Technical Reference Guide

For

Compaq Deskpro EXS and

Compaq Deskpro Workstation 300 Personal Computers

Featuring the
Intel Pentium 4 Processor
And the
Intel 850 Chipset

COMPAQ

This document is designed to allow printing as an 8 ½ x 11-inch hardcopy that will fit into a standard 3-ring binder. Provided below is a title block that can be copied and/or cut out and placed into a slip or taped onto the edge of the binder.

COMPAQ. Deskpro EXS and Deskpro Workstation 300 Personal Computers Featuring the Intel Pentium 4 Processor **TRG** and the Intel 850 Chipset

Reader Feedback Please feel free to send any questions, suggestions, corrections, or comments regarding this document please to the following email address: CPCG.Training@compaq.com When responding, please state the title and edition of the referenced document.

NOTICE

The information in this document is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR OMISSIONS HEREIN; NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. IT IS THE RESPONSIBILITY OF MANUFACTURERS TO ENSURE THAT DEVICES DESIGNED TO BE USED WITH COMPAQ PRODUCTS COMPLY WITH FCC CLASS B EMISSIONS REQUIREMENTS.

This guide contains information protected by copyright. Except for use in connection with the described Compaq product, no part of this document may be photocopied or reproduced in any form without prior written consent from Compaq Computer Corporation.

©2000 Compaq Computer Corporation All rights reserved. Published in the USA

Compaq, Deskpro, LTE, Contura, Presario, ProLinea Registered U.S. Patent and Trademark Office

Product names mentioned in this document may be trademarks and/or registered trademarks of other companies.

"Celeron," "Pentium" and "MMX" are registered trademarks of Intel Corporation. "Microsoft," "MS-DOS," "Windows," and "Windows NT" are registered trademarks of Microsoft Corporation.

For more information regarding specifications and Compaq-specific parts please contact Compaq Computer Corporation.

Technical Reference Guide for Compaq Deskpro EXS and Workstation 300 Series Personal Computers First Edition - December 2000 Document Number 13YR-1200A-WWEN

Technical Reference Guide	
Comman Dockman EVC and Worker at a 200 Document Comman	

TABLE OF CONTENTS

CHAPTE	ER 1 INTRODUCTION	•••••
1.1	ABOUT THIS GUIDE	1-1
1.1.1	USING THIS GUIDE	1-1
1.1.2	ADDITIONAL INFORMATION SOURCES	1-1
1.2	MODEL NUMBERING CONVENTION	1-1
1.3	NOTATIONAL CONVENTIONS	1-2
1.3.1	VALUES	1-2
1.3.2	RANGES	1-2
1.3.3	S SIGNAL LABELS	1-2
1.3.4	REGISTER NOTATION AND USAGE	1-2
1.3.5		
1.4	COMMON ACRONYMS AND ABBREVIATIONS	1-3
СНАРТЕ	ER 2 SYSTEM OVERVIEW	
	INTRODUCTION	
	FEATURES AND OPTIONS	
2.2.1		
2.2.2		
	MECHANICAL DESIGN	
2.3.1		
2.3.2		
2.3.3		
	SYSTEM ARCHITECTURE	
2.4.1		
2.4.2		
2.4.3		
2.4.4	~ - ~	
2.4.5		
2.4.6		
2.4.7		
2.4.8		
2.4.9		
2.5	SPECIFICATIONS	2-14
	ER 3 PROCESSOR/MEMORY SUBSYSTEM	
3.1	INTRODUCTION	3-1
	PENTIUM 4 PROCESSOR	
3.2.1		
3.2.2		
3.3	MEMORY SUBSYSTEM	
3.3.1		
3.3.2		
3.3.3		
3.3.4		
3.4	SUBSYSTEM CONFIGURATION	3-10

CHAPTER	4 SYSTEM SUPPORT	•••••
4.1 IN	TRODUCTION	4-1
	CI BUS OVERVIEW	
4.2.1	PCI BUS TRANSACTIONS	
4.2.2	PCI BUS MASTER ARBITRATION	
4.2.3	OPTION ROM MAPPING	
4.2.4	PCI INTERRUPTS	
4.2.5	PCI POWER MANAGEMENT SUPPORT	
4.2.6	PCI SUB-BUSSES	
4.2.7	PCI CONFIGURATION	
4.2.8	PCI CONNECTOR	4-9
4.3 AG	GP BUS OVERVIEW	4-10
4.3.1	BUS TRANSACTIONS	4-10
4.3.2	AGP CONFIGURATION	4-13
4.3.3	AGP CONNECTOR	4-14
4.4 SY	YSTEM RESOURCES	4-15
4.4.1	INTERRUPTS	4-15
4.4.2	DIRECT MEMORY ACCESS	4-19
	YSTEM CLOCK DISTRIBUTION	
4.6 RI	EAL-TIME CLOCK AND CONFIGURATION MEMORY	
4.6.1	CLEARING CMOS	
4.6.2	CMOS ARCHIVE AND RESTORE	
4.6.3	STANDARD CMOS LOCATIONS	
4.7 SY	YSTEM MANAGEMENT	
4.7.1	SECURITY FUNCTIONS	
4.7.2	POWER MANAGEMENT	
4.7.3	SYSTEM STATUS	
4.7.4	TEMPERATURE SENSING AND COOLING	
	EGISTER MAP AND MISCELLANEOUS FUNCTIONS	
4.8.1	SYSTEM I/O MAP	
4.8.2	82801 ICH GENERAL PURPOSE FUNCTIONS	
4.8.3	I/O CONTROLLER FUNCTIONS	4-3/
CHAPTER	5 INPUT/OUTPUT INTERFACES	
	TRODUCTION	
5.2 EN	NHANCED IDE INTERFACE	
5.2.1	IDE PROGRAMMING	
5.2.2		
5.3 DI	ISKETTE DRIVE INTERFACE	
5.3.1	DISKETTE DRIVE PROGRAMMING	
5.3.2	DISKETTE DRIVE CONNECTOR	
5.4 SE	ERIAL INTERFACE	
5.4.1	RS-232 INTERFACE	
5.4.2	SERIAL INTERFACE PROGRAMMING	
	ARALLEL INTERFACE	
5.5.1	STANDARD PARALLEL PORT MODE	
5.5.2	ENHANCED PARALLEL PORT MODE	
5.5.3	EXTENDED CAPABILITIES PORT MODE	
5.5.4	PARALLEL INTERFACE PROGRAMMING	
555	PARALLEL INTERFACE CONNECTOR	5-15

iv

5.6 KE	YBOARD/POINTING DEVICE INTERFACE	
5.6.1	KEYBOARD INTERFACE OPERATION	5-16
5.6.2	POINTING DEVICE INTERFACE OPERATION	5-18
5.6.3	KEYBOARD/POINTING DEVICE INTERFACE PROGRAMMING	5-18
5.6.4	KEYBOARD/POINTING DEVICE INTERFACE CONNECTOR	5-21
5.7 UN	NIVERSAL SERIAL BUS INTERFACE	5-22
5.7.1	USB DATA FORMATS	5-22
5.7.2	USB PROGRAMMING	5-24
5.7.3	USB CONNECTOR	5-25
5.7.4	USB CABLE DATA	5-25
5.8 AU	JDIO SUBSYSTEM	5-26
5.8.1	FUNCTIONAL ANALYSIS	5-26
5.8.2	AUDIO CONTROLLER	5-28
5.8.3	AC97 LINK BUS	5-29
5.8.4	AUDIO CODEC	5-30
5.8.5	AUDIO PROGRAMMING	
5.8.6	AUDIO SPECIFICATIONS	5-32
5.9 NE	TWORK SUPPORT	
5.9.1	PCI VER. 2.2 SUPPORT	5-33
5.9.2	ALERT-ON-LAN SUPPORT	
5.9.3	REMOTE SYSTEM ALERT SUPPORT	
	6 POWER SUPPLY AND DISTRIBUTIONTRODUCTION	
	WER SUPPLY ASSEMBLY/CONTROL	
6.2.1	POWER SUPPLY ASSEMBLY	
6.2.2	POWER CONTROL	
	WER DISTRIBUTION	
6.3.1	3.3/5/12 VDC DISTRIBUTION	
6.3.2	LOW VOLTAGE PRODUCTION/DISTRIBUTION	
6.4 SIG	GNAL DISTRIBUTION	
CHAPTER	7 BIOS ROM	
7.1 IN	TRODUCTION	7-1
	OM FLASHING	
7.2.1	UPGRADING	7-2
7.2.2	CHANGEABLE SPLASH SCREEN	7-3
7.3 BC	OOT FUNCTIONS	7-4
7.3.1	BOOT DEVICE ORDER	7-4
7.3.2	NETWORK BOOT (F12) SUPPORT	7-4
7.3.3	MEMORY DETECTION AND CONFIGURATION	7-5
7.3.4	BOOT ERROR CODES	
7.4 SE	TUP UTILITY	7-6
7.5 CL	JENT MANAGEMENT FUNCTIONS	7-12
7.5.1	SYSTEM ID AND ROM TYPE	7-14
7.5.2	EDID RETRIEVE	
7.5.3	TEMPERATURE STATUS	7-14
7.5.4	DRIVE FAULT PREDICTION	
7.6 PN	P SUPPORT	7-15
7.6.1	SMBIOS	7-16

7.7	POWER MANAGEMENT FUNCTIONS	7-17
7.7	7.1 INDEPENDENT PM SUPPORT	7-17
7.7	7.2 ACPI SUPPORT	7-19
7.7	7.3 APM 1.2 SUPPORT	7-19
7.8	USB LEGACY SUPPORT	7-23
A. AP	PPENDIX A ERROR MESSAGES AND CODES	•••••
A.1	INTRODUCTION	A-1
A.2	BEEP/KEYBOARD LED CODES	
A.3	POWER-ON SELF TEST (POST) MESSAGES	
A.4	SYSTEM ERROR MESSAGES (1xx-xx)	
A.5	MEMORY ERROR MESSAGES (2xx-xx)	
A.6	KEYBOARD ERROR MESSAGES (30x-xx)	
A.7	PRINTER ERROR MESSAGES (4xx-xx)	
A.8	VIDEO (GRAPHICS) ERROR MESSAGES (5xx-xx)	
A.9	DISKETTE DRIVE ERROR MESSAGES (6xx-xx)	A-6
A.10	·	
A.11	MODEM COMMUNICATIONS ERROR MESSAGES (12xx-xx)	A-7
A.12	SYSTEM STATUS ERROR MESSAGES (16xx-xx)	A-8
A.13		
A.14	HARD DRIVE ERROR MESSAGES (19xx-xx)	A-9
A.15		
A.16		
A.17	DVD/CD-ROM ERROR MESSAGES (33xx-xx)	A-10
A.18	NETWORK INTERFACE ERROR MESSAGES (60xx-xx)	A-10
A.19	SCSI INTERFACE ERROR MESSAGES (65xx-xx, 66xx-xx, 67xx-xx)	A-11
A.20	POINTING DEVICE INTERFACE ERROR MESSAGES (8601-xx)	A-11
A DDEN	IDIX B ASCII CHARACTER SET	
B.1	INTRODUCTION	B-1
APPEN	IDIX C KEYBOARD	••••••
C.1	INTRODUCTION	
C.2	KEYSTROKE PROCESSING	
C.2		
	CONNECTORS	C-16

APPEN	NDIX D COMPAQ/NVIDIA TNT2 PRO AGP GRAPHICS CARD	
D.1	INTRODUCTION	D-1
D.2	FUNCTIONAL DESCRIPTION	
D.3	DISPLAY MODES	
D.4	SOFTWARE SUPPORT INFORMATION	
D.5	POWER MANAGEMENT AND CONSUMPTION	
D.6	CONNECTORS	
D.	6.1 MONITOR CONNECTOR	
APPEN	NDIX E COMPAQ/NVIDIA GEFORCE2 GTS AGP GRAPHICS CAR	D
E.1	INTRODUCTION	
E.2	FUNCTIONAL DESCRIPTION	
E.3	DISPLAY MODES	
E.4	SOFTWARE SUPPORT INFORMATION	
E.5	POWER MANAGEMENT AND CONSUMPTION	
E.6	CONNECTORS.	
	6.1 MONITOR CONNECTOR	
	6.2 VIDEO FEATURE CONNECTOR	
APPEN F.1	NDIX F COMPAQ/LUCENT V.90 56K PCI MODEMINTRODUCTION	
F.2	FUNCTIONAL DESCRIPTION	
F.3	OPERATING PARAMETERS	
	3.1 UART TRANSFER RATES	
	3.2 TRANSMISSION MODES	
F.4	POWER MANAGEMENT	
	4.1 APM ENVIRONMENT	
	4.2 ACPI ENVIRONMENT	
F.5	PROGRAMMING	
F.6	CONNECTOR	
APPEN	NDIX G COMPAQ/ELSA GLORIA II GRAPHICS CARD	••••••
G.1	INTRODUCTION	
G.2	FUNCTIONAL DESCRIPTION	
G.3	DISPLAY MODES	
G.4	SOFTWARE SUPPORT INFORMATION	
G.5	POWER MANAGEMENT AND CONSUMPTION	
G.6	CONNECTORS	
	6.1 MONITOR CONNECTOR	
G	6.2 VIDEO FEATURE CONNECTOR	$G \in \mathcal{C}$

APPENDIX H COMPAQ/MATROX MILLENNIUM G450 AGP GRAPHI	CS CARD
H.1 INTRODUCTION	H-1
H.2 FUNCTIONAL DESCRIPTION	
H.3 DISPLAY MODES	
H.4 SOFTWARE SUPPORT INFORMATION	
H.5 POWER MANAGEMENT AND CONSUMPTION	
H.6 CONNECTORS	
H.6.1 MONITOR CONNECTOR	
H.6.2 VIDEO FEATURE CONNECTOR	
APPENDIX I COMPAQ/INTEL NETWORK INTERFACE CONTROLLI I.1 INTRODUCTION	
I.2 FUNCTIONAL DESCRIPTION	
I.2.1 AOL FUNCTION	
I.2.2 WAKE UP FUNCTIONS	
I.2.3 IPSEC FUNCTION	
I.3 POWER MANAGEMENT SUPPORT	
I.3.1 APM ENVIRONMENT	
I.3.2 ACPI ENVIRONMENTI.4 ADAPTER PROGRAMMING	
I.4.1 CONFIGURATION	
I.4.2 CONTROL	
I.5 NETWORK CONNECTOR	
I.6 ADAPTER SPECIFICATIONS	
APPENDIX J COMPAQ/NVIDIA QUADRO2 MXR AGP GRAPHICS CA J.1 INTRODUCTION	J-1
J.2 FUNCTIONAL DESCRIPTION	
J.3 DISPLAY MODES	
J.4 SOFTWARE SUPPORT INFORMATION	
J.5 POWER MANAGEMENT AND CONSUMPTION	
J.6 CONNECTORSJ.6.1 MONITOR CONNECTOR	
APPENDIX K COMPAQ PCI 10/100 ETHERNET ADAPTER	
K.1 INTRODUCTION	
K.2 FUNCTIONAL DESCRIPTION	
K.2.1 AOL FUNCTION	
K.2.2 RSA FUNCTION	
K.2.3 WAKE UP FUNCTIONS	
K.3 POWER MANAGEMENT SUPPORT	
K.3.1 APM ENVIRONMENT	
K.3.2 ACPI ENVIRONMENT	
K.4 CONNECTORS	
K.4.1 NETWORK CONNECTOR	K-6

K.4.2	AOL/SOS CONNECTOR	
K.4.3	SMBUS CONNECTOR	K-7
K.4.4	WOL CONNECTOR	K-7
K.5 A	DAPTER SPECIFICATIONS	
APPENDIX	X L COMPAQ/ADAPTEC SCSI HOST ADAPTER	
	NTRODUCTION	
	UNCTIONAL DESCRIPTION	
L.3 Se	CSI ADAPTER PROGRAMMING	L-3
L.3.1	SCSI ADAPTER CONFIGURATION	
L.3.2		
	PECIFICATIONS	
L.5 Se	CSI CONNECTORS	L-4
L.5.1	EXTERNAL 50-PIN ULTRA SCSI CONNECTOR	L-4
L.5.2	INTERNAL 50-PIN ULTRA SCSI CONNECTOR	L-5
L 5 3	INTERNAL 68-PIN LILTRA160 SCSI CONNECTOR	L-6

LIST OF FIGURES

FIGURE 2–1.	COMPAQ DESKPRO PERSONAL COMPUTERS WITH MONITORS	2-1
FIGURE 2–2.	FRONT CABINET VIEWS	2-4
FIGURE 2–3.	REAR CABINET VIEW	2-5
FIGURE 2–4.	CHASSIS LAYOUT, LEFT SIDE VIEW	2-6
FIGURE 2–5.	System Board Layout	2-7
FIGURE 2–6.	SYSTEM ARCHITECTURE, BLOCK DIAGRAM	2-9
	PROCESSOR ASSEMBLY AND MOUNTING	
FIGURE 3–1.	PROCESSOR/MEMORY SUBSYSTEM ARCHITECTURE	3-1
FIGURE 3–2.	PENTIUM 4 PROCESSOR INTERNAL ARCHITECTURE	3-3
FIGURE 3–3.	SDRAM/RDRAM BANDWIDTH COMPARISON	3-5
FIGURE 3–4.	RAMBUS CHANNEL SIGNAL DISTRIBUTION AND KEY ATTRIBUTES	3-6
FIGURE 3–5.	RAMBUS TRANSACTIONS (SINGLE CHANNEL)	3-7
FIGURE 3–6.	SYSTEM MEMORY MAP	3-9
FIGURE 4-1.	PCI Bus Devices and Functions	4-2
	CONFIGURATION CYCLE	
FIGURE 4-3.	PCI CONFIGURATION SPACE MAPPING.	4-5
	PCI BUS CONNECTOR (32-BIT TYPE)	
FIGURE 4-5.	AGP 1X DATA TRANSFER (PEAK TRANSFER RATE: 266 MB/s)	4-11
FIGURE 4-6.	AGP 2X DATA TRANSFER (PEAK TRANSFER RATE: 532 MB/s)	4-12
FIGURE 4-7.	AGP 4X DATA TRANSFER (PEAK TRANSFER RATE: 1064 MB/s)	4-12
FIGURE 4-8.	1.5-VOLT AGP BUS CONNECTOR	4-14
FIGURE 4-9.	MASKABLE INTERRUPT PROCESSING, BLOCK DIAGRAM	4-15
FIGURE 4-10	. CONFIGURATION MEMORY MAP	4-20
FIGURE 4-11	. FAN CONTROL BLOCK DIAGRAM	. 4-34
	40-PIN PRIMARY IDE CONNECTOR (ON SYSTEM BOARD).	
	34-PIN DISKETTE DRIVE CONNECTOR.	
	SERIAL INTERFACE CONNECTOR (MALE DB-9 AS VIEWED FROM REAR OF CHASSIS)	
	PARALLEL INTERFACE CONNECTOR (FEMALE DB-25 AS VIEWED FROM REAR OF CHASSIS).	
	KEYBOARD OR POINTING DEVICE INTERFACE CONNECTOR	
FIGURE 5-6.	USB I/F, BLOCK DIAGRAM	. 5-22
	USB PACKET FORMATS	
	Universal Serial Bus Connector	
FIGURE 5-9.	AUDIO SUBSYSTEM FUNCTIONAL BLOCK DIAGRAM	. 5-27
	. AC'97 Link Bus Protocol	
	. CS4297A AUDIO CODEC FUNCTIONAL BLOCK DIAGRAM	
FIGURE 5-12	. AOL IMPLEMENTATION (GENERIC REPRESENTATION)	. 5-34
	. REMOTE SENSE ALERT IMPLEMENTATION (GENERIC REPRESENTATION)	
FIGURE 5-14	. RSA LOGIC, BLOCK DIAGRAM	. 5-35
	POWER DISTRIBUTION AND CONTROL, BLOCK DIAGRAM	
	POWER CABLE DIAGRAM	
	LOW VOLTAGE SUPPLY AND DISTRIBUTION DIAGRAM	
	SIGNAL DISTRIBUTION DIAGRAM, TYPICAL CONFIGURATION	
FIGURE 6–5.	HEADER PINOUTS	6-8
FIGURE B-1.	ASCII CHARACTER SET	B-1

FIGURE C-1. KEYSTROKE PROCESSING ELEMENTS, BLOCK DIAGRAM	
FIGURE C-2. PS/2 KEYBOARD-TO-SYSTEM TRANSMISSION, TIMING DIAGRAM	
FIGURE C-3. U.S. ENGLISH (101-KEY) KEYBOARD KEY POSITIONS	
FIGURE C-4. NATIONAL (102-KEY) KEYBOARD KEY POSITIONS	
FIGURE C-5. U.S. ENGLISH WINDOWS (101W-KEY) KEYBOARD KEY POSITIONS	
FIGURE C-6. NATIONAL WINDOWS (102W-KEY) KEYBOARD KEY POSITIONS	
FIGURE C-7. 7-BUTTON EASY ACCESS KEYBOARD LAYOUT	
FIGURE C-8. 8-BUTTON EASY ACCESS KEYBOARD LAYOUT	
FIGURE C-9. PS/2 KEYBOARD CABLE CONNECTOR (MALE)	C-16
FIGURE C-10. USB KEYBOARD CABLE CONNECTOR (MALE)	C-16
FIGURE D-1. COMPAQ/NVIDIA TNT2 PRO AGP GRAPHICS CARD (P/N 198998-B21) LAYOUT	D-1
FIGURE D-2. NVIDIA TNT2 PRO GRAPHICS CARD BLOCK DIAGRAM	D-2
FIGURE D-3. VGA MONITOR CONNECTOR, (FEMALE DB-15, AS VIEWED FROM REAR)	D-5
FIGURE E-1. COMPAQ/NVIDIA GEFORCE2 GTS AGP GRAPHICS CARD (P/N 179642-001) LAYOU	JTE-1
FIGURE E-2. NVIDIA GEFORCE2 GTS GRAPHICS CARD BLOCK DIAGRAM	E-2
FIGURE E-3. VGA MONITOR CONNECTOR, (FEMALE DB-15, AS VIEWED FROM REAR)	E-5
FIGURE E-4. FEATURE CONNECTOR (26-PIN HEADER)	E-6
FIGURE F-1. COMPAQ/LUCENT V.90 56K PCI MODEM (PCA #152972) LAYOUT	F-1
FIGURE F-2. COMPAQ/LUCENT V.90 56K PCI MODEM BLOCK DIAGRAM	F-2
FIGURE F-3. RJ-11 CONNECTOR, (FEMALE, AS VIEWED FROM REAR).	F-4
FIGURE G-1. COMPAQ/ELSA GLORIA II AGP GRAPHICS CARD (P/N 174565-001) LAYOUT	G-1
FIGURE G-2. ELSA GLORIA II GRAPHICS CARD BLOCK DIAGRAM	
FIGURE G-3. VGA MONITOR CONNECTOR, (FEMALE DB-15, AS VIEWED FROM REAR)	G-5
FIGURE G-4. FEATURE CONNECTOR (26-PIN HEADER)	G-6
FIGURE H-1. COMPAQ/MATROX MILLENNIUM G450 AGP GRAPHICS CARD LAYOUT (PCA# 20290)1-001)H-1
FIGURE H-2. MATROX MILLENNIUM G450 GRAPHICS CARD BLOCK DIAGRAM	
FIGURE H-3. VGA MONITOR CONNECTOR, (ONE OF TWO FEMALE DB-15, AS VIEWED FROM REAR)	H-5
FIGURE H-4. FEATURE CONNECTOR (26-PIN HEADER)	Н-6
FIGURE I-1. INTEL PRO/100+ OR PRO/100 S MANAGEMENT ADAPTER CARD LAYOUT	I-1
FIGURE I-2. INTEL PRP/100+ MANAGEMENT ADAPTER, BLOCK DIAGRAM	
FIGURE I-3. ETHERNET TPE CONNECTOR (RJ-45, VIEWED FROM CARD EDGE)	I-7
FIGURE J-1. COMPAQ/NVIDIA QUADRO2 MXR AGP GRAPHICS CARD (PCA# 221411-001) LAYO	OUTJ-1
FIGURE J-2. NVIDIA QUADRO2 MXR GRAPHICS CARD BLOCK DIAGRAM	
FIGURE J-3. VGA MONITOR CONNECTOR, (FEMALE DB-15, AS VIEWED FROM REAR).	J-5
FIGURE K-1. COMPAQ PCI 10/100 ETHERNET ADAPTER CARD LAYOUT (PCA# 402355-001)	
FIGURE K-2. COMPAQ PCI 10/100 ETHERNET ADAPTER, BLOCK DIAGRAM	
FIGURE K-3. ETHERNET TPE CONNECTOR (RJ-45, VIEWED FROM CARD EDGE)	
FIGURE K-4. AOL/SOS CONNECTOR (7-PIN HEADER)	
FIGURE K-5. SMBUS CONNECTOR (4-PIN HEADER)	
FIGURE K 6 WOL CONNECTOR (3 DIN HEADER)	K 7

FIGURE L–1.	COMPAQ/ADAPTEC 29160N SCSI HOST ADAPTER CARD LAYOUT (PCA# 157342-001)	L-1
FIGURE L–2.	COMPAQ/ADAPTEC ULTRA SCSI ADAPTER CARD BLOCK DIAGRAM	L-2
FIGURE L-3. 1	EXTERNAL ULTRA SCSI CONNECTOR (50-PIN)	L-4
FIGURE L-4. 1	INTERNAL 50-PIN ULTRA SCSI CONNECTOR	L-5
FIGURE L-5.	ULTRA 160 SCSI CONNECTOR (68-PIN HEADER TYPE)	L-6

LIST OF TABLES

TABLE 1–1. ACRONYMS AND ABBREVIATIONS	1-3
TABLE 2-1. STANDARD FEATURE DIFFERENCE MATRIX	2-2
TABLE 2-2. CHIPSET COMPARISON	2-11
TABLE 2-3. SUPPORT COMPONENT FUNCTIONS	2-11
TABLE 2-4. STANDARD AGP GRAPHICS CARD COMPARISON	2-13
TABLE 2-5. ENVIRONMENTAL SPECIFICATIONS	2-14
TABLE 2-6. ELECTRICAL SPECIFICATIONS	2-14
TABLE 2-7. PHYSICAL SPECIFICATIONS	2-15
TABLE 2-8. DISKETTE DRIVE SPECIFICATIONS	2-15
TABLE 2-9. 48x CD-ROM DRIVE SPECIFICATIONS	2-16
TABLE 2-10. HARD DRIVE SPECIFICATIONS	
TABLE 3–1. HOST/PCI BRIDGE CONFIGURATION REGISTERS (GMCH, FUNCTION 0)	3-10
TABLE 4-1. PCI DEVICE CONFIGURATION ACCESS DATA	
TABLE 4-2. PCI Bus Mastering Devices	
TABLE 4-3. LPC BRIDGE CONFIGURATION REGISTERS (ICH, FUNCTION 0)	
TABLE 4-4. PCI Bus Connector Pinout.	
TABLE 4-5. PCI/AGP BRIDGE CONFIGURATION REGISTERS (MCH, FUNCTION 1)	
TABLE 4-6. AGP Bus Connector Pinout	
TABLE 4-7. MASKABLE INTERRUPT PRIORITIES AND ASSIGNMENTS	
TABLE 4-8. MASKABLE INTERRUPT CONTROL REGISTERS	
TABLE 4-9. DEFAULT DMA CHANNEL ASSIGNMENTS AND REGISTER I/O PORTS	
TABLE 4-10. CLOCK GENERATION AND DISTRIBUTION	
TABLE 4-10. CLOCK GENERATION AND DISTRIBUTION TABLE 4-11. CONFIGURATION MEMORY (CMOS) MAP	
TABLE 4-11. CONFIGURATION MEMORY (CMOS) MAP	
TABLE 4-12. SYSTEM BOOT/ROW FLASH STATUS LED INDICATIONS	
TABLE 4-14. SYSTEM I/O MAP	
TABLE 4-15. 82801 ICH GPIO REGISTER UTILIZATION (DESKTOP AND MINITOWER ONLY)	
TABLE 4-16 LPC47B357 CONTROL REGISTERS	
TABLE 4-17. LPC47B357 GPIO REGISTER UTILIZATION (DESKTOP AND MINITOWER ONLY)	4-38
TABLE 5–1. IDE PCI CONFIGURATION REGISTERS	5-2
TABLE 5 - IDE BUS MASTER CONTROL REGISTERS	
TABLE 5–3. 40-PIN PRIMARY IDE CONNECTOR PINOUT.	
TABLE 5–3. 40-1 INT RIMART IDE CONNECTOR I MOUT TABLE 5–4. DISKETTE DRIVE CONTROLLER CONFIGURATION REGISTERS	
TABLE 5–5. DISKETTE DRIVE CONTROLLER CONTROL REGISTERS	
TABLE 5–6. 34-PIN DISKETTE DRIVE INTERFACE CONNECTOR PINOUT	
TABLE 5–0. 54-FIN DISNETTE DRIVE CONNECTOR FINOUT	
TABLE 5–8. SERIAL INTERFACE CONFIGURATION REGISTERS	
TABLE 5–9. SERIAL INTERFACE CONTROL REGISTERS	
TABLE 5–11. PARALLEL INTERFACE CONTROL REGISTERS	
TABLE 5–12. DB-25 PARALLEL CONNECTOR PINOUT	
TABLE 5–13. 8042-To-KEYBOARD COMMANDS	
TABLE 5–14. KEYBOARD INTERFACE CONFIGURATION REGISTERS	
TABLE 5–15. CPU COMMANDS TO THE 8042	
TABLE 5–16. KEYBOARD/POINTING DEVICE CONNECTOR PINOUT	
TABLE 5–17. USB INTERFACE CONFIGURATION REGISTERS	
TABLE 5–18. USB CONTROL REGISTERS	5-24

TABLE 5–19. USB CONNECTOR PINOUT	5-25
TABLE 5–20. USB CABLE LENGTH DATA	5-25
TABLE 5–21. AC'97 AUDIO CONTROLLER PCI CONFIGURATION REGISTERS	5-31
TABLE 5–22. AC'97 AUDIO CODEC CONTROL REGISTERS	5-31
TABLE 5–23. AUDIO SUBSYSTEM SPECIFICATIONS	5-32
TABLE 5–24. AOL EVENTS	5-33
TABLE 5–25. REMOTE SYSTEM ALERT EVENTS	5-36
TABLE 7-1. BOOT BLOCK CODES	
TABLE 7-2. BOOT ERROR CODES	
TABLE 7-3. SETUP UTILITY FUNCTIONS	
TABLE 7-4. CLIENT MANAGEMENT FUNCTIONS (INT15)	
TABLE 7-5. PNP BIOS FUNCTIONS	7-15
TABLE 7-6. APM BIOS FUNCTIONS	7-20
Table A–1. Beep/Keyboard LED Codes	
TABLE A-2. POWER-ON SELF TEST (POST) MESSAGES	A-2
TABLE A-3. SYSTEM ERROR MESSAGES	A-3
TABLE A-4. MEMORY ERROR MESSAGES	A-4
TABLE A-5. KEYBOARD ERROR MESSAGES	A-4
TABLE A-6. PRINTER ERROR MESSAGES	A-5
TABLE A-7. VIDEO (GRAPHICS) ERROR MESSAGES	A-5
TABLE A–8. DISKETTE DRIVE ERROR MESSAGES	A-6
TABLE A-9. SERIAL INTERFACE ERROR MESSAGES	A-6
TABLE A-10. SERIAL INTERFACE ERROR MESSAGES	
TABLE A-11. SYSTEM STATUS ERROR MESSAGES	A-8
TABLE A-12. HARD DRIVE ERROR MESSAGES	A-8
TABLE A-13. HARD DRIVE ERROR MESSAGES	A-9
TABLE A-14. VIDEO (GRAPHICS) ERROR MESSAGES	A-9
TABLE A-15. AUDIO ERROR MESSAGES	A-10
TABLE A-16. DVD/CD-ROM DRIVE ERROR MESSAGES	A-10
TABLE A-17. NETWORK INTERFACE ERROR MESSAGES	A-10
TABLE A-18. SCSI INTERFACE ERROR MESSAGES	A-11
TABLE A-19. POINTING DEVICE INTERFACE ERROR MESSAGES	A-11
Table C-1. Keyboard-to-System Commands	C-11
TABLE C-2. KEYBOARD SCAN CODES	C-12
TABLE D-1. NVIDIA TNT2 PRO GRAPHICS DISPLAY MODES	D-3
TABLE D-2. MONITOR POWER MANAGEMENT CONDITIONS	D-4
TABLE D-3. DB-15 MONITOR CONNECTOR PINOUT	D-5
TABLE E-1. NVIDIA GEFORCE2 GTS GRAPHICS DISPLAY MODES	E-3
TABLE E-2. MONITOR POWER MANAGEMENT CONDITIONS	
TABLE E-3. DB-15 MONITOR CONNECTOR PINOUT	E-5
TABLE E-4. VIDEO IN CONNECTOR PINOUT.	E-6
TABLE F-1. OPERATIONAL MODES	F-3
TABLE G-1. ELSA GLORIA II GRAPHICS DISPLAY MODES	
TABLE G-2. MONITOR POWER MANAGEMENT CONDITIONS	
TABLE G-3. DB-15 MONITOR CONNECTOR PINOUT	
TABLE G-4. VIDEO IN CONNECTOR PINOUT	G-6

TABLE H-1. MATROX MILLENNIUM G450 GRAPHICS DISPLAY MODES	H-3
TABLE H-2. MONITOR POWER MANAGEMENT CONDITIONS	H-4
TABLE H-3. DB-15 MONITOR CONNECTOR PINOUT	
TABLE H–4. VIDEO IN CONNECTOR PINOUT	H-6
TABLE I-1. NIC CONTROLLER PCI CONFIGURATION REGISTERS	
TABLE I-2. NIC CONTROL REGISTERS	I-6
TABLE I-3. ADAPTER OPERATING SPECIFICATIONS	I-7
TABLE J-1. NVIDIA QUADRO2 MXR GRAPHICS DISPLAY MODES	J-3
TABLE J-2. MONITOR POWER MANAGEMENT CONDITIONS	J-4
TABLE J-3. DB-15 MONITOR CONNECTOR PINOUT	J-5
TABLE K-1. ADAPTER SPECIFICATIONS	K-8
TABLE L-1. SCSI HOST ADAPTER CARD CONTROL REGISTER MAPPING	L-3
TABLE L-2. ULTRA SCSI HOST ADAPTER CARD SPECIFICATIONS	L-3
TABLE L-3. EXTERNAL 50-PIN ULTRA SCSI CONNECTOR PINOUT	L-4
TABLE L-4. INTERNAL 50-PIN ULTRA SCSI CONNECTOR PINOUT	L-5
TABLE L-5. ULTRA160 SCSI CONNECTOR PINOUT	L-6

Techn	ical Reference Guide	
		This page is intentionally blank
		This page is intentionally blank.
i /	Compag Doglengo EVC and W-	rkstation 300 Personal Computers
kvi (zompaq Deskpro EXS ana Wo	rksiaiion 500 Fersonai Computers

Chapter 1 INTRODUCTION

1.1 **ABOUT THIS GUIDE**

This guide provides technical information about Compaq Deskpro Personal Computers that feature the Intel Pentium 4 processor and the Intel 850 chipset. This document includes information regarding system design, function, and features that can be used by programmers, engineers, technicians, and system administrators.

