
CAN
Automotive Diagnostic Command Set User Manual

Automotive Diagnostic Command Set User Manual

December 2009
372139D-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000,
Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400,
Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466,
New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10, Portugal 351 210 311 210,
Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the info code feedback.

© 2007–2009 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
CVI, National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United
States and other countries. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

 Compliance

Electromagnetic Compatibility Information
This hardware has been tested and found to comply with the applicable regulatory requirements and limits for electromagnetic
compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)1. These requirements and limits are
designed to provide reasonable protection against harmful interference when the hardware is operated in the intended
electromagnetic environment. In special cases, for example when either highly sensitive or noisy hardware is being used in close
proximity, additional mitigation measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee that interference will
not occur in a particular installation. To minimize the potential for the hardware to cause interference to radio and television
reception or to experience unacceptable performance degradation, install and use this hardware in strict accordance with the
instructions in the hardware documentation and the DoC1.

If this hardware does cause interference with licensed radio communications services or other nearby electronics, which can be
determined by turning the hardware off and on, you are encouraged to try to correct the interference by one or more of the
following measures:
• Reorient the antenna of the receiver (the device suffering interference).
• Relocate the transmitter (the device generating interference) with respect to the receiver.
• Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC requirements for
special EMC environments such as, for marine use or in heavy industrial areas. Refer to the hardware’s user documentation and
the DoC1 for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to disturbances or may
cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to correct the
interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to operate the hardware
under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions for the user or
installer. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line,
and click the appropriate link in the Certification column.

© National Instruments Corporation v Automotive Diagnostic Command Set User Manual

Contents

About This Manual
Conventions ...xi
Related Documentation..xii

Chapter 1
Introduction

KWP2000 (Key Word Protocol 2000)...1-1
Transport Protocol ...1-2
Diagnostic Services ...1-2
Diagnostic Service Format ..1-2
Connect/Disconnect...1-3
GetSeed/Unlock...1-3
Read/Write Memory..1-3
Measurements..1-4
Diagnostic Trouble Codes ...1-4
Input/Output Control ...1-4
Remote Activation of a Routine ..1-4
External References...1-4

UDS (Unified Diagnostic Services)...1-5
Diagnostic Services ...1-5
Diagnostic Service Format ..1-5
External References...1-6

OBD (On-Board Diagnostic) ...1-6

Chapter 2
Installation and Configuration

Installation ...2-1
LabVIEW Real-Time (RT) Configuration ..2-2
Hardware and Software Requirements ..2-3

Chapter 3
Application Development

Choosing the Programming Language ..3-1
LabVIEW ..3-1
LabWindows/CVI..3-1
Visual C++ 6 ...3-2
Other Programming Languages...3-3

Contents

Automotive Diagnostic Command Set User Manual vi ni.com

Application Development on CompactRIO or R Series.. 3-4
Transferring Data between the FPGA and Host Computer 3-4
Customizing the CAN Bridge (FPGA) VI .. 3-5

Debugging an Application... 3-5

Chapter 4
Using the Automotive Diagnostic Command Set

Structure of the Automotive Diagnostic Command Set .. 4-1
Automotive Diagnostic Command Set API Structure... 4-2
General Programming Model .. 4-3
Available Diagnostic Services... 4-4
Tweaking the Transport Protocol .. 4-4

Chapter 5
Automotive Diagnostic Command Set API for LabVIEW

Section Headings ... 5-1
Purpose.. 5-1
Format ... 5-1
Input and Output ... 5-1
Description .. 5-1

List of VIs.. 5-2
General Functions.. 5-8

Close Diagnostic.vi ... 5-8
Convert from Phys.vi .. 5-10
Convert to Phys.vi... 5-12
Create Extended CAN IDs.vi.. 5-14
Diag Get Property.vi ... 5-15
Diag Set Property.vi .. 5-18
Diagnostic Service.vi .. 5-21
DTC to String.vi.. 5-23
OBD Open.vi .. 5-24
Open Diagnostic.vi.. 5-27
VWTP Connect.vi ... 5-31
VWTP Connection Test.vi .. 5-33
VWTP Disconnect.vi .. 5-35

KWP2000 Services.. 5-37
ClearDiagnosticInformation.vi ... 5-37
ControlDTCSetting.vi ... 5-40
DisableNormalMessageTransmission.vi... 5-43
ECUReset.vi.. 5-45
EnableNormalMessageTransmission.vi.. 5-47
InputOutputControlByLocalIdentifier.vi .. 5-49

Contents

© National Instruments Corporation vii Automotive Diagnostic Command Set User Manual

ReadDataByLocalIdentifier.vi...5-51
ReadDTCByStatus.vi ..5-53
ReadECUIdentification.vi ...5-56
ReadMemoryByAddress.vi ...5-58
ReadStatusOfDTC.vi...5-60
RequestRoutineResultsByLocalIdentifier.vi ...5-63
RequestSeed.vi ..5-65
SendKey.vi ..5-67
StartDiagnosticSession.vi ..5-69
StartRoutineByLocalIdentifier.vi ..5-71
StopDiagnosticSession.vi ..5-73
StopRoutineByLocalIdentifier.vi ..5-75
TesterPresent.vi ...5-77
WriteDataByLocalIdentifier.vi..5-79
WriteMemoryByAddress.vi ..5-81

UDS (DiagOnCAN) Services ..5-83
UDS ClearDiagnosticInformation.vi ...5-83
UDS CommunicationControl.vi ..5-86
UDS ControlDTCSetting.vi ..5-88
UDS DiagnosticSessionControl.vi ..5-90
UDS ECUReset.vi ...5-92
UDS InputOutputControlByIdentifier.vi...5-94
UDS ReadDataByIdentifier.vi...5-96
UDS ReadMemoryByAddress.vi ..5-98
UDS ReportDTCBySeverityMaskRecord.vi...5-100
UDS ReportDTCByStatusMask.vi..5-103
UDS ReportSeverityInformationOfDTC.vi ..5-106
UDS ReportSupportedDTCs.vi ...5-109
UDS RequestDownload.vi ..5-112
UDS RequestSeed.vi ...5-114
UDS RequestTransferExit.vi ...5-116
UDS RequestUpload.vi ...5-118
UDS RoutineControl.vi ...5-120
UDS SendKey.vi ...5-122
UDS TesterPresent.vi ..5-124
UDS TransferData.vi ...5-126
UDS WriteDataByIdentifier.vi..5-129
UDS WriteMemoryByAddress.vi ...5-131

OBD (On-Board Diagnostics) Services ...5-133
OBD Clear Emission Related Diagnostic Information.vi5-133
OBD Request Control Of On-Board Device.vi ...5-135
OBD Request Current Powertrain Diagnostic Data.vi5-137
OBD Request Emission Related DTCs.vi ...5-139
OBD Request Emission Related DTCs During Current Drive Cycle.vi5-142

Contents

Automotive Diagnostic Command Set User Manual viii ni.com

OBD Request On-Board Monitoring Test Results.vi 5-145
OBD Request Permanent Fault Codes.vi .. 5-147
OBD Request Powertrain Freeze Frame Data.vi .. 5-150
OBD Request Supported PIDs.vi.. 5-152
OBD Request Vehicle Information.vi... 5-154

Chapter 6
Automotive Diagnostic Command Set API for C

Section Headings ... 6-1
Purpose.. 6-1
Format ... 6-1
Input and Output ... 6-1
Description .. 6-1

List of Data Types ... 6-2
List of Functions.. 6-3
General Functions.. 6-11

ndCloseDiagnostic .. 6-11
ndConvertFromPhys ... 6-12
ndConvertToPhys.. 6-14
ndCreateExtendedCANIds.. 6-16
ndDiagnosticService ... 6-18
ndDTCToString .. 6-20
ndGetProperty ... 6-21
ndOBDOpen.. 6-23
ndOpenDiagnostic... 6-26
ndSetProperty.. 6-29
ndStatusToString... 6-31
ndVWTPConnect .. 6-33
ndVWTPConnectionTest .. 6-35
ndVWTPDisconnect ... 6-36

KWP2000 Services.. 6-37
ndClearDiagnosticInformation.. 6-37
ndControlDTCSetting ... 6-39
ndDisableNormalMessageTransmission... 6-41
ndECUReset.. 6-42
ndEnableNormalMessageTransmission.. 6-44
ndInputOutputControlByLocalIdentifier .. 6-45
ndReadDataByLocalIdentifier .. 6-47
ndReadDTCByStatus .. 6-49
ndReadECUIdentification ... 6-52
ndReadMemoryByAddress ... 6-54
ndReadStatusOfDTC .. 6-56
ndRequestRoutineResultsByLocalIdentifier... 6-59

Contents

© National Instruments Corporation ix Automotive Diagnostic Command Set User Manual

ndRequestSeed ..6-61
ndSendKey ..6-63
ndStartDiagnosticSession ..6-65
ndStartRoutineByLocalIdentifier ..6-67
ndStopDiagnosticSession ..6-69
ndStopRoutineByLocalIdentifier ..6-70
ndTesterPresent ...6-72
ndWriteDataByLocalIdentifier..6-74
ndWriteMemoryByAddress ..6-76

UDS (DiagOnCAN) Services ..6-78
ndUDSClearDiagnosticInformation ..6-78
ndUDSCommunicationControl ...6-80
ndUDSControlDTCSetting..6-82
ndUDSDiagnosticSessionControl ...6-83
ndUDSECUReset ..6-84
ndUDSInputOutputControlByIdentifier..6-86
ndUDSReadDataByIdentifier..6-88
ndUDSReadMemoryByAddress ...6-90
ndUDSReportDTCBySeverityMaskRecord..6-92
ndUDSReportDTCByStatusMask...6-95
ndUDSReportSeverityInformationOfDTC..6-98
ndUDSReportSupportedDTCs ..6-101
ndUDSRequestDownload..6-104
ndUDSRequestSeed ..6-106
ndUDSRequestTransferExit ..6-108
ndUDSRequestUpload ..6-110
ndUDSRoutineControl ..6-112
ndUDSSendKey ..6-114
ndUDSTesterPresent ...6-116
ndUDSTransferData ..6-118
ndUDSWriteDataByIdentifier ...6-120
ndUDSWriteMemoryByAddress ..6-122

OBD (On-Board Diagnostics) Services ...6-124
ndOBDClearEmissionRelatedDiagnosticInformation6-124
ndOBDRequestControlOfOnBoardDevice ...6-125
ndOBDRequestCurrentPowertrainDiagnosticData ...6-127
ndOBDRequestEmissionRelatedDTCs ...6-129
ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle6-131
ndOBDRequestOnBoardMonitoringTestResults ..6-133
ndOBDRequestPermanentFaultCodes ..6-135
ndOBDRequestPowertrainFreezeFrameData..6-137
ndOBDRequestVehicleInformation ..6-139

Contents

Automotive Diagnostic Command Set User Manual x ni.com

Appendix A
Technical Support and Professional Services

Index

© National Instruments Corporation xi Automotive Diagnostic Command Set User Manual

About This Manual

This manual provides instructions for using the Automotive Diagnostic
Command Set. It contains information about installation, configuration,
and troubleshooting, and also contains Automotive Diagnostic Command
Set function reference for LabVIEW-based and C-based APIs.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

About This Manual

Automotive Diagnostic Command Set User Manual xii ni.com

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of
Digital Information—Controller Area Network (CAN) for High-Speed
Communication

• CAN Specification Version 2.0, 1991, Robert Bosch GmbH.,
Postfach 106050, D-70049 Stuttgart 1

• CiA Draft Standard 102, Version 2.0, CAN Physical Layer for
Industrial Applications

• ISO 14229:1998(E), Road Vehicles, Diagnostic Systems, Diagnostic
Services Specification

• ISO 14230-1:1999(E), Road Vehicles, Diagnostic Systems, Keyword
Protocol 2000, Part 1: Physical Layer

• ISO 14230-2:1999(E), Road Vehicles, Diagnostic Systems, Keyword
Protocol 2000, Part 2: Data Link Layer

• ISO 14230-3:1999(E), Road Vehicles, Diagnostic Systems, Keyword
Protocol 2000, Part 3: Application Layer

• ISO 15765-1:2004(E), Road Vehicles, Diagnostics on Controller Area
Networks (CAN), Part 1: General Information

• ISO 15765-2:2004(E), Road Vehicles, Diagnostics on Controller Area
Networks (CAN), Part 2: Network Layer Services

• ISO 15765-3:2004(E), Road Vehicles, Diagnostics on Controller Area
Networks (CAN), Part 3: Implementation of Unified Diagnostic
Services (UDS on CAN)

• NI-CAN Hardware and Software Manual

© National Instruments Corporation 1-1 Automotive Diagnostic Command Set User Manual

1
Introduction

Diagnostics involve remote execution of routines, or services, on ECUs.
To execute a routine, you send a byte string as a request to an ECU, and the
ECU usually answers with a response byte string. Several diagnostic
protocols such as KWP2000 and UDS standardize the format of the
services to be executed, but those standards leave a large amount of room
for manufacturer-specific extensions. A newer trend is the emission-related
legislated OnBoard Diagnostics (OBD), which is manufacturer
independent and standardized in SAE J1979 and ISO 15031-5. This
standard adds another set of services that follow the same scheme.

Because diagnostics were traditionally executed on serial communication
links, the byte string length is not limited. For newer, CAN-based
diagnostics, this involves using a transport protocol that segments the
arbitrarily long byte strings into pieces that can be transferred over the CAN
bus, and reassembles them on the receiver side. Several transport protocols
accomplish this task. The Automotive Diagnostic Command Set
implements the ISO TP (standardized in ISO 15765-2) and the
manufacturer-specific VW TP 2.0.

Note The Automotive Diagnostic Command Set is designed for CAN-based diagnostics
only. Diagnostics on serial lines (K-line and L-line) are not in the scope of the Automotive
Diagnostic Command Set.

KWP2000 (Key Word Protocol 2000)
The KWP2000 protocol has become a de facto standard in automotive
diagnostic applications. It is standardized as ISO 14230-3. KWP2000
describes the implementation of various diagnostic services you can access
through the protocol. You can run KWP2000 on several transport layers
such as K-line (serial) or CAN.

Chapter 1 Introduction

Automotive Diagnostic Command Set User Manual 1-2 ni.com

Transport Protocol
As KWP2000 uses messages of variable byte lengths, a transport protocol
is necessary on layers with only a well defined (short) message length, such
as CAN. The transport protocol splits a long KWP2000 message into pieces
that can be transferred over the network and reassembles those pieces to
recover the original message.

KWP2000 runs on CAN on various transport protocols such as ISO TP
(ISO 15765-2), TP 1.6, TP 2.0 (Volkswagen), and SAE J1939-21.

Note For KWP2000, the Automotive Diagnostic Command Set supports only the ISO TP
(standardized in ISO 15765-2) and manufacturer-specific VW TP 2.0 transport protocols.

Diagnostic Services
The diagnostic services available in KWP2000 are grouped in functional
units and identified by a one-byte code (ServiceId). The standard does not
define all codes; for some codes, the standard refers to other SAE or ISO
standards, and some are reserved for manufacturer-specific extensions. The
Automotive Diagnostic Command Set supports the following services:

• Diagnostic Management

• Data Transmission

• Stored Data Transmission (Diagnostic Trouble Codes)

• Input/Output Control

• Remote Activation of Routine

Note Upload/Download and Extended services are not part of the Automotive Diagnostic
Command Set.

Diagnostic Service Format
Diagnostic services have a common message format. Each service defines
a Request Message, Positive Response Message, and Negative Response
Message.

The Request Message has the ServiceId as first byte, plus additional
service-defined parameters. The Positive Response Message has an echo of
the ServiceId with bit 6 set as first byte, plus the service-defined response
parameters.

The Negative Response Message is usually a three-byte message: it has the
Negative Response ServiceId as first byte, an echo of the original ServiceId

Chapter 1 Introduction

© National Instruments Corporation 1-3 Automotive Diagnostic Command Set User Manual

as second byte, and a ResponseCode as third byte. The only exception to
this format is the negative response to an EscapeCode service; here, the
third byte is an echo of the user-defined service code, and the fourth byte
is the ResponseCode. The KWP2000 standard partly defines the
ResponseCodes, but there is room left for manufacturer-specific
extensions. For some of the ResponseCodes, KWP2000 defines an error
handling procedure. Because both positive and negative responses have an
echo of the requested service, you can always assign the responses to their
corresponding request.

Connect/Disconnect
KWP2000 expects a diagnostic session to be started with
StartDiagnosticSession and terminated with StopDiagnosticSession.
However, StartDiagnosticSession has a DiagnosticMode parameter that
determines the diagnostic session type. Depending on this type, the ECU
may or may not support other diagnostic services, or operate in a restricted
mode where not all ECU functions are available. The DiagnosticMode
parameter values are manufacturer specific and not defined in the standard.

For a diagnostic session to remain active, it must execute the TesterPresent
service periodically if no other service is executed. If the TesterPresent
service is missing for a certain period of time, the diagnostic session is
terminated, and the ECU returns to normal operation mode.

GetSeed/Unlock
A GetSeed/Unlock mechanism may protect some diagnostic services.
However, the applicable services are left to the manufacturer and not
defined by the standard.

You can execute the GetSeed/Unlock mechanism through the
SecurityAccess service. This defines several levels of security, but the
manufacturer assigns these levels to certain services.

Read/Write Memory
Use the Read/WriteMemoryByAddress services to upload/download data
to certain memory addresses on an ECU. The address is a three-byte
quantity in KWP2000 and a five-byte quantity (four-byte address and
one-byte extension) in the calibration protocols.

The Upload/Download functional unit services are highly manufacturer
specific and not well defined in the standard, so they are not a good way to
provide a general upload/download mechanism.

Chapter 1 Introduction

Automotive Diagnostic Command Set User Manual 1-4 ni.com

Measurements
Use the ReadDataByLocal/CommonIdentifier services to access ECU data
in a way similar to a DAQ list. A Local/CommonIdentifier describes a list
of ECU quantities that are then transferred from the ECU to the tester. The
transfer can be either single value or periodic, with a slow, medium, or fast
transfer rate. The transfer rates are manufacturer specific; you can use the
SetDataRates service to set them, but this setting is manufacturer specific.

Note The Automotive Diagnostic Command Set supports single-point measurements.

Diagnostic Trouble Codes
A major diagnostic feature is the readout of Diagnostic Trouble Codes
(DTCs). KWP2000 defines several services that access DTCs based on
their group or status.

Input/Output Control
KWP2000 defines services to modify internal or external ECU signals.
One example is redirecting ECU sensor inputs to stimulated signals. The
control parameters of these commands are manufacturer specific and not
defined in the standard.

Remote Activation of a Routine
These services are similar to the ActionService and DiagService
functions of CCP. You can invoke an ECU internal routine identified by a
Local/CommonIdentifier or a memory address. Contrary to the CCP case,
execution of this routine can be asynchronous; that is, there are separate
Start, Stop, and RequestResult services.

The control parameters of these commands are manufacturer specific and
not defined in the standard.

External References
For more information about the KWP2000 Standard, refer to the
ISO 14230-3 standard.

Chapter 1 Introduction

© National Instruments Corporation 1-5 Automotive Diagnostic Command Set User Manual

UDS (Unified Diagnostic Services)
The UDS protocol has become a de facto standard in automotive diagnostic
applications. It is standardized as ISO 15765-3. UDS describes the
implementation of various diagnostic services you can access through the
protocol.

As UDS uses messages of variable byte lengths, a transport protocol is
necessary on layers with only a well defined (short) message length, such
as CAN. The transport protocol splits a long UDS message into pieces that
can be transferred over the network and reassembles those pieces to recover
the original message.

UDS runs on CAN on various transport protocols.

Note The Automotive Diagnostic Command Set supports only the ISO TP (standardized
in ISO 15765-2) and manufacturer-specific VW TP 2.0 transport protocols.

Diagnostic Services
The diagnostic services available in UDS are grouped in functional units
and identified by a one-byte code (ServiceId). Not all codes are defined in
the standard; for some codes, the standard refers to other standards, and
some are reserved for manufacturer-specific extensions. The Automotive
Diagnostic Command Set supports the following services:

• Diagnostic Management

• Data Transmission

• Stored Data Transmission (Diagnostic Trouble Codes)

• Input/Output Control

• Remote Activation of Routine

Diagnostic Service Format
Diagnostic services have a common message format. Each service defines
a Request Message, a Positive Response Message, and a Negative
Response Message. The general format of the diagnostic services complies
with the KWP2000 definition; most of the Service Ids also comply with
KWP2000. The Request Message has the ServiceId as first byte, plus
additional service-defined parameters. The Positive Response Message has
an echo of the ServiceId with bit 6 set as first byte, plus the service-defined
response parameters.

Chapter 1 Introduction

Automotive Diagnostic Command Set User Manual 1-6 ni.com

Note Some parameters to both the Request and Positive Response Messages are optional.
Each service defines these parameters. Also, the standard does not define all parameters.

The Negative Response Message is usually a three-byte message: it has the
Negative Response ServiceId (0x7F) as first byte, an echo of the original
ServiceId as second byte, and a ResponseCode as third byte. The UDS
standard partly defines the ResponseCodes, but there is room left for
manufacturer-specific extensions. For some of the ResponseCodes, UDS
defines an error handling procedure.

Because both positive and negative responses have an echo of the requested
service, you always can assign the responses to their corresponding request.

External References
For more information about the UDS Standard, refer to the ISO 15765-3
standard.

OBD (On-Board Diagnostic)
On-Board Diagnostic (OBD) systems are present in most cars and light
trucks on the road today. On-Board Diagnostics refer to the vehicle’s
self-diagnostic and reporting capability, which the vehicle owner or a
repair technician can use to query status information for various vehicle
subsystems.

The amount of diagnostic information available via OBD has increased
since the introduction of on-board vehicle computers in the early 1980s.
Modern OBD implementations use a CAN communication port to provide
real-time data and a standardized series of diagnostic trouble codes
(DTCs), which identify and remedy malfunctions within the vehicle. In the
1970s and early 1980s, manufacturers began using electronic means to
control engine functions and diagnose engine problems. This was primarily
to meet EPA emission standards. Through the years, on-board diagnostic
systems have become more sophisticated. OBD-II, a new standard
introduced in the mid 1990s, provides almost complete engine control and
also monitors parts of the chassis, body, and accessory devices, as well as
the car’s diagnostic control network.

The On-Board Diagnostic (OBD) standard defines a minimum set of
diagnostic information for passenger cars and light and medium-duty
trucks, which must be exchanged with any off-board test equipment.

© National Instruments Corporation 2-1 Automotive Diagnostic Command Set User Manual

2
Installation and Configuration

This chapter explains how to install and configure the Automotive
Diagnostic Command Set.

Installation
This section discusses the Automotive Diagnostic Command Set
installation for Microsoft Windows.

Note You need administrator rights to install the Automotive Diagnostic Command Set on
your computer.

Follow these steps to install the Automotive Diagnostic Command Set
software:

1. Insert the Automotive Diagnostic Command Set CD into the CD-ROM
drive.

2. Open Windows Explorer.

3. Access the CD-ROM drive.

4. Double-click on autorun.exe to launch the software interface.

5. Start the installation. The installation program guides you through the
rest of the installation process.

6. If you have not already installed NI-CAN, the Automotive Diagnostic
Command Set installer automatically installs the NI-CAN driver on
your computer.

Within the Devices & Interfaces branch of the MAX Configuration
tree, NI CAN hardware is listed along with other hardware in the local
computer system. If the CAN hardware is not listed here, MAX is not
configured to search for new devices on startup. To search for the new
hardware, press <F5>. To verify installation of the CAN hardware,
right-click the CAN device, then select Self-test. If the self-test passes,
the card icon shows a checkmark. If the self-test fails, the card icon
shows an X mark, and the Test Status in the right pane describes the
problem.

Chapter 2 Installation and Configuration

Automotive Diagnostic Command Set User Manual 2-2 ni.com

Refer to Appendix A, Troubleshooting and Common Questions, of the
NI-CAN User Manual for information about resolving hardware
installation problems.

If you are using the Automotive Diagnostic Command Set on an NI-XNET
device, install the NI-XNET driver 1.0 or higher, NI-CAN 2.7 or higher,
and the NI-CAN Compatibility Library on your computer.

The MAX Configuration tree Devices and Interfaces branch lists
NI-XNET hardware (along with other local computer system hardware). If
the NI-XNET hardware is not listed there, MAX is not configured to search
for new devices on startup. To search for the new hardware, press <F5>. To
verify CAN hardware installation, right-click the CAN device and select
Self-Test. If the self-test passes, the card icon shows a checkmark. If the
self-test fails, the card icon shows an X mark, and the Test Status in the
right pane describes the problem. Refer to Chapter 6, Troubleshooting and
Common Questions, of the NI-XNET User Manual for information about
resolving hardware installation problems. The NI-XNET CAN hardware
interfaces are listed under the device name. To change the interface name,
select a new one from the Interface Name box in the middle pane.

When installation is complete, you can access the Automotive Diagnostic
Command Set functions in your application development environment.

LabVIEW Real-Time (RT) Configuration
LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming
with the power of real-time systems. When you use a National Instruments
PXI controller as a LabVIEW RT system, you can install a PXI CAN card
and use the NI-CAN or NI-XNET APIs to develop real-time applications.
As with any NI software library for LabVIEW RT, you must install the
Automotive Diagnostic Command Set software to the LabVIEW RT target
using the Remote Systems branch in MAX. For more information, refer to
the LabVIEW RT documentation.

After you install the PXI CAN cards and download the Automotive
Diagnostic Command Set software to the LabVIEW RT system, you must
verify the installation.

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-3 Automotive Diagnostic Command Set User Manual

Hardware and Software Requirements
You can use the Automotive Diagnostic Command Set on the following
hardware:

• National Instruments NI-CAN hardware Series 1 or 2 with the
NI-CAN driver software version 2.3 or later installed.

• National Instruments NI-XNET hardware with the NI-XNET driver
software version 1.0 or later installed.

• National Instruments CompactRIO or R Series Multifunction RIO
hardware and the NI 9853 or NI 9852 CompactRIO CAN modules.

