
LabWindows
TM

/CVI
TM

Getting Started with LabWindows/CVI

Getting Started with LabWindows/CVI

August 2012
373552H-01

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices
Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date
contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Technical Support and Professional Services
appendix. To comment on National Instruments documentation, refer to the National
Instruments Web site at ni.com/info and enter the Info Code feedback.

© 1994–2012 National Instruments. All rights reserved.

http://www.ni.com/info

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media that do not execute programming
instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not
warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the
package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising
out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT
OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER.
NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL
OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments
will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National
Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any
delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages,
defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation,
or maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure
or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the
prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected
by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials
belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the
terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

• Notices are located in the <National Instruments>_Legal Information and <National Instruments>
directories.

• EULAs are located in the <National Instruments>\Shared\MDF\EULAs directory.

• Review <National Instruments>_Legal Information.txt for more information on including legal information
in installers built with NI products.

Trademarks
CVI, LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are
trademarks of National Instruments Corporation. Refer to the Trademark Information at ni.com/trademarks for other
National Instruments trademarks.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft
Corporation in the United States and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and
other countries. Other product and company names mentioned herein are trademarks or trade names of their respective
companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments
and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your
software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global
trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A
LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS
CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN
REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE
PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS
IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING
SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO
DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY
PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED
USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE
FACTORS SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY
APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS
(INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY UPON ONE
FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR
DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT
AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS'
TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL
INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED
OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL
INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A
SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS
AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments | v

Contents

About This Manual
Conventions .. ix
Related Documentation .. x

Chapter 1
Introduction to LabWindows/CVI
LabWindows/CVI Program Development Overview... 1-1

Organizing Application Components ... 1-3
LabWindows/CVI Environment... 1-4
Standard Libraries... 1-7
User Interface Development ... 1-8

Generating a Program Shell with CodeBuilder .. 1-8
Developing and Editing Source Code .. 1-8
Instrument Control and Data Acquisition... 1-9

Using the Instrument Control and Data Acquisition Libraries................................. 1-9
Using the Instrument I/O Assistant .. 1-9
Using the DAQ Assistant ... 1-9
Developing Instrument Drivers .. 1-10

Learning about LabWindows/CVI ... 1-10

Chapter 2
Building a Graphical User Interface
Project Templates ... 2-1
User Interface Editor .. 2-1
Source Code Connection .. 2-1
CodeBuilder.. 2-2
Selecting a Project Template .. 2-2
Building a User Interface Resource (.uir) File ... 2-3

Editing a .uir File .. 2-3
Adding Command Buttons ... 2-4
Adding a Graph Control ... 2-5

Completing the Program Shell with CodeBuilder .. 2-6
Analyzing the Source Code .. 2-7

main Function ... 2-7
AcquireData Function... 2-8
QuitCallback Function.. 2-8

Running the Generated Code.. 2-9

Contents

vi | ni.com

Chapter 3
Using Function Panels and Libraries
Function Panel Fundamentals ...3-1

Accessing Function Panels ...3-1
Function Panel Controls..3-1
Function Panel Help..3-2

Generating an Array of Data...3-2
Building the PlotY Function Call Syntax ...3-3
Running the Completed Project ..3-5

Chapter 4
Editing and Debugging Tools
Editing Tools...4-1
Step Mode Execution..4-4
Breakpoints ...4-6

Fixed Breakpoints ...4-6
Conditional Breakpoints ...4-8

Displaying and Editing Data...4-8
Variables Window ..4-8

Editing Variables ..4-9
Array Display Window...4-10
Memory Display Window ..4-11
String Display Window ..4-11
Watch Window ...4-11
Tooltips ...4-12
Graphical Array View...4-13
Resource Tracking Window ...4-13

Chapter 5
Adding Analysis to Your Program
Setting Up ...5-1

Modifying the User Interface..5-1
Writing the Callback Function..5-3
Running the Program ..5-6

Chapter 6
Distributing Your Application
Creating a New Distribution ...6-1
Editing the Distribution ..6-2
Deploying the Application to a Target Computer ..6-3

Getting Started with LabWindows/CVI

© National Instruments | vii

Chapter 7
Additional Exercises
Base Project .. 7-1
Exercise 1: Setting User Interface Attributes Programmatically...................................... 7-3

Assignment ... 7-3
Hints.. 7-3

Exercise 2: Storing the Waveform on Disk .. 7-4
Assignment ... 7-4

Hints.. 7-4
Exercise 3: Using Pop-Up Panels ... 7-5

Assignment ... 7-6
Hints.. 7-6

Exercise 4: Adding User Interface Events.. 7-7
Assignment ... 7-8

Hints.. 7-8
Exercise 5: Timed Events ... 7-9

Assignment ... 7-9
Hints.. 7-9

Chapter 8
Related Software Packages

Appendix A
Technical Support and Professional Services

Glossary

Index

© National Instruments | ix

About This Manual

Getting Started with LabWindows/CVI is a hands-on introduction to the LabWindows™/CVI™
software package. This manual is intended for first-time LabWindows/CVI users, as well as
users evaluating LabWindows/CVI. To use this manual effectively, you should be familiar with
Microsoft Windows and the C programming language.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box
options to a final action. The sequence Options»Settings»General
directs you to pull down the Options menu, select the Settings item,
and select General from the last dialog box.

This symbol also leads you through the LabWindows/CVI Library
Tree to a function panel. For example, User Interface Library»
Pop-up Panels»InstallPopup directs you to expand the User Interface
Library in the Library Tree, expand Pop-up Panels, and select
InstallPopup.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross-reference, or an
introduction to a key concept. Italic text also denotes text that is a
placeholder for a word or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from
the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives,
paths, directories, programs, subprograms, subroutines, device names,
functions, operations, variables, filenames, and extensions.

monospace Italic text in this font denotes text that is a placeholder for a word or
italic value that you must supply.

About This Manual

x | ni.com

Related Documentation
The following documents contain information that you may find helpful as you read this manual:

• Harbison, Samuel P. and Guy L. Steele, Jr. C: A Reference Manual. Englewood Cliffs, NJ:
Prentice-Hall, Inc. 1995.

• LabWindows/CVI Help

• LabWindows/CVI Release Notes

• IVI Driver Development Help

• NI-DAQmx Help

• DAQ Getting Started Guide

• DAQ Assistant Help

• Traditional NI-DAQ (Legacy) Function Reference Help

• NI-VISA Help

• NI-488.2 Help

© National Instruments | 1-1

1
Introduction to
LabWindows/CVI

This chapter contains an overview of the LabWindows/CVI software development system.
It briefly describes the LabWindows/CVI environment, standard libraries, user interface
development, and source code editing tools. Later chapters present a tutorial that provides a
more detailed treatment of these concepts and chance for hands-on learning. This chapter also
includes an introduction to using hardware with LabWindows/CVI and suggestions for learning
more about LabWindows/CVI.

LabWindows/CVI Program Development
Overview
LabWindows/CVI is a software development environment for C programmers.
LabWindows/CVI provides powerful function libraries and a comprehensive set of software
tools for data acquisition, analysis, and presentation that you can use to interactively develop
data acquisition and instrument control applications.

LabWindows/CVI combines the power and flexibility of ANSI C with easy-to-use tools
for building virtual instrumentation systems. A virtual instrument consists of an
industry-standard computer or workstation equipped with powerful application software,
cost-effective hardware such as a plug-in board, and driver software, which together perform the
functions of traditional instruments. However, virtual instruments can provide more
customization, scalability, and modularity than traditional instruments.

You can edit, compile, link, and debug ANSI C programs in the LabWindows/CVI development
environment. Additionally, you can use compiled C object modules, DLLs, C libraries, and
instrument drivers in conjunction with ANSI C source files when you develop programs.

LabWindows/CVI contains many features that make developing measurement applications
much easier than developing in traditional C environments. LabWindows/CVI provides the
following tools:

• A development environment that manages projects and source code with complete editing,
debugging, and user protection features

• A set of development libraries that allow users to write code for test and measurement
applications

• A graphical User Interface Editor, CodeBuilder, and library for building, displaying, and
controlling a graphical user interface

1-2 | ni.com

Chapter 1 Introduction to LabWindows/CVI

• A wizard and library for creating IVI instrument drivers, which are highly structured
VXIplug&play-compatible instrument drivers that use an attribute model to enable
advanced features, such as state-caching, simulation, and compatibility with generic
instrument classes

• An interactive tool for creating and editing data acquisition tasks

• An interactive tool for creating instrument control tasks

• An installer creation tool that makes it easy to deploy your finished application

• Multithreaded application development and debugging capabilities

• A command line compiler

Typical LabWindows/CVI applications include the following elements:

• User interface

• Data acquisition

• Data analysis

• Program control

Figure 1-1 illustrates the relationship between these program elements. Program control
elements receive input from the user interface, data acquisition, and data analysis elements. Each
element has several sub-components.

Figure 1-1. Relationship Between Program Elements in LabWindows/CVI

When you create a virtual instrument using LabWindows/CVI and NI hardware, keep in mind
the three-step process for creating virtual instruments: acquire, analyze, and present.

Acquire—Acquire your data through a hardware interface. Use the user interface you create to
control data acquisition from an instrument or from a plug-in DAQ device. The user interface
you create also can display the data you acquire.

User Interface

• Control Panels
• Menus
• Dialog Boxes
• Scientific Graphics
• Hardcopy Output

Data Acquisition

• Plug-In Data Acquisition
• Instrument Drivers
• Modular Instruments
• VISA
• GPIB
• Vision
• RS-232

Data Analysis
• Formatting
• Digital Signal Processing
• Statistics
• Curve Fitting
• Array Operations

Program Control
• Control Logic
• Data Storage

© National Instruments | 1-3

Getting Started with LabWindows/CVI

Analyze—After you acquire data, you must analyze it. For example, you might want to perform
formatting, scaling, signal processing, statistical analysis, and curve fitting. The
LabWindows/CVI Formatting and I/O Library and Analysis Library (Base package) or
Advanced Analysis Library (Full Development System) contain functions that allow you to
perform these operations.

Present—Present your data in a user interface you create that may contain graphs, strip charts,
and other controls. You also can display graphics, create pull-down menus, and prompt users for
input with pop-up dialog boxes. You can use the User Interface Editor to create these items
interactively, or you can use the User Interface Library to create and configure them
programmatically.

The program control portion of the program coordinates the data acquisition, data analysis, and
user interface. Program control contains the control logic for managing the flow of program
execution and user-defined support functions.

Use callback functions to control the flow of applications. Callback functions enable your
program to execute code in response to user actions, timer ticks, and operating system events.

Organizing Application Components
Use projects and workspaces to organize files and manage application development in
LabWindows/CVI. A project (.prj) file contains the files needed to run your application.
A project must include one or more of the following files:

• source (.c) files

• object (.obj) files

• library (.lib) files

You also can include the following files in a project:

• header (.h) files

• user interface resource (.uir) files

• instrument driver function panel (.fp) files

• instrument driver program files

You can include one or more projects in a workspace. A workspace (.cws) file contains settings
such as breakpoints, window positions, tag information, and debugging levels. These settings do
not affect the way a project builds. To edit the list of projects the current workspace contains,
select Edit»Workspace.

1-4 | ni.com

Chapter 1 Introduction to LabWindows/CVI

LabWindows/CVI Environment
The LabWindows/CVI environment is structured around the Workspace window, which is
shown in the following figure:

Figure 1-2. Workspace Window

Figure 1-2 displays the following areas in Workspace window:

• Project Tree—Contains the list of files in each project in the workspace. Right-click the
different elements of the Project Tree to see the list of options available for files and folders.

• Library Tree—Contains a tree view of the functions in LabWindows/CVI libraries and
instruments. You can arrange the library functions in alphabetical order, by function name
or function panel title, or in a flat list instead of a hierarchical class structure. Enter a
function name in the Find text box at the top of the Library Tree to search for a specific
function within the tree.

1 Project Tree
2 Library Tree
3 Window Confinement Region
4 Debugging Region

5 Output Region
6 Source Code Browser
7 Status Bar

7

1

2

4

5

6

3

© National Instruments | 1-5

Getting Started with LabWindows/CVI

• Window Confinement Region—Contains Source, User Interface Editor, Function Tree
Editor, and function panel windows.

• Debugging Region—Contains the Variables, Watch, Memory, and Resource Tracking
windows. Use these windows to view and edit variable values, program memory, and track
the allocation and deallocation of resources during debugging.

• Output Region—Contains the Build Errors, Run-Time Errors, Source Code Control
Errors, Debug Output, and Find Results windows. These windows contain lists of errors,
output, and search matches.

• Source Code Browser—Contains browser overview information for selected files,
functions, variables, data types, and macros in a program.

• Status Bar—Contains a status bar that displays the status of various aspects of the file,
such as line and column number, save status, messages, and so on.

Select Window»Release Window to move a window that is contained within the Window
Confinement Region, Debugging Region, Output Region, or Source Code Browser outside of
the Workspace window.

Note You cannot release the Project Tree or Library Tree from the Workspace
window. However, you can select Options»Environment and then enable the Auto
hide Project Tree and Library Tree option to remove the Project Tree and Library
Tree from the Workspace window when they are not in focus.

1-6 | ni.com

Chapter 1 Introduction to LabWindows/CVI

When you select or open a .uir file in the Workspace window, the User Interface Browser and
Attribute Browser appear to the right of the User Interface Editor, which is shown in the
following figure:

Figure 1-3. User Interface Browser and Attribute Browser

Figure 1-3 displays the following areas in the Workspace window:

• User Interface Browser—Contains a tree view of the user interface objects, such as
panels, controls, and menu bars, related to the selected .uir. Double-clicking a control,
array of controls, or panel highlights the object in the User Interface Editor and displays the
attributes related to the selected object in the Attribute Browser, where you can then edit
the attributes.

