
© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.

LabWindows®/CVI
Advanced Analysis Library

Reference Manual

July 1996 Edition

Part Number 320686C-01

Internet Support

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
Lookout: lookout.support@natinst.com
HiQ: hiq.support@natinst.com
VISA: visa.support@natinst.com
FTP Site: ftp.natinst.com
Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

FaxBack Support

(512) 418-1111

Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND

SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL

INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS

WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s
failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification
of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of
third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or
involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and
all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to
prevent serious injury or death should always continue to be used when National Instruments products are being
used. National Instruments products are NOT intended to be a substitute for any form of established process,
procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

 National Instruments Corporation v LabWindows/CVI Advanced Analysis Library

Contents

About This Manual...xi
Organization of This Manual ...xi
Conventions Used in This Manual ...xi
Related Documentation ..xii
Customer Communication ...xiv

Chapter 1
Advanced Analysis Library Overview..1-1

Product Overview...1-1
The Advanced Analysis Library Function Panels..1-1

Reporting Analysis Errors..1-9
About the Fast Fourier Transform (FFT) ...1-9
About Windowing..1-11
About Digital Filters ..1-13
About Measurement Functions ..1-17
About Curve Fitting ...1-18

Chapter 2
Advanced Analysis Library Function Reference..2-1

Abs1D...2-1
ACDCEstimator ...2-1
Add1D ..2-2
Add2D ..2-3
AllocIIRFilterPtr ..2-4
AmpPhaseSpectrum ...2-5
ANOVA1Way..2-6
ANOVA2Way..2-11
ANOVA3Way..2-20
ArbitraryWave..2-30
AutoPowerSpectrum ..2-31
BackSub ...2-32
Bessel_CascadeCoef ..2-33
Bessel_Coef..2-35
BlkHarrisWin ...2-36
BkmanWin ...2-37
Bw_BPF ...2-38
Bw_BSF ...2-39
Bw_CascadeCoef ...2-40
Bw_Coef...2-41
Bw_HPF...2-42
Bw_LPF ...2-43

Contents

LabWindows/CVI Advanced Analysis Library vi  National Instruments Corporation

CascadeToDirectCoef ..2-44
Ch_BPF..2-45
Ch_BSF..2-46
Ch_CascadeCoef ..2-47
Ch_Coef ...2-49
Ch_HPF..2-50
Ch_LPF ..2-51
Chirp...2-52
Clear1D ..2-53
Clip...2-54
Contingency_Table ..2-54
Convolve ..2-58
Copy1D ..2-59
Correlate ...2-59
CosTaperedWin..2-60
CrossPowerSpectrum ...2-61
CrossSpectrum ...2-62
CxAdd ..2-63
CxAdd1D ...2-64
CxDiv ...2-65
CxDiv1D ..2-66
CxExp...2-66
CxLinEv1D ..2-67
CxLn...2-68
CxLog...2-68
CxMul ..2-69
CxMul1D..2-70
CxPow..2-70
CxRecip..2-71
CxSqrt ..2-72
CxSub...2-72
CxSub1D..2-73
Decimate...2-74
Deconvolve...2-75
Determinant..2-76
Difference...2-76
Div1D...2-77
Div2D...2-78
DotProduct ...2-79
Elp_BPF ...2-79
Elp_BSF ...2-80
Elp_CascadeCoef ...2-81
Elp_Coef...2-83
Elp_HPF...2-84
Elp_LPF ...2-85
Equi_Ripple..2-86

Contents

 National Instruments Corporation vii LabWindows/CVI Advanced Analysis Library

EquiRpl_BPF ...2-89
EquiRpl_BSF ...2-91
EquiRpl_HPF ...2-92
EquiRpl_LPF..2-93
ExBkmanWin...2-94
ExpFit ...2-94
ExpWin...2-96
F_Dist ...2-96
FFT...2-97
FHT ..2-98
FIR_Coef..2-99
FlatTopWin ..2-100
ForceWin..2-101
ForwSub ...2-101
FreeIIRFilterPtr ..2-102
GaussNoise...2-103
GenCosWin ..2-104
GenLSFit ..2-105
GenLSFitCoef ..2-112
GetAnalysisErrorString..2-113
HamWin ...2-114
HanWin ..2-114
Histogram...2-115
IIRCascadeFiltering ...2-116
IIRFiltering...2-118
Impulse...2-119
ImpulseResponse..2-120
Integrate..2-121
InvCh_BPF...2-122
InvCh_BSF...2-123
InvCh_CascadeCoef...2-124
InvCh_Coef ..2-125
InvCh_HPF ..2-126
InvCh_LPF...2-127
InvF_Dist..2-128
InvFFT..2-129
InvFHT...2-130
InvMatrix..2-131
InvN_Dist ...2-132
InvT_Dist ...2-133
InvXX_Dist ..2-133
Ksr_BPF...2-134
Ksr_BSF...2-136
Ksr_HPF...2-137
Ksr_LPF ...2-138
KsrWin ...2-139

Contents

LabWindows/CVI Advanced Analysis Library viii  National Instruments Corporation

LinEqs ..2-140
LinEv1D...2-141
LinEv2D...2-142
LinFit..2-143
LU...2-144
MatrixMul ..2-145
MaxMin1D...2-146
MaxMin2D...2-147
Mean...2-148
Median..2-149
Mode...2-149
Moment ..2-150
Mul1D ..2-151
Mul2D ..2-152
N_Dist ..2-153
Neg1D ..2-153
NetworkFunctions ..2-154
NonLinearFit ..2-156
Normal1D...2-157
Normal2D...2-158
PolyEv1D ...2-159
PolyEv2D ...2-160
PolyFit ..2-162
PolyInterp...2-163
PowerFrequencyEstimate...2-164
Prod1D ...2-166
Pulse ...2-167
PulseParam...2-168
QScale1D ...2-170
QScale2D ...2-170
Ramp ..2-171
RatInterp...2-172
ReFFT ..2-174
ReInvFFT ...2-175
ResetIIRFilter ...2-176
Reverse...2-177
RMS ...2-177
SawtoothWave ...2-178
Scale1D ..2-179
Scale2D ..2-180
ScaledWindow ...2-181
Set1D..2-182
Shift ..2-183
Sinc...2-184
SinePattern ...2-185
SineWave ...2-186

Contents

 National Instruments Corporation ix LabWindows/CVI Advanced Analysis Library

Sort ...2-187
Spectrum...2-188
SpectrumUnitConversion...2-188
SpInterp ..2-192
Spline..2-193
SquareWave ...2-194
StdDev..2-196
Sub1D...2-196
Sub2D...2-197
Subset1D ..2-198
Sum1D..2-199
Sum2D..2-199
T_Dist...2-200
ToPolar ...2-201
ToPolar1D ..2-202
ToRect ..2-203
ToRect1D ...2-203
Trace...2-204
TransferFunction ..2-205
Transpose ...2-206
Triangle ..2-206
TriangleWave ...2-207
TriWin ..2-208
Uniform ..2-209
UnWrap1D ...2-210
Variance ...2-210
WhiteNoise...2-211
Wind_BPF..2-212
Wind_BSF..2-213
Wind_HPF..2-215
Wind_LPF..2-216
XX_Dist ...2-218

Appendix A
Error Codes...A-1

Appendix B
Customer Communication...B-1

Glossary..G-1

Index ..I-1

Contents

LabWindows/CVI Advanced Analysis Library x  National Instruments Corporation

Figures

Figure 1-1. A Windowed Spectrum in the Continuous Case ..1-12
Figure 1-2. Cascaded Filter Stages..1-15

Tables

Table 1-1. The Advanced Analysis Library Function Tree...1-1

Table A-1. Advanced Analysis Library Error Codes, Sorted AlphabeticallyA-1
Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically.............................A-4

Equations

Equation 1-1. ...1-11
Equation 1-2. ...1-11
Equation 1-3. ...1-12
Equation 1-4. ...1-12
Equation 1-5. ...1-12
Equation 1-6. ...1-14
Equation 1-7. ...1-15

Equation 2-1. ...2-106
Equation 2-2. ...2-107
Equation 2-3. ...2-107
Equation 2-4. ...2-108

© National Instruments Corporation xi LabWindows/CVI Advanced Analysis Library

About This Manual

The LabWindows/CVI Advanced Analysis Library Reference Manual describes the functions in
the LabWindows/CVI Advanced Analysis Library. To use this manual effectively, you should
be familiar with the material presented in the LabWindows/CVI User Manual, and with the
LabWindows/CVI software. Please refer to the LabWindows/CVI User Manual for specific
instructions on operating LabWindows/CVI.

Organization of This Manual

The LabWindows/CVI Advanced Analysis Library Reference Manual is organized as follows:

• Chapter 1, Advanced Analysis Library Overview, contains a brief product overview and
general information about the Advanced Analysis Library functions and panels.

• Chapter 2, Advanced Analysis Library Function Reference, contains a brief explanation of
each of the functions in the LabWindows/CVI Advanced Analysis Library. The
LabWindows/CVI Advanced Analysis Library functions are arranged alphabetically.

• Appendix A, Error Codes, contains error codes returned by the Advanced Analysis Library
functions.

• Appendix B, Customer Communication, contains forms you can use to request help from
National Instruments or to comment on our products and manuals.

• The Glossary contains an alphabetical list and description of terms used in this manual,
including acronyms, abbreviations, metric prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this manual, including the
page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes a parameter, menu item, return value, function panel item, or
dialog box button or option.

italic Italic text denotes emphasis, a cross reference, or an introduction to a key concept.

bold italic Bold italic text denotes a note, caution, or warning.

About This Manual

LabWindows/CVI Advanced Analysis Library xii © National Instruments Corporation

monospace Text in this font denotes text or characters that you should literally enter from the
keyboard. Sections of code, programming examples, and syntax examples also
appear in this font. This font also is used for the proper names of disk drives,
paths, directories, programs, subprograms, subroutines, device names, variables,
filenames, and extensions, and for statements and comments taken from program
code.

italic Italic text in this font denotes that you must supply the appropriate words or

monospace values in the place of these items.

< > Angle brackets enclose the name of a key. A hyphen between two or more key
names enclosed in angle brackets denotes that you should simultaneously press
the named keys, for example, <Ctrl-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box options to
a final action. The sequence File » Page Setup » Options » Substitute
Fonts directs you to pull down the File menu, select the Page Setup item,
select Options, and finally select the Substitute Fonts option from the last
dialog box.

paths Paths in this manual are denoted using backslashes (\) to separate drive names,
directories, and files, as in, drivename\dir1name\dir2name\myfile .

Acronyms, abbreviations, metric prefixes, mnemonics, and symbols, and terms are listed in the
Glossary.

Related Documentation

The following documents contain information that you may find helpful as you use advanced
analysis functions.

• Baher, H. Analog & Digital Signal Processing. New York: John Wiley & Sons. 1990.

• Bates, D.M. and Watts, D.G. Nonlinear Regression Analysis and its Applications. New York:
John Wiley & Sons. 1988.

• Bracewell, R.N. “Numerical Transforms.” Science. Science-248. 11 May 1990.

• Burden, R.L. & Faires, J.D. Numerical Analysis. Third Edition. Boston: Prindle, Weber &
Schmidt. 1985.

• Chen, C.H. et al. Signal Processing Handbook. New York: Marcel Dekker, Inc. 1988.

• DeGroot, M. Probability and Statistics, 2nd ed. Reading, Massachusetts: Addison-Wesley
Publishing Co. 1986.

• Dowdy, S. and Wearden, S. Statistics for Research, 2nd ed. New York: John Wiley & Sons.
1991.

About This Manual

© National Instruments Corporation xiii LabWindows/CVI Advanced Analysis Library

• Dudewicz, E.J. and Mishra, S.N. Modern Mathematical Statistics. New York: John Wiley &
Sons, 1988.

• Duhamel, P. et al. “On Computing the Inverse DFT.” IEEE Transactions on ASSP. ASSP-34
(1986): 1 (February).

• Dunn, O. and Clark, V. Applied Statistics: Analysis of Variance and Regression, 2nd ed. New
York: John Wiley & Sons. 1987.

• Elliot, D.F. Handbook of Digital Signal Processing Engineering Applications. San Diego:
Academic Press. 1987.

• Harris, Fredric J. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform,” Proceedings of the IEEE-66 (1978)-1.

• Maisel, J.E. “Hilbert Transform Works With Fourier Transforms to Dramatically Lower
Sampling Rates.” Personal Engineering and Instrumentation News. PEIN-7 (1990): 2
(February).

• Miller, I. and Freund, J.E. Probability and Statistics for Engineers. Englewood Cliffs, N.J.:
Prentice-Hall, Inc. 1987.

• Neter, J. et al. Applied Linear Regression Models. Richard D. Irwin, Inc. 1983.

• Neuvo, Y., Dong, C.-Y., and Mitra, S.K. “Interpolated Finite Impulse Response Filters,”
IEEE Transactions on ASSP. ASSP-32 (1984): 6 (June).

• O’Neill, M.A. “Faster Than Fast Fourier.” BYTE. (1988) (April).

• Oppenheim, A.V. & Schafer, R.W. Discrete-Time Signal Processing. Englewood Cliffs, New
Jersey: Prentice Hall. 1989.

• Parks, T.W. and Burrus, C.S. Digital Filter Design. John Wiley & Sons, Inc.: New York.
1987.

• Pearson, C.E. Numerical Methods in Engineering and Science. New York: Van Nostrand
Reinhold Co. 1986.

• Press, W.H. et al. Numerical Recipes in C: The Art of Scientific Computing. Cambridge:
Cambridge University Press. 1988.

• Rabiner, L.R. & Gold, B. Theory and Application of Digital Signal Processing. Englewood
Cliffs, New Jersey: Prentice Hall. 1975.

• Sorensen, H.V. et al. “On Computing the Split-Radix FFT.” IEEE Transactions on ASSP.
ASSP-34 (1986):1 (February).

• Sorensen, H.V. et al. “Real-Valued Fast Fourier Transform Algorithms.” IEEE Transactions
on ASSP. ASSP-35 (1987): 6 (June).

• Stoer, J. and Bulirsch, R. Introduction to Numerical Analysis. New York: Springer-Verlag.
1987.

About This Manual

LabWindows/CVI Advanced Analysis Library xiv © National Instruments Corporation

• Vaidyanathan, P.P. Multirate Systems and Filter Banks. Englewood Cliffs, New Jersey:
Prentice Hall. 1993.

• Wichman, B. and Hill, D. “Building a Random-Number Generator: A Pascal routine for
very-long-cycle random-number sequences.” BYTE, March 1987, pp 127-128.

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help you if you have
problems with them. To make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in Appendix B, Customer
Communication, at the end of this manual.

© National Instruments Corporation 1-1 LabWindows/CVI Advanced Analysis Library

Chapter 1
Advanced Analysis Library Overview

This chapter contains a brief product overview and general information about the Advanced
Analysis Library functions and panels.

Product Overview

The LabWindows Advanced Analysis Library adds additional analysis functions to the
standard LabWindows/CVI Analysis Library. The Advanced Analysis Library includes
functions for signal generation, one-dimensional (1D) and two-dimensional (2D) array
manipulation, complex operations, signal processing, statistics, and curve-fitting.

The Advanced Analysis Library Function Panels

The Advanced Analysis Library function panels are grouped in a tree structure according to
the types of operations performed. The Advanced Analysis Library Function Tree is shown
in Table 1-1.

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The third-
level headings in plain text are the names of individual function panels. Each analysis
function panel generates one analysis function call. The names of the corresponding analysis
function calls are in bold italics to the right of the function panel names.

Table 1-1. The Advanced Analysis Library Function Tree

Analysis
Signal Generation

Impulse Impulse
Pulse Pulse
Ramp Ramp
Triangle Triangle
Sine Pattern SinePattern
Uniform Noise Uniform
White Noise WhiteNoise
Gaussian Noise GaussNoise
Arbitrary Wave ArbitraryWave
Chirp Chirp

(continues)

Advanced Analysis Library Overview Chapter 1

LabWindows/CVI Advanced Analysis Library 1-2 © National Instruments Corporation

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Sawtooth Wave SawtoothWave
Sinc Waveform Sinc
Sine Wave SineWave
Square Wave SquareWave
Triangle Wave TriangleWave

Array Operations
1D Operations

1D Clear Array Clear1D
1D Set Array Set1D
1D Copy Array Copy1D
1D Array Addition Add1D
1D Array Subtraction Sub1D
1D Array Multiplication Mul1D
1D Array Division Div1D
1D Absolute Value Abs1D
1D Negative Value Neg1D
1D Linear Evaluation LinEv1D
1D Polynomial Evaluation PolyEv1D
1D Scaling Scale1D
1D Quick Scaling QScale1D
1D Maximum & Minimum MaxMin1D
1D Sum of Elements Sum1D
1D Product of Elements Prod1D
1D Array Subset Subset1D
1D Reverse Array Order Reverse
1D Shift Array Shift
1D Clip Array Clip
1D Sort Array Sort
1D Vector Normalization Normal1D

2D Operations
2D Array Addition Add2D
2D Array Subtraction Sub2D
2D Array Multiplication Mul2D
2D Array Division Div2D
2D Linear Evaluation LinEv2D
2D Polynomial Evaluation PolyEv2D
2D Scaling Scale2D
2D Quick Scaling QScale2D
2D Maximum & Minimum MaxMin2D
2D Sum of Elements Sum2D
2D Matrix Normalization Normal2D

(continues)

Chapter 1 Advanced Analysis Library Overview

© National Instruments Corporation 1-3 LabWindows/CVI Advanced Analysis Library

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Complex Operations
Complex Numbers

Complex Addition CxAdd
Complex Subtraction CxSub
Complex Multiplication CxMul
Complex Division CxDiv
Complex Reciprocal CxRecip
Complex Square Root CxSqrt
Complex Logarithm CxLog
Complex Natural Log CxLn
Complex Power CxPow
Complex Exponential CxExp
Rectangular to Polar ToPolar
Polar to Rectangular ToRect

1D Complex Operations
1D Complex Addition CxAdd1D
1D Complex Subtraction CxSub1D
1D Complex Multiplication CxMul1D
1D Complex Division CxDiv1D
1D Complex Linear Evaluation CxLinEv1D
1D Rectangular to Polar ToPolar1D
1D Polar to Rectangular ToRect1D

Signal Processing
Frequency Domain

FFT FFT
Inverse FFT InvFFT
Real Valued FFT ReFFT
Real Valued Inverse FFT ReInvFFT
Power Spectrum Spectrum
FHT FHT
Inverse FHT InvFHT
Cross Spectrum CrossSpectrum

Time Domain
Convolution Convolve
Correlation Correlate
Integration Integrate
Differentiate Difference
Pulse Parameters PulseParam
Decimate Decimate
Deconvolve Deconvolve
Unwrap Phase UnWrap1D

(continues)

Advanced Analysis Library Overview Chapter 1

LabWindows/CVI Advanced Analysis Library 1-4 © National Instruments Corporation

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

IIR Digital Filters
Cascade Filter Functions

Bessel Cascade Coeff Bessel_CascadeCoef
Butterworth Cascade Coeff Bw_CascadeCoef
Chebyshev Cascade Coeff Ch_CascadeCoef
Inv Chebyshev Cascade Coeff InvCh_CascadeCoef
Elliptic Cascade Coeffs Elp_CascadeCoef
IIR Cascade Filtering IIRCascadeFiltering
Filter Information Utilities

Allocate Filter Information AllocIIRFilterPtr
Reset Filter Information ResetIIRFilter
Free Filter Information FreeIIRFilterPtr
Cascade to Direct CoefficientsCascadeToDirectCoef

One-step Filter Functions
Lowpass Butterworth Bw_LPF
Highpass Butterworth Bw_HPF
Bandpass Butterworth Bw_BPF
Bandstop Butterworth Bw_BSF
Lowpass Chebyshev Ch_LPF
Highpass Chebyshev Ch_HPF
Bandpass Chebyshev Ch_BPF
Bandstop Chebyshev Ch_BSF
Lowpass Inverse Chebyshev InvCh_LPF
Highpass Inverse Chebyshev InvCh_HPF
Bandpass Inverse Chebyshev InvCh_BPF
Bandstop Inverse Chebyshev InvCh_BSF
Lowpass Elliptic Elp_LPF
Highpass Elliptic Elp_HPF
Bandpass Elliptic Elp_BPF
Bandstop Elliptic Elp_BSF

Old-Style Filter Functions
Bessell Coefficients Bessell_Coef
Butterworth Coefficients Bw_Coef
Chebyshev Coefficients Ch_Coef
Inverse Chebyshev Coefficients InvCh_Coef
Elliptic Coefficients Elp_Coef
IIR Filtering IIRFiltering

FIR Digital Filters
Lowpass Window Filters Wind_LPF
Highpass Window Filters Wind_HPF
Bandpass Window Filters Wind_BPF

(continues)

Chapter 1 Advanced Analysis Library Overview

© National Instruments Corporation 1-5 LabWindows/CVI Advanced Analysis Library

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Bandstop Window Filters Wind_BSF
Lowpass Kaiser Window Ksr_LPF
Highpass Kaiser Window Ksr_HPF
Bandpass Kaiser Window Ksr_BPF
Bandstop Kaiser Window Ksr_BSF
General Equi-Ripple FIR Equi_Ripple
Lowpass Equi-Ripple FIR EquiRpl_LPF
Highpass Equi-Ripple FIR EquiRpl_HPF
Bandpass Equi-Ripple FIR EquiRpl_BPF
Bandstop Equi-Ripple FIR EquiRpl_BSF
FIR Coefficients FIR_Coef

Windows
Triangular Window TriWin
Hanning Window HanWin
Hamming Window HamWin
Blackman Window BkmanWin
Kaiser Window KsrWin
Blackman-Harris Window BlkHarrisWin
Tapered Cosine Window CosTaperedWin
Exact Blackman Window ExBkmanWin
Exponential Window ExpWin
Flat Top Window FlatTopWin
Force Window ForceWin
General Cosine Window GenCosWin

Measurement
AC/DC Estimator ACDCEstimator
Amplitude/Phase Spectrum AmpPhaseSpectrum
Auto Power Spectrum AutoPowerSpectrum
Cross Power Spectrum CrossPowerSpectrum
Impulse Response ImpulseResponse
Network Functions NetworkFunctions
Power Frequency Estimate PowerFrequencyEstimate
Scaled Window ScaledWindow
Spectrum Unit Conversion SpectrumUnitConversion
Transfer Function TransferFunction

Statistics
Basics

Mean Mean
Standard Deviation StdDev
Variance Variance
Root Mean Squared Value RMS
Moments about the Mean Moment

(continues)

Advanced Analysis Library Overview Chapter 1

LabWindows/CVI Advanced Analysis Library 1-6 © National Instruments Corporation

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Median Median
Mode Mode
Histogram Histogram

Probability Distributions
Normal Distribution N_Dist
T-Distribution T_Dist
F-Distribution F_Dist
Chi-Square Distribution XX_Dist
Inv. Normal Distribution InvN_Dist
Inv. T-Distribution InvT_Dist
Inv. F-Distribution InvF_Dist
Inv. Chi-SquareDist. InvXX_Dist

Analysis of Variance
One-way ANOVA ANOVA1Way
Two-way ANOVA ANOVA2Way
Three-way ANOVA ANOVA3Way

Nonparametric Statistics
Contingency Table Contingency_Table

Curve Fitting
Linear Fit LinFit
Exponential Fit ExpFit
Polynomial Fit PolyFit
General Least Squares Fit GenLSFit
Non-Linear Fit NonLinear Fit
OldStyle Function

Gen Least Squares Fit Coeff GenLSFitCoef
Interpolation

Polynomial Interpolation PolyInterp
Rational Interpolation RatInterp
Spline Interpolation SpInterp
Spline Interpolant Spline

Vector & Matrix Algebra
Dot Product DotProduct
Matrix Multiplication MatrixMul
Matrix Inversion InvMatrix
Transpose Transpose
Determinant Determinant
Trace Trace
Solution of Linear Equations LinEqs
LU Decomposition LU
Forward Substitution ForwSub
Backward Substitution BackSub

Get Error String GetAnalysisErrorString

Chapter 1 Advanced Analysis Library Overview

© National Instruments Corporation 1-7 LabWindows/CVI Advanced Analysis Library

The classes and subclasses in the function tree are described as follows.

• The Signal Generation function panels initialize arrays with predefined patterns.

• The Array Operations function panels perform arithmetic operations on 1D and 2D
arrays.

– 1D Operations, a subclass of Array Operations, contains function panels that perform
1D array arithmetic.

– 2D Operations, a subclass of Array Operations, contains function panels that perform
2D array arithmetic.

• The Complex Operations function panels perform complex arithmetic operations.
These function panels can operate on complex scalars or 1D arrays. The real and
imaginary parts of complex numbers are processed separately.

– Complex Numbers, a subclass of Complex Operations, contains function panels that
perform scalar complex arithmetic.

– 1D Complex Operations, a subclass of Complex Operations, contains function
panels that perform complex arithmetic on 1D complex arrays.

• The Signal Processing function panels perform data analysis in the frequency domain,
time domain, or by using digital filters.

– Frequency Domain, a subclass of Signal Processing, contains function panels that
perform transformations between the time domain and the frequency domain, and
perform analysis in the frequency domain.

– Time Domain, a subclass of Signal Processing, contains function panels that perform
direct time series analysis of signals.

– IIR Digital Filters , a subclass of Signal Processing, contains function panels that
perform infinite impulse response (IIR) digital filtering on signals by mapping analog
specifications into digital specifications. This subclass contains Butterworth,
Chebyshev, inverse Chebyshev, and elliptic filters.

– FIR Digital Filters , a subclass of Signal Processing, contains function panels that
perform the designs of finite impulse response (FIR) filters. These functions do not
actually perform the digital filtering. This subclass contains window and equi-ripple
FIR filters.

– Windows, a subclass of Signal Processing, contains function panels that create
windows that are frequently used to smooth data and reduce truncation effects in data
acquisition applications.

Advanced Analysis Library Overview Chapter 1

LabWindows/CVI Advanced Analysis Library 1-8 © National Instruments Corporation

• The Measurement function panels perform spectrum analysis using real units such as
hertz and seconds.

• The Statistics function panels perform basic statistics functions.

– Basics, a subclass of Statistics, contains function panels that use various common
methods to describe a set of data.

– Probability Distributions , a subclass of Statistics, contains function panels that
operate as cumulative distribution functions from various probability distributions,
and other function panels that operate as corresponding inverse functions.

– Analysis of Variance, a subclass of Statistics, contains function panels that perform
various analysis of variance in various statistical models.

– Nonparametric Statistics, a subclass of Statistics, contains a function panel that
analyzes data without assuming that the data is normally distributed.

• The Curve Fitting function panels perform curve fitting using least squares techniques.
Linear, exponential, polynomial, and nonlinear fits are available.

• The Interpolation function panels take a set of points at which a function is known and
guess the value the function takes at some specific intermediate point.

• The Vector & Matrix Algebra function panels perform vector and matrix operations.
Vectors and matrices are represented by 1D and 2D arrays, respectively.

The online help with each panel contains specific information about operating each function
panel.

Hints For Using Advanced Analysis Function Panels

With the analysis function panels, you can interactively manipulate scalars and arrays of data.
You will often find it helpful to use the Advanced Analysis Library function panels in
conjunction with the User Interface Library functions panels to view the results of analysis
routines. When using the Advanced Analysis Library function panels, keep the following
things in mind:

• The speed with which analysis functions are performed is greatly affected by the
computer on which you are operating LabWindows/CVI. A numeric coprocessor can
greatly decrease the execution time of floating-point computations. If you are using an
Advanced Analysis Library function panel and nothing seems to happen for an inordinate
amount of time, keep the constraints of your hardware in mind.

Chapter 1 Advanced Analysis Library Overview

© National Instruments Corporation 1-9 LabWindows/CVI Advanced Analysis Library

• LabWindows/CVI can perform many analysis routines for arrays in place; that is, input
and output values are stored in the same array. This is important to remember when you
are processing large amounts of data. Large double-precision arrays consume a lot of
memory. If the results you want do not require that you keep the original array or
intermediate arrays of data, perform analysis operations in place where possible.

• The Interactive window maintains a record of generated code. If you forget to keep the
code from a function panel, you can cut and paste code between the Interactive and
Program windows.

Reporting Analysis Errors

Each analysis function returns an integer error code. If the function is properly executed, the
function returns a zero. Otherwise, an appropriate error value is returned.

The return value will correspond to one of the enumeration values of the type
AnalysisLibErrType declared in the header file analysis.h . The analysis functions
are declared in the header file with this return type so that the function panel controls for
return values will display the symbolic name instead of the integer value of the error code.
By declaring a variable with the type AnalysisLibErrType , the Variables window
displays its value as a symbolic name instead of as an integer.

You can find a list of error codes in Appendix A, Error Codes.

About the Fast Fourier Transform (FFT)

The functions in the Frequency Domain subclass are based upon the discrete implementation
and optimization of the Fourier Transform integral. The Discrete Fourier Transform (DFT)
of a complex sequence X containing n elements is obtained using the following formula:

Y Xi k
j ik n

k

n

= −

=

−

∑ * /
e

2

0

1
π , for i = 0, 1,..., n -1

where Yi is the ith element of the DFT of X and j = −1

The DFT of X also results in a complex sequence Y of n elements. Similarly, the Inverse
Discrete Fourier Transform (IDFT) of a complex sequence Y containing n elements is
obtained using the following formula.

X = (1 / n) Y * e , i k
k 0

n 1
j2pik /n

=

−

∑ for i = 0, 1, ..., n -1

where Xi is the ith element of the IDFT of Y and j = −1

Advanced Analysis Library Overview Chapter 1

LabWindows/CVI Advanced Analysis Library 1-10 © National Instruments Corporation

The discrete implementation of the DFT is a numerically intense process. However, it is
possible to implement a fast algorithm when the size of the sequence is a power of two.
These algorithms are known as FFTs, and can be found in many introductory texts to digital
signal processing (DSP).

The current algorithm implemented in the LabWindows/CVI Advanced Analysis Library is
known as the Split-Radix algorithm. This algorithm is highly efficient because it minimizes
the number of multiplications, has the form of the Radix-4 algorithm, and the efficiency of
the Radix-8 algorithm. The resulting complex FFT sequence has the conventional DSP
format as described here.

If there are n number of elements in the complex sequence and k = n/2, then the output of the
FFT is organized as follows:

Y0 DC component
Y1 Positive first harmonic
Y2 Positive second harmonic
. .
. .
. .

Yk-1 Positive k-1 harmonic
Yk Nyquist frequency
Yk+1 Negative k-1 harmonic

. .

. .

. .
Yn-2 Negative second harmonic
Yn-1 Negative first harmonic

The following conventions and restrictions apply to the functions in the Frequency Domain
section:

• All arrays must be a power of two: n = 2m, m = 1, 2, 3, …,12.

• Complex sequences are manipulated using two arrays. One array represents the real
elements. The other array represents the imaginary elements.

The following notation is used to describe the FFT operations performed in the Frequency
Domain class:

• Y = FFT {X}, the sequence Y is the FFT of the sequence X.

• Y = FFT-1 {X}, the sequence Y is the inverse FFT of the sequence X.

X is usually a complex array but can be treated as a real array.

Chapter 1 Advanced Analysis Library Overview

© National Instruments Corporation 1-11 LabWindows/CVI Advanced Analysis Library

About Windowing

Almost every application requires you to use finite length signals. This requires that
continuous signals be truncated, using a process called windowing.

The simplest window is a rectangular window. Because this window requires no special
effort it is commonly referred to as the no window option. Remember, however, that a
discrete signal and its spectrum is always affected by a window. Let xn be a digitized time-
domain waveform that has a finite length of n. wn is a window sequence of n points. The
windowed output is calculated as follows:

y x wi i i= * (1-1)

If X, Y, and W are the spectra of x, y, and w, respectively, the time-domain multiplication in
equation (1-1) is equivalent to the convolution shown as follows:

Yk = Xk Θ Wk (1-2)

Convolving with the window spectrum always distorts the original signal spectrum in some
way. A window spectrum consists of a big main lobe and several side lobes.

The main lobe is the primary cause of lost frequency resolution. When two signal spectrum
lines are too close to each other, they may fall in the width of the main lobe, causing the
output of the windowed signal spectrum to have only one spectrum line. Use a window with
a narrower main lobe to reduce the loss of frequency resolution. It has been shown that a
rectangular window has the narrowest main lobe, so that it provides the best frequency
resolution.

The side lobes of a window function affect frequency leakage. A signal spectrum line will
leak into the adjacent spectrum if the side lobes are large. Once again, the leakage results
from the convolution process. Select a window with relatively smaller side lobes to reduce
spectral leakage. Unfortunately, a narrower main lobe and smaller side lobes are mutually
exclusive. For this reason, selecting a window function is application dependent. An
example of a windowed spectrum in the continuous case is shown in Figure 1-1.

Advanced Analysis Library Overview Chapter 1

LabWindows/CVI Advanced Analysis Library 1-12 © National Instruments Corporation

Figure 1-1. A Windowed Spectrum in the Continuous Case

The original signal spectrum is convolved with the window spectrum and the output is a
smeared version of the original signal spectrum. In this example, you can still see four
distinctive peaks from the original signal, but each peak is smeared and the frequency leakage
effect is clear.

Window definitions used in National Instruments analysis libraries are designed in such a
way that the window operations in the time domain are exactly equivalent to the operations
of the same window in the frequency domain. To meet this requirement, the windows are not
symmetrical in the time domain, that is:

w0 ≠ wN-1 (1-3)

where N is the window length. They are usually symmetrical in the frequency domain,
however. For example, the Hamming window definition uses the formula:

wi = 0.54 - 0.46 cos(2πi/N) (1-4)

Other manufacturers may use a slightly different definition, such as:

wi = 0.54 - 0.46 cos(2πi/(N-1)) (1-5)

The difference is small if N is large.

Equation (1-4) is not symmetrical in the time domain, but it ensures that the time domain
windowing is equivalent to the frequency domain windowing. If you want to have a
perfectly symmetrical sequence in the time domain, you must write your own windowing
function using formula (1-5).

Chapter 1 Advanced Analysis Library Overview

© National Instruments Corporation 1-13 LabWindows/CVI Advanced Analysis Library

The choice of a window depends on the application. For most applications, the Hamming or
Hanning windows deliver good performance.

About Digital Filters

There are two types of digital filters in the LabWindows/CVI Advanced Analysis Library:
Finite Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters. FIR filters
have a linear phase response. IIR filters generally have a nonlinear phase response, but offer
much better amplitude response.

The choice of a particular type of filter depends upon the application. If you desire a linear
phase response, choose one of the FIR filters. If performance and better amplitude response
is more important, chose an IIR filter. No matter what type of filter you choose, enter a
sampling frequency and other cutoff frequencies when designing your filter. You can design
a digital filter using a normalized sampling frequency. The LabWindows/CVI Advanced
Analysis Library provides a sampling frequency parameter so that you don't need to
normalize other frequencies.

FIR Filters

The FIR filter is a set of filter coefficients that alters the signal spectrum when convolving
with the signal. Let cK be the filter coefficients, xN be the input signal, and yN be the output in
the following formula:

y x * c ,i i-k
k 0

K 1

k=
=

−

∑ i = 0, 1, . . ., N -1

LabWindows/CVI implements the formula using the convolution function Convolve . The
purpose of an FIR filter is to design the coefficients cK. Remember that no filtering is
actually performed in an FIR filter function. You must subsequently call Convolve to
perform the filtering. The advantage of doing this is that once you have obtained the filter
coefficients, you can use them repeatedly without redesigning the filter.

If you have never used an FIR filter before, start with a window FIR filter. These filters are
easy to design, though other techniques may design a better filter with the same number of
coefficients.

Choose the window to be used in a window FIR filter with the parameter WindType.
WindType determines the amount of attenuation the window filter can achieve. It also
determines the transitional bandwidth of the window filter. The transitional bandwidth is
defined as the frequency range from the specified cutoff frequency to the point where the
desired attenuation is obtained. A bigger transitional bandwidth usually gives better

Advanced Analysis Library Overview Chapter 1

LabWindows/CVI Advanced Analysis Library 1-14 © National Instruments Corporation

attenuation. Use a Kaiser window FIR filter for choosing windows that are not available
from WindType.

If you are experienced in using filters and you want to design an optimal FIR filter, use the
LabWindows/CVI Advanced Analysis Library Equi_Ripple function. These filters are
based on the general Parks-McClellan algorithm, that in turn is based on an alternation
theorem in the polynomial approximation. As the name suggests, the frequency response of
an Equi_Ripple filter has equal ripples within each specified frequency band. The ripples
can be different in different bands depending on the weighting factors.

You have to specify more parameters when using Equi_Ripple filters. For each
frequency band, specify the starting and ending points, the amplitude response and a
weighting factor associated with the amplitude response of that band. A weighting factor of
1 is usually sufficient for all bands, but you can select different weighting factors. A bigger
weighting factor results in a smaller ripple in the corresponding frequency band; a smaller
weighting factor results in a larger ripple.

If you want to design an optimal FIR multiband filter, (lowpass, highpass, bandpass and
bandstop), but do not want to specify the weighting factor, use EquiRpl_LPF ,
EquiRpl_HPF , EquiRpl_BPF , and EquiRpl_BSF . These filters call Equi_Ripple
internally but have simplified input parameters.

Caution: The Equi_Ripple filter design does not always converge. In some cases, it
will fail and give erroneous results. It is extremely important that you verify the
filter design after obtaining the filter coefficients.

IIR Filters

Mathematically, an IIR digital filter assumes the following form:

y
a

b x a yi j
j

N

i j k i-k
k 1

Nb a

= −










=

−

−
=

−

∑ ∑1

0 0

1 1

(1-6)

where ak and bk are the filter coefficients. The current filter output yi depends upon the
current and previous values xi-k and previous output yi-k. If yi ≠ 0, its effect on the subsequent
points persists indefinitely. This is why these filters are called infinite impulse response
filters.

Filters implemented using the structure defined by equation (1-6) directly are known as direct
form IIR filters. Direct form implementations are often sensitive to errors introduced by
coefficient quantization and by computational, precision limits. Additionally, a filter
designed to be stable can become unstable with increasing coefficient length, which is
proportional to filter order.

Chapter 1 Advanced Analysis Library Overview

© National Instruments Corporation 1-15 LabWindows/CVI Advanced Analysis Library

A less sensitive structure can be obtained by breaking up the direct form transfer function
into lower order sections, or filter stages. The direct form transfer function of the filter given
by equation (1-6) (with a0 = 1) can be written as a ratio of z transforms, as follows:

()H z
b b z b z

a z a z

N
N

N
N

b

b

a

a
=

+ + +

+ + +

−
−

− −

−
−

− −
0 1

1
1

1

1
1

1
11

�

�

()

() (1-7)

By factoring equation (1-7) into second-order sections, the transfer function of the filter
becomes a product of second-order filter functions

()H z
b b z b z

a z a z
k k k

k kk

Ns

=
+ +

+ +

− −

− −
=

∏ 0 1
1

2
2

1
1

2
2

1 1

where Ns = Na /2 is the largest integer ≤ Na /2, and Na ≥ Nb. This new filter structure can be
described as a cascade of second-order filters.

Figure 1-2. Cascaded Filter Stages

Each individual stage is implemented using the direct form II filter structure because it
requires a minimum number of arithmetic operations and a minimum number of delay
elements (internal filter states). Each stage has one input, one output, and two past internal
states (sk[i –1] and sk[i –2]).

