SPECIFICATIONS

PXIe-6349

500 kS/s/ch, 32 simultaneous AI, 24 DIO, 2 AO PXI Multifunction I/O Module

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are Typical unless otherwise noted.

Conditions

Specifications are valid for 25 °C unless otherwise noted.

Analog Input

Note Floating inputs can cause unnecessary power consumption and higher operating temperatures. NI recommends connecting unused analog input channels to AIGND.

Number of channels	32 differential
ADC resolution	16 bits
DNL	No missing codes, warranted
INL	Refer to the AI Absolute Accuracy section.
Sample rate (simultaneous samp	ling on all channels sampled)
Maximum	500 kS/s
Minimum	No minimum
Timing resolution	10 ns

Timing accuracy	50 ppm of sample rate
Input coupling	DC
Input range	±1 V, ±2 V, ±5 V, ±10 V
Maximum working voltage for all analog inpu	ts (AI±)
Ranges ±10 V, ±5 V	±11 V, Measurement Category I
Ranges ±2 V, ±1 V	±9 V, Measurement Category I
Caution Do not use for measurement	ents within Categories II, III, and IV.
CMRR (at 60 Hz)	80 dB
Bandwidth (small signal)	2.0 MHz at ±1 V
	2.9 MHz at other ranges
Input impedance	
Device on	
AI+ to AI GND	>1 G Ω in parallel with 18 pF
AI- to AI GND	>1 G Ω in parallel with 18 pF
Device off	
AI+ to AI GND	2.37 kΩ
AI- to AI GND	2.37 kΩ
Input bias current	±6 nA ±90 nA, maximum over full temperature range
Crosstalk (at 100 kHz)	-80 dB
Input FIFO size	4,095 samples shared among channels used
Data transfers	DMA (scatter-gather), programmed I/O
Overvoltage protection for AI<031>	
Device on	±30 V
Device off	±15 V
Input current during overvoltage conditions	±6.3 mA maximum/AI pin
Maximum AI channels in overvoltage	4 channels on AI<015> and 4 channels on AI<1631>

Notice Exceeding overvoltage specifications may result in data corruption on non-overvoltaged channels.

Analog Triggers

Number of triggers	1
Source	AI <031>, APFI 0
Functions	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Source level	
AI <031>	±Full scale
APFI 0	±10 V
Resolution	16 bits
Modes	Analog edge triggering, analog edge triggering with hysteresis, and analog window triggering
Bandwidth (large signal, to -3 dB)	
AI <031>	600 kHz
APFI 0	3.9 MHz
Accuracy	±1% of range
APFI 0 characteristics	
Input impedance	10 kΩ
Coupling	DC
Protection, power on	±30 V
Protection, power off	±15 V

AI Absolute Accuracy

Table	1. Al	Absolute	Accuracy
-------	-------	----------	----------

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale (μV)
10	-10	115	2	265	3,225
5	-5	115	2	148	1,613

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale (μV)
2	-2	117	2	74	650
1	-1	124	3	50	333

Table 1. Al Absolute Accuracy (Continued)

Note For more information about absolute accuracy at full scale, refer to the *AI Absolute Accuracy Example* section.

Gain tempco	16.7 ppm/°C
Reference tempco	5 ppm/°C
Residual offset error	12 ppm of range
INL error	126 ppm of range

Note Accuracies listed are warranted for up to one year from the device external calibration when the device is within 10 °C of the external calibration temperature and 1 °C of the last self calibration, when averaging 10,000 DC samples. Other accuracies may be calculated for different temperatures and sample sizes using the given equations.

AI Absolute Accuracy Equation

AbsoluteAccuracy = Reading · (GainError) + Range · (OffsetError) + NoiseUncertainty GainError = ResidualGainError + GainTempco · (TempChangeFromLastInternalCal) + ReferenceTempco · (TempChangeFromLastExternalCal)

OffsetError = *ResidualOffsetError* + *OffsetTempco* · (*TempChangeFromLastInternalCal*) + *INLError*

NoiseUncertainty = $\frac{\text{Random Noise} \cdot 3}{\sqrt{10,000}}$ for a coverage factor of 3 σ and averaging 10,000 points.

10,000 points.

