LabVIEW™ Upgrade Notes

Upgrading to LabVIEW 8.5

These upgrade notes describe the process of upgrading LabVIEW for
Windows, Mac OS, and Linux to version 8.5, issues you might encounter
when you upgrade, and new features.

If you are upgrading from LabVIEW 7.1 or earlier to LabVIEW 8.5,
National Instruments recommends that you review the following
documents in addition to these upgrade notes for more information about
enhancements, changes, and features added to LabVIEW between
LabVIEW 7.1 and LabVIEW 8.5.

* LabVIEW 8.0 Upgrade Notes—The Upgrade and Compatibility
Issues section and the LabVIEW 8.0 Features and Changes section
provide important information for upgrade users. Refer to the National
Instruments Web site at ni . com/info and enter the info code
upnote8s to access the LabVIEW 8.0 Upgrade Notes.

 LabVIEW 8.2 Upgrade Notes—The Upgrade and Compatibility
Issues section and the LabVIEW 8.2 Features and Changes section
provide important information for upgrade users. Refer to the National
Instruments Web site at ni.com/info and enter the info code
upnote82 to access the LabVIEW 8.2 Upgrade Notes.

Refer to the LabVIEW Help for more information about LabVIEW 8.5
features, as well as for information about LabVIEW programming
concepts, step-by-step instructions for using LabVIEW, and reference
information about LabVIEW VIs, functions, palettes, menus, tools,
properties, methods, events, dialog boxes, and so on. The LabVIEW Help
also lists the LabVIEW documentation resources available from National
Instruments. Access the LabVIEW Help by selecting Help»Search the

LabVIEW Help.
Contents
Upgrading to LabVIEW 8.5...ccuoiiiiiiiiiiiieteeeete et 2
ConVerting VIS.....coocuiiiiiiiiiieiieeitesee ettt 2
Upgrading Modules, Toolkits, Instrument Drivers,
ANd Add-ONS ...c.eeoiiiiiienieeiecet et 3

¢ NATIONAL
’ INSTRUMENTS


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=upnote8
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=upnote82

Upgrading Additional National Instruments Software..................... 4

Upgrading from Previous Versions of LabVIEW ...........ccccceveeneen. 5
Upgrade and Compatibility ISSUES........ccevieriiiiriienienieenierieeeesie e 6
Upgrading from LabVIEW 8.2........cooviiviiiiiiiiiniinieeteeieeneeeieeae 6
Upgrading from LabVIEW 8.0......c.cooviiviiiiiiiniiiienieeieceeneeeieee 13
Upgrading from LabVIEW 7.X...cccceeviiniiiiiiiienieeieeneeeieesee e 20
Upgrading from LabVIEW 6.X.......ccoceeviiriiiiniiniiiieenieeieeneeeieene 38
Upgrading from LabVIEW 5.x or Earlier Versions ........c..ccccceeueene. 43
LabVIEW 8.5 Features and Changes...........coccvevverieenieenieenieenieenieeneeens 43
Installing LabVIEW ...c..oooiiiiiiiiiiiieieeiecteeeee et 44
LabVIEW DOCUMENAtION......ccvierrieiieniieeieeniienieenieestesieenieesneenee 44
New EXample VIS......coooiiriiiiienieiieeiteee ettt 44
Block Diagram Enhancements ...........ccoecueevierieerieniensieeneenieeieenne 45
Front Panel Enhancements ..........c.ccevvevieeiiienieniieniienee e 46
Environment Enhancements............coocveecieenienieniienienieeieenieeieenne 47
LabVIEW Project Enhancements............cccoeveevvercieenienieennieennenneens 51
New and Changed VI, Function, and Node Enhancements ............. 55
New Classes, Properties, Methods, and Events..........ccccceccvevvennenne 65
Application Builder Enhancements............cccoevveveieenieniencieeniennenne 65
LabVIEW MathScript Enhancements
(Windows, Not in Base Package) .........ccocveveeniiiiieneeniiiienienne 69
LabVIEW Object-Oriented Programming ............coeceeeeveecivencvenenenne 75
Project Library and LabVIEW Class Icon Changes..........c..ccc.c....... 77
Enhancing Virtual Memory UsSage........ccccoeereenereeneneeneneenieneenn 78
METZING VIS. oottt e 78
Import Shared Library Wizard Enhancements...........cc.ceceveeeennnne. 79
3D Picture Control ENhancements ..........ccccecueveevveneenencnncneeneennn. 80
Using Timed Structures for Multi-Core Programming .................... 80
Fixed-Point Data TYPe .....coceeievirieniiniinienieesteeseeeeeee e 81
Source Control Enhancements ............ccoccevvererienienieeneneencneenennen. 81

Upgrading to LabVIEW 8.5

Converting Vis

LabVIEW Upgrade Notes

If you are upgrading from a previous version of LabVIEW, read this

section, Upgrading to LabVIEW 8.5, and the Upgrading from LabVIEW x.x
sections in the Upgrade and Compatibility Issues section of this document
first, where x.x is the version of LabVIEW from which you are upgrading.

You cannot open a VI saved in a version of LabVIEW prior to
LabVIEW 6.0 without contacting an NI representative to obtain
conversion software to upgrade your code to VI formats compatible with
LabVIEW 8.5. When you open a VI last saved in LabVIEW 6.0 or later,
LabVIEW 8.5 automatically converts and compiles the VI. You must save
the VI in LabVIEW 8.5, or the conversion process, which uses extra

2 ni.com



memory resources, occurs every time you access the VI. Also, you might
experience a large run-time degradation of performance for any VI that has
unsaved changes, including a recompile.

&

Note VIs you save in LabVIEW 8.5 do not load in earlier versions of LabVIEW. Select
File»Save for Previous Version to save VIs so they can run in LabVIEW 8.2 or 8.0.
Before saving VIs in LabVIEW 8.5 after you convert them, keep a backup copy of VIs you
plan to use in LabVIEW 8.2 or 8.0.

If your computer does not have enough memory to convert all the VIs at
once, convert the VIs in stages. Examine the hierarchy of VIs you want to
convert and begin by loading and saving subVIs in the lower levels of the
hierarchy. Then progress gradually to the higher levels of the hierarchy.
Open and convert the top-level VI last. You also can select Tools»
Advanced»Mass Compile to convert a directory of VIs. However, mass
compiling converts VIs in a directory or LLB in alphabetical order. If the
conversion process encounters a high-level VI first, mass compiling
requires approximately the same amount of memory as if you opened the
high-level VI first.

You can monitor memory usage by selecting Help»About LabVIEW to
display a summary of the amount of memory you currently are using.

Upgrading Modules, Toolkits, Instrument Drivers, and Add-Ons

After you install LabVIEW 8.5, make sure you have a compatible version
of any toolkits and add-ons, then reinstall the toolkits and add-ons in the
LabVIEW 8.5 directory. You first might need to uninstall the toolkit from
previous versions of LabVIEW. Refer to the documentation for the
LabVIEW toolkit or add-on for more information about installation.

LabVIEW module versions must match the LabVIEW version. For
example, you must use the LabVIEW Real-Time Module 8.5 with
LabVIEW 8.5. LabVIEW 8.5 might not support add-ons designed for
previous versions of LabVIEW.

Refer to the National Instruments Web site at ni.com/info and enter the
info code compat for more information about which LabVIEW modules
and toolkits are compatible with the current version of LabVIEW.

The following instrument drivers require upgrades or downloads for use in
LabVIEW 8.5:

*  The instrument driver for the HP/Agilent 34401 A Digital Multimeter
(DMM) now more closely resembles the National Instruments DMM
template driver. This driver is not compatible with the HP34401A
driver that LabVIEW 7.x and earlier use. If you need compatibility
with the LabVIEW 7.x HP34401A driver, download that driver from

© National Instruments Corporation 3 LabVIEW Upgrade Notes


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=compat

the National Instruments Instrument Driver Network at
ni.com/idnet.

*  The Instr Get Attribute VI and Instr Set Attribute VI no longer ship
with LabVIEW. The instrument driver for the Panasonic
VP7723A/VP7724A Audio Analyzer used these VIs. To obtain a
LabVIEW 8.5 compatible version of the VP7723A/VP7724A driver,
download that driver from the National Instruments Instrument Driver
Network at ni.com/idnet.

You also must mass compile existing toolkit, instrument driver, and add-on
VIs for use in LabVIEW 8.5. Because the LabVIEW module version must
match the LabVIEW version, you do not have to mass compile the module
VIs. Refer to the Converting Vs section of this document for more
information about mass compiling VIs.

Upgrading Additional National Instruments Software

LabVIEW Upgrade Notes

You must use NI TestStand 3.5 or later in LabVIEW 8.x. Refer to the
National Instruments Web site at ni . com/info and enter the info code
exd8yy to access the Upgrade Advisor and purchase NI TestStand 3.5 or
later.

NI TestStand 3.5 and NI TestStand 4.0 return an error when you attempt to
configure the following LabVIEW 8.5 Express VIs:

e Close Data Storage

e Formula

*  Get Properties

e  Open Data Storage

* Read Data

e Set Properties

e Spectral Measurements

e Write Data

Refer to the National Instruments web site at ni . com/info and enter the
info code rdt £10 for more information about the error.

You must use NI Spy 2.3 or later in LabVIEW 8.x. NI Spy 2.5 is available
on the National Instruments Device Drivers CD.

You must use Measurement Studio 8.0 or later with LabVIEW 8.5. Refer
to the National Instruments Web site at ni . com/info and enter the info
code exd8yy to access the Upgrade Advisor and order Measurement
Studio 8.0.

4 ni.com


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex3mbp
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex3mbp
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd8yy
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdtf10
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd8yy

Upgrading from Previous Versions of LabVIEW

Upgrading to new versions of LabVIEW does not affect previous versions
of LabVIEW on the computer because the new versions install in a
different directory. LabVIEW 5.x and earlier install in the 1abview
directory. LabVIEW 6.0 and later install in the labview x.x directory,
where x.x is the version number. You can install LabVIEW 8.5 without
uninstalling previous versions of LabVIEW.

Replacing an Existing Version of LabVIEW

To replace your existing version of LabVIEW, uninstall the existing
version of LabVIEW, run the LabVIEW 8.5 installer, and set the
installation directory to the same labview directory where you installed
the previous version of LabVIEW.

(Windows) You also can replace the existing version of LabVIEW with
LabVIEW 8.5 by using the Add/Remove Programs applet in the Control
Panel to uninstall the existing version of LabVIEW. The uninstaller does
not remove any files you created in the 1abview directory.

%: Note When you uninstall or reinstall LabVIEW, LabVIEW uninstalls the . 11b files in the
vi.1lib directory, including any VIs and controls you saved in the . 11b files. Save your
VIs and controls in the user . 11ib directory to add them to the Controls and Functions
palettes.

Copying Environment Settings from a Previous
Version of LabVIEW

To use LabVIEW environment settings from a previous version of
LabVIEW, copy the LabVIEW preferences file from the labview
directory in which the previous version is installed.

‘{E Caution If you replace the LabVIEW 8.5 preferences file with a preferences file from a
previous version, you might override preference settings added to LabVIEW since the
previous version.

After you install LabVIEW 8.5, copy the LabVIEW preferences file to the
LabVIEW 8.5 directory.

(Windows) LabVIEW stores preferences in the labview. ini file in the
labview directory.

(Mac 0S) LabVIEW stores preferences in the LabVIEW Preferences file
in the Library: Preferences folder in the home directory.

© National Instruments Corporation 5 LabVIEW Upgrade Notes



(Linux) LabVIEW stores preferences in the . labviewrc file in the home
directory.

Copying user.lib Files from a Previous Version of
LabVIEW

To use files from the user.1ib directory of a previous version of
LabVIEW, copy the files from the 1abview directory in which the
previous version is installed. After you install LabVIEW 8.5, copy the files
to the user. 1ib directory in the LabVIEW 8.5 directory.

Upgrade and Compatibility Issues

Refer to the following sections for upgrade and compatibility issues
specific to different versions of LabVIEW.

Refer to the readme . html file in the 1abview directory for known issues,
additional compatibility issues, and information about late addition
features in LabVIEW 8.5.

Upgrading from LabVIEW 8.2

You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.5 from LabVIEW 8.2.

'E; Note You also can refer to the National Instruments Web site at ni . com/info and enter
the info code ex5d8c for more information about additional issues you may encounter
upgrading from LabVIEW 8.2.x.

Platforms Supported
LabVIEW 8.5 includes the following changes in platforms supported:
e LabVIEW 8.5 supports Windows Vista x86 and x64.

e LabVIEW 8.5 supports Macintosh computers with both Intel and
PowerPC processors.

System Requirements
(Windows) LabVIEW 8.5 requires at least 1.2 GB of disk space for the
LabVIEW installation.

(Mac 0S) LabVIEW 8.5 requires at least 502 MB of disk space for the
LabVIEW minimum LabVIEW installation or 734 MB disk space for the
complete LabVIEW installation.

LabVIEW Upgrade Notes 6 ni.com


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex5d8c

(Linux) LabVIEW 8.5 requires at least 450 MB of disk space for the
minimum LabVIEW installation or 640 MB disk space for the complete
LabVIEW installation.

Printed Documentation

The following documents did not change for LabVIEW 8.5. Therefore, the
content might not reflect changes made in LabVIEW 8.5.

e (LabVIEW 8.2 and 8.5) LabVIEW Quick Reference Card

e (LabVIEW 8.2 and 8.5) LabVIEW Fundamentals Manual—Because the
LabVIEW Fundamentals Manual is a subset of the Fundamentals
book in the LabVIEW Help, refer to the Fundamentals book on the
Contents tab of the LabVIEW Help for updated content.

Windows Vista Compatibility Issues

LabVIEW 8.5 supports the Windows Vista OS on 32 and 64-bit systems
with the following functionality changes.

The In Port and Out Port VIs do not appear on the Functions palette
because they allow read/write access to any I/O port on the system, which
is discouraged for security reasons on the Vista OS.

*  (Windows Vista x86) VI components install properly but show up as
unsigned in the Windows Defender log. The VIs do run properly.

e (Windows Vista x64) These VIs return error -4850.

VI and Function Behavior Changes
The behavior of the following VIs and functions changed in LabVIEW 8.5.

Enhancements to Analysis VlIs and Functions

In each version of LabVIEW, National Instruments enhances many of the
algorithms behind LabVIEW and C functions. National Instruments also
upgrades LabVIEW to use the latest compilers. These enhancements, along
with changes in computer hardware and software, might cause differences
in the numerical results between LabVIEW 8.2.x or earlier and LabVIEW
8.5. When you compare double-precision, floating-point numbers, you
might notice small differences on the order of 1E—16. Refer to the National
Instruments Web site at ni . com/info and enter the info code exiigr for
more information about comparing floating-point numbers.

© National Instruments Corporation 7 LabVIEW Upgrade Notes


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exiigr

LabVIEW Upgrade Notes

Mathematics Vis
LabVIEW 8.5 includes changes to the following Mathematics VIs:

¢  Find All Zeroes of f(x)—This VI was renamed to the Find All Zeros
of f(x) VL.

e Zeroes and Extrema of f(x)—This VI was renamed to the Zeros and
Extrema of f(x) VL.

Numeric Functions
LabVIEW 8.5 includes changes to the following Numeric functions:

*  Round Toward +Infinity—The Round To +Infinity function was
renamed the Round Toward +Infinity function.

*  Round Toward -Infinity—The Round To -Infinity function was
renamed the Round Toward -Infinity function.

Signal Processing Vis

In the Transition Measurements VI, the preshoot output changed to
pre-transition. This output also changed from a 64-bit double-precision,
floating-point numeric data type to a cluster data type. The overshoot
output changed to post-transition. This output also changed from a 64-bit
double-precision, floating-point numeric data type to a cluster data type.

Hyperbolic Functions
LabVIEW 8.5 includes changes to the following hyperbolic functions:

*  The Inverse Hyperbolic Cosine function returns NaN when the input
value is a real number that is out of range for the function.

e The Inverse Hyperbolic Secant function returns NaN when the input
value is a real number that is out of range for the function.

Libraries & Executables VIs and Functions

In the Call Library Function Node, when configuring a Pascal string
pointer, you must wire a value to the string input on the block diagram.
When configuring a C string pointer, you must wire a value to the string
input or specify the string size in the Minimum size pull-down menu on
the Parameters tab of the Call Library Function dialog box. You cannot
run the VI until you specify values for the strings.

Open VI Reference Function

In LabVIEW 8.0.x and 8.2.x, if the name of the VI from the vi path input
matches the name of a VI in memory on that target, LabVIEW returns a

reference to the VIin memory and LabVIEW does not load the VI specified
in the vi path input. In LabVIEW 8.5, if the name of the VI from the vi path

8 ni.com



input matches the name of a VI in memory on that target but the paths
differ, the Open VI Reference function returns an error.

Polymorphic VI Terminals that Support 64-bit and
Double-Precision Numeric Data Types

LabVIEW coerces extended-precision numeric data to double-precision
numeric data if you wire it to a terminal of a polymorphic VI that supports
both the double-precision numeric and 64-bit integer types. This coercion
preserves a portion of the fractional component of the original data.

Miscellaneous VI and Function Behavior Changes

LabVIEW 8.5 includes the following miscellaneous VI and function
behavior changes:

*  The Instr Get Attribute VI and Instr Set Attribute VI no longer ship
with LabVIEW. If you use either of these VIs in an application, replace
them with the Property Node on the VISA Advanced palette for
equivalent functionality.

e The All Folders parameter of the Recursive File List VI can contain
folder shortcuts, but the VI does not recurse them.

Property, Method, and Event Behavior Changes

The behavior of the following properties, methods, and events changed in
LabVIEW 8.5:

*  The Data Binding:Path property of the Control class is read/write and
settable when the VI is running. To write this property, you must bind
the control to an NI Publish-Subscribe-Protocol URL before you begin
writing.

*  The Target:Operation System property of the Application class
includes the values Windows x64 and Linux x64.

e The Point to Row Column method of the TreeControl class returns the
tag TREE_COLUMN_HEADERS when you wire a point within the column
headers of the tree.

*  The LabVIEW Class:Create method includes a name input. If you do
not wire the name input, LabVIEW prompts the user to name the class
at run time.

e The Control Value:Get [Variant], Control Value:Get [Flattened],
Control Value:Set [Variant], and Control Value:Set [Flattened]
methods no longer trim leading and trailing whitespace when
searching for controls.

© National Instruments Corporation 9 LabVIEW Upgrade Notes



Deprecated Properties, Methods, and Events

LabVIEW 8.5 does not support the following properties, methods, and
events:

Default Instance property of the LVClassLibrary class. Use the Get LV
Class Default Value VI instead.

Geometry property of the SceneObject class. Use the Drawable
property instead.

Grid Colors property of the GraphChart class. Use the Grid Colors
property instead.

Grid Colors:X Color property of the GraphChart class. Use the Grid
Colors: Major and Grid Colors: Minor properties instead.

Grid Colors:Y Color property of the GraphChart class. Use the Grid
Colors: Major and Grid Colors: Minor properties instead.

Legend:Plots Shown property of the WaveformChart class. Use the
Legend:Number of Rows property instead.

Legend:Plots Shown property of the WaveformGraph class. Use the
Legend:Number of Rows property instead.

Pixel Width property of the ListBox class. Use the Bounds:Width
property instead.

Scrollbars Visible property of the Picture class. Use the Horizontal
Scrollbar Visible and Vertical Scrollbar Visible properties instead.

Set Geometry method of the SceneObject class. Use the Set Drawable
method instead.

Scene:Geometry:New Mesh method of the Application class. Use the
Scene:Drawable:Geometry:New Mesh method instead.