If n is the number of samples in the input sequence, the filtering operation proceeds as in the
following equations:

y0[i] = x[i],

sk[i] = yk–1[i –1] – a1ksk[i –1] – a2ksk[i –2], k = 1,2,...,Ns

yk[i] = b0ksk[i] + b1ksk[i -1] + b2ksk[i – 2], k = 1,2,..., Ns

y[i] = y Ns[i]

for each sample i = 0, 1, 2,...,n-1.

For filters with a single cutoff frequency (lowpass and highpass), second-order filter stages
can be designed directly. The overall IIR lowpass or highpass filter contains cascaded
second-order filters.

Advanced Analysis Library Overview Chapter 1

LabWindows/CVI Advanced Analysis Library 1-16 © National Instruments Corporation

For filters with two cutoff frequencies (bandpass and bandstop), fourth-order filter stages are
a more natural form. The overall IIR bandpass or bandstop filter is cascaded fourth-order
filters. The filtering operation for fourth-order stages proceeds as in the following equations:

y0[i] = x[i],

sk[i] = yk–1[i –1] – a1k s k[i –1] – a2ksk[i –2] – a3ksk[i –3] – a4ksk[i – 4]

k = 1, 2,..., Ns

yk[i] = b0ksk[i] + b1ksk[i –1] + b2ksk[i – 2] + b3ksk[i – 3] + b4ksk[i – 4],

k = 1, 2,..., Ns

y[i] = y Ns[i].

Notice that in the case of fourth-order filter stages, Ns = (Na+1)/4.

The IIR filters provided in the LabWindows/CVI Advanced Analysis Library are derived
from analog filters. There are four major types of IIR filters:

• Butterworth filters

• Chebyshev filters

• Inverse Chebyshev filters

• Elliptic filters

Lowpass, highpass, bandpass and bandstop filters are designed for each type of filter. The
frequency response of a Butterworth filter is characterized by a smooth response at all
frequencies and a monotonic decrease from the specified cut-off frequencies. Butterworth
filters are maximally flat in the passband and zero in the stopband. The rolloff between the
passband and stopband is slow, so that a lower order Butterworth filter does not provide a
good approximation of an ideal filter.

Chebyshev filters have equal ripples in the passband and a monotonically decreasing
magnitude response in the stopband. These filters have much sharper rolloffs than
Butterworth filters. The inverse Chebyshev filters are similar to Chebyshev filters, except
that the ripple occurs in the stopband and the frequency response is flat in the passband.
If ripples are allowable in both the passband and the stopband, use elliptic filters. Elliptic
filters have the sharpest rolloffs for the same order compared with Butterworth or Chebyshev
filters.

Chapter 1 Advanced Analysis Library Overview

© National Instruments Corporation 1-17 LabWindows/CVI Advanced Analysis Library

About Measurement Functions

Measurement functions perform DFT-based and FFT-based analysis with signal acquisition
for frequency measurement applications as seen in typical frequency measurement
instruments such as dynamic signal analyzers.

Several measurement functions perform commonly-used time domain to frequency domain
transformations such as amplitude and phase spectrum, signal power spectrum, network
transfer function, and so on. Other supportive measurement functions perform scaled time-
domain windowing and power and frequency estimation, among other functions.

You can use the measurement functions for the following applications.

• Spectrum analysis applications

– Amplitude and phase spectrum

– Power spectrum

– Scaled time domain window

– Power and frequency estimate

• Network (frequency response) and dual channel analysis applications

– Transfer function

– Impulse response function

– Network functions (including coherence)

– Cross power spectrum

The DFT, FFT, and power spectrum are useful for measuring the frequency content of
stationary or transient signals. The FFT provides the average frequency content of the signal
over the entire time that the signal was acquired. For this reason, you use the FFT mostly for
stationary signal analysis (when the signal is not significantly changing in frequency content
over the time that the signal is acquired), or when you want only the average energy at each
frequency line. A large class of measurement problems falls in this category. For measuring
frequency information that changes during the acquisition, you should use joint time-
frequency analysis.

The measurement functions are built on top of the signal processing functions and have the
following characteristics that model the behavior of traditional benchtop frequency analysis
instruments.

• Assumed Real-world time-domain signal input.

• Outputs in magnitude and phase, scaled in units where appropriate, ready for immediate
graphing.

Advanced Analysis Library Overview Chapter 1

LabWindows/CVI Advanced Analysis Library 1-18 © National Instruments Corporation

• Single-sided spectrums from DC to
Sampling Frequency

2 .

• Sampling period to frequency interval conversion for graphing with appropriate X-axis
units (in Hertz).

• Corrections for the windows being used applied where appropriate.

• Scaled Windows; Each window gives same peak spectrum amplitude result within its
amplitude accuracy constraints.

• Viewing of power or amplitude spectrum in various unit formats including decibels and
spectral density units (/ , /)V Hz V Hz 2 and so on.

About Curve Fitting

The algorithm used to find the best curve fit in the Curve Fitting class is the Least Squares
method. The purpose of the algorithm is to find the curve coefficients a, which minimize the
squared error e(a) in the following formula:

e(a) |Y f(X ,a)|i
i

i
2= −∑

where f(Xi, a) is the function representing the desired curve.

You can find the coefficient a by solving the linear system of equations generated by the
following formula:

∂
∂a

e(a)= 0

Given a set of n sample points (x, y) represented by the sequences X and Y, the curve-fitting
functions determine the coefficients that best represent the data. The best fit Z is an array of
expected values given the coefficients and the X set of values. Thus you can express Z as a
function of X and the following coefficients:

Z = f (X, a)

When you have established the best fit values, you can obtain the mean squared error (mse)
by applying the following formula.

mse (Z - Y) / ni i
2

i 0

n 1

=
=

−

∑

© National Instruments Corporation 2-1 LabWindows/CVI Advanced Analysis Library

Chapter 2
Advanced Analysis Library Function
Reference

This chapter contains a brief explanation of each of the functions in the LabWindows/CVI
Advanced Analysis Library. The LabWindows/CVI Advanced Analysis Library functions are
arranged alphabetically.

Abs1D

int status = Abs1D (double x[] , int n, double y[]);

Purpose

Finds the absolute value of the x input array. The operation can be performed in place; that is, x
and y can be the same array.

Parameters

Input x double-precision array input array

n integer number of elements

Output y double-precision array absolute value of input array

Return Value

status integer refer to error codes in
Appendix A

ACDCEstimator

int status = ACDCEstimator (double x[] , int n, double *acEstimate,
double *dcEstimate);

Purpose

Computes an estimation of the AC and DC contents of the input signal. x is the input signal,
usually in volts.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-2 © National Instruments Corporation

acEstimate (Vrms) is the estimate of the input signal AC content in volts rms, if the input
signal is in volts.

dcEstimate (V) is the estimate of the input signal DC content in volts, if the input signal is in
volts.

Parameters

Input x double-precision array contains the time-domain signal,
usually in volts. At least three cycles
of the signal must be contained in this
array for a valid estimate.

n integer number of elements in the input array.

Output acEstimate double-precision contains the estimate of the AC level of
the input signal in volts rms if the input
signal is volts.

dcEstimate double-precision contains the estimate of the DC level of
the input signal in the same units as
the input signal.

Return Value

status integer refer to error codes in Appendix A

Add1D

int status = Add1D (double x[] , double y[] , int n, double z[]);

Purpose

Adds one-dimensional (1D) arrays. The ith element of the output array is obtained using the
following formula.

zi =xi+yi

The operation can be performed in place; that is, z can be the same array as either x or y.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-3 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input array

y double-precision array input array

n integer number of elements to be added

Output z double-precision array result array

Return Value

status integer refer to error codes in
Appendix A

Add2D

int status = Add2D (void *x, void *y, int n, int m, void *z);

Purpose

Adds two-dimensional (2D) arrays. The (ith, jth) element of the output array is obtained using the
following formula.

z x yi j i j i j, , ,= +

The operation can be performed in place; that is, z can be the same array as either x or y.
Parameters

Input x double-precision 2D array input array

y double-precision 2D array input array

n integer number of elements in first
dimension

m integer number of elements in second
dimension

Output z double-precision 2D array result array

Return Value

status integer refer to error codes in Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-4 © National Instruments Corporation

AllocIIRFilterPtr

IIRFilterPtr filterInformation = AllocIIRFilterPtr (int type, int order);

Purpose

Allocates and initializes the filterInformation structure, returning a pointer to the filter
structure for use with the IIR cascade filter coefficient design calls.

You input the type of the filter (lowpass, highpass, bandpass, or bandstop) and the order. This
function will allocate the filter structure as well as the internal coefficient arrays and internal
filter state array.

Parameters

Input type integer Controls the filter type of IIR filter coefficients.
LOWPASS = 0 (default)
HIGHPASS = 1
BANDPASS = 2
BANDSTOP = 3

order integer Specifies the order of the IIR filter.

Default Value: 3

Return Value

filterInformation IIRFilterPtr Pointer to the filter structure. When an error
occurs, filterInformation is zero.

Parameter Discussion

filterInformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. Call this function to allocate filterInformation before
calling one of the cascade IIR filter design functions.

The definition of the filter structure is as follows:

typedef struct {
 intnum type; /* type of filter (lp,hp,bp,bs) */
 intnum order; /* order of filter */
 intnum reset; /* 0 - don't reset, 1 - reset */
 intnum na; /* number of a coefficients */
 floatnum *a; /* pointer to a coefficients */
 intnum nb; /* number of b coefficients */
 floatnum *b; /* pointer to b coefficients */
 intnum ns; /* number of internal states */
 floatnum *s; /* pointer to internal state array */
 } *IIRFilterPtr;

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-5 LabWindows/CVI Advanced Analysis Library

AmpPhaseSpectrum

int status = AmpPhaseSpectrum (double x[] , int n, int unwrap, double dt,
double ampSpectrum[] , double
phaseSpectrum[] , double *df);

Purpose

Computes the single-sided, scaled amplitude and phase spectra of a time-domain signal, X. The
amplitude spectrum is computed as

FFT X n() /

and is converted to single-sided form. The phase spectrum is computed as

phase[FFT(X)]

and is also converted to single-sided form.

Parameters

Input x double-precision array Contains the time-domain signal.

n integer The number of elements in the input
array. Valid Values: Powers of 2.

unwrap integer Controls the unwrapping of the phase
spectrum.
Valid values for unwrap:

1: enable phase unwrapping
0: disable phase unwrapping

(-π ≤phase ≤ + π).

dt double-precision The sample period of the time-domain
signal, usually in seconds.
dt = 1/fs, where fs is the sampling
frequency of the time-domain signal.

(continues)

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-6 © National Instruments Corporation

Parameters (Continued)

Output ampSpectrum double-precision array ampSpectrum is the single-sided
amplitude spectrum magnitude in volts
RMS if the input signal is in volts. If
the input signal is not in volts, the
results are in input signal units RMS.
This array must be at least n/2 elements
long.

phaseSpectrum double-precision array PhaseSpectrum is the single-sided
phase spectrum in radians. This array
must be at least n/2 elements long.

df double-precision Points to the frequency interval, in
hertz, if dt is in seconds.
*df = 1/(n*dt)

Return Value

status integer refer to error codes in Appendix A

ANOVA1Way

int status = ANOVA1Way (double y[] , int level[] , int n, int k, double *ssa,
double *msa, double *f, double *sig, double *sse,
double *mse, double *tss);

Purpose

Takes an array of experimental observations made at various levels of some factor (with at least
one observation per factor) and performs a one-way analysis of variance in the fixed effect
model.

The one-way analysis of variance is a test to determine whether the level of the factor has an
effect on the experimental outcome.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-7 LabWindows/CVI Advanced Analysis Library

Parameters

Input y double-precision array experimental observations

level integer array the ith element tells in what level of
the factor the ith observation falls

n integer the total number of observations

k integer the total number of levels of the
factor

Output ssa double-precision sum of squares due to the factor

msa double-precision mean square due to the factor

f double-precision calculated F-value

sig double-precision the level of significance at which
the null hypothesis must be
rejected

sse double-precision sum of squares due to random
fluctuation

mse double-precision mean square due to random
fluctuation

tss double-precision total sum of squares

Return Value

status integer refer to error codes in Appendix A

Using This Function

Factors and Levels

A factor is a way of categorizing data. Data is categorized into levels, beginning with level 0.
For example, if you are performing some measurement on individuals, such as counting the
number of sit-ups they can perform, one such categorization method is age. For age, one might
have three levels, as given below.

Level Ages

0: 6 years to 10 years
1: 11 years to 15 years
2: 16 years to 20 years

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-8 © National Instruments Corporation

The Statistical Model

Each experimental outcome is expressed as the sum of three parts while performing the analysis
of variance. Let yi,m be the mth observation from the ith level. Each observation is written:

yi m i i m, ,= + +µ α ε

where
µ is a standard effect
α

i is the effect of the ith level of the factor

εi,m is a random fluctuation

Assumptions

Assume that the populations of measurements at each level are normally distributed with mean
αi and variance σA2. Assume that the means αi sum to zero. Finally, assume that for each i and

m, εi,m is normally distributed with mean 0 and variance σA2.

The Hypothesis

Test the (null) hypothesis that αi = 0 for i = 0, 1, ..., k-1 (where k is the total number of levels).
In other words, assume from the start that the levels have no effect on the experimental outcome,
then look for evidence to the contrary.

The General Method

Break up the total sum of squares tss, a measure of the total variation of the data from the overall
population mean, into component sums of squares, which may be attributed to different sources.

You now have

tss = ssa + sse

where ssa is a measure of variation that is attributed to the factor, and where sse is a measure of
variation that is attributed to random fluctuation. Divide by appropriate numbers to obtain the
averages msa and mse. If there is much variation caused by the factor, msa will be larger
relative to mse. The ratio f will also be larger relative to mse.

If the null hypothesis is true, the ratio f is taken from an F distribution with k-1 and n-k degrees
of freedom, from which you can calculate probabilities. Given a particular f, sig is the
probability that in sampling from this distribution you get a value larger than f.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-9 LabWindows/CVI Advanced Analysis Library

Testing the Hypothesis

This function generates a number f so that, if the hypothesis is true, that number is from an F-
distribution with k-1 and n-k degrees of freedom. The function also calculates the probability
that a number taken from this F-distribution is larger than f. This is the output parameter, sig:

sig = Prob(x>f)

where x is from F(k-1, n-k).

Use the probability sig to determine when to reject the hypothesis. To do so, choose a level of
significance for the hypothesis. The level of significance is how likely you want it to be that you
reject the hypothesis when it is true, and so the level of significance should be small (0.05 is a
common choice). Keep in mind that the smaller the level of significance, the more hesitant you
are to reject the hypothesis.

The hypothesis is rejected when the output parameter sig is less than the chosen level of
significance.

Formulas

Let yi,m be the mth observation made at the ith level for m = 0,1, ...,ni and i = 0,1, ...k.

Let ni = the number of observations at the ith level.

Yi = 1
ni

yi ,m
m=0

ni −1

∑

Y
k

ym i m
i 0

k 1

=
=

−

∑1
,

Y
1

n
 yi,m
m 0

n 1

i 0

k 1 i

=
=

−

=

−

∑∑

T = n * Y

Then

ssa
Y

n

Y

n
i

ii

k

=






 −

=
∑

2

0

2

mse= ssa /(k−1)

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-10 © National Instruments Corporation

sse y
Y

n
i m

m

n

i

k
i

ii

ki

= −








=

−

=

−

=
∑∑ ∑ 2

0

1

0

1 2

0

,

mse= sse /(n− k)

tss y
Y

ni m
m

n

i

k i

= −
=

−

=

−

∑∑ ,
2

2

0

1

0

1

f = msa/mse where f is from an F-distribution with (k-1) and (n-k) degrees of
freedom.

Example

Suppose that researchers want to know whether the amount of rainfall affects the yield of a crop.
The factor (rainfall) is divided into three levels (k=3) as given below.

Level Rainfall (factor)

0 2 inches
1 3 inches
2 4 inches

The researchers set up 10 plots in various geographical locations chosen so that each plot
receives a different amount of rainfall. They record the following information.

Level Bushels produced from each plot

0 128 122 126 124
1 140 141 143
2 120 118 123

To perform a one-way analysis using the ANOVA1Way function, all the numbers of bushels are
stored in a double-precision array y of size 10. The integer array level records the levels in which
observations were made. For any particular i, these arrays are set such that yi is the number of
bushels produced by a plot in leveli. For example,

level i= 0

yi = 128, 122, 126, or 124

are valid combinations. Therefore, the input arrays y and level in this example could be set up for
the ANOVA1Way function as follows.

y = 128, 122, 126, 124, 140, 141, 143, 120, 118, 123
level = 0, 0, 0, 0, 1, 1, 1, 2, 2, 2

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-11 LabWindows/CVI Advanced Analysis Library

Running the code given in the examples below produces the following result.

sig = 0.0000239

For a level of significance such as 0.05, the ANOVA1Way results show that the researchers must
reject the hypothesis that the rainfall has no effect on the yield of the crop. In other words, the
rainfall does affect the crop yield.

Example
double y[10], ssa, msa, f, sig, sse, mse, tss;
int level[10];
int k;
int status;

k = 3; /* three levels for rainfall */

/* Read in recorded data y(10), level[10] */

status = ANOVA1Way(y, level, 10, k, &ssa, &msa, &f, &sig, &sse, &mse, &tss);

ANOVA2Way

int status = ANOVA2Way (double y[] , int levelA[] , int levelB[] , int N, int L ,
int a, int b, void * info, double *sigA, double *sigB,
double *sigAB);

Purpose

Takes an array of experimental observations made at various levels of two factors and performs a
two-way analysis of variance in any of the following models.

• Fixed effects with no interaction and one observation per cell (L=1 per specified levels a and
b of the factors A and B respectively)

• Fixed effects with interaction and L>1 observations per cell
• Either of the mixed-effects models (where one factor is taken to have a fixed effect but the

other is taken to have a random effect) with interaction and L>1 observations per cell
• Random effects with interaction and L>1 observations per cell

Any ANOVA looks for evidence that the factors (or interactions among the factors) have a
significant effect on experimental outcomes. What varies among models is the method for
finding significance.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-12 © National Instruments Corporation

Parameters

Input y double-precision array array of experimental data of N = | |a *| |b
*L elements

levelA integer array the ith element tells in what level of
factor A the ith observation falls

levelB integer array the ith element tells in what level of
factor B the ith observation falls

N integer the total number of observations

L integer the number of observations per cell

a integer the number of levels in factor A. This
parameter is negative if A is a random
effect

b integer the number of levels in factor B. This
parameter is negative if B is a random
effect

Output info double-precision 2D array a 4 by 4 matrix as follows:
ssa dofa msa fa
ssb dofb msb fb
ssab dofab msab fab
sse dofe mse 0.0

where ss designates sums of squares,
dof designates degrees of freedom of
ss, ms designates mean squares,
and f designates F-distributions
(depending on the statistical model)

sigA double-precision level of significance at which
hypothesis (A) must be rejected

sigB double-precision level of significance at which
hypothesis (B) must be rejected

sigAB double-precision level of significance at which
hypothesis (AB) must be rejected

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-13 LabWindows/CVI Advanced Analysis Library

Using This Function

Factors, Levels and Cells

A factor is a way of categorizing data. Data is categorized into levels, beginning with level 0.
For example, if you are performing some measurement on individuals, such as counting the
number of sit-ups they can perform, one such categorization method is age. For factor age, one
might have three levels, given below.

0: 6 years to 10 years
1: 11 years to 15 years
2: 16 years to 20 years

Another possible factor is eye color, with the following levels.

0: blue
1: brown
2: green
3: hazel

In this example, an analysis of variance seeks evidence that the ages and eye color of the
subjects have an effect on the number of sit-ups performed.

A cell of data consists of all those experimental observations that fall in particular levels of the
two factors. In this instance, a cell might consist of those observations made on hazel-eyed
individuals between 11 and 15 years old. The number of observations that fall in each cell must
be some constant number L that does not vary between cells.

Random and Fixed Effects

A factor is taken as a random effect when the factor has a large population of levels about which
you want to draw conclusions, but that cannot be sampled at all levels. Levels are sampled at
random in the hope of generalizing about all levels.

A factor is taken as a fixed effect when the factor can be sampled from all levels about which you
want to draw conclusions.

The input parameters a and b represent the number of levels in factors A and B, respectively. If
factor A is to be random, set a to a negative value. If factor B is to be random, set b to a negative
value. Notice that if there is only one observation per cell, both a and b must be positive (that is,
model 1 is used).

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-14 © National Instruments Corporation

The General Method

Each of the models breaks up the total sum of squares (tss, a measure of the total variation of the
data from the overall population mean) into some number of component sums of squares. In
model 1,

tss = ssa + ssb + sse

whereas in models 2 through 4

tss = ssa + ssb + ssab + sse.

Each component of the sums is a measure of variation attributed to a certain factor or interaction
among the factors. The component ssa is a measure of the variation due to factor A, ssb is a
measure of the variation due to factor B, ssab is a measure of the variation due to the interaction
between factors A and B, and sse is a measure of the variation due to random fluctuation. Notice
that with model 1 there is no ssab term. This is what is meant by "no interaction".

If factor A has a strong effect on the experimental observations, msa will be relatively large.
Specific ratios of these averages are considered because you know how they are statistically
distributed. You can therefore determine how likely it is that factor A is as relatively large as it is.

The Statistical Model

Let yp,q,r be the rth observation at the pth and qth levels of A and B, respectively,

where
r = 0, 1, ..., L-1.

Model 1. Express each observation as the sum of four components, so that

yp,q,r = µ + αp + βq + εp,q,r

where µ represents a standard effect present in each observation, αp represents the effect of the

pth level of factor A, βq represents the effect of the qth level of factor B, and εp,q,r is a random
fluctuation.

Models 2, 3, and 4. Express each observation as the sum of five components, so that

yp,q,r = µ + αp + βq + (αβ)p,q + εp,q,r

where µ represents a standard effect present in each observation, αp represents the effect of the

pth level of factor A, βq represents the effect of the qth level of factor B, and εp,q,r is a random

fluctuation. In addition, (αβ)p,q represents the effect of the interaction between the pth level of

factor A and the qth level of factor B.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-15 LabWindows/CVI Advanced Analysis Library

Assumptions

• Assume that for each p, q and r, εp,q,r is normally distributed with mean 0 and variance σe2.

• If a factor such as A is fixed, assume that the populations of measurements at each level are
normally distributed with mean αp and variance σA2. Notice that all the populations at each
of the levels are taken to have the same variance. In addition, it is assumed that all the αp
means sum to zero. An analogous assumption is made for B.

• If a factor such as A is random, assume that the effect of the level of A itself, αp, is a random

variable normally distributed with mean 0 and variance σA2. An analogous assumption is
made for B.

• If all of the factors, such as A and B, associated with the effect of an interaction (αβ)p,q are
fixed, assume that the populations of measurements at each level are normally distributed
with mean (αβ)p,q and variance σAB2. For any fixed p, the (αβ)p,q means sum to zero when
summing over all q. Similarly, for any fixed q the (αβ)p,q means sum to zero when summing
over all p.

• If any of the factors, such as A and B, associated with the effect of an interaction (αβ)p,q are
random, then the effect is taken to be a random variable normally distributed with mean 0
and variance σAB2. If A is fixed but B is random, assume additionally that for any fixed q,
the (αβ)p,q means sum to zero when summing over all p. Similarly, if B is fixed but A is
random, assume additionally that for any fixed p, the (αβ)p,q means sum to zero when
summing over all q.

• All effects taken to random variables are assumed to be independent.

The Hypotheses

Each of the following hypotheses are different ways of saying that a factor or an interaction
among factors has no effect on experimental outcomes. Start by assuming that there are no
effects and then seek evidence to contradict these assumptions. The three hypotheses are as
follows.

• For (A), αp= 0 for all levels of p if factor A is fixed; σA2 = 0 if factor A is random

• For (B), βq = 0 for all levels of q if factor B is fixed; σB2 = 0 if factor B is random

• For (AB), (αβ)p,q = 0 for all levels of p and q if both factors A and B are fixed; σAB2 = 0 if
either factor A or factor B is random. (This does not apply to model 1. In model 1, there is
no interaction and the associated output parameters are superfluous.)

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-16 © National Instruments Corporation

Testing the Hypotheses

For each hypothesis, the function generates a number so that, if the hypothesis is true, that
number will be from a particular F-distribution.

For example, in model 1, fa = msa/mse (associated with hypothesis (A)) is from an F-distribution
with a-1 and (a-1)(b-1) degrees of freedom (F(a-1, (a-1)(b-1))), given that hypothesis (A) is true.
In models 2, 3, and 4, fa=msa/mse (associated with hypothesis (A)) is from an F-distribution
with a-1 and ab(L-1) degrees of freedom (F(a-1, ab(L-1))), given that hypothesis (A) is true. The
function calculates the probability that a number taken from a particular F-distribution is larger
than the F-value. For example,

sigA = Prob(X > fa)

where X is from F(a-1, (a-1)(b-1)).

Use the probabilities sigA, sigB, and sigAB to determine when to reject the associated
hypotheses (A), (B), and (AB). To make this determination, choose a level of significance for
each hypothesis. The level of significance is how likely you want it to be that you reject the
hypothesis when it is in fact true. Ordinarily, you do not want it to be very likely that you reject
the hypothesis when it is true, and so the level of significance should be small (0.05 is a common
choice). Keep in mind that the smaller the level of significance, the more hesitant you are to
reject the hypothesis.

A particular hypothesis is rejected when the associated output parameter sigA, sigB, or sigAB is
less than the level of significance chosen for that hypothesis. If A is a random effect, and the
chosen level of significance is 0.05, and sigA = 0.03, you must reject the hypothesis that
σA2 = 0, and conclude that factor A does have an effect on the experimental observations.

Formulas

Let yp,q,r be the rth observation at the pth and qth levels of A and B, respectively,
where

r = 0, 1, ..., L-1.

Let

aa a=

bb b=

Tp,q = yp,q,r
r =0

L −1

∑

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-17 LabWindows/CVI Advanced Analysis Library

T Tp p q
q

bb

=
=

−

∑ ,
0

1

Tq = Tp,q
p= 0

aa− 1

∑

T = the total sum of all observations

()A T bb Lp
p

aa

=
=

−

∑ 2

0

1

/ *

()B T aa Lq
q

bb

=
=

−

∑ 2

0

1

/ *

S = T
p,q2 /L

q =0

bb−1

∑
p= 0

aa− 1

∑

CF = T2/(aa*bb*L)

Then

ssa = A - CF msa = ssa/(aa-1) = ssa/dofa
ssb = B - CF msb = ssb/(bb-1) = ssb/dofb
ssab = S - A - B - CF msab = ssab/(a-1)(b-1) = ssab/dofab
sse = T - S mse = sse/(aa*bb*(L-1)) = sse/dofe

fa = msa/mse (if B is fixed)
 = msa/msab (if B is random)

fb = msb/mse (if A is fixed)
 = msb/msab (if A is random)

fab = msab/mse

If f = ms1/ms2 and ms1 = ss1/dof1 and ms2 = ss2/dof2, we assume that f is from an F-distribution
with dof1 and dof2 degrees of freedom (F(dof1, dof2)).

Example

Suppose that researchers want to know how the amount of rainfall and the average temperature
affect the yield of a crop. Each factor (rainfall, and temperature) is divided into three levels as
follows.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-18 © National Instruments Corporation

Level Rainfall (Factor A)
0 2 inches
1 3 inches
2 4 inches

Level Temperature (Factor B)
0 76-80 degrees
1 81-85 degrees
2 86-90 degrees

A particular plot planted with the crop may be in any one of the 9 different combinations of these
levels with the two factors. For example, one combination might be two inches of rain and an
average temperature between 76 and 80 degrees, recorded as (0,0). These combinations are
called as cells.

The researchers set up 18 plots in various geographical locations chosen so that two plots will
fall in each of the 9 cells. To measure the productivity of a particular plot, they record the crop
production. Let Rainfall be Factor A and Temperature be Factor B. They record the following
information.

(A, B) Bushels produced from
each plot

(0, 0) 128 122
(0, 1) 113 108
(0, 2) 116 116
(1, 0) 132 129
(1, 1) 119 121
(1, 2) 126 113
(2, 0) 118 114
(2, 1) 141 133
(2, 2) 121 123

To perform a two-way analysis of variance in the fixed effect model using the ANOVA2Way
function, all the numbers of bushels are stored in a double-precision array y of size 18. The
integer arrays levelA and levelB record the cells in which observations were made. For any
particular i, these arrays are set such that yi is the number of bushels produced by a plot in the
(levelAi, levelBi cell. For example,

(levelAi, levelBi) = (0, 1)

yi= 113, or 108

are valid combinations.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-19 LabWindows/CVI Advanced Analysis Library

Therefore, the input arrays y, levelA, and levelB in this example could be set up for the
ANOVA2Way function as follows.

y = 128, 122, 113, 108, 116, 132, 129, 119, 121, 126, 113, 118, 114, 141, 133, 121, 123

levelA = 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2

levelB = 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2

Running the code given in the examples below produces the following results.

sigA = 0.026
sigB = 0.203
sigAB = 0.0018

For a level of significance such as 0.05, the ANOVA2Way results show that the researchers
cannot reject the hypotheses that the combination of rainfall and temperature has any effect on
the yield of the crop. In other words, the combination of rainfall and temperature has a
significant effect on crop yield.

Example
double y[18], sigA, sigB, sigAB, info[4][4];
int levelA[18], levelB[18];
int L, a, b;
int status;

L = 2; /* two observations per cell */
a = 3; /* three levels for factor A, Rainfall */
b = 3; /* three levels for factor B, Temperature */

/* Read in recorded data y[18], levelA[18], levelB[18] */

status = ANOVA2Way(y, levelA, levelB, 18, L, a, b, info, &sigA,
 &sigB, &sigAB);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-20 © National Instruments Corporation

ANOVA3Way

int status =ANOVA3Way (double y[] , int levelA[] , int levelB[] , int levelC[] ,
int N, int L , int a, int b, int c, void * info, double
*sigA, double *sigB, double *sigC, double *sigAB,
double *sigAC, double *sigBC, double *sigABC);

Purpose

Takes an array of experimental observations made at various levels of three factors and performs
a three-way analysis of variance in any of the following models.

• Fixed effects with interaction and L>1 observations per cell
• Any of the six mixed-effects models (where one or two factors are taken to have fixed effects

but the remaining factors are taken to have random effects) with interaction and L>1
observations per cell

• Random effects with interaction and L>1 observations per cell

Any ANOVA looks for evidence that the factors (or interactions among the factors) have a
significant effect on experimental outcomes. What varies among models is the method for
finding significance.

Parameters

Input y double-precision
array

array of experimental data of
N = | |a *| |b *| |c *L elements

levelA integer array the ith element tells in what level of factor A the ith

observation falls

levelB integer array the ith element tells in what level of factor B the ith

observation falls

levelC integer array the ith element tells in what level of factor C the ith

observation falls

N integer the total number of observations

L integer the number of observations per cell

a integer the number of levels in factor A. This parameter is
negative if A is a random effect

b integer the number of levels in factor B. This parameter is
negative if B is a random effect

c integer the number of levels in factor C. This parameter is
negative if C is a random effect

(continues)

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-21 LabWindows/CVI Advanced Analysis Library

Parameters (Continued)

Output info double-precision
2D array

an 8 by 4 matrix as follows:
ssa dofa msa fa
ssb dofb msb fb
ssc dofc msc fc
ssab dofab msab fab
ssac dofac msac fac
ssbc dofbc msbc fbc
ssabc dofabc msabc fabc
sse dofe mse 0.0

where ss designates sums of squares, dof
designates degrees of freedom of ss, ms designates
mean squares, and f designates F-distributions
(depending on the statistical model)

sigA double-precision level of significance at which hypothesis (A) must
be rejected

sigB double-precision level of significance at which hypothesis (B) must
be rejected

sigC double-precision level of significance at which hypothesis (C) must
be rejected

sigAB double-precision level of significance at which hypothesis (AB)
must be rejected

sigAC double-precision level of significance at which hypothesis (AC)
must be rejected

sigBC double-precision level of significance at which hypothesis (BC)
must be rejected

sigABC double-precision level of significance at which hypothesis (ABC)
must be rejected

Return Value

status integer refer to error codes in Appendix A

Using This Function

Factors, Levels, and Cells

A factor is a way of categorizing data. Data is categorized into levels, beginning with level 0.
For example, if you are performing some measurement on individuals, such as counting the
number of sit-ups they can perform, one such categorization method is age. For age, one might
have three levels, as given below.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-22 © National Instruments Corporation

Levels Ages
0 6 years to 10 years
1 11 years to 15 years
2 16 years to 20 years

Another possible factor is eye color, with the following levels.

Levels Eye Colors
0 blue
1 brown
2 green
3 hazel

A third factor might be height with levels in blocks of 10 centimeters. A cell of data consists of
all those experimental observations that fall in particular levels of the three factors. In this
instance, a cell might consist of those observations made on hazel-eyed individuals between 11
and 15 years old who are between 151 and 160 cm tall. The number of observations that fall in
each cell must be some constant number L that does not vary between cells.

Random and Fixed Effects

A factor is taken as a random effect when the factor has a large population of levels about which
you want to draw conclusions, but that cannot be sampled at all levels. Levels are sampled at
random in the hope of generalizing about all levels.

A factor is taken as a fixed effect when the factor can be sampled from all levels about which you
want to draw conclusions.

The input parameters a, b, and c represent the number of levels in factors A, B, and C,
respectively. If factor A is to be random, set a to a negative value. In the same way, set b and c
to negative values if B and C are to be random.

The General Method

Each of the models breaks up the total sum of squares (tss, a measure of the total variation of the
data from the overall population mean) into some number of component sums of squares, so that

tss = ssa + ssb + ssc + ssab + ssac + ssbc + ssabc + sse

Each component in the sum is a measure of variation attributed to a certain factor or interaction
among the factors. In this instance, ssa is a measure of the variation due to factor A, ssb is a
measure of the variation due to factor B, ssc is a measure of the variation due to factor C, ssab is
a measure of the variation due to the interaction between factors A and B, and so on for ssac,
ssbc, and ssabc. The variable sse is a measure of the variation due to random fluctuation.

If factor A has a strong effect on the experimental observations, msa will be relatively large.
You can look at specific ratios of these averages because you know how they are statistically

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-23 LabWindows/CVI Advanced Analysis Library

distributed. You can therefore determine how likely it is that factor A is as relatively large as it
is.

The Statistical Model

Let yp,q,r,s be the sth observation at the pth, qth, and rth levels of A, B, and C, respectively, where
s = 0, 1, ..., L-1. Express each observation as the sum of eight components, so that

yp,q,r,s = µ + αp + βq + γr + (αβ)p,q + (αγ)p,r+ (βγ)q,r + (αβγ)p,q,r + εp,q,r,s

where µ represents a standard effect present in each observation; αp, βq, and γr are the effects of
factors A, B, and C respectively; (αβ)p,q, (αγ)p,r, (βγ)q,r, and (αβγ)p,q,r are the effects of the
corresponding interactions; and εp,q,r,s is a random fluctuation.

Assumptions

• Assume that for each p, q r, and s, εp,q,r,s is normally distributed with mean 0 and variance

σe2.

• If a factor such as A is fixed, assume that the populations of measurements at each level are
normally distributed with mean αp and variance σA2. Notice that all the populations at each
of the levels are taken to have the same variance. In addition, it is assumed that all the αp
means sum to zero. Analogous assumptions are made for B and C.

• If a factor such as A is random, assume that the effect of the level of A itself, αp, is a random

variable normally distributed with mean 0 and variance σA2. Analogous assumptions are
made for B and C.

• If all of the factors, such as A and B, associated with the effect of an interaction (αβ)p,q are
fixed, assume that the populations of measurements at each level are normally distributed
with mean (αβ)p,q and variance σAB2. For any fixed p, the (αβ)p,q means sum to zero when
summing over all q. Similarly, for any fixed q, the (αβ)p,q means sum to zero when
summing over all p.

• If any of the factors, such as A and B, associated with the effect of an interaction (αβ)p,q are
random, the effect is taken to be a random variable normally distributed with mean 0 and
variance σAB2. If A is fixed but B is random, assume additionally that for any fixed q, the
(αβ)p,q means sum to zero when summing over all p. Similarly, if B is fixed but A is
random, assume additionally that for any fixed p, the (αβ)p,q means sum to zero when
summing over all q.

• All effects taken to random variables are assumed to be independent.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-24 © National Instruments Corporation

The Hypotheses

Each of the following hypotheses are different ways of saying that a factor or an interaction
among factors has no effect on experimental outcomes. Start by assuming that there are no
effects and then seek evidence to contradict these assumptions. The seven hypotheses are as
follows.

• For (A), αp = 0 for all levels of p if factor A is fixed; σA2 = 0 if factor A is random

• For (B), βq = 0 for all levels of q if factor B is fixed; σB2 = 0 if factor B is random

• For (C), γr = 0 for all levels of r if factor C is fixed; σC2 = 0 if factor C is random

• For (AB), (αβ)p,q = 0 for all levels of p and q if factors A and B are fixed; σAB2 = 0 if either
factor A or B is random

• For (AC), (αγ)p,r = 0 for all levels of p and r if factors A and C are fixed; σAC2 = 0 if either
factor A or C is random

• For (BC), (βγ)q,r = 0 for all levels of q and r if factors B and C are fixed; σBC2 = 0 if either
factor B or C is random

• For (ABC), (αβγ)p,q,r = 0 for all levels of p, q, and r if factors A, B, and C are fixed;

σABC2 = 0 if any of the factors A, B, or C are random

Testing the Hypotheses

For each hypothesis, the function generates a number so that, if the hypothesis is true, that
number will be from a particular F-distribution.

For example, in the fixed-effects model, the number fa = msa/mse (associated with hypothesis
(A)) is from an F-distribution with a-1 and abc(L-1) degrees of freedom (F(a-1,abc(L-1))), given
that hypothesis (A) is true. The function calculates the probability that a number taken from a
particular F-distribution is larger than the F-value. For example,

sigA = Prob(X > fa)

where X is from F(a-1,abc(L-1)).

Use the probabilities sigA, sigB, sigC, sigAB, sigAC, sigBC, and sigABC to determine when to
reject the associated hypotheses: (A), (B), (C), (AB), (AC), (BC), and (ABC). To do so, choose
a level of significance for each hypothesis. The level of significance is how likely you want it to
be that you reject the hypothesis when it is in fact true. Ordinarily you do not want it to be very

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-25 LabWindows/CVI Advanced Analysis Library

likely that you reject the hypothesis when it is true, and so the level of significance should be
small (0.05 is a common choice). Keep in mind that the smaller the level of significance, the
more hesitant you are to reject the hypothesis.

A particular hypothesis is rejected when the associated output parameter sigA, sigB, sigC,
sigAB, sigAC, sigBC, or sigABC is less than the level of significance chosen for that hypothesis.
If A is a random effect, and the chosen level of significance is 0.05, and sigA = 0.03, you must
reject the hypothesis that σA2 = 0, and conclude that factor A does have an effect on the
experimental observations.

With some models there are no appropriate tests for certain hypotheses. In these cases the output
parameters directly involved with the testing of those hypotheses will be set to -1.0.

