RELEASE NOTES

NI-VXI| SOFTWARE ENHANCEMENTS
FOR THE VXI/VME-PCI8040 Kt
FOR MACINTOSH

Thank you for purchasing the NI-V X1 bus interface software from
National Instruments. These release notes describe new features of the
NI-V X1 businterface software along with enhancements of existing
features. This document also includes information you need for upgrading
the optional NI-VISA software to work with the PCI-MX1-2.

New Features and Terminology

New functionality has been added to NI-VXI in four major areasto
exploit featuresin MXI-2 and the MITE ASIC. These features are as
follows:

« Window mapping

- DMA

« Shared memory

« Remote controllers

Window Mapping
The MITE architecture allows much more flexibility in low-level
mapping of VXI address spaces. In particular, the CPU-MXI interface of
the MITE has windows that can be dynamically resized and relocated
from CPU space to VXI space. The NI-V X1 low-level functions have new
extensions that reflect this feature. Refer to Chapter 6, Low-Level VXIbus
Access Functions, in the NI-VXI Software Reference Manual for C for
more information.

vN ATIONAL MITE", NI-VISA™, NI-VXI™, and TIC" are trademarks of National Instruments Corporation. Product and
" company names are trademarks or trade names of their respective companies.
’ INSTRUMENTS

The Software is the Instrument =

321245A-01 © Copyright 1 996 National Instruments Corp. All Rights Reserved. April 1996

Asin earlier versions of NI-V X1, MapVXl Addr ess() checkswhether a
window that can be shared already maps to the desired address space and
location. If so, it returns a pointer to that window. If the desired spaceis
not already mapped, MapVXI Addr ess() setsup anew MITE window to
the VXI address and returns a pointer to the new window.

The success of this alocation depends on the availability of three factors:
+ MITE windows

CPU address space

Memory for allocating data structures for the map

MITE Windows

The MITE has eight CPU windows. NI-VXI uses three of these windows,
leaving five for user applications.

CPU Address Space

The PCI-MXI1-2 can decode any 32-hit address on the PCl busasa VXl
cycle, giving 4 GB of addressability, which can be used for windows on
the PCI-M X I-2. The operating system or computer architecture may limit
which addresses can be assigned to the PCI-M X1-2.

Memory for Allocating Data Structures

Memory is needed to set up the necessary page tables. If you request a
very large window—hundreds of megabytes, for example—you may run
out of memory.

The MapVXI Addr essSi ze() function isthe standard mechanism for
specifying how large awindow the driver should map on acall to

MapVXI Addr ess() . The default size of a mapped window is 64 KB. The
MapVXI Addr essSi ze() function isdescribed later in this document.

DMA

The MITE hastwo DMA channels, which NI -V XI uses to improve the
throughput of block transfersto and from the VXI system. The DMA
channels can use various high-speed bus protocoals, such as the following:

« MXI block

« MXI synchronous

« Burst mode (on the PCI bus)
+ VME®64 (on the VXI bus)

The DMA channels can transfer data between a'V X1 device and local
memory, or between VX1 devices. The DMA channel can handle
contiguous or noncontiguous local memory . If it is handling
noncontiguous memory, it can perform scatter -gather operations on the
noncontiguous memory.

The vXi nove() function automatically uses appropriate bus protocols
and transfer types to efficiently perform the data transfer specified in the
function. Y ou can aso use some extra configuration options and function
parameters to instruct the NI-V X1 software to use DMA channels for
particular types of operations and to designate what protocols the channel
should use. See Chapter 7, High-Level VXIbus Access Functions, in the
NI-VXI Software Reference Manual for C for complete descriptions of
VXl nove() and other high-level functions. However, previoudly written
NI-V X1 code will usethe DMA capabilities without modification.

To take full advantage of the throughput of the DMA channels, you
should perform 32-hit transfers where both the source and the destination
arelongword aligned. If you need to transfer character data between
devices of different byte orders—for example, between a big-endian
device and an Intel 80x86-based Windows NT PC—transfer the data as
longwords but adjust the byte-ordering parametersin VXI nove() to get
the correct datain the most efficient manner.