Al Absolute Accuracy Example

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- *TempChangeFromLastInternalCal* = 1 °C
- *number_of_readings* = 10,000
- CoverageFactor = 3σ

For example, on the 10 V range, the absolute accuracy at full scale is as follows: $GainError = 115 \text{ ppm} + 16.7 \text{ ppm} \cdot 1 + 5 \text{ ppm} \cdot 10 = 181.7 \text{ ppm}$ $OffsetError = 12 \text{ ppm} + 2 \text{ ppm} \cdot 1 + 126 \text{ ppm} = 140 \text{ ppm}$ $Noise Uncertainty = \frac{265 \ \mu\text{V} \cdot 3}{\sqrt{10,000}} = 8 \ \mu\text{V}$ $AbsoluteAccuracy = 10 \ \text{V} \cdot (GainError) + 10 \ \text{V} \cdot (OffsetError) + NoiseUncertainty = 3225 \ \mu\text{V}$

Analog Output

0	
Number of channels	2
DAC resolution	16 bits
DNL	±1 LSB, maximum
Monotonicity	16 bit guaranteed
Accuracy	Refer to the AO Absolute Accuracy section.
Maximum update rate (simultaneous)	
1 channel	900 kS/s
2 channels	840 kS/s
Minimum update rate	No minimum
Timing accuracy	50 ppm of sample rate
Timing resolution	10 ns
Output range	±10 V
Output coupling	DC
Output impedance	0.2 Ω
Output current drive	±5 mA
Overdrive protection	±15 V
Overdrive current	15 mA
Power-on state	±20 mV
Power-on/off glitch	2 V peak for 150 ms
Output FIFO size	8,191 samples shared among channels used
Data transfers	DMA (scatter-gather), programmed I/O
AO waveform modes	Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update

Settling time, full-scale step, 15 ppm (1 LSB)	6 µs
Slew rate	15 V/µs
Glitch energy at midscale transition	100 mV · 2.6 μs

AO Absolute Accuracy

Accuracies listed are warranted for up to one year from the device external calibration when the device is within 10 °C of the external calibration temperature and 1 °C of the last self calibration.

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Gain Tempco (ppm/°C)	Reference Tempco (ppm/°C)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/ °C)	INL Error (ppm of Range)	Absolute Accuracy at Full Scale (µV)
10	-10	130	11.3	5	52	4.8	128	3,761

Table 2. AO Absolute Accuracy

AO Absolute Accuracy Equation

 $AbsoluteAccuracy = OutputValue \cdot (GainError) + Range \cdot (OffsetError)$

 $Gain Error = Residual Gain Error + Gain Tempco \cdot (TempChangeFromLastInternalCal) + Reference Tempco \cdot (TempChangeFromLastExternalCal)$

OffsetError = *ResidualOffsetError* + *OffsetTempco* · (*TempChangeFromLastInternalCal*) + *INLError*

Digital I/O/PFI

Static Characteristics

Number of channels	24 total 8 (P0.<07>) 16 (PFI <07>/P1, PFI <815>/P2)
Ground reference	D GND
Direction control	Each terminal individually programmable as input or output
Pull-down resistor	50 kΩ, typical 20 kΩ, minimum
Input voltage protection	± 20 V on up to two pins

Caution Stresses beyond those listed under the *Input voltage protection* specification may cause permanent damage to the device.

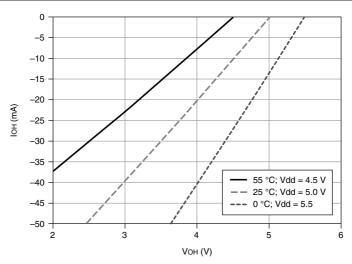
Waveform Characteristics (Port 0 Only)

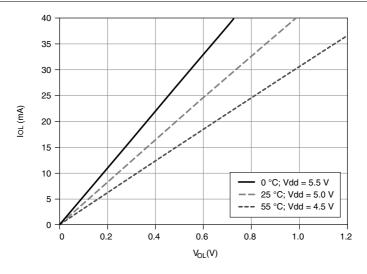
Terminals used	Port 0 (P0.<07>)
Port/sample size	Up to 8 bits
Waveform generation (DO) FIFO	2,047 samples
Waveform acquisition (DI) FIFO	255 samples
DI Sample Clock frequency	0 to 1 MHz, system and bus activity dependent
DO Sample Clock frequency	
Regenerate from FIFO	0 to 1 MHz
Streaming from memory	0 to 1 MHz, system and bus activity dependent
Data transfers	DMA (scatter-gather), programmed I/O
Digital line filter settings	160 ns, 10.24 µs, 5.12 ms, disable

PFI/Port 1/Port 2 Functionality

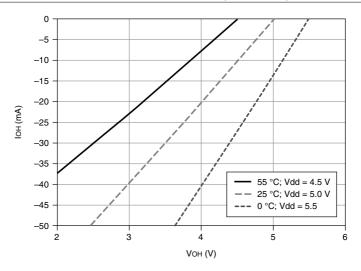
Functionality	Static digital input, static digital output, timing input, timing output
Timing output sources	Many AI, AO, counter, DI, DO timing signals
Debounce filter settings	90 ns, 5.12 μ s, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