Note You can use the Automotive Diagnostic Command Set with LabVIEW 2009 or
newer on CompactRIO systems or National Instruments R Series Multifunction RIO
hardware.

© National Instruments Corporation 3-1 Automotive Diagnostic Command Set User Manual

3
Application Development

This chapter explains how to develop an application using the Automotive
Diagnostic Command Set API.

Choosing the Programming Language
The programming language you use for application development
determines how to access the Automotive Diagnostic Command Set APIs.

LabVIEW
Automotive Diagnostic Command Set functions and controls are in the
LabVIEW palettes. In LabVIEW, the Automotive Diagnostic Command
Set palette is in the top-level NI Measurements palette.

Chapter 5, Automotive Diagnostic Command Set API for LabVIEW,
describes each LabVIEW VI for the Automotive Diagnostic Command Set
API.

To access the VI reference from within LabVIEW, press <Ctrl-H> to open
the Help window, click the appropriate Automotive Diagnostic Command
Set VI, and follow the link. The Automotive Diagnostic Command Set
software includes a full set of LabVIEW examples. These examples teach
programming basics as well as advanced topics. The example help
describes each example and includes a link you can use to open the VI.

LabWindows/CVI
Within LabWindows™/CVI™, the Automotive Diagnostic Command Set
function panel is in Libraries»Automotive Diagnostic Command Set. As
with other LabWindows/CVI function panels, the Automotive Diagnostic
Command Set function panel provides help for each function and the
ability to generate code. Chapter 6, Automotive Diagnostic Command Set
API for C, describes each Automotive Diagnostic Command Set API
function. You can access the reference for each function directly from
within the function panel. The Automotive Diagnostic Command Set API
header file is nidiagcs.h. The Automotive Diagnostic Command Set
API library is nidiagcs.lib. The toolkit software includes a full set of

Chapter 3 Application Development

Automotive Diagnostic Command Set User Manual 3-2 ni.com

LabWindows/CVI examples. The examples are in the LabWindows/CVI
\samples\Automotive Diagnostic Command Set directory. Each
example includes a complete LabWindows/CVI project (.prj file). The
example description is in comments at the top of the .c file.

Visual C++ 6
The Automotive Diagnostic Command Set software supports Microsoft
Visual C/C++ 6.

The header file for Visual C/C++ 6 is in the Program Files\National
Instruments\Shared\ExternalCompilerSupport\C\include
folder. To use the Automotive Diagnostic Command Set API, include the
nidiagcs.h header file in the code, then link with the nidiagcs.lib
library file. The library file is in the Program Files\National
Instruments\Shared\ExternalCompilerSupport\C\lib32\msvc
folder.

For C applications (files with a .c extension), include the header file by
adding a #include to the beginning of the code, as follows:

#include "nidiagcs.h"

For C++ applications (files with a .cpp extension), define __cplusplus
before including the header, as follows:

#define __cplusplus

#include "nidiagcs.h"

The __cplusplus define enables the transition from C++ to the C
language functions.

Chapter 6, Automotive Diagnostic Command Set API for C, describes each
function.

On Windows Vista (with Standard User Account), the typical path to
the C examples folder is \Users\Public\Documents\National
Instruments\Automotive Diagnostic Command Set\

Examples\MS Visual C.

On Windows XP/2000, the typical path to the C examples folder is
\Documents and Settings\All Users\Documents\National

Instruments\Automotive Diagnostic Command Set\

Examples\MS Visual C.

Chapter 3 Application Development

© National Instruments Corporation 3-3 Automotive Diagnostic Command Set User Manual

Each example is in a separate folder. The example description is in
comments at the top of the .c file. At the command prompt, after setting
MSVC environment variables (such as with MS vcvars32.bat), you can
build each example using a command such as:

cl /I<HDir> GetDTCs.c <LibDir>\nidiagcs.lib

<HDir> is the folder where nidiagcs.h can be found.

<LibDir> is the folder where nidiagcs.lib can be found.

Other Programming Languages
The Automotive Diagnostic Command Set software does not provide
formal support for programming languages other than those described in
the preceding sections. If the programming language includes a mechanism
to call a Dynamic Link Library (DLL), you can create code to call
Automotive Diagnostic Command Set functions. All functions for the
Automotive Diagnostic Command Set API are in nidiagcs.dll. If the
programming language supports the Microsoft Win32 APIs, you can load
pointers to Automotive Diagnostic Command Set functions in the
application. The following section describes how to use the Win32
functions for C/C++ environments other than Visual C/C++ 6. For more
detailed information, refer to Microsoft documentation.

The following C language code fragment shows how to call Win32
LoadLibrary to load the Automotive Diagnostic Command Set API DLL:

#include <windows.h>

#include "nidiagcs.h"

HINSTANCE NiDiagCSLib = NULL;

NiMcLib = LoadLibrary("nidiagcs.dll");

Next, the application must call the Win32 GetProcAddress function to
obtain a pointer to each Automotive Diagnostic Command Set function the
application uses. For each function, you must declare a pointer variable
using the prototype of the function. For the Automotive Diagnostic
Command Set function prototypes, refer to Chapter 6, Automotive
Diagnostic Command Set API for C. Before exiting the application, you
must unload the Automotive Diagnostic Command Set DLL as follows:

FreeLibrary (NiDiagCSLib);

Chapter 3 Application Development

Automotive Diagnostic Command Set User Manual 3-4 ni.com

Application Development on CompactRIO or R Series
To run a project on an FPGA target, you need an FPGA bitfile (.lvbitx).
The FPGA bitfile is downloaded to the FPGA target on the execution host.
A bitfile is a compiled version of an FPGA VI. FPGA VIs, and thus bitfiles,
define the CAN, analog, digital, and pulse width modulation (PWM) inputs
and outputs of an FPGA target. The Automotive Diagnostic Command Set
does not include FPGA bitfiles for any FPGA target. Refer to the
LabVIEW FPGA Module documentation for more information about
creating FPGA VIs and bitfiles for an FPGA target.

The default FPGA VI is sufficient for a basic Automotive Diagnostic
Command Set application. However, in some situations you may need to
modify the existing FPGA code to create a custom bitfile. For example,
to use additional I/O on the FPGA target, you must add these I/O to the
FPGA VI. You must install the LabVIEW FPGA Module to create these
files.

Modify the FPGA VI according to the following guidelines:

• Do not modify, remove, or rename any block diagram controls and
indicators named __CAN Rx Data, __CAN Rx Ready, __CAN Tx
Data Frame, __CAN Tx Ready, __CAN Bit Timing, __CAN_FPGA Is
Running, __CAN Start, __FIFO Full, or __CAN FIFO Empty.

• Do not modify the CAN read and write code except to filter CAN IDs
on the receiving side to minimize the amount of CAN data transfers to
the host.

• As you create controls or indicators, ensure that each control name is
unique within the VI.

Refer to the LabVIEW FPGA Module documentation for more information
about creating FPGA VIs and bitfiles for an FPGA target.

Transferring Data between the FPGA and Host Computer
While you are creating or modifying the FPGA VI, it is important to know
how the Automotive Diagnostic Command Set transfers CAN data to and
from the host computer. The Automotive Diagnostic Command Set
transfers data via unique named controls and indicators between the host
computer and FPGA target.

Chapter 3 Application Development

© National Instruments Corporation 3-5 Automotive Diagnostic Command Set User Manual

Customizing the CAN Bridge (FPGA) VI
All examples for CompactRIO or R Series targets are based on the CAN
Bridge (FPGA) VI. This VI ensures that the CAN frames are received from
the CAN module and transferred to the Automotive Diagnostic Command
Set on the host. After the Automotive Diagnostic Command Set has
processed the received frame information, a CAN frame response may be
transferred to the CAN Bridge (FPGA) VI. Therefore, changing the code of
the CAN receive or transmit part of the CAN Bridge (FPGA) VI may result
in communication problems. Be careful when changing this code.

Debugging an Application
To debug your diagnostic application, use the LabVIEW example
Diagnostic Monitor.vi. This example monitors the CAN traffic the
diagnostic protocols generate on the level of individual CAN messages.
It works with all other Automotive Diagnostic Command Set examples and
diagnostic applications using the Automotive Diagnostic Command Set.
To launch this tool, open the LabVIEW Example Finder and search for
Diagnostic Monitor.vi under Hardware Input and Output/CAN/
Automotive Diagnostic Command Set/Diagnostic Monitor.

© National Instruments Corporation 4-1 Automotive Diagnostic Command Set User Manual

4
Using the Automotive
Diagnostic Command Set

Structure of the Automotive Diagnostic Command Set

Diagnostic Services Layer

KWP2000
Services

UDS (DiagOnCAN)
Services

OBD(OnBoard
Diag) Services

Auxiliary
Routines

Diagnostic Transport Layer

Connection
Management

Service
Execution

Auxiliary
Routines

Transport Protocols

ISO TP
(ISO 15765-2)

VW TP 2.0

CAN Layer (C++ DLL)

NI-CAN 2.3.3 (or Higher)

Chapter 4 Using the Automotive Diagnostic Command Set

Automotive Diagnostic Command Set User Manual 4-2 ni.com

The Automotive Diagnostic Command Set is structured into three layers of
functionality:

• The top layer implements three sets of diagnostic services for the
diagnostic protocols KWP2000, UDS (DiagOnCAN), and OBD
(On-Board Diagnostics).

• The second layer implements general routines involving opening and
closing diagnostic communication connections, connecting and
disconnecting to/from an ECU, and executing a diagnostic service on
byte level. The latter routine is the one the top layer uses heavily.

• The third layer implements the transport protocols needed for
diagnostic communication to an ECU. The second layer uses these
routines to communicate to an ECU.

All three top layers are fully implemented in LabVIEW.

The transport protocols then execute CAN Read/Write operations through
a specialized DLL for streamlining the CAN data flow, especially in higher
busload situations.

Automotive Diagnostic Command Set API Structure
The top two layer routines are available as API functions. Each diagnostic
service for KWP2000, UDS, and OBD is available as one routine. Also
available on the top level are auxiliary routines for converting scaled
physical data values to and from their binary representations used in the
diagnostic services.

On the second layer are more general routines for opening and closing
diagnostic communication channels and executing a diagnostic service.
Auxiliary routines create the diagnostic CAN identifiers from the logical
ECU address.

Chapter 4 Using the Automotive Diagnostic Command Set

© National Instruments Corporation 4-3 Automotive Diagnostic Command Set User Manual

General Programming Model

First, you must open a diagnostic communication link. This involves
initializing the CAN port and defining communication parameters such as
the baud rate and CAN identifiers on which the diagnostic communication
takes place. No actual communication to the ECU takes place at this stage.

For the VW TP 2.0, you then must establish a communication channel to
the ECU using the VWTP Connect routine. The communication channel
properties are negotiated between the host and ECU.

After these steps, the diagnostic communication is established, and you can
execute diagnostic services of your choice. Note that for the VW TP 2.0,
you must execute the VWTP ConnectionTest routine periodically (once per
second) to keep the communication channel open.

VW TP?

VW TP?

Done?

VW TP?

Yes

No

Yes

Yes

No

No

No

Yes

Open Diagnostic

VWTP Connect

Execute a
Diagnostic Service

Periodically Execute
VWTP ConnectionTest

VWTP Disconnect

Close Diagnostic

Chapter 4 Using the Automotive Diagnostic Command Set

Automotive Diagnostic Command Set User Manual 4-4 ni.com

When you finish your diagnostic services, you must close the diagnostic
communication link. This finally closes the CAN port. For the VW TP 2.0,
you should disconnect the communication channel established before
closing.

Available Diagnostic Services
The standards on automotive diagnostic define many different services for
many purposes. Unfortunately, most services leave a large amount of room
for manufacturer-specific variants and extensions. National Instruments
implemented the most used variants while trying not to overload them with
optional parameters.

However, all services are implemented in LabVIEW and open to the user.
If you are missing a service or variant of an existing service, you can easily
add or modify it on your own.

In the C API, you can also implement your own diagnostic services using
the ndDiagnosticService routine. However, the templates from the existing
services are not available.

Tweaking the Transport Protocol
A set of global constants controls transport protocol behavior. These
constants default to maximum performance. To check the properties of an
implementation of a transport protocol in an ECU, for example, you may
want to change the constants to nonstandard values using the Get/Set
Property routines.

The transport protocols also are fully implemented in LabVIEW and open
to the user. In LabVIEW, you can even modify the protocol behavior
(for example, you can send undefined responses to check the behavior of an
implementation).

However, be sure to save the original routine versions to restore the original
behavior.

In the C API, changing the global constants is the only way to modify the
transport protocol.

© National Instruments Corporation 5-1 Automotive Diagnostic Command Set User Manual

5
Automotive Diagnostic
Command Set API for LabVIEW

This chapter lists the LabVIEW VIs for the Automotive Diagnostic Command Set API and
describes the format, purpose, and parameters for each VI. The VIs are listed alphabetically
in four categories: general functions, KWP2000 services, UDS (DiagOnCAN) services, and
OBD (On-Board Diagnostics) services.

Section Headings
The following are section headings found in the Automotive Diagnostic Command Set API
for LabVIEW VIs.

Purpose
Each VI description briefly describes the VI purpose.

Format
The format section describes the VI format.

Input and Output
The input and output sections list the VI parameters.

Description
The description section gives details about the VI purpose and effect.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-2 ni.com

List of VIs
The following table is an alphabetical list of the Automotive Diagnostic Command Set VIs.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW

Function Purpose

ClearDiagnosticInformation.vi Executes the ClearDiagnosticInformation
service and clears selected Diagnostic
Trouble Codes (DTCs).

Close Diagnostic.vi Closes a diagnostic session.

ControlDTCSetting.vi Executes the ControlDTCSetting service and
modifies the generation behavior of selected
Diagnostic Trouble Codes (DTCs).

Convert from Phys.vi Converts a physical data value into a binary
representation using a type descriptor.

Convert to Phys.vi Converts a binary representation of a value
into its physical value using a type
descriptor.

Create Extended CAN IDs.vi Creates diagnostic CAN IDs according to
ISO 15765-2.

Diag Get Property.vi Gets a diagnostic global internal parameter.

Diag Set Property.vi Sets a diagnostic global internal parameter.

Diagnostic Service.vi Executes a generic diagnostic service. If a
special service is not available through the
KWP2000, UDS, or OBD service functions,
you can build it using this VI.

DisableNormalMessageTransmission.vi Executes the
DisableNormalMessageTransmission
service. The ECU no longer transmits
its regular communication messages
(usually CAN messages).

DTC to String.vi Returns a string representation (such as
P1234) for a 2-byte Diagnostic Trouble
Code (DTC).

ECUReset.vi Executes the ECUReset service and resets
the ECU.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-3 Automotive Diagnostic Command Set User Manual

EnableNormalMessageTransmission.vi Executes the
EnableNormalMessageTransmission
service. The ECU starts transmitting
its regular communication messages
(usually CAN messages).

InputOutputControlByLocalIdentifier.vi Executes the
InputOutputControlByLocalIdentifier
service. Modifies the ECU I/O port behavior.

OBD Clear Emission Related Diagnostic
Information.vi

Executes the OBD Clear Emission Related
Diagnostic Information service. Clears
emission-related Diagnostic Trouble Codes
(DTCs) in the ECU.

OBD Open.vi Opens an OBD-II diagnostic session on a
CAN port.

OBD Request Control Of On-Board Device.vi Executes the OBD Request Control Of
On-Board Device service. Use this VI to
modify ECU I/O port behavior.

OBD Request Current Powertrain Diagnostic
Data.vi

Executes the OBD Request Current
Powertrain Diagnostic Data service.
Reads a data record from the ECU.

OBD Request Emission Related DTCs.vi Executes the OBD Request Emission
Related DTCs service. Reads all
emission-related Diagnostic Trouble Codes
(DTCs).

OBD Request Emission Related DTCs During
Current Drive Cycle.vi

Executes the OBD Request Emission
Related DTCs During Current Drive Cycle
service. Reads the emission-related
Diagnostic Trouble Codes (DTCs) that
occurred during the current (or last
completed) drive cycle.

OBD Request On-Board Monitoring Test
Results.vi

Executes the OBD Request On-Board
Monitoring Test Results service. Reads
a test data record from the ECU.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-4 ni.com

OBD Request Permanent Fault Codes.vi Executes the OBD Request Permanent Fault
Codes service. All permanent Diagnostic
Trouble Codes (DTCs) are read.

OBD Request Powertrain Freeze Frame Data.vi Executes the OBD Request Powertrain
Freeze Frame Data service. Reads a data
record from the ECU that has been stored
while a Diagnostic Trouble Code occurred.

OBD Request Supported PIDs.vi Executes the OBD Request Current
Powertrain Diagnostic Data service to
retrieve the valid PID values for this service.

OBD Request Vehicle Information.vi Executes the OBD Request Vehicle
Information service. Reads a set of
information data from the ECU.

Open Diagnostic.vi Opens a diagnostic session on a CAN port.
Communication to the ECU is not yet
started.

ReadDataByLocalIdentifier.vi Executes the ReadDataByLocalIdentifier
service. Reads a data record from the ECU.

ReadDTCByStatus.vi Executes the
ReadDiagnosticTroubleCodesByStatus
service. Reads selected Diagnostic Trouble
Codes (DTCs).

ReadECUIdentification.vi Executes the ReadECUIdentification
service. Returns ECU identification data
from the ECU.

ReadMemoryByAddress.vi Executes the ReadMemoryByAddress
service. Reads data from the ECU memory.

ReadStatusOfDTC.vi Executes the
ReadStatusOfDiagnosticTroubleCodes
service. Reads selected Diagnostic Trouble
Codes (DTCs).

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-5 Automotive Diagnostic Command Set User Manual

RequestRoutineResultsByLocalIdentifier.vi Executes the
RequestRoutineResultsByLocalIdentifier
service. Returns results from a routine on the
ECU.

RequestSeed.vi Executes the SecurityAccess service to
retrieve a seed from the ECU.

SendKey.vi Executes the SecurityAccess service to send
a key to the ECU.

StartDiagnosticSession.vi Executes the StartDiagnosticSession service.
Sets up the ECU in a specific diagnostic
mode.

StartRoutineByLocalIdentifier.vi Executes the StartRoutineByLocalIdentifier
service. Executes a routine on the ECU.

StopDiagnosticSession.vi Executes the StopDiagnosticSession service.
Brings the ECU back in normal mode.

StopRoutineByLocalIdentifier.vi Executes the StopRoutineByLocalIdentifier
service. Stops a routine on the ECU.

TesterPresent.vi Executes the TesterPresent service. Keeps
the ECU in diagnostic mode.

UDS ClearDiagnosticInformation.vi Executes the UDS
ClearDiagnosticInformation service. Clears
selected Diagnostic Trouble Codes (DTCs).

UDS CommunicationControl.vi Executes the UDS CommunicationControl
service. Use this VI to switch on or off
transmission and/or reception of the normal
communication messages (usually CAN
messages).

UDS ControlDTCSetting.vi Executes the UDS ControlDTCSetting
service. Modifies Diagnostic Trouble Code
(DTC) generation behavior.

UDS DiagnosticSessionControl.vi Executes the UDS
DiagnosticSessionControl service. Sets up
the ECU in a specific diagnostic mode.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-6 ni.com

UDS ECUReset.vi Executes the UDS ECUReset service.
Resets the ECU.

UDS InputOutputControlByIdentifier.vi Executes the UDS
InputOutputControlByIdentifier service.
Use this VI to modify ECU I/O port
behavior.

UDS ReadDataByIdentifier.vi Executes the UDS ReadDataByIdentifier
service. Reads a data record from the ECU.

UDS ReadMemoryByAddress.vi Executes the UDS ReadMemoryByAddress
service. Reads data from the ECU memory.

UDS ReportDTCBySeverityMaskRecord.vi Executes the
ReportDTCBySeverityMaskRecord
subfunction of the UDS
ReadDiagnosticTroubleCodeInformation
service. Reads selected Diagnostic Trouble
Codes (DTCs).

UDS ReportDTCByStatusMask.vi Executes the ReportDTCByStatusMask
subfunction of the UDS
ReadDiagnosticTroubleCodeInformation
service. Reads selected Diagnostic Trouble
Codes (DTCs).

UDS ReportSeverityInformationOfDTC.vi Executes the
ReportSeverityInformationOfDTC
subfunction of the UDS
ReadDiagnosticTroubleCodeInformation
service. Reads selected Diagnostic Trouble
Codes (DTCs).

UDS ReportSupportedDTCs.vi Executes the ReportSupportedDTCs
subfunction of the UDS
ReadDiagnosticTroubleCodeInformation
service. Reads all supported Diagnostic
Trouble Codes (DTCs).

UDS RequestDownload.vi Initiates a download of data to the ECU.

UDS RequestSeed.vi Executes the UDS SecurityAccess service to
retrieve a seed from the ECU.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-7 Automotive Diagnostic Command Set User Manual

UDS RequestTransferExit.vi Terminates a download/upload process.

UDS RequestUpload.vi Initiates an upload of data from the ECU.

UDS RoutineControl.vi Executes the UDS RoutineControl service.
Executes a routine on the ECU.

UDS SendKey.vi Executes the SecurityAccess service to send
a key to the ECU.

UDS TesterPresent.vi Executes the UDS TesterPresent service.
Keeps the ECU in diagnostic mode.

UDS TransferData.vi Transfers data to/from the ECU in a
download/upload process.

UDS WriteDataByIdentifier.vi Executes the UDS WriteDataByIdentifier
service. Writes a data record to the ECU.

UDS WriteMemoryByAddress.vi Executes the UDS WriteMemoryByAddress
service. Writes data to the ECU memory.

VWTP Connect.vi Establishes a connection channel to an ECU
using the VW TP 2.0.

VWTP Connection Test.vi Maintains a connection channel to an ECU
using the VW TP 2.0.

VWTP Disconnect.vi Terminates a connection channel to an ECU
using the VW TP 2.0.

WriteDataByLocalIdentifier.vi Executes the WriteDataByLocalIdentifier
service. Writes a data record to the ECU.

WriteMemoryByAddress.vi Executes the WriteMemoryByAddress
service. Writes data to the ECU memory.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-8 ni.com

General Functions

Close Diagnostic.vi

Purpose
Closes a diagnostic session.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-9 Automotive Diagnostic Command Set User Manual

Output
error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
The diagnostic session specified by diag ref in is closed, and you can no longer use it for
communication to an ECU. Note that this command does not communicate the closing to
the ECU before terminating; if this is necessary, you must manually do so (for example,
by calling StopDiagnosticSession.vi) before calling Close Diagnostic.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-10 ni.com

Convert from Phys.vi

Purpose
Converts a physical data value into a binary representation using a type descriptor.

Format

Input
type descriptor is a cluster that specifies the conversion of the physical
value to its binary representation:

Start Byte gives the start byte of the binary representation. For
Convert from Phys.vi, this value is ignored and always assumed
to be 0.

Byte Length is the binary representation byte length.

Byte Order is the byte ordering of the data in the binary
representation:

0: MSB_FIRST (Motorola)

1: LSB_FIRST (Intel)

Data Type is the binary representation format:

0: Unsigned. Only byte lengths of 1–4 are allowed.

1: Signed. Only byte lengths of 1–4 are allowed.

2: Float. Only byte lengths of 4 or 8 are allowed.

Scale Factor defines the physical value scaling:

Phys = (Scale Factor) * (binary representation) + (Scale Offset)

Scale Offset (refer to Scale Factor)

value is the physical value to be converted.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-11 Automotive Diagnostic Command Set User Manual

Output
data out is the binary representation of the physical value. If you build a
record of multiple values, you can concatenate the outputs of several
instances of Convert from Phys.vi.

Description
Data input to diagnostic services (for example, WriteDataByLocalIdentifier.vi) is usually a
byte stream of binary data. If you have a description of the data input (for example, byte 3 and
4 are engine RPM scaled as .25 * × RPM in Motorola representation), you can use Convert
from Phys.vi to convert the physical value to the byte stream by filling an appropriate type
descriptor cluster.

Convert from Phys.vi converts only the portion specified by one type descriptor to a binary
representation. If your data input consists of several values, you can use Convert from
Phys.vi multiple times and concatenate their outputs.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-12 ni.com

Convert to Phys.vi

Purpose
Converts a binary representation of a value into its physical value using a type descriptor.

Format

Input
type descriptor is a cluster that specifies the conversion of the binary
representation to its physical value:

Start Byte gives the binary representation start byte in the data in
record.

Byte Length is the binary representation byte length.

Byte Order is the byte ordering of the data in the binary
representation:

0: MSB_FIRST (Motorola)

1: LSB_FIRST (Intel)

Data Type is the binary representation format:

0: Unsigned. Only byte lengths of 1–4 are allowed.

1: Signed. Only byte lengths of 1–4 are allowed.

2: Float. Only byte lengths of 4 or 8 are allowed.

Scale Factor defines the physical value scaling:

Phys = (Scale Factor) * (binary representation) + (Scale Offset)

Scale Offset (refer to Scale Factor)

data in is the data record from which physical values are to be extracted.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-13 Automotive Diagnostic Command Set User Manual

Output
value is the physical value extracted from the record.

Description
Data output from diagnostic services (for example, ReadDataByLocalIdentifier.vi) is
usually a byte stream of binary data. If you have a description of the data output (for example,
byte 3 and 4 are engine RPM scaled as .25 * × RPM in Motorola representation), you can
use Convert to Phys.vi to extract the physical value from the byte stream by filling an
appropriate type descriptor cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-14 ni.com

Create Extended CAN IDs.vi

Purpose
Creates diagnostic CAN IDs according to ISO 15765-2.

Format

Input
addressing mode specifies whether the ECU is physically or functionally
addressed.

transport protocol specifies whether normal or mixed mode addressing is
used.

source address is the logical address of the host (diagnostic tester).

target address is the ECU logical address.

Output
transmit ID is the generated CAN identifier for sending diagnostic request
messages from the host to the ECU.

receive ID is the generated CAN identifier for sending diagnostic response
messages from the ECU to the host.