Examples:

/* Transferring 32-bit data to a big-endian A32 device */
VX nove(0x0, wserBuffer, X3, deviceOffset, numDataPoints, 4;
/* Transferring 8-bit data to a big-endian A32 device */

VXl move(0x80, uwserBuffer, 0x3, deviced fset, nunbataPoints / 4, 4;

Because Macintosh computers are big endian, you do not need to adjust
the byte order when accessing big-endian instruments.

Shared Memory

Y ou can share aportion of your system RAM in VXI space, ason
previous drivers. In addition, MITE-based boards have SIMM dlots for
installing onboard RAM. On a PCI-M X1-2, this RAM can be shared in a
V X1 address space. Furthermore, you can divide the V X1 space assigned
to your device into two halves, sharing the onboard RAM in one half and
system RAM in the other. The configuration options, such as byte-
ordering, can be different for each half of the region of VXI space you are
sharing. For more information review the options of the PCI-M X -2
Logical Address Configuration Editor in Chapter 6, NI -VXI
Configuration Utility, of Getting Started with Your VXI/VME-PCI8040
and the NI-VXI Software for Macintosh.

Remote Controllers

If you are using a VX1-MXI-2 V XIbus extender in your system, you have
remote controller capability. Each VXI-MXI-2 has afull MITE chip set
onboard. Although it does not have a CPU connected to it, this MITE
chip set givesthe VXI-MXI-2 many of the same features asthe

PCI -MXI-2, including onboard memory, DMA channels, TIC-based
triggering, and interrupt mapping. This means that a M XI-2 system has at
least one full-featured bus controller residing in each VXI chassis,
controlled by and communicating with the local controller viathe VXIbus
and the MX1bus. These MITE-based bus controllers are called remote
controllers.

In previous versions of NI-VXI, the CPU-M XI-based controller was
called an external controller, and VXI1-MXI boards on the same M XIbus
asthe external controller were called extending controllers. The
extending controllers and the external controller together made up one
extended controller. The presence of the full-featured remote controllers
has led to adight change in this model. The CPU-MXI| is still an external
controller, but instead of having extending controllers, each parent-side
VXI-MXI-2 is a separate remote controller. Other VXI-MXI-2 boards are
treated simply as extenders that may have additional memory present, but
may not perform bus access, trigger, or interrupt services. This definition
assigns one remote controller to each chassis, resolving any resource
arbitration issues for the system.

Any NI-VXI function that previously accepted acontroller parameter—
whether extended, external, embedded, or local—will now accept a
remote controller aswell. A new optionin VXI t edi t determines which
controller is associated with the value of -1 inthe controller parameter of
an NI-VXI function. Thisnew option indicates whether the -1 valueis
referring to the PCI-MX1-2 (the local controller) or the first remote
VXINME-MXI-2 controller. For more details, refer to the Default
Controller (LA -1) section in Chapter 6, NI -VXI Configuration Utility, of
your getting started manual.

Remote controllers, when configured to detect asynchronous events such
asa VXl interrupt or VXI trigger, need to inform the local controller that
such an asynchronous event has occurred. The remote controllers report
these events back to the local controller viaaVXI IRQ line. This IRQ
line is called the system IRQ line. Y ou can use the NI-V X1 utility

VX t edi t to select which VXI interrupt line the remote controller uses to
report remote events to the local controller. Y ou need to map the system
IRQ line back to the local controller to receive remote controller
interrupts. This mapping is performed automatically by the Resource
Manager in the parent-side VXI-MX1-2 controllers, but not in other
mainframe extenders. Y ou can map interrupts by using the I nterrupt
Configuration Editor in VXI t edi t, or by using the MapVXl i nt ()
function, which is described in Chapter 13, VXIbus Extender Functions,
in the NI-VXI Software Reference Manual for C.

Notice the following differences in how the system IRQ line is treated
differently than other IRQ lines used by NI-VXI.

« Thesystem IRQ line is always acknowledged by the Resource
Manager (Logical Address0).

« Thesystem IRQ line cannot be disabled on the Resource Manager.
Calling Di sabl eVXl i nt () onthesystem IRQ line does not
disableit.