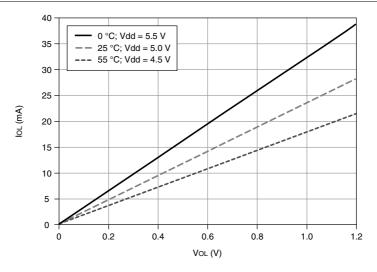
Recommended Operating Conditions


2.2 V
5.25 V
0 V
0.8 V
-24 mA, maximum
-16 mA, maximum


Output low current (I _{OL})	
P0.<07>	24 mA, maximum
PFI <015>/P1/P2	16 mA, maximum

Digital I/O Characteristics


Positive-going threshold (VT+)	2.2 V, maximum
Negative-going threshold (VT-)	0.8 V, minimum
Delta VT hysteresis (VT+ - VT-)	0.2 V , minimum
I_{IL} input low current ($V_{IN} = 0 V$)	-10 μA, maximum
I_{IH} input high current ($V_{IN} = 5 V$)	250 μA, maximum



General-Purpose Counters

Number of counter/timers	4
Resolution	32 bits
Counter measurements	Edge counting, pulse, pulse width, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	100 MHz, 20 MHz, 100 kHz
External base clock frequency	0 MHz to 25 MHz; 0 MHz to 100 MHz on PXIe_DSTAR <a,b></a,b>
Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Routing options for inputs	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR, analog trigger, many internal triggers</a,b>

Frequency Generator

Number of channels	1
Base clocks	20 MHz, 10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm

Output can be available on any PFI or PXI TRIG<0..7> terminal.

Phase-Locked Loop (PLL)

Number of PLLs

1

Reference Signal	PXI Express Locking Input Frequency (MHz)
PXIe_DSTAR <a,b></a,b>	10, 20, 100
PXI_STAR	10, 20
PXIe_CLK100	100
PXI_TRIG <07>	10, 20
PFI <015>	10, 20
Output of PLL	100 MHz Timebase; other signals derived from

100 MHz Timebase; other signals derived from 100 MHz Timebase including 20 MHz and 100 kHz Timebases

External Digital Triggers

Source	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR</a,b>
Polarity	Software-selectable for most signals

Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Analog output function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Counter/timer functions	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Digital waveform generation (DO) function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Digital waveform acquisition (DI) function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Device-to-Device Trigger Bus

Input source	PXI_TRIG <07>, PXI_STAR, PXIe_DSTAR <a,b></a,b>
Output destination	PXI_TRIG <07>, PXIe_DSTARC
Output selections	10 MHz Clock, frequency generator output; many internal signals
Debounce filter settings	90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Bus Interface

Form factor	x1 PXI Express, specification v1.0 compliant
Slot compatibility	x1 and x4 PXI Express or PXI Express hybrid slots
DMA channels	8 (can be used for analog input, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3)

All PXIe devices may be installed in PXI Express slots or PXI Express hybrid slots.

Power Requirements

Caution The protection provided by the PXIe-6349 can be impaired if it is used in a manner not described in the user documentation.

Attention La protection apportée par le PXIe-6349 risque d'être endommagée s'il est utilisé d'une autre façon que celle décrite dans la documentation utilisateur.

+3.3 V	2.1 W
+12 V	22.5 W

Current Limits

Caution Exceeding the current limits may cause unpredictable device behavior.

+5 V terminal (connector 0)

1 A, maximum

Note Connector 0 has a self-resetting fuse that opens when current exceeds this specification.

P0/PFI/P1/P2 and +5 V terminals combined

1.2 A, maximum

Physical Characteristics

PXIe printed circuit board dimensions	Standard 3U PXI			
Weight	140 g (4.8 oz)			
I/O connectors				
PXIe module connector	68-Pos Right Angle Single Stack PCB-Mount VHDCI (Receptacle)			
Cable connector	68-Pos Offset IDC Cable Connector (Plug) (SHC68-*)			

Note For more information about the connectors used for DAQ devices, refer to the document, *NI DAQ Device Custom Cables, Replacement Connectors, and Screws*, by going to *ni.com/info* and entering the Info Code rdspmb.

Calibration

Recommended warm-up time	15 minutes		
Calibration interval	1 year		

Maximum Working Voltage

Maximum working voltage refers to the signal voltage plus the common-mode voltage.

