
LabWindowsTM/CVITM

PID Control Toolkit User Manual

LabWindows/CVI PID Control Toolkit User Manual

November 2005
371685A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the info code feedback.

© 2005 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no
agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v LabWindows/CVI PID Control Toolkit User Manual

Contents

About This Manual
Conventions ...vii
Related Documentation..vii

Chapter 1
Overview of the PID Control Toolkit

Package Contents ...1-1
System Requirements ..1-1
Installation Instructions..1-1
PID Control Toolkit Applications..1-2
PID Control..1-2

Chapter 2
PID Algorithms

The PID Algorithm ..2-1
Implementing the PID Algorithm with the PID Functions2-2
Gain Scheduling ..2-3

The Precise PID Algorithm..2-4
Error Calculation ...2-4
Proportional Action ...2-4
Trapezoidal Integration ...2-5

The Autotuning Algorithm ..2-5
Tuning Formulas ...2-6

Chapter 3
Using the PID Control Toolkit

Designing a Control Strategy...3-1
Setting Timing ...3-1
Tuning Controllers Manually ..3-2

Using the PID Library..3-4
PID Controller ...3-4
Using PID with Autotuning...3-6
Using PID with Gain Scheduling ..3-7
Using PID with Lead-Lag ...3-8
Using PID with Setpoint Profiling ..3-9
Using Ramp Generators ..3-9
Converting between Percentage of Full Scale and Engineering Units............3-10

Contents

LabWindows/CVI PID Control Toolkit User Manual vi ni.com

Using PID on Real-Time (RT) Targets... 3-10
Using PID with DAQ Devices .. 3-11

Chapter 4
Process Control Examples

Simulation Examples... 4-1
Hardware Examples... 4-5

Appendix A
References

Appendix B
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation vii LabWindows/CVI PID Control Toolkit User Manual

About This Manual

The LabWindows/CVI PID Control Toolkit User Manual describes the PID
Control Toolkit for LabWindows™/CVI™. The manual describes the
features, functions, and operation of the toolkit. To use this manual, you
need a basic understanding of process control strategies and algorithms.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

Related Documentation
The following documents contain information that you may find helpful as
you read this manual:

• LabWindows/CVI PID Control Toolkit Help

• LabWindows/CVI Help

• NI-DAQmx Help

• Traditional NI-DAQ (Legacy) C Function Reference Help

© National Instruments Corporation 1-1 LabWindows/CVI PID Control Toolkit User Manual

1
Overview of the PID Control
Toolkit

This chapter lists the contents of the PID Control Toolkit for LabWindows/CVI, describes
how to install the toolkit, and describes PID control applications.

Package Contents
The PID Control Toolkit contains the following materials:

• Software that includes control functions and example programs

• LabWindows/CVI PID Control Toolkit User Manual

System Requirements
Your computer must meet the following minimum system requirements to run the PID
Control Toolkit:

• LabWindows/CVI 7.0 or later

• Windows 2000/XP

Installation Instructions
If you install the PID Control Toolkit on a computer that has multiple versions of
LabWindows/CVI installed, the toolkit is installed with the latest version. Also, if you already
have an earlier version of the LabWindows/CVI PID Control Toolkit installed on your
computer, you must uninstall it before installing this version of the PID Control Toolkit.

Complete the following steps to install the PID Control Toolkit:

1. Insert the PID Control Toolkit CD into the CD-ROM drive.

2. Click Install Toolkit.

3. Follow the instructions on the screen. When the PID Control Toolkit has been
successfully installed, click Finish.

Chapter 1 Overview of the PID Control Toolkit

LabWindows/CVI PID Control Toolkit User Manual 1-2 ni.com

PID Control Toolkit Applications
The PID Control Toolkit contains functions you can use to develop LabWindows/CVI control
applications. For more information about the types of applications you can develop, refer to
the example programs that are installed with the toolkit. These examples are described in
Chapter 4, Process Control Examples.

PID Control
Currently, the Proportional-Integral-Derivative (PID) algorithm is the most common control
algorithm used in industry. Often, PID is used to control processes that include heating and
cooling systems, fluid level monitoring, flow control, and pressure control. When using PID
control, you must specify a process variable and a setpoint. The process variable is the system
parameter you want to control, such as temperature, pressure, or flow rate. The setpoint is the
desired value for the parameter you are controlling. A PID controller determines a controller
output value, such as the heater power or valve position. When applied to the system, the
controller output value drives the process variable toward the setpoint value.

You can use the PID Control Toolkit functions with National Instruments hardware to develop
LabWindows/CVI control applications. Use I/O hardware, such as DAQ devices, FieldPoint
I/O modules, or GPIB boards, to connect your PC to the system you want to control. You can
use the LabWindows/CVI I/O functions with the PID Control Toolkit to develop a control
application or modify the examples provided with the toolkit.

Using the PID Control Toolkit functions, you can develop the following control applications
based on PID controllers:

• Proportional (P), proportional-integral (PI), proportional-derivative (PD), and
proportional-integral-derivative (PID) algorithms

• Gain-scheduled PID

• PID autotuning

• Precise PID

• Lead-lag compensation

• Setpoint profile generation

• Multiloop cascade control

• Feedforward control

• Override (minimum/maximum selector) control

• Ratio/bias control

Chapter 1 Overview of the PID Control Toolkit

© National Instruments Corporation 1-3 LabWindows/CVI PID Control Toolkit User Manual

Refer to the LabWindows/CVI PID Control Toolkit Help, which you can access by selecting
Start»Programs»National Instruments»PID Control Toolkit for CVI»LabWindows
CVI PID Help, for more information about the functions.

© National Instruments Corporation 2-1 LabWindows/CVI PID Control Toolkit User Manual

2
PID Algorithms

This chapter explains the PID, precise PID, and autotuning algorithms.

The PID Algorithm
The PID controller compares the setpoint (SP) to the process variable (PV) to obtain the error
(e), as follows:

e = SP – PV

Then the PID controller calculates the controller action, u(t), as follows. In this equation, Kc
is the controller gain.

If the error and the controller output have the same range, –100% to 100%, controller gain is
the reciprocal of proportional band. Ti is the integral time in minutes, also called the reset
time, and Td is the derivative time in minutes, also called the rate time. The following formula
represents the proportional action.

The following formula represents the integral action.

 The following formula represents the derivative action.

u t() Kc e
1
Ti
---- e td

0

t

∫ Td
de
dt
------+ +

 
 
 
 

=

up t() Kce=

u I t() =
Kc
Ti

------- e td

0

t

∫

uD t() KcTd de
dt
-------=

Chapter 2 PID Algorithms

LabWindows/CVI PID Control Toolkit User Manual 2-2 ni.com

Implementing the PID Algorithm with the PID Functions
This section describes how the PID functions implement the positional PID algorithm.

Error Calculation
The following formula represents the current error used in calculating proportional, integral,
and derivative action.

