
 NATIONAL

INSTRUMENTS™

The Software is the Instrument ®

MITE™ , NI-VISA ™, NI-VXI ™, and TIC ™ are trademarks of National Instruments Corporation. Product and
company names are trademarks or trade names of their respective companies.

321245A-01� © Copyright 1 996 National Instruments Corp. All Rights Reserved. April 1996

R E L E A S E N O T E S

NI-VXI SOFTWARE ENHANCEMENTS
FOR THE VXI/VME-PCI8040 KIT
FOR MACINTOSH

Thank you for purchasing the NI-VXI bus interface software from
National Instruments. These release notes describe new features of the
NI-VXI bus interface software along with enhancements of existing
features. This document also includes information you need for upgrading
the optional NI-VISA software to work with the PCI-MXI-2.

New Features and Terminology
New functionality has been added to NI-VXI in four major areas to
exploit features in MXI-2 and the MITE ASIC. These features are as
follows:

• Window mapping

• DMA

• Shared memory

• Remote controllers

Window Mapping
The MITE architecture allows much more flexibility in low-level
mapping of VXI address spaces. In particular, the CPU-MXI interface of
the MITE has windows that can be dynamically resized and relocated
from CPU space to VXI space. The NI-VXI low-level functions have new
extensions that reflect this feature. Refer to Chapter 6, Low-Level VXIbus
Access Functions , in the NI-VXI Software Reference Manual for C for
more information.

2

As in earlier versions of NI-VXI, MapVXIAddress() checks whether a
window that can be shared already maps to the desired address space and
location. If so, it returns a pointer to that window. If the desired space is
not already mapped, MapVXIAddress() sets up a new MITE window to
the VXI address and returns a pointer to the new window.

The success of this allocation depends on the availability of three factors:

• MITE windows

• CPU address space

• Memory for allocating data structures for the map

MITE Windows
The MITE has eight CPU windows. NI-VXI uses three of these windows,
leaving five for user applications.

CPU Address Space
The PCI-MXI-2 can decode any 32-bit address on the PCI bus as a VXI
cycle, giving 4 GB of addressability, which can be used for windows on
the PCI-MXI-2. The operating system or computer architecture may limit
which addresses can be assigned to the PCI-MXI-2.

Memory for Allocating Data Structures
Memory is needed to set up the necessary page tables. If you request a
very large window—hundreds of megabytes, for example—you may run
out of memory.

The MapVXIAddressSize() function is the standard mechanism for
specifying how large a window the driver should map on a call to
MapVXIAddress() . The default size of a mapped window is 64 KB. The
MapVXIAddressSize() function is described later in this document.

3

DMA
The MITE has two DMA channels, which NI-VXI uses to improve the
throughput of block transfers to and from the VXI system. The DMA
channels can use various high-speed bus protocols, such as the following:

• MXI block

• MXI synchronous

• Burst mode (on the PCI bus)

• VME64 (on the VXI bus)

The DMA channels can transfer data between a VXI device and local
memory, or between VXI devices. The DMA channel can handle
contiguous or noncontiguous local memory. If it is handling
noncontiguous memory, it can perform scatter-gather operations on the
noncontiguous memory.

The VXImove() function automatically uses appropriate bus protocols
and transfer types to efficiently perform the data transfer specified in the
function. You can also use some extra configuration options and function
parameters to instruct the NI-VXI software to use DMA channels for
particular types of operations and to designate what protocols the channel
should use. See Chapter 7, High-Level VXIbus Access Functions, in the
NI-VXI Software Reference Manual for C for complete descriptions of
VXImove() and other high-level functions. However, previously written
NI-VXI code will use the DMA capabilities without modification.

To take full advantage of the throughput of the DMA channels, you
should perform 32-bit transfers where both the source and the destination
are longword aligned. If you need to transfer character data between
devices of different byte orders—for example, between a big-endian
device and an Intel 80x86-based Windows NT PC—transfer the data as
longwords but adjust the byte-ordering parameters in VXImove() to get
the correct data in the most efficient manner.