Channel to earth

11 V, Measurement Category I

Caution Do not connect the PXIe-6349 to signals or use for measurements within Measurement Categories II, III, or IV.

Attention Ne connectez pas le PXIe-6349 à des signaux et ne l'utilisez pas pour effectuer des mesures dans les catégories de mesure II, III ou IV.

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as *MAINS* voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are for other circuits not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Environmental Characteristics

Temperature and Humidity

0 °C to 55 °C
-40 °C to 71 °C
10% to 90% RH, noncondensing
5% to 95% RH, noncondensing
2
2,000 m (800 mbar) (at 25 °C ambient temperature

Shock	and	Vibration

Random vibration

0		
0	perating	2

Non-operating

Operating shock

5 Hz to 500 Hz, 0.3 g RMS $\,$

5 Hz to 500 Hz, 2.4 g RMS

30 g, half-sine, 11 ms pulse

PXIe-6349 Device Pinout

Figure 5. PXIe-6349 Pinout

CON	NECTO	0R 0			CO	NECTO)R 1
	\sim	\ \				\sim	N N
((
AI 0+	68 34	AI 0-		((Ö))	AI 8+	68 34	AI 8-
AI GND	67 33	Al 1+			AI 9–	67 33	AI 9+
Al 1–	66 32	AI GND	TERMINAL 68 -		AI 10–	66 32	AI 10+
AI 2+	65 31	AI 2-	TERMINAL 34 -	Ш7111	AI 11+	65 31	Al 11–
AI GND	64 30	AI 3+			AI 12–	64 30	AI 12+
AI 3–	63 29	AI GND			AI 13–	63 29	Al 13+
RESERVED	62 28	AI 4+			AI 14+	62 28	AI 14–
AI 4-	61 27	AI GND	CONNECTOR 1		AI 15–	61 27	Al 15+
AI 5+	60 26	AI 5-	(Al 8-31)		AI 16–	60 26	AI 16+
AI GND	59 25	AI 6+			AI 17+	59 25	Al 17–
AI 6-	58 24	AI GND			AI 18–	58 24	AI 18+
AI 7+	57 23	AI 7–	TERMINAL 1 -	444 I II	AI 19–	57 23	AI 19+
AI GND	56 22	AO 0	TEDMINIAL OF		RESERVED	56 22	AI GND
AO GND	55 21	AO 1	TERMINAL 35 -		AI 20+	55 21	AI 20-
AO GND	54 20	APFI 0		75	Al 21–	54 20	Al 21+
D GND	53 19	P0.4		Ŵ	AI 22–	53 19	AI 22+
P0.0	52 18	D GND			AI 23+	52 18	AI 23–
P0.5	51 17	P0.1			AI 24–	51 17	AI 24+
D GND	50 16	P0.6		KQ2	AI 25–	50 16	AO 25+
P0.2	49 15	D GND			AI 26+	49 15	AO 26-
P0.7	48 14	+5 V	TERMINAL 68 -		AI 27–	48 14	AI 27+
P0.3	47 13	D GND	TERMINAL 34 -	++ <i>₹</i>	AI 28–	47 13	AI 28+
PFI 11/P2.3	46 12	D GND			AI 29+	46 12	AI 29–
PFI 10/P2.2	45 11	PFI 0/P1.0			AI 30-	45 11	AI 30+
D GND	44 10	PFI 1/P1.1	CONNECTOR 0		Al 31–	44 10	Al 31+
PFI 2/P1.2	43 9	D GND	(AI 0-7)		AI GND	43 9	AI GND
PFI 3/P1.3	42 8	+5 V			AI GND	42 8	RESERVED
PFI 4/P1.4	41 7	D GND			AI GND	41 7	AI GND
PFI 13/P2.5	40 6	PFI 5/P1.5			AI GND	40 6	AI GND
PFI 15/P2.7	39 5	PFI 6/P1.6	TERMINAL 1 -	#1\]	AI GND	39 5	AI GND
PFI 7/P1.7	38 4	D GND	TERMINAL 35 -	┼┢╩║	AI GND	38 4	AI GND
PFI 8/P2.0	37 3	PFI 9/P2.1			AI GND	37 3	AI GND
D GND	36 2	PFI 12/P2.4		((Ö))	AI GND	36 2	AI GND
D GND	35 1	PFI 14/P2.6			AI GND	35 1	AI GND
		J				$\overline{}$	J
	\sim	/				\sim	/

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/ketchology, refer to the appropriate location: Helps/Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product.Refer to the *Export Compliance Information* at ni.com/legal/export_compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-7014, and DFAR 252.227-7014.

© 2018 National Instruments. All rights reserved.