CAN

ECU Measurement and Calibration Toolkit User Manual

December 2009 7 NAT'ONA'.
3716016-01)‘INSTRUMENTS’”

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,

Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000,

Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400,

Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466,
New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10, Portugal 351 210 311 210,
Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni . com/info and enter

the info code feedback.

© 2005-2009 National Instruments Corporation. All rights reserved.

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks

CVI, National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United
States and other countries. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents. txt file on your media, or the National Instruments Patent Notice at ni .com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Contents

About This Manual

COMNVEITIONS .oeeieeiivieeeeeiieeeeeeeeiteeeeeeetteeeeeeesaeeeeeeesaaeeessessaeeeseeesseseeessesrsesesansraeesessanaes Xi
Related DOCUMENTATION.ccieiiriieeieiiieie e ettt et e eeetee e e e eetareeeeeeaareeeeeeraaaeeeeeens Xii
Chapter 1
Introduction
CAN Calibration Protocol (CCP) OVEIVIEWcccovvureeeeeeiiirieeeeeeiieeeeeeesiiereeeeeeinneeeeeens 1-2
CCP ProtoCOl VEISIONeeiiiiiiriiieeieiieeieeeeeireeeeeeeteeeeeeeeiareeeeeeeareeeeeenanreeeeeenns 1-2
Universal Measurement and Calibration Protocol (XCP) Overview........cccccccevvuvveeeenn. 1-3
XCP ProtOCO] VEISION ...veeiiieeuiriiieeieiieeieeeeeireeeeeeeetereeeeeeiareeeeeesareeeeeenanseeeeeenes 1-3
Measurement and Calibration Databases........cc..eeeeeevveiieiiiiiviiee e 1-4
ECU MEASUTIEIMIENLESuvvveeeeeiiireeeeeieitreeeeeeestreeeeeesareeeeeesisrseeseeesssssseessssssssessssssseessenses 1-4
ECU CRaracCteriStiCS....ccceiuvrieeeieirreeeeeeiireeeeeesireeeeeeseteeeeeeeestereeeeeesasseseseessreeeeeessreseeeenns 1-4

Chapter 2
Installation and Configuration

INSTALLALION ...eiitiiiiiii ettt ettt et st et b e e e 2-1
License Management OVEIVIEWcccceceeeiirieriinienieniinieeneeteeeere s ene e enesnens 2-1
Activate ECU M&C TOOIKIt....ccoueriiiriieeieiiieniteeie ettt ettt e 2-2
OIS 1.ttt sttt ettt e bbbt e bt st e b e et 2-3
Moving Software After ACtIVAtION........ccccecveruiriiererrieniinieieeeeee e 2-4
Volume License Programi..........ccocuievieriiiiiinieniiiieeeeecie et 2-4
ONNE ACHVALION ..ouuviiniieiiiiiiente ettt ettt ettt ettt ettt e st e e saee s 2-4
Home Computer USEc..oouieieriieiiiiiieneeieeereieereteee st 2-4
Privacy POLICYcc.coouiriiiiiiiiiiic e 2-4
LabVIEW Real-Time (RT) Configurationccoceeveerieriieenieniieenieeieeee e 2-5
PXT SYSIBIML....couiiiiiiiiiieieeicetee ettt 2-5
NI-CAN 0n PXT RT SYSEIM....cceeeieiiiieiirieieniieieseereieeresee e 2-5
NI-XNET on PXIT RT SySteMm.....cc.cccuirieriirieiinieienierenieeieseeee e 2-5
CompactRIO SYSIEMcovuiiiiiiiiiiiieiteie ettt 2-5
DOS Command Prompt..........cccceeviiiieenieniiiienieeiee et 2-6
WED BIOWSETS ..ottt 2-7
LabVIEW Real-Time Graphical File Transfer Utilitycccccccevveevenicnnennene 2-7
LabVIEW ..ottt st e s 2-9
Hardware and Software REqUITEMENLSccovueeiiiriiirieiiieieeitete ettt 2-10

© National Instruments Corporation v ECU M&C Toolkit User Manual

Contents

Chapter 3
Application Development
Choose the Programming Languagecccoeeeeeiinieiienieienieieseeecieeeene e 3-1
LabVIEW ..ot e eeneeean 3-1
LabWIndoWs/C V... e 3-1
VISUAL C Ottt e e e e e eeare e e e e e nreeeeeeennes 3-2
Other Programming Languagesc..ccceveeienieieniinieniieecicneee e 3-3
Application Development on CompactRIO or R Series...........ccoceeiivvieninvininicncnnen. 3-4
Transferring Data between the FPGA and Host Computercocceune..... 3-4
Customizing the CAN Bridge (FPGA) VI.......cccooiiiininiinicineeiecienes 3-5
Debugging An APPLICAtION.ceviiiiiiirierieeriteete ettt ettt et et 3-5
NS DY ettt ettt sttt ettt et e b e eats 3-5
XCP-SPY ettt ettt st ettt st st b e naaeeates 3-5
Saving Captured Communication Dataccccceeveervierneenienneennnen. 3-7
Capture OPLONSeevvieriieiienie ettt ettt ettt et esbee e s 3-7
Call History Depth.......ccccovieeiiiiiiiiiiiiieiieeeeee et 3-7
Capturing Data........coeeeviiinieniieiieeeee ettt 3-7
Selecting Which XCP Commands to VieWccoceevveeeneeniennecennen. 3-7
Chapter 4
Using the ECU M&C API
Structure of the ECU M&C APoooiiiiiiiieeeeeeeeee ettt 4-1
ECU M&C Channel FUNCLIONScccviieiuiiiiiiiceiiieeieeeeie e e 4-2
What is an ECU Measurement?............ccceeeeveeeeiieeeeiieeeieeeeieeeeneeans 4-2
What is an ECU CharacteristiC?cocueeeeveieevieeeciieeeeieeeeiee e 4-2
ECU M&C CCP and XCP FUNCHONSc..veieeiiieeciiieeeiie et e 4-3
Basic Programming MOdel..........cccooieiiiriiniiniiiinieie ettt 4-3
ECU OPCI ..ttt sttt sttt st e 4-5
ASAM MCD 2MC Communication Properties for CCP
OF XCP With CAN ...ooiieeeeeeeeeeee e e 4-5
CROID .. et 4-5
DTO ID ...t 4-5
Station AdAIESS.......vvieeiieiiiiee e et 4-5
Baudrate.......cccoviiiiiie e e 4-6
ASAM MCD 2MC Communication Properties for XCP with UDP
OF TICP ..t 4-6
IP Address or hOStNAMEcccoeviuviieieeiiiiiee e e e 4-6
POrt NUMDETveiiiiiieee e e 4-6
ECU CONNECLvviiiiieiiiiee ettt ettt e e e et e e e e e e araaeeeeas 4-6
ECU DISCONNECT......cceuviiieieeiiiieee ettt ettt e ettt e e eeetre e e e e eenreeeeeeeareaeeeeaas 4-7
ECU CLOSC... ittt ettt e e e et e e e e eentae e e e e enraaeeeeean 4-7

ECU M&C Toolkit User Manual vi ni.com

Contents

Characteristic Read and WIite.........coocueviiiiriiiniieiiiiiieeie e 4-7
ACCESS CharacCteriStICS....eveerurerieeriierieeieeriteeieesieesreereesieesereeaeenaees 4-7
Characteristic Readccoovveriiiniiiiiiiiienieciecte et 4-8
Characteristic WIILEeevveeriieiiieniieieerieeeie et 4-8

Measurement TaSsK.........cocceeriiriiinieiieeieeeteee et 4-9
DAQ INHAIZE .c.evveveieenieiieieierieteeeeee e 4-10
DAQ Start STOP c..eeeveeiieriieiienie ettt et ettt e sieesbeenaeesaees 4-10
DAQ REA.....ccuiiieiiieee ettt 4-11
DAQ WIILC ..oiieiiie ettt ettt ere e e b e e e e aae e eaaeeeavaaas 4-12
DAQ CIEAT ...cecueiiieeiiee ettt ettt e e e e e aae e eaveaas 4-13

Memory Programmingcocceevveerieerieniiienieneeenieesteeseenieeeeeesieeseseenseesanes 4-13
Program STArtocveeiuiirieiieeieeee e e e 4-14
Clear MEIMOTY .uvieiiiieiieniiesteeite st eiee et e et e satesteesiaeebeebeesebeeseesenes 4-15
PrOGrami....c.cooiiiiiiiieeieee ettt 4-15
Program ReSet.......cueevuiiiiiiiieiiecieeeeeece e 4-15
Optional Steps for the XCP Protocolcccceevieevieniencieeneeneennne. 4-15

Additional Programming TOPICScecverieriiirnienieiieeneenteeieesite e eteeseeseseebeesanesasees 4-16

GEE NAIMIES ...ttt sttt sttt ettt et sae st besbae b sanens 4-16

SEt/GEt PrOPEITIES ...veeevieeiieieeeiiieiteiie ettt ettt et st e sae e esaseenaeens 4-16

Generic CCP FUNCHONS ..o..eeviieiieniie ettt ettt ettt e e eneees 4-17

Generic XCP FUNCHONScccviiiienieeieeite sttt ettt et seesbeesbaesneeneees 4-18

Seed and Key AIZOTithimoouevieniiiiiiniiiiniiiceesccceeee e 4-19
Definition for Seed and Key Algorithm.......ccccceeevveveeniieniiieneennnnnne. 4-19
Seed and Key EXamPIec.oovierieiiienieniieieceecee e 4-20
Checksum AlOrithmcccccoeeieririininiinericieneeeeecee e 4-21
Seed and Key and Checksum Algorithms for VxWorks Targets4-23

Chapter 5
ECU M&C API for LabVIEW

Section HEAdINGScceoviiriiiiiiiieiieieee ettt s e 5-1
PUIPOSE ...t 5-1
FOIMIAL......eiiiiiieeeee et e et e e e e e e e e eaareaeeeeae 5-1
Input and OULPUL........cceoviiiiriieiiieieee et s 5-1
DESCIIPLIONeoveieeiiiiieteee ettt e s 5-1

LISE OF VIS 1ottt et e et e e st e e s tb e e e sasaeensaeessseaeassseeenssaeesseanns 5-1
MC Build ChecKSUM.Vi....cciiciiiieiiieiiiieeiieeeeeerteeesree et eesvee e eesaaeesseee e 5-5
MC CalC ChECKSUMLVi....uviiieiiieeiiieesiieeeieeeecieeesreeeetreessaeeetreeesseessneeessseennes 5-8
MC CCP ACHON SEIVICE.V cuvviieiirieeiiieeiiieeteeesirteesresesereeesereeeessaeessseeessseeennns 5-11
MC CCP Diag SEIVICE.VI cceerueeuiiiieiiiniieierieereitetesieereteere et 5-13
MC CCP Get Active Cal Page.Viocceeveeriiiiieiiiiiienieeiceiteseeee et 5-15
MC CCP Get RESUIL. VI c..vvieeiiieeiiie ettt vee e evae e aae e eae e 5-17
MC CCP Get SeSSI0N StATUS. VI c..vviereieeeserieerreeesireeesreeessesessesesseeesssseessseeenns 5-19
MC CCP Get VOISION. Vi.teiieiiieeirieeiiieesiieesieeesseeeestseessssesesssesesssesesssseesssseenns 5-21

© National Instruments Corporation vii ECU M&C Toolkit User Manual

Contents

MC CCP MOVE MEMOTY . Vi..ueiiiiiiniieiieiiieiiesiieeieesiteeieesieesteesieesereesseesanesnes 5-23
MC CCP Select Cal Page.Vi....ccceevveerieriiiiienieeieciie ettt 5-25
MC CCP Set SesSion StatlS.Vi....cecueereeriueeniienienieeniiesieesieesaeeseesseesseesseennees 5-27
MC Characteristic REad.Vi......cccueirvieriiriiieniieeiecieciecieeee s 5-29
MC Characteristic Read Single Value.vi......cccccoovuvvviiiniiniiinienieciieneeeieee 5-31
MC CharacteriStic WITEE. Vi .evueeeuieriierieeiienieeieesieesieeiee st et e e st esree e e 5-33
MC Characteristic Write Single Value.Viccceceevierieeneeniieneenieeieeeeene 5-35
MC Clear MEIMOTY. Vi c.uveeiuiieiieiieiiieiieeieesieesiieesieesitesaeesieesabeesieesaseensaesanesnns 5-37
MC CONVersion CIEALE. VI ..cccveeruveiiieriieeieeniiesieeieeniiesteeieesiteeseesseeseeeseenanes 5-39
MC DAQ CIEAL. Vi c.vveiieiieeieiieieeiieieeteeteeee e ste e saessessaesseessesseessesseensesseennas 5-41
MC DAQ INITALZE. VI 1eevveevreniieeieneieiesieeteeeeteseeseseesesseeseeseessesseesesssessessnes 5-43
MC DAQ List INTHAIZE. Vi ..eveeveeiieieriecierieeie et 5-46
MC DAQ REAA.VI c.vvievieiieiieiieieeiteieett ettt s e sseenaesaeennas 5-49
MC DAQ Start STOP.Vieeeveesuierieeiieeieerieesieesieestesteestesseesseesseesssessseessnesanes 5-55
MC DAQ WIIEE.Vi.utieiieiiieiieiieiesiieiesteeteseeaeseesesseesessaesesssessesssessesssessessees 5-57
MC Database ClOSE.Vi....coueeueeruieriieiienieeiiesieesreeitesaesieesiaesseenseesseeseensnes 5-60
MC Database OPeN.Vi...ccc.eerveeruierieeieeniieeieenieeseeeteeseesreesieessesnseessessesnsees 5-62
MC DOWNIOAA. Vi.eeivieniieeiiiiiiesiieeie ettt sttt ettt re st esebeebaenaee s 5-64
MC ECU ClIOSE.VI vttt sttt ettt eb ettt sae et eae s 5-66
MC ECU CONNECL VI cvtveiiieiiieniieeieeniiesteeieestesieesteesvesseessnesnseesseesssesnseensnes 5-68
MO ECU CrEate. Vi .ueevureeiieiieeiieeiiiesieeieenieeeteesieesereeseesseesseeseesssesnsessseessses 5-70
MC ECU DESCIECE. Vi..ueieriiieiieiieeiieniiesieeieesteeieesieesveeaeesvesnseesaeeseseensaenanes 5-74
MC ECU DiSCONMNECE. VI c.vvveiveeiiieiieeiieniiesieesieeseesttesieesveesieesseeseesinesnseensees 5-76
MO ECU OPEN.Viitiiiiiiiiiiieniieeiiieniiesteeitestesaeesieesseeseessesnsessseesssesseessses 5-78
MC ECU SeIECE Vi uveiiienieiieiieiietieteeeisteiete ettt ettt et sttt 5-82
MC EVENt CTRALE. Vi.teeuvrerurieiieniieeieeniienteeieestesueesieessseenseesssesssessseesssesssesssses 5-86
IMC GONETIC. Vieeuviieuiieiieeiieitesiteeieesetesteeieesbeeteestseesbeenseesnseensaessnesnsesnseennsens 5-88
IMC GOt NAIMES. VI c.vvveeerieiieeiieeiieniteeieesieeeteesteesitesabeessaesaseessaesssesseesssesssesnsees 5-90
MOC Gt PrOPEITY.Vi..couveierieiieiieiieiienieeitenieee ettt sttt st 5-92
MC Measurement CIrEALE. Viccueerereerueereerieeniienieeieeseesreesieesseesseessessesnsees 5-117
MC Measurement Read. Vicceevvieiiiniiniieiieie ittt 5-119
MC Measurement WIILE. VI co.eecveerveereeeiieeniieeieeieeniiesreeieeseeeeseesseesseenseensnes 5-121
IMOC PrOZIaML Viueeouceieieieieieeiieieeieeiteee ettt ettt ettt st ebee b siaens 5-123
MC Program ReESEt.Vi......cooueruieiiniiriiniiiienieiteie sttt 5-125
MC Program Start.Vi....oc.eeceereeieneeieneeieneeie ettt ettt s 5-127
MO Set PIOPEITY. VI eeuviniiriieiieiiiiieitesieeitesieee ettt st s 5-129
IMOC UPLOAA. Vi ittt sttt st 5-142
MC XCP Copy Cal Pag.Vi....ccoueriiiiniiiiinienieeiteienitenieeeeieeie et 5-144
MC XCP Get Cal PAZE.VI c.eoveeviiniiiieiiiiieieiiee sttt st 5-146
MC XCP Gt ID.Viuueiiiiiieiieieiietieit ettt ettt sttt 5-148
MC X CP Gt STALUS. Vi .eeeuvieireeiiieiieeieeiteenieerteesieeseseesseessnessseesseesssesssesssnesses 5-150
MC XCP Program Prepare.vi.........coeeeererienerienenienienteieeieeie e 5-155
MC XCP Program Verify.Viceceoerieririeneiieienieieeeeieeicee e 5-157

ECU M&C Toolkit User Manual viii ni.com

Contents

MC XCP Set Cal Pae.Vi...covoiieriiriiiiiieiieeiieiteeteeiee sttt 5-160
MC XCP Set REQUESE. Vi c.uvieiiieieeiieiiieiieeieeieeeite ettt ettt 5-162
MC XCP Set Segment MOAe. Vi.......covveerieriiinieniiiieenienie et eie e sve e 5-165

Chapter 6
ECU M&C API for C

Section HEAdINGScc.eeviiriiiiiiiieiieeeeteeete ettt s e 6-1
PUIPOSE ...t 6-1
FOIMIAL......eiiiiieeeee et e et e e e et e e e e eaareaeeeene 6-1
Input and OULPUL........ccoeeviiiiriieiiieieeee et s 6-1
DESCIIPLIONeoneieeiiiieeteeee ettt st e e 6-1

LSt Of Data TYPES..c..eerueruieiieiieieeieetietete sttt ettt et e 6-1

LiSt Of FUNCHIONSveiiiiiiieiii ettt ettt et e e e e teeeetaeeessaeesntaaeessseeesssaeessseaens 6-2
MCBUIIACRECKSUMeiiiiiieciiicciiee e e arae e ea 6-6
mcCalculateCheckSUMcccviiieiiieiieeeee e e e 6-10
MCCCPACHONSEIVICE ... viieeiiiieeiiieciieeeieeereeeteeesreeesteeesteeeseeeesssaessseeens 6-12
MCCCPDIAZSETIVICE ...cvveeiiiiiiiieieeeie ettt 6-14
MCCCPGEtACIVECAIPAZEcovueeriiieiieieeieteetete e 6-16
MCCCPGELRESUIL.eoiiiiiieiieeieete ettt st et 6-17
MCCCPGELSESSIONSTALUSeeueieiiieiieriieeiee sttt ettt ettt s 6-18
MCCCPGEEVETSION ...couiiiiieiiieiieeiie sttt ettt sttt 6-19
MCCCPMOVEMEIMOTYc..viiiiiiieiiienieeieesite ettt sttt ettt e st e st e sbeesasesaeees 6-20
MCCCPSElectCalPage.ccoveeviiiriiiiieieeieertee ettt 6-22
MCCCPSEtSESSIONSTALUS. ...ceuvieiieriiieiieie ettt 6-23
mcCharacteriStCREAd.oovvieriiiiieiieeeee e 6-25
mcCharacteristicReadSingleValue..........cocccovviiviiniiniiniiiieceeee, 6-26
MCChAraCteriSTCWTILE ...ceuiiiiiieiieiiie ettt ettt st e 6-28
mcCharacteristicWriteSingleValuecocccovveeviiniiinienieiienieeeeseeeee, 6-29
MCCIEATIMEMOTYvvieniieeiieeitteeie ettt ettt ettt e sae ettt et e st esbeesareeaeees 6-31
MCCONVETSIONCTEALEeuvveeivieriieiieeriieeiee st ebee st e ettt e sttt e et e esbeesareesaeesaeas 6-32
MCDAQUCICATcceeiiieiiieeeieee ettt et e e e ta e e seaeeesebeeesabeeessseeesseaaans 6-34
MCDAQINIALIZE ...ccvveieiiieeeiie ettt erae e e tre e e ebe e e iae e e ebeeenes 6-35
MCDAQLISINIIAIIZE ...eevvvieeeiiieeeiie ettt e ve e re e 6-38
MCDAQREAAviiieiii ettt et etre e e e e 6-40
mMcDAQReadTimestamped.........coovieruierieiiiierieniienite ettt 6-43
MCDAQSTAITESTOP . .ceuvteireeiiieitieeieertte ettt ettt et et e sete e esatesbeesaeesaeean 6-46
MCDAQWTIILE ...eviiiiie ettt et e e e ste e etae e etbeeesareeesasaeeesseaans 6-48
MCDALADASECIOSE ..vvveevieiiieiiiieieerte ettt sttt sttt e st e b e sbaeebeesaees 6-50
MCDALADASEOPEI..c..vvieuvieniiiiiiieee ettt ettt ettt et e b e sereenaeesaees 6-51
MCDOWNIOAA.c..iiiiiiiiieit ettt et ettt st e be e e 6-52
MCECUCONNECTc.ttiiiieiie ittt ettt ettt ettt et esae et sabeesaeesanas 6-54
MCECUCTALEeevieiieeiieriteeie ettt sttt ettt e esateesbaesaseeneees 6-55
MCECUDESEIECL ...c..vieiiieiiieriieeieeite ettt ettt sttt e esaaeeaeees 6-58

© National Instruments Corporation ix ECU M&C Toolkit User Manual

Contents

MCECUDISCONNECT....ccuviiiiiiiiieiieiieeiteeie ettt ettt st st b e saae e 6-59
MCECUSCIECIEX....cutiiiiiiiiiieeiercetete ettt sttt 6-60
MCEVENTCTEALEeeviieiiieiiie ettt ettt sttt e st st e e saees 6-63
TNCGENCTIC 1.veevvieireetieeiieestteeteetee st e et e st e s beesatesabeebbessbeebeeseseenseesaseensaenasesnses 6-64
INCGEINAINES ...ttt ettt ettt ettt eae et sbee b st esbesenebens 6-66
MCGEtNAMESLENGN......eiiiiiiiiiiiiiiieeee e 6-68
MNCGEIPTOPEILY .vviiiiieiieiiit ettt ettt et st e st eesbaesaneenes 6-70
MCMEaSUTEMENTCTEALE.eevieiieeiieieeeteesiteete et et eteesieesbeesaeesebeesbaesaaeennes 6-82
mcMeasurementRead.........cooueiriiiiiiniiiieeece e 6-84
MCMEASUTEMENTWTILE ..eovuvieiieiieiiierte ettt ettt s esbaesaaeenes 6-85
INCPTOZIAIM ...ttt ettt et sttt e e e e saeeebeenaneenes 6-86
MCPTOZIAMRESEE ...uveeiiieiieeieciee et st 6-88
MCPTOZIAMSIATT «..eeviieiiieiieeieeiieete ettt ettt et e st st eeaeesanas 6-89
MNCSEIPTOPEITY ..evviiiiieiieciie ettt sttt eb e aae e 6-90
MCSTAtUSTOSIING ...eveeiiieiiie ettt sttt e e e 6-99
MCUPIOAAeoeiiiiie ettt sttt et st e e e st e enbe e 6-101
MCXCPCOPYCAIPAZEceveieiieiiieiiieeieee ettt 6-103
MCXCPGEICAIPAZEeeveiieiiiiiieiiieieeee ettt 6-105
MCXCPGEID ...ttt ettt st sabe e e anesabees 6-107
MCXCPGEISTALUS ..ovevieiiieiiieeiieiie ettt ettt st e st e e beesteesbeensaesanes 6-109
MCXCPProgramPreparecocveeiierieeiiieiee ettt st ve e 6-113
MCXCPProgramVerify.....ccoooiiriiiiiiiieeiieieeceee et 6-115
MCXCPSEtCAIPAZE.veeviieiiieiieiie ettt e 6-117
MCXCPSEREQUESEevvieiieeiiieiiecie ettt ettt e b e enbe e 6-119
mMCXCPSetSegmentMOde.c.eoieiirieriirienenieieniteeeeeteeeee et 6-121

Appendix A

Summary of the CCP Standard

Controller Area NetWork (CAIN)ccccuii ettt eee e sve e e eeae e sreeeeaeeeens A-1
CAN Calibration Protocol (CCP)........ccccuiiiiiiiiiieeiiiee e eeiee e see e ereessveeesevee e A-1

SCOPE OF CCP ...ttt A-2
CCP Protocol Definitionc..cccveeeriieeeiieeeiieeciie et ereeeireeeseree e eveeesnee e A-3

Appendix B

Technical Support and Professional Services

Glossary

Index

ECU M&C Toolkit User Manual X ni.com

About This Manual

This manual provides instructions for using the ECU Measurement &
Calibration (ECU M&C) Toolkit. It contains information about installation,
configuration, and troubleshooting, and also contains ECU M& C function
references for LabVIEW-based and C-based APIs.

Use the ECU M&C Toolkit Installation Guide in the jewel case of the
program CD to install the ECU M&C Toolkit software. Use this manual to
learn the basics of ECU Measurement and Calibration, as well as how to
develop an application.

Conventions

The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

@ This icon denotes a tip, which alerts you to advisory information.
@ This icon denotes a note, which alerts you to important information.
bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.
italic Italic text denotes variables, emphasis, a cross-reference, or an introduction

to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

© National Instruments Corporation Xi ECU M&C Toolkit User Manual

About This Manual

Related Documentation

The following documents contain information that you may find helpful as
you read this manual:

ECU M&C Toolkit User Manual

ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of
Digital Information—Controller Area Network (CAN) for High-Speed
Communication

CAN Specification Version 2.0, 1991, Robert Bosch GmbH.,
Postfach 106050, D-70049 Stuttgart 1

CiA Draft Standard 102, Version 2.0, CAN Physical Layer for
Industrial Applications

CAN Calibration Protocol Specification, Version 2.1, ASAP
Arbeitskreis zur Standardisierung von Applikationssystemen
Standardization of Application/Calibration Systems task force

Interface Specification Interface 2 (ASAM MCD 2MC/ASAP2)
Version 1.51 Release 2003-03-11, Applications Systems
Standardization Working Group

XCP Version 1.0, The Universal Measurement and Calibration
Protocol Family, Association for Standardization of Automation and
Measuring Systems:

— Part I, Overview

— Part 2, Protocol Layer Specification

— Part 3, XCP on CAN - Transport Layer Specification

— Part 3, XCP on Ethernet - Transport Layer Specification
— Part 4, Interface Specification

NI-CAN Hardware and Software Manual

Xii ni.com

Introduction

The ECU Measurement and Calibration (ECU M&C) Toolkit contains a
development system for an electronic control unit (ECU) based on existing
ASAM standards. The function set of the ECU M&C Toolkit enables
engineers to optimize and verify the functionality of electronic controller
devices. Most ECUs interact with other ECUs, external sensors, and
actuators in a Controller Area Network (CAN). During the development
and verification phase of an ECU, engineers access the ECU for acquired
data (Measurement), or to adjust parameters inside the ECU itself
(calibration). Since the bandwidth and number of identifiers for a CAN
network are limited the Association for Standardization of Automation and
Measuring Systems (ASAM e.V.) has specified the CAN Calibration
Protocol (CCP), a protocol layer based on CAN, to access the measurement
and calibration data in an ECU.

To build on the functionality of the CAN Calibration Protocol (CCP),
ASAM defined the new protocol specification XCP (Universal
Measurement and Calibration Protocol) which can be considered an
improved and generalized version of CCP. The X represents the various
transportation layers used by the members of the XCP protocol family—for
instance, XCP on CAN, XCP on TCP/IP, XCP on UDP/IP, XCP on USB,
etc.

The ECU M&C Toolkit is particularly suited to the automotive industry and
their component suppliers. It provides a function set that can be used in the
development or verification phase of an ECU. Access to the data inside an
ECU takes place based on information stored in an ASAM MCD 2MC
(*.A2L) database file provided by the ECU supplier. Selecting each signal
by its name provides convenient access to the data inside an ECU. The ECU
M&C Toolkit uses CCP and XCP as the fundamental communication
protocols and to support ECU database (* . A2L) files. You can easily switch
between the CCP and XCP protocol layers through software.

© National Instruments Corporation 1-1 ECU M&C Toolkit User Manual

Chapter 1 Introduction

CAN Calibration Protocol (CCP) Overview

The CAN Calibration Protocol is a CAN-based master-slave protocol for
calibration and data acquisition. A single master device (host) can be
connected to one or more slave devices. The host must establish a logical
point-to-point connection to the slave device before the slave device may
accept commands from the host. The slave device must acknowledge each
command received from the host within a specified time after the
connection between host and slave has been established.

CCP defines two function sets—one for control/memory transfer and one
for data acquisitions that are independent of each other and may run
asynchronously. The control commands are used to carry out functions in
the slave device and may use the slave to perform tasks on other devices.
The data acquisition commands are used for continuous data acquisition
from a slave device. The devices continuously transmit internal data
according to a list that has been configured by the host. Data acquisition is
initiated by the host, then executed by the slave device, and may be based
on a fixed sampling rate or be event-driven.

The communication of controllers with a master device through CCP is
based on the CAN 2.0B standard (11-bit and 29-bit identifier), which
includes 2.0A (11-bit identifier) for data acquisition from the controllers,
memory transfers to the controllers, and control functions in the controllers
for calibration.

The ECU M&C Toolkit abstracts the CCP communication layer so that it
is transparent to the user. For most cases it is sufficient that the underlying
CCP communication is handled by the toolkit kernel itself. Nevertheless,
the ECU M&C Toolkit offers direct access to the low level CCP commands
if a non-standard timing behavior or independent user defined command
sequence is needed.

CCP Protocol Version

The ECU M&C Toolkit supports the CAN Calibration Protocol
specification, version 2.1.

ECU M&C Toolkit User Manual 1-2 ni.com

Chapter 1 Introduction

Universal Measurement and Calibration Protocol (XCP)
Overview

The Universal Measurement and Calibration Protocol (XCP) is a
single-master/single-slave protocol for calibration and data acquisition
based on various transport layers. Communication is always initiated by the
XCP master. An XCP slave must respond to requests from the master
within a specified time. The XCP protocol uses a soft master/slave
principle: once the master establishes a communication channel with the
slave, the slave can send certain messages (Events, Service Requests and
Data Acquisition messages) autonomously. In addition, the master sends
Data Stimulation messages without expecting a direct response from the
slave.

The XCP builds a continuous, logical, unambiguous point-to-point
connection with 1 specific slave when establishing a communication
channel. The XCP slave cannot handle multiple connections. The master is
not allowed to broadcast XCP messages to multiple slaves at the same time.
The identification parameters of the Transport Layer (for instance, CAN
identifiers on CAN) must be chosen in such a way that they build
independent and unambiguously distinguishable communication channels.

The ECU M&C Toolkit abstracts the XCP communication layer so that it
is transparent to the user. For most cases it is sufficient that the underlying
XCP communication is handled by the toolkit kernel. Nevertheless, the
ECU M&C Toolkit offers direct access to the low level XCP commands if
a non-standard timing behavior or independent user defined command
sequence is required.

XCP Protocol Version
The ECU M&C Toolkit supports the XCP Calibration Protocol
Specification, version 1.0.

For further information related to the XCP protocol, refer to the XCP
Calibration Protocol Specification, version 1.0, The Universal
Measurement and Calibration Protocol Family, Part 1, by ASAM e.V.

© National Instruments Corporation 1-3 ECU M&C Toolkit User Manual

Chapter 1 Introduction

Measurement and Calibration Databases

The ASAP description file (ASAP2 or ASAM MCD 2MC) is used to
describe the ECU internal memory configuration. An ASAM MCD 2MC
description file with the file extension .A2L contains information and
access locations for the relevant data objects in the ECU, such as:

* Project relevant information

* ECU data structure

e Conversion procedures for representation in physical units

* Descriptions of the available Measurement channels inside the ECU
* Descriptions of the available Characteristics inside the ECU

e Descriptions of how to access the ECU over CAN

@ Note Use of the ECU M&C Toolkit requires an existing ASAM MCD 2MC database file.
These files can be generated by various third-party utilities. A database editor for ASAM
MCD 2MC databases is not part of the ECU M&C Toolkit.

ECU Measurements

The ECU M&C Toolkit provides the user access to ECU internal physical
values defined by their names in the ASAM MCD 2MC database file.
Based on this information, the ECU M&C Toolkit communicates through
CCP or XCP to the ECU. A DAQ (data acquisition) list can be set up, which
sends ECU internal data synchronously or asynchronously to the CCP or
XCP master. The ECU M&C Toolkit provides a way to configure several
Measurement channels into a single Measurement task. The term rask
refers to a list of measurements (channels) read or written together. A
common use of the task concept is to read DAQ channels available on the
ECU.

ECU Characteristics

ECU M&C Toolkit User Manual

ECU Characteristics are maps of ECU internal variables, which may be
used as calibration information or set-point information. The ECU memory
content of Characteristics can be read or even changed with the help of the
ECU M&C Toolkit.

1-4 ni.com

Installation and Configuration

This chapter explains how to install and configure the ECU M&C Toolkit.

Installation

This section discusses the installation of the ECU M&C Toolkit for
Microsoft Windows.

@ Note You need administrator rights to install the ECU M&C Toolkit on your computer.

1

2.
3.
4

Insert the ECU M&C Toolkit CD into the CD-ROM drive.
Open Windows Explorer.
Access the CD-ROM drive.

Double-click on autorun. exe. This will launch the software
interface.

Start the installation. The installation program will guide you through
the rest of the installation process.

When installation is complete, the National Instruments
License Manager will launch automatically to activate your license.

License Management Overview

License management is the process of controlling access to products based
on an explicit license agreement. The ECU M&C Toolkit requires an
activated license in order to launch, so a license must be acquired and
activated before the product can be used. The activation process involves
using the Activation Wizard to send the following information to National
Instruments:

© National Instruments Corporation

The product you are activating: ECU Measurement and Calibration
Toolkit

The serial number of the product
The version of the product

Your name

2-1 ECU M&C Toolkit User Manual

Chapter 2 Installation and Configuration

* Your organization

* A computer ID that uniquely identifies your system

National Instruments uses this information to generate an activation code,
which is used to activate the ECU M&C Toolkit on your system. National
Instruments does not use this information for any other purpose. Refer to
the Privacy Policy section for information on the National Instruments
privacy policy regarding your personal information.

The Activation Wizard offers a variety of options you can use to obtain an
activation code from National Instruments, including an automatic option
through an Internet connection, or through email, by telephone, or by fax.

Activate ECU M&C Toolkit

ECU M&C Toolkit User Manual

The ECU M&C Toolkit must be activated before using it, in accordance
with its license agreement. To activate the ECU M&C Toolkit, you must
first purchase a license. For information on purchasing licenses, contact

your local National Instruments sales representative or visit ni . com.

Once you have purchased a license, you can activate your product using the
Activation Wizard. Activation is simple and you can activate your software
24 hours a day, 7 days a week.

Complete the following steps to activate the ECU M&C Toolkit.
1. Locate your serial number.

Your serial number uniquely identifies your purchase of NI software.
You can find it on the Certificate of Ownership included in your
software kit. If you subscribe to NI Developer Suite or Academic
Software Solutions, use the original serial number you received with
your initial purchase.

Gercate o s AN
o i XXXXXXXXX

2. Install your software.

2-2 ni.com

Chapter 2 Installation and Configuration

3. Launch the License Activation Wizard.

If you installed your software for the first time and the installer did not
launch the License Activation Wizard for you, perform the following
steps:

a. Launch the NI License Manager by selecting Start»Programs»
National Instruments»NI License Manager.

b. Click the Activate button on the toolbar.
The wizard will guide you through the activation process.

4. Save your activation code for future use (optional).

You can reactivate your software at any time. The activation wizard
provides you with the option to receive an email confirmation of your
activation code. To apply this activation code in the future, launch the
Activation Wizard and choose to apply a 20-character activation code.
If you reinstall your software on the same computer, the same activation
code will work.

For more information on activation, refer to your product documentation,
or visit ni.com/activate.

National Instruments uses activation to better support evaluation of our
software, to enable additional software features, and to support license
management in large organizations. To find out more about National
Instruments software licensing, visitni . com/activate to find frequently
asked questions, resources, and technical support.

Terms
Table 1. Definition of Activation Terms

Serial Number A 9-character, alphanumeric string that uniquely identifies your purchase
of a single copy of software, included in your software kit on your
Certificate of Ownership. The serial number for hardware products is
printed either on the product box or on the device.

Computer ID or A 16-character ID that uniquely identifies your computer or NI hardware,

Device ID generated during the activation process.

Activation Code A 20-character code that enables NI software to run on your computer,
based on your serial number and computer ID. You generate and install
an activation code by completing the activation process.

© National Instruments Corporation 2-3 ECU M&C Toolkit User Manual

Chapter 2 Installation and Configuration

Moving Software After Activation

To transfer your software to another computer, install and reactivate it on
the second computer. You are not prohibited from transferring your
software from one computer to another. Because activation codes are
unique to each computer, you will need a new activation code. Follow the
steps on the previous page to acquire a new activation code and reactivate
your software.

Volume License Program

Online Activation

National Instruments offers volume licenses through the NI Volume
License Program. The NI Volume License Program makes managing
software licenses and maintenance easy. For more information, refer to
ni.com/vlp.

Activation is available on ni.com/activate 24 hours a day, 7 days a
week. You can retrieve an activation code from any computer that has an
Internet connection. NI does not require that the computer on which you
run NI software have Internet or email access.

Home Computer Use

Privacy Policy

National Instruments permits you to use this software at home. Refer to the
NI License Manager help file or the software end-user license agreement in
the installer or online at ni.com/legal/license for more information.

National Instruments respects your privacy. For more information about
the National Instruments activation information privacy policy, go to
ni.com/activate/privacy.

Upon successful activation, you can use the product immediately.

@ Note If the ECU M&C Toolkit was in use before you began the activation process, you
may need to restart it for the change to take effect.

(&)

Tip In the NI License Manager, products that have not been activated are denoted either

by a yellow stoplight or a red stoplight, depending whether the product is in evaluation
mode or is unusable. Activated products are denoted by a green stoplight.

ECU M&C Toolkit User Manual

24 ni.com

Chapter 2 Installation and Configuration

LabVIEW Real-Time (RT) Configuration

PXI System

LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming
with the power of real-time systems.

When you use a National Instruments PXI controller as a LabVIEW RT
system, you can install a PXI CAN or PXI XNET card and use the

ECU M&C Toolkit to develop real-time applications for CCP or XCP.
As with any other NI product for LabVIEW RT, you must download the
ECU M&C Toolkit software to the LabVIEW RT system using the
Remote Systems branch in MAX. For more information, refer to the
LabVIEW RT documentation.

After installing the PXI CAN cards and downloading the NI-CAN or
NI-XNET and ECU M&C Toolkit software to the LabVIEW RT system,
you need to verify the installation.

NI-CAN on PXI RT System

Within the MAX Tools menu, select NI-CAN»RT Hardware
Configuration. The RT Hardware Configuration tool provides features
similar to Devices and Interfaces on the local system. Use the RT
Hardware Configuration tool to self-test the CAN cards and assign an
interface name to each physical CAN port.

NI-XNET on PXI RT System

After you install the PXI XNET cards and download the NI-XNET
software to the LabVIEW RT system, you need to verify the installation.
Find your PXI target device in MAX under Network Devices and expand
the tree. Browse to Devices and Interfaces and open the NI-XNET
Devices group. Perform a self-test for all installed NI-XNET devices.

On the RT target, you can configure your NI-XNET hardware the same
way as on the local system.

CompactRIO System

After you have installed the CompactRIO CAN modules and downloaded
the NI-RIO and ECU M&C Toolkit software, you need to enable the
CompactRIO Reconfigurable Embedded Chassis for use in LabVIEW.
For more information, refer to the MAX help.

© National Instruments Corporation 2-5 ECU M&C Toolkit User Manual

Chapter 2

5

Installation and Configuration

Note You can use the ECU M&C Toolkit with LabVIEW 2009 or newer on CompactRIO

Systems only.

To use the ECU M&C Toolkit on the LabVIEW RT system, you must also
download the ASAM MCD 2MC database file to the RT target. The
LabVIEW Real-Time Engine that runs on the PXI LabVIEW Real-Time
controller supports a File Transfer Protocol (FTP) server. You can access
the LabVIEW RT target FTP server using any standard FTP utility for
transferring files to and from the hard drive or compact flash. The following
sections demonstrate how to transfer files from and to your LabVIEW
Real-Time target using various FTP clients.

DOS Command Prompt

5

You can run a native FTP client from the DOS command prompt on a
Windows PC. To open the FTP client, click Start»Run to open the
user-command dialog box. Type command, and click Enter. This opens a
window with a DOS prompt.

Then use the following table to enter a sequence of commands that may be
used to access the FTP server of your RT target.

Note w.x.y.z represents the IP address of the RT target in this document.

Table 2-1. Example of FTP Transfer

Command Result
ftp Open a connection to the FTP server.
open w.x.y.z
(username) Enter your username and password here or press the Enter key
twice if these security settings have not been applied.
(password)
help View a list of commands.

cd ni-rt\system\www

Change to the desired directory.

dir View the files present.

get index.htm c:\index.htm Copy the file.

cd)\ Change directory back to the root (c:\).

cd d: Change directories to the external compact flash.

ECU M&C Toolkit User Manual

2-6 ni.com

Chapter 2 Installation and Configuration

Table 2-1. Example of FTP Transfer (Continued)

Command Result
put c:\index.htm index.htm Copy the file from the FTP client machine to the target.
dir Verify the copied file on the target.
cdc: Change directory back to the internal compact flash or hard
drive.
quit Disconnect from the FTP server.

Web Browsers

You can also use Internet Explorer or Netscape Navigator to ftp files to and
from the controller. This is an easier method of transfer, since there is no
need to learn ftp commands—instead the files are simply copied and pasted
as they would be in a Windows Explorer window. The disadvantage of this
method is that Internet Explorer sometimes caches old information, so you
will need to refresh occasionally.

If w.x.y.z is the IP address of your RT target, open Internet Explorer to
access the hard drive or internal compact flash, or type the following in the
address field:

ftp://w.x.y.z/

If a username and password are required, then use the following format:

ftp://username:password@w.x.y.z/

To access the external compact flash, open Internet Explorer and type the
following in the address field:

ftp://w.x.y.z/d:/

To enter a directory, double-click on its icon. Right-click on a file or folder
and choose cut, copy, paste or delete to perform those actions.

LabVIEW Real-Time Graphical File Transfer Utility

LabVIEW Real-Time Module versions 7.0 and later include a File Transfer
Utility that can be used to access your RT target. This method helps you
avoid the caching problem encountered when using web browsers. You can
find this utility in the Measurement and Automation Explorer (MAX). To
open the utility, right-click on the desired RT target under the Remote
Systems list and choose File Transfer, as shown in Figure 2-2.

© National Instruments Corporation 2-7 ECU M&C Toolkit User Manual

Chapter 2 Installation and Configuration

Configuration

- @ My Swstem
+ Data Meighbaorhood
+ Devices and Interfaces
+- 3 Scales
+[@ Software
- ﬁ Remaote Systems
| ey

o Sk Reboat
I Crata M
+ acj' § Laock
+ Devices
View Errar Log
+ A Scales

. Softwar File Transfer

> Delete

Figure 2-2. FTP Utility Access in MAX

At this point, you are prompted for a username and password. If these
security features have not been enabled, check the Anonymous Login box
as shown in Figure 2-3.

&>} Username/Password E|

Username
MOy MoUs Anqn\;mous
Lagin
Password

Figure 2-3. FTP Login Dialog Box

The upper section of the utility interface shows the current directory and
contents on the remote RT target, while the lower section gives information
for the host or local machine. To copy a file (TestECU.a21, for instance)
to the RT target, complete the following steps, referring to Figure 2-4 for
details.

1. Inthe Current Directory section, navigate through the tree structure to
the System folder.

2. Inthe local directory section, navigate through the tree structure to the
location of the file you want to transfer and highlight the file.

3. Click the To Remote button to copy the file.

ECU M&C Toolkit User Manual 2-8 ni.com

Chapter 2 Installation and Configuration

i File Transfer

Target IP Address
10.0.47.69

Current Remote Directory
[fHL-RTySYSTEM]

]

Close

Folders A || Mame Size Date
= MI-RT [nigmc.dll 143360 Jun 14
) ey Folder
LABYIE W DATA, [nierncazl, aml 24263 Jun 14
STARTUP [nierncazl.dll 294912 Jun 14
[nipalp.dil 350812 Jun 14
ERRCRS O nipalpg.dil 3584 Jun 14
ETHERMET = [mirpe.dil 41050 Jun 14 Select al
M o - LER] Mm da
< > <
[]
? To Remote + " To Local +] l Cancel l
Current Local Directory
|C:'|,Pr0gram FilesiMational InstrumentsiLabYIEW 7. 0\examples\ECUMCY, “ oK]
Delete
Folders -~ || Mame Size Date ~
DAQMx =
ey Folder
[MCAdvancedExamples b 576487 &/9j200
[0 MCBasicExamples.lb 131098 631200
express [MCCharacteristicsEditors.lib 654092 6/9fz00
file [1 ReadMe. bxt 1119
[TestECU. a2l 2356 Select all
general st L T R R ||} W T Fer
< > <

Figure 2-4. Transferring Files With the FTP Utility

LabVIEW

You also can use LabVIEW to programmatically access the FTP server of
a LabVIEW Real-Time target.

The DataSocket Read function has the ability to read raw text, tabbed text,
and .wav files from an FTP server. For more information on this, refer to
the LabVIEW User Manual.

The LabVIEW Internet Developers Toolkit allows you to send files or raw

data to an FTP server, as well as sending emails and adding security to your
web-based applications.

© National Instruments Corporation 2-9 ECU M&C Toolkit User Manual

Chapter 2 Installation and Configuration

Hardware and Software Requirements

You can use the ECU M&C Toolkit on the following hardware:

e National Instruments NI-CAN hardware Series 1 or 2 with the
NI-CAN driver software version 2.3 or later installed.

¢ National Instruments NI-XNET hardware with the NI-XNET driver
software version 1.0 or later installed.

e National Instruments CompactRIO or R Series Multifunction RIO
hardware and the NI 9853 or NI 9852 CompactRIO CAN modules.

@ Note You can use the ECU M&C Toolkit with LabVIEW 2009 or newer on CompactRIO
systems or National Instruments R Series Multifunction RIO hardware.

ECU M&C Toolkit User Manual 2-10 ni.com

Application Development

This chapter explains how to develop an application using the ECU M&C
APIL

Choose the Programming Language

LabVIEW

LabWindows/CVI

The programming language you use for application development
determines how to access the ECU M&C Toolkit APIs.

ECU M&C Toolkit functions and controls are available in the LabVIEW
palettes. In LabVIEW, the ECU M&C Toolkit palette is located:

* Within the All Functions palette for LabVIEW 7.1
* Within the Addons palette for LabVIEW 8.0 and 8.1

The reference for each ECU M&C Toolkit API function is in Chapter 5,
ECU M&C API for LabVIEW. To access the reference for a function
from within LabVIEW, press <Ctrl-H> to open the Help window,

click the appropriate ECU M&C function, and then follow the link.

The ECU M&C Toolkit software includes a full set of examples for
LabVIEW. These examples teach programming basics as well as advanced
topics. The example help describes each example and includes a link you
can use to open the VI.

Within LabWindows™/CVI™, the ECU M&C Toolkit function panel is in
Libraries»ECU Measurement and Calibration Toolkit. Like other
LabWindows/CVI function panels, the ECU M&C Toolkit function
panel provides help for each function and the ability to generate code.
The reference for each API function is located in Chapter 6, ECU M&C
API for C. You can access the reference for each function directly from
within the function panel. The header file for the ECU M&C Toolkit APIs
isniemc.h. The library for the ECU M&C Toolkit APIs is niemcc.1lib.