Description
ISO 15765-2 specifies a method (extended/29 bit) of creating CAN identifiers for diagnostic
applications given the addressing mode (physical/functional), the transport protocol
(normal/mixed), and the 8-bit source and target addresses. This VI implements the
construction of these CAN identifiers. You can use them directly in Open Diagnostic.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-15 Automotive Diagnostic Command Set User Manual

Diag Get Property.vi

Purpose
Gets a diagnostic global internal parameter.

Format

Input
property ID defines the parameter whose value is to be retrieved. You can
create the values using an Enum control.

0 Timeout Diag Command is the timeout in milliseconds the master
waits for the response to a diagnostic request message. The default is
1000 ms.

1 Timeout FC (Bs) is the timeout in milliseconds the master waits
for a Flow Control frame after sending a First Frame or the last
Consecutive Frame of a block. The default is 250 ms.

2 Timeout CF (Cr) is the timeout in milliseconds the master waits
for a Consecutive Frame in a multiframe response. The default is
250 ms.

3 Receive Block Size (BS) is the number of Consecutive Frames the
slave sends in one block before waiting for the next Flow Control
frame. A value of 0 (default) means all Consecutive Frames are sent
in one run without interruption.

4 Wait Time CF (STmin) defines the minimum time for the slave to
wait between sending two Consecutive Frames of a block. Values
from 0 to 127 are wait times in milliseconds. Values 241 to 249
(Hex F1 to F9) mean wait times of 100 µs to 900 µs, respectively.
All other values are reserved. The default is 5 ms.

5 Max Wait Frames (N_WFTmax) is the maximum number of WAIT
frames the master accepts before terminating the connection. The
default is 10.

6 Wait Frames to Send (N_WAIT) is the number of WAIT frames the
master sends every time before a CTS frame is sent. If this value is

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-16 ni.com

set to a negative number (for example, 0xFFFFFFFF = –1), the
master sends an OVERLOAD frame instead of a WAIT, and
reception is aborted. The default is 0 for maximum speed.

7 Time between Waits (T_W) is the number of milliseconds the
master waits after sending a WAIT frame. The default is 25.

8 Fill CAN Frames returns whether a CAN frame is transmitted with
8 bytes or less.

0: Short CAN frames are sent with DLC < 8.

1: Short CAN frames are filled to 8 bytes with Fill Byte (default).

9 Fill Byte returns the CAN frame content if filled with defined data or
random data bytes.

0–255: Byte is used optionally to fill short CAN frames.

256: Short CAN frames are filled optionally with random bytes.

The default is 255 (0xFF).

10 Invalid Response as Error returns how the toolkit handles an
invalid ECU response.

0: Invalid response is indicated by success? = FALSE only (default).

1: Invalid response is returned as an error in addition.

11 Max RspPending Count is the number of times a
ReqCorrectlyRcvd-RspPending (0x78) Negative Response Message
will be accepted to extend the command timeout (default 5). If this
message is sent more often in response to a request, an error –8120 is
returned. If the ECU implements commands with a long duration
(for example, flash commands), you may need to extend this number.

12 VWTP Command Time Out is the time in milliseconds the host
waits for a VWTP 2.0 command to be executed (default 50 ms). The
specification states this as 50 ms plus the network latency, but some
ECUs may require higher values.

error in is a cluster that describes error conditions occurring before the VI
executes. It is copied unchanged to error out and has no other effect on the
VI. It is provided for sequencing purposes only.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-17 Automotive Diagnostic Command Set User Manual

Output
property value is the requested property value.

error out describes error conditions. It is copied unchanged from the error
in cluster. It is provided for sequencing purposes only.

Description
Use this VI to request several internal diagnostic parameters, such as timeouts for the
transport protocol. Use Diag Set Property.vi to modify them.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-18 ni.com

Diag Set Property.vi

Purpose
Sets a diagnostic global internal parameter.

Format

Input
property ID defines the parameter whose value is to be retrieved. You can
create the values using an Enum control.

0 Timeout Diag Command is the timeout in milliseconds the master
waits for the response to a diagnostic request message. The default is
1000 ms.

1 Timeout FC (Bs) is the timeout in milliseconds the master waits
for a Flow Control frame after sending a First Frame or the last
Consecutive Frame of a block. The default is 250 ms.

2 Timeout CF (Cr) is the timeout in milliseconds the master waits
for a Consecutive Frame in a multiframe response. The default is
250 ms.

3 Receive Block Size (BS) is the number of Consecutive Frames the
slave sends in one block before waiting for the next Flow Control
frame. A value of 0 (default) means all Consecutive Frames are sent
in one run without interruption.

4 Wait Time CF (STmin) defines the minimum time for the slave to
wait between sending two Consecutive Frames of a block. Values
from 0 to 127 are wait times in milliseconds. Values 241 to 249
(Hex F1 to F9) mean wait times of 100 µs to 900 µs, respectively.
All other values are reserved. The default is 5 ms.

5 Max Wait Frames (N_WFTmax) is the maximum number of WAIT
frames the master accepts before terminating the connection. The
default is 10.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-19 Automotive Diagnostic Command Set User Manual

6 Wait Frames to Send (N_WAIT) is the number of WAIT frames the
master sends every time before a CTS frame is sent. If this value is
set to a negative number (for example, 0xFFFFFFFF = –1), the
master sends an OVERLOAD frame instead of a WAIT, and
reception is aborted. The default is 0 for maximum speed.

7 Time between Waits (T_W) is the number of milliseconds the
master waits after sending a WAIT frame. The default is 25.

8 Fill CAN Frames specifies whether a CAN frame is transmitted with
8 bytes or less.

0: Short CAN frames are sent with DLC < 8.

1: Short CAN frames are filled to 8 bytes with Fill Byte (default).

9 Fill Byte specifies the CAN frame content, filled with defined data or
random data.

0–255: Byte is used optionally to fill short CAN frames.

256: Short CAN frames are filled optionally with random bytes.

The default is 255 (0xFF).

10 Invalid Response as Error specifies how the toolkit handles an
invalid ECU response.

0: Invalid response is indicated by success? = FALSE only (default).

1: Invalid response is returned as an error in addition.

11 Max RspPending Count defines the number of times a
ReqCorrectlyRcvd-RspPending (0x78) Negative Response Message
will be accepted to extend the command timeout (default 5). If this
message is sent more often in response to a request, an error –8120 is
returned. If the ECU implements commands with a long duration
(for example, flash commands), you may need to extend this number.

12 VWTP Command Time Out sets the time in milliseconds the host
waits for a VWTP 2.0 command to be executed (default 50 ms). The
specification states this as 50 ms plus the network latency, but some
ECUs may require higher values.

property value is the value of the property to be set.

error in is a cluster that describes error conditions occurring before the VI
executes. It is copied unchanged to error out and has no other effect on the
VI. It is provided for sequencing purposes only.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-20 ni.com

Output

error out describes error conditions. It is copied unchanged from the error
in cluster. It is provided for sequencing purposes only.

Description
Use this VI to set several internal diagnostic parameters such as timeouts for the transport
protocol. Use Diag Get Property.vi to read them out.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-21 Automotive Diagnostic Command Set User Manual

Diagnostic Service.vi

Purpose
Executes a generic diagnostic service. If a special service is not available through the
KWP2000, UDS, or OBD service functions, you can build it using this VI.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

require response? indicates whether a diagnostic service expects a
response (TRUE) or not (FALSE). In the latter case, error code is returned
as 0, and data out as an empty array.

data in defines the diagnostic service request message sent to the ECU as
a stream of bytes.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-22 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

error code is the error code sent with a negative response message. In
addition, the error cluster indicates an error and gives a more detailed
description. If no negative response message occurred, 0 is returned.

data out returns the diagnostic service response message (positive or
negative) the ECU sends as a stream of bytes.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
Diagnostic Service.vi is a generic routine to execute any diagnostic service. The request and
response messages are fed unmodified to the data in input and retrieved from the data out
output, respectively. No interpretation of the contents is done, with one exception: the error
number is retrieved from a negative response, if one occurs. In this case, an error also is
communicated through the error out cluster.

All specialized diagnostic services call Diagnostic Service.vi internally.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-23 Automotive Diagnostic Command Set User Manual

DTC to String.vi

Purpose
Returns a string representation (such as P1234) for a 2-byte Diagnostic Trouble Code (DTC).

Format

Input
DTC (num) is the DTC number as returned in the clusters of
ReadDTCByStatus.vi, ReadStatusOfDTC.vi,
UDS ReportDTCBySeverityMaskRecord.vi,
UDS ReportDTCByStatusMask.vi,
UDS ReportSeverityInformationOfDTC.vi,
UDS ReportSupportedDTCs.vi, OBD Request Emission Related
DTCs.vi, or OBD Request Emission Related DTCs During Current
Drive Cycle.vi.

Note This VI converts only 2-byte DTCs. If you feed in larger numbers, the VI returns
garbage.

Output
DTC (string) is the DTC string representation.

Description
The SAE J2012 standard specifies a naming scheme for 2-byte DTCs consisting of one letter
and four digits. Use DTC to String.vi to convert a DTC numerical representation to this
name.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-24 ni.com

OBD Open.vi

Purpose
Opens an OBD-II diagnostic session on a CAN port.

Format

Input
CAN interface specifies the CAN interface on which the diagnostic
communication should take place.

NI-CAN

The CAN interface is the name of the NI-CAN Network Interface Object
to configure. This name uses the syntax CANx, where x is a decimal number
starting at 0 that indicates the CAN network interface (CAN0, CAN1, up to
CAN63). CAN network interface names are associated with physical CAN
ports using Measurement and Automation Explorer (MAX).

NI-XNET

By default, the Automotive Diagnostic Command Set uses NI-CAN for
CAN communication. This means you must define an NI-CAN interface
for your NI-XNET hardware (NI-CAN compatibility mode) to use your
XNET hardware for CAN communication. However, to use your NI-XNET
interface in the native NI-XNET mode (meaning it does not use the
NI-XNET Compatibility Layer), you must define your interface
under NI-XNET Devices in MAX and pass the NI-XNET interface
name that the Automotive Diagnostic Command Set will use. To do
this, add @ni_genie_nixnet to the protocol string (for example,
CAN1@ni_genie_nixnet). The interface name is related to the NI-XNET
hardware naming under Devices and Interfaces in MAX.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that
handles the CAN communication between the host system and FPGA. To
access the CAN module on the FPGA, you must specify the bitfile name
after the @ (for example, CAN1@MyBitfile.lvbitx). To specify a special

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-25 Automotive Diagnostic Command Set User Manual

RIO target, you can specify that target by its name followed by the bitfile
name (for example, CAN1@RIO1,MyBitfile.lvbitx). Currently, only a
single CAN interface is supported. RIO1 defines the RIO target name as
defined in your LabVIEW Project definition. The lvbitx filename represents
the filename and location of the bitfile on the host if using RIO or on a
CompactRIO target. This implies that you must download the bitfile to the
CompactRIO target before you can run your application. You may specify
an absolute path or a path relative to the root of your target for the bitfile.

baudrate is the diagnostic communication baud rate.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster
to a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a cluster containing all necessary diagnostic session
information. Wire this cluster as a handle to all subsequent diagnostic
VIs and close it using Close Diagnostic.vi.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-26 ni.com

Description
Use this VI to open a diagnostic communication channel to an ECU for OBD-II. The CAN
port specified as input is initialized, and a handle to it is stored (among other internal data)
in the diag ref out cluster, which serves as reference for further diagnostic functions.

Possible examples of selections for the interface parameter for the various hardware targets
are as follows.

Using NI-CAN hardware:

• CAN0—uses CAN interface 0.

• CAN1—uses CAN interface 1 and so on with the form CANx.

• CAN256—uses virtual NI-CAN interface 256.

Using NI-XNET hardware:

• CAN1@ni_genie_nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@ni_genie_nixnet—uses CAN interface 2 of an NI-XNET device and so on with
the form CANx.

Using R Series:

• CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses a named target RIO1 as compiled
into the bitfile at location c:\temp\MyFpgaBitfile.lvbitx.

Using CompactRIO

• CAN1@ \MyFpgaBitfile.lvbitx—uses compiled bitfile MyFpgaBitfile.lvbitx,
which must be FTP copied to the root of the CompactRIO target.

First, communication to the ECU is tried on the default 11-bit OBD CAN identifiers; if that
fails, the default 29-bit OBD CAN identifiers are tried. If that also fails, the VI returns an
error.

You can overwrite the default OBD CAN identifiers optionally with any other identifiers.

In general, it is not necessary to manipulate the diag ref out cluster contents.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-27 Automotive Diagnostic Command Set User Manual

Open Diagnostic.vi

Purpose
Opens a diagnostic session on a CAN port. Communication to the ECU is not yet started.

Format

Input
CAN interface specifies the CAN interface on which the diagnostic
communication should take place. The values are CAN0, CAN1, and so on.

NI-CAN

The CAN interface is the name of the NI-CAN Network Interface Object
to configure. This name uses the syntax CANx, where x is a decimal number
starting at 0 that indicates the CAN network interface (CAN0, CAN1, up to
CAN63). CAN network interface names are associated with physical CAN
ports using Measurement and Automation Explorer (MAX).

NI-XNET

By default, the Automotive Diagnostic Command Set uses NI-CAN for
CAN communication. This means you must define an NI-CAN interface
for your NI-XNET hardware (NI-CAN compatibility mode) to use your
XNET hardware for CAN communication. However, to use your NI-XNET
interface in the native NI-XNET mode (meaning it does not use the
NI-XNET Compatibility Layer), you must define your interface
under NI-XNET Devices in MAX and pass the NI-XNET interface
name that the Automotive Diagnostic Command Set will use. To do
this, add @ni_genie_nixnet to the protocol string (for example,
CAN1@ni_genie_nixnet). The interface name is related to the NI-XNET
hardware naming under Devices and Interfaces in MAX.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that
handles the CAN communication between the host system and FPGA. To
access the CAN module on the FPGA, you must specify the bitfile name

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-28 ni.com

after the @ (for example, CAN1@MyBitfile.lvbitx). To specify a special
RIO target, you can specify that target by its name followed by the bitfile
name (for example, CAN1@RIO1,MyBitfile.lvbitx). Currently, only a
single CAN interface is supported. RIO1 defines the RIO target name as
defined in your LabVIEW Project definition. The lvbitx filename represents
the filename and location of the bitfile on the host if using RIO or on a
CompactRIO target. This implies that you must download the bitfile to the
CompactRIO target before you can run your application. You may specify
an absolute path or a path relative to the root of your target for the bitfile.

baudrate is the diagnostic communication baud rate.

transport protocol specifies the transport protocol for transferring the
diagnostic service messages over the CAN network. The following values
are valid and can be obtained through an enum control:

0 ISO TP—Normal Mode: The ISO TP as specified in ISO 15765-2
is used; all eight data bytes of the CAN messages are used for data
transfer.

1 ISO TP—Mixed Mode: The ISO TP as specified in ISO 15765-2 is
used; the first data byte is used as address extension.

2 VW TP 2.0

transmit ID is the CAN identifier for sending diagnostic request messages
from the host to the ECU. To specify an extended (29-bit) ID, OR the value
with 0x20000000.

receive ID is the CAN identifier or sending diagnostic response messages
from the ECU to the host. To specify an extended (29-bit) ID, OR the value
with 0x20000000.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-29 Automotive Diagnostic Command Set User Manual

source identifies the VI where the error occurred.

Output
diag ref out is a cluster containing all necessary diagnostic session
information. Wire this cluster as a handle to all subsequent diagnostic VIs
and close it using Close Diagnostic.vi.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
Open Diagnostic.vi opens a diagnostic communication channel to an ECU. The CAN port
specified as input is initialized, and a handle to it is stored (among other internal data) in the
diag ref out cluster, which serves as reference for further diagnostic functions.

Possible examples of selections for the interface parameter for the various hardware targets
are as follows.

Using NI-CAN hardware:

• CAN0—uses CAN interface 0.

• CAN1—uses CAN interface 1 and so on with the form CANx.

• CAN256—uses virtual NI-CAN interface 256.

• CAN257—uses virtual NI-CAN interface 257.

Using NI-XNET hardware:

• CAN1@ni_genie_nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@ni_genie_nixnet—uses CAN interface 2 of an NI-XNET device and so on with
the form CANx.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-30 ni.com

Using R Series:

• CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses a named target RIO1 as compiled
into the bitfile at c:\temp\MyFpgaBitfile.lvbitx.

Using CompactRIO

• CAN1@ \MyFpgaBitfile.lvbitx—uses compiled bitfile MyFpgaBitfile.lvbitx,
which must be FTP copied to the root of the CompactRIO target.

Note No communication to the ECU takes place at this point. To open a diagnostic session
on the ECU, call StartDiagnosticSession.vi or UDS DiagnosticSessionControl.vi.

In general, it is not necessary to manipulate the diag ref out cluster contents, with one notable
exception: If you use the ISO TP—Mixed Mode transport protocol, you must store the
address extensions for transmit and receive in the appropriate cluster members.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-31 Automotive Diagnostic Command Set User Manual

VWTP Connect.vi

Purpose
Establishes a connection channel to an ECU using the VW TP 2.0.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

channel ID defines the CAN identifier on which the ECU responds for this
connection. The ECU defines the ID on which the host transmits.

application type specifies the type of communication that takes place on
the communication channel. For diagnostic applications, specify
KWP2000 (1). The other values are for manufacturer-specific purposes.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-32 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
For the VW TP 2.0, you must establish a connection to the ECU before any diagnostic
communication can occur. This VI sets up a unique communication channel to an ECU for
subsequent diagnostic service requests.

Note You must maintain the communication link you created by periodically (at least
once a second) calling VWTP Connection Test.vi.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special
communication link.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-33 Automotive Diagnostic Command Set User Manual

VWTP Connection Test.vi

Purpose
Maintains a connection channel to an ECU using the VW TP 2.0.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-34 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
For the VW TP 2.0, you must periodically maintain the connection link to the ECU so that
the ECU does not terminate it.

This VI sends a Connection Test message to the ECU and evaluates its response, performing
the steps necessary to maintain the connection.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special
communication link.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-35 Automotive Diagnostic Command Set User Manual

VWTP Disconnect.vi

Purpose
Terminates a connection channel to an ECU using the VW TP 2.0.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-36 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
For the VW TP 2.0, you must disconnect the connection link to the ECU to properly terminate
communication to the ECU. This VI sends the proper disconnect messages and unlinks the
communication.

You can create a new connection to the same ECU using VWTP Connect.vi again.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special
communication link.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-37 Automotive Diagnostic Command Set User Manual

KWP2000 Services

ClearDiagnosticInformation.vi

Purpose
Executes the ClearDiagnosticInformation service and clears selected Diagnostic Trouble
Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

The DTC descriptor is given here as a parameter basically to convert the
group of DTC parameter to a binary representation according to DTC
Byte Length and Byte Order.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-38 ni.com

group of DTC specifies the group of Diagnostic Trouble Codes to be
cleared. The following values have a special meaning, and you can specify
them through a ring control:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network-related DTCs

0xFF00 All DTCs

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-39 Automotive Diagnostic Command Set User Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI clears the diagnostic information on the ECU memory. If the group of DTC
parameter is present, the ECU is requested to clear all memory including the DTCs.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-40 ni.com

ControlDTCSetting.vi

Purpose
Executes the ControlDTCSetting service and modifies the generation behavior of selected
Diagnostic Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

The DTC descriptor is given here as a parameter basically to convert the
group of DTC parameter to a binary representation according to DTC
Byte Length and Byte Order.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

data in specifies application-specific data that control DTC generation.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-41 Automotive Diagnostic Command Set User Manual

group of DTC specifies the group of Diagnostic Trouble Codes to be
controlled. The following values have a special meaning, and you can
specify them through a ring control:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network-related DTCs

0xFF00 All DTCs

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-42 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-43 Automotive Diagnostic Command Set User Manual

DisableNormalMessageTransmission.vi

Purpose
Executes the DisableNormalMessageTransmission service. The ECU no longer transmits its
regular communication messages (usually CAN messages).

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

response required? indicates whether the ECU answers this service
(TRUE, default) or not (FALSE). In the latter case, success? is TRUE.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-44 ni.com

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-45 Automotive Diagnostic Command Set User Manual

ECUReset.vi

Purpose
Executes the ECUReset service. Resets the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

mode indicates the reset mode:

Hex Description

01 PowerOn

This value identifies the PowerOn ResetMode, a simulated
PowerOn reset that most ECUs perform after the ignition
OFF/ON cycle. When the ECU performs the reset, the client
(tester) re-establishes communication.

02 PowerOnWhileMaintainingCommunication

This value identifies the PowerOn ResetMode, a simulated
PowerOn reset that most ECUs perform after the ignition
OFF/ON cycle. When the ECU performs the reset, the server
(ECU) maintains communication with the client (tester).

03–7F Reserved

80–FF ManufacturerSpecific

This range of values is reserved for vehicle manufacturer-specific
use.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-46 ni.com

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI requests the ECU to perform an ECU reset effectively based on the mode parameter
value content. The vehicle manufacturer determines when the positive response message is
sent.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-47 Automotive Diagnostic Command Set User Manual

EnableNormalMessageTransmission.vi

Purpose
Executes the EnableNormalMessageTransmission service. The ECU starts transmitting its
regular communication messages (usually CAN messages).

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

response required? indicates whether the ECU answers this service
(TRUE, default) or not (FALSE). In the latter case, success? is TRUE.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-48 ni.com

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-49 Automotive Diagnostic Command Set User Manual

InputOutputControlByLocalIdentifier.vi

Purpose
Executes the InputOutputControlByLocalIdentifier service. Modifies ECU I/O port behavior.

Format

Input
data in defines application-specific data for this service.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

local ID defines the local identifier of the I/O to be manipulated. The values
are application specific.

mode defines the type of I/O control. The values are application specific.
The usual values are:

0: ReturnControlToECU

1: ReportCurrentState

4: ResetToDefault

5: FreezeCurrentState

7: ShortTermAdjustment

8: LongTermAdjustment

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-50 ni.com

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns application-specific data for this service.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI substitutes a value for an input signal or internal ECU function. It also controls an
output (actuator) of an electronic system referenced by the local ID parameter.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-51 Automotive Diagnostic Command Set User Manual

ReadDataByLocalIdentifier.vi

Purpose
Executes the ReadDataByLocalIdentifier service. Reads a data record from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

local ID defines the local identifier of the data to be read. The values are
application specific.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns the data record from the ECU. If you know the record data
description, you can interpret this record using Convert from Phys.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-52 ni.com

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI requests data record values from the ECU identified by the local ID parameter.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-53 Automotive Diagnostic Command Set User Manual

ReadDTCByStatus.vi

Purpose
Executes the ReadDiagnosticTroubleCodesByStatus service. Reads selected Diagnostic
Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description
and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-54 ni.com

mode defines the type of DTCs to be read. The values are application
specific. The usual values are:

2: AllIdentified

3: AllSupported

group of DTC specifies the group of Diagnostic Trouble Codes to be read.
The following values have a special meaning, and you can specify them
through a ring control:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network-related DTCs

0xFF00 All DTCs

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default
2-byte DTCs, you can use DTC to String.vi to convert this to
readable format as defined by SAE J2012.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-55 Automotive Diagnostic Command Set User Manual

Status is the DTC status. Usually, this is a bit field with the
following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Add Data contains optional additional data for this DTC. Usually,
this does not contain valid information (refer to DTC descriptor)

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI reads DTCs by status from the ECU memory. If you use the optional group of DTC
parameter, the ECU reports DTCs only with status information based on the functional group
selected by group of DTC.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-56 ni.com

ReadECUIdentification.vi

Purpose
Executes the ReadECUIdentification service. Returns ECU identification data.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

mode indicates the type of identification information to be returned. The
values are application specific.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns the ECU identification data.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-57 Automotive Diagnostic Command Set User Manual

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI requests identification data from the ECU. The mode parameter identifies the type of
identification data requested. The ECU returns identification data that the data out parameter
can access. The data out format and definition are vehicle manufacturer specific.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-58 ni.com

ReadMemoryByAddress.vi

Purpose
Executes the ReadMemoryByAddress service. Reads data from the ECU memory.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

address defines the memory address from which data are to be read. Notice
that only three bytes are sent to the ECU, so the address must be in the range
0–FFFFFF (hex).

size defines the length of the memory block to be read.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-59 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

Data out returns the memory data from the ECU.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI requests memory data from the ECU identified by the address and size parameters.
The data out format and definition are vehicle manufacturer specific. data out includes
analog input and output signals, digital input and output signals, internal data, and system
status information if the ECU supports them.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-60 ni.com

ReadStatusOfDTC.vi

Purpose
Executes the ReadStatusOfDiagnosticTroubleCodes service. Reads selected Diagnostic
Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description
and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-61 Automotive Diagnostic Command Set User Manual

group of DTC specifies the group of Diagnostic Trouble Codes to be read.
The following values have a special meaning, and you can specify them
through a ring control:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network-related DTCs

0xFF00 All DTCs

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default
2-byte DTCs, you can use DTC to String.vi to convert this to
readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with the
following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-62 ni.com

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Add Data contains optional additional data for this DTC. Usually,
this does not contain valid information (refer to DTC descriptor)

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI reads diagnostic trouble codes from the ECU memory. If you use the optional group
of DTC parameter, the ECU reports DTCs based only on the functional group selected by
group of DTC.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-63 Automotive Diagnostic Command Set User Manual

RequestRoutineResultsByLocalIdentifier.vi

Purpose
Executes the RequestRoutineResultsByLocalIdentifier service. Returns results from a routine
on the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

local ID defines the local identifier of the routine from which this VI
retrieves results. The values are application specific.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-64 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns application-specific output parameters from the routine.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI requests results (for example, exit status information) referenced by local ID and
generated by the routine executed in the ECU memory.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-65 Automotive Diagnostic Command Set User Manual

RequestSeed.vi

Purpose
Executes the SecurityAccess service to retrieve a seed from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

access mode indicates the security level to be granted. The values are
application specific. This is an odd number, usually 1.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

seed out returns the seed from the ECU.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-66 ni.com

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using RequestSeed.vi with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using SendKey.vi with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is
returned.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-67 Automotive Diagnostic Command Set User Manual

SendKey.vi

Purpose
Executes the SecurityAccess service to send a key to the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

access mode indicates the security level to be granted. The values are
application specific. This is an even number, usually 2.

key in defines the key data to be sent to the ECU.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-68 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using RequestSeed.vi with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using SendKey.vi with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is
returned.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-69 Automotive Diagnostic Command Set User Manual

StartDiagnosticSession.vi

Purpose
Executes the StartDiagnosticSession service. Sets up the ECU in a specific diagnostic mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

mode indicates the diagnostic mode into which the ECU is brought. The
values are application specific.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-70 ni.com

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI enables different diagnostic modes in the ECU. The possible diagnostic modes are
not defined in the ISO 14230 standard and are application specific. A diagnostic session starts
only if communication with the ECU is established. For more details about starting
communication, refer to the ISO 14230-2 standard. If no diagnostic session has been
requested after Open Diagnostic.vi, a default session is automatically enabled in the ECU.
The default session supports at least the following services:

• The StopCommunication service (refer to Close Diagnostic.vi and the ISO 14230-2
standard).