• Attribute Browser—Use the Attribute Browser to edit attributes for the user interface
objects. Enter an attribute name in the Filter text box at the top of the Attribute Browser to
filter the attribute list down to those attributes with similar names. Alternately, you can
click Filter to switch to the Find text box and search for a specific attribute within the
browser.

The menus and toolbar buttons available within the LabWindows/CVI Workspace window differ
depending on which window is active. To learn about what each menu item does, right-click the
menu and select Menu Help. LabWindows/CVI launches the LabWindows/CVI Help topic that
describes the items in the selected menu.

1 User Interface Browser 2 Attribute Browser

1

2

© National Instruments | 1-7

Getting Started with LabWindows/CVI

Standard Libraries
LabWindows/CVI provides a large set of built-in run-time libraries you can use to develop
applications. You can browse the Library Tree or press <Ctrl-Shift-P> in a Source window to
find a specific library function.

LabWindows/CVI includes the following standard libraries:

• User Interface Library—Functions for creating and controlling a graphical user interface.

• Analysis Library (Base Package)/Advanced Analysis Library (Full Development
System)—Functions that operate on arrays to simulate and analyze large sets of numerical
data quickly and efficiently.

• Formatting and I/O Library—Functions for inputting and outputting data to files and
manipulating the format of data in a program.

• Utility Library—Functions that perform various operations, including using the system
timer, managing disk files, launching another executable, and using multiple threads in a
program.

• ANSI C Library—The ANSI C standard library functions.

• VXI Library—Functions for communicating with and controlling VXI devices.

• GPIB/GPIB 488.2 Library—Functions for communicating with and controlling devices
on the GPIB.

• RS-232 Library—Functions for controlling multiple RS-232 ports using interrupt-driven I/O.

• VISA Library—Functions for controlling VXI, GPIB, serial, and other types of instruments.

• TCP Support Library—Functions that provide a platform-independent interface to the
reliable, connection-oriented, byte-stream, network communication protocol.

• UDP Support Library—Functions that provide a platform-independent interface to the
unicast, broadcast, and multicast capabilities of the User Datagram Protocol (UDP).

• Internet Library (Full Development System)—Functions that communicate with and
receive files and commands from remote servers.

• Network Variable Library—Functions for reading and writing data to network variables.

• DDE Support Library—Functions that you can use to create an interface with other
Windows applications using the Dynamic Data Exchange (DDE) standard.

• ActiveX Library—Functions that create and control ActiveX servers.

• DIAdem Connectivity Library—Functions that you can use to log test data in National
Instruments DIAdem file format (.tdm).

• TDM Streaming Library—Functions that store and retrieve test and measurement data
using the .tdms file format. This file format is optimized for high performance data
streaming.

• .NET Library—Functions that facilitate calling .NET assemblies.

• Real-Time Utility Library—Functions for replicating a real-time (RT) system,
configuring timing, creating and configuring trace sessions, and configuring RT targets.

1-8 | ni.com

Chapter 1 Introduction to LabWindows/CVI

Note You must install the LabWindows/CVI Real-Time Module to gain access to
the Real-Time Utility Library.

User Interface Development
Use LabWindows/CVI to develop GUIs that consist of panels, command buttons, pull-down
menus, graphs, and many other controls and indicators. You can use the User Interface Editor to
build a GUI in LabWindows/CVI interactively. The User Interface Editor is a drag-and-drop
editor that includes tools for designing, arranging, and customizing user interface objects.

You also can use the User Interface Library to create GUIs programmatically in
LabWindows/CVI. The User Interface Library provides functions that you can use to add to,
change, or build the entire GUI as the application runs.

To learn more about the available user interface elements and the functions that you can use to
connect your interface to the rest of your program, refer to the Using LabWindows/CVI»
Developing a Graphical User Interface section and the Library Reference»User Interface
Library section of the LabWindows/CVI Help.

Generating a Program Shell with CodeBuilder
After you design a GUI in the User Interface Editor, you can use CodeBuilder to automatically
generate a program shell based on the components in the GUI. CodeBuilder writes code for all
control callback functions and creates a program skeleton that loads and displays GUI windows
at program startup. CodeBuilder saves development time by automating many of the common
coding tasks required for writing a program. You use CodeBuilder later in this tutorial.

Developing and Editing Source Code
Use the Source window in LabWindows/CVI to develop C source files for projects.
LabWindows/CVI is compatible with the full ANSI C language specification. You can use any
ANSI C language structures or standard library functions in the source code you develop in this
window. LabWindows/CVI provides code generation tools that streamline source code
development.

You can use the menu items in the Source window to edit files, debug code, compile files, and
so on. You use Source window features in activities later in this tutorial. For more information
about the Source window, refer to Using LabWindows/CVI»Writing Source Code section in the
LabWindows/CVI Help.

© National Instruments | 1-9

Getting Started with LabWindows/CVI

Instrument Control and Data Acquisition
You can use LabWindows/CVI to develop instrument control and data acquisition applications.
LabWindows/CVI libraries provide functions for controlling GPIB, RS-232, serial, Ethernet,
and National Instruments DAQ devices and modular instruments. LabWindows/CVI also
provides interactive assistants you can use to generate code to communicate with different
devices and to create and edit NI-DAQmx tasks.

Using the Instrument Control and Data Acquisition
Libraries
LabWindows/CVI installs the GPIB/GPIB 488.2, VISA, and VXI libraries. However,
LabWindows/CVI does not install the GPIB, NI-VISA, or NI-VXI drivers. Therefore, the
GPIB/GPIB 488.2, VISA, and VXI libraries are listed in the Library Tree, but you must install
the drivers to use the functions in an application. You can install these drivers from the
NI Device Drivers media.

For other driver-related libraries, the libraries are not available in the Library Tree until you
install the drivers. You can install drivers from ni.com or from the NI Device Drivers media.

If you want to use instrument control and data acquisition libraries in LabWindows/CVI, you
must ensure LabWindows/CVI is configured to load these libraries on startup. To do so, select
Library»Customize and check the libraries you want to use. All of the libraries are checked by
default.

For a list of hardware library documentation resources, refer to the Related Documentation
section of the About This Manual chapter.

Using the Instrument I/O Assistant
Use the NI Instrument I/O Assistant to generate code to communicate with devices such as serial,
Ethernet, and GPIB instruments without using an instrument driver. To launch the Instrument I/O
Assistant from LabWindows/CVI, select Tools»Create Instrument I/O Task. For more
information about using the Instrument I/O Assistant, refer to the Using LabWindows/CVI»
Wizards and Tools»Creating an Instrument I/O Task section of the LabWindows/CVI Help.

Note You must install the NI Instrument I/O Assistant feature from the NI Device
Drivers media to use the Instrument I/O Assistant.

Using the DAQ Assistant
Use the NI DAQ Assistant to configure measurement tasks, channels, and scales. You also can
use the DAQ Assistant to generate NI-DAQmx code from a task. To launch the DAQ Assistant
from within the LabWindows/CVI environment, select Tools»Create/Edit DAQmx Tasks. For
more information about using the DAQ Assistant, refer to the Using LabWindows/CVI»Data
Acquisition»Where to Find Information about NI-DAQmx section of the LabWindows/CVI Help.

http://www.ni.com/drivers/

1-10 | ni.com

Chapter 1 Introduction to LabWindows/CVI

Note You must install NI-DAQmx from the NI Device Drivers media to use the
DAQ Assistant.

Developing Instrument Drivers
If you plan to develop your own instrument driver, refer to the IVI Driver Development Help.
This help file provides information about developing and adding instrument drivers to
LabWindows/CVI. It is intended for programmers who develop instrument drivers to control
programmable instruments such as GPIB, PXI, and RS-232 instruments. Also refer to the Using
LabWindows/CVI»Instrument Drivers section of the LabWindows/CVI Help for fundamental
instrument driver information you must consider if you create or modify a driver.

Learning about LabWindows/CVI
Complete the exercises in the remaining chapters of this tutorial to learn how to build, debug,
and deploy applications in LabWindows/CVI. The following solution folder includes completed
tutorial exercises you can use for reference.

For Windows XP/Server 2003, refer to the following folder for the solutions:
\Documents and Settings\All Users\Documents\National Instruments\
CVIversion\tutorial\solution.

For Windows 7/Vista/Server 2008, refer to the following folder for the solutions:
\Users\Public\Documents\National Instruments\CVIversion\tutorial\
solution.

Note The sample and exercise solutions in this folder are 64-bit compatible and
might differ from code you write during these exercises.

The development process for the tutorial application includes the following steps:

1. Create a user interface in the User Interface Editor (Chapter 2, Building a Graphical User
Interface).

2. Generate skeleton code for control callbacks using CodeBuilder (Chapter 2, Building a
Graphical User Interface).

3. Add source code to generate and display a waveform (Chapter 3, Using Function Panels
and Libraries).

4. Edit and debug the application (Chapter 4, Editing and Debugging Tools).

5. Develop a callback function to compute the maximum and minimum values of the
waveform (Chapter 5, Adding Analysis to Your Program).

6. Create a distribution to deploy your application on another computer (Chapter 6,
Distributing Your Application).

As you work through this tutorial, refer to the LabWindows/CVI documentation set for more
information about the concepts presented in this manual. Use the Guide to LabWindows/CVI

© National Instruments | 1-11

Getting Started with LabWindows/CVI

Documentation topic in the LabWindows/CVI Help to learn more about and access the
documents in the LabWindows/CVI documentation set. To launch the LabWindows/CVI Help,
select Help»Contents.

After you complete this tutorial, review the example programs for additional information about
LabWindows/CVI features. To view the example programs, double-click the CVI samples
shortcut in the \samples folder of the LabWindows/CVI installation. Alternately, the
LabWindows/CVI Help includes Open example buttons in function topics if an example exists
that demonstrates a use for the function. You also can use NI Example Finder to search for
example programs included in the LabWindows/CVI installation and on ni.com. To launch
NI Example Finder, select Help»Find Examples.

Refer to the following Web sites for additional support and information:

• ni.com/cvi—For general product information about LabWindows/CVI.

• ni.com/zone—For example code and tutorials on the Developer Zone.

• ni.com/forums—To participate in discussion forums and exchange code with other
LabWindows/CVI users around the world.

• ni.com/cvinews—To subscribe to the LabWindows/CVI newsletter or review the
newsletter archive.

• ni.com/cvi/community—To participate in discussion forums and learn tips and tricks
for working efficiently in LabWindows/CVI.

http://www.ni.com
http://www.ni.com/cvi
http://www.ni.com/zone
http://www.ni.com/forums
http://www.ni.com/cvinews
http://www.ni.com/cvi/community

© National Instruments | 2-1

2
Building a Graphical User
Interface

In the remaining chapters of this tutorial, you develop a project that consists of a GUI controlled
by a C source file. This sample program acquires and displays a waveform on the GUI. In this
chapter, you learn to design a user interface with the User Interface Editor.

Project Templates
Using project and file templates can help reduce the time and effort required to configure a new
project or file. The template includes the basic settings for the new project or file and any
preliminary text to include by default, such as standard comments or headings. For more
information about project templates, refer to the Using LabWindows/CVI»Managing Projects»
Creating Projects and Files from Templates»New Project and File Templates section in the
LabWindows/CVI Help.

User Interface Editor
The User Interface Editor is an interactive drag-and-drop editor for designing custom GUIs. You
can select a number of different controls from the Create menu and position them on the panels
you create. You can customize each control through a series of dialog boxes in which you set
attributes for the control appearance, source code connections, and label appearance.

Source Code Connection
After you design a user interface in the User Interface Editor, you can write C source code to
control the GUI. To connect elements on the user interface to the source code, you must assign
a constant name to each panel, menu, and control on your user interface. Then, you can use those
names in the C source code to differentiate the controls on the GUI. You also can assign a
callback function to a control that is called automatically when you operate that control during
program execution. Use the Attribute Browser to associate a constant name and a callback
function with that control.

After you save a user interface as a .uir file, LabWindows/CVI automatically generates an
include (.h) file that defines all the constants and callback functions you have assigned.

2-2 | ni.com

Chapter 2 Building a Graphical User Interface

CodeBuilder
After you complete the .uir file, you can use CodeBuilder to expand on code in the project
template source file by generating the skeleton code for the remaining callback functions for the
controls on your panel. For more information about CodeBuilder, refer to the Using
LabWindows/CVI»Developing a Graphical User Interface»Generating Code from the GUI
section of the LabWindows/CVI Help.

Selecting a Project Template
Complete the following steps to select and set up a project template for the sample project.

1. Launch LabWindows/CVI by selecting Start»All Programs»National Instruments»
LabWindows CVI version»NI LabWindows CVI version.

2. When you open LabWindows/CVI for the first time, you see the Welcome Page. It displays
helpful resources, new features, and recently opened files. Select Project from Template
to open the New Project from Template dialog box.

Note If you disable the Welcome Page, you see an empty workspace when you start
LabWindows/CVI. Select File»New»Project from Template to open the New
Project from Template dialog box.

3. Select User Interface Application.

4. Change Project name to sample1.

5. Change the Project folder to the tutorial folder.

For Windows XP/Server 2003, browse to:
\Documents and Settings\All Users\Documents\National Instruments\
CVIversion\tutorial\.

For Windows 7/Vista/Server 2008, browse to:
\Users\Public\Documents\National Instruments\CVIversion\
tutorial\.

Note In the previous paths, version represents the version of LabWindows/CVI
you are using.

6. Verify that Add this project to the current workspace is not selected.

7. Click OK.

© National Instruments | 2-3

Getting Started with LabWindows/CVI

Building a User Interface Resource (.uir) File
Complete the following steps to design the user interface for the sample project, as shown in
Figure 2-1.

Figure 2-1. sample1.uir

Editing a .uir File
1. In the Project Tree, right-click sample1.uir and select Open to open the file.