This guide and any applicable addendums are available online at the following location:

http://www.compag.com/support/techpubs/technical reference guides/index.html

1.1.1 **USING THIS GUIDE**

The chapters of this guide primarily describe the hardware and firmware elements and primarily deal with the system board and the power supply assembly. The appendices contain general information about standard peripheral devices such as the keyboard.

1.1.2 ADDITIONAL INFORMATION SOURCES

For more information on chipset components mentioned in this guide refer to the indicated manufacturers' documentation, which may be available at the following online sources:

- Compaq Computer Corporation: http://www.compaq.com
- Intel Corporation: http://www.intel.com
- Standard Microsystems Corporation: http://www.smsc.com

1.2 MODEL NUMBERING CONVENTION

The model numbering convention for Compaq Deskpro units is as follows:

1.3 NOTATIONAL CONVENTIONS

1.3.1 VALUES

Hexadecimal values are indicated by a numerical or alpha-numerical value followed by the letter "h." Binary values are indicated by a value of ones and zeros followed by the letter "b." Numerical values that have no succeeding letter can be assumed to be decimal.

1.3.2 RANGES

Ranges or limits for a parameter are shown using the following methods:

Example A: Bits <7..4> = bits 7, 6, 5, and 4.

Example B: IRQ3-7, 9 = IRQ signals 3 through 7, and IRQ signal 9

1.3.3 SIGNAL LABELS

Signal names are indicated using abbreviations, acronyms, or, if possible, the full signal name in all capital letters. Signals that are meant to be active (asserted) low are indicated with a dash immediately following the name.

1.3.4 REGISTER NOTATION AND USAGE

This guide uses standard Intel naming conventions in discussing the microprocessor's (CPU) internal registers. Registers that are accessed through programmable I/O using an indexing scheme are indicated using the following format:

In the example above, register 03C5.17h is accessed by writing the index port value 17h to the index address (03C4h), followed by a write to or a read from port 03C5h.

1.3.5 BIT NOTATION

Bit values are labeled with bit <0> representing the least-significant bit (LSb) and bit <7> representing the most-significant bit (MSb) of a byte. Bytes, words, double words, and quad words are typically shown with most-significant portions on the left or top and the least-significant portions on the right or bottom respectively.

1.4 COMMON ACRONYMS AND ABBREVIATIONS

Table 1-1 lists the acronyms and abbreviations used in this guide.

	T-11-44		
	Table 1-1.		
	Acronyms and Abbreviations		
Acronym/Abbreviation	Description		
A	ampere		
AC	alternating current		
ACPI	Advanced Configuration and Power Interface		
A/D	analog-to-digital		
AGP	Accelerated graphics port		
API	application programming interface		
APIC	Advanced Programmable Interrupt Controller		
APM	advanced power management		
AOL	Alert-On-LAN™		
ASIC	application-specific integrated circuit		
AT	1) attention (modem commands) 2) 286-based PC architecture		
ATA	AT attachment (IDE protocol)		
ATAPI	AT attachment w/packet interface extensions		
AVI	audio-video interleaved		
AVGA	Advanced VGA		
AWG	American Wire Gauge (specification)		
BAT	Basic assurance test		
BCD	binary-coded decimal		
BIOS	basic input/output system		
bis	second/new revision		
BNC	Bayonet Neill-Concelman (connector type)		
bps or b/s	bits per second		
BSP	Bootstrap processor		
BTO	Built to order		
CAS	column address strobe		
CD	compact disk		
CD-ROM	compact disk read-only memory		
CDS	compact disk system		
CGA	color graphics adapter		
Ch	Channel, chapter		
cm	centimeter		
CMC	cache/memory controller		
CMOS	complimentary metal-oxide semiconductor (configuration memory)		
Cntlr	controller		
Cntrl	control		
codec	compressor/decompressor		
CPQ	Compaq		
CPU	central processing unit		
CRIMM	Continuity (blank) RIMM		
CRT			
CSM	cathode ray tube		
DAC	Compaq system management / Compaq server management		
DC	digital-to-analog converter direct current		
DCH DDC	DOS compatibility hole		
	Display Data Channel		
DF	direction flag		

Continued

Table 1-1. Acronyms and Abbreviations Continued		
Acronym/Abbreviation	Description	
DIMM	dual inline memory module	
DIN	Deutche IndustriNorm (connector standard)	
DIP	dual inline package	
DMA	direct memory access	
DMI	Desktop management interface	
dpi	dots per inch	
DRAM	dynamic random access memory	
DRQ	data request	
EDID	extended display identification data	
EDO	extended data out (RAM type)	
EEPROM	electrically eraseable PROM	
EGA	enhanced graphics adapter	
EIA	Electronic Industry Association	
EISA	extended ISA	
EPP	enhanced parallel port	
EIDE	enhanced IDE	
ESCD	Extended System Configuration Data (format)	
EV	Environmental Variable (data)	
ExCA	Exchangeable Card Architecture	
FIFO	first in / first out	
FL	flag (register)	
FM	frequency modulation	
FPM	fast page mode (RAM type)	
FPU	Floating point unit (numeric or math coprocessor)	
FPS	Frames per second	
ft	Foot/feet	
GB	gigabyte	
GMCH	Graphics/memory controller hub	
GND	ground	
GPIO	general purpose I/O	
GPOC	general purpose open-collector	
GART	Graphics address re-mapping table	
GUI	graphics user interface	
h	hexadecimal	
HW	hardware	
hex	hexadecimal	
Hz	Hertz (cycles-per-second)	
ICH	I/O controller hub	
IDE	integrated drive element	
IEEE	Institute of Electrical and Electronic Engineers	
<u>IF</u>	interrupt flag	
I/F	interface	
in	inch	
INT	interrupt	
I/O	input/output	
IPL	initial program loader	
IrDA	InfraRed Data Association	
IRQ	interrupt request	
ISA	industry standard architecture	
Kb / KB	kilobits / kilobytes (x 1024 bits / x 1024 bytes)	
Kb/s	kilobits per second	
kg	kilogram	
KHz	kilohertz	
kv	kilovolt	

Continued

¹⁻⁴ Compaq Deskpro EXS and Workstation 300 Personal Computers Featuring the Intel Pentium 4 Processor

Acronym/Abbreviation	s and Abbreviations Continued Description
lb	pound
LAN	local area network
LCD	liquid crystal display
LED	light-emitting diode
LIF	low insertion force (socket)
LPC	Low pin count
LSI	large scale integration
LSb / LSB	
	least significant bit / least significant byte
LUN	logical unit (SCSI)
MOLL	Meter
MCH	Memory controller hub
MMX	multimedia extensions
MPEG	Motion Picture Experts Group
ms	millisecond
MSb / MSB	most significant bit / most significant byte
mux	multiplex
MVA	motion video acceleration
MVW	motion video window
n	variable parameter/value
NIC	network interface card/controller
NiMH	nickel-metal hydride
NMI	non-maskable interrupt
NRZI	Non-return-to-zero inverted
ns	nanosecond
NT	nested task flag
NTSC	National Television Standards Committee
NVRAM	non-volatile random access memory
OS	operating system
PAL	programmable array logic 2. phase altering line
PC	Internet Device
PCA	Printed circuit assembly
PCI	peripheral component interconnect
PCM	pulse code modulation
PCMCIA	Internet Device Memory Card International Association
PF	parity flag
PIN	personal identification number
PIO	Programmed I/O
POST	power-on self test
PROM	programmable read-only memory
PTR	pointer
RAM	random access memory
RAS	row address strobe
rcvr	receiver
RDRAM	(Direct) Rambus DRAM
RF	resume flag
RGB	red/green/blue (monitor input)
RH	Relative humidity
RIMM	RDRAM inline memory module
RMS	root mean square
ROM	read-only memory
RPM	revolutions per minute
RTC	real time clock
KIO	TOUT WITHOUTON

Continued

Table 1-1. Acronyms and Abbreviations Continued		
Acronym/Abbreviation	Description	
R/W	Read/Write	
SCSI	small computer system interface	
SDRAM	Synchronous Dynamic RAM	
SEC	Single Edge-Connector	
SECAM	sequential colour avec memoire (sequential color with memory)	
SF	sign flag	
SGRAM	Synchronous Graphics RAM	
SIMD	Single instruction multiple data	
SIMM	single in-line memory module	
SIT	system information table	
SMART	Self Monitor Analysis Report Technology	
SMI	system management interrupt	
SMM	system management mode	
SMRAM	system management RAM	
SPD	serial presence detect	
SPDIF	Sony/Philips Digital Interface (IEC-958 specification)	
SPN	Spare part number	
SPP	standard parallel port	
SRAM	static RAM	
SSE	Streaming SIMD extensions	
STN	super twist pneumatic	
SVGA	super VGA	
SW	software	
TAD	telephone answering device	
TAFI	Temperature-sensing And Fan control Integrated circuit	
TAM	telephone answering machine	
TCP	tape carrier package	
TF	trap flag	
TFT	thin-film transistor	
TIA	Telecommunications Information Administration	
TPE	twisted pair ethernet	
TPI	track per inch	
TTL	transistor-transistor logic	
TV	television	
TX	transmit	
UART	universal asynchronous receiver/transmitter	
UDMA	Ultra DMA	
URL	Uniform resource locator	
us / μs	microsecond	
USB	Universal Serial Bus	
UTP	unshielded twisted pair	
V	volt	
VESA	Video Electronic Standards Association	
VGA	video graphics adapter	
vib	vibrato	
VLSI	very large scale integration	
VRAM	Video RAM	
W	watt	
WOL	Wake-On-LAN	
WRAM	Windows RAM	
ZF	zero flag	
ZIF	zero insertion force (socket)	

¹⁻⁶ Compaq Deskpro EXS and Workstation 300 Personal Computers Featuring the Intel Pentium 4 Processor

Chapter 2 SYSTEM OVERVIEW

2.1 INTRODUCTION

Compaq Deskpro Personal Computers (Figure 2-1) featuring the Intel Pentium 4 processor provide very high performance for advanced e-business and multimedia applications. This guide covers Compaq Deskpro EXS Minitower and the Compaq Deskpro Workstation 300 models that feature the Intel Pentium 4 processor and the Intel 850 chipset.

Compaq Deskpro EXS Minitower

Compaq Deskpro Workstation 300

Figure 2–1. Compaq Deskpro Personal Computers with Monitors

This chapter includes the following topics:

•	Features and options (2.2)	page 2-2
•	Mechanical design (2.3)	page 2-4
•	System architecture (2.4)	page 2-8
•	Specifications (2.5)	page 2-13

2.2 FEATURES AND OPTIONS

This section describes the standard features and available options.

2.2.1 STANDARD FEATURES

The following standard features are included on all models:

- ♦ Intel Pentium 4 processor in PPGA423 package
- ♦ Intel 850 chipset
- ♦ Dual-channel Direct Rambus system memory
- ♦ Five 33-MHz/32-bit PCI slots
- ♦ One AGP slot
- ♦ Embedded Sound Blaster 128 PCI audio
- ♦ 3.5 inch, 1.44-MB diskette drive
- ♦ 48x Max CD-ROM drive
- ♦ IDE controllers with UATA/100 mode support
- ♦ Hard drive fault prediction
- One parallel, two serial, and four USB ports
- ♦ APM 1.2 power management support
- ♦ Plug 'n Play compatible (with ESCD support)
- ♦ Intelligent Manageability support
- ♦ Energy Star compliant
- Security features including:
 - Flash ROM Boot Block
 - Diskette drive disable, boot disable, write protect
 - Power-on password
 - Administrator password
 - Serial/parallel port disable
- ♦ PS/2 Compaq Easy-Access keyboard w/Windows support
- ♦ PS/2 Compaq Scroll Mouse

Table 2-1 shows the differences in standard features between the Deskpros:

Sta	Table 2-1. ndard Feature Difference Matrix	(
	Deskpro EXS	Deskpro Workstation 300
Form Factor	Minitower	Convertible Minitower
Standard Memory Type Installed	Non-ECC	ECC
Communication device	10/100 NIC & V.90 56K Modem	10/100 NIC only
Mass Storage:		
Interface Type	UATA100	Ultra 160 SCSI / UATA100
Drive Type	20- or 40-MB	18 GB / 20 GB
Standard AGP Graphics Card	NVIDIA GeForce2 GTS	NVIDIA TNT2 Pro,
		NVIDIA Quadro2 MXR,
		ELSA Gloria II, or
		Matrox Millennium G450

²⁻² Compaq Deskpro EXS and Workstation 300 Personal Computers Featuring the Intel Pentium 4 Processor

2.2.2 OPTIONS

The following items are available as options for all models and may be included in the standard configuration of some models:

♦ System Memory: PC800 64-MB RIMM (non-ECC, ECC)

PC800 128-MB RIMM (non-ECC, ECC) PC800 256-MB RIMM (non-ECC, ECC)

♦ Hard drives/controllers: 20-, 40-GB UATA/100 hard drive

Ultra 160 SCSI Controller 18-GB SCSI hard drive

♦ Removeable media drives: 8x/4x/32x CD-RW drive

10x/40x Max DVD-ROM drive LS-120 Super Disk drive PCI DXR DVD Decoder kit

♦ Graphics Monitors: Compaq P700 17" CRT

Compaq P900 19" CRT Compaq P1100 21" CRT

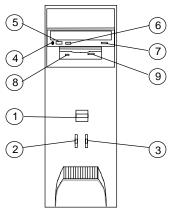
Compaq TFT5010 15" Flat Panel Compaq TFT8020 18" Flat Panel

♦ Audio Accessories: PS115 Speakers

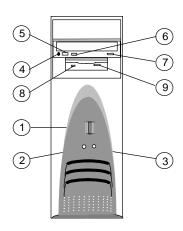
PS330 Speakers

2.3 MECHANICAL DESIGN

The following subsections describe the mechanical (physical) aspects of the covered Compaq Deskpro models.

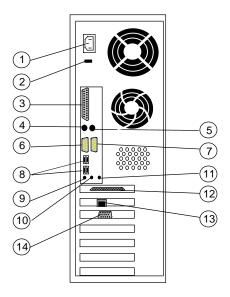


CAUTION: Voltages are present within the system unit whenever the unit is plugged into a live AC outlet, regardless of the "Power On" condition. **Always disconnect the power cable from the power outlet and/or from the system unit before handling the system unit in any way.** The following information is intended primarily for identification purposes only. Before servicing these systems refer to the applicable Maintenance And Service Guide and/or Service Reference Guide.


2.3.1 CABINET LAYOUTS

2.3.1.1 Front Views

Figure 2-2 shows the front cabinet layouts of the controls and indicators.


Deskpro Workstation 300

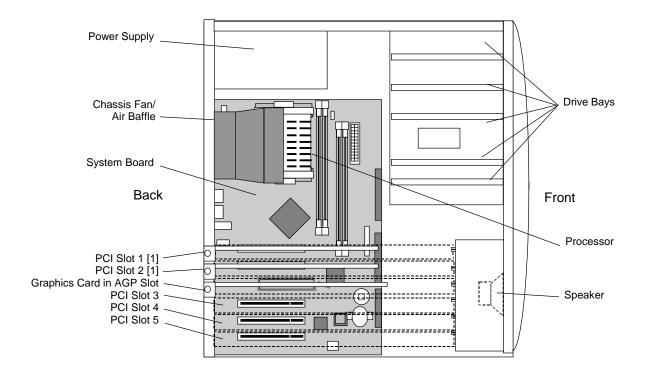
Item	Description		
1	Power button		
2	Power LED		
3	Hard drive activity LED		
4	CD-ROM drive headphone jack		
5	CD-ROM drive volume control		
6	CD-ROM drive activity LED		
7	CD-ROM drive door open/close button		
8	1.44-MB diskette drive activity LED		
9	9 1.44-MB diskette drive eject button		

Figure 2–2. Front Cabinet Views

2.3.1.2 Rear View

Figure 2-3 shows the rear cabinet layout of the controls and connectors.

Item	Description	
1	AC line In Connector (115V/230V)	
2	Line voltage switch	
3	Parallel I/F connector	
4	PS/2 keyboard connector	
5	PS/2 mouse connector	
6	Serial port A connector	
7	Serial port B connector	
8	USB ports (4)	
9	Microphone In audio jack	
10	Headphone/Line Out audio jack	
11	Line In audio jack	
12	Ultra SCSI connector (some Workstation models only)	
13	Network I/F connector	
14	Graphics (RGB) monitor connector	

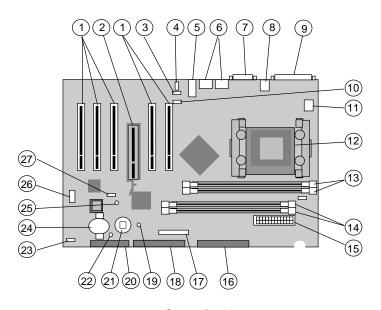

Figure 2–3. Rear Cabinet View

2.3.2 CHASSIS LAYOUT

For detailed information on servicing the chassis refer to the multimedia training CD-ROM and/or the maintenance and service guide for these systems.

Figure 2-4 shows the layout for the system in a minitower configuration. This chassis provides:

- ♦ Three 5 ¼-inch drive bays and two 3 ½-inch drive bays
- Easy access to expansion slots and all socketed system board components.
- Space for either a μATX- or full ATX-type system board.


NOTE:

[1] May be populated with a V.90 56K modem in Deskpro EXS models. May be populated with an Ultra 160 SCSI adapter in select Workstaton 300 models.

Figure 2–4. Chassis Layout, Left Side View

2.3.3 BOARD LAYOUT

These systems use an ATX-type system board. Figure 2-5 shows the location of sockets, connectors, headers, switches, jumpers, and LEDs.

System Board (PCA# 010821)

Item	Description	Item	Description
1	PCI expansion bus slot connectors	15	Power supply connector
2	AGP slot connector	16	Secondary IDE connector
3	Auxiliary audio input header	17	Power/LED connector [1]
4	Chassis fan header	18	Primary IDE connector
5	Line In, HP/Line Out, Mic In connectors	19	Power supply on / 5V Aux power LED
6	USB ports (4)	20	Diskette drive connector
7	Top: Serial port B; Bottom: serial port A	21	CMOS clear button
8	Top: mouse connector, Bot.: Kybd conn.	22	Power button LED
9	Parallel port connector	23	Speaker connector
10	CD audio input header	24	Battery
11	CPU power connector	25	3.3V aux power LED
12	Processor socket	26	AOL/SOS header
13	Channel B RIMM sockets 3, 4	27	Password clear jumper [2]
14	Channel A RIMM sockets 1, 2		

NOTE:

- [1] Connector for power button, Power/HD LEDs, and SCSI HD LEDs.
- [2] Jumper installed, password enabled. Jumper removed, password cleared.

Figure 2–5. System Board Layout

2.4 SYSTEM ARCHITECTURE

These systems feature architecture based on the Intel Pentium 4 processor and the Intel 850 chipset (Figure 2-6). These components are designed to compliment each other to provide very high desktop/minitower performance. Key technical highlights of this architecture include:

- ♦ 1.4 or 1.5-GHz Pentium 4 processor
- ♦ Quad-pumped Front Side Bus (FSB) for 400-MHz performance
- ♦ Dual-channel RDRAM controller supporting up to four PC800 RIMMs
- ◆ Two IDE controllers supporting two UATA-100 hard drives each
- ♦ Sound Blaster 128 audio subsystem
- ♦ Five 33-MHz/32-bit PCI slots
- ♦ AGP 4X slot (1.5-volt support only)
- One parallel port
- ♦ Two serial ports
- ♦ Four USB ports
- ♦ PS/2 mouse and keyboard interfaces

The Pentium 4 processor represents Intel's latest IA-32 microprocessor design and features a hyper-pipelined, rapid-execution engine for improved system responsiveness and higher execution throughput. Internet and multimedia performance is improved further with additional streaming SIMD extensions (SSE2) designed to expedite video, speech, encryption, and photo processing tasks.

The 3.2 GB/s throughput of the FSB matches that of the dual-channel RDRAM used for system memory, reducing latency and providing high, balanced performance. The 82850 Memory Controller Hub (MCH) includes an AGP 4X interface supporting a 1.5-VDC graphics card in the AGP slot.

The 82801BA I/O Controller Hub (ICH2) and the LPC47B357 I/O Controller components provide most of the input/output functions listed previously. These systems also include an AGP 4X graphics card in the AGP slot and an Intel PRO/100+ Management Adapter (NIC) card in a PCI slot. Some models may also include a modem card and a SCSI host adapter installed in PCI slots.

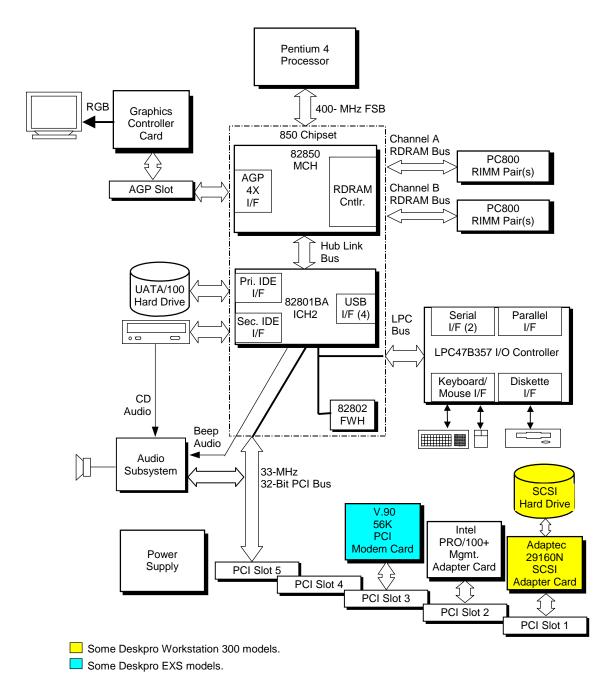


Figure 2–6. System Architecture, Block diagram

2.4.1 PENTIUM 4 PROCESSOR

These systems feature the Intel Pentium 4 processor featuring Intel's NetBurstTM Micro-Architecture. This processor is backward-compatible with software written for the Pentium III/II, Pentium MMX, Pentium Pro, Pentium, and x86 microprocessors.

Key features of the Pentium 4 processor include:

- ♦ Hyper-Pipelined Technology for higher performance
- Rapid Execution Engine with increased throughput and reduced latency
- ♦ Quad-pumped Front Side Bus (FSB) for balanced performance with RDRAM
- ♦ Execution Trace Cache for more efficient branch-handling
- ♦ Improved dynamic execution for higher efficiency
- ♦ Additional Streaming SIMD Extensions (SSE2) for increased video, audio, and speech processing
- ♦ On-die (full speed) 256-KB ECC second-level cache

These systems employ a PGA423 zero-insertion-force (ZIF) socket designed for mounting a "Flip-Chip" (FC-PGA423) processor package (Figure 2-7).

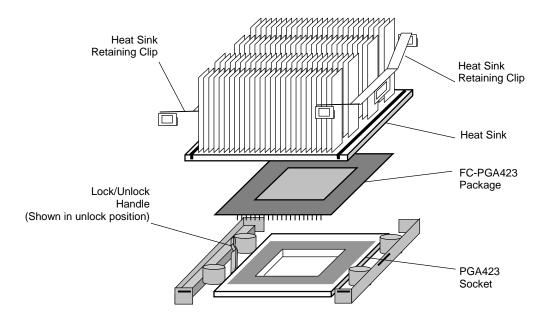


Figure 2–7. Processor Assembly And Mounting

The PGA423 socket allows easy changing/upgrading of the processor. Raising the Lock/Unlock handle of the socket in the vertical position allows the processor package to be removed or inserted into the socket. Lowering the Lock/Unlock handle in the down (horizontal) position locks the processor package in place. The heat sink is placed on top of the processor and held in place by two retaining clips.

2.4.2 CHIPSET

The chipset consists of a Memory Controller Hub (MCH), an I/O Controller Hub (ICH), and a FirmWare Hub (FWH). Table 2-2 lists the integrated functions provided by the two types of chipsets used in these systems.

		Table 2-2.			
	Chipset Comparison				
Chipset	Component	Function			
850	82850 MCH	AGP 4X interface Dual-channel RDRAM controller supporting up to 4 PC800 RIMMs 400-MHz FSB			
	82801BA ICH2	PCI bus I/F LPC bus I/F SMBus I/F SMBus I/F IDE I/F with UATA/100 support AC '97 controller RTC/CMOS IRQ controller Power management logic USB I/F (4) 8259 and I/O APIC interrupt processing			
	82802 FWH	Loaded with Compaq BIOS			

2.4.3 SUPPORT COMPONENTS

Input/output functions not provided by the chipset are handled by other support components. Table 2-3 shows the functions provided by the support components.

Table 2-3.			
	Support Component Functions		
Component Name	Function		
LPC47B357 7 I/O Controller	Keyboard and pointing device I/F Diskette I/F Serial I/F (COM1and COM2) Parallel I/F (LPT1, LPT2, or LPT3) AGP, PCI reset generation ISA serial IRQ converter Power button and LED control logic GPIO ports		
ES1373	PCI audio controller		
CS4297A Audio Codec	Audio mixer		
	Digital-to-analog converter		
	Analog-to-digital converter		
	Analog I/O		

2.4.4 SYSTEM MEMORY

These systems feature a dual-channel Direct Rambus (RDRAM) architecture. Capable of a peak data throughput of 3.2 GB/sec., this high-performance memory design represents a new generation of memory subsystems that can keep pace with ever-increasing processor performance. These systems each provide a total of four RIMM sockets, all of which will be populated with either PC800 RDRAM memory modules (RIMMs) or continuity modules (CRIMMs). Up to two gigabytes of memory may be installed.

Compaq Deskpro EXS systems are shipped with non-ECC PC800 RIMMs. Compaq Deskpro Workstation 300 systems are shipped with ECC PC800 RIMMs. Both systems support ECC and non-ECC RIMMs.

2.4.5 MASS STORAGE

All models include a 3.5 inch 1.44-MB diskette drive installed as drive A. Most models also include a CD-ROM drive. The Deskpro EXS and some Deskpro Workstation 300 models will include a UATA100 (EIDE) hard drive while select Deskpro Workstation 300 models will include an Ultra 160 SCSI controller (PCI) card and SCSI hard drive. Standard hard drives feature Drive Protection System (DPS) support, which uses industry-standard function ATAPI-5 to check drive integrity. Standard drives also use SMART III technology that tests drive data during periods of drive inactivity for corruption.

2.4.6 SERIAL, PARALLEL INTERFACES

All models include two serial ports and a parallel port accessible at the rear of the chassis. Each serial port is RS-232-C/16550-compatible and supports standard baud rates up to 115,200 as well as high-speed baud rates of 230K and 460K, and uses a DB-9 connector. The parallel interface is Enhanced Parallel Port (EPP1.9) and Enhanced Capability Port (ECP) compatible, and supports bi-directional data transfers through a DB-25 connector.

2.4.7 UNIVERSAL SERIAL BUS INTERFACE

All models feature four Universal Serial Bus (USB) ports that provide a 12Mb/s interface for peripherals. The USB provides hot plugging/unplugging (Plug 'n Play) functionality.

2.4.8 GRAPHICS SUBSYSTEM

Each of these systems provides an AGP slot that accommodates a Type 1 or Type 2 AGP graphics adapter (1.5-V only).

Table 2-4 lists the key features of the types of graphics adapters available as standard in these systems:

Table 2-4. Standard AGP Graphics Card Comparison					
	NVIDIA GeForce2 GTS	NVIDIA TNT2 PRO	NVIDIA Quadro2 MXR	ELSA GLoria II	Matrox Millennium G450
Std. Config. In	EXS	Wkstn. 300	Wkstn. 300	Wkstn. 300	Wkstn. 300
Recommended	Hi 2D,	Hi 2D,	Hi 2D,	Hi 2D,	Multi-monitor
for:	Entry 3D	Entry 3D	Entry 3D	Mid 3D	Hi 2D
Bus Type	AGP 4X	AGP 2X/4X	AGP 2X/4X	AGP 2X/4X	AGP 2X/4X
Mem. Amount	32 MB	16 MB	32 MB	64 MB	32 MB
Mem. Type	SDRAM	SGRAM	SDRAM	SDRAM	DDR SDRAM
DAC Speed	350 MHz	300 MHz	350 MHz	350 MHz	
Max. 2D Res. @	2048x1536	1920x1200	1920x1200	2048x1536	2048x768
# of colors	@ 16.7M	@ 16.7M	@ 16.7M	@ 16.7M	@ 65K
Software	Quick Draw,	Quick Draw,	Quick Draw,	Quick Draw,	Quick Draw,
Compatibility	DCI/DirectX,	DCI/DirectX,	DCI/DirectX,	DCI/DirectX,	DCI/DirectX,
' '	Direct Draw,	Direct Draw,	Direct Draw,	Direct Draw,	Direct Draw,
	3D OGL,	Direct Show,	Direct Show,	ActiveX,	MPEG 1/2,
	MPEG 1/2	MPEG 1/2,	MPEG 1/2,	MPEG 1/2,	OpenGL,
		Indeo	Indeo	OpenGL	Direct 3D
Special	3ROP BitBLT,	Transparent	Shading	DVD support,	3ROP BitBLT,
Features/	Line Draw,	BLT,	rasterizer,	24b dbl-	Dual RAMDAC,
Accelerators	Color Expan.	Stretch BLT,	Digital vibrance	buffered color	Flat & Gouraud
	Triangle Eng,	Polylines,	control,	planes,	shading,
	Anti-aliasing,	Polygons,	32b render,	8b stencil,	Anisotropic
	HDTV proc.,	Fills,	24b Z-buffer, 8b	24b Z-buffer,	filtering,
	FS Anti-	32b render,	stencil,	stereo support,	Perspective
	aliasing,	24b Z-buffer, 8b	Anisotropic		Texture,
	32b color &	stencil,	filtering,		Specular
	stencil,	Anisotropic	Twin View arch.		highlighting,
	Alpha planes	filtering,	supporting		32b z-buffer,
		128b TnT	2-head Win. &		2-head zoom,
		Archit.	2-head clone,		2-head clone,
					2-head TV,
A 1/O	\/E0A.I/E	\/E0A_I/E	\/E04.1/E	\/E0A I/E	DVD max mode
Aux. I/O	VESA I/F	VESA I/F	VESA I/F	VESA I/F	VESA I/F
Outputs	1 RGB	1 RGB	1 RGB, 1 DVI	1 RGB	2 RGB

NOTE:

2.4.9 AUDIO SUBSYSTEM

All models feature an embedded Sound Blaster 128 PCI audio system using the AC'97 ver. 2.1 specification-based design. The subsystem features a Creative Labs, Inc. ES1373 audio controller and a Cirrus Logic CS4297A audio codec. The output of the audio codec is applied to a 3-watt amplifier that drives the chassis' internal speaker. Standard microphone and line input jacks are provided as well as a tri-purpose headphone/line/digital output jack that allows the use of headphones or a pair of powered speakers (optional). The output jack also provides a digital audio output signal using the Sony/Philips Digital Interface (SPDIF) format (officially known as IEC-958).

2.5 SPECIFICATIONS

This section includes the environmental, electrical, and physical specifications for the Compaq Deskpro EXS and Workstation 300 Series Personal Computers. Where provided, metric statistics are given in parenthesis. All specifications subject to change without notice.

Table 2-5.				
Environmental Specifications (Factory Configuration)				
Parameter Operating Nonoperating				
Ambient Air Temperature	50° to 95° F (10° to 35° C, max. rate	-24° to 140° F (-30° to 60° C, max.		
	of change < 10°C/Hr)	rate of change < 20°C/Hr)		
Shock (w/o damage)	5 Gs [1]	20 Gs [1]		
Vibration	0.000215 G ² /Hz, 10-300 Hz	0.0005 G ² /Hz, 10-500 Hz		
Humidity	10-90% Rh @ 28° C max.	5-95% Rh @ 38.7° C max.		
	wet bulb temperature	wet bulb temperature		
Maximum Altitude	10,000 ft (3048 m) [2]	30,000 ft (9,144 m) [2]		

NOTE:

[1] Peak input acceleration during an 11 ms half-sine shock pulse.

[2] Maximum rate of change: 1500 ft/min.

Table 2-6. Electrical Specifications		
Parameter	U.S.	International
Input Line Voltage:		
Nominal:	110 - 127 VAC	200 - 240 VAC
Maximum:	90 - 132 VAC	180 - 264 VAC
Input Line Frequency Range:		
Nominal:	50 - 60 Hz	50 - 60 Hz
Maximum:	47 - 63 Hz	47 - 63 Hz
Power Supply:		
Maximum Continuous Power	watts	watts
Maximum Line Current Draw	Α	Α

²⁻¹⁴ Compaq Deskpro EXS and Workstation 300 Personal Computers Featuring the Intel Pentium 4 Processor

l able 2-7.
Physical Specifications

Trijoreal Optomoraliene		
Parameter	Desktop Configuration	Minitower Configuration
Height	6.60 in (16.76 cm)	17.65 in (44.83 cm)
Width	17.65 in (44.83 cm)	6.60 in (16.76 cm)
Depth	17.11 in (43.46 cm)	17.11 in (43.46 cm)
Weight (nom.) [1]	26 lb (11.8 kg)	26 lb (11.8 kg)
Maximum Supported Weight [2]	100	N/A

NOTES:

- [1] System weight may vary depending on installed drives/peripherals.
 [2] Assumes reasonable article(s) such as a display monitor and/or another system unit.