• The TesterPresent service (refer to TesterPresent.vi and the ISO 14230-3 standard).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-71 Automotive Diagnostic Command Set User Manual

StartRoutineByLocalIdentifier.vi

Purpose
Executes the StartRoutineByLocalIdentifier service. Executes a routine on the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

local ID defines the local identifier of the routine to be started. The values
are application specific.

data in defines application-specific input parameters for the routine.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-72 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns application-specific output parameters from the routine.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI starts a routine in the ECU memory. The routine in the ECU starts after the positive
response message is sent. The routine stops until StopRoutineByLocalIdentifier.vi is
issued. The routines could be either tests run instead of normal operating code or routines
enabled and executed with the normal operating code running. In the first case, you may need
to switch the ECU to a specific diagnostic mode using StartDiagnosticSession.vi or unlock
the ECU using the SecurityAccess service prior to using StartRoutineByLocalIdentifier.vi.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-73 Automotive Diagnostic Command Set User Manual

StopDiagnosticSession.vi

Purpose
Executes the StopDiagnosticSession service. Returns the ECU to normal mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-74 ni.com

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI disables the current ECU diagnostic mode. A diagnostic session stops only if
communication is established with the ECU and a diagnostic session is running. If no
diagnostic session is running, the default session is active. StopDiagnosticSession.vi cannot
disable the default session. If the ECU has stopped the current diagnostic session, it performs
the necessary action to restore its normal operating conditions. Restoring the normal
operating conditions of the ECU may include resetting all controlled actuators if they were
activated during the diagnostic session being stopped, and resuming all normal ECU
algorithms. You should call StopDiagnosticSession.vi before disabling communication with
Close Diagnostic.vi, but only if you previously used StartDiagnosticSession.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-75 Automotive Diagnostic Command Set User Manual

StopRoutineByLocalIdentifier.vi

Purpose
Executes the StopRoutineByLocalIdentifier service. Stops a routine on the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

local ID defines the local identifier of the routine to be stopped. The values
are application specific.

data in defines application-specific input parameters for the routine.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-76 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns application-specific output parameters from the routine.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI stops a routine in the ECU memory referenced by the local ID parameter.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-77 Automotive Diagnostic Command Set User Manual

TesterPresent.vi

Purpose
Executes the TesterPresent service. Keeps the ECU in diagnostic mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

response required? indicates whether the ECU answers this service
(TRUE, default) or not (FALSE). In the latter case, success? is TRUE.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-78 ni.com

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
To ensure proper ECU operation, you may need to keep the ECU informed that a diagnostic
session is still in progress. If you do not send this information (for example, because the
communication is broken), the ECU returns to normal mode from diagnostic mode after a
while.

The TesterPresent service is this “keep alive” signal. It does not affect any other ECU
operation.

Keep calling TesterPresent.vi within the ECU timeout period if no other service is executed.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-79 Automotive Diagnostic Command Set User Manual

WriteDataByLocalIdentifier.vi

Purpose
Executes the WriteDataByLocalIdentifier service. Writes a data record to the ECU.

Format

Input
data in defines the data record written to the ECU. If you know the record
data description, you can use Convert from Phys.vi to generate this
record.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

local ID defines the local identifier of the data to be written. The values are
application specific.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-80 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI performs the KWP2000 WriteDataByLocalIdentifier service and writes
RecordValues (data values) to the ECU. data in identifies the data. The vehicle manufacturer
must ensure the ECU conditions are met when performing this service. Typical use cases are
clearing nonvolatile memory, resetting learned values, setting option content, setting the
Vehicle Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-81 Automotive Diagnostic Command Set User Manual

WriteMemoryByAddress.vi

Purpose
Executes the WriteMemoryByAddress service. Writes data to the ECU memory.

Format

Input
data in defines the memory block to be written to the ECU.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

address defines the memory address to which data are written. Notice that
only three bytes are sent to the ECU, so the address must be in the range
0–FFFFFF (hex).

size defines the length of the memory block to be written.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-82 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI performs the KWP2000 WriteDataByAddress service and writes RecordValues (data
values) to the ECU. address and size identify the data. The vehicle manufacturer must ensure
the ECU conditions are met when performing this service. Typical use cases are clearing
nonvolatile memory, resetting learned values, setting option content, setting the Vehicle
Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-83 Automotive Diagnostic Command Set User Manual

UDS (DiagOnCAN) Services

UDS ClearDiagnosticInformation.vi

Purpose
Executes the UDS ClearDiagnosticInformation service. Clears selected Diagnostic Trouble
Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

The DTC descriptor is given here as a parameter basically to convert the
group of DTC parameter to a binary representation according to DTC
Byte Length and Byte Order.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-84 ni.com

group of DTC specifies the group of Diagnostic Trouble Codes to be
cleared. The values are application specific. The following value has a
special meaning, and you can specify it through a ring control:

0xFFFFFF All DTCs

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-85 Automotive Diagnostic Command Set User Manual

Description
This VI clears the diagnostic information on the ECU memory. If the group of DTC
parameter is present, the ECU is requested to clear all memory including the DTCs.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-86 ni.com

UDS CommunicationControl.vi

Purpose
Executes the UDS CommunicationControl service. Use this VI to switch transmission and/or
reception of the normal communication messages (usually CAN messages) on or off.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

type indicates whether transmission/reception is to be switched on/off.
The usual values are:

00: enableRxAndTx

01: enableRxAndDisableTx

02: disableRxAndEnableTx

03: disableRxAndTx

communication type is a bitfield indicating the application level to
change. The usual values are:

01: application

02: networkManagement

You can change more than one level at a time.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-87 Automotive Diagnostic Command Set User Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI executes the UDS CommunicationControl service and switches transmission and/or
reception of the normal communication messages (usually CAN messages) on or off. The
type and communication type parameters are vehicle manufacturer specific (one OEM may
disable the transmission only, while another OEM may disable the transmission and the
reception based on vehicle manufacturer specific needs). The request is either transmitted
functionally addressed to all ECUs with a single request message, or transmitted physically
addressed to each ECU in a separate request message.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-88 ni.com

UDS ControlDTCSetting.vi

Purpose
Executes the UDS ControlDTCSetting service. Modifies Diagnostic Trouble Code (DTC)
generation behavior.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

data in specifies application-specific data that control DTC generation.

type specifies the control mode:

1: on

2: off

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-89 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-90 ni.com

UDS DiagnosticSessionControl.vi

Purpose
Executes the UDS DiagnosticSessionControl service. Sets up the ECU in a specific diagnostic
mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

mode indicates the diagnostic mode into which the ECU is brought.
The values are application specific. The usual values are:

01: defaultSession

02: ECUProgrammingSession

03: ECUExtendedDiagnosticSession

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-91 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

session parameter record returns implementation-dependent data from
the ECU.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-92 ni.com

UDS ECUReset.vi

Purpose
Executes the UDS ECUReset service. Resets the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

mode indicates the reset mode:

Hex Description

01 hardReset

02 keyOffOnReset

03 softReset

04 enableRapidPowerShutDown

05 disableRapidPowerShutDown

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-93 Automotive Diagnostic Command Set User Manual

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

power down time returns the minimum standby sequence time that the
server remains in the power-down sequence in seconds. A value of FF hex
indicates a failure or time not available.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI requests the ECU to perform an ECU reset effectively based on the mode parameter
value content. The vehicle manufacturer determines when the positive response message is
sent.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-94 ni.com

UDS InputOutputControlByIdentifier.vi

Purpose
Executes the UDS InputOutputControlByIdentifier service. Modifies ECU I/O port behavior.

Format

Input
data in defines application specific data for this service.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

ID defines the identifier of the I/O to be manipulated. The values are
application specific.

mode defines the I/O control type. The values are application specific.
The usual values are:

0: ReturnControlToECU

1: ResetToDefault

2: FreezeCurrentState

3: ShortTermAdjustment

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-95 Automotive Diagnostic Command Set User Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns application-specific data for this service.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI substitutes a value for an input signal or internal ECU function. It also controls an
output (actuator) of an electronic system referenced by the local ID parameter.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-96 ni.com

UDS ReadDataByIdentifier.vi

Purpose
Executes the UDS ReadDataByIdentifier service. Reads a data record from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

ID defines the identifier of the data to be read. The values are application
specific.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns the data record from the ECU. If you know the record data
description, you can use Convert to Phys.vi to interpret this record.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-97 Automotive Diagnostic Command Set User Manual

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI requests data record values from the ECU identified by the ID parameter.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-98 ni.com

UDS ReadMemoryByAddress.vi

Purpose
Executes the UDS ReadMemoryByAddress service. Reads data from the ECU memory.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

address defines the memory address from which data are to be read. Only
three bytes are sent to the ECU, so the address must be in the range
0–FFFFFF (hex).

size defines the length of the memory block to be read.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-99 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns the ECU memory data.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI requests ECU memory data identified by the address and size parameters. The data
out format and definition are vehicle manufacturer specific. data out includes analog input
and output signals, digital input and output signals, internal data, and system status
information if the ECU supports them.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-100 ni.com

UDS ReportDTCBySeverityMaskRecord.vi

Purpose
Executes the ReportDTCBySeverityMaskRecord subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes
(DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 3 for UDS.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. For this subfunction, the
default is 2.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description
and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

severity mask defines the status of DTCs to be read. The values are
application specific.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-101 Automotive Diagnostic Command Set User Manual

status defines the status of DTCs to be read. The values are application
specific.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code.

Status is the DTC status. Usually, this is a bit field with following
meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-102 ni.com

Add Data contains optional additional data for this DTC.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

status avail mask is an application-specific value returned for all DTCs.

Description
This VI executes the ReportDTCBySeverityMaskRecord subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-103 Automotive Diagnostic Command Set User Manual

UDS ReportDTCByStatusMask.vi

Purpose
Executes the ReportDTCByStatusMask subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes
(DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 3 for UDS.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description
and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

status mask defines the status of DTCs to be read. The values are
application specific.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-104 ni.com

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code.

Status is the DTC status. Usually, this is a bit field with following
meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Add Data contains optional additional data for this DTC. Usually,
this does not contain valid information (refer to DTC descriptor).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-105 Automotive Diagnostic Command Set User Manual

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

status avail mask is an application-specific value returned for all DTCs.

Description
This VI executes the ReportDTCByStatusMask subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs from the ECU.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-106 ni.com

UDS ReportSeverityInformationOfDTC.vi

Purpose
Executes the ReportSeverityInformationOfDTC subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes
(DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 3 for UDS.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. For this subfunction, the
default is 2.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description
and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

DTC mask record defines the status of DTCs to be read. The values are
application specific.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-107 Automotive Diagnostic Command Set User Manual

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code.

Status is the DTC status. Usually, this is a bit field with following
meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Add Data contains optional additional data for this DTC.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-108 ni.com

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

status avail mask is an application-specific value returned for all DTCs.

Description
This VI executes the ReportSeverityInformationOfDTC subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs from the ECU
memory.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-109 Automotive Diagnostic Command Set User Manual

UDS ReportSupportedDTCs.vi

Purpose

Executes the ReportSupportedDTCs subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service. Reads all supported
Diagnostic Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 3 for UDS.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description
and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-110 ni.com

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code.

Status is the DTC status. Usually, this is a bit field with following
meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Add Data contains optional additional data for this DTC. Usually,
this does not contain valid information (refer to DTC descriptor).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-111 Automotive Diagnostic Command Set User Manual

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

status avail mask is an application-specific value returned for all DTCs.

Description
This VI executes the ReportSupportedDTCs subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service and reads all supported DTCs from the
ECU memory.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-112 ni.com

UDS RequestDownload.vi

Purpose

Initiates a download of data to the ECU.

Format

Input
data format identifier defines the compression and encryption scheme to
be used for the data blocks written to the ECU. A value of 0 means no
compression/no encryption. Nonzero values are not standardized and
implementation dependent.

diag ref in specifies the handle for the diagnostic session. This is obtained
from Open Diagnostic.vi and wired through subsequent diagnostic VIs.
Normally, it is not necessary to manually manipulate the elements of this
cluster.

memory address defines the memory address to which data are written.

memory size defines the size of the data to be written.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-113 Automotive Diagnostic Command Set User Manual

source identifies the VI where the error occurred.

memory address length defines the number of bytes of the
memory address parameter that are written to the ECU. This value is
implementation dependent and must be in the range of 1–4. For example,
if this value is 2, only the two lowest bytes of the address are written to
the ECU.

memory size length defines the number of bytes of the memory size
parameter that are written to the ECU. This value is implementation
dependent and must be in the range of 1–4. For example, if this value is 2,
only the two lowest bytes of the size are written to the ECU.

Output
diag ref out is a copy of diag ref in. It can be wired to subsequent
diagnostic VIs.

block size returns the number of data bytes to be transferred to the ECU in
subsequent UDS TransferData.vi requests.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
UDS RequestDownload.vi initiates the download of a data block to the ECU. This is
required to set up the download process; the actual data transfer occurs with subsequent UDS
TransferData.vi requests. The transfer must occur in blocks of the size that this service
returns (the block size parameter). After the download completes, use the UDS
RequestTransferExit.vi service to terminate the process.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-114 ni.com

UDS RequestSeed.vi

Purpose
Executes the UDS SecurityAccess service to retrieve a seed from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

access mode indicates the security level to be granted. The values are
application specific. This is an odd number, usually 1.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

seed out returns the seed from the ECU.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-115 Automotive Diagnostic Command Set User Manual

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using UDS RequestSeed.vi with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using UDS SendKey.vi with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is
returned.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-116 ni.com

UDS RequestTransferExit.vi

Purpose
Terminates a download/upload process.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

data in defines a data record to be written to the ECU as part of the
termination process. The meaning is implementation dependent; this might
be a checksum or a similar verification instrument.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-117 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. It can be wired to subsequent
diagnostic VIs.

data out returns a memory data block from the ECU as part of the
termination process. The meaning is implementation dependent; this might
be a checksum or a similar verification instrument.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
UDS RequestTransferExit.vi terminates a download or upload process initialized with UDS
RequestDownload.vi or UDS RequestUpload.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-118 ni.com

UDS RequestUpload.vi

Purpose
Initiates an upload of data from the ECU.

Format

Input
data format identifier defines the compression and encryption scheme to
be used for the data blocks read from the ECU. A value of 0 means no
compression/no encryption. Nonzero values are not standardized and
implementation dependent.

diag ref in specifies the handle for the diagnostic session. This is obtained
from Open Diagnostic.vi and wired through subsequent diagnostic VIs.
Normally, it is not necessary to manually manipulate the elements of this
cluster.

memory address defines the memory address from which data are read.

memory size defines the size of the data to be read.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-119 Automotive Diagnostic Command Set User Manual

source identifies the VI where the error occurred.

memory address length defines the number of bytes of the
memory address parameter that are written to the ECU. This value is
implementation dependent and must be in the range of 1–4. For example,
if this value is 2, only the two lowest bytes of the address are written to
the ECU.

memory size length defines the number of bytes of the memory size
parameter that are written to the ECU. This value is implementation
dependent and must be in the range of 1–4. For example, if this value is 2,
only the two lowest bytes of the size are written to the ECU.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

block size returns the number of data bytes to be transferred from the ECU
in subsequent UDS TransferData.vi requests.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
UDS RequestUpload.vi initiates the upload of a data block from the ECU. This is required
to set up the upload process; the actual data transfer occurs with subsequent UDS
TransferData.vi requests. The transfer must occur in blocks of the size that this service
returns (the block size parameter). After the upload completes, use the UDS
RequestTransferExit.vi service to terminate the process.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-120 ni.com

UDS RoutineControl.vi

Purpose
Executes the UDS RoutineControl service. Executes a routine on the ECU.

Format

Input
mode defines the service operation mode. You can obtain the values from
a ring control:

1: Start Routine

2: Stop Routine

3: Request Routine Results

Other values are application specific.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

ID defines the identifier of the routine to be started. The values are
application specific.

data in defines application-specific input parameters for the routine.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-121 Automotive Diagnostic Command Set User Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns application-specific output parameters from the routine.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI executes the UDS RoutineControl service and launches an ECU routine, stops an
ECU routine, or requests ECU routine results from the ECU.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-122 ni.com

UDS SendKey.vi

Purpose
Executes the SecurityAccess service to send a key to the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

access mode indicates the security level to be granted. The values are
application specific. This is an even number, usually 2.

key in defines the key data to be sent to the ECU.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-123 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using UDS RequestSeed.vi with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using UDS SendKey.vi with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is
returned.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-124 ni.com

UDS TesterPresent.vi

Purpose
Executes the UDS TesterPresent service. Keeps the ECU in diagnostic mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

response required? indicates whether the ECU answers this service
(TRUE, default) or not (FALSE). In the latter case, success? is TRUE.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-125 Automotive Diagnostic Command Set User Manual

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
To ensure proper ECU operation, you may need to keep the ECU informed that a diagnostic
session is still in progress. If you do not send this information (for example, because the
communication is broken), the ECU returns to normal mode from diagnostic mode after a
while.

The TesterPresent service is this “keep alive” signal. It does not affect any other ECU
operation.

Keep calling UDS TesterPresent.vi within the ECU timeout period if no other service is
executed.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-126 ni.com

UDS TransferData.vi

Purpose
Transfers data to/from the ECU in a download/upload process.

Format

Input
block sequence counter in is used to number the data blocks to be
transferred to/from the ECU. The block sequence counter value starts at
01 hex with the first UDS TransferData.vi request that follows the UDS
RequestDownload.vi or UDS RequestUpload.vi service. Its value is
incremented by 1 for each subsequent UDS TransferData.vi request.
At the value of FF hex, the block sequence counter rolls over and starts
at 00 hex with the next UDS TransferData.vi request.

The block sequence counter is updated automatically and returned in the
block sequence counter out parameter.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

data in defines the data block to be written to the ECU.

For a download, this is a memory data block to be downloaded to the ECU.

For an upload, the meaning is implementation dependent; in most cases,
it is sufficient to leave the parameter empty (default).

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-127 Automotive Diagnostic Command Set User Manual

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
block sequence counter out returns the updated value of the block
sequence counter.

diag ref out is a copy of diag ref in. It can be wired to subsequent
diagnostic VIs.

data out returns the memory data from the ECU.

For a download, this might contain a checksum or similar verification
instrument; the meaning is implementation dependent.

For an upload, this is a memory data block uploaded from the ECU.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-128 ni.com

Description
UDS TransferData.vi executes the data transfer of a download process (initiated with a
previous UDS RequestDownload.vi request) or an upload process (initiated with a previous
UDS RequestUpload.vi request). The data transfer must occur in blocks of the size returned
in the block size parameter of the respective request service. After the data transfer has
completed, terminate the operation by calling the UDS RequestTransferExit.vi service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-129 Automotive Diagnostic Command Set User Manual

UDS WriteDataByIdentifier.vi

Purpose
Executes the UDS WriteDataByIdentifier service. Writes a data record to the ECU.

Format

Input
data in defines the data record to be written to the ECU. If you know the
the data description record, you can use Convert from Phys.vi to generate
this record.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

ID defines the identifier of the data to be written. The values are application
specific.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-130 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI performs the UDS service WriteDataByIdentifier and writes RecordValues (data
values) to the ECU. data in identifies the data. The vehicle manufacturer must ensure the
ECU conditions are met when performing this service. Typical use cases are clearing
nonvolatile memory, resetting learned values, setting option content, setting the Vehicle
Identification Number, or changing calibration values.

For further details about this service, refer to the 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-131 Automotive Diagnostic Command Set User Manual

UDS WriteMemoryByAddress.vi

Purpose
Executes the UDS WriteMemoryByAddress service. Writes data to the ECU memory.

Format

Input
data in defines the memory block to be written to the ECU.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

address defines the memory address to which data are to be written. Only
three bytes are sent to the ECU, so the address must be in the range
0–FFFFFF (hex).

size defines the length of the memory block to be written.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-132 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Description
This VI performs the UDS service WriteMemoryByAddress and writes RecordValues (data
values) to the ECU. address and size identify the data. The vehicle manufacturer must ensure
the ECU conditions are met when performing this service. Typical use cases are clearing
nonvolatile memory, resetting learned values, setting option content, setting the Vehicle
Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-133 Automotive Diagnostic Command Set User Manual

OBD (On-Board Diagnostics) Services

OBD Clear Emission Related Diagnostic Information.vi

Purpose
Executes the OBD Clear Emission Related Diagnostic Information service. Clears
emission-related Diagnostic Trouble Codes (DTCs) in the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-134 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-135 Automotive Diagnostic Command Set User Manual

OBD Request Control Of On-Board Device.vi

Purpose
Executes the OBD Request Control Of On-Board Device service. Modifies ECU I/O port
behavior.

Format

Input
data in defines application-specific data for this service.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

TID defines the test identifier of the I/O to be manipulated. The values are
application specific.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-136 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns application-specific data for this service.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-137 Automotive Diagnostic Command Set User Manual

OBD Request Current Powertrain Diagnostic Data.vi

Purpose
Executes the OBD Request Current Powertrain Diagnostic Data service. Reads a data record
from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

PID defines the parameter identifier of the data to be read. The SAE J1979
standard defines the values.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-138 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns the ECU data record. If you know the record data
description, you can use Convert from Phys.vi to interpret this record.
You can obtain the description from the SAE J1979 standard.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-139 Automotive Diagnostic Command Set User Manual

OBD Request Emission Related DTCs.vi

Purpose
Executes the OBD Request Emission Related DTCs service. Reads all emission-related
Diagnostic Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 0 for OBD.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description
and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-140 ni.com

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default
2-byte DTCs, you can use DTC to String.vi to convert this to
readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with the
following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

Add Data contains optional additional data for this DTC. Usually,
this does not contain valid information (refer to DTC descriptor).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-141 Automotive Diagnostic Command Set User Manual

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-142 ni.com

OBD Request Emission Related DTCs During Current Drive Cycle.vi

Purpose
Executes the OBD Request Emission Related DTCs During Current Drive Cycle service.
Reads the emission-related Diagnostic Trouble Codes (DTCs) that occurred during the
current (or last completed) drive cycle.

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 0 for OBD.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description
and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-143 Automotive Diagnostic Command Set User Manual

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default
2-byte DTCs, you can use DTC to String.vi to convert this to
readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with the
following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-144 ni.com

Add Data contains optional additional data for this DTC. Usually,
this does not contain valid information (refer to DTC descriptor).

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-145 Automotive Diagnostic Command Set User Manual

OBD Request On-Board Monitoring Test Results.vi

Purpose
Executes the OBD Request On-Board Monitoring Test Results service. Reads a test data
record from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

OBDMID defines the parameter identifier of the data to be read. The
SAE J1979 standard defines the values.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-146 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns the ECU data record. If you know the record data
description, you can use Convert from Phys.vi to interpret this record.
You can obtain the description from the SAE J1979 standard.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-147 Automotive Diagnostic Command Set User Manual

OBD Request Permanent Fault Codes.vi

Purpose
Executes the OBD Request Permanent Fault Codes service. All permanent Diagnostic
Trouble Codes (DTCs) are read.

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU
delivers:

DTC Byte Length indicates the number of bytes the ECU sends
for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends
for each DTC’s status. The default is 0 for OBD.

Add Data Byte Length indicates the number of bytes the ECU
sends for each DTC’s additional data. Usually, there is no
additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description
and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-148 ni.com

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default
2-byte DTCs, you can use DTC to String.vi to convert this to
readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with the
following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

Add Data contains optional additional data for this DTC. Usually,
this does not contain valid information (refer to DTC descriptor).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-149 Automotive Diagnostic Command Set User Manual

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-150 ni.com

OBD Request Powertrain Freeze Frame Data.vi

Purpose
Executes the OBD Request Powertrain Freeze Frame Data service. Reads an ECU data record
stored while a Diagnostic Trouble Code occurred.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

PID defines the parameter identifier of the data to be read. The SAE J1979
standard defines the values.

frame is the number of the freeze frame from which the data are to be
retrieved.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-151 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns the ECU data record. If you know the record data
description, you can use Convert from Phys.vi to interpret this record.
You can obtain the description from the SAE J1979 standard.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-152 ni.com

OBD Request Supported PIDs.vi

Purpose
Executes the OBD Request Current Powertrain Diagnostic Data service to retrieve the valid
PID values for this service.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

PIDs out returns an array of valid PIDs for the OBD Request Current
Powertrain Diagnostic Data service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-153 Automotive Diagnostic Command Set User Manual

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-154 ni.com

OBD Request Vehicle Information.vi

Purpose
Executes the OBD Request Vehicle Information service. Reads a set of information data from
the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open
Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is
not necessary to manually manipulate the elements of this cluster.

info type defines the type of information to be read. The values are defined
in the SAE J1979 standard.

error in is a cluster that describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when
status is TRUE.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments Corporation 5-155 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent
diagnostic VIs.

data out returns the vehicle information from the ECU. You can obtain the
description from the SAE J1979 standard.

success? indicates successful receipt of a positive response message for
this diagnostic service.

error out describes error conditions. If the error in cluster indicated an
error, the error out cluster contains the same information. Otherwise,
error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: the VI did not
execute the intended operation. A positive value means warning:
the VI executed intended operation, but an informational warning
is returned. For a description of the code, wire the error cluster to
a LabVIEW error-handling VI, such as the Simple Error
Handler.

source identifies the VI where the error occurred.

items is the number of data items (not bytes) this service returns.