Tip You also can double-click an item in the Project Tree to open it.

2. The Attribute Browser is located to the right of the User Interface Editor in the Workspace
window, below the User Interface Browser. In the Attribute Browser, the Find text box
highlights attributes in the list and the Filter text box displays only matching attributes in
the list. You can change between finding or filtering attributes in the list by clicking Find
or Filter.

Use the Find or the Filter text box to locate the Constant Name control in the Attribute
Browser. Notice that Constant Name is set to PANEL and Callback Function is set to
panelCB. These are the settings from the project template.

Note In the User Interface Editor, select the control(s) or panel you want to edit to
display the associated attributes in the Attribute Browser.

2-4 | ni.com

Chapter 2 Building a Graphical User Interface

3. Enter Sample 1 for the Title and press the <Enter> key to commit any attribute value
changes.

You also can edit control and panel attribute values in the Edit Control or Edit Panel dialog box,
respectively. To open the associated edit dialog box, select Control or Panel from the Edit
menu. Notice that some attributes have slightly different names in the edit dialog box compared
to the names in the Attribute Browser.

Tip You also can double-click a control or panel in the .uir to open the edit dialog
box.

Adding Command Buttons
1. Select Create»Command Button»Square Command Button. LabWindows/CVI places

a button labeled OK on the panel.

Tip You also can add controls to a panel by right-clicking the panel and selecting
the appropriate control.

2. To edit the button attributes, select the button. The attributes related to the button appear in
the Attribute Browser.

3. To change the label on the command button, enter Acquire in place of __OK in Label
Text.

Note If you type a double underscore before any letter in Label Text, the letter is
underlined on the user interface. The user can select the control by pressing <Alt>
and the underlined letter, provided that no accessible menu bars contain a menu with
the same underlined letter.

4. Assign a constant name to the button. In the C source code you use this constant name to
identify the button. Change the default Constant Name to ACQUIRE.

5. Assign a function name that the program calls when a user clicks the Acquire button. Enter
AcquireData as the Callback Function. In Chapter 3, Using Function Panels and
Libraries, you write the source code for the AcquireData function.

6. (Optional) Customize the label font appearance by changing the values in the Label Bold
field, the Label Character Set field, and so on.

7. To add the QUIT button, ensure the .uir file has focus, right-click the panel, and select
Custom Controls»Quit Button. Custom controls are frequently used control
configurations. The QUIT button already has a callback function, QuitCallback,
assigned. It is not necessary to modify the default settings for the QUIT button.

© National Instruments | 2-5

Getting Started with LabWindows/CVI

Adding a Graph Control
1. Right-click the Sample 1 panel and select Graph»Graph. LabWindows/CVI places a

graph control labeled Untitled Control on the panel.

2. To size the panel, click and drag one of its corners. Use the commands in the Edit menu
and the Arrange menu to cut, copy, paste, align, and space user interface controls in the
editor so they appear as shown in Figure 2-1. You also can use the grid lines on the panel
to align the controls.

3. You also can locate control attributes using the User Interface Browser located above the
Attribute Browser. Double-click GRAPH in the User Interface Browser. Notice that the
graph is highlighted in the User Interface Editor and the attributes available in the Attribute
Browser are now attributes associated with the graph control.

To customize the graph attributes, enter the following values in the Attribute Browser:

a. Use the Find text box to locate the Constant Name attribute. If you prefer, use the
Filter text box accessible by toggling the Find label.

Enter WAVEFORM as the Constant Name.

Note Because the graph serves only as an indicator to display a waveform, the
graph does not require a callback function. Callback functions are necessary only
when the operation of the control initiates an action. Indicators generally do not
require callback functions.

b. Enter Acquired Data as the Label Text.

c. Enter Time for X Name.

d. To display time relative to the start of the application, set X Format to relative time.

e. Click the ... button in the value column of X Axis Date Time Format String to open
the Edit Relative Date/Time Format String dialog box. To display time in minutes and
seconds, delete %H: from the Format String field and click OK.

f. Set Y Name to Voltage.

4. Verify that the completed user interface looks like the one shown in Figure 2-1.

2-6 | ni.com

Chapter 2 Building a Graphical User Interface

Completing the Program Shell with CodeBuilder
Now that you have built a GUI in the User Interface Editor, use CodeBuilder to complete the
remainder of the program shell for your GUI. Generate the skeleton code for the control
callbacks.

1. To select default control events for your application, select Code»Preferences»Default
Events to open the Callback Events dialog box. Select All control types from the left tree
and select EVENT_COMMIT and EVENT_RIGHT_CLICK. Verify that no other events are
selected. Click OK.

In the main tutorial, you work only with the EVENT_COMMIT event. In Chapter 7, Additional
Exercises, you develop code to display help when a user right-clicks a GUI control. For a
complete list of events, refer to the Library Reference»User Interface Library»Events topic
of the LabWindows/CVI Help.

2. Select Code»Generate»All Callbacks. By default, CodeBuilder generates EVENT_COMMIT
events for every panel or control that you define a callback function for.

3. The Generate Code dialog box appears with the panelCB callback function highlighted in
the Source window. The project template provides the panelCB callback function, so you
do not need CodeBuilder to generate it. Click Skip. CodeBuilder proceeds and generates
the callback functions for all of the controls.

4. Insert a line after case EVENT_COMMIT: in the QuitCallback function with the
following code:

QuitUserInterface(0);

Note The project template provides only one option for closing the panel, clicking
the X button in the upper right corner. By inserting a call to QuitUserInterface
in QuitCallback, you add a second option for closing the panel, clicking the
QUIT button.

© National Instruments | 2-7

Getting Started with LabWindows/CVI

Analyzing the Source Code
The source code that you generated for the Sample 1 program is skeleton code. You must add
code to this skeleton that determines how the program responds when it generates events. The
program you generated consists of three functions. The functions in the sample1.c code are
good examples of the functions you may write in the future for your own LabWindows/CVI
programs.

main Function
Completing the main function is the first step you must take when you build your own
applications. The main function is shown in the following code:

int main (int argc, char *argv[])

{
 int error = 0;

 /* initialize and load resources */
 nullChk (InitCVIRTE (0, argv, 0));
 errChk (panelHandle = LoadPanel (0, "sample1.uir", PANEL));

 /* display the panel and run the user interface */
 errChk (DisplayPanel (panelHandle));
 errChk (RunUserInterface ());

Error:
 /* clean up */

if (panelHandle > 0)

 DiscardPanel (panelHandle);
 return 0;
}

Note The LabWindows/CVI macros errChk and nullChk provide convenient
error-handling. For more information about these macros, refer to toolbox.h.

To allow users to operate the user interface that you created, your program must perform the
following steps:

• LoadPanel loads the panel from the .uir file into memory.

• DisplayPanel displays the panel on the screen.

• RunUserInterface allows LabWindows/CVI to begin sending events from the user
interface to the C program you are developing. This function does not return until the
program calls QuitUserInterface.

When you no longer need the user interface, call DiscardPanel to remove the panel from
memory and from the screen.

2-8 | ni.com

Chapter 2 Building a Graphical User Interface

AcquireData Function
The AcquireData function automatically executes whenever you click Acquire on the user
interface. You add to this function later in this tutorial so you can plot the array on the graph
control that you created on the user interface. The AcquireData function is shown in the
following code:

int CVICALLBACK AcquireData (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event)
{

case EVENT_COMMIT:

break;
case EVENT_RIGHT_CLICK:

break;

}

return 0;
}

Notice that the callback function returns 0. User callbacks must always return 0 unless they intend
to swallow the event to which they are responding. To swallow the event, the callback should
return 1. This tutorial does not use callbacks that swallow events. Refer to the Library
Reference»User Interface Library»Events»Swallowing Events topic in the LabWindows/CVI Help
for more information about swallowing events, including a list of events that are swallowable.

QuitCallback Function
The QuitCallback function automatically executes whenever you click QUIT on the user
interface. This function disables the user interface from sending event information to the
callback function and causes the RunUserInterface call in the main function to return.
The QuitCallback function is shown in the following code:

int CVICALLBACK QuitCallback (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event)
{

case EVENT_COMMIT:
QuitUserInterface (0);

break;
case EVENT_RIGHT_CLICK:

break;
}
return 0;

}

© National Instruments | 2-9

Getting Started with LabWindows/CVI

Running the Generated Code
The code you generated using CodeBuilder is syntactically and programmatically correct code
that compiles and runs before you add to it. Select Run»Debug sample1.exe to run the
generated code. The program displays the user interface panel and exits when you press the
QUIT button.

© National Instruments | 3-1

3
Using Function Panels and
Libraries

In this chapter of the tutorial, you use LabWindows/CVI function panels to generate code. You
complete the source code that plots an array with a sine pattern on the graph control you created
in Chapter 2, Building a Graphical User Interface.

Function Panel Fundamentals
A function panel is a graphical view of a library function in LabWindows/CVI. Function panels
serve several important purposes.

• With function panels, you can execute each LabWindows/CVI function interactively before
incorporating it into the program. With this feature, you can experiment with the parameter
values until you are satisfied with the operation of the function.

• Function panels provide help that explains the purpose of each function in the
LabWindows/CVI libraries and of each parameter in the function call.

• Function panels generate code automatically so that you can insert the function call syntax
into your program source code.

Accessing Function Panels
The Library Tree includes function panels for all of the libraries in LabWindows/CVI. You can
scan quickly through the hierarchy of the library to find a given function. Alternatively, you can
use the Find text box located above the Library Tree and enter the name of the function. For
advanced searching options, right-click the Library Tree, select Find, enter the name of the
function, and select from several search options such as case-sensitivity, wrapping text, and so
on.

Function Panel Controls
The controls on the function panel represent parameters. Enter values in the controls to specify
parameter values. Some controls have ... buttons next to them that provide additional dialog
boxes to select input for parameters.

3-2 | ni.com

Chapter 3 Using Function Panels and Libraries

Function Panel Help
You can access help for functions and parameters from function panels. Table 3-1 lists methods
for accessing the help.

Note A function must be documented in the LabWindows/CVI Help to have
combined help available through its function panel.

Generating an Array of Data
If you did not proceed directly from Chapter 2, Building a Graphical User Interface, go back
and do so now.

When a user clicks Acquire, the program generates a random number using the ANSI C srand
and rand functions and then uses that number as the amplitude for the sine pattern.

1. Open sample1.c, if it is not already open.

2. In the AcquireData function, on the line following case EVENT_COMMIT:, enter the
following lines of code to generate the random numbers.

srand (time(NULL));
amp = rand ()/32767.0;

Note Refer to sample1.c in the solution folder for an example of the previous
code that is 64-bit compliant.

3. Position the cursor on a blank line immediately following amp = rand ()/32767.0.

Table 3-1. Displaying Function Panel Help

Type of Help How to View Help

Function Help Select Help»Function.
or
Right-click anywhere on the background of the function panel.
or
Press <Shift-F1>.

Parameter Help Place the cursor in the control, then select Help»Control.
or
Right-click the control.
or
Press <F1> from the control.

Combined Help Select Help»Online Function Help.
or
Press <Ctrl-Shift-F1>.

© National Instruments | 3-3

Getting Started with LabWindows/CVI

4. Enter SinePattern in the Find text box above the Library Tree to locate the Sine Pattern
function panel and press the <Enter> key to highlight the function in the Library Tree. Then
press the <Enter> key again to open the function panel.

Note If LabWindows/CVI cannot find a match, right-click the Library Tree and
select Show Function Names. Then repeat step 4.

5. Select Code»Set Target File. Select sample1.c and click OK.

6. Enter 100 in the Number of Elements control.

7. Enter amp in the Amplitude control. Select Code»Declare Variable and enable the
Add declaration to current block in target file “sample1.c” option. Click OK.

8. Enter 180.0 in the Phase (Degrees) control.

9. Enter 2.0 in the Number of Cycles control.

10. Enter sine in the Sine Pattern control. Select Code»Declare Variable.

11. In the Declare Variable dialog box, enter 100 as the Number of Elements and enable the
Add declaration to top of target file “sample1.c” option. Click OK.

12. Select Code»Insert Function Call. LabWindows/CVI pastes the SinePattern function
from the function panel into the sample1.c source code at the position of the text cursor.

Tip In the Source window, you can place your cursor anywhere in a
LabWindows/CVI library function call and then select View»Recall Function Panel
to open the function panel for the selected function. When you recall a function panel,
the controls automatically reflect the state of the function call in the Source window.

Building the PlotY Function Call Syntax
Complete the following steps to generate a line of code that plots the random data array on the
graph control.

1. Position the cursor in the Source window on a blank line immediately following the
SinePattern function call within the AcquireData function.

2. Type PlotY and then press <Ctrl-P> to open the Plot Y function panel.

3. In the Panel Handle control, select Code»Select Variable. Enable the Show Project
Variables option. The dialog box contains a list of variable names used in your program.
Choose panelHandle from the list and click OK.

Note If you have never built the project, click Build The Project. During the
compile process, LabWindows/CVI recognizes that the program is missing the
ansi_c.h and analysis.h include statements. When prompted, click Yes to add
these include files in your program.

3-4 | ni.com

Chapter 3 Using Function Panels and Libraries

4. For the Control ID control, you must specify the constant name assigned to the graph
control. While the cursor is in Control ID, press <Enter> to open a dialog box with a list
of the constant names for controls in the.uir files in the workspace. Verify sample1.uir
is selected in the User Interface Resource files section, select PANEL_WAVEFORM
from the list of constants, and click OK.

5. Type sine in the Y Array control. This name indicates which array in memory the
program displays on the graph.

6. Type 100 in the Number of Points control. This number indicates the number of elements
in the array to plot.

7. For Y Data Type, click the control to display a drop-down menu of possible data types.
Select double precision. When the Plot Y function panel matches the one in Figure 3-1,
proceed to the next step.