© National Instruments Corporation 3-1 ECU M&C Toolkit User Manual

Chapter 3 Application Development

Visual C++ 6

ECU M&C Toolkit User Manual

The toolkit software includes a full set of examples for LabWindows/CVI.
The examples are installed in the LabWindows/CVI directory under
samples\ecumc. Each example provides a complete LabWindows/CVI
project (.prj file).

A description of each example is provided in comments at the top of the
.c file.

The ECU M&C Toolkit software supports Microsoft Visual C/C++ 6.
The header file for Visual C/C++ 6 is in the Program Files\National
Instruments\Shared\ExternalCompilerSupport\C\include

folder.

To use the ECU M&C API, include the niemc . h header file in the code,
then link with the niemcc. 1ib library file.

The niemcc.1ib library file is in the Program Files\National

Instruments\Shared\ExternalCompilerSupport\C\1lib32\msvc
folder.

For C applications (files with a . c extension), include the header file by
adding a #include to the beginning of the code, like this:

#include "niemc.h"

For C++ applications (files with a . cpp extension), define __cplusplus
before including the header, like this:

#define __ cplusplus

#include "niemc.h"

The ___cplusplus define enables the transition from C++ to the C
language functions.

The reference for each API function is in Chapter 6, ECU M&C API for C.

On Windows Vista (with Standard User Account), the typical path to the
C examples folder is \Users\Public\Documents\National
Instruments\ECU Measurement and Calibration Toolkit\
Examples\MS Visual C.

On Windows XP/2000, the typical path to the C examples folder is
\Documents and Settings\All Users\Documents\National
Instruments\ECU Measurement and Calibration Toolkit\
Examples\MS Visual C.

3-2 ni.com

Chapter 3 Application Development

Each example is in a separate folder. A description of each example is in
comments at the top of the . c file. At the command prompt, after setting
MSVC environment variables (such as with MS vcvars32.bat), you can
build each example using a command such as:

cl /I<HDir> measure.c <LibDir>\niemcc.lib
<HDir>is the folder where niemc.h can be found.

<LibDir>is the folder where niemcc. 1ib can be found.

Other Programming Languages

The ECU M&C Toolkit software does not provide formal support for
programming languages other than those described in the preceding
sections. If the programming language provides a mechanism to call a
Dynamic Link Library (DLL), you can create code to call ECU M&C
Toolkit functions. All functions for the ECU M&C API are located in
niemcc.dll. If the programming language supports the Microsoft Win32
APIs, you can load pointers to ECU M&C Toolkit functions in the
application. The following text demonstrates use of the Win32 functions
for C/C++ environments other than Visual C/C++ 6. For more detailed
information, refer to Microsoft documentation.

The following C language code fragment illustrates how to call Win32
LoadLibrary to load the DLL for the ECU M&C API:

#include <windows.h>
#include "niemc.h"
HINSTANCE NiMcLib = NULL;

NiMcLib = LoadLibrary("niemcc.dll");

Next, the application must call the Win32 GetProcaAddress function to
obtain a pointer to each ECU M&C Toolkit function that the application
will use. For each function, you must declare a pointer variable using the
prototype of the function. For the prototypes of each ECU M&C Toolkit
function, refer to Chapter 6, ECU M&C API for C.

Before exiting the application, you must unload the ECU M&C Toolkit
DLL as follows:

FreeLibrary (NiMcLib) ;

© National Instruments Corporation 3-3 ECU M&C Toolkit User Manual

Chapter 3 Application Development

Application Development on CompactRIO or R Series

To run a project on an FPGA target, you need an FPGA bitfile (. 1vbitx).
The FPGA bitfile is downloaded to the FPGA target on the execution host.
A bitfile is a compiled version of an FPGA VI. FPGA VIs, and thus bitfiles,
define the CAN, analog, digital, and pulse width modulation (PWM) inputs
and outputs of an FPGA target. The ECU M&C Toolkit includes FPGA
bitfiles for several FPGA targets. If your target is not included in the
examples, you can use the examples as a template and adjust them based on
your installed FPGA target.

The default bitfiles are sufficient for a basic ECU M&C application.
However, in some situations you may need to modify the existing FPGA
code or create a custom bitfile. For example, to use additional I/O on the
FPGA target, you must add these I/O to the FPGA VI. You must install the
LabVIEW FPGA Module to create these files.

Modify the FPGA VI according to the following guidelines:

* Do not modify, remove, or rename any block diagram controls and
indicators named __CAN Rx Data, __ CAN Rx Ready, __ CAN Tx
Data Frame, __CAN Tx Ready, __CAN Bit Timing, __ CAN_FPGA Is
Running, __CAN Start, __FIFO Full, or __ CAN FIFO Empty.

* Do not modify the CAN read and write code except to filter CAN IDs
on the receiving side to minimize the amount of CAN data transfers to
the host.

* As you create controls or indicators, ensure that each control name is
unique within the VL.

Refer to the LabVIEW FPGA Module documentation for more information
about creating FPGA VIs and bitfiles for an FPGA target.

Transferring Data between the FPGA and Host Computer

While you are creating or modifying the FPGA VI, it is important to know
how the ECU M&C Toolkit transfers CAN data to and from the host

computer. The ECU M&C Toolkit transfers data via unique named controls
and indicators to transfer data between the host computer and FPGA target.

ECU M&C Toolkit User Manual 3-4 ni.com

Chapter 3 Application Development

Customizing the CAN Bridge (FPGA) VI

All examples for CompactRIO or R Series targets are based on the CAN
Bridge (FPGA) VI. This VI ensures that the CAN frames are received from
the CAN module and transferred to the ECU M&C Toolkit on the host.
After the ECU M&C Toolkit has processed the received frame information,
a CAN frame response may be transferred to the CAN Bridge (FPGA) VI.

Therefore, changing the code of the CAN receive or transmit part of the
CAN Bridge (FPGA) VI may result in communication problems. Be
careful when changing this code.

Debugging An Application

NI-Spy

XCP-Spy

The NI-Spy tool monitors function calls to the ECU M&C API, to aid in
debugging an application. To launch this tool, open the Software branch of
the MAX configuration tree, right-click NI Spy, and select Launch

NI Spy.

If you have more than one National Instruments driver installed on your
computer, you can specify which APIs you want to monitor at any time. By
default, all installed APIs are enabled. To select the APIs to monitor, select
Spy»Options, select the View Selections tab, and select the desired APIs
under Installed API Choices.

The NI-Spy tool monitors function calls to the ECU M&C API to aid in the
debugging of an application. To launch this tool, open the Software branch
of the MAX configuration tree, right-click NI Spy, and select Launch
NI Spy.

If you have more than one National Instruments driver installed on your
computer, you can specify which APIs you want to monitor at any time. By
default, all installed APIs are enabled. To select the APIs to monitor, select
Spy»Options, select the View Selections tab, and select the desired APIs
under Installed API Choices.

The XCP-Spy tool monitors XCP protocol communication to aid in the
debugging of an application. Launch this tool from your Start menu in
Start»Programs»National Instruments»ECU Measurement and
Calibration Toolkit>XCP Spy.

© National Instruments Corporation 3-5 ECU M&C Toolkit User Manual

Chapter 3

Application Development

Sender
Master
ECL
Master
ECU
Master
ECL
Master
ECL
Master
ECL
Master
ECU
Master
ECU
Master
ECL
Master
ECU
Master
ECU
ECL
ECL
ECL

KGOS pyXlo XIS Dy
File ‘Wiew Spy Help
OE 0 7
Ref Time

24 11:24:44.862
25 11:24:44.862
26 11:24:44.862
27 11:24:44.862
258 11:24:44.862
9 11:24:44.862
30 11:24:144.862
31 11:24:44.575
32 11:24:44.575
33 11124144575
34 11:24:44.575
32 11:24:44.5875
36 11:24:44.875
37 11:24:44.575
35 11:24:44.5875
39 11:24:44.875
40 11:24:44.575
41 11:24:44.5875
42 11:24:44.875
43 11:24:44.575
44 11:24:44.594
45 11:24:44.894
46 11124144, 909
Ready

Command

GET SEED

== 0K

LIMLCCE,

-= 0K

GET SEED

- 0K

LINLCHCE

-= 0K

CLEAR. DAG LIST

- 0K

SET DA PTR

- Ok

WRITE D

-= 0K

SET DAG LIST MODE
- 0K

START STOP DA LIST
- Ok

START STOP SYMCH
-= 0K

Da PID = 0x10
DAy PID = 010
DéaCn PID = 0x10

= B]X]

Parameters

Mode = first. Resource = STIM
Length=0x4, Seed = 80, 81, 82, 83
Length=0x2, Key =101

Current Prokection Stakus = 0«10
Mode = first, Resource = PEM
Length=0x4, Seed = &0, &1, 82, 83
Length=0x2, key =01

Currenk Prokection Skatus = 0x=0

D LIST_MNUMEBER = 0x1

Dag=0x1, ODT=0x0, EMTRY=0x0

Bitoffset=0xFF, Size=0x1, Addr=0xES, Ext=0x0

DaQ=0x1, Mode=0x10, Event=0x0, Prescaler=0x1, Prio=0x0
Made = SELECT, DAC_LIST_MUMEBER = 01

FIRST_PID = 0x10

Mode = START SELECTED

930580

240520
95 05 80

MM

ECU M&C Toolkit User Manual

Figure 3-1. XCP Spy

XCP-Spy is an application that monitors, records, and displays XCP
communication commands and parameters called by your ECU M&C
application using the XCP protocol. Use XCP-Spy to analyze your
application’s XCP communication and to verify that the communication
with your ECU slave is correct.

XCP-Spy may slow down the performance of your application,
communication to your ECU slave, and the entire system. You should use
XCP-Spy only while you are debugging or when performance is not
critical.

For further information on the displayed XCP commands and parameters
refer to the ASAM XCP Part 2 Protocol Layer Specification.

ni.com

Chapter 3 Application Development

Saving Captured Communication Data

To save the information displayed in the XCP-Spy capture window, select
File»Save As. In the dialog box that appears select a name for the capture
file. A .x1g extension is usually used for saving XCP-Spy capture
information. The XCP-Spy log is stored in ASCII format, so you can view
the .x1g file in any ASCII editor.

Capture Options

To view or modify the XCP-Spy capture options, select Spy»Options.
By default, XCP-Spy displays 1000 calls in the capture window.

Call History Depth

The Call history depth reflects the maximum number of API calls that
XCP-Spy can display. When the number of captured API calls exceeds the
Call history depth, only the most recent calls are kept. If your computer
runs out of memory, XCP-Spy stops capture and displays a message box
indicating it is out of memory.

Capturing Data

By default, capture is activated when you open XCP-Spy. When capture is
off the blue arrow (start button) is enabled. When capture is on the red X
(stop button) is enabled. To turn capture on, click on the blue arrow button
on the toolbar. To turn capture off, click on the red button on the toolbar.

Selecting Which XCP Commands to View

You can specify which XCP command you want to spy on at any time.
By default all XCP commands are enabled. To select/deselect the XCP
commands to spy on, select Spy»Options, then select the commands under
Capture.

XCP Commands—Captures all XCP commands

DAQ Messages—Captures all DAQ list commands (ECU measurement
commands)

STIM Messages—Captures all STIM list (ECU slave stimulation
commands)

© National Instruments Corporation 3-7 ECU M&C Toolkit User Manual

Using the ECU M&C API

This chapter helps you get started with the ECU M&C API.

Structure of the ECU M&C API

The ECU M&C API is divided into three main function categories, the
high-level Channel-based functions, and the generic low-level CCP and
XCP functions. The ECU M&C Channel functions provide an easy way to
access ECU internal data through named channels. The ECU M&C CCP
functions provide direct access to the CCP commands on a very low
programming level. The ECU M&C XCP functions provide direct access
to the XCP commands on a very low programming level. Figure 4-1
outlines the three function categories.

| ECU M&C Toolkit
I

v v v

| Channel Functions | CCP Functions | XCP Functions

\ 4
| Database Task

\4
| ECU Task
+ \ + \ \ 4
| Measurement R/'W | DAQ Task | Characteristic R/'W | CCP Commands XCP Commands

Figure 4-1. ECU Architectural Overview

© National Instruments Corporation 4-1 ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

ECU M&C Channel Functions

ECU M&C Toolkit User Manual

With the ECU M&C Channel functions there are a number of ways to
access memory content in an ECU. The starting point is always the creation
of a database task, which is the link to a valid ASAM MCD 2MC database
file (* . A2L file), and the selection of the protocol (CCP or XCP). With the
database task reference it is possible to create an ECU task reference, which
links to the selected ECU. Depending on the application scenario, the ECU
task reference can be used for the following:

e (Creation of a Measurement task to measure ECU internal data
continuously or on demand

e Direct read/write of 0- to 2-dimensional Characteristics

* Read/write of single Measurement values on demand

What is an ECU Measurement?

An ECU Measurement, called ECU Data Acquisition (DAQ) in the CCP
and XCP specifications, is a definition of specific procedures and CAN
messages sent from the slave device (ECU) to the master device for fast
data acquisition (DAQ).

The XCP protocol supports synchronous data transfer in both directions,
from Master to Slave (DAQ list) and from Slave to Master (STIM list). XCP
allows several DAQ lists, which may be simultaneously active. The
sampling and transfer of each DAQ list is triggered by individual events in
the slave. To allow reduction of the transfer rate, a transfer rate prescaler
may be applied to the DAQ lists.

What is an ECU Characteristic?

An ECU Characteristic represents an ECU internal memory range with
defined access methods through the CCP protocol. The memory range of a
single Characteristic can be structured in three ways:

¢ 0-dimensional—a single value
* l-dimensional—a curve of values

e 2-dimensional—a field of values

A Characteristic may be defined as read-only or read and write accessible.

4-2 ni.com

Chapter 4 Using the ECU M&C API

ECU M&C CCP and XCP Functions

The ECU M&C Channel functions do not expose the method used for
ECU memory access. However, some applications may need specific
CCP or XCP command sequences, or custom designed commands, which
are not supported by the CCP or XCP protocols. For these applications, the
ECU M&C CCP functions and the ECU M&C XCP functions provide
access to the ECU information at a very low level.

Basic Programming Model

The flowchart in Figure 4-2 illustrates the process to initiate
communication to an ECU with the ECU M&C Channel functions. A
description of each step in the decision process follows the flowchart.

© National Instruments Corporation 4-3 ECU M&C Toolkit User Manual

Chapter 4

Using the ECU M&C API

ECU Open

Yes

contains communication
properties?

A2L file

| ECU Connect

Using CCP or
XCP on CAN

No
v
| Set CRO ID Set IP Address
T or Hostname
| Set DTO ID

Set Port Number I

| Set Statlon Address

1
| Set Baudrate

- v

ECU Disconnect

ﬁ Yes No
\4 \4
Measurement Characteristic Generic CCP Generic XCP
Task Read/Write Functions Functions
I I |
\ 4

v

ECU Close

ECU M&C Toolkit User Manual

Figure 4-2. ECU Communication Decision Chart

4-4

ni.com

Chapter 4 Using the ECU M&C API

ECU Open

The ECU Open function combines the opening of a selected ASAM MCD
2MC database file with the . A2L file extension and the selection of a stored
ECU name. The required parameters are the ASAM MCD 2MC database
path and filename, and the dedicated CAN interface if you are using CCP
or XCP with CAN. The CAN interface is used for communication with
the ECU. If you are using XCP with UDP or TCP, a port number and

IP address or hostname must be defined in the A2L database.

The function to open and select an ECU is MC ECU Open.vi in LabVIEW
or mcDatabaseOpen followed by mcECUSelectEx in C.

@ Note The import of ASAM MCD 2MC database files into MAX is not supported.

ASAM MCD 2MC Communication Properties for CCP or XCP with CAN

If your ASAM MCD 2MC database file already contains communication
properties, you can directly open the communication to your selected ECU.

If the communication properties are not stored in the ASAM MCD 2MC
file, the communication properties must be manually set. To establish
communication through CCP or XCP with CAN, the target ECU slave
should be addressed by setting the following properties.

CRO ID

The CRO ID (Command Receive Object) is used to send commands and
data from the host to the slave device.

DTO ID

The DTO ID (Data Transmission Object) is used by the ECU to respond
to CCP commands, and to send data and status information to the CCP
master.

Station Address

CCP is based on the idea that several ECUs can share the same CAN
Arbitration IDs for CCP communication. To avoid communication
conflicts, CCP defines a Station Address that must be unique for all ECUs
sharing the same CAN Arbitration IDs. Unless an ECU has been addressed
by its Station Address, the ECU must not react to CCP commands sent by
the CCP master.

© National Instruments Corporation 4-5 ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

Baudrate

The baudrate property may be missing in an A2L database file and can be
set explicitly within the application. This property provides the baud rate at
which communication will occur, and applies to all tasks initialized with
the interface. You can specify one of the predefined baud rates, or specify
advanced baud rates which refer to the settings of the Bit Timing Register O
(BTRO) and 1 (BTR1). For more information, refer to the Interface
Properties dialog in MAX, or the NI-CAN Hardware and Software
Manual. The baud rate is originally set within MAX.

ASAM MCD 2MC Communication Properties for XCP with UDP or TCP

ECU Connect

ECU M&C Toolkit User Manual

If the XCP communication properties are not stored in the ASAM MCD
2MC file, the communication properties must be manually set. To establish
communication through XCP with UDP or TCP the target ECU slave
should be addressed by setting the following properties.

IP Address or hostname

The IP address refers to the identifier for a computer or device on a TCP/IP
network. Networks using the TCP/IP protocol route messages based on the
IP address of the destination.

A hostname describes the unique name by which a device is known on a
network. Hostnames are used by various naming systems: NIS, DNS,
SMB, etc. Hostnames are high-level aliases which ultimately correlate to
unique network hardware MAC addresses.

Port number

In TCP/IP and UDP networks, a port is an end-point to a logical connection
through which a client program specifies a server program on a computer
in a network. Port numbers range from 0 to 65536, but only port numbers
0 to 1024 are reserved for privileged services and designated as
well-known ports.

The ECU Connect function establishes communication to the selected
ECU through CCP using the CCP CONNECT command or through XCP
using the CONNECT command. It establishes a logical connection to an
ECU. Unless a slave device (ECU) is unconnected, it must not execute or
respond to any command sent by the application. The only exception to this

4-6 ni.com

Chapter 4 Using the ECU M&C API

rule is the Test command, in which case the slave with the specified address
may acknowledge the command. Only a single slave can be connected to

the application at a time. After a successful ECU Connect you can create
a Measurement Task or read/write a Characteristic.

The function to open and select an ECU is MC ECU Connect.vi in
LabVIEW and mcECUConnect in C.

ECU Disconnect

The ECU Disconnect function permanently disconnects the specified
slave and ends the measurement and calibration session. When the
measurement and calibration session is terminated, all DAQ lists for the
device are stopped and cleared, and the protection masks of the device are
set to their default values.

The function to disconnect an ECU is MC ECU Disconnect.vi in
LabVIEW or mcECUDisconnect in C.

ECU Close

The MC ECU Close function deselects the ECU and closes the remaining
database reference handle. MC ECU Close must always be the final
ECU M&C function call. If you do not use MC ECU Close, the remaining
task configurations can cause problems in the execution of subsequent
ECU M&C applications.

The function to close an ECU is MC ECU Close.vi in LabVIEW. To
deselect the ECU and close the database reference handle in C, call the
function mcECUDeselect followed by mcDatabaseClose.

Characteristic Read and Write
Access Characteristics

To access the Characteristics of an ECU you must select and connect to
the specified ECU through the procedure given above. The function

to open and select an ECU is MC ECU Open.vi in LabVIEW, or
mcDatabaseOpen followed by mcECUSelectEx in C. Once the ECU has
been connected an ECU Reference handle (ECU ref out in LabVIEW,
ECURefNum in C) must be acquired before any additional actions can be
performed.

© National Instruments Corporation 4-7 ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual

Characteristic Read

The application must call the Read Characteristic function to obtain
scaled floating point samples. The application typically calls Read
Characteristic on demand. Calling Read Characteristic in a loop can
cause significant CAN network traffic, as Characteristics may contain large
amounts of data.

The function to read O- to 2-dimensional Characteristics is

MC Characteristic Read.vi in LabVIEW or mcCharacteristicRead
in C. The function to read single double values as Characteristics is

MC Characteristic Read Single Value.vi in LabVIEW or

mcCharacteristicReadSinglevalue in C.

Before reading a Characteristic, it may be helpful to verify the dimension
of the Characteristic based on the definition in the ASAM MCD 2MC
database file. Depending on the dimension of the Characteristic, use the
appropriate Read function for reading a double, a 1D array of doubles, or
a 2D array of doubles.

The function to verify a dimension of a named Characteristic is MC Get
Property.vi with the parameter Characteristic/Dimension in LabVIEW
or mcGetProperty with the parameter mcPropChar_Dimension in C.

Characteristic Write

The application must call the Write Characteristic function to output
scaled floating-point samples. The application typically calls Write
Characteristic on demand. Calling Write Characteristic in a loop can
cause significant network traffic, as Characteristics may contain large
amounts of data.

The function to write a Characteristic is MC Characteristic Write.vi in
LabVIEW or mcCharacteristicwWrite in C.

Before writing a Characteristic, it may be helpful to verify the dimension
of the Characteristic based on the definition in the ASAM MCD 2MC
database file. Depending on the dimension of the Characteristic, use the
appropriate Write function for writing a double, a 1D array of doubles, or
a 2D array of doubles.

The function to verify a dimension of a named Characteristic is MC Get
Property.vi with the parameter Characteristic/Dimension in LabVIEW
or mcGetProperty with the parameter mcPropChar_Dimension in C.

4-8 ni.com

Chapter 4 Using the ECU M&C API

Measurement Task

To create a Measurement task you need to select available Measurement
signals from an ASAM MCD 2MC database file. Create a valid ECU
Reference handle as described in the Access Characteristics section.

The flowchart in Figure 4-3 shows the process to perform an ECU
Measurement task. A description of each step in the decision process
follows the flowchart.

ECU DAQ Init

\4

ECU DAQ
Start/Stop

DAQ list or

ECU DAQ Wit
Polling mode CU DAQ Write

ECU DAQ Read

\ 4

ECU DAQ Clear |«

\ 4

ECU Close

Figure 4-3. ECU Measurement Setup Flowchart

© National Instruments Corporation 4-9 ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual

DAQ Initialize

The DAQ Initialize function initializes a list of Measurement channels as
a single Measurement task. The communication for that Measurement task
is started by the first DAQ Read function. The DAQ Initialize function is
MC DAQ Initialize.vi in LabVIEW or mcDAQInitialize in other
languages.

The DAQ Initialize function uses the following input parameters:

Measurement list

Specifies the list of channels for the task with one string for each channel.

ECU Reference handle

Typically, the ECU Reference handle is created by opening the ASAM
MCD 2MC database using the ECU Open function, then connecting to an
ECU using the ECU Connect function.

Mode

Specifies the input mode to use for the task. This determines the data
transfer for the task (Polling, DAQ list, or STIM list).

SampleRate

Specifies the sampling rate for a specific DAQ list or STIM list. The sample
rate is specified in Hertz (samples per second). For more information, refer
to the DAQ Read section.

DTO ID

If you are using the CCP protocol, the DTO ID (Data Transmission
Object) is used by the ECU to respond to CCP commands, and to send data
and status information to the CCP master.

DAQ Start Stop

The optional function DAQ Start Stop starts or stops the transmission of
the DAQ lists for an ECU M&C Measurement task. If you do not specify
MC DAQ Start Stop.vi before your first DAQ Read or DAQ Write
function, MC DAQ Start Stop.vi is implicitly performed by the first
DAQ Read or DAQ Write call. After you start the transmission of the
DAQ lists or STIM lists, you can no longer change the configuration of the
Measurement task with Set Property. MC DAQ Start Stop.vi is
implicitly performed by DAQ Clear to stop transmission of the DAQ lists.

4-10 ni.com

Chapter 4 Using the ECU M&C API

The function to start a DAQ list is MC DAQ Start Stop.vi in LabVIEW or
mcDAQStartStop in C.

DAQ Read

The application must call the DAQ Read function to obtain floating-point
samples. The application typically calls DAQ Read in a loop until done.
The Read function is MC DAQ Read.vi in LabVIEW (all types that do not
end in Time & Dbl) or mcDAQRead in other languages.

The behavior of Read depends on the initialized sample rate and the
selected mode.

sample rate=0

DAQ Read returns a single sample from the most recent message(s)
received from the network. One sample is returned for every channel in the
DAQ Initialize list.

Figure 4-4 shows an example of DAQ Read with a sample rate = 0. A, B,
and C represent messages for the initialized channels. def represents the
default value 0. If no message is received after the start of the application,
the default value O is returned along with a warning.

Start

(el Lo

Read Read Read

Figure 4-4. Example of Read With Sample Rate = 0

© National Instruments Corporation 4-11 ECU M&C Toolkit User Manual

Chapter 4

ECU M&C Toolkit User Manual

Using the ECU M&C API

sample rate > 0

DAQ Read returns an array of samples for every channel in the DAQ
Initialize list. Each time the clock ticks at the specified rate, a sample from
the most recent message(s) is inserted into the arrays. In other words, the
samples are repeated in the array at the specified rate until a new message
is received. By using the same sample rate with NI-DAQ Analog Input
channels or NI-DAQmx Analog Input channels, you can compare

ECU DAQ and NI-DAQ/NI-DAQmx samples over time.

Figure 4-5 shows an example of DAQ Read with a sample rate > 0. A, B,
and C represent messages for the initialized channels. delta-t represents the
time between samples as specified by the sample rate. def represents the
default value 0.

Start

Le] [o]
At

—

vV Y Y Y Y VYV VYVYVYVYVY
|def|def|def|def|A|A|A|A|A|B|B|B|C|C|C|
Read

Figure 4-5. Example of Read With Sample Rate > 0

DAQ Write

If you are using XCP and the DAQ initialize mode is set to STIM list the
application must call the DAQ Write function to output floating-point
samples. The application typically calls DAQ Write in a loop until done.
The DAQ Write function is MC DAQ Write.vi in LabVIEW or
mcDAQWrite in other languages.

4-12 ni.com

Chapter 4 Using the ECU M&C API

DAQ Clear

DAQ Clear must always be the final function called for a specific
Measurement task. If you do not use DAQ Clear, the remaining
Measurement task configuration can cause problems in the execution of
subsequent ECU M&C applications. Because this function clears the
Measurement task, the Measurement task reference is transferred into an
ECU reference task handle. To change the properties of a running
Measurement task, use DAQ Start Stop to stop the task, Set Property to
change the desired DAQ property, then DAQ Start Stop to restart the
Measurement task again.

The function to clear a DAQ list is MC DAQ Clear.vi in LabVIEW or
mcDAQClear in C.

Memory Programming

The ECU Measurement and Calibration Toolkit allows you to issue a
memory programming sequence for your ECU after you create an ECU
Reference handle as described in the Basic Programming Model section.

The flowchart in Figure 4-6 illustrates the general process of a memory
programming sequence of an ECU with the ECU M&C functions.
A description of each step in the decision process follows the flowchart.

© National Instruments Corporation 4-13 ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

Using Yes
XCP?
A 4

No Optional:
XCP Program Prepare

4
Optional:
Set XCP Program Properties

A

Program Start

Clear
Memory before
Programming?

\ 4

Clear Memory I
No
\4
Program
\ 4

Program Reset

A 4
Optional:
XCP Program Verify

f

Figure 4-6. Memory Programming Process Decision Chart

Program Start

The Program Start function sets the ECU into the memory programming
mode. Note that in this mode specific features might be restricted, for
instance, the ECU might refuse to change into the programming mode
while a DAQ list is running. The Program Start function is MC Program
Start.vi in LabVIEW and mcProgramStart in other languages.

ECU M&C Toolkit User Manual 4-14 ni.com

Chapter 4 Using the ECU M&C API

Clear Memory

It might be necessary to clear the memory before it is reprogrammed. The
details are ECU-dependent. The Clear Memory function performs the
memory clearing operation. It is MC Clear Memory.vi in LabVIEW or
mcClearMemory in other languages.

Program

The Program function actually downloads the new code to the ECU. It is
MC Program.vi in LabVIEW or mcProgram in other languages.

Program Reset

The Program Reset function terminates a programming sequence. Note that
for the XCP protocol, Program Reset performs a hardware reset of the
ECU and causes a disconnect. You have to reconnect to the ECU using the
ECU Connect function to perform further operations. The Program Reset
function is MC Program Reset.vi in LabVIEW and mcProgramReset in
other languages.

Optional Steps for the XCP Protocol

XCP Program Prepare

An ECU using the XCP protocol might require an XCP
PROGRAM_PREPARE command before a programming sequence is
started. This command can be issued with the XCP Program Prepare
function. It is MC XCP Program Prepare.vi in LabVIEW and
mcXCPProgramPrepare in other languages.

Set XCP Programming Properties

XCP allows the programming process to be controlled by several variables.
These are the Compression Method, Encryption Method,
Programming Method, and Access Method properties. They default to O,
but can be set to any value before the programming process starts. The
allowed values for these properties are ECU-specific. If any of these
properties is set to a nonzero value, an appropriate PROGRAM_FORMAT
XCP command is issued before the programming takes place. Note that the
Access Method property also affects the Clear Memory function.

© National Instruments Corporation 4-15 ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

XCP Program Verify

After the memory programming XCP allows to verify whether the
operation was successful by the PROGRAM_VERIFY XCP command.
The details of this command are highly ECU-specific. This command can
be issued using the XCP Program Verify function. It is MC XCP
Program Verify.vi in LabVIEW and mcXCPProgramveri fy in other
languages.

Additional Programming Topics

Get Names

Set/Get Properties

ECU M&C Toolkit User Manual

The following sections provide information you can use to extend the basic
programming model.

If you are developing an application that another person will use, you may
not want to specify a fixed channel list for a Measurement task or a fixed
channel for a Characteristic in the application. Ideally, you want the
end-user to select the channels of interest from user interface controls such
as list boxes. The Get Names function queries an ASAM MCD 2MC
database and returns a list of all channels in that database regarding the
selected query mode. You can use this list to populate user-interface
controls. The user can then select channels from these controls, avoiding
the need to type in each name. Once the user makes the selections, the
application can pass the resulting list to the appropriate function, such as
DAQ Initialize, for an ECU Measurement channel list. The Get Names
function is MC Get Names.vi in LabVIEW or mcGetNames in C.

If you need to change particular parameters within an application, such as
the DTO ID, use the following sequence:

1. Initialize the Measurement task as stopped. The Initialize function is
MC DAQ Initialize.vi in LabVIEW or mcDAQInitialize in C.

2. Use Set Property to specify the new value for the DTO_ID property.
The Set Property function is MC Set Property.vi in LabVIEW or
mcSetProperty in C.

3. Start the Measurement task with the DAQ Start Stop function. The
DAQ Start Stop function is MC DAQ Start Stop.vi in LabVIEW or
mcDAQStartStop in C. You can also start the Measurement task
implicitly by issuing DAQ Read.

4-16 ni.com

Chapter 4 Using the ECU M&C API

After the task is started you may need to change properties again. To change
properties within the application, use the DAQ Start Stop function to stop
the Measurement task, Set Property to change properties, then start the
task again.

You also can use the Get Property function to get the value of any property.
The Get Property function returns values whether the task is running or
not. The Get Property function is MC Get Property.vi in LabVIEW or
mcGetProperty in C.

Generic CCP Functions

The generic ECU M&C CCP functions provide direct access to the

CCP commands on a very low programming level. For further information
for the use and parameters of the CCP commands, refer to the CAN
Calibration Protocol Specification, Version 2.1. Table 4-1 provides an
overview of the CCP commands and their corresponding LabVIEW VIs or
C functions.

Table 4-1. Overview of the CCP Commands with Related VIs and C Functions

CCP Command

LabVIEW VI Name

C Function Name

ACTION_SERVICE

MC CCP Action Service.vi

mcCCPActionService

BUILD_CHKSUM MC Build Checksum.vi mcBuildChecksum
CLEAR_MEMORY MC Clear Memory.vi mcClearMemory
DIAG_SERVICE MC CCP Diag Service.vi mcCCPDiagService
DNLOAD MC Download.vi mcDownload

GET_ACTIVE_CAL_PAGE

MC CCP Get Active Cal
Page.vi

mcCCPGetActiveCalPage

GET_CCP_VERSION

MC CCP Get Version.vi

mcCCPGetVersion

GET_S_STATUS

MC CCP Get Session
Status.vi

mcCCPGetSessionStatus

MOVE MC CCP Move Memory.vi mcCCPMoveMemory
PROGRAM MC Program.vi mcProgram
SELECT_CAL_PAGE MC CCP Select Cal Page.vi mcCCPSelectCalPage

© National Instruments Corporation

4-17

ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

Table 4-1. Overview of the CCP Commands with Related VIs and C Functions (Continued)

CCP Command LabVIEW VI Name C Function Name
SET_S_STATUS MC CCP Set Session mcCCPSetSessionStatus
Status.vi
UPLOAD MC Upload.vi mcUpload

Generic XCP Functions

The generic ECU M&C XCP functions provide direct access to the XCP
commands on a very low programming level. For more information about
the use and parameters of the XCP commands, refer to the ASAM XCP
Part 2 Protocol Layer Specification. Table 4-2 provides an overview of the
XCP commands with their corresponding LabVIEW VIs or C functions.

Table 4-2. Overview of the XCP Commands with Related VIs and C Functions

XCP Command LabVIEW VI Name C Function Name
BUILD_CHKSUM MC Build Checksum.vi mcBuildChecksum
CLEAR_MEMORY MC Clear Memory.vi mcClearMemory
COPY_CAL_PAGE MC XCP Copy Cal Page.vi mcXCPCopyCalPage
DOWNLOAD MC Download.vi mcDownload
GET_CAL_PAGE MC XCP Get Cal Page.vi mcCCPGetActiveCalPage
GET_ID MC XCP Get ID.vi mcXCPGetID
GET_STATUS MC XCP Get Status.vi mcXCPGetStatus
PROGRAM MC Program.vi mcProgram
PROGRAM_PREPARE MC XCP Program mcXCPProgramPrepare

Prepare.vi
PROGRAM_RESET MC Program Reset.vi mcProgramReset
PROGRAM_START MC Program Start.vi mcProgramStart
PROGRAM_VERIFY MC XCP Program Verify.vi | mcXCPProgramvVerify
SET_CAL_PAGE MC XCP Set Cal Page.vi mcXCPSetCalPage
SET_REQUEST MC XCP Set Request.vi mcXCPSetRequest
ECU M&C Toolkit User Manual 4-18 ni.com

Chapter 4 Using the ECU M&C API

Table 4-2. Overview of the XCP Commands with Related Vls and C Functions (Continued)

XCP Command LabVIEW VI Name C Function Name
SET_SEGMENT_MODE MC XCP Set Segment mcXCPSetSegmentMode
Mode.vi
UPLOAD MC Upload.vi mcUpload

Seed and Key Algorithm

To restrict access to an ECU, you can add a defined login mechanism to
ECU software. The Association for Standardization of Automation and
Measuring Systems (ASAM) defines this seed, which may be stored in the
A2L file. A typical login mechanism may happen as follows:

1.

2
3.
4.
5

Connect to the ECU.

Exchange station identifications.

Get the seed for the key.

Calculate the key using a seed and key DLL as ASAM defines.
Unlock the ECU protection by sending the calculated key.

ASAM AE Common defines the seed and key algorithm in the Seed and
Key and Checksum Calculation API Version 1.0. The specification defines
the Win32 APIs for seed and key calculation and checksum calculation.

Definition for Seed and Key Algorithm

Function name: ASAP1A_CCP_ComputeKeyFromSeed

Parameter

Description

1 Pointer to the seed data, retrieved from the ECU
GET_SEED command.

Seed data size in number of bytes.

Pointer to key data, returning the calculated.

Key data size in number of bytes.

D[B~ W N

Key data size in number of bytes.

The calling convention is as defined in the WIN32 API Specification for
ASAPIb, section 2.4.

© National Instruments Corporation

4-19

ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

Seed and Key Example

The following example shows a possible header file for a library for key
calculation.

/ *

// Header file for ASAPla CCP V2.1l Seed and Key Algorithm

*/

#ifndef _SEEDKEY_H__

#define _SEEDKEY H_

#ifndef DllImport

#define D11Import _ declspec(dllimport)

#endif

#ifndef Dl1lExport

#define Dl11Export _ declspec(dllexport)

#endif

#ifdef SEEDKEYAPI_TIMPL // only defined by implementor of SeedKeyApi

#define SEEDKEYAPI Dl1Export __ cdecl

#else

#define SEEDKEYAPI DllImport _ cdecl

#endif

#ifdef __cplusplus

extern "C" {

#endif

BOOL SEEDKEYAPI ASAPlA_CCP_ComputeKeyFromSeed (BYTE *Seed,

unsigned short SizeSeed, BYTE *Key, unsigned short MaxSizeKey,
unsigned short *SizeKey);

// Seed: Pointer to seed data

// SizeSeed:Size of seed data (length of "Seed")

// Key: Pointer, where DLL should insert the calculated key data.

// MaxSizeKey: Maximum size of "Key".

// SizeKey: Should be set from DLL corresponding to the number of data
// inserted to "Key" (at most "MaxSizeKey")

// Result: The value FALSE (= 0) indicates that the key could not be
// calculated from seed data (for example, "MaxSizeKey" is too small).
// TRUE (!= 0) indicates success of key calculation.

#ifdef _ cplusplus

}

#endif

#endif //_SEEDKEY_H_

ECU M&C Toolkit User Manual 4-20 ni.com

Chapter 4 Using the ECU M&C API

Checksum Algorithm

ASAM proposed a WIN32 API function to have a common interface to
implement the checksum algorithms for verifying ECU calibration and
program data. For details, refer to the ASAM Seed and Key and Checksum
Calculation API Version 1.0.

Definition for a Checksum Algorithm

Function name: BOOL CalcChecksum(struct TRange *ptr, int
nRanges, BYTE *pnChecksum, int *pnSignificant, WORD
nFlags)

Parameter Description

1 Pointer to an array of ranges, stored in structures of
type TRange.

2 Number of ranges stored in the array that
parameter 1 points to.

3 Pointer to a byte array where the checksum must be
stored. The DLL writes a maximum of 8 bytes, so the
caller should reserve space for 8 bytes of data.

4 Length of actually calculated checksum (1...8).

5 Flag field for commanding how the algorithm works.
Currently, only bit 0 is defined:

Bit 0 = 0: pnChecksum receives the algorithm
checksum calculation result.

Bit 0 = 1: pnChecksum points to a checksum that is
compared within the DLL with the checksum that the
algorithm calculates. Returns TRUE if the
checksums are identical, FALSE otherwise.

All other bits are reserved and should be set to 0.

TRange is defined as follows:

struct TRange

{

char *pMem;
unsigned long 1lLen;

}

© National Instruments Corporation 4-21 ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

The calling convention is as defined in the WIN32 API Specification for
ASAPID, chapter 2.4.

Checksum Algorithm Example

The following example shows a possible header file for a library for
checksum calculation.

/ *

// checksum.h

// Header file for Checksum Algorithm

*/

#ifndef _CHECKSUM_H

#define _CHECKSUM_H

#ifdef __cplusplus

extern "C" {

#endif

#ifndef DllImport

#define D11Import _ declspec(dllimport)
#endif

#ifndef Dl1lExport

#define Dl11Export _ declspec(dllexport)
#endif

#ifdef CHECKSUMAPI_IMPL // only defined by implementor of ChecksumApi
#define CHECKSUMAPI DllExport _ cdecl
#else

#define CHECKSUMAPI DllImport _ cdecl
#endif

struct TRange

{

char *pMem;

unsigned long lLen;

};

#ifdef _ cplusplus

extern "C" {

#endif

BOOL CHECKSUMAPI CalcChecksum(struct TRange *ptr,
int nRanges,

BYTE *pnChecksum,

int *pnSignificant,

WORD nFlags) ;

#ifdef _ cplusplus

}

#endif

#endif //_CHECKSUM_H

ECU M&C Toolkit User Manual 4-22 ni.com

Chapter 4 Using the ECU M&C API

Seed and Key and Checksum Algorithms for VxWorks
Targets

LabVIEW RT users can run the ECU Measurement and Calibration Toolkit
on either a LabVIEW RT target such as a PXI controller or an Intel-based
CompactRIO running the Pharlap operating system, which supports Win32
calls, or on a PowerPC-based CompactRIO controller running a Windriver
VxWorks operating system.

If you are using a CompactRIO target with a PowerPC controller running a
VxWorks operating system, you cannot use any Win32 function calls based
on a DLL. However, the GNU tool chain distributed with VxWorks can
compile shared libraries for controllers running Wind River VxWorks,
including the CompactRIO 901x and 907x series. You can access the shared
libraries (* . ouT modules) for VxWorks through the ECU Measurement
and Calibration Toolkit by using a C/C++ function definition that is slightly
different from the ASAM specification, due to the differences between
Win32 DLLs and VxWorks OUT modules.

You can obtain the GNU tool chain for VxWorks by either purchasing a
VxWorks development license from Wind River or downloading the
redistributable GNU tool chain from ni . com. If you purchase VxWorks,
you can use the Wind River Workbench IDE, featuring source code-level
debugging and build management. The redistributable GNU tool chain
downloadable on ni . com offers debugging only at the assembly code level,
and you must use the included GNU Make to build binaries.

@ Note LabVIEW 2009 RT installs version 6.3 of the VxWorks OS to compatible targets.
All builds should be targeted to corresponding versions and use corresponding header files.
As new versions of LabVIEW RT become available, different versions of VxWorks may
be installed and may require you to rebuild your libraries. Refer to the readme file for
LabVIEW RT to find the corresponding VxWorks OS version.

Example of a Header for a Seed and Key and Checksum
Algorithm for a VxWorks Target

The module name of the compiled out file must correspond to the seed and
key and checksum function name defined in the ASAM A2L database.

The following example uses the seed and key module name

ccpecu. out. Therefore, the seed and key function is named
ccpecu_ASAP1A_CCP_ComputeKeyFromSeed. The example uses the
prefix in addition to the ASAM standard, because the VxWorks OS requires
unique function names across all loaded modules. Therefore, multiple

© National Instruments Corporation 4-23 ECU M&C Toolkit User Manual

Chapter 4 Using the ECU M&C API

modules must not export functions with the same names. To support
multiple ECUs with the ECU Measurement and Calibration Toolkit, each
seed and key and checksum function must have a unique name. To achieve
unique function names for the seed and key and checksum functions, these
functions have the module name (in lower case) followed by an underline
as a prefix.

The following example shows a possible header file for a module used for
seed and key and checksum calculation under VxWorks targets.

#ifndef _ CCPECU_h_
#define _ CCPECU_h_

/177
/77
/177
/177
/177
/177
177
/177

\brief defines the name of the Seed-Key function

Here the name of the seed key function is defined.

The name of the seed key function is the name of the module in lower case
letters followed by an underscore and the function name
"ASAPlA_CCP_ComputeKeyFromSeed" .

\todo replace the prefix "ccpecu_" by the name of your module in lower
case letters.

#define SEED_KEY NAME ccpecu_ASAPI1A_CCP_ComputeKeyFromSeed

177
/177
/17
/177
/177
/177
/177
/177

\brief defines the name of the Checksum function

Here the name of the Checksum function is defined.

The name of the Checksum function is the name of the module in lower case
letters followed by an underscore and the function name

"CalcChecksum".

\todo replace the prefix "ccpecu_" by the name of your module in lower
case letters.

#define CALC_CHECKSUM_NAME ccpecu_CalcChecksum

struct TRange

{

Y

#if

char *pMem;
unsigned long 1lLen;

def _ cplusplus
extern "C" {

#endif

ECU M&C Toolkit User Manual 4-24 ni.com

Chapter 4 Using the ECU M&C API

/// \brief Function to calculate a key from a given seed to

/// unlock an ECU resource.

/17

/// This function calculates a key from a given seed so that you are

/// able to unlock the access to an ECU resource. The seed is generated

/// by the ECU and needs to be queried before you can unlock an ECU resource.
bool SEED_KEY_ NAME (

unsigned char *Seed, ///< Seed provided by the ECU
unsigned short SizeSeed, ///< Size of the seed provided by the ECU
unsigned char *Key, ///< Pointer to a buffer to return the key
unsigned short MaxSizeKey, ///< Size of the buffer provided to
///< return the key

unsigned short *SizeKey ///< returns the size of the calculated key
)

__attribute_ ((section (".export")));

/// \brief Function to calculate a checksum over a given memory range.
/77

/// This function calculates a checksum over a given memory range. The
/// function is used, for example, to verify data after a download or

/// programming action.

bool CALC_CHECKSUM_NAME (

struct TRange *ptr, ///< Description of the memory area
///< to be checked
int nRanges, ///< Number of memory blocks to be checked
unsigned char “*pnCheckSum, ///< Pointer to a buffer to return
///< the checksum
int *pnSignificant, ///< Size of the buffer to
///< return the checksum
unsigned short nFlags ///< flags for calculating the checksum
)
__attribute_ ((section (".export")));
#ifdef _ cplusplus
}
#endif

#endif // __ _CCPECU_h_

© National Instruments Corporation 4-25 ECU M&C Toolkit User Manual

ECU M&C API for LabVIEW

This chapter lists the LabVIEW VIs for the ECU M&C API and describes the format,
purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically. Unless
otherwise stated, each VI suspends execution of the calling thread until it completes.

Section Headings

The following are section headings found in the ECU M&C API for LabVIEW VIs.

Purpose
Each VI description includes a brief statement of the purpose of the VI.

Format

The format section describes the format of each VI.

Input and Output

The input and output parameters for each VI are listed.

Description

The description section gives details about the purpose and effect of each VI.

List of Vs

The following table is an alphabetical list of the ECU M&C Toolkit VlIs.

Table 5-1. ECU M&C API Vs for LabVIEW

Function Purpose
MC Build Checksum.vi Calculates a checksum over a defined memory range within the
ECU.
MC Calc Checksum.vi Calculates the checksum of a data block in memory.
MC CCP Action Service.vi Calls an implementation-specific action service on the ECU.

© National Instruments Corporation 5-1 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Table 5-1. ECU M&C API VIs for LabVIEW (Continued)

Function Purpose
MC CCP Diag Service.vi Calls a diagnostic service on the ECU.
MC CCP Get Active Cal Retrieves the ECU Memory Transfer Address pointer to the
Page.vi calibration data page.
MC CCP Get Result.vi Uploads requested data.
MC CCP Get Session Retrieves the current calibration status of the ECU.
Status.vi
MC CCP Get Version.vi Retrieves the version of the CCP implemented in the ECU.

MC CCP Move Memory.vi Moves a memory block on the ECU.

MC CCP Select Cal Page.vi | Sets the beginning of the calibration data page.

MC CCP Set Session Updates the ECU with the current state of the calibration session.
Status.vi

MC Characteristic Read.vi Reads data from a named Characteristic on the ECU which is
identified by the ECU Reference handle. The Poly VI returns a
specific double, 1D, or 2D double array.

MC Characteristic Read Reads a value from a named Characteristic on the ECU which is
Single Value.vi identified by the ECU Reference handle.

MC Characteristic Write.vi Writes the value(s) of a named Characteristic to an ECU
identified by the ECU ref handle. The Poly VI writes the selected
type double, 1D or 2D array.