Drag Starting event of the Control class. Use the Drag Starting event
of the appropriate control class instead.

Drag Starting? event of the Control class. Use the Drag Starting? event
of the appropriate control class instead.

Renamed Properties, Methods, and Events

The following properties, methods, and events are renamed in

LabVIEW 8.5:

Class LabVIEW 8.2 Name LabVIEW 8.5 Name Type
AbsTime, Numeric Data Range Data Entry Limits Property
AbsTime, Numeric Data Range:Increment Data Entry Property

Limits:Increment

LabVIEW Upgrade Notes

10 ni.com



Class LabVIEW 8.2 Name LabVIEW 8.5 Name Type
AbsTime, Numeric Data Range:Maximum Data Entry Property
Limits:Maximum
AbsTime, Numeric Data Range:Minimum Data Entry Property
Limits:Minimum
AbsTime, Numeric Out of Range Action Response to Value Outside | Property
Limits
AbsTime, Numeric Out of Range Response to Value Outside | Property
Action:Increment Limits:Increment
AbsTime, Numeric Out of Range Response to Value Outside | Property
Action:Maximum Limits:Maximum
AbsTime, Numeric Out of Range Response to Value Outside | Property
Action:Minimum Limits:Minimum
Application Library:Get Project Library | Library:Get File LabVIEW | Method
File Version Version
Application Scene:Geometry:New Box | Scene:Drawable:Geometry: | Method
New Box
Application Scene:Geometry:New Cone | Scene:Drawable:Geometry: | Method
New Cone
Application Scene:Geometry:New Scene:Drawable:Geometry: | Method
Cylinder New Cylinder
Application Scene:Geometry:New Scene:Drawable:Geometry: | Method
Height Field New Height Field
Application Scene:Geometry:New Scene:Drawable:Geometry: | Method
Mesh New Mesh
Application Scene:Geometry:New Scene:Drawable:Geometry: | Method
Sphere New Sphere
Application (ActiveX) | LibraryGetProjectLibFileV | LibraryGetFileLLV Version Method
ersion
Digital, NumericText, | Format & Precision Display Format Property
and Scale
Digital, NumericText, | Format & Precision:Format | Display Format:Format Property
and Scale
Digital, NumericText, | Format & Display Format:Precision Property
and Scale Precision:Precision
© National Instruments Corporation 11 LabVIEW Upgrade Notes




Class LabVIEW 8.2 Name LabVIEW 8.5 Name Type
DigitalTable Column Headers Visible Signal Number Visible Property
DigitalTable Row Headers Visible Transitions Visible Property
SceneGraphDisplay Clear Color Background Color Property
and SceneWindow
SceneObject Set Geometry Set Drawable Method
VI Connector Pane Connector Pane:Set Property

LabVIEW Upgrade Notes

LabVIEW MathScript Behavior Changes (Windows,
Not in Base Package)
LabVIEW 8.5 includes the following changes to LabVIEW MathScript:

*  Changes you make to the search path list or the working directory
using the following MathScript functions apply only to the current
instance of the LabVIEW MathScript Window or the MathScript
Node from which you call the function:

— addpath
- cod

— path

— rmpath

LabVIEW resets the search path list and the working directory to the
default when you close the LabVIEW MathScript Window or when
the VI that contains the MathScript Node stops running.

e The syntax for the gz function changed from [q, z, alpha, beta,
evec] = gz(a, b)to[S, T, Q, Zz, R, L] = gz(A, B, type).

LabVIEW Class Icons

If you created a LabVIEW class icon in LabVIEW 8.2 and you want the
icon displayed when you place a class control or indicator on the block
diagram, you must update the class icon to occupy a smaller space so that
the class mask does not obscure any part of the class icon. Use an image no
larger than 32 pixels wide by 19 pixels high.

Opening LLBs in LabVIEW

The Enable Windows Explorer for LLB files option on the Environment
page of the Options dialog box no longer exists. LabVIEW opens LLBs in
the LLB Manager window. Refer to the National Instruments Web site at
ni.com/info and enter the info code exvfc5 for more information about
opening LLBs.

12 ni.com



http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exvfc5

Timed Loop Priority Level Restriction

In LabVIEW 8.2.x and earlier, you can select up to 2 to the power of 32 for
the priority level of a Timed Loop. LabVIEW 8.5 supports only priority
levels less than 65,535.

Waveform Data Type

When indexing beyond the bounds of an array of waveforms, the resulting
waveform is a proper default waveform with the dt value equal to 1, instead
of an improper waveform with the dt value equal to 0. This also is true
when executing a For Loop with a scalar output tunnel zero times.

Upgrading from LabVIEW 8.0

You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.5 from LabVIEW 8.0. Refer to the Upgrading from
LabVIEW 8.2 section of this document for information about other upgrade
issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW
between versions 8.0 and 8.5 at ni . com/manuals for more information
about the new features and changes in each version.

Platforms Supported

LabVIEW 8.2 and later includes the following changes in platforms
supported:

* LabVIEW 8.2 and later does not support Windows XP x64.
* LabVIEW 8.2 and later does not support Mac OS X 10.3.8 or earlier.

* LabVIEW 8.2 provides some support for Macintosh computers with
Intel processors. Refer to the National Instruments Web site at
ni.com/info and enter the info code macintel for more
information about Macintosh support. LabVIEW 8.5 provides support
for Macintosh computers with both Intel and PowerPC processors.

System Requirements

(Windows) LabVIEW 8.2 and later requires at least 1.2 GB for the
LabVIEW installation.

(Mac 0S) LabVIEW 8.2 requires at least 500 MB of disk space for the
minimum LabVIEW installation or 700 MB disk space for the complete
LabVIEW installation. LabVIEW 8.5 requires at least 502 MB of disk
space for the minimum LabVIEW installation or 734 MB disk space for the
complete LabVIEW installation.

© National Instruments Corporation 13 LabVIEW Upgrade Notes


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp02
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=macintel

LabVIEW Upgrade Notes

(Linux) LabVIEW 8.2 requires at least 430 MB of disk space for the
minimum LabVIEW installation or 620 MB disk space for the complete
LabVIEW installation. LabVIEW 8.5 requires at least 450 MB of disk
space for the minimum LabVIEW installation or 640 MB disk space for the
complete LabVIEW installation.

Printed Documentation

The following documents did not change for LabVIEW 8.2. Therefore, the
content might not reflect changes made in LabVIEW 8.2.

e LabVIEW Quick Reference Card

e LabVIEW Fundamentals Manual—Because the LabVIEW
Fundamentals Manual is a subset of the Fundamentals book in the
LabVIEW Help, refer to the Fundamentals book on the Contents tab
of the LabVIEW Help for updated content.

VI and Function Behavior Changes

The behavior of the following VIs and functions changed in LabVIEW 8.2
and later.

Communicating between Application Instances

In LabVIEW 8.2 and later, you cannot use the Obtain Queue, Obtain
Notifier, Create User Event, Create Semaphore, and Create Rendezvous
functions to communicate between LabVIEW application instances. If you
obtain or create a queue, notifier, user event, semaphore, or rendezvous
reference in one application instance, you cannot use that reference in
another application instance.

Back Transform Eigenvectors VI

The index low, index high, and Scale inputs of the Back Transform
Eigenvectors VI are required inputs.

DataSocket Write Function

In LabVIEW 8.0.1, the default behavior for DataSocket Write function
changed to asynchronous. If you have LabVIEW 8.0 and LabVIEW 8.2 or
later installed on your computer, the DataSocket API Client VI example in
the labview\examples\Shared Variable directory returns an error
when you stop the VI. You must update LabVIEW 8.0 to LabVIEW 8.0.1
to use this example in LabVIEW 8.2 or later.

File 1/0 Vis

The Write To Spreadsheet File VI and Read From Spreadsheet File VI are
polymorphic VIs. The Write to Spreadsheet File VI adapts to the value you

14 ni.com



wire to the format input. The Read From Spreadsheet File VI includes the
following instances: DBL, 164, and string.

GPIB Status Function

In LabVIEW 8.0, the GPIB Status function did not execute if the error in
input received an error. In LabVIEW 8.2 or later, the GPIB Status function
always executes, even if the error in input receives an error.

Histogram VI
The default for the intervals input of the Histogram VI changed to 10.

Open VI Reference Function

The default behavior for the options input of the Open VI Reference
function is to prompt users to find missing subVIs of the referenced VI. A
new value, 0x20, specifies not to display the Find dialog box or prompt
users to find missing subVIs of the referenced VI.

Polynomial Roots VI

If P(x) equals a nonzero constant, the Polynomial Roots VI does not return
an error. However, if P(x) equals 0, the Polynomial Roots VI returns error
-20111. The input polynomial coefficients for this VI cannot all be zeros.

Ramp Pattern VI

In the Ramp Pattern VI, if samples is 1 and exclude end? is TRUE, the VI
returns an array with one element of start, with no error. In LabVIEW 8.0,
the VI returned an error with these conditions.

Read Registry Value Simple VI

LabVIEW 8.0 incorrectly handled REG_MULTI_SZ string formatting,
which the VI used for a flattened array of strings. This issue required you
to write a parser to handle this type of data for the Read Registry Value
Simple VI. In LabVIEW 8.2 and later, the Read Registry Value Simple VI
returns this type of data in the same format used in the Write Registry Value
Simple VI. You no longer need to add your own parser. Using your own
parser with these VIs in LabVIEW 8.2 and later causes the Read Registry
Value Simple VI to return bad data.

Resample Waveforms (single-shot) VI

The default value of the open interval? input of the Resample Waveforms
(single shot) VI changed from TRUE to FALSE, which selects a closed
interval. If you do not update existing code accordingly, the VI might not
return the expected result.

© National Instruments Corporation 15 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

Sound Vis

In the Sound Input Read and the Sound File Read Simple VIs, the tO
component of the data output returns the time stamp for the first sample
read. LabVIEW approximates the initial time that it reads the first sample.

Calling The Sound Output Stop VI no longer is necessary to stop the sound
on a continuous sound task.

The Sound Output Wait VI works in Continuous Samples mode and in
Finite Samples mode.

Waveform Vs
LabVIEW 8.2 and later includes changes to the following Waveform VIs:

Basic Level Trigger Detection—In both instances of this VI, the
slope input changed to trigger slope.

Get Waveform Subset—Includes the following instances: WDT Get
Waveform Subset DBL, WDT Get Waveform Subset CDB, WDT Get
Waveform Subset EXT, WDT Get Waveform Subset 116, WDT Get
Waveform Subset 132, WDT Get Waveform Subset I8, and WDT Get
Waveform Subset SGL. The start/duration format input no longer
includes an Absolute Time option. The start input changed to start
samples/time, and the actual start output changed to actual start
samples/time.

Get Waveform Time Array—The X array output changed from a
double-precision, floating-point numeric data type to a time stamp data
type.

Get Y Value—This VI and the corresponding polymorphic instances
were renamed to Get XY Value. The Get XY Value VI now includes
an X value output, and the data value output changed to Y value.

Number of Waveform Samples—This VI is a polymorphic VI with
the following instances: WDT Number of Waveform Samples DBL,
WDT Number of Waveform Samples CDB, WDT Number of
Waveform Samples EXT, WDT Number of Waveform Samples 116,
WDT Number of Waveform Samples 132, WDT Number of Waveform
Samples I8, and WDT Number of Waveform Samples SGL.

Read Waveform from File—Returns an error status of TRUE in the
error out output when the error is end-of-file.

Replace Subset—The start input changed to start samples/time, and
the actual start value output changed to actual start samples/time.

Search for Digital Pattern—The start input changed to start
index/time.

16 ni.com



Search Waveform—The time of best fit and time of fits outputs
changed from a double-precision, floating-point numeric data type to
a time stamp data type.

Waveform Min Max—The min time and max time outputs changed
from a double-precision, floating-point numeric data type to a time
stamp data type.

Waveform to XY Pairs—The x element of the XY pairs output
changed from a double-precision, floating-point numeric data type to
a time stamp data type.

Property, Method, and Event Behavior Changes

The behavior of the following properties, methods, and events changed in
LabVIEW 8.2 and later:

© National Instruments Corporation

The default behavior for the options input of the ActiveX
GetVIReference method is to prompt users to find missing subVIs of
the referenced VI. A new value, 0x20, specifies not to display the
Find dialog box or prompt users to find missing subVIs of the
referenced VI.

The Add Item method of the Projectltem class return an error when
you try to add a shared variable to a library that is not opened in a
project.

If the Auto Dispose Ref input of the Run VI method is TRUE and the
method returns an error, LabVIEW does not dispose of the reference.

Valid values for the Application:Language property include zh-cn to
indicate that Simplified Chinese is the language of the LabVIEW
environment.

In LabVIEW 8.0, .NET methods that pass array data types by reference
pass all data as the refnum data type. In LabVIEW 8.2 and later, NET
methods that pass array data types by reference pass the data as the
actual data type.

The Edit Position property of the DigitalTable, MulticolumnListbox,
Table, and TreeControl classes returns values of (-2, —2) to indicate
that the user is not making edits to the text of the control. The Edit Row
property of the ListBox class returns a value of -2 to indicate that the
user is not making edits to the text of the control.

In LabVIEW 8.0, the Defer Panel Updates property did not defer the
update of front panels in a subpanel. In LabVIEW 8.2 and later, the
Defer Panel Updates property works with subpanels.

The Application Instance Close and Application Instance Close?
events replace the Application Exit and Application Exit? events.
When you use the Application Instance Close event in a VI running
outside a LabVIEW project, LabVIEW generates the event when you

17 LabVIEW Upgrade Notes



quit LabVIEW through the user interface or programmatically.
LabVIEW generates the Application Instance Close? event when you
quit LabVIEW through the user interface. When you register the
Application Instance Close and Application Instance Close? events for
a VI running within a LabVIEW project, LabVIEW generates the
events when the application instance closes or when you quit
LabVIEW.

Deprecated Properties, Methods, and Events

LabVIEW 8.2 and later does not support the following properties, methods,
and events.

LabVIEW 8.2 and later does not support the Connector Pane property.

LabVIEW 8.x does not support the Data Type property in the Variable
class. Use the Data Type (Variant) property in the Variable class

instead.

Renamed Properties, Methods, and Events

The following properties, methods, and events are renamed in

LabVIEW 8.2 and later:
LabVIEW 8.0 LabVIEW 8.2 and
Class Name Later Name Type
Application Disconnect From LVRT:Disconnect From Method
Slave Slave
Application Application Exit Application Instance Close | Event
Application Application Exit? Application Instance Event
Close?
IntensityGraph, Cursor Palette Visible | Cursor Legend Visible Property
MixedSignalGraph,
and WaveformGraph
Library Delete Library Tag Library Tag:Delete Method
Library Get Icon Icon:Get Method
Library Get Library Tag Library Tag:Get Method
Library Get Library Tag Library Tag:Get Names Method
Names
Library Get Lock State Lock State:Get Method
Library Get Source Scope Source Scope:Get Method

LabVIEW Upgrade Notes

ni.com



LabVIEW 8.0 LabVIEW 8.2 and
Class Name Later Name Type
Library Save Save:Library Method
Library Save a Copy Save:Copy Method
Library Set Icon Icon:Set Method
Library Set Library Tag Library Tag:Set Method
Library Set Lock State Lock State:Set Method
Library Set Source Scope Source Scope:Set Method
Listbox, Drag/Drop:Allow Drag/Drop:Allow Dragging | Property
MulticolumnListbox, | Item Dragging
and TreeControl
Path and String Allow Drop Allow Dropping Property
Projectltems Delete Tag Tag:Delete Property
Projectltems Get Tag Tag:Get Tag Property
Projectltems Get Tag Names Tag:Get Names Property
Projectltems Get XML Tag Tag:Get XML Tag Property
Projectltems Set Tag Tag:Set Tag Property
Projectltems Set XML Tag Tag:Set XML Tag Property
Projectltems Library Item Type Library Item Type:String Property
String
Projectltems Library Item Type Library Item:Type Property

Application Builder Changes

In LabVIEW 8.2 and later, you cannot view the contents of a stand-alone
application (EXE) or shared library (DLL) by renaming the application or
shared library to have a . 11b file extension. You also cannot access a VI
in a stand-alone application or shared library by specifying the path to the
VI from outside of the application or shared library. Refer to the National
Instruments Web site at ni . com/ info and enter the info code exjk3b for
more information about viewing and accessing applications and shared

libraries.

Upgrading from LabVIEW 7.x

You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.5 from LabVIEW 7.x. Refer to the Upgrading from

© National Instruments Corporation

LabVIEW Upgrade Notes


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exjk3b

&

LabVIEW 8.0 and Upgrading from LabVIEW 8.2 sections of this document
for information about other upgrade issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW
between versions 7.x and 8.5 at ni.com/manuals for more information
about the new features and changes in each version.

Note The LabVIEW Quick Reference Card and the LabVIEW Fundamentals Manual did

not change for LabVIEW 8.2 or 8.5. You can access the PDF versions of these documents
in the 1abview\manuals directory. Refer to the Upgrading from LabVIEW 8.0 section of
this document for more information about these documents.

LabVIEW Upgrade Notes

Platforms Supported

LabVIEW 8.x includes the following changes in platforms supported:

e LabVIEW 7.1 and later do not support Windows Me/98/95.
LabVIEW 8.x does not support Windows NT.

e LabVIEW 8.x does not support Mac OS X 10.2 or earlier.
e LabVIEW 8.x does not support Sun Solaris.

System Requirements

LabVIEW 7.x requires a minimum of 128 MB of RAM, but National

Instruments recommends 256 MB of RAM. LabVIEW 8.5 requires a

minimum of 256 MB of RAM, but National Instruments recommends
1 GB of RAM.

LabVIEW 7.x requires a screen resolution of 800 x 600 pixels, but National
Instruments recommends a screen resolution of 1,024 x 768 pixels.
LabVIEW 8.x requires a screen resolution of 1,024 x 768 pixels.

Windows

LabVIEW 7.x requires a minimum of a Pentium III or greater or Celeron
600 MHz or equivalent processor, but National Instruments recommends a
Pentium 4 or equivalent processor. LabVIEW 8.x requires a minimum of a
Pentium III or Celeron 866 MHz or equivalent processor, but National
Instruments recommends a Pentium 4/M or equivalent processor.

LabVIEW 7.x requires at least 130 MB of disk space for the minimum
LabVIEW installation or 550 MB disk space for the complete LabVIEW
installation. LabVIEW 8.x 1.2 GB disk space for the complete LabVIEW
installation.

20 ni.com


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp02

Mac 0S

LabVIEW 7.x requires at least 280 MB of disk space for the minimum
LabVIEW installation or 350 MB disk space for the complete LabVIEW
installation. LabVIEW 8.5 requires at least 502 MB of disk space for the
minimum LabVIEW installation or 734 MB disk space for the complete
LabVIEW installation.

Linux

LabVIEW 7.x requires a minimum of a Pentium III or greater or Celeron
600 MHz or equivalent processor, but National Instruments recommends a
Pentium 4 or equivalent processor. LabVIEW 8.x requires a minimum of a
Pentium III or Celeron 866 MHz or equivalent processor, but National
Instruments recommends a Pentium 4/M or equivalent processor.

LabVIEW 7.x requires at least 200 MB of disk space for the minimum
LabVIEW installation or 300 MB disk space for the complete LabVIEW
installation. LabVIEW 8.5 requires at least 450 MB of disk space for the
minimum LabVIEW installation or 640 MB disk space for the complete
LabVIEW installation.