Formulas

Let yp,q,r,s be the sth observation at the pth, qth, and rth levels of A, B, and C, respectively,
where s = 0, 1, ..., L-1.

Let

aa = a

bb = b

cc = c

Tp,q,r = yp,q,r,s
s=0

L −1

∑

Tp,q = Tp,q,r
r= 0

cc− 1

∑

Tp,r = Tp,q,r
q=0

bb−1

∑

Tq,r = Tp,q,r
p=0

aa−1

∑

Tp = Tp,q
q= 0

bb−1

∑

Tq = Tp,q
p=0

aa−1

∑

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-26 © National Instruments Corporation

Tr = Tp,r
p=0

aa− 1

∑

T = the total sum of all observations

A = Tp
2

p= 0

aa−1

∑ / bb* cc* L()

B = Tp
2/ aa *cc * L()

q=0

bb−1

∑

C = Tr
2/ aa *bb * L()

r= 0

cc−1

∑

AB=
p= 0

aa−1

∑ Tp,q
2

q= 0

bb− 1

∑ /(cc* L)

AC=
p=0

aa− 1

∑ Tp,r
2

r =0

cc−1

∑ /(bb * L)

BC=
q=0

bb−1

∑ Tq,r
2

r =0

cc−1

∑ /(aa* L)

S =
p=0

aa−1

∑ Tp,q,r
2/L

r=0

cc−1

∑
q=0

bb−1

∑

CF = T2/(aa*bb*cc*L)

Then

ssa = A - CF msa = ssa/(aa-1) = ssa/dofa

ssb = B - CF msb = ssb/(bb-1) = ssb/dofb

ssc = C - CF msc = ssc/(cc-1) = ssc/dofc

ssab = AB - A - B + CF msab = ssab/(aa-1)(bb-1) = ssab/dofab

ssac = AC - A - C + CF msac = ssac/(aa-1)(cc-1) = ssac/dofac

ssbc = BC - B - C + CF msbc = ssbc/(bb-1)(cc-1) = ssbc/dofbc

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-27 LabWindows/CVI Advanced Analysis Library

ssabc = S - AB - AC - BC + A + B + C - CF msabc = ssabc/(aa-1)(bb-1)(cc-1)
= ssabc/dofabc

mse=sse/(aa*bb*cc)(L-1) = sse/dofe

fa = msa/mse (if B and C are fixed)
= msa/msab (if B is random and C is fixed)
= msa/msac (if B is fixed and C is random)

fb = msb/mse (if A and C are fixed)
= msb/msab (if A is random and C is fixed)
= msb/msbc (if A is fixed and C is random)

fc = msc/mse (if A and B are fixed)
= msc/msac (if A is random and B is fixed)
= msc/msbc (if A is fixed and B is random)

fab = msab/mse (if C is fixed)
= msab/msabc (if C is random)

fac = msac/mse (if B is fixed)
= msac/msabc (if B is random)

fbc = msbc/mse (if A is fixed)
= msbc/msabc (if A is random)

fabc = msabc/mse

If f = ms1/ms2 and ms1 = ss1/dof1 and ms2 = ss2/dof2, we assume that f is from an F-distribution
with dof1 and dof2 degrees of freedom (F(dof1, dof2)).

Example

Suppose that researchers want to know how the number of hours of sunlight, the amount of
rainfall, and the average temperature affect the yield of a crop. Each factor (sunlight, rainfall,
and temperature) is divided into three levels as follows.

Level Sunlight (Factor A)
0 5 hours
1 6 hours
2 7 hours

Level Rainfall (Factor B)
0 2 inches
1 3 inches
2 4 inches

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-28 © National Instruments Corporation

Level Temperature (Factor C)
0 76-80 degrees
1 81-85 degrees
2 86-90 degrees

A particular plot planted with the crop may be in any one of the 27 different combinations of
these levels with the three factors. For example, one combination might be six hours of sunlight
with two inches of rainfall and an average temperature between 76 and 80 degrees, recorded as
(1,0,0). These combinations are called cells.

The researchers set up 54 plots in various geographical locations chosen so that two plots will
fall in each of the 27 cells. To measure the productivity of a particular plot, they record the crop
production. Let Sunlight be Factor A, Rainfall be Factor B, and Temperature be Factor C.

They record the following information.

(A, B, C) Bushels produced
from each plot

(A, B, C) Bushels produced
from each plot

(0, 0, 0) 128 122 (1, 1, 1) 128 120
(0, 0, 1) 113 108 (1, 1, 2) 122 121
(0, 0, 2) 116 116 (1, 2, 0) 114 115
(0, 1, 0) 132 129 (1, 2, 1) 116 113
(0, 1, 1) 119 121 (2, 0, 0) 113 125
(0, 1, 2) 126 113 (2, 0, 1) 135 131
(0, 2, 0) 118 114 (2, 0, 2) 145 145
(0, 2, 1) 141 133 (2, 1, 0) 152 147
(0, 2, 2) 121 123 (2, 1, 1) 137 141
(1, 0, 0) 119 118 (2, 1, 2) 171 171
(1, 0, 1) 111 115 (2, 2, 0) 143 144
(1, 0, 2) 143 140 (2, 2, 1) 145 147
(1, 1, 0) 127 129 (2, 2, 2) 121 123
(1, 2, 2) 112 113

To perform a three-way analysis of variance in the fixed effect model using the LabWindows
ANOVA3Way function, all the numbers of bushels are stored in a double-precision array y of size
54. The integer arrays levelA, levelB, and levelC record the cells in which observations were
made. For any particular i, these arrays are set such that y[i] is the number of bushels produced
by a plot in the (levelAi, levelBi, levelCi) cell. For example,

(levelAi, levelBi, levelCi) = (0, 1, 1)

yi = 119 or 121

are valid combinations.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-29 LabWindows/CVI Advanced Analysis Library

Therefore, the input arrays y, levelA, levelB, and levelC in this example could be set up for the
ANOVA3Way function as follows.

y = 128, 122, 113, 108, 116, 116, 132, 129, ...

levelA = 0, 0, 0, 0, 0, 0, 0, 0, ...

levelB = 0, 0, 0, 0, 0, 0, 1, 1, ...

levelC = 0, 0, 1, 1, 2, 2, 0, 0, ...

Running the code given in the examples below produces the following results.

sigA = 1.11e-16

sigB = 1.3e-8

sigC = 0.0072
sigAB = 1.2e-8

sigAC =2.0e-4

sigBC = 4.5e-10

sigABC = 4.8e-10

For a level of significance such as 0.05, the ANOVA3Way results show that the researchers must
reject the hypotheses that sunlight, rainfall and temperature have no effect on the yield of the
crop. In other words, all three factors have a significant effect on crop yield.

Example

double y[54], sigA, sigB, sigC,sigAB, sigAC, sigBC, sigABC, info[8][4];

int levelA[54], levelB[54], levelC[54];
int L, a, b, c;
int status;

L = 2; /* two observations per cell */
a = 3; /* three levels for factor A, Sunlight */
b = 3; /* three levels for factor B, Rainfall */
c = 3; /* three levels for factor C, Temperature */

/* Read in recorded data y[54], levelA[54], levelB[54] and levelC[54] */

status = ANOVA3Way(y, levelA, levelB, levelC, 54, L, a, b, c,
info, &sigA, &sigB, &sigC, &sigAB, &sigAC,
&sigBC, &sigABC);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-30 © National Instruments Corporation

ArbitraryWave

int status = ArbitraryWave (int n, double amp, double f, double *phase,
double waveTable[] , int tableSize, int interp ,
double x[]);

Purpose

Generates an array containing an arbitrary wave, with each cycle described by an interpolated
version of the specified waveTable. The output array x is generated according to the following
formula.

xi = amp * arb(*phase + f * 360.0 * i)

where
arb(p) = WT(p modulo 360.0)
f = frequency, cycles/sample

WT(x) is computed according to the following interpolation values.

WT x
waveTable

waveTable dx waveTable waveTable
ix

ix ix tableSize ix

()
* ((

=
+ −



 +

 for interp = 0

) for interp = 11)%

where
ix = (int)x
dx = x - (int)x

and (int) is the integral part of the variable x. This function can be used to simulate a continuous
acquisition from an arbitrary wave function generator. The unit of the input *phase is in degrees,
and *phase is set to

(*phase + f * 360.0 * n) modulo 360 before returning.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-31 LabWindows/CVI Advanced Analysis Library

Parameters

Input n integer number of samples to generate.

amp double-precision amplitude of the generated signal.

f double-precision frequency of the generated signal, in
normalized units of cycles/sample.

phase double-precision points to the initial phase, in degrees,
of the generated signal.

waveTable double-precision array contains equally-spaced samples of
one cycle of the generated signal.

tableSize integer number of elements contained in the
waveTable array.

interp integer determines the type of interpolation
used in generating the arbitrary wave
signal from the waveTable samples.

0 = No Interpolation

1 = Linear Interpolation

Output phase double-precision upon completion of this function,
phase points to the phase of the
next portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

x double-precision array contains the generated arbitrary wave
signal.

Return Value

status integer refer to error codes in Appendix A

AutoPowerSpectrum

int status = AutoPowerSpectrum (double x[] , int n, double dt,
double autoSpectrum[] , double *df);

Purpose

Computes the single-sided, scaled auto power spectrum of a time-domain signal. The auto power
spectrum is defined as

FFT(X) FFT*(X) / n2

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-32 © National Instruments Corporation

where n is the number of points in the signal array X and * denotes complex conjugate. The auto
power spectrum is converted to a single-sided form.

Parameters

Input x double-precision array contains the time-domain signal.

n integer number of elements in the input array.
n must be a power of 2.

dt double-precision dt is the sample period of the time-
domain signal, usually in seconds.
dt = 1/fs, where fs is the sampling
frequency of the time-domain signal.

Output autoSpectrum double-precision array autoSpectrum is the single-sided
amplitude spectrum magnitude in volts
RMS if the input signal is in volts. If
the input signal is not in volts, the
results are in input signal units RMS.
This array must be at least n/2
elements long.

df double-precision df points to the frequency interval, in
hertz, if dt is in seconds.
*df = 1/(n*dt)

Return Value

status integer refer to error codes in Appendix A

BackSub

int status = BackSub (void *a, double y[] , int n, double x[]);

Purpose

Solves the linear equations a*x = y by backward substitution. a is assumed to be an n by n lower
triangular matrix whose diagonal elements are all ones. x is obtained by the following formulas.

x y an n n n− − − −=1 1 1 1/ ,

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-33 LabWindows/CVI Advanced Analysis Library

x y a x a
i i i j j i i

j i

n

= −
= +

−

∑(*) /
, ,

1

1

for i = n-2, n-3,…0

The operation can be performed in place; that is, x and y can be the same array. BackSub is
used in conjunction with LU and ForwSub to solve linear equations.

Refer to the LU function description for more information.

Parameters

Input a double-precision 2D array input matrix

y double-precision array input vector

n integer dimension size of a

Output x double-precision array solution vector

Return Value

status integer refer to error codes in
Appendix A

Example
/*To solve a linear equation A*x = y */
double A[10][10], x[10], y[10];
int p[10]; /* permutation vector */
int sign, n;
n = 10;
LU(A,n,p,&sign); /* LU decomposition of A */
ForwSub(A,y,n,x,p); /* forward substitution */
BackSub(A,x,n,x); /* backward substitution */

Bessel_CascadeCoef

int status = Bessel_CascadeCoef (double fs, double fL , double fH ,
IIRFilterPtr filterInformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the Bessel filter model.

filterInformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before calling this cascade IIR filter design function.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-34 © National Instruments Corporation

To redesign another filter, you should first call FreeIIRFilterPtr to free the present
filter structure and then call AllocIIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without
calling FreeIIRFilterPtr and AllocIIRFilterPtr. In this case, you should
properly reset the filtering operation for that structure by calling ResetIIRFilter before
the first call to IIRCascadeFiltering .

Parameters

Input fs double-precision Specifies the sampling frequency in Hz.

fL double-precision Specifies the desired lower cutoff
frequency of the filter in Hz.

fH double-precision Specifies the desired upper cutoff
frequency of the filter in Hz.

Output filterInformation IIRFilterPtr filterInformation is the pointer to the
filter structure which contains the filter
coefficients and the internal filter
information.

You must allocate this structure by
calling AllocIIRFilterPtr before
calling this cascade IIR filter design
function.

Please refer to the function
AllocIIRFilterPtr for further
information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.

Example
/* Design a cascade lowpass Bessel IIR filter */
double fs, fl, fh, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-35 LabWindows/CVI Advanced Analysis Library

filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {

Bessel_CascadeCoef(fs,fl,fh,filterInfo);
IIRCascadeFiltering(x,n,filterInfo,y);
FreeIIRFilterPtr(filterInfo);

}

Bessel_Coef

int status = Bessel_Coef (int type, int order, double fs, double fL ,
double fH ,double a[] , int na, double b[] , int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Bessel filter
model. The type parameter has the following valid values.

type =

0 lowpass filter, fH is not used.

1 highpass filter, fH is not used.

2 bandpass filter

3 bandstop filter









a[na] and b[nb] are the reverse and forward filter coefficients. The actual filtering

y
a

b x a yn i n i i n i
i

na

i

nb

= −



− −

=

−

=

−

∑∑1

0 1

1

0

1

is achieved by using the function IIRFiltering .

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-36 © National Instruments Corporation

Parameters

Input type integer controls the filter type of the Bessel IIR
filter coefficients.

order integer order of the IIR filter.

fs double-precision sampling frequency in Hz.

fL double-precision desired lower cutoff frequency of the
filter in Hz.

fH double-precision desired higher cutoff frequency of the
filter in Hz.

na integer number of coefficients in the a
coefficient array.

nb integer number of coefficients in the b
coefficient array.

Output a double-precision array array containing the reverse
coefficients of the designed IIR filter.

b double-precision array array containing the forward
coefficients of the designed IIR filter.

Return Value

status integer refer to error codes in Appendix A

BlkHarrisWin

int status = BlkHarrisWin (double x[] , int n);

Purpose

Applies a 3-term Blackman-Harris window to the input sequence X. If Y represents the output
sequence, the elements of Y are obtained using the equation

Yi = Xi (0.42323 - 0.49755cos(2πi/n) + 0.07922cos(4πi/n))

where n is the number of elements in X.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-37 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array contains the input signal.

n integer The number of elements in the input
array.

Output x double-precision array contains the signal after applying the
Blackman-Harris window.

Return Value

status integer refer to error codes in
Appendix A

BkmanWin

int status = BkmanWin (double x[] , int n);

Purpose

Applies a Blackman window to the x input signal. The Blackman window is defined by the
following formula.

wi= 0.42 - 0.5cos(2πi/n) + 0.08cos(4πi/n) for i = 0, 1, ..., n-1

The output signal is obtained by the following formula.

xi = xi*wi for i = 0, 1, ..., n-1

The window operation is performed in place. The windowed data x replaces the input data x.

Parameters

Input x double-precision array input data

n integer number of elements in x

Output x double-precision array windowed data

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-38 © National Instruments Corporation

Bw_BPF

int status = Bw_BPF (double x[] , int n, double fs, double fl, double fh,
int order, double y[]);

Purpose

Filters the input array using a digital bandpass Butterworth filter. The operation can be
performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order bandpass
Butterworth filter. The pass band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh;
int n, order;
int status;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
order = 5;
Uniform (n, 17, x);
status = Bw_BPF (x, n, fs, fl, fh, order, y);

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-39 LabWindows/CVI Advanced Analysis Library

Bw_BSF

int status = Bw_BSF (double x[] , int n, double fs, double fl , double fh,
int order, double y[]);

Purpose

Filters the input array using a digital bandstop Butterworth filter. The operation can be
performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order bandstop
Butterworth filter. The stop band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh;
int n, order;
int status;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
order = 5;
Uniform (n, 17, x);
status = Bw_BSF (x, n, fs, fl, fh, order, y);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-40 © National Instruments Corporation

Bw_CascadeCoef

int status = Bw_CascadeCoef (double fs, double fL , double fH , IIRFilterPtr
filterInformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the Butterworth filter model.

filterInformation is the pointer to the filter structure which contains the filter coefficients and
the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present
filter structure and then call AllocIIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without
calling FreeIIRFilterPtr and AllocIIRFilterPtr . In this case, you should
properly reset the filtering operation for that structure by calling ResetIIRFilter before
the first call to IIRCascadeFiltering .

Parameters

Input fs double-precision Specifies the sampling frequency in Hz.

fL double-precision Specifies the desired lower cutoff
frequency of the filter in Hz.

FH double-precision Specifies the desired upper cutoff
frequency of the filter in Hz

Output filterInformation IIRFilterPtr filterInformation is the pointer to the
filter structure whichcontains the filter
coefficients and the internal filter
information. You must allocate this
structure by calling
AllocIIRFilterPtr before calling
this cascade IIR filter design function.
Please refer to the function
AllocIIRFilterPtr for further
information about the filter structure.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-41 LabWindows/CVI Advanced Analysis Library

Return Value

status integer Refer to error codes in
Appendix A.

Example
/* Design a cascade lowpass Butterworth IIR filter */
double fs, fl, fh, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {

Bw_CascadeCoef(fs,fl,fh,filterInfo);
IIRCascadeFiltering(x,n,filterInfo,y);
FreeIIRFilterPtr(filterInfo);

}

Bw_Coef

int status = Bw_Coef (int type, int order, double fs double fL , double fH ,
double a[] , int na, double b[] , int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Butterworth
filter model. The type parameter has the following valid values.

type

fH

fH
=










0 lowpass filter, is not used.

1 highpass filter, is not used.

2 bandpass filter

3 bandstop filter

a[na] and b[nb] are the reverse and forward filter coefficients. The actual filtering is achieved
by using the function IIRFiltering .

y =
1

a
b x - a yn i n-i i n-i

i=1

na-1

i=0

nb-1

0
∑∑





Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-42 © National Instruments Corporation

Parameters

Input type integer controls the filter type of the
Butterworth IIR filter coefficients.

order integer order of the IIR filter.

fs double-precision sampling frequency in Hz.

fL double-precision desired lower cutoff frequency of the
filter in Hz.

fH double-precision desired higher cutoff frequency of the
filter in Hz.

na integer number of coefficients in the a
coefficient array.

nb integer number of coefficients in the b
coefficient array.

Output a double-precision array array containing the reverse
coefficients of the designed IIR filter.

b double-precision array array containing the forward
coefficients of the designed IIR filter.

Return Value

status integer refer to error codes in Appendix A

Bw_HPF

int status = Bw_HPF (double x[] , int n, double fs, double fc, int order, double y[]);

Purpose

Filters the input array using a digital highpass Butterworth filter. The operation can be
performed in place; that is, x and y can be the same array.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-43 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fc double-precision cutoff frequency

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order highpass
Butterworth filter. */
double x[256], y[256], fs, fc;
int n, order;
int status;
n = 256;
fs = 1000.0;
fc = 200.0;
order = 5;
Uniform (n, 17, x);
status = Bw_HPF (x, n, fs, fc, order, y);

Bw_LPF

int status = Bw_LPF (double x[] , int n, double fs, double fc, int order, double y[]);

Purpose

Filters the input array using a digital lowpass Butterworth filter. The operation can be performed
in place; that is, x and y can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-44 © National Instruments Corporation

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fc double-precision cutoff frequency

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order lowpass
Butterworth filter. */
double x[256], y[256], fs, fc;
int n, order;
int status;
n = 256;
fs = 1000.0;
fc = 200.0;
order = 5;
Uniform (n, 17, x);
status = Bw_LPF (x, n, fs, fc, order, y);

CascadeToDirectCoef

int status = CascadeToDirectCoef (IIRFilterPtr filterInformation , double a[] ,int na,
double b[] , int nb);

Purpose

Converts from the cascade IIR coefficients contained by the filterInformation structure to
direct form IIR coefficients in arrays a and b. These two arrays must be allocated as for the
old-style direct coefficient design functions (Bw_Coef ,...).

For lowpass and highpass type filters, the direct coefficient arrays must have size (order + 1).

For bandpass and bandstop type filters, the direct coefficient arrays must have size
(2*order + 1).

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-45 LabWindows/CVI Advanced Analysis Library

Parameters

Input filterInformation IIRFilterPtr filterInformation is the pointer to the filter
structure which contains the filter coefficients
and the internal filter information. You must
allocate this structure by calling
AllocIIRFilterPtr before calling one of
the cascade IIR filter design functions. Please
refer to the function AllocIIRFilterPtr
for further information about the filter
structure.

na integer Specifies the number of coefficients in array a.
na = order+1 for low or high pass filters
na = 2*order+1 for bandpass or bandstop
filters.

nb integer Specifies the number of coefficients in the B
Coefficient Array.
nb = order+1 for low or high pass filters
nb = 2*order+1 for bandpass or bandstop
filters.

Output a double-
precision array

Array containing the reverse coefficients of
the direct form IIR filter.

b double-
precision array

Array containing the forward coefficients of
the direct form IIR filter.

Return Value

status integer Refer to error codes in
Appendix A.

Ch_BPF

int status = Ch_BPF (double x[] , int n, double fs, double fl, double fh,
double ripple , int order, double y[]);

Purpose

Filters the input array using a digital bandpass Chebyshev filter. The operation can be performed
in place; that is, x and y can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-46 © National Instruments Corporation

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

ripple double-precision pass band ripples in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order bandpass
Chebyshev filter. The pass band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, ripple;
int n, order;
int status;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
ripple = 0.5;
order = 5;
Uniform (n, 17, x);
status = Ch_BPF (x, n, fs, fl, fh, ripple, order, y);

Ch_BSF

int status = Ch_BSF (double x[] , int n, double fs, double fl , double fh,
double ripple , int order, double y[]);

Purpose

Filters the input array using a digital bandstop Chebyshev filter. The operation can be performed
in place; that is, x and y can be the same array.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-47 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

ripple double-precision pass band ripples in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order bandstop
Chebyshev filter. The stop band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, ripple;
int n, order;
int status;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
ripple = 0.5;
order = 5;
Uniform (n, 17, x);
status = Ch_BSF (x, n, fs, fl, fh, ripple, order, y);

Ch_CascadeCoef

int status = Ch_CascadeCoef (double fs, double fL , double fH , double ripple ,
IIRFilterPtr filterInformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the Chebyshev filter model.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-48 © National Instruments Corporation

filterInformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present
filter structure and then call AllocIIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without
calling FreeIIRFilterPtr and AllocIIRFilterPtr. In this case, you should
properly reset the filtering operation for that structure by calling ResetIIRFilter before
the first call to IIRCascadeFiltering .

Parameters

Input fs double-precision Specifies the sampling frequency in Hz.

fL double-precision Specifies the desired lower cutoff frequency
of the filter in Hz.

fH double-precision Specifies the desired upper cutoff frequency
of the filter in Hz.

ripple double-precision Specifies the amplitude of the stop band
ripple in decibels.

Output filterInformation IIRFilterPtr filterInformation is the pointer to the filter
structure whichcontains the filter coefficients
and the internal filter information. You must
allocate this structure by calling
AllocIIRFilterPtr before calling this
cascade IIR filter design function.

Please refer to the function
AllocIIRFilterPtr for further
information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.

Example
/* Design a cascade lowpass Chebyshev IIR filter */
double fs, fl, fh, ripple, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-49 LabWindows/CVI Advanced Analysis Library

fs = 1000.0;
fl = 200.0;
ripple = 0.5;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {

Ch_CascadeCoef(fs,fl,fh,ripple,filterInfo);
IIRCascadeFiltering(x,n,filterInfo,y);
FreeIIRFilterPtr(filterInfo);

}

Ch_Coef

int status = Ch_Coef (int type, int order, double fs, double fL , double fH ,
double ripple , double a[] , int na, double b[] , int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Chebyshev
filter model. The type parameter has the following valid values.

type

fH

fH
=










0 lowpass filter, is not used.

1 highpass filter, is not used.

2 bandpass filter

3 bandstop filter

a[na] and b[nb] are the reverse and forward filter coefficients. The actual filtering

y
a

b x a yn i n i i n
i

na

i

nb

 = - -

=

-

=

-1

0
1

1

1

0

1

−∑∑





is achieved by using the function IIRFiltering .

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-50 © National Instruments Corporation

Parameters

Input type integer controls the filter type of the
Chebyshev IIR filter coefficients.

order integer order of the IIR filter.

fs double-precision sampling frequency in Hz.

fL double-precision desired lower cutoff frequency of the
filter in Hz.

fH double-precision desired higher cutoff frequency of the
filter in Hz.

ripple double-precision amplitude of the stopband ripple in
decibels.

na integer number of coefficients in the a
coefficient array.

nb integer number of coefficients in the b
coefficient array.

Output a double-precision array array containing the reverse
coefficients of the designed IIR filter.

b double-precision array array containing the forward
coefficients of the designed IIR filter.

Return Value

status integer refer to error codes in Appendix A

Ch_HPF

int status = Ch_HPF (double x[] , int n, double fs, double fc, double ripple ,
int order, double y[]);

Purpose

Filters the input array using a digital highpass Chebyshev filter. The operation can be performed
in place; that is, x and y can be the same array.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-51 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fc double-precision cutoff frequency

ripple double-precision pass band ripples in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order highpass
Chebyshev filter. */
double x[256], y[256], fs, fc, ripple;
int n, order;
int status;
n = 256;
fs = 1000.0;
fc = 200.0;
ripple = 0.5;
order = 5;
Uniform (n, 17, x);
status = Ch_HPF (x, n, fs, fc, ripple, order, y);

Ch_LPF

int status = Ch_LPF (double x[] , int n, double fs, double fc, double ripple ,
int order, double y[]);

Purpose

Filters the input array using a digital lowpass Chebyshev filter. The operation can be performed
in place; that is, x and y can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-52 © National Instruments Corporation

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fc double-precision cutoff frequency

ripple double-precision pass band ripples in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order lowpass
Chebyshev filter. */
double x[256], y[256], fs, fc, ripple;
int n, order;
int status;
n = 256;
fs = 1000.0;
fc = 200.0;
ripple = 0.5;
order = 5;
Uniform (n, 17, x);
status = Ch_LPF (x, n, fs, fc, ripple, order, y);

Chirp

int status = Chirp (int n, double amp, double f1, double f2, double x[]);

Purpose

Generates an array containing a chirp pattern. The output array x is generated according to the
following formula.

xi = amp * sin((
a
2 i + b) i)

where
a = 2π*(f2-f1)/n
b = 2π* f1

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-53 LabWindows/CVI Advanced Analysis Library

f1 = beginning frequency, cycles/sample
f2 = ending frequency, cycles/sample

Parameters

Input n integer number of samples to generate.

amp double-precision amplitude of the resulting signal.

f1 double-precision beginning frequency of the resulting
signal in normalized units of
cycles/sample.

f2 double-precision ending frequency of the resulting
signal in normalized units of
cycles/sample.

Output x double-precision array contains the generated chirp pattern.

Return Value

status integer refer to error codes in Appendix A

Clear1D

int status = Clear1D (double x[] , int n);

Purpose

Sets the elements of the x array to 0.0.

Parameters

Input n integer number of elements in x

Output x double-precision array cleared array

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-54 © National Instruments Corporation

Clip

int status = Clip (double x[] , int n, double upper, double lower, double y[]);

Purpose

Clips the input array values. The range of the resulting output array is [lower : upper]. The ith

element of the resulting array is obtained by using the following formula.

y

upper x

lower x

x
i

i

i

i

=







 if upper

 if lower

 otherwise

>

<

The operation can be performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input data

n integer number of elements in x

upper double-precision upper limit

lower double-precision lower limit

Output y double-precision array clipped array

Return Value

status integer refer to error codes in
Appendix A

Contingency_Table

int status = Contingency_Table (int s, int k, int void *y, double *Test_Stat,
double *Sig);

Purpose

Creates a contingency table in which objects of experimentation are classified and tallied
according to two schemes of categorization. This function can be used to perform a test of
homogeneity or a test of independence.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-55 LabWindows/CVI Advanced Analysis Library

Note: For both tests, the math is identical. It is not necessary to specify which test is being
applied. The only difference is in the hypothesis being tested.

Parameters

Input s integer number of random samples taken in the test
of homogeneity, or the number of categories
in the first categorization scheme in the test
of independence.

k integer number of categories in the test of
homogeneity, or the number of categories in
the second scheme in the test of
independence.

y integer 2D array contingency table, indexed as an s by k
matrix.

Output Test_Stat double-precision used to calculate Sig. If the hypothesis is
true, Test_Stat is known to come from a
chi-square distribution with
(s-1)*(k-1) degrees of freedom.

Sig double-precision level of significance at which the hypothesis
must be rejected.

Return Value

status integer refer to error codes in
Appendix A

Using This Function

A contingency table is a table in which objects of experimentation are classified and tallied
according to two schemes of categorization. For example, if the objects of experimentation are
individuals, one scheme might be political affiliation: Know-Nothing, Tory, Whig, Mugwump,
and so on. Another scheme might be to classify individuals according to how they vote on some
issue.

Chi-Square Test of Homogeneity

Take a random sample of some fixed sized from each of the categories in one categorization
scheme for the chi-square test of homogeneity. For each of the samples, categorize the objects of
experimentation according to the second scheme, and tally them. For example, you might pick
100 Know-Nothings, 100 Whigs, 100 Tories and 100 Mugwumps. Count the number of
individuals who vote a certain way for each category. This produces the following contingency
table.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-56 © National Instruments Corporation

Yes No Undecided
Know-Nothing 36 24 40
Whig 12 53 35
Tory 61 11 28
Mugwump 83 3 14

Notice that the sum of each of the rows equals 100.

Test the hypothesis that the populations from which each sample is taken are identically
distributed with respect to the second categorization scheme. For example, you can test the
hypothesis that the four samples of politically affiliated individuals are distributed identically
with respect to the way they vote. If this hypothesis is true, it means that a Mugwump selected at
random is just as likely to vote yes as a Whig selected at random.

Chi-Square Test of Independence

Take only one sample from the total population for the chi-square test of independence.
Categorize each object of experimentation and tally them in the two categorization schemes. If
you select 500 individuals, for example, you might arrive at the following table.

Yes No Undecided
Know-Nothing 18 15 18
Whig 55 93 38
Tory 101 83 20
Mugwump 16 31 12

Notice that the sum of each row is different, but that the total number of individuals tallied is
500.

Test the hypothesis that the categorization schemes are independent. For example, if you choose
a person at random and he or she turns out to be a Mugwump, then the hypothesis says his or her
political affiliation has no impact on how he or she votes on the selected issue.

Testing The Hypothesis

Whichever test is being used, a level of significance must be chosen. This is how likely you
want it to be that a true hypothesis is rejected. Ordinarily you do not want it to be very likely, so
the level of significance should be small (0.05, or 5%, is a common choice).

The output parameter Sig is the level of significance at which the hypothesis is rejected.
Sig = Prob(χ ≥ Test_Stat), where χ is a random variable from the chi-square distribution with

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-57 LabWindows/CVI Advanced Analysis Library

(s-1)(k-1) degrees of freedom. If Sig is less than the level of significance, the hypothesis must be
rejected.

Formulas

Let yp,q be the number of occurrences in the (p,q)th cell of the contingency table for p = 0, 1, ...,
(s-1) and q = 0, 1, ..., (k-1).

Let

yp = yp,q
q =0

k−1

∑

yq = yp,q
p= 0

s− 1

∑

y = yp,q
q =0

k− 1

∑
p=0

s−1

∑
ep,q = yp * y q()/y

[]
Test_ Stat

y e

e
p,q p,q

2

p,qq=0

k-1

p 0

s 1

=
−

∑∑
=

−

Example
/* Generate random contingency table. Because rows will not have identical
sums, use the chi-square test of independence. */
int s=10, k=10, y[10][10], i, j, status;
double Test_Stat, Sig, temp[1];
for(i=0; i<s; i++)

for(j=0; j<k; j++)
{

WhiteNoise (1, 5, ,17, temp);
temp[0] += 6.0;
y[i][j] = (int) temp[0];

}
status = Contingency_Table (s, k, y, &Test_Stat, &Sig);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-58 © National Instruments Corporation

Convolve

int status = Convolve (double x[] , int n, double y[] , int m, double cxy[]);

Purpose

Finds the convolution of the x and y input arrays. The convolution is obtained by the following
formula.

cxy x * yi
k a

b

k i-k=
=
∑

where a = 0, b = i for 0 ≤ i < m
a = i - m + 1, b = i for m ≤ i < n
a = i - m + 1, b = n - 1 for n ≤ i ≤ n + m - 1

Note: This formula description assumes that m ≤ n. For m > n, exchange (x, y) and (m, n) in
the above equations.

Parameters

Input x double-precision array x input array

n integer number of elements in x

y double-precision array y input array

m integer number of elements in y

Output cxy double-precision array convolution array

Return Value

status integer refer to error codes in
Appendix A

Using This Function

The size of the output array must be at least (n + m - 1) elements long. This algorithm executes
more efficiently if the sizes of the input arrays are a power of two.

Example

/* Generate two arrays with random numbers and find their
convolution. */

double x[256], y[256], cxy[512];
int n, m;

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-59 LabWindows/CVI Advanced Analysis Library

n = 256;
m = 256;
Uniform (n, 17, x);
Uniform (m, 17, y);
Convolve (x, n, y, m, cxy);

Copy1D

int status = Copy1D (double x, int n, double y[]);

Purpose

Copies the elements of the x array. This function is useful to duplicate arrays for in-place
operations.

Parameters

Input x double-precision array input array

n integer number of elements in x

Output y double-precision array duplicated array

Return Value

status integer refer to error codes in
Appendix A

Correlate

int status = Correlate (double x[] , int n, double y[] , int m, double rxy []);

Purpose

Finds the correlation of the input arrays. The correlation is obtained by the following formula.

Rxy x * yi k n 1 i k
k 0

m 1

= + − −
=

−

∑
yj = 0 when j < 0 or j ≥ m

and xi = 0 when j < 0 or j ≥ n

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-60 © National Instruments Corporation

Parameters

Input x double-precision array y input array

n integer number of elements in x

y double-precision array y input array

m integer number of elements in y

Output rxy double-precision array correlation array

Return Value

status integer refer to error codes in
Appendix A

Using This Function

The size of the output array must be at least (n + m -1) elements long.

Example
/* Generate two arrays with random numbers and find their correlation. */
double x[256], y[256], cxy[512];
int n, m;
n = 256;
m = 256;
Uniform (n, 17, x);
Uniform (m, 17, y);
Correlate (x, n, y, m, cxy);

CosTaperedWin

int status = CosTaperedWin (double x[] , int n);

Purpose

Applies a cosine tapered window to the input sequence X. If Y represents the output sequence,
the elements of Y are obtained from the equation:

y =

0.5 x (1- cos(2 p i/ n)) i = 0, 1, . . . , m- 1

x i = m, m+1, . . . , n- m- 1

0.5 x (1- cos(2 p i/ n)) i = n- m, n- m+1, . . . , n- 1

i

i

i

i









where m = round (n/10)

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-61 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array contains the input signal.

n integer number of elements in the input array.

Output x double-precision array contains the signal after applying the
Tapered Cosine window.

Return Value

status integer refer to error codes in Appendix A

CrossPowerSpectrum

int status = CrossPowerSpectrum (double x[] , double y[] , int n, double dt,
double magSxy[] , double phaseSxy[] , double *df);

Purpose

Computes the single-sided, scaled cross power spectrum of two time-domain signals. The cross
power spectrum is defined as:

Sxy = FFT(Y) FFT*(X) / (n2)

where n is the number of points in arrays X and Y. magSxy and phaseSxy are single-sided
magnitude and phase spectra of Sxy.

Parameters

Input x double-precision array time-domain signal X.

y double-precision array time-domain signal Y.

n integer The number of elements in the input
array. Valid Values: Powers of 2.

dt double-precision dt is the sample period of the time-
domain signal, usually in seconds.
dt = 1/fs, where fs is the sampling
frequency of the time-domain signal.

(continues)

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-62 © National Instruments Corporation

Parameters (Continued)

Output magSxy double-precision array magSxy is the single-sided magnitude
cross power spectrum between signals
X and Y in volts RMS squared if the
input signals are in volts. If the input
signals are not in volts, the results are
in input signal units RMS squared.
This array must be at least n/2
elements long.

phaseSxy double-precision array phaseSxy is the single-sided phase
cross spectrum in radians showing the
difference between the phases of signal
Y and signal X. This array must be at
least n/2 elements long.

df double-precision Points to the frequency interval, in
hertz, if dt is in seconds.
*df = 1/(n*dt)

Return Value

status integer refer to error codes in Appendix A

CrossSpectrum

int status = CrossSpectrum (double x[] , double y[] , int n, double realSxy[] ,
double imagSxy[]);

Purpose

Computes the double-sided cross power spectrum, Sxy, of the input sequences X and Y
according to the following formula.

CrossSpectrum =
FFT* (X)FFT(Y)

n2

where n is the number of samples in both input sequences, and FFT*[X] is the complex
conjugate of FFT[X]. n must be a power of 2. The input sequences are copied to internal buffers
before the FFTs are computed. The output arrays are the real and imaginary parts of the cross
spectrum CrossSpectrum.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-63 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array time-domain signal X.

y double-precision array time-domain signal Y.

n integer number of elements in the input arrays.
The number must be a power
of 2.

Output realSxy double-precision array real part of the double-sided cross
power spectrum between signals X and
Y. The size of this array must be n.

imagSxy double-precision array imaginary part of the double-sided
cross power spectrum between signals
X and Y. The size of this array must be
n.

Return Value

status integer refer to error codes in Appendix A

CxAdd

int status = CxAdd (double xr , double xi, double yr , double yi, double *zr,
double *zi);

Purpose

Adds two complex numbers. The resulting complex number is obtained using the following
formulas.

zr = xr + yr

zi = xi + yi

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-64 © National Instruments Corporation

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

yr double-precision real part of y

yi double-precision imaginary part of y

Output zr double-precision pointer real part of z

zi double-precision pointer imaginary part of z

Return Value

status integer refer to error codes in
Appendix A

CxAdd1D

int status = CxAdd1D (double xr [] , double xi[] , double yr [] , double yi[] ,
int n,double zr[] , double zi[]);

Purpose

Adds two 1D complex arrays. The ith element of the resulting complex array is obtained using
the following formulas.

zri = xri + yri

zii = xii + yii

The operations can be performed in place; that is, the input and output complex arrays can be the
same.

Parameters

Input xr double-precision array real part of x

xi double-precision array imaginary part of x

yr double-precision array real part of y

yi double-precision array imaginary part of y

n integer number of elements

Output zr double-precision array real part of z

zi double-precision array imaginary part of z

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-65 LabWindows/CVI Advanced Analysis Library

Return Value

status integer refer to error codes in
Appendix A

CxDiv

int status = CxDiv (double xr , double xi, double yr , double yi, double *zr,
double *zi);

Purpose

Divides two complex numbers. The resulting number is obtained using the following formulas.

zr = (xr*yr + xi*yi) / (yr 2 + yi2)

zi = (xi*yr - xr*yi) / (yr2 + yi2)

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

yr double-precision real part of y

yi double-precision imaginary part of y

Output zr double-precision real part of z

zi double-precision imaginary part of z

Return Value

status integer refer to error codes in Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-66 © National Instruments Corporation

CxDiv1D

int status = CxDiv1D (double xr [] , double xi[] , double yr [] , double yi[] ,
int n,double zr[] , double zi[]);

Purpose

Divides two 1D complex arrays. The ith element of the resulting complex array is obtained using
the following formula.

zri = (xri*yr i+ xi i*yi i) / (yri
2 + yii

2)

zii = (xii*yr i- xri*yi i) / (yri
2 + yii

2)

zr can be in place with xr; zi can be in place with xi.
Parameters

Input xr double-precision array real part of x

xi double-precision array imaginary part of x

yr double-precision array real part of y

yi double-precision array imaginary part of y

n integer number of elements

Output zr double-precision array real part of z

zi double-precision array imaginary part of z

Return Value

status integer refer to error codes in
Appendix A

CxExp

int status = CxExp (double xr , double xi, double *yr , double *yi);

Purpose

Computes the exponential of a complex number. The resulting complex number is obtained
using the following formula.