Proportional Action
Proportional action is the controller gain times the error, as shown in the following formula:

Trapezoidal Integration
Trapezoidal integration is used to avoid sharp changes in integral action when there is a
sudden change in the PV or SP. Use nonlinear adjustment of the integral action to counteract
overshoot. The following formula represents the trapezoidal integration action.

Partial Derivative Action
Because of abrupt changes in the SP, only apply derivative action to the PV, not to the error
(e), to avoid derivative kick. The following formula represents the partial derivative action.

Controller Output
Controller output is the summation of the proportional, integral, and derivative action, as
shown in the following formula:

e(k) = (SP PVf)–

uP k()= Kc* e k()()

uI k()=
Kc
Ti
------ e i() e i 1–()+

2
---------------------------------- t∆

i 1=

k

∑

uD k() = Kc
Td
∆t
----- PVf k() PVf k 1–()–()–

u k() uP k() uI k() u+ D k()+=

Chapter 2 PID Algorithms

© National Instruments Corporation 2-3 LabWindows/CVI PID Control Toolkit User Manual

Output Limiting
The actual controller output is limited to the range specified for control output, as follows:

and

The following formula shows the practical model of the PID controller.

The PID functions use an integral sum correction algorithm that facilitates anti-windup and
bumpless manual-to-automatic transfers. Windup occurs at the upper limit of the controller
output, for example, 100%. When the error (e) decreases, the controller output decreases,
moving out of the windup area. The integral sum correction algorithm prevents abrupt
controller output changes when you switch from manual to automatic mode or change any
other parameters.

The default ranges for the SP, PV, and output parameters correspond to percentage values;
however, you can use actual engineering units. If you use engineering units, you must adjust
the corresponding ranges accordingly. The Ti and Td parameters are specified in minutes. In
manual mode, you can change the manual input to increase or decrease the output.

All the PID control functions are reentrant. Multiple calls from high-level functions use
separate and distinct data.

Note As a general rule, manually drive the PV until it meets or comes close to the SP
before you perform the manual-to-automatic transfer.

Gain Scheduling
Gain scheduling refers to a system in which you change controller parameters based on
measured operating conditions. For example, the scheduling variable can be the SP, the PV, a
controller output, or an external signal. For historical reasons, the term gain scheduling is used
even if other parameters, such as the derivative time or integral time parameters, change. Gain
scheduling effectively controls a system whose dynamics change with the operating
conditions.

if u k() umax then u k() umax=≥

if u k() umin then u k() umin=≤

u t() Kc SP PV–() 1
Ti
---- (SP PV)dt Td

dPVf
dt

------------––
0

t

∫+=

Chapter 2 PID Algorithms

LabWindows/CVI PID Control Toolkit User Manual 2-4 ni.com

The Precise PID Algorithm

Error Calculation
The following formula represents the current error used in calculating proportional, integral,
and derivative action.

The error for calculating proportional action is shown in the following formula:

where SPrange is the range of the SP, β is the setpoint factor for the Two Degree of Freedom
PID algorithm described in the Proportional Action section, and L is the linearity factor that
produces a nonlinear gain term in which the controller gain increases with the magnitude of
the error. If L is 1, the controller is linear. A value of 0.1 makes the minimum gain of the
controller 10% Kc. Use of a nonlinear gain term is referred to as a precise PID algorithm.

Proportional Action
In applications, SP changes are usually larger and faster than load disturbances, while load
disturbances appear as a slow departure of the controlled variable from the SP. PID tuning for
good load-disturbance responses often results in SP responses with unacceptable oscillation.
However, tuning for good SP responses often yields sluggish load-disturbance responses. The
factor b, when set to less than one, reduces the SP response overshoot without affecting the
load-disturbance response, indicating the use of a Two Degree of Freedom PID algorithm.
β is an index of the SP response importance, from zero to one. For example, if you consider
load response the most important loop performance, set β to 0.0. Conversely, if you want the
PV to quickly follow the SP change, set β to 1.0.

e(k) = (SP PVf)(L+ 1 L–()*
SP PVf–

SPrange
-------------------------) –

eb k() (β*SP PVf)(L+ 1 L–()*
βSP PVf–

SPrange
----------------------------) –=

uP k()= Kc* eb k()()

Chapter 2 PID Algorithms

© National Instruments Corporation 2-5 LabWindows/CVI PID Control Toolkit User Manual

Trapezoidal Integration
Trapezoidal integration is used to avoid sharp changes in integral action when there is a
sudden change in the PV or SP. Use nonlinear adjustment of integral action to counteract the
overshoot. The larger the error, the smaller the integral action, as shown in the following
formula and in Figure 2-1.

Figure 2-1. Nonlinear Multiple for Integral Action (SPrng = 100)

The Autotuning Algorithm
Use autotuning to improve performance. Often, many controllers are poorly tuned. As a
result, some controllers are too aggressive and some controllers are too sluggish. PID
controllers are difficult to tune when you do not know the process dynamics or disturbances.
In this case, use autotuning. Before you begin autotuning, you must establish a stable
controller, even if you cannot properly tune the controller on your own.

uI k()=
Kc
Ti
------ e i() e i 1–()+

2
---------------------------------- t∆

i 1=

k

∑ 1

1 10*e i()2

SPrng
2

---------------------+

Chapter 2 PID Algorithms

LabWindows/CVI PID Control Toolkit User Manual 2-6 ni.com

Figure 2-2 illustrates the autotuning procedure excited by the setpoint relay experiment,
which connects a relay and an extra feedback signal with the SP. Notice that the PID Library
autotuning functions directly implement this process. The existing controller remains in the
loop.

Figure 2-2. Process under PID Control with Setpoint Relay

For most systems, the nonlinear relay characteristic generates a limiting cycle from which the
autotuning algorithm identifies the relevant information needed for PID tuning. If the existing
controller is proportional only, the autotuning algorithm identifies the ultimate gain Ku and
ultimate period Tu. If the existing model is PI or PID, the autotuning algorithm identifies the
dead time and time constant Tp, which are two parameters in the integral-plus-deadtime
model, as follows:

Tuning Formulas
This package uses Ziegler and Nichols’ heuristic methods for determining the parameters of
a PID controller. When you autotune, select one of the following types of loop performance:
fast (1/4 damping ratio), normal (some overshoot), or slow (little overshoot). Refer to the
following tuning formula tables for each type of loop performance.