Table 2-8. Diskette Drive Specifications (Compaq SP# 179161-001)

Parameter	Measurement
Media Type	3.5 in 1.44 MB/720 KB diskette
Height	1/3 bay (1 in)
Bytes per Sector	512
Sectors per Track:	
High Density	18
Low Density	9
Tracks per Side:	
High Density	80
Low Density	80
Read/Write Heads	2
Average Access Time:	
Track-to-Track (high/low)	3 ms/6 ms
Average (high/low)	94 ms/173ms
Settling Time	15 ms
Latency Average	100 ms

Table 2-9.48x CD-ROM Drive Specifications (SP# 187217-B21)

(61 11	101211-021)
Parameter	Measurement
Interface Type	IDE
Transfer Rate:	
Max. Sustained	4800 KB/s
Burst	16.6 MB/s
Media Type	Mode 1,2, Mixed Mode, CD-DA,
-	Photo CD, Cdi, CD-XA
Capacity:	
Mode 1, 12 cm	550 MB
Mode 2, 12 cm	640 MB
8 cm	180 MB
Center Hole Diameter	15 mm
Disc Diameter	8/12 cm
Disc Thickness	1.2 mm
Track Pitch	1.6 um
Laser	
Beam Divergence	53.5 +/- 1.5 °
Output Power	53.6 0.14 mW
Type	GaAs
Wave Length	790 +/- 25 nm
Average Access Time:	
Random	<100 ms
Full Stroke	<150 ms
Audio Output Level	0.7 Vrms
Cache Buffer	128 KB

Table 2-10.
Hard Drive Specifications

18.0 GB	20.0 GB	40.0 GB
3.5"	3.5"	5.25"
Ultra 160 SCSI	UATA/100	UATA/100
Yes	Yes	Yes
160 MB/s	100 MB/s	100 MB/s
1.7 ms	2.0 ms	1.0 ms
8.5 ms	9.5 ms	9.0 ms
15 ms	21 ms	20 ms
16383	16383	16383
16	16	16
63	63	63
10,000 RPM	7200 RPM	7200 RPM
SMART III	SMART III	SMART III
	Ultra 160 SCSI Yes 160 MB/s 1.7 ms 8.5 ms 15 ms 16383 16 63 10,000 RPM	Ultra 160 SCSI UATA/100 Yes Yes 160 MB/s 100 MB/s 1.7 ms 2.0 ms 8.5 ms 9.5 ms 15 ms 21 ms 16383 16383 16 16 63 63 10,000 RPM 7200 RPM

NOTE:

Actual times may vary depending on specific drive installed. All EMEA units feature Quiet Drives.

^[1] Operates at 66 MB/s in these systems.

Chapter 3 PROCESSOR/ **MEMORY SUBSYSTEM**

3.1 INTRODUCTION

This chapter describes the processor/memory subsystem of Compaq Deskpro Personal Computers featuring the Pentium 4 processor. These systems feature the Pentium 4 processor and the 850 chipset (Figure 3-1). The 82850 MCH component of the 850 chipset supports two Direct Rambus channels, each channel accommodating one or two RIMMs.

Figure 3–1. Processor/Memory Subsystem Architecture

This chapter includes the following topics:

♦	Pentium 4 processor [3.2]	page 3-2
•	Memory subsystem [3.3]	page 3-5
•	Subsystem configuration {3.4}	page 3-8

3.2 PENTIUM 4 PROCESSOR

These systems each feature an Intel Pentium 4 processor in a FC-PGA423 package mounted with a passive heat sink in a PGA423 (W-type) zero-insertion force socket. The mounting socket allows the processor to be easily changed for servicing and/or upgrading.

3.2.1 PROCESSOR OVERVIEW

The 1.4-/1.5-GHz Intel Pentium 4 processor represents the latest generation of Intel's IA32-class of processors. Featuring Intel's NetBurstTM architecture, the Pentium 4 processor is designed for intensive multimedia and internet applications of today and the future while maintaining compatibility with software written for earlier (Pentium III, Pentium II, Pentium, Celeron, and x86) microprocessors. Key features of the Pentium 4 processor include:

- ♦ Hyper-Pipelined Technology The main processing loop has twice the depth (20 stages) of the Pentium III allowing for increased processing frequencies.
- Execution Trace Cache A new feature supporting the branch prediction mechanism, the trace cache stores translated sequences of branching micro-operations (μops) and is checked when suspected re-occurring branches are detected in the main processing loop. This feature allows instruction decoding to be removed from the main processing loop.
- ♦ Rapid Execution Engine Arithmetic Logic Units (ALUs) run at twice (2x) processing frequency for higher throughput and reduced latency.
- ◆ 256-KB Advanced transfer L2 cache Using 32-byte-wide interface at processing speed, the L2 cache can provide 48 GB/s perrformance (3x over the Pentium III)
- ♦ Advanced dynamic execution Using a larger (4K) branch target buffer and improved prediction algorithm, branch <u>mis</u>-predictions are reduced by an average of 33 % over the Pentium III.
- ♦ Enhanced Floating Point Processor With 128-bit integer processing and deeper pipelining the Pentium 4's FPU provides a 2x performance boost over the Pentium III.
- ◆ Additional Streaming SIMD extensions (SSE2) In addition to the SSE support provided by previous Pentium processors, the Pentium 4 processor includes an additional 144 MMX instructions, further enhancing:
 - Streaming video/audio processing
 - Photo/video editing
 - Speech recognition
 - 3D processing
 - Encryption processing
- Quad-pumped Front Side Bus (FSB) The FSB uses a 100-MHz clock for qualifying the buses' control signals. However, address information is transferred using a 200-MHz strobe while data is transferred with a 400-MHz strobe, providing a maximum data transfer rate of 3.2 GB/s. This is a 3x boost over a Pentium III with a 133-MHz FSB. The 3.2 GB/s peak transfer rate of the FSB balances the 3.2 GB/s maximum transfer capability of the dual-channel Direct Rambus system memory.

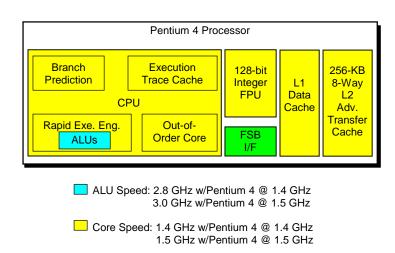


Figure 3-1 illustrates the internal architecture of the Pentium 4 processor.

Figure 3–2. Pentium 4 Processor Internal Architecture

The Pentium 4 increases processing speed with higher clock speeds made possible with hyperpipelined technology that can handle significantly more instructions at a time. Since branch mispredicts would result in serious performance hits with such a long pipeline, the Pentium 4 features a branch prediction mechanism improved with the addition of an execution trace cache and a refined prediction algorithm. The execution trace cache can store 12k micro-ops (decoded instructions dealing with branching sequences) that are checked when re-occurring branches are processed. Code that is not executed (bypassed) is no longer stored in the L1 cache as was the case in the Pentium III.

FSB Speed: 400 MHz (Data transfer rate)

The out-of-order core features Advanced Dynamic Execution, which provides a large window (126 instructions) for execution units to work with. A more accurate branch prediction algorithm, along with a larger (4-KB) branch target buffer that stores more details on branch history results in a 33% reduction in branch mis-predictions over the Pentium III.

The L1 data cache features a low-latency design for minimum response to cache hits. The 256-KB advanced transfer L2 cache features a 256-bit (32-byte) interface operating at processing speed. The L2 cache of the 1.5 GHz Pentium 4 can therefore provide a transfer rate of 48 GB/s.

The combined improvements of the Pentium 4's CPU core the rapid execution engine's ALUs to operate at twice the processing frequency to handle the steady stream of instructions.

The front side bus (FSB) of the Pentium 4 uses a 100-MHz clock but provides Quad-pumped data transfers. While the Pentium III could transfer 8 bytes of data on a 133-MHz clock cycle the Pentium 4 can transfer 32 bytes of data on a 100-MHz clock cycle for a throughput rate of 3.2 GB/s, balancing the performance of the dual-Rambus memory subsystem. Address information is transferred at a 200-MHz rate.

The Pentium 4 processor is software-compatible with Celeron, Pentium II, Pentium MMX, Pentium, and x86 processors, but will require the latest versions of operating system software to take advantage of the Streaming SIMD extensions (SSE2).

3.2.2 PROCESSOR UPGRADING

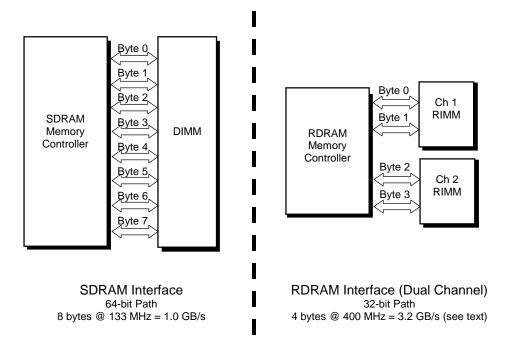
All units use the PGA423 ZIF mounting socket and ship with the Pentium 4 processor in a Flip-Chip (FC-PGA423) package installed with a passive heat sink. The FC-PGA423 package consists of the processor die mounted "upside down" on a PC board. This arrangement allows the heat sink to come in direct contact with the processor die. The heat sink and attachment clip are specially designed provide maximum heat transfer from the processor component.

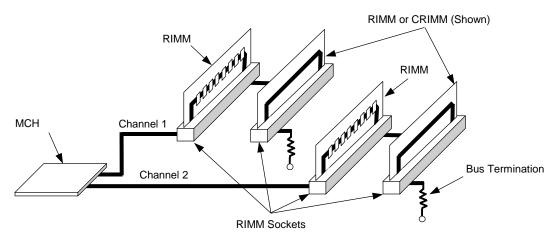
CAUTION: Attachment of the heat sink to the processor is critical on these systems. Improper attachment of the heat sink will likely result in a thermal condition. Although the system is designed to detect thermal conditions and automatically shut down, such a condition could still result in damage to the processor component. Refer to the applicable Maintenance and Service Guide for processor installation instructions.

3.3 MEMORY SUBSYSTEM

The 82850 MCH features Direct Rambus technology and supports two Rambus channels, each channel supporting up to two Rambus DRAM modules (RIMMs). Direct Rambus technology provides a significant improvement in performance over DRAM/SDRAM memory designs and allows the system memory to keep pace with increasing processor performance. Rambus technology implements RDRAM devices accessed over a channel specifically designed for high speed operations.

As shown in Figure 3-3, the conventional DRAM-based memory interface with a transfer rate of 66, 100, or 133 MHz increases bandwidth by widening the data bus. With the current top speed of 133 MHz, a 64-bit SDRAM interface achieves a maximum transfer rate of 1.0 GB/s.




Figure 3–3. SDRAM/RDRAM Bandwidth Comparison

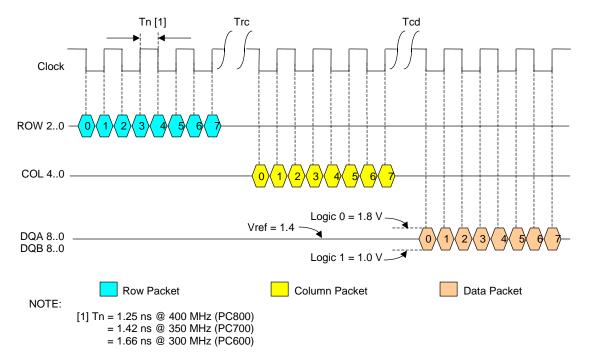
Although a Rambus channel handles only two bytes per transfer, data is clocked on both the rising and falling edges of the clock signal, allowing a 400-MHz clock to provide an effective speed of 800 MHz and resulting a transfer rate of 1.6 GB/s. Doubling the number of channels doubles the throughput. These systems feature dual-channel RDRAM architecture that provides a maximum transfer rate of 3.2 GB/s.

3.3.1 RAMBUS ATTRIBUTES

To ensure signal quality during high-speed memory transfers, the Rambus interface design departs from previous memory interface designs in several key aspects (Figure 3-4). Rambus uses a daisy-chained signal distribution system that requires that all memory sockets be populated with either a RIMM or a continuity module (CRIMM) in order to maintain constant load impedance. Rambus Signaling Levels (RSL) uses a 1.4-volt reference with a 0.8-volt swing between logic 0 at 1.8 V and logic 1 at 1.0 V.

On these systems RIMMs (or CRIMMs) must be installed in pairs (one module for each channel). A maximum of two gigabytes of memory may be installed using 512-MB RIMMs. These systems ship with PC800 (400-MHz) RIMMs but will also accept PC700 or PC600 RIMMs. A mix of ECC and non-ECC RIMMs may be installed, although **all RIMMs must be ECC to realize ECC benefits**.

		Rambu	ıs Signal Attr	ibutes (Each C	hannel)	
Signal Name	No. of Lines	Input/ Output [1]	Signal Level	Impedance	Function	
ROW 20	3	0	RSL	28 ohms	Row address	
COL 40	5	0	RSL	28 ohms	Column address	
DQA 80	9	I/O	RSL	28 ohms	Data byte A (w/parity or ECC bit)	
DQB 80	9	I/O	RSL	28 ohms	Data byte B (w/parity or ECC bit)	
CFM, CFMN	2	0	RSL [2]	28 ohms	400-MHz Clock-from-master for writes	
CTM, CTMN	2		RSL [2]	28 ohms	400-MHz Clock-to-master for reads	
Vref	1		1.4 V		Reference voltage for RSL signals	
SIO	1	I/O	CMOS		Serial I/F for initialization & pwr cntrl.	
SCK	1	0	CMOS	56 ohms	SIO clock; 1 MHz for configuration,100 MHz for power management.	
CMD	1	I/O	CMOS	56 ohms	Serial I/F config. & power control	
Vdd			2.5 V		Power for Rambus circuitry	


NOTES:

- [1] Relative to the memory controller.
- [2] Differential pair with Ep-p swing of 400 to 600 mV.

Figure 3–4. Rambus Channel Signal Distribution and Key Attributes

3.3.2 RAMBUS CHANNEL TRANSACTIONS

Transactions on the Rambus Channel involve packets of control (row or column) bits and packets of data bits. Each packet consists of eight segments, with even segments transferred on falling clock edges and odd segments transferred on rising clock edges. A typical operation consists of the memory controller sending out a 24-bit row packet followed by a 40-bit column packet and then the 144-bit (128-bit for non-ECC) data packet being either written to or read from RDRAM (Figure 3-5).

Figure 3–5. Rambus Transactions (Single Channel)

The clock signal is driven by the source device (i.e., by the memory controller during writes, by the RDRAM device during reads). The row (ROW) and column (COL) signal lines are driven only by the memory controller and assume the functions provided by the RAS/CAS signals of traditional memory buses. The ROW and COL signals are also used for power management and defining the type (read/write) of transaction. The data lines (DQAx/DQBx) are bi-directional, being driven by the controller during writes and by the RDRAM during reads. There is a specified delay period between related Row and Column packets (Trc, typically 7 clock cycles) and related column and data packets (Tcd, typically 8 to 12 clock cycles).

Note that while Figure 3-5 illustrates a single Rambus transaction, actual operation can involve pipelined transactions where back-to-back column packets are sent followed by back-to-back data packets. A row packet may be omitted if the row to be accessed is already open. Another important characteristic is that the ROW, COL, and DQA/DQB signal lines act as independent buses and simultaneous transfers of row, column, and data information can take place.

3.3.3 RDRAM POWER MANAGEMENT

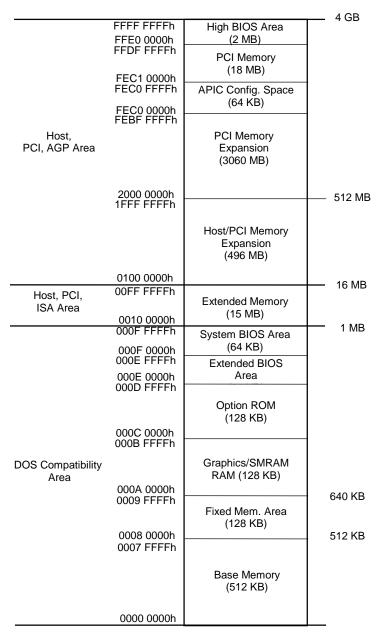
The Rambus architecture provides for power management of each RDRAM device on a RIMM. RDRAM power management control is compatible with but may also work independently of ACPI. Power management of RDRAM is handled through control packets as well as the serial bus. Aside from complete "system off" state, an RDRAM may be placed in one of four basic power states:

- ♦ Active
- ♦ Standby
- ♦ Nap
- ♦ Powerdown

These states are characterized by parameters such as power consumed, refresh method, and the time required to resume full (Active state) operation. The following table defines the RDRAM power states.

	Power	Refresh	RDRAM	Exit	
State	Consumed [1]	Method	CLK	Latency [2]	RDRAM Functionality
Powerdown	1 mW	Self	Stopped	12 μs	Lowest power state and condition entered after initialization. Can remain in this state indefinitely. Brought out of Powerdown only by command over the SIO serial bus.
Nap	10 mW	MCH	On	90 ns	Low power state. Can remain in this state for up to 10 µs. Brought out of Nap only by command over the SIO serial bus.
Standby	250 mW	MCH	On	20 ns	Idle power state automatically entered after a transaction. Available to receive row packets. Transitions to Active or Nap state upon receipt of specific command on ROW bus.
Active	500 mW	MCH	On		Full power state. Available to receive control packets and transmit or receive data packets.

NOTES:


- [1] Per RDRAM device
- [2] Transition to Active state

3.3.4 RDRAM CONFIGURATION/CONTROL

The Rambus architecture employs a CMOS-level serial bus (SIO, SCK, CMD) similar to that used on SDRAM-equipped systems. This bus is used for status and control of RDRAM configuration parameters as well as bringing RDRAM devices out of Powerdown and Nap states. The SIO signal is bi-directional and daisy-chained through all RDRAM devices, alternating from SIO0 to SIO1 between devices . The SCK and CMD signals are applied in parallel to all RDRAM devices. The SCK signal operates at 1 MHz during configuration and at 100 MHz when commands are issued to switch RDRAM devices from Powerdown or Nap states.

The memory controller and RDRAM are configured by BIOS during POST. Refer to Chapter 8 for the configuration procedure performed by BIOS.

Figure 3-6 shows the system memory map.

NOTE: All locations in memory are cacheable. Base memory is always mapped to DRAM. The next 128 KB fixed memory area can, through the MCH, be mapped to DRAM or to PCI space. Graphics RAM area is mapped to PCI or AGP locations.

Figure 3–6. System Memory Map

3.4 SUBSYSTEM CONFIGURATION

The MCH component provides the configuration function for the processor/memory subsystem. Table 3-1 lists the configuration registers used for setting and checking such parameters as memory control and PCI bus operation. These registers reside in the PCI Configuration Space and accessed using the methods described in Chapter 4, section 4.2.

Table 3-1.						
	Host/PCI Bridge	Configur	ation Regis	sters (MCH, Device 0)		
PCI		Reset	PCI	R	Reset	
Config. Addr.	Register	Value	Config. Addr.	egister	Value	
00, 01h	Vender ID	8086h	6A, 6Bh	DRAM Control Reg.	00h	
02, 03h	Device ID	1130h	6C6Fh	Memory Buffer Strength	55h	
04, 05h	Command	0006h	70h	Multi-Transaction Timer	00h	
06, 07h	Status		71h	CPU Latency Timer	10h	
08h	Revision ID		72h	SMRAM Control	02h	
0A0Bh	Class Code		90h	Error Command	00h	
0Dh	Latency Timer	00h	91h	Error Status Register 0	00h	
0Eh	Header Type	00h	92h	Error Status Register 1	00h	
1013h	Aperture Base Config.	[2]	93h	Reset Control	00h	
50, 51h	PAC Config. Reg.	00h	A0A3h	AGP Capability Identifier	N/A	
53h	Data Buffer Control	83h	A4A7h	AGP Status	N/A	
5556h	DRAM Row Type	00h	A8ABh	AGP Command	00h	
57h	DRAM Control	01h	B0B3h	AGP Control	00h	
58h	DRAM Timing	00h	B4h	Aperture Size	0000h	
595Fh	PAM 06 Registers	00h	B8BBh	Aperture Translation Table	0000h	
6067h	DRAM Row Boundary	01h	BCh	Aperture I/F Timer	00h	
68h	Fixed DRAM Hole	00h	BDh	Low Priority Timer	00h	

NOTES:

Refer to Intel Inc. documentation for detailed description of registers. Assume unmarked locations/gaps as reserved.

Chapter 4 SYSTEM SUPPORT

4.1 INTRODUCTION

This chapter covers subjects dealing with basic system architecture and covers the following topics:

♦	PCI bus overview (4.2)	page 4-2
♦	AGP bus overview (4.3)	page 4-10
♦	System resources (4.4)	page 4-15
♦	System clock distribution (4.5)	page 4-20
♦	Real-time clock and configuration memory (4.6)	page 4-20
♦	System management (4.7)	page 4-31
♦	Register map and miscellaneous functions (4.8)	page 4-35

This chapter covers functions provided by off-the-shelf chipsets and therefore describes only basic aspects of these functions as well as information unique to the sytems covered in this guide. For detailed information on specific components, refer to the applicable manufacturer's documentation.

4.2 PCI BUS OVERVIEW

 \triangle

NOTE: This section describes the PCI bus in general and highlights bus implementation in this particular system. For detailed information regarding PCI bus operation, refer to the *PCI Local Bus Specification Revision 2.2*.

This system implements a 32-bit Peripheral Component Interconnect (PCI) bus (spec. 2.2) operating at 33 MHz. The PCI bus handles address/data transfers through the identification of devices and functions on the bus. A device is typically defined as a component or slot that resides on the PCI bus (although some components such as the MCH and ICH are organized as multiple devices). A function is defined as the end source or target of the bus transaction. A device may contain one or more functions.

In the standard configuration these systems use a hierarchy of three PCI buses (Figure 4-1). The PCI bus #0 is internal to the MCH/ICH chipset components and is not physically accessible. The AGP bus that services the AGP slot is designated as PCI bus #1. All PCI slots reside on PCI bus #2.

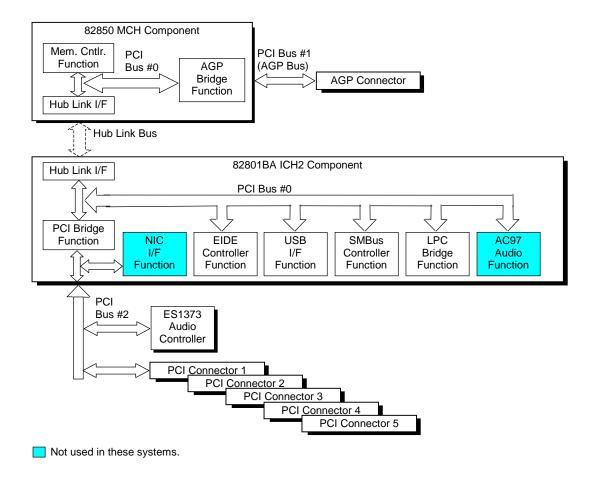


Figure 4-1. PCI Bus Devices and Functions

4.2.1 PCI BUS TRANSACTIONS

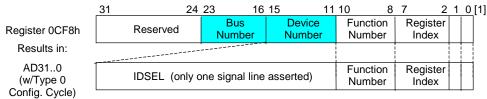
The PCI bus consists of a 32-bit path (AD31-00 lines) that uses a multiplexed scheme for handling both address and data transfers. A bus transaction consists of an address cycle and one or more data cycles, with each cycle requiring a clock (PCICLK) cycle. High performance is realized during burst modes in which a transaction with contiguous memory locations requires that only one address cycle be conducted and subsequent data cycles are completed using auto-incremented addressing. Four types of address cycles can take place on the PCI bus; I/O, memory, configuration, and special. Address decoding is distributed (left up to each device on the PCI bus).

4.2.1.1 I/O and Memory Cycles

For I/O and memory cycles, a standard 32-bit address decode (AD31..0) for byte-level addressing is handled by the appropriate PCI device. For memory addressing, PCI devices decode the AD31..2 lines for dword-level addressing and check the AD1,0 lines for burst (linear-incrementing) mode. In burst mode, subsequent data phases are conducted a dword at a time with addressing assumed to increment accordingly (four bytes at a time).

4.2.1.2 Configuration Cycles

Devices on the PCI bus must comply with PCI protocol that allows configuration of that device by software. In this system, configuration mechanism #1 (as described in the PCI Local Bus specification Rev. 2.1) is employed. This method uses two 32-bit registers for initiating a configuration cycle for accessing the configuration space of a PCI device. The configuration address register (CONFIG_ADDRESS) at 0CF8h holds a value that specifies the PCI bus, PCI device, and specific register to be accessed. The configuration data register (CONFIG_DATA) at 0CFCh contains the configuration data.


PCI Configuration Address Register I/O Port 0CF8h, R/W, (32-bit access only)

Bit	Function
31	Configuration Enable
	0 = Disabled
	1 = Enable
3024	Reserved - read/write 0s
2316	Bus Number. Selects PCI bus
1511	PCI Device Number. Selects PCI
	device for access
108	Function Number. Selects function of
	selected PCI device.
72	Register Index. Specifies config. reg.
1,0	Configuration Cycle Type ID.
	00 = Type 0
	01 = Type 1

PCI Configuration Data Register I/O Port 0CFCh, R/W, (8-, 16-, 32-bit access)

Bit	Function
310	Configuration Data.

Two types of configuration cycles are used. A Type 0 (zero) cycle is targeted to a device on the PCI bus on which the cycle is running. A Type 1 cycle is targeted to a device on a downstream PCI bus as identified by bus number bits <23..16>. With three or more PCI buses, a PCI bridge may convert a Type 1 to a Type 0 if it's destined for a device being serviced by that bridge or it may forward the Type 1 cycle unmodified if it is destined for a device being serviced by a downstream bridge. Figure 4-2 shows the configuration cycle format and how the loading of 0CF8h results in a Type 0 configuration cycle on the PCI bus. The Device Number (bits <15..11> determines which one of the AD31..11 lines is to be asserted high for the IDSEL signal, which acts as a "chip select" function for the PCI device to be configured. The function number (CF8h, bits <10..8>) is used to select a particular function within a PCI component.

NOTES:

- [1] Bits <1,0>: 00 = Type 0 Cycle, 01 = Type 1 cycle Type 1 cycle only. Reserved on Type 0 cycle.

Figure 4-2. Configuration Cycle

Table 4-1 shows the standard configuration access data for components and slots residing on a PCI bus.

Table 4-1.									
DCI.			ooo Doto						
PCI Component Configuration Access Data									
	.,	PCI	.		IDSEL				
PCI Component	Vendor/Device ID	Bus #	Device #	Function #	Wired to:				
82850 MCH:									
Memory Controller	8086h/2530h	0	0 (00h)	0					
PCI/PCI (AGP) Bridge	8086h/2532h	0	1 (01h)	0					
AGP slot	[3]	1	0 (00h)	0					
82801BA ICH2:									
PCI/PCI Bridge	8086h/244Eh	0	30 (1Eh)	0					
LPC Bridge	8086h/2440h	0	31 (1Fh)	0					
EIDE Controller	8086h/244Bh	0	31 (1Fh)	1					
USB I/F #1	8086h/2442h	0	31 (1Fh)	2					
SMBus Controller	8086h/2443h	0	31 (1Fh)	3					
USB I/F #2	8086h/2444h	0	31 (1Fh)	4					
AC97 Audio Controller [1]	8086h/2445h	0	31 (1Fh)	5					
AC97 Modem Controller [1]	8086h/2446h	0	31 (1Fh)	6					
Network Interface Controller [1]	8086h/2449h	2 [2]	8 (08h)	0					
ES1373 Audio Controller	1274h/1373h	2 [2]	31 (1Fh)	0	AD22				
PCI Connector 1 (PCI slot 1)	[3]	2 [2]	4 (04h)	0	AD20				
PCI Connector 2 (PCI slot 2)	[3]	2 [2]	9 (09h)	0	AD25				
PCI Connector 3 (PCI slot 3)	[3]	2 [2]	10 (0Ah)	0	AD26				
PCI Connector 3 (PCI slot 4)	[3]	2 [2]	11 (0Bh)	0	AD27				
PCI Connector 3 (PCI slot 5)	[3]	2 [2]	13 (0Dh)	0	AD29				

- NOTES:
 - [1] Not implemented on these systems.
 - [2] Value in standard configuration. Can change if an AGP card with an additional bridge is installed.
 - [3] Card specific. Refer to appendices.

The register index (CF8h, bits <7..2>) identifies the 32-bit location within the configuration space of the PCI device to be accessed. All PCI devices can contain up to 256 bytes of configuration data (Figure 4-3), of which the first 64 bytes comprise the configuration space header.

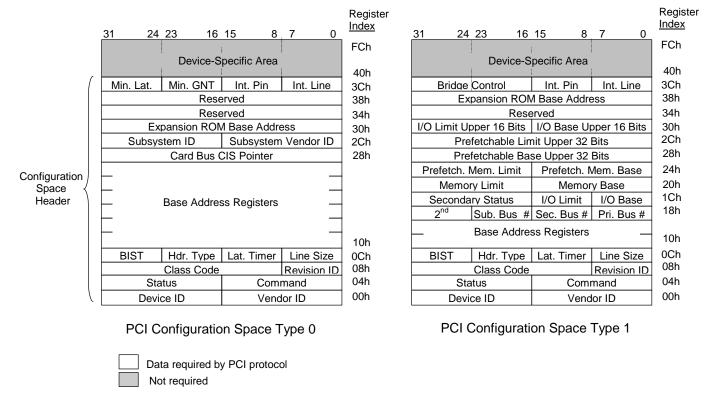


Figure 4-3. PCI Configuration Space Mapping

Each PCI device is identified with a vendor ID (assigned to the vendor by the PCI Special Interest Group) and a device ID (assigned by the vendor). The device and vendor IDs for the devices on the system board are listed in Table 4-1.

4.2.2 PCI BUS MASTER ARBITRATION

The PCI bus supports a bus master/target arbitration scheme. A bus master is a device that has been granted control of the bus for the purpose of initiating a transaction. A target is a device that is the recipient of a transaction. The Request (REQ), Grant (GNT), and FRAME signals are used by PCI bus masters for gaining access to the PCI bus. When a PCI device needs access to the PCI bus (and does not already own it), the PCI device asserts it's REQn signal to the PCI bus arbiter (a function of the system controller component). If the bus is available, the arbiter asserts the GNTn signal to the requesting device, which then asserts FRAME and conducts the address phase of the transaction with a target. If the PCI device already owns the bus, a request is not needed and the device can simply assert FRAME and conduct the transaction. Table 4-2 shows the grant and request signals assignments for the devices on the PCI bus.

Table 4-2.					
PCI Bus Mastering Devices					
REQ/GNT Line	Device				
REQ0/GNT0	PCI Connector Slot 1				
REQ1/GNT1	PCI Connector Slot 2				
REQ2/GNT2	PCI Connector Slot 3				
REQ3/GNT3	PCI Connector Slot 4				
REQ4/GNT4	PCI Connector Slot 5				
REQ5/GNT5	ES1373 Audio Controller				
GREQ/GGNT	AGP Slot				

PCI bus arbitration is based on a round-robin scheme that complies with the fairness algorithm specified by the PCI specification. The bus parking policy allows for the current PCI bus owner (excepting the PCI/ISA bridge) to maintain ownership of the bus as long as no request is asserted by another agent. Note that most CPU-to-DRAM and AGP-to-DRAM accesses can occur concurrently with PCI traffic, therefore reducing the need for the Host/PCI bridge to compete for PCI bus ownership.

4.2.3 OPTION ROM MAPPING

During POST, the PCI bus is scanned for devices that contain their own specific firmware in ROM. Such option ROM data, if detected, is loaded into system memory's DOS compatibility area (refer to the system memory map shown in chapter 3).

4.2.4 PCI INTERRUPTS

Eight interrupt signals (INTA- thru INTH-) are available for use by PCI devices. These signals may be generated by on-board PCI devices or by devices installed in the PCI slots. For more information on interrupts including PCI interrupt mapping refer to the "System Resources" section 4.4.

4.2.5 PCI POWER MANAGEMENT SUPPORT

This system complies with the PCI Power Management Interface Specification (rev 1.0). The PCI Power Management Enable (PME-) signal is supported by the chipset and allows compliant PCI and AGP peripherals to initiate the power management routine.

4.2.6 PCI SUB-BUSSES

The chipset implements two data busses that are supplementary in operation to the PCI bus:

4.2.6.1 **Hub Link Bus**

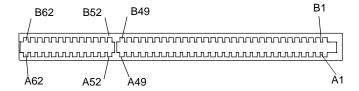
The chipset implements a Hub Link bus between the MCH and the ICH. The Hub Link bus handles transactions at a 66-MHz rate using PCI-type protocol, and in fact operates as PCI bus #0. This bus is transparent to software and not accessible for expansion purposes.

4.2.6.2 LPC Bus

The 82801 ICH implements a Low Pin Count (LPC) bus for handling transactions to and from the 47B357 Super I/O Controller as well as the 82802 FWH. The LPC bus transfers data a nibble (4 bits) at a time at a 33-MHz rate. Generally transparent in operation, the LPC bus becomes a factor primarily during the configuration of DMA channel modes (see section 4.4.3 "DMA").

4.2.7 PCI CONFIGURATION

PCI bus operations require the configuration of certain parameters such as PCI IRQ routing, DMA channel configuration, RTC control, port decode ranges, and power management options. These parameters are handled by the LPC I/F bridge function (PCI function #0, device 31) of the ICH component and configured through the PCI configuration space registers listed in Table 4-3. Configuration is provided by BIOS at power-up but re-configurable by software.