© National Instruments Corporation 6-1 Automotive Diagnostic Command Set User Manual

6
Automotive Diagnostic
Command Set API for C

This chapter lists the Automotive Diagnostic Command Set API functions and describes their
format, purpose, and parameters. Unless otherwise stated, each Automotive Diagnostic
Command Set function suspends execution of the calling thread until it completes. The
functions are listed alphabetically in four categories: general functions, KWP2000 services,
UDS (DiagOnCAN) services, and OBD (On-Board Diagnostics) services.

Section Headings
The following are section headings found in the Automotive Diagnostic Command Set for
C functions.

Purpose
Each function description includes a brief statement of the function purpose.

Format
The format section describes the function format for the C programming language.

Input and Output
The input and output sections list the function parameters.

Description
The description section gives details about the function purpose and effect.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-2 ni.com

List of Data Types
The following data types are used with the Automotive Diagnostic Command Set API for
C functions.

Table 6-1. Data Types for the Automotive Diagnostic Command Set for C

Data Type Purpose

i8 8-bit signed integer

i16 16-bit signed integer

i32 32-bit signed integer

u8 8-bit unsigned integer

u16 16-bit unsigned integer

u32 32-bit unsigned integer

f32 32-bit floating-point number

f64 64-bit floating-point number

str ASCII string represented as an array of characters terminated by null
character ('\0'). This type is used with output strings. str is typically
used in the Automotive Diagnostic Command Set API as a pointer to a
string, as char*.

cstr ASCII string represented as an array of characters terminated by null
character ('\0'). This type is used with input strings. cstr is typically
used in the Automotive Diagnostic Command Set as a pointer to a string,
as const char*.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-3 Automotive Diagnostic Command Set User Manual

List of Functions
The following table contains an alphabetical list of the Automotive Diagnostic Command Set
API functions.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C

Function Purpose

ndClearDiagnosticInformation Executes the ClearDiagnostic
Information service. Clears
selected Diagnostic Trouble
Codes (DTCs).

ndCloseDiagnostic Closes a diagnostic session.

ndControlDTCSetting Executes the ControlDTCSetting
service. Modifies the generation
behavior of selected Diagnostic
Trouble Codes (DTCs).

ndConvertFromPhys Converts a physical data value
into a binary representation using
a type descriptor.

ndConvertToPhys Converts a binary representation
of a value into its physical value
using a type descriptor.

ndCreateExtendedCANIds Creates diagnostic CAN
identifiers according to
ISO 15765-2.

ndDiagnosticService Executes a generic diagnostic
service. If a special service is not
available through the KWP2000,
UDS, or OBD service functions,
you can build it using this
function.

ndDisableNormalMessageTransmission Executes the
DisableNormalMessage
Transmission service. The ECU
no longer transmits its regular
communication messages
(usually CAN messages).

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-4 ni.com

ndDTCToString Returns a string representation
(such as P1234) for a 2-byte
diagnostic trouble code (DTC).

ndECUReset Executes the ECUReset service.
Resets the ECU.

ndEnableNormalMessageTransmission Executes the
EnableNormalMessage
Transmission service. The ECU
starts transmitting its regular
communication messages
(usually CAN messages).

ndGetProperty Get a diagnostic global internal
parameter.

ndInputOutputControlByLocalIdentifier Executes the
InputOutputControlBy
LocalIdentifier service. Modifies
the ECU I/O port behavior.

ndOBDClearEmissionRelatedDiagnosticInformation Executes the OBD Clear
Emission Related Diagnostic
Information service. Clears
emission-related diagnostic
trouble codes (DTCs) in the ECU.

ndOBDOpen Opens a diagnostic session on a
CAN port for OBD-II.

ndOBDRequestControlOfOnBoardDevice Executes the OBD Request
Control Of On-Board Device
service. Modifies ECU I/O port
behavior.

ndOBDRequestCurrentPowertrainDiagnosticData Executes the OBD Request
Current Powertrain Diagnostic
Data service. Reads an ECU data
record.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-5 Automotive Diagnostic Command Set User Manual

ndOBDRequestEmissionRelatedDTCs Executes the OBD Request
Emission Related DTCs service.
Reads all emission-related
Diagnostic Trouble Codes
(DTCs).

ndOBDRequestEmissionRelatedDTCsDuringCurrent

DriveCycle

Executes the OBD Request
Emission Related DTCs During
Current Drive Cycle service.
Reads the emission-related
Diagnostic Trouble Codes
(DTCs) that occurred during the
current (or last completed) drive
cycle.

ndOBDRequestOnBoardMonitoringTestResults Executes the OBD Request
On-Board Monitoring Test
Results service. Reads an
ECU test data record.

ndOBDRequestPermanentFaultCodes Executes the OBD Request
Permanent Fault Codes service.
All permanent Diagnostic
Trouble Codes (DTCs) are read.

ndOBDRequestPowertrainFreezeFrameData Executes the OBD Request
Powertrain Freeze Frame Data
service. Reads an ECU data
record stored while a diagnostic
trouble code occurred.

ndOBDRequestVehicleInformation Executes the OBD Request
Vehicle Information service.
Reads a set of information data
from the ECU.

ndOpenDiagnostic Opens a diagnostic session on a
CAN port. Communication to the
ECU is not yet started.

ndReadDataByLocalIdentifier Executes the ReadDataByLocal
Identifier service. Reads an ECU
data record.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-6 ni.com

ndReadDTCByStatus Executes the
ReadDiagnosticTrouble
CodesByStatus service. Reads
selected Diagnostic Trouble
Codes (DTCs).

ndReadECUIdentification Executes the
ReadECUIdentification service.
Returns ECU identification data
from the ECU.

ndReadMemoryByAddress Executes the
ReadMemoryByAddress service.
Reads data from the ECU
memory.

ndReadStatusOfDTC Executes the
ReadStatusOfDiagnostic
TroubleCodes service. Reads
selected Diagnostic Trouble
Codes (DTCs).

ndRequestRoutineResultsByLocalIdentifier Executes the
RequestRoutineResultsByLocalI
dentifier service. Returns results
from an ECU routine.

ndRequestSeed Executes the SecurityAccess
service to retrieve a seed from
the ECU.

ndSendKey Executes the SecurityAccess
service to send a key to the ECU.

ndSetProperty Set a diagnostic global internal
parameter.

ndStartDiagnosticSession Executes the
StartDiagnosticSession service.
The ECU is set up in a specific
diagnostic mode.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-7 Automotive Diagnostic Command Set User Manual

ndStartRoutineByLocalIdentifier Executes the
StartRoutineByLocal
Identifier service. Executes a
routine on the ECU.

ndStatusToString Returns a description for an error
code.

ndStopDiagnosticSession Executes the
StopDiagnosticSession service.
Returns the ECU to normal mode.

ndStopRoutineByLocalIdentifier Executes the
StopRoutineByLocal
Identifier service. Stops a routine
on the ECU.

ndTesterPresent Executes the TesterPresent
service. Keeps the ECU in
diagnostic mode.

ndUDSClearDiagnosticInformation Executes the UDS
ClearDiagnosticInformation
service. Clears selected
Diagnostic Trouble Codes
(DTCs).

ndUDSCommunicationControl Executes the UDS
CommunicationControl service.
Switches transmission and/or
reception of the normal
communication messages
(usually CAN messages) on or
off.

ndUDSControlDTCSetting Executes the UDS
ControlDTCSetting service.
Modifies Diagnostic Trouble
Code (DTC) behavior.

ndUDSDiagnosticSessionControl Executes the UDS
DiagnosticSessionControl
service. The ECU is set up in a
specific diagnostic mode.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-8 ni.com

ndUDSECUReset Executes the UDS ECUReset
service. Resets the ECU.

ndUDSInputOutputControlByIdentifier Executes the UDS
InputOutputControlByIdentifier
service. Modifies ECU I/O port
behavior.

ndUDSReadDataByIdentifier Executes the UDS
ReadDataByIdentifier service.
Reads an ECU data record.

ndUDSReadMemoryByAddress Executes the UDS
ReadMemoryByAddress service.
Reads data from the ECU
memory.

ndUDSReportDTCBySeverityMaskRecord Executes the
ReportDTCBySeverity
MaskRecord subfunction of the
UDS ReadDiagnosticTrouble
CodeInformation service. Reads
selected Diagnostic Trouble
Codes (DTCs).

ndUDSReportDTCByStatusMask Executes the
ReportDTCByStatusMask
subfunction of the UDS
ReadDiagnosticTrouble
CodeInformation service. Reads
selected Diagnostic Trouble
Codes (DTCs).

ndUDSReportSeverityInformationOfDTC Executes the ReportSeverity
InformationOfDTC
subfunction of the UDS
ReadDiagnosticTrouble
CodeInformation service. Reads
selected Diagnostic Trouble
Codes (DTCs) are read.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-9 Automotive Diagnostic Command Set User Manual

ndUDSReportSupportedDTCs Executes the
ReportSupportedDTCs
subfunction of the UDS
ReadDiagnosticTrouble
CodeInformation service.
Reads all supported Diagnostic
Trouble Codes (DTCs).

ndUDSRequestDownload Initiates a download of data to the
ECU.

ndUDSRequestSeed Executes the UDS SecurityAccess
service to retrieve a seed from the
ECU.

ndUDSRequestTransferExit Terminates a download/upload
process.

ndUDSRequestUpload Initiates an upload of data from
the ECU.

ndUDSRoutineControl Executes the UDS
RoutineControl service. Executes
a routine on the ECU.

ndUDSSendKey Executes the UDS SecurityAccess
service to send a key to the ECU.

ndUDSTesterPresent Executes the UDS TesterPresent
service. Keeps the ECU in
diagnostic mode.

ndUDSTransferData Transfers data to/from the ECU in
a download/upload process.

ndUDSWriteDataByIdentifier Executes the UDS
WriteDataByIdentifier service.
Writes a data record to the ECU.

ndUDSWriteMemoryByAddress Executes the UDS
WriteMemoryByAddress service.
Writes data to the ECU memory.

ndVWTPConnect Establishes a connection channel
to an ECU using the VW TP 2.0.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-10 ni.com

ndVWTPConnectionTest Maintains a connection channel to
an ECU using the VW TP 2.0.

ndVWTPDisconnect Terminates a connection channel
to an ECU using the VW TP 2.0.

ndWriteDataByLocalIdentifier Executes the WriteDataByLocal
Identifier service. Writes a data
record to the ECU.

ndWriteMemoryByAddress Executes the
WriteMemoryByAddress service.
Writes data to the ECU memory.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-11 Automotive Diagnostic Command Set User Manual

General Functions

ndCloseDiagnostic

Purpose
Closes a diagnostic session.

Format
long ndCloseDiagnostic(

TD1 *diagRefIn);

Input
diagRefIn

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

Output
Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The diagnostic session diagRefIn specifies is closed, and you can no longer use it for
communication to an ECU. This command does not communicate the closing to the ECU
before terminating; if this is necessary, you must manually do so (for example, by calling
ndStopDiagnosticSession) before calling ndCloseDiagnostic.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-12 ni.com

ndConvertFromPhys

Purpose
Converts a physical data value into a binary representation using a type descriptor.

Format
void ndConvertFromPhys(

TD2 *typeDescriptor,
double value,
unsigned char dataOut[],
long *len);

Input
typeDescriptor

A struct that specifies the conversion of the physical value to its binary representation:

typedef struct {
long StartByte;
long ByteLength;
unsigned short ByteOrder;
unsigned short DataType;
double ScaleFactor;
double ScaleOffset;
} TD2;

StartByte is ignored by ndConvertFromPhys.

ByteLength is the number of bytes in the binary representation.

ByteOrder defines the byte order for multibyte representations. The values are:

0: MSB_FIRST (Motorola)

1: LSB_FIRST (Intel)

DataType is the binary representation format:

0: Unsigned. Only byte lengths of 1–4 are allowed.

1: Signed. Only byte lengths of 1–4 are allowed.

2: Float. Only byte lengths 4 or 8 are allowed.

ScaleFactor defines the physical value scaling:

Phys = (ScaleFactor) * (binary representation) + (ScaleOffset)

ScaleOffset (refer to ScaleFactor)

value

The physical value to be converted to a binary representation.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-13 Automotive Diagnostic Command Set User Manual

Output
dataOut

Points to the byte array to be filled with the binary representation of value.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

Description
Data input to diagnostic services (for example, ndWriteDataByLocalIdentifier) is
usually a byte array of binary data. If you have the data input description (for example, byte 3
and 4 are engine RPM scaled as .25 * × RPM in Motorola representation), you can use
ndConvertFromPhys to convert the physical value to the byte stream by filling an
appropriate typeDescriptor struct.

ndConvertFromPhys converts only the portion specified by one type descriptor to a binary
representation. If your data input consists of several values, you can use
ndConvertFromPhys multiple times on different parts of the byte array.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-14 ni.com

ndConvertToPhys

Purpose
Converts a binary representation of a value into its physical value using a type descriptor.

Format
void ndConvertToPhys(

TD2 *typeDescriptor,
unsigned char dataIn[],
long len,
double *value);

Input
typeDescriptor

A struct that specifies the conversion of the physical value to its binary representation:

typedef struct {
long StartByte;
long ByteLength;
unsigned short ByteOrder;
unsigned short DataType;
double ScaleFactor;
double ScaleOffset;
} TD2;

StartByte gives the start byte of the binary representation in the dataIn record.

ByteLength is the number of bytes in the binary representation.

ByteOrder defines the byte order for multibyte representations. The values are:

0: MSB_FIRST (Motorola)

1: LSB_FIRST (Intel)

DataType is the binary representation format:

0: Unsigned. Only byte lengths of 1–4 are allowed.

1: Signed. Only byte lengths of 1–4 are allowed.

2: Float. Only byte lengths 4 or 8 are allowed.

ScaleFactor defines the physical value scaling:

Phys = (ScaleFactor) * (binary representation) + (ScaleOffset)

ScaleOffset (refer to ScaleFactor)

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-15 Automotive Diagnostic Command Set User Manual

dataIn

Points to the byte array that contains the binary representation of value.

len

Must contain the dataIn array length.

Output
value

The physical value converted from the binary representation.

Description
Data output from diagnostic services (for example, ndReadDataByLocalIdentifier) is
usually a byte stream of binary data. If you have a description of the data output (for example,
byte 3 and 4 are engine RPM scaled as .25 * × RPM in Motorola representation), you can
use ndConvertToPhys to extract the physical value from the byte stream by filling an
appropriate typeDescriptor struct.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-16 ni.com

ndCreateExtendedCANIds

Purpose
Creates diagnostic CAN identifiers according to ISO 15765-2.

Format
void ndCreateExtendedCANIds (

unsigned short addressingMode,
unsigned short transportProtocol,
unsigned char sourceAddress,
unsigned char targetAddress,
unsigned long *transmitID,
unsigned long *receiveID);

Input
addressingMode

Specifies whether the ECU is physically or functionally addressed:

0: physical addressing

1: functional addressing

transportProtocol

Specifies whether normal or mixed mode addressing is used. The following values are
valid:

0 ISO TP—Normal Mode. The ISO TP as specified in ISO 15765-2 is used;
all eight data bytes of the CAN messages are used for data transfer.

1 ISO TP—Mixed Mode. The ISO TP as specified in ISO 15765-2 is used;
the first data byte is used as address extension.

sourceAddress

The host (diagnostic tester) logical address.

targetAddress

The ECU logical address.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-17 Automotive Diagnostic Command Set User Manual

Output
transmitID

The generated CAN identifier for sending diagnostic request messages from the host to
the ECU.

receiveID

The generated CAN identifier for sending diagnostic response messages from the ECU
to the host.

Description
ISO 15765-2 specifies a method for creating (extended/29 bit) CAN identifiers for diagnostic
applications given the addressing mode (physical/functional), the transport protocol
(normal/mixed), and the 8-bit source and target addresses. This function implements the
construction of these CAN identifiers. You can use them directly in the ndOpenDiagnostic
function.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-18 ni.com

ndDiagnosticService

Purpose
Executes a generic diagnostic service. If a special service is not available through the
KWP2000, UDS, or OBD service functions, you can build it using this function.

Format
long ndDiagnosticService(

TD1 *diagRef,
LVBoolean *requireResponse,
unsigned char dataIn[],
long len,
unsigned char dataOut[],
long *len2);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is
FALSE, dataOut returns no values, and len2 returns 0. This parameter is passed by
reference.

dataIn

Contains the request message byte sequence for the diagnostic service sent to the ECU.

len

Must contain the number of valid data bytes in dataIn.

Output
dataOut

Contains the response message byte sequence of the diagnostic service returned from the
ECU.

len2

On input, len2 must contain the number of bytes provided for the dataOut buffer.
On output, it returns the number of valid data bytes in dataOut.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-19 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDiagnosticService is a generic routine to execute any diagnostic service. The request
and response messages are fed unmodified to the dataIn input and retrieved from the
dataOut output, respectively. No interpretation of the contents is done, with one exception:
The error number is retrieved from a negative response, if one occurs. In this case, an error is
communicated through the return value.

All specialized diagnostic services call ndDiagnosticService internally.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-20 ni.com

ndDTCToString

Purpose
Returns a string representation (such as P1234) for a 2-byte diagnostic trouble code (DTC).

Format
void ndDTCToString(

unsigned long DTCNum,
char DTCString[],
long *len);

Input
DTCNum

The DTC number as returned in the DTCs structs of ndReadDTCByStatus,
ndReadStatusOfDTC, ndUDSReportDTCBySeverityMaskRecord,
ndUDSReportDTCByStatusMask, ndUDSReportSeverityInformationOfDTC,
ndUDSReportSupportedDTCs, ndOBDRequestEmissionRelatedDTCs, or
ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle.

Note This function converts only 2-byte DTCs. If you feed in larger numbers, the function
returns garbage.

Output
DTCString

The DTC string representation.

len

On input, len must contain the DTCString array length (at least 6). On return,
it contains the number of valid data bytes in the DTCString array.

Description
The SAE J2012 standard specifies a naming scheme for 2-byte DTCs consisting of one letter
and four digits. Use ndDTCToString to convert the DTC numerical representation to this
name.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-21 Automotive Diagnostic Command Set User Manual

ndGetProperty

Purpose
Gets a diagnostic global internal parameter.

Format
void ndGetProperty(

unsigned short propertyID,
unsigned long *propertyValue);

Input
propertyID

Defines the parameter whose value is to be retrieved:

0 Timeout Diag Command is the timeout in milliseconds the master waits for the
response to a diagnostic request message. The default is 1000 ms.

1 Timeout FC (Bs) is the timeout in milliseconds the master waits for a Flow
Control frame after sending a First Frame or the last Consecutive Frame of a
block. The default is 250 ms.

2 Timeout CF (Cr) is the timeout in milliseconds the master waits for a
Consecutive Frame in a multiframe response. The default is 250 ms.

3 Receive Block Size (BS) is the number of Consecutive Frames the slave sends
in one block before waiting for the next Flow Control frame. A value of 0
(default) means all Consecutive Frames are sent in one run without interruption.

4 Wait Time CF (STmin) defines the minimum time for the slave to wait
between sending two Consecutive Frames of a block. Values from 0 to 127 are
wait times in milliseconds. Values 241 to 249 (Hex F1 to F9) mean wait times
of 100 μs to 900 μs, respectively. All other values are reserved. The default is
5 ms.

5 Max Wait Frames (N_WFTmax) is the maximum number of WAIT frames
the master accepts before terminating the connection. The default is 10.

6 Wait Frames to Send (N_WAIT) is the number of WAIT frames the master
sends every time before a CTS frame is sent. If you set this value to a negative
number (for example, 0xFFFFFFFF = –1), the master sends an OVERLOAD
frame instead of a WAIT, and reception is aborted. The default is 0 for
maximum speed.

7 Time between Waits (T_W) is the number of milliseconds the master waits
after sending a WAIT frame. The default is 25.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-22 ni.com

8 Fill CAN Frames returns whether a CAN frame is transmitted with 8 bytes or
less.

0: Short CAN frames are sent with DLC < 8.

1: Short CAN frames are filled to 8 bytes with Fill Byte (default).

9 Fill Byte returns the CAN frame content if filled with defined data or random
data bytes.

0–255: Byte is used optionally to fill short CAN frames.

256: Short CAN frames are filled optionally with random bytes.

The default is 255 (0xFF).

10 Invalid Response as Error returns how the toolkit handles an invalid ECU
response.

0: Invalid response is indicated by success = FALSE only (default).

1: Invalid response is returned as an error in addition.

11 Max RspPending Count is the number of times a
ReqCorrectlyRcvd-RspPending (0x78) Negative Response Message will be
accepted to extend the command timeout (default 5). If this message is sent
more often in response to a request, an error –8120 is returned. If the ECU
implements commands with a long duration (for example, flash commands),
you may need to extend this number.

12 VWTP Command Time Out is the time in milliseconds the host waits for a
VWTP 2.0 command to be executed (default 50 ms). The specification states
this as 50 ms plus the network latency, but some ECUs may require higher
values.

Output
propertyValue

The requested property value.

Description
Use this function to request several internal diagnostic parameters, such as timeouts for the
transport protocol. Use ndSetProperty to modify the parameters.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-23 Automotive Diagnostic Command Set User Manual

ndOBDOpen

Purpose
Opens a diagnostic session on a CAN port for OBD-II.

Format
long ndOBDOpen (

char CANInterface[],
unsigned long baudrate,
unsigned long transmitID,
unsigned long receiveID,
TD1 *diagRefOut);

Input
CANInterface

Specifies the CAN interface on which the diagnostic communication should take place.

NI-CAN

The CAN interface is the name of the NI-CAN Network Interface Object to configure.
This name uses the syntax CANx, where x is a decimal number starting at 0 that indicates
the CAN network interface (CAN0, CAN1, up to CAN63). CAN network interface
names are associated with physical CAN ports using Measurement and Automation
Explorer (MAX).

NI-XNET

By default, the Automotive Diagnostic Command Set uses NI-CAN for CAN
communication. This means you must define an NI-CAN interface for your NI-XNET
hardware (NI-CAN compatibility mode) to use your XNET hardware for CAN
communication. However, to use your NI-XNET interface in the native NI-XNET mode
(meaning it does not use the NI-XNET Compatibility Layer), you must define your
interface under NI-XNET Devices in MAX and pass the NI-XNET interface name that
the Automotive Diagnostic Command Set will use. To do this, add @ni_genie_nixnet to
the protocol string (for example, CAN1@ni_genie_nixnet). The interface name is related
to the NI-XNET hardware naming under Devices and Interfaces in MAX.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that handles the
CAN communication between the host system and FPGA. To access the CAN module
on the FPGA, you must specify the bitfile name after the @ (for example,
CAN1@MyBitfile.lvbitx). To specify a special RIO target, you can specify that target by
its name followed by the bitfile name (for example, CAN1@RIO1,MyBitfile.lvbitx).
Currently, only a single CAN interface is supported. RIO1 defines the RIO target name
as defined in your LabVIEW Project definition. The lvbitx filename represents the

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-24 ni.com

filename and location of the bitfile on the host if using RIO or on a CompactRIO target.
This implies that you must download the bitfile to the CompactRIO target before you can
run your application. You may specify an absolute path or a path relative to the root of
your target for the bitfile.

baudrate

The diagnostic communication baud rate.

transmitID

The CAN identifier for sending diagnostic request messages from the host to the ECU.
Set to –1 (0xFFFFFFFF) for the default OBD CAN identifier.

receiveID

The CAN identifier for sending diagnostic response messages from the ECU to the host.
Set to –1 (0xFFFFFFFF) for the default OBD CAN identifier.

Output
diagRefOut

A struct containing all necessary information about the diagnostic session. This is
passed as a handle to all subsequent diagnostic functions, and you must close it using
ndCloseDiagnostic.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndOBDOpen opens a diagnostic communication channel to an ECU for OBD-II. The CAN
port specified as input is initialized, and a handle to it is stored (among other internal data)
into the diagRefOut struct, which serves as reference for further diagnostic functions.

If the transmitID and receiveID parameters are set to –1, communication is first tried on
the default 11-bit OBD CAN identifiers; if that fails, the default 29-bit OBD CAN identifiers
are tried. If that also fails, an error is returned.

If valid transmitID or receiveID parameters (11-bit or 29-bit with bit 29 set) are given,
communication is tried on these identifiers. If that fails, an error is returned.

In general, it is not necessary to manipulate the diagRefOut struct contents.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-25 Automotive Diagnostic Command Set User Manual

Possible examples of selections for the interface parameter for the various hardware targets
are as follows.

Using NI-CAN hardware:

• CAN0—uses CAN interface 0.

• CAN1—uses CAN interface 1 and so on with the form CANx.

• CAN256—uses virtual NI-CAN interface 256.

Using NI-XNET hardware:

• CAN1@ni_genie_nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@ni_genie_nixnet—uses CAN interface 2 of an NI-XNET device and so on with
the form CANx.

Using R Series:

• CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses a named target RIO1 as compiled
into the bitfile at location c:\temp\MyFpgaBitfile.lvbitx.

Using CompactRIO:

• CAN1@ \MyFpgaBitfile.lvbitx—uses compiled bitfile MyFpgaBitfile.lvbitx,
which must be FTP copied to the root of the CompactRIO target.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-26 ni.com

ndOpenDiagnostic

Purpose
Opens a diagnostic session on a CAN port. Communication to the ECU is not yet started.

Format
long ndOpenDiagnostic(

char CANInterface[],
unsigned long baudrate,
unsigned short transportProtocol,
unsigned long transmitID,
unsigned long receiveID,
TD1 *diagRefOut);

Input
CANInterface

Specifies the CAN interface on which the diagnostic communication should take place.

NI-CAN

The CAN interface is the name of the NI-CAN Network Interface Object to configure.
This name uses the syntax CANx, where x is a decimal number starting at 0 that indicates
the CAN network interface (CAN0, CAN1, up to CAN63). CAN network interface
names are associated with physical CAN ports using Measurement and Automation
Explorer (MAX).