Table 2-1. Tuning Formula under P-Only Control (Fast)

Controller Kc Ti Td

P 0.5Ku — —

PI 0.4Ku 0.8Tu —

PID 0.6Ku 0.5Tu 0.12Tu

SP e
+
– P(I) Controller Process

PV

Relay

+
–

τ

GP s() = e
τs–

Tps

Chapter 2 PID Algorithms

© National Instruments Corporation 2-7 LabWindows/CVI PID Control Toolkit User Manual

Table 2-2. Tuning Formula under P-Only Control (Normal)

Controller Kc Ti Td

P 0.2Ku — —

PI 0.18Ku 0.8Tu —

PID 0.25Ku 0.5Tu 0.12Tu

Table 2-3. Tuning Formula under P-Only Control (Slow)

Controller Kc Ti Td

P 0.13Ku — —

PI 0.13Ku 0.8Tu —

PID 0.15Ku 0.5Tu 0.12Tu

Table 2-4. Tuning Formula under PI or PID Control (Fast)

Controller Kc Ti Td

P Tp /τ — —

PI 0.9Tp /τ 3.33τ —

PID 1.1Tp /τ 2.0τ 0.5τ

Table 2-5. Tuning Formula under PI or PID Control (Normal)

Controller Kc Ti Td

P 0.44Tp /τ — —

PI 0.4Tp /τ 5.33τ —

PID 0.53Tp /τ 4.0τ 0.8τ

Chapter 2 PID Algorithms

LabWindows/CVI PID Control Toolkit User Manual 2-8 ni.com

Note During tuning, the process remains under closed-loop PID control. It is not
necessary to switch off the existing controller and perform the experiment under open-loop
conditions. In the setpoint relay experiment, the SP signal mirrors the SP for the PID
controller.

Table 2-6. Tuning Formula under PI or PID Control (Slow)

Controller Kc Ti Td

P 0.26Tp /τ — —

PI 0.24Tp /τ 5.33τ —

PID 0.32Tp /τ 4.0τ 0.8τ

© National Instruments Corporation 3-1 LabWindows/CVI PID Control Toolkit User Manual

3
Using the PID Control Toolkit

This chapter contains the basic information you need to design a control strategy using the
PID Control Toolkit functions.

Designing a Control Strategy
When you design a control strategy, sketch a flowchart that includes the physical process and
control elements such as valves and measurements. Add feedback from the process and any
required computations. Then use the PID Control Toolkit functions to translate the flowchart
into an application.

You can handle the inputs and outputs using DAQ devices, FieldPoint I/O modules, GPIB
boards, or serial I/O ports. You can adjust polling rates in real time. Potential polling rates are
limited only by your hardware.

Setting Timing
According to control theory, a control system must sample a physical process at a rate that is
approximately 10 times faster than the fastest time constant in the physical process. For
example, a time constant of 60 s is typical for a temperature control loop in a small system.
In this case, a cycle time of 6 s is sufficient. Faster cycling offers no improvement in
performance (Corripio 1990).

The PID control feature, lead-lag feature, and setpoint profile feature in the PID Control
Toolkit are time-dependent. A component can acquire the timing information either from a
value you supply to the pidAttrDeltaT attribute or from the built-in internal timer. By
default, the pidAttrUseInternalTimer attribute is set to 1, so the component uses the
internal timer. Call PidSetAttribute and PidGetAttribute to set and get PID controller
attributes.

The internal timer calculates new timing information each time PidNextOutput is called.
When the function is called, the timer determines the time since the last call to
PidNextOutput and uses that time difference in its calculations.

Note The internal timer uses the Windows SDK GetTickCount function. Therefore, do not
try to run the PID loops faster than 5 or 10 Hz when you use the internal timer.

Chapter 3 Using the PID Control Toolkit

LabWindows/CVI PID Control Toolkit User Manual 3-2 ni.com

You can set the component to use the value you have supplied to the pidAttrDeltaT
attribute by setting pidAttrUseInternalTimer to 0. Use the pidAttrDeltaT attribute
for fast loops, including instances in which you use acquisition hardware to time the
controller input. Refer to the \samples\pid\Hardware-Timed Pid\
HardwareTimedPid.prj example program, which illustrates how to use hardware timing
in DAQ with PID control, for more information.

Tuning Controllers Manually
The following controller tuning procedures are based on the work of Ziegler and Nichols, the
developers of the Quarter-Decay Ratio tuning techniques derived from a combination of
theory and empirical observations (Corripio 1990). Experiment with these techniques and
with one of the process control simulation examples to compare them. For different processes,
one method might be easier or more accurate than another. For example, some techniques that
work best when used with online controllers cannot stand the large upsets described here. To
perform these tests, set up your control strategy with the PV, SP, and output displayed on a
large strip chart with the axes showing the values versus time. Refer to the Closed-Loop
(Ultimate Gain) Tuning Procedure and Open-Loop (Step Test) Tuning Procedure sections for
more information about disturbing the loop and determining the response from the graph.
Refer to Tuning of Industrial Control Systems as listed in Appendix A, References, for more
information about these procedures.

Closed-Loop (Ultimate Gain) Tuning Procedure
Although the closed-loop (ultimate gain) tuning procedure is very accurate, you must put your
process in steady-state oscillation and observe the PV on a strip chart. Complete the following
steps to perform the closed-loop tuning procedure.

1. Set both the derivative time and the integral time on your PID controller to 0.

2. With the controller in automatic mode, carefully increase the proportional gain (Kc) in
small increments. Make a small change in the SP to disturb the loop after each increment.
As you increase Kc, the value of the PV should begin to oscillate. Keep making changes
until the oscillation is sustained, neither growing nor decaying over time.

3. Record the controller proportional band (PBu) as a percent, where PBu = 100/Kc.

4. Record the period of oscillation (Tu) in minutes.

5. Multiply the measured values by the factors shown in Table 3-1 and enter the new tuning
parameters into your controller. Table 3-1 provides the proper values for a quarter-decay
ratio. If you want less overshoot, increase the gain (Kc).

Note Proportional gain (Kc) is related to proportional band (PB) as follows: Kc = 100/PB.

Chapter 3 Using the PID Control Toolkit

© National Instruments Corporation 3-3 LabWindows/CVI PID Control Toolkit User Manual

Open-Loop (Step Test) Tuning Procedure
The open-loop (step test) tuning procedure assumes that you can model any process as a
first-order lag and a pure deadtime. This method requires more analysis than the closed-loop
tuning procedure, but the process does not need to reach sustained oscillation. Therefore, the
open-loop tuning procedure might be quicker and more reliable for many processes. Observe
the output and the PV on a strip chart that shows time on the x-axis. Complete the following
steps to perform the open-loop tuning procedure.

1. Put the controller in manual mode, set the output to a nominal operating value, and allow
the PV to settle completely. Record the PV and output values.

2. Make a step change in the output. Record the new output value.

3. Wait for the PV to settle. From the chart, determine the values as derived from the sample
displayed in Figure 3-1. The variables represent the following values:

• Td—Deadtime, in minutes

• T—Time constant, in minutes

• K—Process gain = change in PV/change in output

Figure 3-1. Output and Process Variable Strip Chart

4. Multiply the measured values by the factors shown in Table 3-2 and enter the new tuning
parameters into your controller. Table 3-2 provides the proper values for a quarter-decay
ratio. If you want less overshoot, reduce the gain (Kc).

Table 3-1. Factors for Determining Tuning Parameter Values (Closed Loop)

Controller PB (Percent) Reset (Minutes) Rate (Minutes)

P 2.00 PBu — —

PI 2.22 PBu 0.83 Tu —

PID 1.67 PBu 0.50 Tu 0.125 Tu

Chapter 3 Using the PID Control Toolkit

LabWindows/CVI PID Control Toolkit User Manual 3-4 ni.com

Using the PID Library
The following sections describe how to use the PID Library to implement a control strategy.