Figure 3-1. Completed Plot Y Function Panel

8. Select Code»Insert Function Call to paste the PlotY function call into the source code.
LabWindows/CVI displays a message that states text is selected on the current line. Click
Replace to replace the PlotY you typed with the complete function call.

© National Instruments | 3-5

Getting Started with LabWindows/CVI

9. Confirm that the AcquireData function matches the following source code:

int CVICALLBACK AcquireData (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
double amp;
switch (event)
{

case EVENT_COMMIT:
srand (time(NULL));
amp = rand ()/32767.0;
SinePattern (100, amp, 180.0, 2.0, sine);
PlotY (panelHandle, PANEL_WAVEFORM, sine,

100, VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1, VAL_RED);

break;
case EVENT_RIGHT_CLICK:

break;
}
return 0;

}

10. Save the source file.

Running the Completed Project
You now have a completed project, saved as sample1.prj. Select Run»Debug sample1.exe
to execute the code. If prompted, click Yes to add ansi_c.h and analysis.h to the top of
the file. When you run your program, the following actions take place:

1. LabWindows/CVI compiles the source code from sample1.c and links with the
appropriate libraries in LabWindows/CVI.

2. When the program starts, LabWindows/CVI launches the user interface, ready for keyboard
or mouse input.

3. When you click Acquire, LabWindows/CVI passes the event to the AcquireData
callback function.

4. The AcquireData function generates an array of data and plots it on the graph control on
the user interface.

5. When you click QUIT, LabWindows/CVI passes the event to the QuitCallback
function, which halts the program.

© National Instruments | 4-1

4
Editing and Debugging Tools

In this chapter, you become acquainted with the following tools available for editing and
debugging in the interactive LabWindows/CVI environment.

• Source window

• Step modes of execution

• Breakpoints

• Variables window

• Array Display window

• Memory Display window

• String Display window

• Watch window

• Graphical Array View

• Resource Tracking window

Editing Tools
This chapter uses the project you developed in Chapter 3, Using Function Panels and Libraries.
If you did not proceed directly from Chapter 3, go back and do so now.

The LabWindows/CVI Source window has a number of quick editing features that are helpful
when you work with source files. Complete the following steps to view some of the editing
features available in LabWindows/CVI.

1. Open sample1.c if it is not already open. Select View»Line Numbers to display a
column to the left of the window that shows line numbers.

2. The programs you develop in LabWindows/CVI often refer to other files, such as header
files or user interface files. To view these additional files quickly, place the cursor on the
filename in the source code and select File»Open Quoted Text, press <Ctrl-U>, or
right-click the filename and select Open Quoted Text.

Place the cursor on the userint.h filename in sample1.c and press <Ctrl-U>.
LabWindows/CVI opens the userint.h header file in a separate Source window. Scroll
through and then close the header file.

4-2 | ni.com

Chapter 4 Editing and Debugging Tools

3. If you want to view a portion of your source code while you make changes to another area
of the source code in the same file, you can split the window into top and bottom halves
called subwindows, as shown in Figure 4-1.

Figure 4-1. Split Source Window

To split the window, click and drag the double line at the top of the Source window to the
middle of the screen. Notice how each half of the window scrolls independently to display

© National Instruments | 4-3

Getting Started with LabWindows/CVI

different areas of the same file simultaneously. Type text on line 46. Notice that the text you
typed appears in both halves of the window.

4. If you make editing mistakes while entering or editing source code in the Source window,
LabWindows/CVI has an Undo feature you can use to reverse any mistakes. The default
configuration of LabWindows/CVI allows up to 100 undo operations, and you can undo up
to 1,000 operations. Press <Ctrl-Z>. The text you entered on line 46 of the source code
disappears.

5. Drag the dividing line between the two subwindows back to the top to make a single
window again.

6. If you want a cleaner view of your code, you can collapse certain regions. Click the minus
button to the left of the main function in sample1.c. The function collapses into a single
line of code with a dotted line beneath it. The minus button is now a plus button, signaling
there is hidden collapsed code. Click the plus button to reveal the code.

Tip To recursively collapse the region and any subregions of code, right-click the
minus button and select Collapse Region and Subregions.

Place your mouse over the collapsible region to highlight the region in the column that
corresponds to the code block. The highlight persists until you move your mouse to another
part of the collapsible region. If you move your mouse away from the collapsible region
and into the source code, the highlight persists in a lighter shade.

LabWindows/CVI defines collapsible regions for multiline code blocks delimited by curly
braces or multiline comments. For more information about collapsible regions, refer to
collapsible regions in the LabWindows/CVI Help index.

7. You can use three different methods to quickly move to a particular line of code in your
source file.

• If you know the line number you want to view, select View»Line to open the Line
dialog box. Then enter the line number in the Go to Line control and click the OK
button.

• You can double-click the line/column indicator in the status bar of the confined Source
window to open the Line dialog box. Then enter the line number in the Go to Line
control and click the OK button.

• You can set tags on particular lines to highlight lines of code to which you can jump
quickly.

To set a tag, place the cursor on line 48. Select View»Toggle Tag. A green square
appears in the left-hand column of the Source window. Place the cursor on line 65 of
the Source window and add another tag. Press <F2> to move between tags. Select
View»Clear Tags, make sure all of the tags are checked, and then click OK to remove
the tags from the source file.

8. You also can navigate through the Source window by finding specific text in the code.
Select Edit»Find to open the Find dialog box, in which you enter the text you want to locate
and specify various searching preferences. Enter panelHandle in the Find what control

4-4 | ni.com

Chapter 4 Editing and Debugging Tools

and leave the remaining controls set to their default values. Then click Find Next.
LabWindows/CVI highlights the first match in the text and displays a list of all matches in
the Find Results window. Click an entry in the Find Results window to locate the
corresponding text in the Source window.

Select Edit»Quick Search and type argc. When you use the Quick Search command,
LabWindows/CVI performs an incremental search. Notice that LabWindows/CVI finds
matches of the letters you type. The selection changes as you type more letters.

Step Mode Execution
In LabWindows/CVI, you can compile and build a program in debug configuration or release
configuration by selecting the configuration from the Build»Configuration submenu. The
debug configuration executes similarly to the release version of the program but also offers you
tools for debugging the program, including breakpoints and step mode execution. After
debugging your program, select a release configuration to remove debugging information and
increase the execution speed of your program. Refer to the Using LabWindows/CVI»
Managing Projects»Setting the Project Configuration topic in the LabWindows/CVI Help for
more information about project configurations. The following debugging exercises use debug
configuration.

Step mode execution is a useful run-time tool for debugging programs. To step through
sample1.c, complete the following steps:

1. Select Run»Break on»First Statement to stop execution at the first statement in the
source code.

2. Select Run»Debug sample1.exe to begin program execution. After the program compiles,
the main function line in the program is highlighted in the Source window, indicating that
program execution is currently suspended.

3. To execute the highlighted line, select Run»Step Into.

Tip Use the icons in the toolbar and the shortcut key combinations listed in
Table 4-1 to execute these commands.

Table 4-1. Quick Keys for Step Mode Execution

Command
Shortcut Key
Combination

Toolbar
Icon Description

Continue <F5> Causes the program to continue operation
until it completes or reaches a breakpoint

Go to
Cursor

<F7> Continues program execution until the
program reaches the location of the cursor

Set Next
Statement

<Ctrl-Shift-F7> Changes the next statement to execute

© National Instruments | 4-5

Getting Started with LabWindows/CVI

4. To find the definition of the SinePattern function, place the cursor on the function
in sample1.c and select Edit»Go to Definition. Alternatively, you can right-click the
function and select Go to Definition.

The Go to Definition command immediately finds the definition of the function, even
when the function resides in a different source or header file. However, the target source
file must have been compiled in the project. You also can use this command to find variable
declarations.

In this case, LabWindows/CVI opens analysis.h and highlights the SinePattern
function declaration. To return to your previous source code location, select Edit»Go Back.

Tip Many of the commands in this exercise also are available in the Source window
context menu. Right-click within the Source window to view the available
commands.

5. Use the Step Into button to begin stepping through the program. Notice that when the main
function is executed, the highlighting moves to the function and traces the instructions
inside the function. Continue to step through the program until the following statement is
highlighted:

errChk(DisplayPanel (panelHandle));

6. Place the cursor on the line with the call to DiscardPanel (panelHandle);.
Select Run»Set Next Statement to select the next statement to execute. The highlighting
moves to that line. Press <F5> to continue program execution. Notice that the program exits
without having run the user interface because the program execution skipped over the
RunUserInterface function call.

Step Into <F8> Single-steps through the code of the function
call being executed

Step Over <F10> Executes a function call without
single-stepping through the function code itself

Finish
Function

<Ctrl-F10> Resumes execution through the end of the
current function and breakpoints on the next
statement

Terminate
Execution

<Ctrl-F12> Halts execution of the program during step
mode

Table 4-1. Quick Keys for Step Mode Execution (Continued)

Command
Shortcut Key
Combination

Toolbar
Icon Description

4-6 | ni.com

Chapter 4 Editing and Debugging Tools

Breakpoints
Breakpoints are another run-time tool that you can use to debug programs in LabWindows/CVI.
A breakpoint is a location in a program at which LabWindows/CVI suspends execution of your
program. You can invoke a breakpoint in LabWindows/CVI in the following ways:

• Fixed Breakpoint—Insert a breakpoint at a particular location in the Source window. You
can turn breakpoints on or off even while your program is executing.

• Instant Breakpoint—When an application is running, press <Ctrl-F12> while a window
is active in the LabWindows/CVI environment.

• Breakpoint on Library Errors—Select Run»Break on»Library Errors to cause
LabWindows/CVI to pause at a particular location when a library function returns an error.

• Conditional Breakpoint—Cause LabWindows/CVI to pause at a particular location when
a user-specified condition becomes true.

• Programmatic Breakpoint—In your code, call the Breakpoint function.

• Watch Expression Breakpoint—Cause LabWindows/CVI to pause when the value of a
watch expression changes.

Fixed Breakpoints
To insert a breakpoint at a specific location in your source code, click in the left column of
the Source window on the line on which you want to suspend execution. Complete the following
steps to insert a breakpoint inside the AcquireData function.

1. Stop program execution by selecting Run»Terminate Execution, if necessary.

2. Disable Run»Break on»First Statement.

3. In the Source window, click to the left of the line that contains the following statement:

SinePattern (100, amp, 180.0, 2.0, sine);

© National Instruments | 4-7

Getting Started with LabWindows/CVI

A red diamond, which represents a breakpoint, appears beside that line as shown in
Figure 4-2.

Figure 4-2. Breakpoint Beside a Line of Code

Note You do not need to suspend or terminate execution to insert a breakpoint. If
you insert a breakpoint while the program is running, LabWindows/CVI suspends the
program when it reaches that line of code.

4. Begin execution of the program by selecting Run»Debug sample1.exe. Click Acquire to
generate a commit event for AcquireData. When LabWindows/CVI encounters the
breakpoint during execution, it suspends program execution and highlights the line where
you inserted the breakpoint.

5. Press <F5> to continue execution. Program execution continues until the next breakpoint
or until completion. You can single-step through any line of code by selecting Run»
Step Over or Run»Step Into.

6. Stop the program at a breakpoint by pressing <Ctrl-F12> or by selecting Run»
Terminate Execution.

7. To remove the breakpoint from the program, click the red diamond.

4-8 | ni.com

Chapter 4 Editing and Debugging Tools

Conditional Breakpoints
Use conditional breakpoints to halt program execution only when the specified condition is true.
Complete the following steps to use conditional breakpoints in your program.

1. Select Run»Breakpoints to open the Breakpoints dialog box.

2. In the Breakpoints dialog box, click Add/Edit Item to open the Edit Breakpoint dialog box.

3. In the Edit Breakpoint dialog box, enter 82 for Line, and enter amp > 0 as the Condition.
Notice the default values for the remaining controls, but do not change them. Click Add.

4. Click OK to exit the Breakpoints dialog box. LabWindows/CVI displays a yellow square
to the left of line 82 to indicate the conditional breakpoint.

5. Select Run»Debug sample1.exe to begin program execution. Click Acquire to run the
code in the commit event case for AcquireData. LabWindows/CVI halts execution at
line 82 because the breakpoint condition was met. Hover the mouse cursor over amp to
verify its value is greater than 0.

6. Select Run»Terminate Execution to stop the program.

7. Right-click the conditional breakpoint icon to the left of line 82 and select Breakpoints to
open the Breakpoints dialog box.

8. Click Add/Edit Item to open the Edit Breakpoint dialog box. Replace the Condition text
with amp < 0 and click Replace. Then click OK to exit the Breakpoints dialog box.

9. Repeat step 5. Notice that LabWindows/CVI does not halt execution at line 82 because the
breakpoint condition is no longer true.

10. Press <Ctrl-F12> twice to stop the program. To remove the breakpoint, select Run»
Breakpoints, ensure the breakpoint is highlighted, and click Delete Item. Then click OK
to exit the dialog box.

For more information about breakpoints, refer to breakpoints in the LabWindows/CVI Help index.

Displaying and Editing Data
Step mode execution and breakpoints are useful tools for high-level testing. However, you often
need to look beyond your source code to test your programs. LabWindows/CVI provides
displays for viewing and editing the data for your program. In the following exercises, you use
a variety of these displays to view data generated by your application.

Variables Window
The Variables window shows all variables currently declared in the LabWindows/CVI
interactive program. To view the Variables window, select Window»Variables.

The Variables window lists the name, value, and type of currently active variables.
LabWindows/CVI displays variables in categories according to how they are defined, such as
global or local. The Stack Trace section shows the current call stack of functions. To view
variables that are active elsewhere in the call stack, double-click the corresponding function in
the Stack Trace.

