothesis. The level of significance is how likely you want it to be that you reject the
hypothesis when it is in fact true. Ordinarily, you do not want it to be very likely that you reject
the hypothesis when it is true, and so the level of significance should be small (0.05 is a common
choice). Keep in mind that the smaller the level of significance, the more hesitant you are to
reject the hypothesis.

A particular hypothesis is rejected when the associated output paraigétesigB, or sigAB is

less than the level of significance chosen for that hypothesis. If A is a random effect, and the
chosen level of significance is 0.05, aidgA = 0.03, you must reject the hypothesis that

oa2 = 0, and conclude that factor A does have an effect on the experimental observations.

Formulas

Let yp,q,rbe the " observation at thelhand dh levels of A and B, respectively,
where

r=0,1, .., L1
Let
aa=|q
bb=1H
L1
Toa=2 Yoar

LabWindows/CVI Advanced Analysis Library 2-16 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

bb-1

Tp = Z Tp,q
g=0

T = the total sum of all observations

aa-1

A=Y T7?/(bb* L

bb-1

B=Y T?/(aa*
qzoq(b

aa-1 bb-1

S= ,)Z q;prqz/L

CF = T2/(aa*bb*L)

Then
ssa=A-CF msa = ssa/(aa-1) = ssa/dofa
ssb=B-CF msb = ssb/(bb-1) = ssb/dofb
ssab=S-A-B-CF msab = ssab/(a-1)(b-1) = ssab/dofab
sse=T-S mse = sse/(aa*bb*(L-1)) = sse/dofe

fa = msa/mseif B is fixed)
= msa/msabif(B is randon)

fb = msb/mseif A is fixed)
= msb/msabif(A is randormn)

fab = msab/mse

If f = ms/ms, and ms= ss/dof, and ms= ss/dof,, we assume that f is from an F-distribution
with dof, and dof degrees of freedom (F(dptiof)).

Example

Suppose that researchers want to know how the amount of rainfall and the average temperature
affect the yield of a crop. Each factor (rainfall, and temperature) is divided into three levels as

follows.

© National Instruments Corporation 2-17 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Level Rainfall (Factor A)

0 2 inches

1 3inches

2 4 inches

Level Temperature (Factor B)
0 76-80 degrees

1 81-85 degrees

2 86-90 degrees

A particular plot planted with the crop may be in any one of the 9 different combinations of these
levels with the two factors. For example, one combination might be two inches of rain and an
average temperature between 76 and 80 degrees, recorded as (0,0). These combinations are
called as cells.

The researchers set up 18 plots in various geographical locations chosen so that two plots will
fall in each of the 9 cells. To measure the productivity of a particular plot, they record the crop
production. Let Rainfall be Factor A and Temperature be Factor B. They record the following
information.

(A, B) Bushels produced from
each plot
0, 0) 128 122
0, 1) 113 108
0, 2) 116 116
(1, 0) 132 129
1, 1) 119 121
1, 2) 126 113
(2,0) 118 114
2, 1) 141 133
(2,2) 121 123

To perform a two-way analysis of variance in the fixed effect model usinfgNB/A2Way
function, all the numbers of bushels are stored in a double-precisioryatayze 18. The
integer array$evelA andlevelB record the cells in which observations were made. For any
particular i, these arrays are set such thattye number of bushels produced by a plot in the
(levelA, levelB cell. For example,

(levelA, levelB) = (0, 1)

y=113, or 108

are valid combinations.

LabWindows/CVI Advanced Analysis Library 2-18 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Therefore, the input arrays levelA, andlevelB in this example could be set up for the
ANOVA2Wayunction as follows.

y =128, 122, 113, 108, 116, 132, 129, 119, 121, 126, 113, 118, 114, 141, 133, 121, 123
levelA=0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2
levelB=0,0,1,1,2,2,0,0,1,1,2,2,0,0,1,1, 2,2

Running the code given in the examples below produces the following results.

sigA = 0.026
sigB = 0.203
sigAB = 0.0018

For a level of significance such as 0.05, AMOVA2Wayesults show that the researchers

cannot reject the hypotheses that the combination of rainfall and temperature has any effect on
the yield of the crop. In other words, the combination of rainfall and temperature has a
significant effect on crop yield.

Example
double y[18], sigA, sigB, sigAB, info[4][4];
int levelA[18], levelB[18];

intL, a, b;

int status;

L=2; [* two observations per cell */

a=3; [* three levels for factor A, Rainfall */
b=3; [* three levels for factor B, Temperature */

/* Read in recorded data y[18], levelA[18], levelB[18] */

status = ANOVA2Way(y, levelA, levelB, 18, L, a, b, info, &sigA,
&sigB, &sigAB);

© National Instruments Corporation 2-19 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

ANOVA3Way

int status =ANOVA3Way (double y[] ,int levelA]] ,int levelB] ,int levelC] ,
int N,int L,int a,int b,int c,void *info, double
*sigA, double *sigB, double *sigC, double *sigAB,
double *sigAC, double *sigBC, double *sigABC);

Purpose

Takes an array of experimental observations made at various levels of three factors and performs
a three-way analysis of variance in any of the following models.

» Fixed effects with interaction annd>1 observations per cell

* Any of the six mixed-effects models (where one or two factors are taken to have fixed effects
but the remaining factors are taken to have random effects) with interactier»and
observations per cell

* Random effects with interaction ahd1 observations per cell

Any ANOVA looks for evidence that the factors (or interactions among the factors) have a
significant effect on experimental outcomes. What varies among models is the method for
finding significance.

Parameters
Input |y double-precision| array of experimental data of
array N = |a] *|b] *|c| *L elements

levelA integer array the"ielement tells in what level of factor A tHe i
observation falls

levelB integer array the"ielement tells in what level of factor B tHe i
observation falls

levelC |integer array the"ielement tells in what level of factor C tlie i
observation falls

N integer the total number of observations

L integer the number of observations per cell

a integer the number of levels in factor A. This parameter is
negative if A is a random effect

b integer the number of levels in factor B. This parameter is
negative if B is a random effect

c integer the number of levels in factor C. This parameter is
negative if C is a random effect

(continues)

LabWindows/CVI Advanced Analysis Library 2-20 © National Instruments Corporation

Chapter 2

Parameters (Continued)

Advanced Analysis Library Function Reference

Output |info double-precision
2D array
SigA double-precision
sigB double-precision
sigC double-precision
SigAB double-precision
SigAC double-precision
sigBC double-precision
SigABC | double-precision

an 8 by 4 matrix as follows:

ssa dofa msa fa
ssb dofo msb fb
SSC dofc msc fc
ssab dofab msab fab
ssac dofac msac fac
ssbc dofbc msbc fbc
ssabc dofabc msabc fabc
sse dofe mse 0.0

where ss designates sums of squares, dof

designates degrees of freedom of ss, ms desigr

mean squares, and f designates F-distributions
(depending on the statistical model)

level of significance at which hypothesis (A) m
be rejected

ates

ust

level of significance at which hypothesis (B) must

be rejected

level of significance at which hypothesis (C) must

be rejected

level of significance at which hypothesis (AB)
must be rejected

level of significance at which hypothesis (AC)
must be rejected

level of significance at which hypothesis (BC)
must be rejected

level of significance at which hypothesis (ABC
must be rejected

Return Value

status integer

refer to error codes in Appendix A

Using This Function

Factors, Levels, and Cells

A factor is a way of categorizing data. Data is categorized into levels, beginning with level 0.
For example, if you are performing some measurement on individuals, such as counting the

number of sit-ups they can perform, one such categorization method is age. For age, one might

have three levels, as given below.

© National Instruments Corporation

2-21 LabWindows/CVI Advanced Analys

is Library

Advanced Analysis Library Function Reference Chapter 2

Levels Ages
0 6 years to 10 years
1 11 years to 15 years
2 16 years to 20 years
Another possible factor is eye color, with the following levels.
Levels Eye Colors
0 blue
1 brown
2 green
3 hazel

A third factor might be height with levels in blocks of 10 centimeters. A cell of data consists of
all those experimental observations that fall in particular levels of the three factors. In this
instance, a cell might consist of those observations made on hazel-eyed individuals between 11
and 15 years old who are between 151 and 160 cm tall. The number of observations that fall in
each cell must be some constant nuntb#rat does not vary between cells.

Random and Fixed Effects

A factor is taken as a random effect when the factor has a large population of levels about which
you want to draw conclusions, but that cannot be sampled at all levels. Levels are sampled at
random in the hope of generalizing about all levels.

A factor is taken as a fixed effect when the factor can be sampled from all levels about which you
want to draw conclusions.

The input parameteis b, andc represent the number of levels in factors A, B, and C,
respectively. If factor A is to be random, adb a negative value. In the same way jssanhdc
to negative values if B and C are to be random.

The General Method

Each of the models breaks up the total sum of squares (tss, a measure of the total variation of the
data from the overall population mean) into some number of component sums of squares, so that

tss = ssa + ssb + ssc + ssab + ssac + ssbc + ssabc + sse

Each component in the sum is a measure of variation attributed to a certain factor or interaction
among the factors. In this instance, ssa is a measure of the variation due to factor A, ssb is a
measure of the variation due to factor B, ssc is a measure of the variation due to factor C, ssab is
a measure of the variation due to the interaction between factors A and B, and so on for ssac,
ssbc, and ssabc. The variable sse is a measure of the variation due to random fluctuation.

If factor A has a strong effect on the experimental observations, msa will be relatively large.
You can look at specific ratios of these averages because you know how they are statistically

LabWindows/CVI Advanced Analysis Library 2-22 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

distributed. You can therefore determine how likely it is that factor A is as relatively large as it
is.

The Statistical Model

Let yp q,r,sbe the 8 observation at thetlp oth: and ¥ levels of A, B, and C, respectively, where
s=0,1, .., L-1. Express each observation as the sum of eight components, so that

Yp,qr,s= K+ ap+Bg+yr+ @B)p,g+ @Y)p,r+ BY)g,r+ @BY)p,gr+ €p,qr,s

wherep represents a standard effect present in each observgijdy, andy; are the effects of
factors A, B, and C respectively)p,q (@Y)p,r (BY)g,r and @By)p q,rare the effects of the
corresponding interactions; agglq r,sis a random fluctuation.

Assumptions

» Assume that for each p, q r, andsg r,sis normally distributed with mean 0 and variance
2
Og“.

» If afactor such as A is fixed, assume that the populations of measurements at each level are
normally distributed with meamp and variance@a2. Notice that all the populations at each
of the levels are taken to have the same variance. In addition, it is assumed thatmll the
means sum to zero. Analogous assumptions are made for B and C.

 If afactor such as A is random, assume that the effect of the level of Adige#f,a random
variable normally distributed with mean 0 and variaogé. Analogous assumptions are
made for B and C.

« If all of the factors, such as A and B, associated with the effect of an interadbp, @re
fixed, assume that the populations of measurements at each level are normally distributed
with mean @)p qand varianceag2. For any fixed p, theo(3)p,g means sum to zero when
summing over all g. Similarly, for any fixed g, theBfp g means sum to zero when
summing over all p.

 If any of the factors, such as A and B, associated with the effect of an intera@)pr are
random, the effect is taken to be a random variable normally distributed with mean 0 and
varianceoag?. If A is fixed but B is random, assume additionally that for any fixed g, the
(aB)p,gmeans sum to zero when summing over all p. Similarly, if B is fixed but A is
random, assume additionally that for any fixed p,) g means sum to zero when
summing over all g.

» All effects taken to random variables are assumed to be independent.

© National Instruments Corporation 2-23 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

The Hypotheses

Each of the following hypotheses are different ways of saying that a factor or an interaction
among factors has no effect on experimental outcomes. Start by assuming that there are no
effects and then seek evidence to contradict these assumptions. The seven hypotheses are as
follows.

» For (A),ap =0 for all levels of p if factor A is fixedya2 = O if factor A is random
* For (B),Bq= 0 for all levels of q if factor B is fixedyg2 = O if factor B is random
« For (C),y; = 0 for all levels of r if factor C is fixedjc? = 0 if factor C is random

* For (AB), @B)p,q= 0 for all levels of p and q if factors A and B are fixegdg?2 = 0 if either
factor A or B is random

» For (AC), @y)p,r= 0 for all levels of p and r if factors A and C are fixegc2 = 0 if either
factor A or C is random

» For (BC), By)q,r= 0 for all levels of g and r if factors B and C are fixede? = 0 if either
factor B or C is random

« For (ABC), (@By)p,q,r= 0 for all levels of p, g, and r if factors A, B, and C are fixed,
oagc? = 0 if any of the factors A, B, or C are random

Testing the Hypotheses

For each hypothesis, the function generates a number so that, if the hypothesis is true, that
number will be from a particular F-distribution.

For example, in the fixed-effects model, the number fa = msa/mse (associated with hypothesis
(A)) is from an F-distribution with a-1 and abc(L-1) degrees of freedom (F(a-1,abc(L-1))), given
that hypothesis (A) is true. The function calculates the probability that a number taken from a
particular F-distribution is larger than the F-value. For example,

SigA = Prob(X > fa)
where X is from F(a-1,abc(L-1)).
Use the probabilitiesigA, sigB, sigC, sigAB, sigAC, sigBC, andsigABC to determine when to
reject the associated hypotheses: (A), (B), (C), (AB), (AC), (BC), and (ABC). To do so, choose

a level of significance for each hypothesis. The level of significance is how likely you want it to
be that you reject the hypothesis when it is in fact true. Ordinarily you do not want it to be very

LabWindows/CVI Advanced Analysis Library 2-24 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

likely that you reject the hypothesis when it is true, and so the level of significance should be
small (0.05 is a common choice). Keep in mind that the smaller the level of significance, the
more hesitant you are to reject the hypothesis.

A particular hypothesis is rejected when the associated output paramgatesigB, sigC,
SigAB, sigAC, sigBC, orsigABC is less than the level of significance chosen for that hypothesis.
If A'is a random effect, and the chosen level of significance is 0.05igAd 0.03, you must

reject the hypothesis thap? = 0, and conclude that factor A does have an effect on the
experimental observations.

With some models there are no appropriate tests for certain hypotheses. In these cases the output
parameters directly involved with the testing of those hypotheses will be set to -1.0.

Formulas

Let yp.q,r,sbe the 8 observation at thetfp ¢t and ¥ levels of A, B, and C, respectively,
wheres =0, 1, ..., L-1.

Let
aa=|q

bb-1

Tor = z Toar

aa-1

Tq,r = sz,q,r
p=0
bb-1
Tp = Tp,q
g=0
aa—-1
Tq - Tp,q
p=0

© National Instruments Corporation 2-25 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

aa—1

-I_I' = ;)Tp,r

T = the total sum of all observations

aa-1

A=Y T.?2/(bb*cc*L
; A)

bb-1

B=Y T?/(aa*cc*L
; o 1)

cc1

C= ;Trz/(aa*bb*L)

aa-1l bb-1)
AB= Z Z}TM /(cc* L)
p=0 g=

aa-1 cc-1

AC= ; ;Tp,, ?I(bb* L)

bb-1 cc-1) .
BC= ; ;Tq,, I(aa* L)

aa-1 bb-1 cc-1

S= ij qZ Z Toar /L

CF = T2/(aa*bb*cc*L)

Then
ssa=A-CF msa = ssa/(aa-1) = ssa/dofa
ssb=B-CF msb = ssb/(bb-1) = ssb/dofb
ssc=C-CF msc = ssc/(cc-1) = ssc/dofc

ssab=AB-A-B+CF msab = ssab/(aa-1)(bb-1) = ssab/dofab
ssac=AC-A-C+CF msac = ssac/(aa-1)(cc-1) = ssac/dofac

ssbc=BC-B-C+CF msbc = ssbc/(bb-1)(cc-1) = ssbc/dofbc

LabWindows/CVI Advanced Analysis Library 2-26 © National Instruments Corporation

Chapter 2

fa

fb

fc

fab

fac

fbc

fabc

Advanced Analysis Library Function Reference

ssabc=S-AB-AC-BC+A+B+C-CF msabc =ssabc/(aa-1)(bb-1)(cc-1)

= ssabc/dofabc

mse=sse/(aa*bb*cc)(L-1) = sse/dofe

msa/mse (if B and C are fixed)
msa/msab (if B is random and C is fixed)
msa/msac (if B is fixed and C is random)
msb/mse (if A and C are fixed)
msb/msab (if A'is random and C is fixed)
msb/msbc (if A'is fixed and C is random)
msc/mse (if A and B are fixed)
msc/msac (if A'is random and B is fixed)
msc/mshbc (if A'is fixed and B is random)
msab/mse (if C is fixed)

msab/msabc (if C is random)

msac/mse (if B is fixed)

msac/msabc (if B is random)

msbc/mse (if A is fixed)

msbc/msabc (if A'is random)

msabc/mse

If f = msy/ms and mg = sg/dof; and ms = s/dof, we assume that f is from an F-distribution
with dof; and do$ degrees of freedom (F(dofdof)).

Example

Suppose that researchers want to know how the number of hours of sunlight, the amount of
rainfall, and the average temperature affect the yield of a crop. Each factor (sunlight, rainfall,
and temperature) is divided into three levels as follows.

Level

Sunlight (Factor A)
5 hours
6 hours
7 hours

Rainfall (Factor B)
2 inches
3inches
4 inches

© National Instruments Corporation 2-27 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Level Temperature (Factor C)
0 76-80 degrees
1 81-85 degrees
2 86-90 degrees

Chapter 2

A particular plot planted with the crop may be in any one of the 27 different combinations of
these levels with the three factors. For example, one combination might be six hours of sunlight
with two inches of rainfall and an average temperature between 76 and 80 degrees, recorded as

(1,0,0). These combinations are called cells.

The researchers set up 54 plots in various geographical locations chosen so that two plots will
fall in each of the 27 cells. To measure the productivity of a particular plot, they record the crop
production. Let Sunlight be Factor A, Rainfall be Factor B, and Temperature be Factor C.

They record the following information.

(A, B, C) Bushels produced (A, B, O Bushels produced
from each plot from each plot

(0,0, 0) 128 122 (1,1,1) 128 120
0,0,1) 113 108 (1,1, 2 122 121
0,0, 2) 116 116 (1, 2,0 114 115
(0,1,0) 132 129 (1,2,1) 116 113
0,1,1) 119 121 (2,0,0) 113 125
0,1, 2 126 113 (2,0,1) 135 131

0, 2,0) 118 114 (2,0, 2 145 145

©, 2,1) 141 133 (2,1,0) 152 147

©, 2, 2) 121 123 (2,1,1) 137 141
(1,0,0) 119 118 (2,1, 2) 171 171
(1,0,1) 111 115 (2,2,0) 143 144
1,0,2) 143 140 (2,2,1) 145 147
(1,1,0) 127 129 2, 2,2 121 123
(1,2,2) 112 113

To perform a three-way analysis of variance in the fixed effect model using the LabWindows
ANOVA3Wayunction, all the numbers of bushels are stored in a double-precisioryafajze

54. The integer arraysvelA, levelB, andlevelC record the cells in which observations were

made. For any particular i, these arrays are set such that yJ[i] is the number of bushels produced
by a plot in the (levelAlevelB, levelC) cell. For example,

(levelA, levelB, levelC) = (0, 1, 1)

y, =119 or 121

are valid combinations.

LabWindows/CVI Advanced Analysis Library

2-28

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Therefore, the input arrays levelA, levelB, andlevelC in this example could be set up for the
ANOVA3Wayunction as follows.

y =128, 122, 113, 108, 116, 116, 132, 129, ...
levelA=0,0,0,0,0,0,0,0, ..
levelB=0,0,0,0,0,0,1,1, ..
levelC=0,0,1,1,2,2,0,0, ...
Running the code given in the examples below produces the following results.

SigA = 1.11¢€l6
sigB = 1.3€8
sigC = 0.0072
SigAB = 1.2¢€8
SigAC =2.0e4
sigBC = 4.5¢€l0
SigABC = 4.8¢l0

For a level of significance such as 0.05, ANMOVA3Wayesults show that the researchers must
reject the hypotheses that sunlight, rainfall and temperature have no effect on the yield of the
crop. In other words, all three factors have a significant effect on crop yield.

Example
double y[54], sigA, sigB, sigC,sigAB, sigAC, sigBC, sigABC, info[8][4];
int levelA[54], levelB[54], levelC[54];

intL, a, b, c;

int status;

L=2; [* two observations per cell */

a=3; * three levels for factor A, Sunlight */
b=3; [* three levels for factor B, Rainfall */
c=3; /* three levels for factor C, Temperature */

/* Read in recorded data y[54], levelA[54], levelB[54] and levelC[54] */

status = ANOVA3Way(y, levelA, levelB, levelC, 54, L, a, b, c,
info, &sigA, &sigB, &sigC, &sigAB, &sigAC,
&sigBC, &sigABC);

© National Instruments Corporation 2-29 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

ArbitraryWave
int status = ArbitraryWave (int n, double amp, double f, double *phase,
double waveTabld] ,int tableSizeint interp,
double Xx[]);
Purpose
Generates an array containing an arbitrary wave, with each cycle described by an interpolated
version of the specifieddaveTable The output array is generated according to the following
formula.
x =amp * arb(*phase + f * 360.0 * i)
where
arb(p) = WT(p modulo 360.0)

f = frequency, cycles/sample

WT(x) is computed according to the following interpolation values.

WT(% = (waveTable forinterp = 0
(%= EwaveTablg + dx(waveTable pese= WaveTghlefor interp = 1
where
ix = (int)x
dx = x - (int)x

and (int) is the integral part of the variable x. This function can be used to simulate a continuous
acquisition from an arbitrary wave function generator. The unit of the iqghaseis in degrees,
and *phaseis set to

(*phase + f * 360.0 * n) modulo 360 before returning.

LabWindows/CVI Advanced Analysis Library 2-30 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters

Input n integer number of samples to generate.
amp double-precision amplitude of the generated signal.

f double-precision frequency of the generated signal, in
normalized units of cycles/sample.

phase double-precision points to the initiaphase in degrees,
of the generated signal.

waveTable double-precision array contains equally-spaced samples pf
one cycle of the generated signal.

tableSize integer number of elements contained in th
waveTablearray.

interp integer determines the type of interpolation

used in generating the arbitrary wav

signal from thevaveTablesamples.
0 = No Interpolation

1 = Linear Interpolation

D

D

Output phase double-precision upon completion of this function,
phasepoints to theophaseof the

next portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

X double-precision array| contains the generated arbitrary wave
signal.

Return Value

status integer refer to error codes in Appendix A

AutoPowerSpectrum

int status = AutoPowerSpectrum(double Xx[] ,int n, double dt,
double autoSpectrun] , double *df);

Purpose

Computes the single-sided, scaled auto power spectrum of a time-domain signal. The auto power
spectrum is defined as
FFT(X) FFT*(X) /n2

© National Instruments Corporation 2-31 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

wheren is the number of points in the signal array X and * denotes complex conjugate. The auto
power spectrum is converted to a single-sided form.

Parameters
Input X double-precision array] contains the time-domain signal.
integer number of elements in the input array.
n must be a power of 2.
dt double-precision dt is the sample period of the time-

domain signal, usually in seconds.
dt = 14s, where fs is the sampling

frequency of the time-domain signal.

Output |autoSpectrum | double-precision array | autoSpectrumis the single-sided
amplitude spectrum magnitude in vo|ts
RMS if the input signal is in volts. If
the input signal is not in volts, the
results are in input signal units RMS
This array must be at least?
elements long.

df double-precision df points to the frequency interval, in
hertz, ifdt is in seconds.
*df = 1/(n*dt)

Return Value

status integer refer to error codes in Appendix A

BackSub
int status = BackSub(void *a, double y[] ,int n, double X[]);
Purpose

Solves the linear equations a*x = y by backward substituada.assumed to be anby n lower
triangular matrix whose diagonal elements are all oras.obtained by the following formulas.

Xn—l = yn—1/ Qﬁ—ln—l

LabWindows/CVI Advanced Analysis Library 2-32 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

X =(y- Z a*x)/ a fori=n-2,n-3....0

The operation can be performed in place; that @)dy can be the same arraBackSub is
used in conjunction withU andForwSub to solve linear equations.

Refer to thd_U function description for more information.

Parameters
Input a double-precision 2D array input matrix
y double-precision array input vector
n integer dimension size od
Output X double-precision array solution vector
Return Value
status integer refer to error codes in
Appendix A

Example

/*To solve a linear equation A*x =y */
double A[10][10], x[10], y[10];

int p[10]; /* permutation vector */

int sign, n;

n=10;

LU(A,n,p,&sign); /* LU decomposition of A */
ForwSub(A,y,n,x,p); /* forward substitution */
BackSub(A,x,n,x); /* backward substitution */

Bessel CascadeCoef

int status= Bessel CascadeCoédlouble fs, double fL,double fH,
[IRFilterPtr filterinformation);
Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the Bessel filter model.

filterinformation is the pointer to the filter structure which contains the filter coefficients

and the internal filter information. You must allocate this structure by calling
AlloclIRFilterPtr before calling this cascade IIR filter design function.

© National Instruments Corporation 2-33 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

To redesign another filter, you should first ¢akkellRFilterPtr to free the present
filter structure and then callloclIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without
calling FreellRFilterPtr andAlloclIRFilterPtr. In this case, you should
properly reset the filtering operation for that structure by calegetlIRFilter before
the first call tollRCascadeFiltering

Parameters
Input |[fs double-precision| Specifies the sampling frequency in Hz.
fL double-precision| Specifies the desired lower cutoff
frequency of the filter in Hz.
fH double-precision| Specifies the desired upper cutoff
frequency of the filter in Hz.
Output | filterInformation [IRFilterPtr filterinformation is the pointer to the

filter structure which contains the filtel
coefficients and the internal filter

information.

You must allocate this structure by
calling AlloclIRFilterPtr before
calling this cascade IIR filter design
function.

Please refer to the function
AlloclIRFilterPtr for further

information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.
Example
/* Design a cascade lowpass Bessel IIR filter */
double fs, fl, th, X[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
order = 5;
type = 0; [* lowpass */

Uniform(n,17,x);

LabWindows/CVI Advanced Analysis Library 2-34 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

filterinfo = AlloclIRFilterPtr(type,order);

if(filterinfo!=0) {
Bessel_CascadeCoef(fs,fl,fh,filterinfo);
IIRCascadeFiltering(x,nfilterinfo,y);
FreellRFilterPtr(filterinfo);

Bessel Coef

int status = Bessel _Codint type,int order, double fs, double fL,
double fH,double a[] ,int na, double Db[] ,int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Bessel filter
model. Theype parameter has the following valid values.

0 lowpass filterfH is not used.

(1 highpass filtefH is not used.
type = D2 bandpass filter

EB bandstop filter

a[na] andb[nb] are the reverse and forward filter coefficients. The actual filtering

B 1 E[lb—l _na—l 0
Yn —gB;bixn—i ; ax—iH

is achieved by using the functitiRFiltering

© National Instruments Corporation 2-35 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input type integer controls the filter type of the Bessel |IR
filter coefficients.
order integer order of the IIR filter.
fs double-precision sampling frequency in Hz.
fL double-precision desired lower cutoff frequency of the
filter in Hz.
fH double-precision desired higher cutoff frequency of the
filter in Hz.
na integer number of coefficients in tha
coefficient array.
nb integer number of coefficients in the
coefficient array.
Output a double-precision array | array containing tbgerse
coefficients of the designed IIR filter.
b double-precision array | array containing fbevard
coefficients of the designed IIR filter.
Return Value
status integer refer to error codes in Appendix A
BlkHarrisWin

int status = BlkHarrisWin (double x[] ,int n);
Purpose

Applies a 3-term Blackman-Harris window to the input sequence X. If Y represents the output
sequence, the elements of Y are obtained using the equation

Y = X (0.42323 - 0.49755cos(iZn) + 0.07922cos(#i/n))

wheren is the number of elements in X.

LabWindows/CVI Advanced Analysis Library 2-36 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array | contains the input signal.
integer The number of elements in the inpu
array.
Output X double-precision array | contains the signal after applying the
Blackman-Harris window.

Return Value

status integer refer to error codes in
Appendix A

BkmanWin
int status = BkmanWin(double x[] ,int n);
Purpose

Applies a Blackman window to theinput signal. The Blackman window is defined by the
following formula.

w= 0.42 - 0.5cos(&/n) + 0.08cos(41/n) fori=0,1,...,n-1
The output signal is obtained by the following formula.
X = X*W, fori=0,1,..,n-1

The window operation is performed in place. The windowedxdegplaces the input data

Parameters
Input X double-precision array input data
integer number of elements x
Output X double-precision array windowed data
Return Value
status integer refer to error codes in
Appendix A

© National Instruments Corporation 2-37 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Bw_BPF

int status = Bw_BPHdouble x[] ,int

Purpose

order, double y[]);

Chapter 2

n, double fs, double fl, double fh,

Filters the input array using a digital bandpass Butterworth filter. The operation can be

performed in place; that is,andy can be the same array.

Parameters
Input X double-precision array input data
integer number of elements x

fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
order integer filter order

Output y double-precision array filtered data

Return Value

status

integer

refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order bandpass
Butterworth filter. The pass band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh;

int n, order;
int status;

n = 256;

fs = 1000.0;
fl = 200.0;
fh = 300.0;
order = 5;

Uniform (n, 17, x);
status = Bw_BPF (x, n, fs, fl, fh, order, y);

LabWindows/CVI Advanced Analysis Library 2-38

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Bw_BSF

int status = Bw_BSHdouble x[] ,int n, double fs,double fl,double fh,
int order, double vy[]);

Purpose

Filters the input array using a digital bandstop Butterworth filter. The operation can be
performed in place; that igs,andy can be the same array.

Parameters
Input X double-precision array input data
integer number of elements x
fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order bandstop
Butterworth filter. The stop band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh;

int n, order;

int status;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

order = 5;

Uniform (n, 17, x);

status = Bw_BSF (x, n, fs, fl, fh, order, y);

© National Instruments Corporation 2-39 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Bw_CascadeCoef

int status=Bw_CascadeCoe{double fs, double fL,double fH, lIRFilterPtr
filterinformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the Butterworth filter model.

filterinformation is the pointer to the filter structure which contains the filter coefficients and
the internal filter information. You must allocate this structure by calling
AlloclIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first ¢akkellRFilterPtr to free the present
filter structure and then calllloclIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without
calling FreellRFilterPtr andAlloclIRFilterPtr . In this case, you should
properly reset the filtering operation for that structure by calegetlIRFilter before
the first call tollRCascadeFiltering

Parameters
Input |fs double-precision| Specifies the sampling frequency in|Hz.
fL double-precision| Specifies the desired lower cutoff
frequency of the filter in Hz.
FH double-precision| Specifies the desired upper cutoff
frequency of the filter in Hz
Output]| filterInformation [IRFilterPtr filterinformation is the pointer to the

filter structure whichcontains the filter
coefficients and the internal filter
information. You must allocate this
structure by calling

AlloclIRFilterPtr before calling
this cascade IIR filter design function.
Please refer to the function
AlloclIRFilterPtr for further
information about the filter structure.

LabWindows/CVI Advanced Analysis Library 2-40 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Return Value

status integer Refer to error codes in
Appendix A.
Example
/* Design a cascade lowpass Butterworth IIR filter */
double fs, fl, th, x[256], y[256];
int type,order,n;
lIRFilterPtr filterinfo;
n = 256;
fs = 1000.0;
fl = 200.0;
order = 5;
type = 0; /* lowpass */

Uniform(n,17,x);

filterInfo = AlloclIRFilterPtr(type,order);

if(filterinfo!=0) {
Bw_CascadeCoef(fs,fl,fh,filterinfo);
IIRCascadeFiltering(x,n,filterinfo,y);
FreellRFilterPtr(filterIinfo);

Bw_Coef

int status = Bw_Coefint type,int order, double fsdouble fL,double fH,
double a[] ,int na,double Db[] ,int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Butterworth
filter model. Thaype parameter has the following valid values.

[0 lowpass filterfH is not used.
type = highpass filterfH is not used.