PID Controller
The PID controller requires several inputs, including SP, PID gains, timer interval (in case the
internal timer is not used), PV, and output range. PID gains include proportional gain, integral
time, and derivative time. The following steps provide an overview of typical PID controller
use.

1. Provide the PID gains to PidCreate to create a PID controller. PidCreate returns a
handle that you can use to identify the PID controller in subsequent function calls.

2. Use PidSetAttribute to set the PID controller attributes such as SP, time interval,
minimum and maximum controller output values, and so on.

3. Provide the PV to the controller in a loop and use PidNextOutput to obtain the
controller output, which is again applied on the system.

4. Once the control loop ends, call PidDiscard to discard the PID controller and free its
resources.

You can call PidSetAttribute with the pidAttrOutputMin and pidAttrOutputMax
attributes to specify the range of the controller output. The default range is –100 to 100, which
corresponds to values specified in terms of percentage of full scale. However, you can change
this range so that the controller gain relates engineering units to engineering units instead of
percentage to percentage. The PID controller coerces the controller output to the specified
range. In addition, the PID controller implements integrator anti-windup when the controller
output is saturated at the specified minimum or maximum values. Refer to Chapter 2, PID
Algorithms, for more information about anti-windup.

Table 3-2. Factors for Determining Tuning Parameter Values (Open Loop)

Controller PB (Percent) Reset (Minutes) Rate (Minutes)

P 100 (KTd/T) — —

PI 110 (KTd/T) 3.33 Td —

PID 80 (KTd/T) 2.00 Td 0.50 Td

Chapter 3 Using the PID Control Toolkit

© National Instruments Corporation 3-5 LabWindows/CVI PID Control Toolkit User Manual

PID Algorithms
The PID controller can use the following types of PID algorithms to determine the controller
output.

• Fast PID algorithm (pidFastPidAlgorithm)

• Precise PID algorithm (pidPrecisePidAlgorithm)

Use the pidAttrAlgorithm attribute, which you can set using PidSetAttribute, to
specify the algorithm to use. pidFastPidAlgorithm is the default value.

The fast PID algorithm is faster and simpler than the precise PID algorithm. Use the fast
algorithm in fast control loops. The precise PID algorithm uses the Two Degree of Freedom
algorithm to control the PV, which gives better results than the fast PID algorithm. The precise
PID algorithm also uses extra parameters such as Beta, Linearity, and Setpoint Range, which
you can specify using PidSetAttribute. The precise PID algorithm implements a
bumpless manual-to-automatic transfer, which ensures a smooth controller output during the
transition from manual to automatic control mode.

Control Input Filter
You can use the filtered PV to filter high-frequency noise from the measured values in a
control application. For example, you can use a filtered PV if you are measuring process
variable values using a DAQ device. To use a filtered PV, set pidAttrUseFilteredPV to 1.
By default, this attribute is set to 0. You can use PidSetProcessVariableFilter and
PidGetProcessVariableFilter to set or get custom filters.

As discussed in the Setting Timing section, the sampling rate of the control system should be
at least 10 times faster than the fastest time constant of the physical system. Therefore, if
correctly sampled, any frequency components of the measured signal that are greater than
one-tenth of the sampling frequency are a result of noise in the measured signal. Gains in the
PID controller can amplify this noise and produce unnecessary wear on actuators and other
system components. The filtered PV uses a low-pass fifth-order Finite Impulse Response
(FIR) filter to filter out unwanted noise from input signals. The cutoff frequency of the
low-pass filter is one-tenth of the sampling frequency, regardless of the actual sampling
frequency value.

Output Rate Limiting
Sudden changes in control output are undesirable or even dangerous for many control
applications. For example, a sudden large change in the SP can cause a very large change in
controller output. Although, in theory, this large change in controller output results in fast
system response, it may also cause unnecessary wear on actuators or sudden large power
demands. In addition, the PID controller can amplify noise in the system, which results in a
constantly changing controller output.

Chapter 3 Using the PID Control Toolkit

LabWindows/CVI PID Control Toolkit User Manual 3-6 ni.com

You can use output rate limiting to avoid the problem of sudden changes in controller output.
To enable output rate limiting, set pidAttrLimitOutputRate to 1, set
pidAttrOutputRate and pidAttrInitialOutput to limit the rate of change of the
controller output, and specify the controller output value on the first iteration of the control
loop, respectively. Call PidSetAttribute and PidGetAttribute to set and get these
attributes.

Using PID with Autotuning
You can use autotuning to improve controller performance. There are two ways in which you
can autotune a controller.

• Wizard-Based Autotuning—You can use the PID Autotuning Wizard to tune the
parameters.

• Classic Autotuning—You can use the functions in the Autotuning class to develop a
custom autotuning user interface.

Complete the following steps to autotune a controller. These steps explain both wizard-based
and classic autotuning.

1. Call PidCreateWithAutotune to create the controller and obtain the PID handle that
identifies that controller in subsequent function calls. The PID Library invokes the
callback function provided to PidCreateWithAutotune when the following PID
events occur:

• pidNoiseEstimateEvent—Noise estimation is complete

• pidRelayCycleEvent—A setpoint relay cycle is complete

• pidAutotuneEvent—Autotuning is complete

When you use wizard-based autotuning, the library invokes the callback function only
when the autotuning is complete.

2. Provide the PV to the controller in a loop and obtain the controller output, which is again
applied on the system.

3. While the PID control loop is being run, call PidAutotuneShowDialog if you want to
use wizard-based autotuning. This function launches the Autotuning Wizard. To use
classic autotuning, call the functions in the Autotuning class.

4. Once the control loop ends, call PidDiscard to discard the PID controller and release
its resources.

For more information, refer to the \samples\pid\Autotuning\Classic
Autotuning\ClassicAutotune.prj and \samples\pid\Autotuning\Wizard
Autotuning\WizardAutotune.prj example programs.

Chapter 3 Using the PID Control Toolkit

© National Instruments Corporation 3-7 LabWindows/CVI PID Control Toolkit User Manual

Distributing Applications That Use Wizard-Based Autotuning
Use the LabWindows/CVI application distribution feature to deploy applications you create
using the PID Control Toolkit. The PID Control Toolkit installs CVIPIDRuntime.msm in the
C:\Program Files\Common Files\Merge Modules directory. This file installs
CVIPIDAtUI.dll in the system directory. If you deploy applications that use wizard-based
autotuning, you must add this merge module to the distribution.

The version of LabWindows/CVI you are using determines how you add the merge module
to the distribution. If you are using LabWindows/CVI 7.x, create a file group in the
distribution kit named _MSMS_. Include CVIPIDRuntime.msm in that file group. Build the
distribution kit, andCVIPIDRuntime.msm will be seamlessly merged in as an MSI merge
module, instead of just being included as a file.