© National Instruments | 4-9

Getting Started with LabWindows/CVI

You can view the Variables window at any time to inspect variable values. This feature is
especially useful when you step through a program during execution. Complete the following
steps to step through the program and view the Variables window at different points in the
execution of the program.

1. Select Run»Break on»First Statement.

2. Select Run»Debug sample1.exe, or press <Shift-F5>, to run the program. When the program
begins execution, LabWindows/CVI highlights the main function in the Source window.

3. Select Window»Variables to view the Variables window, shown in Figure 4-3.

Figure 4-3. Variables Window During Execution of main

Note The values you see for your project might differ from the values shown in
Figure 4-3.

4. Insert a breakpoint on the line with the following code:

SinePattern (100, amp, 180.0, 2.0, sine);

5. Press <F5> to continue program execution. Click Acquire. LabWindows/CVI halts
program execution on the statement with the breakpoint. In the Variables window,
LabWindows/CVI now lists AcquireData in the Stack Trace section. The Variables
window shows the variables that are declared locally to that function.

6. Leave the program suspended and continue to the next section, Editing Variables.

Editing Variables
In addition to displaying variables, you can use the Variables window to edit the contents of a
variable. Complete the following steps to use the Variables window for this purpose.

1. Make sure the sample1.c program is still suspended on the following line:

SinePattern (100, amp, 180.0, 2.0, sine);

2. Highlight the amp variable in the Source window and select Run»View Variable Value.
LabWindows/CVI highlights the amp variable in the Variables window.

3. From the Variables window, press <Enter> to edit the value of amp. Enter 0.2 in the value
column and press <Enter>.

4-10 | ni.com

Chapter 4 Editing and Debugging Tools

4. In the Source window, select Run»Continue. Notice that the sine pattern amplitude is now
0.2. The change you made using the Variables window took effect immediately in the
execution of the program.

Note Notice that LabWindows/CVI displays in red text those variable values that
changed since the program was last suspended. In the Variables window,
LabWindows/CVI now displays the value for the amp variable in red text to indicate
a changed value.

Array Display Window
The Array Display window shows the contents of an array of data. You can use the Array
Display window to edit array elements in the same way that you edited variables using the
Variables window.

1. Click Acquire to put the program in breakpoint mode again.

2. Right-click sine in the Variables window and select View»Array Display to view the
array values as shown in Figure 4-4.

Figure 4-4. Array Display Window

Note The actual values in your array might differ from the values shown in
Figure 4-4.

The Array Display window shows the values of array elements in tabular format.
In Figure 4-4, the sine array is a one-dimensional array, so the display consists of
one column of numbers. The numbers in the column on the left side of the display indicate
the index number. The first element is zero.

Take a moment to view the display. You can edit individual elements in the array just as you
edited variables in the Variables window.

3. Close the Array Display window.

© National Instruments | 4-11

Getting Started with LabWindows/CVI

Memory Display Window
You can use the Memory Display window to view and edit the memory of the program you are
debugging. Use the Memory Display window as follows:

1. With your program still suspended, select Window»Memory to display the Memory
Display window.

2. Click the Variables tab to return to the Variables window.

3. Click the sine variable in the Variables window and drag it to the Memory tab.
LabWindows/CVI displays the sine array memory in the Memory Display window.

4. To edit the program memory, right-click in the Memory Display window and select Edit
Mode. When the Memory Display window is in edit mode, double-click a value to edit it.
Similar to the Variables window, the Memory Display window also displays changed
values in red text.

5. When you are finished, click <Ctrl-F12> to terminate program execution.

String Display Window
The String Display window is similar to the Array Display window except that you use the String
Display window to view and edit elements of a string. Operations in the String Display window
are similar to the operations you performed in the Array Display window. You can select a string
variable from the Variables window to launch the String Display window. For more information
about the String Display window, refer to the Using LabWindows/CVI»Debugging Tools»
Using the Array and String Display Windows section in the LabWindows/CVI Help.

Watch Window
The Watch window is a powerful debugging tool. In addition to viewing values of variables
changing dynamically as your program executes, you also can use the Watch window to view
expression values and set conditional breakpoints when variable or expression values change.
Complete the following steps to use the Watch window to view variables during program
execution.

1. With sample1.prj still loaded as the current project, ensure that Run»Break on»
First Statement is enabled. Click the breakpoint on the SinePattern line of code to
remove it.

2. Select Run»Debug sample1.exe, or press <Shift-F5>, to start program execution.
Execution breaks with the main function highlighted.

3. In the Variables window, right-click the sine variable and select Add Watch Expression
to add the sine variable to the Watch window. LabWindows/CVI displays the Add/Edit
Watch Expression dialog box.

4-12 | ni.com

Chapter 4 Editing and Debugging Tools

4. Enable the Break when value changes option so that the dialog box matches the
one shown in Figure 4-5. Then click Add to close the dialog box. LabWindows/CVI
displays the sine variable within the Watch window. Expand the sine variable within the
Watch window to view the individual elements within the array.

Figure 4-5. Add/Edit Watch Expression Dialog Box

5. Select Run»Continue to continue program execution. Click Acquire on the user interface.
Program execution breaks after the call to SinePattern because the sine variable
values have changed. Review the updated element values of the sine variable in the Watch
window. After viewing the new variable values in red text, select Run»Continue to
continue program execution and then click QUIT on the user interface to exit the program.
Remove the watch expression by clicking the sine variable in the Watch window and
pressing <Delete>.

Tooltips
You also can use the following method to edit variables:

1. Disable the Run»Break on»First Statement option and set a breakpoint on the line of code
that includes the SinePattern function call. Then, select Run»Debug sample1.exe.

2. Click Acquire on the user interface. Program execution breaks on the SinePattern
statement.

3. Position the mouse cursor on the amp variable in the SinePattern statement.

4. The variable value appears in a tooltip. Highlight the current value and enter 3.0.

5. Select Run»Continue to complete program execution. Notice the amplitude of the graphed
sine pattern is the value you specified in the tooltip, not the amplitude calculated in the
program. Click QUIT on the user interface to exit the program.

© National Instruments | 4-13

Getting Started with LabWindows/CVI

Graphical Array View
The Graphical Array View shows the values of arrays in a graph view. This display is available
for 1D and 2D arrays during debugging. To open the Graphical Array View, complete the
following steps:

1. Clear the existing breakpoint. Then, set a breakpoint on the line of code that includes the
call to PlotY.

2. Select Run»Debug sample1.exe and click Acquire on the user interface.

3. In the Variables window, highlight the sine variable and select View»Graphical
Array View to view the sine values in a graph. You also can right-click the variable name
in the Source window and select View»Graphical Array View. The Graphical Array View
displays the value of the array on a graph.

4. Select Run»Continue to complete program execution. Then click QUIT on the user
interface to exit the program.

Resource Tracking Window
Use the Resource Tracking window to detect memory leaks in a LabWindows/CVI application.
The Resource Tracking window displays resources that LabWindows/CVI has allocated, or
recently deallocated, in the application. If the Resource Tracking window displays no resources
when the program has completed execution, all allocated resources were subsequently
deallocated. Resource tracking is enabled by default in extended debugging mode. Complete the
following steps to view resources during program execution.

Note The Resource Tracking window is available only in the Full Development
System.

1. Select Options»Build Options to open the Build Options dialog box. Ensure that the value
in the Debugging level pull-down menu is Extended. The Debugging level option is on
the Configuration Options tab. Then click OK to exit the Build Options dialog box.

2. Verify the breakpoint still exists on the line of code that includes the call to PlotY. If not,
add a breakpoint on that line of code.

Note The Resource Tracking window displays information only when the program
is suspended. Therefore, the program must execute to the breakpoint before the
window displays any information.

3. Select Window»Resource Tracking to open the Resource Tracking window.

4. Select Run»Debug sample1.exe to execute the program.

5. Click the Acquire button.

4-14 | ni.com

Chapter 4 Editing and Debugging Tools

The Resource Tracking window appears similar to the following image.

Figure 4-6. Resource Tracking Window

Notice the user interface resource for the panel that appears in the Resources column.
LabWindows/CVI displays newly allocated resources in red text. Double-click the panel in the
Resources column. LabWindows/CVI highlights the resource allocation of the panel in the
Source window. The Stack Trace column displays the call stack of functions when the resource
was allocated.

Refer to the Using LabWindows/CVI»Debugging Tools»Resource Tracking Window topic in the
LabWindows/CVI Help for more information about the Resource Tracking window.

© National Instruments | 5-1

5
Adding Analysis to Your
Program

In Chapter 3, Using Function Panels and Libraries, you generated code to plot the sine pattern
array on the graph control. You placed the plotting function in a callback function that triggers
by clicking the Acquire button. In this chapter, you add analysis code that computes the
maximum and minimum values of the random array you generate. To do this, you write a
callback function that finds the maximum and minimum values of the array and displays them
in numeric indicators on the user interface.

Setting Up
This chapter builds on the concepts that you learned in Chapter 3, Using Function Panels and
Libraries. If you did not complete the exercise in Chapter 3, go back and do so now.

1. Remove all breakpoints and close all windows except the Workspace window.

2. Run sample1.prj to verify the operation of the program. Click QUIT to terminate the
execution.

Modifying the User Interface
Complete the following steps to modify the existing user interface:

1. Open sample1.c. Place the cursor at the end of the file. CodeBuilder uses that location
for the new callback function that it generates later in this chapter.

2. Without closing the sample1.c source code, open sample1.uir. Your goal is to modify
the .uir to match the user interface shown in Figure 5-1.

5-2 | ni.com

Chapter 5 Adding Analysis to Your Program

Figure 5-1. Sample User Interface

3. Add a command button to the panel.

4. Select the new command button then enter the following information in the Attribute
Browser.

5. Use CodeBuilder to add code to your program for an individual control callback function.
Right-click the Max & Min command button and select Generate Control Callback.

The lightning bolt cursor appears while CodeBuilder generates code in the sample1.c
source file. When you finish updating the user interface for Sample 1, you will add code to
the FindMaxMin callback function to compute and display the maximum and minimum
values of the array.

6. In the User Interface Editor, right-click the panel and select Numeric»Numeric.

Control Value

Constant Name MAXMIN

Callback Function FindMaxMin

Label Text Max & Min

© National Instruments | 5-3

Getting Started with LabWindows/CVI

7. Ensure the numeric control has focus and enter the following information in the Attribute
Browser.

8. Add a second numeric control to the panel.

9. Ensure the numeric control has focus and enter the following information in the Attribute
Browser.

10. Position the new controls on the user interface to match those shown in Figure 5-1.

Tip You can use the Arrange»Alignment command to position controls on the
panel.

11. Save the modified .uir file.

Writing the Callback Function
Now that you have modified the .uir file and generated the shell for the callback function for
the Max & Min command button, you must complete the FindMaxMin function in the source
file, as follows:

1. To quickly locate the FindMaxMin callback function in your source file, right-click the
Max & Min button in the User Interface Editor and select View Control Callback.
LabWindows/CVI displays the sample1.c source file with the FindMaxMin callback
function highlighted.

2. Position the cursor on the blank line just after the case EVENT_COMMIT: statement.

3. LabWindows/CVI provides source code completion options within the Source window.
You can use the Edit»Show Completions option to view a list of potential matches for
functions or variables you are typing. Type Max and then press <Ctrl-Space> to view the
drop-down list of matches. Select MaxMin1D from the list.

Control Value

Constant Name MAX

Control Mode indicator

Label Text Maximum

Control Value

Constant Name MIN

Control Mode indicator

Label Text Minimum

5-4 | ni.com

Chapter 5 Adding Analysis to Your Program

4. Type an open parenthesis after the function name to display the function prototype. If you
do not see the prototype after you type the parenthesis, press <Ctrl-Shift-Space>.

The prototype provides many of the same features as a function panel. As you type,
LabWindows/CVI highlights the appropriate parameter name in the prototype tooltip.
When you press <F1>, LabWindows/CVI displays help for the highlighted item.

MaxMin1D finds the maximum and minimum values of an array. Enter the following values
for the parameters:

5. Before you proceed, you must declare the max, max_index, min, and min_index
variables. Place the cursor over the max variable name and press <Ctrl-D>.
LabWindows/CVI inserts a copy of the max variable declaration at the top of the code block
that contains your current position.

6. Repeat step 5 for the max_index, min, and min_index variables.

7. Enter a new line after the call to MaxMin1D and type SetCtrlVal (to display the
function prototype for SetCtrlVal. If LabWindows/CVI does not display the prototype,
press <Ctrl-Shift-Space> to view the tooltip.

8. The SetCtrlVal function sets the value of a control on your user interface. Enter
panelHandle for the PanelHandle parameter. Then enter a comma to highlight the
ControlID parameter in the prototype.

9. When ControlID is the highlighted parameter in the function prototype, LabWindows/CVI
displays a ... button next to the parameter name. This button indicates that
LabWindows/CVI provides an input selection dialog box or list of constant values for the
current parameter.

Click this button or press <Ctrl-Shift-Enter> to launch the Select UIR Constant dialog box.
Select the sample1.uir in the User Interface Resource files list and select PANEL_MAX
from the list of constants. Then click OK.

10. Enter max for the value parameter, which is indicated by a ... in the function prototype.

Parameter Value

InputArray sine

NumberofElements 100

MaximumValue &max

MaximumIndex &max_index

MinimumValue &min

MinimumIndex &min_index

© National Instruments | 5-5

Getting Started with LabWindows/CVI

11. On the next line, include another instance of SetCtrlVal with the following parameter
values to set the value of the Minimum control on the user interface.