MC Characteristic Write Writes a value to a named Characteristic on the ECU.
Single Value.vi

MC Clear Memory.vi Clears the contents of a specified memory block.
MC Conversion Create.vi Creates a signal conversion object in memory.
MC DAQ Clear.vi Stops communication for the Measurement task and then clears

the configuration.

MC DAQ Initialize.vi Initializes a Measurement task for the specified Measurement
channel list.

MC DAQ List Initialize.vi Defines a DAQ list on a specific DAQ list number and initializes
the Measurement task for the specified Measurement channel list.

ECU M&C Toolkit User Manual 5-2 ni.com

Chapter 5 ECU M&C API for LabVIEW

Table 5-1. ECU M&C API VIs for LabVIEW (Continued)

Function Purpose

MC DAQ Read.vi Reads samples from a Measurement task. Samples are obtained
from received CAN messages.

MC DAQ Start Stop.vi Starts or stops transmission of the DAQ lists for the specified
Measurement task.

MC DAQ Write.vi Writes samples to a Measurement task.

MC Database Close.vi Closes a specified A2L Database.

MC Database Open.vi Opens a specified A2L Database.

MC Download.vi Downloads data to an ECU.

MC ECU Close.vi Closes the selected ECU and the associated A2L database.

MC ECU Connect.vi Establishes the communication to the selected ECU through the
CCP protocol. After a successful ECU Connect you can create a
Measurement Task or read/write a Characteristic.

MC ECU Create.vi Creates an ECU object in memory.

MC ECU Deselect.vi Deselects an ECU and invalidates the ECU reference handle.

MC ECU Disconnect.vi Permanently disconnects the CCP communication to the selected
ECU and ends the calibration session.

MC ECU Open.vi Opens a specified A2L database and selects the first ECU found
in the database. If there are several ECUs stored in the A2L
database use the Database Open and ECU Select VIs.

MC ECU Select.vi Selects an ECU from the names stored in an A2L database.

MC Event Create.vi Creates an Event object in memory.

MC Generic.vi

Sends a generic CCP or XCP command.

MC Get Names.vi

Gets an array of ECU names, Measurement names, Characteristic
names, or Event names from a specified A2L database file.

MC Get Property.vi

Gets a property for the object referenced by the reference in
terminal. The poly VI selection determines the property to get.

MC Measurement Create.vi

Creates a Measurement object in memory.

MC Measurement Read.vi

Reads a single Measurement value from the ECU.

MC Measurement Write.vi

Writes a single Measurement value to the ECU.

© National Instruments Corporation

5-3 ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-1. ECU M&C API VIs for LabVIEW (Continued)

Function Purpose

MC Program.vi Programs a memory block on the ECU.

MC Program Reset.vi Indicates the end of a programming sequence.

MC Program Start.vi Indicates the start of a programming sequence.

MC Set Property.vi Sets a property for the specified A2L database file, Measurement
task or Characteristic. The poly VI selection determines the
property to set.

MC Upload.vi Uploads data from an ECU.

MC XCP Copy Cal Page.vi Forces a copy transaction of one calibration page to another.

MC XCP Get Cal Page.vi Queries a calibration page setting.

MC XCP Get ID.vi Queries session configuration or slave device identification.

MC XCP Get Status.vi Queries the current session status from an ECU slave device.

MC XCP Program Prepares the programming of non volatile memory.

Prepare.vi

MC XCP Program Verify.vi

Performs a non-volatile memory certification task on the ECU
device.

MC XCP Set Cal Page.vi Sets a calibration page.

MC XCP Set Request.vi Performs a request to save session and device information to
non-volatile memory.

MC XCP Set Segment Sets the mode of a specified segment.

Mode.vi

ECU M&C Toolkit User Manual

5-4 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Build Checksum.vi

Purpose

Calculates a checksum over a defined memory range within the ECU.

Format

ECU ref in ECLIMEC ECU ref ouk

address i 1@-} |_I_ tvpe of checksum

block size E checksum
errar in error ouk

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the source address.
p P

Extension contains the extension part of the source address.

Block size determines the size of the block for which the checksum must
be calculated.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-5 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Type of checksum returns the type of the calculated checksum. If you are
using the CCP protocol, type of checksum is OxFF. For XCP, refer to the
Description section.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

Checksum returns the calculated checksum.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC Build Checksum.vi calculates the checksum of a specified memory block inside the
ECU starting at the selected Memory Transfer Address (MTA). The checksum algorithm is
not specified by CCP and the checksum algorithm may be different on different devices.

If you are using the CCP protocol, MC Build Checksum.vi implements the CCP
BUILD_CHKSUM command. The checksum algorithm is not specified by CCP and the
checksum algorithm may be different on different devices.

ECU M&C Toolkit User Manual 5-6 ni.com

Chapter 5 ECU M&C API for LabVIEW

If you are using the XCP protocol, MC Build Checksum.vi implements the
BUILD_CHECKSUM command of the XCP specification. The result of the checksum
calculation is returned in Checksum regardless of the checksum type. The following values
for type of checksum are defined in the XCP specification:

Type Name Description

0x01 XCP_ADD_11 Add BYTE into a BYTE checksum, ignore
overflows

0x02 XCP_ADD_12 Add BYTE into a WORD checksum, ignore
overflows

0x03 XCP_ADD 14 Add BYTE into a DWORD checksum,
ignore overflows

0x04 XCP_ADD 22 Add WORD into a WORD checksum,
ignore overflows, block size must be
modulo 2

0x05 XCP_ADD_24 Add WORD into a DWORD checksum,
ignore overflows, block size must be
modulo 2

0x06 XCP_ADD_44 Add DWORD into DWORD, ignore
overflows, block size must be modulo 4

0x07 XCP_CRC_16 Refer to CRC error detection algorithms

0x08 XCP_CRC_16_CITT Refer to CRC error detection algorithms

0x09 XCP_CRC_32 Refer to CRC error detection algorithms

OxFF XCP_USER_DEFINED User defined algorithm in externally

calculated function

If type of checksum is returned as OxFF (XCP_USER_DEFINED), the slave can indicate
that the master for calculating the checksum must use a user-defined algorithm implemented
in an externally calculated function (for instance, Win32 DLL, UNIX shared object file, etc.).
The master gets the name of the external function file to be used for this slave from the ASAM
MCD 2MC description file or from a property which can be set.

For a detailed description of the checksum algorithm, refer to the XCP Part 2 Protocol Layer
Specification.

© National Instruments Corporation

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC Calc Checksum.vi

Purpose
Calculates the checksum of a data block in memory.
Format
ECU refin ECU K& ECU ref out
data 'IJ E{:'-' checksum
tvpe of checksum I_ B ppror ot
Errorin
Input
ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.
Tvs Data is a byte array upon which the checksum calculation is performed.
Type of checksum specifies the kind of checksum which is calculated.
= Error in is a cluster which describes error conditions occurring before the

Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

ECU M&C Toolkit User Manual 5-8 ni.com

Chapter 5

Checksum is the calculated checksum.

ECU M&C API for LabVIEW

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

Error out describes the error status of this VI.

am o
Description

status is TRUE if an error occurred.

error, the Error out cluster contains the same information. Otherwise,

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

MC Calc Checksum.vi implements a checksum calculation over a given data block. The
checksum algorithm is performed by the ECU M&C toolkit using a predefined algorithm
(XCP only) or over a dedicated checksum function provided by a specific DLL. The
Checksum DLL is defined in the A2L data base and can be changed by the application by the
MC Set Property.vi using the Checksum DLL Name property.

If you are using the CCP protocol, type of checksum must always be set to OxFF, as CCP
supports an external checksum DLL only. If using XCP, the following values for type of
checksum are defined in the XCP specification:

Type Name Description

0x01 XCP_ADD_11 Add BYTE into a BYTE checksum, ignore overflows

0x02 XCP_ADD_12 Add BYTE into a WORD checksum, ignore overflows

0x03 XCP_ADD_14 Add BYTE into a DWORD checksum, ignore overflows

0x04 XCP_ADD_22 Add WORD into a WORD checksum, ignore overflows,
blocksize must be modulo 2

0x05 XCP_ADD_24 Add WORD into a DWORD checksum, ignore overflows,
blocksize must be modulo 2

© National Instruments Corporation

5-9

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Type Name Description

0x06 XCP_ADD_44 Add DWORD into DWORD, ignore overflows, blocksize
must be modulo 4

0x07 XCP_CRC_16 See CRC error detection algorithms

0x08 XCP_CRC_16_CITT See CRC error detection algorithms

0x09 XCP_CRC_32 See CRC error detection algorithms

OxFF XCP_USER_DEFINED | User defined algorithm, in externally calculated function

For a detailed description of the checksum algorithm, refer to the MC Build Checksum.vi or
the XCP Part 2 Protocol Layer Specification.

For more detailed information about CRC algorithms, refer to the following site:

http://www.repairfaqg.org/filipg/LINK/F_crc_v34.html

ECU M&C Toolkit User Manual 5-10 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC CCP Action Service.vi

Purpose
Calls an implementation-specific action service on the ECU (CCP only).
Format
ECU ref in g ECU ref out
service no — L data tvpe
params - == L:result
Error in error out
Input

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Service No determines the service that is executed inside the ECU. For
more information about the services that are implemented in the ECU, refer
to the documentation for the ECU.

Params passes an array to the ECU that might be needed by the ECU to
run the service. Since this VI has no knowledge about how the data is
interpreted by the ECU, you are responsible for providing the data in the
correct byte ordering.

B [

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

H

status is TRUE if an error occurred. This VI is not executed when

TF .

_TE | status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-11 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Data type is a data type qualifier that determines the data format of the
result.

Result returns information from the action service.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC CCP Action Service.vi implements the CCP command ACTION_SERVICE. The ECU
carries out the requested service and automatically uploads the requested action service return
information.

ECU M&C Toolkit User Manual 5-12 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC CCP Diag Service.vi

Purpose
Calls a diagnostic service on the ECU (CCP only).
Format
ECU ref in ELUMEL ECU ref out
service no — s L data tvpe
params - @ L:result
Errar in errar out
Input

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Service no determines the diagnostic service that is executed inside the
ECU. For more information about the services that are implemented in the
ECU, refer to the documentation for the ECU.

Params passes an array to the ECU that might be needed by the ECU to
run the service. Since this VI has no knowledge about how the data is
interpreted by the ECU, you are responsible for providing the data in the
correct byte ordering.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

H

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

© National Instruments Corporation 5-13 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Data Type returns a Data Type Qualifier which provides information about
the data type of the result of the diagnostic service.

uploaded from the ECU by the CCP master.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

Result contains the information returned from the diagnostic service,

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC CCP Diag Service.vi implements the CCP command DIAG_SERVICE, which starts a
diagnostic service on the ECU and waits until it is finished. The selected Service no specifies
the diagnostic service that is executed inside the ECU. For more information about the

available services that are implemented in the ECU, refer to the documentation for the ECU.

ECU M&C Toolkit User Manual 5-14 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC CCP Get Active Cal Page.vi

Purpose
Retrieves the ECU Memory Transfer Address pointer to the calibration data page (CCP only).

Format

ECU ref in ECLI M ECU ref autk
?5* b= address

error in T gpror ok

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.
Output

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Address is a cluster which contains the following values.

Address specifies the address part of the active calibration page
address. peet b " PR

© National Instruments Corporation 5-15 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Extension contains the extension part of the active calibration

page address.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Get Active Cal Page.vi retrieves the ECU Memory Transfer Address pointer of
the active calibration data page.

MC CCP Get Active Cal Page.vi implements the CCP command
GET_ACTIVE_CAL_PAGE defined by the CCP specification.

ECU M&C Toolkit User Manual 5-16 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC CCP Get Result.vi

Purpose
Uploads requested data (CCP only).
Format
ECU ref in %II:@ ECU ref out
block size il | data
errar in = - E=grror aut
Input

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Block size is the size of the data block, in bytes, to be uploaded.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Data is a byte array which receives the uploaded data information from the
ECU.

© National Instruments Corporation 5-17 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

=mn

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Get Result.vi uploads data bytes from the ECU. It is assumed that the Memory
Transfer Address 0 (MTAO) has been set by a previous VI like MC Generic.vi with the
command SET_MTA.

ECU M&C Toolkit User Manual 5-18 ni.com

Chapter 5

MC CCP Get Session Status.vi

ECU M&C API for LabVIEW

Purpose
Retrieves the current calibration status of the ECU (CCP only).

Format

mmF status qualifier
ECU ref in ECU ref ouk

session stakus

S grror ouk

Error in L

additional stakus

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

CCP protocol specification.

subsequent VIs for this task.

© National Instruments Corporation 5-19

status qualifier describes an additional status qualifier. The additional
status qualifier is manufacturer and/or project specific and is not part of the

ECU ref out is the same as ECU ref in. Wire the task reference to

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

session status is the actual session status which is returned from the ECU.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

additional status describes an additional status qualifier. If the status
qualifier does not contain additional status information, the additional
status parameter must be set to FALSE. If the additional status parameter
is not FALSE, it may be used to determine the type of the additional status
information.

Description
MC CCP Get Session Status.vi retrieves the session status of the ECU. The return value
session status is a bit mask that represents several session states inside the ECU. status
qualifier specifies the additional status information. additional status contains the additional
status information. The content of these parameters is project specific and not defined by CCP.
For more information about these parameters, refer to the documentation for the ECU.

MC CCP Get Session Status.vi implements the CCP command GET_S_STATUS defined
by the CCP specification.

ECU M&C Toolkit User Manual 5-20 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC CCP Get Version.vi

Purpose
Retrieves version of the CCP implemented in the ECU (CCP only).
Format
ECU ref in ECUMEL ECU ref out
L rnajor sersion
&rrar in (10 | L Minar yersion
error out
Input

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Major version returns the major version number of the CCP
implementation.

Minor version returns the minor version number of the CCP
implementation.

© National Instruments Corporation 5-21 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

=mn

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Get Version.vi can be used to query the CCP version implemented in the ECU.
This command performs a mutual identification of the protocol version in the slave device to
agree on a common protocol version.

MC CCP Get Version.vi implements the CCP command GET_CCP_VERSION defined by
the CCP specification.

ECU M&C Toolkit User Manual 5-22 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC CCP Move Memory.vi

Purpose
Moves a memory block on the ECU (CCP only).
Format
block. size
ECU ref in qﬂfﬂ ECU ref out
source =f ar
destination HE ﬁ error ouk
errar in
Input

Block size determines the size of memory block in bytes which should be
moved from the source address to the destination address.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Source is a cluster which contains the following values.

d BE

Address specifies the address part of the source address from
which the memory block is copied.

Extension specifies the extension part of the source address.

Destination is a cluster which contains the following values.

B

Address specifies the address part of the destination address to
which the memory block is copied.

Extension specifies the extension part of the destination address.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

B

status is TRUE if an error occurred. This VI is not executed when

_TF | status is TRUE.

© National Instruments Corporation 5-23 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0
BEF] means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC CCP Move Memory.vi is used to move the memory contents of an ECU from one
memory location to another. Before calling the CCP MOVE command this function sets the
Memory Transfer Address pointers MTAO as defined in the source cluster and MTAI as
defined in the destination cluster to appropriate values.

MC CCP Move Memory.vi implements the CCP command MOVE defined by the CCP
specification.

ECU M&C Toolkit User Manual 5-24 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC CCP Select Cal Page.vi

Purpose

Sets the beginning of the calibration data page (CCP only).
Format

ECU ref in ECU ref out
address =
Brror in === error ouk

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.
:
Address specifies the address part of the address.
Extension contains the extension part of the address.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

| TF | .
status i1s TRUE.
code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

H

© National Instruments Corporation 5-25 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.
Description

MC CCP Select Cal Page.vi implements the CCP command SELECT_CAL_PAGE.
The operation of the command depends on the ECU implementation.

ECU M&C Toolkit User Manual 5-26 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC CCP Set Session Status.vi

Purpose
Updates the ECU with the current state of the calibration session (CCP only).
Format
ECU refin EEUMEL ECU ref out
session status %
EFFOF in == © error auk
Input

-n-ﬂ
==
Output

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Session status is the new status to be set in the ECU.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

© National Instruments Corporation 5-27 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI implements the CCP SET_S_STATUS command and is used to keep the ECU
informed about the current state of the calibration session. The session status bits of an ECU
can be read and written. Possible conditions are: reset on power-up, session log-off, and in
applicable error conditions. The calibration session status is organized as a bit mask with the
following assignment.

Table 5-2. Bit Mask Assignment for Calibration Session Status

Bit Name Description
0 CAL Calibration data initialized.
1 DAQ DAQ list(s) initialized.
2 RESUME Request to save DAQ set-up during shutdown in CCP slave. CCP slave
automatically restarts DAQ after start-up.
3 Reserved —
4 Reserved —
5 Reserved —
6 STORE Request to save calibration data during shut-down in CCP slave.
7 RUN Session in progress.

ECU M&C Toolkit User Manual 5-28 ni.com

MC Characteristic Read.vi

Chapter 5 ECU M&C API for LabVIEW

Purpose

Reads data from a named Characteristic on the ECU which is identified by the ECU
Reference handle. The Poly VI returns a specific double, 1D, or 2D double array.

Format
characteristic name -~
ECU refin Iﬂm ECU ref out
) iy characteristic
Brrorin - == grror ouk
Input

H B

Characteristic name is the name of the Characteristic defined in the A2L

database.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended

operation. A positive value means warning: VI

executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

© National Instruments Corporation

5-29 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output
ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.
Characteristic is a poly output value which represents the data read from
the ECU. The type of the poly output is determined by the poly VI

selection. For information on the different poly VI types provided by
MC Characteristic Read.vi, refer to the Poly VI Types section.

To select the data type, right-click the VI, go to Select Type, and select the
type by name.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

Poly VI Types
Table 5-3. Poly VI Types for the Value Parameter
VI Type Description
Parameter (DBL) Returns a single double value for the selected Characteristic name.
Curve (1D) Returns a 1-dimensional array of double values for the selected

Characteristic name.

Field (2D) Returns a 2-dimensional array of double values for the selected
Characteristic name.

ECU M&C Toolkit User Manual 5-30 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Characteristic Read Single Value.vi

Purpose
Reads a value from a named Characteristic on the ECU which is identified by the ECU
Reference handle.

Format
characteristic name %
ECU ref in ML ECU ref out
5 i p— Ly characteristic value
¥ L=grror ouk
Errar in
Input

Characteristic name is the name of the Characteristic defined in the A2L
database.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

x is the horizontal index if the Characteristic consists of 1 or 2 dimensions.
y is the vertical index if the Characteristic consists of 2 dimensions.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

HEE E B

status is TRUE if an error occurred. This VI is not executed when

_TE | status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-31 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Characteristic value returns a single sample for the specified
Characteristic.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC Characteristic Read Single Value.vi reads a value from a specified Characteristic on
the ECU which is identified by the ECU Reference handle. The value to be read is identified
by the x and y indices. If the Characteristic array has O or 1 dimensions, y and/or x can be left
unwired.

ECU M&C Toolkit User Manual 5-32 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Characteristic Write.vi

Purpose
Writes the value(s) of a named Characteristic to an ECU identified by the ECU ref handle.
The Poly VI writes the selected type double, 1D or 2D array.

Format
characteristic name -
ECU ref in lﬂlﬂﬁ ECU ref ouk
characteristic e
errar in =F = errar out
Input

Characteristic name is the name of a Characteristic stored in the A2L
database file to which one or more values may be written.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Characteristic writes the data for the Characteristic channel initialized by
Characteristic name. Characteristic values are listed in the Poly VI Types
section.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

© National Instruments Corporation 5-33 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Poly VI Types

Table 5-4. Poly VI Types for the Characteristic Parameter

VI Type Description

Parameter (DBL) Writes a single double value to the selected Characteristic name.

Curve (1D) Writes a 1-dimensional array of double values to the selected
Characteristic name.

Field (2D) Writes a 2-dimensional array of double values to the selected
Characteristic name.

ECU M&C Toolkit User Manual 5-34 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Characteristic Write Single Value.vi

Purpose
Werites a value to a named Characteristic on the ECU.
Format
characteristic name %
ECU ref in ECU ref ouk
x = s f
y I = error ouk
errar in
characteristic value
Input

Characteristic name is the name of a Characteristic stored in the A2L
database file to which one value may be written.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

x is an input that refers to the array offset if the Characteristic is defined in
the A2L database file as 1- or 2-dimensional. If the Characteristic is defined
as having 0 dimensions, the input can be left unwired.

y is an input that refers to the array offset if the Characteristic is defined in
the A2L database file as 2-dimensional. If the Characteristic is defined as
having 0 or 1 dimensions, the input can be left unwired.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

dBEEE

status is TRUE if an error occurred. This VI is not executed when

| TF | .
status i1s TRUE.
code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

© National Instruments Corporation 5-35 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

source identifies the VI where the error occurred.
Characteristic value is the value to be set for the Characteristic.
Output
ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.
= Error out describes error conditions. If the Error in cluster indicated an
- o

error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC Characteristic Write Single Value.vi writes a value to a defined Characteristic on the
ECU which is identified by the ECU Reference handle. The location to which the value is
written is identified by the x and y indices. If the Characteristic array has 0 or 1 dimensions,
y and/or x can be left unwired.

ECU M&C Toolkit User Manual 5-36 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Clear Memory.vi

Purpose

Clears the contents of a specified memory block.

Format

ECU ref in ECLI B ECU ref ouk

i H errar out
Error in

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the source address.
Extension contains the extension part of the source address.

Block size determines the size of the block that must be cleared.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

_TF | status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-37 ECU M&C Toolkit User Manual

Chapter 5

Output

ECU M&C API for LabVIEW
ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC Clear Memory.vi can be used to erase the FLASH EPROM prior to reprogramming. If
you are using CCP, the CCP Memory Transfer address (MTAO) pointer is set to the memory
location to be erased specified by the parameters Address and Extension. MC Clear
Memory.vi implements the CCP CLEAR_MEMORY command defined by the CCP
specification.

If you are using the XCP protocol, MC Clear Memory.vi implements the
PROGRAM_CLEAR command.

For further details on how to clear parts of non-volatile memory in the ECU refer to the
ASAM XCP Protocol Layer Specification.

ECU M&C Toolkit User Manual 5-38 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Conversion Create.vi

Purpose

Creates a signal conversion object in memory.

Format

Conversion Name

ECU ref in ECU ref ouk

Create
Factar .
OfFset LA B error ouk

errar in
Inik

Input

Conversion Name identifies the conversion object that handles the scaling
of a measurement.

ECU ref in is the task reference that links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Create.vi.

Factor configures the scaling factor used to convert raw measurement data
in the message to/from scaled floating-point units. The factor is the A in the
linear scaling formula AX+B, where X is the raw data, and B is the scaling
offset.

B

Offset configures the scaling offset used to convert raw data in the
measurement message to/from scaled floating-point units. The scaling
offset is the B in the linear scaling formula AX+B, where X is the raw data,
and A is the scaling factor.

A

Error in is a cluster which describes error conditions occurring before the
VI executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

| TF | .
status is TRUE.
code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

© National Instruments Corporation 5-39 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

-: source identifies the VI where the error occurred.

Unit configures the measurement channel unit string. You can use this
value to display units (such as volts or RPM) along with the samples of the
channel.

ECU ref out is the task reference that links to the selected ECU.

Error out describes error conditigns. If the Er.ror in cl.uster indica.ted an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

Use MC Conversion Create.vi to create a conversion object in memory instead of referring
to measurement properties defined in the A2L database.

ECU M&C Toolkit User Manual 5-40 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC DAQ Clear.vi

Purpose

Stops communication for the Measurement task and then clears the configuration.

Format

in — FONEY
DAQ ref in p— ECI ref out

{M.I'
i erraor out

errar in

DAQ refin is the task reference which links to the Measurement task. This
reference is originally returned from MC DAQ Initialize.vi, and then
wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. Unlike other VlIs, this VI will
execute when status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the ECU reference upon which MC DAQ Initialize.vi was
called. Wire this to subsequent ECU operations.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

© National Instruments Corporation 5-41 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0

JEF] means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.
Description
MC DAQ Clear.vi must always be the final ECU M&C VI called for a Measurement task. If
you do not use the MC DAQ Clear.vi, the remaining task configurations can cause problems
in execution of subsequent ECU M&C applications.

Because this VI clears the Measurement task, the Measurement task reference is not wired as
an output but is transferred into an ECU reference task handle. To change properties of a
running Measurement task, use MC DAQ Start Stop.vi to stop the task, MC Set Property.vi
to change the desired DAQ property, and then MC DAQ Start Stop.vi to restart the
Measurement task again.

ECU M&C Toolkit User Manual 5-42 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC DAQ Initialize.vi

Purpose
Initializes a Measurement task for the specified Measurement channel list.
Format
measurement list ECLI M Cad ref out
ECU ref in - =
mode {5 error ouk
sample rate E
error in
DTO 1D
Input
Measurement list is the array of channel names to initialize as a
Measurement task. Each channel name is provided in an array entry.
ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.
Mode specifies the I/O mode for the task. For an overview of the I[/O
modes, including figures, refer to the Basic Programming Model section of

Chapter 4, Using the ECU M&C API.
Mode=0

DAQ List: The data is transmitted from the ECU in equidistant time
intervals as defined in the A2L database. The data can be read back with
the MC DAQ Read.vi as Single point data using a sample rate = 0 or as
waveform using a sample rate > 0. Input channel data are received from the
DAQ messages. Use MC DAQ Read.vi to obtain input samples as
single-point, array, or waveform.

Mode=1

Polling: In this mode the data from the Measurement task are acquired
from the ECU whenever the MC DAQ Read.vi is called.

Mode=2

STIM List: In this mode the data from the Measurement task are sent to the
ECU whenever MC DAQ Write.vi is called.

© National Instruments Corporation 5-43 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

=mo

ECU M&C Toolkit User Manual

Mode =3

Timestamped read: The data is transmitted from the ECU in equidistant
time intervals as defined in the A2L database. The data can be read back
with MC DAQ Read.vi as timestamped data array. Input channel data are
received from the DAQ messages. Use MC DAQ Read.vi to obtain input
samples as an array of sample/timestamp pairs (poly VI types ending in
Timestamped Dbl). Use this input mode to read samples with timestamps
that indicate when each channel is received from the network.

Sample rate specifies the timing to use for samples of the task. The sample
rate is specified in Hertz (samples per second). A sample rate of zero means
to sample immediately. If the Mode is defined as DAQ list, a sample rate
of zero means that MC DAQ Read.vi returns a single point from the most
recent message received, and greater than zero means that MC DAQ
Read.vi returns samples timed at the specified rate. If the Mode is defined
as Polling, the sample rate is ignored.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

DTO_ID is the CAN identifier for the Data Transmission Object (DTQO)
used by the ECU to transmit the DAQ list data to the host. If the DTO_ID
terminal is unwired the ECU will use the same identifier for sending the
DAQ list data as for the normal CCP communication.

DAQ ref out is a task reference for the Measurement task created. Wire this
task reference to subsequent VIs for this Measurement task.

5-44 ni.com

Chapter 5 ECU M&C API for LabVIEW

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

=mn

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC DAQ Initialize.vi does not start the transmission of the DAQ lists from the ECU to or
from the application through CCP or XCP. This enables you to use MC Set Property.vi to
change the properties of a Measurement task. After you change properties use MC DAQ
Start Stop.vi to start the communication for the Measurement task.

© National Instruments Corporation 5-45 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC DAQ List Initialize.vi

Purpose

Defines a DAQ list on a specific DAQ list number and initializes the Measurement task for
the specified Measurement channel list.

Format
D) Lisk Mo
measurement list m DA ref ook
ECU ref in J—J .[,.!,]
rmode kel error out
sample rate
error in
DT ID
Input

A

B B E

ECU M&C Toolkit User Manual

DAQ List No specifies which DAQ list entry number should be used for
the defined Measurement channel list for the selected ECU. To query the
available DAQ List numbers on the ECU use MC Get Property.vi and
select DAQ List Number in the Poly VI.

Measurement list is the array of channel names to initialize as a
Measurement task. Each channel name is provided in an array entry.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Mode specifies the I/O mode for the task. For an overview of the I/O
modes, including figures, refer to the Basic Programming Model section of
Chapter 4, Using the ECU M&C API.

Mode=0

DAQ List: The data is transmitted from the ECU in equidistant time
intervals as defined in the A2L database. The data can be read back with
the MC DAQ Read.vi as Single point data using a sample rate = 0 or as
waveform using a sample rate > 0. Input channel data are received from the
DAQ messages. Use MC DAQ Read.vi to obtain input samples as
single-point, array, or waveform.

5-46 ni.com

Chapter 5 ECU M&C API for LabVIEW

Mode=1

Polling: In this mode the data from the Measurement task are acquired
from the ECU whenever the MC DAQ Read.vi is called.

Mode=2

STIM List: In this mode the data from the Measurement task are sent to the
ECU whenever MC DAQ Write.vi is called.

Mode =3

Timestamped read: The data is transmitted from the ECU in equidistant
time intervals as defined in the A2L database. The data can be read back
with MC DAQ Read.vi as timestamped data array. Input channel data are
received from the DAQ messages. Use MC DAQ Read.vi to obtain input
samples as an array of sample/timestamp pairs (Poly VI types ending in
Timestamped Dbl). Use this input mode to read samples with timestamps
that indicate when each channel is received from the network.

Sample rate specifies the timing to use for samples of the task. The sample
rate is specified in Hertz (samples per second). A sample rate of zero means

to sample immediately. If the Mode is defined as DAQ List, a sample rate
of zero means that MC DAQ Read.vi returns a single point from the most
recent message received, and greater than zero means that MC DAQ
Read.vi returns samples timed at the specified rate. If the Mode is defined
as Polling, the sample rate is ignored.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

_TE | status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-47 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

DTO_ID is the CAN identifier for the Data Transmission Object (DTO)
used by the ECU to transmit the DAQ list data to the host. If the DTO_ID
terminal is unwired the ECU will use the same identifier for sending the
DAQ list data as for the normal CCP communication.

Output

DAQ ref out is a task reference for the Measurement task created. Wire this
task reference to subsequent VIs for this Measurement task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
If an ECU offers a reduced and specific range of DAQ list entry numbers use
MC DAQ List Initialize.vi to setup your Measurement list. MC DA Q List Initialize.vi does
not start the transmission of the DAQ lists from the ECU to the application or vice versa
through CCP or XCP. This enables you to use MC Set Property.vi to change the properties
of a Measurement task. After you change properties use MC DAQ Start Stop.vi to start the
communication for the Measurement task. To query the available DAQ list entry numbers use
MC Get Property.vi with the Poly option selection DAQ List Numbers.

ECU M&C Toolkit User Manual 5-48 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC DAQ Read.vi

Purpose
Reads samples from a Measurement task.
Format
DA ref in ECUMEL D) ref out
number of samples ~ord L number of samples returned
Error in == — walue
Em=-|3rr|:|r auk
Input

DAQ ref in is the task reference from the previous Measurement task VI.
The task reference is originally returned from MC DAQ Initialize.vi, and
then wired through subsequent Measurement task VIs.

Measurement task. For single-sample Poly VI types, MC DAQ Read.vi
always returns one sample, so this input is ignored.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

Number of samples specifies the number of samples to read for the

status is TRUE if an error occurred. This VI will not execute when

_TE | status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-49 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW
Output
DAQ ref out is the same as DAQ ref in. Wire the task reference to
subsequent VIs for this task.

Number of samples returned indicates the number of samples returned in

the samples output.

POy

Value is a poly output that returns the samples read from the received CAN
messages of the DAQ list. The type of the poly output is determined by the
poly VI selection. For information on the different poly VI types provided
by MC DAQ Read.vi, refer to the Poly VI Types section.

To select the data type, right-click the VI, go to Select Type, and select the
type by name.

Error out describes error conditions. If the Error in cluster indicated an

Eﬂ! error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.
status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Poly VI Types

The name of each Poly VI type uses the following conventions:

The first term is either / Chan or NChan. This indicates whether the type returns data for
a single channel or multiple channels. NChan types return an array of analogous /Chan
types, one entry for each channel initialized in channel list of MC DAQ Initialize.vi.
1Chan types are convenient because no array indexing is required, but you are limited to
reading only one channel.

The second term is either /Samp or NSamp. This indicates whether the type returns a
single sample, or an array of multiple samples. ISamp types are often used for single
point control applications, such as within LabVIEW RT.

The third term indicates the data type used for each sample. The type Dbl indicates
double-precision (64-bit) floating point. The type Wfm indicates the waveform data type.
The types 1D and 2D indicate one and two-dimensional arrays, respectively.

ECU M&C Toolkit User Manual 5-50 ni.com

Chapter 5 ECU M&C API for LabVIEW

1Chan 1Samp Dbl

Returns a single sample for the first channel initialized in channel list. If the initialized sample
rate is greater than zero, this poly VI type waits for the next sample time, and then returns a
single sample. This enables you to execute a control loop at a specific rate. If the initialized
sample rate is zero, this poly VI immediately returns a single sample. The samples output
returns a single sample from the most recent message received. If no message has been
received since you started the task, the value of 0 is returned in samples. You can use error
out to determine whether a new message has been received since the previous call to MC
DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been received, the warning
code 3FF60009 hex is returned in error out. If a new message has been received, the success
code 0 is returned in error out. Unless an error occurs, number of samples returned is one.

NChan 1Samp 1D Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists of
a single sample. The order of channel entries in samples is the same as the order in the original
channel list. If the initialized sample rate is greater than zero, this poly VI type waits for the
next sample time, then returns a single sample for each channel. This enables you to execute
a control loop at a specific rate. If the initialized sample rate is zero, this poly VI immediately
returns a single sample for each channel. The samples output returns a single sample for each
channel from the most recent message received. If no message has been received for a channel
since you started the task a 0 is returned in samples. You can specify channels in channel list
that span multiple messages. A sample from the most recent message is returned for all
channels. You can use error out to determine whether a new message has been received since
the previous call to MC DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been
received for one or more channels, the warning code 3FF60009 hex is returned in error out.
If a new message has been received for all channels, the success code 0 is returned in

error out. Unless an error occurs, number of samples returned is one. The samples array
is indexed by channel, and the entry for each channel contains a single sample. If you need to
determine the number of channels in the task after initialization, get the Number of Channels
property for the task reference.

1Chan NSamp 1D Dbl

Returns an array of samples for the first channel initialized in channel list. The initialized
sample rate must be greater than zero for this poly VI, because each sample in the array
indicates the value of the CAN channel at a specific point in time. In other words, the sample
rate specifies a virtual clock that copies the most recent value from CAN messages for each
sample time. The changes in sample values from message to message enable you to view the
CAN channel over time, such as for comparison with other CAN or DAQ input channels. This
VI waits until all samples arrive in time before returning.

© National Instruments Corporation 5-51 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to read
the most recent sample for a task, use the /Chan 1Samp Dbl type. If no message has been
received since you started the task a O is returned in all entries of the samples array. You can
use error out to determine whether a new message has been received since the previous call
to MC DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been received, the
warning code 3FF60009 hex is returned in error out. If a new message has been received, the
success code 0 is returned in error out. Unless an error occurs, the number of samples
returned is equal to number of samples to read.

NChan NSamp 2D Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists of
an array of value. The order of channel entries in value is the same as the order in the original
channel list. The initialized sample rate must be greater than zero for this poly VI, because
each sample in the array indicates the value of each CAN channel at a specific point in time.
In other words, the sample rate specifies a virtual clock that copies the most recent value from
CAN messages for each sample time. The changes in sample values from message to message
enable you to view the CAN channels over time, such as for comparison with other CAN or
DAQ input channels. This VI waits until all samples arrive in time before returning.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to read
the most recent samples for a task, use the NChan 1Samp 1D Dbl type. If no message has been
received for a channel since you started the task, the Default Value of the channel is returned
in value. You can specify channels in channel list that span multiple messages. At each point
in time, a sample from the most recent message is returned for all channels. You can use error
out to determine whether a new message has been received since the previous call to MC
DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been received for one or more
channels, the warning code 3FF60009 hex is returned in error out. If a new message has been
received for all channels, the success code 0 is returned in error out. Unless an error occurs,
the number of samples returned is equal to number of samples to read. If you need to
determine the number of channels in the task after initialization, get the Number of Channels
property for the task reference.

1Chan NSamp Wfm

Returns a single waveform for the first channel initialized in channel list. The initialized
sample rate must be greater than zero for this poly VI, because each sample in the array
indicates the value of the CAN channel at a specific point in time. In other words, the sample
rate specifies a virtual clock that copies the most recent value from CAN messages for each
sample time. The changes in sample values from message to message enable you to view the
CAN channel over time, such as for comparison with other CAN or DAQ input channels. This
VI waits until all samples arrive in time before returning. The start time of a waveform
indicates the time of the first CAN sample in the array. The delta time of a waveform indicates
the time between each sample in the array, as determined by the original sample rate.

ECU M&C Toolkit User Manual 5-52 ni.com

Chapter 5 ECU M&C API for LabVIEW

If the initialized sample rate is zero, this poly VI returns an error. If the intent is to simply read
the most recent sample for a task, use the /Chan [Samp Dbl type. If no message has been
received since you started the task a O is returned in all entries of the value waveform. You
can use error out to determine whether a new message has been received since the previous
call to MC DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been received, the
warning code 3FF60009 hex is returned in error out. If a new message has been received, the
success code 0 is returned in error out. Unless an error occurs, the number of samples
returned is equal to number of samples to read.

NChan NSamp 1D Wfm

Returns an array, one entry for each channel initialized in channel list. Each entry consists of
a single waveform. The order of channel entries in value is the same as the order in the
original channel list. The initialized sample rate must be greater than zero for this poly VI,
because each sample in the array of a waveform indicates the value of the CAN channel at a
specific point in time. In other words, the sample rate specifies a virtual clock that copies the
most recent value from CAN messages for each sample time. The changes in sample values
from message to message enable you to view the M&C DAQ channel over time, such as for
comparison with other CAN or DAQ input channels. This VI waits until all samples arrive in
time before returning. The start time for each waveform indicates the time of the first CAN
sample in the array. The delta time of a waveform indicates the time between each sample in
the array, as determined by the original sample rate.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to read
the most recent samples for a task, use the NChan 1Samp 1D Dbl type. If no message has been
received for a channel since you started the task a 0 is returned in value. You can specify
channels in channel list that span multiple messages. At each point in time, a sample from the
most recent message is returned for all channels. You can use error out to determine whether
a new message has been received since the previous call to MC DAQ Read.vi (or MC DAQ
Start Stop.vi). If no message has been received for one or more channels, the warning code
3FF60009 hex is returned in error out. If a new message has been received for all channels,
the success code 0O is returned in error out. Unless an error occurs, the number of samples
returned is equal to number of samples to read. If you need to determine the number of
channels in the task after initialization, get the Number of Channels property for the task
reference.

MC Read Multi Chan Multi Samp 2D Time & Dbl

Returns an array with one entry for each channel initialized in the measurement list. Each
entry consists of an array of clusters. Each cluster corresponds to a received signal for the
channels initialized in the measurement list. Each cluster contains the sample value and a
timestamp that indicates when the measurement channel was received. The order of channel
entries in samples is the same as the order in the original channel list. To use this type, you
must set the initialized mode to timestamped read. The VI does not wait for messages, but
instead returns samples from the messages received since the previous call to CAN Read.vi.

© National Instruments Corporation 5-53 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

The number of samples returned is indicated in the number of samples returned output, up
to a maximum of number of samples to read messages. If no new message has been received,
the number of samples returned is 0, and error out indicates success.

Because the timing of values in samples is determined by when the message is received, the
sample rate input is not used with this poly VI type. To determine the number of channels in
the task after initialization, get the Number of Channels property for the task reference.

ECU M&C Toolkit User Manual 5-54 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC DAQ Start Stop.vi

Purpose
Starts or stops transmission of the DAQ lists for the specified Measurement task.
Format
DAL rrﬁ;:ilg IEJI% DA ref ook
Srrar in === Lo errar ouk
Input
DAQ ref in is the task reference from the previous Measurement task VI.
The task reference is originally returned from MC DAQ Initialize.vi, and
then wired through subsequent Measurement task VIs.
mode indicates the type of function to be performed.

Stop DAQ List

Configures the ECU to stop transmitting a DAQ task. If stopped, properties
of the DAQ task can be changed using MC Set Property.vi. This function
is performed automatically before MC DAQ Clear.vi.

Start DAQ List

Configures the ECU to start sending data for a DAQ task. Ensure that the
DAQ list has not yet been transferred to the ECU first. Once started,
properties of the DAQ list can no longer be changed using MC Set
Property.vi. This function is performed automatically before the first read
of the DAQ list with MC DAQ Read.vi.

Transmit DAQ List to ECU

Transfers the DAQ list to the ECU, but does not start it. For example, use
this mode if you want to change the session status before starting the DAQ
list. For some ECUs this is necessary.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

© National Instruments Corporation 5-55 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0
BEF] means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

DAQ ref out is the same as DAQ ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC DAQ Start Stop.vi is optional to start or stop transmission of the DAQ lists for an M&C
Measurement task to use MC DAQ Read.vi. If you do not specify MC DAQ Start Stop.vi
(Start DAQ list) before your first Read VI, it is implicitly performed by the first MC DAQ
Read.vi call.

After you start the transmission of the DAQ lists, you can no longer change the configuration

of the task with MC Set Property.vi. You must call MC DAQ Start Stop.vi (Stop DAQ list)
first.

ECU M&C Toolkit User Manual 5-56 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC DAQ Write.vi

Purpose
Writes samples to an ECU DAQ list.
Format
DA ref in mﬂ; DA ref auk
number of samples ¥ — | "
1chan 15amp 10 Obl — errar au
errar in I
Input

DAQ ref in is the task reference from the previous Measurement task VI.
The task reference is originally returned from MC DAQ Initialize.vi, and
then wired through subsequent Measurement task VIs.

Measurement task. For single-sample Poly VI types, MC DAQ Write.vi
always returns one sample, so this input is ignored.

Value is a poly output that writes samples to the ECU STIM list. The type
of the poly output is determined by the poly VI selection. For information
on the different poly VI types provided by MC DAQ Write.vi, refer to the
Poly VI Types section.

Number of samples specifies the number of samples to write for the

To select the data type, right-click the VI, go to Select Type, and select the
type by name.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

© National Instruments Corporation 5-57 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

source identifies the VI where the error occurred.
Output

DAQ ref out is the same as DAQ ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.
Description

Poly VI Types
The name of each Poly VI type uses the following conventions:

e The first term is either /Chan or NChan. This indicates whether the type writes data to a
single channel or multiple channels. NChan types write an array of analogous / Chan
types, one entry for each channel initialized in channel list of MC DAQ Initialize.vi.
1Chan types are convenient because no array indexing is required, but you are limited to
writing only one channel.

* The second term is either /Samp or NSamp. This indicates whether the type writes a
single sample, or an array of multiple samples. ISamp types are often used for single
point control applications, such as within LabVIEW RT.

e The third term indicates the data type used for each sample. The type Dbl indicates
double-precision (64-bit) floating point. The type Wfm indicates the waveform data type.
The types 1D and 2D indicate one and two-dimensional arrays, respectively.

ECU M&C Toolkit User Manual 5-58 ni.com

Chapter 5 ECU M&C API for LabVIEW

1Chan 1Samp Dbl

Writes a single sample for the first channel initialized in the channel list. If the initialized
sample rate is greater than zero, this poly VI type waits for the next sample time, and then
writes a single sample. This enables you to execute a control loop at a specific rate. If the
initialized sample rate is zero, this poly VI immediately writes a single sample. If no message
has been received since you started the task, the value of 0 is returned in samples. You can
use error out to determine whether a new message has been received since the previous call
to MC DAQ Write.vi (or MC DAQ Start Stop.vi). If no message has been received, the
warning code 3FF60009 hex is returned in error out. If a new message has been received, the
success code 0 is returned in error out.

NChan 1Samp 1D Dbl

Writes an array, one entry for each channel initialized in the channel list. Each entry consists
of a single sample. The order of channel entries in samples is the same as the order in the
original channel list. If the initialized sample rate is greater than zero, this poly VI type waits
for the next sample time, then writes a single sample for each channel. This enables you to
execute a control loop at a specific rate. If the initialized sample rate is zero, this poly VI
immediately writes a single sample for each channel. The samples output returns a single
sample for each channel from the most recent message received. If no message has been
received for a channel since you started the task a O is returned in samples. You can specify
channels in channel list that span multiple messages. A sample from the most recent message
is returned for all channels. You can use error out to determine whether a new message has
been received since the previous call to MC DAQ Write.vi (or MC DAQ Start Stop.vi). If
no message has been received for one or more channels, the warning code 3FF60009 hex is
returned in error out. If a new message has been received for all channels, the success code
0 is returned in error out. Unless an error occurs, number of samples returned is one. The
samples array is indexed by channel, and the entry for each channel contains a single sample.
If you need to determine the number of channels in the task after initialization, get the
Number of Channels property for the task reference.

© National Instruments Corporation 5-59 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC Database Close.vi

Purpose
Closes a specified A2L Database.
Format
DB ref in ——Z0IER
errar in ﬁ error auk
Input

DB reference in is the task reference from the initial database task VI.

The task reference is originally returned from MC Database Open.vi.

Error in is a cluster which describes error conditions occurring before the
VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. Unlike other VIs, this VI will
execute when status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC Database Close.vi must always be the final M&C VI called for each communication
task. If you do not use MC Database Close.vi, the remaining task configurations can cause
problems in the execution of subsequent Measurement and Calibration applications.

MC Database Close.vi is an advanced function for database handling. In most cases it is
sufficient to use MC ECU Close.vi instead.

Unlike other VIs, MC Database Close.vi will execute when status is TRUE in Error in.
Because this VI clears the task, the task reference is not wired as an output.

© National Instruments Corporation 5-61 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC Database Open.vi

Purpose
Opens a specified A2L Database.

Format

DB path DB ref out

errar in error ouk

Input

DB path is a path to a A2L database file from which to get channel names.
The file must use a . A2L extension. You can generate A2L database files
with several 3rd party tools.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
e

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

DB reference out is the task reference which links to the opened database

file

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

ECU M&C Toolkit User Manual 5-62 ni.com

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0

JEF] means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

Opens a specified A2L Database. MC Database Open.vi enables you to query all defined
ECU names in the A2L Database using the MC Get Names.vi and selecting the property
ECU Names. MC Database Open.vi does not start communication.

MC Database Open.vi is an advanced function for database handling. In most cases it is
sufficient to use MC ECU Open.vi instead.

© National Instruments Corporation 5-63 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC Download.vi

Purpose
Downloads data to an ECU.

Format

ECU ref in ECUMEC ECU ref ouk
address = ﬁ}

ﬂ errar ouk
errar in

Input

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the destination address.
Extension contains the extension part of the destination address.

Data contains the information to be downloaded.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

_TF | status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

ECU M&C Toolkit User Manual 5-64 ni.com

Chapter 5 ECU M&C API for LabVIEW

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC Download.vi is used to download data to an ECU. The data is stored starting at the
location specified by the Address and Extension parameters.

On XCP protocol, when the slave supports the block mode, ECU sends the data in blocks
using the DOWNLOAD_NEXT command.

© National Instruments Corporation 5-65 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC ECU Close.vi

Purpose
Closes the selected ECU and the associated A2L database.
Format
ECU ref in —E0IEY
errar in 'j errar auk
Input
ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.
= Error in is a cluster which describes error conditions occurring before the
=== VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.
status is TRUE if an error occurred. Unlike other VIs, this VI will
:
execute when status is TRUE.
code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.
Output
Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

ECU M&C Toolkit User Manual 5-66 ni.com

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0

JEF] means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.
Description
MC ECU Close.vi is the very last VI which must be called. It deselects the ECU and closes
the remaining database reference handle. MC ECU Close.vi must always be the final M&C
VI. If you do not use MC ECU Close.vi, the remaining task configurations can cause
problems in the execution of subsequent M&C applications. If you just want to deselect the
ECU connections, call MC ECU Deselect.vi.