Table 4-3.LPC Bridge Configuration Registers (ICH, Function 0, Device 31)

PCI		(- , -	PCI	,	
Config.		Reset	Config.		Reset
-	Danieten			Danistan	
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vendor ID	8086h	8Ah	Device 31 Error Status	00h
02, 03h	Device ID	2410h	90, 91h	PCI DMA Configuration	0000h
04, 05h	Command	000Fh	A0-CFh	Power Management	
06, 07h	Status	0280h	D0-D3h	General Control	0's
08h	Revision ID	00h	D4-D7h	General Status	F00h
0A-0Bh	Class Code	0106h	D8h	RTC Configuration	00h
0Eh	Header Type	80h	E0h	LPC COM Port Dec. Range	00h
40-43h	ACPI Base Address	1	E1h	LPC FDD & LPT Dec. Rge	00h
44h	ACPI Control	00h	E2h	LPC Audio Dec. Range	80h
4E, 4Fh	BIOS Control	0000h	E3h	FWH Decode Enable	FFh
54h	TCO Control	00h	E4, E5h	LPC I/F Decode Range 1	0000h
58-5Bh	GPIO Base Address	1	E6, E7h	LPC I/F Enables	0000h
5Ch	GPIO Control	00h	E8h	FWH Select	00
60-63h	INTA-D Routing Cntrl.	80h [1]	EC, EDh	LPC I/F Decode Range 2	0000h
64h	Serial IRQ Control	10h	EE, EFh	Reserved	
65-87h	Reserved		F0h	Reserved	
88h	Dev. 31 Error Config.	00h	F2h	Function Disable Register	00h

NOTE:

[1] Value for each byte. Assume unmarked locations/gaps as reserved.

4.2.8 PCI CONNECTOR

Figure 4-4. PCI Bus Connector (32-Bit Type)

			Table 4-4.			
			PCI	Bus Conne	ctor Pinout	
Pin	B Signal	A Signal	Pin	B Signal	A Signal	
01	-12 VDC	TRST-	32	AD17	AD16	
02	TCK	+12 VDC	33	C/BE2-	+3.3 VDC	
03	GND	TMS	34	GND	FRAME-	
04	TDO	TDI	35	IRDY-	GND	
05	+5 VDC	+5 VDC	36	+3.3 VDC	TRDY-	
06	+5 VDC	INTA-	37	DEVSEL-	GND	
07	INTB-	INTC-	38	GND	STOP-	
-08	INTD-	+5 VDC	39	LOCK-	+3.3 VDC	
09	PRSNT1-	Reserved	40	PERR-	SDONE n	
10	RSVD	+5 VDC	41	+3.3 VDC	SBO-	
11	PRSNT2-	Reserved	42	SERR-	GND	
12	GND	GND	43	+3.3 VDC	PAR	
13	GND	GND	44	C/BE1-	AD15	
14	RSVD	+3.3 AUX	45	AD14	+3.3 VDC	
15	GND	RST-	46	GND	AD13	
16	CLK	+5 VDC	47	AD12	AD11	
17	GND	GNT-	48	AD10	GND	
18	REQ-	GND	49	GND	AD09	
19	+5 VDC	PME-	50	Key	Key	
20	AD31	AD30	51	Key	Key	
21	AD29	+3.3 VDC	52	AD08	C/BE0-	
22	GND	AD28	53	AD07	+3.3 VDC	
23	AD27	AD26	54	+3.3 VDC	AD06	
24	AD25	GND	55	AD05	AD04	
25	+3.3 VDC	AD24	56	AD03	GND	
26	C/BE3-	IDSEL	57	GND	AD02	
27	AD23	+3.3 VDC	58	AD01	AD00	
28	GND	AD22	59	+5 VDC	+5 VDC	
29	AD21	AD20	60	ACK64-	REQ64-	
30	AD19	GND	61	+5 VDC	+5 VDC	
31	+3.3 VDC	AD18	62	+5 VDC	+5 VDC	

4.3 AGP BUS OVERVIEW

NOTE: This section provides a brief description of AGP bus operation. For a detailed description of AGP bus operations as supported by these systems refer to the *AGP Interface Specification Rev. 2.0* available at the following AGP forum web site: http://www.agpforum.org/index.htm

The Accelerated Graphics Port (AGP) bus is specifically designed as an economical yet high-performance interface for graphics adapters, especially those designed for 3D operations. The AGP interface is designed to give graphics adapters dedicated pipelined access to system memory for the purpose of off-loading texturing, z-buffering, and alpha blending used in 3D graphics operations. By off-loading a large portion of 3D data to system memory the AGP graphics adapter only requires enough memory for frame buffer (display image) refreshing.

4.3.1 BUS TRANSACTIONS

The operation of the AGP bus is based on the 66-MHz PCI specification but includes additional mechanisms to increase bandwidth. During the configuration phase the AGP bus acts in accordance with PCI protocol. Once graphics data handling operation is initiated, AGP-defined protocols take effect. The AGP graphics adapter acts generally as the AGP master, but can also behave as a "PCI" target during fast writes from the MCH.

Key differences between the AGP interface and the PCI interface are as follows:

- ♦ Address phase and associated data transfer phase are disconnected transactions. Addressing and data transferring occur as contiguous actions on the PCI bus. On the AGP bus a request for data and the transfer of data may be separated by other operations.
- ♦ Commands on the AGP bus specify system memory accesses only. Unlike the PCI bus, commands involving I/O and configuration are not required or allowed. The system memory address space used in AGP operations is the same linear space used by PCI memory space commands, but is further specified by the graphics address re-mapping table (GART) of the north bridge component.
- ◆ Data transactions on the AGP bus involve eight bytes or multiples of eight bytes. The AGP memory addressing protocol uses 8-byte boundaries as opposed to PCI's 4-byte boundaries. If a transfer of less than eight bytes is needed, the remaining bytes are filled with arbitrary data that is discarded by the target.
- ♦ Pipelined requests are defined by length or size on the AGP bus. The PCI bus defines transfer lengths with the FRAME- signal.

There are two basic types of transactions on the AGP bus: data requests (addressing) and data transfers. These actions are separate from each other.

4.3.1.1 Data Request

Requesting data is accomplished in one of two ways; either multiplexed addressing (using the AD lines for addressing/data) or demultiplexed ("sideband") addressing (using the SBA lines for addressing only and the AD lines for data only). Even though there are only eight SBA lines (as opposed to the 32 AD lines) sideband addressing maximizes efficiency and throughput by allowing the AD lines to be exclusively used for data transfers. Sideband addressing occurs at the same rate (1X, 2X, or 4X) as data transfers. The differences in rates will be discussed in the next section describing data transfers. Note also that sideband addressing is limited to 48 bits (address bits 48-63 are assumed zero). The MCH component supports both SBA and AD addressing, but the method and rate is selected by the AGP graphics adapter.

4.3.1.2 Data Transfers

Data transfers use the AD lines and occur as the result of data requests described previously. Each transaction resulting from a request involves at least eight bytes, requiring the 32 AD lines to handle at least two transfers per request. The 82850 MCH supports three transfer rates: 1X, 2X, and 4X. Regardless of the rate used, the speed of the bus clock is constant at 66 MHz. The following subsections describe how the use of additional strobe signals makes possible higher transfer rates.

NOTE: These systems support only 1.5-volt signaling on the AGP bus.

AGP 1X Transfers

During a AGP 1X transfer the 66-MHz CLK signal is used to qualify the control and data signals. Each 4-byte data transfer is synchronous with one CLK cycle so it takes two CLK cycles for a minimum 8-byte transfer (Figure 4-5 shows two 8-byte transfers). The GNT- and TRDY- signals retain their traditional PCI functions. The ST0..3 signals are used for priority encoding, with "000" for low priority and "001" indicating high priority.

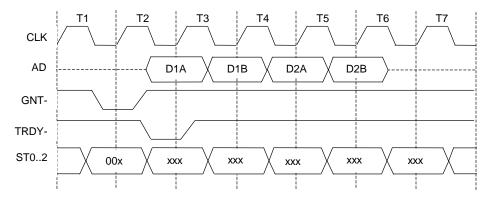
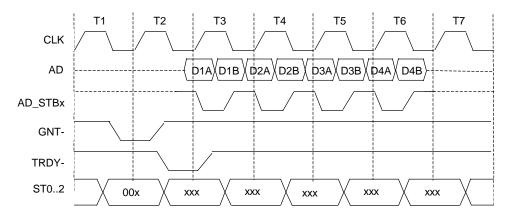



Figure 4-5. AGP 1X Data Transfer (Peak Transfer Rate: 266 MB/s)

AGP 2X Transfers

During AGP 2X transfers, clocking is basically the same as in 1X transfers except that the 66-MHz CLK signal is used to qualify only the control signals. The data bytes are latched by an additional strobe (AD_STBx) signal so that an 8-byte transfer occurs in one CLK cycle (Figure 4-6). The first four bytes (DnA) are latched by the receiving agent on the falling edge of AD_STBx and the second four bytes (DnB) are latched on the rising edge of AD_STBx.

Figure 4-6. AGP 2X Data Transfer (Peak Transfer Rate: 532 MB/s)

AGP 4X Transfers

The AGP 4X transfer rate allows sixteen bytes of data to be transferred in one clock cycle. As in 2X transfers the 66-MHz CLK signal is used only for qualifying control signals while strobe signals are used to latch each 4-byte transfer on the AD lines. As shown in Figure 4-7, 4-byte block DnA is latched by the falling edge of AD_STBx while DnB is latched by the falling edge of AD_STBx-.

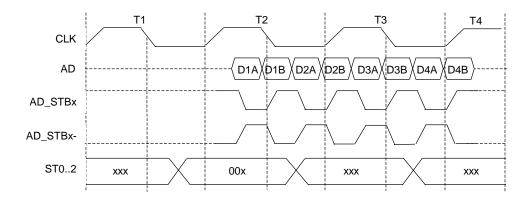


Figure 4-7. AGP 4X Data Transfer (Peak Transfer Rate: 1064 MB/s)

4.3.2 AGP CONFIGURATION

AGP bus operations require the configuration of certain parameters involving system memory access by the AGP graphics adapter. The AGP bus interface is configured as a PCI device integrated within the north bridge (MCH, device 1) component. The AGP function is, from the PCI bus perspective, treated essentially as a PCI/PCI bridge and configured through PCI configuration registers (Table 4-6). Configuration is accomplished by BIOS during POST.

NOTE: Configuration of the AGP bus interface involves functions 0 and 1 of the MCH. Function 0 registers (listed in Table 3-4) include functions that affect basic control (GART) of the AGP.

Table 4-5.PCI/AGP Bridge Function Configuration Registers (MCH, Function 1)

PCI			PCI		
Config.		Reset	Config.		Reset
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vendor ID	8086h	1Bh	Sec. Master Latency Timer	00h
02, 03h	Device ID	2532h	1Ch	I/O Base Address	F0h
04, 05h	Command	0000h	1Dh	I/O Limit Address	00h
06, 07h	Status	0020h	1E, 1Fh	Sec. PCI/PCI Status	02A0h
08h	Revision ID	00h	20, 21h	Memory Base Address	FFF0h
0A, 0Bh	Class Code	0406h	22, 23h	Memory Limit Address	0000h
0Eh	Header Type	01h	24, 25h	Prefetch Mem. Base Addr.	FFF0h
18h	Primary Bus Number	00h	26, 27h	Prefetch Mem. Limit Addr.	0000h
19h	Secondary Bus Number	00h	3Eh	PCI/PCI Bridge Control	00h
1Ah	Subordinate Bus Number	00h	3F-FFh	Reserved	00h

NOTE:

Assume unmarked locations/gaps as reserved. Refer to Intel documentation for detailed register descriptions.

The AGP graphics adapter (actually its resident controller) is configured as a standard PCI device.

4.3.3 AGP CONNECTOR

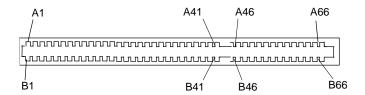


Figure 4-8. 1.5-Volt AGP Bus Connector

	Table 4-6. AGP Bus Connector Pinout								
Din	Pin A Signal B Signal Pin A Signal B Signal Pin A Signal B Signal								
01	+12 VDC	OVRCNT-	23	GND	GND	45	KEY	KEY	
02	Type Det-	5.0 VDC	24	Reserved	VDD3 Aux	46	TRDY-	DEVSEL-	
	71		25			47	STOP-		
03	Reserved	5.0 VDC		VDD3	VDD3			VDDQ	
04	USB-	USB+	26	PAD30	PAD31	48	PME-	PERR-	
05	GND	GND	27	PAD28	PAD29	49	GND	GND	
06	INTA-	INTB-	28	VDD3	VDD3	50	PAR	SERR-	
07	RESET	CLK	29	PAD26	PAD27	51	PAD15	CBE1-	
08	GNT-	REQ-	30	PAD24	PAD25	52	VDDQ	VDDQ	
09	VDD3	VDD3	31	GND	GND	53	PAD13	PAD14	
10	ST1	ST0	32	AD_STB1-	AD_STB1	54	PAD11	PAD12	
11	Reserved	ST2	33	CBE3-	PAD23	55	GND	GND	
12	PIPE-	RBF-	34	VDDQ	VDDQ	56	PAD09	PAD10	
13	GND	GND	35	PAD22	PAD21	57	CBE0-	PAD08	
14	WBF-	Reserved	36	PAD20	PAD19	58	VDDQ	VDDQ	
15	SBA1	SBA0	37	GND	GND	59	AD_STB0-	AD_STB0	
16	VDD3	VDD3	38	PAD18	PAD17	60	PAD06	PAD07	
17	SBA3	SBA2	39	PAD16	CBE2-	61	GND	GND	
18	SB_STB-	SB_STB	40	VDDQ	VDDQ	62	PAD04	PAD05	
19	GND	GND	41	FRAME-	IRDY-	63	PAD02	PAD03	
20	SBA5	SBA4	42	KEY	KEY	64	VDDQ	VDDQ	
21	SBA7	DBA6	43	KEY	KEY	65	PAD00	PAD01	
22	Reserved	Reserved	44	KEY	KEY	66	VREFGC	VREFCG	

NOTES:

NC = Not connected

 $VDDQ = 1.5\ VDC$, as determined by system board grounding of Type Det- signal (pin A02).

4.4 SYSTEM RESOURCES

This section describes the availability and basic control of major subsystems, otherwise known as resource allocation or simply "system resources." System resources are provided on a priority basis through hardware interrupts and DMA requests and grants.

4.4.1 INTERRUPTS

The microprocessor uses two types of hardware interrupts; maskable and nonmaskable. A maskable interrupt can be enabled or disabled within the microprocessor by the use of the STI and CLI instructions. A nonmaskable interrupt cannot be masked off within the microprocessor, although it may be inhibited by hardware or software means external to the microprocessor.

4.4.1.1 Maskable Interrupts

The maskable interrupt is a hardware-generated signal used by peripheral functions within the system to get the attention of the microprocessor. Peripheral functions produce a unique INTA-H (PCI) or IRQ0-15 (ISA) signal that is routed to interrupt processing logic that asserts the interrupt (INTR-) input to the microprocessor. The microprocessor halts execution to determine the source of the interrupt and then services the peripheral as appropriate. Figure 4-9 shows the routing of PCI and ISA interrupts. Most IRQs are routed through the I/O controller, which contains a serializing function. A serialized interrupt stream is applied to the 82801 ICH.

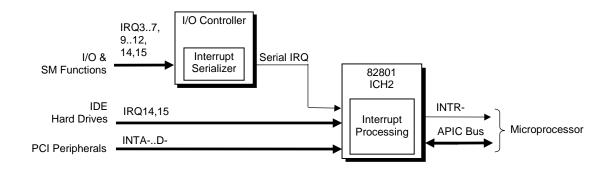


Figure 4-9. Maskable Interrupt Processing, Block Diagram

The 82801 ICH2 component can be configured (through the Setup utility) to handle interrupts in one of two modes of operation:

- ♦ 8259 mode
- ♦ APIC mode

8259 Mode

In 8259-Mode, interrupts IRQ0-IRQ15 are handled in the conventional (AT-system) method using logic that is the equivalent of two 8259 interrupt controllers. Table 4-7 lists the standard source configuration for maskable interrupts and their priorities in 8259 mode. If more than one interrupt is pending, the highest priority (lowest number) is processed first.

		Table 4-7.					
	Maskable Interrupt Priorities and Assignments						
Priority	Signal Label	Source (Typical)					
1	IRQ0	Interval timer 1, counter 0					
2	IRQ1	Keyboard					
3	IRQ8-	Real-time clock					
4	IRQ9	Microtower, game/MIDI port; desktop or minitower, unused.					
5	IRQ10	Unused					
6	IRQ11	Unused					
7	IRQ12	Mouse					
8	IRQ13	Coprocessor (math)					
9	IRQ14	IDE primary I/F					
10	IRQ15	IDE secondary I/F					
11	IRQ3	Serial port (COM2)					
12	IRQ4	Serial port (COM1)					
13	IRQ5	Unused					
14	IRQ6	Diskette drive controller					
15	IRQ7	Parallel port (LPT1)					
	IRQ2	NOT AVAILABLE (Cascade from interrupt controller 2)					

APIC Mode

The Advanced Programmable Interrupt Controller (APIC) mode enhances interrupt-processing performance with the following advantages:

- Eliminating the processor's interrupt acknowledge cycle by using a separate APIC bus.
- Programmable interrupt priority.
- ♦ Additional interrupts (total of 24).

Eight PCI interrupts are available in APIC mode. The PCI interrupts are evenly distributed to minimize latency and are hard-wired as follows:

ICH2		PCI	PCI	PCI	PCI	PCI	AGP	USB	USB	Audio
IRQ Cntlr.		Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot	Cntlr. #1	Cntlr. #2	Cntlr.
INTA-		INTA-	INTD-	INTC-	INTB-	INTD-			1	ı
INTB-		-	-	-	-				1	ı
INTC-	Wired to	INTB-	INTA-	INTD-	INTC-	INTA-	INTA-		1	ı
INTD-						-	INTB-	INTD-	1	ı
INTE-		-	-	-	-				1	INTA-
INTF-		INTC-	INTB-	INTA-	INTD-	INTB-				
INTG-		INTD-	INTC-	INTB-	INTA-	INTC-				ı
INTH-									INTH-	

NOTE: The APIC mode is supported by Windows NT/2000 operating systems. Systems using the Windows 95 or 98 operating system will need to run in 8259 mode. The mode is selectable through the Setup utility (access with F10 key during boot sequence).

Maskable Interrupt processing is controlled and monitored through standard AT-type I/O-mapped registers. These registers are listed in Table 4-8.

Table 4-8.					
Maskable Interrupt Control Registers					
I/O Port	Register				
020h	Base Address, Int. Cntlr. 1				
021h	Initialization Command Word 2-4, Int. Cntlr. 1				
0A0h	Base Address, Int. Cntlr. 2				
0A1h	Initialization Command Word 2-4, Int. Cntlr. 2				

The initialization and operation of the interrupt control registers follows standard AT-type protocol.

4.4.1.2 Non-Maskable Interrupts

Non-maskable interrupts cannot be masked (inhibited) within the microprocessor itself but may be maskable by software using logic external to the microprocessor. There are two non-maskable interrupt signals: the NMI- and the SMI-. These signals have service priority over all maskable interrupts, with the SMI- having top priority over all interrupts including the NMI-.

NMI- Generation

The Non-Maskable Interrupt (NMI-) signal can be generated by one of the following actions:

- Parity errors detected on a PCI bus (activating SERR- or PERR-).
- ♦ Microprocessor internal error (activating IERRA or IERRB)

The SERR- and PERR- signals are routed through the ICH component, which in turn activates the NMI to the microprocessor.

The NMI Status Register at I/O port 061h contains NMI source and status data as follows:

NMI Status Register 61h

Bit	Function			
7	NMI Status:			
	0 = No NMI from system board parity error.			
	1 = NMI requested, read only			
6	IOCHK- NMI:			
	0 = No NMI from IOCHK-			
	1 = IOCHK- is active (low), NMI requested, read only			
5	Interval Timer 1, Counter 2 (Speaker) Status			
4	Refresh Indicator (toggles with every refresh)			
3	IOCHK- NMI Enable/Disable:			
	0 = NMI from IOCHK- enabled			
	1 = NMI from IOCHK- disabled and cleared (R/W)			
2	System Board Parity Error (PERR/SERR) NMI Enable:			
	0 = Parity error NMI enabled			
	1 = Parity error NMI disabled and cleared (R/W)			
1	Speaker Data (R/W)			
0	Inteval Timer 1, Counter 2 Gate Signal (R/W)			
	0 = Counter 2 disabled			
	1 = Counter 2 enabled			

Functions not related to NMI activity.

After the active NMI has been processed, status bits <7> or <6> are cleared by pulsing bits <2> or <3> respectively.

The NMI Enable Register (070h, <7>) is used to enable/disable the NMI signal. Writing 80h to this register masks generation of the NMI-. Note that the lower six bits of register at I/O port 70h affect RTC operation and should be considered when changing NMI- generation status.

SMI- Generation

The SMI- (System Management Interrupt) is typically used for power management functions. When power management is enabled, inactivity timers are monitored. When a timer times out, SMI- is asserted and invokes the microprocessor's SMI handler. The SMI- handler works with the APM BIOS to service the SMI- according to the cause of the timeout.

Although the SMI- is primarily used for power managment the interrupt is also employed for the QuickLock/QuickBlank functions as well.

4.4.2 DIRECT MEMORY ACCESS

Direct Memory Access (DMA) is a method by which a device accesses system memory without involving the microprocessor. Although the DMA method has been traditionally used to transfer blocks of data to or from an ISA I/O device, PCI devices may also use DMA operation as well. The DMA method reduces the amount of CPU interactions with memory, freeing the CPU for other processing tasks.

 \wedge

NOTE: This section describes DMA in general. For detailed information regarding DMA operation, refer to the data manual for the Intel 82801BA I/O Controller Hub.

The 82801 ICH2 component includes the equivalent of two 8237 DMA controllers cascaded together to provide eight DMA channels, each (excepting channel 4) configurable to a specific device. Table 4-9 lists the default configuration of the DMA channels.

Table 4-9		
DMA	Channel Assignments And R	egister Ports
DMA Channel	Function	I/O Port
Controller 1 (byte transfers)		Control registers 000h-00Eh
0	Unused	Page register 087h
1	Audio subsystem	Page register 083h
2	Diskette drive	Page register 081h
3	Parallel port (ECP or EPP mode)	Page register 082h
Controller 2 (word transfers)		Control registers 0C0h-0DEh
4	Cascade for controller 1	n/a
5	Unused	Page register 08Bh
6	Unused	Page register 089h
7	Unused	Page register 08Ah
Refresh		08Fh [see note]

NOTE:

The DMA memory page register for the refresh channel must be programmed with 00h for proper operation.

All channels in DMA controller 1 operate at a higher priority than those in controller 2. Note that channel 4 is not available for use other than its cascading function for controller 1. The DMA controller 2 can transfer words only on an even address boundary. The DMA controller and page register define a 24-bit address that allows data transfers within the address space of the CPU.

In addition to device configuration, each channel can be configured (through PCI Configuration Registers) for one of two modes of operation:

- ♦ LPC DMA Mode Uses the LPC bus to communicate DMA channel control and is implemented for devices using DMA through the I/O controller such as the diskette drive controller.
- ◆ PC/PCI DMA Mode Uses the REQ#/GNT# signals to communicate DMA channel control and is used by PCI expansion devices.

4.5 SYSTEM CLOCK DISTRIBUTION

These systems use an Intel CK-type clock generator and crystal for generating the clock signals required by the system board components. Table 4-10 lists the system board clock signals and how they are distributed.

Table 4-10				
Clo	Clock Generation and Distribution			
Frequncy Source Destination				
400 MHz	MCH	Processor, RIMM sockets		
100 MHz	CK	MCH		
66 MHz	CK	MCH, ICH2, AGP slot		
48 MHz	CK	ICH2, I/O Cntlr.		
33 MHz	CK	Processor, ICH2, PCI Slots		
14.31818 MHz	Crystal	CK		

Certain clock outputs are turned off during reduced power modes to conserve energy. Clock output control is handled through the SMBus interface by BIOS.

4.6 REAL-TIME CLOCK AND CONFIGURATION MEMORY

The Real-time clock (RTC) and configuration memory (also referred to as "CMOS") functions are provided by the 82801 ICH component and is MC146818-compatible. As shown in the following figure, the 82801 ICH component provides 256 bytes of battery-backed RAM divided into two 128-byte configuration memory areas. The RTC uses the first 14 bytes (00-0Dh) of the standard memory area. All locations of the standard memory area (00-7Fh) can be directly accessed using conventional OUT and IN assembly language instructions through I/O ports 70h/71h, although the suggested method is to use the INT15 AX=E823h BIOS call.

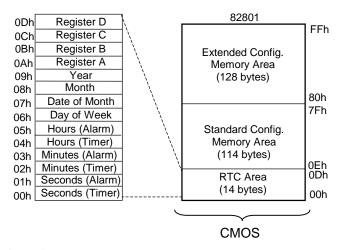


Figure 4-10. Configuration Memory Map

A lithium 3-VDC battery is used for maintaining the RTC and configuration memory while the system is powered down. The battery is located in a battery holder on the system board is replaced with a Renata CR2032 or equivalent 3-VDC lithium battery.

4.6.1 CLEARING CMOS

The contents of configuration memory (including the Power-On Password) can be cleared by the following procedures:

- 1. Turn off the unit.
- 2. Disconnect the AC power cord from the outlet and/or system unit.
- 3. Remove the chassis hood (cover) and insure that no LEDs on the system board are illuminated.
- 4. Press and release the CMOS clear button on the system board.
- 5. Replace the chassis hood (cover).
- 6. Reconnect the AC power cord to the outlet and/or system unit.
- 7. Turn the unit on.

To clear **only** the Power-On Password refer to section 4.7.1.1.

4.6.2 CMOS ARCHIVE AND RESTORE

During the boot sequence the BIOS saves a copy of NVRAM (CMOS contents, password(s) and other system variables) in a portion of the flash ROM. Should the system become un-usable, the last good copy of NVRAM data can be restored with the Power Button Override function. This function is invoked with the following procedure:

- 1. With the unit powered down, press and release the power button.
- 2. Immediately after releasing the power button in step 1, press and hold the power button until the unit powers down. This action will be recorded as a Power Button Override event.

With the next startup sequence the BIOS will detect the occurrence of the Power Button Override event and will load the backup copy of NVRAM from the ROM to the CMOS.

NOTE: The Power Button Override feature does **not** allow quick cycling of the system (turning on then off). If the power cord is disconnected during the POST routine, the splash screen image may become corrupted, requiring a re-flashing of the ROM (refer to chapter 8, BIOS ROM).

4.6.3 STANDARD CMOS LOCATIONS

Table 4-14 and the following paragraphs describe standard configuration memory locations 0Ah-3Fh. These locations are accessible using OUT/IN assembly language instructions using port 70/71h or BIOS function INT15, AX=E823h.

Table 4-11.			
Configuration Memory (CMOS) Map			
Location	Function	Location	Function
00-0Dh	Real-time clock	24h	System board ID
0Eh	Diagnostic status	25h	System architecture data
0Fh	System reset code	26h	Auxiliary peripheral configuration
10h	Diskette drive type	27h	Speed control external drive
11h	Reserved	28h	Expanded/base mem. size, IRQ12
12h	Hard drive type	29h	Miscellaneous configuration
13h	Security functions	2Ah	Hard drive timeout
14h	Equipment installed	2Bh	System inactivity timeout
15h	Base memory size, low byte/KB	2Ch	Monitor timeout, Num Lock Cntrl
16h	Base memory size, high byte/KB	2Dh	Additional flags
17h	Extended memory, low byte/KB	2Eh-2Fh	Checksum of locations 10h-2Dh
18h	Extended memory, high byte/KB	30h-31h	Total extended memory tested
19h	Hard drive 1, primary controller	32h	Century
1Ah	Hard drive 2, primary controller	33h	Miscellaneous flags set by BIOS
1Bh	Hard drive 1, secondary controller	34h	International language
1Ch	Hard drive 2, secondary controller	35h	APM status flags
1Dh	Enhanced hard drive support	36h	ECC POST test single bit
1Eh	Reserved	37h-3Fh	Power-on password
1Fh	Power management functions	40-FFh	Feature Control/Status

NOTES:

Assume unmarked gaps are reserved.

RTC Control Register A, Byte 0Ah

Bit	Function	
7	Update in Progress. Read on	ly.
	0 = Time update will not occ	cur before 2444 us
	1 = Time update will occur	within 2444 us
64	Divider Chain Control. R/W.	
	00x = Oscillator disabled.	
	010 = Normal operation (tin	ne base frequency = 32.768 KHz).
	11x = Divider chain reset.	
30	Periodic Interrupt Control. R/W. Specifies the periodic interrupt interval.	
	0000 = none 10	000 = 3.90625 ms
	0001 = 3.90625 ms 10	01 = 7.8125 ms
	0010 = 7.8125 ms 10	010 = 15. 625 ms
	0011 = 122.070 us 10	11 = 31.25 ms
	0100 = 244.141 us 11	00 = 62.50 ms
	0101 = 488.281 us 11	01 = 125 ms
	0110 = 976.562 us 11	10 = 250 ms
	0111 = 1.953125 ms 11	11 = 500 ms

RTC Control Register B, Byte 0Bh

Bit	Function
7	Time Update Enable/disable
	0 = Normal operation, 1 = Disable time updating for time set
6	Periodic Interrupt Enable/Disable.
	0 = Disable, 1 = Enable interval specified by Register A
5	Alarm Interrupt Enable/disable
	0 = Disabled, 1 = Enabled
4	End-of-Update Interrupt Enable/Disable
	0 = Disabled, 1 = Enabled
3	Reserved (read 0)
2	Time/Date Format Select
	0 = BCD format, 1 = Binary format
1	Time Mode
	0 = 12-hour mode, 1 = 24-hour mode
0	Automatic Daylight Savings Time Enable/Disable
	0 = Disable
	1 = Enable (Advance 1 hour on 1 st Sunday in April, retreat 1 hour on last Sunday in
	October).

RTC Status Register C, Byte 0Ch

Bit	Function
7	If set, interrupt output signal active (read only)
6	If set, indicates periodic interrupt flag
5	If set, indicates alarm interrupt
4	If set, indicates end-of-update interrupt
30	Reserved

RTC Status Register D, Byte 0Dh

Bit	Function
7	RTC Power Status
	0 = RTC has lost power
	1 = RTC has not lost power
60	Reserved

Configuration Byte 0Eh, Diagnostic Status

Default Value = 00h

This byte contains diagnostic status data.

Configuration Byte 0Fh, System Reset Code

Default Value = 00h

This byte contains the system reset code.

Configuration Byte 10h, Diskette Drive Type

Bit	Function
74	Primary (Drive A) Diskette Drive Type
30	Secondary (Drive B) Diskette Drive Type

Valid values for bits <7..4> and bits <3..0>:

0000 = Not installed

0001 = 360-KB drive

0010 = 1.2-MB drive

0011 = 720-KB drive

0100 = 1.44-MB/1.25-MB drive

0110 = 2.88-MB drive

(all other values reserved)

Configuration Byte 12h, Hard Drive Type

Bit	Function		
74	Primary Controller 1, Hard Drive 1 Type:		
	0000 = none 1000 = Type 8		
	0001 = Type 1 1001 = Type 9		
	0010 = Type 2		
	0011 = Type 3 1011 = Type 11		
	0100 = Type 4		
	0101 = Type 5		
	0110 = Type 6 1110 = Type 14		
	0111 = Type 7		
30	Primary Controller 1, Hard Drive 2 Type:		
	0000 = none 1000 = Type 8		
	0001 = Type 1 1001 = Type 9		
	0010 = Type 2 1010 = Type 10		
	0011 = Type 3 1011 = Type 11		
	0100 = Type 4		
	0101 = Type 5		
	0110 = Type 6 1110 = Type 14		
	0111 = Type 7 1111 = other (use bytes 1Ah)		

Configuration Byte 13h, Security Functions

Default Value = 00h

Bit	Function
7	Reserved
6	QuickBlank Enable After Standby:
	0 = Disable
	1 = Enable
5	Administrator Password:
	0 = Not present
	1 = Present
4	Reserved
3	Diskette Boot Enable:
	0 = Enable
	1 = Disable
2	QuickLock Enable:
	0 = Disable
	1 = Enable
1	Network Server Mode/Security Lock Override:
	0 = Disable
	1 = Enable
0	Password State (Set by BIOS at Power-up)
	0 = Not set
	1 = Set

Configuration Byte 14h, Equipment Installed

Default Value (standard configuration) = 03h

Bit	Function		
7,6	No. of Diskette Drives Installed:		
	00 = 1 drive $10 = 3$ drives		
	01 = 2 drives		
52	Reserved		
1	Coprocessor Present		
	0 = Coprocessor not installed		
	1 = Coprocessor installed		
0	Diskette Drives Present		
	0 = No diskette drives installed		
	1 = Diskette drive(s) installed		

Configuration Bytes 15h and 16h, Base Memory Size

Default Value = 280h

Bytes 15h and 16h hold a 16-bit value that specifies the base memory size in 1-KB (1024) increments. Valid base memory sizes are 512 and 640 kilobytes .

Configuration Bytes 17h and 18h, Extended Memory Size

Bytes 17h and 18h hold a 16-bit value that specifies the extended memory size in 1-KB increments.

Configuration Bytes 19h-1Ch, Hard Drive Types

Byte 19h contains the hard drive type for drive 1 of the primary controller if byte 12h bits <7..4> hold 1111b. Byte 1Ah contains the hard drive type for drive 2 of the primary controller if byte 12h bits <3..0> hold 1111b. Bytes1Bh and 1Ch contain the hard drive types for hard drives 1 and 2 of the secondary controller.

Configuration Byte 1Dh, Enhanced IDE Hard Drive Support

Default Value = F0h

Bit	Function
7	EIDE - Drive C (83h)
6	EIDE - Drive D (82h)
5	EIDE - Drive E (81h)
4	EIDE - Drive F (80h)
30	Reserved

Values for bits <7..4>:

0 = Disable

1 = Enable for auto-configure

Configuration Byte 1Fh, Power Management Functions

Default Value = 00h

Bit	Function
74	Reserved
3	Slow Processor Clock for Low Power Mode
	0 = Processor runs at full speed
	1 = Processor runs at slow speed
2	Reserved
1	Monitor Off Mode
	0 = Turn monitor power off after 45 minutes in
	standby
	1 = Leave monitor power on
0	Energy Saver Mode Indicator (Blinking LED)
	0 = Disable
	1 = Enable

Configuration Byte 24h, System Board Identification

Default Value = 7Eh

Configuration memory location 24h holds the system board ID.