12. Confirm that the source code matches the following code:

int CVICALLBACK FindMaxMin (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
ssize_t min_index;
double min;
ssize_t max_index;
double max;
switch (event)
{

case EVENT_COMMIT:
MaxMin1D (sine, 100, &max, &max_index, &min,
&min_index);
SetCtrlVal (panelHandle, PANEL_MAX, max);
SetCtrlVal (panelHandle, PANEL_MIN, min);
break;

case EVENT_RIGHT_CLICK:

break;
}
return 0;

}

Notice the ssize_t data type in the previous example code. ssize_t and size_t are signed
and unsigned integer data types, respectively, that do not rely on a specific pointer size. The size
of ssize_t and size_t depend on the bitness of your application. When writing code to
execute on both 32- and 64-bit systems, use data types that are not fixed-sized. Refer to the
Programmer Reference»Creating 64-bit Applications Versus 32-bit Applications»Porting
32-bit Code to 64-bit Code topic in the LabWindows/CVI Help for more information about
writing code for 64-bit applications.

Parameter Value

PanelHandle panelHandle

ControlID PANEL_MIN

Value (...) min

5-6 | ni.com

Chapter 5 Adding Analysis to Your Program

Running the Program
You have now successfully written the callback function. Save the files and run the project.

During program execution, the FindMaxMin function is called when you click Max & Min.
When you click Max & Min, three separate events occur.

1. First, clicking the left mouse button generates an EVENT_LEFT_CLICK event.

2. Next, releasing the left mouse button generates an EVENT_COMMIT event. You wrote the
function so that it finds the minimum and maximum values and displays them only when
your program receives the EVENT_COMMIT event.

3. Finally, the button gets the input focus, and an EVENT_GOT_FOCUS event is generated. For
more practice with user interface events, complete Exercise 4: Adding User Interface
Events of Chapter 7, Additional Exercises.

Quit the project and save the files before moving on to Chapter 6, Distributing Your Application.

© National Instruments | 6-1

6
Distributing Your Application

This chapter describes how to distribute an application you create in LabWindows/CVI. You can
use the LabWindows/CVI distribution creation and management features to develop and edit
multiple distributions for 32-bit or 64-bit applications. This tutorial includes steps for creating a
basic 32-bit Windows Installer (.msi). The steps for creating a 64-bit installer are similar. For
information about porting 32-bit code to 64-bit code and creating a 64-bit Windows Installer,
refer to the Programmer Reference»Creating 64-bit Applications Versus 32-bit Applications
section in the LabWindows/CVI Help.

For more advanced information about distributing applications, refer to the Using
LabWindows/CVI»Managing Projects»Building a Project»Distributing Applications»
Creating and Editing an Installer topic of the LabWindows/CVI Help.

Creating a New Distribution
If you did not complete the tutorial exercises in Chapter 2 through Chapter 5, go back and do so
now.

Complete the following steps to create a new distribution for your application.

1. Select Build»Distributions»Manage Distributions to open the Manage Distributions
dialog box. The dialog box lists the distributions available for the current workspace.

2. Click New to launch the New Distribution dialog box. By default, 32-bit Windows
Installer (.msi) is selected as the Type. Enter Sample Distribution as the Name.
Verify the Settings file then click OK.

For Windows XP/Server 2003, the Settings file is the following file:
\Documents and Settings\All Users\Documents\
National Instruments\CVIversion\tutorial\Sample1.cds.

For Windows 7/Vista/Server 2008, the Settings file is the following file:
\Users\Public\Documents\National Instruments\CVIversion\
tutorial\Sample1.cds.

6-2 | ni.com

Chapter 6 Distributing Your Application

Editing the Distribution
When you create a new distribution, LabWindows/CVI launches the Edit Installer dialog box.
The dialog box contains tabs in which you can specify various distribution components and
features. Complete the following steps to verify and edit the distribution settings for your
application.

1. In the General tab, verify the Output directory. LabWindows/CVI builds the installer in
this location.

For Windows XP/Server 2003, the Output directory is the following folder:
\Documents and Settings\All Users\Documents\
National Instruments\CVIversion\tutorial\cvidistkit.%name.

For Windows 7/Vista/Server 2008, the Output directory is the following folder:
\Users\Public\Documents\National Instruments\CVIversion\
tutorial\cvidistkit.%name.

2. Verify that the Auto-increment option is enabled. This option ensures that
LabWindows/CVI increments the version number each time you build the installer.

Note National Instruments recommends you install an upgrade installer—an
installer that has a later version number than the previous installer—every time you
install an application to a location where another version of that application might be
installed. Upgrade installers uninstall the previous version of the application before
installing the updated version.

3. Click the Files tab. By default, LabWindows/CVI adds the project output (sample1.exe)
and dependencies to the installation. These files are listed in the Installation Files &
Directories section of the dialog box.

Note Notice that Sample1 32-bit Output (sample1.exe) is listed in red text. Red
text indicates that LabWindows/CVI cannot locate the file on your computer. In this
case, you must build the executable for LabWindows/CVI to include it in the installer.
It is not necessary to exit the Edit Installer dialog box and build the executable.
LabWindows/CVI builds the target automatically when it builds the distribution, as
it does in step 9.

4. Click the Shortcuts tab. Notice that, by default, LabWindows/CVI includes a shortcut for
sample1.exe in the [Start»Programs]\Sample Distribution directory.

5. Click the Drivers & Components tab. Notice that LabWindows/CVI includes the
LabWindows/CVI Shared Run-Time Engine in the installer.

Refer to the Programmer Reference»Creating and Distributing Release Executables and
DLLs»LabWindows/CVI Run-Time Engine»Side-By-Side Run-Time Engine section of the
LabWindows/CVI Help for more information about the shared and side-by-side run-time
engine options.

© National Instruments | 6-3

Getting Started with LabWindows/CVI

6. Click Check Module Dependencies to ensure that any merge modules on which the
selected drivers and components depend are included in the installer. LabWindows/CVI
displays a message indicating that there are no missing dependencies and the LED on the
button glows green.

7. (Optional) Click the Registry Keys and Advanced tabs to view the available options. For
this application, it is not necessary to modify any of the settings in either of these tabs.

8. When you finish viewing and verifying the Edit Installer dialog box settings, click OK to
exit the dialog box. Then click OK to exit the Manage Distributions dialog box.

9. Select Build»Distributions»Build Sample Distribution. Click Yes in the message box
LabWindows/CVI displays to prompt you to build the project. In some cases,
LabWindows/CVI prompts you to insert the NI product installation media during the build.

During the build process, LabWindows/CVI launches a dialog box that displays the build
status. When LabWindows/CVI finishes building the installer, click Close. You are now
ready to deploy the application to the target computer.

Refer to Using LabWindows/CVI»Managing Projects»Building a Project»Distributing
Applications section of the LabWindows/CVI Help for more information about managing
distributions, as well as creating patches for existing distributions.

Deploying the Application to a Target Computer
Once you create the installer, you can deploy it to a target computer. Complete the following
steps to copy the installer files and run the installer on the target computer.

1. In the previous steps, you built an installer that generated the files in the \tutorial\
cvidistkit.Sample Distribution folder. In this exercise, there is only one folder,
Volume. However, the folder can contain one or more Volume folders, the number of
which depends on the size of the installer and the distribution media size.

2. Copy the Volume folder and its contents to the target computer. For this exercise, the target
computer can be your development computer.

3. Double-click setup.exe to launch the installer for your application.

4. The installer displays a series of panels in which the user specifies the installation
preferences. When the installer finishes updating the target system, click Finish.

5. To uninstall the application on Windows XP/Server 2003, use the Add or Remove Programs
option in the Windows Control Panel. To uninstall the application on Windows 7/Vista/
Server 2008, use the Programs and Features option in the Windows Control Panel.

Note If you install the application to a computer other than your development
computer, the installer includes the LabWindows/CVI Run-Time Engine and other
National Instruments software necessary for your application, which you may want
to remove.

6-4 | ni.com

Chapter 6 Distributing Your Application

6. To uninstall the LabWindows/CVI Run-Time Engine and other National Instruments
software necessary for your application, for Windows XP/Server 2003, use the Add or
Remove Programs option in the Windows Control Panel. For Windows 7/Vista/Server
2008, use the Programs and Features option in the Windows Control Panel.

7. On Windows XP/Server 2003, select National Instruments Software from the list of
currently installed programs and click Change/Remove. Select the NI products you want
to remove and click Remove.

On Windows 7/Vista/Server 2008, select National Instruments Software from the list of
currently installed programs and click Uninstall/Change. Select the NI products you want
to remove and click Remove.

© National Instruments | 7-1

7
Additional Exercises

This chapter provides additional exercises that build on the concepts you have used throughout
this tutorial. Each exercise adds to the code that you develop in the preceding exercise. If you
have trouble completing one of the exercises but would like to continue to the next topic, use the
solution from the previous exercise.

For Windows XP/Server 2003, the solutions are located in the following folder:
\Documents and Settings\All Users\Documents\National Instruments\
CVIversion\tutorial\solution.

For Windows 7/Vista/Server 2008, the solutions are located in the following folder:
\Users\Public\Documents\National Instruments\CVIversion\tutorial\
solution.

Base Project
All of the exercises in this chapter build on the sample project that you completed in Chapter 5,
Adding Analysis to Your Program. If you did not complete the sample project, go back and do
so now. If you have trouble successfully completing the Chapter 5 exercise, start with
sample1.prj.

For Windows XP/Server 2003, sample1.prj is located in the following folder:
\Documents and Settings\All Users\Documents\National Instruments\
CVIversion\tutorial\solution.

For Windows 7/Vista/Server 2008, sample1.prj is located in the following folder:
\Users\Public\Documents\National Instruments\CVIversion\tutorial\
solution.

7-2 | ni.com

Chapter 7 Additional Exercises

The Sample 1 project generates a waveform and displays it on a graph control when you click
the Acquire button. After you display the data, you can find and display the maximum and
minimum values of the data points by clicking the Max & Min button. The project uses the
SinePattern function to generate the data. The user interface for the project is shown in
Figure 7-1.

Figure 7-1. Sample User Interface

© National Instruments | 7-3

Getting Started with LabWindows/CVI

Exercise 1: Setting User Interface Attributes
Programmatically
Each control on the .uir file that you create has a number of control attributes that you can set
to customize the look and feel of the control. When you build a user interface, you set the control
attributes in the Attribute Browser or the Edit dialog boxes for the controls. For example, you
can set the font, size, and color of the text for a label in the User Interface Editor. Text font, size,
and color are user interface control attributes.

Use GetCtrlAttribute and SetCtrlAttribute to get and set attributes of a control
during program execution in a method similar to the one you used to set the value of a control.
You can build a customized GUI in the User Interface Editor and dynamically change the look
and feel of the controls at run time.

Hundreds of attributes are defined in the User Interface Library as constants, such as
ATTR_LABEL_BGCOLOR for setting the background color of the label on a control. You can use
these constants in the GetCtrlAttribute and SetCtrlAttribute functions.

Assignment
In this exercise, use SetCtrlAttribute to change the operation of a command button on the
user interface. Because the Max & Min command button does not operate correctly until you
acquire the data, you can disable the Max & Min button until a user clicks the Acquire button.
Use SetCtrlAttribute to enable the Max & Min button when a user clicks the Acquire
button.

Tip To ensure multiple plots do not accumulate on the graph control, add a line of
code to delete any existing plots before you call PlotY.

Hints
• Start by dimming the Max & Min command button in the User Interface Editor.

• Use SetCtrlAttribute from the User Interface Library to enable the Max & Min
button.

Solution: exer1.prj

7-4 | ni.com

Chapter 7 Additional Exercises

Exercise 2: Storing the Waveform on Disk
Users often acquire large amounts of data and want to save it on disk for future analysis or
comparison. LabWindows/CVI provides a selection of functions from the ANSI C Library for
reading from and writing to data files. If you are already familiar with ANSI C, you know these
functions as the stdio library. In addition to the stdio library, LabWindows/CVI has its own set
of file I/O functions in the Formatting and I/O Library.

Tip When you must store very large data sets, National Instruments recommends
that you use the DIAdem Connectivity Library or TDM Streaming Library, which are
optimized for handling large amounts of data.

Assignment
Use the file I/O functions in the ANSI C Library to save the sine array to a text file. Write the
program so that the file is overwritten, not appended, each time you acquire the data.

Hints
• Remember that you must first open a file before you can write to it.

• Open the file as a text file so you can view the contents in any text editor later.

• Open the file with the Create/Open flag and not the Append flag so that the file is
overwritten each time.

• Use the fprintf function in a loop to write the data to disk.

• Use the Utility Library GetProjectDir and MakePathname functions to create the
pathname for the file.

Solution: exer2.prj

© National Instruments | 7-5

Getting Started with LabWindows/CVI

Exercise 3: Using Pop-Up Panels
The User Interface Library has a set of predefined panels called pop-up panels. Pop-up panels
provide a quick and easy way to display information on the screen without developing a
complete .uir file. You can use pop-up panels to prompt the user for input, confirm a selection,
or display a message.

One of the most useful pop-up panels is generated with the FileSelectPopupEx function.
With this pop-up panel, you can use a File Load or File Save dialog box, shown in Figure 7-2,
to prompt the user to select or input a filename whenever your program must write to or read
from a file.

Note Depending on the operating system, FileSelectPopupEx displays either
a Windows XP style dialog box or a Windows Vista and later style dialog box.

Figure 7-2. Pop-Up Panel

7-6 | ni.com

Chapter 7 Additional Exercises

Assignment
Add a Save button to the .uir file so that the data in the array is saved only after the user clicks
the Save button. When the user clicks the Save button, your program should launch a dialog box
in which the user can define the drive, directory, and filename of the data file. When you finish,
the .uir file should look similar to the one shown in Figure 7-3.

Figure 7-3. Completed User Interface

Hints
• When you create the Save button, assign a callback function to it.

• You must move the source code that you developed in Exercise 2 for writing the array to
disk into the callback function.

• Before you write the data to disk, prompt the user for a filename with the
FileSelectPopupEx function from the User Interface Library.