NI-XNET

By default, the Automotive Diagnostic Command Set uses NI-CAN for CAN
communication. This means you must define an NI-CAN interface for your NI-XNET
hardware (NI-CAN compatibility mode) to use your XNET hardware for CAN
communication. However, to use your NI-XNET interface in the native NI-XNET mode
(meaning it does not use the NI-XNET Compatibility Layer), you must define your
interface under NI-XNET Devices in MAX and pass the NI-XNET interface name that
the Automotive Diagnostic Command Set will use. To do this, add @ni_genie_nixnet to
the Protocol string (for example, CAN1@ni_genie_nixnet). The interface name is related
to the NI-XNET hardware naming under Devices and Interfaces in MAX.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that handles the
CAN communication between the host system and FPGA. To access the CAN module
on the FPGA, you must specify the bitfile name after the @ (for example,
CAN1@MyBitfile.lvbitx). To specify a special RIO target, you can specify that target by
its name followed by the bitfile name (for example, CAN1@RIO1,MyBitfile.lvbitx).
Currently, only a single CAN interface is supported. RIO1 defines the RIO target name

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-27 Automotive Diagnostic Command Set User Manual

as defined in your LabVIEW Project definition. The lvbitx filename represents the
filename and location of the bitfile on the host if using RIO or on a CompactRIO target.
This implies that you must download the bitfile to the CompactRIO target before you can
run your application. You may specify an absolute path or a path relative to the root of
your target for the bitfile.

baudrate

The diagnostic communication baud rate.

transportProtocol

Specifies the transport protocol for transferring the diagnostic service messages over the
CAN network. The following values are valid:

0 ISO TP—Normal Mode. The ISO TP as specified in ISO 15765-2 is used;
all eight data bytes of the CAN messages are used for data transfer.

1 ISO TP—Mixed Mode. The ISO TP as specified in ISO 15765-2 is used;
the first data byte is used as address extension.

2 VW TP 2.0.

transmitID

The CAN identifier for sending diagnostic request messages from the host to the ECU.

receiveID

The CAN identifier for sending diagnostic response messages from the ECU to the host.

Output
diagRefOut

A struct containing all necessary information about the diagnostic session. This is passed
as a handle to all subsequent diagnostic functions, and you must close it using
ndCloseDiagnostic.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-28 ni.com

Description
ndOpenDiagnostic opens a diagnostic communication channel to an ECU. This function
initializes the CAN port specified as input and stores a handle to it (among other internal data)
into diagRefOut, which serves as reference for further diagnostic functions.

No communication to the ECU takes place at this point. To open a diagnostic session on the
ECU, call ndStartDiagnosticSession or ndUDSDiagnosticSessionControl.

In general, you do not need to manipulate the diagRefOut struct contents, except if you use
the ISO TP—Mixed Mode transport protocol, in which case you must store the address
extensions for transmit and receive in the appropriate members of that struct.

Possible examples of selections for the interface parameter for the various hardware targets
are as follows.

Using NI-CAN hardware:

• CAN0—uses CAN interface 0.

• CAN1—uses CAN interface 1 and so on with the form CANx.

• CAN256—uses virtual NI-CAN interface 256.

Using NI-XNET hardware:

• CAN1@ni_genie_nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@ni_genie_nixnet—uses CAN interface 2 of an NI-XNET device and so on with
the form CANx.

Using R Series:

• CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses a named target RIO1 as compiled
into the bitfile at location c:\temp\MyFpgaBitfile.lvbitx.

Using CompactRIO

• CAN1@ \MyFpgaBitfile.lvbitx—uses compiled bitfile MyFpgaBitfile.lvbitx,
which must be FTP copied to the root of the CompactRIO target.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-29 Automotive Diagnostic Command Set User Manual

ndSetProperty

Purpose
Sets a diagnostic global internal parameter.

Format
void ndSetProperty(

unsigned short propertyID,
unsigned long propertyValue);

Input
propertyID

Defines the parameter whose value is to be modified:

0 Timeout Diag Command is the timeout in milliseconds the master waits for the
response to a diagnostic request message. The default is 1000 ms.

1 Timeout FC (Bs) is the timeout in milliseconds the master waits for a Flow
Control frame after sending a First Frame or the last Consecutive Frame of a
block. The default is 250 ms.

2 Timeout CF (Cr) is the timeout in milliseconds the master waits for a
Consecutive Frame in a multiframe response. The default is 250 ms.

3 Receive Block Size (BS) is the number of Consecutive Frames the slave sends
in one block before waiting for the next Flow Control frame. A value of 0
(default) means all Consecutive Frames are sent in one run without interruption.

4 Wait Time CF (STmin) defines the minimum time for the slave to wait
between sending two Consecutive Frames of a block. Values from 0 to 127 are
wait times in milliseconds. Values 241 to 249 (Hex F1 to F9) mean wait times
of 100 μs to 900 μs, respectively. All other values are reserved. The default is
5 ms.

5 Max Wait Frames (N_WFTmax) is the maximum number of WAIT frames
the master accepts before terminating the connection. The default is 10.

6 Wait Frames to Send (N_WAIT) is the number of WAIT frames the master
sends every time before a CTS frame is sent. If you set this value to a negative
number (for example, 0xFFFFFFFF = –1), the master sends an OVERLOAD
frame instead of a WAIT, and reception is aborted. The default is 0 for maximum
speed.

7 Time between Waits (T_W) is the number of milliseconds the master waits
after sending a WAIT frame. The default is 25.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-30 ni.com

8 Fill CAN Frames specifies whether a CAN frame is transmitted with 8 bytes or
less.

0: Short CAN frames are sent with DLC < 8.

1: Short CAN frames are filled to 8 bytes with Fill Byte (default).

9 Fill Byte specifies the CAN frame content, filled with defined data or random
data.

0–255: Byte is used optionally to fill short CAN frames.

256: Short CAN frames are filled optionally with random bytes.

The default is 255 (0xFF).

10 Invalid Response as Error specifies how the toolkit handles an invalid ECU
response.

0: Invalid response is indicated by success = FALSE only (default).

1: Invalid response is returned as an error in addition.

11 Max RspPending Count defines the number of times a
ReqCorrectlyRcvd-RspPending (0x78) Negative Response Message will be
accepted to extend the command timeout (default 5). If this message is sent
more often in response to a request, an error –8120 is returned. If the ECU
implements commands with a long duration (for example, flash commands),
you may need to extend this number.

12 VWTP Command Time Out is the time in milliseconds the host waits for a
VWTP 2.0 command to be executed (default 50 ms). The specification states
this as 50 ms plus the network latency, but some ECUs may require higher
values.

propertyValue

The requested property value.

Output
None.

Description
Use this function to set several internal diagnostic parameters, such as timeouts for the
transport protocol. Use ndGetProperty to read them out.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-31 Automotive Diagnostic Command Set User Manual

ndStatusToString

Purpose
Returns a description for an error code.

Format
void ndStatusToString(

long errorCode,
char message[],
long *len);

Input
errorCode

The status code (return value) of any other diagnostic functions.

Output
message

Returns a descriptive string for the error code.

len

On input, len must contain the message array length. On return, it contains the number
of valid data bytes in the message array.

Description
When the status code returned from an Automotive Diagnostic Command Set function is
nonzero, an error or warning is indicated. This function obtains an error/warning description
for debugging purposes.

The return code is passed into the errorCode parameter. The len parameter indicates the
number of bytes available in the string for the description. The description is truncated to size
len if needed, but a size of 1024 characters is large enough to hold any description. The text
returned in message is null-terminated, so you can use it with ANSI C functions such as
printf. For C or C++ applications, each Automotive Diagnostic Command Set function
returns a status code as a signed 32-bit integer. The following table summarizes the
Automotive Diagnostic Command Set use of this status.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-32 ni.com

Status Code Use

The application code should check the status returned from every Automotive Diagnostic
Command Set function. If an error is detected, close all Automotive Diagnostic Command Set
handles and exit the application. If a warning is detected, you can display a message for
debugging purposes or simply ignore the warning.

The following code shows an example of handling Automotive Diagnostic Command Set
status during application debugging.

Status = ndOpenDiagnostic ("CAN0", 500000, 0, 0x7E0, 0x7E8,

&MyDiagHandle);

PrintStat (status, "ndOpenDiagnostic");

where the function PrintStat has been defined at the top of the program as:

void PrintStat(mcTypeStatus status, char *source)

{

char statusString[1024];

long len = sizeof(statusString);

if (status != 0)

{

ndStatusToString(status, statusString, &len);

printf("\n%s\nSource = %s\n", statusString, source);

if (status < 0)

{

ndCloseDiagnostic(&MyDiagHandle);

exit(1);

}

}

}

Status Code Definition

Negative Error—Function did not perform the expected behavior.

Positive Warning—Function performed as expected, but a condition arose that
may require attention.

Zero Success—Function completed successfully.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-33 Automotive Diagnostic Command Set User Manual

ndVWTPConnect

Purpose
Establishes a connection channel to an ECU using the VW TP 2.0.

Format
long ndVWTPConnect(

TD1 *diagRef,
unsigned long channelID,
unsigned char applicationType);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

channelID

Defines the CAN identifier on which the ECU responds for this connection. The ECU
defines the ID on which the host transmits.

applicationType

Specifies the communication type that takes place on the communication channel.
For diagnostic applications, specify KWP2000 (1). The other values are for
manufacturer-specific purposes.

Output
Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-34 ni.com

Description
For the VW TP 2.0, you must establish a connection to the ECU before any diagnostic
communication can occur. This function sets up a unique communication channel to an ECU
that you can use in subsequent diagnostic service requests.

You must maintain the communication link thus created by periodically (at least once a
second) calling ndVWTPConnectionTest.

No equivalent exists for the ISO TP (ISO 15765-2), as the ISO TP does not use a special
communication link.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-35 Automotive Diagnostic Command Set User Manual

ndVWTPConnectionTest

Purpose
Maintains a connection channel to an ECU using the VW TP 2.0.

Format
long ndVWTPConnectionTest(

TD1 *diagRef);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

Output

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
For the VW TP 2.0, you must periodically maintain the connection link to the ECU, so that
the ECU does not terminate it. You must execute this periodic refresh at least once per second.

This function sends a Connection Test message to the ECU and evaluates its response,
performing the necessary steps to maintain the connection.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special
communication link.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-36 ni.com

ndVWTPDisconnect

Purpose
Terminates a connection channel to an ECU using the VW TP 2.0.

Format
long ndVWTPDisconnect(

TD1 *diagRef);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

Output

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
For the VW TP 2.0, you must disconnect the ECU connection link to properly terminate
communication to the ECU. This function sends the proper disconnect messages and unlinks
the communication.

Use ndVWTPConnect the create a new connection to the same ECU.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special
communication link.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-37 Automotive Diagnostic Command Set User Manual

KWP2000 Services

ndClearDiagnosticInformation

Purpose
Executes the ClearDiagnosticInformation service. Clears selected Diagnostic Trouble Codes
(DTCs).

Format
long ndClearDiagnosticInformation(

TD1 *diagRef,
unsigned short groupOfDTC,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

groupOfDTC

Specifies the group of diagnostic trouble codes to be cleared. The following values have
a special meaning:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network related DTCs

0xFF00 All DTCs

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-38 ni.com

Description
This function clears the diagnostic information on the ECU memory. groupOfDTC specifies
the type of diagnostic trouble codes to be cleared on the ECU memory.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-39 Automotive Diagnostic Command Set User Manual

ndControlDTCSetting

Purpose
Executes the ControlDTCSetting service. Modifies the generation behavior of selected
Diagnostic Trouble Codes (DTCs).

Format
long ndControlDTCSetting(

TD1 *diagRef,
unsigned short groupOfDTC,
unsigned char dataIn[],
long len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

groupOfDTC

Specifies the group of diagnostic trouble codes to be cleared. The following values have
a special meaning:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network related DTCs

0xFF00 All DTCs

dataIn

Specifies application-specific data that control DTC generation.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-40 ni.com

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-41 Automotive Diagnostic Command Set User Manual

ndDisableNormalMessageTransmission

Purpose
Executes the DisableNormalMessageTransmission service. The ECU no longer transmits its
regular communication messages (usually CAN messages).

Format
long ndDisableNormalMessageTransmission(

TD1 *diagRef,
LVBoolean *requireResponse,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is
FALSE, no response is evaluated, and success is always returned TRUE. This
parameter is passed by reference.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-42 ni.com

ndECUReset

Purpose
Executes the ECUReset service. Resets the ECU.

Format
long ndECUReset(

TD1 *diagRef,
unsigned char mode,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

mode

Indicates the reset mode:

Hex Description

01 PowerOn

This value identifies the PowerOn ResetMode, a simulated PowerOn reset that
most ECUs perform after the ignition OFF/ON cycle. When the ECU performs
the reset, the client (tester) re-establishes communication.

02 PowerOnWhileMaintainingCommunication

This value identifies the PowerOn ResetMode, a simulated PowerOn reset that
most ECUs perform after the ignition OFF/ON cycle. When the ECU performs
the reset, the server (ECU) maintains communication with the client (tester).

03–7F Reserved

80–FF ManufacturerSpecific

This range of values is reserved for vehicle manufacturer-specific use.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-43 Automotive Diagnostic Command Set User Manual

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function requests the ECU to perform an ECU reset effectively based on the mode value
content. The vehicle manufacturer determines when the positive response message is sent.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-44 ni.com

ndEnableNormalMessageTransmission

Purpose
Executes the EnableNormalMessageTransmission service. The ECU starts transmitting its
regular communication messages (usually CAN messages).

Format
long ndEnableNormalMessageTransmission(

TD1 *diagRef,
LVBoolean *requireResponse,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is
FALSE, no response is evaluated, and success is always returned TRUE. This
parameter is passed by reference.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-45 Automotive Diagnostic Command Set User Manual

ndInputOutputControlByLocalIdentifier

Purpose
Executes the InputOutputControlByLocalIdentifier service. Modifies the ECU I/O port
behavior.

Format
long ndInputOutputControlByLocalIdentifier(

TD1 *diagRef,
unsigned char localID,
unsigned char mode,
unsigned char dataIn[],
long len,
unsigned char dataOut[],
long *len2,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

localID

Defines the local identifier of the I/O to be manipulated. The values are application
specific.

mode

Defines the I/O control type. The values are application specific. The usual values are:

0: ReturnControlToECU

1: ReportCurrentState

4: ResetToDefault

5: FreezeCurrentState

7: ShortTermAdjustment

8: LongTermAdjustment

dataIn

Defines application-specific data for this service.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-46 ni.com

Output
dataOut

Returns application-specific data for this service.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function substitutes a value for an input signal or internal ECU function. It also controls
an output (actuator) of an electronic system referenced by localID.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-47 Automotive Diagnostic Command Set User Manual

ndReadDataByLocalIdentifier

Purpose
Executes the ReadDataByLocalIdentifier service. Reads an ECU data record.

Format
long ndReadDataByLocalIdentifier(

TD1 *diagRef,
unsigned char localID,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

localID

Defines the local identifier of the data to be read. The values are application specific.

Output
dataOut

Returns the data record from the ECU. If you know the record data description, you can
use the ndConvertToPhys function to interpret it.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-48 ni.com

Description
This function requests data record values from the ECU identified by the localID parameter.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-49 Automotive Diagnostic Command Set User Manual

ndReadDTCByStatus

Purpose
Executes the ReadDiagnosticTroubleCodesByStatus service. Reads selected Diagnostic
Trouble Codes (DTCs).

Format
long ndReadDTCByStatus(

TD1 *diagRef,
unsigned char mode,
unsigned short groupOfDTC,
TD3 *DTCDescriptor,
TD4 DTCs[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

mode

Defines the type of DTCs to be read. The values are application specific. The usual values
are:

2: AllIdentified

3: AllSupported

groupOfDTC

Specifies the group of diagnostic trouble codes to be cleared. The following values have
a special meaning:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network related DTCs

0xFF00 All DTCs

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-50 ni.com

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {
long DTCByteLength;
long StatusByteLength;
long AddDataByteLength;
unsigned short ByteOrder;
} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.
The default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s
status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s
additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and
returns the resulting DTC records in the DTCs struct array.

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {
unsigned long DTC;
unsigned long Status;
unsigned long AddData;
} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use
ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-51 Automotive Diagnostic Command Set User Manual

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not
contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the
number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function reads diagnostic trouble codes by status from the ECU memory. If you set the
optional groupOfDTC parameter to the above specified codes, the ECU reports DTCs only
with status information based on the functional group selected by groupOfDTC.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-52 ni.com

ndReadECUIdentification

Purpose
Executes the ReadECUIdentification service. Returns ECU identification data.

Format
long ndReadECUIdentification(

TD1 *diagRef,
unsigned char mode,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

mode

Indicates the type of identification information to be returned. The values are application
specific.

Output
dataOut

Returns the ECU identification data.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-53 Automotive Diagnostic Command Set User Manual

Description
This function requests identification data from the ECU. mode identifies the type of
identification data requested. The ECU returns identification data that dataOut can access.
The dataOut format and definition are vehicle manufacturer specific.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-54 ni.com

ndReadMemoryByAddress

Purpose
Executes the ReadMemoryByAddress service. Reads data from the ECU memory.

Format
long ndReadMemoryByAddress(

TD1 *diagRef,
unsigned long address,
unsigned char size,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

address

Defines the memory address from which data are read. Only three bytes are sent to the
ECU, so the address must be in the range 0–FFFFFF (hex).

size

Defines the length of the memory block to be read.

Output
dataOut

Returns the ECU memory data.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-55 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function requests ECU memory data identified by the address and size parameters.
The dataOut format and definition are vehicle manufacturer specific. dataOut includes
analog input and output signals, digital input and output signals, internal data, and system
status information if the ECU supports them.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-56 ni.com

ndReadStatusOfDTC

Purpose
Executes the ReadStatusOfDiagnosticTroubleCodes service. Reads selected Diagnostic
Trouble Codes (DTCs).

Format
long ndReadStatusOfDTC(

TD1 *diagRef,
unsigned short groupOfDTC,
TD3 *DTCDescriptor,
TD4 DTCs[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

groupOfDTC

Specifies the group of diagnostic trouble codes to be cleared. The following values have
a special meaning:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network related DTCs

0xFF00 All DTCs

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {
long DTCByteLength;
long StatusByteLength;
long AddDataByteLength;
unsigned short ByteOrder;
} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.
The default is 2.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-57 Automotive Diagnostic Command Set User Manual

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s
status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s
additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and
returns the resulting DTC records in the DTCs struct array.

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {
unsigned long DTC;
unsigned long Status;
unsigned long AddData;
} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use
ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not
contain valid information (refer to DTCDescriptor).

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-58 ni.com

len

On input, len must contain the DTCs array length in elements. On return, it contains the
number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function reads diagnostic trouble codes from the ECU memory. If you specify
groupOfDTC, the ECU reports DTCs based only on the functional group selected by
groupOfDTC.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-59 Automotive Diagnostic Command Set User Manual

ndRequestRoutineResultsByLocalIdentifier

Purpose
Executes the RequestRoutineResultsByLocalIdentifier service. Returns results from an ECU
routine.

Format
long ndRequestRoutineResultsByLocalIdentifier(

TD1 *diagRef,
unsigned char localID,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

localID

Defines the local identifier of the routine from which this function retrieves results.
The values are application specific.

Output
dataOut

Returns application-specific output parameters from the routine.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-60 ni.com

Description
This function requests results (for example, exit status information) referenced by localID
and generated by the routine executed in the ECU memory.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-61 Automotive Diagnostic Command Set User Manual

ndRequestSeed

Purpose
Executes the SecurityAccess service to retrieve a seed from the ECU.

Format
long ndRequestSeed(

TD1 *diagRef,
unsigned char accessMode,
unsigned char seedOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

accessMode

Indicates the security level to be granted. The values are application specific. This is an
odd number, usually 1.

Output
seedOut

Returns the seed from the ECU.

len

On input, len must contain the seedOut array length. On return, it contains the number
of valid data bytes in the seedOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-62 ni.com

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using ndRequestSeed with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using ndSendKey with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is
returned.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-63 Automotive Diagnostic Command Set User Manual

ndSendKey

Purpose
Executes the SecurityAccess service to send a key to the ECU.

Format
long ndSendKey(

TD1 *diagRef,
unsigned char accessMode,
unsigned char keyIn[],
long len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

accessMode

Indicates the security level to be granted. The values are application specific. This is an
even number, usually 2.

keyIn

Defines the key data to be sent to the ECU.

len

Must contain the number of valid data bytes in keyIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-64 ni.com

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using ndRequestSeed with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using ndSendKey with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is
returned.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-65 Automotive Diagnostic Command Set User Manual

ndStartDiagnosticSession

Purpose
Executes the StartDiagnosticSession service. The ECU is set up in a specific diagnostic mode.

Format
long ndStartDiagnosticSession(

TD1 *diagRef,
unsigned char mode,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

mode

Indicates the diagnostic mode into which the ECU is brought. The values are application
specific.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-66 ni.com

Description
This function enables different ECU diagnostic modes. The possible diagnostic modes are
not defined in ISO 14230 and are application specific. A diagnostic session starts only if
communication with the ECU is established. For more details about starting communication,
refer to ISO 14230-2. If no diagnostic session is requested after ndOpenDiagnostic,
a default session is enabled automatically in the ECU. The default session supports at least
the following services:

• The StopCommunication service (refer to ndCloseDiagnostic and the ISO 14230-2
standard).

• The TesterPresent service (refer to ndTesterPresent and the ISO 14230-3 standard).

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-67 Automotive Diagnostic Command Set User Manual

ndStartRoutineByLocalIdentifier

Purpose
Executes the StartRoutineByLocalIdentifier service. Executes a routine on the ECU.

Format
long ndStartRoutineByLocalIdentifier(

TD1 *diagRef,
unsigned char localID,
unsigned char dataIn[],
long len,
unsigned char dataOut[],
long *len2,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

localID

Defines the local identifier of the routine to be started. The values are application
specific.

dataIn

Defines application-specific input parameters for the routine.

len

Must contain the number of valid data bytes in dataIn.

Output
dataOut

Returns application-specific output parameters from the routine.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-68 ni.com

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function starts a routine in the ECU memory. The ECU routine starts after the positive
response message is sent. The routine stops until the ndStopRoutineByLocalIdentifier
function and corresponding service are issued. The routines could be either tests that run
instead of normal operating code or routines enabled and executed with the normal operating
code running. In the first case, you may need to switch the ECU to a specific diagnostic mode
using ndOpenDiagnostic or unlock the ECU using the SecurityAccess service prior to
using ndStartRoutineByLocalIdentifier.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-69 Automotive Diagnostic Command Set User Manual

ndStopDiagnosticSession

Purpose
Executes the StopDiagnosticSession service. Returns the ECU to normal mode.

Format
long ndStopDiagnosticSession(

TD1 *diagRef,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function disables the current ECU diagnostic mode. A diagnostic session stops only if
communication with the ECU is established and a diagnostic session is running. If no
diagnostic session is running, the default session is active. ndStopDiagnosticSession
cannot disable the default session. If the ECU stops the current diagnostic session, it performs
the necessary action to restore its normal operating conditions. Restoring the normal
ECU operating conditions may include resetting all controlled actuators activated during
the diagnostic session being stopped, and resuming all normal ECU algorithms. You
should call ndStopDiagnosticSession before disabling communication with
ndCloseDiagnostic, but only if you previously used ndStartDiagnosticSession.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-70 ni.com

ndStopRoutineByLocalIdentifier

Purpose
Executes the StopRoutineByLocalIdentifier service. Stops a routine on the ECU.

Format
long ndStopRoutineByLocalIdentifier(

TD1 *diagRef,
unsigned char localID,
unsigned char dataIn[],
long len,
unsigned char dataOut[],
long *len2,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

localID

Defines the local identifier of the routine to be stopped. The values are application
specific.

dataIn

Defines application-specific input parameters for the routine.

len

Must contain the number of valid data bytes in dataIn.

Output
dataOut

Returns application-specific output parameters from the routine.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-71 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function stops a routine in the ECU memory referenced by localID.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-72 ni.com

ndTesterPresent

Purpose
Executes the TesterPresent service. Keeps the ECU in diagnostic mode.

Format
long ndTesterPresent(

TD1 *diagRef,
LVBoolean *requireResponse,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is
FALSE, no response is evaluated, and success is always returned TRUE. This
parameter is passed by reference.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
To ensure proper ECU operation, you may need to keep the ECU informed that a diagnostic
session is still in progress. If you do not send this information (for example, because the
communication is broken), the ECU returns to normal mode from diagnostic mode after a
while.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-73 Automotive Diagnostic Command Set User Manual

The TesterPresent service is this “keep alive” signal. It does not affect any other ECU
operation.

Keep calling ndTesterPresent within the ECU timeout period if no other service is
executed.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-74 ni.com

ndWriteDataByLocalIdentifier

Purpose
Executes the WriteDataByLocalIdentifier service. Writes a data record to the ECU.

Format
long ndWriteDataByLocalIdentifier(

TD1 *diagRef,
unsigned char localID,
unsigned char dataIn[],
long len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

localID

Defines the local identifier of the data to be read. The values are application specific.

dataIn

Defines the data record to be written to the ECU. If you know the record data description,
use ndConvertFromPhys to generate this record.

len

Must contain the number of valid data bytes in dataIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-75 Automotive Diagnostic Command Set User Manual

Description
This function performs the WriteDataByLocalIdentifier service and writes RecordValues
(data values) to the ECU. dataIn identifies the data values to be transmitted. The vehicle
manufacturer must ensure the ECU conditions are met when performing this service. Typical
use cases are clearing nonvolatile memory, resetting learned values, setting option content,
setting the Vehicle Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-76 ni.com

ndWriteMemoryByAddress

Purpose
Executes the WriteMemoryByAddress service. Writes data to the ECU memory.