(yr, yi) = e(xr, xi)

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-67 LabWindows/CVI Advanced Analysis Library

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

Output yr double-precision real part of y

yi double-precision imaginary part of y

Return Value

status integer refer to error codes in
Appendix A

CxLinEv1D

int status =CxLinEv1D (double xr [] , double xi[] , int n, double ar, double ai,
double br , double bi, double yr [] , double yi[]);

Purpose

Performs a complex linear evaluation of a 1D complex array. The ith element of the resulting
complex array is obtained using the following formulas.

yri= ar*xr i- ai*xi i+ br

yii= ar*xi i+ ai*xr i+ bi

The operations can be performed in place; that is, the input and output complex arrays can be the
same.

Parameters

Input xr double-precision array real part of x

xi double-precision array imaginary part of x

n integer number of elements

ar double-precision real part of a

ai double-precision imaginary part of a

br double-precision real part of b

bi double-precision imaginary part of b

Output yr double-precision array real part of y

yi double-precision array imaginary part of y

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-68 © National Instruments Corporation

Return Value

status integer refer to error codes in
Appendix A

CxLn

int status = CxLn (double xr , double xi, double *yr , double *yi);

Purpose

Computes the natural logarithm of a complex number. The resulting complex number is
obtained using the following formula.

(yr, yi) = Loge(xr, xi)

where e = 2.718….

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

Output yr double-precision real part of y

yi double-precision imaginary part of y

Return Value

status integer refer to error codes in
Appendix A

CxLog

int status = CxLog (double xr , double xi, double *yr , double *yi);

Purpose

Computes the logarithm (base 10) of a complex number. The resulting complex number is
obtained using the following formula.

(yr, yi) = Log10(xr, xi)

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-69 LabWindows/CVI Advanced Analysis Library

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

Output yr double-precision real part of y

yi double-precision imaginary part of y

Return Value

status integer refer to error codes in
Appendix A

CxMul

int status = CxMul (double xr , double xi, double yr , double yi, double *zr,
double *zi);

Purpose

Multiplies two complex numbers. The resulting complex number is obtained using the following
formulas.

zr = xr*yr - xi*yi

zi = xr*yi + xi*yr

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

yr double-precision real part of y

yi double-precision imaginary part of y

Output zr double-precision real part of z

zi double-precision imaginary part of z

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-70 © National Instruments Corporation

CxMul1D

int status = CxMul1D (double xr [] , double xi[] , double yr [] , double yi[] ,
int n, double zr[] , double zi[]);

Purpose

Multiplies two 1D complex arrays. The ith element of the resulting complex array is obtained
using the following formulas.

zri = xri*yr i - xii*yi i

zii = xri*yi i + xii*yr i

The operations can be performed in place; that is, the input and output complex arrays can be the
same.

Parameters

Input xr double-precision array real part of x

xi double-precision array imaginary part of x

yr double-precision array real part of y

yi double-precision array imaginary part of y

n integer number of elements

Output zr double-precision array real part of z

zi double-precision array imaginary part of z

Return Value

status integer refer to error codes in
Appendix A

CxPow

int status = CxPow (double xr , double xi, double a, double *yr , double *yi);

Purpose

Computes the power of a complex number. The resulting complex number is obtained using the
following formula.

(yr, yi) = (xr, xi)a

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-71 LabWindows/CVI Advanced Analysis Library

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

a double-precision exponent

Output yr double-precision real part of y

yi double-precision imaginary part of y

Return Value

status integer refer to error codes in
Appendix A

CxRecip

int status = CxRecip (double xr , double xi, double *yr , double *yi);

Purpose

Finds the reciprocal of a complex number. The resulting complex number is obtained using the
following formulas.

yr = xr / (xr2 + xi2)

yi = -xi / (xr2 + xi2)

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

Output yr double-precision real part of y

yi double-precision imaginary part of y

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-72 © National Instruments Corporation

CxSqrt

int status = CxSqrt (double xr , double xi, double *yr , double *yi);

Purpose

Computes the square root of a complex number. The resulting complex number is obtained
using the following formula.

(yr, yi) = (xr, xi)1/2

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

Output yr double-precision real part of y

yi double-precision imaginary part of y

Return Value

status integer refer to error codes in
Appendix A

CxSub

int status = CxSub (double xr , double xi, double yr , double yi, double *zr,
double *zi);

Purpose

Subtracts two complex numbers. The resulting complex number is obtained using the following
formulas.

zr = xr - yr

zi = xi - yi

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-73 LabWindows/CVI Advanced Analysis Library

Parameters

Input xr double-precision real part of x

xi double-precision imaginary part of x

yr double-precision real part of y

yi double-precision imaginary part of y

Output zr double-precision real part of z

zi double-precision imaginary part of z

Return Value

status integer refer to error codes in
Appendix A

CxSub1D

int status = CxSub1D (double xr [] , double xi[] , double yr [] , double yi[] ,
int n, double zr[] , double zi[]);

Purpose

Subtracts two 1D complex arrays. The ith element of the resulting complex array is obtained
using the formulas.

zri = xri- yri

zii= xii- yii

The operations can be performed in place; that is, the input and output complex arrays can be the
same.

Parameters

Input xr double-precision array real part of x

xi double-precision array imaginary part of x

yr double-precision array real part of y

yi double-precision array imaginary part of y

n integer number of elements

Output zr double-precision array real part of z

zi double-precision array imaginary part of z

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-74 © National Instruments Corporation

Return Value

status integer refer to error codes in
Appendix A

Decimate

int status = Decimate (double x[] , int n, int dFact, int ave, double y[]);

Purpose

Decimates the input sequence X by the decimating factor. If Y represents the decimated output
sequence, the elements of the sequence Y are obtained using the following equation.

y

x ave 0

1

dFact
x ave 1i

i*dFact

i*dFact k
k 0

dFact 1=
=

=






+

=

−

∑

where

i = 0, 1, 2 ... size-1

size = (int) (n/dFact) and is the size of the output sequence

Parameters

Input x double-precision array contains the input array to be
decimated.

n integer number of elements in the input array.

dFact integer amount by which to decimate x to form
y.

ave integer specifies whether averaging is used in
decimating x.

Output y double-precision array contains the output array, which is x
decimated by the dFact. The size of
this array must be (int) n/dFact.

Return Value

status integer refer to error codes in Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-75 LabWindows/CVI Advanced Analysis Library

Deconvolve

int status = Deconvolve (double y[] , int ny, double x[] , int nx, double h[]);

Purpose

Computes the deconvolution of y with x. y is assumed to be the result of the convolution of x
with some system response. The deconvolution operation is realized using Fourier transform
pairs. The output sequence h is obtained using the following equation.

h = InvFFT{ Y(f) / X(f) }

where

X(f) is the Fourier transform of x
Y(f) is the Fourier transform of y
InvFFT() is the inverse Fourier transform

Parameters

Input y double-precision array input array to be deconvolved
with x.

ny integer number of elements in y.

x double-precision array input array with which y is
deconvolved.

nx integer The number of elements in x.
nx ≤ ny.

Output h double-precision array output array which is y deconvolved
with x This array must be (ny - nx + 1)
elements long.

Return Value

status integer refer to error codes in Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-76 © National Instruments Corporation

Determinant

int status = Determinant (void *x, int n, double *det);

Purpose

Finds the determinant of an n by n 2D input matrix.

Parameters

Input x double-precision 2D array input matrix

n integer dimension size of input matrix

Output det double-precision determinant

Note: The input matrix must be an n by n square matrix.

Return Value

status integer refer to error codes in
Appendix A

Difference

int status = Difference (double x[] , int n, double dt, double xInit ,
double xFinal,double y[]);

Purpose

Finds the discrete difference of the input array. The ith element of the resulting array is obtained
using the following formula.

[] ()y x x dti i i= −+ −1 1 2/ *

where x-1 = xInit and xn = xFinal.

The operation can be performed in place; that is, x and y can be the same array.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-77 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input array

n integer number of elements in x

dt double-precision sampling interval

xInit double-precision initial condition

xFinal double-precision final condition

Output y double-precision array differentiated array

Return Value

status integer refer to error codes in
Appendix A

Example
/*Generate an array with random numbers and differentiate it.*/
double x[200], y[200];
double dt, xInit, xFinal;
int n;
n = 200;
dt = 0.001;
xInit = -0.5;
xFinal = -0.25;
Uniform (n, 17, x);
Integrate (x, n, dt, xInit, xFinal, y);

Div1D

int status = Div1D (double x[] , double y[] , int n, double z[]);

Purpose

Divides two 1D arrays. The ith element of the output array is obtained using the following
formula.

zi = xi / yi

The operation can be performed in place; that is, z can be the same array as either x or y.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-78 © National Instruments Corporation

Parameters

Input x double-precision array x input array

y double-precision array y input array

n integer number of elements to be
divided

Output z double-precision array result array

Return Value

status integer refer to error codes in
Appendix A

Div2D

int status = Div2D (void *x, void *y, int n, int m, void *z);

Purpose

Divides two 2D arrays. The (ith, jth) element of the output array is obtained using the following
formula.

zi,j = xi,j / yi,j

The operation can be performed in place; that is, z can be the same array as either x or y.

Parameters

Input x double-precision 2D array x input array

y double-precision 2D array y input array

n integer number of elements in first
dimension

m integer number of elements in second
dimension

Output z double-precision 2D array result array

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-79 LabWindows/CVI Advanced Analysis Library

DotProduct

int status = DotProduct (double x[] , double y, int n, double *dotProd);

Purpose

Computes the dot product of the x and y input arrays. The dot product is obtained using the
following formula.

dotProd x y x * yi i

i 0

n 1

= • =
=

−

∑

Parameters

Input x double-precision array x input vector

y double-precision array y input vector

n integer number of elements

Output dotProd double-precision dot product

Return Value

status integer refer to error codes in
Appendix A

Elp_BPF

int status = Elp_BPF (double x[] , int n, double fs, double fl , double fh,
double ripple , double atten, int order, double y[]);

Purpose

Filters the input array using a digital bandpass elliptic filter. The operation can be performed in
place; that is, x and y can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-80 © National Instruments Corporation

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

ripple double-precision pass band ripples in dB

atten double-precision stop band attenuation in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order bandpass
elliptic filter. The pass band is from 200.0 to 300.0 */
double x[256], y[256], fs, fl, fh, ripple, atten;
int n, order;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
ripple = 0.5;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
Elp_BPF (x, n, fs, fl, fh, ripple, atten, order, y);

Elp_BSF

int status = Elp_BSF (double x[] , int n, double fs, double fl , double fh,
double ripple , double atten, int order, double y[]);

Purpose

Filters the input array using a digital bandstop elliptic filter. The operation can be performed in
place; that is, x and y can be the same array.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-81 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

ripple double-precision pass band ripples in dB

atten double-precision stop band attenuation in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order bandstop
elliptic filter. The stop band is from 200.0 to 300.0 */
double x[256], y[256], fs, fl, fh, ripple, atten;
int n, order;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
ripple = 0.5;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
Elp_BSF (x, n, fs, fl, fh, ripple, atten, order, y);

Elp_CascadeCoef

int status = Elp_CascadeCoef (double fs, double fL , double fH , double ripple ,
double atten, IIRFilterPtr filterInformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the Elliptic (or Cauer) filter model.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-82 © National Instruments Corporation

filterInformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present
filter structure and then call AllocIIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without
calling FreeIIRFilterPtr and AllocIIRFilterPtr . In this case, you should
properly reset the filtering operation for that structure by calling ResetIIRFilter before
the first call to IIRCascadeFiltering .

Parameters

Input fs double-precision Specifies the sampling frequency in Hz.

fL double-precision Specifies the desired lower cutoff
frequency of the filter in Hz.

fH double-precision Specifies the desired upper cutoff
frequency of the filter in Hz

ripple double-precision Specifies the amplitude of the stopband
ripple in decibels.

atten double-precision Specifies the stopband attenuation, in
decibels, of the IIR filter to be designed.

Output filterInformation IIRFilterPtr filterInformation is the pointer to the
filter structure which contains the filter
coefficients and the internal filter
information. You must allocate this
structure by calling
AllocIIRFilterPtr before calling
this cascade IIR filter design function.

Please refer to the function
AllocIIRFilterPtr for further
information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.

Example
/* Design a cascade lowpass Elliptic IIR filter */
double fs, fl, fh, ripple, atten, x[256], y[256];
int type,order,n;

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-83 LabWindows/CVI Advanced Analysis Library

IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
ripple = 0.5;
atten = 40.0;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {

Elp_CascadeCoef(fs,fl,fh,ripple,atten,filterInfo);
IIRCascadeFiltering(x,n,filterInfo,y);
FreeIIRFilterPtr(filterInfo);

}

Elp_Coef

int status = Elp_Coef (int type, int order, double fs, double fL , double fH ,
double ripple , double atten, double a[] , int na,
double b[] , int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Elliptic (or
Cauer) filter model. The type parameter has the following valid values.

type =










0 lowpass filter, is not used.

1 highpass filter, is not used.

2 bandpass filter

3 bandstop filter

fH

fH

a[na] and b[nb] are the reverse and forward filter coefficients. The actual filtering

y =
1

a
b x - a yn

i=1

na-1

i=0

nb-1

i n i i n i

0
− −∑∑





is achieved by using the function IIRFiltering .

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-84 © National Instruments Corporation

Parameters

Input type integer controls the filter type of the Elliptic IIR
filter coefficients.

order integer order of the IIR filter.

fs double-precision sampling frequency in Hz.

fL double-precision desired lower cutoff frequency of the filter
in Hz.

fH double-precision desired higher cutoff frequency of the filter
in Hz.

ripple double-precision amplitude of the stop band ripple in
decibels.

atten double-precision stop band attenuation, in decibels, of the
IIR filter to be designed.

na integer number of coefficients in the a coefficient
array.

nb integer number of coefficients in the b coefficient
array.

Output a double-precision array array containing the reverse coefficients of
the designed IIR filter.

b double-precision array array containing the forward coefficients
of the designed IIR filter.

Return Value

status integer refer to error codes in Appendix A

Elp_HPF

int status = Elp_HPF (double x[] , int n, double fs, double fc,
double ripple ,double atten, int order, double y[]);

Purpose

Filters the input array using a digital highpass elliptic filter. The operation can be performed in
place; that is, x and y can be the same array.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-85 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fc double-precision cutoff frequency

ripple double-precision pass band ripples in dB

atten double-precision stop band attenuation in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order highpass
elliptic filter. */
double x[256], y[256], fs, fc, ripple, atten;
int n, order;
n = 256;
fs = 1000.0;
fc = 200.0;
ripple = 0.5;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
Elp_HPF (x, n, fs, fc, ripple, atten, order, y);

Elp_LPF

int status = Elp_LPF (double x[] , int n, double fs, double fc, double ripple ,
double atten, int order, double y[]);

Purpose

Filters the input array using a digital lowpass elliptic filter. The operation can be performed in
place; that is, x and y can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-86 © National Instruments Corporation

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fc double-precision cutoff frequency

ripple double-precision pass band ripples in dB

atten double-precision stop band attenuation in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order lowpass elliptic
filter. */
double x[256], y[256], fs, fc, ripple, atten;
int n, order;
n = 256;
fs = 1000.0;
fc = 200.0;
ripple = 0.5;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
Elp_LPF (x, n, fs, fc, ripple, atten, order, y);

Equi_Ripple

int status = Equi_Ripple (int bands, double A[] , double wts[] , double fs,
double cutoffs[] , int type, int n, double coef[] ,
double *delta);

Purpose

Designs a multiband FIR linear phase filter, a differentiator, or a Hilbert Transform using the
Parks-McClellan algorithm. The frequency response in each band has equal ripples that can be
adjusted by a weighting factor. This function generates only the filter coefficients. No filtering
of data is actually performed.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-87 LabWindows/CVI Advanced Analysis Library

Parameters

Input bands integer number of bands of the filter

A double-precision array desired frequency response
magnitude of each band

wts double-precision array weighting factor for each band

fs double-precision sampling frequency

cutoffs double-precision array end frequencies of each band

type integer filter type

n integer filter length

Output coef double-precision array filter coefficients

delta double-precision normalized ripple size

Return Value

status integer refer to error codes in Appendix A

Parameter Discussion

Generally, when type = 1 and bands ≥ 2, Equi_Ripple designs a multiband filter. When
type = 2, bands = 1, and n is even, Equi_Ripple designs a differentiator. When type = 3,
bands = 1, and n is even, Equi_Ripple designs a Hilbert Transform. For more information,
please refer to Digital Filter Design by Parks and Burrus, or "A computer program for designing
optimum FIR linear phase digital filters," by McClellan, et al, IEEE Transactions on Audio and
Electroacoustics, vol. AU-21, no. 6, pp. 506-525, Nov. 1973.

Using This Function

Although Equi_Ripple is the most flexible way to design an FIR linear phase filter, it has more
complex parameters and requires some DSP knowledge. You may find it more convenient to use
EquiRpl_LPF , EquiRpl_HPF , EquiRpl_BPF , and EquiRpl_BSF . These functions,
which provide lowpass, highpass, bandpass and bandstop FIR filters with equal weighting factors
in all bands, are special cases of Equi_Ripple with simplified parameters.

For more information about windowing, see the section About Windowing in Chapter 1,
Advanced Analysis Library Overview.

Example 1
/* Design a 24-point lowpass filter and filter the incoming signal. */
double x[256], coef[24], y[280], fs, delta;
double A[2]; /* array of frequency responses */
double wts[2]; /* array of weighting factors */
double cutoffs[4]; /* frequency points */

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-88 © National Instruments Corporation

int n, m;
int bands; /* number of bands */
int type; /* filter type */

bands = 2; /* one pass band and one stop band */
fs = 1000.0; /* sampling frequency */
A[0] = 1.0; /* 1 for the pass band */
A[1] = 0.0; /* 0 for the stop band */
wts[0] = 1.0; /* weighting factor for the pass band */
wts[1] = 1.0; /* weighting factor for the stop band */
cutoffs[0] = 0.0;
cutoffs[1] = 300.0; /* the first stop band [0, 300.0] */
cutoffs[2] = 400.0;
cutoffs[3] = 500.0; /* the pass band [400, 500] */
type = 1; /* multiple band filter */
n = 24; /* filter length */
m = 256;
Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);
Convolve (coef, n, x, m, y);/*convolve the filter with the signal */

Example 2
/* Design a 31-point bandpass filter and filter the incoming signal. */
double x[256], coef[55], y[287], fs, delta;
double A[3]; /* array of frequency responses */
double wts[3]; /* array of weighting factors */
double cutoffs[6]; /* frequency points */
int n, m;
int bands; /* number of bands */
int type; /* filter type */

bands = 3; /* one pass band and two stop bands */
fs = 1000.0; /* sampling frequency */
A[0] = 0.0; /* 0 for the first stop band */
A[1] = 1.0; /* 1 for the stop band */
A[2] = 0.0; /* 0 for second stop band */
wts[0] = 10.0; /* weighting factor for the first stop band */
wts[1] = 1.0; /* weighting factor for the pass band */
wts[2] = 4.0; /* weighting factor for the second stop band */
cutoffs[0] = 0.0;
cutoffs[1] = 200.0; /* the first stop band [0, 200.0] */
cutoffs[2] = 250.0;
cutoffs[3] = 350.0; /* the pass band [250, 350] */
cutoffs[4] = 400.0;
cutoffs[5] = 500.0; /* the second stop band */
type = 1; /* multiple band filter */
n = 31; /* filter length */
m = 256;
Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);
Convolve (coef, n, x, m, y);/*convolve the filter with the signal */

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-89 LabWindows/CVI Advanced Analysis Library

Example 3
/* Design a 30-point differentiator. */
double coef[30], fs, delta;
double A[1]; /* array of frequency responses */
double wts[1]; /* array of weighting factors */
double cutoffs[2]; /* frequency points */
int n;
int bands; /* number of bands */
int type; /* filter type */

bands = 1; /* one pass band and one stop band */
fs = 1000.0; /* sampling frequency */
A[0] = 1.0; /* 1 for the band */
wts[0] = 1.0; /* weighting factor for the band */
cutoffs[0] = 0.0;
cutoffs[1] = 500.0; /* the entire frequency range */
type = 2; /* differentiator */
n = 30; /* filter length */
Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);

Example 4
/* Design a 20-point Hilbert transform. */
double coef[20], fs, delta;
double A[1]; /* array of frequency responses */
double wts[1]; /* array of weighting factors */
double cutoffs[2]; /* frequency points */
int n;
int bands; /* number of bands */
int type; /* filter type */

bands = 1; /* one pass band and one stop band */
fs = 1000.0; /* sampling frequency */
A[0] = 1.0; /* 1 for the band */
wts[0] = 1.0; /* weighting factor for the band */
cutoffs[0] = 100.0;
cutoffs[1] = 500.0;
type = 3; /* Hilbert transform */
n = 20; /* filter length */
Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);

EquiRpl_BPF

int status = EquiRpl_BPF (double fs, double f1, double f2, double f3,
double f4, int n, double coef[] , double *delta);

Purpose

Designs a bandpass FIR linear phase filter using the Parks-McClellan algorithm. The function is
a special case of the general Parks-McClellan algorithm. This function generates only the filter
coefficients. No filtering of data is actually performed.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-90 © National Instruments Corporation

Parameters

Input fs double-precision sampling frequency

f1 double-precision cutoff frequency 1

f2 double-precision cutoff frequency 2

f3 double-precision cutoff frequency 3

f4 double-precision cutoff frequency 4

n integer filter length

Output coef double-precision array filter coefficients

delta double-precision normalized ripple size

Parameter Discussion

There are two stop bands and one pass band. The first stop band is [0, f1] and the second stop
band is [f4, fs/2]. The pass band is [f2, f3]. f1, f2, f3, and f4 must be in ascending order. Refer
to the Equi_Ripple function description for more information.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Design a 51-point bandpass filter and filter the incoming signal. */
double x[256], coef[25], y[301], fs, f1, f2, f3, f4, delta;
int n, m;
fs = 1000.0; /* sampling frequency */
f1 = 200.0; /* the first stop band [0, 200] */
f2 = 250.0;
f3 = 350.0; /* the pass band [250, 350] */
f4 = 400.0; /* the second stop band [400, 500] */
n = 51; /* filter length */
m = 256;
EquiRpl_BPF (fs, f1, f2, f3, f4, n, coef, &delta);
Convolve (coef, n, x, m, y);/*convolve the filter with the signal */

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-91 LabWindows/CVI Advanced Analysis Library

EquiRpl_BSF

int status = EquiRpl_BSF (double fs, double f1, double f2, double f3,
double f4, int n, double coef[] , double *delta);

Purpose

Designs a bandstop FIR linear phase filter using the Parks-McClellan algorithm. The function is
a special case of the general Parks-McClellan algorithm. This function generates only the filter
coefficients. No filtering of data is actually performed.

Parameters

Input fs double-precision sampling frequency

f1 double-precision cutoff frequency 1

f2 double-precision cutoff frequency 2

f3 double-precision cutoff frequency 3

f4 double-precision cutoff frequency 4

n integer filter length

Output coef double-precision array filter coefficients

delta double-precision normalized ripple size

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

There are two pass bands and one stop band. The first pass band is [0, f1] and the second pass
band is [f4, fs/2]. The stop band is [f2, f3]. f1, f2, f3, and f4 must be in ascending order. Refer
to the Equi_Ripple function description for more information.

Example
/* Design a 51-point bandstop filter and filter the incoming signal. */
double x[256], coef[25], y[301], fs, f1, f2, f3, f4, delta;
int n, m;
fs = 1000.0; /* sampling frequency */
f1 = 200.0; /* the first pass band [0, 200] */
f2 = 250.0;
f3 = 350.0; /* the stop band [250, 350] */
f4 = 400.0; /* the second pass band [400, 500] */
n = 51; /* filter length */
m = 256;
EquiRpl_BSF (fs, f1, f2, f3, f4, n, coef, &delta);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-92 © National Instruments Corporation

EquiRpl_HPF

int status = EquiRpl_HPF (double fs, double f1, double f2, int n, double coef [] ,
double *delta);

Purpose

Designs a highpass FIR linear phase filter using the Parks-McClellan algorithm. The function is
a special case of the general Parks-McClellan algorithm. This function generates only the filter
coefficients. No filtering of data is actually performed.

Parameters

Input fs double-precision sampling frequency

f1 double-precision cutoff frequency 1

f2 double-precision cutoff frequency 2

n integer filter length

Output coef double-precision array filter coefficients

delta double-precision normalized ripple size

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

There is one stop band and one pass band. The stop band is [0, f1] and the pass band is [f2, fs/2].
Refer to the Equi_Ripple function description for more information.

Example
/* Design a 25-point highpass filter and filter the incoming signal. */
double x[256], coef[25], y[281], fs, f1, f2, delta;
int n, m;
fs = 1000.0; /* sampling frequency */
f1 = 300.0; /* the stop band [0, 300] */
f2 = 400.0; /* the pass band [400, 500] */
n = 25; /* filter length */
m = 256;
EquiRpl_HPF (fs, f1, f2, n, coef, &delta);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-93 LabWindows/CVI Advanced Analysis Library

EquiRpl_LPF

int status = EquiRpl_LPF (double fs, double f1, double f2, int n, double coef[] ,
double *delta);

Purpose

Designs a lowpass FIR linear phase filter using the Parks-McClellan algorithm. The function is a
special case of the general Parks-McClellan algorithm. This function generates only the filter
coefficients. No filtering of data is actually performed.

Parameters

Input fs double-precision sampling frequency

f1 double-precision cutoff frequency 1

f2 double-precision cutoff frequency 2

n integer filter length

Output coef double-precision array filter coefficients

delta double-precision normalized ripple size

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

There is one pass band and one stop band. The pass band is [0, f1] and the stop band is [f2, fs/2].
Refer to the Equi_Ripple function description for more information.

Example
/* Design a 25-point lowpass filter and filter the incoming signal. */
double x[256], coef[25], y[281], fs, f1, f2, delta;
int n, m;
fs = 1000.0; /* sampling frequency */
f1 = 300.0; /* the pass band [0, 300] */
f2 = 400.0; /* the stop band [400, 500] */
n = 25; /* filter length */
m = 256;
EquiRpl_LPF (fs, f1, f2, n, coef, &delta);
Convolve (coef, n, x, m, y);/* convolve the filter with the signal*/

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-94 © National Instruments Corporation

ExBkmanWin

int status = ExBkmanWin (double x[] , int n);

Purpose

Applies an exact Blackman window to the input sequence X. If Y represents the output sequence,
the elements of Y are obtained using the following equation.

Yi = Xi (a0-a1*cos(2πi/n)+a2*cos(4πi/n)), i=0, . . ., n-1

where
a0 = 7938.0/18608.0
a1 = 9240.0/18608.0
a2 = 1430.0/18608.0

Parameters

Input x double-precision array contains the input signal.

n integer number of elements in the input array.

Output x double-precision array contains the signal after applying the
exact Blackman window.

Return Value

status integer refer to error codes in Appendix A

ExpFit

int status = ExpFit (double x[] , double y[] , int n, double z[] , double *a,
double *b, double *mse);

Purpose

Finds the coefficient values that best represent the exponential fit of the data points (x, y) using
the least squares method. The ith element of the output array is obtained by using the following
formula..

z a ei
b xi= ∗ ∗

The mean squared error (mse) is obtained using the following formula.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-95 LabWindows/CVI Advanced Analysis Library

mse= zi − yi
2
/n

i= 0

n− 1

∑

where n is the number of sample points.

Parameters

Input x double-precision array x values

y double-precision array y values

n integer number of sample points

Output z double-precision array best exponential fit

a double-precision amplitude

b double-precision exponential constant

mse double-precision mean squared error

Note: The y values must be all positive or all negative to perform an exponential fit.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate an exponential pattern and find the best exponential fit. */
double x[200], y[200], z[200];
double first, last, a, b, amp, decay, mse;
int n;

n = 200;
first = 0.0;
last = 1.99E2;
Ramp (n, first, last, x); /* x[i] = i */

a = 3.5;
b = -2.75;
for (i=0; i<n; i++)
 y[i] = a * exp(b*x[i]);
/* Find the best exponential fit in z.*/
ExpFit (x, y, n, z, &, &decay, &mse);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-96 © National Instruments Corporation

ExpWin

int status = ExpWin (double x[] , int n, double final);

Purpose

Applies an exponential window to the input sequence X. If Y represents the output sequence, the
elements of Y are obtained with the following formula.:

Yi = Xi e
ai

where
a = ln(f)/(n-1)
f is the final value
n is the number of elements in X.

Parameters

Input x double-precision array on input, x[n] contains the input signal.

n integer number of elements in the input array.

final double-precision final value of the exponential window
function.

Output x double-precision array on output, x[n] contains the signal after
applying the exponential window.

Return Value

status integer refer to error codes in Appendix A

F_Dist

int status = F_Dist (double f, int n, int m, double *p);

Purpose

Calculates the one-sided probability p:

p = prob(F ≤ f)

where F is a random variable from the F-distribution with n and m degrees of freedom.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-97 LabWindows/CVI Advanced Analysis Library

Parameters

Input f double-precision -∞ < f < ∞
n integer degrees of freedom

m integer degrees of freedom

Output p double-precision probability (0 ≤ p <1)

Return Value

status integer refer to error codes in
Appendix A

Example
double x, p;
int n, m;
x = -123.456;
n = 6;
m = 7;
F_Dist (x, n, m, &p);
/* Now p = 0 because F distributed variables are non-negative. */

FFT

int status = FFT (double x[] , double y[] , int n);

Purpose

Computes the Fast Fourier Transform of the complex data. Let X = x + jy be the complex array,
then:

Y = FFT {X}

The operation is done in place and the input arrays x and y are overwritten. See the About the
Fast Fourier Transform (FFT) section in Chapter 1.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-98 © National Instruments Corporation

Parameters

Input x double-precision array real part of complex array

y double-precision array imaginary part of complex
array

n integer number of elements

Output x double-precision array real part of FFT

y double-precision array imaginary part of FFT

Note: The number of elements (n) must be a power of two.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate two arrays with random numbers and compute its

Fast Fourier Transform. */
double x[256], y[256];
int n;
n = 256;
Uniform (n, 17, x);
Uniform (n, 17, y);
FFT (x, y, n);

FHT

int status = FHT (double x[] , int n);

Purpose

Computes the Fast Hartley Transform using the following formula.

()X x cas ik nk i
i

n

=
=

−

∑ 2
0

1

π /

where Xk is the kth point of the FHT, and cas (k) = cos (k) + sin (k).

The operation is done in place and the x input array is overwritten.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-99 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array array to be transformed

n integer number of elements

Output x double-precision array Hartley Transform

Note: The number of elements (n) must be a power of two.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate an array with random numbers and compute its */
/* Fast Hartley Transform. */
double x[256];
int n;
n = 256;
Uniform (n, 17, x);
FHT (x, n);

FIR_Coef

int status = FIR_Coef (int type, double fs, double fL , double fH , int taps,
double coef[]);

Purpose

Generates a set of FIR filter coefficients based on the window design method. This function
returns the coefficients as the truncated impulse response of an ideal frequency response of the
selected filter type. The type parameter has the following valid values.

type

fH
fH=







0 lowpass filter, is not used.
1 highpass filter, is not used.
2 bandpass filter
3 bandstop filter

The actual filtering

y Coef • xi
i 0

taps 1

n n= −
=

−

∑ 1

is achieved by using the convolution function Convolve .

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-100 © National Instruments Corporation

Parameters

Input type integer controls the filter type of the FIR filter
coefficients to be designed.

fs double-precision sampling frequency in hertz.

fL double-precision desired lower cutoff frequency in hertz.

fH double-precision desired upper cutoff frequency in hertz.

taps integer desired length of the FIR filter.

Output coef double-precision array computed output window FIR filter
coefficients.

Return Value

status integer refer to error codes in Appendix A

FlatTopWin

int status = FlatTopWin (double x[] , int n);

Purpose

Applies a flat top window to the input sequence x. If y represents the output sequence, the
elements of y are obtained using the following equation.

yi = xi (0.2810639 - 0.5208972cos(2πi/n) + 0.1980399cos(4πi/n))

where n is the number of elements in x.

Parameters

Input x double-precision array on input, x[n] contains the input signal.

n integer number of elements in the input array.

Output x double-precision array on output, x[n] contains the signal after
applying the flat top window.

Return Value

status integer refer to error codes in Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-101 LabWindows/CVI Advanced Analysis Library

ForceWin

int status = ForceWin (double x[] , int n, double duty);

Purpose

Applies a force window to the input sequence x:

xi =
xi 0 i int[(duty /100)*n]

0 elsewhere

 ≤ ≤





Parameters

Input x double-precision array on input, x[n] contains the input signal.

n integer number of elements in the input array.

duty double-precision duty cycle, in percent, of the force
window.

Output x double-precision array on output, x[n] contains the signal after
applying the force window.

Return Value

status integer refer to error codes in Appendix A

ForwSub

int status = ForwSub (void *a, double y[] , int n, double x[] , int p[]);

Purpose

Solves the linear equations a*x = y by forward substitution. a is assumed to be an n by n lower
triangular matrix whose diagonal elements are all ones. x is obtained by the following formulas.

x0 = y0

x y a x
i i i j j

j

i

=
=

−

∑ ,
*

0

1

for i = 1, 2,…n-1

The operation can be performed in place; that is, x and y can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-102 © National Instruments Corporation

Parameters

Input a double-precision 2D array input matrix

y double-precision array input vector

n integer dimension size of a

p integer array permutation vector

Output x double-precision array solution vector

Return Value

status integer refer to error codes in
Appendix A

Using This Function

ForwSub is used in conjunction with LU and BackSub to solve linear equations. The
parameter p is obtained from LU. If you are not using the LU function, set p[i] = i.

Refer to the LU function description for more information.

Example
/* To solve a linear equation A*x = y */
double A[10][10], x[10], y[10];
int p[10]; /* permutation vector */
int sign, n;

n = 10;
LU (A, n, p, &sign); /* LU decomposition of A */
ForwSub (A, y, n, x, p); /* forward substitution */
BackSub (A, x, n, x); /* backward substitution */

FreeIIRFilterPtr

int status = FreeIIRFilterPtr (IIRFilterPtr filterInformation);

Purpose

Frees the IIR cascade filter structure and all internal arrays.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-103 LabWindows/CVI Advanced Analysis Library

Parameters

Input filterInformation IIRFilterPtr filterInformation is the pointer to the filter
structure which contains the filter
coefficients and the internal filter
information.

Please refer to the function
AllocIIRFilterPtr for further
information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.

GaussNoise

int status = GaussNoise (int n, double sDev, int seed, double noise[]);

Purpose

Generates an array of random Gaussian numbers distributed with expected zero mean value, and
specified standard deviation.

Parameters

Input n integer number of samples

sDev double-precision desired standard deviation

seed integer initial seed value

Output noise double-precision array Gaussian noise pattern

Return Value

status integer refer to error codes in
Appendix A

Using This Function

The expected standard deviation of the returned pattern is the one specified by the user. The
expected mean value is zero; that is, the noise array values are expected to be centered about

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-104 © National Instruments Corporation

zero. When seed ≥ 0, a new random sequence is generated using the seed value. When seed < 0,
the previously generated random sequence continues.

Example
/* The following code generates an array of random Gaussian distributed
numbers. */
double x[20], sDev;
int n;
n = 20;
sDev = 5.0;
GaussNoise (n, sDev, 17, x);

GenCosWin

int status = GenCosWin (double x[] , int n, double a[] , int na);

Purpose

Applies a general cosine window to the input sequence x. If y represents the output sequence,
the elements of y are obtained using the following formula.

yi = xi (-1)k akk=0

na-1
 cos(2 ki / n)∑ π

where
a is the array of coefficients
na is the number of coefficients
n is the number of elements in x

Parameters

Input x double-precision array on input, x[n] contains the input signal.

n integer number of elements in the input array.

a double-precision array general cosine coefficient array.

na integer number of elements in the a.

Output x double-precision array on output, x[n] contains the signal after
applying the general Cosine Window.

Return Value

status integer refer to error codes in Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-105 LabWindows/CVI Advanced Analysis Library

GenLSFit
int status = GenLSFit (void * H, int n, int k, double y[] , double stdDev[] ,

int algorithm , double z[] , double b[] , double covar[] ,
double * mse);

Purpose

Finds the Best Fit k-dimensional plane and the set of linear coefficients using the least chi-
squares method for observation data sets,

{ , ,..., , }x x x xi i ik i0 1 1−

where i = 0, 1,..., n - 1, and
n = the number of your observation data sets.

Parameters

Input H 2D double-
precision
array

An n-by-k matrix, which contains the observation
data {xi0, xi1, ..., xik-1} i = 0,1,...,n-1, where n is the
number of rows in H, k is the number of columns
in H.

n integer Number of rows of H as well as the number of
elements in y.

k integer Number of columns of H as well as the number of
elements in b.

y 1D double-
precision
array

Number of elements in y should be equal to the
number of rows in H.

stdDev 1D double-
precision
array

Standard deviation σi for data point (xi, yi). If they
are equal or if you do not know, pass an empty
array, and the function will ignore this parameter.
The size of this array should be equal to n.

algorithm integer Algorithm to be used in solving the multiple linear
regression model. The algorithm has six
selections:
 0: SVD
 1: Givens
 2: Givens2
 3: Householder
 4: LU decomposition
 5: Cholesky algorithm

(continues)

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-106 © National Instruments Corporation

Parameters (Continued)

Output z 1D double-
precision
array

Fitted data computed by using the coefficients b.

b 1D double-
precision
array

Set of coefficients that minimize χ2, which is
defined in equation (2-2).

covar 2D double-
precision
array

Matrix of covariances C with k-by-k elements. cjk

is the covariance between bj and bk and cjj is the
variance of bj. If you pass an empty array for
covar, the function will not compute this matrix.

mse double-
precision

Mean squared error.

Using This Function

You can use GenLSFit to solve multiple linear regression problems. You can also use it to
solve for the linear coefficients in a multiple-function equation.

The general least squares linear fit problem can be described as follows. Given a set of
observation data, find a set of coefficients that fit the linear “model.”

y b x b xi i k ik= + + − −0 0 1 1...

=

=

−

∑b xj ij

j

k

0

1

 i = 0,1,..., n -1 (2-1)

where b is the set of coefficients,
n is the number of elements in y and the number of rows of H, and
k is the number of elements in b.
xij is your observation data, which is contained in H.

H

x x x

x x x

x x x

k

k

n n n k

=



















−

−

− − − −

00 01 0 1

10 11 1 1

10 12 1 1

...

:

...