If you are using LabWindows/CVI 8.0 and later, click Add Additional Module in the
Drivers & Components tab of the Edit Installer dialog box. In the Select Merge Module
dialog box, browse to and select CVIPIDRuntime.msm. For additional information about
distributing LabWindows/CVI applications, refer to the LabWindows/CVI Help.

Using PID with Gain Scheduling
Most processes are non-linear. Therefore, PID parameters that produce a desired response at
one operating point might not produce a satisfactory response at another operating point.
Using the gain scheduling feature, you can apply different sets of PID parameters for different
regions of controller operation.

The gain scheduler selects and outputs one set of PID gains from a gain schedule based on the
current gain scheduling value. The gain scheduling value input can be anything and is based
on the gain scheduling criteria that you set.

Use the pidGSAttrGainScheduleCriteria attribute to set the gain scheduling criteria.
Call PidSetGainScheduleAttribute and PidGetGainScheduleAttribute to set and
get gain scheduling attributes. The pidGSAttrGainScheduleCriteria attribute can take
the following values:

• Setpoint

• Process variable

• Controller output

• Gain schedule variable provided by the user through the
pidGSAttrUserGainScheduleVariable attribute

The gain schedule is a list of gain sets. A gain set consists of the following features:

• Proportional gain (Kc)

• Integral time (Ti)

Chapter 3 Using the PID Control Toolkit

LabWindows/CVI PID Control Toolkit User Manual 3-8 ni.com

• Derivative time (Td)

• Gain control value

The PID Library uses the gain set that has the smallest control value that is greater than the
value of the signal specified by the gain schedule criteria. For example, if three gain sets have
control values equal to 10, 20, and 30 and the value of the signal specified by the gain schedule
criteria is 15, then the second gain set is used.

If the value of the signal specified by the gain schedule criteria is greater than the gain
schedule's largest control value, then the gain set with the largest control value is used. You
also can set pidGSAttrSelectionMode to pidManual to allow you to set the gain sets
manually. By default, the mode is automatic.

For more information, refer to the \samples\pid\Gain Scheduling\
GainScheduling.prj example program.

Using PID with Lead-Lag
The lead-lag compensator uses a positional algorithm that approximates a true exponential
lead-lag. Feed forward control schemes often use this kind of algorithm as a dynamic
compensator. Using lead-lag, you can simulate inertia of motors, slow settling times in pipes,
and so on. Lead compensation stabilizes a closed loop by reacting to how fast something is
changing rather than its current state. This process speeds up the reaction. Lag compensation
stabilizes a closed loop by slowing down the reaction to the present value so that the
correction is made more slowly and does not overshoot. This process slows down the reaction.

The typical usage of the lead-lag follows:

1. Pass gains to PidLeadLagCreate to create a lead-lag compensator.
PidLeadLagCreate returns a handle you can use to identify the lead-lag compensator
in subsequent function calls.

2. Use PidSetLeadLagAttribute and PidGetLeadLagAttribute to set and get the
lead-lag compensator attributes such as time intervals and minimum/maximum output
values. Provide the input to the compensator in a loop and use PidLeadLagNextOutput
to obtain the output. This output is either applied to the system or to the controller, based
on whether the lead-lag is being used as an input or an output filter.

3. Once the control loop ends, call PidLeadLagDiscard to discard the lead-lag
compensator and release its resources. Also call PidDiscard to discard the PID
controller.

The lead-lag compensator can be used either as an input or an output filter to the PID
controller. The default output range is –100 to 100, which corresponds to values specified in
terms of percentage of full scale. However, you can change this range so that the controller
gain relates engineering units to engineering units instead of percentage to percentage. The
lead-lag compensator coerces the controller output to the specified range.

Chapter 3 Using the PID Control Toolkit

© National Instruments Corporation 3-9 LabWindows/CVI PID Control Toolkit User Manual

For more information, refer to the \samples\pid\Lead-Lag\LeadLag.prj example
program.

Using PID with Setpoint Profiling
Using the setpoint profiling feature, you can generate a profile of setpoint values over time for
a “ramp and soak” type PID application. For example, you might want to ramp the setpoint
temperature of an oven control system over time and then hold, or soak, the setpoint at a
certain temperature for another period of time. Use this feature to implement any arbitrary
combination of ramp, hold, and step functions. Provide (setpoint, time) pairs to the setpoint
profile. The setpoint profile maintains the setpoint specified in each pair for the corresponding
times specified in the time array.

You can use the setpoint profiler as follows:

1. Call PidSetpointProfileCreate to create a setpoint profile. Use a pair of time and
setpoint value arrays to specify the setpoint profile with the time values in ascending
order.

2. Use PidSetSetpointProfileAttribute to set the setpoint profile attributes.

3. Use PidSetpointProfileNextSetpoint to obtain the setpoint from the profile in a
loop and provide this setpoint to the controller.

4. Once the control loop ends, call PidSetpointProfileDiscard to discard the setpoint
profile and release its resources. Also call PidDiscard to discard the PID controller.

At any time in the control loop, you can use pidSetpointProfileAttrElapsedTime to
get the elapsed time. You also can check if the profile is complete using the
pidSetpointProfileAttrProfileComplete attribute.

For more information, refer to the \samples\pid\Setpoint Profiling\
SetpointProfiling.prj example program.

Using Ramp Generators
A ramp generator is a simple component that you can use to generate a ramp output. Typically,
you use a ramp generator as follows:

1. Call PidRampCreate to create a ramp generator. Specify the SP, initial output, and the
rate at which the output of the ramp changes.

2. Call PidSetRampAttribute to set the ramp generator attributes.

3. Use PidRampNextOutput to obtain the output of the ramp in a loop.

4. Call PidRampDiscard to discard the ramp generator and release its resources.

Chapter 3 Using the PID Control Toolkit

LabWindows/CVI PID Control Toolkit User Manual 3-10 ni.com

Converting between Percentage of Full Scale and Engineering Units
As described in the previous sections, the default SP, PV, and output ranges for the PID
Library functions correspond to a percentage of the full scale. Proportional gain (Kc) relates
percentage of full-scale output to percentage of full-scale input. This is the default behavior
of many PID controllers used for process control applications. To implement PID in this way,
you must scale all inputs to percentage of full scale and all controller outputs to actual
engineering units such as volts for analog output. You can use
PidConvertEGUToPercentage to convert any input from real engineering units to
percentage of full scale and PidConvertPercentageToEGU to convert the controller output
from percentage to real engineering units. PidConvertPercentageToEGU has an
additional input parameter, bCoerce. The default value of bCoerce is TRUE, which indicates
that the output is coerced to the range.

Note The PID Library functions do not use the setpoint range and output range
information to convert values to percentages in the PID algorithm. The controller gain
relates the output in engineering units to the input in engineering units. For example, a gain
value of 1 produces an output of 10 for a difference between the SP and PV of 10,
regardless of the output range and setpoint range.

Using PID on Real-Time (RT) Targets
Some PID applications are deterministic and, therefore, cannot be run on desktop operating
systems. Because the PID Library is supported on real-time (RT) platforms, such as
LabVIEW Real-Time, you can use it to develop deterministic applications.