Examples:

/* Transferring 32-bit data to a big-endian A32 device */

V XI mo ve (0 x0 , us er Bu ff er , 0x 3, d ev ic eO ff se t, n um Da ta Po in ts , 4) ;

/* Transferring 8-bit data to a big-endian A32 device */

VX Im ove (0 x80 , use rB uff er , 0 x3 , d ev ice Of fse t, nu mD ata Po int s / 4 , 4);

Because Macintosh computers are big endian, you do not need to adjust
the byte order when accessing big-endian instruments.

4

Shared Memory
You can share a portion of your system RAM in VXI space, as on
previous drivers. In addition, MITE-based boards have SIMM slots for
installing onboard RAM. On a PCI-MXI-2, this RAM can be shared in a
VXI address space. Furthermore, you can divide the VXI space assigned
to your device into two halves, sharing the onboard RAM in one half and
system RAM in the other. The configuration options, such as byte-
ordering, can be different for each half of the region of VXI space you are
sharing. For more information review the options of the PCI-MXI-2
Logical Address Configuration Editor in Chapter 6, NI-VXI
Configuration Utility , of Getting Started with Your VXI/VME-PCI8040
and the NI-VXI Software for Macintosh.

Remote Controllers
If you are using a VXI-MXI-2 VXIbus extender in your system, you have
remote controller capability. Each VXI-MXI-2 has a full MITE chip set
onboard. Although it does not have a CPU connected to it, this MITE
chip set gives the VXI-MXI-2 many of the same features as the
PCI-MXI-2, including onboard memory, DMA channels, TIC-based
triggering, and interrupt mapping. This means that a MXI-2 system has at
least one full-featured bus controller residing in each VXI chassis,
controlled by and communicating with the local controller via the VXIbus
and the MXIbus. These MITE-based bus controllers are called remote
controllers .

In previous versions of NI-VXI, the CPU-MXI-based controller was
called an external controller, and VXI-MXI boards on the same MXIbus
as the external controller were called extending controllers. The
extending controllers and the external controller together made up one
extended controller. The presence of the full-featured remote controllers
has led to a slight change in this model. The CPU-MXI is still an external
controller, but instead of having extending controllers, each parent-side
VXI-MXI-2 is a separate remote controller. Other VXI-MXI-2 boards are
treated simply as extenders that may have additional memory present, but
may not perform bus access, trigger, or interrupt services. This definition
assigns one remote controller to each chassis, resolving any resource
arbitration issues for the system.

5

Any NI-VXI function that previously accepted a controller parameter—
whether extended, external, embedded, or local—will now accept a
remote controller as well. A new option in VXItedit determines which
controller is associated with the value of -1 in the controller parameter of
an NI-VXI function. This new option indicates whether the -1 value is
referring to the PCI-MXI-2 (the local controller) or the first remote
VXI/VME-MXI-2 controller. For more details, refer to the Default
Controller (LA -1) section in Chapter 6, NI-VXI Configuration Utility , of
your getting started manual.

Remote controllers, when configured to detect asynchronous events such
as a VXI interrupt or VXI trigger, need to inform the local controller that
such an asynchronous event has occurred. The remote controllers report
these events back to the local controller via a VXI IRQ line. This IRQ
line is called the system IRQ line. You can use the NI-VXI utility
VXItedit to select which VXI interrupt line the remote controller uses to
report remote events to the local controller. You need to map the system
IRQ line back to the local controller to receive remote controller
interrupts. This mapping is performed automatically by the Resource
Manager in the parent-side VXI-MXI-2 controllers, but not in other
mainframe extenders. You can map interrupts by using the Interrupt
Configuration Editor in VXItedit, or by using the MapVXIint()
function, which is described in Chapter 13, VXIbus Extender Functions ,
in the NI-VXI Software Reference Manual for C.

Notice the following differences in how the system IRQ line is treated
differently than other IRQ lines used by NI-VXI.

• The system IRQ line is always acknowledged by the Resource
Manager (Logical Address 0).