Configuration Byte 25h, System Architecture Data

Default Value = 0Bh

Bit	Function
74	Reserved
3	Unmapping of ROM:
	0 = Allowed
	1 = Not allowed
2	Reserved
1,0	Diagnostic Status Byte Address
	00 = Memory locations 80C00000h-80C00004h
	01 = I/O ports 878h-87Ch
	11 = neither place

Configuration Byte 26h, Auxiliary Peripheral Configuration Default Value = 00h

Bit	Function
7,6	I/O Delay Select
	00 = 420 ns (default)
	01 = 300 ns
	10 = 2600 ns
	11 = 540 ns
5	Alternative A20 Switching
	0 = Disable port 92 mode
	1 = Enable port 92 mode
4	Bi-directional Print Port Mode
	0 = Disabled
	1 = Enabled
3	Graphics Type
	0 = Color
	1 = Monochrome
2	Hard Drive Primary/Secondary Address Select:
	0 = Primary
	1 = Secondary
1	Diskette I/O Port
	0 = Primary
<u> </u>	1 = Secondary
0	Diskette I/O Port Enable
	0 = Primary
	1 = Secondary

Configuration Byte 27h, Speed Control/External Drive Default Value = 00h

Doladit	Belaut Value - 0011	
Bit	Function	
7	Boot Speed	
	0 = Max MHz	
	1 = Fast speed	
60	Reserved	

Configuration Byte 28h, Expanded and Base Memory, IRQ12 Select Default Value = 00h

Bit	Function
7	IRQ12 Select
	0 = Mouse
	1 = Expansion bus
6,5	Base Memory Size:
	00 = 640 KB
	01 = 512 KB
	10 = 256 KB
	11 = Invalid
40	Internal Compaq Memory:
	00000 = None
	00001 = 512 KB
	00010 = 1 MB
	00011 = 1.5 MB
	11111 = 15.5 MB

Configuration Byte 29h, Miscellaneous Configuration Data Default Value = 00h

Bit	Function
75	Reserved
4	Primary Hard Drive Enable (Non-PCI IDE Controllers) 0 = Disable 1 = Enable
30	Reserved

Configuration Byte 2Ah, Hard Drive Timeout Default Value = 02h

Bit	Function
75	Reserved
40	Hard Drive Timeout (index to SIT timeout record)

Configuration Byte 2Bh, System Inactivity Timeout

Default Value = 23h

Bit	Function
7	Reserved
6,5	Power Conservation Boot
	00 = Reserved
	01 = PC on
	10 = PC off
	11 = Reserved
40	System Inactive Timeout. (Index to SIT system timeout
	record)
	00000 = Disabled

Configuration Byte 2Ch, ScreenSave and NUMLOCK Control Default Value = 00h

Bit	Function
7	Reserved
6	Numlock Control
	0 = Numlock off at power on
	1 = Numlock on at power on
5	Screen Blank Control:
	0 = No screen blank
	1 = Screen blank w/QuickLock
40	ScreenSave Timeout. (Index to SIT monitor timeout record)
	000000 = Disabled

Configuration Byte 2Dh, Additional Flags

Default Value = 00h

Bit	Function
75	Reserved
4	Memory Test
	0 = Test memory on power up only
	1 = Test memory on warm boot
3	POST Error Handling (BIOS Defined)
	0 = Display "Press F1 to Continue" on error
	1 = Skip F1 message
20	Reserved

Configuration Byte 2Eh, 2Fh, Checksum

These bytes hold the checksum of bytes 10h to 2Dh.

Configuration Byte 30h, 31h, Total Extended Memory Tested

This location holds the amount of system memory that checked good during the POST.

Configuration Byte 32h, Century

This location holds the Century value in a binary coded decimal (BCD) format.

Configuration Byte 33h, Miscellaneous Flags

Default Value = 80h

DCIault v	Default Value = 6011	
Bit	Function	
7	Memory Above 640 KB 0 = No. 1 = Yes	
	0 = NO, 1 = Tes	
6	Reserved	
5	Weitek Numeric Coprocessor Present:	
	0 = Not installed, 1 = Installed	
4	Standard Numeric Coprocessor Present:	
	0 = Not installed, 1 = Installed	
30	Reserved	

Configuration Byte 34h, International Language Support

Default Value = 00h

Configuration Byte 35h, APM Status FlagsDefault Value = 11h

Bit	Function
76	Power Conservation State:
	00 = Ready
	01 = Standby
	10 = Suspend
	11 = Off
5,4	Reserved
3	32-bit Connection:
	0 = Disconnected, 1 = Connected
2	16-bit Connection
	0 = Disconnected, 1 = Connected
1	Real Mode Connection
	0 = Disconnected, 1 = Connected
0	Power Management Enable:
	0 = Disabled
	1 = Enabled

Configuration Byte 36h, ECC POST Test Single Bit Errors

Default Value = 01h

Bit	Function
7	Row 7 Error Detect
6	Row 6 Error Detect
5	Row 5 Error Detect
4	Row 4 Error Detect
3	Row 3 Error Detect
2	Row 2 Error Detect
1	Row 1 Error Detect
0	Row 0 Error Detect

^{0 =} No single bit error detected.

Configuration Byte 37h-3Fh, Power-On Password

These eight locations hold the power-on password.

^{1 =} Single bit error detected.

4.7 SYSTEM MANAGEMENT

This section describes functions having to do with security, power management, temperature, and overall status. These functions are handled by hardware and firmware (BIOS) and generally configured through the Setup utility.

4.7.1 SECURITY FUNCTIONS

These systems include various features that provide different levels of security. Note that this subsection describes **only the hardware functionality** (including that supported by Setup) and does not describe security features that may be provided by the operating system and application software.

4.7.1.1 Power-On Password

These systems include a power-on password, which may be enabled or disabled (cleared) through a jumper on the system board. The jumper controls a GPIO input to the 82801 ICH that is checked during POST. The password is stored in configuration memory (CMOS) and if enabled and then forgotten by the user will require that either the password be cleared (preferable solution and described below) or the entire CMOS be cleared (refer to section 4.6).

To clear the password, use the following procedure:

- 1. Turn off the system and disconnect the AC power cord from the outlet and/or system unit.
- 2. Remove the cover (hood). Insure that all system board LEDs are off (not illuminated).
- 3. Locate the password header/jumper (labeled E49 on these systems) and remove the jumper from pins 1 and 2 and place on (just) pin 2 (for safekeeping).
- 4. Replace the cover.
- 5. Re-connect the AC power cord to the AC outlet and/or system unit.
- 6. Turn on the system. The POST routine will clear and disable the password.
- 7. To re-enable the password feature, repeat steps 1-6, replacing the jumper on pins 1 and 2 of header E49.

4.7.1.2 Setup Password

The Setup utility may be configured to be always changeable or changeable only by entering a password. The password is held on CMOS and, if forgotten, will require that CMOS be cleared (refer to section 4.6).

4.7.1.3 Cable Lock Provision

These systems include a chassis cutout (on the rear panel) for the attachment of a cable lock mechanism.

4.7.1.4 I/O Interface Security

The serial, parallel, USB, and diskette interfaces may be disabled individually through the Setup utility to guard against unauthorized access to a system. In addition, the ability to write to or boot from a removable media drive (such as the diskette drive) may be enabled through the Setup utility. The disabling of the serial, parallel, and diskette interfaces are a function of the LPC47B357 I/O controller. The USB ports are controlled through the 82801 ICH.

4.7.2 POWER MANAGEMENT

These systems provide baseline hardware support of ACPI- and APM-compliant firmware and software. Key power-consuming components (processor, chipset, I/O controller, and fan) can be placed into a reduced power mode either automatically or by user control. The system can then be brought back up ("wake-up") by events defined by the ACPI specification. The ACPI wake-up events supported by this system are listed as follows:

ACPI Wake-Up Event	System Wakes From
Power Button	Suspend or soft-off
RTC Alarm	Suspend or soft-off
Wake On LAN (w/NIC)	Suspend or soft-off
PME	Suspend or soft-off
Serial Port Ring	Suspend or soft-off
USB	Suspend only
Keyboard	Suspend only
Mouse	Suspend only

4.7.3 SYSTEM STATUS

These systems provide a visual indication of system boot and ROM flash status through the keyboard LEDs as listed in table 4-12.

NOTE: The LED indications listed in Table 4-12 are valid only for PS/2-type keyboards. A USB keyboard will not provide LED status for the listed events, although audible (beep) indications will occur.

> Table 4-12. System Boot/ROM Flash Status LED Indications

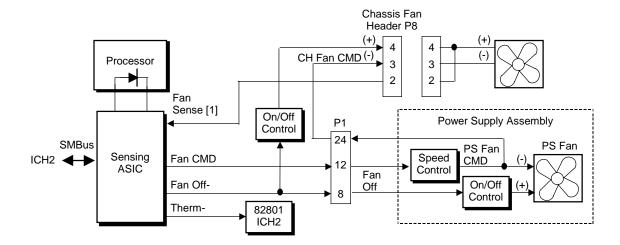
Event	NUM Lock LED	CAPs Lock LED	Scroll Lock LED
System memory failure [1]	Blinking	Off	Off
Graphics controller failure [2]	Off	Blinking	Off
System failure prior to graphics cntlr. initialization [3]	Off	Off	Blinking
ROMPAQ diskette not present, faulty, or drive prob.	On	Off	Off
Password prompt	Off	On	Off
Invalid ROM detected - flash failed	Blinking [4]	Blinking [4]	Blinking [4]
Keyboard locked in network mode	Blinking [5]	Blinking [5]	Blinking [5]
Successful boot block ROM flash	On [6]	On [6]	On [6]

NOTES:

- [1] Accompanied by 1 short, 2 long audio beeps
- [2] Accompanied by 1 long, 2 short audio beeps
- [3] Accompanied by 2 long, 1 short audio beeps
- [4] All LEDs will blink in sync twice, accompanied by 1 long and three short audio beeps
- [5] LEDs will blink in sequence (NUM Lock, then CAPs Lock, then Scroll Lock)
- [6] Accompanied by rising audio tone.

Table 4-13 lists the operation status codes provided by the power LED on the front of the chassis. Note that error or problem conditions are reported only by the power LED on the minitower.

Table 4-13. System Operational Status LED Indications						
Desktop Minitower System Status Power LED Power LED						
S0: System on (normal operation)	Steady green	Steady green				
S1: Suspend	Blinks green @ 1 Hz	Blinks green @ 1 Hz				
S3: Suspend to RAM	Blinks green @ 1 Hz	Blinks green @ 1 Hz				
S4: Suspend to disk	Blinks green @ 0.5 Hz	Blinks green @ 0.5 Hz				
S5: Soft off	Off - clear	Off - clear				
Processor not seated	Off - clear	Steady red				
CPU thermal shutdown	Off - clear	Blinks red @ 4 Hz				
ROM error	Off - clear	Blinks red @ 1 Hz				
Power supply crowbar activated	Off - clear	Blinks red @ .5 Hz				
System off	Off - clear	Off				


4.7.4 TEMPERATURE SENSING AND COOLING

These systems feature a fan integrated into the power supply assembly. A separate chassis fan is also employed. Both fans are variable-speed type, and typically operate in tandem as long as the power supply is active (producing 12 VDC). The fans are off in S3 (Suspend-to-RAM) and S5 (Soft-Off) states.

NOTE: These systems are designed to provide optimum cooling with the cover in place. Operating a system with the cover removed may result in a thermal condition of system board components, including the processor.

Figure 4-11 shows the fan control schematic.

NOTE:

[1] Will be +12 VDC if chassis fan is connected and operating.

Figure 4-11. Fan Control Block Diagram

An ASIC monitors a thermal diode internal to the processor and provides a Fan CMD signal that the Speed Control logic of the power supply uses to vary the speed of the fans through the negative power rail. The turning off of the fans as the result from the system being placed into a Sleep condition is initiated by the ASIC asserting the Fan Off- signal, which results in the On/Off Control logic shutting off the +12 volts to the fans.

Typical cooling conditions include the following:

- 1. Normal Low fan speed.
- 2. Hot processor ASIC directs Speed Control logic to increase speed of fan(s).
- 3. Hot power supply Power supply increases speed of fan(s).
- 4. Sleep state Fans turned off. Hot processor or power supply will result in starting fans.

4.8 REGISTER MAP AND MISCELLANEOUS FUNCTIONS

This section contains the system I/O map and information on general-purpose functions of the ICH and I/O controller.

4.8.1 SYSTEM I/O MAP

Table 4-14 lists the fixed addresses of the input/output (I/O) ports.

Table 4-14.						
	System I/O Map					
I/O Port	Function					
0000001Fh	DMA Controller 1					
0020002Dh	Interrupt Controller 1					
002E, 002Fh	Index, Data Ports to LPC47B357 I/O Controller (primary)					
0030003Dh	Interrupt Controller					
00400042h	Timer 1					
004E, 004Fh	Index, Data Ports to LPC47B357 I/O Controller (secondary)					
00500052h	Timer / Counter					
00600067h	Microcontroller, NMI Controller (alternating addresses)					
00700077h	RTC Controller					
00800091h	DMA Controller					
0092h	Port A, Fast A20/Reset Generator					
0093009Fh	DMA Controller					
00A000B1h	Interrupt Controller 2					
00B2h, 00B3h	APM Control/Status Ports					
00B400BDh	Interrupt Controller					
00C000DFh	DMA Controller 2					
00F0h	Coprocessor error register					
01700177h	IDE Controller 2 (active only if standard I/O space is enabled for primary drive)					
01F001F7h	IDE Controller 1 (active only if standard I/O space is enabled for secondary drive)					
0278027Fh	Parallel Port (LPT2)					
02E802EFh	Serial Port (COM4)					
02F802FFh	Serial Port (COM2)					
03700377h	Diskette Drive Controller Secondary Address					
0376h	IDE Controller 2 (active only if standard I/O space is enabled for primary drive)					
0378037Fh	Parallel Port (LPT1)					
03B003DFh	Graphics Controller					
03BC03BEh	Parallel Port (LPT3)					
03E803EFh	Serial Port (COM3)					
03F003F5h	Diskette Drive Controller Primary Addresses					
03F6h	IDE Controller 1 (active only if standard I/O space is enabled for sec. drive)					
03F803FFh	Serial Port (COM1)					
04D0, 04D1h	Interrupt Controller					
0678067Fh	Parallel Port (LPT2)					
0778077Fh	Parallel Port (LPT1)					
07BC07BEh	Parallel Port (LPT3)					
0CF8h	PCI Configuration Address (dword access only)					
0CF9h	Reset Control Register					
0CFCh	PCI Configuration Data (byte, word, or dword access)					

NOTE:

Assume unmarked gaps are unused, reserved, or used by functions that employ variable I/O address mapping. Some ranges may include reserved addresses.

4.8.2 82801 ICH GENERAL PURPOSE FUNCTIONS

The 82801 ICH2 component includes a number of single and multi-purpose pins available as general-purpose input/output (GPIO) ports. The GPIO ports are configured (enabled/disabled) during POST by BIOS through the PCI configuration registers of the ICH's LPC I/F Bridge (82801, function 0). The GPIO ports are controlled through 64 bytes of I/O space that is mapped during POST.

Table 4-15 lists the utilization of the ICH's GPIO ports in the desktop and minitower systems.

Table 4-15.					
82801 ICH2 GPIO Register Utilization					
GPIO Port #	Function	Direction			
0	PS LED	I			
1	NIC REQ5	I			
2	IRQE-	<u> </u>			
3	IRQF-	<u> </u>			
4	IRQG-	<u> </u>			
5	IRQH-	<u> </u>			
6	HD LED	<u> </u>			
7		NC			
8		NC			
12	TAFI ASIC Interrupt	<u> </u>			
13	SMI	<u> </u>			
18		NC			
19		NC			
20		NC			
21		NC			
22		NC			
23		NC			
24		NC			
25		NC			
26		NC			
27		NC			
28	Password Enable				

NOTE:

NC = not connected (not used).

4.8.3 I/O CONTROLLER FUNCTIONS

The I/O controller (used in desktop and minitower systems) contains various functions such as the keyboard/mouse interfaces, diskette interface, serial interfaces, and parallel interface. While the control of these interfaces uses standard AT-type I/O addressing (as described in chapter 5) the configuration of these functions occurs through indexed ports using PnP protocol. In these systems, hardware strapping selects I/O addresses 02Eh/02Fh at reset as the Index/Data ports for accessing the logical devices within the I/O contoller. Table 4-16 lists the PnP control registers for the LPC47B357.

Table 4-16.				
I/O Controller Control Registers				
Index	Function	Reset Value		
02h	Configuration Control	00h		
03h	Reserved			
07h	Logical Device (Interface) Select: 00h = Diskette Drive I/F 01h = Rsvd 02h = Rsvd 03h = Parallel I/F 04h = Serial I/F (UART 1) 05h = Serial I/F (UART 2) 06h = Rsvd 07h = Keyboard I/F 08h = Rsvd 09h = Rsvd 09h = Rsvd 0Ah = Runtime Reg. (GPIO Config.) 08h = Rsvd	00h		
20h	Super I/O ID Register (SID)	56H		
21h	Revision	==		
22h	Logical Device Power Control	00h		
23h	Logical Device Power Management	00h		
24h	PLL / Oscillator Control	04h		
25-2Fh	Device specific [2]			

NOTES:

Refer to LPC47B357 data sheet for detailed register information.

The configuration registers are accessed through I/O registers 2Eh (index) and 2Fh (data) after the configuration phase has been activated by writing 55h once to I/O port 2Eh. The BIOS then initiates each logical device and then deactivates the configuration phase by writing AAh to 2Eh.

4.8.3.1 LPC47B357 GPIO Utilization

The LPC47B357 I/O Controller (used in desktop and minitower systems) provides 62 general-purpose pins that can be individually configured for specific purposes. These pins are configured through the Runtime registers (logical device 0Ah) during the system's configuration phase of the boot sequence by the BIOS.

Table 4-17 lists the GPIO registers for the LPC47B357. Note that not all ports are listed as this table defines only the custom implementation of GPIO ports. Refer to SMC documentation for standard usage of unlisted GPIO ports.

Table 4-17. LPC47B357 GPIO Port Utilization						
GPIO	Function	Direction	GPIO	Function	Direction	
10	Board rev 1		42	ICH SCI	0	
11	Board rev 0	I	43		NC	
12		NC	44	Hood Lock	NC	
13	PME-	I	45	Hood Unlock	NC	
14	WOL	NC	46	ICH SMI-	0	
15	System ID 4 [1]	I	60	PCI Slot Reset	0	
16	Processor Fan sense	I	61	AGP Slot Reset	0	
17		NC	62	PWR Button In	I	
20	Pri. IDE 80-pin Cable Detect	I	63	SLP S3	I	
21	Sec. IDE 80-pin Cable Detect	I	64	SLP S5	I	
22		NC	65	CPU Changed/Removed	0	
23	System ID 2 [1]	I	66	PWR Button Out	0	
24	BIOS fail for AOL	0	67	PS On	0	
25	System ID 3 [1]	I	70	Remote Off	I	
26	Processor Present	l	71	System ID 0 [1]	NC	
27		NC	72	System ID 1 [1]	NC	
30	PS LED Color Grn	0	73		NC	
31	PS LED Blink	0	74		NC	
32	Thermal Trip	I	75		NC	
33	2 MB Media ID	I	76		NC	
34	FWH Write Protect	0	85	Pwr SEL	0	
35	FWH Reset	0	86	S3 3.3 VDC On	0	
36	Diskette Motor B	0				
37	Diskette Select B	0				

NOTE:

NC = Not connected (not used).

[1] System ID (ID4..0) value for these systems = 00111.

4.8.3.2 LPC47B357 I/O Controller Miscellaneous Functions

The desktop and minitower systems utilize the following specialized functions built into the LPC 47B357 I/O Controller:

♦ Power/Hard drive LED control – The I/O controller provides color and blink control for the front panel LEDs used for indicating system events as listed below:

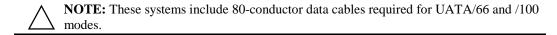
System Status	Power LED	HD LED	
S0: System on (normal operation)	Steady green	Green w/HD activity	
S1: Suspend	Blinks green @ 1 Hz	Off	
S3: Suspend to RAM	Blinks green @ 1 Hz	Off	
S4: Suspend to disk	Blinks green @ 0.5 Hz	Off	
S5: Soft off	Off - clear	Off	
Backplane board not seated	Steady red	Steady red	
Processor not seated	Steady red	Off	
CPU thermal shutdown	Blinks red @ 4 Hz	Off	
ROM error	Blinks red @ 1 Hz	Off	
Power supply crowbar activated	Blinks red @ 0.5 Hz	Off	
System off	Off	Off	

- ♦ I/O security The parallel, serial, and diskette interfaces may be disabled individually by software and the LPC47B357's disabling register locked. If the disabling register is locked, a system reset through a cold boot is required to gain access to the disabling (Device Disable) register.
- Processor present/speed detection One of the battery-back general-purpose inputs (GPI26) of the LPC47B357 detects if the processor has been removed. The occurrence of this event is passed to the ICH that will, during the next boot sequence, initiate the speed selection routine for the processor. The speed selection function replaces the manual DIP switch configuration procedure required on previous systems.
- ♦ Legacy/ACPI power button mode control The LPC47B357 receives the pulse signal from the system's power button and produces the PS On signal according to the mode (legacy or ACPI) selected. Refer to chapter 7 for more information regarding power management.

Chapter 4	System Support		
		This page is intentionally blank.	
		1.6	

Chapter 5 INPUT/OUTPUT INTERFACES

5.1 INTRODUCTION


This chapter describes the standard (i.e., system board) interfaces that provide input and output (I/O) porting of data and specifically discusses interfaces that are controlled through I/O-mapped registers. The following I/O interfaces are covered in this chapter:

♦	Enhanced IDE interface (5.2)	page 5-1
•	Diskette drive interface (5.3)	page 5-4
•	Serial interfaces (5.4)	page 5-8
•	Parallel interface (5.5)	page 5-11
•	Keyboard/pointing device interface (5.6)	page 5-16
•	Universal serial bus interface (5.7)	page 5-22
•	Audio subsystem (5.8)	page 5-26
•	Network support (5.9)	page 5-33

5.2 ENHANCED IDE INTERFACE

The enhanced IDE (EIDE) interface consists of primary and secondary controllers integrated into the 82801 ICH2 component of the chipset. Two 40-pin IDE connectors (one for each controller) are included on the system board. Each controller can be configured independently for the following modes of operation:

- ♦ Programmed I/O (PIO) mode CPU controls drive transactions through standard I/O mapped registers of the IDE drive.
- ♦ 8237 DMA mode CPU offloads drive transactions using DMA protocol with transfer rates up to 16 MB/s.
- ◆ Ultra ATA/100 mode Preferred bus mastering source-synchronous protocol providing transfer rates of 100 MB/s.

5.2.1 IDE PROGRAMMING

The IDE interface is configured as a PCI device during POST and controlled through I/O-mapped registers at runtime.

Hard drives types not found in the ROM's parameter table are automatically configured as to (soft)type by DOS as follows:

Primary controller: drive 0, type 65; drive 1, type 66 Secondary controller: drive 0, type 68; drive 1, type 15

Non-DOS (non-Windows) operating systems may require using Setup (F10) for drive configuration.

5.2.1.1 IDE Configuration Registers

The IDE controller is configured as a PCI device with bus mastering capability. The PCI configuration registers for the IDE controller function (PCI device #31, function #1) are listed in Table 5-1.

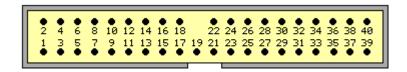
Table 5-1. EIDE PCI Configuration Registers (82801, Device 31/Function 1)					
PCI Conf. Addr.	Register	Reset Value	PCI Conf. Addr.	Register	Reset Value
00-01h	Vender ID	8086h	0F1Fh	Reserved	0's
02-03h	Device ID	244Bh	20-23h	BMIDE Base Address	1
04-05h	PCI Command	0000h	2C, 2Dh	Subsystem Vender ID	0000h
06-07h	PCI Status	0280h	2E, 2Fh	Subsystem ID	0000h
08h	Revision ID	00h	303Fh	Reserved	0's
09h	Programming	80h	40-43h	Pri./Sec. IDE Timing	0's
0Ah	Sub-Class	01h	44h	Slave IDE Timing	00h
0Bh	Base Class Code	01h	48h	Sync. DMA Control	00h
0Dh	Master Latency Timer	00h	4A-4Bh	Sync. DMA Timing	0000h
0Eh	Header Type	00h	54h	EIDE I/O Config.Register	00h

NOTE:

Assume unmarked gaps are reserved and/or not used.

5.2.1.2 IDE Bus Master Control Registers

The IDE interface can perform PCI bus master operations using the registers listed in Table 5-2. These registers occupy 16 bytes of variable I/O space set by software and indicated by PCI configuration register 20h in the previous table.


Table 5-2. IDE Bus Master Control Registers					
I/O Addr. Offset	Size (Bytes)	Register	Default Value		
00h	1	Bus Master IDE Command (Primary)	00h		
02h	1	Bus Master IDE Status (Primary)	00h		
04h	4	Bus Master IDE Descriptor Pointer (Pri.)	0000 0000h		
08h	1	Bus Master IDE Command (Secondary)	00h		
0Ah	2	Bus Master IDE Status (Secondary)	00h		
0Ch	4	Bus Master IDE Descriptor Pointer (Sec.)	0000 0000h		

NOTE:

Unspecified gaps are reserved, will return indeterminate data, and should not be written to.

5.2.2 IDE CONNECTOR

This system uses a standard 40-pin connector for the primary IDE device and connects (via a cable) to the hard drive installed in the right side drive bay. Note that some signals are re-defined for UATA/33 and UATA/66 modes, which require a special 80-conductor cable (supplied) designed to reduce cross-talk. Device power is supplied through a separate connector.

Figure 5-1. 40-Pin Primary IDE Connector (on system board).

Table 5-3.							
	40-Pin Primary IDE Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description		
_1	RESET-	Reset	21	DRQ	DMA Request		
2	GND	Ground	22	GND	Ground		
3	DD7	Data Bit <7>	23	IOW-	I/O Write [1]		
4	DD8	Data Bit <8>	24	GND	Ground		
5	DD6	Data Bit <6>	25	IOR-	I/O Read [2]		
6	DD9	Data Bit <9>	26	GND	Ground		
7	DD5	Data Bit <5>	27	IORDY	I/O Channel Ready [3]		
8	DD10	Data Bit <10>	28	CSEL	Cable Select		
9	DD4	Data Bit <4>	29	DAK-	DMA Acknowledge		
10	DD11	Data Bit <11>	30	GND	Ground		
11	DD3	Data Bit <3>	31	IRQn	Interrupt Request [4]		
12	DD12	Data Bit <12>	32	IO16-	16-bit I/O		
13	DD2	Data Bit <2>	33	DA1	Address 1		
14	DD13	Data Bit <13>	34	DSKPDIAG	Pass Diagnostics		
15	DD1	Data Bit <1>	35	DA0	Address 0		
16	DD14	Data Bit <14>	36	DA2	Address 2		
17	DD0	Data Bit <0>	37	CS0-	Chip Select		
18	DD15	Data Bit <15>	38	CS1-	Chip Select		
19	GND	Ground	39	HDACTIVE-	Drive Active (front panel LED) [5]		
20		Key	40	GND	Ground		

NOTES:

- [1] On UATA/33 and higher modes, re-defined as STOP.
- [2] On UATA/33 and higher mode reads, re-defined as DMARDY-. On UATA/33 and higher mode writes, re-defined as STROBE.
- [3] On UATA/33 and higher mode reads, re-defined as STROBE-.
 - On UATA/33 and higher mode writes, re-defined as DMARDY-.
- [4] Primary connector wired to IRQ14, secondary connector wired to IRQ15.
- [5] Pin 39 is used for spindle sync and drive activity (becomes SPSYNC/DACT-) when synchronous drives are connected.

5.3 DISKETTE DRIVE INTERFACE

The diskette drive interface supports up to two diskette drives, each of which use a common cable connected to a standard 34-pin diskette drive connector. All models come standard with a 3.5-inch 1.44-MB diskette drive installed as drive A. The drive designation is determined by which connector is used on the diskette drive cable. The drive attached to the end connector is drive A while the drive attached to the second (next to the end) connector) is drive B.

On all models, the diskette drive interface function is integrated into the LPC47B357 super I/O component. The internal logic of the I/O controller is software-compatible with standard 82077-type logic. The diskette drive controller has three operational phases in the following order:

- ♦ Command phase The controller receives the command from the system.
- Execution phase The controller carries out the command.
- Results phase Status and results data is read back from the controller to the system.

The Command phase consists of several bytes written in series from the CPU to the data register (3F5h/375h). The first byte identifies the command and the remaining bytes define the parameters of the command. The Main Status register (3F4h/374h) provides data flow control for the diskette drive controller and must be polled between each byte transfer during the Command phase.

The Execution phase starts as soon as the last byte of the Command phase is received. An Execution phase may involve the transfer of data to and from the diskette drive, a mechnical control function of the drive, or an operation that remains internal to the diskette drive controller. Data transfers (writes or reads) with the diskette drive controller are by DMA, using the DRQ2 and DACK2- signals for control.

The Results phase consists of the CPU reading a series of status bytes (from the data register (3F5h/375h)) that indicate the results of the command. Note that some commands do not have a Result phase, in which case the Execution phase can be followed by a Command phase.

During periods of inactivity, the diskette drive controller is in a non-operation mode known as the Idle phase.

5.3.1 DISKETTE DRIVE PROGRAMMING

Programming the diskette drive interface consists of configuration, which occurs typically during POST, and control, which occurs at runtime.

5.3.1.1 Diskette Drive Interface Configuration

The diskette drive controller must be configured for a specific address and also must be enabled before it can be used. Address selection and enabling of the diskette drive interface are affected by firmware through the PnP configuration registers of the 47B357 I/O controller during POST.

The configuration registers are accessed through I/O registers 2Eh (index) and 2Fh (data) after the configuration phase has been activated by writing 55h to I/O port 2Eh. The diskette drive I/F is initiated by firmware selecting logical device 0 of the 47B357 using the following sequence:

- 1. Write 07h to I/O register 2Eh.
- 2. Write 00h to I/O register 2Fh (this selects the diskette drive I/F).
- 3. Write 30h to I/O register 2Eh.
- 4. Write 01h to I/O register 2Fh (this activates the interface).

Writing AAh to 2Eh deactivates the configuration phase. The diskette drive I/F configuration registers are listed in the following table:

	Table 5-4	· -	
	Diskette Drive Interface Cor	nfiguration Register	S
Index			Reset
Address	Function	R/W	Value
30h	Activate	R/W	01h
60-61h	Base Address	R/W	03F0h
70h	Interrupt Select	R/W	06h
74h	DMA Channel Select	R/W	02h
F0h	DD Mode	R/W	02h
F1h	DD Option	R/W	00h
F2h	DD Type	R/W	FFh
F4h	DD 0	R/W	00h
F5h	DD 1	R/W	00h

For detailed configuration register information refer to the SMSC data sheet for the LPC47B357 I/O component.

5.3.1.2 Diskette Drive Interface Control

The BIOS function INT 13 provides basic control of the diskette drive interface. The diskette drive interface can be controlled by software through the LPC47B357's I/O-mapped registers listed in Table 5-5. The diskette drive controller of the LPC47B357 operates in the PC/AT mode in these systems.

	Table	5-5.	
Diskette Drive	Interface	Control	Registers

Pri.	Sec.	Davietes	D (**
Addr.	Addr.	Register	R/W
3F0h	370h	Status Register A:	R
		<7> Interrupt pending	
		<6> Reserved (always 1)	
		<5> STEP pin status (active high)	
		<4> TRK 0 status (active high)	
		<3> HDSEL status (0 = side 0, 1 = side 1)	
		<2> INDEX status (active high) 4. WR RPTK status (0. dial. is write protected)	
		<1> WR PRTK status (0 = disk is write protected)	
2545	2746	<0> Direction (0 = outward, 1 = inward)	
3F1h	371h	Status Register B:	R
		<7,6> Reserved (always 1's)	
		<5> DOR bit 0 status	
		<4> Write data toggle	
		<3> Read data toggle	
		<2> WGATE status (active high)	
0501	0701	<1,0> MTR 2, 1 ON- status (active high)	D //
3F2h	372h	Digital Output Register (DOR):	R/V
		<7,6> Reserved	
		<5,4> Motor 1, 0 enable (active high)	
		<3> DMA enable (active high)	
		<2> Reset (active low)	
0501	0701	<1,0> Drive select (00 = Drive 1, 01 = Drive 2, 10 = Reserved, 11 = Tape drive)	D //
3F3h	373h	Tape Drive Register (available for compatibility)	R/V
3F4h	374h	Main Status Register (MSR):	R
		<7> Request for master (host can transfer data) (active high)	
		<6> Transfer direction (0 – write, 1 = read)	
		<5> non-DMA execution (active high)	
		<4> Command busy (active high)	
		<3,2> Reserved	
		<1,0> Drive 1, 2 busy (active high)	14/
		Data Rate Select Register (DRSR):	W
		<7> Software reset (active high)	
		<6> Low power mode enable (active high)	
		<5> Reserved (0)	
		<42> Precompensation select (default = 000) 4.0. Precompensation select (default = 000)	
		<1,0> Data rate select (00 = 500 Kb/s, 01 = 300 Kb/s, 10 = 250 Kb/s, 11 = 2/1	
3F5h	375h	Mb/s)	R/V
35311	3/311	Data Register:	K/V
2F6h	276h	<70> Data	
3F6h	376h	Reserved	
3F7h	377h	Digital Input Register (DIR):	R
		<7> DSK CHG status (records opposite value of pin)	
		<60> Reserved (0's)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		Configuration Control Register (CCR):	W
		<72> Reserved 4.0. Pate rate called (00 = 500 Kh/a 04 = 200 Kh/a 40 = 250 Kh/a 44 = 2/4	
		<1,0> Data rate select (00 = 500 Kb/s, 01 = 300 Kb/s, 10 = 250 Kb/s, 11 = 2/1	

NOTE: The most recently written data rate value to either DRSR or CCR will be in effect.

5.3.2 DISKETTE DRIVE CONNECTOR

This system uses a standard 34-pin connector (refer to Figure 5-2 and Table 5-6 for the pinout) for diskette drives. Drive power is supplied through a separate connector.

Figure 5-2. 34-Pin Diskette Drive Connector.