© National Instruments Corporation 5-67 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC ECU Connect.vi

Purpose

Establishes the communication to the selected ECU through the CCP or XCP protocol. After

a successful ECU Connect you can create a Measurement Task or read/write a Characteristic.
Format
ECU refin ECUMEC ECU ref ouk
i,
errar in Lol errar auk
Input

ECU M&C Toolkit User Manual

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

5-68 ni.com

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0

JEF] means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
If you are using the CCP protocol, MC ECU Connect.vi implements the CCP CONNECT
command. If you are using the XCP protocol, MC ECU Connect.vi implements the XCP
command CONNECT. It establishes a logical connection to an ECU, using the provided ECU
Reference handle. Unless a slave device (ECU) is disconnected, it must not execute or
respond to any command sent by the application. Only one CCP slave can be connected to the
application at a time from a set of CCP slaves sharing identical CRO and DTO identifiers.

MC ECU Connect.vi is an optional function and is automatically performed before
MC Characteristic Read.vi, MC Characteristic Write.vi, MC DAQ Initialize.vi, any
MC CCP xxx command, or any MC XCP xxx command is performed.

© National Instruments Corporation 5-69 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC ECU Create.vi

Purpose
Creates an ECU object in memory.
Format
Protocol and Interface
ECU Name a[m
DB refin . ECU ref auk
Communication Params
Byte Order _|_E== ECU ekrar ouk
errar in
Input

ECU M&C Toolkit User Manual

Protocol and Interface selects target communication protocol CCP or
XCP and the desired interface to use for this task. The interface input uses
a string xxx:yyy, where xxx defines one of the two available protocols, CCP
or XCP, and yyy defines the desired interface to use, such as CANO for CCP,
or XCP, UDP, or TCP for XCP. The protocol and interface input is required,
as this parameter is not defined in the A2L database. The default baud rate
for CCP or XCP on CAN, or the IP address for XCP on UDP/TCP, may be
defined in the A2L database, but you can change it by setting the Interface
Baud Rate or IP Address property with MC Set Property.vi.

NI-CAN

The special CAN interface values 256 and 257 refer to virtual interfaces.
For more information about using virtual interfaces, refer to the Frame to
Channel Conversion section of Chapter 6, Using The Channel API, in the
NI-CAN Hardware and Software User Manual.

NI-XNET

By default, the ECU Measurement and Calibration Toolkit uses NI-CAN
for CAN communication. This means you must define an NI-CAN
interface for your NI-XNET hardware (NI-CAN compatibility mode) to
use your XNET hardware for CAN communication. However, to use your
NI-XNET interface in the native NI-XNET mode (meaning it does not use
the NI-XNET Compatibility Layer), you must define your interface under
NI-XNET Devices in MAX and pass the NI-XNET interface name that the
ECU Measurement and Calibration Toolkit will use. To do this, add
@ni_genie_nixnet to the Protocol and Interface string (for example,

5-70 ni.com

Chapter 5 ECU M&C API for LabVIEW

CCP:CANl1@ni_genie_nixnet). The interface name is related to the
NI-XNET hardware naming under Devices and Interfaces in MAX.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that
handles the CAN communication between the host system and FPGA. To
access the CAN module on the FPGA, you must specify the bitfile name
after the @ (for example, CCP:CANI @ MyBitfile.lvbitx). To specify a
special RIO target, you can specify that target by its name followed by the
bitfile name (for example, XCP:CANI @RIO1,MyBitfile.lvbitx). Currently,
only a single CAN interface is supported. RIO! defines the RIO target
name as defined in your LabVIEW Project definition. The [vbitx filename
represents the filename and location of the bitfile on the host if using RIO
or on a CompactRIO target. This implies that you must download the bitfile
to the CompactRIO target before you can run your application. You may
specify an absolute path or a path relative to the root of your target for the
bitfile.

ECU Name sets the ECU object name. For all related ECU functions such
as MC ECU Select.vi, use this name as reference.

DB ref in is the task reference that links to the opened database file.
Communication Params is a cluster that contains the following values.

CRO ID sets the CAN identifier for the Command Receive
Object (CRO) ID, which sends commands and data from the host
to the slave device.

DTO ID sets the Data Transmission Object (DTO) ID, which the
ECU uses to respond to CCP commands and send data and status
information to the CCP master application.

Baud rate sets the baud rate in use by the selected CAN interface.
This property applies to all tasks initialized with the NI-CAN
interface. You can specify the following basic baud rates as the
numeric rate: 33333, 83333, 100000, 125000, 200000, 250000,
400000, 500000, 800000, and 1000000. You can specify the
advanced baud rate as 8000XXYY hex, where YY is the value of Bit
Timing Register 0 (BTRO), and XX is the value of Bit Timing
Register 1 (BTR1).

Station Address sets the slave device station address. A CCP
address is based on the idea that several ECUs can share the same
CAN Arbitration IDs for CCP communication. To avoid
communication conflicts, CCP defines a station address that must
be unique for all ECUs sharing the same CAN Arbitration IDs.

© National Instruments Corporation 5-71 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

=mo

ECU M&C Toolkit User Manual

Unless an ECU has been addressed by its station address, the ECU
must not react to CCP commands sent by the CCP master.

Byte Order sets the byte order of the CCP slave device.
0—MSB_LAST

The CCP slave device uses the MSB_LAST (Intel) byte ordering.
1—MSB_FIRST

The CCP slave device uses the MSB_FIRST (Motorola) byte ordering.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the task reference that links to the selected ECU.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

5-72 ni.com

Chapter 5 ECU M&C API for LabVIEW

Description

Use MC ECU Create.vi to create an ECU object in memory instead of referring to an ECU
object defined in the A2L database. MC ECU Create.vi provides an alternative in which you
create the ECU and DAQ List configuration within the application, without using an A2L
database. MC ECU Create.vi creates an ECU reference handle linked to the selected ECU
name. MC ECU Create.vi does not start communication. This enables you to use MC Set
Property.vi to change the properties of an ECU task and to create an event channel object
manually using MC Event Create.vi, create a measurement object using MC Measurement
Create.vi, and create a conversion rule using MC Conversion Create.vi. After you change
properties, use MC ECU Connect.vi to start communication for the task and logically
connect to the selected ECU.

© National Instruments Corporation 5-73 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC ECU Deselect.vi

Purpose
Deselects an ECU and invalidates the ECU reference handle.

Format

i DE ref ouk
eFrar in >< ekrar ouk

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. Unlike other VIs, this VI will
execute when status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

DB ref out is the task reference which links to the opened database file.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

ECU M&C Toolkit User Manual 5-74 ni.com

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC ECU Deselect.vi deselects the communication to the ECU. After calling this VI you can
establish the communication to another ECU defined in the A2L database using MC ECU
Select.vi.

© National Instruments Corporation 5-75 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC ECU Disconnect.vi

Purpose
Disconnects the CCP or XCP communication to the selected ECU.
Format
ECU ref in ECLI MG ECU ref ouk
errar in % error ouk
Input

ECU M&C Toolkit User Manual

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

5-76 ni.com

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0

JEF] means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC ECU Disconnect.vi implements the CCP or XCP command DISCONNECT. MC ECU
Disconnect.vi permanently disconnects the specified CCP or XCP slave from the
communication and ends the calibration session. When the calibration session is terminated,
all DAQ lists of the device are stopped and cleared and the protection masks of the device are
set to their default values.

MC ECU Disconnect.vi is an optional function and is automatically performed prior to any
MC ECU Deselect.vi or MC ECU Close.vi call.

© National Instruments Corporation 5-77 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC ECU Open.vi

Purpose

Opens a specified A2L database and selects the first ECU found in the database. If there are
several ECUs stored in the A2L database use the Database Open and ECU Select VIs.

Format
pratacal and inkerface m
DB path ECU ref ouk
b
Input

ECU M&C Toolkit User Manual

protocol and interface selects target communication protocol CCP or
XCP and the desired interface to use for this task. The interface input uses
a string xxx:yyy where xxx defines one of the two available protocols “CCP”
or “XCP” and yyy defines the desired interface to use like “CANO” for CCP
or XCP or “UDP” or “TCP” for XCP. The protocol and interface input is
required as this parameter is not defined in the A2L database.

The default baud rate for CCP or XCP on CAN, or the IP address for XCP
on UDP/TCP, may be defined in the A2L database, but you can change it
by setting the Interface Baud Rate or IP Address property with MC Set
Property.vi.

NI-CAN

The special CAN interface values 256 and 257 refer to virtual interfaces.
For more information on usage of virtual interfaces, refer to the Frame to
Channel Conversion section of Chapter 6, Using The Channel API, in the
NI-CAN Hardware and Software User Manual.

NI-XNET

If you use NI-XNET hardware and select the xxx:yyy syntax, the

ECU M&C Toolkit uses the XNET NI-CAN compatibility library (XCL)
internally if the XNET interface is defined in MAX under NI-CAN
Devices. To force use of the native XNET API, you must use the
xxx:yyy@ni_genie_ nixnet syntax. The interface name is related to the
NI-XNET hardware naming under Devices and Interfaces in MAX.

5-78 ni.com

Chapter 5 ECU M&C API for LabVIEW

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that
handles the CAN communication between the host system and FPGA. To
access the CAN module on the FPGA, you must specify the bitfile name
after the @ (for example, CCP: CANI @ MyaBitfile.lvbitx). To specify a
special RIO target, you can specify that target by its name followed by the
bitfile name (for example, XCP:CANI @RIO1,MyaBitfile.lvbitx). Currently,
only a single CAN interface is supported. RIO! defines the RIO target
name as defined in your LabVIEW Project definition. The lvbitx filename
represents the filename and location of the bitfile on the host. You may use
just the filename without the folder if the bitfile is in the same folder as the
LabVIEW Project (*.lvproj).

DB path is a path to a A2L database file from which to get channel names.
The file must use a . A2L extension. You can generate A2L database files
with several 3rd party tools.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

-: source identifies the VI where the error occurred.

CAN interface specifies the CAN interface to use for this task. For
compatibility reasons, if you are using the CCP protocol you can only
specify the CAN interface to use for this CCP task. The interface input uses
a ring typedef in which value 0 selects CANO, value 1 selects CAN1, and
so on. As the ECU M&C API is based on the NI-CAN Channel API, the
NI-CAN Frame API cannot used on the same CAN network interface
simultaneously. If the CAN network interface is already initialized in the
Frame API, this function returns an error.

If you use NI-XNET or CompactRIO/R Series hardware, use the protocol
and interface parameter instead.

© National Instruments Corporation 5-79 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW
Output
ECU ref out is the task reference which links to the selected ECU.
Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.
status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC ECU Open.vi opens a specified A2L database and selects the first ECU found in the
database. If there are several ECUs stored in the A2L database use MC Database Open.vi
and MC ECU Select.vi to select a specific ECU.

Possible selections for the interface and protocol parameter for the various hardware targets
are as follows.

Using CAN hardware:

CCP:CANO—uses CCP on CAN interface 0

CCP:CAN1—uses CCP on CAN interface 1, and so on with the form CANx
CCP:CAN256—uses CCP on virtual CAN interface 256
CCP:CAN257—uses CCP on virtual CAN interface 257

XCP:CANO—uses XCP on CAN interface 0

XCP:CAN1—uses XCP on CAN interface 1, and so on with the form CANx
XCP:UDP—uses XCP on UDP

XCP:TCP—uses XCP on TCP

Using NI-XNET hardware:

CCP:CAN1@ni_genie_nixnet—uses CCP on CAN interface 1

CCP:CAN2@ni_genie_nixnet—uses CCP on CAN interface 2, and so on with the form
CANx

XCP:CAN1@ni_genie_nixnet—uses XCP on CAN interface 1

ECU M&C Toolkit User Manual 5-80 ni.com

Chapter 5 ECU M&C API for LabVIEW

* XCP:CAN1@ni_genie_nixnet—uses XCP on CAN interface 2, and so on with the form
CANx

* XCP:UDP@ni_genie_nixnet—uses XCP on UDP
* XCP:TCP@ni_genie_nixnet—uses XCP on TCP

Using CompactRIO or R Series:

* CCP:CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses CCP on named target RIO1
as compiled into the bitfile at ¢ : \ temp\MyFpgaBitfile.lvbitx

* XCP:CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses XCP on named target RIO1
as compiled into the bitfile at ¢ : \temp\MyFpgaBitfile.lvbitx

@ Note You can download the ASAM MCD 2MC database configuration file to a LabVIEW
RT target by the File Transfer Protocol (FTP). An FTP file transfer is possible within MAX.
Refer to the LabVIEW Real-Time Graphical File Transfer Utility section of Chapter 2,
Installation and Configuration, for instructions on performing an FTP transfer
through MAX.

© National Instruments Corporation 5-81 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC ECU Select.vi

Purpose
Selects an ECU based upon the names stored in an A2L database.
Format
prokocol and interface W%m_
DB refin o ECU ref out
ECU name I Lol error ouk
errar in -
interface

Input

ECU M&C Toolkit User Manual

protocol and interface selects target communication protocol CCP or
XCP and the desired interface to use for this task. The interface input uses
a string xxx:yyy where xxx defines one of the two available protocols “CCP”
or “XCP” and yyy defines the desired interface to use like “CANO” for CCP
or XCP or “UDP” or “TCP” for XCP. The protocol and interface input is
required as this parameter is not defined in the A2L database.

The default baud rate for CCP or XCP on CAN, or the IP address for XCP
on UDP/TCP, may be defined in the A2L database, but you can change it
by setting the Interface Baud Rate or IP Address property with MC Set
Property.vi.

NI-CAN

The special CAN interface values 256 and 257 refer to virtual interfaces.
For more information about using virtual interfaces, refer to the Frame to
Channel Conversion section of Chapter 6, Using The Channel API, in the
NI-CAN Hardware and Software User Manual.

NI-XNET

If you use NI-XNET hardware and select the xxx:yyy syntax, the

ECU M&C Toolkit uses the XNET NI-CAN compatibility library (XCL)
internally if the XNET interface is defined in MAX under NI-CAN
Devices. To force use of the native XNET API, you must use the
xxx:yyy@ni_genie_ nixnet syntax. The interface name is related to the
NI-XNET hardware naming under Devices and Interfaces in MAX.

5-82 ni.com

Chapter 5 ECU M&C API for LabVIEW

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that
handles the CAN communication between the host system and FPGA. To
access the CAN module on the FPGA, you must specify the bitfile name
after the @ (for example, CCP: CANI @ MyaBitfile.lvbitx). To specify a
special RIO target, you can specify that target by its name followed by the
bitfile name (for example, XCP:CANI @RIO1,MyaBitfile.lvbitx). Currently,
only a single CAN interface is supported. RIO! defines the RIO target
name as defined in your LabVIEW Project definition. The lvbitx filename
represents the filename and location of the bitfile on the host. You may use
just the filename without the folder if the bitfile is in the same folder as the
LabVIEW Project (*.lvproj).

DB reference in is the task reference which links to the opened database
file.

which to initialize all subsequent tasks.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

ECU name is the ECU name to select out of a A2L Database file, with

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

-: source identifies the VI where the error occurred.

CAN interface specifies the CAN interface to use for this task. For
compatibility reasons, if you are using the CCP protocol you can only
specify the CAN interface to use for this CCP task. The interface input uses
a ring typedef in which value O selects CANO, value 1 selects CAN1, and
so on. As the ECU M&C API is based on the NI-CAN Channel API, the
NI-CAN Frame API cannot be used on the same CAN network interface
simultaneously. If the CAN network interface is already initialized in the
Frame API, this function returns an error.

© National Instruments Corporation 5-83 ECU M&C Toolkit User Manual

Chapter 5

Output

ECU M&C API for LabVIEW
ECU ref out is the task reference which links to the selected ECU.
Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.
status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC ECU Select.vi creates an ECU reference handle linked to the selected ECU name.
MC ECU Select.vi does not start communication. This enables you to use MC Set
Property.vi to change the properties of an ECU task. After you change properties, use
MC ECU Connect.vi to start communication for the task and logically connect to the
selected ECU. Prior to calling MC ECU Select.vi, an available ECU name can be queried
by calling MC Get Property.vi with the parameter ECU/Name.

Possible selections for the interface and protocol parameter for the various hardware targets
are as follows.

Using NI-CAN hardware:

¢ CCP:CANO—uses CCP on CAN interface 0

¢ CCP:CAN1—uses CCP on CAN interface 1, and so on with the form CANx
¢ CCP:CAN256—uses CCP on virtual CAN interface 256

¢ CCP:CAN257—uses CCP on virtual CAN interface 257

e XCP:CANO—uses XCP on CAN interface 0

¢ XCP:CAN1—uses XCP on CAN interface 1, and so on with the form CANx
e XCP:UDP—uses XCP on UDP

¢ XCP:TCP—uses XCP on TCP

ECU M&C Toolkit User Manual 5-84 ni.com

Chapter 5 ECU M&C API for LabVIEW

Using NI-XNET hardware:

CCP:CAN1@ni_genie_nixnet—uses CCP on CAN interface 1

CCP:CAN2@ni_genie_nixnet—uses CCP on CAN interface 2, and so on with the form
CANx

XCP:CAN1@ni_genie_nixnet—uses XCP on CAN interface 1

XCP:CAN1@ni_genie_nixnet—uses XCP on CAN interface 2, and so on with the form
CANx

XCP:UDP @ni_genie_nixnet—uses XCP on UDP
XCP:TCP@ni_genie_nixnet—uses XCP on TCP

Using CompactRIO or R Series:

CCP:CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses CCP on named target RIO1
as compiled into the bitfile at c: \temp\MyFpgaBitfile.lvbitx

XCP:CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses XCP on named target RIO1
as compiled into the bitfile at ¢ : \ temp\MyFpgaBitfile.lvbitx

© National Instruments Corporation 5-85 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for L

MC Event Create.vi

abVIEW

Purpose
Creates an Event object in memory.
Format
ECU ref in ECU ref ouk
Event Name
Event Mumber Error out
errar in

Input

EE E

ECU M&C Toolkit User Manual

ECU ref in is the task reference that links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Create.vi.

Event Name identifies the event channel object. Use this name as a
reference in MC Measurement Create.vi to identify the event channel.

Event Number specifies the generic signal source that effectively
determines the data transmission timing. To allow a reduction of the desired
transmission rate, a prescaler may be applied to the event channel. The
prescaler value factor must be greater than or equal to 1 and can be set using
MC Set Property.vi using the DAQ Prescaler property.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

5-86 ni.com

Chapter 5 ECU M&C API for LabVIEW

ECU ref out is the task reference that links to the selected ECU.
1 1

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

Use MC Event Create.vi to create an Event object in memory instead of referring to a
predefined measurement in the A2L database. Assign the event channel object by name to a
DAQ List in MC Measurement Create.vi.

© National Instruments Corporation 5-87 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC Generic.vi

Purpose
Sends a generic CCP or XCP command.
Format
kimeout [ms)
ECU refin ECU ref ouk
cormmand ol L error code
data :Imﬂ o 2 L return walle
errar in efror ouk
buffFer size Far return value
Input

Timeout is the time limit, in milliseconds, during which a specified
command must complete.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Command is the CCP or XCP command to be sent to the ECU.

Data contains a 1-dimensional array of byte information to send to the
ECU.

Buffer size for return value sets the maximum length of the Return value
data array.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
e

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU M&C Toolkit User Manual 5-88 ni.com

Chapter 5 ECU M&C API for LabVIEW

Output

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error code describes the error returned from the ECU during the
communication.

Return value may contain an array of bytes returned from the ECU as a
response to the CCP command sent.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

A EEE

status is TRUE if an error occurred.
BT
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC Generic.vi implements any generic CCP or XCP command that can be used to execute
user-defined commands that are not defined in the CCP or XCP standard or not covered by
the available LabVIEW CCP/XCP VIs.

© National Instruments Corporation 5-89 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC Get Names.vi

Purpose

Gets an array of ECU names, Measurement names, Characteristic names, or Event names
from a specified A2L database file.

Format

G ———
reference in reference ouk

ECU narne Ea!"me narmes list aut
errar in = E=grror ouk

Input

ECU M&C Toolkit User Manual

Type (mode) is an input that specifies the type of names to return.
The value of Type (mode) is an enumeration:

0—ECU Names returns a list of ECU names. You can write this list to
MC ECU Select.vi. This is the default value.

1—Measurement Names returns a list of Measurement names.
2—Characteristic Names returns a list of Characteristic names.
3—Event Channel Names returns a list of Event Channel names.

Reference in must be an ECU M&C task reference or an A2L database
reference.

ECU name If a valid A2L database reference is passed to the reference in
terminal, the ECU name terminal is used to select one of the ECUs inside
the A2L database. Then, MC Get Names.vi will report the names of all
objects of the specified type inside the ECU, based on the name provided.
If you do not provide a name, the first ECU in the A2L file is selected.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

5-90 ni.com

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Reference out is a copy of the reference which was passed to the
reference in terminal.

Names list out returns the array of names, one string entry per name. To
start a Measurement task or access a Characteristic for all channels returned
from MC Get Names.vi, wire channel list to MC DAQ Initialize.vi.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

Description

MC Get Names.vi is used to query the names contained within an A2L file.

The ECU name terminal is ignored if a valid ECU reference is connected to the reference in
terminal. In that instance, MC Get Names.vi will report the names of all objects of the
specified type inside the referenced ECU.

If type = 1, type = 2, or type = 3, the corresponding ECU name must be referenced in order
to access ECU-specific properties.

If using MC Get Names.vi to query the list of supported event channels on an ECU, the event
channels might be stored inside the ECU instead of the A2L file. To query these event channel
names from the ECU directly, connect to the ECU using MC ECU Connect.vi before using

MC Get Names.vi.

© National Instruments Corporation

5-91 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC Get Property.vi

Purpose

Gets a property for the object referenced by the reference in terminal. The poly VI selection
determines the property to get.

Format
name
reference in reference out
) o value
Errorin T errar out
Input

=mo

ECU M&C Toolkit User Manual

Name specifies an individual channel within the task defined by reference
in. The default (unwired) value of name is empty, which means the
property applies to the entire task, not a specific channel. If a property
relates to Measurement or Characteristic channels and does not apply to the
entire task, but an individual channel or message within the task, you must
wire the name of a Measurement or Characteristic channel from channel
list into the name input. For other properties you must leave name unwired

(empty).

Reference in is the reference to any opened A2L database, a selected ECU,
or an ECU which is already connected (with MC Database Open.vi,
MC ECU Select.vi, MC ECU Open.vi, or MC ECU Connect.vi).

The type of this reference depends on the property you want to get.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

5-92 ni.com

Chapter 5 ECU M&C API for LabVIEW

source identifies the VI where the error occurred.
Output
Reference out contains an ECU M&C task reference which can be wired
through subsequent ECU M&C Vls.
Value is a poly output value that returns the property value. You select the
poly outp property

property returned in value by selecting the poly VI type. The data type of
value is also determined by the poly VI selection. For information about the
different properties provided by MC Get Property.vi, refer to the Poly VI
Types section. To select the property, right-click the VI, go to Select Type,
and select the property by name.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-93 ECU M&C Toolkit User Manual

Chapter 5

Description
Poly VI Types

ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output

Type Hierarchy

Sub-Hierarchy

Sub 1 Sub 2

Param

Description

DB File Name

Returns the A2L
Database file name with
which the task has been
opened. The value of
this property cannot be
changed using MC Set
Property.vi.

ECU

Byte Order

Returns the byte order of
the CCP slave device.

0—MSB_LAST

The CCP Slave device
uses the MSB_LAST
(Intel) byte ordering.

1—MSB_FIRST

The CCP Slave device
uses the MSB_FIRST
(Motorola) byte
ordering.

ECU

Checksum
DLL Name

Returns the file name of
the Checksum DLL used
for verifying the
checksum.

ECU M&C Toolkit User Manual

5-94

ni.com

Chapter 5

Table 5-5. Poly Values for Value Output (Continued)

Type

Hierarchy

Sub-Hierarchy

Sub 1 Sub 2

Param

Description

ECU

Command Byte
Order

Returns the byte order
for the defined
Measurement or
Characteristic:

0—MSB_LAST

The CCP Slave device
uses the MSB_LAST
(Intel) byte ordering.

1—MSB_FIRST

The CCP Slave device
uses the MSB_FIRST
(Motorola) byte
ordering.

ECU

Name

Returns the Name of the
selected ECU opened by
MC ECU Open.vi or
MC ECU Select.vi.

ECU

DAQ List
Number

Returns an array of DAQ
list numbers for all DAQ
lists defined in the A2
file.

© National Instruments Corporation

5-95

ECU M&C Toolkit User Manual

ECU M&C API for LabVIEW

Chapter 5

ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

ECU

CCP

Baud Rate

Returns the Baud Rate
in use by the Interface.
Basic baud rates such as
125000 and 500000 are
specified as the numeric
rate. Advanced baud
rates are specified as
8000XXYY hex, where
YY is the value of Bit
Timing Register 0
(BTRO), and XX is the
value of Bit Timing
Register 1 (BTR1) of the
CAN controller chip.
For more information,
refer to the Interface
Properties dialog in
MAX. The value of this
property is originally set
within MAX, but it can
be changed using

MC Set Property.vi.

ECU

CCP

CROID

Returns the CRO ID
(Command Receive
Object) which is used to
send commands and
data from the host to the
slave device.

ECU M&C Toolkit User Manual

5-96

ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5

ECU M&C API for LabVIEW

Type

Hierarchy

Sub-Hierarchy

Sub 1 Sub 2

Param

Description

ECU

CCP —

CRO Task

Returns the NI-CAN
task reference for the
CRO (Command
Receive Object, the
CAN task writing
frames to the slave
device). For example,
you might use this to set
CAN properties for this
task. Handle with
extreme care, as those
properties are usually set
correctly by the ECU
M&C Toolkit itself.

ECU

CCP —

DTO ID

Returns the DTO ID
(Data Transmission
Object) which is used by
the ECU to respond to
CCP commands and
send data and status
information to the CCP
master.

ECU

CCP —

DTO Task

Returns the NI-CAN
task reference for the
DTO ID (Data
Transmission Object,
the CAN task reading
frames from the slave
device). For example,
you might use this to set
CAN properties for this
task. Handle with
extreme care, as those
properties are usually set
correctly by the ECU
M&C Toolkit itself.

© National Instruments Corporation

5-97

ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

ECU

£ va]

CCP

ID

Returns the slave device
identifier. This ID
information is optional
and specific to the ECU
implementation. For
more information about
the CCP slave ID, refer
to the documentation for
the ECU.

ECU

CCP

ID Data Byte

Returns a data type
qualifier of the slave
device identifier. This
ID information is
optional and specific to
the ECU
implementation. For
more information about
the CCP slave ID, refer
to the documentation for
the ECU.

ECU

CCP

Interface

Returns the interface
initialized for the task,
such as with MC DAQ
Initialize.vi.

ECU

tus)

CCP

Master ID

Returns CCP Master ID
information. This ID
information is optional
and specific to the ECU
implementation. For
more information about
the CCP master ID, refer
to the documentation for
the ECU.

ECU M&C Toolkit User Manual

5-98

ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5

ECU M&C API for LabVIEW

Type

Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

ECU

CCP

SeedKey Cal
Name

Returns the file name of
the SeedKey DLL used
for Calibration
purposes.

ECU

CCP

SeedKey DAQ
Name

Returns the file name of
the SeedKey DLL used
for DAQ purposes.

ECU

CCP

SeedKey Prog
Name

Returns the file name of
the SeedKey DLL used
for programming
purposes.

T

!

ECU

CCP

Single Byte
DAQ List?

Determines if an ECU
supports single-byte or
multi-byte DAQ list
entries.

E

ECU

CCP

Station
Address

Returns the Station
Address of the slave
device. CCP is based on
the idea, that several
ECUs can share the
same CAN Arbitration
IDs for CCP
communication. To
avoid communication
conflicts CCP defines a
Station Address that
must be unique for all
ECUs sharing the same
CAN Arbitration IDs.
Unless an ECU has been
addressed by its Station
Address, the ECU must
not react to CCP
commands sent by the
CCP master.

© National Instruments Corporation

5-99

ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

ECU

CCP

Misc

Skip
EXCHANGE
ID

Returns a Boolean
value that indicates
whether or not the
EXCHANGE_ID
command should be
suppressed during
connection to the ECU.

ECU

CCP

Optional
Commands

ACTION
SERVICE

Returns a Boolean value
that indicates whether
the ECU supports the
optional CCP Command
ACTION_SERVICE.

ECU

CCP

Optional
Commands

BUILD
CHECKSUM

Returns a Boolean value
that indicates whether
the ECU supports the
optional CCP Command
BUILD_CHKSUM.

ECU

CCP

Optional
Commands

CLEAR
MEMORY

Returns a Boolean value
that indicates whether
the ECU supports the
optional ASAM CCP
Command
CLEAR_MEMORY.

ECU

CCP

Optional
Commands

CLEAR
MEMORY

Returns a Boolean value
that indicates whether
the ECU supports the
optional CCP Command
CLEAR_MEMORY.

ECU

CCP

Optional
Commands

DIAG
SERVICE

Returns a Boolean value
that indicates whether
the ECU supports the
optional CCP Command
DIAG_SERVICE.

ECU M&C Toolkit User Manual

5-100

ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5

ECU M&C API for LabVIEW

Sub-Hierarchy
Type Hierarchy Sub 1 Sub 2 Param Description
ECU CCP Optional DNLOAD 6 Returns a Boolean value
Commands that indicates whether
the ECU supports the
optional CCP Command
DNLOAD_6.
ECU CCP Optional GET ACTIVE | Returns a Boolean value
Commands | CAL PAGE that indicates whether
the ECU supports the
optional CCP Command
GET_ACTIVE_CAL_
PAGE.
ECU CCP Optional GET S Returns a Boolean value
Commands | STATUS that indicates whether
the ECU supports the
optional CCP Command
GET_S_STATUS.
ECU CCP Optional GET SEED Returns a Boolean value
Commands that indicates whether
the ECU supports the
optional CCP Command
GET_SEED.
ECU CCP Optional MOVE Returns a Boolean value
Commands that indicates whether
the ECU supports the
optional CCP Command
MOVE.
ECU CCP Optional PROGRAM Returns a Boolean value
Commands that indicates whether
the ECU supports the
optional CCP Command
PROGRAM.
© National Instruments Corporation 5-101 ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Sub-Hierarchy
Type Hierarchy Sub 1 Sub 2 Param Description
ECU CCP Optional PROGRAM 6 | Returns a Boolean value
Commands that indicates whether
the ECU supports the
optional CCP Command
PROGRAM_6.
ECU CCP Optional SELECT CAL | Returns a Boolean value
Commands | PAGE that indicates whether
the ECU supports the
optional CCP Command
SELECT_CAL_PAGE.
ECU CCP Optional SET S Returns a Boolean value
Commands | STATUS that indicates whether
the ECU supports the
optional CCP Command
SET_S_STATUS.
ECU CCp Optional SHORT UP Returns a Boolean value
Commands that indicates whether
the ECU supports the
optional CCP Command
SHORT_UP.
ECU CCp Optional START STOP | Returns a Boolean value
Commands | ALL that indicates whether
the ECU supports the
optional CCP Command
START_STOP_ALL.
ECU CCP Optional TEST Returns a Boolean value
Commands that indicates whether
the ECU supports the
optional CCP Command
TEST.
ECU CCP Optional UNLOCK Returns a Boolean value
Commands that indicates whether
the ECU supports the
optional CCP Command
UNLOCK.
ECU M&C Toolkit User Manual 5-102 ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5

ECU M&C API for LabVIEW

Type

Hierarchy

Sub-Hierarchy

Sub 1 Sub 2

Param

Description

ECU

Misc —

Timing Factor

Returns the used timing
factor, which you can
use to increase CCP or
XCP command timeout
values. For details on the
default Command
Timeout values, refer to
the CCP or XCP
Protocol Specification.

ECU

XCP —

Compression
Method

Returns the selected
compression method
used for MC
Program.vi.

0—data is
uncompressed.

0x80...0xFF—User
defined.

ECU

XCP —

Encryption
Method

Returns the selected
encryption method used
for MC Program.vi.

0x00—data is not
encrypted

0x80...0xFF—User
defined

© National Instruments Corporation

5-103

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Sub-Hierarchy

Type Hierarchy Sub 1 Sub 2 Param Description

ECU XCP — Access Method | Returns the selected

access mode:

0x00—Absolute
Access Mode (default).
The MTA uses physical
addresses

0x01—Functional
Access Mode. The MTA
functions as a block
sequence number of the
new flash content file.

0x80...0xFF—User
defined. It is possible to
use different access
modes for clearing and

programming.
ECU XCP — Programming Returns the selected
Method programming method
used for MC
Program.vi.

0x00—Sequential
programming,

0x80...0xFF—User
defined.

ECU XCP — SeedKey DLL Returns the file name of

the SeedKey DLL.

ECU M&C Toolkit User Manual 5-104 ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5

ECU M&C API for LabVIEW

Type

Hierarchy

Sub-Hierarchy

Sub 1 Sub 2

Param

Description

ECU

XCP CAN

Baudrate

Returns the Baud Rate
in use by the NI-CAN
Interface. Basic baud
rates such as 125000 and
500000 are specified as
the numeric rate.
Advanced baud rates are
specified as 8000XXYY
hex, where YY is the
value of Bit Timing
Register 0 (BTRO), and
XX is the value of Bit
Timing Register 1
(BTR1) of the CAN
controller chip. For
more information, refer
to the Interface
Properties dialog in
MAX. The value of this
property is originally set
within MAX, but it can
be changed using MC
Set Property.vi.

ECU

XCP CAN

CROId

Returns the CRO ID
(Command Receive
Object) which is used to
send commands and
data from the host to the
slave device.

ECU

XCP CAN

DTO Id

Returns the DTO ID
(Data Transmission
Object) which is used by
the ECU to respond to
XCP commands and
send data and status
information to the XCP
master.

© National Instruments Corporation

5-105

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Sub-Hierarchy

Type Hierarchy Sub 1 Sub 2 Param Description

ECU XCP Ethernet IP Address Returns the IP address
of the slave device. A
slave device connected
by Ethernet and TCP/IP
or UDP/IP protocol is
addressed by its IP
Address and Port
number.

ECU XCP Ethernet IP Port Returns the IP Port
number of the slave
device. A slave device
connected by Ethernet
and TCP/IP or UDP/IP
protocol is addressed by
its IP Address and Port
number.

Characteristic — — Address Returns the address of
the selected
Characteristic in the
memory of the ECU.

Characteristic — — Byte Order Returns the specified

byte order:

0O—1Intel format

Bytes are in little-endian
order, with
least-significant bit first.

1—Motorola format

Bytes are in big-endian
order, with
most-significant bit first.

Characteristic — — Comment Returns the Comment
string of the selected

Characteristic.

ECU M&C Toolkit User Manual 5-106 ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5 ECU M&C API for LabVIEW

Sub-Hierarchy

Type Hierarchy

Sub 1 Sub 2

Param

Description

Characteristic

Data Type

Returns the data type of
the Characteristic.

Characteristic

Dimension

Returns the dimension
of a Characteristic.

0—O0 dimension

The Characteristic can
be accessed (read/write)
through a double value.

1—1 dimension

The Characteristic can
be accessed (read/write)
through a
one-dimensional array
of double values.

2—2 dimensions

The Characteristic can
be accessed (read/write)
through a
two-dimensional array
of double values.

Characteristic

Extension

Returns additional
address information. For
instance it can be used,
to distinguish different
address spaces of an
ECU
(multi-microcontroller
devices).

Characteristic

Maximum

Returns the maximum
value of the
Characteristic.

© National Instruments Corporation

5-107

ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Sub 1 Sub 2

Param

Description

Characteristic

Minimum

Returns the minimum
value of the
Characteristic.

Characteristic

Read Only?

Returns if a
Characteristic is set to
Read Only. In this case it
is not allowed to call
MC Characteristic
Write.vi for this
Characteristic.

Characteristic

Sizes

Returns the array Sizes
for X and Y direction of
the Characteristic.

Characteristic

Unit

Returns the unit string
defined for this
Characteristic in the
A2L database.

Characteristic

X Axis

Returns X-axis values
on which the
Characteristic is
defined. It is valid if the
dimension of the
selected Characteristic
is 1 or 2.

Characteristic

Y Axis

Returns Y-axis values on
which the Characteristic
is defined. It is valid if
the dimension of the
selected Characteristic
is 2.

DAQ

Event Channel
Name

Returns the selected
event channel name to
which the Measurement
task is assigned.

ECU M&C Toolkit User Manual

5-108

ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5 ECU M&C API for LabVIEW

Type

Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

DAQ

Mode

Returns the selected I/O
mode for the M&C
Measurement task.

0—DAQ List

The data is transmitted
by the ECU based on an
event channel, which
can be equidistant in
time or sporadic. The
data can be read back
with the MC DAQ
Read.vi as Single point
data using sample rate =
0, or as a waveform
using a sample rate > 0.
Input channel data is
received from the DAQ
messages. Use MC
DAQ Read.vi to obtain
input samples as
single-point, array, or
waveform.

1—Polling

In this mode the data
from the Measurement
task is uploaded from
the ECU whenever
MC DAQ Read.vi is
called.

© National Instruments Corporation

5-109

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Sub-Hierarchy

Type Hierarchy Sub 1 Sub 2 Param Description
DAQ — — # Channels Returns the number of
channels initialized in a
DAQ channel list of a
M&C Measurement

task. This is the number
of array entries required
when using MC DAQ
Read.vi.

DAQ — — Prescaler Returns the prescaling
factor which is used to
reduce the desired
transmission frequency
of the associated DAQ
list.

DAQ — — Sample Rate Returns the selected
Sample Rate in Hz for
the M&C Measurement
task, which may be
obtained with MC DAQ
Initialize.vi.

ECU M&C Toolkit User Manual 5-110 ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5 ECU M&C API for LabVIEW

Type

Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

DAQ

Samples
Pending

Returns the number of
samples available to be
read using MC DAQ
Read.vi. If you set the
number of samples to
read input of MC DAQ
Read.vi to this value,
DAQ Read returns
immediately without
waiting. This property
applies only to tasks
initialized with mode of
Input and sample rate
greater than zero. For all
other configurations, it
returns an error. If this
property is queried
before the DAQ list is
started, it always returns
zero. Start the DAQ list
first with MC DAQ
Start Stop.vi before you
query this property.

DAQ

CCP

DTO ID

Returns the DTO ID
(Data Transmission
Object) which is used by
the ECU to send DAQ
list data to the CCP
master.

© National Instruments Corporation

5-111

ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

DAQ

CCP

DTO Task

Returns the NI-CAN
task reference for the
DTO ID (Data
Transmission Object,
the CAN task reading
frames from the slave
device). For example,
you might use this to set
CAN properties for this
task. Handle with
extreme care, as those
properties are usually set
correctly by the ECU
M&C Toolkit itself.

DAQ List

CANID

Returns the CAN ID for
the specified DAQ list if
mcPropDAQList_
CANIdSelectMode ==
CAN_ID_FIXED.

DAQ List

CAN ID Select
Mode

Returns the condition
for selecting the CAN
ID for the specified
DAQ list.

0—CAN_ID_FIXED

The CAN Identifier is a
predefined fixed
number.

1—CAN_ID_
VARIABLE

The CAN Identifier is a
variable number.

2—CAN_ID_DTO_ID

The CAN Identifier is
the same as the DTO
identifier.

ECU M&C Toolkit User Manual

5-112

ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5

Type

Hierarchy

Sub-Hierarchy

Sub 1 Sub 2

Param

Description

r
=
-

—_

DAQ List

Event
Channels

Returns the number of
allowed event channels
for the specified DAQ
list.

T
2,

DAQ List

Excluded DAQ
Lists

Returns an array
containing the numbers
of DAQ lists not
working together with
the current DAQ list.

DAQ List

First PID

Returns the first Packet
ID for the specified
DAQ list.

DAQ List

MAX Length

Returns the maximal
length of the DAQ list.

DAQ List

Reduction
Allowed

Returns whether or not
the specified DAQ list
allows reduction.

HEE E

Measurement

Address

Returns the address part
of the address of the
selected Measurement
in the memory of the
control unit.

E

Measurement

Byte Order

Returns the specified
byte order:

0—Intel format

Bytes are in little-endian
order, with
least-significant bit first.

1—Motorola format

Bytes are in big-endian
order, with
most-significant bit first.

© National Instruments Corporation

5-113

ECU M&C Toolkit User Manual

ECU M&C API for LabVIEW

Chapter 5

ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Type

Hierarchy

Sub-Hierarchy

Sub 1 Sub 2

Param

Description

Measurement

Comment

Returns the Comment
string of the selected
Measurement.

Measurement

Data Type

Returns the data type of
the Measurement task.

Measurement

Extension

Returns the extension
part of the address. This
optional parameter may
contain additional
address information
defined in the A2L
database. For instance, it
can be used to
distinguish different
address spaces of an
ECU
(multi-microcontroller
devices).

Measurement

Is Virtual?

Indicates whether the
Measurement is virtual.
Virtual Measurements
are not transmitted by
the ECU but are
calculated in the
application. They return
an error when opened in
a DAQ list.

Measurement

Maximum

Returns the maximum
value of the
Measurement.

Measurement

Minimum

Returns the minimum
value of the
Measurement.

ECU M&C Toolkit User Manual

5-114

ni.com

Table 5-5. Poly Values for Value Output (Continued)

Chapter 5

ECU M&C API for LabVIEW

Type

Hierarchy

Sub-Hierarchy

Sub 1 Sub 2

Param

Description

Measurement

Read Only?

Returns TRUE if the
selected Measurement is
read only and can only
be accessed through
MC DAQ Read.vi, or
returns FALSE if the
Measurement can be
accessed through

MC Measurement
Write.vi as well.

Measurement

Unit

Returns the unit string
defined for this
Measurement in the
A2L database.

Version

Build

Returns the build
number of the ECU
M&C software. This
number applies to the
Development, Alpha,
and Beta phases only,
and should be ignored
for the Release phase.

Version

Comment

Returns a comment
string for the ECU M&C
software. If you received
a customrelease of ECU
M&C from National
Instruments, this
comment often
describes special
features of the release.

Version

Major

Returns the major
version of the ECU
M&C software, such as
the 1 in version 1.2.5.

© National Instruments Corporation

5-115

ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-5. Poly Values for Value Output (Continued)

Type

Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

Version

Minor

Returns the minor
version of the ECU
M&C software, such as
the 2 in version 1.2.5.

Version

Update

Returns the update
version of the ECU
M&C software, such as
the 5 in version 1.1.5.

ECU M&C Toolkit User Manual

5-116

ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Measurement Create.vi

Purpose
Creates a Measurement object in memory.
Format
ConversionMame
Measurement Mame ﬂ
ECU ref in oo ECI ref out
Address e "
errar in ==F e error ou
Data Type Q
Input

Conversion Name identifies the referred conversion object defined by
MC Conversion Create.vi.

Measurement Name sets the measurement object name.

ECU ref in is the task reference that links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Create.vi.

Address is a cluster that contains the following values:

B BE E

Address specifies the address part of the source address.

Extension contains the extension part of the source address.

ElE

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

B

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

-

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

ERE

B

source identifies the VI where the error occurred.

© National Instruments Corporation 5-117 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Data Type sets the measurement task data type. Data Type can contain the
LTEL following values:

Data Type Data Format

0 Unsigned byte
1 Signed byte
2 Unsigned word
3 Signed word
4 Unsigned long
5 Signed long
6 Float 32
Output
ECU ref out is the task reference that links to the selected ECU.
Error out describes error conditi9ns. If the Er.ror in clluster indica.ted an
error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

Description

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Use MC Measurement Create.vi to create a measurement object in memory instead of
referring to a predefined measurement in the A2L database.

ECU M&C Toolkit User Manual

5-118 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Measurement Read.vi

Purpose
Reads a single Measurement value from the ECU.
Format
measurement name %
ECU refin LM ECU ref out
) \gii-f-i_i-‘ wvalue
Errar in b=grror aut

Input

Measurement name is the name of a measurement channel stored in the
A2L database file you want to read.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
VlIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Value returns a single sample for the Measurement channel initialized in
measurement name.

© National Instruments Corporation 5-119 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

=mn

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC Measurement Read.vi performs a single point read of a single Measurement from the
selected ECU without opening a Measurement task.

ECU M&C Toolkit User Manual 5-120 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Measurement Write.vi

Purpose
Writes a single Measurement value to the ECU.
Format
measurement name %
ECU refin ECU ref out
walue)
errar in = L4 errar out

Input

Measurement name is the name of a Measurement channel stored in the
A2L database file to which to write a Measurement value.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Value writes a single sample for the Measurement channel initialized in
measurement name.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

HE EE

status is TRUE if an error occurred. This VI will not execute when

TF .

_TE | status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-121 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output
ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.
Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.
status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC Measurement Write.vi performs a single point write of a Measurement into the selected
ECU without opening a Measurement task. MC Measurement Write.vi can only be
performed if the Measurement is not set to read only. To query if an ECU Measurement
channel can be accessed by MC Measurement Write.vi, first call MC Get Property.vi with
the parameter Measurement/Read Only?.

ECU M&C Toolkit User Manual 5-122 ni.com

Chapter 5 ECU M&C API for LabVIEW
MC Program.vi
Purpose
Programs a memory block on the ECU.
Format
ECU refin ECUI & ECU ref out
address
data f Bl errar ouk
error in

Input

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.
:

Address specifies the address part of the destination address.
Extension contains the extension part of the destination address.
Tvs Data contains the byte array to be transmitted to the ECU.
= Error in is a cluster which describes error conditions occurring before the
- a

error in cluster to error out.

Vlexecutes. If an error has already occurred, the VI returns the value of the

status is TRUE if an error occurred. This VI is not executed when

TF .

_TF | status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-123

ECU M&C Toolkit User Manual

Chapter 5

Output

ECU M&C API for LabVIEW
ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

If you are using the CCP protocol, MC Program.vi implements the CCP command
PROGRAM. The command is used to program the specified data into nonvolatile ECU
memory (Flash, EEPROM, etc.). Programming starts at the selected MTAO address and
extension defined in the Address cluster.

If you are using the XCP protocol, MC Program.vi implements the XCP command
PROGRAM. The command is used to program a non-volatile memory segment in the

ECU slave. The end of the programming sequence is indicated by using the MC Program
Reset.vi command which executes the XCP command PROGRAM_RESET. The slave
device will move into a disconnected state. Usually a hardware reset of the slave device is
executed. This command may support block transfer similar to the commands DOWNLOAD
and DOWNLOAD_NEXT.

For further information on how to use the MC Program.vi and details on block mode
transfers, refer to the ASAM XCP Part 2 Protocol Layer Specification.

ECU M&C Toolkit User Manual 5-124 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Program Reset.vi

Purpose
Indicates the end of a programming sequence.
Format
ECU ref in EcU ref out
Error in error out
Input

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

© National Instruments Corporation 5-125 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0

JEF] means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

If you are using the XCP protocol, MC Program Reset.vi implements the XCP command
PROGRAM_RESET. This optional command indicates the end of a non-volatile memory
programming sequence and may or may not have a response from the ECU. In either case,
the slave device will go into a disconnected state.

MC Program Reset.vi may be used to reset a slave device for other purposes. For further
information on how to use program ECU memory and to use the MC Program Reset.vi
command refer to the ASAM XCP Part 2 Protocol Layer Specification.