LabVIEW 7.x requires GNU C Library (glibc) version 2.1.3 or later, but
National Instruments recommends GNU C Library version 2.2.4 or later.
LabVIEW 8.x requires GNU C Library version 2.2.4 or later.

LabVIEW 7.x runs on Red Hat Linux 7.0 or later, Mandrake Linux 8.0 or
later, SuSE Linux 7.1 or later, or Debian Linux 3.0 or later. LabVIEW 8.x
runs on Red Hat Enterprise Linux WS 3 or later, MandrakeLinux/
Mandriva 10.0 or later, or SuSE Linux 9.1 or later.

Custom Palette Views

LabVIEW 8.x does not support custom palette views. You can edit a palette
set without using a custom palette view. Refer to the National Instruments
Web site at ni . com/info and enter the info code 1v8palette for more
information about palette changes in LabVIEW 8.0.

VI and Function Behavior Changes

The behavior of the following VIs and functions changed in LabVIEW 7.1
or 8.0.

.NET VIs and Applications

You must have the .NET Framework 1.1 Service Pack 1 or later to use
.NET functions and applications in LabVIEW 8.x. You must remove
Microsoft .NET Framework 1.1 Hotfix KB886904 before installing the
.NET Framework 1.1 Service Pack 1.

© National Instruments Corporation 21 LabVIEW Upgrade Notes


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=lv8palette

LabVIEW Upgrade Notes

If you load a .NET VI last saved in LabVIEW 7.x, LabVIEW 8.x might
prompt you to find the assemblies to which that VI refers even if the assembly
files are in the same directory as the VI or if you registered them by selecting
Tools»Advanced».NET Assembly References in LabVIEW 7.x.

Analyze VI Algorithms

In LabVIEW 7.1 and later, the Analyze VIs use the BLAS/LAPACK
algorithms. These VIs now produce more accurate results. In LabVIEW 8.x,
these VIs are on the Mathematics and Signal Processing palettes.

Append Signals Express VI

In LabVIEW 7.x, if Input Signal A of the Append Signals Express VI is
empty or not wired and you wire a single signal or a combined signal to
Input Signal B, the Appended Signals output is empty. In LabVIEW 8.x,
if Input Signal A is empty or not wired and you wire a single signal to
Input Signal B, the Express VI returns Input Signal B. If you wire only a
combined signal to Input Signal B, each signal in the combined signal
appends the following signal to create one signal as a result.

Comparison Functions

In LabVIEW 7.x and earlier, when you use the Comparison functions to
compare variant data, LabVIEW first compares the length of the two
variants and then compares the variants bit by bit. LabVIEW 8.x begins the
comparison of variant data with the type codes, which encode the actual
type information of the variants, and then compares other type-specific
attributes.

Dot Product VI

In LabVIEW 7.0, the Dot Product VI calculates the dot product of input
vectors X and Y using the following equation:

»-1

L = 2:‘.}’5

i=0

In LabVIEW 7.1 and later, the Dot Product VI calculates the dot product of
complex inputs using the following equation:

»-1

¥ = me*

i=0

where yi* is the complex conjugate of yi.

22 ni.com



Easy Text Report VI (Mac 0S and Linux)

The connector pane of the Easy Text Report VI changed. In LabVIEW 8.x,
when you open a VI last saved in LabVIEW 7.x or earlier that uses the Easy
Text Report VI, you must right-click the subVI and select Relink To
SubVI from the shortcut menu.

Format Into String Function

In LabVIEW 7.x, using the %o, $b, or $x format specifier syntax elements
with the Format Into String function rounds a floating-point input to a
32-bit integer before converting that input to a string.

In LabVIEW 8.x, these format specifier syntax elements cause this function
to round floating-point inputs to 64-bit integers before converting the inputs
to strings.

Join Numbers Function

In LabVIEW 7.x and earlier, the Join Numbers function coerces 32-bit
integer inputs to 16-bit integers to create one 32-bit integer. In
LabVIEW 8.x, the Join Numbers function joins 32-bit integer inputs to
create one 64-bit integer.
E; Note If you open a LabVIEW 7.x VI in LabVIEW 8.x, LabVIEW coerces 32-bit integer
inputs to 16-bit integers.

Mathematics VIs and Matrices

In LabVIEW 8.x, Mathematics VIs support the matrix data type. If you
load a VI from LabVIEW 7.x in LabVIEW 8.x and the VI contains a
Mathematics VI wired to a function that can use the matrix data type and is
instead using a 2D array, a red 7.x glyph appears on the function. The red
glyph indicates that LabVIEW replaced the 2D array with the matrix

data type.

Number to String Conversion Functions

In LabVIEW 7.x, the Number To Hexadecimal String, Number To Octal
String, and Number To Decimal String functions round a floating-point
input to a 32-bit integer before converting that input to a string.

In LabVIEW 8.x, these functions round floating-point inputs to 64-bit
integers before converting the inputs to strings. However, if you open a
LabVIEW 7.x VIin LabVIEW 8.x, LabVIEW maintains compatibility and
functionality by rounding floating-point inputs to 32-bit integers.

© National Instruments Corporation 23 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

Open VI Reference Function

In LabVIEW 7.x, if the vi path input of the Open VI Reference function is
a path and a VI in memory exists with the same name, LabVIEW returns a
reference to the VI in memory, even if the path to the VI in memory does
not match the path you specified.

In LabVIEW 8.x, if the vi path input of the Open VI Reference function is
a string, LabVIEW opens the VI only if vi path matches the qualified VI
name of a VI in memory on that target. If vi path is a path, LabVIEW
searches for a VI in memory with the same path on the same target. If
LabVIEW does not find a VI with a matching path, LabVIEW tries to load
the VI from disk at the specified path. In LabVIEW 8.5, an error occurs if
LabVIEW cannot find the file or if the VI name of the file is the same as
the qualified VI name as another VI in memory on that target.

Quick Scale VI

In LabVIEW 7.1 and earlier, if the X input of the Quick Scale 1D VI or the
Quick Scale 2D VI is an array of zeros, this VI returns maxIXl as 0 and
Y[i]=X[i]/MaxIXI or Yij=Xij/MaxIXI as an array of NaN. In LabVIEW 8.x,
if the X input of the Quick Scale VI is an array of zeros, this VI returns
maxIXl as 0 and Y[i]=X[i}/MaxIXI or Yij=Xij/MaxIXI| as an array of zeros.

Read Key Vi

In LabVIEW 7.x and earlier, you can use the string instance of the Read
Key VI to read a Japanese multibyte-character string encoded in Shift-JIS.
You must wire 1 or <Shift-JISs> to the multibyte encoding input. In
LabVIEW 8.x, the string instance of the Read Key VI reads
multibyte-character, encoded strings by default if you set the operating
system locale to the appropriate encoding.

Scale VI

In LabVIEW 7.1 and earlier, if the X input of the Scale 1D VI or the Scale
2D VlIis an array of zeros, this VI returns scale as 0, offset as 0, and
Y=(X-offset)/scale as an array of NaN. In LabVIEW 8.x, if the X input of
the Scale VI is an array of zeros, this VI returns scale as 1, offset as 0, and
Y=(X-offset)/scale as an array of zeros.

Semaphore Vis

In LabVIEW 7.x, the Release Semaphore VI and the Acquire Semaphore
VI do not attempt to run when the error in input receives an error. In
LabVIEW 8.x, these VIs attempt to run even if the error in input receives
an error. However, if you open a LabVIEW 7.x VI in LabVIEW 8.x,
LabVIEW updates the VI in order to maintain the LabVIEW 7.x
functionality.

24 ni.com



SMTP Email Vis

In LabVIEW 7.x and earlier, you can specify a character set by wiring a
value to the character set input of the SMTP Email VIs. In LabVIEW 8.x,
the SMTP Email VIs assume the message is in the system character set.
These VIs encode the message into UTF-8 format before sending the email.
The SMTP Email VIs no longer have the character set or translit
parameters.

Sort Complex Numbers VI

In LabVIEW 7.x and earlier, if you set the method input of the Sort Complex
Numbers VI to Magnitude, LabVIEW does not change the sequence of
elements with the same magnitude. In LabVIEW 8.x, if you set method to
Magnitude, LabVIEW sorts elements of the same magnitude first with
respect to their real parts and then with respect to their imaginary parts.

Unit Vector VI

In LabVIEW 7.x and earlier, the Unit Vector VI calculates the norm of an
input vector using the following equation:

2 2 2
”.X-” = JID+XI+...+X?¢_1

In LabVIEW 8.x, the Unit Vector VI calculates the norm of an input vector
using the following equation:

1
151 = ||Jr,;,|JJ + |Jr1|']J + ..+ |Jr;,¢_1|y|']J

where X is the input vector, IIXIl is the norm, and y is the norm type.

User Vis

VIs that you place in the 1abview\help, labview\project, or
labview\wizard directories appear in the Help, Tools, and File menus,
respectively. VIs that you place in these directories in LabVIEW 7.x and
earlier might not work as expected in LabVIEW 8.x because LabVIEW 8.0
and later opens these VIs in a private application instance.

Use the VIMemory Get VIs in Memory VIin the labview\vi.lib\
Utility\allVIsInMemory.11lb to generate a list of all user VIs in
memory in all application instances. Use the Get User Application
Reference VI in the labview\vi.lib\Utility\
allvIsInMemory.11lb to create a reference to the current application
instance. Refer to the LabVIEW Help for more information about
application instances.

© National Instruments Corporation 25 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

Deprecated Vis and Functions
LabVIEW 8.x does not support the following VIs and functions:

LabVIEW 7.1 and later do not install the Polynomial Real Zero
Counter VI. Use the Polynomial Real Zeros Counter VI instead.

(Mac 0S) LabVIEW 7.1 and later do not install the PPC VIs. Use the
TCP VIs instead.

LabVIEW 8.x does not support the QR Factorization VI. Use the QR
Decomposition VI instead.

LabVIEW 8.x does not support the Levenberg Marquardt or the
Nonlinear Lev-Mar Fit VIs. Use the Nonlinear Curve Fit VI instead.

In LabVIEW 8.x, the VISA Status Description function is not on the
Functions palette. Use the Simple Error Handler or General Error
Handler VIs instead.

LabVIEW 8.x does not support the Chi Square Distribution,

F Distribution, Normal Distribution, and T Distribution VIs. Use the
Chi-Squared, F, Normal, and Student t instances, respectively, of the
Continuous CDF VI instead.

LabVIEW 8.x does not support the Inv Chi Square Distribution, Inv F
Distribution, Inv Normal Distribution, and Inv T Distribution VIs. Use
the Chi-Squared, F, Normal, and Student t instances, respectively, of

the Continuous Inverse CDF VI instead.

In LabVIEW 8.x, the 1D Linear Evaluation VI and the 2D Linear
Evaluation VI are not on the Functions palette. Use the Linear
Evaluation VI instead.

In LabVIEW 8.x, the 1D Polynomial Evaluation VI and the
2D Polynomial Evaluation VI are not on the Functions palette.
Use the Polynomial Evaluation VI instead.

In LabVIEW 8.x, the 1D Rectangular to Polar VI and the 1D Polar to
Rectangular VI are not on the Functions palette. Use the Re/Im To
Polar function and the Polar To Re/Im function instead.

In LabVIEW 8.x, the Harmonic Analyzer VI is not on the Functions
palette. Use the Harmonic Distortion Analyzer VI instead to measure
the THD or component levels outputs, or use the SINAD Analyzer VI
to measure the SINAD or THD Plus Noise outputs.

In LabVIEW 8.x, the Network Functions (avg) VI is not on the
Functions palette. Use the Frequency Response Function
(Mag-Phase), Frequency Response Function (Real-Im), Cross
Spectrum (Mag-Phase), or Cross Spectrum (Real-Im) VIs instead.

In LabVIEW 8.x, the Pulse Parameters VI is not on the Functions
palette. Use the Transition Measurements VI instead to measure the
slew rate, duration, overshoot (the Transition Measurements VI

26 ni.com



equivalent is the post-transition output), or preshoot (the Transition
Measurements VI equivalent is the pre-transition output) outputs, the
Pulse Measurements VI to measure the period, pulse duration, or
duty cycle outputs, or the Amplitude and Levels VI to measure the
amplitude, high state level, or low state level outputs.

e InLabVIEW 8.x, the Transfer Function VI is not on the Functions
palette. Use the Frequency Response Function (Mag-Phase) or
Frequency Response Function (Real-Im) VIs instead.

* InLabVIEW 8.x, the NI DIAdem Report Wizard Express VI is not on
the Functions palette. Use the DIAdem Report Express VI instead.

* InLabVIEW 8.x, the VISA resource name constant and the IVI logical
name constant are not on the Functions palette. To specify a VISA
resource name, use the VISA resource name input of the VISA VIs. To
specify an IVI logical name, use the appropriate input of the
appropriate driver VI that initializes the instrument.

* In LabVIEW 8.x, the error ring constant is not on the Functions
palette. Use a 32-bit signed integer constant instead to enter the error
code that you want.

¢ (Windows and Linux) In LabVIEW 8.x, the Sound VIs available on the
Sound palette in LabVIEW 7.x are not on the Functions palette. Use
the Sound VIs in LabVIEW 8.x instead. The examples shipped with
LabVIEW 7.x do not ship with LabVIEW 8.x.

File 1/0 ViIs and Functions

In LabVIEW 8.x, the Read Characters From File VI is not on the Functions
palette. Use the Read from Text File function instead.

In LabVIEW 8.x, the Open/Create/Replace File VI is not on the Functions
palette. Use the Open/Create/Replace File function instead. The following
functions include some of the functionality of the Open/Create/Replace
File VI in LabVIEW 7.x and earlier:

e Use the Get File Size function to determine the size of a file.

»  Use the File Dialog Express VI to specify the start path, file pattern,
and default name of a file or directory for a file dialog box.

*  Use the Refnum to Path function to convert a reference to a path.

*  Use the Write to Binary File function to create platform-independent
text files or other types of binary files, and use the Read from Binary
File function to read the resulting binary files.

In LabVIEW 8.x, the Read File and Write File functions are not on the
Functions palette. Use the Read from Binary File and Write to Binary File
functions instead.

© National Instruments Corporation 27 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

In LabVIEW 8.x, the Write Characters To File VI is not on the Functions
palette. Use the Write to Text File function instead.

In LabVIEW 8.x, the Access Rights function is not on the Functions
palette. Use the Get Permissions and Set Permissions functions instead.

In LabVIEW 8.x, the EOF function is not on the Functions palette. Use the
Get File Size and Set File Size functions instead.

In LabVIEW 8.x, the List Directory function is not on the Functions
palette. Use the List Folder function instead.

In LabVIEW 8.x, the Lock Range function is not on the Functions palette.
Use the Deny Access function instead.

If you open a VI built in LabVIEW 7.x that includes the New Directory
function on the block diagram, LabVIEW 8.x replaces that function with
the Create Folder function. If the folder you specified in the path input does
not exist, the Create Folder function creates the directory rather than
returning an error, as the New Directory function did.

In LabVIEW 8.x, the Seek function is not on the Functions palette. Use the
Get File Position and Set File Position functions instead.

In LabVIEW 8.x, the Type and Creator function is not on the Functions
palette. Use the Get Type and Creator and Set Type and Creator functions
instead.

In LabVIEW 8.x, the Volume Info function is not on the Functions palette.
Use the Get Volume Info function instead.

In LabVIEW 8.x, the Open File and New File functions are not on the
Functions palette. The Read Lines From File VI is not on the Functions
palette but ships with LabVIEW for compatibility.

In LabVIEW 8.x, the Read From 116 File, Read From SGL File, Write To
116 File, and Write To SGL File VIs are not on the Functions palette. Use
the Read from Binary File and Write to Binary File VIs instead.

Property, Method, and Event Behavior Changes

The behavior of the following properties, methods, and events changed in
LabVIEW 7.1 or 8.0.

Application Properties and Methods

In LabVIEW 8.x, the behavior of some Application properties and methods
depends on the application instance to which they belong. For example, the
behavior of the Application:All VIs in Memory property depends on the

28 ni.com



application instance in which you use it. This property returns a list of all
VIs in memory in the same application instance as the property. However,
the behavior of the Application:Directory Path property does not depend on
the application instance in which you use it. This property returns the
absolute path to the directory in which the application is located. This
information does not change with each application instance.

Refer to the LabVIEW Help for more information about application
instances.

Front Panel:0Open Method

The LabVIEW 7.0 Open FP method was renamed to Old Open FP in
LabVIEW 7.1. LabVIEW 7.1 includes a different Open FP method that
does not return an error if the front panel is already open. The
LabVIEW 7.1 Open FP method was renamed to Front Panel:Open in
LabVIEW 8.x. If you have VIs that use the Old Open FP method from
LabVIEW 7.0, replace the method with the Front Panel:Open method.

Run VI Method

In LabVIEW 7.1, if you set the Auto Dispose Ref input of the Run VI
method to TRUE, LabVIEW automatically disposes the reference after the
VI stops running. If the Run VI Method generates an error, the reference is
not automatically closed. In LabVIEW 8.0, LabVIEW automatically
disposes the reference if the method returns an error. This behavior might
break a VI at run time if part of the block diagram depends on the reference.
In LabVIEW 8.2 and later, the behavior has been changed back to the 7.1
behavior.

Key Down and Key Repeat Events

The VKey data field of the Key Down, Key Down?, Key Repeat, and Key
Repeat? events for VIs and controls now has separate values for the
<Return> key on the alphanumeric section of the keyboard and the <Enter>
key on the numeric keypad. In LabVIEW 7.x and earlier, when the <Enter>
key or the <Return> key generates one of these events, LabVIEW returns
<Enter> in the VKey data field. In LabVIEW 8.x, when the <Enter> key
or the <Return> key generates one of these events, LabVIEW returns
<Enter> Or <Return>, respectively, in the VKey data field.

(Mac 0S) LabVIEW 8.x accepts only <Control>-click for shortcut menus
and does not receive the <Command>-click key combination. If you are
emulating this behavior with an Event structure, modify your VIs to
emulate the new behavior.

© National Instruments Corporation 29 LabVIEW Upgrade Notes



ListBox Properties

In LabVIEW 7.x and earlier, if you set the Top Row property of a listbox
to arow that is below the bottom item of the listbox, LabVIEW pins the row
to the last visible item. In LabVIEW 8.x, the number of visible items in the
listbox does not limit the row number you can wire to this property.

LabVIEW 8.x does not support the Double-Click property for
single-column listboxes. Use the Get Double-Clicked Row method instead.

Owning VI Property

In LabVIEW 7.x and earlier, the Owning VI property returns a reference to
the VI to which the object belongs. This reference keeps the VI in memory.
In LabVIEW 8.x, the reference the Owning VI property returns does not
keep the VI in memory. If the owning VI is removed from memory, this
reference becomes invalid. Use the Open VI Reference function to obtain
areference to a VI that stays in memory until you explicitly close the
reference.

Text Property

In LabVIEW 7.x and earlier, the Text property returns a string in normal
display. In LabVIEW 8.x, the Text property returns a string in the same text
display as the front panel object. For example, if you display a string
control in password display, the Text property returns the string in
password display.

TreeControl Properties

In LabVIEW 7.x and earlier, the Active Cell Properties:Cell Size:Height
and Active Cell Properties:Cell Size:Width properties return one less pixel
for each line in the tree control than in LabVIEW 7.x. For example, if you
load a LabVIEW 7.x VI in LabVIEW 8.x that contains a property node
which returns the height and width of a tree control as 70 pixels and

16 pixels, any new property nodes you place to determine height and width
return 69 pixels and 15 pixels.

VI Strings Methods

Strings that you export from previous versions of LabVIEW using the
Export VI Strings method might not import properly in LabVIEW 8.x when
you use the VI Strings:Import method.