Equation (2-1) can also be written as Y = HB.
This is a multiple linear regression model, which uses several variables

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-107 LabWindows/CVI Advanced Analysis Library

xi0, xi1, ..., xik-1,

to predict one variable yi. In contrast, the LinFit , ExpFit , and PolyFit functions are all
based on a single predictor variable, which uses one variable to predict another variable.
In most cases, we have more observation data than coefficients. The equations in (2-1) may
not produce the solution. The fit problem becomes to find the coefficients B that minimizes
the difference between the observed data, yi and the predicted value,

z b xi j ij

j

k

=

=

−

∑
0

1

.

This function uses the least chi-squares plane method to obtain the coefficients in (2-1), that
is, finding the solution, B, which minimizes the following quantity.

χ
σ σ

2

0

1 2

0

1

0

1

2

0 0
2= −






 =

−
























= −

=

−
=

−

=

−

∑
∑

∑y z

y b x

H B Yi i

i
i

n i j ij

i

k

i
i

n

(2-2)

whereh
x

y
y

i n j kij
ij

i
i

i

i
0 0 0 1 1 0 1 1= = = − = −

σ σ
, , , ,..., ; , ,..., .

In equation (2-2) , σi is the standard deviation, StdDev. If the measurement errors are
independent and normally distributed with constant standard deviation σi = σ , the preceding
equation is also the least squares estimation.

There are different ways to minimize χ2. One way to minimize χ2 is to set the partial

derivatives of χ2 to zero with respect to b0, b1,..., bk-1.

∂χ
∂
∂χ
∂

∂χ
∂

2

0
2

1

2

1

0

0

0

b

b

bk

=

=

=

















−

.

.

.

The preceding equations can be derived to

H H B H YT T
0 0 0= . (2-3)

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-108 © National Instruments Corporation

HT
0 is the transposition of H0 .

Equation (2-3) and the one preceding it are also called normal equations of the least squares
problems. You can solve them using LU or Cholesky factorization algorithms, but the
solution from the normal equations is susceptible to round-off error.

An alternative, and preferred way to minimize χ2 is to find the least squares solution of
equations

H0B = Y0.

You can use QR or SVD factorization to find the solution, B. For QR factorization, you can
choose Householder, Givens, and Givens2 (also called fast Givens).

Different algorithms can give you different precision, and in some cases, if one algorithm
cannot solve the equation, perhaps another algorithm can. You can try different algorithms to
find the one best suited to your data.

The covariance matrix covar is computed as follows.

covar= 





−
H HT

0 0

1

The best fitted curve z is given by the following formula.

z b xi j ij

j

k

=

=

−

∑
0

1

The mse is obtained using the following formula.

mse
n

y zi i

i
i

n

= −







=

−

∑1

0

1 2

σ

The polynomial fit that has a single predictor variable can be thought of as a special case of
multiple regression. If the observation data sets are {xi, yi} where i = 0, 1, ..., n-1, the model
for polynomial fit is as follows.

y b x b b x b x b xi j i
j

i i k i
k

j

k i

= = + + + + −
−

=

−

∑ 0 1 2
2

1
1

0

� (2-4)

where i = 0, 1, 2,..., n - 1.

Comparing equations (2-1) and (2-4) shows that x xij i
j= . In other words,

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-109 LabWindows/CVI Advanced Analysis Library

x x x x x x x xi i i i i i ik i
k

0
0

1 2
2

1
1= = = =−

−, , ,� .

In this case, you can build H as follows:

H

x x x

x x x

x x x

k

k

n n n
k

=





















−

−

− − −
−

1

1

1

0 0
2

0
1

1 1
2

1
1

1 1
2

1
1

�

�

Instead of using x xij j
i= , you can also choose another function formula to fit the data sets

{ xi, yi}. In general, you can select xij = fj(xi). Here, fj(xi) is the function model that you choose

to fit your observation data. In polynomial fit, f (xj i) = xi
j .

In general, you can build H as follows:

() () () ()
() () () ()

() () () ()

H

f x f x f x f x

f x f x f x f x

f x f x f x f x

k

k

n n n k n

=





















−

−

− − − − −

0 0 1 0 2 0 1 0

0 1 1 1 2 1 1 1

0 1 1 1 2 1 1 1

�

�

�

�

Your fit model is:

y b f x b f x b f xi k k= + + + − −0 0 1 1 1 1() () ... () .

The following two examples show how to use this function. The first example uses the
GenLSFit function to perform multiple regression analysis based entirely on tabulated
observation data. The second solves for the linear coefficients in a multiple-function
equation.

Example: Predicting Cost

Suppose you want to estimate the total cost (in dollars) of a production of baked scones;
using the quantity produced, X1, and the price of one pound of flour, X2. To keep things
simple, the following five data points form this sample data table.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-110 © National Instruments Corporation

Cost (dollars)
Y

Quantity
X1

Flour Price
X2

$150 295 $3.00

$75 100 $3.20

$120 200 $3.10

$300 700 $2.80

$50 60 $2.50

You want to estimate the coefficients to the following equation.

Y = b0 + b1X1+ b2X2

The only parameters that you need to build are H (observation matrix) and y arrays. Each
column of H is the observed data for each independent variable: the first column is one
because the coefficient b0 is not associated with any independent variable.
H should be filled in as:

H =























1 295 3

1 100 320

1 200 310

1 700 280

1 60 250

.

.

The following code is based on this example.

/*The example of predicting cost using GenLSFit */
int k, n, algorithm, status;
double H[5][3], y[5], z[5], b[3], X1[5],X2[5], mse;
double *stdDev=0, *covar=0; /* define empty arrays, the function will ignore
these parameters. */
n = 5;
k = 3;
/* Read in data for X1,X2 and y */

.

.

.
/* Construct matrix H */
for(i=0;i<n;i++) {

H[i][0] = 1; /* fill in the first column of H. */
H[i][1] = X1[i]; /* fill in the second column of H. */
H[i][2] = X2[i]; /* fill in the third column of H. */

}
algorithm = 0; /* use SVD algorithm */
status = GenLSFit(H,n,k,y,stdDev,algorithm,z,b,covar,&mse);

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-111 LabWindows/CVI Advanced Analysis Library

Example: Linear Combinations

Suppose that you have collected samples from a transducer (Y Values) and you want to solve
for the coefficients of the model.

() ()y b b x b x b x= + + +0 1 2 3
3sin cosω ω

To build H, you set each column to the independent functions evaluated at each x value.
Assuming there are 100 x values, H would be the following array.

() ()
() ()
() ()

() ()

H

x x x

x x x

x x x

x x x

=

























1

1

1

1

0 0 0

1 1 1
2

2 2 2
2

99 99 99
2

sin cos

sin cos

sin cos

sin cos

ω ω

ω ω

ω ω

ω ω
� � � �

The following code is based on this example.

/*The example of linear combinations using GenLSFit */
int i, k, n, algorithm, status;
double H[100][4], y[100], z[100], b[4],x[100],mse, w;
double *stdDev=0, *covar=0; /* define empty arrays, the function will ignore
these parameters. */
n = 100;
k = 4;
w = 0.2;
/* Read in data for x and y */

.

.

.
/* Construct matrix H */
for(i=0;i<n;i++) {

H[i][0] = 1; /* fill in the first column of H. */
H[i][1] = sin(w*x[i]); /* fill in the second column of H. */
H[i][2] = cos(w*x[i]); /* fill in the third column of H. */
H[i][3] = pow(x[i],3); /* fill in the fourth column of H. */

}
algorithm = 0; /* use SVD algorithm */
status = GenLSFit(H,n,k,y,stdDev,algorithm,z,b,covar,&mse);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-112 © National Instruments Corporation

GenLSFitCoef

int status = GenLSFitCoef (void *H, int n, int k, double y[] , double b[] ,
int algorithm);

Purpose

Finds the k-dimension linear curve values and the set of k-dimension linear fit coefficients,
which describe the k-dimension linear curve that best represents the input data set using the least-
squares solution. The general form of the k-dimension linear fit is as follows.

Let i = 0, 1, ..., n be your ith observation and xij , . . ., xik-1 be k-1 observed x points and yi be
observed y point, the H matrix is composed by

H

1 x x . . . x
1 x x . . . x

1 x x . . . x

nxk

01 02 0k-1

11 12 1k-1

n-1,1 n-1,2 n-1,k-1

=























.

.

.

The general LS linear fit coefficient bk is obtained by minimizing the quantity

Q = (y z) (y b b x)i
i=0

n-1

i
2

i
i=0

n 1

0 j
j=1

k 1

ij
2∑ ∑ ∑− = − −

− −

The algorithm has the following valid selection.

0: using the singular value decomposition (defaults)
1: using the Givens decomposition
2: using the square root free Givens decomposition
3: using the Household transformation
4: using the LU decomposition
5: using the Cholesky decomposition

Each algorithm may offer different precision depending on the input data. Given the coefficient
vector b[k] and H, the fitted data zi can be computed by a simple matrix multiplication

Z = H • b

and the mean squared error can be computed by

mse =
1

n
 (zi

i=0

n−1

∑ − yi)
2

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-113 LabWindows/CVI Advanced Analysis Library

Parameters

Input H double-precision 2D
array

input matrix which represents the
formula you use to fit the data set
{X,Y}. H[i][j] are the function values
of X[i].

n integer number of rows used in H, as well as
the number of elements in y.

k integer number of columns used in H, as well
as the number of elements in b.

y double-precision array array containing the y coordinates of
the (x,y) data sets to be fitted.

algorithm integer algorithm to be used in solving the
multiple linear regression model.

Output b double-precision array contains the set of linear coefficients
that best fit the multiple linear
regression model in a least squares
sense. The size of this array must be
at least k.

Return Value

status integer refer to error codes in Appendix A

GetAnalysisErrorString

char * message = GetAnalysisErrorString (int errorNum)

Purpose

Converts the error number returned by an Analysis Library function into a meaningful error
message.

Parameters

Input errorNum integer status returned by Analysis
function.

Return Value

message string explanation of Error

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-114 © National Instruments Corporation

HamWin

int status = HamWin (double x[] , int n);

Purpose

Applies a Hamming window to the x input signal. The Hamming window is defined by the
formula.

wi = 0.54 - 0.46*cos(2π i/n) for i = 0, 1, ..., n-1

The output signal is obtained by the following formula.

xi= xi*wi for i = 0, 1, ..., n-1

The window operation is performed in place. The windowed data x replaces the input data x.

Parameters

Input x double-precision array input data

n integer number of elements in x

Output x double-precision array windowed data

Return Value

status integer refer to error codes in
Appendix A

HanWin

int status = HanWin (double x [] , int n);

Purpose

Applies a Hanning window to the x input signal. The Hanning window is defined by the
following formula.

w i = 0.5 - 0.5*cos(2πi/n) for i = 0, 1, ..., n-1

The output signal is obtained by the following formula.

x i = x i * w i for i = 0, 1, ..., n-1

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-115 LabWindows/CVI Advanced Analysis Library

The window operation is performed in place. The windowed data x replaces the input data x.

Parameters

Input x double-precision array input data

n integer number of elements in x

Output x double-precision array windowed data

Return Value

status integer refer to error codes in
Appendix A

Histogram

int status = Histogram (double x[] , int n, double xBase, double xTop, int
hist[] , double axis[] , int intervals);

Purpose

Computes the histogram of the x input array. The histogram is obtained by counting the number
of times that the elements in the input array fall in the ith interval. Let

∆x = (xTop - xBase) / intervals

 y
1 if i x x - xBase < (i + 1) x

0 otherwise
 i (x) =

≤



∆ ∆

The ith element of the histogram is:

()hist y x
i i j

j 0

n 1

=
=

−

∑

The values of the histogram axis are the mid-point values of the intervals.

axisi = i∆x + ∆x/2 +xBase

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-116 © National Instruments Corporation

Parameters

Input x double-precision array input data

n integer number of elements in x

xBase double-precision lower range

xTop double-precision upper range

intervals integer number of intervals

Output hist integer array histogram of x

axis double-precision array histogram axis array

Return Value

status integer refer to error codes in
Appendix A

Example
/*Generate a Gaussian distributed random array and find its histogram.*/
double x[2000], axis[50], max, min;
int hist[50], n, intervals, imax, imin;
n = 2000;
intervals = 50;
GaussNoise (n, 1.0E0, 17, x);
MaxMin (x, n, &max, &imax, &min, &imin);
Histogram (x, n, min, max, hist, axis, intervals);

IIRCascadeFiltering

int status = IIRCascadeFiltering (const double x[] , int n,
IRFilterPtr filterInformation , double y[]);

Purpose

Filters the input sequence using the cascade IIR filter specified by the filterInformation
structure. Each of the IIR cascaded stages is 2nd order for lowpass and highpass filters, and
4th order for bandpass and bandstop filters.

filterInformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr and then call one of the cascade IIR design functions
(Bw_CascadeCoef , Ch_CascadeCoef , Elp_CascadeCoef ,
InvCh_CascadeCoef , Bessel_CascadeCoef) before calling this function.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-117 LabWindows/CVI Advanced Analysis Library

The internal filter state information for the filtering operation is kept in the filterInformation
structure, so this function can be called in a loop, continually filtering new input array data,
producing new output filtered data.

If you have finished filtering one set of input data and wish to filter a completely new data
set, you should call ResetIIRFilter before calling this function with the new data.
ResetIIRFilter will cause the internal filter state information to be cleared before the
next filtering operation.

Parameters

Input x const double-
precision

Array containing the raw data to be filtered.

n integer Specifies the number of points in both the
input x and output y.

filterInformation IIRFilterPtr filterInformation is the pointer to the filter
structure which contains the filter
coefficients and the internal filter
information. You must allocate this structure
by calling AllocIIRFilterPtr before
calling this cascade IIR filtering function.

Please refer to the function
AllocIIRFilterPtr for further
information about the filter structure.

Output y double-
precision array

Array contains the output of the IIR
Filtering operation. The size of this array
must be at least n.

Return Value

status integer Refer to error codes in
Appendix A.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-118 © National Instruments Corporation

IIRFiltering

int status = IIRFiltering (double x[] , int nx, double a[] , double y1[] , int na,
double b[] , double x1[] , int nb, double y[]);

Purpose

Filters the input sequence using the IIR filter specified by reverse coefficients a[na]and forward
coefficients b[nb] by

y =
1

a
b x a y

n i n i i n i
i

na

i=0

nb-1

0 1

1

− −
=

−

−






∑∑

The reverse and forward coefficients are obtained by respective IIR Coefficient functions such as
Bw_Coef() .

Parameters

Input x double-precision array raw data to be filtered.

nx integer number of points in both the input X
array.

a double-precision array array containing the reverse
coefficients for the IIR filtering
operation.

y1 double-precision array y1 [na-1] contains the initial
conditions, or states. The size of this
array must be at least na-1.

na integer number of coefficients in both the a
Coefficients array and the y1
conditions array.

b double-precision array array containing the forward
coefficients for the IIR filtering
operation.

x1 double-precision array x1 [nb-1] contains the initial
conditions, or states. The size of this
array must be at least nb-1.

nb integer number of coefficients in both the b
Coefficients array and the x conditions
array.

(continues)

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-119 LabWindows/CVI Advanced Analysis Library

Parameters (Continued)

Output y1 double-precision array on output, y1[na-1] contains the final
conditions for the next iterations.

x1 double-precision array on output, x1 [nb-1] contains the final
conditions for the next iterations.

y double-precision array y array contains the output of the IIR
filtering operation. The size of this
array must be at least nx.

Return Value

status integer refer to error codes in Appendix A

Impulse

int status = Impulse (int n, double amp, int index, double x[]);

Purpose

Generates an array of numbers that has the pattern of an impulse waveform. The ith element of
the output array is obtained using the following formula.

xi =


amp if i = index
0 otherwise

Parameters

Input n integer number of elements in x

amp double-precision amplitude

index integer impulse index

Output x double-precision array impulse array

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-120 © National Instruments Corporation

Example
/* The following code generates the impulse pattern
x = { 0.0, 0.0, 1.5, 0.0, 0.0 }. */
double x[5], amp;
int n, i;
n = 5;
i = 2;
amp = 1.5;
Impulse (n, amp, i, x);

ImpulseResponse

int status = ImpulseResponse (double stimulus[] , double response[] , int n,
double impulse[]);

Purpose

Computes the impulse response of a network based on time-domain signals stimulus and
response. The impulse response is in the time domain. The impulse response is the inverse
Fourier transform of the transfer function.

impulse = Inverse Real FFT [Sxy(f) / Sxx(f)]

where Sxy(f) is the two-sided cross power spectrum of the stimulus (x) with the response (y),
and Sxx(f) is the two-sided auto power spectrum of the stimulus.

Parameters

Input stimulus double-precision array contains the time-domain signal,
usually the network stimulus.

response double-precision array contains the time-domain signal,
usually the network response.

n integer number of elements in the input array.
Valid Values: Powers of 2.

Output impulse double-precision array impulse contains the impulse response
of the network based on time-domain
signals stimulus and response. The
size of this array must be at least n.

Return Value

status integer refer to error codes in Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-121 LabWindows/CVI Advanced Analysis Library

Integrate

int status = Integrate (double x[] , int n, double dt, double xInit, double
xFinal, double y[]);

Purpose

Computes the discrete integral of the input array. The ith element of the resulting array is
obtained using the following formula.

[]y x 4 x x * dt/ 6i j 1 j j 1
j 0

i

= + +− +
=
∑

where x-1 = xInit and xn = xFinal.

The operation can be performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input array

n integer number of elements in x

dt double-precision sampling interval

xInit double-precision initial condition

xFinal double-precision final condition

Output y double-precision array integrated array

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate an array with random numbers and integrate it. */
double x[200], y[200];
double dt, xInit, xFinal;
int n;
n = 200;
dt = 0.001;
xInit = -0.5;
xFinal = -0.25;
Uniform (n, 17, x);
Integrate (x, n, dt, xInit, xFinal, y);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-122 © National Instruments Corporation

InvCh_BPF

int status =InvCh_BPF (double x[] , int n, double fs, double fl , double fh,
double atten, int order, double y[]);

Purpose

Filters the input array using a digital bandpass inverse Chebyshev filter. The operation can be
performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

atten double-precision stop band attenuation in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order bandpass inverse
Chebyshev filter. The pass band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, atten;
int n, order;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
InvCh_BPF (x, n, fs, fl, fh, atten, order, y);

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-123 LabWindows/CVI Advanced Analysis Library

InvCh_BSF

int status = InvCh_BSF (double x[] , int n, double fs, double fl , double fh,
double atten, int order, double y[]);

Purpose

Filters the input array using a digital bandstop inverse Chebyshev filter. The operation can be
performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

atten double-precision stop band attenuation in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order bandstop inverse
Chebyshev filter. The stop band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, atten;
int n, order;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
InvCh_BSF (x, n, fs, fl, fh, atten, order, y);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-124 © National Instruments Corporation

InvCh_CascadeCoef

int status = InvCh_CascadeCoef (double fs, double fL , double fH , double atten,
IIRFilterPtr filterInformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by
the inverse Chebyshev filter model.

filterInformation is the pointer to the filter structure which contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present
filter structure and then call AllocIIRFilterPtr with the new type and order
parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without
calling FreeIIRFilterPtr and AllocIIRFilterPtr . In this case, you should
properly reset the filtering operation for that structure by calling ResetIIRFilter before
the first call to IIRCascadeFiltering .

Parameters

Input fs double-precision Specifies the sampling frequency in Hz.

fL double-precision Specifies the desired lower cutoff
frequency of the filter in Hz.

fH double-precision Specifies the desired upper cutoff
frequency of the filter in Hz

atten double-precision Specifies the stop band attenuation, in
decibels, of the IIR filter to be designed.

Output filterInformation IIRFilterPtr filterInformation is the pointer to the
filter structure which contains the filter
coefficients and the internal filter
information. You must allocate this
structure by calling
AllocIIRFilterPtr before calling
this cascade IIR filter design function.

Please refer to the function
AllocIIRFilterPtr for further
information about the filter structure.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-125 LabWindows/CVI Advanced Analysis Library

Return Value

status integer Refer to error codes in
Appendix A.

Example
/* Design a cascade lowpass inverse Chebyshev IIR filter */
double fs, fl, fh, atten, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
atten = 60.0;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {

InvCh_CascadeCoef(fs,fl,fh,atten,filterInfo);
IIRCascadeFiltering(x,n,filterInfo,y);
FreeIIRFilterPtr(filterInfo);

}

InvCh_Coef

int status = InvCh_Coef (int type, int order, double fs, double fL ,
double fH ,double atten, double a[] , int na, double
b[] , int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the inverse
Chebyshev filter model. The type parameter has the following valid values.

type

fH

fH
=










0 lowpass filter, is not used.

1 highpass filter, is not used.

2 bandpass filter

3 bandstop filter

a[na] and b[nb] are the reverse and forward filter coefficients. The actual filtering

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-126 © National Instruments Corporation

y =
1

a
b x - a yn

0
i n-i i n-i

i=1

na-1

i=0

nb-1

∑∑





is achieved by using the function IIRFiltering .

Parameters

Input type integer controls the filter type of the inverse
Chebyshev IIR filter coefficients.

order integer order of the IIR filter.

fs double-precision sampling frequency in Hz.

fL double-precision desired lower cutoff frequency of the
filter in Hz.

fH double-precision desired lower cutoff frequency of the
filter in Hz.

atten double-precision stop band attenuation, in decibels, of
the IIR filter to be designed.

na integer number of coefficients in the a
coefficient array.

nb integer number of coefficients in the b
coefficient array.

Output a double-precision array array containing the reverse
coefficients of the designed IIR filter.

b double-precision array array containing the forward
coefficients of the designed IIR filter.

Return Value

status integer refer to error codes in Appendix A

InvCh_HPF

int status = InvCh_HPF (double x[] , int n, double fs, double fc, double atten,
int order, double y[]);

Purpose

Filters the input array using a digital highpass inverse Chebyshev filter. The operation can be
performed in place; that is, x and y can be the same array.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-127 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fc double-precision cutoff frequency

atten double-precision stop band attenuation in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order highpass inverse
Chebyshev filter. */
double x[256], y[256], fs, fc, atten;
int n, order;
n = 256;
fs = 1000.0;
fc = 200.0;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
InvCh_HPF (x, n, fs, fc, atten, order, y);

InvCh_LPF

int status = InvCh_LPF (double x[] , int n, double fs, double fc, double atten,
int order, double y[]);

Purpose

Filters the input array using a digital lowpass inverse Chebyshev filter. The operation can be
performed in place; that is, x and y can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-128 © National Instruments Corporation

Parameters

Input x double-precision array input data

n integer number of elements in x

fs double-precision sampling frequency

fc double-precision cutoff frequency

atten double-precision stop band attenuation in dB

order integer filter order

Output y double-precision array filtered data

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random signal and filter it using a fifth order lowpass inverse
Chebyshev filter. */
double x[256], y[256], fs, fc, atten;
int n, order;
n = 256;
fs = 1000.0;
fc = 200.0;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
InvCh_LPF (x, n, fs, fc, atten, order, y);

InvF_Dist

int status = InvF_Dist (double p, int n, int m, double *f);

Purpose

Calculates f, given a probability 0 ≤ p < 1, such that

prob(F < f) = p

where F is a random variable from an F-distribution with n and m degrees of freedom.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-129 LabWindows/CVI Advanced Analysis Library

Parameters

Input p double-precision probability (0 ≤ p < 1)

n integer degrees of freedom

m integer degrees of freedom

Output f double-precision the unique number f such that
prob(F < f) = p, where F is a
random variable from an F-
distribution with n and m
degrees of freedom.

Note: When p = 0, f = 0.

Return Value

status integer refer to error codes in
Appendix A

Example
double p, f;
int n,m;
p = 0.635;
n = 2;
m = 4;
InvF_Dist (p, n, m, &f);

InvFFT

int status = InvFFT (double x[] , double y[] , int n);

Purpose

Computes the inverse Fast Fourier Transform of the complex data. Let X = x + jy be the
complex array, then:

Y = FFT-1 {X}

The operation is done in place and the input arrays x and y are overwritten.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-130 © National Instruments Corporation

Parameters

Input x double-precision array real part of complex array

y double-precision array imaginary part of complex
array

n integer number of elements

Output x double-precision array real part of IFFT

y double-precision array imaginary part of IFFT

Note: The number of elements (n) must be a power of two.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate two arrays with random numbers and compute its inverse Fast
Fourier Transform. */
double x[256], y[256];
int n;
n = 256;
Uniform (n, 17, x);
Uniform (n, 17, y);
InvFFT (x, y, n);

InvFHT

int status = InvFHT (double x[] , int n);

Purpose

Computes the inverse Fast Hartley Transform using the following formula:

()x X cas ik ni n k
k

n

=
=

−

∑1

0

1

2 /π

where xi is the ith point of the inverse FHT, and cas (x) = cos (x) + sin (x).

The operation is done in place and the x input array is overwritten.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-131 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array array to be transformed

n integer number of elements

Output x double-precision array inverse Fast Hartley Transform

Note: The number of elements (n) must be a power of two.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate an array with random numbers and compute its inverse Fast Hartley
Transform. */
double x[256];
int n;
n = 256;
Uniform (n, 17, x);
InvFHT (x, n);

InvMatrix

int status = InvMatrix (void *x, int n, void *y);

Purpose

Finds the inverse matrix of an input matrix. The operation can be performed in place; that is, x
and y can be the same matrices.

Parameters

Input x double-precision 2D array input matrix

n integer dimension size of matrix

Output y double-precision 2D array inverse matrix

Note: The input matrix must be an n-by-n square matrix.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-132 © National Instruments Corporation

Return Value

status integer refer to error codes in
Appendix A

InvN_Dist

int status = InvN_Dist (double p, double * x);

Purpose

Calculates x, given a probability 0 < p < 1, such that:

prob(X < x) = p

where X is a random variable from a standard normal distribution.

Parameters

Input p double-precision probability (0 < p < 1)

Output x double-precision the unique number x such that
prob(X < x) = p, where X is a
random variable from a
standard normal distribution

Return Value

status integer refer to error codes in
Appendix A

Example
double p, x;
p = 0.5;
InvN_Dist (p, &x);

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-133 LabWindows/CVI Advanced Analysis Library

InvT_Dist

int status = InvT_Dist (double p, int n, double *t);

Purpose

Calculates t, given a probability 0 < p < 1, such that:

prob(T < t) = p

where T is a random variable from a T-distribution with n degrees of freedom.

Parameters

Input p double-precision probability (0 < p < 1)

n integer degrees of freedom

Output t double-precision the unique number t such that
prob(T < t) = p, where T is a
random variable from a T-
distribution with n degrees of
freedom

Return Value

status integer refer to error codes in
Appendix A

Example
double p, t;
int n;
p = 0.635;
n = 2;
InvT_Dist (p, n, &t);

InvXX_Dist

int status = InvXX_Dist (double p, int n, double *x);

Purpose

Calculates x, given a probability 0 ≤ p < 1, such that:

prob(χ < x) = p

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-134 © National Instruments Corporation

where χ is a random variable from a chi-square distribution with n degrees of freedom.

Parameters

Input p double-precision probability (0 ≤p < 1)

n integer degrees of freedom

Output x double-precision the unique number x such that
prob(χ < x) = p, where χ is a
random variable from a chi-
square distribution with n
degrees of freedom.

Note: When p = 0, x = 0.

Return Value

status integer refer to error codes in
Appendix A

Example
double p, x;
int n;
p = 0.635;
n = 2;
InvXX_Dist (p, n, &x);

Ksr_BPF

int status = Ksr_BPF (double fs, double fl , double fh, int n,
double coef[] ,double beta);

Purpose

Designs a digital bandpass FIR linear phase filter using a Kaiser window. This function
generates only the filter coefficients. No filtering of data is actually performed.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-135 LabWindows/CVI Advanced Analysis Library

Parameters

Input fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

n integer number of filter coefficients

beta double-precision shape parameter

Output coef double-precision array filter coefficients

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Some beta values and their equivalent windows are listed in the
following table:

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.

Example
/* Design a 55-point bandpass FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fl, fh, beta;
int n, m;
fs = 1000.0; /* sampling frequency */
fl = 200.0; /* desired lower cutoff frequency */
fh = 300.0; /* desired higher cutoff frequency */

/* pass band is from 200.0 to 300.0 */
n = 55; /* filter length */
beta = 3;
m = 256;
Ksr_BPF (fs, fl, fh, n, coef, beta);
Convolve (coef, n, x, m, y);/* convolve the filter with the signal */

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-136 © National Instruments Corporation

Ksr_BSF

int status = Ksr_BSF (double fs, double fl , double fh, int n, double coef[] ,
double beta);

Purpose

Designs a digital bandstop FIR linear phase filter using a Kaiser window. This function
generates only the filter coefficients. No filtering of data is actually performed.

Parameters

Input fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

n integer number of filter coefficients

beta double-precision shape parameter

Output coef double-precision array filter coefficients

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Some beta values and their equivalent windows are listed in the
following table:

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-137 LabWindows/CVI Advanced Analysis Library

Example
/* Design a 55-point bandstop FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fl, fh, beta;
int n, m;
fs = 1000.0; /* sampling frequency */
fl = 200.0; /* desired lower cutoff frequency */
fh = 300.0; /* desired higher cutoff frequency */

/* stop band is from 200.0 to 300.0 */
n = 55; /* filter length */
beta = 3;
m = 256;
Ksr_BSF (fs, fl, fh, n, coef, beta);
Convolve (coef, n, x, m, y);/* convolve the filter with the signal */

Ksr_HPF

int status = Ksr_HPF (double fs, double fc, int n, double coef[] , double beta);

Purpose

Designs a digital highpass FIR linear phase filter using a Kaiser window. This function
generates only the filter coefficients. No filtering of data is actually performed.

Parameters

Input fs double-precision sampling frequency

fc double-precision cutoff frequency

n integer number of filter coefficients

beta double-precision shape parameter

Output coef double-precision array filter coefficients

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Some beta values and their equivalent windows are listed in the
following table:

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-138 © National Instruments Corporation

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.

Example
/* Design a 55-point highpass FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fc, beta;
int n, m;
fs = 1000.0; /* sampling frequency */
fc = 200.0; /* desired cutoff frequency */
n = 55; /* filter length */
beta = 4.5;
m = 256;
Ksr_HPF (fs, fc, n, coef, beta);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

Ksr_LPF

int status = Ksr_LPF (double fs, double fc, int n, double coef[] , double beta);

Purpose

Designs a digital lowpass FIR linear phase filter using a Kaiser window. This function generates
only the filter coefficients. No filtering of data is actually performed.

Parameters

Input fs double-precision sampling frequency

fc double-precision cutoff frequency

n integer number of filter coefficients

beta double-precision shape parameter

Output coef double-precision array filter coefficients

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-139 LabWindows/CVI Advanced Analysis Library

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Some beta values and their equivalent windows are listed in the
following table:

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.

Example
/* Design a 55-point lowpass FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fc, beta;
int n, m;
fs = 1000.0; /* sampling frequency */
fc = 200.0; /* desired cutoff frequency */
n = 55; /* filter length */
beta = 4.5;
m = 256;
Ksr_LPF (fs, fc, n, coef, beta);
Convolve (coef, n, x, m, y); /* convolve the filter with*/

/*the signal */

KsrWin

int status = KsrWin (double x[] , int n, double beta);

Purpose

Applies a Kaiser window to the x input signal. The Kaiser window is defined by the formula:

wi = Io (beta * (1.0 - a2)1/2) / Io (beta) for i = 0, 1, ..., n-1

where a = |1 - 2i/ n|; and Io represents the zeroth-order modified Bessel function of the first kind.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-140 © National Instruments Corporation

The output signal is obtained by the formula:

xi= xi* wi for i = 0, 1, ..., n-1

The window operation is performed in place. The windowed data x replaces the input data x.

Parameters

Input x double-precision array input data

n integer number of elements in x

beta double-precision shape parameter

Output x double-precision array windowed data

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Some beta values and their equivalent windows are listed in the
following table:

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.

LinEqs

int status = LinEqs (void *A, double y[] , int n, double x[]);

Purpose

Solves the linear system of equations:

Ax = y

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-141 LabWindows/CVI Advanced Analysis Library

Parameters

Input A double-precision 2D array input matrix

y double-precision 1D array known vector

n integer dimension size of system

Output x double-precision 1D array solution of vector

Note: The A input matrix must be an n-by-n square matrix.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Find the solution to the linear system of equations. */
double A[10][10], y[10], x[10];
int n;
n = 10;
 :
LinEqs (A, y, n, x);

LinEv1D

int status = LinEv1D (double x[] , int n, double a, double b, double y[]);

Purpose

Performs a linear evaluation of a 1D array. The ith element of the output array is obtained using
the formula:

yi= a*xi+ b

The operation can be performed in place; that is, x and y can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-142 © National Instruments Corporation

Parameters

Input x double-precision array input array

n integer number of elements

a double-precision multiplicative constant

b double-precision additive constant

Output y double-precision array linearly evaluated array

Return Value

status integer refer to error codes in
Appendix A

LinEv2D

int status = LinEv2D (void *x, int n, int m, double a, double b, void *y);

Purpose

Performs a linear evaluation of a 2D array. The (ith, jth) element of the output array is obtained
using the formula:

y a x bi j i j, ,= ∗ +

The operation can be performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision 2D array input array

n integer number of elements in first
dimension

m integer number of elements in second
dimension

a double-precision multiplicative constant

b double-precision additive constant

Output y double-precision 2D array linearly evaluated array

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-143 LabWindows/CVI Advanced Analysis Library

Return Value

status integer refer to error codes in
Appendix A

LinFit

int status = LinFit (double x[] , double y[] , int n, double z[] , double *slope,
double * intercept, double *mse);

Purpose

Finds the slope and intercept values that best represent the linear fit of the data points (x, y)
using the least squares method. The ith element of the output array is obtained by using the
following formula:

zi= slope*xi+ intercept

The mean squared error (mse) is obtained using the following formula:

mse z y / ni

2

i 0

n 1

i
= −

=

−

∑

where n is the number of sample points.

Parameters

Input x double-precision array x values

y double-precision array y values

n integer number of sample points

Output z double-precision array best fit array

slope double-precision slope of line

intercept double-precision y-intercept

mse double-precision mean squared error

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-144 © National Instruments Corporation

Example
/* Generate a ramp pattern and find the best linear fit. */
double x[200], y[200], z[200];
double start, end, a, b, slope, intercept, mse;
int n;

n = 200;
start = 0.0;
end = 1.99E2;
Ramp (n, start, end, x); /* x[i] = i */

a = 3.5;
b = -2.75;
LinEv1D (x, n, a, b, y); /* y[i] = a*x[i] + b */

/* Find the best linear fit in z. */
LinFit (x, y, n, z, &slope, &intercept, &mse);

LU

int status = LU (void *a, int n, int p[] , int *sign);

Purpose

Performs an LU matrix decomposition.

a = L * U

where L is an n by n lower triangular matrix whose main diagonal elements are all ones, and U is
an upper triangular matrix.

Parameters

Input a double-precision 2D array input matrix

n integer dimension size

Output a double-precision 2D array LU decomposition

p integer array permutation vector

sign integer row exchange indicator

Note: The input matrix is overwritten by the LU output matrices.

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-145 LabWindows/CVI Advanced Analysis Library

Parameter Discussion

After the function executes, the input matrix a is replaced with two triangular matrices. L
occupies the lower triangular part of a and U occupies the upper triangular part of a. The
permutation vector p records possible row exchange information in the LU decomposition.
sign = 0 indicates that there is no such exchange or that there is an even number of such
exchanges. sign = 1 indicates that there is an odd number of such exchanges. p and sign are
useful when solving the linear equations or computing the determinant. LU is most useful when
used in conjunction with BackSub and ForwSub to solve a set of linear equations with the
same matrix a.

For more information, refer to Numerical Recipes by Press, et al., Cambridge University Press.

MatrixMul

int status = MatrixMul (void *x, void *y, int n, int k, int m, void *z);

Purpose

Multiplies two 2D input matrices. The (ith, jth) element of the output matrix is obtained using the
formula:

z x * yi j i p p j
p 0

k 1

, , ,=
=

−

∑

Parameters

Input x double-precision 2D
array

x input matrix

y double-precision 2D
array

y input matrix

n integer first dimension of x

k integer second dimension of x; first dimension
of y

m integer second dimension of y

Output z double-precision 2D
array

output matrix

Return Value

status integer refer to error codes in Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-146 © National Instruments Corporation

Parameter Discussion

Be careful to use the correct array sizes. The following array sizes must be met:

• x must be (n by k).

• y must be (k by m).

• z must be (n by m).

Example
/* Multiply two matrices. Note: A x B _ B x A, in general.*/
double x[10][20], y[20][15], z[10][15];
int n, k, m;
n = 10;
k = 20;
m = 15;
MatrixMul (x, y, n, k, m, z);

MaxMin1D

int status = MaxMin1D (double x[] , int n, double *max, int * imax, double *min,
int * imin);

Purpose

Finds the maximum and minimum values in the input array, as well as the respective indices of
the first occurrence of the maximum and minimum values.

Parameters

Input x double-precision array input array

n integer number of elements

Output max double-precision maximum value

imax integer index of max in x array

min double-precision minimum value

imin integer index of min in x array

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-147 LabWindows/CVI Advanced Analysis Library

Example
/* Generate an array with random and find the maximum and minimum values. */
double x[20], y[20];
double max, min;
int n, imax, imin;
n = 20;
Uniform (n, 17, x);
MaxMin1D (x, n, &max, &imax, &min, &imin);

MaxMin2D

int status = MaxMin2D (void *x, int n, int m, double *max, int * imax,
int * jmax, double *min, int * imin , int * jmin);

Purpose

Finds the maximum and the minimum values in the 2D input array, as well as the respective
indices of the first occurrence of the maximum and minimum values. The x array is scanned by
rows.

Parameters

Input x double-precision 2D array input array

n integer number of elements in first dimension
of x

m integer number of elements in second
dimension of x

Output max double-precision maximum value

imax integer index of max in x array (first
dimension)

jmax integer index of max in x array (second
dimension)

min double-precision minimum value

imin integer index of min in x array (first
dimension)

jmin integer index of min in x array (second
dimension)

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-148 © National Instruments Corporation

Return Value

status integer refer to error codes in
Appendix A

Example
/* This example finds the maximum and minimum values as well as their location
within the array. */
double x[5][10], max, min;
int n, m, imax, jmax, imin, jmin;
n = 5;
m = 10;
MaxMin2D (x, n, m, &max, &imax, &jmax, &min, &imin, &jmin);

Mean

int status = Mean (double x[] , int n, double *meanval);

Purpose

Computes the mean (average) value of the input array. The following formula is used to find the
mean.

meanval x / ni
i 0

n 1

=
=

−

∑

Parameters

Input x double-precision array input array

n integer number of elements in x

Output meanval double-precision mean value

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-149 LabWindows/CVI Advanced Analysis Library

Median

int status = Median (double x[] , int n, double *medianval);

Purpose

Finds the median value of the x input array. To find the median value, the input array is first
sorted in ascending order. Let S be the sorted array, then:

medianval
S n

2
 if n is odd

S n
2

S n
2

 if n is even
=

− +



























0 5 1. *()

Note: The x input array is not changed.