Solution: exer3.prj

© National Instruments | 7-7

Getting Started with LabWindows/CVI

Exercise 4: Adding User Interface Events
Throughout this tutorial, you have been developing an event-driven program. When you place a
control on a .uir file, you are defining a region of the screen that can generate events during
program execution. Your C source files are written to respond to these events in callback
functions.

So far, you have written functions that respond only to the EVENT_COMMIT event from the user
interface. An EVENT_COMMIT event occurs whenever the end user commits on a control, which
usually happens when that user releases the left mouse button after clicking a control.

User interface controls can generate many different types of events. For example, an event
can be a left-click or a right-click. Or, an event can be a left double-click. Events in
LabWindows/CVI can be more than just mouse clicks. An event can be the press of a key
or a move or size operation performed on a panel. Each time one of these events occurs,
the callback function associated with the user interface called executes.

To view the events that each user action generates, click the following icon, which puts the User
Interface Editor into operate mode.

When the User Interface Editor is in operate mode, LabWindows/CVI displays events in the
status bar located at the bottom of the Workspace window. Refer to the Events Overview topic
in the LabWindows/CVI Help for a list of the events you can generate from a GUI.

When the callback function is called, the event type is passed through the event parameter to the
callback function. Performing one simple operation on the user interface, such as clicking a
command button, can call the callback function for that button three times.

The first time, the callback function is called to process the EVENT_LEFT_CLICK event.
The second time, it is called to process the EVENT_COMMIT event. The third time, the callback
function is called to process the EVENT_GOT_FOCUS event if the button did not have the input
focus before you clicked it. For this reason, all of the callback functions you have worked
on check the event type first and execute only when the event is an EVENT_COMMIT. Therefore,
the operations in the callback functions happen only once with each event click, rather than
three times.

7-8 | ni.com

Chapter 7 Additional Exercises

Assignment
Many times, the person operating a LabWindows/CVI program is not the person who developed
the program. The GUI might be very easy to use, but usually it is preferable to add help for the
controls on .uir panels to assist the operator. Modify exer3.prj to display a short
description for each command button when the user right-clicks the button.

Hints
• Use MessagePopup to display the help.

• Remember that the event type is passed to each callback function in the event parameter.

• The event that you must respond to is EVENT_RIGHT_CLICK.

Tip If you want to add pop-up documentation to controls, use the
SetCtrlAttribute function and specify text with the ATTR_TOOLTIP_TEXT
attribute.

Solution: exer4.prj

© National Instruments | 7-9

Getting Started with LabWindows/CVI

Exercise 5: Timed Events
You have developed an event-driven program that responds to events generated by mouse clicks
or keypresses from the user. With the LabWindows/CVI timer control, you can generate events
at specified time intervals to trigger program actions without requiring an action from the user.

You can include timer controls in your program by creating them in the User Interface Editor.
The timer control is visible only at design time in the User Interface Editor. At run time, the timer
control does not appear. You can specify a constant name, callback function, and timer event
interval in the Attribute Browser or the Edit Timer dialog box. LabWindows/CVI automatically
calls the specified timer callback function with an event of type EVENT_TIMER_TICK each time
the specified time interval elapses. The interval value is specified in seconds with a resolution
of 1 millisecond between timer events.

Assignment
Add a thermometer control to the user interface and use a timer control to generate a random
number and display it on the thermometer once each second.

Hints
• Set the timer interval to 1.

• Use CodeBuilder to generate the shell for the timer control callback function.

• Use SetCtrlVal to display the random number on the thermometer.

Solution: exer5.prj

© National Instruments | 8-1

8
Related Software Packages

NI offers additional packages for targeted applications with LabWindows/CVI. Visit the Product
Catalog at ni.com for more information about the following software packages:

• NI Developer Suite—The NI Developer Suite includes the latest versions of LabVIEW,
LabWindows/CVI, and Measurement Studio. You can customize the NI Developer Suite to
include software options that suit your application needs. NI Developer Suite also includes
a one-year subscription to Standard Service, which provides quarterly software updates
automatically and gives you one-on-one access to NI Applications Engineers for your
technical support questions.

• LabWindows/CVI Real-Time Module—Create reliable and deterministic applications
that target dedicated real-time hardware with this module that extends the
LabWindows/CVI development environment. National Instruments provides a commercial
off-the-shelf platform for real-time application development by combining flexible,
high-performance software with rugged, modular hardware.

• Real-Time Execution Trace Toolkit—Create execution traces for LabWindows/CVI
Real-Time applications with this toolkit. Interactively analyze and benchmark thread and
function execution. Optimize performance by identifying memory allocation, sleep spans,
and contention. Print trace sessions for documentation and code reviews and visually debug
multicore applications.

• LabWindows/CVI Execution Profiler Toolkit—Acquire execution data to debug and
optimize the execution speed of your LabWindows/CVI applications. The toolkit displays
data in the Profile Viewer where you can open, browse, and analyze profiled data. Users
with the LabWindows/CVI Full Development System can install the toolkit and activate it
using the LabWindows/CVI Full Development System activation code. The toolkit can be
purchased for use with the LabWindows/CVI Base Package.

• Measurement Studio—Measurement Studio is an integrated suite of native test,
measurement, and control tools and class libraries for Microsoft Visual Studio .NET.
Measurement Studio reduces application development time with wizards, simplified data
networking, and .NET user interface controls. The LabWindows/CVI Full Development
System includes Measurement Studio.

• NI TestStand—NI TestStand is a ready-to-run test executive for organizing, controlling,
and executing automated prototype, validation, or manufacturing test systems.
NI TestStand is completely customizable, so you can modify and enhance it to match your
specific needs. NI TestStand comes complete with integrated LabWindows/CVI tools.

8-2 | ni.com

Chapter 8 Related Software Packages

• NI Vision Development Module—Use the NI Vision Development Module to develop
machine vision and scientific imaging applications. The NI Vision Development module
includes NI Vision, a library of powerful functions for image processing, and NI Vision
Assistant, an interactive environment to quickly prototype vision applications without
programming.

• DIAdem—DIAdem is an interactive tool for mathematical and visual data analysis, report
generation, task automation, and data management. DIAdem imports data from files and
industry-standard databases and can optimally handle datasets with more than one billion
parts. Use the DIAdem Connectivity Library in LabWindows/CVI to create and edit
DIAdem data (.tdm) files.

• LabWindows/CVI SQL Toolkit—The LabWindows/CVI SQL Toolkit provides a set of
easy-to-use tools for quickly connecting to local and remote databases and implementing
many common database operations without having to perform Structured Query Language
(SQL) database operations. The toolkit readily connects to popular databases. If you need
advanced database functionality and flexibility, the toolkit also offers complete SQL
capabilities.

• LabWindows/CVI Signal Processing Toolkit—The LabWindows/CVI Signal
Processing Toolkit provides tools for digital filter design, joint time-frequency analysis,
wavelet and filter bank design, and super-resolution spectral analysis.

• PID Control Toolkit—The PID Control Toolkit adds sophisticated control algorithms to
LabWindows/CVI. With this package, you can build data acquisition and control systems
for your own control application.

• Modulation Toolkit—Use this toolkit to generate and analyze analog and digital
modulated signals. You can use this toolkit to build applications that measure signal
impairments, bit error rate, burst timing, phase noise, carrier frequency shift, modulation
index, and complementary cumulative distribution function (CCDF) values of signals
generated by a unit under test.

• LabWindows/CVI Run-Time Module for Linux—Create high-performance, stable
applications on a Windows system and later compile and run these applications on a Linux®
target.

© National Instruments | A-1

A
Technical Support and
Professional Services

Log in to your National Instruments ni.com User Profile to get personalized access to your
services. Visit the following sections of ni.com for technical support and professional services:

• Support—Technical support at ni.com/support includes the following resources:

– Self-Help Technical Resources—For answers and solutions, visit ni.com/
support for software drivers and updates, a searchable KnowledgeBase, product
manuals, step-by-step troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on. Registered users also
receive access to the NI Discussion Forums at ni.com/forums. NI Applications
Engineers make sure every question submitted online receives an answer.

– Standard Service Program Membership—This program entitles members to direct
access to NI Applications Engineers via phone and email for one-to-one technical
support, as well as exclusive access to eLearning training modules at ni.com/
elearning. All customers automatically receive a one-year membership in the
Standard Service Program (SSP) with the purchase of most software products and
bundles including NI Developer Suite. NI also offers flexible extended contract
options that guarantee your SSP benefits are available without interruption for as long
as you need them. Visit ni.com/ssp for more information.

For information about other technical support options in your area, visit ni.com/
services, or contact your local office at ni.com/contact.

• Training and Certification—Visit ni.com/training for training and certification
program information. You can also register for instructor-led, hands-on courses at locations
around the world.

• System Integration—If you have time constraints, limited in-house technical resources, or
other project challenges, National Instruments Alliance Partner members can help. To learn
more, call your local NI office or visit ni.com/alliance.

You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support phone numbers, email
addresses, and current events.

© National Instruments | G-1

Glossary

A

Array Display window A window for viewing and editing numeric arrays.

Attribute Browser An area in the Workspace window in which you can edit attribute
values for panels and controls.

B

breakpoint An interruption in the execution of a program. Also, a function in code
that causes an interruption in the execution of a program.

C

click A mouse-specific term; to quickly press and release the mouse button.

CodeBuilder The LabWindows/CVI feature that creates code based on a .uir file
to connect a GUI to the rest of a program. You can compile and run
this code as soon as it is generated.

command button A user interface item that, when selected, executes a command
associated with the item.

control Function panel—An input or output device that appears on a function
panel for specifying function parameters and displaying function results.

User interface—An object on a panel that displays information or
accepts input from a user.

cursor The flashing rectangle that shows where you can enter text on the
screen. There is also a rectangular mouse cursor, or pointer, that shows
the position of the mouse.

D

Debugging Region An area of the Workspace window that contains the Variables, Watch,
and Memory, and Resource Tracking windows.

dialog box A prompt mechanism in which you specify additional information
needed to complete a command.

Glossary

G-2 | ni.com

distribution The Microsoft Windows Installer (.msi) files that contain the
application and the supporting NI products, as well as any additional
licenses and support files. These files are connected through a single
user interface and setup.exe file.

double-click A mouse-specific term; to click the mouse button twice in rapid
succession.

F

.fp file A file that contains information about the function tree and function
panels of an instrument driver.

function panel A user interface to the LabWindows/CVI libraries that allows
interactive execution of library functions and is capable of generating
code for inclusion in a program.

function tree The hierarchical structure in which the functions in instrument drivers
and LabWindows/CVI libraries are grouped.

G

Graphical Array
View

A window in which you can view the values of arrays in a graph.

GUI Graphical user interface.

H

highlight To make a LabWindows/CVI screen item ready for input, indicated by
a color change around the text or control.

I

instrument driver A group of several subprograms related to a specific instrument
that reside on disk in a special language-independent format.
An instrument driver is used to generate and execute code
interactively through menus, dialog boxes, and function panels.

Interactive Execution
window

A LabWindows/CVI work area in which sections of code can be
executed without creating an entire program.

Getting Started with LabWindows/CVI

© National Instruments | G-3

L

Library Tree An area in the Workspace window that contains a tree view of the
LabWindows/CVI libraries and instruments.

M

menu An area accessible from the menu bar that displays a subset of the
possible menu items.

mouse cursor A mouse-specific term; the rectangular block on the screen that shows
the current mouse position.

O

Output Region An area of the Workspace window in which LabWindows/CVI
displays errors, output, and search matches.

P

pointer A mouse-specific term; the rectangular block on the screen that shows
the current mouse position.

project A list of files, usually including a source file, user interface resource
file, and header file, that your application uses.

project template A group of files, including a source code file and a .uir file, with the
basic settings for a new project and any preliminary text to include by
default, such as standard comments or headings.

Project Tree An area of the Workspace window that contains the lists of projects
and files in the current workspace.

R

Resource Tracking
window

A display that shows allocated and recently deallocated resources in
the LabWindows/CVI program.

Glossary

G-4 | ni.com

S

select To choose the item that the next executed action will affect by moving
the input focus (highlight) to a particular item or area.

shortcut key commands A combination of keystrokes that automatically executes a command.

Source Code Browser A cross-reference tool that lists browse information for selected files,
functions, variables, data types, and macros.

Source window A LabWindows/CVI work area in which you edit and execute
complete programs. The file extension .c designates a file that
appears in this window.

standard libraries The LabWindows/CVI .NET, ActiveX, Advanced Analysis (or
Analysis), ANSI C Library, DDE Support, DIAdem Connectivity,
Formatting and I/O, GPIB/GPIB-488.2, Internet, Network Variable,
Real-Time Utility, RS-232, TCP Support, TDM Streaming, UDP
Support Library, User Interface, Utility, VISA, and VXI libraries.

step mode A program execution mode in which a program is manually executed
one instruction at a time. Each instruction in the program is
highlighted as it is executed.

String Display window A mechanism for viewing and editing string variables and arrays.

subwindow A Source window, split into two scrollable editing areas for the same
file.

T

text box A dialog box item in which the user enters text from the keyboard to
complete a command.

timer control A user interface control that schedules the periodic execution of a
callback function. A typical use of this control might be to update a
graph every second.

tooltip A small, yellow box that displays variable and expression values or
function prototypes in a Source window.

Getting Started with LabWindows/CVI

© National Instruments | G-5

U

User Interface Browser An area in the Workspace window displays user interface objects, such
as panels, controls, and menu bars, related to the selected .uir.

User Interface Editor An interactive drag-and-drop editor for designing user interfaces for
programs.

User Interface Library A set of functions for controlling the interface programmatically.

V

Variables window A display that shows the values of variables currently defined in
LabWindows/CVI.

VXI VME eXtensions for Instrumentation (bus).

W

Watch window A display that shows the values of the watch expressions you defined.

window A working area that supports operations related to a specific task in the
development and execution processes.