LabVIEW Upgrade Notes 30 ni.com



Deprecated Properties, Methods, and Events

LabVIEW 8.x does not support the following properties, methods, and
events.

Cursor Properties

LabVIEW 8.x does not support the Cursor Lock Style property. Use the
Cursor Mode property instead.

ListBox, MulitcolumnListhox, Table, DigitalTable, and
TreeControl Properties and Events

LabVIEW 8.x does not support the Cell Foreground Color property for
multicolumn listboxes. Use the Active Cell:Cell Font:Color property
instead.

LabVIEW 8.x does not support the Cell FG Color property for tables or
digital tables. Use the Active Cell:Cell Font:Color property for tables and
digital tables instead.

LabVIEW 8.x does not support the Active Cell Properties:Foreground
Color property for tree controls. Use the Active Cell:Cell Font:Color
property instead.

LabVIEW 8.x does not support the Drag, Drag?, Drop, and Drop? events in
the TreeControl class. Use the Drag Ended, Drag Enter, Drag Leave, Drag
Over, Drag Source Update, Drag Starting, Drag Starting?, and Drop events
in the Control class instead.

NamedNumeric Properties

LabVIEW 8.x does not support the Named Numeric Colors, Named
Numeric Colors:BG Color, or Named Numeric Colors:Text Color
properties for named numeric objects. Use the Text Colors, Text
Colors:BG Color, and Text Colors:Text Color properties, respectively,
instead.

Panel Properties

LabVIEW 8.x does not support the Color property in the Panel class. If you
use this property in LabVIEW 8.x, the property applies only to the
upper-leftmost pane. Use the Pane Color property in the Pane class instead.

Subpanel Properties

In LabVIEW 8.x, use the pane of a subVI in a subpanel to configure the
visibility of scroll bars for subpanel controls and to scale the front panel in
subpanel controls.

© National Instruments Corporation 31 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

LabVIEW 8.x does not support the X Scrollbar Visible property for
subpanel controls. Use the Horizontal Scrollbar Visibility property for
panes instead.

LabVIEW 8.x does not support the Y Scrollbar Visible property for
subpanel controls. Use the Vertical Scrollbar Visibility property for panes
instead.

LabVIEW 8.x does not support the Scale Panel property for subpanel
controls. Use the Set Scaling Mode method for panes instead.

VI Properties, Methods, and Events

LabVIEW 8.x does not support the Front Panel Window:Auto Center
property. Use the Front Panel:Center method instead.

LabVIEW 8.x does not support the Front Panel Window:Size to Screen
property. Use the Front Panel Window:State property instead.

LabVIEW 8.x does not support the Front Panel Window:Origin property in
the VI class. If you use this property in LabVIEW 8.x, the property applies
only to the upper-leftmost pane. Use the Origin property in the Pane class
instead.

LabVIEW 8.x does not support the Front Panel Window:Show Scroll Bars
property in the VI class. If you use this property in LabVIEW 8.x, the
property applies only to the upper-leftmost pane. Use the Horizontal
Scrollbar Visibility and Vertical Scrollbar Visibility properties in the Pane
class instead.

LabVIEW 8.x does not support the Get Front Panel Scaling Mode or Set
Front Panel Scaling Mode methods in the VI class. If you use these
methods in LabVIEW 8.x, the methods apply only to the upper-leftmost
pane. Use the Get Scaling Mode and Set Scaling Mode methods in the Pane
class instead.

In LabVIEW 8.x you cannot select the Mouse Down, Mouse Down?,
Mouse Move, or Mouse Up events of the VI class in the Edit Events dialog
box. Use the Mouse Down, Mouse Down?, Mouse Move, and Mouse Up
events in the Pane class, respectively, instead.

Application Item Tags

The following list includes application item tags that have been removed
from LabVIEW either because the feature is no longer available or because
it has been combined with another feature:

° APP_SAVE_WITH_OPTIONS

e APP_UPDATE_VXI

32 ni.com



APP_DSC_TOOLBAR
APP_DSC_TAGEDITOR
APP_DSC_TAGMONITOR
APP_DSC_HTV
APP_DSC_ENGINE
APP_DSC_SECURITY
APP_DSC_LOGOUT
APP_DSC_CPWD
APP_DSC_USERINFO
APP_DSC_USEREDITOR
APP_DSC_ADVANCED
APP_DSC_STARTUP
APP_DSC_SRVBRW
APP_DSC_IST
APP_DSC_IMAGENAV
APP_DSC_OPTIONS
APP_SRC_CODE_CTRL
APP_BUILD_STANDALONE_APP
APP_EDIT_VI_LIBRARY
APP_DN_ASSEMBLY_REFS
APP_SHOW_CLIPBOARD
APP_VIEW_PRINTED_MANUALS
APP_RT_ENGINE_INFO
APP_SWITCH_EXEC_TARGET

APP_REALTIME

When you use a run-time menu (. rtm) file that was saved in a previous
version of LabVIEW and the file contains a deleted tag, LabVIEW 8.x
automatically removes the tag from the . rtm file when you save the file in
the Menu Editor dialog box. The deleted application item tags are reserved
by LabVIEW and you cannot use them as user tags.

HiQ Support

National Instruments does not support HiQ functionality in LabVIEW 8.x.
If an application uses HiQ VIs, consider replacing them with the
Mathematics and Signal Processing VIs.

© National Instruments Corporation

33 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

Error List Window

In LabVIEW 7.x and earlier, the VI List section of the Error list window
shows errors for all VIs in memory. In LabVIEW 8.x, the Items with
errors section of the Error list window shows errors for all items in
memory, such as VIs and libraries. If two or more items have the same
name, this section shows the specific application instance for each
ambiguous item. Refer to the LabVIEW Help for more information about
application instances.

VI String File Syntax

LabVIEW 8.x searches for a new set of tags, <GROUPER></GROUPER>,
when you import VI string files by selecting Tools»Advanced»Import
Strings or by using the VI Strings:Import method. This set of tags denotes
front panel objects that are grouped together. Therefore, in LabVIEW 8.x,
you cannot import VI string files saved in previous versions of LabVIEW.

LabVIEW 7.1 and earlier lists listbox strings in the <ITEMS> section of its
private data. LabVIEW 8.x lists listbox strings in the <STRINGS> section
of its private data. Also, in LabVIEW 7.1 and earlier, a listbox can have
only one font, which LabVIEW lists in the <LBLABEL> section of its
private data. In LabVIEW 8.x, the listbox can have multiple fonts, which
LabVIEW lists in the <CELL_FONTS> section of its private data.

LabVIEW 7.1 and earlier lists multicolumn listbox strings in its default
data. However, the default data for a multicolumn listbox is an integer or
array of integers. LabVIEW 8.x lists multicolumn listbox strings in its
private data.

LabVIEW 7.1 and earlier exports neither strings nor fonts for tree controls.
LabVIEW 8.x can export both tree control strings and fonts, and it exports
them in the same format as the listbox and multicolumn listbox.

In LabVIEW 8.x, each line of an export file contains no more than two tags
for private or default data. LabVIEW 8.x also indents items once for each
nesting level.

Complete the following steps to convert VI string files to the LabVIEW 8.x
format.

1. Import the VI string file in the previous version of LabVIEW.

2. Save the VL

3. Load the VIin LabVIEW 8.x.

4

Select Tools»Advanced»Export Strings to save the VI string file in
the LabVIEW 8.x format.

34 ni.com



Converting Type Descriptor Data to and from
LabVIEW 7.x

The format in which LabVIEW stores type descriptors changed in
LabVIEW 8.x. LabVIEW 7.x stores type descriptors in 16-bit flat
representation. LabVIEW 8.x stores type descriptors in 32-bit flat
representation. This change eliminates the 64 KB size limitation of type
descriptors.

LabVIEW 8.x provides a mechanism for reading type descriptors written in
LabVIEW 7.x and writing type descriptors that LabVIEW 7.x can read. The
Flatten To String function has a Convert 7.x Data shortcut menu item. If
you right-click the function and select this menu item, the function treats
input data as if it were written for LabVIEW 7.x. When you select the
Convert 7.x Data shortcut menu item and the data string output is wired,
LabVIEW 8.x places a red 7 .x glyph on the function to indicate that it is
converting data to or from LabVIEW 7.x format. To avoid the conversion
of data, select the Convert 7.x Data shortcut menu item again to remove
the checkmark.

In LabVIEW 8.x, when you load a VI last saved in LabVIEW 7.x or earlier,
LabVIEW 8.x automatically sets the Convert 7.x Data attribute on the
Flatten To String function. The function continues to operate as in
LabVIEW 7.x and earlier. If you want a VI to use the LabVIEW 8.x type
descriptor format, right-click the Flatten To String function and select
Convert 7.x Data from the shortcut menu to remove the checkmark. Use
the LabVIEW 8.x type descriptor format if VIs do not need to manipulate
files that contain data written in LabVIEW 7.x or earlier and do not send or
receive data to or from VIs running in LabVIEW 7.x or earlier. Support for
the previous type descriptor format might be discontinued in future
versions of LabVIEW.

Migrating from the LabVIEW Built-In Source Control
Provider

The built-in source control provider from LabVIEW 7.x and earlier is not
available in LabVIEW 8.x. If you want to use source control in LabVIEW,
you must select a third-party source control provider. If you used the
built-in provider in previous versions, you must migrate the files to another
provider to use source control in LabVIEW. Refer to the National
Instruments Web site at ni . com/ info and enter the info code exgucn for
the most current list of third-party source control providers supported in
LabVIEW.

When you migrate files to a new source control provider, you lose the

revision history stored in the built-in provider. You cannot transfer the
previous versions of the files to the new provider.

© National Instruments Corporation 35 LabVIEW Upgrade Notes


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exgucn

LabVIEW Upgrade Notes

Complete the following steps to migrate files from the built-in source
control provider to a third-party source control provider.

1. In the previous version of LabVIEW, make sure that the files included
in the LabVIEW built-in source control provider are checked in by all
users.

2. On the computer where you want to add the files to the new source
control provider, use the built-in provider to get the latest versions of
all the files.

Use the built-in provider to check out the files from source control.

4. In the third-party source control provider, configure the settings you
want for the new source control project.

5. Configure LabVIEW to work with the third-party source control
provider.

Refer to the Fundamentals»Organizing and Managing a Project»
How-to»Using Source Control in LabVIEW book on the Contents
tab of the LabVIEW Help for information about configuring LabVIEW
to work with a third-party source control provider.

6. Create a LabVIEW project. Add the files included in the built-in
provider to the project. When LabVIEW prompts you, add the files to
source control. You also can add the files directly in the third-party
provider.

Refer to the Fundamentals»Organizing and Managing a Project»
How-to»Creating a LabVIEW Project book on the Contents tab of
the LabVIEW Help for information about creating a LabVIEW project.

Converting NaN Strings to Integer Types (Windows)

In LabVIEW 7.x, when you explicitly or implicitly convert NaN to an
integer, the value becomes the smallest value for that integer data type. For
example, converting NaN to a 16-bit signed integer produces the value
—32,768, the smallest possible value for a 16-bit signed integer.

In LabVIEW 8.x, when you explicitly or implicitly convert NaN to an
integer, the value becomes the largest value for that integer data type. For
example, converting NaN to a 16-bit signed integer produces the value
32,767, the largest possible value for a 16-bit signed integer.

Constants Wired to Case Structures

In LabVIEW 7.x and earlier, you can keep subVIs in memory by wiring a
constant to a Case structure and placing the subVI in a case that does not

execute. For example, if you wire a TRUE constant to a Case structure and
place a subVIin the FALSE case of the Case structure, LabVIEW loads the
subVI along with the calling VI. LabVIEW 8.x removes any code that does

36 ni.com



not execute. Therefore, if you load a VI in LabVIEW 8.x that was saved in
an earlier version of LabVIEW with a constant wired to a Case structure,
LabVIEW changes the constant to a hidden control to maintain the
behavior from the earlier version of LabVIEW.

Delaying Operating System Messages

In LabVIEW 7.x, LabVIEW processes operating system messages while
running callback VIs for handling .NET and ActiveX events. In
LabVIEW 8.x, LabVIEW delays the processing of operating system
messages until the callback VI stops execution or until you load a modal
dialog box. This delay allows callback VIs to execute without interruption
and prevents LabVIEW from firing an event within another event, which
can result in a deadlock state.

You cannot make synchronous calls to non-modal dialog boxes from a
callback VI. You must asynchronously call a non-modal dialog box from a
callback VI by invoking a Run VI method on the dialog and wiring a
FALSE Boolean constant to the Wait Until Done input of the method.

In LabVIEW 7.x, LabVIEW processes operating system messages while
running DLL or shared library functions. In LabVIEW 8.x, LabVIEW
delays the processing of operating system messages until the end of calls to
DLL functions or until you load a modal dialog box from the DLL. This
delay allows DLL functions to execute without interruption and prevents
LabVIEW from calling the same DLL while a DLL function is running,
which can result in a deadlock state.

If you use this default behavior, you cannot make synchronous calls to
non-modal dialog boxes while a DLL runs. You must call a non-modal
dialog box asynchronously from a DLL by invoking a Run VI method on
the dialog and wiring a FALSE Boolean constant to the Wait Until Done
input of the method.

You can choose whether to delay operating system messages in DLLs that
you build. Right-click the DLL in the Project Explorer window, select
Properties from the shortcut menu, select Advanced from the Category
list, and remove the checkmark from the Delay operating system
messages in shared library checkbox to process operating system
messages while DLL functions run.

Resource Manager (Mac 0S)

LabVIEW 7.x and earlier provide undocumented capabilities with which
you can read and write Macintosh resource files. In LabVIEW 8.x, these
methods do not exist. Utilities that make use of these undocumented
capabilities do not work, and you therefore cannot read or write Macintosh
resource files from VIs.

© National Instruments Corporation 37 LabVIEW Upgrade Notes



One- and Two-Button Dialog Boxes

In LabVIEW 7.x and earlier, you cannot abort programmatically a VI
displaying a one-button dialog box or two-button dialog box. In
LabVIEW 8.x, you can abort programmatically a VI displaying these
dialog boxes by using the Abort VI method.

Property and Invoke Nodes

If you create an implicitly linked Property Node or Invoke Node from a
cursor legend in LabVIEW 7.x, LabVIEW deletes the node when you open
the VI in LabVIEW 8.x.

Updating Shared Libraries

If you build a shared library (DLL) in LabVIEW 7.x or earlier that links to
labview. lib, link the shared library to labviewv.1lib instead in
LabVIEW 8.x. Refer to the LabVIEW Help for more information about
linking shared libraries to labviewv.lib.

Margin Values for Printing

In LabVIEW 7.x and earlier, the Margins option on the Printing page of
the Options dialog box uses centimeters for margin values. In
LabVIEW 8.x, the Margins option uses millimeters for margin values.

Upgrading from LabVIEW 6.x

LabVIEW Upgrade Notes

You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.5 from LabVIEW 6.x. Refer to the Upgrading from
LabVIEW 7.x, Upgrading from LabVIEW 8.0, and Upgrading from
LabVIEW 8.2 sections of this document for information about other
upgrade issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW
between versions 6.x and 8.5 at ni . com/manuals for more information
about the new features and changes in each version.

Changes to the Waveform Data Type

In LabVIEW 7.0, the waveform data type uses the time stamp data type for
the t0 component rather than a double-precision, floating-point number. If
you save data in the waveform data type to a file without including
information about the data type in LabVIEW 6.x, you might encounter an
error if you try to retrieve that data in LabVIEW 7.x and later.

In the LabVIEW 7.x and later, the Read Waveform from File VI converts
the old waveform data type format in a file to the new waveform data type

38 ni.com


http://www.ni.com/manuals

format. This VI displays a dialog box that prompts you to accept the
conversion. In the LabVIEW Run-Time Engine, the Read Waveform from
File VI cannot perform this conversion and returns an error instead. Refer
to the National Instruments Web site at ni . com/info and enter the info
code exd9zq for more information about migrating waveform data from
LabVIEW 6.x to LabVIEW 7.x and later.

Serial Compatibility Vis

In LabVIEW 7.x and later, the Serial Compatibility VIs do not appear on
the Functions palette. Use the VISA VIs and functions to build VIs that
communicate with serial devices.

In LabVIEW 7.x and later, LabVIEW does not use the serpdrv driver to
communicate with the serial driver of the operating system. LabVIEW
includes compatible VIs based on VISA. For new applications, use the
VISA and Serial VIs and functions to control serial devices. Any VIs built
in previous versions of LabVIEW that include Serial VIs continue to work
in LabVIEW 7.1 and later.

If you reconfigured the mapping of port numbers to ports, you must specify
a mapping to those ports. Use the set serial alias ports VI in the labview\
vi.lib\Instr\_sersup.1l1lb to specify the serial port mappings. Wire
a string array to the VISA Aliases input of the VI and enter the port names
you use in the input array. Each element in the array should correspond to
a port. For example, if you configured port O to map to the VISA alias
MySerialPort, enter MySerialPort as the first element of the VISA
Aliases input array. You must call the set serial alias ports VI before you
call the VISA Configure Serial Port VI.

Refer to the labview\examples\instr\smplserl.11lb for examples
of using the VISA VIs and functions to control serial instruments.

Default Data in Loops

In LabVIEW 6.0 and earlier, For Loops produce undefined data if the loop
does not execute. In LabVIEW 6.1 and later, For Loops produce default
data if you wire 0 to the count terminal of the For Loop or if you wire an
empty array to the For Loop as an input with auto-indexing enabled. The
loop does not execute, and any output tunnel with auto-indexing disabled
contains the default value for the tunnel data type.

Remote Front Panel License

The LabVIEW Full Development System and the Application Builder
include a remote front panel license that allows one client to view and
control a front panel remotely. The LabVIEW Professional Development

© National Instruments Corporation 39 LabVIEW Upgrade Notes


http://www.ni.com/info

LabVIEW Upgrade Notes

System includes a remote front panel license that allows five clients to view
and control a front panel remotely.

You can upgrade the remote front panel license to support more clients.

Multiple Thread Allocation

LabVIEW 7.1 and later allocate more threads for executing VIs than in
versions earlier than LabVIEW 7.1. Because of this change, you might
encounter errors with multiple threads if you incorrectly mark Call Library
Function Nodes as reentrant when the DLL you call is not actually
reentrant. Refer to the LabVIEW Help for more information about the Call
Library Function Node and reentrancy.

To change how LabVIEW allocates threads, use the threadconfig VI in the
labview\vi.lib\Utility\sysinfo.1llb. You also can disable
reentrancy for VIs by selecting File»VI Properties, selecting Execution
from the Category pull-down menu, and removing the checkmark from the
Reentrant execution checkbox.

Refer to the LabVIEW Help for more information about thread allocation.

Instrument Drivers

The LabVIEW package in LabVIEW 7.x and later does not include the
LabVIEW Instrument Driver Library CD, which contains instrument
drivers. Download instrument drivers from the National Instruments
Instrument Driver Network at ni . com/idnet. The National Instruments
Device Drivers CD includes NI-DAQ, NI-VISA, and other National
Instruments drivers.

Units and Conversion Factors

In LabVIEW 7.x and later, you do not need to use the Convert Unit function
to remove the extra unit after using the Compound Arithmetic function.

The unit conversion factors in LabVIEW 7.1 and later more closely match
the guidelines published by the National Institute for Standards and
Technology (NIST) in the Guide for the Use of the International System of
Units (SI). Also, the calorie unit now is calorie (thermal), and
horse power NOw is horsepower (electric). The abbreviations for
these units did not change. The following table details the changes in unit
conversion factors between LabVIEW 6.1 and 7.x and later.