ECU M&C Toolkit User Manual 5-126 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Program Start.vi

Purpose
Indicates the start of a programming sequence.
Format
ECU ref in EcU ref out
. TECU
Error in errar out
Input

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

© National Instruments Corporation 5-127 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0

JEF] means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
If you are using the XCP protocol, MC Program Start.vi implements the XCP command
PROGRAM_START. This optional command indicates the beginning of a programming
sequence into a non-volatile memory area. If the slave device is not in a state which permits
programming, an error is returned. The memory programming commands The end of a
non-volatile memory programming sequence is indicated by using the MC Program Start.vi
function.

For further information on how to use program ECU memory and to use the MC Program
Start.vi command refer to the ASAM XCP Part 2 Protocol Layer Specification.

ECU M&C Toolkit User Manual 5-128 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC Set Property.vi

Purpose

Sets a property for the specified A2L database file, Measurement Task or Characteristic
referenced by the reference in terminal. The poly VI selection determines the property to set.

Format
name
reference in reference out
walue)
SFFOF iR = error ouk
Input

Name is not used, and can be left unwired. This parameter may be used for

further extensions.

Reference in specifies a valid task handle depending on the information
which must be set. If a generic property must be set, a DB ref handle is
needed. If a Measurement property must be set, a valid DAQ ref handle
must be wired into reference in. If an ECU property must be set, a valid
ECU ref handle must be wired into reference in.

Value is a poly input that specifies the property value. You select the
property to set as value by selecting the poly VItype. The data type of value

is also determined by the poly VI selection. For information on the different
properties provided by MC Set Property.vi, refer to the Poly VI Types
section. To select the property, right-click the VI, go to Select Type and
select the property by name.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

© National Instruments Corporation 5-129 ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0
o

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Reference out is a copy of the reference in terminal which can be wired

through subsequent ECU M&C VIs.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

There are four types of properties which can be modified in the poly input value:
ECU-specific properties, DAQ-specific properties, Characteristic-specific properties,
and Measurement-specific properties.

ECU-Specific Properties

ECU-specific properties relate to the setting of the ECU. If you need to change a property of
the ECU you need a valid ECU reference, but the ECU should not be connected. First, call
MC ECU Open.vi, followed by MC Set Property.vi and then MC ECU Connect.vi. If you
have already connected to the ECU, you can change an ECU property by calling MC ECU
Disconnect.vi, followed by MC Set Property.vi, and then MC ECU Connect.vi again.
Refer to Table 5-6 for a list of ECU-specific properties that can be used to define the poly
input value.

ECU M&C Toolkit User Manual 5-130 ni.com

DAQ-Specific Properties

Chapter 5

ECU M&C API for LabVIEW

You cannot set a property while the task is running. If you need to change a property prior to
starting the task, call MC DAQ Initialize.vi, followed by MC Set Property.vi and then
MC DAQ Start Stop.vi. After you start the task, you also can change a property by calling
MC DAQ Start Stop.vi, followed by MC Set Property.vi, and then restart the task with
MC DAQ Start Stop.vi. Refer to Table 5-7 for a list of DAQ-specific properties that can be
used to define the poly input value.

Poly VI Types

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value

Sub-Hierarchy

Type Hierarchy

Sub 1

Sub 2

Param

Description

ECU

Byte Order

Sets the byte order of the
CCP slave device.

0—MSB_LAST

The CCP slave device uses
the MSB_LAST (Intel) byte
ordering.

1—MSB_FIRST

The CCP slave device uses
the MSB_FIRST
(Motorola) byte ordering.

ECU

Command
Byte Order

Sets the byte order of the
CCP or XCP commands.

0—MSB_LAST

The CCP slave device uses
the MSB_LAST (Intel) byte
ordering.

1—MSB_FIRST

The CCP slave device uses
the MSB_FIRST
(Motorola) byte ordering.

ECU

Checksum
DLL Name

Sets the file name of the
Checksum DLL used for
verifying the checksum.

© National Instruments Corporation

5-131

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Sub-Hierarchy

Type Hierarchy Sub 1 Sub 2 Param Description

ECU CCP — Baud Rate Sets the Baud Rate in use
by the interface. This
property applies to all tasks
initialized with the
Interface. You can specify
the following basic baud
rates as the numeric rate:
33333, 83333, 100000,
125000, 200000, 250000,
400000, 500000, 800000,
and 1000000. You also can
specify advanced baud rates
in the form 8000XXYY hex,
where YY is the value of Bit
Timing Register 0 (BTRO),
and XX is the value of Bit
Timing Register 1 (BTR1).

ECU CCP — CRO ID Sets the CRO ID
(Command Receive Object)
which is used to send
commands and data from
the host to the slave device.

ECU CCP — DTO ID Sets the DTO ID, which is
the CAN identifier for the
Data Transmission Object
(DTO). The DTO is used by
the CCP slave devices to
return data and status
information to the
application.

ECU CCp — Master ID Sets the CAN identifier of
the CCP master that is used
by the CCP command
EXCHANGE_ID as a
parameter.

ECU M&C Toolkit User Manual 5-132 ni.com

Chapter 5

ECU M&C API for LabVIEW

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type

Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

ECU

CCP

SeedKey Cal
Name

Sets the file name of the
SeedKey DLL used for
Calibration purposes.

ECU

CCP

SeedKey
DAQ Name

Sets the file name of the
SeedKey DLL used for
DAQ purposes.

ECU

CCP

SeedKey Prog
Name

Sets the file name of the
SeedKey DLL used for
programming purposes.

L

ECU

CCP

Single Byte
DAQ List?

Sets the ECU to support
single-byte or multi-byte
DAQ list entries.

B EHEH

ECU

CCP

Station
Address

Sets the Station Address of
the slave device. CCP is
based on the idea that
several ECUs can share the
same CAN Arbitration IDs
for CCP communication. To
avoid communication
conflicts, CCP defines a
Station Address that must
be unique for all ECUs
sharing the same CAN
Arbitration IDs. Unless an
ECU has been addressed by
its Station Address, the
ECU must not react to CCP
commands sent by the CCP
master.

ECU

CCP

Misc

Skip
EXCHANGE
ID

Sets whether or not the CCP
command EXCHANGE_ID
should be suppressed during
connection to the ECU.

© National Instruments Corporation

5-133

ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Sub-Hierarchy
Type Hierarchy Sub 1 Sub 2 Param Description
ECU CCP Optional ACTION Sets whether the ECU
Commands | SERVICE supports the optional
ASAM CCP Command
ACTION_SERVICE.
ECU CCP Optional BUILD Sets whether the ECU
Commands | CHECKSUM | supports the optional
ASAM CCP Command
BUILD_CHKSUM.
ECU CCP Optional CLEAR Sets whether the ECU
Commands | MEMORY supports the optional
ASAM CCP Command
CLEAR_MEMORY.
ECU CCP Optional CLEAR Sets whether the ECU
Commands | MEMORY supports the optional
ASAM CCP Command
CLEAR_MEMORY.
ECU CCP Optional DIAG Sets whether the ECU
Commands | SERVICE supports the optional
ASAM CCP Command
DIAG_SERVICE.
ECU CCP Optional DNLOAD 6 Sets whether the ECU
Commands supports the optional
ASAM CCP Command
DNLOAD _6.
ECU CCP Optional GET Sets whether the ECU
Commands | ACTIVE supports the optional
CALPAGE | ASAM CCP Command
GET_ACTIVE_CAL_
PAGE.
ECU CCP Optional GET S Sets whether the ECU
Commands | STATUS supports the optional
ASAM CCP Command
GET_S_STATUS.
ECU M&C Toolkit User Manual 5-134 ni.com

Chapter 5

ECU M&C API for LabVIEW

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Sub-Hierarchy
Type Hierarchy Sub 1 Sub 2 Param Description
ECU CCP Optional GET SEED Sets whether the ECU
Commands supports the optional
ASAM CCP Command
GET_SEED.
ECU CCP Optional MOVE Sets whether the ECU
Commands supports the optional
ASAM CCP Command
MOVE.
ECU CCP Optional PROGRAM Sets whether the ECU
Commands supports the optional
ASAM CCP Command
PROGRAM.
ECU CCP Optional PROGRAM 6 | Sets whether the ECU
Commands supports the optional
ASAM CCP Command
PROGRAM_6.
ECU CCP Optional SELECT Sets whether the ECU
Commands | CAL PAGE supports the optional
ASAM CCP Command
SELECT_CAL_PAGE.
ECU CCP Optional SET S Sets whether the ECU
Commands | STATUS supports the optional
ASAM CCP Command
SET_S_STATUS.
ECU CCP Optional SHORT UP Sets whether the ECU
Commands supports the optional
ASAM CCP Command
SHORT_UP.
ECU CCP Optional START Sets whether the ECU
Commands | STOP ALL supports the optional
ASAM CCP Command
START_STOP_ALL.
© National Instruments Corporation 5-135 ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type

Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

ECU

CCP

Optional
Commands

TEST

Sets whether the ECU
supports the optional
ASAM CCP Command
TEST.

ECU

CCP

Optional
Commands

UNLOCK

Sets whether the ECU
supports the optional
ASAM CCP Command
UNLOCK.

ECU

Misc

Timing
Factor

Sets the timing factor to
increase the XCP or CCP
Command timeouts by this
value. For details on the
default Command Timeout
values, refer to the CCP or
XCP Protocol Specification.

ECU

XCP

SeedKey DLL

Sets the file name of the
XCP SeedKey DLL.

ECU

XCP

Access
Method

Sets the selected access
mode:

0x00—Absolute Access
Mode (default). The MTA
uses physical addresses

0x01—Functional Access
Mode. The MTA functions
as a block sequence number
of the new flash content file.

0x80...0xFF—User
defined. It is possible to use
different access modes for
clearing and programming.

ECU M&C Toolkit User Manual

5-136

ni.com

Chapter 5

ECU M&C API for LabVIEW

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Sub-Hierarchy

Type Hierarchy

Sub 1

Sub 2

Param

Description

ECU

XCP

Compression
Method

Sets the selected
compression method used
for MC Program.vi.

0—data is uncompressed.

0x80...0xFF—User defined.

ECU

XCP

Encryption
Method

Sets the selected encryption
method used for MC
Program.vi.

0x00—data is not encrypted
0x80...0xFF—User defined

ECU

XCP

Programming
Method

Sets the selected
programming method used
for MC Program.vi.

0x00—Sequential
programming.

0x80...0xFF—User defined.

ECU

XCpP

CAN

Baudrate

Sets the Baud Rate in use by
the NI-CAN Interface.
Basic baud rates such as
125000 and 500000 are
specified as the numeric
rate. Advanced baud rates
are specified as 8000XXYY
hex, where YY is the value of
Bit Timing Register 0
(BTRO), and XX is the value
of Bit Timing Register 1
(BTR1) of the CAN
controller chip.

© National Instruments Corporation

5-137

ECU M&C Toolkit User Manual

Chapter 5

ECU M&C API for LabVIEW

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type

Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

ECU

XCP

CAN

CROId

Sets the CRO ID (Command
Receive Object) which is
used to send commands and
data from the host to the
slave device.

ECU

XCP

CAN

DTO Id

Sets the DTO ID (Data
Transmission Object) which
is used by the ECU to
respond to XCP commands
and send data and status
information to the XCP
master.

ECU

XCP

Ethernet

IP Address

Sets the IP address of the
slave device. A slave device
connected by Ethernet and
TCP/TP or UDP/IP protocol
is addressed by its IP
Address and Port number.

ECU

XCp

Ethernet

IP Port

Sets the IP Port number of
the slave device. A slave
device connected by
Ethernet and TCP/IP or
UDP/IP protocol is
addressed by its IP Address
and Port number.

ECU M&C Toolkit User Manual

5-138

ni.com

Chapter 5 ECU M&C API for LabVIEW

Table 5-7. DAQ-Specific Property Value Types for the POLY Input Value

Type

Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

DAQ

Event
Channel
Name

Sets the event channel name to
which the Measurement task is
assigned.

B

DAQ

Mode

Sets the selected I/0O mode for
the M&C Measurement task.

0—DAQ List

The data is transmitted from the
ECU in equidistant time
intervals as defined in the A2L
database. The data can be read
back with the MC DAQ
Read.vi as Single point data
using sample rate = 0, or as a
waveform using a sample rate >
0. Input channel data is received
from the DAQ messages. Use
MC DAQ Read.vi to obtain
input samples as single-point,
array, or waveform.

1—Polling

In this mode the data from the
Measurement task is uploaded
from the ECU whenever

MC DAQ Read.vi is called.

DAQ

Prescaler

Sets the prescaling factor, which
reduces the desired
transmission frequency of the
associated DAQ list.

© National Instruments Corporation

5-139

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Table 5-7. DAQ-Specific Property Value Types for the POLY Input Value (Continued)

Sub-Hierarchy

Type Hierarchy Sub 1 Sub 2 Param Description

DAQ — — Sample SampleRate specifies the
Rate timing to use for the samples of
the (NI-CAN) task. The sample
rate is specified in Hertz
(samples per second). A sample
rate of zero means to sample
immediately.

For a DAQMode of
mcDAQModeDAQList,
SampleRate of zero means that
MC DAQ Read.vi returns a
single sample from the most
recent messages received, and
greater than zero means that
MC DAQ Read.vi returns
samples timed at the specified
rate. For DAQMode of
mcDAQModePolling,
SampleRate is ignored.

DAQ CCP — DTO ID Sets the DTO ID (Data

Transmission Object) which is
used by the ECU to send DAQ
list data to the CCP master.

ECU M&C Toolkit User Manual 5-140 ni.com

Characteristic-Specific Properties

Chapter 5 ECU M&C API for LabVIEW

Table 5-8. Characteristic-Specific Property Value Types for the PropertylD Input Value

Sub-Hierarchy

Type Hierarchy Sub 1 Sub 2 Param Description
Characteristic — — X Axis Sets the X-axis values on which
the Characteristic is defined.
The Characteristic dimension
must be at least 1.
Characteristic — — Y Axis Sets the Y-axis values on which
the Characteristic is defined.
The Characteristic dimension
must be 2.
Characteristic — — Byte Sets the specified byte order of
Order the entire characteristic:

0O—1Intel format

Bytes are in little-endian order,
with least-significant bit first.

1—Motorola format

Bytes are in big-endian order,
with most-significant bit first.

Measurement-Specific Properties

Table 5-9. Measurement-Specific Property Value Types for the PropertylD Input Value

Type

Hierarchy

Sub-Hierarchy

Sub 1

Sub 2

Param

Description

Measurement

Byte
Order

Sets the specified byte order of
the selected Measurement:

0—Intel format

Bytes are in little-endian order,
with least-significant bit first.

1—Motorola format

Bytes are in big-endian order,
with most-significant bit first.

© National Instruments Corporation

5-141

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC Upload.vi

Purpose

Uploads data from an ECU.
Format

ECU ref in ECUIMEC ECU ref ouk
e T @ e
errar in ====ﬂ

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the source address in the
ECU from which the memory block is copied.

Extension specifies the extension part of the source address.
’ ’
Block size is the size of the data block, in bytes, to be uploaded.

Error in is a cluster which describes error conditions occurring before the

Vlexecutes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

_TF | status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

ECU M&C Toolkit User Manual 5-142

ni.com

Chapter 5 ECU M&C API for LabVIEW

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Data is a byte array which receives the uploaded data from the ECU.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

pTF]

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.
Description
MC Upload.vi implements the UPLOAD command. A data block of the specified length,
starting at the specified address, is uploaded from the ECU. MC Upload.vi will set the
Memory Transfer Address pointer MTAO to the appropriate value as defined in the Address
cluster.

If you are using the CCP protocol, MC Upload.vi implements the UPLOAD command. A
data block of the specified length, starting at the specified address, is uploaded from the ECU.
MC Upload.vi will set the Memory Transfer Address pointer MTAO to the appropriate value
as defined in the Address cluster.

If you are using the XCP protocol, MC Upload.vi implements the XCP command UPLOAD.
A data block of the specified length starting at the specified address is uploaded from the
ECU. The Memory Transfer Address pointer MTAO is post-incremented by the given number
of data elements. If the slave device does not support block transfer mode, all uploaded data
is transferred in a single response packet. If block transfer mode is supported, the uploaded
data is transferred in multiple responses on the same request packet. For the master there are
no limitations allowed concerning the maximum block size.

For further information on how to upload data and to use the MC Upload.vi command refer
to the ASAM XCP Part 2 Protocol Layer Specification.

© National Instruments Corporation 5-143 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC XCP Copy Cal Page.vi

Purpose
Forces a copy transaction of one calibration page to another.
Format
soUrce page
source segment am
ECU refin ECU ref out
destination segment - &
destination page —I_E &rror out
errar in
Input

Source page specifies the logical page number of the source data page.

Source segment specifies the logical segment number of the source data
page.
ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Destination page specifies the logical segment number of the destination
data page.

Destination segment specifies logical page number of the destination data
page.

HE E EE

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

R

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

ECU M&C Toolkit User Manual 5-144 ni.com

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

Description

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

MC XCP Copy Cal Page.vi implements the XCP command COPY_CAL_PAGE and forces
the slave to copy one calibration page to another. This command is only available if more than
one calibration page is defined. In principal, any page of any segment can be copied to any
page of any other segment but there may be restrictions.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

© National Instruments Corporation

5-145 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC XCP Get Cal Page.vi

Purpose
Queries a calibration page setting.
Format
rnode
ECU ref in qﬂm ECU ref ouk
segment % page
error in == b= gpror out

Input

Mode specifies the access mode:
’

Mode =1

The given page is used by the slave device application.

Mode =2

The slave device XCP driver will access the given page.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Segment specifies the selected logical data segment number.

error in cluster to error out.

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

ECU M&C Toolkit User Manual 5-146

ni.com

Output

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

Page returns the logical data page number.
® ¢ P

error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

Description

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

MC XCP Get Cal Page.vi implements the XCP command GET_CAL_PAGE and queries the
logical number for the calibration data page that is currently activated for the specified access

mode and data segment.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

© National Instruments Corporation

5-147 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC XCP Get ID.vi

Purpose
Queries session configuration or slave device identification.
Format
reference in ECUMEC reference out
type - .% id string
error in == b= gpror ot
Input

Reference in is the reference to any opened A2L database, a selected ECU,
or an ECU which is already connected (with MC Database Open.vi, MC
ECU Select.vi, MC ECU Open.vi, or MC ECU Connect.vi). The type of
this reference depends on the property you want to get.

Type specifies the type of the requested identification:

Type Description
0 ASCII text
1 ASAM-MC?2 filename without path and extension
2 ASAM-MC? filename with path and extension
3 URL where the ASAM-MC?2 file can be found
4 ASAM-MC?2 file to upload
128..255 User defined

ECU M&C Toolkit User Manual

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

5-148 ni.com

Chapter 5 ECU M&C API for LabVIEW

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Reference out is a copy of the reference in terminal which can be wired
through subsequent ECU M&C Vls.

Id contains the queried identification string.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

Description

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

MC XCP Get ID.vi implements the XCP command GET_ID and returns session
configuration or slave device identification information of the selected ECU slave device.
The supported types are implementation specific of the ECU slave device. The identification
string is ASCII text format.

© National Instruments Corporation

5-149 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC XCP Get Status.vi

Purpose

Queries the current session status from an ECU slave device.

Format

mF session id
ECU ref in ECU ref out
ijl‘j L cession skatus
Error in - _|—E resource mask

error ouk

Input

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
”

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.
Output

Session Id returns the defined session configuration ID.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Session status returns the current status of the selected ECU.

g EE

ECU M&C Toolkit User Manual 5-150 ni.com

Chapter 5 ECU M&C API for LabVIEW

Resource mask is the current resource protection status of the selected

ECU.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC XCP Get Status.vi implements the XCP command GET_STATUS and returns all
current status information of the selected ECU slave device, including the status of the
resource protection, pending store requests and the general status of data acquisition and
stimulation.

Current Session Status

Session status contains a bit mask which is described below:

Bit
Number Flag Description

0 STORE_CAL_REQ REQuest to STORE CALibration data:
0—STORE_CAL_REQ mode is reset.
1—STORE_CAL_REQ mode is set.

1 Unused —

2 STORE_DAQ_REQ REQuest to STORE DAQ list:
0—STORE_DAQ_REQ mode is reset.
1—STORE_DAQ_REQ mode is set.

© National Instruments Corporation 5-151 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Bit
Number Flag Description

3 CLEAR_DAQ_REQ REQuest to CLEAR DAQ configuration:
0—CLEAR_DAQ_REQ is reset.
1—CLEAR_DAQ_REQ is set.

4 Unused —

5 Unused —

6 DAQ_RUNNING Data Transfer:
0—The data transfer is not running.
1—The data transfer is running.

7 RESUME RESUME Mode:
0—The slave device is not in RESUME mode.
1—The slave device is in RESUME mode.

The STORE_CAL_REQ flag indicates a pending request to save the calibration data into
non-volatile memory. As soon as the request has been fulfilled, the slave will reset the
appropriate bit. The slave device may indicate this by transmitting an EV_STORE_CAL
event packet.

The STORE_DAQ_REQ flag indicates a pending request to save the DAQ list setup in
non-volatile memory. As soon as the request has been fulfilled, the slave will reset the
appropriate bit. The slave device may indicate this by transmitting an EV_STORE_DAQ
event packet.

The CLEAR_DAQ_REQ flag indicates a pending request to clear all DAQ lists in
non-volatile memory. All ODT entries are reset to address = 0, extension = 0, size = 0 and
bit_offset = FF. Session configuration ID is reset to 0. As soon as the request has been
fulfilled, the slave will reset the appropriate bit. The slave device may indicate this by
transmitting an EV_CLEAR_DAQ event packet. If the slave device does not support the
requested mode, an ERR_OUT_OF_RANGE is returned.

The DAQ_RUNNING flag indicates that at least one DAQ list has been started and is in
RUNNING mode.

The RESUME flag indicates that the slave is in RESUME mode.

ECU M&C Toolkit User Manual 5-152 ni.com

Chapter 5 ECU M&C API for LabVIEW

Resource mask contains the current resource protection status as a bit mask described below:

Bit
Number Flag Description

0 CAL/PAG REQuest to STORE CALibration data:
0—STORE_CAL_REQ mode is reset.
1—STORE_CAL_REQ mode is set.

1 Unused —

2 DAQ DAQ list commands (DIRECTION = DAQ):
0—DAQ list commands are not protected with SEED & Key
mechanism.
1—DAQ list commands are protected with SEED & Key
mechanism.

3 STIM DAQ list commands (DIRECTION = STIM):
0—DAQ list commands are not protected with SEED & Key
mechanism.
1—DAQ list commands are protected with SEED & Key
mechanism.

4 PGM ProGraMming commands:
0—ProGraMming commands are not protected with SEED &
Key mechanism.
1—ProGraMming commands are protected with SEED & Key
mechanism

5 Unused —

6 Unused —

7 Unused —

The CAL/PAG flags indicates that all commands of the CALibration/PAGing group are
protected and will return an ERR_ACCESS_LOCKED upon an attempt to execute the
command without a previous successful GET_SEED/UNLOCK sequence.

The PGM flags indicates that all the commands of the ProGraMming group are protected and
will return a ERR_ACCESS_LOCKED upon an attempt to execute the command without a
previous successful GET_SEED/UNLOCK sequence.

© National Instruments Corporation 5-153 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

The parameter Session Id contains the Session configuration ID. The

session configuration ID must be set by a prior MC XCP Set Request.vi call with
STORE_DAQ_REQ set. This allows the master device to verify that automatically started
DAQ lists contain the expected data transfer configuration.

ECU M&C Toolkit User Manual 5-154 ni.com

Chapter 5 ECU M&C API for LabVIEW
MC XCP Program Prepare.vi
Purpose
Prepares the programming of non volatile memory.
Format
ECU refin ECU i ECU ref out
address =
code size fﬁcu errar auk
Error in
Input
ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.
Address is a cluster which contains the following values.
:
Address specifies the address part of the source address.
’ ’
Extension contains the extension part of the source address.
’
Code size determines the size of data code to be downloaded by the
subsequent memory programming.
Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

| TF | .

status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.
source identifies the VI where the error occurred.

© National Instruments Corporation 5-155

ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output
ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.
Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.
status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC XCP Program Prepare.vi may be used to indicate a data download as a pre-condition
for non-volatile memory reprogramming. The Memory Transfer address (MTA) pointer is set
to the volatile memory location specified by the parameters Address and Extension. The
download itself is done by using subsequent standard commands like MC Download.vi. The
slave device must ensure that the target memory area is available and it is in an operational
state which permits the download of code. If not, an error will be returned.

MC XCP Program Prepare.vi implements the optional XCP PROGRAM_PREPARE
command defined by the XCP specification. For further information on how to program
non-volatile ECU memory refer to the ASAM XCP Part 2 Protocol Layer Specification.

ECU M&C Toolkit User Manual 5-156 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC XCP Program Verify.vi

Purpose
Performs a non-volatile memory certification task on the ECU device.
Format
verification made
ECU ref in ﬁiiﬂm ECU ref out
werification type 1ECL
werification value f I Bfror out
errar in
Input
Verification mode specifies the type of the requested identification:
Type Description
0 Request to start internal routine.
1 Send a Verification Value stored in Verification value.
ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.
Verification type specifies the Verification Type of the requested program
verification. The Verification Type is a bit mask described below:
Verification Type Description
0x0001 Calibration area(s) of the flash.
0x0002 Code area(s) of the flash.
0x0004 Complete flash content.
0x0008 ... 0x0080 Reserved.
0x0100 ... 0xFF00 User defined.

© National Instruments Corporation 5-157 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Verification value contains the selected verification value if Mode=1.

Error in is a cluster which describes error conditions occurring before the

Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

=m o
[TF |
Output
am o

Description

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

MC XCP Program Verify.vi may be used to verify the success of non-volatile memory

reprogramming.

With Verification mode set to 00 the master may request the slave to begin internal test
routines to check whether the new flash contents fits to the rest of the flash. Only the result is
of interest. With Verification mode set to 01, the master may tell the slave that it will be
sending a Verification value to the slave. The definition of the Verification mode is

ECU M&C Toolkit User Manual

5-158 ni.com

Chapter 5 ECU M&C API for LabVIEW

project-specific. The master receives the Verification mode from the project-specific
programming flow control and passes it to the slave.

MC XCP Program Verify.vi implements the optional XCP PROGRAM_VERIFY
command defined by the XCP specification. For further information on how to program
non-volatile ECU memory refer to the ASAM XCP Part 2 Protocol Layer Specification.

© National Instruments Corporation 5-159 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC XCP Set Cal Page.vi

Purpose
Sets a calibration page.
Format
mode
ECU ref in qlm ECU ref out
segrenk
gpage m_lTrﬂ % errar ouk
Brrar in
Input

Mode is a bit mask described below:

Bit Description

The given page is used by the slave device application.

The slave device XCP driver will access the given page.

Unused.

Unused.

Unused.

Unused.

Unused.

The logical segment number is ignored. The command applies to all segments.

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Segment specifies the selected logical data segment number.

Page specifies the logical data page number.

ECU M&C Toolkit User Manual 5-160 ni.com

Chapter 5 ECU M&C API for LabVIEW

Error in is a cluster which describes error conditions occurring before the
Vlexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

=mn

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

MC XCP Set Cal Page.vi implements the XCP command SET_CAL_PAGE and sets the
access mode for a calibration data segment, if the slave device supports calibration data page
switching. A calibration data segment and its pages are specified by logical numbers.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to set up a request.

© National Instruments Corporation 5-161 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

MC XCP Set Request.vi

Purpose
Performs a request to save session and device information to non-volatile memory.
Format
rmode
ECU refin qm ECU ref ouk
session id - ﬁlj
errar in == - error out
Input

Mode is a bit mask described below:

Bit Description
0 Request to store calibration data in non-volatile memory.
1 Unused.
2 Request to save all DAQ lists, which have been selected with

START_STOP_DAQ_LIST(Select) into non-volatile memory.
The slave also must store the session configuration ID in non-volatile memory.

Upon saving, the slave first must clear any DAQ list configuration that might
already be stored in non-volatile memory.

3 Request to clear all DAQ lists in non-volatile memory. All ODT entries reset to
address = 0, extension = 0, size = 0 and bit_offset = FF. Session configuration
ID reset to 0.

4 Unused.
5 Unused.
6 Unused.
7 Unused.

ECU M&C Toolkit User Manual 5-162 ni.com

Chapter 5 ECU M&C API for LabVIEW

ECU ref in is the task reference which links to the selected ECU. This
U352 | reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Session ID is a session configuration ID that is stored in non-volatile
memory together with the information requested by the Mode parameter.

Error in is a cluster which describes error conditions occurring before the
VIexecutes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

© National Instruments Corporation 5-163 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Description

MC XCP Set Request.vi implements the XCP command SET_REQUEST and is used to
save session configuration information into non-volatile memory in the ECU.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to set up a request.

ECU M&C Toolkit User Manual 5-164 ni.com

Chapter 5 ECU M&C API for LabVIEW

MC XCP Set Segment Mode.vi

Purpose

Format

Input

Sets the mode of a specified segment.

ECU refin ECU ref out
seqrent
mode errar ouk

errar in

Elid

ECU ref in is the task reference which links to the selected ECU. This
reference is originally returned from MC ECU Open.vi or MC ECU
Select.vi, and then wired through subsequent VIs.

Segment specifies the logical data segment number.
Mode specifies the mode for the segment.

Error in is a cluster which describes error conditions occurring before the
VI executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

© National Instruments Corporation 5-165 ECU M&C Toolkit User Manual

Chapter 5 ECU M&C API for LabVIEW

Output
ECU ref out is the same as ECU ref in. Wire the task reference to
subsequent VIs for this task.
Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.
status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC XCP Set Segment Mode.vi implements the XCP command SET_SEGMENT_MODE
and sets the selected segment into the specified mode. If Mode = O the segment disables the
FREEZE mode, if Mode = 1 the segment is set to FREEZE mode through an XCP
STORE_CAL_REQ operation.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to set up a request.

ECU M&C Toolkit User Manual 5-166 ni.com

ECU M&C API for C

This chapter lists the ECU M&C functions and describes the format, purpose, and parameters.
Unless otherwise stated, each ECU M&C function suspends execution of the calling thread
until it completes. The functions in this chapter are listed alphabetically.

Section Headings

The following are section headings found in the ECU M&C API for C functions.

Purpose

Each function description includes a brief statement of the purpose of the function.

Format

The format section describes the format of each function for the C programming language.

Input and Output

The input and output parameters for each function are listed.

Description

The description section gives details about the purpose and effect of each function.

List of Data Types

The following data types are used with functions of the ECU M&C API for C.

Table 6-1. Data Types for the ECU M&C API for C

Data Type Purpose
i8 8-bit signed integer
il6 16-bit signed integer
i32 32-bit signed integer

© National Instruments Corporation 6-1 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Table 6-1. Data Types for the ECU M&C API for C (Continued)

Data Type Purpose

ud 8-bit unsigned integer

ul6 16-bit unsigned integer

u32 32-bit unsigned integer

32 32-bit floating-point number

fo4 64-bit floating-point number

str ASCII string represented as an array of characters terminated by null
character (\0"). This type is used with output strings. str is typically used
in the ECU M&C API as a pointer to a string, as char*.

cstr ASCII string represented as an array of characters terminated by null
character (\0"). This type is used with input strings. cstr is typically used
in the ECU M&C API as a pointer to a string, as const char*.

mcTypeTaskRef Reference to an initialized database task, ECU task, or Measurement task.

mcAddress C struct which represents the target address for a specific CCP operation
in the ECU.

List of Functions

The following table contains an alphabetical list of the ECU M&C Toolkit API functions.

Table 6-2. Functions for the ECU M&C API for C

Function Purpose

mcBuildChecksum Calculates a checksum over a defined memory range within the
ECU.

mcCalculateChecksum Calculates the checksum of a data block in memory.

mcCCPActionService Calls an implementation-specific action service on the ECU.

mcCCPDiagService Calls an implementation-specific diagnostic service on the ECU.

mcCCPGetActiveCalPage Retrieves the ECU Memory Transfer Address pointer to the
calibration data page.

mcCCPGetResult Uploads data from the ECU when the Memory Transfer Address

pointer 0 (MTAO) has been set.

ECU M&C Toolkit User Manual 6-2

ni.com

Chapter 6

Table 6-2. Functions for the ECU M&C API for C (Continued)

Function

Purpose

mcCCPGetSessionStatus

Retrieves the current status of the Calibration Session.

mcCCPGetVersion Retrieves CCP version implemented in the ECU.
mcCCPMoveMemory Moves a memory block on the ECU.
mcCCPSelectCalPage Sets the specified address to be the start address of the calibration

data page.

mcCCPSetSessionStatus

Updates the ECU with the current state of the calibration session.

mcCharacteristicRead

Reads all data from a named Characteristic on the ECU which is
identified by the ECU Reference handle.

mcCharacteristicReadSi
nglevalue

Reads a single value from a named Characteristic on the ECU
which is identified by the ECU Reference handle.

mcCharacteristicWrite

Downloads data to a Characteristic for a selected ECU.

mcCharacteristicWriteS
inglevValue

Writes a single value to a named Characteristic on the ECU.

mcClearMemory

Clears the contents of the specified ECU memory.

mcConversionCreate

Creates a signal conversion object in memory.

mcDAQClear Stops communication for the Measurement task and clears
the task.
mcDAQInitialize Initializes a Measurement task for the specified Measurement

channel list.

mcDAQListInitialize

Defines a DAQ list on a specific DAQ list number and initializes
the Measurement task for the specified Measurement channel list.
Initializes a Measurement task for the specified Measurement
channel list.

mcDAQRead

Reads samples from a Measurement task. Samples are obtained
from received CAN messages.

mcDAQReadTimestamped

Reads timestamped samples from a DAQ task initialized with the
selected mode of mcDAQModeDAQListTimeStamped.

mcDAQStartStop Starts or stops the transmission of the DAQ lists for the specified
Measurement task.
mcDAQWrite Writes samples to an ECU DAQ list.

© National Instruments Corporation

6-3 ECU M&C Toolkit User Manual

ECU M&C API for C

Chapter 6 ECU M&C API for C

Table 6-2. Functions for the ECU M&C API for C (Continued)

Function Purpose

mcDatabaseClose Stops transmission of the DAQ lists for the specified
Measurement task.

mcDatabaseClose Closes a specified A2L Database reference.
mcDatabaseOpen Opens a specified A2L Database.

mcDownload Downloads data to an ECU.

mcECUConnect Establishes communication to the selected ECU through CCP.

After a successful ECU Connect you can create a Measurement
Task or read/write a Characteristic.

mcECUCreate Creates an ECU object in memory.

mcECUDeselect Deselects an ECU and invalidates the ECU reference handle.
mcECUDisconnect Disconnects CCP communication to the selected ECU.
mcECUSelectEx Selects an ECU from the names stored in an A2L database.
mcEventCreate Creates an Event object in memory.

mcGeneric Sends a generic CCP command.

mcGetNames Retrieves a comma-separated list of ECU, Measurement,

Characteristic, or Event names from a specified A2L database.

mcGetNamesLength Retrieves the amount of memory required to store the names
returned by mcGetNames.

mcGetProperty Retrieves a property of the driver, the database, the ECU,
a Characteristic, a Measurement, or a Measurement task.
mcMeasurementCreate Creates a Measurement object in memory.
mcMeasurementRead Reads a single Measurement value from the ECU.
mcMeasurementWrite Writes a single Measurement value to the ECU.
mcProgram Programs a memory block on the ECU.
mcProgramReset Indicates the end of a programming sequence.
mcProgramStart Indicates the start of a programming sequence.
mcSetProperty Sets a property of the driver, the database, the ECU,

a Characteristic, a Measurement, or a Measurement task.

ECU M&C Toolkit User Manual 6-4 ni.com

Chapter 6 ECU M&C API for C

Table 6-2. Functions for the ECU M&C API for C (Continued)

Function Purpose
mcStatusToString Converts a status code into a descriptive string.
mcUpload Uploads data from an ECU.
mcXCPCopyCalPage Forces a copy transaction of one calibration page to another.
mcXCPGetCalPage Queries a calibration page setting.
mcXCPGetID Queries session configuration or slave device identification.
mcXCPGetStatus Queries the current session status from an ECU slave device.

mcXCPProgramPrepare

Prepares the programming of non volatile memory.

mcXCPProgramVerify Performs a non-volatile memory certification task on the ECU
device.

mcXCPSetCalPage Sets a calibration page.

mcXCPSetRequest Performs a request to save session and device information to

non-volatile memory.

mcXCPSetSegmentMode

Sets the mode of a specified segment.

© National Instruments Corporation

6-5 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcBuildChecksum

Purpose

Calculates a checksum over a defined memory range within the ECU.

Format
mcTypeStatus mcBuildChecksum (

mcTypeTaskRef ECURefNum,

mcAddress Address,
u32 BlockSize,

u8 *ChecksumType,
u8 *SizeOfChecksum

u32 *Checksum) ;

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Address Configures the target address for the checksum operation in the
ECU. mcaddress is a C struct consisting of:

Address
Specifies the address part of the target address.

Extension
Extension contains the extension part of the target address.
BlockSize BlockSize determines the size of the block on which the
checksum must be calculated.
ChecksumType ChecksumType returns the type of the calculated checksum.
For CCP, checksumType is OXFF. For XCP, refer to the
Description section.

Output

SizeofChecksum SizeofChecksum returns the size in bytes of the calculated
checksum.
Checksum Checksum is the calculated checksum.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

ECU M&C Toolkit User Manual 6-6 ni.com

Chapter 6 ECU M&C API for C

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcBuildChecksumis used to calculate the checksum of a specified memory block inside the
ECU starting at the selected Address.

If you are using the CCP protocol, mcBuildChecksum implements the CCP
BUILD_CHKSUM command. The checksum algorithm is not specified by CCP and the
checksum algorithm may be different on different devices.

If you are using the XCP protocol, mcBuildChecksum implements the
BUILD_CHECKSUM command of the XCP specification. The result of the checksum
calculation is returned in Checksum regardless of the checksum type. The following values
for ChecksumType are defined in the XCP specification:

Type Name Description

0x01 XCP_ADD_11 Add BYTE into a BYTE checksum, ignore overflows

0x02 XCP_ADD_12 Add BYTE into a WORD checksum, ignore
overflows

0x03 XCP_ADD_14 Add BYTE into a DWORD checksum, ignore
overflows

0x04 XCP_ADD_22 Add WORD into a WORD checksum, ignore
overflows, blocksize must be modulo 2

0x05 XCP_ADD_24 Add WORD into a DWORD checksum, ignore
overflows, blocksize must be modulo 2

0x06 XCP_ADD 44 Add DWORD into DWORD, ignore overflows,
blocksize must be modulo 4

0x07 XCP_CRC_16 Refer to CRC error detection algorithms

0x08 XCP_CRC_16_CITT Refer to CRC error detection algorithms

0x09 XCP_CRC_32 Refer to CRC error detection algorithms

OxFF XCP_USER_DEFINED User defined algorithm, in externally calculated

function

© National Instruments Corporation

6-7 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

With ChecksumType XCP_USER_DEFINED, the Slave may indicate that the Master which
calculates the checksum must use a user-defined algorithm implemented in an externally
calculated function (for instance, Win32 DLL, UNIX shared object file, etc.). The master
retrieves the name of the external function file to be used for this slave from the ASAM MCD
2MC description file.

The CRC algorithms are specified by the following parameters:

Name Width Poly Init Refin Refout XORout
XCP_CRC_16 16 0x8005 0x0000 TRUE TRUE 0x0000
XCP_CRC16_CITT 16 0x1021 O0xFFFF FALSE FALSE 0x0000
XCP_CRC_3232 32 0x04C11DB7 | OxFFFFFFFF TRUE TRUE O0xFFFFFFFF

Name

The name of the algorithm. A string value starting with “XCP_".

Width

The width of the algorithm expressed in bits. This is one less than the width of the Poly.

Poly

The polynomial. This is a binary value specified as a hexadecimal number. The top bit of the
Poly should be omitted. For example, if the Poly is 0x10110, you should specify 0x06. An
important aspect of this parameter is that it represents the unreflected polynomial. The bottom
of this parameter is always the least significant bit (LSB) of the divisor during the division,
regardless of whether the algorithm is reflected.

Init

This parameter specifies the initial value of the register when the algorithm starts. This is the
value to be assigned to the register in the direct table algorithm. In the table algorithm, we
may think of the register always commencing with the value zero, and this value being

XORed into the register after the nth bit iteration. This parameter should be specified as a
hexadecimal number.

Refin

A Boolean parameter. If it is FALSE, input bytes are processed with bit 7 being treated as the
most significant bit (MSB) and bit 0 being treated as the least significant bit. If this parameter
is TRUE, each byte is reflected before being processed.

ECU M&C Toolkit User Manual 6-8 ni.com

Chapter 6 ECU M&C API for C

Refout

A Boolean parameter. If it is set to FALSE, the final value in the register is fed into the
XORout stage directly. If this parameter is TRUE, the final register value is reflected first.

XORout

This is a width-bit value that should be specified as hexadecimal number. It is XORed to the
final register value (after the Refout stage) before the value is returned as the official
checksum.

For more detailed information about CRC algorithms, refer to:

http://www.repairfaq.org/filipg/LINK/F_crc_v34.html

© National Instruments Corporation 6-9 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcCalculateChecksum
Purpose
Calculates the checksum of a data block in memory.
Format
mcTypeStatus mcCalculateChecksum (
mcTypeTaskRef ECURefNum,
u32 BlockSize,
u8 *Data,
u8 TypeOfChecksum,
u8 *SizeOfChecksum,
u32 *Checksum) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
BlockSize BlockSize determines the size of the block on which the
checksum must be calculated.
TypeOfChecksum TypeOfChecksum specifies the type of the calculated checksum.
Output
Data Data is a byte array upon which the checksum calculation is
performed.
SizeofChecksum SizeofChecksum returns the size in bytes of the calculated
checksum.
Checksum Checksum is the calculated checksum.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

ECU M&C Toolkit User Manual 6-10 ni.com

Chapter 6 ECU M&C API for C

Description
mcCalculateChecksum implements a checksum calculation over a given data block. The
checksum algorithm is performed over a dedicated checksum function provided by a specific
DLL. The name of the Checksum DLL is defined in the A2L data base and can be changed
by the application by the mcSetProperty function using the mcPropECU_Checksum

property.

If you are using the CCP protocol, TypeO£fChecksum must be set to OxFFh, since CCP only
supports an external checksum DLL. If you are using XCP, the following values for
TypeOfChecksum are defined in the XCP specification:

Type Name Description

0x01 XCP_ADD_11 Add BYTE into a BYTE checksum, ignore overflows

0x02 XCP_ADD_12 Add BYTE into a WORD checksum, ignore overflows

0x03 XCP_ADD_14 Add BYTE into a DWORD checksum, ignore
overflows

0x04 XCP_ADD_22 Add WORD into a WORD checksum, ignore
overflows, blocksize must be modulo 2

0x05 XCP_ADD_24 Add WORD into a DWORD checksum, ignore
overflows, blocksize must be modulo 2

0x06 XCP_ADD_44 Add DWORD into DWORD, ignore overflows,
blocksize must be modulo 4

0x07 XCP_CRC_16 Refer to CRC error detection algorithms

0x08 XCP_CRC_16_CITT Refer to CRC error detection algorithms

0x09 XCP_CRC_32 Refer to CRC error detection algorithms

OxFF XCP_USER_DEFINED User defined algorithm, in externally calculated
function

For a detailed description of the checksum algorithm refer to the mcBuildChecksum
command or the XCP Part 2 Protocol Layer Specification.

For more detailed information about CRC algorithms, please refer to:

http://www.repairfaqg.org/filipg/LINK/F_crc_v34.html

© National Instruments Corporation 6-11 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcCCPActionService

Purpose

Calls an implementation-specific action service on the ECU (CCP only).

Format
mcTypeStatus

Input
ECURefNum

ServiceNo

Params

Output

*ResultLength

*DataType

Return Value

mcCCPActionService (
mcTypeTaskRef ECURefNum,

ul6 ServiceNo,

u8 Params[4],

u8 *ResultLength,
u8 *DataType) ;

ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
ServiceNo determines the service that is executed inside the
ECU. For more information about the services that are
implemented in the ECU refer to the documentation for the ECU.
Params passes the parameters of the service function as an array
of bytes to the ECU. Since the parameters and their data types are
specific to the ECU implementation, you are responsible of
providing the required parameters in the correct byte ordering.

ResultLength indicates the amount of data that can be uploaded
from the ECU as a result of the execution of the service. The result
of this service can be accessed by calling the function
mcCCPGetResult right after mcCCPActionService.
DataType is a data type qualifier that determines the data format
of the result.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

ECU M&C Toolkit User Manual

6-12 ni.com

Chapter 6 ECU M&C API for C

Description

mcCCPActionService implements the CCP command ACTION_SERVICE. The ECU
carries out the requested service and automatically sets the Memory Transfer Address MTAO
to the location from which the CCP master may upload the requested action service return
information (if applicable).

The result of this service can be accessed by calling the function mcCCPGetResult right after
mcCCPActionService.

© National Instruments Corporation 6-13 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcCCPDiagService

Purpose
Calls an implementation-specific diagnostic service on the ECU (CCP only).
Format
mcTypeStatus mcCCPDiagService (
mcTypeTaskRef ECURefNum,
ul6é ServiceNo,
u8 Params[4],
u8 *ResultLength,
u8 *DataType) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
ServiceNo ServiceNo determines the diagnostic service that is executed

inside the ECU. For more information about the services that are
implemented in the ECU refer to the documentation for the ECU.

Params Params passes an array of bytes to the ECU that might be needed
by the ECU to run the diagnostic service. Since the definition of
the parameters is specific to the implementation of the ECU, the
parameters can only be passed as an array of bytes. It is your
responsibility to pass the correct number of parameters in the
correct byte ordering to this function.

Output

*ResultLength ResultLength returns the number of bytes that can be uploaded
from the ECU as a result of the execution of the service. The result
of this service can be accessed by calling the function
mcCCPGetResult right after mcCCPDiagService.

*DataType DataType is a data type qualifier which provides information
about the data type of the result of the diagnostic service.

ECU M&C Toolkit User Manual 6-14 ni.com

Chapter 6 ECU M&C API for C

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcCCPDiagService implements the CCP command DIAG_SERVICE which calls a
diagnostic service on the ECU and waits until it is finished. The selected ServiceNo
specifies the diagnostic service that must be executed inside the ECU. For more information

about the available services that are implemented in the ECU refer to the documentation for
the ECU.

The result of this service can be accessed by calling the function mcCCPGetResult right after
mcCCPDiagService.

© National Instruments Corporation 6-15 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcCCPGetActiveCalPage

Purpose

Retrieves the ECU Memory Transfer Address pointer to the calibration data page (CCP only).

Format
mcTypeStatus

Input

ECURefNum

Output

Address

Return Value

mcCCPGetActiveCalPage (
mcTypeTaskRef ECURefNum,

mcAddress *Address) ;

ECURefNumn is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.

Returns the address for the active calibration page in the ECU.
mcAddress is a C struct consisting of:

Address
Specifies the address part of the address.

Extension
Extension contains the extension part of the address.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description

mcCCPGetActiveCalPage retrieves the start address of the active calibration data page in

the ECU memory.

ECU M&C Toolkit User Manual

6-16 ni.com

Chapter 6 ECU M&C API for C

mcCCPGetResult

Purpose
Uploads data from the ECU when the Memory Transfer Address pointer 0 (MTAO) has been
set (CCP only).
Format
mcTypeStatus mcCCPGetResult (
mcTypeTaskRef ECURefNum,
u32 BlockSize,
u8 *Data) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
BlockSize BlockSize determines the size of the data block to be uploaded
from the ECU.
Output
Data Data contains the data uploaded from the ECU memory.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
This function uploads data from the ECU. It is assumed that the Memory Transfer Address 0
(MTADO) has already been set to the start address of the data to be uploaded. Functions like
mcCCPActionService or mcCCPDiagService implicitly set the Memory Transfer
Address 0 (MTAO) to the beginning of their result. To upload data from a specified address,
use mcUpload instead.