% bandpass filter

B bandstop filter

a[na] andb[nb] are the reverse and forward filter coefficients. The actual filtering is achieved
by using the functiohiRFiltering

1 b-1 na-1 N
= b x . - .
Y, aﬁ; X, Zl A%

© National Instruments Corporation 2-41 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input type integer controls the filter type of the
Butterworth IIR filter coefficients.
order integer order of the IIR filter.
fs double-precision sampling frequency in Hz.
fL double-precision desired lower cutoff frequency of the
filter in Hz.
fH double-precision desired higher cutoff frequency of the
filter in Hz.
na integer number of coefficients in tha
coefficient array.
nb integer number of coefficients in the
coefficient array.
Output a double-precision array | array containing tbgerse
coefficients of the designed IIR filter.
b double-precision array | array containing fbevard
coefficients of the designed IIR filter.

Return Value

status integer refer to error codes in Appendix A

Bw_HPF
int status = Bw_HPF(double x[] ,int n,double fs, double fc,int order, double Yy[]);
Purpose

Filters the input array using a digital highpass Butterworth filter. The operation can be
performed in place; that ig,andy can be the same array.

LabWindows/CVI Advanced Analysis Library 2-42 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input data
integer number of elements ix
fs double-precision sampling frequency
fc double-precision cutoff frequency
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order highpass
Butterworth filter. */

double x[256], y[256], fs, fc;

int n, order,

int status;

n = 256;

fs =1000.0;

fc = 200.0;

order = 5;

Uniform (n, 17, x);

status = Bw_HPF (x, n, fs, fc, order, y);

Bw_LPF
int status = Bw_LPF(double x[] ,int n, double fs,double fc,int order,double vy[]);
Purpose

Filters the input array using a digital lowpass Butterworth filter. The operation can be performed
in place; that isx andy can be the same array.

© National Instruments Corporation 2-43 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

Parameters
Input X double-precision array input data
integer number of elements ix
fs double-precision sampling frequency
fc double-precision cutoff frequency
order integer filter order
Output y double-precision array filtered data

Return Value

refer to error codes in
Appendix A

status integer

Example

/* Generate a random signal and filter it using a fifth order lowpass
Butterworth filter. */

double x[256], y[256], fs, fc;

int n, order,

int status;

n = 256;

fs =1000.0;

fc = 200.0;

order = 5;

Uniform (n, 17, x);

status = Bw_LPF (x, n, fs, fc, order, y);

CascadeToDirectCoef

int status= CascadeToDirectCoeflIRFilterPtr filterinformation , double a[] ,int na,
double D[] ,int nb);

Purpose

Converts from the cascade IIR coefficients contained bfiltegnformation structure to

direct form IIR coefficients in arrays a and b. These two arrays must be allocated as for the
old-style direct coefficient design functiorBw_Coef,...).

For lowpass and highpass type filters, the direct coefficient arrays must have size (order + 1).

For bandpass and bandstop type filters, the direct coefficient arrays must have size
(2*order + 1).

LabWindows/CVI Advanced Analysis Library 2-44 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters

Input [filterinformation | IIRFilterPtr filteriInformation is the pointer to the filter
structure which contains the filter coefficients
and the internal filter information. You mustj
allocate this structure by calling
AlloclIRFilterPtr before calling one g
the cascade IIR filter design functions. Pledse
refer to the functioilloclIRFilterPtr
for further information about the filter
structure.

na integer Specifies the number of coefficients in arrgy a.
na = order+1 for low or high pass filters
na = 2*order+1 for bandpass or bandstop
filters.

nb integer Specifies the number of coefficients in the B
Coefficient Array.

nb = order+1 for low or high pass filters
nb = 2*order+1 for bandpass or bandstop

—n

filters.
Output |a double- Array containing theeversecoefficients of
precision array| the direct form IIR filter.
b double- Array containing théorward coefficients of

precision array| the direct form IIR filter.

Return Value

status integer Refer to error codes in
Appendix A.

Ch_BPF

int status = Ch_BPHdouble x[] ,int n, double fs, double fl, double fh,
double ripple,int order, double vy[]);

Purpose

Filters the input array using a digital bandpass Chebyshev filter. The operation can be performed
in place; that isx andy can be the same array.

© National Instruments Corporation 2-45 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input X double-precision array input data
integer number of elements ix
fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
ripple double-precision pass band ripples in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order bandpass
Chebyshev filter. The pass band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, ripple;

int n, order;

int status;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

ripple = 0.5;

order = 5;

Uniform (n, 17, x);

status = Ch_BPF (x, n, fs, fl, th, ripple, order, y);

Ch_BSF

int status = Ch_BSHdouble x[] ,int n,double fs, double fl,double fh,
double ripple,int order, double vy[]);

Purpose

Filters the input array using a digital bandstop Chebyshev filter. The operation can be performed
in place; that isx andy can be the same array.

LabWindows/CVI Advanced Analysis Library 2-46 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input data
integer number of elements ix
fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
ripple double-precision pass band ripples in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order bandstop
Chebyshev filter. The stop band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, ripple;

int n, order;

int status;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

ripple = 0.5;

order = 5;

Uniform (n, 17, x);

status = Ch_BSF (x, n, fs, fl, th, ripple, order, y);

Ch_CascadeCoef

int status= Ch_CascadeCoefdouble fs, double fL,double fH, double ripple,
[IRFilterPtr filterinformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the Chebyshev filter model.

© National Instruments Corporation 2-47 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

filterinformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AlloclIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first ¢akkellRFilterPtr to free the present
filter structure and then calllloclIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without
calling FreellRFilterPtr andAlloclIRFilterPtr. In this case, you should
properly reset the filtering operation for that structure by calegetlIRFilter before
the first call tollRCascadeFiltering

Parameters
Input |fs double-precision Specifies the sampling frequency in Hz.
fL double-precision| Specifies the desired lower cutoff frequency
of the filter in Hz.
fH double-precision| Specifies the desired upper cutoff frequency
of the filter in Hz.
ripple double-precision Specifies the amplitude of the stop band
ripple in decibels.
Output| filterinformation | IIRFilterPtr filterinformation is the pointer to the filter

structure whichcontains the filter coefficients
and the internal filter information. You must
allocate this structure by calling
AlloclIRFilterPtr before calling this
cascade IIR filter design function.

Please refer to the function
AlloclIRFilterPtr for further
information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.
Example
/* Design a cascade lowpass Chebyshev IIR filter ~ */
double fs, fl, th, ripple, x[256], y[256];
int type,order,n;
[IRFilterPtr filterInfo;
n = 256;

LabWindows/CVI Advanced Analysis Library 2-48 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

fs = 1000.0;

fl = 200.0;

ripple = 0.5;

order = 5;

type = 0; /* lowpass */

Uniform(n,17,x);

filterInfo = AlloclIRFilterPtr(type,order);

if(filterInfo!=0) {
Ch_CascadeCoef(fs,fl,fh,ripple,filterinfo);
[IRCascadeFiltering(x,n,filterinfo,y);
FreellRFilterPtr(filterinfo);

Ch_Coef

int status = Ch_Coef(int type,int order, double fs, double fL,double fH,
double ripple, double a[] ,int na,double Db[] ,int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Chebyshev
filter model. Thaype parameter has the following valid values.

0 lowpass filterfH is not used.
type = highpass filterfH is not used.

% bandpass filter

8 bandstop filter

a[na] andb[nb] are the reverse and forward filter coefficients. The actual filtering

1 b1 na-1 D
==/ Nb x.-
yn ao gl‘:zo i Xn—l ; a' yl—lH

is achieved by using the functitiRFiltering

© National Instruments Corporation 2-49 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input type integer controls the filter type of the
Chebyshev IIR filter coefficients.
order integer order of the IIR filter.
fs double-precision sampling frequency in Hz.
fL double-precision desired lower cutoff frequency of the
filter in Hz.
fH double-precision desired higher cutoff frequency of the
filter in Hz.
ripple double-precision amplitude of thestopbandripple in
decibels.
na integer number of coefficients in tha
coefficient array.
nb integer number of coefficients in thie
coefficient array.
Output a double-precision array | array containing teeerse
coefficients of the designed IIR filter.
b double-precision array | array containing thevard
coefficients of the designed IIR filter.

Return Value

status integer refer to error codes in Appendix A

Ch_HPF

int status = Ch_HPF(double x[] ,int n, double fs, double fc,double ripple,
int order, double vy[]);

Purpose

Filters the input array using a digital highpass Chebyshev filter. The operation can be performed
in place; that isx andy can be the same array.

LabWindows/CVI Advanced Analysis Library 2-50 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input data
integer number of elements ix
fs double-precision sampling frequency
fc double-precision cutoff frequency
ripple double-precision pass band ripples in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order highpass
Chebyshev filter. */

double x[256], y[256], fs, fc, ripple;

int n, order;

int status;

n = 256;

fs = 1000.0;

fc = 200.0;

ripple = 0.5;

order = 5;

Uniform (n, 17, x);

status = Ch_HPF (x, n, fs, fc, ripple, order, y);

Ch_LPF

int status = Ch_LPF(double x[] ,int n, double fs, double fc,double ripple,
int order, double vy[]);

Purpose

Filters the input array using a digital lowpass Chebyshev filter. The operation can be performed
in place; that isx andy can be the same array.

© National Instruments Corporation 2-51 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input X double-precision array input data
integer number of elements ix
fs double-precision sampling frequency
fc double-precision cutoff frequency
ripple double-precision pass band ripples in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order lowpass
Chebyshev filter. */

double x[256], y[256], fs, fc, ripple;

int n, order;

int status;

n = 256;

fs = 1000.0;

fc = 200.0;

ripple = 0.5;

order = 5;

Uniform (n, 17, x);

status = Ch_LPF (x, n, fs, fc, ripple, order, y);

Chirp
int status = Chirp (int n, double amp, double f1, double f2,double x[]);
Purpose

Generates an array containing a chirp pattern. The outpubaisa@enerated according to the
following formula.

X = amp*sin(g i+ Db)i)

where
a = 2r(f2-f1)/n
b =2 fl

LabWindows/CVI Advanced Analysis Library 2-52 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

f1 = beginning frequency, cycles/sample
f2 = ending frequency, cycles/sample

Parameters
Input n integer number of samples to generate.
amp double-precision amplitude of the resulting signal.
fl double-precision beginning frequency of the resulting
signal in normalized units of
cycles/sample.
f2 double-precision ending frequency of the resulting
signal in normalized units of
cycles/sample.
Output X double-precision array | contains the generated chirp pattern.

Return Value

status integer refer to error codes in Appendix A

ClearlD
int status = ClearlD(double x[] ,int n);
Purpose

Sets the elements of tkerray to 0.0.

Parameters
Input n integer number of elements ix
Output X double-precision array cleared array

Return Value

status integer refer to error codes in
Appendix A

© National Instruments Corporation 2-53 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Clip
int status = Clip(double x[] ,int n, double upper, double lower, double vYy[]);
Purpose

Clips the input array values. The range of the resulting output ardayvisr[: upper]. The {"
element of the resulting array is obtained by using the following formula.

O upper if x> upper
Y- [lower if x < lower
H, otherwise

The operation can be performed in place; that @)dy can be the same array.

Parameters
Input X double-precision array input data
n integer number of elements ix
upper double-precision upper limit
lower double-precision lower limit
Output y double-precision array clipped array

Return Value

status

integer

refer to error codes in
Appendix A

Contingency_Table

int status = Contingency_Tablgint s,int k,int void *y,double *Test Stat
double *Sig);

Purpose
Creates a contingency table in which objects of experimentation are classified and tallied

according to two schemes of categorization. This function can be used to perform a test of
homogeneity or a test of independence.

LabWindows/CVI Advanced Analysis Library 2-54 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Note: For both tests, the math is identical. It is not necessary to specify which test is being
applied. The only difference is in the hypothesis being tested.

Parameters

Input S integer number of random samples taken in the test
of homogeneity, or the number of categorjies
in the first categorization scheme in the tgst
of independence.

k integer number of categories in the test of
homogeneity, or the number of categories
the second scheme in the test of
independence.

y integer 2D array |contingency table, indexed as &y k
matrix.

n

Output |Test_Stat |double-precision |used to calculat8ig. If the hypothesis is
true, Test_Statis known to come from a
chi-square distribution with

(s-1)*(k-1) degrees of freedom.

Sig double-precision | level of significance at which the hypothesis
must be rejected.

Return Value

status integer refer to error codes in
Appendix A

Using This Function

A contingency table is a table in which objects of experimentation are classified and tallied
according to two schemes of categorization. For example, if the objects of experimentation are
individuals, one scheme might be political affiliation: Know-Nothing, Tory, Whig, Mugwump,

and so on. Another scheme might be to classify individuals according to how they vote on some
issue.

Chi-Square Test of Homogeneity

Take a random sample of some fixed sized from each of the categories in one categorization
scheme for the chi-square test of homogeneity. For each of the samples, categorize the objects of
experimentation according to the second scheme, and tally them. For example, you might pick
100 Know-Nothings, 100 Whigs, 100 Tories and 100 Mugwumps. Count the number of
individuals who vote a certain way for each category. This produces the following contingency
table.

© National Instruments Corporation 2-55 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Yes No Undecided
Know-Nothing |36 24 40
Whig 12 53 35
Tory 61 11 28
Mugwump 83 3 14

Chapter 2

Notice that the sum of each of the rows equals 100.

Test the hypothesis that the populations from which each sample is taken are identically
distributed with respect to the second categorization scheme. For example, you can test the
hypothesis that the four samples of politically affiliated individuals are distributed identically

with respect to the way they vote. If this hypothesis is true, it means that a Mugwump selected at
random is just as likely to vote yes as a Whig selected at random.

Chi-Square Test of Independence
Take only one sample from the total population for the chi-square test of independence.

Categorize each object of experimentation and tally them in the two categorization schemes. If
you select 500 individuals, for example, you might arrive at the following table.

Yes No Undecided
Know-Nothing |18 15 18
Whig 55 93 38
Tory 101 83 20
Mugwump 16 31 12

Notice that the sum of each row is different, but that the total number of individuals tallied is
500.

Test the hypothesis that the categorization schemes are independent. For example, if you choose
a person at random and he or she turns out to be a Mugwump, then the hypothesis says his or her
political affiliation has no impact on how he or she votes on the selected issue.

Testing The Hypothesis
Whichever test is being used, a level of significance must be chosen. This is how likely you
want it to be that a true hypothesis is rejected. Ordinarily you do not want it to be very likely, so

the level of significance should be small (0.05, or 5%, is a common choice).

The output paramet@&ig is the level of significance at which the hypothesis is rejected.
Sig = Proby = Test_Sta), wherey is a random variable from the chi-square distribution with

LabWindows/CVI Advanced Analysis Library 2-56 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

(s-1)(k-1) degrees of freedom. Sigis less than the level of significance, the hypothesis must be
rejected.

Formulas

Let yp,qbe the number of occurrences in the (ﬁb‘,qﬁll of the contingency table forp =0, 1, ...,
(s-1)andq=0,1, ..., (k-1).

Let

Test St Fsil g Yoa ™ Coq
est_Sta
=0 0 g

Example
/* Generate random contingency table. Because rows will not have identical
sums, use the chi-square test of independence. */
int s=10, k=10, y[10][10], i,], status;
double Test_Stat, Sig, temp[1];
for(i=0; i<s; i++)
for(j=0; j<k; j++)

WhiteNoise (1, 5, ,17, temp);
temp[0] += 6.0;
y[i]{i] = (int) temp[0];

status = Contingency_Table (s, k, y, &Test_Stat, &Sig);

© National Instruments Corporation 2-57 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Convolve

int status = Convolvgdouble Xx[] ,intn,double y[] ,int m, double cxy[]);

Purpose

Finds the convolution of theandy input arrays. The convolution is obtained by the following
formula.

CXY; :Z X " Vi

where a=0,b=i for&i<m
a=i-m+1,b=i fornxi<n
a=i-m+1,b=n-1 forgisn+m-1

Note: This formula description assumes that snn. For m > n, exchange (x, y) and (m, n) in
the above equations.

Parameters
Input X double-precision array X input array
n integer number of elements x
y double-precision array y input array
m integer number of elements
Output cxXy double-precision array convolution array
Return Value
status integer refer to error codes in
Appendix A

Using This Function

The size of the output array must be at least ih - 1) elements long. This algorithm executes
more efficiently if the sizes of the input arrays are a power of two.

Example

/* Generate two arrays with random numbers and find their
convolution. */

double x[256], y[256], cxy[512];

int n, m;

LabWindows/CVI Advanced Analysis Library 2-58 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

n = 256;

m = 256;

Uniform (n, 17, x);
Uniform (m, 17, y);
Convolve (x, n, y, m, cxy);

CopylD
int status = CopylD(double x,int n,double y[]);
Purpose

Copies the elements of thearray. This function is useful to duplicate arrays for in-place
operations.

Parameters
Input X double-precision array input array
integer number of elements ix
Output y double-precision array duplicated array
Return Value
status integer refer to error codes in
Appendix A

Correlate
int status = Correlate(double Xx[] ,int n,double y[] ,int m,double rxy[]);
Purpose

Finds the correlation of the input arrays. The correlation is obtained by the following formula.

m-1

Rxy = ;) Xane1i ¥ Yo

y,=0whenj<0orgm

and x=0whenj<0orkn

© National Instruments Corporation 2-59 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

Parameters
Input X double-precision array y input array
n integer number of elements x
y double-precision array y input array
m integer number of elements
Output Xy double-precision array correlation array

Return Value

status

integer

refer to error codes in

Appendix A

Using This Function
The size of the output array must be at least ih -1) elements long.

Example

/* Generate two arrays with random numbers and find their correlation. */
double x[256], y[256], cxy[512];

int n, m;

n = 256;

m = 256;

Uniform (n, 17, x);

Uniform (m, 17, y);

Correlate (x, n, y, m, cxy);

CosTaperedWin
int status = CosTaperedWin(double x[] ,int n);
Purpose

Applies a cosine tapered window to the input sequence X. If Y represents the output sequence,
the elements of Y are obtained from the equation:

0.5 x (-cos(2pi/n)) i=0,1,...,m-1
[l .

yi =X I=m, m+1,...,n-m-1
B).S X (L-cos(2pi/n)) i=n-m,n-m+1,...,n-1

where m = roundn(/10)

LabWindows/CVI Advanced Analysis Library 2-60 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array | contains the input signal.
integer number of elements in the input arrgy.
Output X double-precision array | contains the signal after applying the
Tapered Cosine window.

Return Value

status integer refer to error codes in Appendix A

CrossPowerSpectrum

int status = CrossPowerSpectrunfdouble x[] , double y[] ,int n, double dt,
double magSxy]] ,double phaseSxy] ,double *df);

Purpose

Computes the single-sided, scaled cross power spectrum of two time-domain signals. The cross
power spectrum is defined as:

Sxy = FFT(Y) FFT*(X) /1§2)

wheren is the number of points in arrays X andnYagSxyandphaseSxyare single-sided
magnitude and phase spectra of Sxy.

Parameters
Input X double-precision array| time-domain signal X.
double-precision array] time-domain signal Y.
n integer The number of elements in the inpu
array. Valid Values: Powers of 2.
dt double-precision dt is the sample period of the time-

domain signal, usually in seconds.
dt = 14s, where fs is the sampling
frequency of the time-domain signal.

(continues)

© National Instruments Corporation 2-61 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters (Continued)

4%

Output magSxy double-precision array | magSxyis the single-sided magnitud
Cross power spectrum between signa
X and Y in volts RMS squared if the
input signals are in volts. If the input
signals are not in volts, the results ane
in input signal units RMS squared.
This array must be at least?
elements long.

phaseSxy |double-precision array | phaseSxyis the single-sided phase
cross spectrum in radians showing the
difference between the phases of signal
Y and signal X. This array must be at
leastn/2 elements long.

df double-precision Points to the frequency interval, in
hertz, ifdt is in seconds.
*df = 1/(n*dt)

S

Return Value

status integer refer to error codes in Appendix A

CrossSpectrum

int status = CrossSpectrun{double x[] ,double y[] ,int n,double realSxy] ,
double imagSxy]);

Purpose

Computes the double-sided cross power spectrum, Sxy, of the input sequences X and Y
according to the following formula.

FFT (X)FFT(Y
CrossSpectrun¥ (n)2 ()
wheren is the number of samples in both input sequences, and FFT*[X] is the complex
conjugate of FFT[X].n must be a power of 2. The input sequences are copied to internal buffers
before the FFTs are computed. The output arrays are the real and imaginary parts of the cross
spectrumCrossSpectrum

LabWindows/CVI Advanced Analysis Library 2-62 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference
Parameters
Input double-precision array | time-domain signal X.
y double-precision array | time-domain signal Y.
n integer number of elements in the input arrgys.
The number must be a power
of 2.
Output realSxy double-precision array | real part of the double-sided cross
power spectrum between signals X gnd
Y. The size of this array must be
imagSxy double-precision array | imaginary part of the double-sided

cross power spectrum between signals
X and Y. The size of this array must pe

n.

Return Value

status

integer

refer to error codes in Appendix A

CxAdd

int status = CxAdd(double xr, double xi, double vyr, double vyi,double *zr,

Purpose

double

*Zzi);

Adds two complex numbers. The resulting complex number is obtained using the following

formulas.

Zr = Xr +yr

Zi=xi+yi

© National Instruments Corporation 2-63

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
yr double-precision real part of y
yi double-precision imaginary part of y
Output zr double-precision pointer real part of z
Zi double-precision pointer imaginary part of z
Return Value
status integer refer to error codes in
Appendix A

CxAdd1D

int status = CxAdd1lD(double xr[] ,double xi[] ,double vyr[] ,double vyi[] ,
int n,double zr[] ,double zi[]);

Purpose

Adds two 1D complex arrays. THedlement of the resulting complex array is obtained using
the following formulas.

zr = Xr, +yr,
zi = Xi, + Vi,

The operations can be performed in place; that is, the input and output complex arrays can be the
same.

Parameters

Input Xr double-precision array real part of x
Xi double-precision array imaginary part of x
yr double-precision array real part of y
yi double-precision array imaginary part of y
n integer number of elements

Output zr double-precision array real part of z
Zi double-precision array imaginary part of z

LabWindows/CVI Advanced Analysis Library 2-64 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Return Value

status integer refer to error codes in
Appendix A

CxDiv

int status = CxDiv(double xr, double xi, double yr, double vyi,double *zr,
double *zi);

Purpose
Divides two complex numbers. The resulting number is obtained using the following formulas.

zr = (xrryr + xi*yi) / (yr 2 + yi2)

zi = (xi*yr - xrryi) [(yr2 + yi2)

Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
yr double-precision real part of y
yi double-precision imaginary part of y
Output zr double-precision real part of z
Zi double-precision imaginary part of z
Return Value
status integer refer to error codes in Appendix|A

© National Instruments Corporation 2-65 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

CxDivlD

int status = CxDivlD(double xr[] ,double xi[] ,double yr[] ,double vyi[] ,
int n,double zr[] ,double zi[]);

Purpose

Divides two 1D complex arrays. THedlement of the resulting complex array is obtained using
the following formula.

zr = (Xryr i+ xiryi) 1 (yr2 +yi2)
zi, = (Xi*yr.- xr*yi) / (yr2 +yi2)

zr can be in place with xr; zi can be in place with xi.

Parameters

Input Xr double-precision array real part of x
Xi double-precision array imaginary part of x
yr double-precision array real part of y
yi double-precision array imaginary part of y
n integer number of elements

Output zr double-precision array real part of z
Zi double-precision array imaginary part of z

Return Value

status

integer

refer to error codes in
Appendix A

CxExp

int status = CxExp(double xr, double xi,double *yr, double *yi);

Purpose

Computes the exponential of a complex number. The resulting complex number is obtained

using the following formula.

(yr, yi) = exr. x)

LabWindows/CVI Advanced Analysis Library

2-66

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
Output yr double-precision real part of y
yi double-precision imaginary part of y
Return Value
status integer refer to error codes in
Appendix A

CxLinEv1D

int status =CxLIinEv1D (double xr[] ,double xi[] ,int n, double ar,double ai,
double br, double bi, double yr[] ,double vyi[]);

Purpose

Performs a complex linear evaluation of a 1D complex array. "Télement of the resulting
complex array is obtained using the following formulas.

yr=ar*xr - ai*xi+ br
yi.= ar*xi + ai*xr + bi

The operations can be performed in place; that is, the input and output complex arrays can be the
same.

Parameters

Input Xr double-precision array real part of x
Xi double-precision array imaginary part of x
n integer number of elements
ar double-precision real part of a
ai double-precision imaginary part of a
br double-precision real part of b
bi double-precision imaginary part of b

Output yr double-precision array real part of y
yi double-precision array imaginary part of y

© National Instruments Corporation 2-67 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Return Value

status integer refer to error codes in
Appendix A

CxLn
int status = CxLn(double xr, double xi, double *yr,double *yi);
Purpose

Computes the natural logarithm of a complex number. The resulting complex number is
obtained using the following formula.

(yr, yi) = Logg(xr, Xi)

where e = 2.718....

Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
Output yr double-precision real part of y
yi double-precision imaginary part of y
Return Value
status integer refer to error codes in
Appendix A

CxLog
int status = CxLog(double xr, double xi, double *yr,double *yi);
Purpose

Computes the logarithm (base 10) of a complex number. The resulting complex number is
obtained using the following formula.

(yr, yi) = Logyo(xr, xi)

LabWindows/CVI Advanced Analysis Library 2-68 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
Output yr double-precision real part of y
yi double-precision imaginary part of y
Return Value
status integer refer to error codes in
Appendix A

CxMul

int status = CxMul (double xr, double xi, double yr, double vyi,double *zr,
double *zi);

Purpose

Multiplies two complex numbers. The resulting complex number is obtained using the following
formulas.

Zr = Xr*yr - Xi*yi

Zi = Xr*yi + xi*yr

Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
yr double-precision real part of y
yi double-precision imaginary part of y
Output zr double-precision real part of z
Zi double-precision imaginary part of z
Return Value
status integer refer to error codes in
Appendix A

© National Instruments Corporation 2-69 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

CxMull1D

int status = CxMullD(double xr[] ,double xi[] ,double yr[] ,double yi[] ,
int n, double zr[] ,double zi[]);

Purpose

Multiplies two 1D complex arrays. Theelement of the resulting complex array is obtained
using the following formulas.

zr = Xr*yr - Xi*yi,
zi = Xr*yi, + xi*yr,

The operations can be performed in place; that is, the input and output complex arrays can be the
same.

Parameters
Input Xr double-precision array real part of x
Xi double-precision array imaginary part of x
yr double-precision array real part of y
yi double-precision array imaginary part of y
n integer number of elements
Output zr double-precision array real part of z
Zi double-precision array imaginary part of z
Return Value
status integer refer to error codes in
Appendix A

CxPow
int status = CxPow(double xr, double xi, double a, double *yr, double *yi);
Purpose

Computes the power of a complex number. The resulting complex number is obtained using the
following formula.

(yr, yi) = (xr, xi)@

LabWindows/CVI Advanced Analysis Library 2-70 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference
Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
a double-precision exponent
Output yr double-precision real part of y
yi double-precision imaginary part of y

Return Value

status

integer

refer to error codes in
Appendix A

CxRecip

int status = CxRecip(double xr, double xi, double *yr, double *yi);

Purpose

Finds the reciprocal of a complex number. The resulting complex number is obtained using the

following formulas.
yr = xr/ (xr2 + xi2)

yi = -Xi [(xr2 + xi2)

Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
Output yr double-precision real part of y
yi double-precision imaginary part of y

Return Value

status

integer

refer to error codes in
Appendix A

© National Instruments Corporation

2-71

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

CxSqrt
int status = CxSqrt(double xr, double xi, double *yr, double *yi);
Purpose

Computes the square root of a complex number. The resulting complex number is obtained
using the following formula.

(yr, yi) = (xr, xi)1/2

Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
Output yr double-precision real part of y
yi double-precision imaginary part of y
Return Value
status integer refer to error codes in
Appendix A

CxSub

int status = CxSub(double xr, double xi, double yr, double vyi,double *zr,
double *zi);

Purpose

Subtracts two complex numbers. The resulting complex number is obtained using the following
formulas.

Zr = Xxr-yr

Zi=Xi-yi

LabWindows/CVI Advanced Analysis Library 2-72 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input Xr double-precision real part of x
Xi double-precision imaginary part of x
yr double-precision real part of y
yi double-precision imaginary part of y
Output zr double-precision real part of z
Zi double-precision imaginary part of z
Return Value
status integer refer to error codes in
Appendix A

CxSubl1D

int status = CxSublD(double xr[] , double xi[] ,double yr[] ,double vyi[] ,
int n,double zr[] ,double zi[]);

Purpose

Subtracts two 1D complex arrays. Thelement of the resulting complex array is obtained
using the formulas.

Zr = Xr-yr,
zi= Xi- yi

The operations can be performed in place; that is, the input and output complex arrays can be the
same.

Parameters

Input Xr double-precision array real part of x
Xi double-precision array imaginary part of x
yr double-precision array real part of y
yi double-precision array imaginary part of y
n integer number of elements

Output zr double-precision array real part of z
Zi double-precision array imaginary part of z

© National Instruments Corporation 2-73 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Return Value

status integer refer to error codes in
Appendix A

Decimate
int status = Decimatgdouble Xx[] ,int n,int dFact int ave double Yy[]);

Purpose

Decimates the input sequence X by the decimating factor. If Y represents the decimated output
sequence, the elements of the sequence Y are obtained using the following equation.

D(i*dFact ave O
y :E 1 dFact-1
| Fact Z Xisdract+k ave= 1
=0
where
i=0,1,2..size-1

size = (int) f/dFact) and is the size of the output sequence

Parameters
Input X double-precision array | contains the input array to be
decimated.
n integer number of elements in the input arrgy.
dFact integer amount by which to decimaieto form
y.
ave integer specifies whether averaging is used|in
decimatingx.
Output y double-precision array | contains the output array, whichxs
decimated by thdFact. The size of
this array must be (int)/dFact.

Return Value

status integer refer to error codes in Appendix A

LabWindows/CVI Advanced Analysis Library 2-74 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Deconvolve
int status = Deconvolvédouble y[] ,int ny,double X[] ,int nx,double h[]);
Purpose
Computes the deconvolution pivith x. y is assumed to be the result of the convolutiox of
with some system response. The deconvolution operation is realized using Fourier transform
pairs. The output sequenkéas obtained using the following equation.
h = InvFFT{Y() / X(f) }
where
X(f) is the Fourier transform of

Y(f) is the Fourier transform of
InvFFT() is the inverse Fourier transform

Parameters
Input y double-precision array | input array to be deconvolved
with x.
ny integer number of elements yn
X double-precision array | input array with whicly is
deconvolved.
nx integer The number of elements in
nx < ny.
Output h double-precision array | output array which ig deconvolved
with x This array must beny - nx + 1)
elements long.

Return Value

status integer refer to error codes in Appendix A

© National Instruments Corporation 2-75 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Determinant
int status = Determinant(void *x,int n, double *det);
Purpose

Finds the determinant of anby n 2D input matrix.

Parameters
Input X double-precision 2D array input matrix
n integer dimension size of input matri
Output det double-precision determinant

Note: The input matrix must be am byn square matrix.

Return Value

status integer refer to error codes in
Appendix A

Difference

int status = Difference(double X[] ,int n, double dt, double xInit,
double xFinal,double vy[]);

Purpose

Finds the discrete difference of the input array. Theéément of the resulting array is obtained
using the following formula.

Y, :[)?ﬂ - X—l]/(Z* dy
wherex , = xInit andx, = xFinal.

The operation can be performed in place; that @)dy can be the same array.

LabWindows/CVI Advanced Analysis Library 2-76 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference
Parameters
Input X double-precision array input array
integer number of elements ix
dt double-precision sampling interval
xInit double-precision initial condition
xFinal double-precision final condition
Output y double-precision array differentiated array

Return Value

status

integer

refer to error codes in
Appendix A

Example

/*Generate an array with random numbers and differentiate it.*/

double x[200], y[200];
double dt, xInit, xFinal;

int n;

n = 200;

dt = 0.001;
xInit = -0.5;
xFinal = -0.25;

Uniform (n, 17, x);
Integrate (x, n, dt, xInit, xFinal, y);

DivliD

int status = DiviD(double Xx[] ,double y[] ,int

Purpose

Divides two 1D arrays. Thé element of the output array is obtained using the following

formula.

z=xly,

n, double Zz[]);

The operation can be performed in place; that ¢en be the same array as eithery.

© National Instruments Corporation 2-77

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

Parameters
Input double-precision array X input array
y double-precision array y input array
n integer number of elements to be
divided
Output z double-precision array result array

Return Value

status

integer

refer to error codes in
Appendix A

Div2D

int status = Div2D(void *x,void *y,int n,int m,void *2);

Purpose

Divides two 2D arrays. The"(ij") element of the output array is obtained using the following

formula.