40 ni.com



Unit 6.1 Definition 7.xand Later Definition
astronomical unit (AU) 149,498,845,000 m 149,597,900,000 m
British Thermal Unit (mean) 1055.79 ] 1055.87J
electron volt (eV) 1.602e-19] 1.60217642e-19J
foot-candle 10.764 1x 10.7639 Ix
horse power versus horse power 7457 W 746 W.
(electric) The new conversion is exact.
imperial gallon 4.54596 1 4.54609 1
light year 9.4605 Pm 9.46073 Pm
pound force 4.448 N 4.448222 N
rod 16.5 ft 5.029210 m
slug 32.174 1b 14.59390 kg
unified atomic mass (u) 1.66057e-27 kg 1.66053873e-27 kg

Defer Panel Updates Property

InLabVIEW 6.1 and earlier, LabVIEW waits until the Defer Panel Updates
property is FALSE to redraw any front panel objects with pending changes.
In LabVIEW 7.0 and later, when you set this property to TRUE, LabVIEW
redraws any front panel objects with pending changes and then defers all

new requests for front panel updates. In some cases, this change can cause
LabVIEW to redraw the changed elements of the front panel an extra time.

Data Ranges for Numeric Controls

In LabVIEW 6.1 and earlier, some numeric controls have a default
minimum value of 0.00, maximum value of 0. 00, increment value of
0.00, and out of range action of Ignore. In LabVIEW 7.x and later, these
numeric controls use the default data range values for the data type.

Coercion Dots and Type Definitions

In LabVIEW 6.1 and later, wires include information about type
definitions, so you might notice more coercion dots on block diagrams. If
you wire a type definition to a VI or function terminal that is not a type
definition terminal, a coercion dot appears. A coercion dot also appears if
you wire an output terminal that is a type definition to an indicator that is
not a type definition. These coercion dots indicate where you are not using
type definitions consistently in the VIs. In this case, coercion dots do not
affect run-time performance.

© National Instruments Corporation 41 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

Refer to the LabVIEW Help for information about using the Flatten To
String function to flatten type definitions.

File Dialog Box Button Label

In LabVIEW 6.1 and earlier, the file dialog box that the File Dialog
function displays has a button label of Save if the user can enter a new
filename. Otherwise, the button label is Open. In LabVIEW 8.x, the button
label on the file dialog box that the File Dialog Express VI displays is OK
in all cases unless you change it. Use the button label input of the File
Dialog Express VI to change the label of the button. If you use the File
Dialog Express VIin an existing VI, consider reviewing the behavior of the
VI to make sure the default label of OK is appropriate to the functionality
of the VL.

Control Online Help Function

The Path to the help file input of the Control Online Help function now is
required. You can wire a compiled help filename (. chmor . hlp) or the full
path to a compiled help file to the input. If you wire only a compiled help
filename, LabVIEW searches the 1abview\help directory for that file.

Displaying the Front Panel When Loaded

In LabVIEW 7.x and later, if you configure a VI to display the front panel
when LabVIEW loads the VI and you load the VI using the VI Server,
LabVIEW does not display the front panel. You must use the Front
Panel:Open method to display the front panel programmatically.

Open VI Reference Function

In LabVIEW 6.1 and earlier, if you do not wire a value to the options
parameter of the Open VI Reference function, LabVIEW instantiates a VI
from a template if the template is not already in memory. If the template is
in memory, LabVIEW opens a reference to the template. In LabVIEW 7.0
and 7.1, if you use the Open VI Reference function to create a reference to
a template that is already in memory, the function returns an error unless
you specify 0x02 in the options parameter. In LabVIEW 8.0 and later, if
you use the Open VI Reference function to create a reference to a template,
LabVIEW instantiates a VI from the template even if that template is
already in memory.

Exponential Representation

In LabVIEW 6.0 and earlier, the ~ operator represents exponentiation in the
Formula Node. In LabVIEW 6.1 and later, the operator for exponentiation
is **—for example, x* *y. The ~ operator represents the bitwise exclusive
or (XOR) operation.

42 ni.com



IVI Configuration Store File

The IVI Configuration Store file format now requires that all names be
case-sensitive. If you use logical names, driver session names, or virtual
names in your application, make sure that the name you use matches the
name defined in the IVI Configuration Store file exactly, without any
variations in the case of the characters in the name.

Technical Support Form

In LabVIEW 7.x and later, the LabVIEW installation program does not
install techsup.11b. Refer to the National Instruments Web site at
ni.com/support to solve installation, configuration, and application
problems and questions.

Upgrading from LabVIEW 5.x or Earlier Versions

Refer to the National Instruments Web site at ni . com/info and enter the
info code ext8h9 for information about upgrading to LabVIEW 8.5 from
LabVIEW 5.x or earlier.

LabVIEW 8.5 Features and Changes

Refer to the LabVIEW Help for more information about LabVIEW 8.5
features, including programming concepts, step-by-step instructions, and
reference information. Access the LabVIEW Help by selecting Help»
Search the LabVIEW Help.

Refer to the readme . html in the 1abview directory for known issues, a
partial list of bugs fixed, additional compatibility issues, and information
about late addition features in LabVIEW 8.5.

Installing LabVIEW

LabVIEW 8.5 offers the following installation options on Windows.

e DVD—Includes LabVIEW, the device drivers, and LabVIEW
SignalExpress.

e CD—Includes LabVIEW only. If you install LabVIEW using the CD,
you install the device drivers and LabVIEW SignalExpress using the
National Instruments Device Drivers CD.

The Measurement & Automation Explorer (MAX) no longer appears in the
tree during installation if you install using the installation CD. The
components of MAX that LabVIEW requires are installed automatically.
You can install MAX from the National Instruments Device Drivers CD.

© National Instruments Corporation 43 LabVIEW Upgrade Notes


http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp04
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ext8h9

LabVIEW Documentation

New Example Vis

LabVIEW 8.5 includes the following documentation enhancements:

* The readme.html includes a partial list of user-reported bugs fixed in
the current version of LabVIEW. Refer to the Bug Fixes section of the
readme.html in the labview directory to review the list of bugs.

*  Reference topics in the LabVIEW Help include LabVIEW
module-specific information if the module is installed and if any
module-specific information exists for the VI, function, and so on
exists.

Refer to the New Examples for LabVIEW 8.x folder on the Browse tab
of the NI Example Finder to view descriptions for and launch example VIs
added to LabVIEW 8.x.

Block Diagram Enhancements

LabVIEW Upgrade Notes

LabVIEW 8.5 includes the following enhancements to the block diagram
and related functionality.

Creating Shared Reentrant Vls

When you configure a reentrant VI in LabVIEW 8.2.x and earlier,
LabVIEW preallocates a clone of the reentrant VI in memory for each call
to the reentrant VI. In LabVIEW 8.5, you can configure a reentrant VI to
share the clone VI among callers without preallocating a clone VI in
memory for each call to the reentrant VI. Sharing clone VIs reduces
memory usage because LabVIEW does not preallocate a clone for each call
to the reentrant VI.

To configure a VI to share the clone VI among callers, select File»VI
Properties and select Execution from the Category pull-down menu to
display the Execution Properties page of the VI Properties dialog box.
Place a checkmark in the Reentrant execution checkbox and select the
Share clones between instances option to share the clone Vls.

However, sharing clone VIs can reduce VI execution speed. Do not select
the Share clones between instances option if you want to preserve state
information across calls to a clone VI, such as uninitialized shift registers.
To preserve state information across calls to a clone VI, select the
Preallocate clone for each instance option on the Execution Properties

page.

44 ni.com



Conditional and Diagram Disable Structure
Enhancements

When LabVIEW loads a VI with user-defined objects, such as subVIs and
type definitions, in the disabled subdiagram of a Diagram Disable structure
or in the inactive subdiagrams of a Conditional Disable structure,
LabVIEW does not load these objects into memory. However, when you
display the block diagram of the VI, if LabVIEW cannot find the objects,
the missing objects appear with a question mark icon. The VI does not
break because LabVIEW does not include the code when compiling and
executing the VI.

Front Panel Enhancements

LabVIEW 8.5 includes the following enhancements to the front panel and
related functionality.

Digital Waveform Graph Enhancements

The default view for the plot legend of the digital waveform graph is the
tree view, located to the left of the plot area of the graph. The tree view
displays both digital lines and buses by default. You can expand and
contract digital buses in the tree view of the plot legend by clicking the
expand/contract symbol to the left of the digital bus. You can use the
standard view of the plot legend to achieve the appearance of the plot
legend in LabVIEW 8.2 and earlier.

By default, the digital waveform graph displays both digital lines and buses
in the plot area. Customize the plot area of the digital waveform graph to
display only the data you want to view.

Export Simplified Image Enhancements

The Export Simplified Image on the shortcut menu of graphs, charts,
tables, picture controls, digital data, and digital waveform controls moved
from the Data Operations shortcut menu to the top-level shortcut menu.

You also can right-click a graph, chart, table, picture control, digital data,
or digital waveform control or indicator contained within an XControl and
select Export Simplified Image from the shortcut menu to export an image
to the clipboard or to save an image to disk.

Front panel images exported using the Export Simplified Image menu
item no longer export with a border enclosing the image.

© National Instruments Corporation 45 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

Plot Legend Enhancements

Customize how a plot appears in the plot area of a graph or chart by clicking
the glyph that corresponds to that plot in the plot legend and select from the
shortcut menu options.

You can add a vertical or horizontal scroll bar to the plot legend of graphs
and charts. Use a scroll bar to view plots in a plot legend without exposing
all the plots at any one time.

To add a scroll bar to a plot legend, right-click the plot legend and select
Visible Items»Horizontal Scrollbar or Visible Items» Vertical Scrollbar
from the shortcut menu.

Refer to the Customizing Graphs and Charts topic in the Fundamentals»
Graphs and Charts»Concepts book on the Contents tab in the LabVIEW
Help for more information about plot legends and plot legend scroll bars.

Using a Mixed Checkhox

Use a mixed checkbox, located on the System palette, to display a TRUE,
FALSE, or MIXED value. For example, use a mixed checkbox if you want
to display a set of Boolean values in a single indicator, where that set of
Boolean values are either all TRUE, all FALSE, or a combination of
TRUE and FALSE, called MIXED. Use the mixed checkbox control to
simultaneously change a set of Boolean values to either a TRUE or FALSE
value.

Although the mixed checkbox is an enumerated type control, you can
configure the control similarly to a Boolean control.

To disable the ability to set the MIXED value of a mixed checkbox
interactively, right-click the control and select Allow Mixed from the
shortcut menu to remove the checkmark next to the menu item. When you
disable Allow Mixed, LabVIEW can assign the value of the mixed
checkbox as MIXED, but you cannot operate to MIXED at run time by
clicking on it.

Refer to the Customizing Graphs and Charts topic in the Fundamentals»
Graphs and Charts book on the Contents tab in the LabVIEW Help for
more information about the digital waveform graph.

Miscellaneous Front Panel Enhancements

You can configure a front panel control to scale automatically while the
pane resizes. Right-click a splitter bar and select Pane Sizing»Scale
Objects While Resizing from the shortcut menu.

46 ni.com



Environment Enhancements

LabVIEW 8.5 introduces the following enhancements to the LabVIEW
environment.

Automatic Saving for Recovery Enhancements

In the event of an irregular shutdown or system failure, LabVIEW 8.5 now
backs up modified project (.lvproj), project library (.1vlib),
XControl (.xctl), and LabVIEW class (.1lvclass) files open at the
time of the shutdown or failure to a temporary location. These file types
appear with any recovered VI (.vi), VItemplate (.vit), control
(.ctl), and control template (. ctt) files in the Select Files to Recover
window the next time you launch LabVIEW. To enable the Compare
Backup with Original button in the Select Files to Recover window for
project, project library, XControl, and LabVIEW class files, you manually
must configure text comparison for file recovery.

Saving for Multiple Previous Versions of LabVIEW

You can save Vs, projects, and project libraries for a previous version of
LabVIEW to make upgrading LabVIEW convenient and to help you
maintain files in more than one version of LabVIEW when necessary.
Select File»Save for Previous Version to open the Save for Previous
Version dialog box. Choose 8.5, 8.2, or 8.0 from the LabVIEW Version
pull-down menu to save for a previous version of LabVIEW.

Dialog Box Enhancements
LabVIEW 8.5 includes the following dialog box enhancements.

Add Targets and Devices Dialog Box Enhancements

If you add a target to a LabVIEW project that conflicts with another
existing target, the Add Targets and Devices dialog box displays the
Options column next to the Targets and Devices list. Click the down
arrow next to the conflict resolution in the Options column and select from
the available options to resolve the conflict. You cannot add a target until
you resolve all conflicts in the Options column for the selected target.

Call Library Function Dialog Box Enhancements

Right-click a Call Library Function Node on the block diagram and select
Configure from the shortcut menu to display the Call Library Function
dialog box. The Error Checking page provides several options for
integrated error checking with the Call Library Function Node.

*  The Maximum and Default controls on the Error Checking page
allow LabVIEW to recover from unhandled exceptions that occur in

© National Instruments Corporation 47 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

the configuration of the Call Library Function Node or during a call to
a shared library or DLL.

The Disabled control on the Error Checking page disables error
checking but improves the execution speed of the Call Library
Function Node. However, certain errors can cause an irregular
shutdown of LabVIEW. Before disabling error checking, be sure that
the function the Call Library Function Node references does not raise
any unhandled exceptions.

The Call Library Function dialog box also includes the following
miscellaneous enhancements:

On the Parameters page, the Minimum size control displays <None>
by default. The Minimum size control is visible when you select
String from the Type pull-down menu and then select C String
Pointer from the String format pull-down menu or when you select
Array from the Type pull-down menu and then select Array Data
Pointer from the Array format pull-down menu.

On the Function page, the Reentrant control is renamed Run in any
thread.

Options Dialog Box Enhancements and Changes
LabVIEW 8.5 includes the following Options dialog box enhancements:

On the Block Diagram page, the Use transparent name labels is
enabled by default.

On the Environment page, the Enable Windows Explorer for LLB
files option no longer exists.

On the Front Panel page, the components are in order based on items
that apply to edit time behavior and items that apply to run-time
behavior.

On the Front Panel page, put a checkmark in the Connector pane
terminals default to Required checkbox to set new connector pane
terminals to required.

The New and Changed for LabVIEW 8.x page contains the
following link which opens the LabVIEW Help: View the complete
list of New and Changed for LabVIEW 8.x. The Complete List of
New and Changed for LabVIEW 8.x Options topic includes new and
changed features from LabVIEW 7.1 to 8.5. The New and Changed
for LabVIEW 8.x page now includes only the components added or
changed since the previous release of LabVIEW.

On the Printing page, the default for Maclntel platform is standard
printing. With the exception of Margins, all other printing options for
the MaclIntel no longer exist.

48 ni.com



Properties Dialog Box Enhancements and Changes

LabVIEW 8.5 includes a new Numeric Node Properties dialog box. Use
this dialog box to configure output settings for Numeric functions, such as
the data type of the output value. If the data type of the output value is
fixed-point, you also can configure how the function handles overflow and
quantization conditions.

LabVIEW 8.5 includes the following enhancements to the pages of the
Properties dialog boxes for controls, indicators, and constants:

The Display Format page replaces the Format & Precision page.
The Data Entry and Data Type pages replace the Data Range page.

The Representation section on the Data Type page includes the FXP
(Fixed-point) option.
The Data Type page includes Fixed-Point Configuration options.

The Use Default Limits checkbox replaces the Use Default Range
checkbox on the Data Entry page.

The Size section on the Appearance page includes the height and
width, in pixels, of controls and indicators.

Miscellaneous Dialog Box Enhancements
LabVIEW 8.5 includes the following miscellaneous dialog box changes:

© National Instruments Corporation

On the second page of the Import Web Service wizard, you can input
the web service authentication or proxy server information.

The Input the project library and destination directory page
replaces the Input project library information and destination
directory page of the Import Web Service wizard.

On the General Settings page of the Project Library Properties,
Class Properties, and XControl Properties dialog boxes, you can
click the Enter Password button to unlock a password-protected
library.

The Authentication dialog box includes two options to skip prompts
for passwords you do not know when you attempt to access multiple
password-protected VIs in a single operation. Click the Skip button to
skip a password prompt for a single VI, or place a checkmark in the
Skip remaining password prompts for this operation checkbox and
click the Skip button to skip all password-protected VIs without
cancelling the operation.

On the Window Size page of the VI Properties dialog box, the Set to
Current Window Size button changed to Set to Current Panel Size.

On the Plots page of the Waveform Graph Properties dialog box, the
Do not use waveform names for plot names checkbox is now the
Ignore waveform or dynamic attributes, including plot names

49 LabVIEW Upgrade Notes



checkbox. This checkbox is available only for graphs and charts with
dynamic or waveform data.

Palette Enhancements
LabVIEW 8.5 includes the following palette enhancements:

*  You can make palette categories visible or hidden in all palette view
formats: Category (Standard), Category (Icons and Text), Icons,
Icons and Text, Text, and Tree. On a pinned palette, click the View
button on the palette toolbar and select Change Visible Categories
from the shortcut menu to display all categories on the Controls or
Functions palette.

¢ The Application Control VIs and Functions palette includes the
Memory Control palette.

Miscellaneous Environment Enhancements

Any time you print in LabVIEW, the printer you use becomes the default
printer in LabVIEW. LabVIEW does not recognize changes to the system
default printer until you restart LabVIEW.

LabVIEW Project Enhancements

LabVIEW 8.5 includes the following enhancements to the LabVIEW
project and related functionality.

Shared Variable and NI-PSP Enhancements

LabVIEW 8.5 includes the following shared variable and NI-PSP
enhancements.

Absolute and Target-Relative Shared Variable Nodes

You can set a Shared Variable node as absolute or target-relative depending
on how you want the node to connect to the variable. When you create a
shared variable from a target in a LabVIEW project, any Shared Variable
nodes you create from the shared variable are absolute by default.

%; Note You can create, configure, and host shared variables on Windows systems only. You
can use the DataSocket VIs and functions to read or write shared variables from other
platforms. If you have a VI with a Shared Variable node that was configured on a Windows
system, you also can move that VI to another platform.

LabVIEW Upgrade Notes

An absolute Shared Variable node connects to the shared variable on the
target on which you created the variable. A target-relative Shared Variable
node connects to the shared variable on the target on which you run the VI
that contains the node. If you move a VI that contains a target-relative

50 ni.com



Shared Variable node to a new target, you also must move the shared
variable to the new target. Use target-relative Shared Variable nodes when
you expect to move VIs and variables to other targets.

To change an absolute Shared Variable node to target-relative, right-click
the Shared Variable node on the block diagram and select Change to
Target Relative from the shortcut menu. To change a target-relative
Shared Variable node to absolute, right-click the Shared Variable node and
select Change to Absolute from the shortcut menu.

TCP Implementation of NI-PSP (Windows, LabVIEW
Real-Time)

You must open TCP ports in addition to UDP ports to configure firewalls
and Network Address Translating (NAT) routers to transmit
network-published shared variables. Starting at TCP port 59110, open one
TCP port for each application you run. By default, the NI-PSP protocol
begins looking for available TCP ports at port 59110 and increments
upward until it finds an available port for each running application. You
manually can configure the range of TCP ports the NI-PSP protocol uses
by creating and editing a LogosXT. ini file. For LabVIEW Real-Time
targets, you can configure the range of TCP ports in the ni-rt.ini
configuration file.