« Devices other than remote controllers can also interrupt on the
system IRQ line, provided that the device at Logical Address 0 isthe
handler for the interrupt.

- Routing the system IRQ to the signal queue is not recommended.
Because the system IRQ cannot be disabled, it is possible that this
routing could cause interrupts to be lost.

Enhancements to the NI-VXI Software

The NI -V XI software for the PCI-M X1-2 makes use of many new
features available in MX1-2 and on the MITE ASIC. Y ou have two
options for controlling these features—through new configuration options
in VXl t edit, or by extensions to the NI-VXI Application Programming
Interface (API). Refer to Chapter 6, NI-VXI Configuration Utility, and
Chapter 7, Using the NI-VXI Software, in your getting started manual for
more information on the new configuration options.

NI-VXI API Extensions

The following paragraphs discuss the additional options beyond what was
documented in the NI -VXI Software Reference Manual for C.

Compatibility

NI-V X1 applications that follow the guidelines in the NI-VXI Software
Reference Manual for C will work with NI-VXI for the PCI-MX1-2 with
afew exceptions. These exceptions deal primarily with low-level VXIbus
access functions.

NI-V X1 for the PCI-MXI-2 isafully PowerPC-native architecture. You
must recompile your application to be PowerPC native. 680x0
development is not supported in this release.

Applications that set the context bits directly for usein Set Cont ext ()
may not be compatible with the new format for context. Because the
PCI -MXI-2 alows more flexible window mapping, extra bits have been
added to this field to reflect these new features. In general, we
recommend that you do not manipulate the context bits.

System Configuration Functions

The mainframe extender/controller information field of the Devl nf o
structure (field 17) defines anew bit. Bit 13 reportsif the extender isa
remote controller. This bit is now significant in any function that uses the
mainframe extender/controller information field, including

CGet Devl nfo() , Set Devl nfo() , Get Devl nfoShort (),

Set Devl nf oShort () ,and Fi ndDevLA() . NI-VXI automatically sets
bit 13. Do not change the value of this bit in a program, even viathe
documented API cdlls.

If aremote controller is sharing its onboard RAM, you can find the size,
space, and offset of that RAM in the VXI system by calling
Get Devl nf o() for the remote controller’slogical address.

6

MapVXIAddressSize

Low-Level VXIbus Access Functions

Do not make any assumptions about the size and features of awindow
returned from MapVXI Addr ess() . You should use Get W ndowRange()
to determine the size of awindow.

The 32-bit value returned from Get Cont ext () and passed to
Set Cont ext () hasanew format.

A new function, MapVXI Addr essSi ze() , has been added to the
low-level VXIbus access functions. Its description follows.

MapVXI Addr essSi ze() istheinterface for requesting a particular
window size for all successive callsto MapVXI Addr ess() .

Syntax: ret = MapVXI Addr essSi ze(si ze)

Action: Sets the default size for the window returned from
MapVXI Addr ess() .

Remarks: Input Parameter:

size uint32 | Sizein bytes of window to
be mapped
Output Parameters:
none
Return Vaue:
ret int16 Return Status

0 = Successful

Example: /* Set the size of future mappings to 1 MB */
ret = MapVXI Addr essSi ze(0x100000) ;

High-Level VXlbus Access Functions

As previously mentioned, VXI nove() has new bits defined in the
srcParm and destParm fields for using features of the MITE DMA
channel.

Bit 11—Use programmed /O (PIO) instead of DMA. DMA isused
by default and setting this bit forces NI-V X1 to use PIO instead of
DMA. In general, DMA is more efficient than PIO. However, when
virtual memory isinvolved, a DMA channel needsto lock down
memory before it can be used (locking is done by the NI-VXI DMA
manager automatically) . Because of the amount of time required for
buffer locking, it may be more efficient to transfer buffers by PIO.

Bit 12—No increment. Do not increment the address. Thisis used
when the source or destination is a FIFO buffer and isvalid for any
address space, whether local, A16, A24, or A32.