Format
long ndWriteMemoryByAddress(

TD1 *diagRef,
unsigned long address,
unsigned char size,
unsigned char dataIn[],
long len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

address

Defines the memory address to which data are written. Only three bytes are sent to the
ECU, so the address must be in the range 0–FFFFFF (hex).

size

Defines the length of the memory block to be written.

dataIn

Defines the memory block to be written to the ECU.

len

Must contain the number of valid data bytes in dataIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-77 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This VI performs the KWP2000 WriteDataByAddress service and writes RecordValues (data
values) to the ECU. address and size identify the data. The vehicle manufacturer must
ensure the ECU conditions are met when performing this service. Typical use cases are
clearing nonvolatile memory, resetting learned values, setting option content, setting the
Vehicle Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-78 ni.com

UDS (DiagOnCAN) Services

ndUDSClearDiagnosticInformation

Purpose
Executes the UDS ClearDiagnosticInformation service. Clears selected Diagnostic Trouble
Codes (DTCs).

Format
long ndUDSClearDiagnosticInformation(

TD1 *diagRef,
unsigned long groupOfDTC,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

groupOfDTC

Specifies the group of diagnostic trouble codes to be cleared. The values are application
specific. The following value has a special meaning:

0xFFFFFF All DTCs

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-79 Automotive Diagnostic Command Set User Manual

Description
This function clears the diagnostic information on the ECU memory. Depending on the value
of groupOfDTC, the ECU is requested to clear the corresponding DTCs. The groupOfDTC
values are application specific.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-80 ni.com

ndUDSCommunicationControl

Purpose
Executes the UDS CommunicationControl service. Switches transmission and/or reception of
the normal communication messages (usually CAN messages) on or off.

Format
long ndUDSCommunicationControl(

TD1 *diagRef,
unsigned char type,
unsigned char communicationType,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

type

Indicates whether transmission/reception is to be switched on/off. The usual values are:

00: enableRxAndTx

01: enableRxAndDisableTx

02: disableRxAndEnableTx

03: disableRxAndTx

communicationType

A bitfield indicating which application level is to be changed. The usual values are:

01: application

02: networkManagement

You can change more than one level at a time.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-81 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the UDS CommunicationControl service and switches transmission
and/or reception of the normal communication messages (usually CAN messages) on or off.
The type and communication type parameters are vehicle manufacturer specific
(one OEM may disable the transmission only, while another OEM may disable the
transmission and reception based on vehicle manufacturer specific needs). The request is
either transmitted functionally addressed to all ECUs with a single request message, or
transmitted physically addressed to each ECU in a separate request message.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-82 ni.com

ndUDSControlDTCSetting

Purpose
Executes the UDS ControlDTCSetting service. Modifies Diagnostic Trouble Code (DTC)
behavior.

Format
long ndUDSControlDTCSetting(

TD1 *diagRef,
unsigned char type,
unsigned char dataIn[],
long len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

type

Specifies the control mode:

1: on

2: off

dataIn

Specifies application-specific data that control DTC generation.

len

Must contain the number of valid data bytes in dataIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-83 Automotive Diagnostic Command Set User Manual

ndUDSDiagnosticSessionControl

Purpose
Executes the UDS DiagnosticSessionControl service. The ECU is set up in a specific
diagnostic mode.

Format
long ndUDSDiagnosticSessionControl(

TD1 *diagRef,
unsigned char mode,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

mode

Indicates the diagnostic mode into which the ECU is brought. The values are application
specific. The usual values are:

01: defaultSession

02: ECUProgrammingSession

03: ECUExtendedDiagnosticSession

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-84 ni.com

ndUDSECUReset

Purpose
Executes the UDS ECUReset service. Resets the ECU.

Format
long ndUDSECUReset(

TD1 *diagRef,
unsigned char mode,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

mode

Indicates the reset mode:

Hex Description

01 hardReset

02 keyOffOnReset

03 softReset

04 enableRapidPowerShutDown

05 disableRapidPowerShutDown

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-85 Automotive Diagnostic Command Set User Manual

Description
This function requests the ECU to perform an ECU reset effectively based on the mode
parameter value content. The vehicle manufacturer determines when the positive response
message is sent. Depending the value of mode, the corresponding ECU reset event is executed
as a hard reset, key off/on reset, soft reset, or other reset.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-86 ni.com

ndUDSInputOutputControlByIdentifier

Purpose
Executes the UDS InputOutputControlByIdentifier service. Modifies ECU I/O port behavior.

Format
long ndUDSInputOutputControlByIdentifier(

TD1 *diagRef,
unsigned short ID,
unsigned char mode,
unsigned char dataIn[],
long len,
unsigned char dataOut[],
long *len2,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

ID

Defines the identifier of the I/O to be manipulated. The values are application specific.

mode

Defines the I/O control type. The values are application specific. The usual values are:

0: ReturnControlToECU

1: ResetToDefault

2: FreezeCurrentState

3: ShortTermAdjustment

dataIn

Defines application-specific data for this service.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-87 Automotive Diagnostic Command Set User Manual

Output
dataOut

Returns application-specific data for this service.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function substitutes a value for an input signal or internal ECU function. It also controls
an output (actuator) of an electronic system referenced by the ID parameter.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-88 ni.com

ndUDSReadDataByIdentifier

Purpose
Executes the UDS ReadDataByIdentifier service. Reads an ECU data record.

Format
long ndUDSReadDataByIdentifier(

TD1 *diagRef,
unsigned short ID,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

ID

Defines the identifier of the data to be read. The values are application specific.

Output
dataOut

Returns the ECU data record. If you know the record data description, use
ndConvertToPhys to interpret this record.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-89 Automotive Diagnostic Command Set User Manual

Description
This function requests data record values from the ECU identified by the ID parameter.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-90 ni.com

ndUDSReadMemoryByAddress

Purpose
Executes the UDS ReadMemoryByAddress service. Reads data from the ECU memory.

Format
long ndUDSReadMemoryByAddress(

TD1 *diagRef,
unsigned long address,
unsigned char size,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

address

Defines the memory address from which data are read. Only three bytes are sent to the
ECU, so the address must be in the range 0–FFFFFF (hex).

size

Defines the length of the memory block to be read.

Output
dataOut

Returns the ECU memory data.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-91 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function requests memory data from the ECU identified by the address and size
parameters. The dataOut format and definition are vehicle manufacturer specific. dataOut
includes analog input and output signals, digital input and output signals, internal data, and
system status information if the ECU supports them.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-92 ni.com

ndUDSReportDTCBySeverityMaskRecord

Purpose
Executes the ReportDTCBySeverityMaskRecord subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes
(DTCs).

Format
long ndUDSReportDTCBySeverityMaskRecord(

TD1 *diagRef,
unsigned char severityMask,
unsigned char status,
TD3 *DTCDescriptor,
unsigned char *statusAvailMask,
TD4 DTCs[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

severityMask

Defines the status of DTCs to be read. The values are application specific.

status

Defines the status of DTCs to be read. The values are application specific.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {
long DTCByteLength;
long StatusByteLength;
long AddDataByteLength;
unsigned short ByteOrder;
} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.
The default is 3 for UDS.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s
status. The default is 1.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-93 Automotive Diagnostic Command Set User Manual

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s
additional data. For this subfunction, the default is 2.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and
returns the resulting DTC records in the DTCs struct array.

Output
statusAvailMask

An application-specific value returned for all DTCs.

DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {
unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use
ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-94 ni.com

len

On input, len must contain the DTCs array length in elements. On return, it contains the
number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the ReportDTCBySeverityMaskRecord subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-95 Automotive Diagnostic Command Set User Manual

ndUDSReportDTCByStatusMask

Purpose
Executes the ReportDTCByStatusMask subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes
(DTCs).

Format
long ndUDSReportDTCByStatusMask(

TD1 *diagRef,
unsigned char statusMask,
TD3 *DTCDescriptor,
unsigned char *statusAvailMask,
TD4 DTCs[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

statusMask

Defines the status of DTCs to be read. The values are application specific.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {
long DTCByteLength;
long StatusByteLength;
long AddDataByteLength;
unsigned short ByteOrder;
} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.
The default is 3 for UDS.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s
status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s
additional data. Usually, there are no additional data, so the default is 0.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-96 ni.com

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and
returns the resulting DTC records in the DTCs struct array.

Output
statusAvailMask

An application-specific value returned for all DTCs.

DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {
unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use
ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not
contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the
number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-97 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the ReportDTCByStatusMask subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs from the ECU.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-98 ni.com

ndUDSReportSeverityInformationOfDTC

Purpose
Executes the ReportSeverityInformationOfDTC subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes
(DTCs) are read.

Format
long ndUDSReportSeverityInformationOfDTC(

TD1 *diagRef,
unsigned long DTCMaskRecord,
TD3 *DTCDescriptor,
unsigned char *statusAvailMask,
TD4 DTCs[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

DTCMaskRecord

Defines the status of DTCs to be read. The values are application specific.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {
long DTCByteLength;
long StatusByteLength;
long AddDataByteLength;
unsigned short ByteOrder;
} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.
The default is 3 for UDS.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s
status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s
additional data. For this subfunction, the default is 2.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-99 Automotive Diagnostic Command Set User Manual

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and
returns the resulting DTC records in the DTCs struct array.

Output
statusAvailMask

An application-specific value returned for all DTCs.

DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {
unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use
ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC.

len

On input, len must contain the DTCs array length in elements. On return, it contains the
number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-100 ni.com

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the ReportSeverityInformationOfDTC subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs from the ECU
memory.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-101 Automotive Diagnostic Command Set User Manual

ndUDSReportSupportedDTCs

Purpose
Executes the ReportSupportedDTCs subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service. Reads all supported Diagnostic Trouble
Codes (DTCs).

Format
long ndUDSReportSupportedDTCs(

TD1 *diagRef,
TD3 *DTCDescriptor,
unsigned char *statusAvailMask,
TD4 DTCs[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {
long DTCByteLength;
long StatusByteLength;
long AddDataByteLength;
unsigned short ByteOrder;
} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.
The default is 3 for UDS.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s
status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s
additional data. Usually, there are no additional data, so the default is 0.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-102 ni.com

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and
returns the resulting DTC records in the DTCs struct array.

Output
statusAvailMask

An application-specific value returned for all DTCs.

DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {
unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use
ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not
contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the
number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-103 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the ReportSupportedDTCs subfunction of the UDS
ReadDiagnosticTroubleCodeInformation service and reads all supported DTCs from the
ECU memory.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-104 ni.com

ndUDSRequestDownload

Purpose
Initiates a download of data to the ECU.

Format
long ndUDSRequestDownload (

TD1 *diagRef,
unsigned long memoryAddress,
unsigned long memorySize,
unsigned char memoryAddressLength,
unsigned char memorySizeLength,
unsigned char dataFormatIdentifier,
unsigned long *blockSize,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

memoryAddress

Defines the memory address to which data are to be written.

memorySize

Defines the size of the data to be written.

memoryAddressLength

Defines the number of bytes of the memoryAddress parameter that are written to the
ECU. This value is implementation dependent and must be in the range of 1–4. For
example, if this value is 2, only the two lowest bytes of the address are written to
the ECU.

memorySizeLength

Defines the number of bytes of the memorySize parameter that are written to the ECU.
This value is implementation dependent and must be in the range of 1–4. For example,
if this value is 2, only the two lowest bytes of the size are written to the ECU.

dataFormatIdentifier

Defines the compression and encryption scheme for the data blocks written to the ECU.
A value of 0 means no compression/no encryption. Nonzero values are not standardized
and implementation dependent.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-105 Automotive Diagnostic Command Set User Manual

Output
blockSize

Returns the number of data bytes to be transferred to the ECU in subsequent
ndUDSTransferData requests.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndUDSRequestDownload initiates the download of a data block to the ECU. This is
required to set up the download process; the actual data transfer occurs with subsequent
ndUDSTransferData requests. The transfer must occur in blocks of the size this service
returns (the blockSize parameter). After the download completes, use the
ndUDSRequestTransferExit service to terminate the process.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-106 ni.com

ndUDSRequestSeed

Purpose
Executes the UDS SecurityAccess service to retrieve a seed from the ECU.

Format
long ndUDSRequestSeed(

TD1 *diagRef,
unsigned char accessMode,
unsigned char seedOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

accessMode

Indicates the security level to be granted. The values are application specific. This is an
odd number, usually 1.

Output
seedOut

Returns the seed from the ECU.

len

On input, len must contain the seedOut array length. On return, it contains the number
of valid data bytes in the seedOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-107 Automotive Diagnostic Command Set User Manual

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using ndUDSRequestSeed with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using ndUDSSendKey with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is
returned.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-108 ni.com

ndUDSRequestTransferExit

Purpose
Terminates a download/upload process.

Format
long ndUDSRequestTransferExit (

TD1 *diagRef,
unsigned char dataIn[],
long len,
unsigned char dataOut[],
long *len2,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

dataIn

Defines a data record to be written to the ECU as part of the termination process.
The meaning is implementation dependent; this may be a checksum or a similar
verification instrument.

len

Must be set to the buffer size for the dataIn parameter.

Output
dataOut

Returns a memory data block from the ECU as part of the termination process. The
meaning is implementation dependent; this may be a checksum or a similar verification
instrument.

len2

Must be set to the buffer size for the dataOut parameter. On return, it contains the actual
data size returned in dataOut.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-109 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndUDSRequestTransferExit terminates a download or upload process initialized with
ndUDSRequestDownload or ndUDSRequestUpload.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-110 ni.com

ndUDSRequestUpload

Purpose
Initiates an upload of data from the ECU.

Format
long ndUDSRequestUpload (

TD1 *diagRef,
unsigned long memoryAddress,
unsigned long memorySize,
unsigned char memoryAddressLength,
unsigned char memorySizeLength,
unsigned char dataFormatIdentifier,
unsigned long *blockSize,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

memoryAddress

Defines the memory address from which data are to be read.

memorySize

Defines the size of the data to be read.

memoryAddressLength

Defines the number of bytes of the memoryAddress parameter that are written to the
ECU. This value is implementation dependent and must be in the range of 1–4. For
example, if this value is 2, only the two lowest bytes of the address are written to
the ECU.

memorySizeLength

Defines the number of bytes of the memorySize parameter that are written to the ECU.
This value is implementation dependent and must be in the range of 1–4. For example,
if this value is 2, only the two lowest bytes of the size are written to the ECU.

dataFormatIdentifier

Defines the compression and encryption scheme used for the data blocks written to the
ECU. A value of 0 means no compression/no encryption. Nonzero values are not
standardized and implementation dependent.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-111 Automotive Diagnostic Command Set User Manual

Output
blockSize

Returns the number of data bytes to be transferred from the ECU in subsequent
ndUDSTransferData requests.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description

ndUDSRequestUpload initiates the upload of a data block from the ECU. This is
required to set up the upload process; the actual data transfer occurs with subsequent
ndUDSTransferData requests. The transfer must occur in blocks of the size that this service
returns (the blockSize parameter). After the download completes, use the
ndUDSRequestTransferExit service to terminate the process.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-112 ni.com

ndUDSRoutineControl

Purpose
Executes the UDS RoutineControl service. Executes a routine on the ECU.

Format
long ndUDSRoutineControl(

TD1 *diagRef,
unsigned short ID,
unsigned char mode,
unsigned char dataIn[],
long len,
unsigned char dataOut[],
long *len2,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

ID

Defines the identifier of the routine to be started. The values are application specific.

mode

Defines the operation mode for this service:

1: Start Routine

2: Stop Routine

3: Request Routine Results

Other values are application specific.

dataIn

Defines application-specific input parameters for the routine.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-113 Automotive Diagnostic Command Set User Manual

Output
dataOut

Returns application-specific output parameters from the routine.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the UDS RoutineControl service and launches an ECU routine,
stops an ECU routine, or requests ECU routine results from the ECU.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-114 ni.com

ndUDSSendKey

Purpose
Executes the UDS SecurityAccess service to send a key to the ECU.

Format
long ndUDSSendKey(

TD1 *diagRef,
unsigned char accessMode,
unsigned char keyIn[],
long len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

accessMode

Indicates the security level to be granted. The values are application specific. This is an
even number, usually 2.

keyIn

Defines the key data to be sent to the ECU.

len

Must contain the number of valid data bytes in keyIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-115 Automotive Diagnostic Command Set User Manual

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using ndUDSRequestSeed with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using ndUDSSendKey with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is
returned.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-116 ni.com

ndUDSTesterPresent

Purpose
Executes the UDS TesterPresent service. Keeps the ECU in diagnostic mode.

Format
long ndUDSTesterPresent(

TD1 *diagRef,
LVBoolean *requireResponse,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is
FALSE, no response is evaluated, and success is always returned TRUE. This
parameter is passed by reference.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
To ensure proper ECU operation, you may need to keep the ECU informed that a diagnostic
session is still in progress. If you do not send this information (for example, because the
communication is broken), the ECU returns to normal mode from diagnostic mode after a
while.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-117 Automotive Diagnostic Command Set User Manual

The TesterPresent service is this “keep alive” signal. It does not affect any other ECU
operation.

Keep calling ndUDSTesterPresent within the ECU timeout period if no other service is
executed.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-118 ni.com

ndUDSTransferData

Purpose
Transfers data to/from the ECU in a download/upload process.

Format
long ndUDSTransferData (

TD1 *diagRef,
unsigned char *blockSequenceCounter,
unsigned char dataIn[],
long len,
unsigned char dataOut[],
long *len2,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

blockSequenceCounter

Used to number the data blocks to be transferred to/from the ECU. The block
sequence counter value starts at 01 hex with the first ndUDSTransferData request that
follows the ndUDSRequestDownload or ndUDSRequestUpload service. Its value is
incremented by 1 for each subsequent ndUDSTransferData request. At the value of
FF hex, the block sequence counter rolls over and starts at 00 hex with the next
ndUDSTransferData request.

The block sequence counter is updated automatically, and the updated value is returned.

dataIn

Defines the data block to be written to the ECU.

For a download, this is a memory data block to be downloaded to the ECU.

For an upload, the meaning is implementation dependent.

len

Must be set to the buffer size for the dataIn parameter.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-119 Automotive Diagnostic Command Set User Manual

Output
blockSequenceCounter

Returns the updated value of the block sequence counter (refer to the description in the
Input section).

dataOut

Returns the memory data from the ECU.

For a download, this may contain a checksum or similar verification instrument; the
meaning is implementation dependent.

For an upload, this is a memory data block uploaded from the ECU.

len2

Must be set to the buffer size for the dataOut parameter. On return, it contains the actual
data size returned in dataOut.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndUDSTransferData executes the data transfer of a download process (initiated with a
previous ndUDSRequestDownload request) or an upload process (initiated with a previous
ndUDSRequestUpload request). The data transfer must occur in blocks of the size that has
been returned in the block size parameter of the respective request service. After the data
transfer completes, terminate the operation by calling the ndUDSRequestTransferExit
service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-120 ni.com

ndUDSWriteDataByIdentifier

Purpose
Executes the UDS WriteDataByIdentifier service. Writes a data record to the ECU.

Format
long ndUDSWriteDataByIdentifier(

TD1 *diagRef,
unsigned short ID,
unsigned char dataIn[],
long len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

ID

Defines the identifier of the data to be read. The values are application specific.

dataIn

Defines the data record written to the ECU. If you know the record data description,
use ndConvertFromPhys to generate this record.

len

Must contain the number of valid data bytes in dataIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-121 Automotive Diagnostic Command Set User Manual

Description
This function performs the UDS service WriteDataByIdentifier and writes RecordValues
(data values) into the ECU. dataIn identifies the data. The vehicle manufacturer must ensure
the ECU conditions are met when performing this service. Typical use cases are clearing
nonvolatile memory, resetting learned values, setting option content, setting the Vehicle
Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-122 ni.com

ndUDSWriteMemoryByAddress

Purpose
Executes the UDS WriteMemoryByAddress service. Writes data to the ECU memory.

Format
long ndUDSWriteMemoryByAddress(

TD1 *diagRef,
unsigned long address,
unsigned char size,
unsigned char dataIn[],
long len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

address

Defines the memory address to which data are written. Only three bytes are sent to the
ECU, so the address must be in the range 0–FFFFFF (hex).

size

Defines the length of the memory block to be written.

dataIn

Defines the memory block to be written to the ECU.

len

Must contain the number of valid data bytes in dataIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-123 Automotive Diagnostic Command Set User Manual

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function performs the UDS service WriteMemoryByAddress and writes RecordValues
(data values) into the ECU. address and size identify the data. The vehicle manufacturer
must ensure the ECU conditions are met when performing this service. Typical use cases are
clearing nonvolatile memory, resetting learned values, setting option content, setting the
Vehicle Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-124 ni.com

OBD (On-Board Diagnostics) Services

ndOBDClearEmissionRelatedDiagnosticInformation

Purpose
Executes the OBD Clear Emission Related Diagnostic Information service. Clears
emission-related diagnostic trouble codes (DTCs) in the ECU.

Format
long ndOBDClearEmissionRelatedDiagnosticInformation(

TD1 *diagRef,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-125 Automotive Diagnostic Command Set User Manual

ndOBDRequestControlOfOnBoardDevice

Purpose
Executes the OBD Request Control Of On-Board Device service. Modifies ECU I/O port
behavior.

Format
long ndOBDRequestControlOfOnBoardDevice(

TD1 *diagRef,
unsigned char TID,
unsigned char dataIn[],
long len,
unsigned char dataOut[],
long *len2,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

TID

Defines the test identifier of the I/O to be manipulated. The values are application
specific.

dataIn

Defines application-specific data for this service.

len

Must contain the number of valid data bytes in dataIn.

Output
dataOut

Returns application-specific data for this service.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-126 ni.com

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-127 Automotive Diagnostic Command Set User Manual

ndOBDRequestCurrentPowertrainDiagnosticData

Purpose
Executes the OBD Request Current Powertrain Diagnostic Data service. Reads an ECU data
record.

Format
long ndOBDRequestCurrentPowertrainDiagnosticData(

TD1 *diagRef,
unsigned char PID,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

PID

Defines the parameter identifier of the data to be read. The SAE J1979 standard defines
the values.

Output
dataOut

Returns the ECU data record. If you know the record data description, use
ndConvertToPhys to interpret this record. You can obtain the description from the
SAE J1979 standard.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-128 ni.com

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-129 Automotive Diagnostic Command Set User Manual

ndOBDRequestEmissionRelatedDTCs

Purpose
Executes the OBD Request Emission Related DTCs service. Reads all emission-related
Diagnostic Trouble Codes (DTCs).

Format
long ndOBDRequestEmissionRelatedDTCs(

TD1 *diagRef,
TD3 *DTCDescriptor,
TD4 DTCs[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {
long DTCByteLength;
long StatusByteLength;
long AddDataByteLength;
unsigned short ByteOrder;
} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.
The default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s
status. The default is 0 for OBD.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s
additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and
returns the resulting DTC records in the DTCs struct array.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-130 ni.com

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {
unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use
ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

AddData contains optional additional data for this DTC. Usually, this does not
contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the
number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-131 Automotive Diagnostic Command Set User Manual

ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle

Purpose
Executes the OBD Request Emission Related DTCs During Current Drive Cycle service.
Reads the emission-related Diagnostic Trouble Codes (DTCs) that occurred during the
current (or last completed) drive cycle.

Format
long ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle(

TD1 *diagRef,
TD3 *DTCDescriptor,
TD4 DTCs[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {
long DTCByteLength;
long StatusByteLength;
long AddDataByteLength;
unsigned short ByteOrder;
} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.
The default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s
status. The default is 0 for OBD.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s
additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and
returns the resulting DTC records in the DTCs struct array.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-132 ni.com

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {
unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use
ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

AddData contains optional additional data for this DTC. Usually, this does not
contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the
number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-133 Automotive Diagnostic Command Set User Manual

ndOBDRequestOnBoardMonitoringTestResults

Purpose
Executes the OBD Request On-Board Monitoring Test Results service. Reads an ECU test
data record.

Format
long ndOBDRequestOnBoardMonitoringTestResults(

TD1 *diagRef,
unsigned char OBDMID,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

OBDMID

Defines the parameter identifier of the data to be read. The SAE J1979 standard defines
the values.

Output
dataOut

Returns the ECU test data record. If you know the record data description, use
ndConvertToPhys to interpret this record. You can obtain the description from the
SAE J1979 standard.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-134 ni.com

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-135 Automotive Diagnostic Command Set User Manual

ndOBDRequestPermanentFaultCodes

Purpose
Executes the OBD Request Permanent Fault Codes service. All permanent Diagnostic
Trouble Codes (DTCs) are read.

Format
long ndOBDRequestPermanentFaultCodes(

TD1 *diagRef,
TD3 *DTCDescriptor,
TD4 DTCs[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {
long DTCByteLength;
long StatusByteLength;
long AddDataByteLength;
unsigned short ByteOrder;
} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.
The default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s
status. The default is 0 for OBD.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s
additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and
returns the resulting DTC records in the DTCs struct array.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-136 ni.com

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {
unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use
ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

AddData contains optional additional data for this DTC. Usually, this does not
contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the
number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-137 Automotive Diagnostic Command Set User Manual

ndOBDRequestPowertrainFreezeFrameData

Purpose
Executes the OBD Request Powertrain Freeze Frame Data service. Reads an ECU data record
stored while a diagnostic trouble code occurred.

Format
long ndOBDRequestPowertrainFreezeFrameData(

TD1 *diagRef,
unsigned char PID,
unsigned char nFrame,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

PID

Defines the parameter identifier of the data to be read. The SAE J1979 standard defines
the values.

nFrame

The number of the freeze frame from which the data are to be retrieved.

Output
dataOut

Returns the ECU data record. If you know the record data description, use
ndConvertToPhys to interpret this record. You can obtain the description from the
SAE J1979 standard.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-138 ni.com

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments Corporation 6-139 Automotive Diagnostic Command Set User Manual

ndOBDRequestVehicleInformation

Purpose
Executes the OBD Request Vehicle Information service. Reads a set of information data from
the ECU.

Format
long ndOBDRequestVehicleInformation(

TD1 *diagRef,
unsigned char infoType,
unsigned char *nItems,
unsigned char dataOut[],
long *len,
LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed
to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate
the elements of this struct.

infoType

Defines the type of information to be read. The SAE J1979 standard defines the values.