Resolving Project Conflicts

The LabVIEW project contains conflicts when two or more items with the
same qualified name from different paths exist in the project. LabVIEW
automatically tracks the hierarchy of every item you include in the project
by scanning the VI hierarchy. A yellow warning triangle appears on any
conflicting items. The Project Explorer window provides several options
for resolving conflicts.

e Click the Resolve Conflicts button in the Project Explorer window
to display the Resolve Project Conflicts dialog box. Use this dialog
box to resolve conflicts by renaming or redirecting the conflicting
items to call dependent items from the correct path. If the project does
not contain any conflicts, LabVIEW disables the Resolve Conflicts
button.

*  From the Project Explorer window, select Project»>Show Item Paths
to display the Paths column in the Project Explorer window and view
the file paths that correspond to the project items. You also can
right-click the project root and select View»Full Paths from the
shortcut menu to display the Paths column.

*  The Project Explorer window includes two pages. The Items page
displays the contents of the project. The Files page displays the project
items that have a corresponding file on disk. You can organize

© National Instruments Corporation 51 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

filenames and folders on the Files page and perform disk operations
such as rename, reorganize, and remove. For example, if you rename a
file on the Files page, LabVIEW renames that file on disk. You can
switch from one page to the other by right-clicking a folder or item
under a target and selecting Show in Items View or Show in Files
View from the shortcut menu. The Show in Items View and Show in
Files View shortcut menu items only appear if the item exists in the
other view. For example, project items that you have not saved do not
have a corresponding file on disk so LabVIEW cannot show the item
in the file view.

*  When you open a VI from a project, LabVIEW adds all members of
the VI hierarchy that are not already in the project to Dependencies.
LabVIEW organizes Dependencies in three folders: vi.1lib,
user.lib, and Items in Memory. When you open a VI that is not
currently in the project, LabVIEW adds the VIto Items in Memory.
These items remain in the project as long as the VI they reference is in
memory. Dependencies updates every time you add, remove, or save
an item in the project.

Using Folders in the LabVIEW Project

You can add two types of folders to a LabVIEW project, virtual folders and
auto-populating folders. Virtual folders organize project items in the
Project Explorer window and have no corresponding value on disk. On
the Items page, right-click a target and select Add»Folder (Snapshot)
from the shortcut menu to add a virtual folder to the project.
Auto-populating folders automatically populate and update to reflect the
contents of a folder on disk. On the Items page, right-click a target or folder
and select Add»Folder (Auto-populating) from the shortcut menu to add
an auto-populating folder to the project. Contents of auto-populating
folders do not always match disk contents exactly in the case of project
libraries. The project displays project library (. 1v1ib) contents by library
hierarchy and not by disk organization. For example, if a VI is a member
of the project library, the VI appears in the project under the library file.
The VI does not appear under the auto-populating folder.

New Project Dialog Boxes
LabVIEW 8.5 includes the following new LabVIEW project dialog boxes:

*  The Resolve Load Conflict dialog box appears when LabVIEW loads
a file whose dependencies conflict with other items in the project and
LabVIEW cannot determine which dependent item to load. Use this
dialog box to choose which dependent file to load. You must resolve
any conflicts before the file loads.

e  The Hierarchy Conflicts with Project dialog box appears if you
attempt to open a file that conflicts with items already in the LabVIEW

52 ni.com



© National Instruments Corporation

project. LabVIEW cannot open the file because items in the VI
hierarchy have the same qualified name as items in the project or
Dependencies. Use this dialog box to resolve conflicting items
between two VI hierarchies in the project.

The Add to Project and Update Dependencies dialog box appears
when you open the block diagram of a VI in the LabVIEW project and
add a new subVI to the block diagram from disk that has the same
qualified name as an item already in the project. Use this dialog box to
add a new subVI to the project and update caller items to refer to the
correct path. You can add an item to the project even if the item has
conflicts with other items in the project. You must resolve the conflicts
before opening the item.

The Project Dependency Conflicts Detected dialog box appears
when you attempt to add a file to the project that may cause conflicts
within the project. Use this dialog box to view new dependencies with
conflicts that LabVIEW adds to the project. LabVIEW adds all
members of the VI hierarchy that are not already in the project to
Dependencies. You must resolve the conflicts before opening the item.

The Undo File Rename dialog box appears when you attempt to
rename a file on disk that exists in an auto-populating folder in the
LabVIEW project. LabVIEW detects the rename on disk and cannot
rename the item and redirect dependent items. You must revert the
rename on disk or accept the file as a new file in the project and resolve
conflicts that might occur. This dialog appears only if the file you
attempt to rename is already open in LabVIEW or if the file has callers
in the project. Use this dialog box to revert the rename.

The Find Callers dialog box appears when you right-click an item in
the Project Explorer window and select Find»Callers from the
shortcut menu. Use this dialog box to find all callers of a specific item
in the project. If the item only has one caller, LabVIEW highlights the
caller in the Project Explorer window.

The Find SubVIs dialog box appears when you right-click an item in
the Project Explorer window and select Find»SubVIs from the
shortcut menu. Use this dialog box to find all subVIs of a specific item
in the project. If the item only has one subVI, LabVIEW highlights the
subVTI in the Project Explorer window.

The Find Items with No Callers dialog box appears when you
right-click the project root in the Project Explorer window and select
Find Items with No Callers from the shortcut menu. Use this dialog
box to find all top-level project items with no callers.

The Find Conflicts dialog box appears when you right-click a
conflicting item in the Project Explorer window and select Find»
Conflicts from the shortcut menu. Use this dialog box to find all items
in the project that conflict with the item you select. If the item only has

53 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

one conflict, LabVIEW highlights the conflict in the Project Explorer
window.

Miscellaneous Project Enhancements

LabVIEW 8.5 includes the following miscellaneous project enhancements:

.1vlps files store project settings that are specific to the local
machine. You should not check . 1vlps files into source control
because . 1vlps files contain settings specific to the computer you
use. For example, . 1v1ps files contain the local source code control
configuration. LabVIEW saves the . 1v1ps file when you save a
project, and correctly renames the file when you rename a project. You
can remove or delete . 1vlps files without affecting the performance
or behavior of a project because . 1v1lps files only contain project
settings specific to the local machine. If you build an application,
LabVIEW does not copy the .1vlps file into the built application.

Search for items in a LabVIEW project using the Find Project Items
dialog box. Use this dialog box to find targets, VIs, subVls, libraries,
classes and so on. Select Edit»Find Project Items from the Project
Explorer window to access the Find Project Items dialog box.
Right-click a folder, project library, LabVIEW class, or XControl in a
LabVIEW project and select Find Project Items from the shortcut
menu to search for items within a specific project item. You also can
access the Find Project Items dialog box from a stand-alone project
library window or class window.

Use the Project Explorer window to add a hyperlink as an item in the
LabVIEW project. Right-click a target, or a folder or library under the
target, and select Add»Hyperlink from the shortcut menu to display
the Hyperlink Properties dialog box. You can use hyperlinks to link
to files or directories that are not on the local computer but are
accessible on the Internet or your local network. The hyperlinks can
correspond to network, local, HTTP, FTP, mailto addresses and so on.

Rename a LabVIEW project library, XControl, or LabVIEW class by
right-clicking the project library, XControl, or LabVIEW class and
selecting Rename from the shortcut menu to enter the new name.

The Save All button on the toolbar of the Project Explorer window
changed to the Save All (this Project) button. Use the Save All (this
Project) button to save all files in the current open project.

Select File»Save As on a previously saved LabVIEW project to
display the new Save As dialog box.

54 ni.com



New and Changed VI, Function, and Node Enhancements

LabVIEW 8.5 includes the following new and changed VIs and functions.
Refer to the VI and Function Reference book on the Contents tab of the
LabVIEW Help for more information about VIs, functions, and nodes.

New Vis and Functions
LabVIEW 8.5 includes the following new VIs and functions.

Cluster, Class, & Variant VI and Functions
The Cluster, Class, & Variant palette includes the following new VI and

constant.
e Get LV Class Default Value
* LV Object

Geometries Vis

The Geometries palette includes the Create Text VI in the LabVIEW Full
and Professional Development Systems.

Mathematics Vis

The Mathematics palette includes the following new VIs in the LabVIEW
Full and Professional Development Systems:

*  Constrained Nonlinear Curve Fit
*  Create Polynomial From PFE

*  Generalized SVD Decomposition
*  Nonlinear curve fit intervals

*  Uneven Numeric Integration

e Vector Norm

The new Basic Linear Algebra Subroutines palette includes the
following new VIs in the Full and Professional Development Systems:

e amax - Max Element Index

* amin - Min Element Index

* asum - Absolute Values Sum

* axpy - Scalar-Vector Product

e copy - Vector Copy

¢ ddot - Dot Product (DBL)

e dger - General Matrix Rank-1 Update (DBL)
e drotm - Fast Givens Rotation (DBL)

© National Instruments Corporation 55 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

drotmg - Fast Givens Rotation Parameters (DBL)
dsymv - Symmetric Matrix-Vector Product (DBL)
dsyr - Symmetric Matrix Rank-1 Update (DBL)
dsyr2 - Symmetric Matrix Rank-2 Update (DBL)
gemm - General Matrix-Matrix Product

gemv - General Matrix-Vector Product

nrm?2 - Vector-2 Norm

rot - Givens Rotation

rotg - Givens Rotation Parameters

swap - Vector Swap

symm - Symmetric Matrix-Matrix Product

syr2k - Symmetric Matrix Rank-2k Update

syrk - Symmetric Matrix Rank-k Update

trmm - Triangle Matrix-Matrix Product

trmv - Triangle Matrix-Vector Product

trsm - Solve Linear Eqs (Triangle, multiple)

trsv - Solve Linear Eqs (Triangle, single)

zdotc - Dot Product with Conjugation (CDB)
zdotu - Dot Product (CDB)

zgerc - General Matrix Rank-1 Update with Conjugation (CDB)
zgeru - General Matrix Rank-1 Update (CDB)
zhemm - Hermitian Matrix-Matrix Product (CDB)
zhemv - Hermitian Matrix-Vector Product (CDB)
zher - Hermitian Matrix Rank-1 Update (CDB)
zher2 - Hermitian Matrix Rank-2 Update (CDB)
zher2k - Hermitian Matrix Rank-2k Update (CDB)
zherk - Hermitian Matrix Rank-k Update (CDB)

VISA 64-bit Primitive Functions

The Register Access palette includes the following new functions:

VISA In 64

VISA Memory Allocation Ex
VISA Move In 64

VISA Move Out 64

VISA Out 64

56

ni.com



The Low Level Register Access palette includes the following new
functions:

e VISA Peek 64
e VISA Poke 64

Improving Memory Allocation and VI Efficiency with the In
Place Element Structure

Many common operations, such as operating on an element of an array and
placing the resulting value back into the same array index, require
LabVIEW to copy data values and maintain those values in memory, which
increases memory usage.

Use the In Place Element structure to perform common LabVIEW
operations in the same memory location and without LabVIEW making
multiple copies of the data values in memory. The In Place Element
structure includes a set of border nodes, or nodes that are attached to the
border of the In Place Element structure, to perform operations on data
within the same memory location. Right-click the border of the In Place
Element structure and select the appropriate border node for the data.

You can use the In Place Element structure to index an array, unbundle a
cluster or waveform, operate on variant data, or operate on any data type in
the same memory location.

Refer to the In Place Element Structure topic in the Fundamentals»Loops
and Structures»Concepts book on the Contents tab in the LabVIEW Help
for more information about the In Place Element structure.

Changed Vis, Functions, and Nodes
The following VlIs, functions, and nodes changed in LabVIEW 8.5.

File 1/0 Vis and Functions
The File I/0 palette includes the following changed VIs:

*  Close Config Data—Includes a file path output that returns the path
to the configuration file.

*  Close Data Storage—Includes a file path output that returns
corresponding path to the storage refnum input.

Mathematics Vs
The Mathematics palette includes the following changed VIs:

* Add Polynomials—Both instances include a threshold input that
specifies the level at which the VI removes the trailing elements and a

© National Instruments Corporation 57 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

threshold type input that specifies how the VI removes the trailing
elements.

Add Rational Polynomials—Both instances include a threshold
input that specifies the level at which the VI removes the trailing
elements and a threshold type input that specifies how the VIremoves
the trailing elements.

Back Transform Eigenvectors—The job input is now recommended
rather than required.

Derivative x(t)—Includes a method input that specifies the
differentiation method.

Divide Polynomials—Both instances include a threshold input that
specifies the level at which the VI removes the trailing elements and a
threshold type input that specifies how the VI removes the trailing
elements.

Divide Rational Polynomials—Both instances include a threshold
input that specifies the level at which the VI removes the trailing
elements and a threshold type input that specifies how the VI removes
the trailing elements.

Elliptic Integral of the 1st kind—Is a polymorphic VI with the
following instances: Complete Elliptic Integral K and Incomplete
Elliptic Integral F.

Elliptic Integral of the 2nd kind—Is a polymorphic VI with the
following instances: Complete Elliptic Integral E and Incomplete
Elliptic Integral E.

General Polynomial Fit—This VI now accepts polynomial order
less than or equal to 25. If polynomial order is greater than 25, the VI
sets the coefficients in Polynomial Coefficients to zero whose orders
are greater than 25 and returns a warning.

(Incomplete) Beta Function—Is a polymorphic VI with the
following instances: Beta Function and Incomplete Beta Function.

(Incomplete) Gamma Function—Is a polymorphic VI with the
following instances: Gamma Function and Incomplete Gamma
Function.

Lyapunov Equations—Both instances include an equation type
input that specifies the type of Lyapunov equation.

Multiply Polynomials—Both instances include a threshold input that
specifies the level at which the VI removes the trailing elements and a
threshold type input that specifies how the VI removes the trailing
elements.

Multiply Rational Polynomials—Both instances include a threshold
input that specifies the level at which the VI removes the trailing

58 ni.com



elements and a threshold type input that specifies how the VI removes
the trailing elements.

*  Polynomials Composition—Both instances include a threshold input
that specifies the level at which the VI removes the trailing elements
and a threshold type input that specifies how the VI removes the
trailing elements.

*  Quadrature—Is a polymorphic VI with the following instances: 1D
Quadrature (VI) and 1D Quadrature (Formula).

*  Remove Zero Coefficients—Both instances include a threshold type
input that specifies how the VI removes the trailing elements.

*  RMS—Isapolymorphic VI with the following instances: RMS (DBL)
and RMS (CDB).

*  Subtract Polynomials—Both instances include a threshold input that
specifies the level at which the VI removes the trailing elements and a
threshold type input that specifies how the VI removes the trailing
elements.

e Subtract Rational Polynomials—Both instances include a threshold
input that specifies the level at which the VI removes the trailing
elements and a threshold type input that specifies how the VI removes
the trailing elements.

Pipes Vis
(Linux) The Pipes palette includes the following changed VIs:

*  Close Pipe—The file descriptor input changed from recommended to
required.

*  Open Pipe—The path to named pipe input changed from
recommended to required.

*  Open System Command Pipe—The command line input changed
from recommended to required.

* Read From Pipe—The file descriptor input changed from
recommended to required.

*  Write To Pipe—The file descriptor input and the data input changed
from recommended to required.

Protocol Vis and Functions (Windows and Linux)
The Protocols palette includes the following changed VI and functions:

*  TCP Open Connection—Includes a remote port or service name
input. You can provide a service name and LabVIEW queries the NI
Service Locator for the port number associated with that service name.

© National Instruments Corporation 59 LabVIEW Upgrade Notes



e TCP Create Listener—Includes a service name input that registers
the service name and the provided port number with the NI Service
Locator.

e TCP Listen—includes a service name input that registers the service
name and the provided port number with the NI Service Locator.

*  UDP Open—Includes a service name input that registers the service
name and the provided port number with the NI Service Locator.

e UDP Write—Includes a port or service name input. You can provide
a service name and LabVIEW queries the NI Service Locator for the
port number associated with that service name.

Signal Processing Vis
The Signal Processing palette includes the following changed VIs:

*  Ramp Pattern—Includes a type input that specifies the type of Ramp
Pattern to generate.

¢ Transition Measurements—Both instances include the following
changes:

—  The slew rate output changed to slope.
—  The duration output changed to transition duration.

—  The preshoot output changed to pre-transition. This output
includes an undershoot element that measures the height of the
local minimum preceding a rising (falling) transition as a
percentage of the histogram-based amplitude of the signal. The
pre-transition output also includes an overshoot element that
measures the height of the local maximum preceding a rising
(falling) transition as a percentage of the histogram-based
amplitude of the signal.

—  The overshoot output changed to post-transition. This output
includes an undershoot element that measures the height of the
local minimum following a rising (falling) transition as a
percentage of the histogram-based amplitude of the signal. The
post-transition output also includes an overshoot element that
measures the height of the local maximum following a rising
(falling) transition as a percentage of the histogram-based
amplitude of the signal.

e Unwrap Phase—Includes a phase unit input that specifies the units
for Phase and Unwrapped Phase.

¢ Window Properties—Is a polymorphic VI with the following
instances: Window Properties by Coef and Window Properties by
Name. The Window Properties by Name instance of this polymorphic
VI includes the inputs size, window, and window parameter.

LabVIEW Upgrade Notes 60 ni.com



Waveform Vis and Functions
The Waveform Monitoring palette includes the following changed VI.

On the Basic Level Trigger Detection, the mode input is renamed location
mode.

Cluster, Class & Variant VI and Functions Palette

The Cluster & Variant Functions palette is renamed to Cluster, Class, &
Variant VI and Functions palette. The subpalette Variant Attributes
Functions is renamed Variant Functions. Several objects on each palette
have moved.

The Cluster, Class, & Variant VI and Functions palette includes the
following VI and functions:

*  Array To Cluster

*  Build Cluster Array

* Bundle

* Bundle By Name

e (all Parent Method

e Cluster

e Cluster to Array

e Get LV Class Default Value
* Index & Bundle Cluster Array
* LV Object

*  To More Generic Class

*  To More Specific Class

e Unbundle

*  Unbundle By Name

The Variant Functions subpalette includes the following functions:
*  Delete Variant Attribute

*  Flattened String To Variant

*  Get Variant Attribute

*  Set Variant Attribute

*  To Variant function

e Variant To Data

*  Variant To Flattened String

© National Instruments Corporation 61 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

Adding a Conditional Terminal to a For Loop

You can add a conditional terminal to configure a For Loop to stop early
when a Boolean condition or error occurs. A For Loop with a conditional
terminal executes until a Boolean condition or an error occurs or until all
iterations complete, whichever happens first. To add a conditional terminal
to a For Loop, right-click the loop border and select Conditional Terminal
from the shortcut menu.

Refer to the Fundamentals»Loops and Structures book on the Contents
tab in the LabVIEW Help for more information about For Loops in
LabVIEW.

Using Feedback Nodes to Store Data

Use a Feedback Node anywhere on the block diagram to store data from a
previous VI or loop execution. When you place a Feedback Node on the
block diagram, LabVIEW automatically attaches an initializer terminal
to it.

If you place a Feedback Node in a loop, you can move the initializer
terminal to the left edge of the loop by clicking and dragging the terminal
or by right-clicking the Feedback Node and selecting Move Initializer
One Loop Out. When the initializer terminal is on the left edge of a loop,
you can select Move Initializer One Loop In or Globally Initialize from
the shortcut menu to move it back to the node. If you move the initializer
terminal to the left edge of a loop, the Feedback Node initializes before the
loop with the initializer terminal begins the first iteration of each execution.
If you select Globally Initialize and wire an input value to the initializer
terminal, the Feedback Node initializes on the first call of the VI in an
execution. The initializer terminal remains attached to the node and the
Feedback Node globally initializes by default.