Window Confinement
Region

An area of the Workspace window that contains open Source, User
Interface Editor, and Function Tree Editor windows, and function
panels.

workspace A file that contains settings that do not affect the way a project builds,
such as breakpoints, window position, tag information, and debugging
levels. A workspace can contain one or more projects.

Workspace window The main work area in LabWindows/CVI; contains the Project Tree,
Library Tree, Workspace Tabs, Window Confinement Region,
Debugging Region, Output Region, and Source Code Browser.

© National Instruments | I-1

Index

A
accessing function panels, 1-4, 3-1
ActiveX Library, 1-7
Add/Edit Watch Expression dialog box, 4-11
Advanced Analysis Library, 1-7
Analysis Library, 1-7
ANSI C specifications, 1-8
Arrange menu, 2-5
arrays

declaring from function panels, 3-3
displaying, 4-10
displaying in graph, 4-13

Attribute Browser, 1-6, 2-3
attributes, setting programmatically, 7-3

B
Break on First Statement command,

Run menu, 4-4, 4-9, 4-11
breakpoints

breakpoint on error, 4-6
conditional, 4-6
definition, 4-6
fixed breakpoints, 4-6
instant breakpoints, 4-6
programmatic breakpoints, 4-6
watch expression breakpoints, 4-6

C
callback functions

adding with CodeBuilder, 5-2
locating with CodeBuilder, 5-3
processing events (example), 7-7
writing, 5-3

code generation, automatic. See CodeBuilder
Code menu

Function Panel windows
Insert Function Call command, 3-4

code. See source files
CodeBuilder, 2-2

adding control callback function, 5-2
generating program shell, 2-6

commit events, 5-6, 7-7

conditional breakpoints, 4-6
constant name, 2-1, 2-4
constants, displaying in .uir file, 3-4
Continue command, Run menu (table), 4-4
controls

command button control, 2-4, 5-2
graph control, 2-5
numeric control, 5-3
timer control, 7-9

conventions used in the manual, ix
Create Instrument I/O Task command, 1-9
Create/Edit DAQmx Tasks command, 1-9
custom controls, 2-4

D
DAQ Assistant, 1-9
data

displaying and editing variables, 4-8
displaying Graphical Array View, 4-13
generating array of data, 3-2

data acquisition, 1-9
libraries, using, 1-9

data files, functions for reading and
writing, 7-4

DDE Support Library, 1-7
debugging programs

breakpoints
fixed breakpoints, 4-6
instant breakpoints, 4-6
programmatic breakpoints, 4-6
watch expression breakpoints, 4-6

displaying and editing data
Variables window, 4-8
Watch window, 4-11

displaying data, Graphical Array
View, 4-13

step mode execution, 4-4
Debugging Region, 1-5
deploying applications, 6-3
developing graphical user interfaces (GUI).

See graphical user interface (GUI), building
DIAdem Connectivity Library, 1-7
diagnostic tools (NI resources), A-1

Index

I-2 | ni.com

DiscardPanel, 2-7
displaying and editing data, variables, 4-8
DisplayPanel, 2-7
distributing applications, 6-1
documentation

conventions used in manual, ix
LabWindows/CVI, 1-10
NI resources, A-1
related documentation, x

drivers (NI resources), A-1

E
Edit Installer dialog box, 6-2

Drivers & Components tab, 6-2
Files tab, 6-2
General tab, 6-2
Shortcuts tab, 6-2

Edit menu
Source and Interactive Execution

windows
Go To Definition command, 4-5
Undo command, 4-3

editing data
tooltips, 4-12
variables, 4-9

EVENT_COMMIT, 5-6
EVENT_GOT_FOCUS, 5-6
EVENT_LEFT_CLICK, 5-6
EVENT_TIMER_TICK, 7-9
events

timed events, 7-9
user interface events, 7-7

Example Finder, 1-11
examples (NI resources), A-1

F
file I/O functions, ANSI C library, 7-4
File menu

Source and Interactive Execution
windows, Open Quoted Text
command, 4-1

FileSelectPopupEx, 7-6
Find command, Source window, 4-3

finding functions
finding definitions, 4-5
using CodeBuilder, 5-3

Finish Function command, Run menu, 4-5
Formatting and I/O Library, 1-7
function panels

accessing, 1-4, 3-1
controls, 3-1
declaring arrays, 3-3
definition, 3-1
finding functions

function definitions, 4-5
using CodeBuilder, 5-3

help, 3-2
purpose and use, 3-1
recalling, 3-3

G
Generate Control Callback command, 5-2
generating code automatically.

See CodeBuilder
GetCtrlAttribute, 7-3
Go to Cursor command, Run menu, 4-4
Go To Definition command, Edit menu, 4-5
GPIB/GPIB 488.2 Library, 1-7
graph controls, adding to user interface, 2-5
Graphical Array View, displaying arrays, 4-13
graphical user interface (GUI), building

adding command button controls, 2-4
adding graph controls, 2-5
adding timer controls, 7-9
building a user interface resource (.uir)

file, 2-3
main function, 2-7
modifying, 5-1
running the program, 5-6
setting up attributes

programmatically, 7-3
writing callback function, 5-3

graphs, drawing with function panels, 3-2

H
help information, adding to controls, 7-8
Help menu, Function Panel windows, 3-2
help, technical support, A-1

Getting Started with LabWindows/CVI

© National Instruments | I-3

I
instrument control, 1-9
instrument control libraries, using, 1-9
instrument drivers (NI resources), A-1
instrument drivers, developing, 1-10
Instrument I/O Assistant, 1-9
interactive code generation tools

drawing graphs using function
panels, 3-2

function panel controls, 3-1
function panel help, 3-2

Internet Library, 1-7

K
KnowledgeBase, A-1

L
LabWindows/CVI

overview, 1-1
starting, 2-2

Library Tree, 1-4, 3-1
Line command, View menu, 4-3
Line Numbers command, View menu, 4-1
LoadPanel, 2-7

M
Manage Distributions command, 6-1
Memory Display window, 4-11
menu help, 1-6

N
National Instruments support and

services, A-1
.NET Library, 1-7
NI support and services, A-1
numeric controls, adding to user interface, 5-3

O
Open Quoted Text command, File menu, 4-1
Output Region, 1-5

P
pop-up panels, 7-5
program development overview, 1-1
program shell, building. See CodeBuilder
programming examples (NI resources), A-1
programming graphical user interfaces.

See graphical user interface (GUI), building
programming tutorial

additional exercises
setting user interface attributes

programmatically, 7-3
storing data on disk, 7-4
timed events, 7-9
user interface events, 7-7
using pop-up panels, 7-5

debugging programs
displaying and editing data

Array Display window, 4-10
String Display window, 4-11
Variables window, 4-8
Watch window, 4-11

displaying data, Graphical Array
View, 4-13

step mode execution, 4-4
debugging programs, breakpoints,

programmatic breakpoints, 4-6
editing tools, 4-1
function panels

accessing, 1-4
controls, 3-1
declaring arrays, 3-3
help information, 3-2

graphical user interface
adding command button

controls, 2-4
adding graph controls, 2-5
adding timer controls, 7-9
building a user interface resource

(.uir) file, 2-3
generating array of data, 3-2
main function, 2-7
modifying, 5-1
running the program, 5-6
setting attributes,

programmatically, 7-3

Index

I-4 | ni.com

source code connection, 2-2
writing callback function, 5-3

project file, 1-3
project templates, 2-1
Project Tree, 1-4
projects

See also source files
accessing and viewing files within, 1-4

Q
Quick Search command, 4-4
QuitUserInterface, 2-7

R
related documentation, x
Release Window command, 1-5
Resource Tracking window, 4-13
RS-232 Library, 1-7
Run menu

Source and Interactive Execution
windows

Continue command, 4-4, 4-12
Debug command, 3-5, 4-4
Step Into command, 4-5, 4-7
Step Over command, 4-5, 4-7
Terminate Execution

command, 4-5, 4-7
View Variable Value command, 4-9

Workspace window
Break on First Statement

command, 4-4, 4-9, 4-11
Debug command, 3-5

RunUserInterface, 2-7

S
Select Variable command, 3-3
Set Next Statement command, Run menu, 4-4
SetCtrlAttribute, 7-3
shells, building. See CodeBuilder
software (NI resources), A-1
Source Code Browser, 1-5
source files

analyzing code, 2-7
displaying in Source window, 1-8

displaying referenced files, 4-1
moving to specific lines of code, 4-3
source code connection, 2-2

Source window
compatibility with ANSI C

specifications, 1-8
displaying generated code, 2-6
opening subwindows, 4-2

Stack Trace (Variables window), 4-8
standard libraries, 1-7
starting LabWindows/CVI, 2-2
status bar, 1-5
Step Into command, Run menu, 4-4, 4-5, 4-7
step mode execution, 4-4
Step Over command, Run menu, 4-5, 4-7
String Display window, displaying and

editing string variables, 4-11
subwindows, opening subwindows for one

source file, 4-2
support, technical, A-1

T
tagged lines, 4-3
TCP Support Library, 1-7
technical support, A-1
Terminate Execution command, Run menu,

4-5, 4-7
timed events, 7-9
timer controls, adding to user interface, 7-9
Toggle Tag command, View menu, 4-3
tooltips, editing variables, 4-12
training and certification (NI resources), A-1
troubleshooting (NI resources), A-1

U
uir files. See user interface resource (.uir) files
upgrade installer, 6-2
User Interface Browser, 1-6
user interface development, 1-8
User Interface Editor window

operate mode, 7-7
purpose and use, 2-1

user interface events. See events
User Interface Library, 1-7

Getting Started with LabWindows/CVI

© National Instruments | I-5

user interface resource (.uir) files,
building, 2-3

adding a graph control, 2-5
adding command button controls, 2-4

user interface. See graphical user interface
(GUI)

Utility Library, 1-7

V
variables

displaying, 4-8
editing, 4-9
editing using tooltips, 4-12

Variables window
opening, 4-8
stepping through programs, 4-9

View Control Callback command, 5-3
View menu

Line command, 4-3
Line Numbers command, 4-1
Toggle Tag command, 4-3

View Variable Value command, Run
menu, 4-9

VISA Library, 1-7
VXI Library, 1-7

W
watch expressions, 4-6
Watch window

displaying variables during program
execution, 4-11

purpose and use, 4-11
waveform generation project, storing

waveform on disk, 7-4
Web resources, A-1
Window Confinement Region, 1-5
Windows Installer, 6-1
workspace file, 1-3
Workspace window, 1-4

	Getting Started with LabWindows/CVI
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction to LabWindows/CVI
	LabWindows/CVI Program Development Overview
	Figure 1-1. Relationship Between Program Elements in LabWindows/CVI
	Organizing Application Components

	LabWindows/CVI Environment
	Figure 1-2. Workspace Window
	Figure 1-3. User Interface Browser and Attribute Browser

	Standard Libraries
	User Interface Development
	Generating a Program Shell with CodeBuilder

	Developing and Editing Source Code
	Instrument Control and Data Acquisition
	Using the Instrument Control and Data Acquisition Libraries
	Using the Instrument I/O Assistant
	Using the DAQ Assistant
	Developing Instrument Drivers

	Learning about LabWindows/CVI

	Chapter 2 Building a Graphical User Interface
	Project Templates
	User Interface Editor
	Source Code Connection
	CodeBuilder
	Selecting a Project Template
	Building a User Interface Resource (.uir) File
	Figure 2-1. sample1.uir
	Editing a .uir File
	Adding Command Buttons
	Adding a Graph Control

	Completing the Program Shell with CodeBuilder
	Analyzing the Source Code
	main Function
	AcquireData Function
	QuitCallback Function

	Running the Generated Code

	Chapter 3 Using Function Panels and Libraries
	Function Panel Fundamentals
	Accessing Function Panels
	Function Panel Controls
	Function Panel Help
	Table 3-1. Displaying Function Panel Help

	Generating an Array of Data
	Building the PlotY Function Call Syntax
	Figure 3-1. Completed Plot Y Function Panel

	Running the Completed Project

	Chapter 4 Editing and Debugging Tools
	Editing Tools
	Figure 4-1. Split Source Window

	Step Mode Execution
	Table 4-1. Quick Keys for Step Mode Execution

	Breakpoints
	Fixed Breakpoints
	Figure 4-2. Breakpoint Beside a Line of Code

	Conditional Breakpoints

	Displaying and Editing Data
	Variables Window
	Figure 4-3. Variables Window During Execution of main
	Editing Variables

	Array Display Window
	Figure 4-4. Array Display Window

	Memory Display Window
	String Display Window
	Watch Window
	Figure 4-5. Add/Edit Watch Expression Dialog Box

	Tooltips
	Graphical Array View
	Resource Tracking Window
	Figure 4-6. Resource Tracking Window

	Chapter 5 Adding Analysis to Your Program
	Setting Up
	Modifying the User Interface
	Figure 5-1. Sample User Interface

	Writing the Callback Function
	Running the Program

	Chapter 6 Distributing Your Application
	Creating a New Distribution
	Editing the Distribution
	Deploying the Application to a Target Computer

	Chapter 7 Additional Exercises
	Base Project
	Figure 7-1. Sample User Interface

	Exercise 1: Setting User Interface Attributes Programmatically
	Assignment
	Hints

	Exercise 2: Storing the Waveform on Disk
	Assignment
	Hints

	Exercise 3: Using Pop-Up Panels
	Figure 7-2. Pop-Up Panel
	Assignment
	Figure 7-3. Completed User Interface
	Hints

	Exercise 4: Adding User Interface Events
	Assignment
	Hints

	Exercise 5: Timed Events
	Assignment
	Hints

	Chapter 8 Related Software Packages
	Appendix A Technical Support and Professional Services
	Glossary
	A-D
	F-I
	L-R
	S-T
	U-W

	Index
	A-D
	E-G
	I-P
	Q-U
	V-W