Parameters

Input x double-precision array input array

n integer number of elements in x

Output medianval double-precision median value

Return Value

status integer refer to error codes in
Appendix A

Mode

int status = Mode (double x[] , int n, double xBase, double xTop, int intervals,
double *modeval);

Purpose

Finds the mode of the x input array. The mode is defined as the value that most often occurs in a
given set of samples. This function determines the mode in terms of the histogram of the input
array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-150 © National Instruments Corporation

Parameters

Input x double-precision array input array

n integer number of elements in x

xBase double-precision lower range

xTop double-precision upper range

intervals integer number of intervals

Output modeval double-precision mode value

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a Gaussian distributed random array and find its mode. */
double x[2000], max, min, modeval;
int n, intervals, imax, imin;
n = 2000;
intervals = 50;
GaussNoise (n, 1.0E0, 17, x);
MaxMin1D (x, n, &max, &imax, &min, &imin);
Mode (x, n, min, max, intervals, &modeval);

Moment

int status = Moment (double x[] , int n, int order, double *momentval);

Purpose

Computes the moment about the mean of the input array with the specified order. The formulas
used to find the moment are as follows.

[]
momentval

x ave

n
i

order

i

n

=
−

=

−

∑
0

1

ave x ni
i

n

=
=

−

∑ /
0

1

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-151 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input array

n integer number of elements in x

order integer moment order

Output momentval double-precision moment about the mean

Note: order must be greater than zero.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate an array with random numbers and determine its skewness (third
order moment) and its kurtosis (fourth order moment). */
double x[200], skew, kurtosis;
int n, order;
n = 200;
Uniform (n, 17, x);
order = 3;
Moment (x, n, order, &skew);
order = 4;
Moment (x, n, order, &kurtosis);

Mul1D

int status = Mul1D (double x[] , double y[] , int n, double z[]);

Purpose

Multiplies two 1D arrays. The ith element of the output array is obtained using the following
formula.

zi = xi* yi

The operation can be performed in place; that is, z can be the same array as either x or y.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-152 © National Instruments Corporation

Parameters

Input x double-precision array x input array
y double-precision array y input array

n integer number of elements to be
multiplied

Output z double-precision array result array

Return Value

status integer refer to error codes in
Appendix A

Mul2D

int status = Mul2D (void *x, void *y, int n, int m, void *z);

Purpose

Multiplies two 2D arrays. The (ith, jth) element of the output array is obtained using the following
formula.

z x yi j i j i j, , ,= ∗
The operation can be performed in place; that is, z can be the same array as either x or y.

Parameters

Input x double-precision 2D array x input array

y double-precision 2D array y input array

n integer number of elements in first
dimension

m integer number of elements in second
dimension

Output z double-precision 2D array result array

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-153 LabWindows/CVI Advanced Analysis Library

N_Dist

int status = N_Dist (double x, double *p);

Purpose

Computes the one-sided probability p:

p = prob(X ≤ x)

where X is a random variable from a standard normal distribution.

Parameters

Input x double-precision -∞ < x < ∞
Output p double-precision probability (0 < p < 1)

Return Value

status integer refer to error codes in
Appendix A

Note: For computing the two-sided probability p2 = prob(-x ≤ X ≤ x), the following formula
can be used.
p2 = 1.0 - 2 * prob(X ≤ -x)

Example
double x, p;
x = -123.456;
N_Dist (x, &p);

Neg1D

int status = Neg1D (double x[] , int n, double y[]);

Purpose

Negates the elements of the input array. The operation can be performed in place; that is, x and y
can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-154 © National Instruments Corporation

Parameters

Input x double-precision array input array

n integer number of elements

Output y double-precision array negated values of the x input
array

Return Value

status integer refer to error codes in
Appendix A

NetworkFunctions

int status = NetworkFunctions (void *stimulus, void *response, int n, int numFrames,
double dt, double magSxy[] , double phaseSxy[] ,
double magHf[] , double phaseHf[] , double
coherence[] , double impulse[] , double *df);

Purpose

Computes the single-sided coherence function along with the averaged single-sided cross power
spectrum, averaged single-sided frequency response (transfer function), and impulse response,
from a 2D array of stimulus signals and a 2D array of response signals.

The network functions are computed as follows.

avg cross power = avg of Sxy(f)
avg transfer function = avg Sxy(f)/avg Sxx(f)
avg impulse response = Inverse Real FFT(avg two-sided transfer function)
coherence = |averaged Sxy(f)|2 /[avg Sxx(f) x avg Syy(f)]

where

Sxy(f) is the two-sided cross power spectrum of x and y
Sxx(f) is the two-sided auto power spectrum of x
Syy(f) is the two-sided auto power spectrum of y
x is the stimulus signal
y is the response signal

stimulus is a 2D array containing a time-domain signal, usually the network stimulus. response
is a 2D array containing a time-domain signal, usually the network response.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-155 LabWindows/CVI Advanced Analysis Library

Each row in the stimulus array represents one frame of the network stimulus and is associated
with one row of the response array, which represents one frame of the network response.

Parameters

Input stimulus double-
precision 2D
array

contains the time-domain signal, usually the
network stimulus. The number of rows should
be equal to numFrames, and the number of
columns should be equal to the n. The size of
this array must be at least: numFrames*n.

response double-
precision 2D
array

contains the time-domain signal, usually the
network stimulus. The number of rows should be
equal to numFrames, and the number of
columns should be equal to the n. The size of
this array must be at least: numFrames*n.

n integer number of elements in one frame of the input
stimulus and response arrays.

numFrames integer number of frames (rows) contained in the input
stimulus and response arrays.

dt double-
precision

sample period of the time-domain signal, usually
in seconds.
dt = 1/fs, where fs is the sampling frequency of
the time-domain signal.

Output magSxy double-
precision array

averaged single-sided cross power spectrum
between the stimulus and response, in volts rms2

if the input signals are in volts. If the input
signals are not in volts, the results are in input
signal units RMS squared. This array must be at
least n/2 elements long.

phaseSxy double-
precision array

averaged single-sided phase spectrum in radians
showing the difference between the phases of the
response signal and the stimulus signal. This
array must be at least n/2 elements long.

magHf double-
precision array

magnitude of the averaged single-sided transfer
function between the stimulus and response
signals. This array must be at least n/2 elements
long.

phaseHf double-
precision array

phase, in radians of the averaged single-sided
transfer function between the stimulus and
response signals.

(continues)

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-156 © National Instruments Corporation

Parameters (Continued)

coherence double-
precision array

averaged single-sided coherence function
spectrum. The coherence function shows the
frequency content of the response due to the
stimulus and measures the validity of the
network frequency response measurement. This
array must be at least n/2 elements long.

impulse double-
precision array

contains the impulse response of the network
based on time-domain signals stimulus and
response. Impulse is computed from the
averaged frequency response of the stimulus and
response signals. The size of this array must be
at least n.

df double-
precision

points to the frequency interval, in hertz, if dt is
in seconds. *df = 1/(n*dt)

Return Value

status integer refer to error codes in Appendix A

NonLinearFit

int status = NonLinearFit (double x[] , double y[] , double z[] , int n,
ModelFun *modelFunction, double a[] , int ncoef,
double *MSE);

Purpose

This function uses the Levenberg-Marquardt algorithm to determine the least squares set of
coefficients that best fit the set of input data points(X,Y) as expressed by a nonlinear function
y=f(x,a) where a is the set of coefficients. This function also gives the best fit curve y=f(x,a).

The user needs to pass a pointer to the nonlinear function f(x,a) along with a set of initial guess
coefficients a[ncoef]. NonLinearFit does not always give the correct answer. The correct
output sometimes depends on the initial choice of a[ncoef]. It is very important to verify the
final result.

The output mse (mean squared error) is computed using the following formula.

[]mse
1

n
 y f x a

i 0

n 1

i i= −
=

−

∑ (,)
2

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-157 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array The array of x coordinates of the (x,y)
data sets to be fitted.

y double-precision array The array of y coordinates of the (x,y)
data sets to be fitted.

n integer The number of elements in both the x
and y arrays.

modelFunction ModelFun pointer A pointer to the model function,
f(x[i],a), used in the nonlinear fitting
algorithm. The model function must be
defined as follows:

double ModelFunct
(double x, double a[],
int ncoef);

where a[ncoef] are the function
coefficients.

a double-precision array On input, a[ncoef] gives a set of initial
guess coefficients.

ncoef integer Number of coefficients.

Output z double-precision array Best fit array, y = f(x,a).

a double-precision array Best fit coefficients.

MSE double-precision Mean squared error between y and z.

Return Value

status integer refer to error codes in Appendix A

Normal1D

int status = Normal1D (double x[] , int n, double y[] , double *ave, double *sDev);

Purpose

Normalizes a 1D input vector. The output vector is of the following form.

yi = (xi- ave) / sDev

where ave and sDev are the mean and the standard deviation of the input vector. Refer to the
StdDev function for the formulas used to find the mean and the standard deviation.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-158 © National Instruments Corporation

The operation can be performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input vector

n integer number of elements

Output y double-precision array normalized vector

ave double-precision mean value of x

sDev double-precision standard deviation of x

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a vector (1D array) with random samples and normalize it. */
double x[200], y[200], ave, sDev;
int n;
n = 200;
Uniform (n, 17, x);
Normal1D (x, n, y, &ave, &sDev);

Normal2D

int status = Normal2D (void *x, int n, int m, void *y, double *ave, double *sDev);

Purpose

Normalizes a 2D input matrix. The output matrix is of the following form.

()y x ave sDevi j i j, , /= −

where ave and sDev are the mean and the standard deviation of the input matrix. Refer to the
StdDev function for the formulas used to find the mean and the standard deviation.

The operation can be performed in place; that is, x and y can be the same array.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-159 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision 2D
array

input matrix

n integer size of first dimension

m integer size of second dimension

Output y double-precision 2D
array

normalized matrix

ave double-precision mean value of x

sDev double-precision standard deviation of x

Return Value

status integer refer to error codes in
Appendix A

Example
/* Normalize a matrix (2D array). */
double x[10][20], y[10][20], ave, sDev;
int n, m;
n = 10;
m = 20;
 :
Normal2D (x, n, m, y, &ave, &sDev);

PolyEv1D

int status = PolyEv1D (double x[] , int n, double coef[] , int k, double y[]);

Purpose

Performs a polynomial evaluation on the input array. The ith element of the output array is
obtained using the following formula.

yi = coefj * xi
j

j = 0

k−1

∑

The operation can be performed in place; that is, x and y can be the same array.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-160 © National Instruments Corporation

Parameters

Input x double-precision array input array

n integer number of elements

coef double-precision array coefficients array

k integer number of coefficients

Output y double-precision array polynomially evaluated array

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The order of the polynomial is equal to the number of elements in the coefficients array minus
one; that is, if there are k elements in the coef array, then order = k - 1.

Example
/* Generate an array with random numbers, let the coefficients be { 1, 2, 3,
4, 5 } generated by the Ramp function and find the polynomial evaluation of
the array. */
double x[20], y[20], a[5];
double first, last;
int n, k;
n = 20;
k = 5;
first = 1.0;
last = 5.0;
Uniform (n, 17, x);
Ramp (k, first, last, a);
PolyEv1D (x, n, a, k, y);

PolyEv2D

int status = PolyEv2D (void *x, int n, int m, double coef[] , int k, void *y);

Purpose

Performs a polynomial evaluation on a 2D input array. The (ith, jth) element of the output array is
obtained using the following formula.

y coef * xi j p i j
p

p 0

k 1

, ,=
=

−

∑

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-161 LabWindows/CVI Advanced Analysis Library

The operation can be performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision 2D array input array

n integer number of elements in first
dimension

m integer number of elements in second
dimension

coef double-precision array coefficients array

k integer number of coefficients

Output y double-precision 2D array polynomially evaluated array

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The order of the polynomial is equal to the number of elements in the coefficients array minus
one; that is, if there are k elements in the coef array, then order = k - 1.

Example
/* Perform a polynomial evaluation of a 2D array, let the coefficients be { 1,
2, 3, 4, 5 } generated by the Ramp function and find the polynomial evaluation
of the array. */
double x[5][10], y[5][10], a[5];
double first, last;
int n, m, k;
n = 5;
k = 5;
m = 10;
first = 1.0;
last = 5.0;
Ramp (k, first, last, a);
PolyEv2D (x, n, m, a, k, y);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-162 © National Instruments Corporation

PolyFit

int status = PolyFit (double x[] , double y[] , int n, int order, double z[] ,
double coef[] , double *mse);

Purpose

Finds the coefficients that best represent the polynomial fit of the data points (x, y) using the
least squares method. The ith element of the output array is obtained by using the following
formula.

z coef x
i n i

n

n 0

order

=
=
∑

The mean squared error (mse) is obtained using the following formula.

mse z y / n i i
2

i 0

n 1

= −
=

−

∑

where order is the polynomial order and n is the number of sample points.

Parameters

Input x double-precision array x values

y double-precision array y values

n integer number of sample points

order integer polynomial order

Output z double-precision array best fit

coef double-precision array polynomial coefficients

mse double-precision mean squared error

Note: The size of the coefficients array must be order +1.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a 10th order polynomial pattern with random coefficients and find
the polynomial fit. */
double x[200], y[200], z[200], a[11], coef[11];

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-163 LabWindows/CVI Advanced Analysis Library

double first, last, mse;
int n, k, order;

n = 200;
first = 0.0;
last = 1.99E2;
Ramp (n, first, last, x) /* x[i] = i */

k = 11;
Uniform (k, 17, a);
PolyEv1D (x, n, a, k, y); /* polynomial pattern */

/* Find the best polynomial fit */
order = 10;
PolyFit (x, y, n, order, z, coef, &mse);

PolyInterp
int status = PolyInterp (double x[] , double y[] , int n, double x_val,

double *Interp_Val , double *Error);

Purpose

Returns the value of the unique polynomial P of degree n-1 passing through the n points
(xi,f(xi)) at x_val, along with an estimate of the error in the interpolation, given a set of n
points (xi,f(xi)) in the plane where f is some function, and given a value x_val at which f is to
be interpolated or extrapolated.

Parameters

Input x 1D double-
precision array

Values at which the function to be interpolated is
known.

y 1D double-
precision array

Function values f(x) at the known x values.

n integer Number of points in x and in y.

x_val double-
precision

Value at which f is to be interpolated or extrapolated.

Output Interp_Val double-
precision

Interpolated or extrapolated value at x_val.

Error double-
precision

Estimate of the error in the interpolation.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-164 © National Instruments Corporation

Using This Function

All input arrays should be the same size. If the value of x_val is in the range of x, this
function performs interpolation. Otherwise, it performs extrapolation. If x_val is too far from
the range of x, Error might be large, and it would not produce a satisfactory extrapolation.

Example
/* Pick points randomly, pick an x in the range of X-values, run a polynomial
through the points, and interpolate at x_val. */
double X[10], Y[10], Interp_Val, Error, x_val, high, low;
int n, i;
n = 10;
WhiteNoise (n, 5.0, 17, X);
WhiteNoise (n, 5.0, 17, Y);
high = X[0];
low = X[0];
for(i=0; i<n; i++) {

if (X[i] > high) high = X[i];
if (X[i] < low) low = X[i];

}
x_val = (high + low)/2.0;
PolyInterp (x, y, n, x_val, &Interp_Val, &Error);

PowerFrequencyEstimate

int status = PowerFrequencyEstimate (double autoSpectrum[] , int n,
double searchFreq,
WindowStruct windowConstants, double df,
int span, double *freqPeak, double *powerPeak);

Purpose

Computes the estimated power and frequency around a peak in the power spectrum of a time-
domain signal. With this function, you can achieve good frequency estimates for measured peaks
that lie between frequency lines on the spectrum. This function also makes corrections for the
window function you use.

The estimated frequency peak is computed with the following formula.

freqPeak =

 autoSpectrum j df

autoSpectrum

j
j=i-span/

i+span/

j
j i span/

i+span/

*
2

2

2

2

∑

∑
= −

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-165 LabWindows/CVI Advanced Analysis Library

The estimated power peak is computed as follows.

powerPeak = (autoSpectrum) / enbw
j

j i span/

i+span/

= −
∑

2

2

where
i = index of the searchfreq,
df is the frequency interval, usually in hertz, as output by the AutoPowerSpectrum
function
enbw is windowConstants.enbw as output by the ScaledWindow function.

Parameters

Input autoSpectrum double-precision
array

The single-sided power spectrum as
output by the AutoPowerSpectrum
function.

n integer The number of elements in the input
AutoSpectrum array.

searchFreq double-precision The frequency (usually in hertz) of the
frequency around which you want to
estimate the frequency and power. If
searchFreq is less than zero, or, is not a
valid frequency, this function will
automatically search for the maximum
peak in the autoSpectrum array and
estimate the frequency and power around
the maximum peak.

windowConstants WindowConst A structure containing the following
useful constants for the selected window:
enbw is the equivalent noise bandwidth of
the selected window. You can use this
value to compute the power in a given
frequency span. coherentgain is the peak
gain of the window, relative to the peak
gain of the Rectangular window. This
value is used to normalize peak signal
gains to that of the Rectangular window.
This structure is output by the
ScaledWindow function.

(continues)

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-166 © National Instruments Corporation

Parameters (Continued)

df double-precision The frequency interval, in hertz, as output
by the following functions:
AmpPhaseSpectrum ,
AutoPowerSpectrum ,
CrossPowerSpectrum ,
NetworkFunctions ,
TransferFunction .

span integer The number of frequency lines (bins)
around the peak to be included in the peak
frequency and power estimation. The
power in span/2 frequency lines before
the peak frequency line, the peak
frequency line itself, and span/2
frequency lines after the peak are included
in the estimation.

Output freqPeak double-precision Points to the estimated frequency of the
estimated peak power in autospectrum.

powerPeak double-precision Points to the estimated peak power in
autospectrum.

Return Value

status integer refer to error codes in Appendix A

__

Prod1D

int status = Prod1D (double x[] , int n, double *prod);

Purpose

Finds the product of the n elements of the input array. The product of the elements is obtained
using the following formula.

prod xi
i

n

=
=

−

∏
0

1

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-167 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input array

n integer number of elements

Output prod double-precision product of elements

Return Value

status integer refer to error codes in
Appendix A

Pulse

int status = Pulse (int n, double amp[] , int delay, int width , double pulsePattern[]);

Purpose

Generates an array of numbers representing the pattern of a pulse waveform. The ith element of
the output array is obtained using the formula.

pulsePatterni =
amp delay delay width if i < (+)

0 otherwise

≤



for i = 0, 1, 2, ..., n-1

Parameters

Input n integer number of samples

amp double-precision pulse amplitude

delay integer pulse delay

width integer pulse width

Output pulsePattern double-precision array pulse pattern array

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-168 © National Instruments Corporation

Example
/* The following code generates the following pulse pattern

pulsePattern = { 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 2.0,
0.0, 0.0 }. */

double pulsePattern[10], amp;
int n, delay, width;
n = 10;
delay = 3;
width = 5;
amp = 2.0;
Pulse (n, amp, delay, width, pulsePattern);

PulseParam

int status = PulseParam (double pulsePattern[] , int n, double *amp, double *amp90, double
*amp50, double *amp10, double *top, double *base, double
* topOvershoot, double *baseOvershoot, int *delay, int * width , int
* riseTime, int * fallTime , double *slewRate);

Purpose

Analyzes the input array values for a pulse pattern and determines the pulse parameters that best
describe the pulse pattern. It is assumed that the input array has a bimodal distribution, a
distribution containing two distinct peak values.

Parameters

Input pulsePattern double-precision array input array

n integer number of elements

Output amp double-precision amplitude

amp90 double-precision 90% amplitude

amp50 double-precision 50% amplitude

amp10 double-precision 10% amplitude

top double-precision top value

base double-precision base value

topOvershoot double-precision top overshoot

baseOvershoot double-precision base overshoot

delay integer pulse delay

width integer width delay

riseTime integer rise time

fallTime integer fall time

slewRate double-precision slew rate

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-169 LabWindows/CVI Advanced Analysis Library

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The returned parameters are as follows.

top = upper mode
base = lower mode
amp = top - base
amp90 = 90% amplitude
amp50 = 50% amplitude
amp10 = 10% amplitude
topOvershoot = maximum value - top
baseOvershoot = base - minimum value
delay = rising edge index (50% amplitude)
width = falling edge index (50% amplitude) - delay
riseTime = 90% amplitude index - 10% amplitude index on rising edge
fallTime = 10% amplitude index - 90% amplitude index on falling edge
slewRate = (90% amplitude - 10% amplitude)/ riseTime

The parameters delay, width , riseTime, and fallTime are integers because the input is a discrete
representation of a signal.

Example
/* Generate a noisy pulse pattern and determine its pulse parameters. */
double x[200], y[200], amp, amp90, amp50, amp10, top, base;
double topOvershoot, baseOvershoot, slewRate, noiseLevel;
int n, delay, width, riseTime, fallTime;

n = 200;
amp = 5.0;
delay = 50;
width = 100;
noiseLevel = 0.5;
Pulse (n, amp, delay, width, x); /* Generate a pulse */
WhiteNoise (n, noiseLevel, 17, y); /* Generate noise signal */
Add1D (x, y, n, x); /* Noisy Pulse */
PulseParam (x, n, &, &90, &50, &10, &top, &base, &topOvershoot,

&baseOvershoot, &delay, &width, &riseTime, &fallTime, &slewRate);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-170 © National Instruments Corporation

QScale1D

int status = QScale1D (double x[] , int n, double y[] , double *scale);

Purpose

Scales the input array by its maximum absolute value. The ith element of the scaled array can be
obtained using the following formula.

y x scalei i= /

where scale is the maximum absolute value in the input array. The constant scale is determined
by the function.

The operation can be performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input array

n integer number of elements

Output y double-precision array scaled array

scale double-precision scaling constant

Return Value

status integer refer to error codes in
Appendix A

QScale2D

int status = QScale2D (void *x, int n, int m, void *y, double *scale);

Purpose

Scales a 2D input array by its maximum absolute value. The (ith, jth) element of the scaled array
can be obtained using the following formula.

y x scalei j i j, , /=

where scale is the maximum absolute value of the input array. The constant scale is determined
by the function.

The operation can be performed in place; that is, x and y can be the same array.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-171 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision 2D array input array

n integer number of elements in first
dimension

m integer number of elements in second
dimension

Output y double-precision 2D array scaled array

scale double-precision scaling constant

Return Value

status integer refer to error codes in
Appendix A

Ramp

int status = Ramp (int n, double first , double last, double rampvals[]);

Purpose

Generates an output array representing a ramp pattern. The ith element of the output array is
obtained using the formula.

rampvalsi = first + i∆x

where ∆x = (last - first) / (n-1).

Parameters

Input n integer number of samples

first double-precision initial ramp value

last double-precision final ramp value

Output rampvals double-precision array ramp array

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-172 © National Instruments Corporation

Parameter Discussion

The value of last does not have to be greater than the value of first . If the condition last < first
is met, then a negatively sloped ramp pattern is generated.

Example
/* The following code generates the pattern–rampvals = { -5.0, -4.0, -3.0, -
2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 }. */
double rampvals[11], first, last;
int n;
n = 11;
first = -5.0;
last = 5.0;
Ramp (n, first, last, rampvals);

RatInterp

int status = RatInterp (double x[] , double y[] , int n, double x_val,
double *Interp_Val , double *Error);

Purpose

Returns the value of a particular rational function P(x)/Q(x) passing through the n points
(xi, f(xi)) at x_val,

given a set of n points (xi, f(xi)) in the plane where f is some function, and
a value x_val at which f is to be interpolated; and

where P and Q are polynomials, and
n is the number of elements in x.

The function P(x)/Q(x) is the unique rational function that passes through the given points
and satisfies the following conditions.

If n is odd,
deg(P) = deg(Q) = (n-1)/2,

if n is even,
deg(Q) = n/2
deg(P) = n/2 - 1

where deg() is the order of the polynomial function.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-173 LabWindows/CVI Advanced Analysis Library

Parameters

Input x 1D double-
precision array

Values at which the function to be interpolated is
known.

y 1D double-
precision array

Function values at the known x values.

n integer Number of points in x and in y.

x_val double-
precision

Value at which f is to be interpolated or
extrapolated.

Output Interp_Val double-
precision

Interpolated value at x_val.

Error double-
precision

Estimate of the error in the interpolation.

Using This Function

All input arrays should be the same size. If the value of x_val is in the range of x, this
function performs interpolation. Otherwise, it performs extrapolation. If x_val is too far from
the range of x, Error might be large, and it would not produce a satisfactory extrapolation.

Example
/* Pick points randomly, pick an x in the range of x-values, run a rational
function through the points and interpolate at x_val. */
double x[10], y[10], Interp_Val, Error, x_val, high, low;
int n, i;
n = 10;
WhiteNoise (n, 5.0, 17, x);
WhiteNoise (n, 5.0, 17, y);
high = x[0];
low = x[0];
for(i=0; i<n; i++) {

if (x[i] > high) high = x[i];
if (x[i] < low) low = x[i];

}
x_val = (high + low)/2.0;
RatInterp (x, y, n, x_val, &Interp_Val, &Error);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-174 © National Instruments Corporation

ReFFT

int status = ReFFT (double x[] ,double y[] , int n);

Purpose

Computes the Fast Fourier Transform of a real input array.

Parameters

Input x double-precision array array to be transformed

n integer number of elements

Output x double-precision array real part of Fourier Transform

y double-precision array imaginary part of Fourier
Transform

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The number of elements (n) must be a power of two. The operation is done in place and the
input array x is overwritten. The output array y must be at least the same size as the input array x
because performing an FFT on a real array results in a complex sequence.

Example
/* Generate an array with random numbers and compute its Fast Fourier
Transform. */
double x[256], y[256];
int n;
n = 256;
Uniform (n, x);
ReFFT (x, y, n);

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-175 LabWindows/CVI Advanced Analysis Library

ReInvFFT

int status = ReInvFFT (double x[] , double y[] , int n);

Purpose

Computes the inverse Fast Fourier Transform of a complex sequence that results in a real output
array.

Parameters

Input x double-precision array real part to be transformed

y double-precision array imaginary part to be transformed

n integer number of elements

Output x double-precision array real inverse Fourier Transform

Parameter Discussion

The number of elements (n) must be a power of 2. The operation is done in place, and the input
array x is overwritten. The y array is unchanged.

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate an array with random numbers. */
/* Compute it’s real inverse Fast Fourier Transform. */
double x[256], y[256];
int n;
n = 256;
Uniform (n, 17, x);
Uniform (n, 17, y);
ReInvFFT (x, y, n);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-176 © National Instruments Corporation

ResetIIRFilter

int status = ResetIIRFilter (IIRFilterPtr filterInformation);

Purpose

Sets the reset flag in the filterInfo filter structure, so that the internal filter state information is
reset to zero before the next cascade IIR filtering operation.

Parameters

Input filterInformation IIRFilterPtr filterInformation is the pointer to the filter
structure which contains the filter
coefficients and the internal filter
information.

Please refer to the function
AllocIIRFilterPtr for further
information about the filter structure.

Return Value

status integer Refer to error codes in
Appendix A.

Example
/*How to use function ResetIIRFilter */
double fs, fl, fh, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
order = 5;
type = 0; /* lowpass */
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {

Bw_CascadeCoef(fs,fl,fh, filterInfo);
Uniform(n,17,x);
IIRCascadeFiltering(x,n,filterInfo,y);
Uniform(n,20,x);
ResetIIRFilter(filterInfo); /* reset the filter for a new data set. */
IIRCascadeFiltering(x,n,filterInfo,y);
FreeIIRFilterPtr(filterInfo);

}

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-177 LabWindows/CVI Advanced Analysis Library

Reverse

int status = Reverse (double x[] , int n, double y[]);

Purpose

Reverses the order of the elements of the input array using the following formula.

y xi n i= − −1 for i = 0, 1, ..., n -1

The operation can be performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input array

n integer number of elements

Output y double-precision array reversed array

Return Value

status integer refer to error codes in
Appendix A

RMS

int status = RMS (double x[] , int n, double *rmsval);

Purpose

Computes the root mean squared (rms) value of the input array. The formula used to find the
rms value is as follows.

rmsval
n

xi
i

n

=
=

−

∑1 2

0

1

Parameters

Input x double-precision array input array

n integer number of elements in x

Output rmsval double-precision root mean squared value

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-178 © National Instruments Corporation

Return Value

status integer refer to error codes in
Appendix A

SawtoothWave

int status = SawtoothWave (int n, double amp, double f, double *phase, double x[]);

Purpose

Generates an array containing a sawtooth wave. The output array x is generated according to the
following formula.

xi = amp * sawtooth(*phase + f*360*i)

where

sawtooth (p)

p modulo 360

180.0
 0 p modulo 360< 180

p modulo 360

180.0
2.0 180 p modulo 360<360

=
≤

− ≤










This function can be used to simulate a continuous acquisition from an sawtooth wave function
generator. The unit of the input *phase is in degrees, and *phase is set to
(*phase + f*360*n) modulo 360 before returning.

Parameters

Input n integer number of samples to generate.

amp double-precision amplitude of the resulting signal.

f double-precision frequency of the resulting signal in
normalized units of cycles/sample.

phase double-precision pointerpoints to the initial phase, in degrees,
of the generated signal.

Output phase double-precision upon completion of this function,
phase points to the phase of the next
portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

x double-precision array contains the generated sawtooth wave
signal.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-179 LabWindows/CVI Advanced Analysis Library

Return Value

status integer refer to error codes in Appendix A

__

Scale1D

int status = Scale1D (double x[] , int n, double y[] , double *offset,
double *scale);

Purpose

Scales the input array. The scaled output array is in the range [-1 : 1]. The ith element of the
scaled array can be obtained using the following formulas.

yi = (xi- offset) / scale

scale = (max - min) / 2

offset = min + scale

where max and min are the maximum and minimum values in the input array, respectively. The
function determines the values of the constants scale and offset. The operation can be performed
in place; that is, x and y can be the same array.

Parameters

Input x double-precision array input array

n integer number of elements

Output y double-precision array scaled array

offset double-precision offsetting constant

scale double-precision scaling constant

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-180 © National Instruments Corporation

Scale2D

int status = Scale2D (void *x, int n, int m, void *y, double *offset, double *scale);

Purpose

Scales the input array. The scaled output array is in the range [-1 : 1]. The ith, jth element of the
scaled array can be obtained using the following formulas.

yi,j = (x i,j - offset) / scale

scale = (max - min) / 2

offset = min + scale

where max and min are the maximum and minimum values in the input array, respectively. The
function determines the values of the constants scale and offset.

The operation can be performed in place; that is, x and y can be the same array.

Parameters

Input x double-precision 2D array input array

n integer number of elements in first
dimension

m integer number of elements in second
dimension

Output y double-precision 2D array scaled array

offset double-precision offsetting constant

scale double-precision scaling constant

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-181 LabWindows/CVI Advanced Analysis Library

ScaledWindow

int status = ScaledWindow (double x[] , int n, int windowType,
WindowConst *windowConstants);

Purpose

Applies a scaled window to the time-domain signal and outputs window constants for further
analysis.

The windowed time-domain signal is scaled so that when the power or amplitude spectrum of the
windowed waveform is computed, all windows provide the same level within the accuracy
constraints of the window. This function also returns important window constants for the
selected window. These constants are useful when you use functions that perform computations
on the power spectrum, such as the PowerFrequencyEstimate.

windowType has the following values.

0: Uniform
1: Hanning
2: Hamming
3: Blackman-Harris
4: Exact Blackman
5: Blackman
6: Flattop
7: Four Term Blackman-Harris
8: Seven Term Blackman-Harris

x is the time-domain signal multiplied by the scaled window.

windowConstants is a structure containing the following important constants for the selected
window. windowStruct is defined by the following C typedef statement.

typedef struct {
double enbw;
double coherentgain;
} WindowConst;

enbw is the equivalent noise bandwidth of the selected window. You can use this value to
compute the power in a given frequency span.

coherentgain is the peak gain of the window, relative to the peak gain of the Rectangular
window. You can use this value to normalize peak signal gains to that of the Rectangular
window.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-182 © National Instruments Corporation

Parameters

Input x double-precision 1D
array

Input array containing time-domain
signal to be windowed.

n integer The number of elements in the input
array.

windowType integer The type of the window function to
apply to the input signal.

Output x double-precision arrayThe windowed version of x.

windowConstants WindowConst pointer A structure containing the following
useful constants for the selected
window: enbw is the equivalent
noise bandwidth of the selected
window. You can use this value to
compute the power in a given
frequency span. coherentgain is the
peak gain of the window, relative to
the peak gain of the Uniform
window. This value is used to
normalize peak signal gains to that of
the Uniform window.

Return Value

status integer refer to error codes in Appendix A

Set1D

int status = Set1D (double x[] , int n, double a);

Purpose

Sets the elements of the x array to a constant value.

Parameters

Input n integer number of elements in x

a double-precision constant value

Output x double-precision array result array (set to the value
of a)

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-183 LabWindows/CVI Advanced Analysis Library

Return Value

status integer refer to error codes in
Appendix A

Shift

int status = Shift (double x[] , int n, int shifts, double y[]);

Purpose

Shifts the elements of the input array using the following formula.

y xi i shifts= −

The number of shifts specified can be in the positive (right) or negative (left) direction.

Parameters

Input x double-precision array input array

n integer number of elements in x

shifts integer number of shifts

Output y double-precision array shifted array

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

This is not a circular shift. Shifted values are not retained, and the trailing portion of the shift is
replaced with zero. The operation cannot be done in place; that is, the input and output arrays
cannot be the same.

Example
/* Generate an array with random numbers and shift it by 20 samples. */
double x[200], y[200];
int n;
int shifts;
n = 200;

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-184 © National Instruments Corporation

shifts = 20;
Uniform (n, 17, x);
Shift (x, n, shifts, y);

Sinc

int status = Sinc (int n, double amp, double delay, double dt, double x[]);

Purpose

Generates an array containing a sinc pattern. The output array x is generated according to the
following formula.

x amp Sinc i dt delayi = ∗ −(*)

where

()
Sinc x

x

x
()

sin= π
π

Parameters

Input n integer The number of samples to generate.

amp double-precision The amplitude of the resulting signal.

delay double-precision Shifts the peak value of the sinc pattern
to the index.

dt double-precision The sampling interval. It is inversely
proportional to the width of the main
lobe of the generated sinc pattern.

Output x double-precision array Contains the generated sinc pattern.

Return Value

status integer refer to error codes in Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-185 LabWindows/CVI Advanced Analysis Library

SinePattern

int status = SinePattern (int n, double amp, double phase, double cycles, double sine[]);

Purpose

Generates an output array with a sinusoidal pattern. The ith element of the double-precision
output array is obtained using the following formula.

()sine amp i cycles n phasei = ∗ ∗ ∗ + ∗sin / /2 180π π

The phase value is assumed to be in degrees and not in radians.

Parameters

Input n integer number of samples

amp double-precision amplitude

phase double-precision phase (in degrees)

cycles double-precision number of cycles

Output sine double-precision array sinusoidal pattern

Return Value

status integer refer to error codes in
Appendix A

Example
/* The following code generates a cosinusoidal pattern. */
double x[8], amp, phase, cycles;
int n;
n = 8;
amp = 1.0;
phase = 90.0;
cycles = 1.5;
SinePattern (n, amp, phase, cycles, x);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-186 © National Instruments Corporation

SineWave

int status = SineWave (int n, double amp, double f, double *phase, double x[]);

Purpose

Generates an array containing a sine wave. The output array x is generated according to the
following formula.

xi = amp * sin(phi)

where

phi=
π

180(*phase + f*360.0*i)

where

f = frequency, cycles/sample

This function can be used to simulate a continuous acquisition from a sine wave function
generator. The unit of the input phase is in degrees, and phase is set to (*phase + f*360*n)
modulo 360 before returning.

Parameters

Input n integer The number of samples to generate.

amp double-precision The amplitude of the resulting signal.

f double-precision The frequency of the resulting signal in
normalized units of cycles/sample.

phase double-precision pointerPoints to the initial phase, in degrees,
of the generated signal.

Output phase double-precision Upon completion of this function,
phase points to the phase of the next
portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

x double-precision array Contains the generated sine wave
signal.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-187 LabWindows/CVI Advanced Analysis Library

Return Value

status integer refer to error codes in Appendix A

Sort

int status = Sort (double x[] , int n, int direction, double y[]);

Purpose

Sorts the x input array in ascending or descending order. The operation can be performed in
place; that is, x and y can be the same array.

Parameters

Input x double-precision array input array

n integer number of elements to be
sorted

direction integer zero: ascending
nonzero: descending

Output y double-precision array sorted array

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random array of numbers and sort them in ascending order. */
double x[200], y[200];
int n;
int dir;
n = 200;
dir = 0;
Uniform (n, 17, x);
Sort (x, n, dir, y);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-188 © National Instruments Corporation

Spectrum

int status = Spectrum (double x[] , int n);

Purpose

Computes the power spectrum of the input real data. The operation is done in place and the input
array x is overwritten. The following formula is used to obtain the power spectrum.

Power Spectrum = | FFT {X} |2 / n2

The number of elements (n) must be a power of two.

Parameters

Input x double-precision array input array

n integer number of elements

Output x double-precision array power spectrum

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate an array with random numbers and compute its power spectrum. */
double x[256];
int n;
n = 256;
Uniform (n, 17, x);
Spectrum (x, n);

SpectrumUnitConversion

int status = SpectrumUnitConversion (double spectrum[] , int n, int type,
int scalingMode, int displayUnits, double df,
WindowConst windowConstants,
double convertedSpectrum[] , char unitString []);

Purpose

Converts the input spectrum (power, amplitude, or gain) to alternate formats including Log
(dB or dBm) and spectral density.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-189 LabWindows/CVI Advanced Analysis Library

spectrum is the input array containing a spectrum of the type specified by the type selector.

type = 0 Power (Vrms2)–computed by AutoSpectrum()
type = 1 Amplitude (Vrms)–computed by AmpPhaseSpectrum()
type = 2 Gain (amplitude ratio)–computed by TransferFunction()

The unitString is a character array that specifies the base unit of the time domain waveform
from which the input spectrum is computed. The signal unit is often set to "V" (volts). The size
of unitString must be at least 12+ size of (input unitString).

The scalingMode control has three selections for the output unit type.

scalingMode = 0 Linear
scalingMode = 1 dB
scalingMode = 2 dBm

displayUnit has the following selections for the display unit (assuming V for the base unit).

0: Vrms (volts rms)
1: Vpk (volts peak)
2: Vrms2 (volts squared rms)
3: Vpk2 (volts squared peak)
4: Vrms/ Hz (volts rms per root Hz)
5: Vpk/ Hz (volts peak per root Hz)
6: Vrms2/Hz (volts squared rms per Hz)
7: Vpk2/Hz (volts squared peak per Hz)

The last four selections are amplitude spectral density (4,5) and power spectral density (6,7).
The structure windowConstants contains constants for the selected window (from the
ScaledWindow function). You need this input only when you use the spectral density output
formats (the last four display unit selections).