If you choose to save a VI for a previous version of LabVIEW, LabVIEW
replaces Feedback Nodes within loops with shift registers and replaces
Feedback Nodes outside of loops with labels.

Refer to the Fundamentals»Local Variables, Global Variables, and the
Feedback Node and Fundamentals»Loops and Structures books on the
Contents tab in the LabVIEW Help for more information about Feedback
Nodes in LabVIEW.

Miscellaneous VI, Function, and Node Changes

LabVIEW 8.5 includes the following miscellaneous VI, function, and node
changes:

e The Unzip VI unzips the contents of a zip file that is not password
protected to the directory you specify.

62 ni.com



© National Instruments Corporation

The Sound File Write VI includes the following instance: DBL Single.
For monophonic sound data, you can wire a single waveform data type
to the data input of this instance.

(Windows and Linux) The port number input of the Open Application
Reference function changed to port number or service name. You
can provide a service name and LabVIEW queries the NI Service
Locator for the port number associated with that service name.

Performance of VIs on the Probability & Statistics, Windows,
Transforms, and Signal Generation palettes is improved.

The reference input and the reference out output of the Call Library
Function Node changed to path in and path out, respectively.

The Preview Queue Element function icon changed.

You can use NI_UpdateGroupName and NI_UpdateChannelName
properties in the TDMS Set Properties function to rename groups and
channels in . tdms files.

Icons for VIs on the Input Device Control palette are updated.

The Spectral Measurements Express VI accepts the waveform array of
waveforms data types as an input.

The Formula Express VI accepts the numeric scalar, 1D array of
numerics, 2D array of numerics, waveform, and array of waveforms
data types as an input.

(Mac 0S8 and Linux) The Copy and Move functions no longer overwrite
read-only files or folders in the target path, even if you set overwrite
to TRUE.

There are new names and values for certain Math & Scientific
Constants and Express Math & Scientific Constants. The values for
Planck's Constant, Elementary Charge, Gravitational Constant,
Avogadro Constant, and Rydberg Constant are updated to match
values provided by CODATA 2002.

The VISA Wait on Event function and the Wait for RQS VI no longer
lock out other GPIB operations while they are executing.

The Number to Boolean Array function now accepts 64-bit integers
and the fixed-point data type as inputs.

The LabVIEW Class:Create method of the Application class includes a
name parameter you can use to specify the name of the LabVIEW class.

The Mass Compile and MassCompile methods of the Application class
and Application (ActiveX) classes, respectively, include the User
Stopped parameter that indicates whether the user stopped the mass
compile operation.

Because LabVIEW may generate multiple Pane Size events when you
resize a pane, LabVIEW now generates a final event at the end of the

63 LabVIEW Upgrade Notes



resizing operation in which the OldBnds and NewBnds parameters
return the same value. You can use the values to identify in the code
when the sizing operation finishes.

The Request Deallocation function is now located on the Memory
Control palette.

The Close Reference function now accepts the 1D array of refnum data
type as an input.

When using arrays of numbers as inputs for the Formula Express VI,
the length of the output array is now the same length as the shortest
input array.

The Type Cast function accepts 64-bit integers and double-precision
floating point numbers.

New Classes, Properties, Methods, and Events

LabVIEW 8.5 includes new VI Server classes, properties and methods and
events. Refer to the LabVIEW 8.5 Features and Changes»New VI
Server Objects topic on the Contents tab of the LabVIEW Help for a list
of new class, properties, methods, and events.

Application Builder Enhancements

LabVIEW 8.5 includes the following enhancements to the Application
Builder.

LabVIEW Upgrade Notes

In LabVIEW 8.5, the Source Distribution Properties dialog box contains
most of the same pages as the Application and Shared Library
Properties dialog boxes. The Application Properties, Shared Library
Properties, and Source Distribution Properties dialog boxes have many
of the same changes. The changes below apply to all three dialog boxes
unless otherwise noted.

Information Page
LabVIEW 8.5 includes the following changes to the Information page:

The Application destination directory, Shared Library destination
directory, and Distribution destination directory text boxes changed
to Destination directory.

Use the Build specification description text box to specify a
description for the build specification.

(Source Distribution) The Directory and Preserve hierarchy
options on the Destinations page replace the Packaging Option
functionality.

64 ni.com



Source Files

LabVIEW 8.5 includes the following changes to the Source Files page:

*  The Dynamic VIs and Support Files listbox changed to Always
Included.

*  (Source Distribution) Use the Always Excluded listbox to designate
files that should be excluded from the build.

*  The Source Distribution Properties dialog box includes the Source
Files page. You must indicate which files you want to include in a
source distribution. LabVIEW no longer automatically includes all
files in the LabVIEW project.

*  You can right-click and select multiple files in the Project Files tree to
add several files at one time to the other listboxes.

*  The Destination View list includes the following new locations:

—  [CommonAppDataFolder]—TFiles you include in this folder
install to the Application Data folder.

—  [CommonFilesFolder]—Files you include in this folder install
to the Common Files folder.

Destinations Page
LabVIEW 8.5 includes the following changes to the Destinations page:
* Destination is LLB changed to LLB in the Destination type section.

*  Use the Directory and Preserve hierarchy options to indicate that the
build destination is a directory and whether you want to preserve the
directory hierarchy. You can use these options with custom
destinations. Additionally, these options replace the Packaging
Option on the former Distribution Settings page of the Source
Distribution Properties dialog box.

*  Use the Add files to new project library option to add files to a new
project library created during the build process. Designate the project
library name in the Library name textbox.

e  The Source Distribution Properties dialog box includes the
Destinations page.

Source Files Settings Page

LabVIEW 8.5 includes the following changes to the Source Files Settings
page:

*  The Inclusion type section is an indicator and reflects the value you

selected on the Source Files page. To change the value, return to the
Source Files page and move the selected item to a different listbox.

© National Instruments Corporation 65 LabVIEW Upgrade Notes



e The Destination indicator is a pull-down menu. You can select a
different destination directory from the pull-down menu.

e The VI Settings section moved to the VI Properties dialog box. You
can access this dialog box by clicking the Customize VI Properties
button. The options in the VI Properties dialog box correspond with
the options in the VI Properties dialog box that you access from the
File menu. If you make changes to the VI properties in this dialog box,
those changes override any changes you made in the VI Properties
dialog box menu from the File menu.

*  Use the options in the Use default save settings section to remove the
block diagram or front panel of the selected item.

*  Use the No password change, Remove password, and Apply new
password options to configure the password settings for the file
selected in the Project Files tree.

¢ Use the Rename this file in the build option to rename the file
selected in the Project Files tree during the build process. If you
choose to rename a folder in the build, LabVIEW adds a prefix to the
items in the selected folder.

* Ifyouselect a folder in the Project Files tree, you can choose to apply
many of the options on the Source Files Settings page to all items in
the folder.

Icon Page (Windows, Mac 0S)

(Application) Use the Icon Image pull-down menu to display the
resolution and color options for an icon image. The image preview displays
the resolution and color options the image supports, up to 256 x 256 and
32-bit color.

Advanced Page
LabVIEW 8.5 includes the following changes to the Advanced page:

*  The Enable Mathscript support checkbox no longer exists.
LabVIEW automatically detects Mathscript calls to user-defined
functions, or .m files.

*  Several options have changed location on this page to improve ease
of use.

Additional Exclusions Page

LabVIEW 8.5 includes the following changes to the Additional
Exclusions page:

* Disconnect type definitions—Disconnects type definitions from the
build.

LabVIEW Upgrade Notes 66 ni.com



*  Remove unused polymorphic VI instances—Removes all unused
polymorphic VI instances from the build.

*  Remove unused members of project libraries—Removes unused
members of project libraries from the build.

Modify project library file after removing unused

members—Modifies the library file so the library file does not
reference the removed members.

The following table displays the LabVIEW 8.5 options, noted previously,
that you can select to achieve the same exclusions as LabVIEW 8.2.

LabVIEW 8.2 Option

LabVIEW 8.5 Option

Remove as much as possible

Select all three new options.

Remove unreferenced project library
members

Select Remove unused members of project
libraries. You also can select Modify project
library file after removing unused members
so the library file does not reference the
removed members.

Do not disconnect type definitions or remove
unreferenced members

Do not select any option.

Version Information Page (Windows, Mac 0S)

The version information on the Application and Shared Library
Properties dialog box pages now appears on the Version Information
page. The build specification name populates the Description by default.
Users can view this information by right-clicking the built application and
selecting Properties from the shortcut menu.

Run-Time Languages

You can select the supported languages in the Supported Languages
listbox by enabling checkboxes next to each language.

Miscellaneous Application Builder Enhancements

* In the Define VI Prototype dialog box, the C Calling Conventions
radio button is enabled by default.

* Right-click Build Specifications in the Project Explorer window and
select Build All to build all specifications under Build Specifications.

* Ifyou convert a build script from a previous version of LabVIEW to a
build specification, LabVIEW places the items for the build
specification in three folders in the Project Explorer window rather
than creating a hierarchy.

© National Instruments Corporation

67

LabVIEW Upgrade Notes



The Zip File Properties dialog box includes the Zip File Structure
page. Use this page to specify the file structure to use for the zip file
build and, optionally, to rename the base directory to which the files
unzip.

You can include outputs of other build specifications, such as source
distributions, shared libraries, or applications, in a zip file you build
using the Zip File Properties dialog box. On the Source Files page,
select the build specification in the Project Files tree and use the right
arrow button to add it to the Included Items tree.

Outputs of zip or installer build specifications do not appear in the
Project Files tree. To include another zip file or installer in the zip file,
add the zip file or installer you want to include to the LabVIEW project
under the target from which you are building the zip file.

%‘: Note Including outputs of other build specifications in a zip file can slow down preview
generation on the Preview page.

LabVIEW MathScript Enhancements (Windows, Not in Base Package)

LabVIEW 8.5 introduces the following enhancements and changes to
MathScript.

LabVIEW Upgrade Notes

%: Note Select Tools»MathScript Window to display the LabVIEW MathScript
Window.

New MathScript Functions

LabVIEW 8.5 includes the following new MathScript functions. You can
use these functions in the LabVIEW MathScript Window or the
MathScript Node.

advanced class: bessel

approximation class: interpft

audio class: soundsc and wavrecord

basic class: cumtrapz, feval, ipermute, and permute
dsp class: cohere, csd, firpmord, psd, and tfe

geometry class: cylinder, ellipsoid, inpolygon, rectint,
sphere, and voronoi

integration class: dblquad, quad8, quadl, and triplequad
linalgebra class: eigs, funm, gsvd, and 1linsolve
membership class: isscalar

plots class: axes, colormap, datetick, gca, get, ginput,
gtext, image, pareto, rgbplot, set, surfnorm, and view

68 ni.com



e polynomials class: pchip and polyder
e statisticsclass: halton and richtmeyer

. string class: evalc, regexp, regexpi, regexprep,
regexptranslate, strread, and strtrim

. support class: delete, dos, feof, fgetl, fgets, frewind,
fseek, getfileproperty, imread, imwrite, lookfor,
setfileproperty, system, and textread

e vector class: del2 and divergence

e zerofinder class: fsolve and fzero

Enhanced Error Reporting for the MathScript Node

LabVIEW 8.5 includes enhanced error reporting for the MathScript Node.
For example, if you call a user-defined function, or .m file, from a
MathScript Node, LabVIEW returns edit-time errors in the user-defined
function at edit time instead of at run time. If you make changes to the
user-defined function, LabVIEW updates the Error list window as soon as
you save the .m file. However, if you call a function from a MathScript
Node that might change the MathScript search path list or might introduce
new variables at run time, LabVIEW operates with reduced error checking
and slower run-time performance for the MathScript Node.

A warning glyph appears on the MathScript Node frame to indicate the
reduced error checking and slower run-time performance. The following
functions cause the warning glyph to appear: addpath, cd, clear, eval,
evalc, 1load, path, rmpath, and uiload. The cd function and the path
function cause the warning glyph to appear only if you call these functions
with one or more inputs. The warning glyph also appears if you call a
user-defined function that calls any of these functions, if you call a
user-defined script, or if you call a user-defined function that calls a
user-defined script. To remove the warning glyph from the MathScript
Node and improve run-time performance, complete the following steps.

1. Remove these functions from scripts and user-defined functions.

2. Remove calls to user-defined scripts. Instead, copy the contents of the
user-defined script into the MathScript Node or the user-defined
function that calls the script.

3. Do not change the MathScript search path list at run time. Instead, use
the MathScript: Search Paths Options page to configure the default
search path list.

R‘g; Note If a script in a MathScript Node calls a user-defined function, LabVIEW uses the
default search path list to link the function call to the specified .m file. After you configure
the default search path list and save the VI that contains the MathScript Node, you do not
need to reconfigure the MathScript search path list when you open the VI on a different

© National Instruments Corporation 69 LabVIEW Upgrade Notes



computer because LabVIEW looks for the .m file in the directory where the .m file was
located when you last saved the VI. However, you must maintain the same relative path
between the VI and the .m file.

5

Calling User-Defined Functions from LabVIEW
MathScript

When you call a user-defined function from the LabVIEW MathScript
Window, LabVIEW searches the MathScript search path list from top to
bottom for a .m file with the specified name. When you call a user-defined
function from a MathScript Node, LabVIEW looks in the following three
places, in order, for a .m file with the specified name:

*  First, LabVIEW looks to see if a .m file with the specified name is
currently in memory.

¢ Second, LabVIEW looks in the directory where the . m file was located
when you last saved the VI that contains the MathScript Node.
Because LabVIEW looks in the directory where the .m file was last
located, you do not need to reconfigure the MathScript search path list
when you open the VI on a different computer. However, you must
maintain the same relative path between the VI and the .m file.

e Third, LabVIEW searches the MathScript search path list from top to
bottom. If you open the VI on a different computer, the search path list
might change because LabVIEW searches the MathScript search path
list configured on that computer, not the search path list configured
when you last saved the VI.

. Note If a warning glyph appears on the MathScript Node frame, LabVIEW does not look

in memory or in the directory where the .m file was last located. Instead, LabVIEW
searches only the MathScript search path list for a .m file with the specified name.

LabVIEW Upgrade Notes

Configuring the MathScript Search Path

Use the MathScript: Search Paths Options page to configure the default
search path list and to specify the working directory for LabVIEW
MathScript. Display this page from one of the following locations,
depending on the environment for which you want to configure the search
path list:

*  To configure the search path list for the LabVIEW MathScript
Window, display this page from the LabVIEW MathScript
Properties dialog box.

e To configure the search path list for MathScript Nodes in the main
application instance, display this page from the Options dialog box.

*  To configure the search path list for MathScript Nodes in a target on a
LabVIEW project, display this page from the Properties dialog box
for the target.

70 ni.com



Using the LabVIEW MathScript Probe

Use the LabVIEW MathScript probe to view the data in a script in a
MathScript Node as a VI runs. Right-click a MathScript Node and select
Probe from the shortcut menu to use the MathScript probe.

The MathScript probe displays a list of all variables you define in the script
and previews variables you select. The MathScript probe also displays the
output that MathScript generates from the script. Unlike with supplied
probes, you cannot configure the MathScript probe to respond to the data.
For example, you cannot specify that you want to set a conditional
breakpoint.

:f; Note You cannot use execution highlighting, single-stepping, and breakpoints within a
script in a MathScript Node.

Setting Plot Attributes in LabVIEW MathScript

You can get and set plot attributes for the following types of objects in
LabVIEW MathScript plots: line objects, plot area objects, plot window
objects, and text objects.

To create and return a new line object, use the following MathScript
functions: 1ine, loglog, plot, semilogx, or semilogy. To create a new
plot area object or to return an object for the current plot area, use the
following MathScript functions: axes, gca, or subplot. To create a new
plot window object or to return an object for the current plot window, use
the following MathScript functions: c1f£, gc £, or figure. To create and
return a new text object, use the following MathScript functions: text,
title, xlabel, or ylabel.

Dialog Box Enhancements

LabVIEW 8.5 includes the following MathScript dialog box
enhancements.

New MathScript Dialog Box

LabVIEW 8.5 includes the LabVIEW MathScript Properties dialog box.
In the LabVIEW MathScript Window, select FilexLabVIEW
MathScript Properties to display this dialog box. Use this dialog box to
configure settings for the LabVIEW MathScript Window and the
MathScript engine. This dialog box includes the following pages:

*  MathScript: Window Options—Use this page to configure settings,
such as the font style and the display format of numbers, for the
LabVIEW MathScript Window.

© National Instruments Corporation 71 LabVIEW Upgrade Notes



LabVIEW Upgrade Notes

MathScript: Search Paths Options—Use this page to configure the
default search path list and to specify the working directory for
LabVIEW MathScript.

Miscellaneous Dialog Box Enhancements

LabVIEW 8.5 includes the following miscellaneous enhancements to
MathScript dialog boxes:

The MathScript Preferences dialog box no longer exists. Use both
the MathScript: Search Paths Options page and the MathScript:
Window Options page of the LabVIEW MathScript Properties
dialog box instead.

The Preferences dialog box no longer exists. Use the MathScript:
Window Options page of the LabVIEW MathScript Properties
dialog box to configure settings that previously existed on the History
page and the Output page.

— All options in the deprecated System Info page no longer exist.

—  The History buffer size option in the History page changed to
History buffer and moved to the MathScript: Window Options
page of the LabVIEW MathScript Properties dialog box.

The Script Editor includes a New Script button that clears the script
in the Script Editor.

Menu Iltem Enhancements

In LabVIEW 8.5, the menus in the LabVIEW MathScript Window align
more closely with the menus in LabVIEW. The menus in the LabVIEW
MathScript Window include the following enhancements:

The File menu includes the following changes:

— The Save Script item changed to Save.

— The Save Script As item changed to Save As.

— The Save & Compile Script As item no longer exists.
In the Edit menu, the Delete item no longer exists.

The View menu includes the following changes:

— The Workspace item no longer exists. You cannot hide the
LabVIEW MathScript Window workspace.

—  The Output Wrapped item no longer exists. Place a checkmark
in the Output wrapped checkbox on the MathScript: Window
Options page of the LabVIEW MathScript Properties dialog
box to enable word wrapping in the Output Window.

72 ni.com



The Operate menu includes a Run Script item that executes all
commands in the Script Editor.

The Load Data, Save Data, and Load Script items moved from the
File menu to the Operate menu.

Miscellaneous MathScript Enhancements and
Changes

LabVIEW 8.5 includes the following miscellaneous changes to
MathScript:

© National Instruments Corporation

LabVIEW MathScripts that contain matrix indexing operations
execute faster at run time due to performance optimizations.

If you call a user-defined function from a MathScript Node that does
not include a warning glyph, LabVIEW executes faster at run time due
to performance optimizations to the MathScript Node.

When you reference a .m file from a VI that is part of a LabVIEW
project, LabVIEW adds the .m file to the dependencies for the target.

The MathScript Node shows line numbers by default. You can show
and hide line numbers in the MathScript Node, the Formula Node, the
MATLAB script node, and the Xmath script node. To show or hide line
numbers, right-click inside the node and select Visible Items»Line
Numbers from the shortcut menu.

You can resize individual sections of the LabVIEW MathScript
Window, such as the Command Window and the Qutput Window.
To resize a section, move the splitter bar located between the two
sections you want to resize.

The following functions include an obj output that returns the
reference to the line object, the plot area object, the plot window
object, or the text object: c1f, figure, gcf, 1ine, loglog, plot,
semilogx, semilogy, subplot, text, title, xlabel, and
yvlabel.

The following functions include a name input that specifies the
attribute name and a value input that specifies the attribute value:
figure, line, loglog, plot, semilogx, semilogy, text, title,
xlabel, and ylabel.