Z‘J = Xi,J' / le

The operation can be performed in place; that ¢en be the same array as eithery.

Parameters
Input double-precision 2D array | X input array
y double-precision 2D array |y input array
n integer number of elements in first
dimension
m integer number of elements in second
dimension
Output z double-precision 2D array| result array

Return Value

status

integer

refer to error codes in
Appendix A

LabWindows/CVI Advanced Analysis Library 2-78

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

DotProduct
int status = DotProduct(double X[] ,double vy, int n,double *dotProd);
Purpose

Computes the dot product of thendy input arrays. The dot product is obtained using the
following formula.

n-1
dotProd= x» y= Z X*y

1=0

Parameters
Input X double-precision array X input vector
y double-precision array y input vector
n integer number of elements
Output dotProd |double-precision dot product
Return Value
status integer refer to error codes in
Appendix A

Elp_BPF

int status = Elp_BPFdouble X[] ,int n,double fs, double fl, double fh,
double ripple, double atten, int order, double Yy[]);

Purpose

Filters the input array using a digital bandpass elliptic filter. The operation can be performed in
place; that isx andy can be the same array.

© National Instruments Corporation 2-79 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input X double-precision array input data
integer number of elements ix
fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
ripple double-precision pass band ripples in dB
atten double-precision stop band attenuation in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order bandpass
elliptic filter. The pass band is from 200.0 to 300.0 */
double x[256], y[256], fs, fl, fh, ripple, atten;

int n, order;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

ripple = 0.5;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

Elp_BPF (x, n, fs, fl, fh, ripple, atten, order, y);

Elp_BSF

int status = Elp_BSHdouble x[] ,int n, double fs, double fl,double fh,
double ripple, double atten, int order, double Yy[]);

Purpose

Filters the input array using a digital bandstop elliptic filter. The operation can be performed in
place; that isx andy can be the same array.

LabWindows/CVI Advanced Analysis Library 2-80 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input data
integer number of elements ix
fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
ripple double-precision pass band ripples in dB
atten double-precision stop band attenuation in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order bandstop
elliptic filter. The stop band is from 200.0 to 300.0 */
double x[256], y[256], fs, fl, fh, ripple, atten;

int n, order;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

ripple = 0.5;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

Elp_BSF (x, n, fs, fl, fh, ripple, atten, order, y);

Elp_CascadeCoef

int status= Elp_CascadeCoefdouble fs, double fL,double fH, double ripple,
double atten, lIRFilterPtr filterinformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the Elliptic (or Cauer) filter model.

© National Instruments Corporation 2-81 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

filterinformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AlloclIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first ¢akkellRFilterPtr to free the present
filter structure and then calllloclIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without

calling FreellRFilterPtr andAlloclIRFilterPtr . In this case, you should
properly reset the filtering operation for that structure by calegetlIRFilter before
the first call tollRCascadeFiltering
Parameters
Input |[fs double-precision| Specifies the sampling frequency in Hz.
fL double-precision| Specifies the desired lower cutoff
frequency of the filter in Hz.
fH double-precision| Specifies the desired upper cutoff
frequency of the filter in Hz
ripple double-precision| Specifies the amplitude of tis¢opband
ripple in decibels.
atten double-precision| Specifies thestopband attenuation, in
decibels, of the IIR filter to be designed.
Output | filterInformation [IRFilterPtr filteriInformation is the pointer to the

filter structure which contains the filter
coefficients and the internal filter
information. You must allocate this
structure by calling

AlloclIRFilterPtr before calling
this cascade IIR filter design function.

Please refer to the function
AlloclIRFilterPtr for further
information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.
Example
/* Design a cascade lowpass Elliptic IIR filter */
double fs, fl, fh, ripple, atten, x[256], y[256];
int type,order,n;

LabWindows/CVI Advanced Analysis Library 2-82 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

lIRFilterPtr filterinfo;

n = 256;

fs = 1000.0;

fl = 200.0;

ripple = 0.5;

atten = 40.0;

order = 5;

type = 0; /* lowpass */

Uniform(n,17,x);

filterinfo = AlloclIRFilterPtr(type,order);

if(filterInfo!=0) {
Elp_CascadeCoef(fs,fl,fh,ripple,atten filterinfo);
[IRCascadeFiltering(x,n,filterinfo,y);
FreellRFilterPtr(filterinfo);

Elp_Coef

int status = Elp_Coef(int type,int order, double fs, double fL,double fH,
double ripple, double atten, double a[] ,int na,
double D[] ,int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Elliptic (or
Cauer) filter model. Theype parameter has the following valid values.

[0 lowpass filterfH is not used.
type = highpass filterfH is not used.

E,Z bandpass filter

F bandstop filter

a[na] andb[nb] are the reverse and forward filter coefficients. The actual filtering

1 b-1 na-1]
= b -
Yn a, Sl':zo an—i ; a.' ¥—i H

is achieved by using the functitiRFiltering

© National Instruments Corporation 2-83 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input type integer controls the filter type of the Elliptic IIR

filter coefficients.

order integer order of the IIR filter.

fs double-precision sampling frequency in Hz.

fL double-precision desired lower cutoff frequency of the filter
in Hz.

fH double-precision desired higher cutoff frequency of the filter
in Hz.

ripple double-precision amplitude of the stop band ripple in
decibels.

atten double-precision stop band attenuation, in decibels, of the
[IR filter to be designed.

na integer number of coefficients in tha coefficient
array.

nb integer number of coefficients in thie coefficient
array.

Output a double-precision array array containing tegersecoefficients of|

the designed IIR filter.

b double-precision array array containing fbevard coefficients
of the designed IIR filter.

Return Value

status integer refer to error codes in Appendix A

Elp_HPF

int status = Elp_ HPF(double Xx[] ,int n, double fs, double fc,
double ripple,double atten,int order, double vy[]);

Purpose

Filters the input array using a digital highpass elliptic filter. The operation can be performed in
place; that isx andy can be the same array.

LabWindows/CVI Advanced Analysis Library 2-84 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input data
integer number of elements ix
fs double-precision sampling frequency
fc double-precision cutoff frequency
ripple double-precision pass band ripples in dB
atten double-precision stop band attenuation in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order highpass
elliptic filter. */

double x[256], y[256], fs, fc, ripple, atten;
int n, order;

n = 256;

fs = 1000.0;

fc = 200.0;

ripple = 0.5;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

Elp_HPF (x, n, fs, fc, ripple, atten, order, y);

Elp_LPF

int status = Elp_LPF(double Xx[] ,int n,double fs, double fc,double ripple,
double atten, int order, double y[]);

Purpose

Filters the input array using a digital lowpass elliptic filter. The operation can be performed in
place; that isx andy can be the same array.

© National Instruments Corporation 2-85 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input X double-precision array input data
integer number of elements x
fs double-precision sampling frequency
fc double-precision cutoff frequency
ripple double-precision pass band ripples in dB
atten double-precision stop band attenuation in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order lowpass elliptic
filter. */

double x[256], y[256], fs, fc, ripple, atten;
int n, order;

n = 256;

fs = 1000.0;

fc = 200.0;

ripple = 0.5;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

Elp_LPF (x, n, fs, fc, ripple, atten, order, y);

Equi_Ripple

int status = Equi_Ripple(int bands double A[] ,double wts[] ,double fs,
double cutoffs[]] ,int type,int n, double coef] ,
double *delta);

Purpose

Designs a multiband FIR linear phase filter, a differentiator, or a Hilbert Transform using the
Parks-McClellan algorithm. The frequency response in each band has equal ripples that can be
adjusted by a weighting factor. This function generates only the filter coefficients. No filtering
of data is actually performed.

LabWindows/CVI Advanced Analysis Library 2-86 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input bands integer number of bands of the filter
A double-precision array desired frequency response
magnitude of each band
wts double-precision array weighting factor for each band
fs double-precision sampling frequency
cutoffs double-precision array end frequencies of each band
type integer filter type
n integer filter length
Output | coef double-precision array filter coefficients
delta double-precision normalized ripple size
Return Value
status integer refer to error codes in Appendix A

Parameter Discussion

Generally, wherlype = 1 andbands= 2, Equi_Ripple designs a multiband filter. When

type = 2,bands= 1, andnh is evenEqui_Ripple designs a differentiator. Wheype = 3,

bands= 1, andnh is evenEqui_Ripple designs a Hilbert Transform. For more information,
please refer t®igital Filter Designby Parks and Burrus, or "A computer program for designing
optimum FIR linear phase digital filters," by McClellat,al, IEEE Transactions on Audio and
Electroacousticsvol. AU-21, no. 6, pp. 506-525, Nov. 1973.

Using This Function

AlthoughEqui_Ripple is the most flexible way to design an FIR linear phase filter, it has more
complex parameters and requires some DSP knowledge. You may find it more convenient to use
EquiRpl_LPF , EquiRpl_HPF , EquiRpl_BPF , andEquiRpl_BSF . These functions,

which provide lowpass, highpass, bandpass and bandstop FIR filters with equal weighting factors
in all bands, are special case€oui_Ripple with simplified parameters.

For more information about windowing, see the secdbaut Windowingn Chapter 1,
Advanced Analysis Library Overview

Example 1
/* Design a 24-point lowpass filter and filter the incoming signal. */
double x[256], coef[24], y[280], fs, delta;

double A[2]; /* array of frequency responses */
double wts[2]; /* array of weighting factors */
double cutoffs[4]; [* frequency points */

© National Instruments Corporation 2-87 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

int n, m;
int bands;
int type;

bands = 2;

fs = 1000.0;

A[0] = 1.0;

A[1] = 0.0;

wts[0] = 1.0;
wts[1] = 1.0;
cutoffs[0] = 0.0;
cutoffs[1] = 300.0;
cutoffs[2] = 400.0;
cutoffs[3] = 500.0;
type = 1;

n=24;

m = 256;

/* number of bands */
[* filter type */

/* one pass band and one stop band */
/* sampling frequency */
[* 1 for the pass band */
/* 0 for the stop band */
/* weighting factor for the pass band */
/* weighting factor for the stop band */

[* the first stop band [0, 300.0] */
/* the pass band [400, 500] */

/* multiple band filter */
[* filter length */

Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);
Convolve (coef, n, x, m, y);/*convolve the filter with the signal */

Example 2

/* Design a 31-point bandpass filter and filter the incoming signal. */
double x[256], coef[55], y[287], fs, delta;

double AJ3];
double wts[3];
double cutoffs[6];
int n, m;

int bands;

int type;

bands = 3;

fs = 1000.0;

A[0] = 0.0;

A[1] = 1.0;

A[2] =0.0;

wts[0] = 10.0;
wts[1] = 1.0;
wts[2] = 4.0;
cutoffs[0] = 0.0;
cutoffs[1] = 200.0;
cutoffs[2] = 250.0;
cutoffs[3] = 350.0;
cutoffs[4] = 400.0;
cutoffs[5] = 500.0;
type = 1;

n=31;

m = 256;

/* array of frequency responses */
/* array of weighting factors */
[* frequency points */

/* number of bands */
[* filter type */

/* one pass band and two stop bands */

/* sampling frequency */

/* O for the first stop band */

/* 1 for the stop band */

/* 0 for second stop band */

/* weighting factor for the first stop band */

/* weighting factor for the pass band */
/* weighting factor for the second stop band */

/* the first stop band [0, 200.0] */
/* the pass band [250, 350] */
/* the second stop band */

/* multiple band filter */
[* filter length */

Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);
Convolve (coef, n, x, m, y);/*convolve the filter with the signal */

LabWindows/CVI Advanced Analysis Library 2-88

Chapter 2

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Example 3
/* Design a 30-point differentiator. */
double coef[30], fs, delta;

double A[1]; /* array of frequency responses */
double wits[1]; /* array of weighting factors */
double cutoffs[2]; [* frequency points */

int n;

int bands; /* number of bands */

int type; [* filter type */

bands = 1; /* one pass band and one stop band */
fs = 1000.0; /* sampling frequency */

A[0] = 1.0; /* 1 for the band */

wts[0] = 1.0; /* weighting factor for the band */
cutoffs[0] = 0.0;

cutoffs[1] = 500.0; /* the entire frequency range */

type = 2; /* differentiator */

n = 30; [* filter length */

Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);

Example 4
/* Design a 20-point Hilbert transform. */
double coef[20], fs, delta;

double A[1]; /* array of frequency responses */
double wits[1]; /* array of weighting factors */

double cutoffs[2]; [* frequency points */

int n;

int bands; /* number of bands */

int type; [* filter type */

bands = 1; /* one pass band and one stop band */
fs = 1000.0; /* sampling frequency */

A[0] = 1.0; /* 1 for the band */

wts[0] = 1.0; /* weighting factor for the band */

cutoffs[0] = 100.0;

cutoffs[1] = 500.0;

type = 3; /* Hilbert transform */

n = 20; [* filter length */

Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);

EquiRpl_BPF

int status = EquiRpl_BPF(double fs, double f1,double f2,double f3,
double f4,int n, double coef] ,double *delta);

Purpose
Designs a bandpass FIR linear phase filter using the Parks-McClellan algorithm. The function is

a special case of the general Parks-McClellan algorithm. This function generates only the filter
coefficients. No filtering of data is actually performed.

© National Instruments Corporation 2-89 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

Parameters

Input fs double-precision sampling frequency
fl double-precision cutoff frequency 1
f2 double-precision cutoff frequency 2
f3 double-precision cutoff frequency 3
f4 double-precision cutoff frequency 4
n integer filter length

Output coef double-precision array filter coefficients
delta double-precision normalized ripple size

Parameter Discussion

There are two stop bands and one pass band. The first stop barfdl]iafd, the second stop
band is {4, fs/2]. The pass band €] f3]. 1, f2, f3, andf4 must be in ascending order. Refer

to theEqui_Ripple

Return Value

function description for more information.

status

integer

refer to error codes in
Appendix A

Example

/* Design a 51-point bandpass filter and filter the incoming signal. */
double x[256], coef[25], y[301], fs, f1, f2, {3, f4, delta;

int n, m;

fs = 1000.0;
f1 = 200.0;
f2 = 250.0;
f3 = 350.0;
f4 = 400.0;
n=>51;

m = 256;

/* sampling frequency */
/* the first stop band [0, 200] */

/* the pass band [250, 350] */
* the second stop band [400, 500] */
[* filter length */

EquiRpl_BPF (fs, f1, f2, {3, f4, n, coef, &delta);

Convolve (coef, n, x, m, y);/*convolve the filter with the signal */

LabWindows/CVI Advanced Analysis Library 2-90

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

EquiRpl_BSF

int status = EquiRpl_BSF(double fs, double f1, double f2,double f3,
double f4,int n,double coef] ,double *delta);

Purpose

Designs a bandstop FIR linear phase filter using the Parks-McClellan algorithm. The function is
a special case of the general Parks-McClellan algorithm. This function generates only the filter
coefficients. No filtering of data is actually performed.

Parameters
Input fs double-precision sampling frequency
f1 double-precision cutoff frequency 1
f2 double-precision cutoff frequency 2
f3 double-precision cutoff frequency 3
f4 double-precision cutoff frequency 4
n integer filter length
Output coef double-precision array filter coefficients
delta double-precision normalized ripple size
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion

There are two pass bands and one stop band. The first pass bafit] iar{@,the second pass
band is 4, fs/2]. The stop band is7, f3]. f1, f2, f3, andf4 must be in ascending order. Refer
to theEqui_Ripple function description for more information.

Example

/* Design a 51-point bandstop filter and filter the incoming signal. */
double x[256], coef[25], y[301], fs, f1, f2, {3, f4, delta;

int n, m;

fs = 1000.0; /* sampling frequency */

f1 = 200.0; /* the first pass band [0, 200] */

f2 = 250.0;

f3 = 350.0; /* the stop band [250, 350] */

f4 = 400.0; /* the second pass band [400, 500] */
n=>51; [* filter length */

m = 256;

EquiRpl_BSF (fs, f1, f2, f3, f4, n, coef, &delta);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

© National Instruments Corporation 2-91 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

EquiRpl_HPF

int status = EquiRpl_HPF(double fs, double f1,double f2,int n, double coef[] ,
double *delta);

Purpose
Designs a highpass FIR linear phase filter using the Parks-McClellan algorithm. The function is

a special case of the general Parks-McClellan algorithm. This function generates only the filter
coefficients. No filtering of data is actually performed.

Parameters
Input fs double-precision sampling frequency
fl double-precision cutoff frequency 1
f2 double-precision cutoff frequency 2
n integer filter length
Output coef double-precision array filter coefficients
delta double-precision normalized ripple size
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion

There is one stop band and one pass band. The stop banidjaf@ the pass band iR[fs/2].
Refer to theEqui_Ripple function description for more information.

Example
/* Design a 25-point highpass filter and filter the incoming signal. */
double x[256], coef[25], y[281], fs, f1, f2, delta;

int n, m;

fs = 1000.0; /* sampling frequency */

f1 = 300.0; /* the stop band [0, 300] */

f2 =400.0; /* the pass band [400, 500] */
n = 25; [* filter length */

m = 256;

EquiRpl_HPF (fs, f1, f2, n, coef, &delta);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

LabWindows/CVI Advanced Analysis Library 2-92 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

EquiRpl_LPF

int status = EquiRpl_LPF(double fs, double f1,double f2,int n, double coef] ,
double *delta);

Purpose
Designs a lowpass FIR linear phase filter using the Parks-McClellan algorithm. The function is a

special case of the general Parks-McClellan algorithm. This function generates only the filter
coefficients. No filtering of data is actually performed.

Parameters
Input fs double-precision sampling frequency
fl double-precision cutoff frequency 1
f2 double-precision cutoff frequency 2
n integer filter length
Output coef double-precision array filter coefficients
delta double-precision normalized ripple size
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion

There is one pass band and one stop band. The pass baritl]iarnd, the stop band i8] fs/2].
Refer to theEqui_Ripple function description for more information.

Example
/* Design a 25-point lowpass filter and filter the incoming signal. */
double x[256], coef[25], y[281], fs, f1, f2, delta;

int n, m;

fs = 1000.0; /* sampling frequency */

f1 = 300.0; /* the pass band [0, 300] */
f2 =400.0; /* the stop band [400, 500] */
n = 25; [* filter length */

m = 256;

EquiRpl_LPF (fs, f1, f2, n, coef, &delta);
Convolve (coef, n, x, m, y);/* convolve the filter with the signal*/

© National Instruments Corporation 2-93 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

ExBkmanWin
int status = ExBkmanWin (double Xx[] ,int n);
Purpose

Applies an exact Blackman window to the input sequence X. If Y represents the output sequence,
the elements of Y are obtained using the following equation.

Y = X, (a,-a,*cos(2ri/n)+a,*cos(4ri/n)), i=0, . . ., n-1

where
a, = 7938.0/18608.0
a, = 9240.0/18608.0
a, = 1430.0/18608.0

Parameters
Input X double-precision array| contains the input signal.
integer number of elements in the input array.
Output X double-precision array | contains the signal after applying the
exact Blackman window.

Return Value

status integer refer to error codes in Appendix A

ExpFit

int status = ExpFit(double X[] ,double y[] ,int n,double Z[] ,double *a,
double *b, double *mse);

Purpose
Finds the coefficient values that best represent the exponential fit of the data)pgihtssing

the least squares method. Thelement of the output array is obtained by using the following
formula..

z = ale™
The mean squared errange is obtained using the following formula.

LabWindows/CVI Advanced Analysis Library 2-94 © National Instruments Corporation

Chapter 2

n-1
mse= le —yi/n

wheren is the number of sample points.

Advanced Analysis Library Function Reference

Parameters
Input X double-precision array x values
y double-precision array y values
n integer number of sample points
Output z double-precision array best exponential fit
a double-precision amplitude
b double-precision exponential constant
mse double-precision mean squared error

Note: They values must be all positive or all negative to perform an exponential fit.

Return Value

status integer

refer to error codes in
Appendix A

Example

/* Generate an exponential pattern and find the best exponential fit. */

double x[200], y[200], z[200];
double first, last, a, b, amp, decay, mse;
int n;

n = 200;
first = 0.0;
last = 1.99E2;
Ramp (n, first, last, x); [* x[i]=1i*
a=3.5;
b =-2.75;
for (i=0; i<n; i++)
yil =a*expOqil;
/* Find the best exponential fit in z.*/
ExpFit (x, y, n, z, &, &decay, &mse);

© National Instruments Corporation 2-95

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

ExpWin
int status =ExpWin (double Xx[] ,int n, double final);
Purpose

Applies an exponential window to the input sequence X. If Y represents the output sequence, the
elements of Y are obtained with the following formula.:

Yi = xi eai
where
a = In(f)/(n-1)
fis the final value
n is the number of elements in X.

Parameters
Input X double-precision array | on input,x[n] contains the input signaJI.
n integer number of elements in the input arrgy.
final double-precision final value of the exponential window
function.
Output X double-precision array | on outputx[n] contains the signal after
applying the exponential window.

Return Value

status integer refer to error codes in Appendix A

F Dist
int status = F_Dist(double f,int n,int m, double *p);
Purpose
Calculates the one-sided probability
p = prob(F <)

where F is a random variable from the F-distribution witndm degrees of freedom.

LabWindows/CVI Advanced Analysis Library 2-96 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input f double-precision -0 <f <o
n integer degrees of freedom
m integer degrees of freedom
Output p double-precision probability (0< p <1)
Return Value
status integer refer to error codes in
Appendix A
Example
double x, p;
intn, m;
x = -123.456;
n = 6;
m=7,
F_Dist (x, n, m, &p);
/* Now p = 0 because F distributed variables are non-negative. */
FFT

int status = FFT(double Xx[] ,double y[] ,int n);
Purpose

Computes the Fast Fourier Transform of the complex data. Let X = x + jy be the complex array,
then:

Y = FFT {X}

The operation is done in place and the input arxaysdy are overwritten. See tiébout the
Fast Fourier Transform (FFT$ection in Chapter 1.

© National Instruments Corporation 2-97 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input X double-precision array real part of complex array
double-precision array imaginary part of complex
array
n integer number of elements
Output X double-precision array real part of FFT
double-precision array imaginary part of FFT

Note: The number of elementnj must be a power of two.

Return Value

status integer refer to error codes in
Appendix A

Example

/* Generate two arrays with random numbers and compute its
Fast Fourier Transform. */

double x[256], y[256];

int n;

n = 256;

Uniform (n, 17, x);

Uniform (n, 17, y);

FFT (x,y, n);

FHT
int status = FHT (double X[] ,int n);
Purpose

Computes the Fast Hartley Transform using the following formula.
n-1
X = xcag2m ik/ 1)
i=0

where X is the K point of the FHT, and cas (k) = cos (k) + sin (k).

The operation is done in place and xhaput array is overwritten.

LabWindows/CVI Advanced Analysis Library 2-98 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference
Parameters
Input X double-precision array array to be transformed
integer number of elements
Output X double-precision array Hartley Transform

Note: The number of elements] must be a power of two.

Return Value

status integer

refer to error codes in
Appendix A

Example

/* Generate an array with random numbers and compute its */
/* Fast Hartley Transform. */

double x[256];

int n;

n = 256;

Uniform (n, 17, x);

FHT (x, n);

FIR_Coef

int status = FIR_Coef(int type, double fs, double fL,double fH,int taps,

double coef]);

Purpose

Generates a set of FIR filter coefficients based on the window design method. This function
returns the coefficients as the truncated impulse response of an ideal frequency response of the
selected filter type. Thigpe parameter has the following valid values.

[0 lowpass filterfH is not used.

tvpe = highpass filterfH is not used.
ype = bandpass filter
bandstop filter

The actual filtering

taps- 1

Yo = Coef * .,

1=0

is achieved by using the convolution functi@anvolve .

© National Instruments Corporation 2-99

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input type integer controls the filter type of the FIR filter
coefficients to be designed.
fs double-precision sampling frequency in hertz.
fL double-precision desired lower cutoff frequency in hertz.
fH double-precision desired upper cutoff frequency in hertz.
taps integer desired length of the FIR filter.
Output coef double-precision array computed output window FIR filter
coefficients.

Return Value

status integer refer to error codes in Appendix A

FlatTopWin
int status = FlatTopWin (double Xx[] ,int n);
Purpose

Applies a flat top window to the input sequence X. If y represents the output sequence, the
elements of y are obtained using the following equation.

y, = X (0.2810639 - 0.5208972cos{th) + 0.1980399cos@/n))

wheren is the number of elements in Xx.

Parameters
Input X double-precision array | on input,x[n] contains the input signal.
integer number of elements in the input array.
Output X double-precision array | on outputx[n] contains the signal after
applying the flat top window.

Return Value

status integer refer to error codes in Appendix A

LabWindows/CVI Advanced Analysis Library 2-100 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

ForceWin

int status = ForceWin(double x[] ,int n, double duty);
Purpose

Applies a force window to the input sequence Xx:

B O<i<int[(duty/100)*n]

Xi =
elsewhere
Parameters
Input X double-precision array | on input,x[n] contains the input signa||.
n integer number of elements in the input arrgy.
duty double-precision duty cycle, in percent, of the force
window.
Output X double-precision array | on outputx[n] contains the signal after
applying the force window.

Return Value

status integer refer to error codes in Appendix A

ForwSub
int status = ForwSub(void *a, double y[] ,int n,double x[] ,int p[]);
Purpose

Solves the linear equations a*x = y by forward substituteis assumed to be anby n lower
triangular matrix whose diagonal elements are all oras.obtained by the following formulas.

%= Yo
X=Yy)»a*x fori=1,2,..n-1

The operation can be performed in place; that @)dy can be the same array.

© National Instruments Corporation 2-101 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Parameters
Input a double-precision 2D array input matrix
y double-precision array input vector
n integer dimension size od
p integer array permutation vector
Output X double-precision array solution vector

Return Value

status

integer

refer to error codes in
Appendix A

Using This Function

ForwSub is used in conjunction withU andBackSub to solve linear equations. The
parametep is obtained front.U. If you are not using thieU function, sep[i] =1i.

Refer to thd_U function description for more information.

Example

/* To solve a linear equation A*x =y */
double A[10][10], x[10], y[10];

int p[10];
int sign, n;

n=10;

LU (A, n, p, &sign);
ForwSub (A, y, n, X, p);
BackSub (A, X, n, X);

/* permutation vector */

/* LU decomposition of A */

[* forward substitution */

/* backward substitution */

FreellRFilterPtr

int status= FreellRFilterPtr (IIRFilterPtr

Purpose

filterInformation);

Frees the IIR cascade filter structure and all internal arrays.

LabWindows/CVI Advanced Analysis Library

2-102

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters

Input | filteriInformation [IRFilterPtr | filterinformation is the pointer to the filte
structure which contains the filter
coefficients and the internal filter

information.
Please refer to the function
AlloclIRFilterPtr for further

information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.

GaussNoise
int status = GaussNoisént n, double sDey int seeddouble noisqd]);
Purpose

Generates an array of random Gaussian numbers distributed with expected zero mean value, and
specified standard deviation.

Parameters
Input n integer number of samples
sDev double-precision desired standard deviation
seed integer initial seed value
Output noise double-precision array Gaussian noise pattern
Return Value
status integer refer to error codes in
Appendix A

Using This Function

The expected standard deviation of the returned pattern is the one specified by the user. The
expected mean value is zero; that is, the noise array values are expected to be centered about

© National Instruments Corporation 2-103 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

zero. When seerl 0, a new random sequence is generated using the seed value. When seed < 0,
the previously generated random sequence continues.

Example

/* The following code generates an array of random Gaussian distributed
numbers. */

double x[20], sDev;

int n;

n = 20;

sDev = 5.0;

GaussNoise (n, sDev, 17, x);

GenCosWin
int status = GenCosWin(double x[] ,int n, double a[] ,int na);
Purpose

Applies a general cosine window to the input sequence x. If y represents the output sequence,
the elements of y are obtained using the following formula.

na-1 _
Yi =X kzo (-1)" &y cos(at ki/n)

where
ais the array of coefficients
na is the number of coefficients
n is the number of elementsxn

Parameters
Input X double-precision array | on input,x[n] contains the input signa||.
integer number of elements in the input arrgy.
a double-precision array | general cosine coefficient array.
na integer number of elements in tlee
Output X double-precision array | on outputx[n] contains the signal after
applying the general Cosine Window/.

Return Value

status integer refer to error codes in Appendix A

LabWindows/CVI Advanced Analysis Library 2-104 © National Instruments Corporation

Chapter 2

*H, int

double *mse);

GenLSFit

int status= GenLSFit (void
int

Purpose

n, int
algorithm, double Z[] , double b[] ,double covar]] ,

Advanced Analysis Library Function Reference

k, double y[] ,double stdDe\] ,

Finds the Best Fit k-dimensional plane and the set of linear coefficients using the least chi-

squares method for observation data sets,

{X%0 X1 Xk -1 X}

where i=0,1,...,n-1, and

n = the number of your observation data sets.

Parameters
Input |H 2D double- | An n-by-k matrix, which contains the observation
precision |data {,, X, ...,x,,} i =0,1,...n-1, where n is the
array number of rows iH, k is the number of columng
inH.
n integer Number of rows oH as well as the number of
elements iry.
Kk integer Number of columns dfl as well as the number of
elements irb.
y 1D double- | Number of elements in y should be equal to the
precision | number of rows iH.
array
stdDev 1D double- | Standard deviatiog, for data pointX, y,). If they
precision | are equal or if you do not know, pass an empty
array array, and the function will ignore this parameter.
The size of this array should be equal to n.
algorithm integer Algorithm to be used in solving the multiple lin
regression model. The algorithm has six
selections:
0: SVD
1: Givens
2: Givens2
3: Householder
4: LU decomposition
5: Cholesky algorithm

© National Instruments Corporation

(continues)

2-105

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Parameters (Continued)

Chapter 2

Output| z

covar

mse

1D double-
precision
array

1D double-
precision
array

2D double-
precision
array

double-
precision

Fitted data computed by using the coefficidnts

Set of coefficients that minimizeZ, which is
defined in equation (2-2).

Matrix of covariances C witk-by-k elementsc,

Is the covariance betweénandb, andc, is the
variance ob. If you pass an empty array for
covar, the function will not compute this matrix.

Mean squared error.

Using This Function

You can us&enLSFit to solve multiple linear regression problems. You can also use it to
solve for the linear coefficients in a multiple-function equation.

The general least squares linear fit problem can be described as follows. Given a set of
observation data, find a set of coefficients that fit the linear “model.”

Vi =lpXot -+ R-1%-1

i=0,1,..

., nh-1

where b is the set of coefficients,
n is the number of elementsyrand the number of rows &f, and
k is the number of elementsiin
X; is your observation data, which is containediin

U Xo0 X01
X1 X11
H=U
g
O
Xn-10 *Xp-12 -

Xk-10

O

Xx-1

O

O
Xn- k= 10

(2-1)

Equation (2-1) can also be written as Y = HB.
This is a multiple linear regression model, which uses several variables

LabWindows/CVI Advanced Analysis Library

2-106 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Xior Kar == X

to predict one variable.yin contrast, th&inFit , ExpFit , andPolyFit functions are alll
based on a single predictor variable, which uses one variable to predict another variable.

In most cases, we have more observation data than coefficients. The equations in (2-1) may
not produce the solution. The fit problem becomes to find the coefficients B that minimizes
the difference between the observed datang the predicted value,

This function uses the least chi-squares plane method to obtain the coefficients in (2-1), that
is, finding the solution, B, which minimizes the following quantity.

o k1 f
0. 0
n-1 D2 n-1 By' by B
VGl Wik AR L = [HoB - Yo? (2-2)
1=0 1=0 0 0
H H

wherehg; =%,ya =%,i =0%..n-1j=01..k- 1
| |

In equation (2-2) g, is the standard deviatioBfdDev. If the measurement errors are
independent and normally distributed with constant standard dewatom, the preceding
equation is also the least squares estimation.

There are different ways to minimizé. One way to minimizg?2 is to set the partial
derivatives ofx2 to zero with respect ta,, b,,...,b

' k-1t

D 2
h
gab,

=0

O
)
>
N
1
o

Doooooo
4 &
N . . [

o
x
AN
1
o

The preceding equations can be derived to

HiH,B=H]Y. (2-3)

© National Instruments Corporation 2-107 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Hq is the transposition off, .