Complete the following steps to run a PID application on an RT target.

1. Create a DLL using the PID Library. When you build the DLL, set the Run-time support
option in the LabWindows/CVI Target Settings dialog box to Real-time only.

2. Create a VI in LabVIEW that uses the functions exposed by the DLL you created in the
previous step.

3. Download the VI onto the RT target and run it.

Note If you are using LabWindows/CVI 8.0 or later, you also can download the DLL
directly to the RT target, without creating a VI in LabVIEW. Refer to the LabWindows/CVI
Help for more information about downloading RT DLLs directly from LabWindows/CVI.

Because RT systems do not support user interfaces, you cannot use wizard-based autotuning
in PID applications that are targeted for RT platforms. Any applications that are targeted for
RT must not include the following functions:

• PidAutotuneShowDialog

• PidAutotuneCloseDialog

However, you can use other functions in the Autotuning class to tune the PID controller.

Chapter 3 Using the PID Control Toolkit

© National Instruments Corporation 3-11 LabWindows/CVI PID Control Toolkit User Manual

Using PID with DAQ Devices
This section addresses several important issues you might encounter when you use the DAQ
APIs to control actual processes.

Complete the following steps to use the PID Library with a DAQ device.

1. Configure the DAQ device and channels for both input and output. Also configure the
sample clocks, if necessary.

2. Call PidCreate to create the PID controller. Then call PidSetAttribute to configure
the controller attributes.

3. Within the control loop, complete the following steps:

a. Read the input from the DAQ device.

b. Modify/manipulate the input so that it can be provided to the controller. This step is
optional and required only in cases in which the controller input is derived from the
acquired DAQ input.

c. Supply this input to the controller and obtain the controller output.

d. Modify/manipulate the controller output so that it can be output on the DAQ device.
This step is optional and required only in cases in which the output on the DAQ
device is derived from the controller output.

e. Write the output to the DAQ device.

4. Discard the controller to release its resources. Also clear all the DAQ tasks. In some
cases, just before clearing the DAQ tasks, the DAQ device outputs a 0.

The control loops can be timed in the following ways:

• Software-Timed—In software-timed control loops, the timing is controlled by the loop.
To increase the timing, insert a delay at the end of the loop.

• Hardware-Timed—In hardware-timed control loops, the timing is controlled by the
DAQ device. The DAQ device is configured with the appropriate sample rate, and the
sample mode is set to hardware-timed.

For more information about DAQ, refer to the NI-DAQmx Help or Traditional NI-DAQ
(Legacy) C Function Reference Help, depending on the DAQ API you are using. Also refer
to the DAQ example programs.

© National Instruments Corporation 4-1 LabWindows/CVI PID Control Toolkit User Manual

4
Process Control Examples

This chapter describes examples that use the PID Control Toolkit for LabWindows/CVI,
which are installed in the samples\pid directory. The examples contain both simulation and
hardware examples. You do not need any DAQ devices to run the simulation examples, but
you must have the appropriate hardware to run the hardware examples.

Simulation Examples
The simulation examples demonstrate how to control a process that is simulated entirely in
software. You can use these examples to learn how to operate a PID controller without
connecting the control application to a real physical process.

Some of the simulation examples use a plant simulator or a simple loop-back type. The plant
simulator is used with feedback control loops. Typically, you can use the plant simulator as
follows:

1. Create a plant simulator and use PlantCreate to obtain a handle.

2. Use UpdatePlantParameters to supply the plant characteristics. You can use this
function to update the plant characteristics at any point.

3. Within the feedback control loop, use PlantNextProcessVariable to supply the
output of the PID controller to the plant and obtain the new PV.

4. After the feedback loop terminates, use PlantDiscard to discard the plant.

To calculate the new PV, the plant simulator scales the value provided according to the process
gain. It then adds noise and the resulting process response to the old-level value using a
first-order lag filter.

For a simple loop-back, the PV within the feedback loop is calculated as follows:

new PV = old PV + (0.2 * controller output)

Chapter 4 Process Control Examples

LabWindows/CVI PID Control Toolkit User Manual 4-2 ni.com

General PID Example
This simple PID application uses the PID Control Toolkit to simulate a simple control loop
with a general plant model. This example uses a simple integrating process, such as a level
control loop, with added noise, valve deadband, lag, deadtime, and variable loading, all of
which you can adjust.

Figure 4-1. The User Interface of the General PID Example

You can think of this general PID simulation as a pressure-control application. The next
execution of the control loop reads and delays the previous value position and then scales it
according to the process gain. The gain represents the process response versus the valve
position. The gain might have units of PSI per value percentage.

The process deadtime (Dead Cycles) is a multiple of the cycle time rather than an absolute,
fixed delay. If you change the cycle time, you must adjust the process deadtime to keep the
process response constant. It is not necessary to adjust Lag because the lag time is time aware.

Chapter 4 Process Control Examples

© National Instruments Corporation 4-3 LabWindows/CVI PID Control Toolkit User Manual

Manual-Automatic Control Example
This example is an extension of the general PID simulator that demonstrates switching
between automatic and manual modes.

Figure 4-2. The User Interface of the Manual-Automatic Control Example

Use the Manual switch to switch between the two modes. When the PID controller is in
manual mode, you can use the Manual Control knob to control the PID controller output. At
any time, you can change the controller to automatic mode by turning the Manual switch off.
The transition between the manual and automatic modes is bumpless and smooth.

Chapter 4 Process Control Examples

LabWindows/CVI PID Control Toolkit User Manual 4-4 ni.com

Gain Scheduling Example
This example is an extension of the general PID simulator that demonstrates the gain
scheduling capability of the PID Control Toolkit.

Figure 4-3. The User Interface of the Gain Scheduling Example

By changing the SP, you can observe how the PID gains change according to the gain
schedule. Refer to the Using PID with Gain Scheduling section of Chapter 3, Using the PID
Control Toolkit for more information about how gains are scheduled. You also can change the
gain schedule criteria in this example.

Chapter 4 Process Control Examples

© National Instruments Corporation 4-5 LabWindows/CVI PID Control Toolkit User Manual

Lead-Lag Example
The Lead-Lag example uses a sine wave or a square wave for excitation. The waveform is
synchronized to the Timer Interval you specify. When you vary the tuning parameters, you
can see the time-domain response of the Lead-Lag example. A large Lead Time setting
causes a wild ringing on the output; a large Lag Time setting heavily filters the signal, making
it almost disappear.

Figure 4-4. The User Interface of the Lead-Lag Example

Hardware Examples

PID with MIO Board Example
The PID with MIO board example turns the computer into a single-loop PID controller when
you use an NI DAQ device. Connect the analog output to the analog input through the
resistor-capacitor network

Note You must have the appropriate hardware to run this example. The pin numbers
shown correspond to the standard MIO pinouts, such as a standard 50-pin cable from an
E-Series DAQ device.