© National Instruments Corporation 6-17 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcCCPGetSessionStatus

Purpose
Retrieves the current status of the Calibration Session (CCP only).
Format
mcTypeStatus mcCCPGetSessionStatus (
mcTypeTaskRef ECURefNum,
u8 *SessionStatus,
u8 *StatusQualifier,
u8 *AdditionalStatus) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Output
SessionStatus The current SessionStatus which is returned from the ECU.
StatusQualifier The additional StatusQualifier is manufacturer and/or project
specific and is not part of the CCP protocol specification.
AdditionalStatus If the statusQualifier does not contain additional status

information, AdditionalStatus must be set to FALSE. If
AdditionalStatus is not FALSE, it may be used to determine
the type of the additional status information

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcCCPGetSessionStatus retrieves the current calibration session status of the ECU. The
return value SessionStatus is a bit mask that represents several session states inside the
ECU. statusQualifier and AdditionalStatus contain additional status information.
The content of these parameters is ECU specific and not defined by CCP. For more
information about the parameter SessionStatus, refer to the description of
mcCCPSetSessionStatus.

ECU M&C Toolkit User Manual 6-18 ni.com

Chapter 6 ECU M&C API for C

mcCCPGetVersion

Purpose
Retrieves CCP version implemented in the ECU (CCP only).
Format
mcTypeStatus mcCCPGetVersion (
mcTypeTaskRef ECURefNum,
u8 *MajorVersion,
u8 *MinorVersion) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Output
MajorVersion MajorVersion returns the major version number of the CCP
implementation.
MinorVersion MinorVersion returns the minor version number of the CCP
implementation.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcCCPGetVersion can be used to query the CCP version implemented in the ECU. This
command performs a mutual identification of the protocol version in the slave device to agree
on a common protocol version.

mcCCPGetVersion implements the CCP command GET_CCP_VERSION defined by the
CCP specification.

© National Instruments Corporation 6-19 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcCCPMoveMemory

Purpose

Moves a memory block on the ECU (CCP only).

Format

mcTypeStatus

Input

ECURefNum

Source

Destination

BlockSize

Output

Return Value

mcCCPMoveMemory (

mcTypeTaskRef ECURefNum,
mcAddress Source,

mcAddress Destination,

u32 BlockSize);

ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Configures the source address for the memory move operation in
the ECU. mcAddress is a C struct consisting of:

Address
Specifies the address part of the source address.

Extension
Extension contains the extension part of the source address.

Configures the destination address for the memory move
operation in the ECU. mcaddress is a C struct consisting of:

Address
Specifies the address part of the destination address.

Extension
Extension contains the extension part of the destination address.

BlockSize determines the size of memory block in bytes which
should be moved from the source address to the destination
address.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

ECU M&C Toolkit User Manual

6-20 ni.com

Chapter 6 ECU M&C API for C

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcCCPMoveMemory is used to move the memory contents of an ECU from one memory
location to another. Before calling the CCP MOVE command this function sets the Memory
Transfer Address pointers MTAO as defined in the source struct and MTA1 as defined in the
destination struct to appropriate values.

mcCCPMoveMemory implements the CCP command MOVE defined by the CCP
specification.

© National Instruments Corporation 6-21 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcCCPSelectCalPage

Purpose

Sets the specified address to be the start address of the calibration data page (CCP only).

Format
mcTypeStatus

Input

ECURefNum

Address

Output
Return Value

mcCCPSelectCalPage (

mcTypeTaskRef ECURefNum,

mcAddress Address) ;

ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Configures the target address for the programming operation in
the ECU. mcAddress is a C struct consisting of:

Address
Specifies the address part of the target address.

Extension
Extension contains the extension part of the address.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description

mcCCPSelectCalPage implements the CCP command SELECT_CAL_PAGE. This
command sets the beginning of the calibration data page to the specified address within

the ECU.

ECU M&C Toolkit User Manual

6-22 ni.com

Chapter 6 ECU M&C API for C

mcCCPSetSessionStatus

Purpose
Updates the ECU with the current state of the calibration session (CCP only).
Format
mcTypeStatus mcCCPSetSessionStatus (
mcTypeTaskRef ECURefNum,
u8 SessionStatus) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
SessionStatus SessionStatus contains the new status to be set in the ECU.
Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcCCPSetSessionStatus implements the CCP command SET_S_STATUS and is used to
keep the ECU informed about the current state of the calibration session. The session status
bits of an ECU can be read and written. Possible conditions are: reset on power-up, session

log-off, and in applicable error conditions. The calibration session status is organized as a bit
mask with the following assignment.

Table 6-3. Bit Mask Assignments for Calibration Session Status

Bit Name Description
0 CAL Calibration data initialized.
1 DAQ DAQ list(s) initialized.
2 RESUME Request to save DAQ set-up during shutdown in CCP slave.
CCP slave automatically restarts DAQ after start-up.

© National Instruments Corporation 6-23 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Table 6-3. Bit Mask Assignments for Calibration Session Status (Continued)

Bit Name Description
3 Reserved —
4 Reserved —
5 Reserved —
6 STORE Request to save calibration data during shut-down in CCP slave.
7 RUN Session in progress.

ECU M&C Toolkit User Manual 6-24 ni.com

mcCharacteristicRead

Chapter 6 ECU M&C API for C

Purpose

Reads all data from a named Characteristic on the ECU which is identified by the ECU

Reference handle.

Format
mcTypeStatus

Input

ECURefNum
CharacteristicName

NumberOfValues

Output

Values

Return Value

mcCharacteristicRead (

mcTypeTaskRef ECURefNum,
char *CharacteristicName,
f64 *Values,

u32 NumberOfValues) ;

ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
CharacteristicName is the name of the Characteristic defined
in the A2L database file.

Specifies the number of values to read. To determine the
dimension of the Characteristic use the mcGet Property function
upfront using the parameter mcPropChar_Dimension. To
determine the size of each dimension use the mcGetProperty
function with the parameter mcPropChar_Sizes.

Returns a single value, a 1-dimensional array, or a 2-dimensional
array of values for the selected Characteristic.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description

mcCharacteristicRead reads values from a named Characteristic on the ECU which is
identified by the ECU Reference handle. The function returns a double, 1D, or 2D array.

© National Instruments Corporation

6-25 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcCharacteristicReadSingleValue

Purpose

Reads a single value from a named Characteristic on the ECU which is identified by the ECU
Reference handle.

Format
mcTypeStatus mcCharacteristicReadSingleValue (
mcTypeTaskRef ECURefNum,
char *CharacteristicName,
f64 value,
u32 X,

u32 Y);

Input
ECURefNum ECURe £Num is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
CharacteristicName CharacteristicName isthe name of the Characteristic defined

in the A2L database file.

X X is the horizontal index if the Characteristic consists of 1 or
2 dimensions.

Y Y is the vertical index if the Characteristic consists of

2 dimensions.

Output

Value Returns a single value from the selected Characteristic.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

ECU M&C Toolkit User Manual 6-26 ni.com

Chapter 6 ECU M&C API for C

Description
mcCharacteristicReadSinglevValue reads a value from a named Characteristic on the
ECU which is identified by the ECU Reference handle. The value to be read is identified by
the X and Y indices.

If the Characteristic array is O-dimensional, X and Y can be set to 0.

If the Characteristic array is 1-dimensional, Y can be set to 0.

© National Instruments Corporation 6-27 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcCharacteristicWrite

Purpose
Downloads data to a Characteristic for a selected ECU.
Format
mcTypeStatus mcCharacteristicWrite (
mcTypeTaskRef ECURefNum,
char *CharacteristicName,
f64 Vvalues,
u32 NumberOfValues) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.
CharacteristicName CharacteristicName isthe name of the Characteristic defined

in the A2L database file.

Values Values contains a pointer to a double, a double 1D, or 2D array
which is sent to the ECU.

NumberOfValues Specifies the number of values to write for the task.

Output
Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcCharacteristicWrite writes the value(s) of a named Characteristic to an ECU
identified by the ECU reference handle ECURe £Num.

ECU M&C Toolkit User Manual 6-28 ni.com

Chapter 6 ECU M&C API for C

mcCharacteristicWriteSingleValue

Purpose
Writes a single value to a named Characteristic on the ECU.
Format
mcTypeStatus mcCharacteristicWriteSingleValue (
mcTypeTaskRef ECURefNum,
char *CharacteristicName,
f64 value,
u32 X,
u32) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

CharacteristicName CharacteristicName isthe name of the Characteristic defined
in the A2L database file, to which the values are written.

Value Value contains the value which is sent to the ECU.

X X refers to the array offset of the Characteristic defined in the A2L
database file as 1- or 2-dimensional. If the Characteristic is
defined as 0-dimensional you can set X to 0.

Y v refers to the array offset of the Characteristic defined in the A2L
database file as 2-dimensional. If the Characteristic is defined as
0- or 1-dimensional you can set Y to 0.

Output
Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

© National Instruments Corporation 6-29 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Description

mcCharacteristiclWriteSinglevalue writes a value to a named Characteristic on the
ECU which is identified by the ECU Reference handle ECURe fNum. The location to which
the value is written is identified by the X and v indices. If the Characteristic array is

0- or 1-dimensional, Y and/or X can be set to 0.

ECU M&C Toolkit User Manual 6-30 ni.com

Chapter 6 ECU M&C API for C

mcClearMemory
Purpose
Clears the contents of the specified ECU memory.
Format
mcTypeStatus mcClearMemory (
mcTypeTaskRef ECURefNum,
mcAddress Address,
u32 BlockSize);
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Address Configures the target address to be cleared in the ECU.
mcAddress is a C struct consisting of:
Address
Specifies the address part of the target address.
Extension
Extension contains the extension part of the target address.
BlockSize BlockSize determines the size of the block on which the
checksum must be calculated.
Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcClearMemory can be used to clear the contents of the non-volatile memory prior to
reprogramming it. The Memory Transfer Address O (MTA 0) is set to the start of the memory
block automatically by this function. The size parameter is the size of the block to be erased.
If you are using the XCP protocol, mcClearMemory implements the PROGRAM_CLEAR
command. Refer to the ASAM XCP specification for further information on how to clear
parts of non-volatile memory in the ECU.

© National Instruments Corporation 6-31 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcConversionCreate
Purpose
Creates a signal conversion object in memory.
Format
mcTypeStatus mcConversionCreate (
mcTypeTaskRef ECURefNum,
char *ConversionName,
f64 Factor,
f64 Offset,
char *Unit);
Input
ECURefNum ECURefNum is the task reference that links to the selected ECU.
This reference is originally returned from mcECUCreate.
ConversionName ConversionName identifies the conversion object that handles

measurement scaling. Use this name as a reference in
mcConversionCreate.

Factor Factor configures the scaling factor used to convert raw
measurement data in the message to/from scaled floating-point
units. The factor is the A in the linear scaling formula AX+B,
where X is the raw data, and B is the scaling offset.

Offset Of fset configures the scaling offset used to convert raw data in
the measurement message to/from scaled floating-point units. The
scaling offset is the B in the linear scaling formula AX+B, where
X is the raw data, and A is the scaling factor.

Unit Configures the measurement channel unit string. You can use this
value to display units (such as volts or RPM) along with the
channel samples.

Output
Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

ECU M&C Toolkit User Manual 6-32 ni.com

Chapter 6 ECU M&C API for C

Description

Use mcConversionCreate to create a conversion object in memory instead of referring to
measurement properties defined in the A2L database.

© National Instruments Corporation 6-33 ECU M&C Toolkit User Manual

Chapter 6

ECU M&C API for C

mcDAQClear

Purpose
Stops communication for the Measurement task and clears the task.
Format
mcTypeStatus mcDAQClear (
mcTypeTaskRef *DAQRefNum) ;
Input
DAQRe fNum DAQRefNum is the task reference which links to the selected
Measurement task. This reference is originally returned from
mcDAQInitialize.
Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcDAQClear must always be the final function called for a Measurement task. If you do not
use mcDAQClear, the remaining Measurement task configuration can cause problems in the
execution of subsequent applications. Because this function clears the Measurement task, the
Measurement task reference is not given as an output but is transferred into an ECU reference
task handle. To change properties of a running Measurement task, use mcDAQStartStop to
stop the task, mcSetProperty to change the desired DAQ property, then mcDAQStartStop
to restart the Measurement task.

ECU M&C Toolkit User Manual 6-34 ni.com

Chapter 6 ECU M&C API for C

mcDAQInitialize
Purpose
Initializes a Measurement task for the specified Measurement channel list.
Format
mcTypeStatus mcDAQInitialize(
cstr MeasurementNames,
mcTypeTaskRef ECURefNum,
132 DAQMode,
u32 DTO_ID,
f64 SampleRate,
mcTypeTaskRef *DAQRefNum) ;
Input
MeasurementNames Comma-separated list of Measurement names to initialize as a
task. You can type in the channel list as a string constant or you
can obtain the list from an A2L database file by using the
mcGetNames function.
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
DAQMode DAQMode specifies the I/O mode for the task. For an overview of

the I/O modes, including figures, refer to the Basic Programming
Model section of Chapter 4, Using the ECU M&C API.

mcDAQModeDAQList

Data is transmitted automatically by the ECU using DAQ lists.
The data can be read back with the mcDAQRead as Single point
data using sample rate = 0 or as waveform using a

sample rate > 0. Input channel data is received from the DAQ
messages.

mcDAQModePolling

© National Instruments Corporation

In this mode the data from the Measurement task are uploaded
from the ECU whenever mcDAQRead is called.

6-35 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcDAQModeSTIMList

For XCP, this defines a DAQ list for data stimulation (STIM).
Within a DAQ task initialized with this parameter, you can call
mcDAQWrite to write stimulation data to the ECU. Calling
mcDAQRead is not allowed. For CCP, an error is returned.

mcDAQModeDAQListTimeStamped

The data is transmitted from the ECU in equidistant time intervals
as defined in the A2L database. The data can be read back with
mcDAQReadTimestamped as a timestamped data array. Input
channel data are received from the DAQ messages. Use
mcDAQReadTimestamped to obtain input samples as an array of
sample/timestamp pairs. Use this input mode to read samples with
timestamps that indicate when each channel is received from the
network.

DTO_ID DTO_1D is the CAN identifier for the Data Transmission Object
(DTO) used to transmit the data from the DAQ lists to the host.
The default value is —1 which means that the DTO ID used to
transmit the DAQ list data is the same that is used for the rest of
the CCP communication.

SampleRate SampleRate specifies the timing to use for samples of the
(NI-CAN) task. The sample rate is specified in Hertz (samples per
second). A sample rate of zero means to sample immediately.

For a bagMode of meDAQModeDAQList, SampleRate of zero
means that mcDAQRead returns a single sample from the most
recent messages received, and greater than zero means that
mcDAQRead returns samples timed at the specified rate. For
pagMode of meDAQModePolling, SampleRate is ignored.

Output
DAQRe fNum DAQRefNum is the reference handle for the Measurement task.
Use this Measurement task reference in subsequent M&C DAQ
functions for this task.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

ECU M&C Toolkit User Manual 6-36 ni.com

Chapter 6 ECU M&C API for C

Description

mcDAQInitialize does not start the transmission of the DAQ lists on the ECU. This enables
you to use mcSetProperty to change the properties of a Measurement task. After you
change properties, use mcDAQStartStop to start the transmission of the Measurement task.

© National Instruments Corporation 6-37 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcDAQListlInitialize

Purpose
Defines a DAQ list on a specific DAQ list number and initializes the Measurement task for
the specified Measurement channel list. Initializes a Measurement task for the specified
Measurement channel list.

Format
mcTypeStatus mcDAQListInitialize (

cstr MeasurementNames,
mcTypeTaskRef ECURefNum,
116 DAQListNo,

132 DAQMode,

u32 DTO_ID,

f64 SampleRate,

mcTypeTaskRef *DAQRefNum) ;

Input

MeasurementNames Comma-separated list of Measurement names to initialize as a
task. You can type in the channel list as a string constant or you
can obtain the list from an A2L database file by using the
mcGetNames function.

ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.

DAQListNo DAQListNo specifies which DAQ list entry number should be
used for the defined Measurement channel list for the selected
ECU. To query the available amount of DAQ List numbers on the
ECU use mcPropECU_NumberOfDefinedDAQLists with the
function mcGetProperty. To query the defined DAQ list
numbers use mcPropECU_DAQListNumbers with
mcGetProperty.

DAQMode DAQMode specifies the I/O mode for the task. For an overview of
the I/O modes, including figures, refer to the Basic Programming
Model section of Chapter 4, Using the ECU M&C API.

mcDAQModeDAQList

Data is transmitted automatically by the ECU using DAQ lists.
The data can be read back with the mcDAQRead as Single point
data using sample rate = 0 or as waveform using a

ECU M&C Toolkit User Manual 6-38 ni.com

Chapter 6 ECU M&C API for C

sample rate > 0. Input channel data is received from the DAQ
messages.

mcDAQModePolling

In this mode the data from the Measurement task are uploaded
from the ECU whenever mcDAQRead is called.

DTO_ID DTO_1ID is the CAN identifier for the Data Transmission Object
(DTO) used to transmit the data from the DAQ lists to the host.
The default value is —1 which means that the DTO ID used to
transmit the DAQ list data is the same that is used for the rest of
the CCP communication.

SampleRate SampleRate specifies the timing to use for samples of the
(NI-CAN) task. The sample rate is specified in Hertz (samples per
second). A sample rate of zero means to sample immediately.

For a DAQMode of meDAQModeDAQList, SampleRate of zero
means that mcDAQRead returns a single sample from the most
recent messages received, and greater than zero means that
mcDAQRead returns samples timed at the specified rate. For
DAaQMode of mecDAQModePolling, SampleRate is ignored.

Output

DAQRe fNum DAQRefNum is the reference handle for the Measurement task.
Use this Measurement task reference in subsequent M&C DAQ
functions for this task.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

If an ECU offers a reduced and specific range of DAQ list entry numbers use the
mcDAQListInitialize function to setup your Measurement list. mcDAQListInitialize
does not start the transmission of the DAQ lists from the ECU to the application or vice versa
through CCP or XCP. This enables you to use mcSetProperty to change the properties

of a Measurement task. After you change properties use mcDAQStartStop to start the
communication for the Measurement task. To query the available DAQ list entry numbers use
mcGetProperty with the property mcPropECU_DAQListNumbers.

© National Instruments Corporation 6-39 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcDAQRead

Purpose

Reads samples from a Measurement task. Samples are obtained from received CAN

messages.

Format

mcTypeStatus

Input

DAQRefNum

mcDAQRead (
mcTypeTaskRef DAQRefNum,
u32 NumberOfSamplesToRead,
mcTypeTimestamp *StartTime,
mcTypeTimestamp *DeltaTime,
f64 *SampleArray,
u32 *NumberOfSamplesReturned) ;

DAQRefNum is the task reference from the previous Measurement
task function. The task reference is originally returned from
mcDAQInitialize, and then reused by subsequent
Measurement task functions.

NumberOfSamplesToRead

Output

StartTime

ECU M&C Toolkit User Manual

Specifies the number of samples to read for the task. For
single-sample input, pass 1 to this parameter.

If the initialized sample rate is zero, you must pass
NumberOfSamplesToRead no greater than 1. SampleRate of
zero means mcDAQRead immediately returns a single sample from
the most recent message(s) received.

Returns the time of the first CAN sample in SampleArray. This
parameter is optional. If you pass NULL for the StartTime
parameter, the mcDAQRead function proceeds normally. If the
initialized sample rate is greater than zero, the StartTime is
determined by the sample timing. If the initialized SampleRate
is zero, the StartTime is zero, because the most recent sample is
returned regardless of timing.

StartTime uses the mcTypeTimestamp data type. The
mcTypeTimestamp data type is a 64-bit unsigned integer
compatible with the Microsoft Win32 FILETIME type. This
absolute time is kept in a Coordinated Universal Time (UTC)

6-40 ni.com

Chapter 6 ECU M&C API for C

format. UTC time is loosely defined as the current date and time
of day in Greenwich, England. Microsoft defines its UTC time
(FILETIME) as a 64-bit counter of 100 ns intervals that have
elapsed since 12:00 a.m., January 1, 1601. Because
mcTypeTimestamp is compatible with Win32 FILETIME, you
can pass it into the Win32 FileTimeToLocalFileTime
function to convert it to the local time zone, and then pass the
resulting local time to the Win32 FileTimeToSystemTime
function to convert to the Win32 SYSTEMTIME type. SYSTEMTIME
is a struct with fields for year, month, day, and so on. For more
information on Win32 time types and functions, refer to the
Microsoft Win32 documentation.

DeltaTime Returns the time between each sample in SampleArray. This
parameter is optional. If you pass NULL for the DeltaTime
parameter, the mcDAQRead function proceeds normally. If the
initialized sample rate is greater than zero, the DeltaTime is
determined by the sample timing. If the initialized sample rate is
zero, the DeltaTime is zero, because the most recent sample is
returned regardless of timing. DeltaTime uses the
mcTypeTimestamp data type. The delta time is a relative 64-bit
counter of 100 ns intervals, not an absolute UTC time.
Nevertheless, you can use functions like the Win32
FileTimeToSystemTime function to convert to the Win32
SYSTEMTIME type. In addition, you can use the 32-bit LowPart
of DeltaTime to obtain a simple 100 ns count, because values for
SampleRate as slow as 0.4 Hz are still limited to a 32-bit 100 ns
count.

SampleArray Returns a 2D array, one array for each channel initialized in
the task. The array of each channel must have
NumberOfSamplesToRead entries allocated. The order of
channel entries in SampleArray is the same as the order in
the original ChannelList. If you need to determine the
number of channels in the task after initialization, get the
mcPropDAQ_NumChannels property for the task reference. If no
message has been received since you started the task, O is returned
as default value for of the channel in all entries of SampleArray.

NumberOfSamplesReturned
NumberOfSamplesReturned indicates the number of samples
returned for each channel in SampleArray. The remaining entries
are left unchanged (zero).

© National Instruments Corporation 6-41 ECU M&C Toolkit User Manual

Chapter 6

ECU M&C API for C

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

If the initialized SampleRate is greater than zero, this function returns an array of samples,
each of which indicates the value of the CAN channel at a specific point in time. The
mcDAQRead function waits for these samples to arrive in time before returning. In other
words, the SampleRate specifies a virtual clock that copies the most recent value from CAN
messages for each sample time. The changes in sample values from message to message
enable you to view the channel over time, such as for comparison with other CAN or DAQ
input channels. To avoid internal waiting, you can use mcGetProperty to obtain
nctPropSamplesPending property, and pass that as the NumberOfSamplesToRead
parameter to mcDAQRead.

If the initialized SampleRate is zero, mcDAQRead immediately returns a single sample from
the most recent message(s) received. For this single-point read, you must pass the
NumberOfSamplesToRead parameter as 1. You can use the return value of mcDAQRead to
determine whether a new message has been received since the previous call to mcDAQRead
(ormeDAQStartStop). If no message has been received, the warning code CanWarnOldData
is returned. If a new message has been received, the success code 0 is returned. If no message
has been received since you started the task, the default value of the channel
(nctPropChanDefaultValue) is returned in all entries of SampleArray.

ECU M&C Toolkit User Manual 6-42 ni.com

Chapter 6 ECU M&C API for C

mcDAQReadTimestamped

Purpose
Reads timestamped samples from a DAQ task initialized with the selected mode of
mcDAQModeDAQListTimeStamped

Format
mcTypeStatus mcDAQReadTimestamped (

mcTypeTaskRef DAQRefNum,
u32 NumberOfSamplesToRead,
_ int64 *TimestampArray,
double *SampleArray,

u32 *NumberOfSamplesReturned) ;

Input
DAQRefNum DAQRefNum is the task reference that links to the selected
measurement task. This reference is originally returned from
mcDAQInitialize or mcDAQListInitialize

NumberOfSamplesToRead
Specifies the number of samples to read for the task.

Output

TimestampArray Returns the time at which each corresponding sample in
SampleArray was received in a CAN message. The timestamps
are returned as an array of arrays (2D array), one array for each
channel initialized in the task. The array of each channel must
have NumberOfSamplesToRead entries allocated. For example,
if you call mcDAQInitialize with ChannelList of
myDAQ1,myDAQ2, then call mcDAQReadTimestamped with
NumberOfSamplesToRead of 20, both TimestampArray and
SampleArray must be allocated as:

__int64 mcTypeTimestamp TimestampArray[2][20];
double SampleArray[2][20];

The order of channel entries in TimestampArray is the same as
the order in the original DAQ channel list. To determine the
number of channels in the DAQ task after initialization, get the
mcPropDAQ_NumChannels property for the DAQ task reference.
Each timestamp in TimestampArray usesthe __int64 datatype
compatible with the Microsoft Win32 FILETIME type. This

© National Instruments Corporation 6-43 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

absolute time is kept in a Coordinated Universal Time (UTC)
format. UTC time is loosely defined as the current date and time
of day in Greenwich, England. Microsoft defines its UTC time
(FILETIME) as a 64-bit counter of 100 ns intervals that have
elapsed since 12:00 a.m., January 1, 1601. Because the timestamp
is compatible with Win32 FILETIME, you can pass it into the
Win32 FileTimeToLocalFileTime function to convert it to the
local timezone, and then pass the resulting local time to the Win32
FileTimeToSystemTime function to convert to the Win32
SYSTEMTIME type. SYSTEMTIME is a struct with fields for
year, month, day, and so on. For more information about Win32
time types and functions, refer to the Microsoft Win32
documentation.

SampleArray SampleArray returns the sample value(s) for each received CAN
message. The samples are returned as an array of arrays (a 2D
array), one array for each channel initialized in the DAQ task. The
array of each channel must have NumberOfSamplesToRead
entries allocated. You must allocate SampleArray exactly as
TimestampArray, and the order of channel entries is the same for
both.

NumberOfSamplesReturned
Indicates the number of samples returned for each channel in
SampleArray, and the number of timestamps returned for each
channel in TimestampArray. The remaining entries are left
unchanged (zero).

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

Each returned sample corresponds to a received CAN message for the measurement channels
initialized in the DAQ channel list. For each sample, mcDAQReadTimestamped returns the
sample value and a timestamp that indicates when the message was received. Because the
timing of samples returned by mcDAQReadTimestamped is determined by when the message
is received, the initialized sample rate is not used.

ECU M&C Toolkit User Manual 6-44 ni.com

Chapter 6 ECU M&C API for C

The function does not wait for messages, but instead returns samples from the messages
received since the previous call to mcDAQReadTimestamped. The number of samples
returned is indicated in the NumberOfSamplesReturned output, up to a maximum of
NumberOfSamplesToRead messages. If no new message has been received,
NumberOfSamplesReturned is 0, and the return value indicates success.

© National Instruments Corporation 6-45 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcDAQStartStop

Purpose

Starts the transmission of the DAQ lists assigned to the Measurement task on the ECU.

Format
mcTypeStatus

Input

DAQRefNum

StartStopMode

ECU M&C Toolkit User Manual

mcDAQStartStop (
mcTypeTaskRef DAQRefNum,
u32 StartStopMode) ;

DAQRefNum is the task reference from the previous Measurement
task function. The task reference is originally returned from
mcDAQInitialize, and then reused by subsequent
Measurement task functions.

StartStopMode indicates the type of function to be performed:

0—mcStartStopModeStop

Configures the ECU to stop transmitting a DAQ task. If stopped,
properties of the DAQ task can be changed using
mcSetProperty. This function is performed automatically
before mcDAQClear.

1—mcStartStopModeStart

Configures the ECU to start sending data for a Measurement task.
Ensure that the DAQ list has not yet been transferred to the ECU
first. Once started, properties of the DAQ list can no longer be
changed using mcSetProperty. This function is performed
automatically before the first read of the DAQ list with
mcDAQRead.

2—mcStartStopModeTransmitDAQ

Transfers the DAQ list to the ECU, but does not start it. For
example, use this mode if you want to change the session status
before starting the DAQ list. For some ECUs, this is necessary.

6-46 ni.com

Chapter 6 ECU M&C API for C

Output
Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcDAQStartStop is an optional command to start or stop communication for an M&C
Measurement task. If you do not perform mcDAQStartStop (with the parameter
mcStartStopModeStart) before using mcDAQRead the Measurement task is started by the
first call of mcDAQRead. After you start the transmission of the DAQ lists, you can no longer
change the configuration of the Measurement task with mcSetProperty. You must call
mcDAQStartStop (with the parameter mcStartStopModeStop) first.

© National Instruments Corporation 6-47 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcDAQWrite

Purpose

Writes samples to an ECU DAQ list.

Format
mcTypeStatus

Input

DAQRefNum

mcDAQWrite (
mcTypeTaskRef DAQRefNum,
u32 NumberofSamplesToWrite,

f64 *SampleArray) ;

DAQRefNum is the task reference from the previous Measurement
task function. The task reference is originally returned from
mcDAQInitialize, and then reused by subsequent
Measurement task functions.

NumberofSamplesToWrite

*SampleArray

Output
Return Value

NumberofSamplesToWrite specifies the number of samples to
write for the ECU MC DAQ task to the ECU DAQ list. For
single-sample output, pass 1 to this parameter. The initialized
DAQ sample rate must be set to zero. A SampleRate of zero
means mcDAQWr i te immediately writes a single sample to the
ECU when calling the mcDAQWrite function.You must pass
NumberOfSamplesTolrite no greater than 1.

SampleArray specifies a 2D array, one array for each channel
initialized in the task. The array of each channel must have
NumberOfSamplesToWrite entries allocated. The order of
channel entries in SampleArray is the same as the order in the
original ChannelList. If you must determine the number of
channels in the task after initialization, get the
mcPropDAQ_NumChannels property for the task reference.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

ECU M&C Toolkit User Manual

6-48 ni.com

Chapter 6 ECU M&C API for C

Description
For XCP STIM lists (refer to mcDAQInitialize), mcDAQWrite transfers an array of
samples to the ECU. These samples are called data stimulation packets (STIM). On the ECU
side the STIM processor buffers incoming data stimulation packets. When an event occurs
which triggers a DAQ list in data stimulation mode, the buffered data is transferred to the
memory on the slave device.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to configure data stimulation.

© National Instruments Corporation 6-49 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcDatabaseClose

Purpose
Closes a specified A2L Database.
Format
mcTypeStatus mcDatabaseClose (
mcTypeTaskRef *DBRefNum) ;
Input
DBRefNum DBRefNum is the task reference from the initial database task
function. The database task reference is originally returned from
mcDatabaseOpen.
Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcDatabaseClose must always be the final ECU M&C function called for each database
task. If you do not use the mcDatabaseClose function, the remaining task configurations
can cause problems in the execution of subsequent Measurement and Calibration
applications.

ECU M&C Toolkit User Manual 6-50 ni.com

Chapter 6 ECU M&C API for C

mcDatabaseOpen
Purpose
Opens a specified A2L Database.
Format
mcTypeStatus mcDatabaseOpen (
cstr Database,
mcTypeTaskRef *DBRefNum) ;
Input
Database Database is a path to an A2L database file from which to get
Measurement or calibration channel names. The file must use a
.A2L extension. You can generate A2L database files with several
3rd party tools.
Output
DBRefNum DBRefNum is the task reference from the initial database task
function. The database task reference is originally returned from
mcDatabaseOpen.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

The mcDatabaseOpen function does not start communication. This enables you to query all
defined ECU names in the A2L Database using the mcGetNames function and selecting the
property value ECU Names.

To use the ECU M&C Toolkit on a LabVIEW RT system, you must download your ASAM
MCD 2MC database (* . a2L) file to the RT target.

© National Instruments Corporation 6-51 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcDownload
Purpose
Downloads data to an ECU.
Format
mcTypeStatus mcDownload (
mcTypeTaskRef ECURefNum,
mcAddress Address,
u32 BlockSize
u8 *Data) ;
Input
ECURefNum ECURef£Num is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Address Configures the target address for the download operation in the
ECU. mcaddress is a C struct consisting of:
Address
Specifies the address part of the target address.
Extension
Extension contains the extension part of the target address.
BlockSize BlockSize determines the size of the data block to be
downloaded.
Output
Data Data pointer to the information to be downloaded.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

ECU M&C Toolkit User Manual

6-52 ni.com

Chapter 6 ECU M&C API for C

Description

mcDownload downloads data to an ECU. The data is stored starting at the selected Address
and Extension in the ECU memory. The function can download more than 5 data bytes to the
ECU.

If you are using the CCP protocol and the selected BlockSize is higher than 5 bytes,
mcDownload performs several CCP DNLOAD commands until all data bytes are
downloaded to the ECU. mcDownload implements the CCP DNLOAD command defined by
the CCP specification.

If you are using the XCP protocol, the Data block of the specified BlockSize is copied into
the ECU memory, starting at the MTA. The MTA is post-incremented by the number of
downloaded data bytes. If the slave device does not support Block Transfer Mode, all
downloaded data is transferred in a single command packet. If Block Transfer Mode is
supported, the downloaded data is transferred in multiple command packets. For the slave
however, there might be limitations concerning the maximum number of consecutive
command packets, so the number of data elements may be within a limited range. The master
device has two additional consecutive DOWNLOAD_NEXT command packets. The slave
device will acknowledge only the last DOWNLOAD_NEXT command packet. The
separation time between the command packets and the maximum number of packets are
specified in the response for the CONNECT command.

© National Instruments Corporation 6-53 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcECUConnect

Purpose

Establishes communication to the selected ECU through CCP or XCP. After a successful
ECU Connect you can create a Measurement task or read/write a Characteristic.

Format
mcTypeStatus mcECUConnect (
mcTypeTaskRef ECURefNum) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcECUConnect implements the CCP or XCP CONNECT command.It establishes a logical
connection to an ECU, using the provided ECU Reference handle ECURe £Num. Unless a slave
device (ECU) is unconnected, it must not execute or respond to any command sent by the
application. The only exception to this rule is the Test command, to which the CCP or XCP
slave with the specific address may return an acknowledgement. Only a single CCP or XCP
slave can be connected to the application at a time.

ECU M&C Toolkit User Manual 6-54 ni.com

mcECUCreate

Chapter 6 ECU M&C API for C

Purpose

Creates an ECU object in memory.

Format
mcTypeStatus

Input

DBRefNum

ECUname

Interface
ByteOrder

CRO_ID

DTO_ID

StationAddress

© National Instruments Corporation

mcECUCreate (
mcTypeTaskRef DBRefNum,
cstr ECUName,
char *Interface,
i32 ByteOrder,
u32 CRO_ID,
u32 DTO_ID,
ul6é StationAddress,
u32 BaudRate,
mcTypeTaskRef *ECURefNum) ;

DBRefNum is the task reference from the initial database task
function. The database task reference is originally returned from
mcDatabaseOpen.

Identifies the ECU object. Use this name as reference in
mcMeasurementCreate to create a DAQ list on the ECU.
Specifies the protocol and optional interface to use for this task.
Sets the byte order of the CCP slave device:

0—MSB_LAST
The CCP Slave device uses the MSB_LAST (Intel) byte ordering.

1—MSB_FIRST
The CCP Slave device uses the MSB_FIRST (Motorola) byte
ordering.

Sets the Command Receive Object (CRO) CAN Identifier for
CCP, or XCP on CAN, which is used to send commands and data
from the host to the slave device.

Sets the Data Transfer Object (DTO) CAN Identifier for CCP, or
XCP on CAN, which is used to send commands and data from the
slave device to the host.

Sets the slave device station address. CCP is based on the idea that
several ECUs can share the same CAN Arbitration IDs for CCP
communication. To avoid communication conflicts, CCP defines
a station address that must be unique for all ECUs sharing the

6-55 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

same CAN Arbitration IDs. Unless an ECU has been addressed by
its station address, the ECU must not react to CCP commands sent
by the CCP master.

BaudRate Sets the CAN baud rate in use by the selected interface. This
property applies to all tasks initialized with the NI-CAN or
NI-XNET interface. You can specify the following basic baud
rates as the numeric rate: 33333, 83333, 100000, 125000, 200000,
250000, 400000, 500000, 800000, and 1000000. You can specify
advanced baud rates as 8000XXYY hex, where YY is the value of
Bit Timing Register 0 (BTRO), and XX is the value of Bit Timing
Register 1 (BTR1). For more information, refer to the Interface
Properties dialog in MAX.

Output

ECURe fNum ECURefNum is the task reference that links to the selected ECU.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

The function mcECUCreate is used to create an ECU object in memory instead of referring
to a predefined ECU of an A2L database.

Interface is the name of the protocol and interface the selected ECU task will use. This
string uses the syntax XXX:YYY, where X defines the selected protocol. The following strings
may be used as Y:

e String ccp refers using the CAN Calibration Protocol (CCP)

e String xCP refers using the Universal Measurement and Calibration Protocol (XCP)

Using NI-CAN

If you are using the CCP protocol with NI-CAN hardware, YYY can be associated with a
defined NI-CAN interface (CANO, CANI1, up to CAN63). CAN network interface names are
associated with physical CAN ports using the Measurement and Automation Explorer
(MAX). For example, if you are using the CCP protocol on NI-CAN interface CAN1, the
value passed to Interface is CCP: CAN1. The special string values “CAN256 and

ECU M&C Toolkit User Manual 6-56 ni.com

Chapter 6 ECU M&C API for C

“CAN257” refer to virtual interfaces. Refer to the NI-CAN Hardware and Software User
Manual for detailed information on how to use virtual NI-CAN ports.

If you are using the XCP protocol, YYY can be associated with a XCP transport layer.
The transport layers may defined as follows:

e CANxx
e« TCP
« UDP

If you select CAN as the transport layer you must specify the NI-CAN interface (CANO,
CANI, up to CAN63). CAN network interface names are associated with physical CAN ports
using the Measurement and Automation Explorer (MAX). For example, if you are using the
XCP on NI-CAN interface CAN2 the value passed to Interface is XCP:CAN2. If you are
using the XCP on UDP the value passed to Interface is XCP: UDP. If you are using the XCP
on TCP the value passed to Interface is XCP: TCP. The special string values “CAN256” and
“CAN257” refer to virtual interfaces. Refer to the NI-CAN Hardware and Software User
Manual for detailed information on how to use virtual NI-CAN ports.

Using NI-XNET

If you are using NI-XNET hardware and select the xxx:yyy syntax, the ECU M&C Toolkit
uses the XNET NI-CAN compatibility library (XCL) internally if the XNET interface is
defined in MAX under NI-CAN Devices. To force use of the native XNET API, you must
define a unique interface name that differs from the NI-CAN-compatible interface name
under XNET Devices, or use the xxx:yyy@ni_genie_nixnet syntax. The interface name is
related to the NI-XNET hardware naming under Devices and Interfaces in MAX. The
extension ni_genie_nixnet directs the ECU M&C Toolkit to use the native NI-XNET API.

CompactRIO or R Series

If you are using CompactRIO or R Series hardware, you must provide a bitfile that

handles the CAN communication between the host system and the FPGA. To access the
CAN module on the FPGA, you must specify the bitfile name after the @ (for example,
CCP:CANI @MyBitfile.lvbitx). To specify a special RIO target, you can specify that target by
its name followed by the bitfile name (for example, XCP:CANI @RIO1,MyBitfile.lvbitx).
Currently, only a single CAN interface is supported. RIO1 defines the RIO target name as
defined in your LabVIEW Project definition. The lvbitx filename represents the filename and
location of the bitfile on the host. You may use just the filename without the folder if the bitfile
is in the same folder as the LabVIEW Project (*.lvproj).

© National Instruments Corporation 6-57 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcECUDeselect
Purpose

Deselects an ECU and invalidates the ECU reference handle.
Format

mcTypeStatus mcECUDeselect (

mcTypeTaskRef *ECURefNum) ;

Input

ECURe fNum ECURe fNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcECUDeselect deselects the ECU and clears all internal driver data stored for this ECU.
After calling this function it is no longer possible to communicate with the specified ECU.
The task reference ECURefNum is transferred into a database handle DBRe fNum.

ECU M&C Toolkit User Manual 6-58 ni.com

Chapter 6 ECU M&C API for C

mcECUDisconnect
Purpose

Disconnects CCP or XCP communication to the selected ECU.
Format

mcTypeStatus mcECUDisconnect (

mcTypeTaskRef ECURefNum) ;

Input

ECURe fNum ECURe fNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcECUDisconnect implements the CCP or XCP command DISCONNECT.
mcECUDisconnect disconnects the specified CCP or XCP slave from the actual
communication and ends the calibration session. When the calibration session is terminated,
all CCP or XCP DAQ lists of the device are stopped and cleared and the protection masks of
the device are set to their default values.

mcECUDisconnect is an optional command as disconnecting from the ECU is performed by
the function mcECUDeselect.

© National Instruments Corporation 6-59 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcECUSelectEx

Purpose
Selects an ECU from the names stored in an A2L database.
Format
mcTypeStatus mcECUSelectEx (
mcTypeTaskRef DBRefNum,
cstr ECUName,
cstr Interface,
mcTypeTaskRef *ECURefNum) ;
Input
DBRefNum DBRefNum is the task reference from the initial database task
function. The database task reference is originally returned from
mcDatabaseOpen.
ECUName ECUName is the selected ECU name out of an A2L Database file
with which to initialize all subsequent tasks.
Interface Specifies the protocol and optional interface to use for this task.
Output
ECURefNum ECURefNum is the task reference which links to the selected ECU.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcECUSelectEx creates an ECU reference handle to the selected ECU name. The
mcECUSelectEx function does not start communication. This enables you to use
mcSetProperty to change the properties of an ECU task. After you change properties use

mcECUConnect to start communication for the task and logically connect to the selected
ECU.

ECU M&C Toolkit User Manual 6-60 ni.com

Chapter 6 ECU M&C API for C

Interface is the name of the protocol and interface the selected ECU task will use. This
string uses the syntax XXX:YYY, where X defines the selected protocol. The following strings
may be used:

» String ccp refers using the CAN Calibration Protocol (CCP)

» String XCP refers using the Universal Measurement and Calibration Protocol (XCP)

If you are using the CCP protocol, YYY can be associated with a defined NI-CAN interface
(CANO, CANI, up to CAN63). CAN network interface names are associated with physical
CAN ports using the Measurement and Automation Explorer (MAX). For example, if you are
using the CCP protocol on NI-CAN interface CANI1, the value passed to Interface is
ccp:CaN1. The special string values “CAN256” and “CAN257” refer to virtual interfaces.
Refer to the NI-CAN Hardware and Software User Manual for detailed information on how
to use virtual NI-CAN ports.

If you are using the XCP protocol, YYY can be associated with a XCP transport layer.
The transport layers may defined as follows:

e CANxx
« TCP
« UDP

Using NI-CAN

If you select CAN as the transport layer you must specify the NI-CAN interface (CANO,
CANI, up to CAN63). CAN network interface names are associated with physical CAN ports
using the Measurement and Automation Explorer (MAX). For example, if you are using the
XCP on NI-CAN interface CAN2 the value passed to Interface is XCP:CAN2. If you are
using the XCP on UDP the value passed to Interface is XCP: UDP. If you are using the XCP
on TCP the value passed to Interface is XCP: TCP. The special string values “CAN256” and
“CAN257” refer to virtual interfaces. Refer to the NI-CAN Hardware and Software User
Manual for detailed information on how to use virtual NI-CAN ports.

Using NI-XNET

If you are using NI-XNET hardware and select the xxx:yyy syntax, the ECU M&C Toolkit
uses the XNET NI-CAN compability library (XCL) internally if the XNET interface is
defined in MAX under NI-CAN Devices. To force use of the native XNET API, you must
define a unique interface name that differs from the NI-CAN-compatible interface name
under XNET Devices, or use the xxx:yyy@ni_genie_nixnet syntax. The interface name is
related to the NI-XNET hardware naming under Devices and Interfaces in MAX. The
extension ni_genie_nixnet directs the ECU M&C Toolkit to use the native NI-XNET API.

© National Instruments Corporation 6-61 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

CompactRIO or R Series

If you are using CompactRIO or R Series hardware, you must provide a bitfile that

handles the CAN communication between the host system and the FPGA. To access the
CAN module on the FPGA, you must specity the bitfile name after the @ (for example,
CCP:CANI @MyBitfile.lvbitx). To specify a special RIO target, you can specify that target by
its name followed by the bitfile name (for example, XCP:CANI @RIO1,MyBitfile.lvbitx).
Currently, only a single CAN interface is supported. RIO1 defines the RIO target name as
defined in your LabVIEW Project definition. The /vbitx filename represents the filename and
location of the bitfile on the host. You may use just the filename without the folder if the bitfile
is in the same folder as the LabVIEW Project (*.lvproj).

ECU M&C Toolkit User Manual 6-62 ni.com

Chapter 6 ECU M&C API for C

mcEventCreate
Purpose
Creates an Event object in memory.
Format
mcTypeStatus mcEventCreate (
mcTypeTaskRef ECURefNum,
cstr EventChannelName,
u8 EventChannelNumber) ;
Input
ECURefNum ECURefNum is the task reference that links to the selected ECU.
This reference is originally returned from mcECUCreate.
EventChannelName EventChannelName identifies the Event Channel object.

EventChannelNumber EventChannelNumber identifies the number of the Event
Channel. The event channel number specifies the generic signal
source that effectively determines the data transmission timing. To
allow a reduction of the desired transmission rate, a prescaler may
be applied to the Event Channel. The prescaler value factor must
be greater than or equal to 1 to use mcSetProperty using
mcPropDAQ_Prescaler.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the
function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
Use the function mcEventCreate to create an Event object in memory instead of referring
to a predefined Event Channel in the A2L database. Assign the event channel object by name
to a DAQ List in mcMeasurementCreate.

© National Instruments Corporation 6-63 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcGeneric
Purpose
Sends a generic command.
Format
mcTypeStatus mcGeneric (
mcTypeTaskRef ECURefNum,
u8 Command,
u8 *Data,
u32 DataSize,
u32 Timeout,
u8 *ErrorCode,
u8 *ReturnValue,
u32 *ReturnValueSize);
Input

ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.

Command Command is the CCP command code to send to the ECU.

Data Data contains the parameters of the command as an array of
bytes. For more information about the parameters of the (user
defined) commands implemented in the ECU, refer to the
documentation for the ECU.

DataSize DataSize defines the number of bytes (the array size) passed in
the input parameter Data.

Timeout Timeout specifies the maximum number of milliseconds to wait
for a response from the ECU. If the Timeout expires before an
ECU response occurs, the error mcErrorTimeout is returned.

Output

ErrorCode ErrorCode describes the error returned from the ECU during the
communication.

Returnvalue ReturnValue may contain an array of bytes returned from the
ECU as a response to the command sent to the ECU.

ReturnvalueSize ReturnvValueSize contains the number of bytes returned from

ECU M&C Toolkit User Manual

the ECU passed to Returnvalue.

6-64 ni.com

Chapter 6 ECU M&C API for C

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcGeneric can be used to send commands to the ECU that are not defined by the CCP or
XCP specification. The command code in Command and the parameters of this command
defined in Data are sent to the ECU, and the data returned by the ECU is passed to the
parameter Returnvalue. Since the ECU M&C driver has no knowledge of the parameters
of the command and their data types, all parameters and return values are passed as an array
of bytes. Therefore you are responsible for the correct type casting of all parameters and
return values of this command. Make sure that all parameters are passed in the correct byte
ordering for this function. For more information about the (user defined) commands and their
parameters refer to the documentation for the ECU.