The waitforbuttonpress function waits for a key up event or a
mouse up event before continuing execution. In a plot window, the
mouse up event must occur in the plot area or outside of the plot
window. If you click the scroll bar, the menu bar, the title bar, or the
toolbar, this function does not continue execution.

The 1egend function includes a location input that specifies where to
add the legend to the plot. You also can use the 1egend off syntax to
hide the legend.

73 LabVIEW Upgrade Notes



e The rand and randn functions include an s input that specifies the
seed of the pseudorandom number generator to use for the next call to
the function. These functions also include a d output that returns the
seed of the pseudorandom number generator.

¢ The butter, chebyl, cheby?2, and ellip functions include an 's'
input that directs LabVIEW to design an analog filter.

e The fs input of the remezord function changed from required to
optional. The default is 2.

e The b input of the zplane function changed from required to optional.
If a is a row vector and you do not specify b, the pole is (0, 0). Ifais a
column vector or a matrix and you do not specify b, LabVIEW does
not plot poles.

*  The help command supports the help browser syntax that provides
an overview of the LabVIEW MathScript Window.

*  You can include the following functions in a stand-alone application or
shared library: fopen, fclose, fread, and fwrite.

Refer to the Fundamentals»Formulas and Equations book on the
Contents tab in the LabVIEW Help for more information about LabVIEW
MathScript.

LabVIEW Object-Oriented Programming

LabVIEW Upgrade Notes

LabVIEW 8.5 introduces the following enhancements and changes to
LabVIEW object-oriented programming.

Accessing LabVIEW Class Data

You can quickly create member VIs that can access the LabVIEW class
data using the Create Accessor dialog box. You can create static or
dynamic accessor VIs to read from or to write to class data. The read
accessor VI unbundles LabVIEW class data so you can access the datain a
calling VI. The write accessor VI bundles new values for class data that you
pass from the calling VI.

To save a significant amount of development time, you can select multiple
elements of the class data to create several accessor VIs at one time. You
can save additional development time by creating both read and write
accessor VIs at one time. Consider using accessor VIs as a starting point to
creating more complex VIs.

You must save the LabVIEW class before using this dialog box to create
accessor VIs.

74 ni.com



You can launch the Create Accessor dialog box from the Project
Explorer window in the following ways:

* Right-click the LabVIEW class and select New» VI for Data Member
Access from the shortcut menu.

*  Right-click a data member in the private data control of the LabVIEW
class and select Create Accessor from the shortcut menu.
%: Note You mustsave anew LabVIEW class before using either of these options. LabVIEW
dims the VI for Data Member Access and Create Accessor options if you have not saved
the new class.

Opening Implementations of Dynamic Dispatch
SubVis

Dynamic dispatch subVIs can call any one of a set of VIs in a LabVIEW
class hierarchy. LabVIEW determines which implementation of the subVI
to call at run time, depending on the class data type flowing into the
dynamic dispatch terminal.

Double-click a dynamic dispatch subVT to display the Choose
Implementation dialog box. You can use this dialog box to view all
implementations of a dynamic dispatch subVI that are currently in memory
and then open one or more implementations of the subVI.

Shortcut Menu Changes

LabVIEW 8.5 includes the following shortcut menu changes for LabVIEW
object-oriented programming features:

e The New»Dynamic VI shortcut menu option changed to New» VI
from Dynamic Dispatch Template. Access this option by
right-clicking a LabVIEW class.

*  The New»Override VI shortcut menu option changed to New» VI for
Override. Access this option by right-clicking a LabVIEW class.

* Right-click a class constant, control, or indicator on the front panel or
block diagram and select Show Class Library from the shortcut menu
to highlight the class in the Project Explorer window. If the class you
are working with is not in a LabVIEW project, LabVIEW opens a class
window to display the class.

© National Instruments Corporation 75 LabVIEW Upgrade Notes



Miscellaneous LabVIEW Object-Oriented
Programming Enhancements

LabVIEW 8.5 includes the following miscellaneous LabVIEW
object-oriented programming enhancements:

e Use dynamic dispatch member VIs in a LabVIEW class to take
advantage of recursion. Recursive VIs can call themselves on their own
block diagram including on the block diagram of any subVlIs.
Recursion is useful if you want to operate many times on the output of
the same process. You can configure a member VI to allow recursion
by using the Share clones between instances option on the Execution
Properties page of the VI Properties dialog box.

*  You can create a member VI from a static dispatch template by
right-clicking the LabVIEW class and selecting New» VI from Static
Dispatch Template. LabVIEW populates the new member VI with
error in and error out clusters, a Case structure for error handling, the
input LabVIEW class, and the output LabVIEW class. Contrary to
creating a dynamic dispatch VI, LabVIEW does not set the input and
output terminals as dynamic on the connector pane of the static
dispatch VI.

e If you create a new LabVIEW class, LabVIEW prompts you to name
the class when you create it.

Refer to the Fundamentals»LabVIEW Object-Oriented Programming
book on the Contents tab in the LabVIEW Help for more information about
object-oriented programming in LabVIEW.

Project Library and LabVIEW Class Icon Changes

LabVIEW Upgrade Notes

The default icon for a project libraries and LabVIEW classes you create in
LabVIEW 8.5 does not contain a number on the icon mask and includes
different mask colors that are more compatible with black and white icons.
To accommodate the new mask design and to avoid the library or class
mask obscuring any part of the VI icon, use an image no larger than

32 pixels wide by 19 pixels high.

You also can edit the library or class icon to use a different mask on the
General Settings page of the Project Library Properties dialog box or
Class Properties dialog box, respectively.

You can more easily create VI icons for dynamic dispatch VIs you create
using the New» VI for Override shortcut menu option. The resulting VI
retains the ancestor VI icon and overlays the icon of the child class.

76 ni.com



Enhancing Virtual Memory Usage

(Windows) LabVIEW 8.5 is large address aware. On a 64-bit operating
system, LabVIEW can access up to 4 GB of virtual memory by default. On
a32-bit OS, LabVIEW can access up to 2 GB of virtual memory by default.
You can enable LabVIEW to access up to 4 GB of virtual memory on a
32-bit OS by modifying the Windows boot configuration settings. Enabling
LabVIEW to access more virtual memory decreases the likelihood of
experiencing general LabVIEW errors related to memory allocation when
you work with large sets of data.

*  (Windows Vista x64 Edition) LabVIEW can access up to 4 GB of virtual
memory by default.

*  (Windows Vista) To enable LabVIEW to access up to 3 or 4 GB of
virtual memory, open the command line window as an administrator
and use bcdedit commands to add an entry in the Boot Configuration
Data (BCD) store. To open the command line window as an
administrator, navigate to the window in the Windows Start menu,
right-click the program name, and select Run as administrator from
the shortcut menu.

*  (Windows XP/2000) To enable LabVIEW to access up to 3 GB of virtual
memory, you can add the /3GB tag to the Windows boot . ini file on
the line that specifies the Windows version to boot. If you have more
than 4 GB of physical RAM, you can use the /PAE tag in place of the
/3GB tag to enable LabVIEW to access up to 4 GB of virtual memory.

Refer to the VI Memory Usage topic in the Fundamentals»Managing
Performance and Memory»Concepts book on the Contents tab in the
LabVIEW Help for more information about using virtual memory in
LabVIEW.

Merging Vis

LabVIEW provides a merge application that you can use to merge
differences between an original VI and two revisions of the VI. Use the
Merge VIs dialog box to merge changes between VIs.

Select Tools»Merge VIs from the front panel or block diagram to display
the Merge VIs dialog box. Specify the original VI in the Base VI field.
Specify the two VIs to merge in the Their VI and Your VI fields. Click the
Merge button to merge the selected VIs.

You also can configure a third-party source control provider to use
LVMerge . exe as the default merge application. LvMerge . exe is the
programmatic equivalent to the Merge VIs dialog box.

© National Instruments Corporation 77 LabVIEW Upgrade Notes



Refer to the Fundamentals»Development Guidelines»How-To»
Merging VIs book on the Contents tab in the LabVIEW Help for more
information about merging VlIs.

Import Shared Library Wizard Enhancements

Use the Import Shared Library wizard to create or update a LabVIEW
project library of wrapper VIs based on functions in a Windows . d11 file,
a Linux . so file, or a Macintosh . framework file. The Import Shared
Library wizard includes the following miscellaneous enhancements:

LabVIEW Upgrade Notes

Support for pointers— You can import functions that contain
structures with pointer elements. You also can specify whether to
allocate memory for the pointer data before LabVIEW calls the
function.

Automatic generation of custom controls—For functions that
contain structures, the Import Shared Library wizard creates custom
controls for elements of the structure, including pointers,
automatically.

Total project management—If you select the Update VIs for a
shared library option on the Specify Create or Update Mode page,
the wizard retains the most recent settings for each individual function
in the shared library. For example, if you have a shared library that
contains three functions, you might update only the second function.
The next time you run the wizard on that shared library file, it retains
the original settings for functions one and three and the new settings
for function two.

Support for the enhanced Call Library Function Node—The
wrapper VIs utilize Call Library Function Node enhancements from
LabVIEW 8.2. The enhancements include support for the array data
pointer and array minimum size, and improved error reporting
functionality.

Function details—You can select a function on the Select Functions
to Convert page to view detailed information about that function. The
wizard also adds information about the function to the context help of
the wrapper VI

Enhanced error reporting—If the wizard encounters errors or
warnings while trying to parse the header file, the warnings and
possible solutions appear when you select the function on the Select
Functions to Convert page. This functionality replaces the Warnings
page from LabVIEW 8.2.

Indicator generation for return values—You can select whether to
create an indicator for return values in a wrapper VI.

Cached header parser results—If you run the wizard on the same
shared library multiple times and do not modify the header file, the

78 ni.com



wizard caches the results of the header file parsing to improve
performance.

*  Configure Include Paths and Preprocessor Definitions Page—The
Configure Include Paths and Predefined Symbols page is renamed
the Configure Include Paths and Preprocessor Definitions page.

Refer to the Fundamentals»Calling Code Written in Text-Based
Programming Languages»Concepts»Importing Shared Libraries
book on the Contents tab in the LabVIEW Help for more information about
the Import Shared Library wizard.

3D Picture Control Enhancements

You can add text objects to a 3D scene. The text appears when you generate
the 3D scene. Use the Create Object VI and the Create Text VI to add a text
object to a 3D scene. You also can use the SceneText properties and
methods to configure attributes of the text object, such as color or character
size, and to access fonts not installed on the local system.

The Set Drawable method replaces the Set Geometry method for applying
a geometry or text to a 3D object. The Set Geometry method is supported
in LabVIEW 8.5 for VIs last saved in LabVIEW 8.2, but you cannot wire a
text object to this method.

Refer to the Fundamentals»Graphics and Sound VIs book on the
Contents tab in the LabVIEW Help for more information about creating
3D scenes in LabVIEW.

Using Timed Structures for Multi-Core Programming

Multi-core programming refers to two or more processors in one computer,
each of which can simultaneously run a separate thread. A multithreaded
application can have multiple separate threads executing simultaneously on
multiple processors. LabVIEW 5.0 was the first version of LabVIEW to
include multi-core programming. LabVIEW 5.0 separated the user
interface thread from the execution threads. Block diagrams executed in
one, or possibly more than one, thread, and front panels updated in another
thread. The operating system preemptively multitasked between threads by
granting processor time to the execution thread, then to the user interface
thread, and so on.

The Timed Loop and Timed Sequence structures include a Processor input
that allows you to manually assign available processors to handle the
execution of the structures. You can configure the processor assignment by
wiring an input to the Processor input of the Input Node for the structure
or for frames of the structure. (Windows) You also can configure processors
to handle timed structures in the Processor Assignment section of the

© National Instruments Corporation 79 LabVIEW Upgrade Notes



Configure Timed Loop, Configure Timed Loop with Frames,
Configure Next Frame Timing, and Configure Next Iteration dialog
boxes.

If you load a VI with a timed structure from a previous version of
LabVIEW, the Processor input sets to 0 by default, where 0 represents the
first available processor in the system, because all timed structures
automatically run on processor 0 in previous versions of LabVIEW.

Fixed-Point Data Type

The fixed-point data type is a numeric data type that represents a set of
rational numbers using binary digits, or bits. Unlike the floating-point data
type, which allows the total number of bits LabVIEW uses to represent
numbers to vary, you can configure fixed-point numbers to always use a
specific number of bits. Hardware and targets that only can store and
process data with a limited or fixed number of bits then can store and
process the numbers. You can specify the range and precision of
fixed-point numbers.

Use fixed-point representation when you do not need the dynamic
functionality of floating-point representation or when you want to work
with a target that does not support floating-point arithmetic, such as an
FPGA target.

To set a number to fixed-point representation, right-click the numeric
object and select Representation from the shortcut menu to change the
data type of the object. You also can configure the encoding, word length,
integer word length, range, and desired delta for fixed-point numbers and
specify how Numeric functions handle overflow and quantization
conditions for fixed-point numbers. To configure a fixed-point number,
right-click a constant, control, indicator, or Numeric function and select
Properties from the shortcut menu to display the Numeric Properties,
Numeric Constant Properties, or Numeric Node Properties dialog box.

Refer to the Numeric Data topic in the Fundamentals»Building the Block
Diagram»Concepts book on the Contents tab of the LabVIEW Help for
more information about the fixed-point data type.

Source Control Enhancements

LabVIEW Upgrade Notes

Refer to the Fundamentals»Organizing and Managing a Project book
on the Contents tab in the LabVIEW Help for more information about
source control in LabVIEW.

After you configure LabVIEW to use source control, you can configure

source control settings on individual LabVIEW projects. Configuring
source control settings on an individual LabVIEW project is useful if you

80 ni.com



want to use a different source control project than the one you specify for
the LabVIEW environment, or if you do not want to use source control with
a particular LabVIEW project.

LabVIEW projects use the source control configuration you specify for the
LabVIEW environment by default. You cannot change the source control
provider for a LabVIEW project. Source control settings for LabVIEW
projects must match the provider you specify for the LabVIEW
environment. You can use only one source control provider at a time.

© National Instruments Corporation 81 LabVIEW Upgrade Notes



National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation.
Refer to the Terms of Use section on ni .com/legal for more information about National
Instruments trademarks. MATLAB® is a registered trademark of The MathWorks, Inc. Other product
and company names mentioned herein are trademarks or trade names of their respective companies.
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in
your software, the patents . txt file on your CD, or ni . com/patents. For a listing of the
copyrights, conditions, and disclaimers regarding components used in USI (Xerces C++, ICU, and
HDF5), refer to the usICopyrights.chm.

©1998-2007 National Instruments Corporation. All rights reserved. 371780C-01

Aug07



	LabVIEW Upgrade Notes
	Contents
	Upgrading to LabVIEW 8.5
	Converting VIs
	Upgrading Modules, Toolkits, Instrument Drivers, and Add-Ons
	Upgrading Additional National Instruments Software
	Upgrading from Previous Versions of LabVIEW
	Replacing an Existing Version of LabVIEW
	Copying Environment Settings from a Previous Version of LabVIEW
	Copying user.lib Files from a Previous Version of LabVIEW


	Upgrade and Compatibility Issues
	Upgrading from LabVIEW 8.2
	Platforms Supported
	System Requirements
	Printed Documentation
	Windows Vista Compatibility Issues
	VI and Function Behavior Changes
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Renamed Properties, Methods, and Events
	LabVIEW MathScript Behavior Changes (Windows, Not in Base Package)
	LabVIEW Class Icons
	Opening LLBs in LabVIEW
	Timed Loop Priority Level Restriction
	Waveform Data Type

	Upgrading from LabVIEW 8.0
	Platforms Supported
	System Requirements
	Printed Documentation
	VI and Function Behavior Changes
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Renamed Properties, Methods, and Events
	Application Builder Changes

	Upgrading from LabVIEW 7.x
	Platforms Supported
	System Requirements
	Custom Palette Views
	VI and Function Behavior Changes
	Deprecated VIs and Functions
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Application Item Tags
	HiQ Support
	Error List Window
	VI String File Syntax
	Converting Type Descriptor Data to and from LabVIEW 7.x
	Migrating from the LabVIEW Built-In Source Control Provider
	Converting NaN Strings to Integer Types (Windows)
	Constants Wired to Case Structures
	Delaying Operating System Messages
	Resource Manager (Mac OS)
	One- and Two-Button Dialog Boxes
	Property and Invoke Nodes
	Updating Shared Libraries
	Margin Values for Printing

	Upgrading from LabVIEW 6.x
	Changes to the Waveform Data Type
	Serial Compatibility VIs
	Default Data in Loops
	Remote Front Panel License
	Multiple Thread Allocation
	Instrument Drivers
	Units and Conversion Factors
	Defer Panel Updates Property
	Data Ranges for Numeric Controls
	Coercion Dots and Type Definitions
	File Dialog Box Button Label
	Control Online Help Function
	Displaying the Front Panel When Loaded
	Open VI Reference Function
	Exponential Representation
	IVI Configuration Store File
	Technical Support Form

	Upgrading from LabVIEW 5.x or Earlier Versions

	LabVIEW 8.5 Features and Changes
	Installing LabVIEW
	LabVIEW Documentation
	New Example VIs
	Block Diagram Enhancements
	Creating Shared Reentrant VIs
	Conditional and Diagram Disable Structure Enhancements

	Front Panel Enhancements
	Digital Waveform Graph Enhancements
	Export Simplified Image Enhancements
	Plot Legend Enhancements
	Using a Mixed Checkbox
	Miscellaneous Front Panel Enhancements

	Environment Enhancements
	Automatic Saving for Recovery Enhancements
	Saving for Multiple Previous Versions of LabVIEW
	Dialog Box Enhancements
	Palette Enhancements
	Miscellaneous Environment Enhancements

	LabVIEW Project Enhancements
	Shared Variable and NI-PSP Enhancements
	Resolving Project Conflicts
	Using Folders in the LabVIEW Project
	New Project Dialog Boxes
	Miscellaneous Project Enhancements

	New and Changed VI, Function, and Node Enhancements
	New VIs and Functions
	Changed VIs, Functions, and Nodes
	Adding a Conditional Terminal to a For Loop
	Using Feedback Nodes to Store Data
	Miscellaneous VI, Function, and Node Changes

	New Classes, Properties, Methods, and Events
	Application Builder Enhancements
	Information Page
	Source Files
	Destinations Page
	Source Files Settings Page
	Icon Page (Windows, Mac OS)
	Advanced Page
	Additional Exclusions Page
	Version Information Page (Windows, Mac OS)
	Run-Time Languages
	Miscellaneous Application Builder Enhancements

	LabVIEW MathScript Enhancements (Windows, Not in Base Package)
	New MathScript Functions
	Enhanced Error Reporting for the MathScript Node
	Calling User-Defined Functions from LabVIEW MathScript
	Using the LabVIEW MathScript Probe
	Setting Plot Attributes in LabVIEW MathScript
	Dialog Box Enhancements
	Menu Item Enhancements
	Miscellaneous MathScript Enhancements and Changes

	LabVIEW Object-Oriented Programming
	Accessing LabVIEW Class Data
	Opening Implementations of Dynamic Dispatch SubVIs
	Shortcut Menu Changes
	Miscellaneous LabVIEW Object-Oriented Programming Enhancements

	Project Library and LabVIEW Class Icon Changes
	Enhancing Virtual Memory Usage
	Merging VIs
	Import Shared Library Wizard Enhancements
	3D Picture Control Enhancements
	Using Timed Structures for Multi-Core Programming
	Fixed-Point Data Type
	Source Control Enhancements