	Table 5-6. 34-Pin Diskette Drive Connector Pinout					
Pin	Signal	Description	Pin	Signal	Description	
1	GND	Ground	18	DIR-	Drive head direction control	
2	LOW DEN-	Low density select	19	GND	Ground	
3		(KEY)	20	STEP-	Drive head track step control	
4	MEDIA ID-	Media identification	21	GND	Ground	
5	GND	Ground	22	WR DATA-	Write data	
6	DRV 4	Drive 4 select	23	GND	Ground	
	SEL-					
7	GND	Ground	24	WR ENABLE-	Enable for WR DATA-	
8	INDEX-	Media index is detected	25	GND	Ground	
9	GND	Ground	26	TRK 00-	Heads at track 00 indicator	
10	MTR 1 ON-	Activates drive motor	27	GND	Ground	
11	GND	Ground	28	WR PRTK-	Media write protect status	
12	DRV 2	Drive 2 select	29	GND	Ground	
	SEL-					
13	GND	Ground	30	RD DATA-	Data and clock read off disk	
14	DRV 1	Drive 1 select	31	GND	Ground	
	SEL-					
15	GND	Ground	32	SIDE SEL-	Head select (side 0 or 1)	
16	MTR 2 ON-	Activates drive motor	33	GND	Ground	
17	GND	Ground	34	DSK CHG-	Drive door opened indicator	

5.4 SERIAL INTERFACE

All models include two serial interfaces to transmit and receive asynchronous serial data with external devices. The serial interface function is provided by the LPC47B357 I/O controller component that includes two NS16C550-compatible UARTs.

Each UART supports the standard baud rates up through 115200, and also special high speed rates of 239400 and 460800 baud. The baud rate of the UART is typically set to match the capability of the connected device. While most baud rates may be set at runtime, **baud rates 230400 and 460800 must be set during the configuration phase.**

5.4.1 RS-232 INTERFACE

On the legacy-light system, the UART is associated with a DB-9 connector that complies with EIA standard RS-232-C. The DB-9 connector is shown in the following figure and the pinout of the connector is listed in Table 5-7.

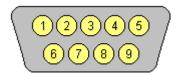


Figure 5-3. Serial Interface Connector (Male DB-9 as viewed from rear of chassis)

Table 5-7.					
		DB-9 Serial	Connect	or Pinout	
Pin	Signal	Description	Pin	Signal	Description
1	CD	Carrier Detect	6	DSR	Data Set Ready
2	RX Data	Receive Data	7	RTS	Request To Send
3	TX Data	Transmit Data	8	CTS	Clear To Send
4	DTR	Data Terminal Ready	9	RI	Ring Indicator
5	GND	Ground			

The standard RS-232-C limitation of 50 feet (or less) of cable between the DTE (computer) and DCE (modem) should be followed to minimize transmission errors. Higher baud rates may require shorter cables.

5.4.2 SERIAL INTERFACE PROGRAMMING

Programming the serial interfaces consists of configuration, which occurs during POST, and control, which occurs during runtime.

5.4.2.1 Serial Interface Configuration

The serial interface must be configured for a specific address range (COM1, COM2, etc.) and also must be activated before it can be used. Address selection and activation of the serial interface are affected through the PnP configuration registers of the LPC47B357 I/O controller. The serial interface configuration registers are listed in the following table:

	Table 5-8.	
	Serial Interface Configuration Registers	
Index Address	Function	R/W
30h	Activate	R/W
60h	Base Address MSB	R/W
61h	Base Address LSB	R/W
70h	Interrupt Select	R/W
F0h	Mode Register	R/W

NOTE:

Refer to LPC47B357 data sheet for detailed register information.

5.4.2.2 Serial Interface Control

The BIOS function INT 14 provides basic control of the serial interface. The serial interface can be directly controlled by software through the I/O-mapped registers listed in Table 5-9.

	Table 5-9. Serial Interface Control Registers					
COM1	COM2					
Addr.	Addr.	Register	R/W			
3F8h	2F8h	Receive Data Buffer	R			
		Transmit Data Buffer	W			
		Baud Rate Divisor Register 0 (when bit 7 of Line Control Reg. Is set)	W			
3F9h	2F9h	Baud Rate Divisor Register 1 (when bit 7 of Line Control Reg. Is set)	W			
		Interrupt Enable Register	R/W			
3FAh	2FAh	Interrupt ID Register	R			
		FIFO Control Register	W			
3FBh	2FBh	Line Control Register	R/W			
3FCh	2FCh	Modem Control Register	R/W			
3FDh	2FDh	Line Status Register	R			
3FEh	2FEh	Modem Status	R			

5.5 PARALLEL INTERFACE

The legacy-light models include a parallel interface for connection to a peripheral device that has a compatible interface, the most common being a printer. The parallel interface function is integrated into the LPC47B357 I/O controller component and provides bi-directional 8-bit parallel data transfers with a peripheral device. The parallel interface supports three main modes of operation:

- ♦ Standard Parallel Port (SPP) mode
- ♦ Enhanced Parallel Port (EPP) mode
- ♦ Extended Capabilities Port (ECP) mode

These three modes (and their submodes) provide complete support as specified for an IEEE 1284 parallel port.

5.5.1 STANDARD PARALLEL PORT MODE

The Standard Parallel Port (SPP) mode uses software-based protocol and includes two sub-modes of operation, compatible and extended, both of which can provide data transfers up to 150 KB/s. In the compatible mode, CPU write data is simply presented on the eight data lines. A CPU read of the parallel port yields the last data byte that was written.

The following steps define the standard procedure for communicating with a printing device:

- 1. The system checks the Printer Status register. If the Busy, Paper Out, or Printer Fault signals are indicated as being active, the system either waits for a status change or generates an error message.
- 2. The system sends a byte of data to the Printer Data register, then pulses the printer STROBE signal (through the Printer Control register) for at least 500 ns.
- 3. The system then monitors the Printer Status register for acknowledgment of the data byte before sending the next byte.

In extended mode, a direction control bit (CTR 37Ah, bit <5>) controls the latching of output data while allowing a CPU read to fetch data present on the data lines, thereby providing bi-directional parallel transfers to occur.

The SPP mode uses three registers for operation: the Data register (DTR), the Status register (STR) and the Control register (CTR). Address decoding in SPP mode includes address lines A0 and A1.

5.5.2 ENHANCED PARALLEL PORT MODE

In Enhanced Parallel Port (EPP) mode, increased data transfers are possible (up to 2 MB/s) due to a hardware protocol that provides automatic address and strobe generation. EPP revisions 1.7 and 1.9 are both supported. For the parallel interface to be initialized for EPP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with EPP mode. If compatible, then EPP mode can be used. In EPP mode, system timing is closely coupled to EPP timing. A watchdog timer is used to prevent system lockup.

Five additional registers are available in EPP mode to handle 16- and 32-bit CPU accesses with the parallel interface. Address decoding includes address lines A0, A1, and A2.

5.5.3 EXTENDED CAPABILITIES PORT MODE

The Extended Capabilities Port (ECP) mode, like EPP, also uses a hardware protocol-based design that supports transfers up to 2 MB/s. Automatic generation of addresses and strobes as well as Run Length Encoding (RLE) decompression is supported by ECP mode. The ECP mode includes a bi-directional FIFO buffer that can be accessed by the CPU using DMA or programmed I/O. For the parallel interface to be initialized for ECP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with ECP mode. If compatible, then ECP mode can be used.

Ten control registers are available in ECP mode to handle transfer operations. In accessing the control registers, the base address is determined by address lines A2-A9, with lines A0, A1, and A10 defining the offset address of the control register. Registers used for FIFO operations are accessed at their base address + 400h (i.e., if configured for LPT1, then 378h + 400h = 778h).

The ECP mode includes several sub-modes as determined by the Extended Control register. Two submodes of ECP allow the parallel port to be controlled by software. In these modes, the FIFO is cleared and not used, and DMA and RLE are inhibited.

5.5.4 PARALLEL INTERFACE PROGRAMMING

Programming the parallel interface consists of configuration, which typically occurs during POST, and control, which occurs during runtime.

5.5.4.1 Parallel Interface Configuration

The parallel interface must be configured for a specific address range (LPT1, LPT2, etc.) and also must be enabled before it can be used. When configured for EPP or ECP mode, additional considerations must be taken into account. Address selection, enabling, and EPP/ECP mode parameters of the parallel interface are affected through the PnP configuration registers of the LPC47B357 I/O controller. Address selection and enabling are automatically done by the BIOS during POST but can also be accomplished with the Setup utility and other software.

The parallel interface configuration registers are listed in the following table:

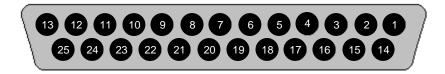
Table 5-10. Parallel Interface Configuration Registers					
Index Address	Function	R/W	Reset Value		
30h	Activate	R/W	00h		
60h	Base Address MSB	R/W	00h		
61h	Base Address LSB	R/W	00h		
70h	Interrupt Select	R/W	00h		
74h	DMA Channel Select	R/W	04h		
F0h	Mode Register	R/W	00h		
F1h	Mode Register 2	R/W	00h		

5.5.4.2 Parallel Interface Control

The BIOS function INT 17 provides simplified control of the parallel interface. Basic functions such as initialization, character printing, and printer status are provide by subfunctions of INT 17. The parallel interface is controllable by software through a set of I/O mapped registers. The number and type of registers available depends on the mode used (SPP, EPP, or ECP). Table 5-11 lists the parallel registers and associated functions based on mode.

Table 5-11.							
	Parallel Interface Control Registers						
I/O Address	Register	SPP Mode Ports	EPP Mode Ports	ECP Mode Ports			
Base	Data	LPT1,2,3	LPT1,2	LPT1,2,3			
Base + 1h	Printer Status	LPT1,2,3	LPT1,2	LPT1,2,3			
Base + 2h	Control	LPT1,2,3	LPT1,2	LPT1,2,3			
Base + 3h	Address		LPT1,2				
Base + 4h	Data Port 0		LPT1,2				
Base + 5h	Data Port 1		LPT1,2				
Base + 6h	Data Port 2		LPT1,2				
Base + 7h	Data Port 3		LPT1,2				
Base + 400h	Parallel Data FIFO			LPT1,2,3			
Base + 400h	ECP Data FIFO			LPT1,2,3			
Base + 400h	Test FIFO			LPT1,2,3			
Base + 400h	Configuration Register A			LPT1,2,3			
Base + 401h	Configuration Register B			LPT1,2,3			
Base + 402h	Extended Control Register			LPT1,2,3			

Base Address:


LPT1 = 378h

LPT2 = 278h

LPT3 = 3BCh

5.5.5 PARALLEL INTERFACE CONNECTOR

Figure 5-4 and Table 5-12 show the connector and pinout of the parallel interface connector. Note that some signals are redefined depending on the port's operational mode.

Figure 5-4. Parallel Interface Connector (Female DB-25 as viewed from rear of chassis)

Table 5-12. DB-25 Parallel Connector Pinout					
Pin	Signal	Function	Pin	Signal	Function
1	STB-	Strobe / Write [1]	14	LF-	Line Feed [2]
2	D0	Data 0	15	ERR-	Error [3]
3	D1	Data 1	16	INIT-	Initialize Paper [4]
4	D2	Data 2	17	SLCTIN-	Select In / Address. Strobe [1]
5	D3	Data 3	18	GND	Ground
6	D4	Data 4	19	GND	Ground
7	D5	Data 5	20	GND	Ground
8	D6	Data 6	21	GND	Ground
9	D7	Data 7	22	GND	Ground
10	ACK-	Acknowledge / Interrupt [1]	23	GND	Ground
11	BSY	Busy / Wait [1]	24	GND	Ground
12	PE	Paper End / User defined [1]	25	GND	Ground
13	SLCT	Select / User defined [1]			

NOTES:

- [1] Standard and ECP mode function / EPP mode function
- [2] EPP mode function: Data Strobe
 - ECP modes: Auto Feed or Host Acknowledge
- [3] EPP mode: user defined
 - ECP modes:Fault or Peripheral Req.
- [4] EPP mode: Reset
 - ECP modes: Initialize or Reverse Req.

5.6 KEYBOARD/POINTING DEVICE INTERFACE

The keyboard/pointing device interface function is provided by the LPC47B357 I/O controller component, which integrates 8042-compatible keyboard controller logic (hereafter referred to as simply the "8042") to communicate with the keyboard and pointing device using bi-directional serial data transfers. The 8042 handles scan code translation and password lock protection for the keyboard as well as communications with the pointing device. This section describes the interface itself. The keyboard is discussed in the Appendix C.

5.6.1 KEYBOARD INTERFACE OPERATION

The data/clock link between the 8042 and the keyboard is uni-directional for Keyboard Mode 1 and bi-directional for Keyboard Modes 2 and 3. (These modes are discussed in detail in Appendix C). This section describes Mode 2 (the default) mode of operation.

Communication between the keyboard and the 8042 consists of commands (originated by either the keyboard or the 8042) and scan codes from the keyboard. A command can request an action or indicate status. The keyboard interface uses IRQ1 to get the attention of the CPU.

The 8042 can send a command to the keyboard at any time. When the 8042 wants to send a command, the 8042 clamps the clock signal from the keyboard for a minimum of 60 us. If the keyboard is transmitting data at that time, the transmission is allowed to finish. When the 8042 is ready to transmit to the keyboard, the 8042 pulls the data line low, causing the keyboard to respond by pulling the clock line low as well, allowing the start bit to be clocked out of the 8042. The data is then transferred serially, LSb first, to the keyboard (Figure 5-6). An odd parity bit is sent following the eighth data bit. After the parity bit is received, the keyboard pulls the data line low and clocks this condition to the 8042. When the keyboard receives the stop bit, the clock line is pulled low to inhibit the keyboard and allow it to process the data.

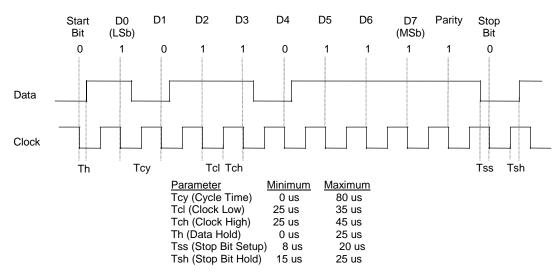


Figure 5-6. 8042-To-Keyboard Transmission of Code EDh, Timing Diagram

Control of the data and clock signals is shared by the 8042and the keyboard depending on the originator of the transferred data. Note that the clock signal is always generated by the keyboard. After the keyboard receives a command from the 8042, the keyboard returns an ACK code. If a parity error or timeout occurs, a Resend command is sent to the 8042.

Table 5-13 lists and describes commands that can be issued by the 8042 to the keyboard.

	т	able 5-13.				
8042-To-Keyboard Commands						
Command	Value	Description				
Set/Reset Status Indicators	EDh	Enables LED indicators. Value EDh is followed by an option byte that specifies the indicator as follows: Bits <73> not used Bit <2>, Caps Lock (0 = off, 1 = on) Bit <1>, NUM Lock (0 = off, 1 = on) Bit <0>, Scroll Lock (0 = off, 1 = on)				
Echo	EEh	Keyboard returns EEh when previously enabled.				
Invalid Command	EFh/F1 h	These commands are not acknowledged.				
Select Alternate Scan Codes	F0h	Instructs the keyboard to select another set of scan codes and sends an option byte after ACK is received: 01h = Mode 1 02h = Mode 2 03h = Mode 3				
Read ID	F2h	Instructs the keyboard to stop scanning and return two keyboard ID bytes.				
Set Typematic Rate/Display	F3h	Instructs the keyboard to change typematic rate and delay to specified values: Bit <7>, Reserved - 0 Bits <6,5>, Delay Time 00 = 250 ms 01 = 500 ms 10 = 750 ms 11 = 1000 ms Bits <40>, Transmission Rate: 00000 = 30.0 ms 00001 = 26.6 ms 00010 = 24.0 ms 00011 = 21.8 ms : 11111 = 2.0 ms				
Enable	F4h	Instructs keyboard to clear output buffer and last typematic key and begin key scanning.				
Default Disable	F5h	Resets keyboard to power-on default state and halts scanning pending next 8042 command.				
Set Default	F6h	Resets keyboard to power-on default state and enable scanning.				
Set Keys - Typematic	F7h	Clears keyboard buffer and sets default scan code set. [1]				
Set Keys - Make/Brake	F8h	Clears keyboard buffer and sets default scan code set. [1]				
Set Keys - Make	F9h	Clears keyboard buffer and sets default scan code set. [1]				
Set Keys - Typematic/Make/Brake	FAh	Clears keyboard buffer and sets default scan code set. [1]				
Set Type Key - Typematic	FBh	Clears keyboard buffer and prepares to receive key ID. [1]				
Set Type Key - Make/Brake	FCh	Clears keyboard buffer and prepares to receive key ID. [1]				
Set Type Key - Make	FDh	Clears keyboard buffer and prepares to receive key ID. [1]				
Resend	FEh	8042 detected error in keyboard transmission.				
Reset	FFh	Resets program, runs keyboard BAT, defaults to Mode 2.				

Note:

[1] Used in Mode 3 only.

5.6.2 POINTING DEVICE INTERFACE OPERATION

The pointing device (typically a mouse) connects to a 6-pin DIN-type connector that is identical to the keyboard connector both physically and electrically. The operation of the interface (clock and data signal control) is the same as for the keyboard. The pointing device interface uses the IRQ12 interrupt.

5.6.3 KEYBOARD/POINTING DEVICE INTERFACE PROGRAMMING

Programming the keyboard interface consists of configuration, which occurs during POST, and control, which occurs during runtime.

5.6.3.1 8042 Configuration

The keyboard/pointing device interface must be enabled and configured for a particular speed before it can be used. Enabling and speed parameters of the 8042 logic are affected through the PnP configuration registers of the LPC47B357 I/O controller. Enabling and speed control are automatically set by the BIOS during POST but can also be accomplished with the Setup utility and other software.

The keyboard interface configuration registers are listed in the following table:

	Table 5-14.				
K	Keyboard Interface Configuration Registers				
Index					
Address	Function	R/W			
30h	Activate	R/W			
70h	Primary Interrupt Select	R/W			
72h	Secondary Interrupt Select	R/W			
F0h	Reset and A20 Select	R/W			

5.6.3.2 8042 Control

The BIOS function INT 16 is typically used for controlling interaction with the keyboard. Subfunctions of INT 16 conduct the basic routines of handling keyboard data (i.e., translating the keyboard's scan codes into ASCII codes). The keyboard/pointing device interface is accessed by the CPU through I/O mapped ports 60h and 64h, which provide the following functions:

- Output buffer reads
- ♦ Input buffer writes
- ♦ Status reads
- ♦ Command writes

Ports 60h and 64h can be accessed using the IN instruction for a read and the OUT instruction for a write. Prior to reading data from port 60h, the "Output Buffer Full" status bit (64h, bit <0>) should be checked to ensure data is available. Likewise, before writing a command or data, the "Input Buffer Empty" status bit (64h, bit <1>) should also be checked to ensure space is available.

I/O Port 60h

I/O port 60h is used for accessing the input and output buffers. This register is used to send and receive data from the keyboard and the pointing device. This register is also used to send the second byte of multi-byte commands to the 8042 and to receive responses from the 8042 for commands that require a response.

A read of 60h by the CPU yields the byte held in the output buffer. The output buffer holds data that has been received from the keyboard and is to be transferred to the system.

A CPU write to 60h places a data byte in the input byte buffer and sets the CMD/ DATA bit of the Status register to DATA. The input buffer is used for transferring data from the system to the keyboard. All data written to this port by the CPU will be transferred to the keyboard **except** bytes that follow a multibyte command that was written to 64h

I/O Port 64h

I/O port 64h is used for reading the status register and for writing commands. A read of 64h by the CPU will yield the status byte defined as follows:

Bit	Function
74	General Purpose Flags.
3	CMD/DATA Flag (reflects the state of A2 during a CPU
	write).
	0 = Data
	1 = Command
2	General Purpose Flag.
1	Input Buffer Full. Set (to 1) upon a CPU write. Cleared by
	IN A, DBB instruction.
0	Output Buffer Full (if set). Cleared by a CPU read of the
	buffer.

A CPU write to I/O port 64h places a command value into the input buffer and sets the CMD/DATA bit of the status register (bit <3>) to CMD.

Table 5-15 lists the commands that can be sent to the 8042 by the CPU. The 8042 uses IRQ1 for gaining the attention of the CPU.

	Table 5-15.
	CPU Commands To The 8042
Value	Command Description
20h	Put current command byte in port 60h.
60h	Load new command byte.
A4h	Test password installed. Tests whether or not a password is installed in the 8042:
	If FAh is returned, password is installed.
	If F1h is returned, no password is installed.
A5h	Load password. This multi-byte operation places a password in the 8042 using the following manner: 1. Write A5h to port 64h.
	 Write each character of the password in 9-bit scan code (translated) format to port 60h.
	3. Write 00h to port 60h.
A6h	Enable security. This command places the 8042 in password lock mode following the A5h
	command. The correct password must then be entered before further communication with the 8042
	is allowed.
A7h	Disable pointing device. This command sets bit <5> of the 8042 command byte, pulling the clock
	line of the pointing device interface low.
A8h	Enable pointing device. This command clears bit <5> of the 8042 command byte, activating the
	clock line of the pointing device interface.
A9h	Test the clock and data lines of the pointing device interface and place test results in the output
	buffer.
	00h = No error detected
	01h = Clock line stuck low
	02h = Clock line stuck high
	03h = Data line stuck low
	04h = Data line stuck high
AAh	Initialization. This command causes the 8042 to inhibit the keyboard and pointing device and places
ADI	55h into the output buffer.
ABh	Test the clock and data lines of the keyboard interface and place test results in the output buffer.
	00h = No error detected
	01h = Clock line stuck low
	02h = Clock line stuck high 03h = Data line stuck low
	04h = Data line stuck low 04h = Data line stuck high
ADh	Disable keyboard command (sets bit <4> of the 8042 command byte).
AEh	Enable keyboard command (sets bit <4> of the 8042 command byte).
C0h	Read input port of the 8042. This command directs the 8042 to transfer the contents of the input port
COII	to the output buffer so that they can be read at port 60h.
C2h	Poll Input Port High. This command directs the 8042 to place bits <74> of the input port into the
OZII	upper half of the status byte on a continous basis until another command is received.
C3h	Poll Input Port Low. This command directs the 8042 to place bits <30> of the input port into the
0011	lower half of the status byte on a continous basis until another command is received.
D0h	Read output port. This command directs the 8042 to transfer the contents of the output port to the
2011	output buffer so that they can be read at port 60h.
D1h	Write output port. This command directs the 8042 to place the next byte written to port 60h into the
	output port (only bit <1> can be changed).
D2h	Echo keyboard data. Directs the 8042 to send back to the CPU the next byte written to port 60h as if
**	it originated from the keyboard. No 11-to-9 bit translation takes place but an interrupt (IRQ1) is
	generated if enabled.
D3h	Echo pointing device data. Directs the 8042 to send back to the CPU the next byte written to port
	60h as if it originated from the pointing device. An interrupt (IRQ12) is generated if enabled.
D4h	Write to pointing device. Directs the 8042 to send the next byte written to 60h to the pointing device.
E0h	Read test inputs. Directs the 8042 to transfer the test bits 1 and 0 into bits <1,0> of the output buffer.
F0h-	Pulse output port. Controls the pulsing of bits $<30>$ of the output port (0 = pulse, 1 = don't pulse).
FFh	Note that pulsing bit <0> will reset the system.

5.6.4 KEYBOARD/POINTING DEVICE INTERFACE CONNECTOR

The legacy-light model provides separate PS/2 connectors for the keyboard and pointing device. Both connectors are identical both physically and electrically. Figure 5-6 and Table 5-16 show the connector and pinout of the keyboard/pointing device interface connectors.

Figure 5-5. Keyboard or Pointing Device Interface Connector (PS/2 female as viewed from rear of chassis)

Table 5-16. Keyboard/Pointing Device Connector Pinout					
Pin	Signal	Description	Pin	Signal	Description
1	DATA	Data	4	+ 5 VDC	Power
2	NC	Not Connected	5	CLK	Clock
3	GND	Ground	6	NC	Not Connected

5.7 UNIVERSAL SERIAL BUS INTERFACE

The Universal Serial Bus (USB) interface provides asynchronous/isochronous data transfers of up to 12 Mb/s with compatible peripherals such as keyboards, printers, or modems. This high-speed interface supports hot-plugging of compatible devices, making possible system configuration changes without powering down or even rebooting systems.

NOTE: It is recommended to run the Windows 98 (or later) operating system when using USB peripherals, **especially a USB keyboard and USB mouse**. Problems may be encountered when using USB devices with a system running Windows 95, although some peripherals may operate satisfactorily.

As shown in Figure 5-7, the USB interface is provided by the 82801 ICH2 component and a USB hub component. All models provide four series-A USB ports on the rear panel. For more information on the USB interface refer to the following web site:

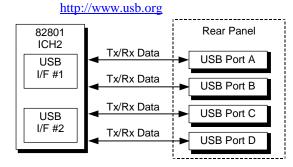


Figure 5-6. USB I/F, Block Diagram

5.7.1 USB DATA FORMATS

The USB I/F uses non-return-to-zero inverted (NRZI) encoding for data transmissions, in which a 1 is represented by no change (between bit times) in signal level and a 0 is represented by a change in signal level. Bit stuffing is employed prior to NRZ1 encoding so that in the event a string of 1's is transmitted (normally resulting in a steady signal level) a 0 is inserted after every six consecutive 1's to ensure adequate signal transitions in the data stream.

The USB transmissions consist of packets using one of four types of formats (Figure 5-8) that include two or more of seven field types.

- ♦ Sync Field 8-bit field that starts every packet and is used by the receiver to align the incoming signal with the local clock.
- ♦ Packet Identifier (PID) Field 8-bit field sent with every packet to identify the attributes (in. out, start-of-frame (SOF), setup, data, acknowledge, stall, preamble) and the degree of error correction to be applied.
- ◆ Address Field 7-bit field that provides source information required in token packets.
- Endpoint Field 4-bit field that provides destination information required in token packets.
- ♦ Frame Field 11-bit field sent in Start-of-Frame (SOF) packets that are incremented by the host and sent only at the start of each frame.
- ♦ Data Field 0-1023-byte field of data.
- ◆ Cyclic Redundancy Check (CRC) Field 5- or 16-bit field used to check transmission integrity.

Token Packet	Sync Field (8 bits)	PID Field (8 bits)	Addr. Field	Field Field		CRC Field (5 bits)		
SOF Packet	Sync Field (8 bits)	PID Field (8 bits)	Frame Field C (11 bits)		CRC Field (5 bits)			
Data Packet	Sync Field (8 bits)	PID Field (8 bits)	Data Field (0-1023 bytes)			CRC Fie (16 bits		
Handshake Packet	Sync Field (8 bits)	PID Field (8 bits)						

Figure 5-7. USB Packet Formats

Data is transferred LSb first. A cyclic redundancy check (CRC) is applied to all packets (except a handshake packet). A packet causing a CRC error is generally completely ignored by the receiver.

5.7.2 USB PROGRAMMING

Programming the USB interface consists of configuration, which typically occurs during POST, and control, which occurs at runtime.

5.7.2.1 USB Configuration

The USB interface operates as a PCI device (31) within the 82801 ICH2 component (functions 2 and 4) and is configured using PCI Configuration Registers as listed in Table 5-17.

	Table 5-17. USB Interface Configuration Registers					
PCI Config. Addr.	Register	Reset Value	PCI Config. Addr.	Register	Reset Value	
00, 01h	Vender ID	8086h	0Eh	Header Type	00h	
02, 03h	Device ID	2442h or 2444h	20-23h	I/O Space Base Address	1	
04, 05h	PCI Command	0000h	2C, 2Dh	Sub. Vender ID	00h	
06, 07h	PCI Status	0280h	3Ch	Interrupt Line	00h	
08h	Revision ID	00h	3Dh	Interrupt Pin	03h	
09h	Programming I/F	00h	60h	Serial Bus Release No.	10h	
0Ah	Sub Class Code	03h	C0, C1h	USB Leg. Kybd./Ms. Cntrl.	2000h	
0Bh	Base Class Code	0Ch	C4h	USB Resume Enable	00h	

5.7.2.2 USB Control

The USB is controlled through I/O registers as listed in table 5-18.

Table 5-18. USB Control Registers				
I/O Addr.	Register	Default Value		
00, 01h	Command	0000h		
02, 03h	Status	0000h		
04, 05h	Interupt Enable	0000h		
06, 07	Frame Number	0000h		
08, 0B	Frame List Base Address	0000h		
0Ch	Start of Frame Modify	40h		
10, 11h	Port 1 Status/Control	0080h		
12, 13h	Port 2 Status/Control	0080h		
18h	Test Data	00h		

5.7.3 USB CONNECTOR

Four series-A connectors are accessible on the rear panel of the chassis.

Figure 5-8. Universal Serial Bus Connector

Table 5-19. USB Connector Pinout						
		USB C01	mector	Pinout		
Pin	Signal	Description	Pin	Signal	Description	
1	Vcc	+5 VDC	3	USB+	Data (plus)	
2	USB-	Data (minus)	4	GND	Ground	

5.7.4 USB CABLE DATA

The recommended cable length between the host and the USB device should be no longer than sixteen feet for full-channel (12 MB/s) operation, depending on cable specification (see following table).

	Table 5-20.							
	USB Cable Length Data							
Conductor Size	Resistance	Maximum Length						
20 AWG	$0.036~\Omega$	16.4 ft (5.00 m)						
22 AWG	$0.057~\Omega$	9.94 ft (3.03 m)						
24 AWG	0.091 Ω	6.82 ft (2.08 m)						
26 AWG	$0.145~\Omega$	4.30 ft (1.31 m)						
28 AWG	$0.232~\Omega$	2.66 ft (0.81 m)						

NOTE:

For sub-channel (1.5 MB/s) operation and/or when using sub-standard cable shorter lengths may be allowable and/or necessary.

The shield, chassis ground, and power ground should be tied together at the host end but left unconnected at the device end to avoid ground loops.

Color code:

 Signal
 Insulation color

 Data +
 Green

 Data White

 Vcc
 Red

 Ground
 Black

5.8 AUDIO SUBSYSTEM

The systems covered in this guide come standard with an embedded Sound Blaster 128 audio subsystem.

5.8.1 FUNCTIONAL ANALYSIS

A block diagram of the audio subsystem is shown in Figure 5-10. The Ensonic ES1373 Audio Controller, operating off the PCI bus, accesses and controls a Cirrus Logic CS4297A Audio Codec. The codec provides the analog-to-digital (ADC) and digital-to-analog (DAC) conversions as well as the mixing functions. All control functions such as volume, audio source selection, and sampling rate are controlled through software over the PCI bus through the ES1373 Audio Controller. Control data and digital audio streams (record and playback) are transferred between the Audio Controller and the Audio Codec over the AC97 Link Bus.

The analog stereo outputs from the codec are applied to a 3-watt mono amplifier that drives a 16-ohm speaker.

The interfaces allowing connection to external audio devices include:

Mic In - This input uses a three-conductor (stereo) 1/8" phone jack that is specifically designed for connection of a condenser microphone with an impedance of 10-K ohms. This is the default recording input after a system reset.

Line In - This input uses a three-conductor (stereo) 1/8" phone jack that is specifically designed for connection of a high-impedance (10k-ohm) audio source such as a tape deck.

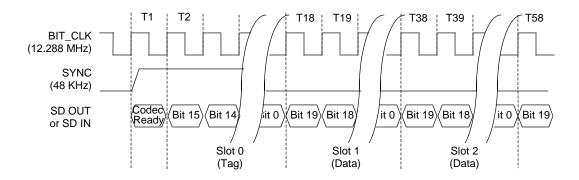
Headphones / Line / SPDIF Out - This output uses a three-conductor (stereo) 1/8" phone jack that is designed for connecting a set of 16-ohm (nom.) stereo headphones or powered speakers. Plugging into the Headphones jack mutes the signal to the internal speaker. This jack also provides a digital output signal conforming to the Sony/Philips Digital Interface (SPDIF) format.

Figure 5-9. Audio Subsystem Functional Block Diagram

5.8.2 AUDIO CONTROLLER

The Creative Technology, Ltd. Ensoniq ES1373 Audio Controller is a PCI device that includes the following features:

- ♦ Compatible with software written for Sound Blaster 128
- ♦ 64-Voice wavetable synthesizer
- ♦ 4000+ sound library
- ♦ Tone control and speaker equalization
- Multiple sampling rate support up to 48 KHz
- ♦ OPL-FM and MPU-401 emulation support
- ♦ Supports Ensoniq's 3D Positional Audio algorithm
- ♦ Aureal A3D API support
- ♦ Microsoft DirectSound, DirectSound 3D, DirectMusic support
- ♦ DOS game compatibility
- ♦ AC'97 Link Bus
- ♦ S/PDIF output
- ♦ ACPI power management


The ES1373 audio controller operates as a PCI bus master and slave device that includes an integrated cache designed to handle the memory bandwidth requirements of audio processing. System memory is accessed as required to keep output cache full (during playback) and input cache (relatively) empty (during record) in accordance with the needs of the audio codec. The integrated cache memory stores playback/record data, sample rate converter data, and control register data. A virtual 3-channel DMA controller handles cache memory operations.

The control registers are accessed using programmed I/O on the PCI bus. All register reads are done as long words, while register writes are performed in byte word or long word format.

In addition to the AC'97 link bus, the audio controller provides a Sony/Philips Digital Interface (SPDIF) output that is applied to the tip connection of the headphone/line out jack. The SPDIF signal format (also known as IEC-958) is a stereo digital signal specification becoming common to consumer products.

5.8.3 AC97 LINK BUS

The audio controller and the audio codec communicate over a five-signal AC97 Link Bus (Figure 5-12). The AC97 Link Bus includes two serial data lines (SD OUT/SD IN) that transfer control and PCM audio data serially to and from the audio codec using a time-division multiplexed (TDM) protocol. The data lines are qualified by a 12.288 MHz BIT_CLK signal driven by the audio codec. Data is transferred in frames synchronized by the 48-KHz SYNC signal, which is derived from the clock signal and driven by the audio controller. The SYNC signal is high during the frame's tag phase then falls during T17and remains low during the data phase. A frame consists of one 16-bit tag slot followed by twelve 20-bit data slots. When asserted (typically during a power cycle), the RESET- signal (not shown) will reset all audio registers to their default values.