• The system IRQ line cannot be disabled on the Resource Manager.
Calling DisableVXIint() on the system IRQ line does not
disable it.

• Devices other than remote controllers can also interrupt on the
system IRQ line, provided that the device at Logical Address 0 is the
handler for the interrupt.

• Routing the system IRQ to the signal queue is not recommended.
Because the system IRQ cannot be disabled, it is possible that this
routing could cause interrupts to be lost.

6

Enhancements to the NI-VXI Software
The NI-VXI software for the PCI-MXI-2 makes use of many new
features available in MXI-2 and on the MITE ASIC. You have two
options for controlling these features—through new configuration options
in VXItedit, or by extensions to the NI-VXI Application Programming
Interface (API). Refer to Chapter 6, NI-VXI Configuration Utility, and
Chapter 7, Using the NI-VXI Software , in your getting started manual for
more information on the new configuration options.

NI-VXI API Extensions
The following paragraphs discuss the additional options beyond what was
documented in the NI-VXI Software Reference Manual for C.

Compatibility
NI-VXI applications that follow the guidelines in the NI-VXI Software
Reference Manual for C will work with NI-VXI for the PCI-MXI-2 with
a few exceptions. These exceptions deal primarily with low-level VXIbus
access functions.

NI-VXI for the PCI-MXI-2 is a fully PowerPC-native architecture. You
must recompile your application to be PowerPC native. 680x0
development is not supported in this release.

Applications that set the context bits directly for use in SetContext()
may not be compatible with the new format for context. Because the
PCI-MXI-2 allows more flexible window mapping, extra bits have been
added to this field to reflect these new features. In general, we
recommend that you do not manipulate the context bits.

System Configuration Functions
The mainframe extender/controller information field of the DevInfo
structure (field 17) defines a new bit. Bit 13 reports if the extender is a
remote controller. This bit is now significant in any function that uses the
mainframe extender/controller information field, including
GetDevInfo() , SetDevInfo() , GetDevInfoShort() ,
SetDevInfoShort() , and FindDevLA(). NI-VXI automatically sets
bit 13. Do not change the value of this bit in a program, even via the
documented API calls.

If a remote controller is sharing its onboard RAM, you can find the size,
space, and offset of that RAM in the VXI system by calling
GetDevInfo() for the remote controller’s logical address.

7

Low-Level VXIbus Access Functions
Do not make any assumptions about the size and features of a window
returned from MapVXIAddress() . You should use GetWindowRange()
to determine the size of a window.

The 32-bit value returned from GetContext() and passed to
SetContext() has a new format.

A new function, MapVXIAddressSize() , has been added to the
low-level VXIbus access functions. Its description follows.

MapVXIAddressSize
MapVXIAddressSize() is the interface for requesting a particular
window size for all successive calls to MapVXIAddress() .

Syntax: ret = MapVXIAddressSize(size)

Action: Sets the default size for the window returned from
MapVXIAddress() .

Remarks : Input Parameter:

size uint32 Size in bytes of window to
be mapped

Output Parameters:

none

Return Value:

ret int16 Return Status
0 = Successful

Example : /* Set the size of future mappings to 1 MB */

ret = MapVXIAddressSize(0x100000);

8

High-Level VXIbus Access Functions
As previously mentioned, VXImove() has new bits defined in the
srcParm and destParm fields for using features of the MITE DMA
channel.

• Bit 11—Use programmed I/O (PIO) instead of DMA. DMA is used
by default and setting this bit forces NI-VXI to use PIO instead of
DMA. In general, DMA is more efficient than PIO. However, when
virtual memory is involved, a DMA channel needs to lock down
memory before it can be used (locking is done by the NI-VXI DMA
manager automatically) . Because of the amount of time required for
buffer locking, it may be more efficient to transfer buffers by PIO.

• Bit 12—No increment . Do not increment the address. This is used
when the source or destination is a FIFO buffer and is valid for any
address space, whether local, A16, A24, or A32.