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-190 © National Instruments Corporation

Parameters

Input spectrum double-precision
array

The input array containing a spectrum of
the type specified by the spectrum
selector. It should be a power, amplitude,
or gain spectrum.

n integer The number of elements in the input
spectrum.

type integer The type of the input spectrum. Valid
values of Type are:

0: Power (Vrms2)
1: Amplitude (Vrms)
2: Gain (amplitude ratio)

scalingMode integer The type of the scaling of the output
spectrum.
Valid values of Scaling Mode are:

0: Linear
1: dB
2: dBm

displayUnits integer The unit of the output spectrum, (assuming
"V" for the input Unit String) Valid values of
displayUnits are:

0: Vrms (volts rms)

1: Vpk (volts peak)

2: Vrms2 (volts square rms)

3: Vpk2 (volts squared peak)

4: Vrms Hz (volts rms per square

root of Hz)

5: Vpk Hz (volts peak per square

root of Hz)

6: Vrms2/Hz (volts squared rms per

Hz)

7: Vpk2/Hz (volts squared peak per

Hz)

(continues)

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-191 LabWindows/CVI Advanced Analysis Library

Parameters (Continued)

df double-precision The frequency interval, in hertz, as output
by the following functions:
AmpPhaseSpectrum ,
AutoPowerSpectrum ,
CrossPowerSpectrum ,
NetworkFunctions ,
TransferFunction

windowConstants WindowConst
pointer

A structure containing the following useful
constants for the selected window: enbw is the
equivalent noise bandwidth of the selected
window. You can use this value to compute
the power in a given frequency span.
coherentgain is the peak gain of the window,
relative to the peak gain of the Rectangular
window. This value is used normalize peak
signal gains to that of the Rectangular
window. This structure is output by the
ScaledWindow function.

unitString string A string that contains, on input, the base
unit of the analyzed signal (V for a voltage
signal).

Output convertedSpectrum double-precision
array

The input spectrum (power, amplitude, or
gain) converted to alternate formats
including Log (dB or dBm) and spectral
density. The size of this array must be at
n.

unitString string Contains, upon completion of this function,
the unit of the output Converted Spectrum.
The size of this string must be at least the (size
of the input unitString) + 12.

Return Value

status integer refer to error codes in Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-192 © National Instruments Corporation

SpInterp

int status = SpInterp (double x[] , double y[] , double y2[] , int n, double
x_val, double *Interp_Val);

Purpose

Performs a cubic spline interpolation of the function f at a value x_val (where x_val is in the
range of xi 's), given a tabulated function of the form yi = f(xi) for i = 0, 1, ..., n-1, with
xi < xi +1, and given the second derivatives that specify the interpolant at the n nodes of x (these
are supplied by the Spline procedure). If x_val falls in the interval [xi, xi+1], then the
interpolated value is as follows.

Interp_Val = Ayi + Byi+1 + Cy''i + Dy''i+1

where

A =
 - x_ val

 - x

x i+1
xi+1 i

B = 1 - A

C = (A3 - A)(xi+1 - xi)2/6

D = (B3 - B)(xi+1 - xi)2/6

Parameters

Input x double-precision array the x values at which f is known.
These values must be in ascending
order.

y double-precision array the function values yi = f(xi)

y2 double-precision array the array of second derivatives
which specify the interpolant

n integer the number of elements in x, y, and
y2

x_val double-precision the x value at which f is to be
interpolated

Output Interp_Val double-precision the interpolated value

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-193 LabWindows/CVI Advanced Analysis Library

Return Value

status integer refer to error codes in
Appendix A

Example
/* Choose ascending X-values. Pick corresponding Y-values randomly. Set
boundary conditions and specify the cubic spline interpolant that is run
through the points. Pick an x in range of X's and interpolate. Pick another
x and interpolate again. */
double X[100], Y[100], Y2[100], B1, B2, x_val;
int n, i;
n = 100;
for(i=0; i<n; i++)

X[i] = i * 0.1;
WhiteNoise (n, 5.0, 17, Y);
b1=0.0;
b2=0.0;
Spline (X, Y, n, b1, b2, Y2);
x_val = 0.331;
SpInterp (X, Y, Y2, n, x_val, &Interp_Val);

x_val = 0.7698;
SpInterp (X, Y, Y2, n, x_val, &Interp_Val);

Spline

int status = Spline (double x[] , double y[] , int n, double b1, double b2, double y2[]);

Purpose

Calculates the second derivatives used by the cubic spline interpolant (the continuously
differentiable curve to be run though the n points (xi, yi)), given a tabulated function of the form
yi = f(xi) for i = 0, 1, ..., n-1, with xi < xi +1, and given the boundary conditions b1 and b2 such
that the interpolant's second derivative matches the specified values at x0 and xn-1.

This array can be used with the SpInterp function to calculate an interpolation value.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-194 © National Instruments Corporation

Parameters

Input x double-precision array the x values at which f is known; these
values must be in ascending order

y double-precision array the function values yi = f(xi)

n integer the number of elements in x, y, and y2

b1 double-precision the first boundary condition (x''0)

b2 double-precision the second boundary condition(x''n-1)

Output y2 double-precision array the array of second derivatives that
specify the interpolant

Return Value

status integer refer to error codes in
Appendix A

Example
/* Choose ascending X-values. Pick corresponding Y-values randomly. Set
boundary conditions and specify the cubic spline interpolant that is run
through the points. */
double X[100], Y[100], Y2[100], b1, b2;
int n, i;
n = 100;
for(i=0; i<n; i++)

X[i] = i * 0.1;
WhiteNoise (n, 5.0, 17, Y);
b1=0.0;
b2=0.0;
Spline (X, Y, n, b1, b2, Y2);

SquareWave

int status = SquareWave (int n, double amp, double f, double *phase,
double dutyCycle, double x[]);

Purpose

Generates an array containing a square wave. The output array x is generated according to the
following formula.

()x amp square phase f ii = + +* * . *360 0

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-195 LabWindows/CVI Advanced Analysis Library

where
f = frequency, cycles/sample

square (p)=
1.0 0≤ p modulo 360 <

duty

 100
* 360

−1.0
duty

100
* 360 ≤ p modulo 360 < 360






 

This function can be used to simulate a continuous acquisition from a square wave function
generator. The unit of the input *phase is in degrees, and *phase is set to (*phase + f *360*n)
modulo 360 before returning.

Parameters

Input n integer The number of samples to generate.

amp double-precision The amplitude of the resulting signal.

f double-precision The frequency of the resulting signal
in normalized units of cycles/sample.

dutyCycle double-precision Contains the duty cycle, in percent, of
the generated square wave signal.

phase double-precision Points to the initial phase, in degrees,
of the generated signal.

Output phase double-precision Upon completion of this function,
phase points to the phase of the next
portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

x double-precision array Contains the generated square wave
signal.

Return Value

status integer refer to error codes in Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-196 © National Instruments Corporation

StdDev

int status = StdDev (double x[] , int n, double *meanval, double *sDev);

Purpose

Computes the standard deviation and the mean (average) values of the input array. The formulas
used to find the mean and the standard deviation are as follows.

meanval= xi/n
i =0

n−1

∑

[]sDev x meanval ni
i

n

= −
=

−

∑ 2

0

1

/

Parameters

Input x double-precision array input array

n integer number of elements in x

Output meanval double-precision mean value

sDev double-precision standard deviation

Return Value

status integer refer to error codes in
Appendix A

Sub1D

int status = Sub1D (double x[] , double y[] , int n, double z[]);

Purpose

Subtracts two 1D arrays. The ith element of the output array can be obtained using the following
formula.

zi= xi- yi

The operation can be performed in place; that is, z can be either x or y.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-197 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array x input array

y double-precision array y input array

n integer number of elements to be
subtracted

Output z double-precision array result array

Return Value

status integer refer to error codes in
Appendix A

Sub2D

int status = Sub2D (void *x, void *y, int n, int m, void *z);

Purpose

Subtracts two 2D arrays. The (ith, jth) element of the output array is obtained using the formula.

z x yi j i j i j, , ,= −

The operation can be performed in place; that is, z can be either x or y.

Parameters

Input x double-precision 2D array x input array

y double-precision 2D array y input array

n integer number of elements in first
dimension

m integer number of elements in second
dimension

Output z double-precision 2D array result array

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-198 © National Instruments Corporation

Return Value

status integer refer to error codes in
Appendix A

Subset1D

int status = Subset1D (double x[] , int n, int index, int length, double y[]);

Purpose

Extracts a subset of the x input array containing the number of elements specified by the length
and starting at the index element.

Parameters

Input x double-precision array input array

n integer number of elements in x

index integer initial index for the subset

length integer number of elements copied to the
subset

Output y double-precision array subset array

Return Value

status integer refer to error codes in
Appendix A

Example
/* The following example generates y ={0.0, 1.0, 2.0, 3.0 }*/
double x[11], y[4], first, last;
int n, index, length;
n = 11;
index = 5;
length = 4;
first = -5.0;
last = 5.0;
Ramp (n, first, last, x);
Subset1D (x, n, index, length, y);

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-199 LabWindows/CVI Advanced Analysis Library

Sum1D

int status = Sum1D (double x[] , int n, double *sum);

Purpose

Finds the sum of the elements of the input array. The formula used to obtain the sum of the
elements is as follows.

sum xi
i

n

=
=

−

∑
0

1

Parameters

Input x double-precision array input array

n integer number of elements

Output sum double-precision sum of elements

Return Value

status integer refer to error codes in
Appendix A

Example
/* Generate a random array and sum the elements. */
double x[20], sum;
int n;
n = 20;
Uniform (n, 17, x);
Sum1D (x, n, &sum);

Sum2D

int status = Sum2D (void *x, int n, int m, double *sum);

Purpose

Finds the sum of the elements in the input 2D array. The sum is obtained using the following
formula.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-200 © National Instruments Corporation

sum xi j
j

m

i

n

=
=

−

=

−

∑∑ ,
0

1

0

1

Parameters

Input x double-precision 2D array input array

n integer number of elements in first
dimension

m integer number of elements in second
dimension

Output sum double-precision sum of the elements

Return Value

status integer refer to error codes in
Appendix A

T_Dist

int status = T_Dist (double t, int n, double *p);

Purpose

Computes the one-sided probability p:

p = prob(T ≤ t)

where T is a random variable from the T-distribution with n degrees of freedom.
Parameters

Input t double-precision -∞ < t < ∞
n integer degrees of freedom

Output p double-precision probability (0 ≤ p < 1)

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-201 LabWindows/CVI Advanced Analysis Library

Example
double t, p;
int n;
t = -123.456;
n = 6;
T_Dist (t, n, &p);

ToPolar

int status = ToPolar (double x, double y, double *mag, double *phase);

Purpose

Converts the rectangular coordinates (x, y) to polar coordinates (mag, phase). The formulas
used to obtain the polar coordinates are as follows.

mag = x2 + y2

phase = arctan (y / x)

The phase value is in the range of [-π to π].

Parameters

Input x double-precision x coordinate

y double-precision y coordinate

Output mag double-precision magnitude

phase double-precision phase (in radians)

Return Value

status integer refer to error codes in
Appendix A

Example
/*Convert the rectangular coordinates to polar coordinates. */
double x, y, mag, phase;
x = 1.5;
y = -2.5;
ToPolar (x, y, &mag, &phase);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-202 © National Instruments Corporation

ToPolar1D

int status = ToPolar1D (double x[] , double y[] , int n, double mag[] , double phase[]);

Purpose

Converts the set of rectangular coordinate points (x, y) to a set of polar coordinate points (mag,
phase). The ith element of the polar coordinate set is obtained using the following formulas.

mag x yi i i= +2 2

()phase y xi i i= arctan /

The phase value is in the range of [-π to π].

The operations can be performed in place; that is, x and mag, and y and phase, can be the same
arrays, respectively.

Parameters

Input x double-precision array x coordinate

y double-precision array y coordinate

n integer number of elements

Output mag double-precision array magnitude

phase double-precision array phase (in radians)

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-203 LabWindows/CVI Advanced Analysis Library

ToRect

int status = ToRect (double mag, double phase, double *x, double *y);

Purpose

Converts the polar coordinates (mag, phase) to rectangular coordinates (x, y). The formulas
used to obtain the rectangular coordinates are as follows.

x = mag * cos(phase)

y = mag * sin(phase)

Parameters

Input mag double-precision magnitude

phase double-precision phase (in radians)

Output x double-precision x coordinate

y double-precision y coordinate

Return Value

status integer refer to error codes in
Appendix A

ToRect1D

int status = ToRect1D (double mag[] , double phase[] , int n, double x[] , double y[]);

Purpose

Converts the set of polar coordinate points (mag, phase) to a set of rectangular coordinate points
(x, y). The ith element of the rectangular set is obtained using the following formulas.

xi = magi* cos(phasei)

yi= magi* sin(phasei)

The operations can be performed in place; that is, x and mag, and y and phase, can be the same
arrays, respectively.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-204 © National Instruments Corporation

Parameters

Input mag double-precision array magnitude

phase double-precision array phase (in radians)

n integer number of elements

Output x double-precision array x coordinate

y double-precision array y coordinate

Return Value

status integer refer to error codes in
Appendix A

Trace

int status = Trace (void *x, int n, double *traceval);

Purpose

Finds the trace of the 2D input matrix x. The trace is the sum of the matrix elements along the
main diagonal. The trace is obtained using the following formula.

trace xi i
i 0

n 1

=
=

−

∑ ,

The input matrix must be an n by n square matrix.

Parameters

Input x double-precision 2D array input matrix

n integer size of matrix

Output traceval double-precision trace

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-205 LabWindows/CVI Advanced Analysis Library

TransferFunction

int status = TransferFunction (double stimulus[] , double response[] , int n, double dt,
double magHf[] , double phaseHf[] , double *df);

Purpose

Computes the single-sided transfer function (also known as the frequency response) from the
time-domain stimulus signal and the time-domain response signal of a network under test.

The transfer function is computed as follows.

FFT(response) / FFT(stimulus)

and then this result is transformed to single-sided magnitude and phase.

Parameters

Input stimulus double-precision array Contains the time-domain signal,
usually the network stimulus.

response double-precision array Contains the time-domain signal,
usually the network response.

n integer The number of elements in the input
stimulus and response arrays. Valid
Values: Powers of 2.

dt double-precision The sample period of the time-domain
signals, usually in seconds.
dt = 1/fs, where fs is the sampling
frequency of the time-domain signals.

Output magHf double-precision array The magnitude of the averaged single-
sided transfer function between the
stimulus and response signals. This
array must be at least n/2 elements
long.

phaseHf double-precision array The phase, in radians of the averaged
single-sided transfer function between
the stimulus and response signals.
This array must be at least n/2 elements
long.

df double-precision Points to the frequency interval, in
hertz, if dt is in seconds.

*df = 1/(n*dt).

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-206 © National Instruments Corporation

Return Value

status integer refer to error codes in Appendix A

Transpose

int status = Transpose (void *x, int n, int m, void *y);

Purpose

Finds the transpose of a 2D input matrix. The (ith, jth) element of the resulting matrix is given by
the following formula.

y xi j j i, ,=
Parameters

Input x double-precision 2D array input matrix

n integer size of first dimension

m integer size of second dimension

Output y double-precision 2D array transpose matrix

Note: If the input matrix is dimensioned (n by m), then the output matrix must be
dimensioned (m by n).

Return Value

status integer refer to error codes in
Appendix A

Triangle

int status = Triangle (int n, double amp, double tri []);

Purpose

Generates an output array that has a triangular pattern. The ith element of the double-precision
output array is obtained using the following formulas.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-207 LabWindows/CVI Advanced Analysis Library

tri i = amp (1 - | 2i - n | / n) if n is even

tri i = amp (1 - | 2i - n + 1 | / (n - 1)) if n is odd
Parameters

Input n integer number of samples

amp double-precision amplitude

Output tri double-precision array triangular pattern

Return Value

status integer refer to error codes in
Appendix A

Example
/* The following code generates the pattern tri = { 0.0, 1.0, 2.0, 3.0, 4.0,
3.0, 2.0, 1.0 }. */
double tri[8], amp;
int n;
n = 8;
amp = 4.0;
Triangle (n, amp, tri);

TriangleWave

int status = TriangleWave (int n, double amp, double f, double *phase, double x[]);

Purpose

Generates an array containing a triangle wave. The output array x is generated according to the
following formula.

xi = amp * tri(* phase + f *360.0*i)

where

f = frequency, cycles/sample

tri(p) =
2 *((p modulo 360) / 180) 0≤ p modulo 360 < 90

2 *(1 - (p modulo 360) / 180) 90≤ p modulo 360 < 270

2 *((p modulo 360) / 180− 2) 270≤ p modulo 360 < 360





 

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-208 © National Instruments Corporation

This function can be used to simulate a continuous acquisition from a triangle wave function
generator. The unit of the input *phase is in degrees, and *phase is set to (*phase + f*360*n)
modulo 360 before returning.

Parameters

Input n integer The number of samples to generate.

amp double-precision The amplitude of the resulting signal.

f double-precision The frequency of the resulting signal in
normalized units of cycles/sample.

phase double-precision pointerPoints to the initial phase, in degrees,
of the generated signal.

Output phase double-precision Upon completion of this function,
phase points to the phase of the next
portion of the signal. Use this
parameter in the next call to this
function to simulate a continuous
function generator.

x double-precision array Contains the generated triangle wave
signal.

Return Value

status integer refer to error codes in Appendix A

TriWin

int status = TriWin (double x[] , int n);

Purpose

Applies a triangular window to the x input signal. The triangular window is defined by:

wi = 1 - |2*i-n| /n for i = 0, 1, ..., n-1

The output signal is obtained by:

xi= xi*w i for i = 0, 1, ..., n-1

The window operation is performed in place. The windowed data x replaces the input data x.

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-209 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input data

n integer number of elements in x

Output x double-precision array windowed data

Return Value

status integer refer to error codes in
Appendix A

Uniform

int status = Uniform (int n, int seed, double x[]);

Purpose

Generates an array of random numbers that are uniformly distributed between zero and one.

Parameters

Input n integer number of samples

seed integer seed value

Output x double-precision array random pattern between 0 and 1

Parameter Discussion

When seed ≥ 0, a new random sequence is generated using the seed value. When seed < 0, the
previously generated random sequence continues.

Return Value

status integer refer to error codes in
Appendix A

Example
/* The following code generates an array of random numbers between 0 and 1. */
double x[20];
int n;
n = 20;
Uniform (n, 17, x);

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-210 © National Instruments Corporation

UnWrap1D

int status = UnWrap1D (double phase[] , int n);

Purpose

Unwraps the discontinuous phase values that are in the range from -π to π to create continuous
values. The input array, phase, is overwritten.

Parameters

Input phase double-precision array array of discontinuous phase
values

n integer number of elements

Output phase double-precision array array of continuous phase
values

Return Value

status integer refer to error codes in
Appendix A

Variance

int status = Variance (double x[] , int n, double *meanval, double *var);

Purpose

Computes the variance and the mean (average) values of the input array. The following formulas
are used to find the mean and the variance.

meanval x / n
i

i 0

n 1

=
=

−

∑

[]var x meanval / n
i

2

i 0

n 1

= −
=

−

∑

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-211 LabWindows/CVI Advanced Analysis Library

Parameters

Input x double-precision array input array

n integer number of elements in x

Output meanval double-precision mean value

var double-precision variance

Return Value

status integer refer to error codes in
Appendix A

WhiteNoise

int status = WhiteNoise (int n, double amp, int seed, double *noise[]);

Purpose

Generates an array of random numbers that are uniformly distributed between -amp and amp.

Parameters

Input n integer number of samples

amp double-precision amplitude

seed integer seed value

Output noise double-precision array noise pattern

Parameter Discussion

When seed ≥ 0, a new random sequence is generated using the seed value. When seed < 0, the
previously generated random sequence continues.

Return Value

status integer refer to error codes in
Appendix A

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-212 © National Instruments Corporation

Example
/* The following code generates an array of random numbers between -5 and 5.
*/
double x[20], amp;
int n;
n = 20;
amp = 5.0;
WhiteNoise (n, amp, 17, x);

Wind_BPF

int status = Wind_BPF (double fs, double fl , double fh, int n, double coef[] ,
int windType);

Purpose

Designs a digital bandpass FIR linear phase filter using a windowing technique. Five windows
are available. This function generates only the filter coefficients. No filtering of data is actually
performed.

Parameters

Input fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

n integer number of filter coefficients

windType integer window type

Output coef double-precision array filter coefficients

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-213 LabWindows/CVI Advanced Analysis Library

Parameter Discussion

The parameter windType selects one of the five windows as shown in the following table.

windType Window Attenuation (dB) Transition Bandwidth (fs/n)

1 Rectangular 21 0.9
2 Triangular 25 1.18
3 Hanning 44 2.5
4 Hamming 53 3.13
5 Blackman 74 4.6

Using This Function

The attenuation value determines the approximate peak value of the sidelobes. Transition
bandwidth determines a frequency range over which the filter response changes from the pass
band to the stop band or from the stop band to the pass band. For more information, refer to
Digital Signal Processing by Oppenheim and Schafer.

Example
/* Design a 55-point bandpass FIR linear phase filter that can achieve at
least a 44 dB attenuation and filter the incoming signal with the designed
filter. */
double x[256], coef[55], y[310], fs, fl, fh;
int n, m, windType;
fs = 1000.0; /* sampling frequency */
fl = 200.0; /* desired lower cutoff frequency */
fh = 300.0; /* desired higher cutoff frequency */

/* pass band is from 200.0 to 300.0 */
n = 55; /* filter length */
windType = 3; /* using Hanning window */
m = 256;
Wind_BPF (fs, fl, fh, n, coef, windType);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

Wind_BSF

int status = Wind_BSF (double fs, double fl , double fh, int n, double coef[] ,
int windType);

Purpose

Designs a digital bandstop FIR linear phase filter using a windowing technique. Five windows
are available. This function generates only the filter coefficients. No filtering of data is actually
performed.

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-214 © National Instruments Corporation

Parameters

Input fs double-precision sampling frequency

fl double-precision lower cutoff frequency

fh double-precision higher cutoff frequency

n integer number of filter coefficients

windType integer window type

Output coef double-precision array filter coefficients

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The parameter windType selects one of the five windows as shown in the following table.

windType Window Attenuation (dB) Transition Bandwidth (fs/n)

1 Rectangular 21 0.9
2 Triangular 25 1.18
3 Hanning 44 2.5
4 Hamming 53 3.13
5 Blackman 74 4.6

Using This Function

The attenuation value determines the approximate peak value of the sidelobes. Transition
bandwidth determines a frequency range over which the filter response changes from the pass
band to the stop band or from the stop band to the pass band. For more information, refer to
Digital Signal Processing by Oppenheim and Schafer.

Example
/* Design a 55-point bandstop FIR linear phase filter that can achieve at
least a 44 dB attenuation and filter the incoming signal with the designed
filter. */
double x[256], coef[55], y[310], fs, fl, fh;
int n, m, windType;
fs = 1000.0; /* sampling frequency */
fl = 200.0; /* desired lower cutoff frequency */
fh = 300.0; /* desired higher cutoff frequency */

/* stop band is from 200.0 to 300.0 */
n = 55; /* filter length */
windType = 3; /* using Hanning window */

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-215 LabWindows/CVI Advanced Analysis Library

m = 256;
Wind_BSF (fs, fl, fh, n, coef, windType);
Convolve (coef, n, x, m, y); /* convolve the filter with*/

/* the signal */

Wind_HPF

int status = Wind_HPF (double fs, double fc, int n, double coef[] , int windType);

Purpose

Designs a digital highpass FIR linear phase filter using a windowing technique. Five windows
are available. This function generates only the filter coefficients. No filtering of data is actually
performed.

Parameters

Input fs double-precision sampling frequency

fc double-precision cutoff frequency

n integer number of filter coefficients

windType integer window type

Output coef double-precision array filter coefficients

Return Value

status integer refer to error codes in
Appendix A

Parameter Discussion

The parameter windType selects one of the five windows as shown in the following table.

windType Window Attenuation (dB) Transition Bandwidth (fs/n)

1 Rectangular 21 0.9
2 Triangular 25 1.18
3 Hanning 44 2.5
4 Hamming 53 3.13
5 Blackman 74 4.6

Using This Function

The attenuation value determines the approximate peak value of the sidelobes. Transition
bandwidth determines a frequency range over which the filter response changes from the pass

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-216 © National Instruments Corporation

band to the stop band or from the stop band to the pass band. For more information, refer to
Digital Signal Processing by Oppenheim and Schafer.

Example
/* Design a 55-point highpass FIR linear phase filter that can achieve at
least a 44 dB attenuation and filter the incoming signal with the designed
filter. */
double x[256], coef[55], y[310], fs, fc;
int n, m, windType;
fs = 1000.0; /* sampling frequency */
fc = 200.0; /* desired cutoff frequency */
n = 55; /* filter length */
windType = 3; /* using Hanning window */
m = 256;
Wind_HPF (fs, fc, n, coef, windType);
Convolve (coef, n, x, m, y); /* convolve the filter with */

 /* the signal */

Wind_LPF

int status = Wind_LPF (double fs, double fc, int n, double coef[] , int windType);

Purpose

Designs a digital lowpass FIR linear phase filter using a windowing technique. Five windows
are available. This function generates only the filter coefficients. No filtering of data is actually
performed.

Parameters

Input fs double-precision sampling frequency

fc double-precision cutoff frequency

n integer number of filter coefficients

windType integer window type

Output coef double-precision array filter coefficients

Return Value

status integer refer to error codes in
Appendix A

Chapter 2 Advanced Analysis Library Function Reference

© National Instruments Corporation 2-217 LabWindows/CVI Advanced Analysis Library

Parameter Discussion

The parameter windType selects one of the five windows as shown in the following table.

windType Window Attenuation (dB) Transition Bandwidth (fs/n)

1 Rectangular 21 0.9
2 Triangular 25 1.18
3 Hanning 44 2.5
4 Hamming 53 3.13
5 Blackman 74 4.6

Using This Function

The attenuation value determines the approximate peak value of the sidelobes. Transition
bandwidth determines a frequency range over which the filter response changes from the pass
band to the stop band or from the stop band to the pass band. For more information, refer to
Digital Signal Processing by Oppenheim and Schafer.

Example
/* Design a 55-point lowpass FIR linear phase filter that can achieve at least
a 44 dB attenuation and filter the incoming signal with the designed filter.
*/
double x[256], coef[55], y[310], fs, fc;
int n, m, windType;
fs = 1000.0; /* sampling frequency */
fc = 200.0; /* desired cutoff frequency */
n = 55; /* filter length */
windType = 3 ; /* using Hanning window */
m = 256;
Wind_LPF (fs, fc, n, coef, windType);
Convolve (coef, n, x, m, y); /* convolve the filter with */

/* the signal */

Advanced Analysis Library Function Reference Chapter 2

LabWindows/CVI Advanced Analysis Library 2-218 © National Instruments Corporation

XX_Dist

int status = XX_Dist (double x, int n, double *p);

Purpose

Approximates the one-sided probability p:

p = prob(X ≤ x)

where X is a random variable from the χ2-distribution with n degrees of freedom.

Parameters

Input x double-precision -∞ < x < ∞
n integer degrees of freedom

Output p double-precision probability (0 ≤ p <1)

Return Value

status integer refer to error codes in
Appendix A

Example
double x, p;
int n;
x = -123.456;
n = 6;
XX_Dist (x, n, &p);
/* Now p = 0 because χ2 distributed variables are non-negative.*/

© National Instruments Corporation A-1 LabWindows/CVI Advanced Analysis Library

Appendix A
Error Codes

This appendix contains error codes returned by the Advanced Analysis Library functions. If an
error condition occurs during a call to any of the functions in the LabWindows Analysis Library,
the return value status will contain the returned error code. This code is a value that specifies the
type of error that occurred. Table A-2 lists the error codes in numeric order. For your
convenience, Table A-1 lists the error codes alphabetically by symbolic name.

Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically

Symbolic Name Code Error Message

ArraySizeAnlysErr -20008 The specified conditions on the input arrays have
not been met.

AttenGTRippleAnlysErr -20028 The attenuation must be greater than the ripple
amplitude.

AttenGTZeroAnlysErr -20025 The attenuation must be greater than zero.

BalanceAnlysErr -20047 The data is unbalanced.

BandSpecAnlysErr -20023 Invalid band specification.

BaseGETopAnlysErr -20101 Base must be less than Top.

BetaFuncAnlysErr -20057 The parameter to the beta function must meet the
condition: 0 < p < 1.

CategoryAnlysErr -20055 Invalid number of categories or samples.

ColumnAnlysErr -20051 The first column in the X matrix must be all ones.

CyclesAnlysErr -20012 The number of cycles must meet the condition:
0 < cycles ≤ samples.

DataAnlysErr -20045 The total number of data points must be equal to
product of (levels/each factor) * (observations/cell).

DecFactAnlysErr -20022 The decimating factor must meet the condition:
0 < decimating factor ≤ samples.

DelayWidthAnlysErr -20014 The delay and width must meet the condition:
0 ≤ (delay + width) < samples.

DimensionAnlysErr -20058 Invalid number of dimensions or dependent
variables.

DistinctAnlysErr -20049 The x-values must be distinct.

(continues)

Error Codes Appendix A

LabWindows/CVI Advanced Analysis Library A-2 © National Instruments Corporation

Table A-1. Advanced Analysis Library Error Codes (Continued)

Symbolic Name Code Error Message

DivByZeroAnlysErr -20060 Divide by zero.

DtGTZeroAnlysErr -20016 dt or dx must be greater than zero.

EqRplDesignAnlysErr -20031 The filter cannot be designed with the specified
input parameters.

EqSamplesAnlysErr -20002 Input sequences must be the same size.

EvenSizeAnlysErr -20033 The number of coefficients must be odd for this
filter.

FactorAnlysErr -20043 The level of factor is outside the allowable range.

FreedomAnlysErr -20052 Invalid degrees of freedom.

IndexLengthAnlysErr -20018 The index and lenght must meet the condition:
0 ≤ (index + length) < samples.

IndexLTSamplesAnlysErr -20017 The index must meet the condition:

0 ≤ index < samples.

InvSelectionAnlysErr -20061 Invalid selection.

IIRFilterInfoAnlysErr -20066 The information in the IIR filter structure is invalid.

LevelsAnlysErr -20042 The number of levels is outside the allowable
range.

MaxIterAnlysErr -20062 Maximum iteration exceeded.

MixedSignAnlysErr -20036 The second array must be all positive or negative
and nonzero.

ModelAnlysErr -20048 The Random Effect model was requested when the
Fixed Effect model is required.

NoAnlysErr 0 No error; the call was successful.

NyquistAnlysErr -20020 The cut-off frequency, fc, must meet the condition:
0 ≤ fc ≤ fs/2.

ObservationsAnlysErr -20044 There must be at least one observation.

OddSizeAnlysErr -20034 The number of coefficients must be even for this
filter.

OrderGEZeroAnlysErr -20103 Order must be greater than or equal to zero.

OrderGTZeroAnlysErr -20021 The order must be greater than zero..

OutOfMemAnlysErr -20001 There is not enough memory left to perform the
specified routine.

(continues)

Appendix A Error Codes

© National Instruments Corporation A-3 LabWindows/CVI Advanced Analysis Library

Table A-1. Advanced Analysis Library Error Codes (Continued)

Symbolic Name Code Error Message

PoleAnlysErr -20050 The interpolating function has a pole at the
requested value.

PolyAnlysErr -20063 Invalid polynomial.

PowerOfTwoAnlysErr -20009 The size of the input array must be a valid power of

two: size = 2m .

ProbabilityAnlysErr -20053 The probability must meet the condition: 0 < p < 1.

RippleGTZeroAnlysErr -20024 The ripple must be greater than zero.

SamplesGEThreeAnlysErr -20007 The number of samples must be greater than or
equal to three.

SamplesGETwoAnlysErr -20006 The number of samples must be greater than or
equal to two.

SamplesGEZeroAnlysErr -20004 The number of samples must be greater than or
equal to zero.

SamplesGTZeroAnlysErr -20003 The number of samples must be greater than zero.

ShiftRangeAnlysErr -20102 The shifts must meet the condition: |shifts| <
samples.

SingularMatrixAnlysErr -20041 The input matrix is singular. The system of
equations cannot be solved.

SizeGTOrderAnlysErr -20037 The array size must be greater than the order.

SquareMatrixAnlysErr -20040 The input matrix must be a square matrix.

TableAnlysErr -20056 The contingency table has a negative number.

UpperGELowerAnlysErr -20019 The upper value must be greater than or equal to the
lower value.

ZeroVectorAnlysErr -20065 The elements of the vector cannot be all zero.

Error Codes Appendix A

LabWindows/CVI Advanced Analysis Library A-4 © National Instruments Corporation

Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically

Symbolic Name Code Error Message

NoAnlysErr 0 No error; the call was successful.

OutOfMemAnlysErr -20001 There is not enough memory left to perform the
specified routine.

EqSamplesAnlysErr -20002 Input sequences must be the same size.

SamplesGTZeroAnlysErr -20003 The number of samples must be greater than zero.

SamplesGEZeroAnlysErr -20004 The number of samples must be greater than or
equal to zero.

SamplesGETwoAnlysErr -20006 The number of samples must be greater than or
equal to two.

SamplesGEThreeAnlysErr -20007 The number of samples must be greater than or
equal to three.

ArraySizeAnlysErr -20008 The specified conditions on the input arrays have
not been met.

PowerOfTwoAnlysErr -20009 The size of the input array must be a valid power

of two: size = 2m .

CyclesAnlysErr -20012 The number of cycles must meet the condition:
0 < cycles ≤ samples.

DelayWidthAnlysErr -20014 The delay and width must meet the condition:
0 ≤ (delay + width) < samples.

DtGTZeroAnlysErr -20016 dt or dx must be greater than zero.

IndexLTSamplesAnlysErr -20017 The index must meet the condition:
0 ≤ index < samples.

IndexLengthAnlysErr -20018 The index and lenght must meet the condition: 0 ≤
(index + length) < samples.

UpperGELowerAnlysErr -20019 The upper value must be greater than or equal to
the lower value.

NyquistAnlysErr -20020 The cut-off frequency, fc, must meet the condition:
0 ≤ fc ≤ fs/2.

OrderGTZeroAnlysErr -20021 The order must be greater than zero.

DecFactAnlysErr -20022 The decimating factor must meet the condition: 0
< decimating factor ≤ samples.

BandSpecAnlysErr -20023 Invalid band specification.

RippleGTZeroAnlysErr -20024 The ripple must be greater than zero.

(continues)

Appendix A Error Codes

© National Instruments Corporation A-5 LabWindows/CVI Advanced Analysis Library

Table A-2. Advanced Analysis Library Error Codes (Continued)

Symbolic Name Code Error Message

AttenGTZeroAnlysErr -20025 The attenuation must be greater than zero.

AttenGTRippleAnlysErr -20028 The attenuation must be greater than the ripple
amplitude.

EqRplDesignAnlysErr -20031 The filter cannot be designed with the specified
input parameters.

EvenSizeAnlysErr -20033 The number of coefficients must be odd for this
filter.

OddSizeAnlysErr -20034 The number of coefficients must be even for this
filter.

MixedSignAnlysErr -20036 The second array must be all positive or negative
and nonzero.

SizeGTOrderAnlysErr -20037 The array size must be greater than the order.

SquareMatrixAnlysErr -20040 The input matrix must be a square matrix.

SingularMatrixAnlysErr -20041 The input matrix is singular. The system of
equations cannot be solved.

LevelsAnlysErr -20042 The number of levels is outside the allowable
range.

FactorAnlysErr -20043 The level of factor is outside the allowable range.

ObservationsAnlysErr -20044 There must be at least one observation.

DataAnlysErr -20045 The total number of data points must be equal to
product of (levels/each factor) *
(observations/cell).

BalanceAnlysErr -20047 The data is unbalanced.

ModelAnlysErr -20048 The Random Effect model was requested when the
Fixed Effect model is required.

DistinctAnlysErr -20049 The x-values must be distinct.

PoleAnlysErr -20050 The interpolating function has a pole at the
requested value.

ColumnAnlysErr -20051 The first column in the X matrix must be all ones.

FreedomAnlysErr -20052 Invalid degrees of freedom.

ProbabilityAnlysErr -20053 The probability must meet the condition: 0 < p < 1.

CategoryAnlysErr -20055 Invalid number of categories or samples.

TableAnlysErr -20056 The contingency table has a negative number.

(continues)

Error Codes Appendix A

LabWindows/CVI Advanced Analysis Library A-6 © National Instruments Corporation

Table A-2. Advanced Analysis Library Error Codes (Continued)

Symbolic Name Code Error Message

BetaFuncAnlysErr -20057 The parameter to the beta function must meet the
condition: 0 < p < 1.

DimensionAnlysErr -20058 Invalid number of dimensions or dependent
variables.

DivByZeroAnlysErr -20060 Divide by zero.

InvSelectionAnlysErr -20061 Invalid selection.

MaxIterAnlysErr -20062 Maximum iteration exceeded.

PolyAnlysErr -20063 Invalid polynomial.

ZeroVectorAnlysErr -20065 The elements of the vector cannot be all zero.

IIRFilterInfoAnlysErr -20066 The information in the IIR filter structure is
invalid.

BaseGETopAnlysErr -20101 Base must be less than Top.

ShiftRangeAnlysErr -20102 The shifts must meet the condition: |shifts| <
samples.

OrderGEZeroAnlysErr -20103 Order must be greater than or equal to zero.

© National Instruments Corporation B-1 LabWindows/CVI Advanced Analysis Library

Appendix B
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to
6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
questions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. You can access these services at:

• United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

• United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

• France: 1 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FaxBack Support
FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following number: (512) 418-1111.

Customer Communication Appendix B

LabWindows/CVI Advanced Analysis Library B-2 © National Instruments Corporation

FTP Support

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and
use your Internet address, such as joesmith@anywhere.com , as your password. The
support files and documents are located in the /support directories.

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
Lookout: lookout.support@natinst.com
VISA: visa.support@natinst.com

Fax and Telephone Support
National Instruments has branch offices all over the world. Use the list below to find the
technical support number for your country. If there is no National Instruments office in your
country, contact the source from which you purchased your software to obtain support.

Telephone Fax

Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use the completed
copy of this form as a reference for your current configuration. Completing this form accurately before contacting
National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals. Include additional pages if necessary.

Name ___

Company __

Address ___

__

Fax () Phone ()

Computer brand Model Processor

Operating system: Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.1, Windows NT 3.5,
Windows 95, other (include version number)

Clock Speed MHz RAM MB Display adapter

Mouse yes no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration. When you complete this form accurately before contacting National
Instruments for technical support, our applications engineers can answer your questions more efficiently.

National Instruments Products

Data Acquisition Hardware Revision __

Interrupt Level of Hardware ___

DMA Channels of Hardware __

Base I/O Address of Hardware ___

NI-DAQ, LabVIEW, or
LabWindows Version __

Other Products

Computer Make and Model ___

Microprocessor ___

Clock Frequency __

Type of Video Board Installed ___

Operating System ___

Operating System Version __

Operating System Mode __

Programming Language __

Programming Language Version ___

Other Boards in System __

Base I/O Address of Other Boards __

DMA Channels of Other Boards ___

Interrupt Level of Other Boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: LabWindows®/CVI Advanced Analysis Library Reference Manual

Edition Date: July 1996

Part Number: 320686C-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

__

Thank you for your help.

Name ___

Title __

Company __

Address ___

__

Fax () Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1 LabWindows/CVI Advanced Analysis Library

Glossary

Prefix Meaning Value

p- pico- 10-12

n- nano- 10-9

µ- micro- 10-6

m- milli- 10-3

k- kilo- 103

M- mega- 106

Numbers

1D one-dimensional
2D two-dimensional

A

active window The window affected by user input at a given moment. The title of an
active window is highlighted.

ANOVA analysis of variance

Array Display A mechanism for viewing and editing numeric arrays.

auto-exclusion A mechanism that prevents pre-existing lines from executing in the
Interactive Execution Window.