Equation (2-3) and the one preceding it are also called normal equations of the least squares
problems. You can solve them using LU or Cholesky factorization algorithms, but the
solution from the normal equations is susceptible to round-off error.

An alternative, and preferred way to minimjg&is to find the least squares solution of
equations

HB=Y,

You can use QR or SVD factorization to find the solution, B. For QR factorization, you can
choose Householder, Givens, and Givens2 (also called fast Givens).

Different algorithms can give you different precision, and in some cases, if one algorithm
cannot solve the equation, perhaps another algorithm can. You can try different algorithms to
find the one best suited to your data.

The covariance matrigovar is computed as follows.

covar= %—Q H, %_l

The best fitted curve is given by the following formula.

2= 8%

J=0
Themseis obtained using the following formula.

n-1
E 3
0 oj
1=0

=
L
|
DDDN

mse=

The polynomial fit that has a single predictor variable can be thought of as a special case of
multiple regression. If the observation data sets arggwhere i =0, 1, ..., n-1, the model
for polynomial fit is as follows.

k=i
yi = ij X =+ hx+ b o+ pyg K71 (2-4)
1=0

wherei=0,1,2,..n-1.

Comparing equations (2-1) and (2-4) shows that >gj . In other words,

LabWindows/CVI Advanced Analysis Library 2-108 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Xo=X2 1= %, Xo= ¥ k1= XL

In this case, you can build H as follows:

A x, x - X0
i 64 % A7g
H = 1 1 U
[O
U] U
B X1 X X1

Instead of usingg; = xij , you can also choose another function formula to fit the data sets

{x,y}. In general, you can selext=f(x). Here,f(x) is the function model that you choose
to fit your observation data. In polynomial fif(x;) = x/ .
In general, you can build as follows:

Efo(xo) fl(xo) fz(Xd ST T {xa
qoobe)) e kedxd

O

olnt) Hed) -~ fie {xn 30

OO

Your fit model is:
Vi =k fo(X+ by fi(R+ + R-q k- 1(R

The following two examples show how to use this function. The first example uses the
GenLSFit function to perform multiple regression analysis based entirely on tabulated
observation data. The second solves for the linear coefficients in a multiple-function
equation.

Example: Predicting Cost

Suppose you want to estimate the total cost (in dollars) of a production of baked scones;
using the quantity produced, X1, and the price of one pound of flour, X2. To keep things
simple, the following five data points form this sample data table.

© National Instruments Corporation 2-109 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Cost (dollars) Quantity Flour Price
Y X1 X2

$150 295 $3.00

$75 100 $3.20
$120 200 $3.10
$300 700 $2.80
$50 60 $2.50

You want to estimate the coefficients to the following equation.
Y =D, + b, X1+ b X2

The only parameters that you need to buildHa@bservation matrix) and y arrays. Each
column ofH is the observed data for each independent variable: the first column is one
because the coefficiehf is not associated with any independent variable.

H should be filled in as:

205 30
100 320]
200 310
700 28

H 60 25H

T
I
OO

The following code is based on this example.

/*The example of predicting cost using GenLSFit */

int k, n, algorithm, status;

double H[5][3], y[5], z[5], b[3], X1[5],X2[5], mse;

double *stdDev=0, *covar=0; [* define empty arrays, the function will ignore
these parameters. */

n=>5;

k=3;

/* Read in data for X1,X2 andy */

/* Construct matrix H */
for(i=0;i<n;i++) {
HIiJ[0] = 1; * fill in the first column of H. */
H[i][1] = X1[i]; /*fill in the second column of H. */
H[i][2] = X2[i]; /*fill in the third column of H. */
}
algorithm = 0; /* use SVD algorithm */
status = GenLSFit(H,n,k,y,stdDev,algorithm,z,b,covar,&mse);

LabWindows/CVI Advanced Analysis Library 2-110 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Example: Linear Combinations

Suppose that you have collected samples from a transducer (Y Values) and you want to solve
for the coefficients of the model.

y= Iy + hsin(wX) + beogwy + by 2

To buildH, you set each column to the independent functions evaluated at each x value.
Assuming there are 100 x valuéswould be the following array.

El sinfwxg) coguwxg)
1 sinfowx)) cogwxy)
H= é sin((.oxz) co:ész) x:2

% sin((:3x99) co£(;x99) x;;

The following code is based on this example.

<
o P &
OOO0OO0O0O0O00Od

©no

/*The example of linear combinations using GenLSFit ~ */

inti, k, n, algorithm, status;

double H[100][4], y[100], z[100], b[4],x[100],mse, w;

double *stdDev=0, *covar=0; [* define empty arrays, the function will ignore
these parameters. */

n = 100;

k=4

w=0.2;

/* Read in data for x and y */

/* Construct matrix H *

for(i=0;i<n;i++) {
HI[i][0] = 1; [* fill in the first column of H. */
H[i][1] = sin(w*x[i]); /*fill in the second column of H. */
H[i][2] = cos(w*x[i]); /* fill in the third column of H. */
H[i][3] = pow(x[i],3); /*fill in the fourth column of H. */

}

algorithm = 0; /* use SVD algorithm */

status = GenLSFit(H,n,k,y,stdDev,algorithm,z,b,covar,&mse);

© National Instruments Corporation 2-111 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

GenLSFitCoef

int status = GenLSFitCoef(void *H,int n,int k, double y[] ,double b[] ,
int algorithm);

Purpose

Finds the k-dimension linear curve values and the set of k-dimension linear fit coefficients,
which describe the k-dimension linear curve that best represents the input data set using the least-
squares solution. The general form of the k-dimension linear fit is as follows.

Leti=0, 1, ..., n be youf bbservation andix . . ., %k-1 be k-1 observed x points angdbe
observed y point, thid matrix is composed by

3 X% % - - &1%
a X Ko - - 2&-1D

ank = D_ O
) 0
0

[l
H o Xus Xz - - Xaed

The general LS linear fit coefficiebt is obtained by minimizing the quantity
n-1 n-1 k-1
Q=>W-zr=> (0-hk-> hxj
i=0 1=0 =1
The algorithm has the following valid selection.

using the singular value decomposition (defaults)
using the Givens decomposition

using the square root free Givens decomposition
using the Household transformation

using the LU decomposition

using the Cholesky decomposition

aRrwNREO

Each algorithm may offer different precision depending on the input data. Given the coefficient
vectorb[k] andH, the fitted datajzzan be computed by a simple matrix multiplication

Z=H-Db

and the mean squared error can be computed by

mse =

Sl

> (2~ y,)
1=0

LabWindows/CVI Advanced Analysis Library 2-112 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input H double-precision 2D |input matrix which represents the
array formula you use to fit the data set
{X,Y}. HIi][j] are the function values
of X[i].
n integer number of rows used id, as well as
the number of elements yn
k integer number of columns used kh, as well
as the number of elementshin
y double-precision array| array containing the y coordinateg of
the (x,y) data sets to be fitted.
algorithm integer algorithm to be used in solving the
multiple linear regression model.
Output b double-precision array| contains the set of linear coefficients
that best fit the multiple linear
regression model in a least squares
sense. The size of this array must be
at leask.
Return Value
status integer refer to error codes in Appendix A

GetAnalysisErrorString
char* message= GetAnalysisErrorString (int errorNum)
Purpose

Converts the error number returned by an Analysis Library function into a meaningful error
message.

Parameters
Input errorNum | integer status returned by Analysis
function.
Return Value
| message | string | explanationf Error

© National Instruments Corporation 2-113 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

HamWin
int status = HamWin(double Xx[] ,int n);
Purpose

Applies a Hamming window to theinput signal. The Hamming window is defined by the
formula.

w = 0.54 - 0.46*cos(Zri/n) fori=0,1, .., n-1
The output signal is obtained by the following formula.
X= X*W, fori=0,1,..,n-1

The window operation is performed in place. The windowedxdegplaces the input data

Parameters
Input X double-precision array input data
integer number of elements ix
Output X double-precision array windowed data
Return Value
status integer refer to error codes in
Appendix A

HanWin
int status = HanWin(double x[] ,int n);

Purpose

Applies a Hanning window to theinput signal. The Hanning window is defined by the
following formula.

w, = 0.5 - 0.5*cos(21/n) fori=0,1, ..., n-1
The output signal is obtained by the following formula.
X=X *w, fori=0,1,..,n1

LabWindows/CVI Advanced Analysis Library 2-114 © National Instruments Corporation

Chapter 2

Advanced Analysis Library Function Reference

The window operation is performed in place. The windowedxdegplaces the input data

Parameters
Input X double-precision array input data
integer number of elements ix
Output X double-precision array windowed data

Return Value

status

integer

refer to error codes in
Appendix A

Histogram

int status = Histogram(double Xx[] , int
hist[] , double axid]] ,int

Purpose

n, double xBase double xTop, int
intervals);

Computes the histogram of tkenput array. The histogram is obtained by counting the number
of times that the elements in the input array fall in theterval. Let

Ax = (XTop - xBase) / intervals

yi(x>=§

ifiAX < x - xBase < (i + 1) X
otherwise

The " element of the histogram is:

hist :?Z_:M()S)

The values of the histogram axis are the mid-point values of the intervals.

axis = i1Ax + Ax/2 +xBase

© National Instruments Corporation

2-115

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

Parameters

Input X double-precision array input data
n integer number of elements ix
xBase double-precision lower range
xTop double-precision upper range
intervals integer number of intervals

Output hist integer array histogram oix
axis double-precision array histogram axis array

Return Value

refer to error codes in
Appendix A

status integer

Example

/*Generate a Gaussian distributed random array and find its histogram.*/
double x[2000], axis[50], max, min;

int hist[50], n, intervals, imax, imin;

n = 2000;

intervals = 50;

GaussNoise (n, 1.0EO0, 17, x);

MaxMin (x, n, &max, &imax, &min, &imin);

Histogram (x, n, min, max, hist, axis, intervals);

IIRCascadeFiltering

int status= IIRCascadeFiltering (const double x[] ,int n,
IRFilterPtr filteriInformation , double y[]);

Purpose

Filters the input sequence using the cascade IIR filter specified [ijten@aformation
structure. Each of the IIR cascaded stages is 2nd order for lowpass and highpass filters, and
4th order for bandpass and bandstop filters.

filterinformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AlloclIRFilterPtr and then call one of the cascade IIR design functions
(Bw_CascadeCoef , Ch_CascadeCoef , Elp_CascadeCoef ,

InvCh_CascadeCoef , Bessel_CascadeCoef) before calling this function.

LabWindows/CVI Advanced Analysis Library 2-116 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

The internal filter state information for the filtering operation is kept irfilieelnformation
structure, so this function can be called in a loop, continually filtering new input array data,
producing new output filtered data.

If you have finished filtering one set of input data and wish to filter a completely new data
set, you should caResetlIRFilter before calling this function with the new data.
ResetlIRFilter will cause the internal filter state information to be cleared before the
next filtering operation.

Parameters

Input | X const double- | Array containing the raw data to be filtered.
precision

n integer Specifies the number of points in both th
inputx and outpuy.

filterinformation | lIRFilterPtr filteriInformation is the pointer to the filter
structure which contains the filter
coefficients and the internal filter
information. You must allocate this structurre
by callingAlloclIRFilterPtr before
calling this cascade IIR filtering function.

Please refer to the function
AlloclIRFilterPtr for further
information about the filter structure.

Output |y double- Array contains the output of the IIR
precision array | Filtering operation. The size of this array
must be at least.

11%

Return Value

status integer Refer to error codes in
Appendix A.

© National Instruments Corporation 2-117 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

lIRFiltering

int status = IIRFiltering (double x[] ,int nx,double a[] ,double y1[] ,int na,
double D[] ,double x1[] ,int nb, double Vy[]);

Purpose

Filters the input sequence using the IIR filter specified by reverse coeffiaj@ajand forward
coefficientsb[nb] by

1 b-1 na-1 O
= bx . — LY
Y, aoﬁ:zo X ;ay H

The reverse and forward coefficients are obtained by respective IIR Coefficient functions such as
Bw_Coef()

Parameters
Input X double-precision array | raw data to be filtered.

nx integer number of points in both the input X
array.

a double-precision array | array containing theerse
coefficients for the IIR filtering
operation.

yl double-precision array | y1 [na-1] contains the initial

conditions, or states. The size of this
array must be at leasa-1.

na integer number of coefficients in both tfze
Coefficients array and thel
conditions array.

b double-precision array | array containing fbevard
coefficients for the IIR filtering
operation.

x1 double-precision array | x1 [nb-1] contains the initial

conditions, or states. The size of this
array must be at leasb-1.

nb integer number of coefficients in both the
Coefficients array and theconditions
array.

(continues)

LabWindows/CVI Advanced Analysis Library 2-118 © National Instruments Corporation

Chapter 2

Parameters (Continued)

Advanced Analysis Library Function Reference

Output

yl

x1

double-precision array
double-precision array

double-precision array

on outputyl[na-1] contains the final
conditions for the next iterations.

on outputxl [nb-1] contains the final
conditions for the next iterations.

y array contains the output of the I|R
filtering operation. The size of this
array must be at leask.

Return Value

status

integer

refer to error codes in Appendix A

Impulse

int status = Impulse(int

Purpose

n, double amp, int index, double Xx[]);

Generates an array of numbers that has the pattern of an impulse waveforthel@iment of
the output array is obtained using the following formula.

: %mp if i = index
X= otherwise
Parameters
Input n integer number of elements x
amp double-precision amplitude
index integer impulse index
Output X double-precision array impulse array

Return Value

status

integer

refer to error codes in
Appendix A

© National Instruments Corporation 2-119

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Example

/* The following code generates the impulse pattern
x={0.0,0.0,15,0.0,0.0}*

double x[5], amp;

int n, i

n=>5;

i=2;

amp = 1.5;

Impulse (n, amp, i, X);

Chapter 2

ImpulseResponse

int status = ImpulseResponséouble stimulus[] , double
impulse]]);

double

Purpose

respons¢] ,int n,

Computes the impulse response of a network based on time-domain signals stimulus and
response. The impulse response is in the time domain. The impulse response is the inverse

Fourier transform of the transfer function.

impulse= Inverse Real FFT [Sxy(f) / Sxx(f)]

where Sxy(f) is the two-sided cross power spectrum oftiheulus (x) with theresponse(y),
and Sxx(f) is the two-sided auto power spectrum of the stimulus.

Parameters

Input stimulus
response

n integer

double-precision arrayj

double-precision arrayj

contains the time-domain signal,
usually the network stimulus.

contains the time-domain signal,
usually the network response.

Valid Values: Powers of 2.

number of elements in the input arrgy.

Output impulse

double-precision array

impulse contains the impulse resp

signals stimulus and response. The
size of this array must be at least

of the network based on time-domain

nse

Return Value

status

integer

refer to error codes in Appendix A

LabWindows/CVI Advanced Analysis Library

2-120

© National Instruments Corporation

Chapter 2

Integrate

int status = Integrate(double X[] ,int
xFinal, double y[]);

Purpose

Advanced Analysis Library Function Reference

n, double dt, double xInit, double

Computes the discrete integral of the input array. Tleéeiment of the resulting array is
obtained using the following formula.

yi = _iz[xj_1+ 4x + >§+1] *dt/ 6
=0

wherex , = xInit andx, = xFinal.

The operation can be performed in place; that @)dy can be the same array.

Parameters
Input X double-precision array input array
integer number of elements ix
dt double-precision sampling interval
xInit double-precision initial condition
xFinal double-precision final condition
Output y double-precision array integrated array

Return Value

status

integer

refer to error codes in
Appendix A

Example

/* Generate an array with random numbers and integrate it. */

double x[200], y[200];
double dt, xInit, xFinal;

int n;

n = 200;

dt =0.001;
xInit = -0.5;
xFinal = -0.25;

Uniform (n, 17, x);
Integrate (x, n, dt, xInit, xFinal, y);

© National Instruments Corporation 2-121

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

InvCh_BPF

int status =InvCh_BPF(double x[] ,int n, double fs, double fl,double fh,
double atten, int order, double y[]);

Purpose

Filters the input array using a digital bandpass inverse Chebyshev filter. The operation can be
performed in place; that is,andy can be the same array.

Parameters
Input X double-precision array input data
integer number of elements x
fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
atten double-precision stop band attenuation in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order bandpass inverse
Chebyshev filter. The pass band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, atten;

int n, order;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

InvCh_BPF (x, n, fs, fl, th, atten, order, y);

LabWindows/CVI Advanced Analysis Library 2-122 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

InvCh_BSF

int status = InvCh_BSF(double x[] ,int n, double fs, double fl, double fh,
double atten, int order, double y[]);

Purpose

Filters the input array using a digital bandstop inverse Chebyshev filter. The operation can be
performed in place; that ig,andy can be the same array.

Parameters
Input X double-precision array input data
integer number of elements x
fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
atten double-precision stop band attenuation in dB
order integer filter order
Output y double-precision array filtered data
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order bandstop inverse
Chebyshev filter. The stop band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, atten;

int n, order;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

InvCh_BSF (x, n, fs, fl, th, atten, order, y);

© National Instruments Corporation 2-123 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

InvCh_CascadeCoef

int status=InvCh_CascadeCoefdouble fs, double fL,double fH, double atten,
lIRFilterPtr filterinformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the inverse Chebyshev filter model.

filterinformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AlloclIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first ¢akkellRFilterPtr to free the present
filter structure and then calllloclIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without
calling FreellRFilterPtr andAlloclIRFilterPtr . In this case, you should
properly reset the filtering operation for that structure by calegetlIRFilter before
the first call tollRCascadeFiltering

Parameters
Input |fs double-precision| Specifies the sampling frequency in Hz.
fL double-precision| Specifies the desired lower cutoff
frequency of the filter in Hz.
fH double-precision| Specifies the desired upper cutoff
frequency of the filter in Hz
atten double-precision| Specifies the stop band attenuation, |in
decibels, of the IIR filter to be designef.
Output]| filterInformation [IRFilterPtr filterinformation is the pointer to the

filter structure which contains the filter
coefficients and the internal filter
information. You must allocate this
structure by calling

AlloclIRFilterPtr before calling
this cascade IIR filter design function.

Please refer to the function
AlloclIRFilterPtr for further
information about the filter structure.

LabWindows/CVI Advanced Analysis Library 2-124 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Return Value

status integer Refer to error codes in
Appendix A.
Example
/* Design a cascade lowpass inverse Chebyshev IIR filter */
double fs, fl, th, atten, x[256], y[256];
int type,order,n;
lIRFilterPtr filterinfo;
n = 256;
fs = 1000.0;
fl = 200.0;
atten = 60.0;
order = 5;
type = 0; /* lowpass */

Uniform(n,17,x);

filterInfo = AlloclIRFilterPtr(type,order);

if(filterinfo!=0) {
InvCh_CascadeCoef(fs,fl,th,atten,filterInfo);
IIRCascadeFiltering(x,n,filterinfo,y);
FreellRFilterPtr(filterinfo);

InvCh_Coef

int status = InvCh_Coef(int type,int order, double fs, double fL,
double fH,double atten, double a[] ,int na, double
b[] ,int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the inverse
Chebyshev filter model. Thgpe parameter has the following valid values.

0 lowpass filterfH is not used.
type = H highpass filterfH is not used.

% bandpass filter

B bandstop filter

alnal andb[nb] are the reverse and forward filter coefficients. The actual filtering

© National Instruments Corporation 2-125 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

B 1 b-1] na-1 D
w—;ﬁth&4 ;amg

is achieved by using the functitiRFiltering

Parameters
Input type integer controls the filter type of the inverse
Chebyshev IIR filter coefficients.
order integer order of the IIR filter.
fs double-precision sampling frequency in Hz.
fL double-precision desired lower cutoff frequency of the
filter in Hz.
fH double-precision desired lower cutoff frequency of the
filter in Hz.
atten double-precision stop band attenuation, in decibels, pf
the IIR filter to be designed.
na integer number of coefficients in tha
coefficient array.
nb integer number of coefficients in thie
coefficient array.
Output a double-precision array | array containing teeerse
coefficients of the designed IIR filter.
b double-precision array | array containing thevard
coefficients of the designed IIR filter.

Return Value

status integer refer to error codes in Appendix A

InvCh_HPF

int status = InvCh_HPF(double x[] ,int n, double fs, double fc,double atten,
int order, double vy[]);

Purpose

Filters the input array using a digital highpass inverse Chebyshev filter. The operation can be
performed in place; that ig,andy can be the same array.

LabWindows/CVI Advanced Analysis Library 2-126 © National Instruments Corporation

Chapter 2

Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input data
integer number of elements ix

fs double-precision sampling frequency
fc double-precision cutoff frequency
atten double-precision stop band attenuation in dB
order integer filter order

Output y double-precision array filtered data

Return Value

status

integer

refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order highpass inverse
Chebyshev filter. */
double x[256], y[256], fs, fc, atten;

int n, order;

n = 256;

fs = 1000.0;

fc = 200.0;

atten = 40.0;
order = 5;
Uniform (n, 17, x);

InvCh_HPF (x, n, fs, fc, atten, order, y);

InvCh_LPF

int status = InvCh_LPF(double Xx[] ,int
int order, double y[]);

Purpose

n, double fs, double fc, double atten,

Filters the input array using a digital lowpass inverse Chebyshev filter. The operation can be
performed in place; that ig,andy can be the same array.

© National Instruments Corporation 2-127

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

Parameters
Input X double-precision array input data
integer number of elements ix

fs double-precision sampling frequency
fc double-precision cutoff frequency
atten double-precision stop band attenuation in dB
order integer filter order

Output y double-precision array filtered data

Return Value

status

integer

refer to error codes in
Appendix A

Example

/* Generate a random signal and filter it using a fifth order lowpass inverse
Chebyshev filter. */
double x[256], y[256], fs, fc, atten;

int n, order;

n = 256;

fs = 1000.0;

fc = 200.0;

atten = 40.0;
order = 5;
Uniform (n, 17, x);

InvCh_LPF (x, n, fs, fc, atten, order, y);

InvF_Dist

int status = InvF_Dist(double p,int n,int m, double *f);

Purpose

Calculated, given a probability & p < 1, such that

prob(F<f)=p

where F is a random variable from an F-distribution witndm degrees of freedom.

LabWindows/CVI Advanced Analysis Library 2-128

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input p double-precision probability (0 p < 1)
n integer degrees of freedom
m integer degrees of freedom
Output f double-precision the unigue numbdrsuch that

prob(F <f)=p,where Fis a
random variable from an F-
distribution withn andm
degrees of freedom.

Note: Whenp =0,f=0.

Return Value

status integer refer to error codes in
Appendix A

Example

double p, f;

int n,m;

p = 0.635;

n=2;

m =4,

InvF_Dist (p, n, m, &f);

InVFFT
int status = InvFFT (double Xx[] ,double y[] ,int n);
Purpose

Computes the inverse Fast Fourier Transform of the complex data. Let X = x + jy be the
complex array, then:

Y = FFT1{x}

The operation is done in place and the input arxeysdy are overwritten.

© National Instruments Corporation 2-129 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

Parameters
Input X double-precision array real part of complex array
double-precision array imaginary part of complex
array
n integer number of elements
Output X double-precision array real part of IFFT
double-precision array imaginary part of IFFT

Note: The number of element&) must be a power of two

Return Value

status integer refer to error codes in
Appendix A

Example

/* Generate two arrays with random numbers and compute its inverse Fast
Fourier Transform. */

double x[256], y[256];

int n;

n = 256;

Uniform (n, 17, x);

Uniform (n, 17, y);

InvFFT (X, y, n);

InVFHT
int status = InvFHT (double Xx[] ,int n);
Purpose

Computes the inverse Fast Hartley Transform using the following formula:
n-1
X, :%Z X, cag2mik/ 1)
=0

where xis the 1 point of the inverse FHT, and cas (x) = cos (x) + sin (x).

The operation is done in place and xhaput array is overwritten.

LabWindows/CVI Advanced Analysis Library 2-130 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array array to be transformed
integer number of elements
Output X double-precision array inverse Fast Hartley Transfgrm

Note: The number of elementsj must be a power of two.

Return Value

status integer refer to error codes in
Appendix A

Example

/* Generate an array with random numbers and compute its inverse Fast Hartley
Transform. */

double x[256];

int n;

n = 256;

Uniform (n, 17, x);

InvVFHT (X, n);

InvMatrix
int status = InvMatrix (void *x,int n,void *y);
Purpose

Finds the inverse matrix of an input matrix. The operation can be performed in placehat is,
andy can be the same matrices.

Parameters
Input X double-precision 2D array input matrix
integer dimension size of matrix
Output y double-precision 2D array inverse matrix

Note: The input matrix must be am-by-n square matrix

© National Instruments Corporation 2-131 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Return Value

Chapter 2

status

integer

refer to error codes in
Appendix A

InvN_ Dist

int status = InvN_Dist(double p, double *Xx);

Purpose

Calculatex, given a probability O ¢ < 1, such that:

prob(X<x)=p

where X is a random variable from a standard normal distribution.

Parameters
Input p double-precision probability (0 <p < 1)
Output X double-precision the unique number such that

prob(X < x) =p,where X is &
random variable from a
standard normal distribution

Return Value

status integer refer to error codes in
Appendix A
Example
double p, x;
p=0.5;

InvN_Dist (p, &x);

LabWindows/CVI Advanced Analysis Library

2-132

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

InvT_Dist

int status = InvT_Dist(double p,int n,double *t);

Purpose

Calculateg, given a probability O 9 < 1, such that:
prob(T<t)=p

where T is a random variable from a T-distribution witegrees of freedom.

Parameters
Input p double-precision probability (0 <p < 1)
n integer degrees of freedom
Output t double-precision the unigue numbdrsuch that

prob(T<t)=p,whereTisa
random variable from a T-
distribution withn degrees of
freedom

Return Value

status integer refer to error codes in
Appendix A

Example

double p, t;

int n;

p = 0.635;

n=2;

InvT_Dist (p, n, &t);

InvXX_Dist
int status = InvXX_Dist(double p,int n, double *x);
Purpose

Calculatex, given a probability & p < 1, such that:

prob(x<x)=p

© National Instruments Corporation 2-133 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

wherey is a random variable from a chi-square distribution wittegrees of freedom.

Parameters
Input p double-precision probability (0sp < 1)
n integer degrees of freedom
Output X double-precision the unique number such that

prob(x < x) = p, whereg is a
random variable from a chi-
square distribution with
degrees of freedom.

Note: Whenp =0,x=0.

Return Value

status integer

refer to error codes in
Appendix A

Example

double p, x;

int n;

p = 0.635;

n=2,

InvXX_Dist (p, n, &x);

Ksr_ BPF

int status = Ksr_BPF(double fs, double fl, double fh,int n,

double coef] ,double beta);

Purpose

Designs a digital bandpass FIR linear phase filter using a Kaiser window. This function

generates only the filter coefficients. No filtering of data is actually performed.

LabWindows/CVI Advanced Analysis Library

2-134

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
n integer number of filter coefficients
beta double-precision shape parameter
Output coef double-precision array filter coefficients
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion

Thebeta parameter controls the shape of a Kaiser window. A ldgf@rvalue results in a
narrower Kaiser window. Sonteetavalues and their equivalent windows are listed in the
following table:

beta Window
0.00 Rectangular
1.33 Triangle
3.86 Hanning
4.86 Hamming
7.04 Blackman

Refer toDigital Signal Processingy Oppenheim and Schafer for more information.

Example

/* Design a 55-point bandpass FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */

double x[256], coef[55], y[310], fs, fl, th, beta;

int n, m;
fs = 1000.0; /* sampling frequency */
fl = 200.0; [* desired lower cutoff frequency */
fh = 300.0; /* desired higher cutoff frequency */
/* pass band is from 200.0 to 300.0 */
n = 55; [* filter length */
beta = 3;
m = 256;

Ksr_BPF (fs, fl, th, n, coef, beta);
Convolve (coef, n, x, m, y);/* convolve the filter with the signal */

© National Instruments Corporation 2-135 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Ksr BSF

Chapter 2

int status = Ksr_BSF(double fs, double fl,double fh,int n,double coef] ,
double beta);

Purpose

Designs a digital bandstop FIR linear phase filter using a Kaiser window. This function
generates only the filter coefficients. No filtering of data is actually performed.

Parameters
Input fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
n integer number of filter coefficients
beta double-precision shape parameter
Output coef double-precision array filter coefficients

Return Value

status

integer

refer to error codes in
Appendix A

Parameter Discussion

Thebeta parameter controls the shape of a Kaiser window. A l&gfarvalue results in a
narrower Kaiser window. Sonietavalues and their equivalent windows are listed in the

following table:

beta Window
0.00 Rectangular
1.33 Triangle
3.86 Hanning
4.86 Hamming
7.04 Blackman

Refer toDigital Signal Processingpy Oppenheim and Schafer for more information.

LabWindows/CVI Advanced Analysis Library 2-136

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Example

/* Design a 55-point bandstop FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fl, fh, beta;

int n, m;
fs = 1000.0; /* sampling frequency */
fl = 200.0; [* desired lower cutoff frequency */
fh = 300.0; /* desired higher cutoff frequency */
/* stop band is from 200.0 to 300.0 */
n = 55; [* filter length */
beta = 3;
m = 256;

Ksr_BSF (fs, fl, th, n, coef, beta);
Convolve (coef, n, x, m, y);/* convolve the filter with the signal */

Ksr HPF
int status = Ksr_HPF(double fs, double fc,int n,double coef] ,double beta);
Purpose

Designs a digital highpass FIR linear phase filter using a Kaiser window. This function
generates only the filter coefficients. No filtering of data is actually performed.

Parameters
Input fs double-precision sampling frequency
fc double-precision cutoff frequency
n integer number of filter coefficients
beta double-precision shape parameter
Output coef double-precision array filter coefficients
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion
Thebeta parameter controls the shape of a Kaiser window. A ldefarvalue results in a

narrower Kaiser window. Sonibetavalues and their equivalent windows are listed in the
following table:

© National Instruments Corporation 2-137 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

beta Window
0.00 Rectangular
1.33 Triangle
3.86 Hanning
4.86 Hamming
7.04 Blackman

Refer toDigital Signal Processintpy Oppenheim and Schafer for more information.

Example

/* Design a 55-point highpass FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fc, beta;

int n, m;

fs = 1000.0; /* sampling frequency */

fc = 200.0; /* desired cutoff frequency */
n = 55; [* filter length */

beta = 4.5;

m = 256;

Ksr_HPF (fs, fc, n, coef, beta);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

Ksr LPF

int status = Ksr_LPF(double fs, double fc,int n,double coef] ,double beta);

Purpose

Designs a digital lowpass FIR linear phase filter using a Kaiser window. This function generates

only the filter coefficients. No filtering of data is actually performed.

Parameters
Input fs double-precision sampling frequency
fc double-precision cutoff frequency
n integer number of filter coefficients
beta double-precision shape parameter
Output coef double-precision array filter coefficients

LabWindows/CVI Advanced Analysis Library 2-138 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

Thebeta parameter controls the shape of a Kaiser window. A légf@rvalue results in a
narrower Kaiser window. Sonteetavalues and their equivalent windows are listed in the
following table:

beta Window
0.00 Rectangular
1.33 Triangle
3.86 Hanning
4.86 Hamming
7.04 Blackman

Refer toDigital Signal Processintpy Oppenheim and Schafer for more information.

Example

/* Design a 55-point lowpass FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fc, beta;

int n, m;

fs = 1000.0; /* sampling frequency */
fc = 200.0; /* desired cutoff frequency */
n = 55; [* filter length */

beta = 4.5;

m = 256;

Ksr_LPF (fs, fc, n, coef, beta);
Convolve (coef, n, x, m, y); /* convolve the filter with*/
/*the signal */

KsrWin
int status = KsrWin (double x[] ,int n,double beta);
Purpose

Applies a Kaiser window to theinput signal. The Kaiser window is defined by the formula:
w = lo (beta * (1.0 - &1/2) / lo (beta) fori=0,1,..,n-1

wherea = |1 - 2i/ n} and lo represents the z&arder modified Bessel function of the first kind.