© National Instruments Corporation 6-65 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcGetNames
Purpose
Retrieves a comma-separated list of ECU, Measurement, or Characteristic names from a
specified A2L database.
Format
mcTypeStatus mcGetNames (
mcTypeTaskRef RefNum,
u32 Type,
cstr ECUName,
u32 SizeOfNamesList,
str NameList) ;
Input
RefNum RefNum is any ECU M&C task reference which consists of a valid
link to the opened A2L database (DBRefNum), a selected ECU
(ECURefNum) or a Measurement task (DAQRefNum). Re fNum
must be valid for the related Type.
Type Specifies the Type of names to return.
0—mcTypeECUNames
Return list of ECU names. You can pass one of the returned
names to mcECUSelectEx.
1—mcTypeMeasurementNames
Return list of Measurement names. You can pass the returned
NamesList to mcDAQInitialize.
2—mcTypeCharacteristicNames
Return list of Characteristic Names. You can pass a single
name out of the NamesList to mcCharacteristicWrite
or mcCharacteristicRead.
3—mcTypeEventChannelNames
Return list of Event Channel names.
ECUName If the Type = mcTypeMeasurementNames or

ECU M&C Toolkit User Manual

Type = mcTypeCharacteristicNames and Re fNum contains a
DBRefNum, the corresponding ECU name must be referenced in
order to access ECU specific properties. If RefNum contains an
ECURefNum or DAQRefNum the parameter ECUName is
ignored and can be set to NULL.

6-66 ni.com

Chapter 6 ECU M&C API for C

SizeOfNamesList Size of the buffer provided to take the names list. After calling
mcGetNamesLength, you can allocate an array of size
SizeofNamesList, and then pass that array to mcGetNames
using the same input parameters. This ensures that mcGetNames
will return all names without error.

Output

NameList Returns the comma-separated list of names specified by Type.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

Get a comma-separated list of ECU, Measurement, Characteristic, or Event Channel names
from a specified A2L database file.

If using mcGetNames to query the list of supported event channels on an ECU, the event
channels might be stored inside the ECU instead of the A2L file. To query these event channel
names from the ECU directly, connect to the ECU using mcECUConnect before calling
mcGetNames.

© National Instruments Corporation 6-67 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcGetNamesLength
Purpose
Retrieves the amount of memory required to store the names returned by mcGetNames.
Format
mcTypeStatus mcGetNamesLength (
mcTypeTaskRef RefNum,
u32 Type,
cstr ECUName,
u32 *SizeOfNamesList) ;
Input
RefNum RefNumis any ECU M&C task reference which consists of a valid
link to the opened A2L database (DBRefNum), a selected ECU
(ECURefNum) or a Measurement task (DAQRefNum). Re fNum
must be valid for the related Type.
Selector Specifies the Type of names to return.
0—mcTypeECUNames
Return list of ECU names.
1—mcTypeMeasurementNames
Return list of Measurement names.
2—mcTypeCharacteristicNames
Return list of Characteristic Names.
3—mcTypeEventChannelNames
Return list of Event Channel names.
ECUName If the Type = mcTypeMeasurementNames or

ECU M&C Toolkit User Manual

Type = mcTypeCharacteristicNames and RefNum contains a
DBRefNum, the corresponding ECU name must be referenced in
order to access ECU specific properties. If RefNum contains an
ECURefNum or DAQRefNum the parameter ECUName is
ignored and can be set to NULL.

6-68 ni.com

Output

Chapter 6 ECU M&C API for C

SizeOfNamesList Number of bytes required for mcGetNames to return all names
for the specified ECUName and Type. After calling
mcGetNamesLength, you can allocate an array of size
SizeofNamesList, then pass that array to mcGetNames using
the same input parameters. This ensures that mcGetNames will
return all names without error.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

After calling mcGetNamesLength, you can allocate an array of size SizeofNamesList,
then pass that array to mcGetNames using the same input parameters. This ensures that
mcGetNames will return all names without error.

If using mcGetNamesLength to query the length of the list of supported event channels on
an ECU, the event channels might be stored inside the ECU instead of the A2L file. To query
these event channel names from the ECU directly, connect to the ECU using mcECUConnect
before calling mcGetNamesLength.

© National Instruments Corporation 6-69 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcGetProperty

Purpose
Retrieves a property of the driver, the database, the ECU, a Characteristic, a Measurement, or
a Measurement task.

Format
mcTypeStatus mcGetProperty (
mcTypeTaskRef RefNum,
cstr Name,
u32 PropertyID,
u32 SizeOfvalue,

void *Value) ;

Input

RefNum RefNum is any ECU M&C task reference which consists of a valid
link to the opened A2L database (DBRefNum), a selected ECU
(ECURefNum) or a Measurement task (DAQRefNum). Re fNum
must be valid for the related PropertyID type.

Name Specifies an individual name (ECU name, Measurement channel
name, or Characteristic name) within the task.

PropertyID Selects the property to get.

For a description of each property, including its data type and
PropertyId, refer to the Properties section.

SizeOfvalue Number of bytes allocated for the Value output. This size
normally depends on the data type listed in the description of the

property.

Output

Value Returns the property value. PropertyId determines the data type
of the returned value.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

ECU M&C Toolkit User Manual 6-70 ni.com

Chapter 6 ECU M&C API for C

Properties

Table 6-4. Values for PropertylD

Data Type Name Description

u32 mcPropCANBaudRate Returns the CAN Baud rate for CCP or XCP on
CAN which is used to send commands and data
from the host to the slave device.

ul6 mcPropChar_Address Returns the address of the selected
Characteristic in the memory of the ECU.

u32 mcPropChar_ByteOrder Returns the specified byte order:
O—Intel format

Bytes are in little-endian order, with
least-significant bit first.

1—Motorola format

Bytes are in big-endian order, with
most-significant bit first.

u8 mcPropChar_Datatype Returns the data type of the Characteristic.

u32 mcPropChar_Dimension Returns the dimension of the Characteristic:

0—O0-dimensional: The Characteristic can be
accessed (read/write) through a double value.

1—1-dimensional: The Characteristic can be
accessed (read/write) through a
one-dimensional array of double value.

2—2-dimensional: The Characteristic can be
accessed (read/write) through a
two-dimensional array of double value.

u8 mcPropChar_Extension Returns additional address information.
For instance it can be used to distinguish
different address spaces of an ECU
(multi-microcontroller devices).

f64 mcPropChar_Maximum Returns the Maximum value of the
Characteristic.

f64 mcPropChar_Minimum Returns the Minimum value of the
Characteristic.

© National Instruments Corporation 6-71 ECU M&C Toolkit User Manual

Chapter 6

ECU M&C API for C

Table 6-4. Values for PropertylD (Continued)

Data Type

Name

Description

u32

mcPropChar_ReadOnly

Returns if a Characteristic is set to read only.
In this case it is not allowed to call
mcCharacteristicuirite for this
Characteristic.

u32

mcPropChar_Sizes

Returns the Array Sizes for the X and Y
directions of the Characteristic.

str

mcPropChar_Unit

Returns the unit string defined for this
Characteristic in the A2L database.

u32

mcPropChar_Unit_Size

Returns the number of bytes to be allocated if
you call mcGetProperty with the parameter
mcPropChar_Unit.

fo4

mcPropChar_X_Axis

Returns X-axis values on which the
Characteristic is defined. Valid if the selected
Characteristic is 1- or 2-dimensional.

fo4

mcPropChar_Y_Axis

Returns Y-axis values on which the
Characteristic is defined, Valid if the selected
Characteristic is 2-dimensional.

u32

mcPropCmd_EXCHANGE_ID

Returns whether or not the EXCHANGE_ID
command should be suppressed during
connection to the ECU.

u32

mcPropCROID

Returns the CRO CAN Identifier (Command
Receive Object) for CCP or XCP on CAN
which is used to send commands and data from
the host to the slave device.

u32

mcPropDAQ DTO_ID

Returns the DTO ID (Data Transmission
Object) which is used by the ECU to respond to
send data from the DAQ lists to the CCP master.

nctType
Taskref

mcPropDAQ_DTO_Task

NI-CAN task reference to the CAN Task
assigned to the DTO ID of the Measurement
task.

Str

mcPropDAQ_EventChannel
Name

Returns the selected event channel name to
which the Measurement task is assigned.

ECU M&C Toolkit User Manual

6-72

ni.com

Chapter 6 ECU M&C API for C

Table 6-4. Values for PropertylD (Continued)

Data Type Name Description
u32 mcPropDAQ_EventChannel | Returns the number of bytes to be allocated if
Name_Size you call mcGetProperty with the parameter

mcPropDAQ_EventChannelName.

u32 mcPropDAQ_Mode Returns the selected mode of an M&C
Measurement task.

0—DAQ List

The data is transmitted from the ECU in
equidistant time intervals as defined in the A2L
database. The data can be read back with
mcDAQRead as Single point data using sample
rate = 0, or as waveform using a sample rate > 0.
Input channel data is received from the DAQ
messages. Use mcDAQRead to obtain input
samples as single-point, array, or waveform.

1—Polling

In this mode the data from the Measurement
task is uploaded from the ECU whenever
mcDAQRead is called.

u32 mcPropDAQ_NumChannels Returns the number of channels initialized in a
DAQ channel list of a M&C Measurement task.
This is the number of array entries required
when using mcDAQRead.

ul6 mcPropDAQ_Prescaler Prescaler for the Measurement task on the ECU.

f64 mcPropDAQ_SampleRate Returns the selected Sample Rate in Hz for the
M&C Measurement task.

u32 mcPropDAQ_Samples Returns the number of samples available for
Pending read in DAQ tasks defined with sample rate > 0.
If this property is queried before the DAQ list is
started, it always returns 0. Start the DAQ list
first with mcDAQStartStop before you query
this property.

str mcPropDB_Filename Returns the A2L Database file name with which
the task has been opened. The value of this
property cannot be changed using
mcSetProperty.

© National Instruments Corporation 6-73 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Table 6-4. Values for PropertylD (Continued)

Data Type Name Description

u32 mcPropDB_Filename_Size | Returns the number of bytes to be allocated if
you call mcGetProperty with the parameter
mcPropDB_Filename.

u32 mcPropDTOID Returns the DTO CAN Identifier (Data Transfer
Object) for CCP or XCP on CAN which is used
to send commands and data from the slave
device to the host.

u32 mcPropECU_BaudRate Returns the baud rate in use.
u32 mcPropECU_ByteOrder Returns the byte order of the slave device.
0—MSB_LAST

The Slave device uses the MSB_LAST (Intel)
byte ordering.

1—MSB_FIRST

The Slave device uses the MSB_FIRST
(Motorola) byte ordering.

str mcPropECU_Checksum Returns the file name of the Checksum DLL
used for verifying the checksum.

u32 mcPropECU_Checksum_ Returns the number of bytes to be allocated if
Size you call mcGetProperty with the parameter
mcPropECU_Checksum.

u32 mcPropECU_CmdByteOrder | Returns the byte order for multi-byte command
parameters.

0—MSB_LAST

The CCP Slave device uses the MSB_LAST
(Intel) byte ordering.

1—MSB_FIRST

The CCP Slave device uses the MSB_FIRST
(Motorola) byte ordering.

u32 mcPropECU_CRO_ID Returns the CRO ID (Command Receive
Object) which is used to send commands and
data from the host to the slave device.

ECU M&C Toolkit User Manual 6-74 ni.com

Chapter 6

Table 6-4. Values for PropertylD (Continued)

Data Type Name

Description

nctType mcPropECU_CRO_Task

Taskref

NI-CAN Task reference to the CAN Task
assigned to the CRO ID.

u32 mcPropECU_DTO_ID

Returns the DTO ID (Data Transmission
Object) which is used by the ECU to respond to
CCP commands and send data and status
information to the CCP master.

nctType mcPropECU_DTO_Task

Taskref

NI-CAN Task reference to the CAN Task
assigned to the DTO ID.

[u8] mcPropECU_ID

Returns the slave device identifier. This ID
information is optional and specific to the ECU
implementation. For more information about the
CCP slave ID information refer to the
documentation for the ECU.

u8 mcPropECU_ID_DataType

Returns a data type qualifier of the slave device
ID information. This ID information is optional
and specific to the ECU implementation. For
more information about the CCP slave ID
information refer to the documentation for the
ECU.

u8 mcPropECU_ID_Length

Returns the length of the slave device identifier
in bytes.

u32 mcPropECU_Interface

Returns the interface initialized for the task,
such as with mcDAQInitialize.

[u8] mcPropECU_MasterID

Returns CCP master ID information. This ID
information is optional and specific to the ECU
implementation. For more information about the
CCP master ID information refer to the
documentation for the ECU.

str mcPropECU_Name

Returns the name of the selected ECU opened
by mcECUSelectEx.

[ul6] mcPropECU_DAQList
Numbers

Returns an array of DAQ list numbers for all
DAQ lists defined in the A2L file.

© National Instruments Corporation

6-75

ECU M&C API for C

ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C
Table 6-4. Values for PropertylD (Continued)
Data Type Name Description
u32 mcPropECU_TimingFactor | Returns the used timing factor, which you can
use to increase CCP or XCP command timeout
values. For details on the default Command
Timeout values, refer to the CCP or XCP
Protocol Specification.
ul6 mcPropDAQList Max Returns the maximum length of the DAQ list.
Length
u32 mcPropDAQList_CANIA Returns how to select the CAN ID for the
SelectMode specified DAQ list:
0—CAN_ID_FIXED
The CAN Identifier is a predefined fixed
number.
1—CAN_ID_VARIABLE
The CAN Identifier is a variable number.
2—CAN_ID_DTO_ID
The CAN Identifier is the same as the DTO
identifier.
u32 mcPropDAQList_CANIA Returns the CAN ID for the specified DAQ list
if mcPropDAQList_CANIdSelectMode ==
CAN_ID_FIXED.
u8 mcPropDAQList_FirstPID Returns the first Packet ID for the specified
DAQ list.
u32 mcPropDAQList_NumberOf Returns the number of allowed event channels
EventChannels for the specified DAQ list.
[u8] mcPropDAQList_Event Returns an array of event channel numbers
Channels referenced by the DAQ list.
u32 mcPropDAQList_ Returns whether or not the specified DAQ list
ReductionAllowed allows reduction.
u32 mcPropDAQList_NumberOf | Returns the length of the array containing the

ExcludedDAQLists

numbers of DAQ lists not working together with
the current DAQ list.

ECU M&C Toolkit User Manual

6-76

ni.com

Chapter 6 ECU M&C API for C

Table 6-4. Values for PropertylD (Continued)

Data Type Name Description
ul6 mcPropDAQList_Excluded | Returns an array containing the numbers of
DAQLists DAQ lists not working together with the current
DAQ list.
u32 mcPropECU_Name_Size Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter
mcPropECU_Name.

str mcPropECU_SeedKey_Cal Returns the file name of the SeedKey DLL used
for Calibration purposes.
u32 mcPropECU_SeedKey_Cal_ | Returns the number of bytes to be allocated if
Size you call mcGetProperty with the parameter

mcPropECU_SeedKey_Cal.

str mcPropECU_SeedKey_ DAQ Returns the file name of the SeedKey DLL used
for DAQ purposes.
u32 mcPropECU_SeedKey DAQ_ Returns the number of bytes to be allocated if
Size you call mcGetProperty with the parameter

mcPropECU_SeedKey_ DAQ.

str mcPropECU_SeedKey_Prog | Returns the file name of the SeedKey DLL used
for programming purposes.

u32 mcPropECU_SeedKey_ Returns the number of bytes to be allocated if
Prog_sSize you call mcGetProperty with the parameter
mcPropECU_SeedKey_Progd.

str mcPropECU_SeedKey_ XCP Returns the file name of the SeedKey DLL for
XCP.
u32 mcPropECU_SeedKey_XCP_ | Returns the number of bytes to be allocated if
Size you call mcGetProperty with the parameter

mcPropECU_SeedKey_XCP.

ud mcPropECU_Single_Byte_ | Determines if an ECU supports single-byte or
DAQ_Lists multi-byte DAQ list entries.

© National Instruments Corporation 6-77 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Table 6-4. Values for PropertylD (Continued)

Data Type Name Description
u32 mcPropECU_Station Returns the station address of the slave device.
Address CCP is based on the idea that several ECUs can

share the same CAN Arbitration IDs for CCP
communication. To avoid communication
conflicts, CCP defines a Station Address that
must be unique for all ECUs sharing the same
CAN Arbitration IDs. Unless an ECU has been
addressed by its Station Address, the ECU must
not react to CCP commands sent by the CCP

master.
u32 mcPropGen_Version Returns the build number of the ECU M&C
Build software. This number applies to Development,

Alpha, and Beta phase only, and should be
ignored for Release phase.

str mcPropGen_Version_ Returns a comment string for the ECU M&C
Comment software. If you received a custom release of
ECU M&C from National Instruments, this
comment often describes special features of the

release.
u32 mcPropGen_Version_ Returns the number of bytes to be allocated if
Comment_Size you call mcGetProperty with the parameter

mcPropGen_Version_Comment.

u32 mcPropGen_Version_ Returns the major version of the ECU M&C
Major software, such as the 1 in version 1.2.5.

u32 mcPropGen_Version_ Returns the minor version of the ECU M&C
Minor software, such as the 2 in version 1.2.5.

u32 mcPropGen_Version_ Returns the update version of the ECU M&C
Update software, such as the 5 in version 1.2.5.

str mcPropIPAddress Returns the IP address for XCP on Ethernet

(TCP or UDP) as a string.

u32 mcPropIPAddress_Size Returns the number of bytes to be allocated if
you call mcGetProperty with the parameter
mcPropIPAddress.

ul6 mcPropIPPort Returns the IP port for XCP on Ethernet (TCP or
UDP).

ECU M&C Toolkit User Manual 6-78 ni.com

Chapter 6 ECU M&C API for C

Table 6-4. Values for PropertylD (Continued)

Data Type

Name

Description

ul6

mcPropMeas_Address

Returns the address of the selected
Measurement in the memory of the control unit.

u32

mcPropMeas_ByteOrder

Returns the specified byte order:
O0—Intel format

Bytes are in little-endian order, with
least-significant bit first.

1—Motorola format

Bytes are in big-endian order, with
most-significant bit first.

u8

mcPropMeas_Datatype

Returns the data type of the Measurement task.

u8

mcPropMeas_Extension

Returns the address extension of the ECU
address. This optional parameter may contain
additional address information defined in the
A2L database. For instance it can be used, to
distinguish different address spaces of an ECU
(multi-microcontroller devices).

u32

mcPropMeas_TIsVirtual

Returns whether the Measurement is virtual.
Virtual Measurements are not transmitted by the
ECU but are calculated in the application. They
return an error when opened in a DAQ list.

fo4

mcPropMeas_Maximum

Returns the maximum value of the
Measurement.

fo4

mcPropMeas_Minimum

Returns the minimum value of the
Measurement.

u32

mcPropMeas_ReadOnly

Returns TRUE if the selected Measurement is
read only and can only be accessed through
mcMeasurementRead, or returns FALSE if the
Measurement can be accessed through
mcMeasurementWrite as well.

str

mcPropMeas_Unit

Returns the unit string defined for this
Measurement in the A2L database.

© National Instruments Corporation

6-79 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C
Table 6-4. Values for PropertylD (Continued)
Data Type Name Description
u32 mcPropMeas_Unit_Size Returns the number of bytes to be allocated if
you call mcGetProperty with the parameter
mcPropMeas_Unit.
u32 mcPropOptCmd_ACTION_ Returns whether the ECU supports the optional
SERVICE CCP Command ACTION_SERVICE.
u32 mcPropOptCmd_BUILD_ Returns whether the ECU supports the optional
CHKSUM CCP Command BUILD_CHKSUM.
u32 mcPropOptCmd_CLEAR_ Returns whether the ECU supports the optional
MEMORY CCP Command CLEAR_MEMORY.
u32 mcPropOptCmd_DIAG._ Returns whether the ECU supports the optional
SERVICE CCP Command DIAG_SERVICE.
u32 mcPropOptCmd_DNLOAD_6 Returns whether the ECU supports the optional
CCP Command DNLOAD _6.
u32 mcPropOptCmd_GET_ Returns whether the ECU supports the optional
ACTIVE_CAL_PAGE CCP Command GET_ACTIVE_CAL_PAGE.
u32 mcPropOptCmd_GET_S_ Returns whether the ECU supports the optional
STATUS CCP Command GET_S_STATUS.
u32 mcPropOptCmd_GET_SEED Returns whether the ECU supports the optional
CCP Command GET_SEED.
u32 mcPropOptCmd_MOVE Returns whether the ECU supports the optional
CCP Command MOVE.
u32 mcPropOptCmd_PROGRAM Returns whether the ECU supports the optional
CCP Command PROGRAM.
u32 mcPropOptCmd_PROGRAM_6 | Returns whether the ECU supports the optional
CCP Command PROGRAM_6.
u32 mcPropOptCmd_SELECT_ Returns whether the ECU supports the optional
CAL_PAGE CCP Command SELECT_CAL_PAGE.
u32 mcPropOptCmd_SET_S_ Returns whether the ECU supports the optional
STATUS CCP Command SET_S_STATUS.
u32 mcPropOptCmd_SHORT_UP Returns whether the ECU supports the optional

CCP Command SHORT_UP.

ECU M&C Toolkit User Manual

6-80 ni.com

Chapter 6

Table 6-4. Values for PropertylD (Continued)

Data Type Name

Description

u32 mcPropOptCmd_START
STOP_ALL

Returns whether the ECU supports the optional
CCP Command START _STOP_ALL.

u32 mcPropOptCmd_TEST

Returns whether the ECU supports the optional
CCP Command TEST.

u32 mcPropOptCmd_UNLOCK

Returns whether the ECU supports the optional
CCP Command UNLOCK.

u8 mcPropPGM_AccessMethod

Returns the selected access mode for
mcProgram and mcClearMemory:

0x00—Absolute Access Mode (default). The
MTA uses physical addresses

0x01—Functional Access Mode. The MTA
functions as a block sequence number of the
new flash content file.

0x80...0xFF—User defined. It is possible to use
different access modes for clearing and
programming.

u8 mcPropPGM_Compression
Method

Returns the selected compression method used
for mcProgram.

0—Data is uncompressed (default).

0x80...0xFF—User defined.

u8 mcPropPGM_Encryption
Method

Returns the selected encryption method used for
mcProgram.

0—Data is not encrypted (default).
0x80...0xFF—User defined.

ud mcPropPGM_Programming
Method

Returns the selected programming method used
for mcProgram.

0—Sequential programming (default).
0x80...0xFF—User defined.

© National Instruments Corporation

6-81

ECU M&C API for C

ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcMeasurementCreate

Purpose

Creates a Measurement object in memory.

Format

mcTypeStatus mcMeasurementCreate (
mcTypeTaskRef ECURefNum,
char *MeasurementName,
mcAddress Address,
i32 DataType,
u8 DataSize,

char *ConversionName) ;

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUCreate.
Address Configures the target address for the programming operation in
the ECU. mcAddress is a C struct consisting of:

Address
Specifies the address part of the programming address.

Extension
Extension contains the extension part of the address.

DataType DataType sets the data type of the measurement task.
DataType Data Format

Unsigned byte

Signed byte

Unsigned word

Signed word

Unsigned long

Signed long

Float 32

SN L AW N = O

ECU M&C Toolkit User Manual 6-82 ni.com

Chapter 6 ECU M&C API for C

DataSize Sets the size of the measurement data and corresponds to the

selected DataType.

Data Format DataSize
Unsigned byte 1
Signed byte 1
Unsigned word 2
Signed word 2
Unsigned long 4
Signed long 4
Float 32 4

ConversionName ConversionName identifies the referred conversion object that
mcConversionCreate defines.

Output
Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

Use mcMeasurementCreate to create a measurement object in memory instead of referring
to a predefined measurement in the A2L database.

© National Instruments Corporation 6-83 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcMeasurementRead
Purpose
Reads a single Measurement value from the ECU.
Format
mcTypeStatus mcMeasurementRead (
mcTypeTaskRef ECURefNum,
char *MeasurementName,
f64d *vValue) ;
Input
ECURe fNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
MeasurementName MeasurementName is the name of a Measurement channel stored
in the A2L database file from which a Measurement value is to be
read.
Output
Value Returns a single sample for the Measurement channel initialized

Return Value

in MeasurementName.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description

mcMeasurementRead performs a single point read (upload) of a single Measurement from
the selected ECU without opening a Measurement task.

ECU M&C Toolkit User Manual

6-84 ni.com

Chapter 6 ECU M&C API for C

mcMeasurementWrite
Purpose
Writes a single Measurement value to the ECU.
Format
mcTypeStatus mcMeasurementWrite (
mcTypeTaskRef ECURefNum,
char *MeasurementName,
f64 Values) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
MeasurementName MeasurementName is the name of a Measurement channel stored
in the A2L database file to which a Measurement value is to be
written.
Values Writes a single sample for the Measurement channel initialized in
MeasurementName.
Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description

mcMeasurementWrite performs a single point write (download) of a Measurement into the
selected ECU without opening a Measurement task. mcMeasurementirite can only be
performed if the Measurement channel is not set to read only. To query if an ECU
Measurement channel can be accessed by mcMeasurementWrite, call mcGetProperty
with the parameter mcPropMeas_ReadOnly.

© National Instruments Corporation

6-85 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcProgram
Purpose
Programs a memory block on the ECU.
Format
mcTypeStatus mcProgram (
mcTypeTaskRef ECURefNum,
mcAddress Address,
u32 BlockSize,
u8 *Data) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Address Configures the target address for the programming operation in
the ECU. mcAddress is a C struct consisting of:
Address
Specifies the address part of the programming address.
Extension
Extension contains the extension part of the address.
BlockSize BlocksSize determines the size of the data block which is
transferred to the ECU and used for programming from the MTAQ
target.
Data data contains the byte array that is transmitted to the ECU.
Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

ECU M&C Toolkit User Manual

6-86 ni.com

Chapter 6 ECU M&C API for C

Description

If you are using the CCP protocol, mcProgram implements the CCP command PROGRAM.
The command is used to program the specified data into non-volatile ECU memory (Flash,
EEPROM, etc.). Programming starts at the selected MTAOQ address and extension defined in
the Address struct. The mcProgram function auto-increments the ECU MTAO address.

If you are using the XCP protocol, mcProgram implements the XCP command PROGRAM.
The command is used to program a non-volatile memory segment inside the ECU slave.
Depending on the access mode (defined by PROGRAM_FORMAT), two different concepts
are supported. The end of the memory segment is indicated when BlockSize is set to 0. The
end of the overall programming sequence is indicated by a using the mcProgramReset
command which executes the XCP command PROGRAM_RESET, causing the slave device
to move into a disconnected state. Usually a hardware reset of the slave device is executed.
This command may support block transfer similar to the commands DOWNLOAD and
DOWNLOAD_NEXT. For further information on how to use mcProgram and details on
block mode transfers refer to the ASAM XCP Part 2 Protocol Layer Specification.

© National Instruments Corporation 6-87 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcProgramReset
Purpose

Indicates the end of a programming sequence.
Format

mcTypeStatus mcProgramReset (

mcTypeTaskRef ECURefNum) ;

Input

ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
If you are using the XCP protocol, mcSetProperty implements the XCP command
PROGRAM_RESET. This optional command indicates the end of a non-volatile memory
programming sequence and may or may not have a response from the ECU. In either case,
the slave device will go into a disconnected state.

mcSetProperty may be used to reset a slave device for other purposes. For further
information on how to use program ECU memory and to use the mcSetProperty command
refer to the ASAM XCP Part 2 Protocol Layer Specification.

ECU M&C Toolkit User Manual 6-88 ni.com

Chapter 6 ECU M&C API for C

mcProgramStart
Purpose

Indicates the start of a programming sequence.
Format

mcTypeStatus mcProgramStart (

mcTypeTaskRef ECURefNum) ;

Input

ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
If you are using the XCP protocol, mcProgramStart implements the XCP command
PROGRAM_START. This optional command the beginning of a programming sequence into
a non-volatile memory area. If the slave device is not in a state which permits programming,
an error is returned. The memory programming commands The end of a non-volatile memory
programming sequence is indicated by using the mcSetProperty function.

For further information on how to use program ECU memory and to use the
mcProgramStart command refer to the ASAM XCP Part 2 Protocol Layer Specification.

© National Instruments Corporation 6-89 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcSetProperty

Purpose

Sets a property of the driver, the database, the ECU, a Characteristic, a Measurement, or a

Measurement task.

Format
mcTypeStatus

Input
RefNum
Name
PropertyID
SizeOfvalue
Value

Output

Return Value

mcSetProperty (
mcTypeTaskRef RefNum,
cstr Name,
u32 PropertyID,
u32 SizeOfvalue,

void *Value) ;

RefNum is any ECU M&C task reference which consists of a valid
link to the opened A2L database (DBRefNum), a selected ECU
(ECURefNum) or a Measurement task (DAQRefNum). Re fNum
must be valid for the related PropertyID type.

Name is not used and can be set to NULL. This parameter maybe
used for further extensions.

Selects the property to set.

For a description of each property, including its data type and
PropertyId, refer to the Properties section.

Number of bytes allocated for the value output. This size
normally depends on the data type listed in the description of the
property.

Provides the property value. PropertyId determines the data
type of the value.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

ECU M&C Toolkit User Manual

6-90 ni.com

Chapter 6 ECU M&C API for C

Description

There are four types of properties which can be modified in the poly input value:
ECU-specific properties, DAQ-specific properties, Characteristic-specific properties,
and Measurement-specific properties.

ECU-Specific Properties

You cannot set an ECU property while the application is connected to the ECU. If you
need to change a ECU property prior to connecting, call mcECUSelectEx, followed by
mcSetProperty, and then mcECUConnect. After you connect to the ECU, you also can
change a property by calling mcECUDisconnect, followed by mcSetProperty, and then
mcECUConnect to restart the task. Table 6-5 contains a listing of ECU-specific values for
PropertyID.

DAQ-Specific Properties

You cannot set a DAQ property while a Measurement task is running. If you need to change
a property prior to starting a Measurement task call mcDAQInitialize, followed by
mcSetProperty, and then mcDAQStartStop. After you start the Measurement task, you
also can change a property by calling mcDAQStartStop, followed by mcSetProperty, and
then mcDAQStartStop to restart the task. Table 6-6 contains a listing of ECU-specific values
for PropertyID.

Properties

Table 6-5. ECU-Specific Value Types for the PropertylD Input Value

Data Type Name Description

u32

mcPropCANBaudRate Sets the CAN Baud rate for CCP or XCP on
CAN which is used to send commands and data
from the host to the slave device.

u32

mcPropCmd_EXCHANGE_ID Sets whether or not the EXCHANGE_ID
command should be suppressed during
connection to the ECU.

u32

mcPropCROID Sets the CRO CAN Identifier (Command
Receive Object) for CCP or XCP on CAN
which is used to send commands and data from
the host to the slave device.

u32

mcPropDTOID Sets the DTO CAN Identifier (Data Transfer
Object) for CCP or XCP on CAN which is used
to send commands and data from the slave
device to the host.

© National Instruments Corporation 6-91 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Table 6-5. ECU-Specific Value Types for the PropertylID Input Value (Continued)

Data Type Name Description

u32 mcPropECU_BaudRate Sets the Baud rate in use by the selected
interface. This property applies to all tasks
initialized with the NI-CAN or NI-XNET
interface. You can specify the following basic
baud rates as the numeric rate: 33333, 83333,
100000, 125000, 200000, 250000, 400000,
500000, 800000, and 1000000. You can specify
advanced baud rates as 8000XXYY hex, where
YY is the value of Bit Timing Register 0 (BTRO),
and XX is the value of Bit Timing Register 1
(BTR1).

For more information, refer to the Interface
Properties dialog in MAX. The value of this
property is originally set within MAX, but it can
be changed using mcSetProperty.

u32 mcPropECU_ByteOrder Sets the Byte Order of the slave device.
0—MSB_LAST

The Slave device uses the MSB_LAST (Intel)
byte ordering.

1—MSB_FIRST

The Slave device uses the MSB_FIRST
(Motorola) byte ordering.

str mcPropECU_Checksum Sets the file name of the Checksum DLL used
for verifying the checksum.

u32 mcPropECU_CmdByteOrder | Sets the byte order for multi-byte command
parameters.

0—MSB_LAST

The CCP Slave device uses the MSB_LLAST
(Intel) byte ordering.

1—MSB_FIRST

The CCP Slave device uses the MSB_FIRST
(Motorola) byte ordering.

ECU M&C Toolkit User Manual 6-92 ni.com

Chapter 6

Table 6-5. ECU-Specific Value Types for the PropertylID Input Value (Continued)

Data Type Name

Description

u32 mcPropECU_CRO_ID

Sets the CAN identifier for the CRO ID
(Command Receive Object), which is used to
send commands and data from the host to the
slave device.

u32 mcPropECU_DTO_ID

Sets the DTO ID (Data Transmission Object)
which is used by the ECU to respond to CCP
commands and send data and status information
to the CCP master.

u32 mcPropECU_MasterID

Sets CCP master ID information. This ID
information is optional and specific to the ECU
implementation. For more information about the
CCP master ID information refer to the
documentation for the ECU.

str mcPropECU_SeedKey_Cal

Sets the file name of the SeedKey DLL used for
Calibration purposes.

str mcPropECU_SeedKey_DAQ

Sets the file name of the SeedKey DLL used for
DAQ purposes.

str mcPropECU_SeedKey_Prog

Sets the file name of the SeedKey DLL used for
programming purposes.

str mcPropECU_SeedKey_XCP

Sets the file name of the SeedKey DLL for XCP.

ug mcPropECU_Single_Byte_
DAQ Lists

Sets the ECU to support single-byte or
multi-byte DAQ list entries.

u32 mcPropECU_Station
Address

Sets the station address of the slave device. CCP
is based on the idea that several ECUs can share
the same CAN Arbitration IDs for CCP
communication. To avoid communication
conflicts, CCP defines a Station Address that
must be unique for all ECUs sharing the same
CAN Arbitration IDs. Unless an ECU has been
addressed by its Station Address, the ECU must
not react to CCP commands sent by the CCP
master.

© National Instruments Corporation

6-93

ECU M&C API for C

ECU M&C Toolkit User Manual

Chapter 6

ECU M&C API for C

Table 6-5. ECU-Specific Value Types for the PropertylID Input Value (Continued)

Data Type Name Description
u32 mcPropECU_TimingFactor Sets the timing factor, which you can use to
increase CCP or XCP command timeout values.
For details on the default Command Timeout
values, refer to the CCP or XCP Protocol
Specification.
str mcPropIPAddress Sets the IP address for XCP on Ethernet (TCP or
UDP) as a string.
ul6 mcPropIPPort Sets the IP port for XCP on Ethernet (TCP or
UDP).
u32 mcPropOptCmd_ACTION_ Sets whether the ECU supports the optional
SERVICE CCP Command ACTION_SERVICE.
u32 mcPropOptCmd_BUILD_ Sets whether the ECU supports the optional
CHKSUM CCP Command BUILD_CHKSUM.
u32 mcPropOptCmd_CLEAR_ Sets whether the ECU supports the optional
MEMORY CCP Command CLEAR_MEMORY.
u32 mcPropOptCmd_DIAG_ Sets whether the ECU supports the optional
SERVICE CCP Command DIAG_SERVICE.
u32 mcPropOptCmd_DNLOAD_6 Sets whether the ECU supports the optional
CCP Command DNLOAD_6.
u32 mcPropOptCmd_GET_ Sets whether the ECU supports the optional
ACTIVE_CAL_PAGE CCP Command GET_ACTIVE_CAL_PAGE.
u32 mcPropOptCmd_GET_S_ Sets whether the ECU supports the optional
STATUS CCP Command GET_S_STATUS.
u32 mcPropOptCmd_GET_SEED Sets whether the ECU supports the optional
CCP Command GET_SEED.
u32 mcPropOptCmd_MOVE Sets whether the ECU supports the optional
CCP Command MOVE.
u32 mcPropOptCmd_PROGRAM Sets whether the ECU supports the optional
CCP Command PROGRAM.
u32 mcPropOptCmd_PROGRAM_6 Sets whether the ECU supports the optional

CCP Command PROGRAM_6.

ECU M&C Toolkit User Manual

6-94

ni.com

Chapter 6

Table 6-5. ECU-Specific Value Types for the PropertylID Input Value (Continued)

Data Type Name Description
u32 mcPropOptCmd_SELECT_ Sets whether the ECU supports the optional
CAL_PAGE CCP Command SELECT_CAL_PAGE.
u32 mcPropOptCmd_SET_S_ Sets whether the ECU supports the optional
STATUS CCP Command SET_S_STATUS.
u32 mcPropOptCmd_SHORT_UP Sets whether the ECU supports the optional
CCP Command SHORT_UP.
u32 mcPropOptCmd_START_ Sets whether the ECU supports the optional
STOP_ALL CCP Command START_STOP_ALL.
u32 mcPropOptCmd_TEST Sets whether the ECU supports the optional
CCP Command TEST.
u32 mcPropOptCmd_UNLOCK Sets whether the ECU supports the optional
CCP Command UNLOCK.
u8 mcPropPGM_AccessMethod Selects the selected access mode for mcProgram
and mcClearMemory:
0x00—Absolute Access Mode (default). The
MTA uses physical addresses.
0x01—Functional Access Mode. The MTA
functions as a block sequence number of the
new flash content file.
0x80...0xFF—User defined. It is possible to use
different access modes for clearing and
programming.
u8 mcPropPGM_Compression Selects the selected compression method used
Method for mcProgram.
0—Data is uncompressed (default).
0x80...0xFF—User defined.

© National Instruments Corporation

6-95

ECU M&C API for C

ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Table 6-5. ECU-Specific Value Types for the PropertylID Input Value (Continued)

Data Type Name Description

u8 mcPropPGM_Encryption Selects the selected encryption method used for
Method mcProgram.

0—Data is not encrypted (default).
0x80...0xFF—User defined.

u8 mcPropPGM_Programming Selects the selected programming method used
Method for mcProgram.

0—Sequential programming (default).
0x80...0xFF—User defined.

ECU M&C Toolkit User Manual 6-96 ni.com

Chapter 6 ECU M&C API for C

Table 6-6. DAQ-Specific Value Types for the PropertyID Input Value

Data Type Name Description

u32 mcPropDAQ_DTO_TID Sets the DTO ID (Data Transmission Object)
which is used by the ECU to respond to send
data from the DAQ lists to the CCP master.

abc mcPropDAQ_EventChannel Sets the selected event channel name to which
Name the Measurement task is assigned.
i32 mcPropDAQ_Mode Sets the mode of an M&C Measurement task.
0—DAQ List

The data is transmitted from the ECU in
equidistant time intervals as defined in the A2L
database. The data can be read back with
mcDAQRead as Single point data using sample
rate = 0, or as waveform using a sample rate > 0.
Input channel data is received from the DAQ
messages. Use mcDAQRead to obtain input
samples as single-point, array, or waveform.

1—Polling

In this mode the data from the Measurement
task is uploaded from the ECU whenever
mcDAQRead is called.

ul6 mcPropDAQ_Prescaler Sets the Prescaler, which reduces the desired
transmission frequency of the associated DAQ
list.

Characteristic-Specific Properties

Table 6-7. Characteristic-Specific Value Types for the PropertylD Input Value

Data Type Name Description

double[] mcPropChar_X_Axis Sets the X-axis values on which the
Characteristic is defined. The Characteristic
dimension must be at least 1.

© National Instruments Corporation 6-97 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C
Table 6-7. Characteristic-Specific Value Types for the PropertylD Input Value (Continued)
Data Type Name Description
double[] mcPropChar_Y_Axis Sets the Y-axis values on which the
Characteristic is defined. The Characteristic
dimension must be 2.
u32 mcPropChar_ByteOrder Sets the specified byte order of the selected

Characteristic:
O—Intel format

Bytes are in little-endian order, with
least-significant bit first.

1—Motorola format

Bytes are in big-endian order, with
most-significant bit first.

Measurement-Specific Properties

Table 6-8. Measurement-Specific Value Types for the PropertyID Input Value

Data Type Name

Description

u32

mcPropMeas_ByteOrder

Sets the specified byte order of the selected
Measurement:

0O—1Intel format

Bytes are in little-endian order, with
least-significant bit first.

1—Motorola format

Bytes are in big-endian order, with
most-significant bit first.

ECU M&C Toolkit User Manual

6-98

ni.com

Chapter 6 ECU M&C API for C

mcStatusToString
Purpose
Converts a status code into a descriptive string.
Format
mcTypeStatus mcStatusToString (
mcTypeTaskRef Status,
u32 SizeofString,
str ErrorString) ;
Input
Status Nonzero status code returned from an ECU M&C function.
SizeofString SizeofString buffer (in bytes).
Output
ErrorString ASCII string that describes Status.
Description

When the status code returned from an ECU M&C function is nonzero, an error or warning
is indicated. This function is used to obtain a description of the error/warning for debugging
purposes.

The return code is passed into the Status parameter. The SizeofString parameter
indicates the number of bytes available in the string for the description. The description is
truncated to size SizeofString if needed, but a size of 300 characters is large enough to
hold any description. The text returned in ErrorString is null-terminated, so it can be used
with ANSI C functions such as print£. For applications written in C or C++, each

ECU M&C function returns a status code as a signed 32-bit integer. The following table
summarizes the ECU M&C use of this status.

Table 6-9. Description of Return Codes

Status Code Definition
Negative Error—Function did not perform expected behavior.
Positive Warning—Function performed as expected, but a condition arose that

may require attention.

Zero Success—Function completed successfully.

© National Instruments Corporation 6-99 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

The application code should check the status returned from every ECU M&C function. If an
error is detected, you should close all ECU M&C handles and exit the application. If a

warning is detected, you can display a message for debugging purposes or simply ignore the
warning.

The following piece of code shows an example of handling ECU M&C status during
application debugging.
status= ncDatabaseOpen ("TestDataBase.A2L", &MyDbHandle) ;

PrintStat (status, "mcOpenDatabase");

where the function PrintStat has been defined at the top of the program as:
void PrintStat (mcTypeStatus status, char *source)
{
char statusString[300];
if (status !=0)
{
mcStatusToString (status, sizeof (statusString), statusString);
printf ("\n%s\nSource = %s\n", statusString, source);
if (status < 0)
{

mcDatabaseClose (MyDbHandle) ;

exit (1) ;

In some situations, you may want to check for specific errors in the code. For example, when
mcCharacteristicRead times out, you may want to continue communication, rather than
exit the application. To check for specific errors, use the constants defined in niemc . h. These
constants have the same names as described in this manual. For example, to check for a
function timeout, use:

if (status == mcErrorTimeout)

ECU M&C Toolkit User Manual 6-100 ni.com

Chapter 6 ECU M&C API for C

mcUpload
Purpose
Uploads data from an ECU.
Format
mcTypeStatus mcUpload (
mcTypeTaskRef ECURefNum,
mcAddress Address,
u32 BlockSize,
u8 *Data) ;
Input
ECURe fNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Address Configures the source address for the upload operation in the
ECU. mcaddress is a C struct consisting of:
Address
Specifies the address part of the source address.
Extension
Extension contains the extension part of the address.
BlockSize BlocksSize is the size of the data block in bytes to be uploaded.
Output
Data Data is a byte array which receives the uploaded data information

Return Value

from the ECU.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

© National Instruments Corporation

6-101 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Description
If you are using the CCP protocol, mcUpload implements the CCP command UPLOAD. A
data block of the specified length starting at the specified address is uploaded from the ECU.
This function sets the Memory Transfer Address pointer MTAO to the appropriate value as
defined in the Address struct.

If you are using the XCP protocol, mcUpload implements the XCP command UPLOAD. A
data block of the specified length starting at the specified address is uploaded from the ECU.
The Memory Transfer Address pointer MTAO is post-incremented by the given number of
data elements. If the slave device does not support block transfer mode, all uploaded data is
transferred in a single response packet. If block transfer mode is supported, the uploaded data
is transferred in multiple responses on the same request packet. There are no limitations
allowed concerning the maximum block size for the master.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to upload data and to use the mcUpload command.

ECU M&C Toolkit User Manual 6-102 ni.com

mcXCPCopyCalPage

Chapter 6 ECU M&C API for C

Purpose

Forces a copy transaction of one calibration page to another.

Format
mcTypeStatus

Input

ECURefNum
SourceSegment

SourcePage
DestinationSegment

DestinationPage

Output

None.

Return Value

mcXCPCopyCalPage (
mcTypeTaskRef ECURefNum,
u8 SourceSegment,
u8 SourcePage,

u8 DestinationSegment,

u8 DestinationPage) ;

ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
SourceSegment specifies the logical data segment number
source.

SourcePage specifies the logical page number source.
DestinationSegment specifies the logical data segment
number destination.

DestinationPage specifies the logical page number
destination.

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

© National Instruments Corporation

6-103 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Description

mcXCPCopyCalPage implements the XCP command COPY_CAL_PAGE and forces the
slave to copy one calibration page to another. This command is only available if more than
one calibration page is defined. In principal, any page of any segment can be copied to any
page of any other segment but there may be restrictions.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to set up a request.

ECU M&C Toolkit User Manual 6-104 ni.com

Chapter 6 ECU M&C API for C

mcXCPGetCalPage

Purpose
Queries a calibration page setting.
Format
mcTypeStatus mcXCPGetCalPage (
mcTypeTaskRef ECURefNum,
u8 Mode,
u8 Segment,
u8 *Page) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Mode Mode specifies the access mode:
Mode =1
The given page is used by the slave device application.
Mode =2
The slave device XCP driver will access the given page.
Segment Segment specifies the selected logical data segment number.
Output
Page Page returns the logical data page number.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mecStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcXCPGetCalPage implements the XCP command GET_CAL_PAGE and queries the
logical number for the calibration data page that is currently activated for the specified access
mode and data segment.

© National Instruments Corporation 6-105 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to set up a request.

ECU M&C Toolkit User Manual 6-106 ni.com

Chapter 6 ECU M&C API for C

mcXCPGetID

Purpose

Queries session configuration or slave device identification.

Format
mcTypeStatus mcXCPGetID(

mcTypeTaskRef ECURefNum,
u8 Type,
u32 *Length,

char *Id);

Input
ECURe fNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Type Type specifies the type of the requested identification:

Type Description

0 ASCII text

1 ASAM-MC?2 filename without path and extension

ASAM-MC?2 filename with path and extension

URL where the ASAM-MC?2 file can be found

AW |

ASAM-MC2 file to upload128..255
User defined

Output

Length Length returns the string length of the 1d string.
1d 1d contains the queried identification string.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

© National Instruments Corporation 6-107 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcXCPGetID implements the XCP command GET_ID and returns session configuration or
slave device identification information of the selected ECU slave device. The supported types
are implementation specific of the ECU slave device. The identification string is ASCII text
format.

ECU M&C Toolkit User Manual 6-108 ni.com

Chapter 6 ECU M&C API for C

mcXCPGetStatus

Purpose
Queries the current session status from an ECU slave device.
Format
mcTypeStatus mcXCPGetStatus (
mcTypeTaskRef ECURefNum,
u8 *SessionStatus,
u8 *ResourceMask,
ul6 *SessionId) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Output
SessionStatus SessionStatus returns the current status of the selected ECU.
ResourceMask ResourceMask is the current resource protection status of the
selected ECU.
SessionId SessionId returns the defined session configuration ID.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcXCPGetStatus implements the XCP command GET_STATUS and returns all current
status information of the selected ECU slave device, including the status of the resource
protection, pending store requests and the general status of data acquisition and stimulation.