B

bps bits per second

breakpoint An interruption in the execution of a program.

Glossary

LabWindows/CVI Advanced Analysis Library G-2 © National Instruments Corporation

C

caption bar An area directly beneath the command bar at the top of a window that
displays the name of the file you are working on.

cm centimeters

command bar An area along the top of a window that contains the names of the
LabWindows/CVI command menus.

common control A function panel control that specifies the first parameter in both primary
and secondary functions associated with a function panel. A common
control appears on a function panel in the same color or intensity as a
primary control.

control An input and output device that appears on a function panel for specifying
function parameters and displaying function results.

D

DFT Discrete Fourier Transform

dialog box A prompt mechanism in which you specify additional information needed
to complete a command.

DSP digital signal processing

E

excluded code Code that is ignored during compilation and execution. Excluded lines of
code are displayed in a different color than included lines of code.

F

FFT Fast Fourier Transform

FHT Fast Hartley Transform

FIR finite impulse response

Glossary

© National Instruments Corporation G-3 LabWindows/CVI Advanced Analysis Library

function panel A user interface to the LabWindows/CVI libraries in which you can
interactively execute library functions and generate code for inclusion in a
program.

function panel A window that contains one or more function panels.
window

function tree The hierarchical structure in which the functions in a library or an
instrument driver are grouped. The function tree simplifies access to a
library or instrument driver by presenting functions organized according to
the operation they perform, as opposed to a single linear listing of all
available functions.

G

Generated Code A small window located at the bottom of the function panel screen that
box displays the code produced by the manipulation of function panel controls.

global control A function panel control that displays the contents of global variables in a
library function. Global controls allow you to monitor global variables in
a function that are not specifically returned as results by the function.
These are read-only controls that cannot be altered by the user, and do not
contribute a parameter to the generated code.

H

hex hexadecimal

Hz hertz

I

IDFT inverse Discrete Fourier Transform

IFFT inverse Fast Fourier Transform

IFHT inverse Fast Hartley Transform

IIR infinite impulse response

in. inches

Glossary

LabWindows/CVI Advanced Analysis Library G-4 © National Instruments Corporation

input control A function panel control that accepts a value typed in from the keyboard.
An input control can have a default value associated with it. This value
appears in the control when the panel is first displayed.

input focus A mechanism for emphasis displayed on the screen as a highlight on an
item, signifying that the item is active. User input affects the item in the
dialog box that has the input focus.

Interactive Execution A LabWindows/CVI window in which sections of code may be executed
window without creating an entire program.

K

ksamples 1,000 samples

L

.LFP file A file containing information about the function tree and function panels
for a LabWindows/CVI permanent library.

list box A dialog box item that displays a list of possible choices.

M

MB megabytes of memory

menu An area accessible from the command bar that displays a subset of the
possible command choices.

mse mean squared error

O

output control A function panel control that displays a value determined by the function
you execute.

Glossary

© National Instruments Corporation G-5 LabWindows/CVI Advanced Analysis Library

P

Project window A window that keeps track of the components that make up your current
project. The Project window maintains a list of files such as source files,
uir files, header files, or object modules, and also contains status
information about each file in your project.

prompt command A command that requires additional information before it can be executed;
a prompt command appears on a pull-down menu suffixed with three
ellipses (…).

R

return value control A function panel control that displays a value returned from a function as a
return value rather than as a formal parameter.

rms root mean squared

S

scroll bars Areas along the bottom and right sides of a window that show your
relative position in the file. Scroll bars can be used with a mouse to move
about in the window.

scrollable text box A dialog box item that displays text in a scrollable display.

s seconds

select To choose the item that the next executed action will affect by moving the
input focus (highlight) to a particular item or area.

shortcut key A combination of keystrokes that provide a means of executing a
commands command without accessing a menu in the command bar.

Source window A LabWindows/CVI work area in which complete programs are edited
and executed. This window is designated by the file extension .c.

Standard Input/ A LabWindows/CVI work area in which output to and input from the user
Output window take place.

standard libraries The LabWindows/CVI Analysis, Formatting and I/O, GPIB/GPIB-488.2,
RS-232, TCP/IP, DDE libraries and the ANSI C Library.

String Display A mechanism for viewing and editing string variables and arrays.

Glossary

LabWindows/CVI Advanced Analysis Library G-6 © National Instruments Corporation

V

V volts

Variable Display A display that shows the values of the variables that are currently defined
in LabWindows/CVI.

© National Instruments Corporation I-1 LabWindows/CVI Advanced Analysis Library

Index

Numbers

1D array functions. See one-dimensional
array operation functions.

1D complex operation functions. See one-
dimensional complex operation functions.

2D array functions. See two-dimensional
array operation functions.

A

Abs1D function, 2-1
ACDCEstimator function, 2-1 to 2-2
Add1D function, 2-2 to 2-3
Add2D function, 2-3
Advanced Analysis Library functions

error codes
alphabetical list, A-1 to A-3
numeric list, A-4 to A-6

function panels
array operation functions, 1-2, 1-7
array utility functions, 1-8
complex operation

functions, 1-3, 1-7
curve fitting functions, 1-6, 1-8
function tree (table), 1-1 to 1-7
hints for using, 1-8 to 1-9
interpolation functions, 1-6, 1-8
measurement functions, 1-5, 1-8
signal generation functions, 1-1

to 1-2, 1-7
signal processing functions, 1-3

to 1-5, 1-7
statistics functions, 1-5 to 1-6, 1-8
vector and matrix algebra

functions, 1-6, 1-8
function reference

Abs1D, 2-1
ACDCEstimator, 2-1 to 2-2

Add1D, 2-2 to 2-3
Add2D, 2-3
AllocIIRFilterPtr, 2-5 to 2-6
AmpPhaseSpectrum, 2-4 to 2-5
ANOVA1Way, 2-6 to 2-11
ANOVA2Way, 2-11 to 2-19
ANOVA3Way, 2-20 to 2-29
ArbitraryWave, 2-30 to 2-31
AutoPowerSpectrum, 2-31 to 2-32
BackSub, 2-32 to 2-33
Bessel_CascadeCoef, 2-33 to 2-35
Bessel_Coef, 2-36 to 2-37
BkmanWin, 2-37
BlkHarrisWin, 2-36 to 2-37
Bw_BPF, 2-38
Bw_BSF, 2-39
BW_CascadeCoef, 2-40 to 2-41
Bw_Coef, 2-41 to 2-42
Bw_HPF, 2-42 to 2-43
Bw_LPF, 2-43 to 2-44
CascadeToDirectCoef, 2-44 to 2-45
Ch_BPF, 2-45 to 2-46
Ch_BSF, 2-46 to 2-47
Ch_CascadeCoef, 2-47 to 2-49
Ch_Coef, 2-49 to 2-50
Ch_HPF, 2-50 to 2-51
Chirp, 2-52 to 2-53
Ch_LPF, 2-51 to 2-52
Clear1D, 2-53
Clip, 2-54
Contingency_Table, 2-54 to 2-57
Convolve, 2-58 to 2-59
Copy1D, 2-59
Correlate, 2-59 to 2-60
CosTaperedWin, 2-60 to 2-61
CrossPowerSpectrum, 2-61 to 2-62
CrossSpectrum, 2-62 to 2-63
CxAdd, 2-63 to 2-64
CxAdd1D, 2-64 to 2-65
CxDiv, 2-65
CxDiv1D, 2-66

Index

LabWindows/CVI Advanced Analysis Library I-2 © National Instruments Corporation

CxExp, 2-66 to 2-67
CxLn, 2-68
CxLog, 2-68 to 2-69
CxMul, 2-69
CxMul1D, 2-70
CxPow, 2-70 to 2-71
CxRecip, 2-71
CxSqrt, 2-72
CxSub, 2-72 to 2-73
CxSub1D, 2-73 to 2-74
Decimate, 2-74
Deconvolve, 2-75
Determinant, 2-76
Difference, 2-76 to 2-77
Div1D, 2-77 to 2-78
Div2D, 2-78
DotProduct, 2-79
Elp_BPF, 2-79 to 2-80
Elp_BSF, 2-80 to 2-81
Elp_CascadeCoef, 2-81 to 2-83
Elp_Coef, 2-83 to 2-84
Elp_HPF, 2-84 to 2-85
Elp_LPF, 2-85 to 2-86
Equi_Ripple, 2-86 to 2-89
EquiRpl_BPF, 2-89 to 2-90
EquiRpl_BSF, 2-91
EquiRpl_HPF, 2-92
EquiRpl_LPF, 2-93
ExBkmanWin, 2-94
ExpFit, 2-94 to 2-95
ExpWin, 2-96
F_Dist, 2-96 to 2-97
FFT, 2-97 to 2-98
FHT, 2-98 to 2-99
FIR_Coef, 2-99 to 2-100
FlatTopWin, 2-100
ForceWin, 2-101
ForwSub, 2-101 to 2-102
FreeIIRFilterPtr, 2-102 to 2-104
GaussNoise, 2-103 to 2-104
GenCosWin, 2-104
GenLSFit, 2-105 to 2-111
GenLSFitCoef, 2-112 to 2-113
GetAnalysisErrorString, 2-113
HamWin, 2-114
HanWin, 2-114 to 2-115

Histogram, 2-115 to 2-116
IIRCascadeFiltering, 2-116 to 2-117
IIRFiltering, 2-118 to 2-119
Impulse, 2-119 to 2-120
ImpulseResponse, 2-120
Integrate, 2-121
InvCh_BPF, 2-122
InvCh_BSF, 2-123
InvCh_CascadeCoef, 2-124 to 2-125
InvCh_Coef, 2-125 to 2-126
InvCh_HFP, 2-126 to 2-127
InvCh_LPF, 2-127 to 2-128
InvF_Dist, 2-128 to 2-129
InvFFT, 2-129 to 2-130
InvFHT, 2-130 to 2-131
InvMatrix, 2-131 to 2-132
InvN_Dist, 2-132
InvT_Dist, 2-133
InvXX_Dist, 2-133 to 2-134
Ksr_BPF, 2-134 to 2-135
Ksr_BSF, 2-136 to 2-137
Ksr_HPF, 2-137 to 2-138
Ksr_LPF, 2-138 to 2-139
Ksr_Win, 2-139 to 2-140
LinEqs, 2-140 to 2-141
LinEv1D, 2-141 to 2-142
LinEv2D, 2-142 to 2-143
LinFit, 2-143 to 2-144
LU, 2-144 to 2-145
MatrixMul, 2-145 to 2-146
MaxMin1D, 2-146 to 2-147
MaxMin2D, 2-147 to 2-148
Mean, 2-148
Median, 2-149
Mode, 2-149 to 2-150
Moment, 2-150 to 2-151
Mul1D, 2-151 to 2-152
Mul2D, 2-152
N-Dist, 2-153
Neg1D, 2-153 to 2-154
NetworkFunctions, 2-154 to 2-156
NonLinearFit, 2-156 to 2-157
Normal1D, 2-157 to 2-158
Normal2D, 2-158 to 2-159
PolyEv1D, 2-159 to 2-160
PolyEv2D, 2-160 to 2-161

Index

© National Instruments Corporation I-3 LabWindows/CVI Advanced Analysis Library

PolyFit, 2-162 to 2-163
PolyInterp, 2-163 to 2-164
PowerFrequencyEstimate, 2-164

to 2-166
Prod1D, 2-166 to 2-167
Pulse, 2-167 to 2-168
PulseParam, 2-168 to 2-169
QScale1D, 2-170
QScale2D, 2-170 to 2-171
Ramp, 2-171 to 2-172
RatInterp, 2-172 to 2-173
ReFFT, 2-174
ReInvFFT, 2-175
ResetIIRFilter, 2-176
Reverse, 2-177
RMS, 2-177 to 2-178
SawtoothWave, 2-178 to 2-179
Scale1D, 2-179
Scale2D, 2-180
ScaledWindow, 2-181 to 2-182
Set1D, 2-182 to 2-183
Shift, 2-183 to 2-184
Sinc, 2-184
SinePattern, 2-185
SineWave, 2-186 to 2-187
Sort, 2-187
Spectrum, 2-188
SpectrumUnitConversion, 2-188

to 2-191
SpInterp, 2-192 to 2-193
Spline, 2-193 to 2-194
SquareWave, 2-194 to 2-195
StdDev, 2-196
Sub1D, 2-196 to 2-197
Sub2D, 2-197 to 2-198
Subset1D, 2-198
Sum1D, 2-199
Sum2D, 2-199 to 2-200
T_Dist, 2-200 to 2-201
ToPolar, 2-201
ToPolar1D, 2-202
ToRect, 2-203
ToRect1D, 2-203 to 2-204
Trace, 2-204
TransferFunction, 2-205 to 2-206
Transpose, 2-206

Triangle, 2-206 to 2-207
TriangleWave, 2-207 to 2-208
TriWin, 2-208 to 2-209
Uniform, 2-209
UnWrap1D, 2-210
Variance, 2-210 to 2-211
WhiteNoise, 2-211 to 2-212
Wind_BPF, 2-212 to 2-213
Wind_BSF, 2-213 to 2-215
Wind_HPF, 2-215 to 2-216
Wind_LPF, 2-216 to 2-217
XX_Dist, 2-218

AllocIIRFilterPtr function, 2-5 to 2-6
AmpPhaseSpectrum function, 2-4 to 2-5
analysis of variance functions

ANOVA1Way, 2-3
ANOVA2Way, 2-11 to 2-19
ANOVA3Way, 2-19 to 2-29
definition, 1-8
function tree, 1-6

ANOVA1Way function, 2-3
ANOVA2Way function, 2-11 to 2-19
ANOVA3Way function, 2-19 to 2-29
ArbitraryWave function, 2-30 to 2-31
array analysis operations

definition, 1-7
performing analysis operations in

place, 1-9
array operation functions

Abs1D, 2-1
Add1D, 2-2 to 2-3
Add2D, 2-3
definition, 1-7
Div1D, 2-77 to 2-78
Div2D, 2-78
function tree, 1-2
LinEv1D, 2-141 to 2-142
LinEv2D, 2-142 to 2-143
MaxMin1D, 2-146 to 2-147
MaxMin2D, 2-147 to 2-148
Mul1D, 2-151 to 2-152
Mul2D, 2-152
Neg1D, 2-153 to 2-154
PolyEv1D, 2-159 to 2-160
PolyEv2D, 2-160 to 2-161
Prod1D, 2-166 to 2-167

Index

LabWindows/CVI Advanced Analysis Library I-4 © National Instruments Corporation

QScale1D, 2-170
QScale2D, 2-170 to 2-171
Scale1D, 2-179
Scale2D, 2-180
Sub1D, 2-196 to 2-197
Sub2D, 2-197 to 2-198
Subset1D, 2-198
Sum1D, 2-199
Sum2D, 2-199 to 2-200

array utility functions
Clear1D, 2-53
Copy1D, 2-59
definition, 1-8
function tree, 1-8
Set1D, 2-182 to 2-183
UnWrap1D, 2-210

AutoPowerSpectrum function, 2-31 to 2-32

B

BackSub function, 2-32 to 2-33
basic statistics functions

definition, 1-8
function tree, 1-5 to 1-6
Histogram, 2-115 to 2-116
Mean, 2-148
Median, 2-149
Mode, 2-149 to 2-150
Moment, 2-150 to 2-151
RMS, 2-177 to 2-178
StdDev, 2-196
Variance, 2-210 to 2-211

Bessel_CascadeCoef function, 2-33 to 2-35
Bessel_Coef function, 2-36 to 2-37
BkmanWin function, 2-37
BlkHarrisWin function, 2-36 to 2-37
Bw_BPF function, 2-38
Bw_BSF function, 2-39
BW_CascadeCoef function, 2-40 to 2-41
Bw_Coef function, 2-41 to 2-42
Bw_HPF function, 2-42 to 2-43
Bw_LPF function, 2-43 to 2-44

C

CascadeToDirectCoef function, 2-44 to 2-45
Ch_BPF function, 2-45 to 2-46
Ch_BSF function, 2-46 to 2-47
Ch_Coef function, 2-49 to 2-50
Ch_HPF function, 2-50 to 2-51
Ch_LPF function, 2-51 to 2-52
Ch_CascadeCoef function, 2-47 to 2-49
Chirp function, 2-52 to 2-53
chi-square tests, 2-55 to 2-56
Clear1D function, 2-53
Clip function, 2-54
complex operation functions

CxAdd, 2-63 to 2-64
CxAdd1D, 2-64 to 2-65
CxDiv, 2-65
CxDiv1D, 2-66
CxExp, 2-66 to 2-67
CxLinEv1D, 2-67 to 2-68
CxLn, 2-68
CxLog, 2-68 to 2-69
CxMul, 2-69
CxMul1D, 2-70
CxPow, 2-70 to 2-71
CxRecip, 2-71
CxSqrt, 2-72
CxSub, 2-72 to 2-73
CxSub1D, 2-73 to 2-74
definition, 1-7
function tree, 1-3
ToPolar, 2-201
ToPolar1D, 2-202
ToRect, 2-203
ToRect1D, 2-203 to 2-204

Contingency_Table function, 2-54 to 2-57
Convolve function, 2-58 to 2-59
Copy1D function, 2-59
Correlate function, 2-59 to 2-60
CosTaperedWin function, 2-60 to 2-61
CrossPowerSpectrum function, 2-61 to 2-62
CrossSpectrum function, 2-62 to 2-63
curve fitting, 1-18
curve fitting functions

definition, 1-8
ExpFit, 2-94 to 2-95

Index

© National Instruments Corporation I-5 LabWindows/CVI Advanced Analysis Library

function tree, 1-6
GenLSFit, 2-105 to 2-111
GenLSFitCoef, 2-112 to 2-113
LinFit, 2-143 to 2-144
NonLinearFit, 2-156 to 2-157
PolyFit, 2-162 to 2-163

customer communication, xiv, B-1 to B-2
CxAdd function, 2-63 to 2-64
CxAdd1D function, 2-64 to 2-65
CxDiv function, 2-65
CxDiv1D function, 2-66
CxExp function, 2-66 to 2-67
CxLinEv1D function, 2-67 to 2-68
CxLn function, 2-68
CxLog function, 2-68 to 2-69
CxMul function, 2-69
CxMul1D function, 2-70
CxPow function, 2-70 to 2-71
CxRecip function, 2-71
CxSqrt function, 2-72
CxSub function, 2-72 to 2-73
CxSub1D function, 2-73 to 2-74

D

Decimate function, 2-74
Deconvolve function, 2-75
Determinant function, 2-76
Difference function, 2-76 to 2-77
digital filters. See FIR filters; IIR filters.
Discrete Fourier Transform (DFT), 1-9

to 1-10
Div1D function, 2-77 to 2-78
Div2D function, 2-78
documentation

conventions used in manual, xi-xii
organization of manual, xi
related documentation, xii-xiii

DotProduct function, 2-79

E

electronic support services, B-1 to B-2
Elp_BPF function, 2-79 to 2-80
Elp_BSF function, 2-80 to 2-81
Elp_CascadeCoef function, 2-81 to 2-83
Elp_Coef function, 2-83 to 2-84
Elp_HPF function, 2-84 to 2-85
Elp_LPF function, 2-85 to 2-86
e-mail support, B-2
Equi_Ripple function

description, 2-86 to 2-89
designing FIR filters, 1-14
examples, 2-87 to 2-89
problems with convergence

(caution), 1-14
EquiRpl_BPF function, 2-89 to 2-90
EquiRpl_BSF function, 2-91
EquiRpl_HPF function, 2-92
EquiRpl_LPF function, 2-93
error codes

alphabetical list, A-1 to A-3
numeric list, A-4 to A-6

errors
converting error number with

GetAnalysisErrorString
function, 2-113

reporting analysis errors, 1-9
ExBkmanWin function, 2-94
ExpFit function, 2-94 to 2-95
ExpWin function, 2-96

F

Fast Fourier Transform (FFT), 1-9 to 1-10.
See also frequency domain functions.

fax and telephone support, B-2
faxback support, B-1
F_Dist function, 2-96 to 2-97
FFT function, 2-97 to 2-98
FHT function, 2-98 to 2-99
finite impulse response functions. See FIR

digital filter functions; FIR filters.
FIR digital filter functions

definition, 1-7

Index

LabWindows/CVI Advanced Analysis Library I-6 © National Instruments Corporation

FIR_Coef, 2-99 to 2-100
function tree, 1-4 to 1-5
Ksr_BPF, 2-134 to 2-135
Ksr_BSF, 2-136 to 2-137
Ksr_HPF, 2-137 to 2-138
Ksr_LPF, 2-138 to 2-139
Wind_BPF, 2-212 to 2-213
Wind_BSF, 2-213 to 2-215
Wind_HPF, 2-215 to 2-216
Wind_LPF, 2-216 to 2-217

FIR filters
compared with IIR filters, 1-13
definition, 1-13
designing, 1-14

FIR_Coef function, 2-99 to 2-100
FlatTopWin function, 2-100
ForceWin function, 2-101
ForwSub function, 2-101 to 2-102
Fourier Transform integral, 1-9
FPT support, B-2
FreeIIRFilterPtr function, 2-102 to 2-104
frequency domain functions

conventions and restrictions related to
Fast Fourier Transform, 1-10

CrossSpectrum, 2-62 to 2-63
definition, 1-7
FFT, 2-97 to 2-98
FHT, 2-98 to 2-99
function tree, 1-3
InvFFT, 2-129 to 2-130
InvFHT, 2-130 to 2-131
notation for describing Fast Fourier

Transform operations, 1-10
ReFFT, 2-174
ReInvFFT, 2-175
Spectrum, 2-188

function panels. See under Advanced
Analysis Library.

G

GaussNoise function, 2-103 to 2-104
GenCosWin function, 2-104
generated code stored in Interactive

window, 1-9
GenLSFit function, 2-105 to 2-111
GenLSFitCoef function, 2-112 to 2-113
GetAnalysisErrorString function, 2-113

H

HamWin function, 2-114
HanWin function, 2-114 to 2-115
Histogram function, 2-115 to 2-116

I

IEW. See Interactive Execution window.
IIR digital filter functions

AllocIIRFilterPtr, 2-5 to 2-6
Bessel_CascadeCoef, 2-33 to 2-35
Bessel_Coef, 2-36 to 2-37
Bw_BPF, 2-38
Bw_BSF, 2-39
BW_CascadeCoef, 2-40 to 2-41
Bw_Coef, 2-41 to 2-42
Bw_HPF, 2-42 to 2-43
Bw_LPF, 2-43 to 2-44
CascadeToDirectCoef, 2-44 to 2-45
Ch_BPF, 2-45 to 2-46
Ch_BSF, 2-46 to 2-47
Ch_CascadeCoef, 2-47 to 2-49
Ch_Coef, 2-49 to 2-50
Ch_HPF, 2-50 to 2-51
Ch_LPF, 2-51 to 2-52
definition, 1-7
Elp_BPF, 2-79 to 2-80
Elp_BSF, 2-80 to 2-81
Elp_CascadeCoef, 2-81 to 2-83
Elp_Coef, 2-83 to 2-84
Elp_HPF, 2-84 to 2-85
Elp_LPF, 2-85 to 2-86
Equi_Ripple, 2-86 to 2-89

Index

© National Instruments Corporation I-7 LabWindows/CVI Advanced Analysis Library

EquiRpl_BPF, 2-89 to 2-90
EquiRpl_BSF, 2-91
EquiRpl_HPF, 2-92
EquiRpl_LPF, 2-93
FreeIIRFilterPtr, 2-102 to 2-104
function tree, 1-4
IIRCascadeFiltering, 2-116 to 2-117
IIRFiltering, 2-118 to 2-119
InvCh_BPF, 2-122
InvCh_BSF, 2-123
InvCh_CascadeCoef, 2-124 to 2-125
InvCh_Coef, 2-125 to 2-126
InvCh_HFP, 2-126 to 2-127
InvCh_LPF, 2-127 to 2-128
ResetIIRFilter, 2-176

IIR filters, 1-14 to 1-16
cascaded filter stages, 1-15
compared with FIR filters, 1-13
direct form, 1-14 to 1-15
fourth order, 1-16
mathematical form, 1-14
second order, 1-15
types, 1-16

IIRCascadeFiltering function, 2-116
to 2-117

IIRFiltering function, 2-118 to 2-119
Impulse function, 2-119 to 2-120
ImpulseResponse function, 2-120
infinite impulse response functions. See IIR

digital filter functions; IIR filters.
Integrate function, 2-121
Interactive Execution window, 1-9
interpolation functions

definition, 1-8
function tree, 1-6
PolyInterp, 2-163 to 2-164
RatInterp, 2-172 to 2-173
SpInterp, 2-192 to 2-193
Spline, 2-193 to 2-194

InvCh_BPF function, 2-122
InvCh_BSF function, 2-123
InvCh_CascadeCoef function, 2-124

to 2-125
InvCh_Coef function, 2-125 to 2-126
InvCh_HFP function, 2-126 to 2-127
InvCh_LPF function, 2-127 to 2-128

InvF_Dist function, 2-128 to 2-129
InvFFT function, 2-129 to 2-130
InvFHT function, 2-130 to 2-131
InvMatrix function, 2-131 to 2-132
InvN_Dist function, 2-132
InvT_Dist function, 2-133
InvXX_Dist function, 2-133 to 2-134

K

Ksr_BPF function, 2-134 to 2-135
Ksr_BSF function, 2-136 to 2-137
Ksr_HPF function, 2-137 to 2-138
Ksr_LPF function, 2-138 to 2-139
Ksr_Win function, 2-139 to 2-140

L

LinEqs function, 2-140 to 2-141
LinEv1D function, 2-141 to 2-142
LinEv2D function, 2-142 to 2-143
LinFit function, 2-143 to 2-144
LU function, 2-144 to 2-145

M

manual. See documentation.
matrix algebra functions. See vector and

matrix algebra functions.
MatrixMul function, 2-145 to 2-146
MaxMin1D function, 2-146 to 2-147
MaxMin2D function, 2-147 to 2-148
Mean function, 2-148
measurement functions

ACDCEstimator, 2-1 to 2-2
AmpPhaseSpectrum, 2-4 to 2-5
AutoPowerSpectrum, 2-31 to 2-32
characteristics, 1-17 to 1-18
CrossPowerSpectrum, 2-61 to 2-62
definition, 1-8
function tree, 1-5
ImpulseResponse, 2-120
NetworkFunctions, 2-154 to 2-156

Index

LabWindows/CVI Advanced Analysis Library I-8 © National Instruments Corporation

PowerFrequencyEstimate, 2-164
to 2-166

purpose and use, 1-17
ScaledWindow, 2-181 to 2-182
SpectrumUnitConversion, 2-188

to 2-191
TransferFunction, 2-205 to 2-206

Median function, 2-149
Mode function, 2-149 to 2-150
Moment function, 2-150 to 2-151
Mul1D function, 2-151 to 2-152
Mul2D function, 2-152

N

N-Dist function, 2-153
Neg1D function, 2-153 to 2-154
NetworkFunctions function, 2-154 to 2-156
NonLinearFit function, 2-156 to 2-157
nonparametric statistics function

Contingency_Table, 2-54 to 2-57
definition, 1-8
function tree, 1-6

Normal1D function, 2-157 to 2-158
Normal2D function, 2-158 to 2-159

O

one-dimensional array operation functions
Abs1D, 2-1
Add1D, 2-2 to 2-3
definition, 1-7
Div1D, 2-77 to 2-78
function tree, 1-2
LinEv1D, 2-141 to 2-142
MaxMin1D, 2-146 to 2-147
Mul1D, 2-151 to 2-152
Neg1D, 2-153 to 2-154
PolyEv1D, 2-159 to 2-160
Prod1D, 2-166 to 2-167
QScale1D, 2-170
Scale1D, 2-179
Sub1D, 2-196 to 2-197
Subset1D, 2-198

Sum1D, 2-199
Sum2D, 2-199 to 2-200

one-dimensional complex operation
functions

CxAdd1D, 2-64 to 2-65
CxDiv1D, 2-66
CxLinEv1D, 2-67 to 2-68
CxMul1D, 2-70
CxSub1D, 2-73 to 2-74
definition, 1-7
function tree, 1-3
ToPolar1D, 2-202
ToRect1D, 2-203 to 2-204

P

performance considerations, analysis
functions, 1-9

PolyEv1D function, 2-159 to 2-160
PolyEv2D function, 2-160 to 2-161
PolyFit function, 2-162 to 2-163
PolyInterp function, 2-163 to 2-164
PowerFrequencyEstimate function, 2-164

to 2-166
probability distribution functions

definition, 1-8
F_Dist, 2-96 to 2-97
function tree, 1-6
InvF_Dist, 2-128 to 2-129
InvN_Dist, 2-132
InvT_Dist, 2-133
InvXX_Dist, 2-133 to 2-134
N-Dist, 2-153
T_Dist, 2-200 to 2-201
XX_Dist, 2-218

Prod1D function, 2-166 to 2-167
Pulse function, 2-157 to 2-168
PulseParam function, 2-168 to 2-169

Index

© National Instruments Corporation I-9 LabWindows/CVI Advanced Analysis Library

Q

QScale1D function, 2-170
QScale2D function, 2-170 to 2-171

R

Radix-4 and Radix-8 algorithms, 1-10
Ramp function, 2-171 to 2-172
RatInterp function, 2-172 to 2-173
ReFFT function, 2-174
ReInvFFT function, 2-175
ResetIIRFilter function, 2-176
Reverse function, 2-177
RMS function, 2-177 to 2-178

S

SawtoothWave function, 2-178 to 2-179
Scale1D function, 2-179
Scale2D function, 2-180
ScaledWindow function, 2-181 to 2-182
Set1D function, 2-182 to 2-183
Shift function, 2-183 to 2-184
signal generation functions

ArbitraryWave, 2-30 to 2-31
Chirp, 2-52 to 2-53
definition, 1-7
function tree, 1-1 to 1-2
GaussNoise, 2-103 to 2-104
Impulse, 2-119 to 2-120
Pulse, 2-157 to 2-168
Ramp, 2-171 to 2-172
SawtoothWave, 2-178 to 2-179
Sinc, 2-184
SinePattern, vi all;2-1
SineWave, 2-186 to 2-187
SquareWave, 2-194 to 2-195
Triangle, 2-206 to 2-207
TriangleWave, 2-207 to 2-208
Uniform, 2-209
WhiteNoise, 2-211 to 2-212

signal processing functions. See FIR digital
filter functions; frequency domain

functions; IIR digital filter functions; time
domain functions; windows functions.

Sinc function, 2-184
SinePattern function, vi all;2-1
SineWave function, 2-186 to 2-187
Sort function, 2-187
source file code stored in Interactive

window, 1-9
Spectrum function, 2-188
SpectrumUnitConversion function, 2-188

to 2-191
SpInterp function, 2-192 to 2-193
Spline function, 2-193 to 2-194
Split-Radix algorithm, 1-10
SquareWave function, 2-194 to 2-195
statistics functions

ANOVA1Way, 2-3
ANOVA2Way, 2-11 to 2-19
ANOVA3Way, 2-20 to 2-29
Contingency_Table, 2-54 to 2-57
definition, 1-8
F_Dist, 2-96 to 2-97
function tree, 1-5 to 1-6
GenLSFit, 2-105 to 2-111
Histogram, 2-115 to 2-116
InvF_Dist, 2-128 to 2-129
InvN_Dist, 2-132
InvT_Dist, 2-133
InvXX_Dist, 2-133 to 2-134
Mean, 2-148
Median, 2-149
Mode, 2-149 to 2-150
Moment, 2-150 to 2-151
N-Dist, 2-153
RMS, 2-177 to 2-178
Sort, 2-187
StdDev, 2-196
T_Dist, 2-200 to 2-201
Variance, 2-210 to 2-211
XX_Dist, 2-218

StdDev function, 2-196
Sub1D function, 2-196 to 2-197
Sub2D function, 2-197 to 2-198
Subset1D function, 2-198
Sum1D function, 2-199
Sum2D function, 2-199 to 2-200

Index

LabWindows/CVI Advanced Analysis Library I-10 © National Instruments Corporation

T

T_Dist function, 2-200 to 2-201
technical support, B-1 to B-2
time domain functions

Clip, 2-54
Convolve, 2-58 to 2-59
Correlate, 2-59 to 2-60
Decimate, 2-74
Deconvolve, 2-75
definition, 1-7
Difference, 2-76 to 2-77
function tree, 1-3 to 1-4
Integrate, 2-121
PulseParam, 2-168 to 2-169
Reverse, 2-177
Shift, 2-183 to 2-184

ToPolar function, 2-201
ToPolar1D function, 2-202
ToRect function, 2-203
ToRect1D function, 2-203 to 2-204
Trace function, 2-204
TransferFunction function, 2-205 to 2-206
Transpose function, 2-206
Triangle function, 2-206 to 2-207
TriangleWave function, 2-207 to 2-208
TriWin function, 2-208 to 2-209
two-dimensional array operation functions

Add2D, 2-3
definition, 1-7
Div2D, 2-78
function tree, 1-2
LinEv2D, 2-142 to 2-143
MaxMin2D, 2-147 to 2-148
Mul2D, 2-152
PolyEv2D, 2-160 to 2-161
QScale2D, 2-170 to 2-171
Scale2D, 2-180
Sub2D, 2-197 to 2-198

U

Uniform function, 2-209
UnWrap1D function, 2-210

V

Variance function, 2-210 to 2-211
vector and matrix algebra functions

BackSub, 2-32 to 2-33
definition, 1-8
Determinant, 2-76
DotProduct, 2-79
ForwSub, 2-101 to 2-102
function tree, 1-6
InvMatrix, 2-131 to 2-132
LinEqs, 2-140 to 2-141
LU, 2-144 to 2-145
MatrixMul, 2-145 to 2-146
Normal1D, 2-157 to 2-158
Normal2D, 2-158 to 2-159
Trace, 2-204
Transpose, 2-206

W

WhiteNoise function, 2-211 to 2-212
Wind_BPF function, 2-212 to 2-213
Wind_BSF function, 2-213 to 2-215
Wind_HPF function, 2-215 to 2-216
Wind_LPF function, 2-216 to 2-217
windowing, 1-11 to 1-13
windows functions

BkmanWin, 2-37
BlkHarrisWin, 2-36 to 2-37
CosTaperedWin, 2-60 to 2-61
definition, 1-7
ExBkmanWin, 2-94
ExpWin, 2-96
FlatTopWin, 2-100
ForceWin, 2-101
function tree, 1-5
GenCosWin, 2-104
HamWin, 2-114

Index

© National Instruments Corporation I-11 LabWindows/CVI Advanced Analysis Library

HanWin, 2-114 to 2-115
Ksr_Win, 2-139 to 2-140
TriWin, 2-208 to 2-209

WindType parameter, 1-13 to 1-14

X

XX_Dist function, 2-218

	LabWindows/CVI Advanced Analysis Library Reference Manual
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Advanced Analysis Library Overview
	Product Overview
	The Advanced Analysis Library Function Panels
	Reporting Analysis Errors
	About the Fast Fourier Transform (FFT)
	About Windowing
	About Digital Filters
	About Measurement Functions
	About Curve Fitting

	Chapter 2 Advanced Analysis Library Function Reference
	Abs1D
	ACDCEstimator
	Add1D
	Add2D
	AllocIIRFilterPtr
	AmpPhaseSpectrum
	ANOVA1Way
	ANOVA2Way
	ANOVA3Way
	ArbitraryWave
	AutoPowerSpectrum
	BackSub
	Bessel_CascadeCoef
	Bessel_Coef
	BlkHarrisWin
	BkmanWin
	Bw_BPF
	Bw_BSF
	Bw_CascadeCoef
	Bw_Coef
	Bw_HPF
	Bw_LPF
	CascadeToDirectCoef
	Ch_BPF
	Ch_BSF
	Ch_CascadeCoef
	Ch_Coef
	Ch_HPF
	Ch_LPF
	Chirp
	Clear1D
	Clip
	Contingency_Table
	Convolve
	Copy1D
	Correlate
	CosTaperedWin
	CrossPowerSpectrum
	CrossSpectrum
	CxAdd
	CxAdd1D
	CxDiv
	CxDiv1D
	CxExp
	CxLinEv1D
	CxLn
	CxLog
	CxMul
	CxMul1D
	CxPow
	CxRecip
	CxSqrt
	CxSub
	CxSub1D
	Decimate
	Deconvolve
	Determinant
	Difference
	Div1D
	Div2D
	DotProduct
	Elp_BPF
	Elp_BSF
	Elp_CascadeCoef
	Elp_Coef
	Elp_HPF
	Elp_LPF
	Equi_Ripple
	EquiRpl_BPF
	EquiRpl_BSF
	EquiRpl_HPF
	EquiRpl_LPF
	ExBkmanWin
	ExpFit
	ExpWin
	F_Dist
	FFT
	FHT
	FIR_Coef
	FlatTopWin
	ForceWin
	ForwSub
	FreeIIRFilterPtr
	GaussNoise
	GenCosWin
	GenLSFit
	GenLSFitCoef
	GetAnalysisErrorString
	HamWin
	HanWin
	Histogram
	IIRCascadeFiltering
	IIRFiltering
	Impulse
	ImpulseResponse
	Integrate
	InvCh_BPF
	InvCh_BSF
	InvCh_CascadeCoef
	InvCh_Coef
	InvCh_HPF
	InvCh_LPF
	InvF_Dist
	InvFFT
	InvFHT
	InvMatrix
	InvN_Dist
	InvT_Dist
	InvXX_Dist
	Ksr_BPF
	Ksr_BSF
	Ksr_HPF
	Ksr_LPF
	KsrWin
	LinEqs
	LinEv1D
	LinEv2D
	LinFit
	LU
	MatrixMul
	MaxMin1D
	MaxMin2D
	Mean
	Median
	Mode
	Moment
	Mul1D
	Mul2D
	N_Dist
	Neg1D
	NetworkFunctions
	NonLinearFit
	Normal1D
	Normal2D
	PolyEv1D
	PolyEv2D
	PolyFit
	PolyInterp
	PowerFrequencyEstimate
	Prod1D
	Pulse
	PulseParam
	QScale1D
	QScale2D
	Ramp
	RatInterp
	ReFFT
	ReInvFFT
	ResetIIRFilter
	Reverse
	RMS
	SawtoothWave
	Scale1D
	Scale2D
	ScaledWindow
	Set1D
	Shift
	Sinc
	SinePattern
	SineWave
	Sort
	Spectrum
	SpectrumUnitConversion
	SpInterp
	Spline
	SquareWave
	StdDev
	Sub1D
	Sub2D
	Subset1D
	Sum1D
	Sum2D
	T_Dist
	ToPolar
	ToPolar1D
	ToRect
	ToRect1D
	Trace
	TransferFunction
	Transpose
	Triangle
	TriangleWave
	TriWin
	Uniform
	UnWrap1D
	Variance
	WhiteNoise
	Wind_BPF
	Wind_BSF
	Wind_HPF
	Wind_LPF
	XX_Dist

	Appendix A Error Codes
	Appendix B Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. A Windowed Spectrum in the Continuous Case
	Figure 1-2. Cascaded Filter Stages

	Tables
	Table 1-1. The Advanced Analysis Library Function Tree
	Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically
	Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically

	Equations
	(1-1)
	(1-2)
	(1-3)
	(1-4)
	(1-5)
	(1-6)
	(1-7)
	(2-1)
	(2-2)
	(2-3)
	(2-4)