Slot	Description
0	Bit 15: Frame valid bit
	Bits 14-3: Slots 1-12 valid bits
	Bits 2-0: Codec ID
1	Command address: Bit 19, R/W; Bits 1812, reg. Index; Bits 110, reserved.
2	Command data
3	Bits 19-4: PCM audio data, left channel (SD OUT, playback; SD IN, record)
	Bits 3-0 all zeros
4	Bits 19-4: PCM audio data, right channel (SD OUT, playback; SD IN, record)
	Bits 3-0 all zeros
5	Modem codec data (not used in this system)
6-11	Reserved
12	I/O control

Figure 5-10. AC'97 Link Bus Protocol

5.8.4 AUDIO CODEC

The Cirrus Logic CS4297A audio codec provides pulse code modulation (PCM) coding and decoding of audio information as well as the selection and/or mixing of analog channels. As shown in Figure 5-11, analog audio from a microphone, tape, or CD can be selected and, if to be recorded (saved) onto a disk drive, routed through an analog-to-digital converter (ADC). The resulting left and right PCM record data are muxed into a time-division-multiplexed (TDM) data stream (SD IN signal) that is routed to the audio controller. Playback (PB) audio takes the reverse path from the audio controller to the audio codec as SD OUT data and is decoded and processed by the digital-to-analog converter (DAC). The codec supports simultaneous record and playback of stereo (left and right) audio. The Sample Rate Generator may be set for sampling frequencies up to 48 KHz.

Analog audio may then be routed through 3D stereo enhancement processor or bypassed to the output selector (SEL). The integrated analog mixer provides the computer control-console functionality handling multiple audio inputs.

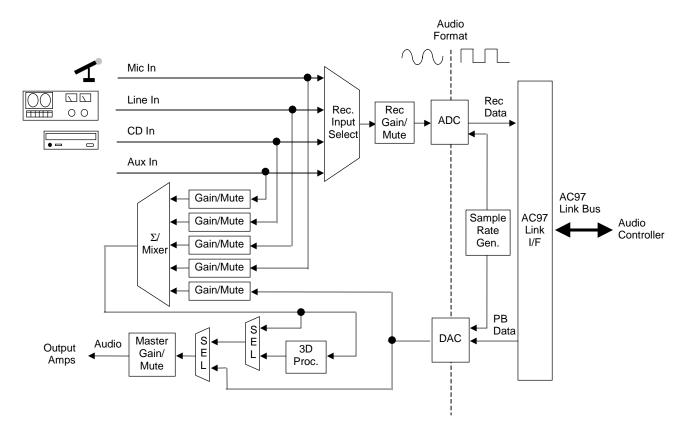


Figure 5-11. CS4297A Audio Codec Functional Block Diagram

All inputs and outputs are two-channel stereo except for the microphone input, which is inputted as a single-channel but mixed internally onto both left and right channels. The microphone input is the default active input. All block functions are controlled through index-addressed registers of the codec.

5.8.5 AUDIO PROGRAMMING

Audio subsystem programming consists configuration, typically accomplished during POST, and control, which occurs during runtime.

5.8.5.1 Audio Configuration

The audio subsystem is configured according to PCI protocol through the ES1373 audio controller. Table 5-21 lists the PCI configuration registers of the audio subsystem.

		Table			
	AC'	97 Audio	Controlle	er	
	PCI C	onfigurat	ion Regis	sters	
PCI		Value	PCI		Value
Conf.		on	Conf.		on
Addr.	Register	Reset	Addr.	Register	Reset
00-01h	Vender ID	1274h	14-17h	Native Audio Bus Mstr. Addr.	0's
02-03h	Device ID	1373h	18-1Bh	Reserved	0's
04-05h	PCI Command	0000h	1C-2Bh	Reserved	0's
06-07h	PCI Status	X610h	2C-2Dh	Subsystem Vender ID	1274h
08h	Revision ID	00h	2E-2Fh	Subsystem ID	1373h
09h	Programming	00h	30h	Exp. ROM Addr.	0's
0Ah	Sub-Class	01h	34h	Capabilities Pointer	DCh
0Bh	Base Class Code	04h	3Ch	Interrupt Line	xxh
0Eh	Header Type	00h	3Dh	Interrupt Pin	01h
10-13h	Native Audio Mixer Base Addr.	1	3E, 3Fh	Min. GNT/Min, LAT	800Ch

5.8.5.2 Audio Control

The audio subsystem is controlled through a set of indexed registers that physically reside in the audio codec . The register addresses are decoded by the audio controller and forwarded to the audio codec over the AC97 Link Bus previously described. The audio codec's control registers (Table 5-22) are mapped into 64 kilobytes of variable I/O space.

		Table 5-2			
		<u>'97 Audio Codec Co</u>		sters	
	Value		Value		Value
Offset	On	Offset	On	Offset	On
Addr. / Register	Reset	Addr. / Register	Reset	Addr. / Register	Reset
00h Reset	0100h	14h Video Vol.	8808h	28h Ext. Audio ID.	0001h
02h Master Vol.	8000h	16h Aux Vol.	8808h	2Ah Ext. Audio Ctrl/Sts	0000h
04h Reserved	Χ	18h PCM Out Vol.	8808h	2Ch PCM DAC SRate	BB80h
06h Mono Mstr. Vol.	8000h	1Ah Record Sel.	0000h	32h PCM ADC SRate	BB80h
08h Reserved	Χ	1Ch Record Gain	8000h	5Eh AC Mode Control	0080h
0Ah PC Beep Vol.	8000h	1Eh Reserved	Χ	60h Misc. Cystal Cntrl.	0023h
0Ch Phone In Vol.	8008h	20h Gen. Purpose	0000h	68h S/PDIF Cntrl.	0000h
0Eh Mic Vol.	8008h	22h 3D Control	0000h		
10h Line In Vol.	8808h	24h Reserved	Χ	7Ch Vender ID1	4352h
12h CD Vol.	8808h	26h Pwr Mgnt.	000xh	7Eh Vender ID2	5931h

5.8.6 AUDIO SPECIFICATIONS

The specifications for the audio subsystem are listed in Table 5-23.

Table 5-23. Audio Subsystem Spec	rifications
Paramemter	Measurement
Sampling Rate	5.51 KHz to 48 KHz
Resolution	16 bit
Nominal Input Voltage:	
Mic In (w/+20 db gain)	0.1 Vrms
Line In	1.0 Vrms
Impedance:	
Mic In	1 K ohms (nom)
Line In	10 K ohms (min)
Line Out (codec output)	730 ohms
Signal-to-Noise Ratio (input to Line Out)	70 db (nom)
Max. Power Output (with 10% THD):	3 watts (into 16 ohms)
Input Gain Attenuation Range	46.5 db
Master Volume Range	-94.5 db
Frequency Response:	
Codec	20-20 KHz
Speaker	450 - 4000 Hz

5.9 NETWORK SUPPORT

These systems include specific features to support network interface PCI cards that may be installed. These features, including network-alert functions with system-off support, are described in the following subsections.

5.9.1 PCI VER. 2.2 SUPPORT

These systems support the Power Management Event (PME-) signal and provided 3.3 VDC auxiliary power for all PCI slots. Network interface cards compliant with PCI specification ver. 2.2 may be installed to providE "system off" network support without additional cable connections. In a powered-down state the compliant network card receives 3.3 volts of auxiliary DC power on pin A14 of the PCI connector and uses PCI pin A19 for the PME- signal that is routed to general purpose input #13 of the LPC47B357 I/O controller. Network activity causing the NIC card to assert the PME- signal can be used to restart or "wake" the system from a suspend state.

NOTE: For auxiliary power to be available in a system-off condition the system unit must be plugged into a live AC outlet. Controlling unit power through a switchable power strip will, with the strip turned off, disable PME- functionality.

5.9.2 ALERT-ON-LAN SUPPORT

Alert-On-LAN (AOL) support allows a compliant network interface controller (NIC) card to communicate the occurrence of certain events over a network even while the system unit is powered off. In a system-off (powered down) condition a NIC card receives auxiliary +3.3 VDC power (derived from the +5 VDC auxiliary power from the power supply assembly). Certain events will result in a compliant NIC card to transmit an appropriate pre-constructed message over the network to a system management console.

Reportable AOL events are listed in the following table:

	Table 5-24.
	AOL Events
Event	Description
BIOS Failure	System fails to boot successfully.
OS Problem	System fails to load operating system after POST.
Missing/Faulty Processor	Processor fails to fetch first instruction.
Heartbeat	Indication of system's network presence (sent approximately every 30
	seconds in normal operation).

As shown in the following figure, support with an AOL-compliant NIC PCI card (such as the Intel PRO/100+ Management Adapter Solution) requires no auxiliary cable since the communication of alert events is handled through the PCI bus interface.

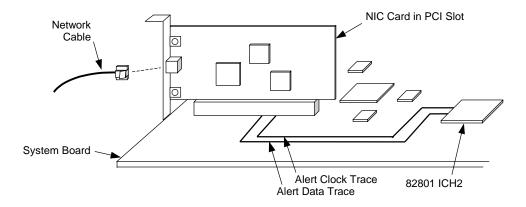
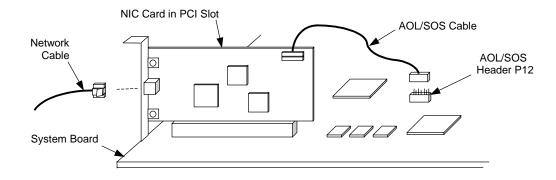


Figure 5-12. AOL Implementation (Generic Representation)

The 82801 ICH initiates event notification by transmitting an alert message over the SMBus-type Alert Clock/Alert Data interface to a NIC card. On these systems the Alert Clock/Alert Data signals are wired-Or'd with the SMBus signals and use the SDONEn/SBOn signals lines for routing to a NIC card on the PCI bus.


The ICH's alert message will be the result of a signal from a sensor (thermal or CPU state) or from the ICH's detection of the system's running status. Upon receiving the alert message from the ICH the NIC transmits the appropriate, pre-constructed message over the network.

The AOL implementation requirements are as follows:

- 1. Intel PRO/100 network drivers 4.11 or later (available from Compaq).
- 2. Intel Alert-On-LAN Utilities, version 2.6 (available from Compaq).
- 3. Management console running one of the following:
 - a. HP OpenView Network Node Manager 6.x
 - b. Intel LANDesk Client Manager
 - c. Sample Application Console from the Intel AOL Utilities (item #2 above)

5.9.3 REMOTE SYSTEM ALERT SUPPORT

These systems provide Remote System Alert (RSA) support for such NIC cards as the 3Com 3C905C-TX NIC card. The RSA function is similar to AOL in that the unit provides, even while powered off, system status alert messages to a network console. However, NIC cards implementing the RSA method do **not** use the SMBus for receiving alert information and therefore require, in addition to the PCI connection, an auxiliary AOL/SOS cable connection with the system board (Figure 5-13).

Figure 5-13. Remote Sense Alert Implementation (Generic Representation)

In the Remote Sense Alert implementation, a NIC card receives event notification directly from the system's thermal sensors and the LPC47B357 I/O controller over an AOL/SOS cable connection (Figure 5-14). During system-off conditions the NIC card receives auxiliary power from the 3.3 VDC auxiliary power rail on the PCI bus.

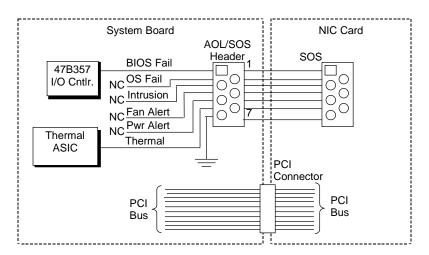


Figure 5-14. RSA Logic, Block Diagram

Reportable RSA events are listed in the following table:

	Table 5-25. Remote System Alert Events
Event	Description
BIOS Failure	System fails to boot successfully.
Thermal Condition	CPU Thermal shutdown reported.
Heartbeat	Indication of system's network presence (sent approximately every 30
	seconds in normal operation).

The current Remote System Alert implementation requirements are as follows:

- 1. 3Com Etherlink 3C905C-TX NIC.
- 2. 7-pin AOL/SOS cable.
- 3. 3Com EtherDisk Driver 5.x or later (available from Compaq).
- 4. Client-side utility software (included with driver).
- 5. Server-side utility software (available from Compaq).
- 6. Management console running one of the following:
 - a. HP OpenView Network Node Manager 6.x
 - b. Intel LANDesk Client Manager

Chapter 6 POWER and SIGNAL DISTRIBUTION

6.1 INTRODUCTION

This chapter describes the power supply and method of general power and signal distribution. Topics covered in this chapter include:

◆ Power supply assembly/control (6.2) page 6-1
 ◆ Power distribution (6.3) page 6-5
 ◆ Signal distribution (6.4) page 6-8

6.2 POWER SUPPLY ASSEMBLY/CONTROL

This system features a power supply assembly that is controlled through programmable logic (Figure 6-1).

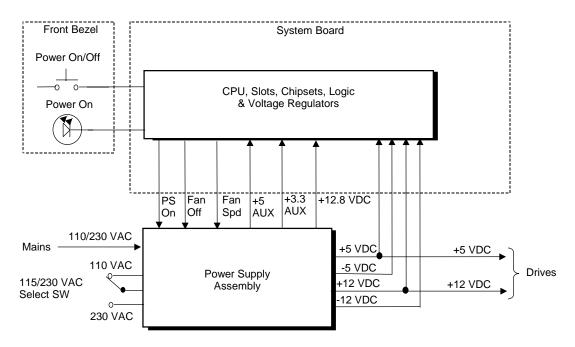


Figure 6–1. Power Distribution and Control, Block Diagram

6.2.1 POWER SUPPLY ASSEMBLY

The power supply assembly is contained in a single unit that features a selectable input voltage: 90-132 VAC and 180-264 VAC. Deskpro EN SFF systems use a 120-watt supply while all other systems employ a 265-watt supply. Table 6-1 list the specifications of the power supplies.

265-Watt Po	Ta wer Supply Asse	ble 6-1. embly Specific	ations (P/N	N 195196)	
	Range/ Tolerance	Min. Current Loading [1]	Max. Current	Surge Current [2]	Max. Ripple
Input Line Voltage:					
115 VAC Setting	90 - 132 VAC				
230 VAC Setting	180-264 VAC				
Line Frequency	47 - 63 Hz				
Constant Input (AC) Current			4.0 A		
+3.3 VDC Output	+/- 5%	1.00 A	24.0 A	24.0 A	50 mV
+5 VDC Output	+/- 5 %	1.00 A	11.0 A	11.0 A	50 mV
+3 AUX Output	+/- 5 %	0.00 A	2.20 A	2.20 A	50 mV
+5 AUX Output	+/- 4 %	0.0 A	1.70 A	1.70 A	50 mV
+12 VDC Output	+/- 5 %	0.00 A	5.00 A	8.0 A	120 mV
+12.8 VDC Output (Vcpu)	+/- 5 %	0.00 A	7.50 A	10.5 A	200 mv
-12 VDC Output	+/- 10 %	0.00 A	0.15 A	0.15 A	200 mV

NOTES:

^[1] Minimum loading requirements must be met at all times to ensure normal operation and specification compliance.

^[2] Surge duration no longer than 10 seconds and +12 tolerance +/- 10%.

6.2.2 POWER CONTROL

The power supply assembly is controlled digitally by the PS On signal (Figure 7-1). When PS On is asserted, the Power Supply Assembly is activated and all voltage outputs are produced. When PS On is de-asserted, the Power Supply Assembly is off and all voltages (except +3.3 AUX and +5 AUX) are not generated. Note that the +3.3 AUX and +5 AUX voltages are always produced as long as the system is connected to a live AC source.

6.2.2.1 Power Button

The PS On signal is typically controlled through the Power Button which, when pressed and released, applies a negative (grounding) pulse to the power control logic. The resultant action of pressing the power button depends on the state and mode of the system at that time and is described as follows:

System State	Pressed Power Button Results In:
Off	Negative pulse, of which the falling edge results in power control logic asserting PS On signal to Power Supply Assembly, which then initializes. ACPI four-second counter is not active.
On, ACPI Disabled	Negative pulse, of which the falling edge causes power control logic to de-assert the PS On signal. ACPI four-second counter is not active.
On, ACPI Enabled	Pressed and Released Under Four Seconds: Negative pulse, of which the falling edge causes power control logic to generate SMI-, set a bit in the SMI source register, set a bit for button status, and start four-second counter. Software should clear the button status bit within four seconds and the Suspend state is entered. If the status bit is not cleared by software in four seconds PS On is de-asserted and the power supply assembly shuts down (this operation is meant as a guard if the OS is hung). Pressed and Held At least Four Seconds Before Release: If the button is held in for at least four seconds and then released. PS On is
	negated, de-activating the power supply.

6.2.2.2 System Board LED Indications

Three LEDs located on the system board (refer to chapter 2, figure 2-5) provide status and a means to troubleshoot possible power-related problems.

	Figure 2-5	
System Board LED	Item #	Function
Power supply on / 5V aux	19	When illuminated, indicates system is plugged into a live AC outlet
		but not turned on. When off and system is plugged into a live AC
		outlet, indicates PS On is asserted (system turned on).
Power button pressed	22	Momentarily illuminates when the power button is pressed.
3.3V aux	25	When illuminated, indicates system is plugged into a live AC outlet.

6.2.2.3 Power LED Indications

A dual-color LED located on the front panel (bezel) is used to indicate system power status. The front panel (bezel) power LED provides a visual indication of key system conditions listed as follows:

Power LED	Condition
Steady green	Normal full-on operation
Blinks green @ 1 Hz	Suspend state (S1)
Blinks green @ 2 Hz	Sleep (suspend to RAM) state (S3)
Blinks green @ 4 Hz	Sleep (suspend to disk) state (S4)
Steady red	Processor not seated
Blinks red @ 0.5 Hz	Power supply crowbar activated
Blinks red @ 1 Hz	BIOS ROM error
Blinks red @ 4 Hz	Thermal condition: processor has overheated and shut down

6.2.2.4 Wake Up Events

The PS On signal can be activated with a power "wake-up" of the system due to the occurrence of a magic packet, serial port ring, or PCI power management (PME) event. These events can be individually enabled through the Setup utility to wake up the system from a sleep (low power) state.

NOTE: Wake-up functionality requires that certain circuits receive auxiliary power while the system is turned off. The system unit must be plugged into a live AC outlet for wake up events to function. **Using an AC power strip to control system unit power will disable wake-up event functionality.**

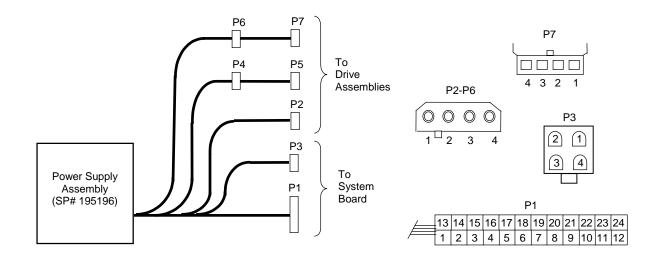
The wake up sequence for each event occurs as follows:

Wake-On-LAN

The network interface controller (NIC) can be configured for detection of a "Magic Packet" and wake the system up from sleep mode through the assertion of the PME- signal on the PCI bus. Refer to Chapter 5, "Network Support" for more information.

Modem Ring

A ring condition on serial port A (COM1) or serial port B (COM2) can be detected by the power control logic and, if so configured, cause the PS On signal to be asserted.


Power Management Event

A power management event that asserts the PME- signal on the PCI bus can be enabled to cause the power control logic to generate the PS On. Note that the PCI card must be PCI ver. 2.2 compliant to support this function.

6.3 POWER DISTRIBUTION

6.3.1 3.3/5/12 VDC DISTRIBUTION

The power supply assembly includes a multi-connector cable assembly that routes +3.3 VDC, +5 VDC, -5 VDC, +12 VC, and -12 VDC to the system board as well as to the individual drive assemblies. Figure 6-2 shows the power supply cabling for Deskpro EXS and Workstation 300 series units.

Conn.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Pin 10	Pin 11	Pin 12
P1	+3.3	+3.3	RTN	+5	RTN	+5	AuxRtn	FO	+5 Aux	+12	+3.3Aux	FSpd
P1 [1]	+3.3	-12	Rtn	PS On	RTN	RSRTN	RTN	-3.3	+5	+5	+3.3RS	FS
P2, 4-7	+5	GND	GND	+12								
P3	GND	GND	+12.8	+12.8								

NOTES:

Connectors not shown to scale.

All + and - values are VDC.

RTN = Return (signal ground)

GND = Power ground

RS = Remote sense

FO = Fan off

FSpd = Fan speed

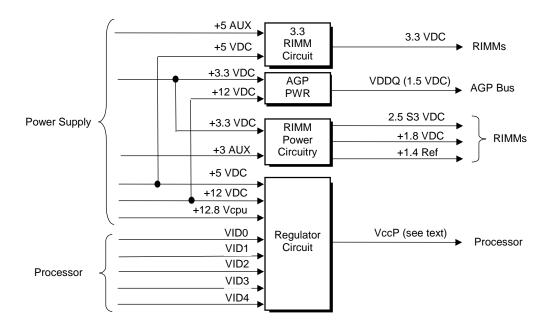
FS = Fan Sink

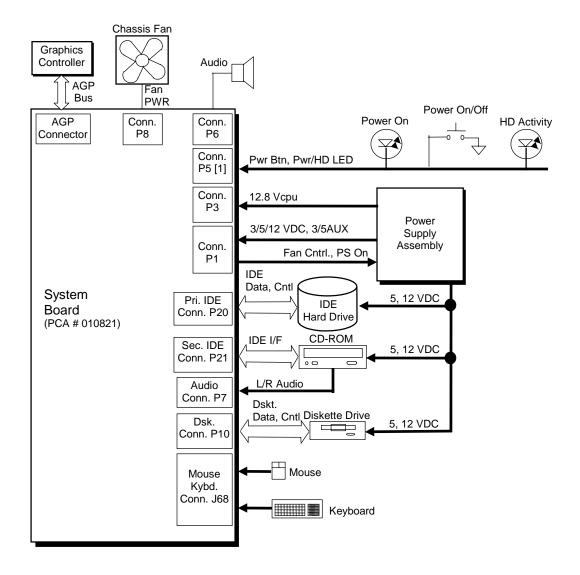
[1] This row represents pins 13-24 of connector P1.

Figure 6–2. Power Cable Diagram

6.3.2 LOW VOLTAGE PRODUCTION/DISTRIBUTION

Voltages less than 3.3 VDC including processor core (VccP) voltage are produced through regulator circuitry on the system board.




Figure 6–3. Low Voltage Supply and Distribution Diagram

The VccP regulator produces the VccP (processor core) voltage according to the strapping of signals VID4..0 by the processor. The possible voltages available are listed as follows:

VID 40	<u>VccP</u>	VID 40	<u>VccP</u>	VID 40	<u>VccP</u>
00000	2.05 VDC	01011	1.50 VDC	10110	2.90 VDC
00001	2.00 VDC	01100	1.45 VDC	10111	2.80 VDC
00010	1.95 VDC	01101	1.40 VDC	11000	2.70 VDC
00011	1.90 VDC	01110	1.35 VDC	11001	2.60 VDC
00100	1.85 VDC	01111	1.30 VDC	11010	2.50 VDC
00101	1.80 VDC	10000	3.50 VDC	11011	2.40 VDC
00110	1.75 VDC	10001	3.40 VDC	11100	2.30 VDC
00111	1.70 VDC	10010	3.30 VDC	11101	2.20 VDC
01000	1.65 VDC	10011	3.20 VDC	11110	2.10 VDC
01001	1.60 VDC	10100	3.10 VDC	11111	No CPU
01010	1.55 VDC	10101	3.00 VDC		

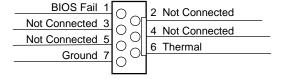
6.4 SIGNAL DISTRIBUTION

Figures 6-4 shows general signal distribution between the main subassemblies of the system units.

NOTES:

[1] See Figure 6-7 for header pinout.

Figure 6–4. Signal Distribution Diagram, Typical Configuration


Power Button/LED Header P5

3 HD LED cathode 4 PWR LED anode 5 PWR LED cathode 6 PWR button (gnd) 7 PWR button (+) 8 Reserved 9 GND
10 SCSI HD LED [1] 11 SCSI HD LED [1]

CD ROM Audio Header P7

	1 Audio (Left Channel)
	2 Ground
	3 Ground
$1 \stackrel{\frown}{\sim} $	4 Audio (right channel)
10-	, ,

AOL/SOS Header P12

NOTE:

No polarity consideration required for connection to speaker header P6 or SCSI HD LED header P29. [1] Separate cable connection for these two pins (equivalent of header P29 on other systems).

Figure 6–5. Header Pinouts

Chapter 7 **BIOS ROM**

7.1 INTRODUCTION

The Basic Input/Output System (BIOS) of the computer is a collection of machine language programs stored as firmware in read-only memory (ROM). The BIOS ROM includes such functions as Power-On Self Test (POST), PCI device initialization, Plug 'n Play support, power management activities, and the Setup utility. The firmware contained in the BIOS ROM supports the following operating systems and specifications:

- **DOS 6.2**
- Windows 3.1 (and Windows for Workgroups 3.11)
- Windows 95, 98, and 2000
- Windows NT 3.5 and 4.0
- OS/2 ver 2.1 and OS/2 Warp
- SCO Unix
- **DMI 2.1**
- Intel Wired for Management (WfM) ver. 2.2
- Alert-On-LAN (AOL) and Wake-On-LAN (WOL)
- ACPI and OnNow
- APM 1.2
- **SMBIOS 2.3.1**
- PC98/99 and NetPC
- **Boot Integrity Services (BIS)**
- Video BIOS on systems with 815E-based graphics or integrated nVIDIA AGP graphics
- Intel PXE boot ROM for the integrated LAN controller
- **BIOS Boot Specification 1.01**
- Enhanced Disk Drive Specification 3.0
- "El Torito" Bootable CD-ROM Format Specification 1.0
- ATAPI Removeable Media Device BIOS Specification 1.0

The BIOS ROM is a 512KB Intel Firmware Hub (or Firmware Hub-compatible) part. The runtime portion of the BIOS resides in a 128KB block from E0000h to FFFFFh. This chapter includes the following topics:

•	ROM flashing (7.2)	page 7-2
•	Boot functions (7.3)	page 7-4
•	Setup utility (7.4)	page 7-6
•	Client management functions (7.5)	page 7-13
•	PnP support (7.6)	page 7-15
•	Power management functions (7.7)	page 7-17
•	USB legacy support (7.8)	page 7-24

7.2 ROM FLASHING

The system BIOS firmware is contained in a flash ROM device that can be re-written with BIOS code (using the ROMPAQ utility or a remote flash program) allowing easy upgrading, including changing the splash screen displayed during the POST routine.

7.2.1 UPGRADING

Upgrading the BIOS is not normally required but may be necessary if changes are made to the unit's operating system, hard drive, or processor. All BIOS ROM upgrades are available directly from Compaq. Flashing is done either locally with a ROMPaq diskette or remotely using the network boot function (described in the section 8.3.2).

This system includes 64 KB of write-protected boot block ROM that provides a way to recover from a failed remote flashing of the system BIOS ROM. If the BIOS ROM fails the flash check, the boot block code provides the minimum amount of support necessary to allow booting the system from the diskette drive and re-flashing the system ROM with a ROMPAQ diskette. Note that if an administrator password has been set in the system the boot block will prompt for this password by illuminating the caps lock keyboard LED and displaying a message if video support is available. A PS/2 keyboard must be used during bootblock operation.

Since video may not be available during the initial boot sequence the boot block routine uses the Num Lock, Caps Lock, and Scroll Lock LEDs of the PS/2 keyboard to communicate the status of the ROM flash as follows:

Table 7-1.			
Boot Block Codes			
Num Lock	Cap Lock	Scroll Lock	
LED	LED	LED	Meaning
Off	On	Off	Administrator password required.
On	Off	Off	Boot failed. Reset required for retry.
Off	Off	On	Flash failed.
On	On	On	Flash complete.

7.2.2 CHANGEABLE SPLASH SCREEN

The splash screen (image displayed during POST) is stored in the BIOS ROM and may be replaced with another image of choice by using the Image Flash utility (Flashi.exe). The Image Flash utility allows the user to browse directories for image searching and pre-viewing. Background and foreground colors can be chosen from the selected image's palette.

The splash screen image requirements are as follows:

♦ Format: Windows bitmap with 4-bit RLE encoding

♦ Size: 424 (width) x 320 (height) pixels

♦ Colors: 16 (4 bits per pixel)

♦ File Size: < 64 KB

The Image Flash utility can be invoked at a command line for quickly flashing a known image as follows:

>\Flashi.exe [Image_Filename] [Background_Color] [Foreground_Color]

The utility checks to insure that the specified image meets the splash screen requirements listed above or it will not be loaded into the ROM.

7.3 BOOT FUNCTIONS

The BIOS supports various functions related to the boot process, including those that occur during the Power On Self-Test (POST) routine.

7.3.1 BOOT DEVICE ORDER

The default boot device order is as follows:

- 1. CD-ROM drive (EL Torito CD images)
- 2. Diskette drive (A)
- 3. Hard drive (C)
- 4. Network boot

The order can be changed in the ROM-based Setup utility (accessed by pressing F10 when so prompted during POST).

7.3.2 NETWORK BOOT (F12) SUPPORT

The BIOS supports booting the system to a network server. The function is accessed by pressing the F12 key when prompted at the lower right hand corner of the display during POST. Booting to a network server allows for such functions as:

- Flashing a ROM on a system without a functional operating system (OS).
- ♦ Installing an OS.
- Installing an application.

These systems can, if configured with a NIC with Preboot Execution Environment (PXE) option ROM, boot with a NetPC-compliant server.

7.3.3 MEMORY DETECTION AND CONFIGURATION

This system uses the Serial Presence Detect (SPD) method of determining the installed RIMM configuration. The BIOS communicates with an EEPROM on each RIMM through the SMBus to obtain data on the following RIMM parameters:

- ♦ Presence
- ♦ Size
- ♦ Type
- ♦ PC800 capability

NOTE: Refer to Chapter 3, "Processor/Memory Subsystem" for the SPD format and RIMM data specific to this system.

The BIOS performs memory detection and configuration with the following steps:

- Program the buffer strength control registers based on SPD data and the RIMM slots that are populated.
- 2. Determine the memory size for each RIMM and program the MCH accordingly.
- 3. Enable refresh.

7.3.4 BOOT ERROR CODES

The BIOS provides visual and audible indications of a failed system boot by using the keyboard LEDs and the system speaker. The error conditions are as follows:

Table 7-2. Boot Error Codes			
Visual [1]	Audible	Meaning	
Num Lock LED blinks	1 short, 2 long beeps	System memory not present or incompatible.	
Scroll Lock LED blinks	2 long, 1 short beeps	Hardware failure before graphics initialization.	
Caps Lock LED blinks	1 long, 2 short beeps	Graphics controller not present or failed to initialize.	
Num, Caps, Scroll Lock LEDs blink	1 long, 3 short beeps	ROM failure.	
Num, Caps, Scroll Lock LEDs blink in sequence	none	Network service mode	

NOTE:

[1] Provided with PS/2 keyboard only.

7.4 SETUP UTILITY

The Setup utility (stored in ROM) allows the user to configure system functions involving security, power management, and system resources. The Setup utility is ROM-based and invoked when the F10 key is pressed during the time the F10 prompt is displayed in the lower right-hand corner of the screen during the POST routine. Highlights of the Setup utility are described in the following table.

NOTE: Support for Computer Setup options may vary depending on your specific hardware configuration.

•	Table	7-3.
Setup	Utility	Functions

Heading	Option	Description
File	System Information	Lists: Product name Processor type/speed/stepping Cache size (L1/L2) Installed memory size and frequency System ROM (includes family name and version) System board revision Chassis serial number Asset tracking number Integrated MAC for embedded, enabled NIC (if applicable)
	About	Displays copyright notice.
	Set Time and Date	Allows you to set system time and date.
	Save to Diskette	Saves system configuration, including CMOS, to a blank, formatted 1.44-MB diskette.
	Restore from Diskette	Restores system configuration, including CMOS, from a diskette.
	Set Defaults and Exit	Restores factory default settings, which includes clearing any established passwords.
	Ignore Changes and Exit	Exits Computer Setup without applying or saving any changes.
	Save Changes and Exit	Saves changes to system configuration and exits Computer Setup.
Storage	Device Configuration	Lists all installed storage devices. The following options appear when a device is selected: Diskette Type (For legacy diskette drives only) Identifies the highest capacity media type accepted by the diskette drive. Options are 3.5" 1.44 MB, 3.5" 720 KB, 5.25" 1.2 MB, 5.25" 360 KB, and Not Installed.
		Drive Emulation (LS-120 and ZIP drives only) Allows you to select a drive emulation type for a storage device. (For example, a Zip drive can be made bootable by selecting hard disk or diskette emulation.) Transfer Mode (IDE devices only) Specifies the active data transfer mode. Options (subject to device capabilities) are PIO 0, Max PIO,

Continued

Table 7-3. Setu	Table 7-3. Setup Utility Functions Continued		
Heading	Option	Description	
Storage (continued)	Device Configuration (continued)	Translation Mode (IDE disks only) Lets you select the translation mode to be used for the device. This enables the BIOS to access disks partitioned and formatted on other systems and may be necessary for users of older versions of Unix (e.g., SCO Unix version 3.2). Options are Bit-Shift, LBA Assisted, User, and None. CAUTION: Ordinarily, the translation mode selected automatically by the BIOS should not	
		be changed. If the selected translation mode is not compatible with the translation mode that was active when the disk was partitioned and formatted, the data on the disk will be inaccessible.	
		Translation Parameters (IDE Disks only) Allows you to specify the parameters (logical cylinders, heads, and sectors per track) used by the BIOS to translate disk I/O requests (from the operating system or an application) into terms the hard drive can accept. Logical cylinders may not exceed 1024. The number of heads may not exceed 256. The number of sectors per track may not exceed 63. These fields are only visible and changeable when the drive translation mode is set to User.	
		Multisector Transfers (IDE ATA devices only) Specifies how many sectors are transferred per multi-sector PIO operation. Options (subject to device capabilities) are Disabled, 8, and 16.	
		Quiet Drive (available on select drives only) Performance - Allows the drive to operate at maximum performance. Quiet (will not be displayed if not supported by drive)- Reduces noise from the drive during operation. When set to Quiet, the drive will not operate at maximum performance.	
	Storage Options	Removable Media Boot Enables/disables ability to boot the system from removable media. Note: After saving changes to Removable Media Boot, the computer will restart. Turn the computer off, then on,	
		manually. Removable Media Write Enables/disables ability to write data to removable media. Note: This feature applies only to legacy diskette, IDE LS- 120 Superdisk, and IDE PD-CD drives. Primary IDE Controller	
		Allows you to enable or disable the primary IDE controller. Secondary IDE Controller Allows you to enable or disable the secondary IDE controller. Diskette MBR Validation Allows you to enable or disable strict validation of the diskette Master Boot Record (MBR).	
		Note: If you use a bootable diskette image that you <i>know</i> to be valid, and it does not boot with Diskette MBR Validation enabled, you may need to disable this option in order to use the diskette.	