© National Instruments Corporation 2-139 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

The output signal is obtained by the formula:

X=X* W, fori=0,1,..,n-1

The window operation is performed in place. The windowedxdegplaces the input data

Parameters
Input X double-precision array input data
n integer number of elements x
beta double-precision shape parameter
Output X double-precision array windowed data
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion

Thebeta parameter controls the shape of a Kaiser window. A ldefarvalue results in a
narrower Kaiser window. Sonibetavalues and their equivalent windows are listed in the
following table:

beta Window
0.00 Rectangular
1.33 Triangle
3.86 Hanning
4.86 Hamming
7.04 Blackman

Refer toDigital Signal Processinggy Oppenheim and Schafer for more information.

LinEgs
int status = LinEgs(void *A, double y[] ,int n,double X[]);
Purpose

Solves the linear system of equations:

Ax =y

LabWindows/CVI Advanced Analysis Library 2-140 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input A double-precision 2D array input matrix
y double-precision 1D array known vector
n integer dimension size of system
Output X double-precision 1D array solution of vector

Note: TheA input matrix must be an n-by-n square matrix.

Return Value

status integer refer to error codes in
Appendix A

Example

/* Find the solution to the linear system of equations. */
double A[10][10], y[10], x[10];

int n;

n=10;

LinEqs (A, y, n, x);

LinEvlD
int status = LinEvlD(double x[] ,int n,double a, double b, double vy[]);
Purpose

Performs a linear evaluation of a 1D array. Thelément of the output array is obtained using
the formula:

y=a*x+b

The operation can be performed in place; that @)dy can be the same array.

© National Instruments Corporation 2-141 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

Parameters
Input X double-precision array input array
n integer number of elements
a double-precision multiplicative constant
b double-precision additive constant
Output y double-precision array linearly evaluated array

Return Value

status

integer

refer to error codes in
Appendix A

LinEv2D

int status = LinEv2D(void *x,int n,int m, double a, double b,void *y);

Purpose

Performs a linear evaluation of a 2D array. THgj{j element of the output array is obtained

using the formula:

Yiji = an,j +b

The operation can be performed in place; that &)dy can be the same array.

Parameters
Input X double-precision 2D array| input array
integer number of elements in first
dimension
m integer number of elements in second
dimension
a double-precision multiplicative constant
b double-precision additive constant
Output double-precision 2D array| linearly evaluated array
LabWindows/CVI Advanced Analysis Library 2-142 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Return Value

status integer refer to error codes in
Appendix A

LinFit

int status = LinFit (double x[] ,double y[] ,int n,double Zz[] ,double *slope
double *intercept, double *mse);

Purpose

Finds theslopeandintercept values that best represent the linear fit of the data poing3 (
using the least squares method. Thelément of the output array is obtained by using the
following formula:

z= slope*x+ intercept

The mean squared errange is obtained using the following formula:
n—l|)}'2
mse= z- I'n
2

wheren is the number of sample points.

Parameters
Input X double-precision array X values
y double-precision array y values
n integer number of sample points
Output z double-precision array best fit array
slope double-precision slope of line
intercept double-precision y-intercept
mse double-precision mean squared error
Return Value
status integer refer to error codes in
Appendix A

© National Instruments Corporation 2-143 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Example

/* Generate a ramp pattern and find the best linear fit. */
double x[200], y[200], z[200];

double start, end, a, b, slope, intercept, mse;

int n;

n = 200;

start = 0.0;

end = 1.99E2;

Ramp (n, start, end, x); *x[i]=1*

a=3.5;
b=-2.75;
LinEv1D (x, n, a, b, y); I yli] = a*x[i] + b */

/* Find the best linear fit in z. */
LinFit (x, y, n, z, &slope, &intercept, &mse);

LU
int status = LU (void *a,int n,int p[] ,int *sign);
Purpose

Performs an LU matrix decomposition.
a=L*U

where L is am by n lower triangular matrix whose main diagonal elements are all ones, and U is
an upper triangular matrix.

Parameters
Input a double-precision 2D array input matrix
n integer dimension size
Output a double-precision 2D array LU decomposition
p integer array permutation vector
sign integer row exchange indicator

Note: The input matrix is overwritten by theU output matrices.

Return Value

status integer refer to error codes in
Appendix A

LabWindows/CVI Advanced Analysis Library 2-144 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameter Discussion

After the function executes, the input mafaiis replaced with two triangular matrices. L

occupies the lower triangular partaéind U occupies the upper triangular par.ofThe

permutation vectop records possible row exchange information in the LU decomposition.

sign = 0 indicates that there is no such exchange or that there is an even number of such
exchangessign = 1 indicates that there is an odd number of such exchapgegsign are

useful when solving the linear equations or computing the determinant. LU is most useful when
used in conjunction witBackSub andForwSub to solve a set of linear equations with the

same matria.

For more information, refer tdumerical Recipeby Presset al, Cambridge University Press.

MatrixMul
int status = MatrixMul (void *x,void *y,int n,int k,int m,void *2);
Purpose

Multiplies two 2D input matrices. The"(ij") element of the output matrix is obtained using the
formula:

k-1

4 =2 Ko "W
p=0
Parameters
Input X double-precision 2D | x input matrix
array
y double-precision 2D |y input matrix
array
n integer first dimension ofk
k integer second dimension of first dimension
ofy
m integer second dimension gf
Output |z double-precision 2D | output matrix
array
Return Value
status integer refer to error codes in Appendix A

© National Instruments Corporation 2-145 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameter Discussion

Be careful to use the correct array sizes. The following array sizes must be met:
* X must beif by k).
* y must be K by m).
* zmust berf by m).

Example

/* Multiply two matrices. Note: Ax B _ B x A, in general.*/
double x[10][20], y[20][15], z[10][15];

intn, k, m;

n=10;

k = 20;

m = 15;

MatrixMul (x, y, n, k, m, z);

MaxMin1D

int status = MaxMinl1D (double x[] ,int n,double *max, int

int *imin);

*imax, double *min,

Purpose

Finds the maximum and minimum values in the input array, as well as the respective indices of

the first occurrence of the maximum and minimum values.

Parameters
Input X double-precision array input array
n integer number of elements
Output max double-precision maximum value
imax integer index ofmax in x array
min double-precision minimum value
imin integer index ofmin in x array
Return Value
status integer refer to error codes in

Appendix A

LabWindows/CVI Advanced Analysis Library

2-146

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Example

/* Generate an array with random and find the maximum and minimum values. */
double x[20], y[20];

double max, min;

int n, imax, imin;

n = 20;

Uniform (n, 17, x);

MaxMinlD (x, n, &max, &imax, &min, &imin);

MaxMin2D

int status = MaxMin2D (void *x,int n,int m, double *max, int *imax,
int *jmax, double *min,int *imin,int *jmin);

Purpose
Finds the maximum and the minimum values in the 2D input array, as well as the respective

indices of the first occurrence of the maximum and minimum valuesx @hay is scanned by
rows.

Parameters
Input X double-precision 2D array| input array
integer number of elements in first dimensign
of x
m integer number of elements in second
dimension of
Output | max double-precision maximum value
imax integer index ofmax in x array (first
dimension)
jmax integer index ofmax in x array (second
dimension)
min double-precision minimum value
imin integer index ofmin in x array (first
dimension)
jmin integer index ofmin in x array (second
dimension)

© National Instruments Corporation 2-147 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Return Value

status refer to error codes in

Appendix A

integer

Example

/* This example finds the maximum and minimum values as well as their location
within the array. */

double x[5][10], max, min;

int n, m, imax, jmax, imin, jmin;

n=>5;

m = 10;

MaxMin2D (x, n, m, &max, &imax, &max, &min, &min, &min);

Mean

int status = Mean(double Xx[] ,int n,double *meanval;
Purpose

Computes the mean (average) value of the input array. The following formula is used to find the
mean.
n-1
meanvak x /'n
>

Parameters
Input X double-precision array input array
n integer number of elements ix
Output | meanval double-precision mean value

Return Value

status integer refer to error codes in
Appendix A
LabWindows/CVI Advanced Analysis Library 2-148 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Median
int status = Median(double x[] ,int n, double *medianval);
Purpose

Finds the median value of tka@nput array. To find the median value, the input array is first
sorted in ascending order. Let S be the sorted array, then:

ong .
_] EEE if n is odd
medianvak

B o I s L
E).S (SEE T+, if n is even

Note: Thex input array is not changed.

Parameters
Input X double-precision array input array
n integer number of elements ix
Output medianval |double-precision median value
Return Value
status integer refer to error codes in
Appendix A

Mode

int status = Mode(double Xx[] ,int n,double xBase double xTop,int intervals,
double *modeval);

Purpose
Finds the mode of theinput array. The mode is defined as the value that most often occurs in a

given set of samples. This function determines the mode in terms of the histogram of the input
array.

© National Instruments Corporation 2-149 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input X double-precision array input array
n integer number of elements ix
xBase double-precision lower range
xTop double-precision upper range
intervals integer number of intervals
Output modeval double-precision mode value
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a Gaussian distributed random array and find its mode. */
double x[2000], max, min, modeval;

int n, intervals, imax, imin;

n = 2000;

intervals = 50;

GaussNoise (n, 1.0EO0, 17, x);

MaxMinlD (x, n, &max, &imax, &min, &imin);

Mode (X, n, min, max, intervals, &modeval);

Moment
int status = Moment(double x[] ,int n,int order, double *momentval);
Purpose

Computes the moment about the mean of the input array with the specified order. The formulas
used to find the moment are as follows.

n-1 X — av order
momentvak Z [J—'
=) n
n-1

ave= Z x/ n
=0

LabWindows/CVI Advanced Analysis Library 2-150 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input array
n integer number of elements ix
order integer moment order
Output momentval | double-precision moment about the mean

Note: order must be greater than zero

Return Value

status integer refer to error codes in
Appendix A

Example

/* Generate an array with random numbers and determine its skewness (third
order moment) and its kurtosis (fourth order moment). */
double x[200], skew, kurtosis;

int n, order;

n = 200;

Uniform (n, 17, x);

order = 3;

Moment (x, n, order, &skew);

order = 4;

Moment (x, n, order, &kurtosis);

MullD
int status = MullD(double Xx[] , double y[] ,int n,double z[]),
Purpose

Multiplies two 1D arrays. Thé element of the output array is obtained using the following
formula.

z=X"Y,

The operation can be performed in place; that ¢en be the same array as eithery.

© National Instruments Corporation 2-151 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Chapter 2

Parameters
Input X double-precision array X input array
y double-precision array y input array
n integer number of elements to be
multiplied
Output z double-precision array result array

Return Value

status integer refer to error codes in
Appendix A

Mul2D

int status = Mul2D(void *x,void *y,int n,int m,void *2);

Purpose

Multiplies two 2D arrays. The'(ij") element of the output array is obtained using the following

formula.
z, = x; Uy,
The operation can be performed in place; tha ésn be the same array as eithery.
Parameters
Input double-precision 2D array | X input array
y double-precision 2D array |y input array
n integer number of elements in first
dimension
m integer number of elements in second
dimension
Output z double-precision 2D array| result array
Return Value
status integer refer to error codes in
Appendix A
LabWindows/CVI Advanced Analysis Library 2-152 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

N_Dist

int status = N_Dist(double x, double *p);
Purpose

Computes the one-sided probability

p = prob(X<x)

where X is a random variable from a standard normal distribution.

Parameters
Input X double-precision -0 <X <00
Output p double-precision probability (0 <p < 1)

Return Value

status integer refer to error codes in
Appendix A

Note: For computing the two-sided probabilitypp= prob(-x< X < x), the following formula
can be used.
p2 = 1.0 - 2* prob(X< -x)

Example
double x, p;

X =-123.456;
N_Dist (x, &p);

NeglD
int status = NeglQ{double X[] ,int n,double Yy[]);
Purpose

Negates the elements of the input array. The operation can be performed in places dmatyis,
can be the same array.

© National Instruments Corporation 2-153 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input X double-precision array input array
integer number of elements
Output y double-precision array negated values of theinput
array
Return Value
status integer refer to error codes in
Appendix A

NetworkFunctions

int status = NetworkFunctions(void *stimulus, void *responsegint n,int numFrames
double dt, double magSxyf] , double phaseSxy] ,
double magHf[] , double phaseH{] , double
coherencd] , double impulse]] , double *df);

Purpose

Computes the single-sided coherence function along with the averaged single-sided cross power
spectrum, averaged single-sided frequency response (transfer function), and impulse response,
from a 2D array of stimulus signals and a 2D array of response signals.

The network functions are computed as follows.

avg cross power = avg of Sxy(f)

avg transfer function = avg Sxy(f)/avg Sxx(f)

avg impulse response = Inverse Real FFT(avg two-sided transfer function)
coherence = |averaged Sxyf[avg Sxx(f) x avg Syy(f)]

where

Sxy(f) is the two-sided cross power spectrum of x and y
Sxx(f) is the two-sided auto power spectrum of x

Syy(f) is the two-sided auto power spectrum of y

X is the stimulus signal

y is the response signal

stimulus is a 2D array containing a time-domain signal, usually the network stimmelsjsonse
is a 2D array containing a time-domain signal, usually the network response.

LabWindows/CVI Advanced Analysis Library 2-154 © National Instruments Corporation

Chapter 2

Advanced Analysis Library Function Reference

Each row in the stimulus array represents one frame of the network stimulus and is associated
with one row of the response array, which represents one frame of the network response.

Parameters
Input stimulus double- contains the time-domain signal, usually the
precision 2D network stimulus. The number of rows should
array be equal tmumFrames and the number of
columns should be equal to theThe size of
this array must be at leastimFramestn.
response double- contains the time-domain signal, usually the
precision 2D network stimulus. The number of rows should|be
array equal tonumFrames, and the number of
columns should be equal to theThe size of
this array must be at leastimFramestn.
n integer number of elements in one frame of the input
stimulus and response arrays.
numFrames | integer number of frames (rows) contained in the input
stimulus and response arrays.
dt double- sample period of the time-domain signal, usually
precision in seconds.
dt = 14s, where fs is the sampling frequency of
the time-domain signal.
Output | magSxy double- averaged single-sided cross power spectrum
precision array | between the stimulus and response, in volt$rms
if the input signals are in volts. If the input
signals are not in volts, the results are in inpulf
signal units RMS squared. This array must b¢ at
leastn/2 elements long.
phaseSxy double- averaged single-sided phase spectrum in radigns
precision array | showing the difference between the phases of the
response signal and the stimulus signal. This
array must be at least2 elements long.
magHf double- magnitude of the averaged single-sided transter
precision array | function between the stimulus and response
signals. This array must be at lea& elements
long.
phaseHf double- phase, in radians of the averaged single-sided
precision array | transfer function between the stimulus and
response signals.

© National Instruments Corporation

(continues)

2-155

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters (Continued)

coherence double- averaged single-sided coherence function
precision array | spectrum. The coherence function shows the
frequency content of the response due to the
stimulus and measures the validity of the
network frequency response measurement. This
array must be at least2 elements long.

impulse double- contains the impulse response of the network
precision array | based on time-domain signals stimulus and
response. Impulse is computed from the
averaged frequency response of the stimulus fand
response signals. The size of this array must|be

at leasin.
df double- points to the frequency interval, in hertzdifis
precision in seconds. df = 1/(n*dt)
Return Value
status integer refer to error codes in Appendix A

NonLinearFit

int status = NonLinearFit (double x[] , double y[] ,double Z[] ,int n,
ModelFun *modelFunction, double a[] ,int ncoef
double *MSE);

Purpose

This function uses the Levenberg-Marquardt algorithm to determine the least squares set of
coefficients that best fit the set of input data points(X,Y) as expressed by a nonlinear function
y=f(x,a) where a is the set of coefficients. This function also gives the best fit curve y=f(x,a).

The user needs to pass a pointer to the nonlinear functi@h #ong with a set of initial guess
coefficientsa[ncoef. NonLinearFit does not always give the correct answer. The correct
output sometimes depends on the initial choicgimfoef. It is very important to verify the

final result.

The output mse (mean squared error) is computed using the following formula.

1 3 2
mse—H; [y - f(x. 3

LabWindows/CVI Advanced Analysis Library 2-156 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input | X double-precision array| The array of x coordinates of the (k,y)
data sets to be fitted.
y double-precision array| The array of y coordinates of the (x,y)
data sets to be fitted.
n integer The number of elements in both thg x
and y arrays.
modelFunction ModelFun pointer A pointer to the model function,
f(x[i],a), used in the nonlinear fitting
algorithm. The model function must pe
defined as follows:
double ModelFunct
(double x, double a[],
int ncoef);
wherea[ncoef] are the function
coefficients.
a double-precision array| On input,a[ncoef] gives a set of initial
guess coefficients.
ncoef integer Number of coefficients.
Output |z double-precision array| Best fit array, y = f(x,a).
a double-precision array| Best fit coefficients.
MSE double-precision Mean squared error betwegmandz.
Return Value
status integer refer to error codes in Appendix A

NormallD
int status = NormallD(double x[] ,int n,double y[] ,double *ave double *sDeV);
Purpose
Normalizes a 1D input vector. The output vector is of the following form.
y, = (x- ave) / sDev

whereave andsDevare the mean and the standard deviation of the input vector. Refer to the
StdDev function for the formulas used to find the mean and the standard deviation.

© National Instruments Corporation 2-157 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

The operation can be performed in place; that &)dy can be the same array.

Parameters
Input X double-precision array input vector
integer number of elements
Output |y double-precision array normalized vector
ave double-precision mean value oX
sDev double-precision standard deviation of
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a vector (1D array) with random samples and normalize it. */
double x[200], y[200], ave, sDev;

int n;

n = 200;

Uniform (n, 17, x);

NormallD (x, n, y, &ave, &sDev);

Normal2D
int status = Normal2D(void *x,int n,int m,void *y,double *ave double *sDeV);
Purpose

Normalizes a 2D input matrix. The output matrix is of the following form.
Yij =(>€,j - avé/ sDev

whereave andsDevare the mean and the standard deviation of the input matrix. Refer to the
StdDev function for the formulas used to find the mean and the standard deviation.

The operation can be performed in place; that @)dy can be the same array.

LabWindows/CVI Advanced Analysis Library 2-158 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision 2D | input matrix
array
n integer size of first dimension
m integer size of second dimension
Output y double-precision 2D | normalized matrix
array
ave double-precision mean value oX
sDev double-precision standard deviation of
Return Value
status integer refer to error codes in

Appendix A

Example

/* Normalize a matrix (2D array). */
double x[10][20], y[10][20], ave, sDev;
int n, m;

n=10;

m = 20;

Normal2D (x, n, m, y, &ave, &sDev);

PolyEv1iD
int status = PolyEvlD(double Xx[] ,int n,double coef] ,int Kk, double vy[]);
Purpose

Performs a polynomial evaluation on the input array. Tleéiment of the output array is
obtained using the following formula.

k-1
y =) coef* xi’

The operation can be performed in place; that &)dy can be the same array.

© National Instruments Corporation 2-159 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input X double-precision array input array
n integer number of elements
coef double-precision array coefficients array
k integer number of coefficients
Output y double-precision array polynomially evaluated array
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion

The order of the polynomial is equal to the number of elements in the coefficients array minus
one; that is, if there ateelements in theoefarray, then order k - 1.

Example

/* Generate an array with random numbers, let the coefficients be { 1, 2, 3,
4, 5} generated by the Ramp function and find the polynomial evaluation of
the array. */

double x[20], y[20], a[5];

double first, last;

int n, k;

n = 20;

k=5;

first = 1.0;

last = 5.0;

Uniform (n, 17, x);

Ramp (k, first, last, a);

PolyEV1D (X, n, a, k, y);

PolyEv2D
int status = PolyEv2D(void *x,int n,int m, double coef] ,int k,void *y);
Purpose

Performs a polynomial evaluation on a 2D input array. Th¢"Jielement of the output array is
obtained using the following formula.

k-1
Yiji = z COEE *X,j P
=0

LabWindows/CVI Advanced Analysis Library 2-160 © National Instruments Corporation

Chapter 2

Advanced Analysis Library Function Reference

The operation can be performed in place; that &)dy can be the same array.

Parameters
Input X double-precision 2D array| input array
integer number of elements in first
dimension
m integer number of elements in second
dimension
coef double-precision array coefficients array
k integer number of coefficients
Output y double-precision 2D array| polynomially evaluated array
Return Value
status integer refer to error codes in

Appendix A

Parameter Discussion

The order of the polynomial is equal to the number of elements in the coefficients array minus
one; that is, if there ateelements in theoefarray, then order k - 1.

Example

/* Perform a polynomial evaluation of a 2D array, let the coefficients be { 1,
2, 3, 4, 5 } generated by the Ramp function and find the polynomial evaluation

of the array. */

double x[5][10], y[5][10], a[5];
double first, last;

int n, m, k;

n=>5;

k=5;

m = 10;

first = 1.0;

last = 5.0;

Ramp (k, first, last, a);
PolyEv2D (x, n, m, a, k, y);

© National Instruments Corporation 2-161

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

PolyFit

int status = PolyFit(double X[] ,double y[] ,int n,int order, double Z]] ,
double coef] ,double *msé;

Purpose
Finds the coefficients that best represent the polynomial fit of the data poiyksiging the

least squares method. THeslement of the output array is obtained by using the following
formula.

order

z=;coej>|<”

The mean squared errange is obtained using the following formula.
n-1

mse:Z| z- f In

1=0

whereorder is the polynomial order andis the number of sample points.

Parameters

Input X double-precision array x values
y double-precision array y values
n integer number of sample points
order integer polynomial order

Output z double-precision array best fit
coef double-precision array polynomial coefficients
mse double-precision mean squared error

Note: The size of the coefficients array must beder +1.

Return Value

status integer refer to error codes in
Appendix A

Example

/* Generate a 10th order polynomial pattern with random coefficients and find
the polynomial fit. */

double x[200], y[200], z[200], a[11], coef[11];

LabWindows/CVI Advanced Analysis Library 2-162 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

double first, last, mse;
int n, k, order;

n = 200;

first = 0.0;

last = 1.99E2;

Ramp (n, first, last, x) *x[i]=1*

k=11,
Uniform (k, 17, a);
PolyEv1D (X, n, a, k, y); /* polynomial pattern */

/* Find the best polynomial fit */
order = 10;
PolyFit (x, y, n, order, z, coef, &mse);

PolyInterp
int status = PolyInterp(double Xx[] ,double y[] ,int n,double x val,
double *Interp_Val, double *Error);

Purpose

Returns the value of the unique polynomial P of degree n-1 passing througpatinés
(x,f(x)) atx_val, along with an estimate of the error in the interpolation, given a set of
points (xf(x)) in the plane where f is some function, and given a valwval at which f is to
be interpolated or extrapolated.

Parameters
Input X 1D double- Values at which the function to be interpolated is
precision array| known.
y 1D double- Function values f(x) at the knowwvalues.
precision array
n integer Number of points ix and iny.
x_val double- Value at which f is to be interpolated or extrapolated.
precision
Output |Interp_Val |double- Interpolated or extrapolated valuexawal.
precision
Error double- Estimate of the error in the interpolation.
precision

© National Instruments Corporation 2-163 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Using This Function

All input arrays should be the same size. If the value @él is in the range of, this
function performs interpolation. Otherwise, it performs extrapolation.\él is too far from
the range ok, Error might be large, and it would not produce a satisfactory extrapolation.

Example
/* Pick points randomly, pick an x in the range of X-values, run a polynomial
through the points, and interpolate at x_val. */
double X[10], Y[10], Interp_Val, Error, x_val, high, low;
intn, i;
n = 10;
WhiteNoise (n, 5.0, 17,
WhiteNoise (n, 5.0, 17
high = X]0];
low = X][O0];
for(i=0; i<n; i++) {
if (X[i] > high) high = X][i];
if (X[i] < low) low = X{[i;

X);
Y):

x_val = (high + low)/2.0;
PolylInterp (x, y, n, x_val, &Interp_Val, &Error);

PowerFrequencyEstimate

int status = PowerFrequencyEstimatédouble autoSpectruni] ,int n,
double searchFreq
WindowStruct windowConstants double df,
int span double *freqPeak,double *powerPeak)

Purpose

Computes the estimated power and frequency around a peak in the power spectrum of a time-

domain signal. With this function, you can achieve good frequency estimates for measured peaks

that lie between frequency lines on the spectrum. This function also makes corrections for the
window function you use.

The estimated frequency peak is computed with the following formula.

i+span/2
autoSpectrum j df
j=i-span/2
i+span/2
Z autoSpectrum

j=i-spanf2

freqPeak =

LabWindows/CVI Advanced Analysis Library 2-164 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

The estimated power peak is computed as follows.

i+span/2
powerPeak= > (autoSpectrum)/ enbw
j=i-spanR2

where
i = index of the searchfreq,
df is the frequency interval, usually in hertz, as output byAtitePowerSpectrum
function
enbw is windowConstants.enbw as output bySbaledWindow function.

Parameters
Input | autoSpectrum double-precision] The single-sided power spectrum as
array output by theAutoPowerSpectrum
function.
n integer The number of elements in the input
AutoSpectrum array.
searchFreq double-precision The frequency (usually in hertz) of the

frequency around which you want to
estimate the frequency and power. If
searchFreqis less than zero, or, is not 4
valid frequency, this function will
automatically search for the maximum
peak in theautoSpectrumarray and
estimate the frequency and power around
the maximum peak.

windowConstants WindowConst | A structure containing the following
useful constants for the selected windoyv:
enbwis the equivalent noise bandwidth (of
the selected window. You can use this
value to compute the power in a given
frequency spancoherentgains the peak
gain of the window, relative to the peak
gain of the Rectangular window. This
value is used to normalize peak signal
gains to that of the Rectangular window.
This structure is output by the
ScaledWindow function.

(continues)

© National Instruments Corporation 2-165 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters (Continued)

df double-precision] The frequency interval, in hertz, as ougput
by the following functions:
AmpPhaseSpectrum
AutoPowerSpectrum
CrossPowerSpectrum
NetworkFunctions
TransferFunction

span integer The number of frequency lines (bins)
around the peak to be included in the peak
frequency and power estimation. The
power inspan'2 frequency lines before
the peak frequency line, the peak
frequency line itself, andpan/2
frequency lines after the peak are included
in the estimation.

Output | freqPeak double-precision Points to the estimated frequency of the
estimated peak power in autospectrum.
powerPeak double-precision Points to the estimated peak power in
autospectrum.

Return Value

status integer refer to error codes in Appendix A

Prodl1D
int status = Prod1D(double x[] ,int n, double *prod);
Purpose

Finds the product of the elements of the input array. The product of the elements is obtained
using the following formula.

n-1

prod = |_| X

1=0

LabWindows/CVI Advanced Analysis Library 2-166 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference
Parameters
Input X double-precision array input array
n integer number of elements
Output prod double-precision product of elements

Return Value

status

integer

refer to error codes in
Appendix A

Pulse

int status = Pulsgint

Purpose

n,double amp[] ,int delay, int width, double pulsePatter]);

Generates an array of numbers representing the pattern of a pulse waveforthel@erit of
the output array is obtained using the formula.

pulsePattern= %g

if delay< i < (delay + width)

otherwise
fori=0,1,2,..,n1
Parameters

Input n integer number of samples
amp double-precision pulse amplitude
delay integer pulse delay
width integer pulse width

Output pulsePattern double-precision array pulse pattern array

Return Value

status

integer

refer to error codes in
Appendix A

© National Instruments Corporation

2-167

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Example

/* The following code generates the following pulse pattern
pulsePattern = { 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 2.0,
0.0,0.0}. %

double pulsePattern[10], amp;

int n, delay, width;

n=10;

delay = 3;

width = 5;

amp = 2.0;

Pulse (n, amp, delay, width, pulsePattern);

PulseParam

int status = PulseParan{double pulsePatterr] ,int n, double *amp, double *amp90, double
*amp50, double *ampl0, double *top, double *base double
*topOvershoot double *baseOvershoatint *delay, int* width, int
* riseTime, int *fallTime, double *slewRaté;

Purpose

Analyzes the input array values for a pulse pattern and determines the pulse parameters that best
describe the pulse pattern. It is assumed that the input arrayimasdal distributiona
distribution containing two distinct peak values.

Parameters

Input pulsePattern double-precision array input array
n integer number of elements

Output amp double-precision amplitude
amp90 double-precision 90% amplitude
amp50 double-precision 50% amplitude
ampl0 double-precision 10% amplitude
top double-precision top value
base double-precision base value
topOvershoot | double-precision top overshoot
baseOvershoot | double-precision base overshoot
delay integer pulse delay
width integer width delay
riseTime integer rise time
fallTime integer fall time
slewRate double-precision slew rate

LabWindows/CVI Advanced Analysis Library

2-168

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion
The returned parameters are as follows.

top = upper mode

base= lower mode

amp =top - base

amp90= 90% amplitude

amp50= 50% amplitude

ampl10= 10% amplitude

topOvershoot= maximum value top

baseOvershoot= base- minimum value

delay = rising edge index (50% amplitude)

width = falling edge index (50% amplitudejielay

riseTime = 90% amplitude index - 10% amplitude index on rising edge
fallTime = 10% amplitude index - 90% amplitude index on falling edge
slewRate= (90% amplitude - 10% amplitude)seTime

The parameterdelay, width, riseTime, andfallTime are integers because the input is a discrete
representation of a signal.

Example

/* Generate a noisy pulse pattern and determine its pulse parameters. */
double x[200], y[200], amp, amp90, amp50, amp10, top, base;

double topOvershoot, baseOvershoot, slewRate, noiseLevel;

int n, delay, width, riseTime, fallTime;

n = 200;

amp = 5.0;

delay = 50;

width = 100;

noiseLevel = 0.5;

Pulse (n, amp, delay, width, x); /* Generate a pulse */

WhiteNoise (n, noiseLevel, 17, y); [* Generate noise signal */

Add1D (x, y, n, x); /* Noisy Pulse */

PulseParam (x, n, &, &90, &50, &1l0, &top, &base, &topOvershoot,
&baseOvershoot, &delay, &width, &riseTime, &fallTime, &slewRate);

© National Instruments Corporation 2-169 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

QScalelD

int status = QScaleldouble x[] ,int

Purpose

Scales the input array by its maximum absolute value. "Télernent of the scaled array can be

obtained using the following formula.

y, = X [/ scale

wherescaleis the maximum absolute value in the input array. The corstalgis determined

by the function.

n, double Yy[] ,double *scalg;

The operation can be performed in place; that @)dy can be the same array.

Parameters
Input X double-precision array input array
n integer number of elements
Output y double-precision array scaled array
scale double-precision scaling constant

Return Value

status

integer

refer to error codes in
Appendix A

QScale2D

int status = QScale2l¥void *x,int n,int m,void *y, double *scalg;

Purpose

Scales a 2D input array by its maximum absolute value. T1jé)@lement of the scaled array

can be obtained using the following formula.

Y.; =%, [scale

wherescaleis the maximum absolute value of the input array. The corstalgis determined

by the function.

The operation can be performed in place; that @)dy can be the same array.

LabWindows/CVI Advanced Analysis Library

2-170

© National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference
Parameters
Input X double-precision 2D array| input array
integer number of elements in first
dimension
m integer number of elements in second
dimension
Output y double-precision 2D array| scaled array
scale double-precision scaling constant

Return Value

status

integer

refer to error codes in
Appendix A

Ramp

int status = Ramp(int

Purpose

n, double first, double

last, double rampvals[]);

Generates an output array representing a ramp pattern." dleenent of the output array is
obtained using the formula.

rampvals = first + i Ax

wherelAx = (last - first) / (n-1).

Parameters
Input n integer number of samples
first double-precision initial ramp value
last double-precision final ramp value
Output rampvals double-precision array ramp array

Return Value

status

integer

refer to error codes in
Appendix A

© National Instruments Corporation 2-171

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameter Discussion

The value ofast does not have to be greater than the valdiestf If the conditionast < first
is met, then a negatively sloped ramp pattern is generated.

Example

/* The following code generates the pattern—-rampvals = { -5.0, -4.0, -3.0, -
2.0,-1.0,0.0,1.0,2.0,3.0,4.0,5.0}. %

double rampvals[11], first, last;

int n;

n=11;

first = -5.0;

last = 5.0;

Ramp (n, first, last, rampvals);

Ratinterp

int status = Ratinterp (double Xx[] ,double y[] ,int n,double x_ val,
double *Interp_Val, double *Error);

Purpose

Returns the value of a particular rational functior)#)(x) passing through the n points
(x, f(x)) atx_val,

given a set of n pointx (f(x)) in the plane where f is some function, and
a valuex_val at which f is to be interpolated; and

where P and Q are polynomials, and
nis the number of elementsxn

The function PX)/Q(X) is the unique rational function that passes through the given points
and satisfies the following conditions.