Chapter 4 Process Control Examples

LabWindows/CVI PID Control Toolkit User Manual 4-6 ni.com

Figure 4-5. The User Interface of the MIO Board Example

This example adjusts the analog output so that the input PV equals the SP. The example
displays the SP and PV on a strip chart. You can experiment with different controller tuning
methods to find the fastest setting time with the least amount of overshoot. The default tuning
parameters are optimal for the given network. The input span is –5 to 5 V, and the output span
is 0 to 10 V. Both the PV and SP are in volts. Set the analog input of the DAQ device to
differential input mode in the ± 5 V range and set the output to bipolar in the 10 V range.
These are all factory defaults. If you use other settings, change the DAQ device configuration
settings to correspond to the new settings. The recommended network has a DC gain of 0.33
and an effective deadtime of about 5 seconds.

© National Instruments Corporation A-1 LabWindows/CVI PID Control Toolkit User Manual

A
References

The Instrument Society of America (ISA), the organization that sets standards for process
control instrumentation in the United States, offers a catalog of books, journals, and training
materials to teach you the basics of process control programming.

Corripio (1990) is an ISA Independent Learning Module book. It is organized as a self-study
program covering measurement and control techniques, selection of controllers, and
advanced control techniques. This book provides detailed, yet easily understandable, tuning
procedures.

The following material is referenced in this manual:

Corripio, A. B. 1990. Tuning of Industrial Control Systems. Raleigh, North Carolina: ISA.

Ziegler, J. G. and N. B. Nichols. 1942. “Optimum Settings for Automatic Controllers.”
Trans. ASME 64:759–68.

© National Instruments Corporation B-1 LabWindows/CVI PID Control Toolkit User Manual

B
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For answers and solutions, visit the
award-winning National Instruments Web site for software drivers
and updates, a searchable KnowledgeBase, product manuals,
step-by-step troubleshooting wizards, thousands of example
programs, tutorials, application notes, instrument drivers, and
so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

For information about other technical support options in your
area, visit ni.com/services or contact your local office at
ni.com/contact.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 LabWindows/CVI PID Control Toolkit User Manual

Glossary

A

algorithm A prescribed set of well-defined rules or processes for the solution of a
problem in a finite number of steps.

autotuning Automatically testing a process under control to determine the controller
gains that will provide the best controller performance.

Autotuning Wizard An automated graphical user interface provided in the Autotuning
functions. The Autotuning Wizard gathers some information about the
desired control from the user and then steps through the PID autotuning
process. You must specify to use wizard-based autotuning in
PidCreateWithAutotune to use this feature.

B

bias The offset added to a controller’s output.

bumpless transfer A process in which the next output always increments from the current
output, regardless of the current controller output value. Therefore, transfer
from automatic to manual control is always bumpless.

C

cascade control Control in which the output of one controller is the setpoint for another
controller.

closed loop A signal path that includes a forward path, a feedback path, and a summing
point and that forms a closed circuit. Also called a feedback loop.

controller Hardware and/or software used to maintain parameters of a physical
process at desired values.

controller output A quantity or condition that is varied as a function of the actuating error
signal so as to change the value of the directly controlled variable.

cycle time The time between samples in a discrete digital control system.

Glossary

LabWindows/CVI PID Control Toolkit User Manual G-2 ni.com

D

damping The progressive reduction or suppression of oscillation in a device or
system.

DC Direct current.

dead time (Td) The interval of time, expressed in minutes, between initiation of an input
change or stimulus and the start of the resulting observable response.

derivative (control)
action

Control response to the time rate of change of a variable.

E

EGU Engineering units.

F

feedback control Control in which a measured variable is compared to its desired value to
produce an actuating error signal that is acted upon in such a way as to
reduce the magnitude of the error.

feedback loop See closed loop.

G

gain For a linear system or element, the ratio of the magnitude, amplitude, or a
steady-state sinusoidal output relative to the causal input; the length of a
phasor from the origin to a point of the transfer locus in a complex plane.

gain scheduling The process of applying different controller gains for different regions of
operation of a controller. Gain scheduling is most often used in controlling
nonlinear physical processes.

H

Hz Hertz. Cycles per second.

Glossary

© National Instruments Corporation G-3 LabWindows/CVI PID Control Toolkit User Manual

I

Instrument Society of
America (ISA)

The organization that sets standards for process control instrumentation in
the United States.

integral (control) action Control action in which the output is proportional to the time integral of the
input. That is, the rate of change of output is proportional to the input.

K

K Process gain.

Kc Controller gain.

L

lag A lowpass filter or integrating response with respect to time.

linearity factor A value, ranging from 0 to 1, used to specify the linearity of a calculation.
A value of 1 indicates a linear operation. A value of 0 indicates a squared
nonlinear operation.

load disturbance The ability of a controller to compensate for changes in physical
parameters of a controlled process while the setpoint value remains
constant.

M

ms Milliseconds.

N

noise In process instrumentation, an unwanted component of a signal or variable.
Noise may be expressed in units of the output or in percent of output span.

Glossary

LabWindows/CVI PID Control Toolkit User Manual G-4 ni.com

O

output limiting Preventing a controller’s output from traveling beyond a desired maximum
range.

overshoot The maximum excursion beyond the final steady-state value of output as
the result of an input change.

P

P Proportional.

PD Proportional, derivative.

PI Proportional, integral.

PID Proportional, integral, derivative.

PID control A common control strategy in which a process variable is measured and
compared to a desired setpoint to determine an error signal. A proportional
gain (P) is applied to the error signal, an integral gain (I) is applied to the
integral of the error signal, and a derivative gain (D) is applied to the
derivative of the error signal. The controller output is a linear combination
of the three resulting values.

PID controller A controller that produces proportional plus integral (reset) plus derivative
(rate) control action.

process gain (K) For a linear process, the ratio of the magnitudes of the measured process
response to that of the manipulated variable.

process variable (PV) The measured variable (such as pressure or temperature) in a process to be
controlled.

proportional action Control response in which the output is proportional to the input.

proportional band (PB) The change in input required to produce a full range change in output due
to proportional control action. PB = 100/Kc.

PSI Pounds per square inch.

Glossary

© National Instruments Corporation G-5 LabWindows/CVI PID Control Toolkit User Manual

R

ramp The total (transient plus steady-state) time response resulting from a sudden
increase in the rate of change from zero to some finite value of input
stimulus.

reentrant execution Mode in which calls to multiple instances of a function can execute in
parallel with distinct and separate data storage.

S

s Seconds.

setpoint (SP) An input variable that sets the desired value of the controlled process
variable.

span The algebraic difference between the upper and lower range values.

T

time constant (T) In process instrumentation, the value T (in minutes) in an exponential
response term, A exp (–t/T), or in one of the transform factors, such as
1+sT.

trapezoidal integration A numerical integration in which the current value and the previous value
are used to calculate the addition of the current value to the integral value.

V

V Volts.

W

windup area The time during which the controller output is saturated at the maximum or
minimum value. The integral action of a simple PID controller continues to
increase (wind up) while the controller is in the windup area.