Bit 13— Disable M X1 block mode. M X1 block mode is enabled by
default in VXI nove() when VXl nove() iscaled from a CPU-MXI
because it makes MX| transfers more efficient, and M X1 block mode
is supported by the VXI/VME-MXI-2. However, if you are
communicating with aMXI device that does not support M X1 block
mode, you need to disable this mode by setting this hit.

Bit 14—Disable M X1 synchronous mode. MXI synchronous mode is
enabled by default in VXI move() when VXI nove() iscaled froma
CPU-MXI because it makes MXI| transfers more efficient, and MXI
synchronous mode is supported by the VXI/VME-MXI-2. However,
if you are communicating with a M XI device that does not support
MXI synchronous mode, you heed to disable this mode by setting
this bit.

In addition to the above bits, two new access privileges have been added
to the srcParm and destPar m fields to support the VMEG4 protocol.

Access Privilege 6—VME64 nonprivileged block access.
Access Privilege 7—VME64 privileged block access.

Setting these access privileges will cause VXI nove() to perform the
VMEB4 protocol on the VX1 bus. Ensure that the device you are
communicating with is capable of responding to these special cycles
before using these privileges.

For best performance, keep the following in mind when using
VXI nove() .

Make sure your buffers are 32-bit aligned.
Transfer 32-bit data whenever possible.

VXl move() must lock the user buffer in memory on virtual memory
systems, so locking the buffer yourself will optimize vXI move() .

Because VXI nove() must build a scatter-gather list for the user
buffer on paged memory systems, using a contiguous buffer will
optimize VXI nove() .

Using VXI block access privileges will significantly improve
performance to devices that are capable of accepting block transfers.

VXI memAl | oc() will return 32-bit aligned, page-locked, contiguous
buffers, which work efficiently with VXl nove() .

Local Resource Access Functions

VXI memAl | oc() does not alocate onboard RAM on the PCI-MXI-2; it
allocates system RAM only on the motherboard. If you want to access
onboard RAM on the PCI-MXI-2, accessit asif it were VXI memory—
that is, by using high-level or low-level VXIbus access functions. Y ou
can use Get Devl nf o() onthe PCI-MXI-2 device to determine the VXI
address space and V XI address of this onboard RAM.

VXI Interrupt Functions

Every function that takes a controller’ s logical address as an argument
can now accept the local controller or aremote controller’slogical
address as well.

VXI Trigger Functions

Every function that takes a controller’ s logical address as an argument
can now accept the local controller or aremote controller’slogical
address as well.

TIC functionality is now available on the local controller and on every
remote controller.

System Interrupt Handler Functions

Every function that takes a controller’ s logical address as an argument
can now accept the local controller or aremote controller’s logical
address as well.

Updating NI-VISA

If you want to use NI-VISA with your VXI/VME-PCI8040 kit for
Macintosh, you need to install aVISA patch. NI-VISA should be
installed before adding this patch. If you have not already installed
NI-VISA, refer to the Read Me First document that describes how to
install NI-VISA for Macintosh/Power Macintosh.

Follow these instructions to install the VISA patch.

1. Insert the disk containing the NI-V X1 software and double-click on
the Install NI-V X1 icon.

2. Click on Show Other Installations at the top of the Installer
window. Notice that the VISA patch is not installed by the Typical
NI-VXI Installation option.

3. Sdect and drag the VI SA patch icon to your hard disk.
4. Restart your Macintosh when prompted to do so.

10

	NI-VXI SOFTWARE ENHANCEMENTS FOR THE VXI/VME-PCI8040 KIT FOR MACINTOSH
	New Features and Terminology
	Window Mapping
	MITE Windows
	CPU Address Space
	Memory for Allocating Data Structures
	DMA
	Shared Memory
	Remote Controllers

	Enhancements to the NI-VXI Software
	NI-VXI API Extensions
	Compatibility
	System Configuration Functions
	Low-Level VXIbus Access Functions
	MapVXIAddressSize
	High-Level VXIbus Access Functions
	Local Resource Access Functions
	VXI Interrupt Functions
	VXI Trigger Functions
	System Interrupt Handler Functions

	Updating NI-VISA