If nis odd,
dedP) = dedQ) = (n-1)/2
if nis even,
dedQ) =n/2
degP)=n/2-1

where deg() is the order of the polynomial function.

LabWindows/CVI Advanced Analysis Library 2-172 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference
Parameters
Input X 1D double- Values at which the function to be interpolated is
precision array known.
y 1D double- Function values at the knowrwvalues.
precision array
n integer Number of points ix and iny.
x_val double- Value at whiclf is to be interpolated or
precision extrapolated.
Output | Interp_Val double- Interpolated value at val.
precision
Error double- Estimate of the error in the interpolation.
precision

Using This Function

All input arrays should be the same size. If the value gél is in the range df, this
function performs interpolation. Otherwise, it performs extrapolation.\él is too far from
the range ok, Error might be large, and it would not produce a satisfactory extrapolation.

Example

/* Pick points randomly, pick an x in the range of x-values, run a rational

function through the points and interpolate at x_val. */
double x[10], y[10], Interp_Val, Error, x_val, high, low;
intn, i
n=10;
WhiteNoise (n, 5.0, 17, X);
WhiteNoise (n, 5.0, 17, y);
high = x[0];
low = x[O];
for(i=0; i<n; i++) {
if (x[i] > high) high = X[i];
if (x[i] < low) low = X]il;

x_val = (high + low)/2.0;
Ratinterp (x, y, n, x_val, &Interp_Val, &Error);

© National Instruments Corporation 2-173

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

ReFFT
int status = ReFFT(double x[] ,doubley[] , intn);
Purpose

Computes the Fast Fourier Transform of a real input array.

Parameters
Input X double-precision array array to be transformed
n integer number of elements
Output X double-precision array real part of Fourier Transform
y double-precision array imaginary part of Fourier
Transform
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion

The number of elements)(must be a power of two. The operation is done in place and the
input arrayx is overwritten. The output arrgymust be at least the same size as the input array
because performing an FFT on a real array results in a complex sequence.

Example

/* Generate an array with random numbers and compute its Fast Fourier
Transform. */

double x[256], y[256];

int n;

n = 256;

Uniform (n, x);

ReFFT (x, Y, n);

LabWindows/CVI Advanced Analysis Library 2-174 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

RelnvFFT
int status = RelnvFFT(double x[] , double y[] ,int n);
Purpose

Computes the inverse Fast Fourier Transform of a complex sequence that results in a real output
array.

Parameters
Input X double-precision array real part to be transformed
y double-precision array imaginary part to be transformed
n integer number of elements
Output X double-precision array real inverse Fourier Transform

Parameter Discussion

The number of elements)(must be a power of 2. The operation is done in place, and the input
arrayx is overwritten. The array is unchanged.

Return Value

status integer refer to error codes in
Appendix A

Example

/* Generate an array with random numbers. */

/* Compute it's real inverse Fast Fourier Transform. */
double x[256], y[256];

int n;

n = 256;

Uniform (n, 17, x);

Uniform (n, 17, y);

RelnvFFT (X, y, n);

© National Instruments Corporation 2-175 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

ResetlIRFilter

int status= ResetlIRFilter (IIRFilterPtr filterinformation);
Purpose

Sets the reset flag in the filterinfo filter structure, so that the internal filter state information is
reset to zero before the next cascade IIR filtering operation.

Parameters

Input | filteriInformation lIRFilterPtr | filterinformation is the pointer to the filter
structure which contains the filter
coefficients and the internal filter

information.
Please refer to the function
AlloclIRFilterPtr for further

information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.
Example
/*How to use function ResetlIRFilter */
double fs, fl, th, x[256], y[256];
int type,order,n;
[IRFilterPtr filterInfo;
n = 256;
fs =1000.0;
fl = 200.0;
order = 5;
type = 0; /* lowpass */

filterinfo = AlloclIRFilterPtr(type,order);
if(filterinfo!=0) {
Bw_CascadeCoef(fs,fl,th, filterinfo);
Uniform(n,17,X);
IIRCascadekFiltering(x,n,filterinfo,y);
Uniform(n,20,X);
ResetlIRFilter(filterInfo); [* reset the filter for a new data set. */
IIRCascadeFiltering(x,n,filterinfo,y);
FreellRFilterPtr(filterInfo);

LabWindows/CVI Advanced Analysis Library 2-176 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Reverse

int status = Reversédouble Xx[] ,int n,double Yy[]);

Purpose

Reverses the order of the elements of the input array using the following formula.
Yo =X fori =0,1,...,n-1

The operation can be performed in place; that &)dy can be the same array.

Parameters
Input X double-precision array input array
integer number of elements
Output y double-precision array reversed array
Return Value
status integer refer to error codes in
Appendix A

RMS
int status = RMS(double x[] ,int n,double *rmsval);
Purpose

Computes the root mean squared (rms) value of the input array. The formula used to find the
rms value is as follows.

n-1

rmsval=_[=$ x?
Parameters
Input X double-precision array input array
n integer number of elements ix
Output rmsval | double-precision root mean squared value

© National Instruments Corporation 2-177 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Return Value

status integer refer to error codes in
Appendix A

SawtoothWave

int status = SawtoothWavgint n, double amp, double f, double *phase double Xx[]);

Purpose

Generates an array containing a sawtooth wave. The outpukasrggnerated according to the
following formula.

X = amp * sawtooth(*phase + f*360%*i)

where

Op modulo 360 & p modulo 360< 180

sawool 07, e
%pmoo—z.o 18& p modulo 360<360

This function can be used to simulate a continuous acquisition from an sawtooth wave function
generator. The unit of the inpupfaseis in degrees, andgohaseis set to
(*phase+ f*360*n) modulo 360 before returning.

Parameters
Input n integer number of samples to generate.
amp double-precision amplitude of the resulting signal.
f double-precision frequency of the resulting signal in
normalized units of cycles/sample.
phase double-precision pointgipoints to the initiaphase in degrees,
of the generated signal.
Output phase double-precision upon completion of this function,

phasepoints to thgphaseof the next
portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

X double-precision array | contains the generated sawtooth wave
signal.

LabWindows/CVI Advanced Analysis Library 2-178 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Return Value

status integer refer to error codes in Appendix A

ScalelD

int status = Scaleldouble Xx[] ,int
double *scale;

n, double y[] , double *offset,

Purpose

Scales the input array. The scaled output array is in the range [-1 : 1]’ éléént of the
scaled array can be obtained using the following formulas.

y, = (x- offset) / scale
scale = (max - min) / 2
offset = min + scale
where max and min are the maximum and minimum values in the input array, respectively. The

function determines the values of the constaoédeandoffset The operation can be performed
in place; that isx andy can be the same array.

Parameters
Input X double-precision array input array
n integer number of elements
Output y double-precision array scaled array
offset double-precision offsetting constant
scale double-precision scaling constant

Return Value

status

integer

refer to error codes in
Appendix A

© National Instruments Corporation

2-179

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Scale2D
int status = Scale2@void *x,int n,int m,void *y, double *offset double *scalg;
Purpose

Scales the input array. The scaled output array is in the range [-1 : 1], jfred@ment of the
scaled array can be obtained using the following formulas.

y, = (x, - offset) / scale
scale = (max - min) / 2
offset = min + scale

where max and min are the maximum and minimum values in the input array, respectively. The
function determines the values of the constaotdeandoffset

The operation can be performed in place; that &)dy can be the same array.

Parameters
Input X double-precision 2D array| input array
integer number of elements in first
dimension
m integer number of elements in second
dimension
Output y double-precision 2D array| scaled array
offset double-precision offsetting constant
scale double-precision scaling constant
Return Value
status integer refer to error codes in
Appendix A

LabWindows/CVI Advanced Analysis Library 2-180 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

ScaledWindow

int status = ScaledWindow(double Xx[] ,int n,int windowType,
WindowConst *windowConstants;

Purpose

Applies a scaled window to the time-domain signal and outputs window constants for further
analysis.

The windowed time-domain signal is scaled so that when the power or amplitude spectrum of the
windowed waveform is computed, all windows provide the same level within the accuracy
constraints of the window. This function also returns important window constants for the
selected window. These constants are useful when you use functions that perform computations
on the power spectrum, such as the PowerFrequencyEstimate.

windowType has the following values.

: Uniform

: Hanning

: Hamming

: Blackman-Harris

: Exact Blackman

: Blackman

. Flattop

: Four Term Blackman-Harris

: Seven Term Blackman-Harris

coO~NO UL WNEO

X is the time-domain signal multiplied by the scaled window.

windowConstantsis a structure containing the following important constants for the selected
window. windowStruct is defined by the following C typedef statement.

typedef struct {
double enbw;
double coherentgain;
} WindowConst;

enbwis the equivalent noise bandwidth of the selected window. You can use this value to
compute the power in a given frequency span.

coherentgairis the peak gain of the window, relative to the peak gain of the Rectangular

window. You can use this value to normalize peak signal gains to that of the Rectangular
window.

© National Instruments Corporation 2-181 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input | x double-precision 1D |Input array containing time-domairy
array signal to be windowed.
n integer The number of elements in the input
array.
windowType integer The type of the window function tg
apply to the input signal.
Output |x double-precision array The windowed version of.

=4

windowConstants WindowConst pointer| A structure containing the followif
useful constants for the selected
window: enbwis the equivalent
noise bandwidth of the selected
window. You can use this value to
compute the power in a given
frequency spancoherentgains the
peak gain of the window, relative to
the peak gain of the Uniform
window. This value is used to
normalize peak signal gains to that of
the Uniform window.

g

Return Value

status integer refer to error codes in Appendix A

SetlD
int status = SetlDdouble Xx[] ,int n, double a);
Purpose

Sets the elements of tkearray to a constant value.

Parameters
Input n integer number of elements ix
double-precision constant value
Output X double-precision array result array (set to the value
of a)

LabWindows/CVI Advanced Analysis Library 2-182 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Return Value

status integer refer to error codes in
Appendix A

Shift

int status = Shift(double X[] ,int n,int shifts, double y[]);

Purpose

Shifts the elements of the input array using the following formula.
Yi = Xshifis

The number oshifts specified can be in the positive (right) or negative (left) direction.

Parameters
Input X double-precision array input array
n integer number of elements ix
shifts integer number of shifts
Output y double-precision array shifted array
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion

This is not a circular shift. Shifted values are not retained, and the trailing portion of the shift is
replaced with zero. The operation cannot be done in place; that is, the input and output arrays
cannot be the same.

Example

/* Generate an array with random numbers and shift it by 20 samples. */
double x[200], y[200];

int n;

int shifts;

n = 200;

© National Instruments Corporation 2-183 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

shifts = 20;
Uniform (n, 17, x);
Shift (x, n, shifts, y);

Sinc
int status = Sinc(int n, double amp, double delay, double dt, double Xx[]);
Purpose

Generates an array containing a sinc pattern. The outputxag&enerated according to the
following formula.

X, =amplSin€¢ ¥ dt delgy

where
Sind % = sin(rx)
Parameters
Input n integer The number of samples to generate
amp double-precision The amplitude of the resulting signal.
delay double-precision Shifts the peak value of the sinc paftern
to the index.
dt double-precision The sampling interval. It is inversely
proportional to the width of the main
lobe of the generated sinc pattern.
Output X double-precision array | Contains the generated sinc patterp.

Return Value

status integer refer to error codes in Appendix A

LabWindows/CVI Advanced Analysis Library 2-184 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

SinePattern
int status = SinePatternint n, double amp, double phase double cyclesdouble sind]);
Purpose

Generates an output array with a sinusoidal pattern. "Télement of the double-precision
output array is obtained using the following formula.

sing = ampsin(2n0 [cycles n i) phagd 80

Thephasevalue is assumed to be in degrees and not in radians.

Parameters
Input n integer number of samples
amp double-precision amplitude
phase |double-precision phase (in degrees)
cycles |double-precision number of cycles
Output sine double-precision array sinusoidal pattern
Return Value
status integer refer to error codes in
Appendix A

Example

/* The following code generates a cosinusoidal pattern. */
double x[8], amp, phase, cycles;

int n;

n=_,;

amp = 1.0;

phase = 90.0;

cycles = 1.5;

SinePattern (n, amp, phase, cycles, x);

© National Instruments Corporation 2-185 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

SineWave
int status = SineWavdint n, double amp, double f,double *phase double X[]);
Purpose

Generates an array containing a sine wave. The outpubais@enerated according to the
following formula.

X, =amp * sin(ph)

where

14 .
ph= 180(*phase+ f*360.0%)

where
f = frequency, cycles/sample
This function can be used to simulate a continuous acquisition from a sine wave function

generator. The unit of the inpphaseis in degrees, anghaseis set to (phase+ f*360*n)
modulo 360 before returning.

Parameters
Input n integer The number of samples to generate
amp double-precision The amplitude of the resulting signal.
f double-precision The frequency of the resulting signal in
normalized units of cycles/sample.
phase double-precision pointgPoints to the initiaphase in degrees,
of the generated signal.
Output phase double-precision Upon completion of this function,

phasepoints to thgphaseof the next
portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

X double-precision array | Contains the generated sine wave
signal.

LabWindows/CVI Advanced Analysis Library 2-186 © National Instruments Corporation

Chapter 2

Return Value

Advanced Analysis Library Function Reference

status integer

refer to error codes in Appendix A

Sort

int status = Sort(double Xx[] ,int n,int direction, double vy[]);

Purpose

Sorts thex input array in ascending or descending order. The operation can be performed in

place; that isx andy can be the same array.

Parameters
Input X double-precision array input array
integer number of elements to be
sorted
direction integer zero: ascending
nonzero: descending
Output y double-precision array sorted array
Return Value
status integer refer to error codes in

Appendix A

Example

/* Generate a random array of numbers and sort them in ascending order. */

double x[200], y[200];
int n;

int dir;

n = 200;

dir = 0;

Uniform (n, 17, x);
Sort (x, n, dir, y);

© National Instruments Corporation 2-187

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Spectrum
int status = Spectrum(double X[] ,int n);
Purpose

Computes the power spectrum of the input real data. The operation is done in place and the input
arrayx is overwritten. The following formula is used to obtain the power spectrum.

Power Spectrum = | FFT {XB|/ n?

The number of elements)must be a power of two.

Parameters
Input X double-precision array input array
integer number of elements
Output X double-precision array power spectrum
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate an array with random numbers and compute its power spectrum. */
double x[256];

int n;

n = 256;

Uniform (n, 17, x);

Spectrum (X, n);

SpectrumUnitConversion
int status = SpectrumUnitConversion(double spectrum[] ,int n,int type,
int scalingMode int displayUnits, double df,
WindowConst windowConstants
double convertedSpectrunj] , char unitString[]);
Purpose

Converts the inpugpectrum (power, amplitude, or gain) to alternate formats including Log
(dB or dBm) and spectral density.

LabWindows/CVI Advanced Analysis Library 2-188 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

spectrumis the input array containing a spectrum of the type specified liygheselector.

type = 0 Power (Vrmd—computed byAutoSpectrum()
type = 1 Amplitude (Vrms)—computed lBympPhaseSpectrum()
type = 2 Gain (amplitude ratio)-computed bysansferFunction()

TheunitString is a character array that specifies the base unit of the time domain waveform
from which the inpuspectrumis computed. The signal unit is often set to "V" (volts). The size
of unitString must be at least 12+ size of (inpuiitString).

ThescalingModecontrol has three selections for the output unit type.

scalingMode= 0 Linear
scalingMode= 1 dB
scalingMode= 2 dBm

displayUnit has the following selections for the display unit (assuming V for the base unit).

- Vrms (volts rms)

: Vpk (volts peak)

: Vrm& (volts squared rms)

: Vpk?2 (volts squared peak)

; VrmsA/H_z (volts rms per root Hz)

; Vpk/\/H_z (volts peak per root Hz)

: Vrms¥/Hz (volts squared rms per Hz)
: Vpk2/Hz (volts squared peak per Hz)

~No o~ WNPFO

The last four selections are amplitude spectral density (4,5) and power spectral density (6,7).
The structuravindowConstantscontains constants for the selected window (from the
ScaledWindow function). You need this input only when you use the spectral density output
formats (the last four display unit selections).

© National Instruments Corporation 2-189 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Parameters

Chapter 2

Input spectrum

array

n integer

type integer

scalingMode integer

displayUnits integer

double-precision

The input array containing a spectrum of
the type specified by thepectrum
selector. It should be a power, amplitud
or gain spectrum.

The number of elements in the input
spectrum.

D

The type of the input spectrum. Valid
values of Type are:

0: Power (Vrm3)

1. Amplitude (Vrms)

2: Gain (amplitude ratio)

The type of the scaling of the output
spectrum.
Valid values of Scaling Mode are:

O: Linear

1.dB

2:dBm

The unit of the output spectrum, (assuming
"V" for the input Unit String) Valid values of
displayUnits are:

0: Vrms(volts rms)

1: Vpk(volts peak)

2:Vrm< (volts square rms)

3: Vpk (volts squared peak)

4: Vrmg/+/ Hz (volts rms per square
root of Hz)

5: Vpk/~/ Hz (volts peak per square
root of Hz)

6: Vrm&/Hz (volts squared rms per
Hz)

7:VpK/Hz (volts squared peak per
Hz)

LabWindows/CVI Advanced Analysis Library

2-190

(continues)

© National Instruments Corporation

Chapter 2

Parameters (Continued)

Advanced Analysis Library Function Reference

df

windowConstants

unitString

double-precision

WindowConst
pointer

string

The frequency interval, in hertz, as output
by the following functions:
AmpPhaseSpectrum
AutoPowerSpectrum
CrossPowerSpectrum

NetworkFunctions ,
TransferFunction

A structure containing the following useful
constants for the selected windaswibwis the
equivalent noise bandwidth of the selected
window. You can use this value to compute
the power in a given frequency span.
coherentgairis the peak gain of the window,
relative to the peak gain of the Rectangular
window. This value is used normalize peak
signal gains to that of the Rectangular
window. This structure is output by the
ScaledWindow function

A string that contains, on input, the base
unit of the analyzed signal (V for a voltage
signal).

A1

Output

convertedSpectrum

unitString

double-precision
array

string

The input spectrum (power, amplitude, ¢
gain) converted to alternate formats

including Log (dB or dBm) and spectral
density. The size of this array must be at
n.

=

Contains, upon completion of this function,
the unit of the output Converted Spectrum.
The size of this string must be at least the (size
of the inputunitString) + 12.

Return Value

status

integer

refer to error codes in Appendix A

© National Instruments Corporation

2-191

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Spinterp

int status = Spinterp(double Xx[] , double y[] ,double y2[] ,int n,double
x_val, double *Interp_Val);

Purpose

Performs a cubic spline interpolation of the function f at a valwal (wherex_val is in the
range ofxj's), given a tabulated function of the foyire f(xj) fori =0, 1, ...n-1, with

Xj <Xj +1, and given the second derivatives that specify the interpolant antbees ok (these
are supplied by th€pline procedure). Ik_val falls in the interval¥j, xj+1], then the
interpolated value is as follows.

Interp_Val = Ajj + Byj+1 + OY'j + Dy"i+1

where
A= Xitl - x_ val
Xj+1 - Xj
B=1-A

C = (A3- A)(%+1 - %)26

D = (B3 - B)(%+1 - %)%6

Parameters
Input X double-precision array | thevalues at whicli is known.
These values must be in ascendipg
order.
y double-precision array | the function valyes f(x)
y2 double-precision array | the array of second derivatives
which specify the interpolant
n integer the number of elements ¥y, and
y2
x_val double-precision the value at whiclf is to be
interpolated
Output Interp_Val |double-precision the interpolated value

LabWindows/CVI Advanced Analysis Library 2-192 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Return Value

status integer refer to error codes in
Appendix A

Example
/* Choose ascending X-values. Pick corresponding Y-values randomly. Set
boundary conditions and specify the cubic spline interpolant that is run
through the points. Pick an x in range of X's and interpolate. Pick another
x and interpolate again. */
double X[100], Y[100], Y2[100], B1, B2, x_val;
intn, i;
n = 100;
for(i=0; i<n; i++)
X[i]=i*0.1;
WhiteNoise (n, 5.0, 17, Y);
b1=0.0;
b2=0.0;
Spline (X, Y, n, bl, b2, Y2);
x_val = 0.331;
Spinterp (X, Y, Y2, n, x_val, &Interp_Val);

x_val = 0.7698;
Spinterp (X, Y, Y2, n, x_val, &Interp_Val);

Spline
int status = Spling(double Xx[] , double y[] ,int n,double bl, double b2, double y2[]);
Purpose

Calculates the second derivatives used by the cubic spline interpolant (the continuously
differentiable curve to be run though th@oints &, yi)), given a tabulated function of the form

yi =f(x) fori =0, 1, ...n-1, withx; <x; +1, and given the boundary conditidsfsandb?2 such
that the interpolant's second derivative matches the specified vahkgemnaix,-1.

This array can be used with tBpinterp function to calculate an interpolation value.

© National Instruments Corporation 2-193 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input X double-precision array | thevalues at whiclfis known; these|
values must be in ascending order
y double-precision array | the function valyes f(x)
n integer the number of elements xpy, andy2
bl double-precision the first boundary conditiotg)
b2 double-precision the second boundary conditi¢pf)
Output y2 double-precision array | the array of second derivatives that
specify the interpolant

Return Value

status integer refer to error codes in
Appendix A

Example

/* Choose ascending X-values. Pick corresponding Y-values randomly. Set
boundary conditions and specify the cubic spline interpolant that is run
through the points. */

double X[100], Y[100], Y2[100], b1, b2;

intn, i;

n = 100;

for(i=0; i<n; i++)
X[i]=i*0.1;

WhiteNoise (n, 5.0, 17, Y);

b1=0.0;

b2=0.0;

Spline (X, Y, n, b1, b2, Y2);

SquareWave

int status = SquareWavdint n, double amp, double f, double *phase,
double dutyCycle, double x[]);

Purpose

Generates an array containing a square wave. The outpukasrggnerated according to the
following formula.

X, = amp* squarg phase #3600)i

LabWindows/CVI Advanced Analysis Library 2-194 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

where
f = frequency, cycles/sample

Jo & p modulo 360 <-3UY «360
100

square (p¥ O duty
H—l.o 100 *360 < p modulo 360 < 360

This function can be used to simulate a continuous acquisition from a square wave function
generator. The unit of the inpupfiaseis in degrees, andpohaseis set to (phase+ f *360*n)
modulo 360 before returning.

Parameters
Input n integer The number of samples to generate.
amp double-precision The amplitude of the resulting signal.
f double-precision The frequency of the resulting sigral
in normalized units of cycles/sample.
dutyCycle double-precision Contains the duty cycle, in percent, of
the generated square wave signal.
phase double-precision Points to the initiaphase in degrees,
of the generated signal.
Output phase double-precision Upon completion of this function,

phasepoints to thgphaseof the next
portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

X double-precision array| Contains the generated square wave
signal.
Return Value
status integer refer to error codes in Appendix A

© National Instruments Corporation 2-195 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

StdDev

int status = StdDeydouble X[] ,int n,double *meanval double *sDeV);
Purpose

Computes the standard deviation and the mean (average) values of the input array. The formulas
used to find the mean and the standard deviation are as follows.

n-1
meanvak Z x/n
1=0

1=0

sDev= \/nz_l[x— meanv§i/ n

Parameters
Input X double-precision array input array
n integer number of elements x
Output | meanval double-precision mean value
sDev double-precision standard deviation

Return Value

status integer refer to error codes in
Appendix A

SublD
int status = SublD(double X[] ,double y[] ,int n,double Zz[]);
Purpose

Subtracts two 1D arrays. THedlement of the output array can be obtained using the following
formula.

2= XY,

The operation can be performed in place; that ¢ésn be eithex ory.

LabWindows/CVI Advanced Analysis Library 2-196 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array X input array
double-precision array y input array
n integer number of elements to be
subtracted
Output z double-precision array result array
Return Value
status integer refer to error codes in
Appendix A

Sub2D

int status = Sub2D(void *x,void *y,int n,int m,void *2z);

Purpose

Subtracts two 2D arrays. Thé,(") element of the output array is obtained using the formula.
;=X 7Y

The operation can be performed in place; that ¢ésn be eithex ory.

Parameters
Input X double-precision 2D array | X input array
y double-precision 2D array |y input array
n integer number of elements in first
dimension
m integer number of elements in second
dimension
Output z double-precision 2D array| result array

© National Instruments Corporation 2-197 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Return Value

status integer refer to error codes in
Appendix A

SubsetlD
int status = SubsetlOdouble Xx[] ,int n,int index, int length, double y[]);
Purpose

Extracts a subset of thkeinput array containing the number of elements specified bigtiggh
and starting at thendex element.

Parameters
Input X double-precision array input array
n integer number of elements x
index integer initial index for the subset
length integer number of elements copied to the
subset
Output y double-precision array subset array
Return Value
status integer refer to error codes in
Appendix A

Example

/* The following example generates y ={0.0, 1.0, 2.0, 3.0 }*/
double x[11], y[4], first, last;

int n, index, length;

n=11,

index = 5;

length = 4;

first = -5.0;

last = 5.0;

Ramp (n, first, last, x);

SubsetlD (x, n, index, length, y);

LabWindows/CVI Advanced Analysis Library 2-198 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

SumlD
int status = SumlD(double X[] ,int n,double *sum);
Purpose

Finds thesum of the elements of the input array. The formula used to obtasuthef the
elements is as follows.

n-1
sum= Z X
1=0

Parameters
Input X double-precision array input array
n integer number of elements
Output sum double-precision sum of elements
Return Value
status integer refer to error codes in
Appendix A

Example

/* Generate a random array and sum the elements. */
double x[20], sum;

int n;

n = 20;

Uniform (n, 17, x);

Suml1D (x, n, &sum);

Sum2D
int status = Sum2D(void *x,int n,int m, double *sum);
Purpose

Finds thesum of the elements in the input 2D array. Buen is obtained using the following
formula.

© National Instruments Corporation 2-199 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2
n-1 m-1
sum= X;
2,2
Parameters
Input X double-precision 2D array| input array
integer number of elements in first
dimension
m integer number of elements in second
dimension
Output sum double-precision sum of the elements

Return Value

status

integer

refer to error codes in
Appendix A

T Dist

int status = T_Dist(double t,int n,double *p);

Purpose

Computes the one-sided probabijity

p = prob(T<t)

where T is a random variable from the T-distribution withegrees of freedom.

Parameters

Input t double-precision -0 <t <00

n integer degrees of freedom

Output p double-precision probability (0< p < 1)
Return Value

status integer refer to error codes in

Appendix A

LabWindows/CVI Advanced Analysis Library 2-200 © National Instruments Corporation

Chapter 2

Example
double t, p;

int n;

t = -123.456;

n = 6;

T_Dist (t, n, &p);

Advanced Analysis Library Function Reference

ToPolar

int status = ToPolar(double x, double vy, double *mag, double *phase;

Purpose

Converts the rectangular coordinatesy() to polar coordinatesr(ag, phasg. The formulas

used to obtain the polar coordinates are as follows.

mag =\x2 + y2

phase = arctan (y / x)

Thephasevalue is in the range ofTjto 1.

Parameters
Input X double-precision x coordinate
y double-precision y coordinate
Output mag double-precision magnitude
phase |double-precision phase (in radians)

Return Value

status

integer

refer to error codes in
Appendix A

Example

/*Convert the rectangular coordinates to polar coordinates. */

double x, y, mag, phase;

x =1.5;
y =-2.5;

ToPolar (x, y, &mag, &phase);

© National Instruments Corporation

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

ToPolarlD

int status = ToPolarlD(double Xx[] ,double y[] ,int n,double mag[] ,double phasd]);

Purpose

Converts the set of rectangular coordinate poitg)(to a set of polar coordinate pointsdg,
phasg. The I element of the polar coordinate set is obtained using the following formulas.

mag =¥+ ¥

phase = arctar{ y / ¥
Thephasevalue is in the range offfto 1.

The operations can be performed in place; thatasdmag, andy andphase can be the same
arrays, respectively.

Parameters
Input X double-precision array x coordinate
y double-precision array y coordinate
n integer number of elements
Output mag double-precision array magnitude
phase |double-precision array phase (in radians)

Return Value

status

integer

refer to error codes in
Appendix A

LabWindows/CVI Advanced Analysis Library

2-202

© National Instruments Corporation

Chapter 2

ToRect

Advanced Analysis Library Function Reference

int status = ToRect{double mag, double phase double *Xx, double *y);

Purpose

Converts the polar coordinatesdg, phase to rectangular coordinates, fy). The formulas
used to obtain the rectangular coordinates are as follows.

X = mag * cos(phase)

y = mag * sin(phase)

Parameters
Input mag double-precision magnitude
phase double-precision phase (in radians)
Output X double-precision x coordinate
y double-precision y coordinate

Return Value

status

integer

refer to error codes in
Appendix A

ToRectlD

int status = ToRectlD(double mag]] ,double phasd] ,int n,double x[] ,double vy[]);

Purpose

Converts the set of polar coordinate poimsi§, phase to a set of rectangular coordinate points
(x,y). The ' element of the rectangular set is obtained using the following formulas.

X = mag* cos(phasg

y=mag* sin(phasg

The operations can be performed in place; thatasmdmag, andy andphase can be the same
arrays, respectively.

© National Instruments Corporation

2-203

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

Parameters
Input mag double-precision array magnitude
phase |double-precision array phase (in radians)
n integer number of elements
Output X double-precision array x coordinate
y double-precision array y coordinate

Return Value

status

integer

refer to error codes in
Appendix A

Trace

int status = Trace(void *X, int

Purpose

Finds the trace of the 2D input matkx The trace is the sum of the matrix elements along the

n, double *traceval);

main diagonal. The trace is obtained using the following formula.

n-1

trace= Z X;
1=0

The input matrix must be anby n square matrix.

Parameters
Input X double-precision 2D array| input matrix
n integer size of matrix
Output traceval double-precision trace

Return Value

status

integer

refer to error codes in
Appendix A

LabWindows/CVI Advanced Analysis Library 2-204

© National Instruments Corporation

Chapter 2

TransferFunction

Advanced Analysis Library Function Reference

int status = TransferFunction(double stimulus[] , double respons§] ,int n, double dt,
double magHf[] , double phaseH{] ,double *df);

Purpose

Computes the single-sided transfer function (also known as the frequency response) from the
time-domain stimulus signal and the time-domain response signal of a network under test.

The transfer function is computed as follows.

FFT(responsé / FFT(stimulus)

and then this result is transformed to single-sided magnitude and phase.

Parameters

Input

stimulus

response

dt

double-precision array
double-precision array

integer

double-precision

Contains the time-domain signal,
usually the network stimulus.

Contains the time-domain signal,
usually the network response.

The number of elements in the inpulf
stimulus andresponsearrays. Valid
Values: Powers of 2.

The sample period of the time-dom
signals, usually in seconds.
dt = 14s, where fs is the sampling

frequency of the time-domain signals.

Ain

Output

magHf

phaseHf

df

double-precision array

double-precision array

double-precision

The magnitude of the averaged sin
sided transfer function between the
stimulus andresponsesignals. This
array must be at least n/2 elements
long.

The phase, in radians of the avera
single-sided transfer function betwee
the stimulus andresponsesignals.
This array must be at least n/2 elemg
long.

Points to the frequency interval, in
hertz, ifdt is in seconds.

gle-

pjed

eNts

*df = 1/@*dt).

© National Instruments Corporation 2-205

LabWindows/CVI Advanced Analysis Li

brary

Advanced Analysis Library Function Reference Chapter 2

Return Value

status integer refer to error codes in Appendix A

Transpose
int status = Transposdgvoid *x,int n,int m,void *y);
Purpose

Finds the transpose of a 2D input matrix. THgj{) element of the resulting matrix is given by
the following formula.

Yii =%
Parameters
Input X double-precision 2D array| input matrix
n integer size of first dimension
m integer size of second dimension
Output y double-precision 2D array| transpose matrix

Note: If the input matrix is dimensionedr(by m), then the output matrix must be
dimensioned i by n).

Return Value

refer to error codes in
Appendix A

status integer

Triangle
int status = Triangle(int n, double amp, double tri[]);
Purpose

Generates an output array that has a triangular pattern.” legrient of the double-precision
output array is obtained using the following formulas.