© National Instruments Corporation 6-109 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Current Session Status

SessionStatus contains a bit mask which is described below:

Bit
Number Flag Description

0 STORE_CAL_REQ REQuest to STORE CALibration data:
0—STORE_CAL_REQ mode is reset.
1—STORE_CAL_REQ mode is set.

1 Unused —

2 STORE_DAQ_REQ REQuest to STORE DAQ list:
0—STORE_DAQ_REQ mode is reset.
1—STORE_DAQ_REQ mode is set.

3 CLEAR_DAQ_REQ REQuest to CLEAR DAQ configuration:
0—CLEAR_DAQ_REQ is reset.
1—CLEAR_DAQ_REQ is set.

4 Unused —

5 Unused —

6 DAQ_RUNNING Data Transfer:
0—The data transfer is not running.
1—The data transfer is running.

7 RESUME RESUME Mode:
0—The slave device is not in RESUME mode.
1—The slave device is in RESUME mode.

The STORE_CAL_REQ flag indicates a pending request to save the calibration data into
non-volatile memory. As soon as the request has been fulfilled, the slave will reset the
appropriate bit. The slave device may indicate this by transmitting an EV_STORE_CAL
event packet.

The STORE_DAQ_REQ flag indicates a pending request to save the DAQ list setup in
non-volatile memory. As soon as the request has been fulfilled, the slave will reset the
appropriate bit. The slave device may indicate this by transmitting an EV_STORE_DAQ
event packet.

ECU M&C Toolkit User Manual 6-110 ni.com

Chapter 6 ECU M&C API for C

The CLEAR_DAQ_REQ flag indicates a pending request to clear all DAQ lists in
non-volatile memory. All ODT entries are reset to address = 0, extension = 0, size = 0 and
bit_offset = FF. Session configuration ID is reset to 0. As soon as the request has been
fulfilled, the slave will reset the appropriate bit. The slave device may indicate this by
transmitting an EV_CLEAR_DAQ event packet. If the slave device does not support the
requested mode, an ERR_OUT_OF_RANGE is returned.

The DAQ_RUNNING flag indicates that at least one DAQ list has been started and is in
RUNNING mode.

The RESUME flag indicates that the slave is in RESUME mode.

ResourceMask contains the current resource protection status as a bit mask described below:

Bit
Number

Flag

Description

0

CAL/PAG

REQuest to STORE CALibration data:
0—STORE_CAL_REQ mode is reset.
1—STORE_CAL_REQ mode is set.

Unused

DAQ

DAQ list commands (DIRECTION = DAQ):

0—DAQ list commands are not protected with SEED & Key
mechanism.

1—DAQ list commands are protected with SEED & Key
mechanism.

STIM

DAQ list commands (DIRECTION = STIM):

0—DAQ list commands are not protected with SEED & Key
mechanism.

1—DAQ list commands are protected with SEED & Key
mechanism.

PGM

ProGraMming commands:

0—ProGraMming commands are not protected with SEED &
Key mechanism.

1—ProGraMming commands are protected with SEED & Key
mechanism

Unused

© National Instruments Corporation

6-111 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Bit
Number Flag Description
6 Unused —
7 Unused —

The CAL/PAG flags indicates that all commands of the CALibration/PAGing group are

protected and will return an ERR_ACCESS_LOCKED upon an attempt to execute the
command without a previous successful GET_SEED/UNLOCK sequence.

The PGM flags indicates that all the commands of the ProGraMming group are protected and
will return a ERR_ACCESS_LOCKED upon an attempt to execute the command without a
previous successful GET_SEED/UNLOCK sequence.

The parameter SessionId contains the Session configuration ID. The session configuration
ID must be set by a prior mcXCPSetRequest call with STORE_DAQ_REQ set. This allows
the master device to verify that automatically started DAQ lists contain the expected data

transfer configuration.

ECU M&C Toolkit User Manual

6-112

ni.com

Chapter 6 ECU M&C API for C

mcXCPProgramPrepare
Purpose
Prepares the programming of non volatile memory.
Format
mcTypeStatus mcXCPProgramPrepare (
mcTypeTaskRef ECURefNum,
mcAddress Address,
ulé CodeSize);
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Address Address is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Address
Specifies the address part of the target address.
Extension
Contains the extension part of the target address.
CodeSize CodeSize determines the size of data to be downloaded.
Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcXCPProgramPrepare may be used to indicate a data download as a pre-condition for
non-volatile memory reprogramming. The Memory Transfer address (MTA) pointer is set to
the volatile memory location specified by the parameters Address and Extension. The
download itself is done by using subsequent standard commands like mcDownload. The slave
device must ensure that the target memory area is available and it is in an operational state
which permits the download of code. If not, an error will be returned.

© National Instruments Corporation 6-113 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

mcXCPProgramPrepare implements the optional XCP PROGRAM_PREPARE command
defined by the XCP specification. For further information on how to program non-volatile
ECU memory refer to the ASAM XCP Part 2 Protocol Layer Specification.

ECU M&C Toolkit User Manual 6-114 ni.com

Chapter 6 ECU M&C API for C

mcXCPProgramVerify

Purpose
Verifies the programming of non-volatile ECU memory.
Format
mcTypeStatus mcXCPProgramVerify (
mcTypeTaskRef ECURefNum,
u8 Mode,
ul6é VerType,
u32 VerValue) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Mode Mode describes the verification mode:
Value Description
0 Request to start internal routine.
1 Send a Verification Value stored in Vervalue.
VerType VerType specifies the Verification Type of the requested program
verification. The Verification Type is a bit mask described below:
Verification Type Description
0x0001 Calibration area(s) of the flash.
0x0002 Code area(s) of the flash.
0x0004 Complete flash content.
0x0008 ... 0x0080 Reserved.
0x0100 ... OxFF00 User defined.
VerValue VerValue contains the selected verification value if Mode=1.
Output
None.

© National Instruments Corporation 6-115 ECU M&C Toolkit User Manual

Chapter 6

ECU M&C API for C

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcXCPProgramVeri fy implements the XCP command PROGRAM_VERIFY and performs
a flash program verification. If verMode = 0 the master can request the slave to start internal
test routines to check whether the new flash contents fits to the rest of the flash. Only the result
is of interest. If verMode = 01, the master can tell the slave that he is sending a Verification
Value to the slave. The definition of the Verification Mode is project specific. The master is

getting the Verification Mode from the project specific programming flow control and passing
it to the slave. The tool needs no further information about the details of the project specific
check routines. The XCP parameters allow a wide range of project specific adaptations. The
Verification Type is specified in the project specific programming flow control. The master is
getting this parameter and passing it to the slave. The definition of the Verification Value is

project specific and the use is defined in the project specific programming flow control.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to set up a request.

mcXCPProgramVeri fy can be used to verify the success of non-volatile memory
reprogramming.

With Mode set to 00 the master can request the slave to start internal test routines to check
whether the new flash contents fits to the rest of the flash. Only the result is of interest. With
Mode set to 01, the master can tell the slave that he will be sending a Verification value to the
slave. The definition of the Verification mode is project-specific. The master receives the
Verification mode from the project-specific programming flow control and passes it to the
slave.

mcXCPProgramVerify implements the optional XCP PROGRAM_VERIFY command
defined by the XCP specification. For further information on how to program non-volatile
ECU memory refer to the ASAM XCP Part 2 Protocol Layer Specification.

ECU M&C Toolkit User Manual 6-116 ni.com

Chapter 6 ECU M&C API for C

mcXCPSetCalPage

Purpose
Sets a calibration page.
Format
mcTypeStatus mcXCPSetCalPage (
mcTypeTaskRef ECURefNum,
u8 Mode,
u8 Segment,
u8 Page) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Mode Mode is a bit mask described below:
Bit Description
0 The given page is used by the slave device application.
1 The slave device XCP driver will access the given page.
2 Unused.
3 Unused.
4 Unused.
5 Unused.
6 Unused.
7 The logical segment number is ignored. The command applies to all segments.
Segment Segment specifies the selected logical data segment number.
Page Page specifies the logical data page number.
Output
None.

© National Instruments Corporation 6-117 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcXCPSetCalPage implements the XCP command SET_CAL_PAGE and sets the access
mode for a calibration data segment, if the slave device supports calibration data page
switching. A calibration data segment and its pages are specified by logical numbers.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to set up a request.

ECU M&C Toolkit User Manual 6-118 ni.com

Chapter 6 ECU M&C API for C

mcXCPSetRequest

Purpose
Performs a request to save session and device information to non-volatile memory.
Format
mcTypeStatus mcXCPSetRequest (
mcTypeTaskRef ECURefNum,
u8 Mode,
ul6é SessionID);
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Mode Mode is a bit mask described below:
Bit Description
0 Request to store calibration data in non-volatile memory.
1 Unused.
2 Request to save all DAQ lists, which have been selected with
START_STOP_DAQ_LIST(Select) into non-volatile memory.
The slave also must store the session configuration ID in non-volatile memory.
Upon saving, the slave first must clear any DAQ list configuration that might
already be stored in non-volatile memory.
3 Request to clear all DAQ lists in non-volatile memory. All ODT entries reset to
address = 0, extension = 0, size = 0 and bit_offset = FF. Session configuration
ID reset to 0.
4 Unused.
5 Unused.
6 Unused.
7 Unused.
SessionID SessionID is a session configuration ID that is stored in

non-volatile memory together with the information requested by
the Mode parameter.

© National Instruments Corporation 6-119 ECU M&C Toolkit User Manual

Chapter 6 ECU M&C API for C

Output

None.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description
mcXCPSetRequest implements the XCP command SET_REQUEST and is used to save
session configuration information into non-volatile memory in the ECU.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to setup a request.

ECU M&C Toolkit User Manual 6-120 ni.com

Chapter 6 ECU M&C API for C

mcXCPSetSegmentMode

Purpose
Sets the mode of a specified segment.
Format
mcTypeStatus mcXCPSetSegmentMode (
mcTypeTaskRef ECURefNum,
u8 Segment,
u8 Mode) ;
Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.
This reference is originally returned from mcECUSelectEx.
Segment Segment specifies the logical data segment number.
Mode Mode specifies the mode for the segment.
Output
None.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means
the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which
means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string
for the return value.

Description

mcXCPSetSegmentMode implements the XCP command SET_SEGMENT_MODE and sets
the selected segment into the specified mode. If Mode = 0 the segment disables the FREEZE
mode, if Mode = 1 the segment is set to FREEZE mode through an XCP STORE_CAL_REQ
operation.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how
to set up a request.

© National Instruments Corporation 6-121 ECU M&C Toolkit User Manual

Summary of the CCP Standard

Controller Area Network (CAN)

Bosch developed the Controller Area Network (CAN) in the mid-1980s.
Using CAN, devices (controllers, sensors, and actuators) are connected on
a common serial bus. This network of devices can be thought of as a
scaled-down, real-time, low-cost version of the networks used to connect
personal computers. Any device on a CAN network can communicate with
any other device using a common pair of wires.

As CAN implementations increased in the automotive industry, CAN was
standardized internationally as ISO 11898. CAN chips were created by
major semiconductor manufacturers such as Intel, Motorola, and Philips.
With these developments, manufacturers of industrial automation
equipment began to consider CAN for use in industrial applications.
Comparison of the requirements for automotive and industrial device
networks showed numerous similarities, including the transition away from
dedicated signal lines, low cost, resistance to harsh environments, and high
real-time capabilities.

CAN Calibration Protocol (CCP)

The amount of electronics introduced into the automobile has increased
significantly. This trend is expected to continue as automobile
manufacturers initiate further advances in safety, reliability and comfort.
The introduction of advanced control systems—combining multiple
sensors, actuators and electronic control units—has begun to place
extensive demands on the existing Controller Area Network (CAN)
communication bus. To enable the new generation of automotive
electronics, new and highly sophisticated software, calibration,
measurement, and diagnostic equipment must be used. At this time almost
no standards exist in the area of software interfaces for such devices. Each
company has its proprietary systems and interfaces to support the
development of these high-end configurations.

© National Instruments Corporation A-1 ECU M&C Toolkit User Manual

Appendix A Summary of the CCP Standard

Scope of CCP

ECU M&C Toolkit User Manual

The CAN Calibration Protocol was originally developed and introduced by
Ingenieurbiiro Helmut Kleinknecht, a manufacturer of calibration systems,
and is used in various application areas in the automotive industry.

Afterwards CCP was taken over by the ASAP working group and enhanced
with optional functions and is now maintained by the ASAM organization.

The CAN Calibration Protocol is a CAN-based master-slave protocol for
calibration and data acquisition using the CAN 2.0B standard (11-bit and
29-bit identifiers), which includes 2.0A (11-bit identifier). A single master
device (host) can be connected to one or more slave devices. Before a slave
device may accept commands from the host, the host must establish a
logical point-to-point connection to the slave device. After this connection
has been established, the slave device must acknowledge each command
received from the host within a specific time.

CCP offers continuous or event driven data acquisition from the controllers,
as well as memory transfers to and control functions in the controllers for
calibration purposes.

With these functions, CCP may be used in:
¢ The development of electronic control units (ECU)
e Systems for functional and environmental tests of an ECU

e Test systems and test stands for controlled devices (combustion
engines, gearboxes, suspension systems, climate-control systems,
body systems, anti-locking systems)

¢ On-board test and measurement systems of pre-series vehicles

* Any non-automotive application of CAN-based distributed electronic
control systems

CCP defines two function sets—one for control/memory transfer, and one
for data acquisitions that are independent of each other and may run
asynchronously. The control commands are used to carry out functions in
the slave device, and may use the slave to perform tasks on other devices.
The data acquisition commands are used for continuous data acquisition
from a slave device. The devices continuously transmit internal data
according to a list that has been configured by the host. Data acquisition is
initiated by the host, then executed by the slave device, and may be based
on a fixed sampling rate or be event-driven.

A-2 ni.com

Appendix A Summary of the CCP Standard

CCP Protocol Definition

Two communication objects are defined by CCP to handle the
communication between host and slave devices—The
CommandReceiveObject (CRO), which is used to send commands and
data from the host to the slave device; and the DataTransmissionObject
(DTO), which is used to transmit handshake messages, data and status
information from the slave device to the host. Each of these message
objects is assigned a unique CAN ID. Messages that are returned from the
slave as a message to a command are called CommandReturnMessages
(CRM).

A Command Receive Object is a CAN message consisting of eight bytes.
The first byte of a CRO is the command code, followed by the command
counter byte. The command counter is generated for reference by the host
to make sure that the CRM returned by a slave device corresponds to the
correct host command. The rest of the message builds the parameter and
data fields. The structure is as follows:

0 1 2 3 4 5 6 7
CMD CTR Parameter and Data Field
A DataTransmissionObject has a PacketID (PID) as the first byte. This PID
determines how the rest of the message is interpreted. CCP differentiates
between three types of DTOs:
PID Type
0x00—O0xFD Data Acquisition Message
0xFE Event Message
OxFF Command Return Message
Command Return Messages and Event Messages have the following
structure:
0 1 2 3 4 5 6 7
PID ERR Parameter and Data Field

© National Instruments Corporation A-3 ECU M&C Toolkit User Manual

Appendix A Summary of the CCP Standard

In the case of an Event Message, the Counter field does not contain valid
data and must be ignored by the host. For Command Return Messages the
Counter field must have the same value as the counter field of the
corresponding CRO. The error field contains information about the error
state. The parameter and data fields contain the data returned from the
slave device to the host. Command Return Messages and Event Messages
consist of eight bytes.

Data Acquisition Messages (DAQ Messages or DAMs) have a PID in the
first byte, and the rest of the message contains data. DAMs may be shorter
than eight bytes:

2 3 4 5 6 7

PID

Parameter and Data Field

ECU M&C Toolkit User Manual

Since the PIDs 0x00—O0xFD are reserved for Data Acquisition Messages,
a CCP slave device can send up to 253 different DAMs. Each DAQ message
can transfer up to seven bytes of data. The number of DAQ Messages
supported by a slave device depends on the device itself.

Data acquisition is performed through a CCP slave device by reading data
from a device's memory and copying it into the data field of a DAQ
message. So the CCP slave device keeps a list of entries for each DAM.
These lists are called ObjectDefinitionTables (ODTs). Each ODT entry
holds information about the memory address where data is stored inside the
device and the size of the data to be sent. The data of the first ODT entry is
placed in the first byte of the data field of the DAQ message. The data of
the next entry is placed at the first free byte of the DAQ message, and so on.

A-4 ni.com

Technical Support and
Professional Services

Visit the following sections of the award-winning National Instruments
Web site at ni . com for technical support and professional services:

© National Instruments Corporation

Support—Technical support at ni . com/support includes the
following resources:

Self-Help Technical Resources—For answers and solutions,
visit ni . com/support for software drivers and updates,

a searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.
Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every
question submitted online receives an answer.

Standard Service Program Membership—This program
entitles members to direct access to NI Applications Engineers
via phone and email for one-to-one technical support as well as
exclusive access to on demand training modules via the Services
Resource Center. NI offers complementary membership for a full
year after purchase, after which you may renew to continue your
benefits.

For information about other technical support options in your
area, visit ni.com/services, or contact your local office at
ni.com/contact.

Training and Certification—Visit ni . com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

B-1 ECU M&C Toolkit User Manual

Appendix B Technical Support and Professional Services

ECU M&C Toolkit User Manual

If you searched ni . com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni . com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

B-2 ni.com

Glossary

Symbol Prefix Value
m milli 10-3
k kilo 103
M mega 106
Numbers
2MC (*.A2L) See ASAM MCD 2MC.

database file

A
AL file

address extension

API

arbitration ID

ASAM

ASAM MCD 2MC

© National Instruments Corporation G-1

ECU device database file in ASAM MCD 2MC format.

An additional parameter to the address that may be used to switch between
data of several memory banks.

Application Program Interface—A set of routines, protocols, and tools for
building software applications.

An 11- or 29-bit ID transmitted as the first field of a CAN frame. The
arbitration ID determines the priority of the frame, and is normally used to
identify the data transmitted in the frame.

Association of Standardization of Automation and Measurement Systems.

ASAM MCD 2MC is a file interface standardized by ASAM which
describes the internal ECU data, interfaces, and communication protocols.
It contains all information about relevant data objects in the ECU like
Characteristic variables (parameters, characteristic curves, and maps),
real/virtual measurement variables, and variant dependencies. For each of
these objects information is needed, such as storage address, record layout,
data type, and conversion rules to convert the data into their physical units.

ECU M&C Toolkit User Manual

Glossary

baudrate

byte order

C

calibration data page

CAN

CCP

CCP master

CCP slave

Characteristic

Checksum DLL

Command Receive
Object (CRO)

ECU M&C Toolkit User Manual

A user-defined property which provides the baud rate at which
communication will occur. For more information, refer to the Interface
Properties dialog in MAX, or the NI-CAN Hardware and Software
Manual. The baud rate is originally set within MAX.

The byte order refers to which bytes are most significant in multi-byte data
types. The term describes the order in which a sequence of bytes is stored
in computer memory.

A portion of the ECU memory containing data that controls the behavior of
the ECU.

Controller Area Network. The Controller Area Network (CAN) is a joint
development of Robert Bosch GmbH and Intel Corporation. CAN is used
in many high-end automotive control systems, like engine management, as
well as in industrial control systems. Controller chips for CAN are available
from various semiconductor manufacturers.

CAN Calibration Protocol.

The CCP master device (host) is a calibration/monitoring tool for initiating
data transfers on the CAN by sending commands to slave devices.

Typically an ECU which communicates through CCP with the CCP master.

A Characteristic is a memory area within the ECU which defines the
behavior of a control subsystem. Calibration is a process to optimize the
Characteristic. A Characteristic can be represented by a single value
(parameter), a one-dimensional array of values (curve), or a
two-dimensional array of values (map).

A Dynamic Link Library which implements a function to calculate a
checksum over a given data block.

A Command Receive Object (CRO) is sent from the CCP master device
to one of the slave devices. The slave device answers with a Data
Transmission Object (DTO) containing a Command Return Message
(CRM).

G-2 ni.com

Glossary

Controller Area Network See CAN.

CRM

CRO

CROID

D

DAQ

DAQ channel
DAQ list
DAQ mode

Data Transfer Object

database task
DLL
DTO

DTO ID

© National Instruments Corporation G-3

Command Return Message—A CCP communication object used to send
commands and data from a host device to a slave device. The CRO is

8 bytes wide, consisting of a Command byte, a Command Counter byte,
and a 6-byte parameter/data field.

CommandReceiveObject—A CCP communication object used to send
commands and data from a host device to a slave device. The CRO is

8 bytes wide, consisting of a Command byte, a Command Counter byte,
and a 6-byte parameter/data field.

CAN identifier of the Command Receive Object (CRO)

Data Acquisition.

A single DAQ Measurement entry in a DAQ list.

A list of DAQ channels that is transmitted by the ECU.
Data acquisition mode.

A message sent from the slave device to the master device (Command
Return Message, Event Message, or Data Acquisition Message).

A task reference handle to the selected ASAM MCD 2MC database file.
Dynamic Link Library.
See Data Transfer Object.

CAN identifier of the DTO.

ECU M&C Toolkit User Manual

Glossary

E

ECU

ECU M&C Channel
functions

ECU reference
ECU task

Event Channel

Extended arbitration ID

Master ID
Measurement
Measurement task

Memory Transfer
Address

MTA

ECU M&C Toolkit User Manual

Electronic Control Unit—An electronic device with a central processing
unit performing programmed functions with its peripheral circuitry.

The part of the ECU M&C Toolkit API that you use to read and write
channels.

A Characteristic or Measurement channel consists of one more
floating-point values in physical units (such as Volts, rpm, km/h, °C, and so
on) that is converted to/from a raw value in measurement hardware. The
ECU M&C API Read and Write functions provide access to Characteristic
or Measurement channels. When a CAN message is received, ECU M&C
Toolkit converts raw fields in the message into physical units, which you
then obtain using the ECU M&C API Read function. When you call a ECU
M&C API Write function, you provide floating-point values in physical
units, which ECU M&C Toolkit converts into raw fields and transmits as a
CAN message based on the CCP protocol.

Reference handle to a selected ECU.
See ECU reference.

Specifies the generic signal source that effectively determines the data
transmission timing.

A 29-bit arbitration ID. Frames that use extended IDs are often referred to
as CAN 2.0 Part B (the specification which defines them).

A 6-byte string identifying the CCP master device.
See DAQ.
A collection of DAQ channels that you can read or write.

Address pointer in the ECU that holds the source/target address for data
sent or received via CCP. The address extension depends on the slave
controller's organization and may identify a switchable memory bank or a
memory segment.

See Memory Transfer Address.

G4 ni.com

ODT

PID

Prescaler

S

SeedKey DLL

slave device identifier

Station Address

T

task reference

Glossary

Object Descriptor Table—A list of elements (variables) used for
organization of data acquisition (DAQ).

PacketID—The first byte of a DTO corresponding to the ODT to which the
DTO is assigned. The values for DAQ list PIDs range from 0x00-0xFD.
The PIDs OxFE and OxFF are reserved for Event Messages and Command
Return Messages.

A factor defined to allow reduction of the desired transmission rate. The
prescaler is applied to the Event Channel. The prescaler value factor must
be greater than or equal to 1.

A Dynamic Link Library that implements a function to calculate a key to a
given seed to unlock access to ECU resources.

An ECU-specific array of bytes used by the master device to identify the
ECU.

A property which specifies an address to generate a logical point-to-point
connection with a selected slave station for the master-slave command
protocol. One ECU may support several station addresses.

An identifier returned as an output parameter of Database, ECU or
Measurement initialization functions.

© National Instruments Corporation G-5 ECU M&C Toolkit User Manual

Index

A

accessing Characteristics, 4-7
activating the ECU toolkit
home computer use, 2-4
moving software after installation, 2-4
online activation, 2-4
privacy policy, 2-4
procedure, 2-2
terms defined, 2-3
volume licensing, 2-4
additional programming topics, 4-16
generic CCP functions, 4-17
generic XCP functions, 4-18
Get Names, 4-16
seed and key algorithm, 4-19
Set/Get Properties, 4-16
application development
on CompactRIO or R Series, 3-4
ASAM definition, 1-1
ASAM MCD 2MC
communication properties
Baudrate, 4-6
CRO ID, 4-5
DTOID, 4-5
Station Address, 4-5
with CAN, 4-5
with UDP or TCP, 4-6
overview, 1-1

basic programming model, 4-3
Characteristic Read and Write, 4-7
communication (figure), 4-4
ECU Close, 4-7
ECU Connect, 4-6
ECU Disconnect, 4-7

© National Instruments Corporation -1

ECU Open, 4-5
Measurement tasks, 4-9

Baudrate (property), 4-6

C functions

list of functions, 6-2
mcBuildChecksum, 6-6
mcCalculateChecksum, 6-10
mcCCPActionService, 6-12
mcCCPDiagService, 6-14
mcCCPGetActiveCalPage, 6-16
mcCCPGetResult, 6-17
mcCCPGetSessionStatus, 6-18
mcCCPGetVersion, 6-19
mcCCPMoveMemory, 6-20
mcCCPSelectCalPage, 6-22
mcCCPSetSessionStatus, 6-23
options (table), 6-23
mcCharacteristicRead, 6-25
mcCharacteristicReadSingle Value, 6-26
mcCharacteristicWrite, 6-28
mcCharacteristicWriteSingle Value, 6-29
mcClearMemory, 6-31
mcConversionCreate, 6-32
mcDAQClear, 6-34
mcDAQInitialize, 6-35
mcDAQListInitialize, 6-38
mcDAQRead, 6-40
mcDAQReadTimestamped, 6-43
mcDAQStartStop, 6-46
mcDAQWrite, 6-48
mcDatabaseClose, 6-50
mcDatabaseOpen, 6-51
mcDownload, 6-52
mcECUConnect, 6-54

ECU M&C Toolkit User Manual

Index

mcECUCreate, 6-55
mcECUDeselect, 6-58
mcECUDisconnect, 6-59
mcECUSelectEx, 6-60
mcEventCreate, 6-63
mcGeneric, 6-64
mcGetNames, 6-66
mcGetNamesLength, 6-68
mcGetProperty, 6-70
options (table), 6-71
mcMeasurementCreate, 6-82
mcMeasurementRead, 6-84
mcMeasurementWrite, 6-85
mcProgram, 6-86
mcProgramReset, 6-88
mcProgramStart, 6-89
mcSetProperty, 6-90
Characteristic-specific options
(table), 6-97
DAQ-specific options (table), 6-97
ECU-specific options (table), 6-91
Measurement-specific options
(table), 6-98
mcStatusToString, 6-99
return codes (table), 6-99
mcUpload, 6-101
mcXCPCopyCalPage, 6-103
mcXCPGetCalPage, 6-105
mcXCPGetID, 6-107
mcXCPGetStatus, 6-109
mcXCPProgramPrepare, 6-113
mcXCPProgram Verify, 6-115
mcXCPSetCalPage, 6-117
mcXCPSetRequest, 6-119
mcXCPSetSegmentMode, 6-121
CAN Bridge (FPGA) VI
customizing, 3-5
CAN calibration protocol (CCP)
overview, 1-2, A-1
version, 1-2
CAN overview, A-1

ECU M&C Toolkit User Manual -2

CCP

functions, 4-3

overview, A-1

protocol definition, A-3

scope, A-2
Channel functions, 4-2
Characteristic Read and Write, 4-7
Characteristics

accessing, 4-7

reading, 4-8

writing, 4-8
checksum algorithm, 4-21

definition, 4-21, 4-22

for VxWorks targets, 4-23

example, 4-23

choosing programming languages, 3-1
CompactRIO

application development, 3-4
conventions used in the manual, xi
CRO ID (property), 4-5
customizing CAN Bridge (FPGA) VI, 3-5

D

debugging an application, 3-5
definition of activation terms, 2-3
developing an application, 3-1
diagnostic tools (NI resources), B-1
documentation

conventions used in manual, xi

NI resources, B-1

related documentation, xii
drivers (NI resources), B-1
DTO ID (property), 4-5

E

ECU API
C,6-1
LabVIEW, 5-1

ni.com

ECU Characteristics
definition, 4-2
overview, 1-4
ECU Close, 4-7
ECU Connect, 4-6
ECU databases, 1-4
ECU Disconnect, 4-7
ECU M&C API
additional programming topics, 4-16
architecture (figure), 4-1
CCP functions overview, 4-3
Channel functions, 4-2
structure, 4-1
XCP functions overview, 4-3
ECU Measurements
DAQ Clear, 4-13
DAQ Read, 4-11
DAQ Start Stop, 4-10
DAQ Write, 4-12
definition, 4-2
DTO ID, 4-10
ECU DAQ Initialize, 4-10
ECU reference handle, 4-10
flowchart (figure), 4-9
list, 4-10
mode, 4-10
overview, 4-9
sample rate, 4-10
ECU Open, 4-5
ECU toolkit
activation, 2-2
API overview, 4-1
basic programming model, 4-3
Characteristics, 1-4
databases
ASAM MCD 2MC, 1-4
ASAP, 1-4
definition, 1-1
hardware and software requirements, 2-10
installation, 2-1

© National Instruments Corporation -3

Index

introduction, 1-1
LabVIEW RT, 2-5
license management, 2-1
Measurements, 1-4
examples (NI resources), B-1

F

FPGA and host computer
transferring data between, 3-4
FTP transfers (table), 2-6
FTP with LabVIEW, 2-9
FTP with LabVIEW RT graphical file transfer
utility, 2-7
FTP with web browsers, 2-7

G

generic CCP functions, 4-17
generic XCP functions, 4-18
Get Names, 4-16

H

help, technical support, B-1
home software use, 2-4

instrument drivers (NI resources), B-1

K

KnowledgeBase, B-1

L

LabVIEW
list of VIs, 5-1
MC Build Checksum.vi, 5-5
MC Calc Checksum.vi, 5-8

ECU M&C Toolkit User Manual

Index

MC CCP Action Service.vi, 5-11

MC CCP Diag Service.vi, 5-13

MC CCP Generic.vi, 5-88

MC CCP Get Active Cal Page.vi, 5-15

MC CCP Get Result.vi, 5-17

MC CCP Get Session Status.vi, 5-19

MC CCP Get Version.vi, 5-21

MC CCP Move Memory.vi, 5-23

MC CCP Select Cal Page.vi, 5-25

MC CCP Set Session Status.vi, 5-27
options (table), 5-28

MC Characteristic Read Single Value.vi,

5-31

MC Characteristic Read.vi, 5-29
options (table), 5-30

MC Characteristic Write Single Value.vi,

5-35

MC Characteristic Write.vi, 5-33
options (table), 5-34

MC Clear Memory.vi, 5-37

MC Conversion Create.vi, 5-39

MC DAQ Clear.vi, 5-41

MC DAQ Initialize.vi, 5-43

MC DAQ List Initialize.vi, 5-46

MC DAQ Read.vi, 5-49

MC DAQ Start Stop.vi, 5-55

MC DAQ Write.vi, 5-57

MC Database Close.vi, 5-60

MC Database Open.vi, 5-62

MC Download.vi, 5-64

MC ECU Close.vi, 5-66

MC ECU Connect.vi, 5-68

MC ECU Create.vi, 5-70

MC ECU Deselect.vi, 5-74

MC ECU Disconnect.vi, 5-76

MC ECU Open.vi, 5-78

MC ECU Select.vi, 5-82

MC Event Create.vi, 5-86

MC Get Names.vi, 5-90

MC Get Property.vi, 5-92
poly output values (table), 5-94

ECU M&C Toolkit User Manual -4

MC Measurement Create.vi, 5-117
MC Measurement Read.vi, 5-119
MC Measurement Write.vi, 5-121
MC Program Reset.vi, 5-125
MC Program Start.vi, 5-127
MC Program.vi, 5-123
MC Set Property.vi, 5-129
Characteristic-specific input values
(table), 5-141
DAQ-specific poly input values
(table), 5-139
ECU-specific poly input values
(table), 5-131
Measurement-specific input values
(table), 5-141
MC Upload.vi, 5-142
MC XCP Copy Cal Page.vi, 5-144
MC XCP Get Cal Page.vi, 5-146
MC XCP Get ID.vi, 5-148
MC XCP Get Status.vi, 5-150
MC XCP Program Prepare.vi, 5-155
MC XCP Program Verify.vi, 5-157
MC XCP Set Cal Page.vi, 5-160
MC XCP Set Request.vi, 5-162
MC XCP Set Segment Mode.vi, 5-165
LabVIEW Real-Time (RT) configuration, 2-5
CompactRIO system, 2-5
DOS prompt, 2-6
FTP transfers (table), 2-6
LabVIEW, 2-9
LabVIEW RT graphical file transfer
utility, 2-7
NI-CAN on PXI RT system, 2-5
NI-XNET on PXI RT system, 2-5
PXI system, 2-5
web browsers, 2-7
license management overview, 2-1
list of C functions, 6-2
list of LabVIEW VIs, 5-1

ni.com

MC Build Checksum.vi, 5-5

MC Calc Checksum.vi, 5-8

MC CCP Action Service.vi, 5-11

MC CCP Diag Service.vi, 5-13

MC CCP Generic.vi, 5-88

MC CCP Get Active Cal Page.vi, 5-15

MC CCP Get Result.vi, 5-17

MC CCP Get Session Status.vi, 5-19

MC CCP Get Version.vi, 5-21

MC CCP Move Memory.vi, 5-23

MC CCP Select Cal Page.vi, 5-25

MC CCP Set Session Status.vi, 5-27
options (table), 5-28

MC Characteristic Read Single Value.vi, 5-31

MC Characteristic Read.vi, 5-29
options (table), 5-30

MC Characteristic Write Single Value.vi, 5-35

MC Characteristic Write.vi, 5-33
options (table), 5-34

MC Clear Memory.vi, 5-37

MC Conversion Create.vi, 5-39

MC DAQ Clear.vi, 5-41

MC DAQ Initialize.vi, 5-43

MC DAQ List Initialize.vi, 5-46

MC DAQ Read.vi, 5-49

MC DAQ Start Stop.vi, 5-55

MC DAQ Write.vi, 5-57

MC Database Close.vi, 5-60

MC Database Open.vi, 5-62

MC Download.vi, 5-64

MC ECU Close.vi, 5-66

MC ECU Connect.vi, 5-68

MC ECU Create.vi, 5-70

MC ECU Deselect.vi, 5-74

MC ECU Disconnect.vi, 5-76

MC ECU Open.vi, 5-78

MC ECU Select.vi, 5-82

MC Event Create.vi, 5-86

MC Get Names.vi, 5-90

© National Instruments Corporation -5

Index

MC Get Property.vi, 5-92
poly output values (table), 5-94
MC Measurement Create.vi, 5-117
MC Measurement Read.vi, 5-119
MC Measurement Write.vi, 5-121
MC Program Reset.vi, 5-125
MC Program Start.vi, 5-127
MC Program.vi, 5-123
MC Set Property.vi, 5-129
Characteristic-specific input values
(table), 5-141
DAQ-specific poly input values
(table), 5-139
ECU-specific poly input values
(table), 5-131
Measurement-specific input values
(table), 5-141
MC Upload.vi, 5-142
MC XCP Copy Cal Page.vi, 5-144
MC XCP Get Cal Page.vi, 5-146
MC XCP Get ID.vi, 5-148
MC XCP Get Status.vi, 5-150
MC XCP Program Prepare.vi, 5-155
MC XCP Program Verify.vi, 5-157
MC XCP Set Cal Page.vi, 5-160
MC XCP Set Request.vi, 5-162
MC XCP Set Segment Mode.vi, 5-165
mcBuildChecksum, 6-6
mcCCPActionService, 6-12
mcCCPCalculateChecksum, 6-10
mcCCPDiagService, 6-14
mcCCPGetActiveCalPage, 6-16
mcCCPGetResult, 6-17
mcCCPGetSessionStatus, 6-18
mcCCPGetVersion, 6-19
mcCCPMoveMemory, 6-20
mcCCPSelectCalPage, 6-22
mcCCPSetSessionStatus, 6-23
options (table), 6-23
mcCharacteristicRead, 6-25
mcCharacteristicReadSingle Value, 6-26

ECU M&C Toolkit User Manual

Index

mcCharacteristicWrite, 6-28
mcCharacteristicWriteSingle Value, 6-29
mcClearMemory, 6-31
mcConversionCreate, 6-32
mcDAQClear, 6-34
mcDAQInitialize, 6-35
mcDAQListInitialize, 6-38
mcDAQRead, 6-40
mcDAQReadTimestamped, 6-43
mcDAQStartStop, 6-46
mcDAQWrite, 6-48
mcDatabaseClose, 6-50
mcDatabaseOpen, 6-51
mcDownload, 6-52
mcECUConnect, 6-54
mcECUCreate, 6-55
mcECUDeselect, 6-58
mcECUDisconnect, 6-59
mcECUSelectEx, 6-60
mcEventCreate, 6-63
mcGeneric, 6-64
mcGetNames, 6-66
mcGetNamesLength, 6-68
mcGetProperty, 6-70

options (table), 6-71
mcMeasurementCreate, 6-82
mcMeasurementRead, 6-84
mcMeasurementWrite, 6-85
mcProgram, 6-86
mcProgramReset, 6-88
mcProgramStart, 6-89
mcSetProperty, 6-90

Characteristic-specific options

(table), 6-97

DAQ-specific options (table), 6-97

ECU-specific options (table), 6-91

Measurement-specific options (table),

6-98

mcStatusToString, 6-99

return codes (table), 6-99
mcUpload, 6-101

ECU M&C Toolkit User Manual -6

mcXCPCopyCalPage, 6-103
mcXCPGetCalPage, 6-105

mcXCPGetID, 6-107

mcXCPGetStatus, 6-109
mcXCPProgramPrepare, 6-113
mcXCPProgram Verify, 6-115
mcXCPSetCalPage, 6-117
mcXCPSetRequest, 6-119
mcXCPSetSegmentMode, 6-121
measurement and calibration databases, 1-4

National Instruments support and
services, B-1

0

online software activation, 2-4

P
privacy policy, 2-4
programming examples (NI resources), B-1
programming languages
LabVIEW, 3-1
LabWindows/CVI, 3-1
other, 3-3
Visual C++, 3-2

R

R Series

application development, 3-4
reactivation on another system, 2-4
reading Characteristics, 4-8
related documentation, xii
RT configuration

DOS prompt, 2-6

FTP transfers (table), 2-6

LabVIEW, 2-9

ni.com

LabVIEW RT graphical file transfer
utility, 2-7
web browsers, 2-7

S

sample rate greater than 0, 4-12
read sample timing (figure), 4-12
sample rate=0, 4-11
read sample timing (figure), 4-11
seed and key algorithm, 4-19
definition, 4-19
example, 4-20
for VxWorks targets, 4-23
example, 4-23
Set/Get Properties, 4-16
setting up an ECU Measurement
DAQ Clear, 4-13
DAQ Read, 4-11
DAQ Start Stop, 4-10
DAQ Write, 4-12
DTOID, 4-10
ECU DAQ Initialize, 4-10
ECU reference handle, 4-10
flowchart (figure), 4-9
list, 4-10
mode, 4-10
overview, 4-9
sample rate, 4-10
software (NI resources), B-1
Station Address (property), 4-5
structure of ECU M&C API, 4-1
support, technical, B-1

© National Instruments Corporation

T

task (concept), 1-4
technical support, B-1

Index

training and certification (NI resources), B-1

transferring data between FPGA and host
computer, 3-4
troubleshooting (NI resources), B-1

u

using with FTP, 2-6

v

volume licensing program, 2-4

W

Web resources, B-1
writing Characteristics, 4-8

X

XCP, functions overview, 4-3

ECU M&C Toolkit User Manual

	ECU Measurement and Calibration Toolkit User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	CAN Calibration Protocol (CCP) Overview
	CCP Protocol Version

	Universal Measurement and Calibration Protocol (XCP) Overview
	XCP Protocol Version

	Measurement and Calibration Databases
	ECU Measurements
	ECU Characteristics

	Chapter 2 Installation and Configuration
	Installation
	License Management Overview
	Activate ECU M&C Toolkit
	Terms
	Table 1. Definition of Activation Terms

	Moving Software After Activation
	Volume License Program
	Online Activation
	Home Computer Use
	Privacy Policy

	LabVIEW Real-Time (RT) Configuration
	PXI System
	NI-CAN on PXI RT System
	NI-XNET on PXI RT System
	CompactRIO System
	DOS Command Prompt
	Table 2-1. Example of FTP Transfer

	Web Browsers
	LabVIEW Real-Time Graphical File Transfer Utility
	Figure 2-2. FTP Utility Access in MAX
	Figure 2-3. FTP Login Dialog Box
	Figure 2-4. Transferring Files With the FTP Utility

	LabVIEW

	Hardware and Software Requirements

	Chapter 3 Application Development
	Choose the Programming Language
	LabVIEW
	LabWindows/CVI
	Visual C++ 6
	Other Programming Languages

	Application Development on CompactRIO or R Series
	Transferring Data between the FPGA and Host Computer
	Customizing the CAN Bridge (FPGA) VI

	Debugging An Application
	NI-Spy
	XCP-Spy
	Figure 3-1. XCP Spy
	Saving Captured Communication Data
	Capture Options
	Call History Depth
	Capturing Data
	Selecting Which XCP Commands to View

	Chapter 4 Using the ECU M&C API
	Structure of the ECU M&C API
	Figure 4-1. ECU Architectural Overview
	ECU M&C Channel Functions
	What is an ECU Measurement?
	What is an ECU Characteristic?

	ECU M&C CCP and XCP Functions

	Basic Programming Model
	Figure 4-2. ECU Communication Decision Chart
	ECU Open
	ASAM MCD 2MC Communication Properties for CCP or XCP with CAN
	CRO ID
	DTO ID
	Station Address
	Baudrate

	ASAM MCD 2MC Communication Properties for XCP with UDP or TCP
	IP Address or hostname
	Port number

	ECU Connect
	ECU Disconnect
	ECU Close
	Characteristic Read and Write
	Access Characteristics
	Characteristic Read
	Characteristic Write

	Measurement Task
	Figure 4-3. ECU Measurement Setup Flowchart
	DAQ Initialize
	DAQ Start Stop
	DAQ Read
	Figure 4-4. Example of Read With Sample Rate = 0
	Figure 4-5. Example of Read With Sample Rate > 0
	DAQ Write
	DAQ Clear

	Memory Programming
	Figure 4-6. Memory Programming Process Decision Chart
	Program Start
	Clear Memory
	Program
	Program Reset
	Optional Steps for the XCP Protocol

	Additional Programming Topics
	Get Names
	Set/Get Properties
	Generic CCP Functions
	Table 4-1. Overview of the CCP Commands with Related VIs and C Functions

	Generic XCP Functions
	Table 4-2. Overview of the XCP Commands with Related VIs and C Functions

	Seed and Key Algorithm
	Definition for Seed and Key Algorithm
	Seed and Key Example
	Checksum Algorithm
	Seed and Key and Checksum Algorithms for VxWorks Targets

	Chapter 5 ECU M&C API for LabVIEW
	Section Headings
	Purpose
	Format
	Input and Output
	Description

	List of VIs
	Table 5-1. ECU M&C API VIs for LabVIEW
	MC Build Checksum.vi
	MC Calc Checksum.vi
	MC CCP Action Service.vi
	MC CCP Diag Service.vi
	MC CCP Get Active Cal Page.vi
	MC CCP Get Result.vi
	MC CCP Get Session Status.vi
	MC CCP Get Version.vi
	MC CCP Move Memory.vi
	MC CCP Select Cal Page.vi
	MC CCP Set Session Status.vi
	Table 5-2. Bit Mask Assignment for Calibration Session Status

	MC Characteristic Read.vi
	Table 5-3. Poly VI Types for the Value Parameter

	MC Characteristic Read Single Value.vi
	MC Characteristic Write.vi
	Table 5-4. Poly VI Types for the Characteristic Parameter

	MC Characteristic Write Single Value.vi
	MC Clear Memory.vi
	MC Conversion Create.vi
	MC DAQ Clear.vi
	MC DAQ Initialize.vi
	MC DAQ List Initialize.vi
	MC DAQ Read.vi
	MC DAQ Start Stop.vi
	MC DAQ Write.vi
	MC Database Close.vi
	MC Database Open.vi
	MC Download.vi
	MC ECU Close.vi
	MC ECU Connect.vi
	MC ECU Create.vi
	MC ECU Deselect.vi
	MC ECU Disconnect.vi
	MC ECU Open.vi
	MC ECU Select.vi
	MC Event Create.vi
	MC Generic.vi
	MC Get Names.vi
	MC Get Property.vi
	Table 5-5. Poly Values for Value Output

	MC Measurement Create.vi
	MC Measurement Read.vi
	MC Measurement Write.vi
	MC Program.vi
	MC Program Reset.vi
	MC Program Start.vi
	MC Set Property.vi
	Table 5-6. ECU-Specific Property Value Types for the POLY Input Value
	Table 5-7. DAQ-Specific Property Value Types for the POLY Input Value
	Table 5-8. Characteristic-Specific Property Value Types for the PropertyID Input Value
	Table 5-9. Measurement-Specific Property Value Types for the PropertyID Input Value

	MC Upload.vi
	MC XCP Copy Cal Page.vi
	MC XCP Get Cal Page.vi
	MC XCP Get ID.vi
	MC XCP Get Status.vi
	MC XCP Program Prepare.vi
	MC XCP Program Verify.vi
	MC XCP Set Cal Page.vi
	MC XCP Set Request.vi
	MC XCP Set Segment Mode.vi

	Chapter 6 ECU M&C API for C
	Section Headings
	Purpose
	Format
	Input and Output
	Description

	List of Data Types
	Table 6-1. Data Types for the ECU M&C API for C

	List of Functions
	Table 6-2. Functions for the ECU M&C API for C
	mcBuildChecksum
	mcCalculateChecksum
	mcCCPActionService
	mcCCPDiagService
	mcCCPGetActiveCalPage
	mcCCPGetResult
	mcCCPGetSessionStatus
	mcCCPGetVersion
	mcCCPMoveMemory
	mcCCPSelectCalPage
	mcCCPSetSessionStatus
	Table 6-3. Bit Mask Assignments for Calibration Session Status

	mcCharacteristicRead
	mcCharacteristicReadSingleValue
	mcCharacteristicWrite
	mcCharacteristicWriteSingleValue
	mcClearMemory
	mcConversionCreate
	mcDAQClear
	mcDAQInitialize
	mcDAQListInitialize
	mcDAQRead
	mcDAQReadTimestamped
	mcDAQStartStop
	mcDAQWrite
	mcDatabaseClose
	mcDatabaseOpen
	mcDownload
	mcECUConnect
	mcECUCreate
	mcECUDeselect
	mcECUDisconnect
	mcECUSelectEx
	mcEventCreate
	mcGeneric
	mcGetNames
	mcGetNamesLength
	mcGetProperty
	Table 6-4. Values for PropertyID

	mcMeasurementCreate
	mcMeasurementRead
	mcMeasurementWrite
	mcProgram
	mcProgramReset
	mcProgramStart
	mcSetProperty
	Table 6-5. ECU-Specific Value Types for the PropertyID Input Value
	Table 6-6. DAQ-Specific Value Types for the PropertyID Input Value
	Table 6-7. Characteristic-Specific Value Types for the PropertyID Input Value
	Table 6-8. Measurement-Specific Value Types for the PropertyID Input Value

	mcStatusToString
	Table 6-9. Description of Return Codes

	mcUpload
	mcXCPCopyCalPage
	mcXCPGetCalPage
	mcXCPGetID
	mcXCPGetStatus
	mcXCPProgramPrepare
	mcXCPProgramVerify
	mcXCPSetCalPage
	mcXCPSetRequest
	mcXCPSetSegmentMode

	Appendix A Summary of the CCP Standard
	Appendix B Technical Support and Professional Services
	Glossary
	Numbers
	A
	B-C
	D
	E-M
	O-T

	Index
	A-C
	D-E
	F-L
	M
	N-R
	S-X