© National Instruments Corporation I-1 LabWindows/CVI PID Control Toolkit User Manual

Index

A
applications, 1-2
autotuning

classic, 2-6
procedure, 3-6
wizard based

distributing applications, 3-7
autotuning algorithm

tuning formulas, 2-6
PI control (fast), 2-7
PI control (normal), 2-7
PI control (slow), 2-8
P-only control (normal), 2-7
P-only control (slow), 2-7

B
bumpless transfer, 2-3

C
calculating controller action, 2-1
classic autotuning

example, 3-6
closed-loop tuning procedure, 3-2
control strategy, designing, 3-1
controller

action, 2-1
gain, 2-1
output, 2-2
PID, 1-2

conventions used in the manual, vii
Corripio, A.B., A-1

D
DAQ devices, using PID with, 3-11
derivative action, 2-1
derivative time, 2-1
diagnostic tools (NI resources), B-1
distributing applications, 3-7
documentation

conventions used in manual, vii
NI resources, B-1
related documentation, vii

drivers (NI resources), B-1

E
engineering units, converting from percentage

of full scale, 3-10
error calculation, 2-2
examples

classic autotuning, 3-6
gain scheduling, 3-8, 4-4
general PID, 4-2
hardware, 4-5
hardware timed, 3-2
lead-lag, 3-9, 4-5
manual-automatic control, 4-3
NI resources, B-1
PID with MIO board, 4-5
setpoint profiling, 3-9
simulation, 4-1
wizard-based autotuning, 3-6

F
fast PID algorithm, 3-5

Index

LabWindows/CVI PID Control Toolkit User Manual I-2 ni.com

G
gain schedule, contents, 3-7
gain scheduling, 2-3, 3-7

example, 3-8, 4-4
general PID example, 4-2

H
hardware examples, 4-5
hardware-timed example, 3-2
help, technical support, B-1
help file, accessing, 1-3

I
installation instructions, 1-1
instrument drivers (NI resources), B-1
integral action, 2-1
integral time, 2-1

K
KnowledgeBase, B-1

L
lag compensation, 3-8
lead compensation, 3-8
lead-lag compensator, 3-8
lead-lag example, 3-9
lead-lag examples, 4-5

M
manual-automatic control example, 4-3
MIO board example, 4-5

N
National Instruments support and

services, B-1
Nichols, N.B., A-1
nonlinear adjustment of integral

action, 2-2, 2-5

O
open-loop tuning procedure, 3-3
output limiting, 2-3
output rate limiting, 3-5

P
package contents, 1-1
partial derivative action, 2-2
percentage of full scale, converting from

engineering units, 3-10
PID algorithm, 2-1 to 2-3

autotuning algorithm, 2-5 to 2-8
calculating controller action

controller output, 2-2
error calculation, 2-2
nonlinear adjustment of integral

action, 2-2
output limiting, 2-3
partial derivative action, 2-2
proportional action, 2-2
trapezoidal integration, 2-2

gain scheduling, 2-3
PID controller, 1-2

typical use, 3-4
PID Library, 3-4
pidAttrAlgorithm, 3-5
pidAttrLimitOutputRate, 3-6
pidAttrUseInternalTimer, 3-1
pidGSAttrGainScheduleCriteria, 3-7

Index

© National Instruments Corporation I-3 LabWindows/CVI PID Control Toolkit User Manual

precise PID algorithm, 3-5
calculating controller action

nonlinear adjustment of integral
action, 2-5

proportional action, 2-4
trapezoidal integration, 2-5

error calculation, 2-4
proportional action, 2-4
trapezoidal integration, 2-5

process variable, 1-2
programming examples (NI resources), B-1
proportional action, 2-2

precise PID algorithm, 2-4

R
rate time, 2-1
real-time targets, using PID on, 3-10
related documentation, vii
requirements, system, 1-1
reset time, 2-1

S
setpoint, 1-2

profiling
example, 3-9

relay experiment, 2-6
simulation examples, 4-1
software (NI resources), B-1
step test tuning procedure, 3-3
support, technical, B-1
system requirements, 1-1

T
technical support, B-1
timing information, acquiring, 3-1
timing, setting, 3-1
training and certification (NI resources), B-1
trapezoidal integration, 2-2, 2-5
troubleshooting (NI resources), B-1
tuning procedure

closed loop, 3-2
open loop, 3-3
step test, 3-3
ultimate gain, 3-2

U
ultimate gain tuning procedure, 3-2

W
Web resources, B-1
windup, 2-3
wizard-based autotuning

distributing applications, 3-7
example, 3-6

Z
Ziegler, J.G., A-1

	LabWindows/CVI PID Control Toolkit User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Overview of the PID Control Toolkit
	Package Contents
	System Requirements
	Installation Instructions
	PID Control Toolkit Applications
	PID Control

	Chapter 2 PID Algorithms
	The PID Algorithm
	Implementing the PID Algorithm with the PID Functions
	Gain Scheduling

	The Precise PID Algorithm
	Error Calculation
	Proportional Action
	Trapezoidal Integration
	Figure 2-1. Nonlinear Multiple for Integral Action (SPrng = 100)

	The Autotuning Algorithm
	Figure 2-2. Process under PID Control with Setpoint Relay
	Tuning Formulas
	Table 2-1. Tuning Formula under P-Only Control (Fast)
	Table 2-2. Tuning Formula under P-Only Control (Normal)
	Table 2-3. Tuning Formula under P-Only Control (Slow)
	Table 2-4. Tuning Formula under PI or PID Control (Fast)
	Table 2-5. Tuning Formula under PI or PID Control (Normal)
	Table 2-6. Tuning Formula under PI or PID Control (Slow)

	Chapter 3 Using the PID Control Toolkit
	Designing a Control Strategy
	Setting Timing
	Tuning Controllers Manually
	Table 3-1. Factors for Determining Tuning Parameter Values (Closed Loop)
	Figure 3-1. Output and Process Variable Strip Chart
	Table 3-2. Factors for Determining Tuning Parameter Values (Open Loop)

	Using the PID Library
	PID Controller
	Using PID with Autotuning
	Using PID with Gain Scheduling
	Using PID with Lead-Lag
	Using PID with Setpoint Profiling
	Using Ramp Generators
	Converting between Percentage of Full Scale and Engineering Units
	Using PID on Real-Time (RT) Targets
	Using PID with DAQ Devices

	Chapter 4 Process Control Examples
	Simulation Examples
	Figure 4-1. The User Interface of the General PID Example
	Figure 4-2. The User Interface of the Manual-Automatic Control Example
	Figure 4-3. The User Interface of the Gain Scheduling Example
	Figure 4-4. The User Interface of the Lead-Lag Example

	Hardware Examples
	Figure 4-5. The User Interface of the MIO Board Example

	Appendix A References
	Appendix B Technical Support and Professional Services
	Glossary
	A-C
	D-H
	I-N
	O-P
	R-W

	Index
	A-F
	G-P
	R-Z