LabWindows/CVI Advanced Analysis Library 2-206 © National Instruments Corporation

Chapter 2

ti,=amp (1-]2i-n|/n) ih is even

tii=amp (1-]2i-n+1|/(n-1)) ihis odd

Advanced Analysis Library Function Reference

Parameters
Input n integer number of samples
amp double-precision amplitude
Output tri double-precision array triangular pattern

Return Value

status

integer

refer to error codes in
Appendix A

Example

/* The following code generates the pattern tri ={0.0, 1.0, 2.0, 3.0, 4.0,

3.0,2.0,1.0}. %

double tri[8], amp;

int n;
n=2_8;
amp = 4.0;

Triangle (n, amp, tri);

TriangleWave

int status = TriangleWave(int

Purpose

n, double amp, double f, double *phase double Xx[]);

Generates an array containing a triangle wave. The outpubaisa@enerated according to the
following formula.

X, = amp* tri(* phase+ f *360.0%i)

where

f = frequency, cycles/sample

E’Z*((p modulo 360) /180)
tri(p) = (2 *(L - (p modulo 360)/180)

<O p modulo 360 < 90
90 p modulo 360 < 270

&*((p modulo 360) /186-2) 270< p modulo 360< 360

© National Instruments Corporation

2-207

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

This function can be used to simulate a continuous acquisition from a triangle wave function
generator. The unit of the inpyptaseis in degrees, andohaseis set to (phase+ f*360*n)
modulo 360 before returning.

Parameters
Input n integer The number of samples to generate
amp double-precision The amplitude of the resulting signal.
f double-precision The frequency of the resulting signal in
normalized units of cycles/sample.
phase double-precision pointePoints to the initiaphase in degrees,
of the generated signal.
Output phase double-precision Upon completion of this function,

phasepoints to theghaseof the next
portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

X double-precision array | Contains the generated triangle wave
signal.
Return Value
status integer refer to error codes in Appendix A

Triwin

int status = Triwin (double x[] ,int n);

Purpose

Applies a triangular window to theinput signal. The triangular window is defined by:
w, =1 -|2*%-n|/n fori=0,1,..,n1

The output signal is obtained by:
X= X*W, fori=0,1,..n-1

The window operation is performed in place. The windowedxdegplaces the input data

LabWindows/CVI Advanced Analysis Library 2-208 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input data
integer number of elements ix
Output X double-precision array windowed data
Return Value
status integer refer to error codes in
Appendix A

Uniform
int status = Uniform(int n,int seeddouble X[]);
Purpose

Generates an array of random numbers that are uniformly distributed between zero and one.

Parameters
Input n integer number of samples
seed integer seed value
Output X double-precision array random pattern between 0 gand 1

Parameter Discussion

When see& 0, a new random sequence is generated using the seed value. When seed < 0, the
previously generated random sequence continues.

Return Value

status integer refer to error codes in
Appendix A
Example
/* The following code generates an array of random numbers between 0 and 1. */
double x[20];
int n;
n = 20;

Uniform (n, 17, x);

© National Instruments Corporation 2-209 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

UnWraplD
int status = UnWraplD(double phasd] ,int n);
Purpose

Unwraps the discontinuous phase values that are in the rangerftomto create continuous
values. The input arraphase is overwritten.

Parameters
Input phase double-precision array array of discontinuous phasg
values
n integer number of elements
Output phase |double-precision array array of continuous phase
values
Return Value
status integer refer to error codes in
Appendix A

Variance
int status = Variance(double Xx[] ,int n,double *meanval double *var);
Purpose

Computes the variance and the mean (average) values of the input array. The following formulas
are used to find the mean and the variance.

n-1
meanvakF x/n
2

var = nf[x - meanva]l2 /n
=

LabWindows/CVI Advanced Analysis Library 2-210 © National Instruments Corporation

Chapter 2

Advanced Analysis Library Function Reference

Parameters
Input X double-precision array input array
n integer number of elements ix
Output | meanval double-precision mean value
var double-precision variance

Return Value

status

integer

refer to error codes in
Appendix A

WhiteNoise

int status = WhiteNoisg(int

Purpose

n, double amp, int

seeddouble *noisd]):

Generates an array of random numbers that are uniformly distributed beangeandamp.

Parameters
Input n integer number of samples
amp double-precision amplitude
seed integer seed value
Output noise double-precision array noise pattern

Parameter Discussion

When see& 0, a new random sequence is generated using the seed value. When seed < 0, the
previously generated random sequence continues.

Return Value

status

integer

refer to error codes in
Appendix A

© National Instruments Corporation

2-211

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Example
/* The following code generates an array of random numbers between -5 and 5.
*
/
double x[20], amp;
int n;
n = 20;
amp =5.0;
WhiteNoise (n, amp, 17, x);

Wind_BPF

int status = Wind_BPF(double fs, double fl,double fh,int n, double coef] ,
int windType);

Purpose
Designs a digital bandpass FIR linear phase filter using a windowing technique. Five windows

are available. This function generates only the filter coefficients. No filtering of data is actually
performed.

Parameters
Input fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
n integer number of filter coefficients
windType |integer window type
Output coef double-precision array filter coefficients
Return Value
status integer refer to error codes in
Appendix A

LabWindows/CVI Advanced Analysis Library 2-212 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

Parameter Discussion

The parametewindType selects one of the five windows as shown in the following table.

windType Window Attenuation (dB) | Transition Bandwidth (fs/n)
1 Rectangular 21 0.9
2 Triangular 25 1.18
3 Hanning 44 2.5
4 Hamming 53 3.13
5 Blackman 74 4.6

Using This Function

The attenuation value determines the approximate peak value of the sidelobes. Transition
bandwidth determines a frequency range over which the filter response changes from the pass
band to the stop band or from the stop band to the pass band. For more information, refer to
Digital Signal Processingpy Oppenheim and Schafer.

Example

/* Design a 55-point bandpass FIR linear phase filter that can achieve at
least a 44 dB attenuation and filter the incoming signal with the designed
filter. */

double x[256], coef[55], y[310], fs, fl, th;

int n, m, windType;

fs = 1000.0; /* sampling frequency */
fl = 200.0; [* desired lower cutoff frequency */
fh = 300.0; [* desired higher cutoff frequency */
/* pass band is from 200.0 to 300.0 */
n = 55; [* filter length */
windType = 3; /* using Hanning window */
m = 256;

wind_BPF (fs, fl, fh, n, coef, windType);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

Wind_BSF

int status = Wind_BSF(double fs, double fl, double fh,int n,double coef] ,
int windType);

Purpose
Designs a digital bandstop FIR linear phase filter using a windowing technique. Five windows

are available. This function generates only the filter coefficients. No filtering of data is actually
performed.

© National Instruments Corporation 2-213 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

Parameters
Input fs double-precision sampling frequency
fl double-precision lower cutoff frequency
fh double-precision higher cutoff frequency
n integer number of filter coefficients
windType |integer window type
Output coef double-precision array filter coefficients
Return Value
status integer refer to error codes in
Appendix A

Parameter Discussion

The parametewnindType selects one of the five windows as shown in the following table.

windType Window Attenuation (dB) | Transition Bandwidth (fs/n)
1 Rectangular 21 0.9
2 Triangular 25 1.18
3 Hanning 44 2.5
4 Hamming 53 3.13
5 Blackman 74 4.6

Using This Function

The attenuation value determines the approximate peak value of the sidelobes. Transition
bandwidth determines a frequency range over which the filter response changes from the pass
band to the stop band or from the stop band to the pass band. For more information, refer to
Digital Signal Processingpy Oppenheim and Schafer.

Example

/* Design a 55-point bandstop FIR linear phase filter that can achieve at
least a 44 dB attenuation and filter the incoming signal with the designed
filter. */

double x[256], coef[55], y[310], fs, fl, fh;

int n, m, windType;

fs = 1000.0; /* sampling frequency */
fl = 200.0; [* desired lower cutoff frequency */
fh = 300.0; [* desired higher cutoff frequency */
/* stop band is from 200.0 to 300.0 */
n = 55; [* filter length */
windType = 3; [* using Hanning window */

LabWindows/CVI Advanced Analysis Library 2-214 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference

m = 256;

wind_BSF (fs, fl, th, n, coef, windType);

Convolve (coef, n, x, m, y); /* convolve the filter with*/
/* the signal */

Wind_HPF

int status = Wind_HPF(double fs, double fc,int n,double coef] ,int windType);
Purpose

Designs a digital highpass FIR linear phase filter using a windowing technique. Five windows

are available. This function generates only the filter coefficients. No filtering of data is actually
performed.

Parameters
Input fs double-precision sampling frequency
fc double-precision cutoff frequency
n integer number of filter coefficients
windType integer window type
Output coef double-precision array filter coefficients

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The parametewindType selects one of the five windows as shown in the following table.

windType Window Attenuation (dB) | Transition Bandwidth (fs/n)
1 Rectangular 21 0.9
2 Triangular 25 1.18
3 Hanning 44 2.5
4 Hamming 53 3.13
5 Blackman 74 4.6

Using This Function

The attenuation value determines the approximate peak value of the sidelobes. Transition
bandwidth determines a frequency range over which the filter response changes from the pass

© National Instruments Corporation 2-215 LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference Chapter 2

band to the stop band or from the stop band to the pass band. For more information, refer to
Digital Signal Processingpy Oppenheim and Schafer.

Example

/* Design a 55-point highpass FIR linear phase filter that can achieve at
least a 44 dB attenuation and filter the incoming signal with the designed
filter. */

double x[256], coef[55], y[310], fs, fc;

int n, m, windType;

fs = 1000.0; /* sampling frequency */

fc = 200.0; /* desired cutoff frequency */
n = 55; [* filter length */

windType = 3; [* using Hanning window */
m = 256;

Wind_HPF (fs, fc, n, coef, windType);
Convolve (coef, n, x, m, y); [* convolve the filter with */
/* the signal */

Wind_LPF

int status = Wind_LPF(double fs, double fc,int n,double coef] ,int windType);
Purpose

Designs a digital lowpass FIR linear phase filter using a windowing technique. Five windows

are available. This function generates only the filter coefficients. No filtering of data is actually
performed.

Parameters
Input fs double-precision sampling frequency
fc double-precision cutoff frequency
n integer number of filter coefficients
windType |integer window type
Output coef double-precision array filter coefficients
Return Value
status integer refer to error codes in
Appendix A

LabWindows/CVI Advanced Analysis Library 2-216 © National Instruments Corporation

Chapter 2

Parameter Discussion

Advanced Analysis Library Function Reference

The parametewnindType selects one of the five windows as shown in the following table.

windType Window Attenuation (dB) | Transition Bandwidth (fs/n)
1 Rectangular 21 0.9
2 Triangular 25 1.18
3 Hanning 44 2.5
4 Hamming 53 3.13
5 Blackman 74 4.6

Using This Function

The attenuation value determines the approximate peak value of the sidelobes. Transition
bandwidth determines a frequency range over which the filter response changes from the pass
band to the stop band or from the stop band to the pass band. For more information, refer to

Digital Signal Processingpy Oppenheim and Schafer.

Example

/* Design a 55-point lowpass FIR linear phase filter that can achieve at least
a 44 dB attenuation and filter the incoming signal with the designed filter.

*/

double x[256], coef[55], y[310], fs, fc;

int n, m, windType;

fs = 1000.0;

fc = 200.0;

n = 55;
windType =3 ;
m = 256;

/* sampling frequency */

/* desired cutoff frequency */
[* filter length */
/* using Hanning window */

Wind_LPF (fs, fc, n, coef, windType);

Convolve (coef, n, x, m, y);

/* convolve the filter with */

/* the signal */

© National Instruments Corporation

2-217

LabWindows/CVI Advanced Analysis Library

Advanced Analysis Library Function Reference

XX_Dist

int status = XX_Dist(double X, int

Purpose

Approximates the one-sided probability

p = prob(X<x)

n, double

*p);

Chapter 2

where X is a random variable from tgé-distribution withn degrees of freedom.

Parameters
Input X double-precision -0 < X <00
n integer degrees of freedom
Output p double-precision probability (0< p <1)

Return Value

status integer refer to error codes in
Appendix A
Example
double x, p;
int n;
X = -123.456;
n=6;

XX_[Sist (X, n, &p);
/* Now p =0 because

x2 distributed variables are non-negative.*/

LabWindows/CVI Advanced Analysis Library

2-218

© National Instruments Corporation

Appendix A
Error Codes

This appendix contains error codes returned by the Advanced Analysis Library functions. If an
error condition occurs during a call to any of the functions in the LabWindows Analysis Library,
the return valustatuswill contain the returned error code. This code is a value that specifies the
type of error that occurred. Table A-2 lists the error codes in numeric order. For your
convenience, Table A-1 lists the error codes alphabetically by symbolic name.

Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically

Symbolic Name Code Error Message
ArraySizeAnlysErr -20008| The specified conditions on the input arrays have
not been met.
AttenGTRippleAnlysErr -20028| The attenuation must be greater than the ripple
amplitude.
AttenGTZeroAnlysErr -20025| The attenuation must be greater than zero.
BalanceAnlysErr -20047| The data is unbalanced.
BandSpecAnlysErr -20023| Invalid band specification.
BaseGETopAnlysErr -20101| Base must be less than Top.
BetaFuncAnlysErr -20057| The parameter to the beta function must meetthe
condition: 0 <p < 1.
CategoryAnlysErr -20055| Invalid number of categories or samples.
ColumnAnlysErr -20051 | The first column in the X matrix must be all ones.
CyclesAnlysErr -20012| The number of cycles must meet the condition
0 < cyclex< samples.
DataAnlysErr -20045 | The total number of data points must be equal fto
product of (levels/each factor) * (observations/cell).
DecFactAnlysErr -20022| The decimating factor must meet the condition:
0 < decimating factog samples.
DelayWidthAnlysErr -20014 | The delay and width must meet the condition:
0 < (delay + width) < samples.
DimensionAnlysErr -20058| Invalid number of dimensions or dependent
variables.
DistinctAnlysErr -20049 | The x-values must be distinct.

(continues)

© National Instruments Corporation A-1 LabWindows/CVI Advanced Analysis Library

Error Codes

Appendix A

Table A-1. Advanced Analysis Library Error Codes (Continued)

UJ

Symbolic Name Code Error Message

DivByZeroAnlysErr -20060 | Divide by zero.

DtGTZeroAnlysErr -20016 | dt or dx must be greater than zero.

EqRplDesignAnlysErr -20031| The filter cannot be designed with the specified
input parameters.

EqSamplesAnlysErr -20002 Input sequences must be the same size.

EvenSizeAnlysErr -20033| The number of coefficients must be odd for thi
filter.

FactorAnlysErr -20043 | The level of factor is outside the allowable range.

FreedomAnlysErr -20052| Invalid degrees of freedom.

IndexLengthAnlysErr -20018| The index and lenght must meet the condition;
0 < (index + length) < samples.

IndexLTSamplesAnlysErr -20017| The index must meet the condition:
0 < index < samples.

InvSelectionAnlysErr -20061| Invalid selection.

[IRFilterinfoAnlysErr -20066 | The information in the IIR filter structure is invalid.

LevelsAnlysErr -20042 | The number of levels is outside the allowable
range.

MaxlIterAnlysErr -20062 | Maximum iteration exceeded.

MixedSignAnlysErr -20036 | The second array must be all positive or negative
and nonzero.

ModelAnlysErr -20048 | The Random Effect model was requested when the
Fixed Effect model is required.

NoAnlysErr 0 No error; the call was successful.

NyquistAnlysErr -20020 | The cut-off frequency, fc, must meet the condition:
O<fc<fs/2.

ObservationsAnlysErr -20044f There must be at least one observation.

OddSizeAnlysErr -20034| The number of coefficients must be even for this
filter.

OrderGEZeroAnlysErr -20103| Order must be greater than or equal to zero.

OrderGTZeroAnlysErr -20021| The order must be greater than zero..

OutOfMemAnlysErr -20001 | There is not enough memory left to perform the

specified routine.

LabWindows/CVI Advanced Analysis Library

(continues)

A-2

© National Instruments Corporation

Appendix A

Error Codes

Table A-1. Advanced Analysis Library Error Codes (Continued)

er of

N\
=

or

or

or

Zero.

to the

Symbolic Name Code Error Message

PoleAnlysErr -20050 | The interpolating function has a pole at the
requested value.

PolyAnlysErr -20063 | Invalid polynomial.

PowerOfTwoAnlysErr -20009| The size of the input array must be a valid pow
two: size = 2",

ProbabilityAnlysErr -20053 | The probability must meet the condition: 0 < p

RippleGTZeroAnlysErr -20024| The ripple must be greater than zero.

SamplesGEThreeAnlysErr -20007 The number of samples must be greater than
equal to three.

SamplesGETwoAnlysErr -20006 The number of samples must be greater than
equal to two.

SamplesGEZeroAnlysErr -20004 The number of samples must be greater than
equal to zero.

SamplesGTZeroAnlysErr -20003 The number of samples must be greater than

ShiftRangeAnlysErr -20102| The shifts must meet the condition: |shifts| <
samples.

SingularMatrixAnlysErr -20041| The input matrix is singular. The system of
equations cannot be solved.

SizeGTOrderAnlysErr -20037| The array size must be greater than the order.

SquareMatrixAnlysErr -20040(The input matrix must be a square matrix.

TableAnlysErr -20056 | The contingency table has a negative number.

UpperGELowerAnlysErr -20019| The upper value must be greater than or equa
lower value.

ZeroVectorAnlysErr -20065| The elements of the vector cannot be all zero.

© National Instruments Corporation

A-3

LabWindows/CVI Advanced Analysis Library

Error Codes Appendix A

Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically

Symbolic Name Code Error Message

NoAnlysErr 0 No error; the call was successful.

OutOfMemAnlysErr -20001 | There is not enough memory left to perform thie
specified routine.

EqgSamplesAnlysErr -20002| Input sequences must be the same size.

SamplesGTZeroAnlysErr -20003 The number of samples must be greater than zero.

SamplesGEZeroAnlysErr -20004 The number of samples must be greater than or
equal to zero.

SamplesGETwoAnlysErr -20006 The number of samples must be greater thar| or
equal to two.

SamplesGEThreeAnlysErt -20007 The number of samples must be greater than or
equal to three.

ArraySizeAnlysErr -20008 | The specified conditions on the input arrays have
not been met.

PowerOfTwoAnlysErr -20009| The size of the input array must be a valid poyer
of two: size = 2.

CyclesAnlysErr -20012| The number of cycles must meet the condition:
0 < cycles samples.

DelayWidthAnlysErr -20014 | The delay and width must meet the condition:
0 < (delay + width) < samples.

DtGTZeroAnlysErr -20016 | dt or dx must be greater than zero.

IndexLTSamplesAnlysErr -20017| The index must meet the condition:
0 < index < samples.

IndexLengthAnlysErr -20018 | The index and lenght must meet the conditiog: D
(index + length) < samples.

UpperGELowerAnlysErr -20019| The upper value must be greater than or equial to
the lower value.

NyquistAnlysErr -20020 | The cut-off frequency, fc, must meet the condition:
0<fc<fs/2.

OrderGTZeroAnlysErr -20021| The order must be greater than zero.

DecFactAnlysErr -20022| The decimating factor must meet the condition: O
< decimating factog samples.

BandSpecAnlysErr -20023| Invalid band specification.

RippleGTZeroAnlysErr -20024| The ripple must be greater than zero.

(continues)

LabWindows/CVI Advanced Analysis Library A-4 © National Instruments Corporation

Appendix A

Error Codes

Table A-2. Advanced Analysis Library Error Codes (Continued)

is

nis

ive

ge.

to

esS.

<1l

Symbolic Name Code Error Message
AttenGTZeroAnlysErr -20025 The attenuation must be greater than zero.
AttenGTRippleAnlysErr -20028 The attenuation must be greater than the ripple
amplitude.

EgRplDesignAnlysErr -20031 The filter cannot be designed with the specifigd
input parameters.

EvenSizeAnlysErr -20033 The number of coefficients must be odd for th
filter.

OddSizeAnlysErr -20034 The number of coefficients must be even for t
filter.

MixedSignAnlysErr -20036 The second array must be all positive or nega
and nonzero.

SizeGTOrderAnlysErr -20037 The array size must be greater than the order.

SquareMatrixAnlysErr -20040 The input matrix must be a square matrix.

SingularMatrixAnlysErr -20041 The input matrix is singular. The system of
equations cannot be solved.

LevelsAnlysErr -20042 The number of levels is outside the allowable
range.

FactorAnlysErr -20043 The level of factor is outside the allowable ran

ObservationsAnlysErr -20044 There must be at least one observation.

DataAnlysErr -20045 The total number of data points must be equa
product of (levels/each factor) *
(observations/cell).

BalanceAnlysErr -20047 The data is unbalanced.

ModelAnlysErr -20048 The Random Effect model was requested when the
Fixed Effect model is required.

DistinctAnlysErr -20049 The x-values must be distinct.

PoleAnlysErr -20050 The interpolating function has a pole at the
requested value.

ColumnAnlysErr -20051 The first column in the X matrix must be all on

FreedomAnlysErr -20052 Invalid degrees of freedom.

ProbabilityAnlysErr -20053 The probability must meet the condition: 0 < p

CategoryAnlysErr -20055 Invalid number of categories or samples.

TableAnlysErr -20056 The contingency table has a negative number

© National Instruments Corporation

(continues)

A-5

LabWindows/CVI Advanced Analysis Library

Error Codes

Appendix A

Table A-2. Advanced Analysis Library Error Codes (Continued)

Symbolic Name Code Error Message

BetaFuncAnlysErr -20057 The parameter to the beta function must meet
condition: 0 <p < 1.

DimensionAnlysErr -20058 Invalid number of dimensions or dependent
variables.

DivByZeroAnlysErr -20060 Divide by zero.

InvSelectionAnlysErr -20061 Invalid selection.

MaxlIterAnlysErr -20062 Maximum iteration exceeded.

PolyAnlysErr -20063 Invalid polynomial.

ZeroVectorAnlysErr -20065 The elements of the vector cannot be all zero

[IRFilterinfoAnlysErr -20066 The information in the IIR filter structure is
invalid.

BaseGETopAnlysErr -20101 Base must be less than Top.
ShiftRangeAnlysErr -20102 The shifts must meet the condition: |shifts| <
samples.

OrderGEZeroAnlysErr -20103 Order must be greater than or equal to zero.

LabWindows/CVI Advanced Analysis Library

A-6

the

© National Instruments Corporation

Appendix B
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of Teehnical Support Forrhefore contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to

6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
guestions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. You can access these services at:

* United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

* United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

* France: 14865 1559
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FaxBack Support

FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following number: (512) 418-1111.

© National Instruments Corporation B-1 LabWindows/CVI Advanced Analysis Library

Customer Communication Appendix B

FTP Support

To access our FTP site, log on to our Internet ligshatinst.com , as anonymous and
use your Internet address, suchaesmith@anywhere.com , as your password. The
support files and documents are located inghpport directories.

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com
DAQ: dag.support@natinst.com
VXI: vXi.support@natinst.com
LabVIEW: Iv.support@natinst.com
LabWindows: Iw.support@natinst.com

HIiQ: hig.support@natinst.com
Lookout: lookout.support@natinst.com
VISA: visa.support@natinst.com

Fax and Telephone Support

National Instruments has branch offices all over the world. Use the list below to find the
technical support number for your country. If there is no National Instruments office in your
country, contact the source from which you purchased your software to obtain support.

Telephone Fax

Australia 0398799422 0398799179
Austria 0662 4579900 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310

Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 90 527 2321 90 502 2930
France 148142424 148142414
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 328486 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 73049 70 08 7304370
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

LabWindows/CVI Advanced Analysis Library

© National Instruments Corporation

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use the completed
copy of this form as a reference for your current configuration. Completing this form accurately before contacting
National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax () Phone ()
Computer brand Model Processor

Operating system: Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.1, Windows NT 3.5,
Windows 95, other (include version number)

Clock Speed MHz RAM MB Display adapter
Mouse ___yes __ no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision
Configuration

National Instruments software product Version
Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Hardware and Software Configuration Form

Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration. When you complete this form accurately before contacting National
Instruments for technical support, our applications engineers can answer your questions more efficiently.

National Instruments Products

Data Acquisition Hardware Revision

Interrupt Level of Hardware

DMA Channels of Hardware

Base I/0O Address of Hardware

NI-DAQ, LabVIEW, or
LabWindows Version

Other Products

Computer Make and Model

Microprocessor

Clock Frequency

Type of Video Board Installed

Operating System

Operating System Version

Operating System Mode

Programming Language

Programming Language Version

Other Boards in System

Base 1/0 Address of Other Boards

DMA Channels of Other Boards

Interrupt Level of Other Boards

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: LabWindows®/CVI Advanced Analysis Library Reference Manual

Edition Date: July 1996
Part Number: 320686C-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Fax () Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039

Glossary

Prefix Meaning Value
p- pico- 1012
n- nano- 109
M- micro- 106
m- milli- 103
k- kilo- 103
M- mega- 1060
Numbers

1D one-dimensional

2D two-dimensional

A

active window The window affected by user input at a given moment. The title of an

active window is highlighted.

ANOVA analysis of variance
Array Display A mechanism for viewing and editing numeric arrays.
auto-exclusion A mechanism that prevents pre-existing lines from executing in the

Interactive Execution Window.

B
bps bits per second
breakpoint An interruption in the execution of a program.

© National Instruments Corporation G-1 LabWindows/CVI Advanced Analysis Library

Glossary

C

caption bar

cm

command bar

common control

control

D
DFT

dialog box

DSP

E

excluded code

An area directly beneath the command bar at the top of a window that
displays the name of the file you are working on.

centimeters

An area along the top of a window that contains the names of the
LabWindows/CVI command menus.

A function panel control that specifies the first parameter in both primary
and secondary functions associated with a function panel. A common
control appears on a function panel in the same color or intensity as a
primary control.

An input and output device that appears on a function panel for specifying
function parameters and displaying function results.

Discrete Fourier Transform

A prompt mechanism in which you specify additional information needed
to complete a command.

digital signal processing

Code that is ignored during compilation and execution. Excluded lines of
code are displayed in a different color than included lines of code.

F

FFT Fast Fourier Transform

FHT Fast Hartley Transform

FIR finite impulse response

LabWindows/CVI Advanced Analysis Library G-2 © National Instruments Corporation

function panel

function panel
window

function tree

G

Generated Code
box

global control

Glossary

A user interface to the LabWindows/CVI libraries in which you can
interactively execute library functions and generate code for inclusion in a
program.

A window that contains one or more function panels.

The hierarchical structure in which the functions in a library or an
instrument driver are grouped. The function tree simplifies access to a
library or instrument driver by presenting functions organized according to
the operation they perform, as opposed to a single linear listing of all
available functions.

A small window located at the bottom of the function panel screen that
displays the code produced by the manipulation of function panel controls.

A function panel control that displays the contents of global variables in a
library function. Global controls allow you to monitor global variables in

a function that are not specifically returned as results by the function.
These are read-only controls that cannot be altered by the user, and do not
contribute a parameter to the generated code.

H

hex hexadecimal

Hz hertz

I

IDFT inverse Discrete Fourier Transform

IFFT inverse Fast Fourier Transform

IFHT inverse Fast Hartley Transform

IR infinite impulse response

in. inches

© National Instruments Corporation G-3 LabWindows/CVI Advanced Analysis Library

Glossary

input control

input focus

A function panel control that accepts a value typed in from the keyboard.
An input control can have a default value associated with it. This value
appears in the control when the panel is first displayed.

A mechanism for emphasis displayed on the screen as a highlight on an
item, signifying that the item is active. User input affects the item in the
dialog box that has the input focus.

Interactive Execution A LabWindows/CVI window in which sections of code may be executed

window

K

ksamples

L

LFP file

list box

M
MB

menu

mse

O

output control

LabWindows/CVI Advanced Analysis Library G-4

without creating an entire program.

1,000 samples

A file containing information about the function tree and function panels
for a LabWindows/CVI permanent library.

A dialog box item that displays a list of possible choices.

megabytes of memory

An area accessible from the command bar that displays a subset of the
possible command choices.

mean squared error

A function panel control that displays a value determined by the function
you execute.

© National Instruments Corporation

P

Project window

prompt command

R

return value control

rms

S

scroll bars

scrollable text box

S

select

shortcut key
commands
Source window
Standard Input/

Output window

standard libraries

String Display

Glossary

A window that keeps track of the components that make up your current
project. The Project window maintains a list of files such as source files,
uir files, header files, or object modules, and also contains status
information about each file in your project.

A command that requires additional information before it can be executed;
a prompt command appears on a pull-down menu suffixed with three
ellipses (...).

A function panel control that displays a value returned from a function as a
return value rather than as a formal parameter.

root mean squared

Areas along the bottom and right sides of a window that show your
relative position in the file. Scroll bars can be used with a mouse to move
about in the window.

A dialog box item that displays text in a scrollable display.
seconds

To choose the item that the next executed action will affect by moving the
input focus (highlight) to a particular item or area.

A combination of keystrokes that provide a means of executing a
command without accessing a menu in the command bar.

A LabWindows/CVI work area in which complete programs are edited
and executed. This window is designated by the file extension .c.

A LabWindows/CVI work area in which output to and input from the user
take place.

The LabWindows/CVI Analysis, Formatting and 1/0, GPIB/GPIB-488.2,
RS-232, TCP/IP, DDE libraries and the ANSI C Library.

A mechanism for viewing and editing string variables and arrays.

© National Instruments Corporation G-5 LabWindows/CVI Advanced Analysis Library

Glossary

Vv

\Y volts

Variable Display A display that shows the values of the variables that are currently defined
in LabWindows/CVI.

LabWindows/CVI Advanced Analysis Library G-6 © National Instruments Corporation

Index

Numbers

1D array functions. See one-dimensional
array operation functions.

1D complex operation functionSeeone-
dimensional complex operation functions.

2D array functionsSeetwo-dimensional
array operation functions.