Output
nItems

The number of data items (not bytes) this service returns.

dataOut

Returns the ECU vehicle information. You can obtain the description from the
SAE J1979 standard.

len

On input, len must contain the dataOut array length. On return, it contains the number
of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-140 ni.com

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the
function executed successfully. A negative value specifies an error, which means the function
did not perform the expected behavior. A positive value specifies a warning, which means the
function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

© National Instruments Corporation A-1 Automotive Diagnostic Command Set User Manual

A
Technical Support and
Professional Services

Visit the following sections of the award-winning National Instruments
Web site at ni.com for technical support and professional services:

• Support—Technical support at ni.com/support includes the
following resources:

– Self-Help Technical Resources—For answers and solutions,
visit ni.com/support for software drivers and updates,
a searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.
Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every
question submitted online receives an answer.

– Standard Service Program Membership—This program
entitles members to direct access to NI Applications Engineers
via phone and email for one-to-one technical support as well as
exclusive access to on demand training modules via the Services
Resource Center. NI offers complementary membership for a full
year after purchase, after which you may renew to continue your
benefits.

For information about other technical support options in your
area, visit ni.com/services, or contact your local office at
ni.com/contact.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

Appendix A Technical Support and Professional Services

Automotive Diagnostic Command Set User Manual A-2 ni.com

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 Automotive Diagnostic Command Set User Manual

Index

A
application debugging, 3-5
application development, 3-1
Automotive Diagnostic Command Set

API
C, 6-1
LabVIEW, 5-1

API structure, 4-2
application development, 3-1
available diagnostic services, 4-4
choosing a programming language, 3-1
configuration, 2-1
debugging an application, 3-5
general programming model (figure), 4-3
hardware requirements, 2-3
installation, 2-1
introduction, 1-1
KWP2000, 1-1

connect/disconnect, 1-3
diagnostic service format, 1-2
diagnostic services, 1-2
Diagnostic Trouble Codes, 1-4
external references, 1-4
GetSeed/Unlock, 1-3
input/output control, 1-4
measurements, 1-4
read/write memory, 1-3
remote activation of a routine, 1-4
transport protocol, 1-2

LabVIEW RT configuration, 2-2
OBD, 1-6
software requirements, 2-3
structure (figure), 4-1
tweaking the transport protocol, 4-4
UDS, 1-5

diagnostic service format, 1-5
diagnostic services, 1-5

external references, 1-6
using, 4-1
using with LabVIEW, 3-1
using with LabWindows/CVI, 3-1
using with other programming languages,

3-3
using with Visual C++ 6, 3-2

available diagnostic services, 4-4

C
C API

general functions, 6-11
KWP2000 services, 6-37
list of data types, 6-2
list of functions, 6-3
ndClearDiagnosticInformation, 6-37
ndCloseDiagnostic, 6-11
ndControlDTCSetting, 6-39
ndConvertFromPhys, 6-12
ndConvertToPhys, 6-14
ndCreateExtendedCANIds, 6-16
ndDiagnosticService, 6-18
ndDisableNormalMessageTransmission,

6-41
ndDTCToString, 6-20
ndECUReset, 6-42
ndEnableNormalMessageTransmission,

6-44
ndGetProperty, 6-21
ndInputOutputControlByLocalIdentifier,

6-45
ndOBDClearEmissionRelatedDiagnostic

Information, 6-124
ndOBDOpen, 6-23
ndOBDRequestControlOfOnBoard

Device, 6-125

Index

Automotive Diagnostic Command Set User Manual I-2 ni.com

ndOBDRequestCurrentPowertrain
DiagnosticData, 6-127

ndOBDRequestEmissionRelatedDTCs,
6-129

ndOBDRequestEmissionRelatedDTCs
DuringCurrentDriveCycle, 6-131

ndOBDRequestOnBoardMonitoringTest
Results, 6-133

ndOBDRequestPermanentFaultCodes,
6-135

ndOBDRequestPowertrainFreezeFrame
Data, 6-137

ndOBDRequestVehicleInformation,
6-139

ndOpenDiagnostic, 6-26
ndReadDataByLocalIdentifier, 6-47
ndReadDTCByStatus, 6-49
ndReadECUIdentification, 6-52
ndReadMemoryByAddress, 6-54
ndReadStatusOfDTC, 6-56
ndRequestRoutineResultsByLocal

Identifier, 6-59
ndRequestSeed, 6-61
ndSendKey, 6-63
ndSetProperty, 6-29
ndStartDiagnosticSession, 6-65
ndStartRoutineByLocalIdentifier, 6-67
ndStatusToString, 6-31
ndStopDiagnosticSession, 6-69
ndStopRoutineByLocalIdentifier, 6-70
ndTesterPresent, 6-72
ndUDSClearDiagnosticInformation, 6-78
ndUDSCommunicationControl, 6-80
ndUDSControlDTCSetting, 6-82
ndUDSDiagnosticSessionControl, 6-83
ndUDSECUReset, 6-84
ndUDSInputOutputControlByIdentifier,

6-86
ndUDSReadDataByIdentifier, 6-88
ndUDSReadMemoryByAddress, 6-90

ndUDSReportDTCBySeverityMask
Record, 6-92

ndUDSReportDTCByStatusMask, 6-95
ndUDSReportSeverityInformationOfDT

C, 6-98
ndUDSReportSupportedDTCs, 6-101
ndUDSRequestDownload, 6-104
ndUDSRequestSeed, 6-106
ndUDSRequestTransferExit, 6-108
ndUDSRequestUpload, 6-110
ndUDSRoutineControl, 6-112
ndUDSSendKey, 6-114
ndUDSTesterPresent, 6-116
ndUDSTransferData, 6-118
ndUDSWriteDataByIdentifier, 6-120
ndUDSWriteMemoryByAddress, 6-122
ndVWTPConnect, 6-33
ndVWTPConnectionTest, 6-35
ndVWTPDisconnect, 6-36
ndWriteDataByLocalIdentifier, 6-74
ndWriteMemoryByAddress, 6-76
OBD (On-Board Diagnostics) services,

6-124
UDS (DiagOnCAN) services, 6-78

ClearDiagnosticInformation.vi, 5-37
Close Diagnostic.vi, 5-8
configuration, 2-1
connect/disconnect, KWP2000, 1-3
ControlDTCSetting.vi, 5-40
conventions used in the manual, xi
Convert from Phys.vi, 5-10
Convert to Phys.vi, 5-12
Create Extended CAN IDs.vi, 5-14

D
debugging an application, 3-5
Diag Get Property.vi, 5-15
Diag Set Property.vi, 5-18

Index

© National Instruments Corporation I-3 Automotive Diagnostic Command Set User Manual

diagnostic service format
KWP2000, 1-2
UDS, 1-5

Diagnostic Service.vi, 5-21
diagnostic services

available, 4-4
KWP2000, 1-2
UDS, 1-5

diagnostic tools (NI resources), A-1
Diagnostic Trouble Codes

KWP2000, 1-4
DisableNormalMessageTransmission.vi, 5-43
documentation

conventions used in manual, xi
NI resources, A-1
related documentation, xii

drivers (NI resources), A-1
DTC to String.vi, 5-23

E
ECUReset.vi, 5-45
EnableNormalMessageTransmission.vi, 5-47
examples (NI resources), A-1
external references

KWP2000, 1-4
UDS, 1-6

G
general functions

C API, 6-11
LabVIEW API, 5-8

general programming model (figure), 4-3
GetSeed/Unlock, 1-3

H
hardware requirements, 2-3
help, technical support, A-1

I
input/output control, 1-4
InputOutputControlByLocalIdentifier.vi, 5-49
installation, 2-1
instrument drivers (NI resources), A-1
introduction, 1-1

K
Key Word Protocol 2000, 1-1
KnowledgeBase, A-1
KWP2000

connect/disconnect, 1-3
definition, 1-1
diagnostic service format, 1-2
diagnostic services, 1-2
Diagnostic Trouble Codes, 1-4
external references, 1-4
GetSeed/Unlock, 1-3
input/output control, 1-4
measurements, 1-4
read/write memory, 1-3
remote activation of a routine, 1-4
transport protocol, 1-2

KWP2000 services
C API, 6-37
LabVIEW API, 5-37

L
LabVIEW

using with Automotive Diagnostic
Command Set, 3-1

LabVIEW API
ClearDiagnosticInformation.vi, 5-37
Close Diagnostic.vi, 5-8
ControlDTCSetting.vi, 5-40
Convert from Phys.vi, 5-10
Convert to Phys.vi, 5-12
Create Extended CAN IDs.vi, 5-14

Index

Automotive Diagnostic Command Set User Manual I-4 ni.com

Diag Get Property.vi, 5-15
Diag Set Property.vi, 5-18
Diagnostic Service.vi, 5-21
DisableNormalMessageTransmission.vi,

5-43
DTC to String.vi, 5-23
ECUReset.vi, 5-45
EnableNormalMessageTransmission.vi,

5-47
general functions, 5-8
InputOutputControlByLocalIdentifier.vi,

5-49
KWP2000 services, 5-37
list of VIs, 5-2
OBD (On-Board Diagnostics) services,

5-133
OBD Clear Emission Related Diagnostic

Information.vi, 5-133
OBD Open.vi, 5-24
OBD Request Control Of On-Board

Device.vi, 5-135
OBD Request Current Powertrain

Diagnostic Data.vi, 5-137
OBD Request Emission Related DTCs

During Current Drive Cycle.vi, 5-142
OBD Request Emission Related DTCs.vi,

5-139
OBD Request On-Board Monitoring Test

Results.vi, 5-145
OBD Request Permanent Fault Codes.vi,

5-147
OBD Request Powertrain Freeze Frame

Data.vi, 5-150
OBD Request Supported PIDs.vi, 5-152
Open Diagnostic.vi, 5-27
ReadDataByLocalIdentifier.vi, 5-51
ReadDTCByStatus.vi, 5-53
ReadECUIdentification.vi, 5-56
ReadMemoryByAddress.vi, 5-58
ReadStatusOfDTC.vi, 5-60

RequestRoutineResultsByLocalIdentifier
.vi, 5-63

RequestSeed.vi, 5-65
SendKey.vi, 5-67
StartDiagnosticSession.vi, 5-69
StartRoutineByLocalIdentifier.vi, 5-71
StopDiagnosticSession.vi, 5-73
StopRoutineByLocalIdentifier.vi, 5-75
TesterPresent.vi, 5-77
UDS (DiagOnCAN) services, 5-83
UDS ClearDiagnosticInformation.vi,

5-83
UDS CommunicationControl.vi, 5-86
UDS ControlDTCSetting.vi, 5-88
UDS DiagnosticSessionControl.vi, 5-90
UDS ECUReset.vi, 5-92
UDS InputOutputControlByIdentifier.vi,

5-94
UDS ReadDataByIdentifier.vi, 5-96
UDS ReadMemoryByAddress.vi, 5-98
UDS

ReportDTCBySeverityMaskRecord.vi,
5-100

UDS ReportDTCByStatusMask.vi, 5-103
UDS

ReportSeverityInformationOfDTC.vi,
5-106

UDS ReportSupportedDTCs.vi, 5-109
UDS RequestDownload.vi, 5-112
UDS RequestSeed.vi, 5-114
UDS RequestTransferExit.vi, 5-116
UDS RequestUpload.vi, 5-118
UDS RoutineControl.vi, 5-120
UDS SendKey.vi, 5-122
UDS TesterPresent.vi, 5-124
UDS TransferData.vi, 5-126
UDS WriteDataByIdentifier.vi, 5-129
UDS WriteMemoryByAddress.vi, 5-131
VWTP Connect.vi, 5-31
VWTP Connection Test.vi, 5-33
VWTP Disconnect.vi, 5-35

Index

© National Instruments Corporation I-5 Automotive Diagnostic Command Set User Manual

WriteDataByLocalIdentifier.vi, 5-79
WriteMemoryByAddress.vi, 5-81

LabVIEW RT configuration, 2-2
LabWindows/CVI

using with Automotive Diagnostic
Command Set, 3-1

list of C functions, 6-3
list of data types, 6-2
list of LabVIEW VIs, 5-2

N
National Instruments support and services,

A-1
ndClearDiagnosticInformation, 6-37
ndCloseDiagnostic, 6-11
ndControlDTCSetting, 6-39
ndConvertFromPhys, 6-12
ndConvertToPhys, 6-14
ndCreateExtendedCANIds, 6-16
ndDiagnosticService, 6-18
ndDisableNormalMessageTransmission, 6-41
ndDTCToString, 6-20
ndECUReset, 6-42
ndEnableNormalMessageTransmission, 6-44
ndGetProperty, 6-21
ndInputOutputControlByLocalIdentifier, 6-45
ndOBDClearEmissionRelatedDiagnostic

Information, 6-124
ndOBDOpen, 6-23
ndOBDRequestControlOfOnBoardDevice,

6-125
ndOBDRequestCurrentPowertrainDiagnostic

Data, 6-127
ndOBDRequestEmissionRelatedDTCs, 6-129
ndOBDRequestEmissionRelatedDTCsDuring

CurrentDriveCycle, 6-131
ndOBDRequestOnBoardMonitoringTest

Results, 6-133
ndOBDRequestPermanentFaultCodes, 6-135

ndOBDRequestPowertrainFreezeFrameData,
6-137

ndOBDRequestVehicleInformation, 6-139
ndOpenDiagnostic, 6-26
ndReadDataByLocalIdentifier, 6-47
ndReadDTCByStatus, 6-49
ndReadECUIdentification, 6-52
ndReadMemoryByAddress, 6-54
ndReadStatusOfDTC, 6-56
ndRequestRoutineResultsByLocalIdentifier,

6-59
ndRequestSeed, 6-61
ndSendKey, 6-63
ndSetProperty, 6-29
ndStartDiagnosticSession, 6-65
ndStartRoutineByLocalIdentifier, 6-67
ndStatusToString, 6-31
ndStopDiagnosticSession, 6-69
ndStopRoutineByLocalIdentifier, 6-70
ndTesterPresent, 6-72
ndUDSClearDiagnosticInformation, 6-78
ndUDSCommunicationControl, 6-80
ndUDSControlDTCSetting, 6-82
ndUDSDiagnosticSessionControl, 6-83
ndUDSECUReset, 6-84
ndUDSInputOutputControlByIdentifier, 6-86
ndUDSReadDataByIdentifier, 6-88
ndUDSReadMemoryByAddress, 6-90
ndUDSReportDTCBySeverityMaskRecord,

6-92
ndUDSReportDTCByStatusMask, 6-95
ndUDSReportSeverityInformationOfDTC,

6-98
ndUDSReportSupportedDTCs, 6-101
ndUDSRequestDownload, 6-104
ndUDSRequestSeed, 6-106
ndUDSRequestTransferExit, 6-108
ndUDSRequestUpload, 6-110
ndUDSRoutineControl, 6-112
ndUDSSendKey, 6-114

Index

Automotive Diagnostic Command Set User Manual I-6 ni.com

ndUDSTesterPresent, 6-116
ndUDSTransferData, 6-118
ndUDSWriteDataByIdentifier, 6-120
ndUDSWriteMemoryByAddress, 6-122
ndVWTPConnect, 6-33
ndVWTPConnectionTest, 6-35
ndVWTPDisconnect, 6-36
ndWriteDataByLocalIdentifier, 6-74
ndWriteMemoryByAddress, 6-76
NI support and services, A-1

O
OBD, 1-6
OBD (On-Board Diagnostics) services

C API, 6-124
LabVIEW API, 5-133

OBD Clear Emission Related Diagnostic
Information.vi, 5-133

OBD Open.vi, 5-24
OBD Request Control Of On-Board

Device.vi, 5-135
OBD Request Current Powertrain Diagnostic

Data.vi, 5-137
OBD Request Emission Related DTCs During

Current Drive Cycle.vi, 5-142
OBD Request Emission Related DTCs.vi,

5-139
OBD Request On-Board Monitoring Test

Results.vi, 5-145
OBD Request Permanent Fault Codes.vi,

5-147
OBD Request Powertrain Freeze Frame

Data.vi, 5-150
OBD Request Supported PIDs.vi, 5-152
On-Board Diagnostic, 1-6
Open Diagnostic.vi, 5-27
other programming languages, using with

Automotive Diagnostic Command Set, 3-3

P
programming examples (NI resources), A-1
programming language, choosing, 3-1

R
read/write memory, 1-3
ReadDataByLocalIdentifier.vi, 5-51
ReadDTCByStatus.vi, 5-53
ReadECUIdentification.vi, 5-56
ReadMemoryByAddress.vi, 5-58
ReadStatusOfDTC.vi, 5-60
related documentation, xii
remote action of a routine, KWP2000, 1-4
RequestRoutineResultsByLocalIdentifier.vi,

5-63
RequestSeed.vi, 5-65

S
SendKey.vi, 5-67
software

NI resources, A-1
requirements, 2-3

StartDiagnosticSession.vi, 5-69
StartRoutineByLocalIdentifier.vi, 5-71
StopDiagnosticSession.vi, 5-73
StopRoutineByLocalIdentifier.vi, 5-75
support, technical, A-1

T
technical support, A-1
TesterPresent.vi, 5-77
training and certification (NI resources), A-1
transport protocol

KWP2000, 1-2
tweaking, 4-4

troubleshooting (NI resources), A-1
tweaking the transport protocol, 4-4

Index

© National Instruments Corporation I-7 Automotive Diagnostic Command Set User Manual

U
UDS, 1-5

diagnostic service format, 1-5
diagnostic services, 1-5
external references, 1-6

UDS (DiagOnCAN) services
C API, 6-78
LabVIEW API, 5-83

UDS ClearDiagnosticInformation.vi, 5-83
UDS CommunicationControl.vi, 5-86
UDS ControlDTCSetting.vi, 5-88
UDS DiagnosticSessionControl.vi, 5-90
UDS ECUReset.vi, 5-92
UDS InputOutputControlByIdentifier.vi, 5-94
UDS ReadDataByIdentifier.vi, 5-96
UDS ReadMemoryByAddress.vi, 5-98
UDS ReportDTCBySeverityMaskRecord.vi,

5-100
UDS ReportDTCByStatusMask.vi, 5-103
UDS ReportSeverityInformationOfDTC.vi,

5-106
UDS ReportSupportedDTCs.vi, 5-109
UDS RequestDownload.vi, 5-112
UDS RequestSeed.vi, 5-114

UDS RequestTransferExit.vi, 5-116
UDS RequestUpload.vi, 5-118
UDS RoutineControl.vi, 5-120
UDS SendKey.vi, 5-122
UDS TesterPresent.vi, 5-124
UDS TransferData.vi, 5-126
UDS WriteDataByIdentifier.vi, 5-129
UDS WriteMemoryByAddress.vi, 5-131
Unified Diagnostic Services, 1-5

V
Visual C++ 6, using with Automotive

Diagnostic Command Set, 3-2
VWTP Connect.vi, 5-31
VWTP Connection Test.vi, 5-33
VWTP Disconnect.vi, 5-35

W
Web resources, A-1
WriteDataByLocalIdentifier.vi, 5-79
WriteMemoryByAddress.vi, 5-81

	Automotive Diagnostic Command Set User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	KWP2000 (Key Word Protocol 2000)
	Transport Protocol
	Diagnostic Services
	Diagnostic Service Format
	Connect/Disconnect
	GetSeed/Unlock
	Read/Write Memory
	Measurements
	Diagnostic Trouble Codes
	Input/Output Control
	Remote Activation of a Routine
	External References

	UDS (Unified Diagnostic Services)
	Diagnostic Services
	Diagnostic Service Format
	External References

	OBD (On-Board Diagnostic)

	Chapter 2 Installation and Configuration
	Installation
	LabVIEW Real-Time (RT) Configuration
	Hardware and Software Requirements

	Chapter 3 Application Development
	Choosing the Programming Language
	LabVIEW
	LabWindows/CVI
	Visual C++ 6
	Other Programming Languages

	Application Development on CompactRIO or R Series
	Transferring Data between the FPGA and Host Computer
	Customizing the CAN Bridge (FPGA) VI

	Debugging an Application

	Chapter 4 Using the Automotive Diagnostic Command Set
	Structure of the Automotive Diagnostic Command Set
	Automotive Diagnostic Command Set API Structure
	General Programming Model
	Available Diagnostic Services
	Tweaking the Transport Protocol

	Chapter 5 Automotive Diagnostic Command Set API for LabVIEW
	Section Headings
	Purpose
	Format
	Input and Output
	Description

	List of VIs
	Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW

	General Functions
	Close Diagnostic.vi
	Convert from Phys.vi
	Convert to Phys.vi
	Create Extended CAN IDs.vi
	Diag Get Property.vi
	Diag Set Property.vi
	Diagnostic Service.vi
	DTC to String.vi
	OBD Open.vi
	Open Diagnostic.vi
	VWTP Connect.vi
	VWTP Connection Test.vi
	VWTP Disconnect.vi

	KWP2000 Services
	ClearDiagnosticInformation.vi
	ControlDTCSetting.vi
	DisableNormalMessageTransmission.vi
	ECUReset.vi
	EnableNormalMessageTransmission.vi
	InputOutputControlByLocalIdentifier.vi
	ReadDataByLocalIdentifier.vi
	ReadDTCByStatus.vi
	ReadECUIdentification.vi
	ReadMemoryByAddress.vi
	ReadStatusOfDTC.vi
	RequestRoutineResultsByLocalIdentifier.vi
	RequestSeed.vi
	SendKey.vi
	StartDiagnosticSession.vi
	StartRoutineByLocalIdentifier.vi
	StopDiagnosticSession.vi
	StopRoutineByLocalIdentifier.vi
	TesterPresent.vi
	WriteDataByLocalIdentifier.vi
	WriteMemoryByAddress.vi

	UDS (DiagOnCAN) Services
	UDS ClearDiagnosticInformation.vi
	UDS CommunicationControl.vi
	UDS ControlDTCSetting.vi
	UDS DiagnosticSessionControl.vi
	UDS ECUReset.vi
	UDS InputOutputControlByIdentifier.vi
	UDS ReadDataByIdentifier.vi
	UDS ReadMemoryByAddress.vi
	UDS ReportDTCBySeverityMaskRecord.vi
	UDS ReportDTCByStatusMask.vi
	UDS ReportSeverityInformationOfDTC.vi
	UDS ReportSupportedDTCs.vi
	UDS RequestDownload.vi
	UDS RequestSeed.vi
	UDS RequestTransferExit.vi
	UDS RequestUpload.vi
	UDS RoutineControl.vi
	UDS SendKey.vi
	UDS TesterPresent.vi
	UDS TransferData.vi
	UDS WriteDataByIdentifier.vi
	UDS WriteMemoryByAddress.vi

	OBD (On-Board Diagnostics) Services
	OBD Clear Emission Related Diagnostic Information.vi
	OBD Request Control Of On-Board Device.vi
	OBD Request Current Powertrain Diagnostic Data.vi
	OBD Request Emission Related DTCs.vi
	OBD Request Emission Related DTCs During Current Drive Cycle.vi
	OBD Request On-Board Monitoring Test Results.vi
	OBD Request Permanent Fault Codes.vi
	OBD Request Powertrain Freeze Frame Data.vi
	OBD Request Supported PIDs.vi
	OBD Request Vehicle Information.vi

	Chapter 6 Automotive Diagnostic Command Set API for C
	Section Headings
	Purpose
	Format
	Input and Output
	Description

	List of Data Types
	Table 6-1. Data Types for the Automotive Diagnostic Command Set for C

	List of Functions
	Table 6-2. Functions for the Automotive Diagnostic Command Set for C

	General Functions
	ndCloseDiagnostic
	ndConvertFromPhys
	ndConvertToPhys
	ndCreateExtendedCANIds
	ndDiagnosticService
	ndDTCToString
	ndGetProperty
	ndOBDOpen
	ndOpenDiagnostic
	ndSetProperty
	ndStatusToString
	ndVWTPConnect
	ndVWTPConnectionTest
	ndVWTPDisconnect

	KWP2000 Services
	ndClearDiagnosticInformation
	ndControlDTCSetting
	ndDisableNormalMessageTransmission
	ndECUReset
	ndEnableNormalMessageTransmission
	ndInputOutputControlByLocalIdentifier
	ndReadDataByLocalIdentifier
	ndReadDTCByStatus
	ndReadECUIdentification
	ndReadMemoryByAddress
	ndReadStatusOfDTC
	ndRequestRoutineResultsByLocalIdentifier
	ndRequestSeed
	ndSendKey
	ndStartDiagnosticSession
	ndStartRoutineByLocalIdentifier
	ndStopDiagnosticSession
	ndStopRoutineByLocalIdentifier
	ndTesterPresent
	ndWriteDataByLocalIdentifier
	ndWriteMemoryByAddress

	UDS (DiagOnCAN) Services
	ndUDSClearDiagnosticInformation
	ndUDSCommunicationControl
	ndUDSControlDTCSetting
	ndUDSDiagnosticSessionControl
	ndUDSECUReset
	ndUDSInputOutputControlByIdentifier
	ndUDSReadDataByIdentifier
	ndUDSReadMemoryByAddress
	ndUDSReportDTCBySeverityMaskRecord
	ndUDSReportDTCByStatusMask
	ndUDSReportSeverityInformationOfDTC
	ndUDSReportSupportedDTCs
	ndUDSRequestDownload
	ndUDSRequestSeed
	ndUDSRequestTransferExit
	ndUDSRequestUpload
	ndUDSRoutineControl
	ndUDSSendKey
	ndUDSTesterPresent
	ndUDSTransferData
	ndUDSWriteDataByIdentifier
	ndUDSWriteMemoryByAddress

	OBD (On-Board Diagnostics) Services
	ndOBDClearEmissionRelatedDiagnosticInformation
	ndOBDRequestControlOfOnBoardDevice
	ndOBDRequestCurrentPowertrainDiagnosticData
	ndOBDRequestEmissionRelatedDTCs
	ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle
	ndOBDRequestOnBoardMonitoringTestResults
	ndOBDRequestPermanentFaultCodes
	ndOBDRequestPowertrainFreezeFrameData
	ndOBDRequestVehicleInformation

	Appendix A Technical Support and Professional Services
	Index
	A-C
	D
	E-L
	N
	O-T
	U-W