• Bit 13—Disable MXI block mode. MXI block mode is enabled by
default in VXImove() when VXImove() is called from a CPU-MXI
because it makes MXI transfers more efficient, and MXI block mode
is supported by the VXI/VME-MXI-2. However, if you are
communicating with a MXI device that does not support MXI block
mode, you need to disable this mode by setting this bit.

• Bit 14—Disable MXI synchronous mode. MXI synchronous mode is
enabled by default in VXImove() when VXImove() is called from a
CPU-MXI because it makes MXI transfers more efficient, and MXI
synchronous mode is supported by the VXI/VME-MXI-2. However,
if you are communicating with a MXI device that does not support
MXI synchronous mode, you need to disable this mode by setting
this bit.

In addit ion to the above bits, two new access privileges have been added
to the srcParm and destParm fields to support the VME64 protocol.

• Access Privilege 6—VME64 nonprivileged block access.

• Access Privilege 7—VME64 privileged block access.

Setting these access privileges will cause VXImove() to perform the
VME64 protocol on the VXI bus. Ensure that the device you are
communicating with is capable of responding to these special cycles
before using these privileges.

9

For best performance, keep the following in mind when using
VXImove() .

• Make sure your buffers are 32-bit aligned.

• Transfer 32-bit data whenever possible.

• VXImove() must lock the user buffer in memory on virtual memory
systems, so locking the buffer yourself will optimize VXImove() .

• Because VXImove() must build a scatter-gather list for the user
buffer on paged memory systems, using a contiguous buffer will
optimize VXImove() .

• Using VXI block access privileges will significantly improve
performance to devices that are capable of accepting block transfers .

• VXImemAlloc() will return 32-bit aligned, page-locked, contiguous
buffers, which work efficiently with VXImove() .

Local Resource Access Functions
VXImemAlloc() does not allocate onboard RAM on the PCI-MXI-2; it
allocates system RAM only on the motherboard. If you want to access
onboard RAM on the PCI-MXI-2, access it as if it were VXI memory—
that is, by using high-level or low-level VXIbus access functions. You
can use GetDevInfo() on the PCI-MXI-2 device to determine the VXI
address space and VXI address of this onboard RAM.

VXI Interrupt Functions
Every function that takes a controller’s logical address as an argument
can now accept the local controller or a remote controller’s logical
address as well.

VXI Trigger Functions
Every function that takes a controller’s logical address as an argument
can now accept the local controller or a remote controller’s logical
address as well.

TIC functionality is now available on the local controller and on every
remote controller.

System Interrupt Handler Functions
Every function that takes a controller’s logical address as an argument
can now accept the local controller or a remote controller’s logical
address as well.

10

Updating NI-VISA
If you want to use NI-VISA with your VXI/VME-PCI8040 kit for
Macintosh, you need to install a VISA patch. NI-VISA should be
installed before adding this patch. If you have not already installed
NI-VISA, refer to the Read Me First document that describes how to
install NI-VISA for Macintosh/Power Macintosh.

Follow these instructions to install the VISA patch.

1. Insert the disk containing the NI-VXI software and double-click on
the Install NI-VXI icon.

2. Click on Show Other Installations at the top of the Installer
window. Notice that the VISA patch is not installed by the Typical
NI-VXI Installation option.

3. Select and drag the VISA patch icon to your hard disk.

4. Restart your Macintosh when prompted to do so.

	NI-VXI SOFTWARE ENHANCEMENTS FOR THE VXI/VME-PCI8040 KIT FOR MACINTOSH
	New Features and Terminology
	Window Mapping
	MITE Windows
	CPU Address Space
	Memory for Allocating Data Structures
	DMA
	Shared Memory
	Remote Controllers

	Enhancements to the NI-VXI Software
	NI-VXI API Extensions
	Compatibility
	System Configuration Functions
	Low-Level VXIbus Access Functions
	MapVXIAddressSize
	High-Level VXIbus Access Functions
	Local Resource Access Functions
	VXI Interrupt Functions
	VXI Trigger Functions
	System Interrupt Handler Functions

	Updating NI-VISA