A

Abs1D function, 2-1
ACDCEstimator function, 2-1 to 2-2
Add1D function, 2-2 to 2-3
Add2D function, 2-3
Advanced Analysis Library functions
error codes
alphabetical list, A-1 to A-3
numeric list, A-4 to A-6
function panels
array operation functions, 1-2, 1-7
array utility functions, 1-8
complex operation
functions, 1-3, 1-7
curve fitting functions, 1-6, 1-8
function tree (table), 1-1 to 1-7
hints for using, 1-8 to 1-9
interpolation functions, 1-6, 1-8
measurement functions, 1-5, 1-8
signal generation functions, 1-1
to 1-2, 1-7
signal processing functions, 1-3
to 1-5, 1-7
statistics functions, 1-5 to 1-6, 1-8
vector and matrix algebra
functions, 1-6, 1-8
function reference
Abs1D, 2-1
ACDCEstimator, 2-1 to 2-2

© National Instruments Corporation -1

Add1D, 2-2 to 2-3

Add2D, 2-3

AlloclIRFilterPtr, 2-5 to 2-6
AmpPhaseSpectrum, 2-4 to 2-5
ANOVA1Way, 2-6 to 2-11
ANOVA2Way, 2-11 to 2-19
ANOVA3Way, 2-20 to 2-29
ArbitraryWave, 2-30 to 2-31
AutoPowerSpectrum, 2-31 to 2-32
BackSub, 2-32 to 2-33

Bessel CascadeCoef, 2-33 to 2-35
Bessel Coef, 2-36 to 2-37
BkmanWin, 2-37

BlkHarrisWin, 2-36 to 2-37
Bw_BPF, 2-38

Bw_BSF, 2-39
BW_CascadeCoef, 2-40 to 2-41
Bw_Coef, 2-41 to 2-42

Bw_HPF, 2-42 to 2-43

Bw_LPF, 2-43 to 2-44
CascadeToDirectCoef, 2-44 to 2-45
Ch_BPF, 2-45 to 2-46

Ch_BSF, 2-46 to 2-47
Ch_CascadeCoef, 2-47 to 2-49
Ch_Coef, 2-49 to 2-50

Ch_HPF, 2-50 to 2-51

Chirp, 2-52 to 2-53

Ch_LPF, 2-51 to 2-52

ClearlD, 2-53

Clip, 2-54

Contingency_Table, 2-54 to 2-57
Convolve, 2-58 to 2-59

CopylD, 2-59

Correlate, 2-59 to 2-60
CosTaperedWin, 2-60 to 2-61
CrossPowerSpectrum, 2-61 to 2-62
CrossSpectrum, 2-62 to 2-63
CxAdd, 2-63 to 2-64

CxAdd1D, 2-64 to 2-65

CxDiv, 2-65

CxDiv1D, 2-66

LabWindows/CVI Advanced Analysis Library

Index

CXxEXxp, 2-66 to 2-67

CxLn, 2-68

CxLog, 2-68 to 2-69

CxMul, 2-69

CxMull1D, 2-70

CxPow, 2-70 to 2-71
CxRecip, 2-71

CxSqrt, 2-72

CxSub, 2-72 to 2-73
CxSublD, 2-73 to 2-74
Decimate, 2-74

Deconvolve, 2-75
Determinant, 2-76
Difference, 2-76 to 2-77
DivlD, 2-77 to 2-78

Div2D, 2-78

DotProduct, 2-79

Elp_BPF, 2-79 to 2-80
Elp_BSF, 2-80 to 2-81
Elp_CascadeCoef, 2-81 to 2-83
Elp_Coef, 2-83 to 2-84
Elp_HPF, 2-84 to 2-85
Elp_LPF, 2-85 to 2-86
Equi_Ripple, 2-86 to 2-89
EquiRpl_BPF, 2-89 to 2-90
EquiRpl_BSF, 2-91
EquiRpl_HPF, 2-92
EquiRpl_LPF, 2-93
ExBkmanWin, 2-94

ExpFit, 2-94 to 2-95
ExpWin, 2-96

F_Dist, 2-96 to 2-97

FFT, 2-97 to 2-98

FHT, 2-98 to 2-99
FIR_Coef, 2-99 to 2-100
FlatTopWin, 2-100
ForceWin, 2-101

ForwSub, 2-101 to 2-102
FreellRFilterPtr, 2-102 to 2-104
GaussNoise, 2-103 to 2-104
GenCosWin, 2-104
GenLSFit, 2-105to 2-111
GenLSFitCoef, 2-112 to 2-113
GetAnalysisErrorString, 2-113
HamWin, 2-114

HanWin, 2-114 to 2-115

LabWindows/CVI Advanced Analysis Library -2

Histogram, 2-115 to 2-116
[IRCascadeFiltering, 2-116 to 2-117
[IRFiltering, 2-118 to 2-119
Impulse, 2-119 to 2-120
ImpulseResponse, 2-120
Integrate, 2-121
InvCh_BPF, 2-122
InvCh_BSF, 2-123
InvCh_CascadeCoef, 2-124 to 2-125
InvCh_Coef, 2-125 to 2-126
InvCh_HFP, 2-126 to 2-127
InvCh_LPF, 2-127 to 2-128
InvF_Dist, 2-128 to 2-129
InvFFT, 2-129 to 2-130
InvFHT, 2-130 to 2-131
InvMatrix, 2-131 to 2-132
InvN_Dist, 2-132

InvT_Dist, 2-133
InvXX_Dist, 2-133 to 2-134
Ksr_BPF, 2-134 to 2-135
Ksr_BSF, 2-136 to 2-137
Ksr_HPF, 2-137 to 2-138
Ksr_LPF, 2-138 to 2-139
Ksr_Win, 2-139 to 2-140
LinEgs, 2-140 to 2-141
LinEvlD, 2-141 to 2-142
LinEv2D, 2-142 to 2-143
LinFit, 2-143 to 2-144

LU, 2-144 to 2-145
MatrixMul, 2-145 to 2-146
MaxMinlD, 2-146 to 2-147
MaxMin2D, 2-147 to 2-148
Mean, 2-148

Median, 2-149

Mode, 2-149 to 2-150
Moment, 2-150 to 2-151
MullD, 2-151 to 2-152
Mul2D, 2-152

N-Dist, 2-153

NeglD, 2-153 to 2-154
NetworkFunctions, 2-154 to 2-156
NonLinearFit, 2-156 to 2-157
NormallD, 2-157 to 2-158
Normal2D, 2-158 to 2-159
PolyEv1D, 2-159 to 2-160
PolyEv2D, 2-160 to 2-161

© National Instruments Corporation

PolyFit, 2-162 to 2-163

Polyinterp, 2-163 to 2-164

PowerFrequencyEstimate, 2-164
to 2-166

Prod1D, 2-166 to 2-167

Pulse, 2-167 to 2-168

PulseParam, 2-168 to 2-169

QScalelD, 2-170

QScale2D, 2-170 to 2-171

Ramp, 2-171 to 2-172

RatlInterp, 2-172 to 2-173

ReFFT, 2-174

RelnvFFT, 2-175

ResetlIRFilter, 2-176

Reverse, 2-177

RMS, 2-177 to 2-178

SawtoothWave, 2-178 to 2-179

ScalelD, 2-179

Scale2D, 2-180

ScaledWindow, 2-181 to 2-182

SetlD, 2-182 to 2-183

Shift, 2-183 to 2-184

Sinc, 2-184

SinePattern, 2-185

SineWave, 2-186 to 2-187

Sort, 2-187

Spectrum, 2-188

SpectrumUnitConversion, 2-188
to 2-191

Spinterp, 2-192 to 2-193

Spline, 2-193 to 2-194

SquareWave, 2-194 to 2-195

StdDev, 2-196

Sub1D, 2-196 to 2-197

Sub2D, 2-197 to 2-198

SubsetlD, 2-198

SumlD, 2-199

Sum2D, 2-199 to 2-200

T Dist, 2-200 to 2-201

ToPolar, 2-201

ToPolarlD, 2-202

ToRect, 2-203

ToRectlD, 2-203 to 2-204

Trace, 2-204

TransferFunction, 2-205 to 2-206

Transpose, 2-206

© National Instruments Corporation 1-3

Index

Triangle, 2-206 to 2-207
TriangleWave, 2-207 to 2-208
TriWin, 2-208 to 2-209
Uniform, 2-209
UnWrapilD, 2-210
Variance, 2-210 to 2-211
WhiteNoise, 2-211 to 2-212
Wind_BPF, 2-212 to 2-213
Wind_BSF, 2-213 to 2-215
Wind_HPF, 2-215 to 2-216
Wind_LPF, 2-216 to 2-217
XX_Dist, 2-218
AlloclIRFilterPtr function, 2-5 to 2-6
AmpPhaseSpectrum function, 2-4 to 2-5
analysis of variance functions
ANOVA1Way, 2-3
ANOVA2Way, 2-11 to 2-19
ANOVA3Way, 2-19 to 2-29
definition, 1-8
function tree, 1-6
ANOVA1Way function, 2-3
ANOVA2Way function, 2-11 to 2-19
ANOVA3Way function, 2-19 to 2-29
ArbitraryWave function, 2-30 to 2-31
array analysis operations
definition, 1-7
performing analysis operations in
place, 1-9
array operation functions
Abs1D, 2-1
Add1D, 2-2 to 2-3
Add2D, 2-3
definition, 1-7
DivlD, 2-77 to 2-78
Div2D, 2-78
function tree, 1-2
LinEvlD, 2-141 to 2-142
LinEv2D, 2-142 to 2-143
MaxMinlD, 2-146 to 2-147
MaxMin2D, 2-147 to 2-148
MullD, 2-151 to 2-152
Mul2D, 2-152
NeglD, 2-153 to 2-154
PolyEv1D, 2-159 to 2-160
PolyEv2D, 2-160 to 2-161
Prod1D, 2-166 to 2-167

LabWindows/CVI Advanced Analysis Library

Index

QScalelD, 2-170

QScale2D, 2-170to 2-171

ScalelD, 2-179

Scale2D, 2-180

SublD, 2-196 to 2-197

Sub2D, 2-197 to 2-198

SubsetlD, 2-198

Suml1D, 2-199

Sum2D, 2-199 to 2-200
array utility functions

ClearlD, 2-53

CopylD, 2-59

definition, 1-8

function tree, 1-8

SetlD, 2-182 to 2-183

UnWraplD, 2-210
AutoPowerSpectrum function, 2-31 to 2-32

B

BackSub function, 2-32 to 2-33
basic statistics functions

definition, 1-8

function tree, 1-5to 1-6

Histogram, 2-115 to 2-116

Mean, 2-148

Median, 2-149

Mode, 2-149 to 2-150

Moment, 2-150 to 2-151

RMS, 2-177 to 2-178

StdDev, 2-196

Variance, 2-210 to 2-211
Bessel CascadeCoef function, 2-33 to 2-35
Bessel Coef function, 2-36 to 2-37
BkmanWin function, 2-37
BlkHarrisWin function, 2-36 to 2-37
Bw_BPF function, 2-38
Bw_BSF function, 2-39
BW_CascadeCoef function, 2-40 to 2-41
Bw_Coef function, 2-41 to 2-42
Bw_HPF function, 2-42 to 2-43
Bw_LPF function, 2-43 to 2-44

LabWindows/CVI Advanced Analysis Library -4

C

CascadeToDirectCoef function, 2-44 to 2-45
Ch_BPF function, 2-45 to 2-46
Ch_BSF function, 2-46 to 2-47
Ch_Coef function, 2-49 to 2-50
Ch_HPF function, 2-50 to 2-51
Ch_LPF function, 2-51 to 2-52
Ch_CascadeCoef function, 2-47 to 2-49
Chirp function, 2-52 to 2-53
chi-square tests, 2-55 to 2-56
ClearlD function, 2-53
Clip function, 2-54
complex operation functions

CxAdd, 2-63 to 2-64

CxAdd1D, 2-64 to 2-65

CxDiv, 2-65

CxDivl1D, 2-66

CxExp, 2-66 to 2-67

CxLinEvlD, 2-67 to 2-68

CxLn, 2-68

CxLog, 2-68 to 2-69

CxMul, 2-69

CxMul1D, 2-70

CxPow, 2-70 to 2-71

CxRecip, 2-71

CxSqrt, 2-72

CxSub, 2-72 to 2-73

CxSublD, 2-73 to 2-74

definition, 1-7

function tree, 1-3

ToPolar, 2-201

ToPolarlD, 2-202

ToRect, 2-203

ToRectlD, 2-203 to 2-204
Contingency_Table function, 2-54 to 2-57
Convolve function, 2-58 to 2-59
Copy1D function, 2-59
Correlate function, 2-59 to 2-60
CosTaperedWin function, 2-60 to 2-61
CrossPowerSpectrum function, 2-61 to 2-62
CrossSpectrum function, 2-62 to 2-63
curve fitting, 1-18
curve fitting functions

definition, 1-8

ExpFit, 2-94 to 2-95

© National Instruments Corporation

function tree, 1-6
GenLSFit, 2-105 to 2-111
GenLSFitCoef, 2-112 to 2-113
LinFit, 2-143 to 2-144
NonLinearFit, 2-156 to 2-157
PolyFit, 2-162 to 2-163
customer communicatiorjv, B-1 to B-2
CxAdd function, 2-63 to 2-64
CxAdd1D function, 2-64 to 2-65
CxDiv function, 2-65
CxDiv1D function, 2-66
CxExp function, 2-66 to 2-67
CXLinEv1D function, 2-67 to 2-68
CxLn function, 2-68
CxLog function, 2-68 to 2-69
CxMul function, 2-69
CxMul1D function, 2-70
CxPow function, 2-70 to 2-71
CxRecip function, 2-71
CxSqgrt function, 2-72
CxSub function, 2-72 to 2-73
CxSubl1D function, 2-73 to 2-74

D

Decimate function, 2-74
Deconvolve function, 2-75
Determinant function, 2-76
Difference function, 2-76 to 2-77
digital filters. SeeFIR filters; IIR filters.
Discrete Fourier Transform (DFT), 1-9
to 1-10
Div1D function, 2-77 to 2-78
Div2D function, 2-78
documentation
conventions used in manuai;Xii
organization of manuaxi
related documentatioji-xiii
DotProduct function, 2-79

© National Instruments Corporation I-5

Index

E

electronic support services, B-1 to B-2
Elp_BPF function, 2-79 to 2-80
Elp_BSF function, 2-80 to 2-81
Elp_CascadeCoef function, 2-81 to 2-83
Elp_Coef function, 2-83 to 2-84
Elp_HPF function, 2-84 to 2-85
Elp_LPF function, 2-85 to 2-86
e-mail support, B-2
Equi_Ripple function
description, 2-86 to 2-89
designing FIR filters, 1-14
examples, 2-87 to 2-89
problems with convergence
(caution), 1-14
EquiRpl_BPF function, 2-89 to 2-90
EquiRpl_BSF function, 2-91
EquiRpl_HPF function, 2-92
EquiRpl_LPF function, 2-93
error codes
alphabetical list, A-1 to A-3
numeric list, A-4 to A-6
errors
converting error number with
GetAnalysisErrorString
function, 2-113
reporting analysis errors, 1-9
ExBkmanWin function, 2-94
ExpFit function, 2-94 to 2-95
ExpWin function, 2-96

F

Fast Fourier Transform (FFT), 1-9 to 1-10.
See alsdrequency domain functions.
fax and telephone support, B-2
faxback support, B-1
F_Dist function, 2-96 to 2-97
FFT function, 2-97 to 2-98
FHT function, 2-98 to 2-99
finite impulse response functiorSeeFIR
digital filter functions; FIR filters.
FIR digital filter functions
definition, 1-7

LabWindows/CVI Advanced Analysis Library

Index

FIR_Coef, 2-99 to 2-100
function tree, 1-4 to 1-5
Ksr_BPF, 2-134 to 2-135
Ksr_BSF, 2-136 to 2-137
Ksr_HPF, 2-137 to 2-138
Ksr_LPF, 2-138 to 2-139
Wind_BPF, 2-212 to 2-213
Wind_BSF, 2-213 to 2-215
wind_HPF, 2-215 to 2-216
Wind_LPF, 2-216 to 2-217
FIR filters
compared with IIR filters, 1-13
definition, 1-13
designing, 1-14
FIR_Coef function, 2-99 to 2-100
FlatTopWin function, 2-100
ForceWin function, 2-101
ForwSub function, 2-101 to 2-102
Fourier Transform integral, 1-9
FPT support, B-2
FreellRFilterPtr function, 2-102 to 2-104
frequency domain functions
conventions and restrictions related to
Fast Fourier Transform, 1-10
CrossSpectrum, 2-62 to 2-63
definition, 1-7
FFT, 2-97 to 2-98
FHT, 2-98 to 2-99
function tree, 1-3
InvFFT, 2-129 to 2-130
InvFHT, 2-130 to 2-131
notation for describing Fast Fourier
Transform operations, 1-10
ReFFT, 2-174
RelnvFFT, 2-175
Spectrum, 2-188
function panelsSee undeAdvanced
Analysis Library.

LabWindows/CVI Advanced Analysis Library I-6

G

GaussNoise function, 2-103 to 2-104

GenCosWin function, 2-104

generated code stored in Interactive
window, 1-9

GenLSFit function, 2-105 to 2-111

GenLSFitCoef function, 2-112 to 2-113

GetAnalysisErrorString function, 2-113

H

HamWin function, 2-114
HanWin function, 2-114 to 2-115
Histogram function, 2-115 to 2-116

IEW. Seelnteractive Execution window.

[IR digital filter functions
AlloclIRFilterPtr, 2-5 to 2-6
Bessel CascadeCoef, 2-33 to 2-35
Bessel Coef, 2-36 to 2-37
Bw_BPF, 2-38
Bw_BSF, 2-39
BW_CascadeCoef, 2-40 to 2-41
Bw_Coef, 2-41 to 2-42
Bw_HPF, 2-42 to 2-43
Bw_LPF, 2-43 to 2-44
CascadeToDirectCoef, 2-44 to 2-45
Ch_BPF, 2-45 to 2-46
Ch_BSF, 2-46 to 2-47
Ch_CascadeCoef, 2-47 to 2-49
Ch_Coef, 2-49 to 2-50
Ch_HPF, 2-50 to 2-51
Ch_LPF, 2-51 to 2-52
definition, 1-7
Elp_BPF, 2-79 to 2-80
Elp_BSF, 2-80 to 2-81
Elp_CascadeCoef, 2-81 to 2-83
Elp_Coef, 2-83 to 2-84
Elp_HPF, 2-84 to 2-85
Elp_LPF, 2-85 to 2-86
Equi_Ripple, 2-86 to 2-89

© National Instruments Corporation

EquiRpl_BPF, 2-89 to 2-90
EquiRpl_BSF, 2-91
EquiRpl_HPF, 2-92
EquiRpl_LPF, 2-93
FreellRFilterPtr, 2-102 to 2-104
function tree, 1-4
[IRCascadeFiltering, 2-116 to 2-117
[IRFiltering, 2-118 to 2-119
InvCh_BPF, 2-122
InvCh_BSF, 2-123
InvCh_CascadeCoef, 2-124 to 2-125
InvCh_Coef, 2-125 to 2-126
InvCh_HFP, 2-126 to 2-127
InvCh_LPF, 2-127 to 2-128
ResetlIRFilter, 2-176
lIR filters, 1-14 to 1-16
cascaded filter stages, 1-15
compared with FIR filters, 1-13
direct form, 1-14 to 1-15
fourth order, 1-16
mathematical form, 1-14
second order, 1-15
types, 1-16
[IRCascadeFiltering function, 2-116
to 2-117
[IRFiltering function, 2-118 to 2-119
Impulse function, 2-119 to 2-120
ImpulseResponse function, 2-120
infinite impulse response functiorSeelIR
digital filter functions; IIR filters.
Integrate function, 2-121
Interactive Execution window, 1-9
interpolation functions
definition, 1-8
function tree, 1-6
Polyinterp, 2-163 to 2-164
RatlInterp, 2-172 to 2-173
Spinterp, 2-192 to 2-193
Spline, 2-193 to 2-194
InvCh_BPF function, 2-122
InvCh_BSF function, 2-123
InvCh_CascadeCoef function, 2-124
to 2-125
InvCh_Coef function, 2-125 to 2-126
InvCh_HFP function, 2-126 to 2-127
InvCh_LPF function, 2-127 to 2-128

© National Instruments Corporation I-7

Index

InvF_Dist function, 2-128 to 2-129
InvFFT function, 2-129 to 2-130
InvFHT function, 2-130 to 2-131
InvMatrix function, 2-131 to 2-132
InvN_ Dist function, 2-132

InvT_Dist function, 2-133
InvXX_Dist function, 2-133 to 2-134

K

Ksr_BPF function, 2-134 to 2-135
Ksr_BSF function, 2-136 to 2-137
Ksr_HPF function, 2-137 to 2-138
Ksr_LPF function, 2-138 to 2-139
Ksr_Win function, 2-139 to 2-140

L

LinEgs function, 2-140 to 2-141
LinEv1D function, 2-141 to 2-142
LinEv2D function, 2-142 to 2-143
LinFit function, 2-143 to 2-144
LU function, 2-144 to 2-145

M

manual.Seedocumentation.
matrix algebra functionsSeevector and
matrix algebra functions.

MatrixMul function, 2-145 to 2-146

MaxMin1D function, 2-146 to 2-147

MaxMin2D function, 2-147 to 2-148

Mean function, 2-148

measurement functions
ACDCEstimator, 2-1 to 2-2
AmpPhaseSpectrum, 2-4 to 2-5
AutoPowerSpectrum, 2-31 to 2-32
characteristics, 1-17 to 1-18
CrossPowerSpectrum, 2-61 to 2-62
definition, 1-8
function tree, 1-5
ImpulseResponse, 2-120
NetworkFunctions, 2-154 to 2-156

LabWindows/CVI Advanced Analysis Library

Index

PowerFrequencyEstimate, 2-164
to 2-166
purpose and use, 1-17
ScaledWindow, 2-181 to 2-182
SpectrumUnitConversion, 2-188
to 2-191
TransferFunction, 2-205 to 2-206
Median function, 2-149
Mode function, 2-149 to 2-150
Moment function, 2-150 to 2-151
MullD function, 2-151 to 2-152
Mul2D function, 2-152

N

N-Dist function, 2-153
NeglD function, 2-153 to 2-154
NetworkFunctions function, 2-154 to 2-156
NonLinearFit function, 2-156 to 2-157
nonparametric statistics function
Contingency_Table, 2-54 to 2-57
definition, 1-8
function tree, 1-6
NormallD function, 2-157 to 2-158
Normal2D function, 2-158 to 2-159

O

one-dimensional array operation functions
AbslD, 2-1
Add1D, 2-2 to 2-3
definition, 1-7
DivlD, 2-77 to 2-78
function tree, 1-2
LinEvlD, 2-141 to 2-142
MaxMinlD, 2-146 to 2-147
MullD, 2-151 to 2-152
NeglD, 2-153 to 2-154
PolyEv1D, 2-159 to 2-160
Prod1D, 2-166 to 2-167
QScalelD, 2-170
ScalelD, 2-179
SublD, 2-196 to 2-197
SubsetlD, 2-198

LabWindows/CVI Advanced Analysis Library 1-8

SumlD, 2-199

Sum2D, 2-199 to 2-200
one-dimensional complex operation

functions

CxAdd1D, 2-64 to 2-65

CxDiv1D, 2-66

CxLinEV1D, 2-67 to 2-68

CxMull1D, 2-70

CxSubi1D, 2-73 to 2-74

definition, 1-7

function tree, 1-3

ToPolarlD, 2-202

ToRectlD, 2-203 to 2-204

P

performance considerations, analysis
functions, 1-9
PolyEv1D function, 2-159 to 2-160
PolyEv2D function, 2-160 to 2-161
PolyFit function, 2-162 to 2-163
Polyinterp function, 2-163 to 2-164
PowerFrequencyEstimate function, 2-164
to 2-166
probability distribution functions
definition, 1-8
F_Dist, 2-96 to 2-97
function tree, 1-6
InvF_Dist, 2-128 to 2-129
InvN_Dist, 2-132
InvT_Dist, 2-133
InvXX_Dist, 2-133 to 2-134
N-Dist, 2-153
T_Dist, 2-200 to 2-201
XX_Dist, 2-218
Prod1D function, 2-166 to 2-167
Pulse function, 2-157 to 2-168
PulseParam function, 2-168 to 2-169

© National Instruments Corporation

Q

QScalelD function, 2-170
QScale2D function, 2-170 to 2-171

R

Radix-4 and Radix-8 algorithms, 1-10
Ramp function, 2-171 to 2-172
RatInterp function, 2-172 to 2-173
ReFFT function, 2-174

RelnvFFT function, 2-175
ResetlIRFilter function, 2-176
Reverse function, 2-177

RMS function, 2-177 to 2-178

S

SawtoothWave function, 2-178 to 2-179
ScalelD function, 2-179
Scale2D function, 2-180
ScaledWindow function, 2-181 to 2-182
SetlD function, 2-182 to 2-183
Shift function, 2-183 to 2-184
signal generation functions
ArbitraryWave, 2-30 to 2-31
Chirp, 2-52 to 2-53
definition, 1-7
function tree, 1-1 to 1-2
GaussNoise, 2-103 to 2-104
Impulse, 2-119 to 2-120
Pulse, 2-157 to 2-168
Ramp, 2-171 to 2-172
SawtoothWave, 2-178 to 2-179
Sinc, 2-184
SinePattern, vi all;2-1
SineWave, 2-186 to 2-187
SquareWave, 2-194 to 2-195
Triangle, 2-206 to 2-207
TriangleWave, 2-207 to 2-208
Uniform, 2-209
WhiteNoise, 2-211 to 2-212
signal processing functionSeeFIR digital
filter functions; frequency domain

© National Instruments Corporation

Index

functions; IIR digital filter functions; time
domain functions; windows functions.
Sinc function, 2-184
SinePattern function, vi all;2-1
SineWave function, 2-186 to 2-187
Sort function, 2-187
source file code stored in Interactive
window, 1-9
Spectrum function, 2-188
SpectrumUnitConversion function, 2-188
to 2-191
Spinterp function, 2-192 to 2-193
Spline function, 2-193 to 2-194
Split-Radix algorithm, 1-10
SquareWave function, 2-194 to 2-195
statistics functions
ANOVA1Way, 2-3
ANOVA2Way, 2-11 to 2-19
ANOVA3Way, 2-20 to 2-29
Contingency_Table, 2-54 to 2-57
definition, 1-8
F_Dist, 2-96 to 2-97
function tree, 1-5to 1-6
GenLSFit, 2-105to 2-111
Histogram, 2-115 to 2-116
InvF_Dist, 2-128 to 2-129
InvN_Dist, 2-132
InvT_Dist, 2-133
InvXX_Dist, 2-133 to 2-134
Mean, 2-148
Median, 2-149
Mode, 2-149 to 2-150
Moment, 2-150 to 2-151
N-Dist, 2-153
RMS, 2-177 to 2-178
Sort, 2-187
StdDev, 2-196
T _Dist, 2-200 to 2-201
Variance, 2-210 to 2-211
XX_Dist, 2-218
StdDev function, 2-196
Sub1D function, 2-196 to 2-197
Sub2D function, 2-197 to 2-198
Subset1D function, 2-198
Sum1D function, 2-199
Sum2D function, 2-199 to 2-200

LabWindows/CVI Advanced Analysis Library

Index

T

T_Dist function, 2-200 to 2-201
technical support, B-1 to B-2
time domain functions
Clip, 2-54
Convolve, 2-58 to 2-59
Correlate, 2-59 to 2-60
Decimate, 2-74
Deconvolve, 2-75
definition, 1-7
Difference, 2-76 to 2-77
function tree, 1-3to 1-4
Integrate, 2-121
PulseParam, 2-168 to 2-169
Reverse, 2-177
Shift, 2-183 to 2-184
ToPolar function, 2-201
ToPolarlD function, 2-202
ToRect function, 2-203
ToRectl1D function, 2-203 to 2-204
Trace function, 2-204
TransferFunction function, 2-205 to 2-206
Transpose function, 2-206
Triangle function, 2-206 to 2-207
TriangleWave function, 2-207 to 2-208
TriWin function, 2-208 to 2-209
two-dimensional array operation functions
Add2D, 2-3
definition, 1-7
Div2D, 2-78
function tree, 1-2
LinEv2D, 2-142 to 2-143
MaxMin2D, 2-147 to 2-148
Mul2D, 2-152
PolyEv2D, 2-160 to 2-161
QScale2D, 2-170to 2-171
Scale2D, 2-180
Sub2D, 2-197 to 2-198

LabWindows/CVI Advanced Analysis Library

[-10

U

Uniform function, 2-209
UnWraplD function, 2-210

Vv

Variance function, 2-210 to 2-211
vector and matrix algebra functions
BackSub, 2-32 to 2-33
definition, 1-8
Determinant, 2-76
DotProduct, 2-79
ForwSub, 2-101 to 2-102
function tree, 1-6
InvMatrix, 2-131 to 2-132
LinEgs, 2-140 to 2-141
LU, 2-144 to 2-145
MatrixMul, 2-145 to 2-146
NormallD, 2-157 to 2-158
Normal2D, 2-158 to 2-159
Trace, 2-204
Transpose, 2-206

wW

WhiteNoise function, 2-211 to 2-212
Wind_BPF function, 2-212 to 2-213
Wind_BSF function, 2-213 to 2-215
Wind_HPF function, 2-215 to 2-216
Wind_LPF function, 2-216 to 2-217
windowing, 1-11 to 1-13
windows functions

BkmanWin, 2-37

BlkHarrisWin, 2-36 to 2-37

CosTaperedWin, 2-60 to 2-61

definition, 1-7

ExBkmanWin, 2-94

ExpWin, 2-96

FlatTopWin, 2-100

ForceWin, 2-101

function tree, 1-5

GenCosWin, 2-104

HamWin, 2-114

© National Instruments Corporation

HanWin, 2-114 to 2-115

Ksr_Win, 2-139 to 2-140

TriWin, 2-208 to 2-209
WindType parameter, 1-13 to 1-14
X

XX_Dist function, 2-218

© National Instruments Corporation

-11

Index

LabWindows/CVI Advanced Analysis Library

	LabWindows/CVI Advanced Analysis Library Reference Manual
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Advanced Analysis Library Overview
	Product Overview
	The Advanced Analysis Library Function Panels
	Reporting Analysis Errors
	About the Fast Fourier Transform (FFT)
	About Windowing
	About Digital Filters
	About Measurement Functions
	About Curve Fitting

	Chapter 2 Advanced Analysis Library Function Reference
	Abs1D
	ACDCEstimator
	Add1D
	Add2D
	AllocIIRFilterPtr
	AmpPhaseSpectrum
	ANOVA1Way
	ANOVA2Way
	ANOVA3Way
	ArbitraryWave
	AutoPowerSpectrum
	BackSub
	Bessel_CascadeCoef
	Bessel_Coef
	BlkHarrisWin
	BkmanWin
	Bw_BPF
	Bw_BSF
	Bw_CascadeCoef
	Bw_Coef
	Bw_HPF
	Bw_LPF
	CascadeToDirectCoef
	Ch_BPF
	Ch_BSF
	Ch_CascadeCoef
	Ch_Coef
	Ch_HPF
	Ch_LPF
	Chirp
	Clear1D
	Clip
	Contingency_Table
	Convolve
	Copy1D
	Correlate
	CosTaperedWin
	CrossPowerSpectrum
	CrossSpectrum
	CxAdd
	CxAdd1D
	CxDiv
	CxDiv1D
	CxExp
	CxLinEv1D
	CxLn
	CxLog
	CxMul
	CxMul1D
	CxPow
	CxRecip
	CxSqrt
	CxSub
	CxSub1D
	Decimate
	Deconvolve
	Determinant
	Difference
	Div1D
	Div2D
	DotProduct
	Elp_BPF
	Elp_BSF
	Elp_CascadeCoef
	Elp_Coef
	Elp_HPF
	Elp_LPF
	Equi_Ripple
	EquiRpl_BPF
	EquiRpl_BSF
	EquiRpl_HPF
	EquiRpl_LPF
	ExBkmanWin
	ExpFit
	ExpWin
	F_Dist
	FFT
	FHT
	FIR_Coef
	FlatTopWin
	ForceWin
	ForwSub
	FreeIIRFilterPtr
	GaussNoise
	GenCosWin
	GenLSFit
	GenLSFitCoef
	GetAnalysisErrorString
	HamWin
	HanWin
	Histogram
	IIRCascadeFiltering
	IIRFiltering
	Impulse
	ImpulseResponse
	Integrate
	InvCh_BPF
	InvCh_BSF
	InvCh_CascadeCoef
	InvCh_Coef
	InvCh_HPF
	InvCh_LPF
	InvF_Dist
	InvFFT
	InvFHT
	InvMatrix
	InvN_Dist
	InvT_Dist
	InvXX_Dist
	Ksr_BPF
	Ksr_BSF
	Ksr_HPF
	Ksr_LPF
	KsrWin
	LinEqs
	LinEv1D
	LinEv2D
	LinFit
	LU
	MatrixMul
	MaxMin1D
	MaxMin2D
	Mean
	Median
	Mode
	Moment
	Mul1D
	Mul2D
	N_Dist
	Neg1D
	NetworkFunctions
	NonLinearFit
	Normal1D
	Normal2D
	PolyEv1D
	PolyEv2D
	PolyFit
	PolyInterp
	PowerFrequencyEstimate
	Prod1D
	Pulse
	PulseParam
	QScale1D
	QScale2D
	Ramp
	RatInterp
	ReFFT
	ReInvFFT
	ResetIIRFilter
	Reverse
	RMS
	SawtoothWave
	Scale1D
	Scale2D
	ScaledWindow
	Set1D
	Shift
	Sinc
	SinePattern
	SineWave
	Sort
	Spectrum
	SpectrumUnitConversion
	SpInterp
	Spline
	SquareWave
	StdDev
	Sub1D
	Sub2D
	Subset1D
	Sum1D
	Sum2D
	T_Dist
	ToPolar
	ToPolar1D
	ToRect
	ToRect1D
	Trace
	TransferFunction
	Transpose
	Triangle
	TriangleWave
	TriWin
	Uniform
	UnWrap1D
	Variance
	WhiteNoise
	Wind_BPF
	Wind_BSF
	Wind_HPF
	Wind_LPF
	XX_Dist

	Appendix A Error Codes
	Appendix B Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. A Windowed Spectrum in the Continuous Case
	Figure 1-2. Cascaded Filter Stages

	Tables
	Table 1-1. The Advanced Analysis Library Function Tree
	Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically
	Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically

	Equations
	(1-1)
	(1-2)
	(1-3)
	(1-4)
	(1-5)
	(1-6)
	(1-7)
	(2-1)
	(2-2)
	(2-3)
	(2-4)