Heading	Option	Description
Storage (continued)	DPS Self-Test	Allows user to execute self-tests on IDE hard drives capable of performing the Drive Protection System (DPS) self-tests. Note: This selection will only appear when at least one
		drive capable of performing the IDE DPS self-tests is attached to the system
	Boot Order	Allows user to specify the order in which attached peripheral devices (such as diskette drive, hard drive, CD-ROM, or network interface card) are checked for a bootable operating system image. Each device on the list may be individually excluded from or included for consideration as a bootable operating system source. Note: MS-DOS drive lettering assignments may not
		apply after a non-MS-DOS operating system has started.
		To boot one time from a device other than the default device specified in Boot Order, restart the computer and press F9 when the F10=Setup message appears on the screen. When POST is completed, a list of bootable devices is displayed. Use the arrow keys to select a
		device and press the Enter key.
Security	Setup Password	Allows user to set and enable setup (administrator) password.
		Note : If the setup password is set, it is required to change Computer Setup options, flash the ROM, and make changes to certain plug and play settings under Windows. Also, this password must be set in order to use some Compaq remote security tools.
		See the <i>Troubleshooting Guide</i> for more information.
	Power-On Password	Allows user to set and enable power-on password. See the <i>Troubleshooting Guide</i> for more information.
	Password Options	Allows user to: Enable/disable network server mode. Note: This selection will appear only if a power-on
		password is set. Specify whether password is required for warm boot (CTRL+ALT+DEL).
		Note: This selection is available only when Network Server Mode is disabled. See the Desktop Management Guide for more
	Smart Cover	information. Allows user to:
		Enable/disable the Smart Cover Lock Enable/disable Smart Cover Sensor. Notify User alerts the user that the sensor has
		detected that the cover has been removed. Setup Password requires that the setup password be entered to boot the computer if the sensor detects that the cover has been removed.
		Feature supported on select models only. Refer to the Desktop Management Guide for more information.

Table 7-3. Se	tup Utility Functions Continued	
Heading	Option	Description
Security (continued)	Master Boot Record Security	Allows user to enable or disable Master Boot Record (MBR) Security. When enabled, the BIOS rejects all requests to write to the MBR on the current bootable disk. Each time the computer is powered on or rebooted, the BIOS compares the MBR of the current bootable disk to the previously-saved MBR. If changes are detected, you are given the option of saving the MBR on the current bootable disk, restoring the previously-saved MBR, or disabling MBR Security. You must know the setup password, if one is set. Note: Disable MBR Security before intentionally changing the formatting or partitioning of the current bootable disk. Several disk utilities (such as FDISK and FORMAT) attempt to update the MBR. If MBR Security is enabled and disk accesses are being serviced by the BIOS, write requests to the MBR are rejected, causing the utilities to report errors. If MBR Security is enabled and disk accesses are being serviced by the BIOS during the next reboot, and an MBR Security warning message will be displayed.
	Save Master Boot Record	Saves a backup copy of the Master Boot Record of the current bootable disk. Note: Only appears if MBR Security is enabled.
	Restore Master Boot Record	Restores the backup Master Boot Record to the current bootable disk. Note: Only appears if all of the following conditions are true: MBR Security is enabled A backup copy of the MBR has been previously saved The current bootable disk is the same disk from which the backup copy of the MBR was saved.
	Device Security	Enables/disables serial, parallel, and USB ports and audio security.
	Network Service Boot	Enables/disables the computer's ability to boot from an operating system installed on a network server. (Feature available on NIC models only; the network controller must reside on the PCI bus or be embedded on the system board.)
	System IDs	Allows user to set: Asset tag (16-byte identifier) and Ownership Tag (80-byte identifier displayed during POST) - Refer to the Desktop Management guide for more information Chassis serial number or Universal Unique Identifier (UUID) number - If current number is invalid (these ID numbers are normally set in the factory and are used to uniquely identify the system) Keyboard locale setting (e.g., English or German) for System ID entry.

Heading	Option	Description
Power	Energy Saver	Allows user to set the energy saver mode
		(advanced, disable, or minimal).
		Note: In the minimal energy saver mode setting, the
		hard drive and system do not go into energy saver
		mode, but the setting allows you to press the power
		button to suspend the system.
		This option is not available under ACPI-enabled
		operating systems.
	Timeouts	Allows user to disable or manually select timeout
	Timodata	values for the system and/or all attached IDE hard
		drives.
		Note: This option has no effect under ACPI-enable
		operating systems. This selection will only appear
	Franci Cauca Ontions	when energy saver mode is set to advanced.
	Energy Saver Options	Allows user to set:
		Power button configuration (on/off or sleep/wake)
		under
		APM-enabled operating systems
		Power LED blink in suspend mode
		(enable/disable). This option is not available unde
		ACPI-enabled operating systems.
		Note: Energy Saver Options will not appear if the
		energy saver mode is disabled.
Advanced	Power-On Options	Allows user to set:
(Advanced		POST mode (QuickBoot, FullBoot, or FullBoot
users only)		every 1-30
		days)
		POST messages (enable/disable)
		Safe POST (enable/disable)
		F10 prompt (enable/disable)
		F12 prompt (enable/disable)
		Option ROM prompt (enable/disable)
		Remote wakeup boot sequence (remote
		server/local hard drive)
		After power loss (off/on)
		If you connect your computer to an electric power
		strip, and would like to turn on power to the
		computer using the switch on the power strip, set
		this option to on.
		Note: If you turn off power to your computer
		using the switch on a power strip, you will not
		be able to use the suspend/sleep feature or
		the Remote Management features.
		UUID (Universal Unique Identifier) (enable/disable)
	Onboard Devices	Allows you to set resources for or disable onboard
	STIDOUTA DOVIDOS	system devices (diskette controller, serial port,
		parallel port).
	PCI Devices	Lists currently installed PCI devices and their IRQ
	1 OI Devices	settings.
		Allows you to reconfigure IRQ settings for these
		devices or to disable them entirely.

Table 7-3. Setup Utility Functions Continued		
Heading	Option	Description
Advanced (continued)	Bus Options	Allows user to enable or disable: PCI bus mastering, which allows a PCI device to take control of the PCI bus PCI VGA palette snooping, which sets the VGA palette snooping bit in PCI configuration space; this is only needed with more than one graphics controller installed PCI SERR# Generation.
	Device Options	Allows user to set: Printer mode (bi-directional, EPP & ECP, output only) Num Lock state at power-on (off/on) PME (power management event) wakeup events (enable/disable) Processor cache (enable/disable) Processor Number (enable/disable) for Pentium III processors. ACPI S3 support (enable/disable). S3 is an ACPI (advanced configuration and power interface) sleep state that some add-in hardware options may not support. AGP Aperture size (options vary depending on platform) allows you to modify the size of your AGP aperture size window.
	PCI VGA Configuration	Appears only if there are multiple PCI video adapters in the system. Allows users to specify which VGA controller will be the "boot" or primary VGA controller.

7.5 CLIENT MANAGEMENT FUNCTIONS

Table 7-4 lists the client management BIOS functions supported by the systems covered in this guide. These functions, designed to support intelligent manageability applications, are Compaq-specific unless otherwise indicated.

Table 7-4.	
Client Management Func	tions (INT15)
Function	Mode
Get system ID	Real, 16-, & 32-bit Prot.
Get monitor data	Real, 16-, & 32-bit Prot.
Get system revision	Real, 16-, & 32-bit Prot.
Get temperature status	Real, 16-, & 32-bit Prot.
Get drive attribute	Real
Get drive off-line test	Real
Get chassis serial number	Real, 16-, & 32-bit Prot.
Get system memory map	Real
Write chassis serial number	Real
Get hard drive threshold	Real
Get hard drive ID	Real
RIMM EEPROM Access	Real, 16-, & 32-bit Prot.
	Client Management Function Get system ID Get monitor data Get system revision Get temperature status Get drive attribute Get drive off-line test Get chassis serial number Get system memory map Write chassis serial number Get hard drive threshold Get hard drive ID

NOTE:

[1] Industry standard function.

All 32-bit protected-mode functions are accessed by using the industry-standard BIOS32 Service Directory. Using the service directory involves three steps:

- 1. Locating the service directory.
- 2. Using the service directory to obtain the entry point for the client management functions.
- 3. Calling the client management service to perform the desired function.

The BIOS32 Service Directory is a 16-byte block that begins on a 16-byte boundary between the physical address range of 0E0000h-0FFFFh. The format is as follows:

Offset	No. Bytes	<u>Description</u>
00h	4	Service identifier (four ASCII characters)
04h	4	Entry point for the BIOS32 Service Directory
08h	1	Revision level
09h	1	Length of data structure (no. of 16-byte units)
0Ah	1	Checksum (should add up to 00h)
0Bh	5	Reserved (all 0s)

To support Windows NT an additional table to the BIOS32 table has been defined to contain 32-bit pointers for the DDC locations. The Windows NT extension table is as follows:

; Extension to BIOS SERVICE directory table (next paragraph)

```
"32OS"
db
                              ; number of entries in table
db
          "$DDC"
                              ; DDC POST buffer sig
dd
                              ; 32-bit pointer
dw
                              ; byte size
db
          "$ERB"
                              ; ESCD sig
                              ; 32-bit pointer
dd
dw
                              ; bytes size
```

The service identifier for client management functions is "\$CLM." Once the service identifier is found and the checksum verified, a FAR call is invoked using the value specified at offset 04h to retrieve the CM services entry point. The following entry conditions are used for calling the Desktop Management service directory:

INPUT:		
	EAX	= Service Identifier [\$CLM]
	EBX (318)	= Reserved
	EBX (70)	= Must be set to 00h
	CS	 Code selector set to encompass the physical page holding entry point as well as the immediately following physical page. It must have the same base. CS is execute/read.
	DS	 Data selector set to encompass the physical page holding entry point as well as the immediately following physical page. It must have the same base. DS is read only.
	SS	= Stack selector must provide at least 1K of stack space and be 32-bit.
	(I/O permissions m	ust be provided so that the BIOS can support as necessary)
OUTPUT	·:	
	AL	= Return code:
		00h, requested service is present
		80h, requested service is not present
		81h, un-implemented function specified in BL
		86h and CF=1, function not supported
	EBX	= Physical address to use as the selector BASE for the service
	ECX	= Value to use as the selector LIMIT for the service
	EDX	= Entry point for the service relative to the BASE returned in EBX

The following subsections provide a brief description of key Client Management functions.

7.5.1 SYSTEM ID AND ROM TYPE

Applications can use the INT 15, AX=E800h BIOS function to identify the type of system. This function will return the system ID in the BX register. These systems have the following IDs and ROM family types:

System	System ID	ROM Family	PnP ID
Deskpro EXS or Workstation 300	06C8h	686P5	CPQ0010

The ROM family and version numbers can be verified with the Setup utility or the Compaq Insight Manager or Diagnostics applications.

7.5.2 EDID RETRIEVE

The BIOS function INT 15, AX=E813h is a tri-modal call that retrieves the VESA extended display identification data (EDID). Two subfunctions are provided: AX=E813h BH=00h retrieves the EDID information while AX=E813h BX=01h determines the level of DDC support. Input:

```
BH
                  = 00 Get EDID.
         BH
                  = 01 Get DDC support level
         If BH = 00 then
         DS:(E)SI = Pointer to a buffer (128 bytes) where ROM will return block
         If 32-bit protected mode then
         DS:(E)SI = Pointer to $DDC location
Output:
(Successful)
         If BH
                  = 0:
                  DS:SI=Buffer with EDID file.
         CX
                  = Number of bytes written
         CF
                  = 0
                  =00h Completion of command
         ΑН
         If BH
                  = 1:
                  = System DDC support
         ВН
                    <0>=1 DDC1 support
                    <1>=1 DDC2 support
         BL
                  = Monitor DDC support
                    <0>=1 DDC1 support
                    <1>=1 DDC2 support
                    <2>=1 Screen blanked during transfer
```

= E813h

7.5.3 TEMPERATURE STATUS

CF

ΑН

(Failure)

The BIOS includes a function (INT15, AX=E816h) to retrieve the status of a system's interior temperature. This function allows an application to check whether the temperature situation is at a Normal, Caution, or Critical condition.

= 86h or 87h

7.5.4 DRIVE FAULT PREDICTION

The Compaq BIOS directly supports Drive Fault Prediction for IDE-type hard drives. This feature is provided through two Client Management BIOS calls. Function INT 15, AX=E817h is used to retrieve a 512-byte block of drive attribute data while the INT 15, AX=E81Bh is used to retrieve the drive's warranty threshold data. If data is returned indicating possible failure then the following message is displayed:

"1720-SMART Hard Drive detects imminent failure"

7.6 PNP SUPPORT

The BIOS includes Plug 'n Play (PnP) support for PnP version 1.0A. Table 7-5 lists the PnP functions supported.

	PnP BIOS Functions		
Function Register			
00h	Get number of system device nodes		
01h	Get system device node		
02h	Set system device node		
03h	Get event		
04h	Send message		
50h	Get SMBIOS Structure Information		
51h	Get Specific SMBIOS Structure		

The BIOS call INT 15, AX=E841h, BH=01h can be used by an application to retrieve the default settings of PnP devices for the user. The application should use the following steps for the display function:

- 1. Call PnP function 01(get System Device Node) for each devnode with bit 1 of the control flag set (get static configuration) and save the results.
- 2. Call INT 15, AX=E841h, BH=01h.
- 3. Call PnP "Get Static Configuration" for each devnode and display the defaults.
- 4. If the user chooses to save the configuration, no further action is required. The system board devices will be configured at the next boot. If the user wants to abandon the changes, then the application must call PnP function 02 (Set System Device Node) for each devnode (with bit 1 of the control flag set for static configuration) with the results from the calls made prior to invoking this function.

7.6.1 SMBIOS

In support of the DMI specification the PnP functions 50h and 51h are used to retrieve the SMBIOS data. Function 50h retrieves the number of structures, size of the largest structure, and SMBIOS version. Function 51h retrieves a specific structure. This system supports SMBIOS version 2.3.1 and the following structure types:

<u>Type</u>	<u>Data</u>
0	BIOS Information
1	System Information
3	System Enclosure or Chassis
4	Processor Information
7	Cache Information
8	Port Connector Information
9	System Slots
13	BIOS Language Information
15	System Event Log Information
16	Physical Memory Array
17	Memory Devices
19	Memory Array Mapped Addresses
20	Memory Device Mapped Addresses
31	Boot Integrity Service Entry Point
32	System Boot Information
128	OEM Defined Structure with Intel Alert-On-LAN (AOL) Information

NOTE: System information on these systems is handled exclusively through the SMBIOS. The System Information Table (SIT) method (and it's associated BIOS functions) used on previous systems is no longer supported.

7.7 POWER MANAGEMENT FUNCTIONS

The BIOS ROM provides three types of power management support: independent PM support; APM support, and ACPI support.

7.7.1 INDEPENDENT PM SUPPORT

The BIOS can provide power management (PM) of the system independently from an operating system that doesn't support APM (including DOS, Unix, NT & older versions of OS/2). In the Independent PM environment the BIOS and hardware timers determine when to switch the system to a different power state. State switching is not reported to the OS.

7.7.1.1 Staying Awake In Independent PM

There are two "Time-out to Standy" timers used in independent PM: the System Timer and the IDE Hard Drive Timer.

System Timer

In POST, the BIOS enables a timer in the ICH that generates an SMI once per minute. When the BIOS detects the SMI it checks status bits in the ICH for device activity. If any of the device activity status bits are set at the time of the 1-minute SMI, BIOS resets the time-out minute countdown. The system timer can be configured through the Setup utility for counting down 0, 5, 10, 15, 20, 30, 40, 50, 60, 120, 180, or 240 minutes. The following devices are checked for activity:

- ♦ Keyboard
- ♦ Mouse
- ♦ Serial port(s)
- ♦ Parallel port
- ♦ IDE primary controller

NOTE: The secondary controller is NOT included. This is done to support autosense of a CD-ROM insertion (auto-run) in case Windows or NT is running. Note also that SCSI drive management is the responsibility of the SCSI driver. Any IDE hard drive access resets the hard drive timer.

IDE Hard Drive Timer

During POST, an inactivity timer each IDE hard drive is set to control hard drive spin down. Although this activity is independent of the system timer, the system will not go to sleep until the primary IDE controller has been inactive for the **system** time-out time. The hard drive timer can be configured through the Setup utility for being disabled or counting down 10, 15, 20, 30, 60, 120, 180, or 240 minutes, after which time the hard drive will spin down.

7.7.1.2 Going to Sleep in Independent PM

When a time-out timer expires, Standby for that timer occurs.

System Standby

When the system acquires the Standby mode the BIOS performs two duties:

- 1. Blanks the screen.
- 2. Turns off Vsync (to reduce CRT heater voltage).

Since the hard drive inactivity timer is in the drive and triggered by drive access, the system can be in Standby with the hard drives still spinning (awake).

NOTE: The BIOS does not turn the fan(s) off (as on previous products).

IDE Hard Drive Standby

During hard drive standby the platters stop spinning. Depending on drive type, some hard drives will also cut power to some of the drive electronics that are not needed. The drives can be in this state with the system still awake.

7.7.1.3 Suspend

Suspend is not supported in the Independent PM mode.

7.7.1.4 System OFF

When the system is turned Off but still plugged into a live AC outlet the NIC, ICH2, and I/O components continue to receive auxiliary power in order to power-up as the result of a Magic PacketTM being received over a network. Some NICs are able to wake up a system from Standby in PM, most require their Windows/NT driver to reset them after one wake-up.

7.7.1.5 Waking Up in Independent PM

Activity of either of the following devices will cause the system to wake up with the screen restored:

- ♦ Keyboard
- ♦ Mouse (if driver installed)

The hard drive will not spin up until it is accessed. Any hard drive access will cause it to wake up and resume spinning. Since the BIOS returns to the currently running software, it is possible for the drive to spin up while the system is in Standby with the screen blanked.

7.7.2 ACPI SUPPORT

This system meets the hardware and firmware requirements for being ACPI compliant. This system supports the following ACPI functions:

- ♦ PM timer
- ♦ Power button
- ♦ Power button override
- ♦ RTC alarm
- ♦ Sleep/Wake logic (S1,S3, S4 (Windows 2000), S5)
- ♦ C1 state (Halt)
- ♦ PCI Power Management Event (PME)

7.7.3 APM 1.2 SUPPORT

Advanced Power Management (APM) is an extension of power management. In APM, the O/S decides when a transition to another power state should occur. If going to Standby or Suspend, it notifies all APM-aware drivers requesting approval for the state change. If all drivers approve (the BIOS is not involved in this process) each is instructed to go to that state, then the BIOS is told to go to that state. All versions of Windows, later versions of OS/2 and Linux support APM. The BIOS ROM for these systems support APM 1.2

The APM functions are initialized when the O/S loads. An INT 15h call is made to see if APM is supported by the BIOS, and at what level (1.0, 1.1 or 1.2). After that, the O/S gets a 32-bit address from the BIOS ROM so it can subsequently make 32 bit protected mode calls to access the different APM functions in the ROM.

Table 7-6 lists all the APM calls that the O/S can make to the BIOS. These functions are the major difference between PM and APM.

Table 7-6. APM BIOS Functions		
APM Installation Check	Allows the O/S to determine if the system's BIOS	
	supports the APM functionality and if so, which version of	
	the specification it supports. The APM version number	
	returned from this call is the highest level of APM	
ADM Deal Made Interfere	supported by the BIOS.	
APM Real Mode Interface Connect	Establishes the cooperative interface between the O/S and the BIOS. The BIOS provides OEM-defined power management	
Connect	functionality before the interface is established. Once the interface	
	is established, the BIOS and the O/S Driver coordinate power	
	management activities. The BIOS rejects an interface connect	
	request if any real or protected mode connection already exists.	
APM Protected Mode 16-bit	Initializes the 16-bit protected mode interface between the O/S and	
7 W W T Totolog Wilde To bit	the BIOS. This interface allows a protected mode caller to invoke	
	the BIOS functions without first switching into real or virtual-86	
	mode. This function must be invoked in real mode. This is not	
	currently used by any O/S.	
APM Protected Mode 32-bit	linitializes the 32-bit protected mode interface between the O/S and	
	the BIOS. This interface allows a protected mode O/S to invoke the	
	BIOS functions without the need to first switch into real or virtual-86	
	mode. This function must be invoked in real mode.	
APM Interface Disconnect	Breaks the cooperative connection between the BIOS and the O/S,	
	and returns control of the power management policy to the BIOS.	
	Power management parameter values (timer values, enable/disable	
	settings, etc.) in effect at the time of the disconnect remain in	
	effect.	
CPU Idle	The O/S uses this call to tell BIOS that the system is idle.	
CPU Busy	Informs the BIOS that the O/S has determined that the system is	
	now busy. The BIOS should restore the CPU clock rate to full	
0.15	speed.	
Set Power State	Sets the system or device specified in the power device ID into the	
Fachla/Diachla Davisa	requested power state.	
Enable/Disable Power	Enables or disables all APM BIOS automatic power management.	
Management	When disabled, the BIOS does not automatically power manage	
	devices, enter the Standby State, enter the Suspend State, or take power saving steps in response to CPU Idle calls.	
Restore Power-On Defaults	Re-initializes all power-on defaults.	
Get Power Status	This call returns the system current power status.	
Get PM Event	Returns the next pending PM event, or indicates if no PM events	
Oct i wi Event	are pending.	
O-1 D 01-1-		
Get Power State	Returns the device power state when a specific device ID is used.	
Enable/Disable Device PM	Enables or disables APM BIOS automatic power management for a	
	specified device. When disabled, the APM BIOS does not	
ABM Driver Version	automatically power manage the device.	
APM Driver Version	The O/S uses this call to indicate its level of APM support to the	
Engago/Disongago BM	BIOS. The BIOS returns the APM connection version number.	
Engage/Disengage PM	Engages or disengages cooperative power management of the	
Get Capabilities	system or device. Returns the features which this particular APM 1.2 BIOS	
Oct Oapabilities	implementation supports.	
Get/Set/Disable Resume	This call gets, sets, or disables the system resume timer.	
Timer	This can yets, sets, or disables the system resume time.	
Enable/Disable Resume on	Enables or disables the system's resume on ring indicator	
Ring	functionality. It also returns the enabled/disabled status.	
Enable/Disable Timer Based	Enables or disables the BIOS's generation of global Standby and	
Request	global Suspend requests based on inactivity timers.	

7.7.3.1 Staying Awake in APM

There are two "Time-out to Standby" timers used in APM: the System Timer and the IDE had Drive Timer.

System Timer

In POST, the ROM enables a timer in the ICH2 that generates an SMI once per minute. When the ROM gets the SMI it checks status bits in the ICH2 for activity at any of the following devices:

- ♦ Keyboard
- ♦ Mouse
- Serial port(s)
- Parallel port
- ♦ IDE primary controller

NOTE: The secondary controller is NOT included in order to support auto-sense of a CD-ROM insertion (auto-run) in case Windows or NT is running. Note also that management of SCSI drives is the responsibility of the SCSI driver. Any IDE hard drive access resets the hard drive timer.

If any of the activity status bits are set when the ROM gets the 1-minute SMI, it resets its time-out minute countdown according to the value (0 (default), 5, 10, 15, 20, 30, 40, 50, 60, 120, 180, or 240 minutes) selected in the Setup utility (F10).

IDE Hard Drive Timer

During POST, an inactivity timer in the IDE hard drive controller is set to control hard drive spin down. This activity is independent of the system timer. The BIOS will not inform the O/S that it is time to go to sleep until there has been no IDE primary activity for the **system** time-out time. The IDE hard drive will spin down when its timer expires according to the countdown time (0 (disabled), 10, 15, 20, 30, 60, 120, 180, or 240 minutes) selected in the Setup utility (F10).

NOTE: The O/S (Win98 and later) can use the "Enable/Disable Timer Based Request" APM BIOS call to disable the system timer the BIOS uses so that the O/S can have direct control of the timing.

7.7.3.2 Going to Sleep in APM

There are three levels of system sleep in APM: System/Hard Drive Standby, System Suspend, and System Off.

System/Hard Drive Standby

System Standby is achieved only by a system timer time-out, at such time the following occurs:

- 1. All APM-aware device drivers put their respective devices into "Device Standby."
- 2. The O/S makes a BIOS call to go into System Standby.

NOTE: The BIOS ROM of these systems will not turn the fan(s) off as on previous systems).

If the hard drive timer times out due to inactivity the hard drive motor stops spinning the platters. Depending on drive type, some drives can cut power to some of the drive electronics that are not needed during standby. The drive(s) can be in this state with the system still awake. Since the hard drive timer is in the hard drive controller and triggered by drive access, the system can be in Standby with the hard drive(s) still spinning (awake).

System Suspend

System Suspend is invoked by pressing and releasing the power switch in **under** four seconds (pressing and holding the switch **longer** that four seconds will turn the system off).. The system does **not** time-out from Standby into Suspend.

Upon invoking Suspend, the following actions occur:

- 1. All APM-aware device drivers put their associated devices into "Device Standby."
- 2. The O/S makes a BIOS call to go into Standby, and the BIOS:
 - a. Spins down the IDE drives
 - Halts the processor. The processor remains halted until the next 55ms tick from the RTC.
 - c. At the 55ms tick of the RTC the processor executes a BIOS routine to check to see if anything has happened to wake the system up. If not, the processor is halted again.
 - d. Steps B and C are repeated until a wake-up event occurs.

NOTE: These systems will not turn the fan(s) off as in previous systems.

System OFF

There are two ways to turn the system off:

- 1. Press and hold the power button for longer than 4 seconds (**not** recommended unless absolutely necessary).
- 2. Software shut-down as directed by the O/S. This, being the normal procedure, allows a NIC driver to re-arm the NIC for a Magic PacketTM.

7.7.3.3 Waking Up in APM

Any of the following activities will cause the system to wake up:

- ♦ Keyboard
- ♦ Mouse
- ♦ Ring Indicate
- ♦ RTC alarm
- ♦ Magic Packet

The hard drive will not spin up until it is accessed. Any hard drive access will cause it to wake up and resume spinning. Since the BIOS returns to the currently running software, it is possible for the drive to spin up while the system is in Standby with the screen blanked.

7.8 USB LEGACY SUPPORT

The BIOS ROM checks the USB port, during POST, for the presence of a USB keyboard. This allows a system with only a USB keyboard to be used during ROM-based setup and also on a system with an OS that does not include a USB driver.

On such a system a keystroke will generate an SMI and the SMI handler will retrieve the data from the device and convert it to PS/2 data. The data will be passed to the keyboard controller and processed as in the PS/2 interface. Changing the delay and/or typematic rate of a USB keyboard though BIOS function INT 16 is not supported.

Chapter 7	BIOS ROM			
		This page is in	ntentionally blank.	

Appendix A ERROR MESSAGES AND CODES

A.1 INTRODUCTION

This appendix lists the error codes and a brief description of the probable cause of the error.

NOTE: Errors listed in this appendix are applicable **only** for systems running **Compaq BIOS**.

NOTE: Not all errors listed in this appendix may be applicable to a particular system model and/or configuration.

A.2 BEEP/KEYBOARD LED CODES

Table A-1.					
Beep/Keyboard LED Codes					
Beeps LED [1] Probable Cause					
1 short, 2 long	NUM lock blinking	Base memory failure.			
1 long, 2 short	CAP lock blinking	Video/graphics controller failure.			
2 long, 1 short	Scroll lock blinking	System failure (prior to video initialization).			
1 long, 3 short	(None)	Boot block executing			
None	All three blink in sequence	Keyboard locked in network mode.			
None	NUM lock steady on	ROMPAQ diskette not present, bad, or drive not			
		ready.			
None	CAP lock steady on	Password prompt.			
None	All three blink together	ROM flash failed.			
None All three steady on Successful ROM flash.		Successful ROM flash.			
NOTE:					

NOTE:

[1] PS/2 keyboard only.

A.3 POWER-ON SELF TEST (POST) MESSAGES

Table A-2. Power-On Self Test (POST) Messages					
Error Message					
Invalid Electronic Serial Number Chassis serial number is corrupt. Use Setup to enter a valid num					
Network Server Mode Active (w/o	System is in network mode.				
kybd)					
101-Option ROM Checksum Error	A device's option ROM has failed/is bad.				
102-system Board Failure	Failed ESCD write, A20, timer, or DMA controller.				
150-Safe POST Active	An option ROM failed to execute on a previous boot.				
162-System Options Not Set	Invalid checksum, RTC lost power, or invalid configuration.				
163-Time & Date Not Set	Date and time information in CMOS is not valid.				
164-Memory Size Error	Memory has been added or removed.				
201-Memory Error	Memory test failed.				
213-Incompatible Memory Module	BIOS detected installed DIMM(s) as being not compatible.				
216-Memory Size Exceeds Max	Installed memory exceeds the maximum supported by the system.				
301-Keyboard Error	Keyboard interface test failed (improper connection or stuck key).				
303-Keyboard Controller Error	Keyboard buffer failed empty (8042 failure or stuck key).				
304-Keyboard/System Unit Error	Keyboard controller failed self-test.				
404-Parallel Port Address Conflict	Current parallel port address is conflicting with another device.				
510-Slpash Image Corrupt	Corrupted splash screen image. Restore default image w/ROMPAQ.				
601-Diskette Controller Error	Diskette drive removed since previous boot.				
912-Computer Cover Removed Cover (hood) removal has been detected by the Smart Cover					
Since Last System Start Up	Sensor.				
917-Expansion Riser Not Detected	Expansion (backplane) board not seated properly.				
1720-SMART Hard Drive Detects	SMART circuitry on an IDE drive has detected possible equipment				
Imminent Failure	failure.				
1721-SMART SCSI Hard Drive	SMART circuitry on a SCSI drive has detected possible equipment				
Detects Imminent Failure	failure.				
1801-Microcode Patch Error	A processor is installed for which the BIOS ROM has no patch.				
	Check for ROM update.				
1998-Master Boot Record Backup	Backup copy of the hard drive master boot record is corrupted. Use				
Has Been Lost	Setup to restore the backup from the hard drive.				
1999-Master Boot Record Has	If Master Boot Record Security is enabled, this message indicates				
Changed. Press Any Key To Enter	that the MBR has changed since the backup was made.				
Setup to Restore the MBR.					
2000-Master boot Record hard drive	The hard drive has been changed. Use Setup to create a backup of				
has changed	the new hard drive.				

A.4 SYSTEM ERROR MESSAGES (1xx-xx)

	Tab	le A-3.		
System Error Messages				
Message	Probable Cause	Message	Probable Cause	
101	Option ROM error	110-01	Programmable timer load data test failed	
102	System board failure (see note)	110-02	Programmable timer dynamic test failed	
103	System board failure	110-03	Program timer 2 load data test failed	
104-01	Master int. cntlr. test fialed	111-01	Refresh detect test failed	
104-02	Slave int. cntlr. test failed	112-01	Speed test Slow mode out of range	
104-03	Int. cntlr. SW RTC inoperative	112-02	Speed test Mixed mode out of range	
105-01	Port 61 bit <6> not at zero	112-03	Speed test Fast mode out of range	
105-02	Port 61 bit <5> not at zero	112-04	Speed test unable to enter Slow mode	
105-03	Port 61 bit <3> not at zero	112-05	Speed test unable to enter Mixed mode	
105-04	Port 61 bit <1> not at zero	112-06	Speed test unable to enter Fast mode	
105-05	Port 61 bit <0> not at zero	112-07	Speed test system error	
105-06	Port 61 bit <5> not at one	112-08	Unable to enter Auto mode in speed test	
105-07	Port 61 bit <3> not at one	112-09	Unable to enter High mode in speed test	
105-08	Port 61 bit <1> not at one	112-10	Speed test High mode out of range	
105-09	Port 61 bit <0> not at one	112-11	Speed test Auto mode out of range	
105-10	Port 61 I/O test failed	112-12	Speed test variable speed mode inop.	
105-11	Port 61 bit <7> not at zero	113-01	Protected mode test failed	
105-12	Port 61 bit <2> not at zero	114-01	Speaker test failed	
105-13	No int. generated by failsafe timer	116-xx	Way 0 read/write test failed	
105-14	NMI not triggered by failsafe timer	162-xx	Sys. options failed (mismatch in drive type)	
106-01	Keyboard controller test failed	163-xx	Time and date not set	
107-01	CMOS RAM test failed	164-xx	Memory size	
108-02	CMOS interrupt test failed	199-00	Installed devices test failed	
108-03	CMOS not properly initialized (int.test)			
109-01	CMOS clock load data test failed			
109-02	CMOS clock rollover test failed			
109-03	CMOS not properly initialized (clk test)			

NOTE: A 102 message code may be caused by one of a variety of processor-related problems that may be solved by replacing the processor, although system board replacement may be needed.

A.5 MEMORY ERROR MESSAGES (2xx-xx)

Table A-4.				
Memory Error Messages				
Message	Probable Cause			
200-04	Real memory size changed			
200-05	Extended memory size changed			
200-06	Invalid memory configuration			
200-07	Extended memory size changed			
200-08	CLIM memory size changed			
201-01	Memory machine ID test failed			
202-01	Memory system ROM checksum failed			
202-02	Failed RAM/ROM map test			
202-03	Failed RAM/ROM protect test			
203-01	Memory read/write test failed			
203-02	Error while saving block in read/write test			
203-03	Error while restoring block in read/write test			
204-01	Memory address test failed			
204-02	Error while saving block in address test			
204-03	Error while restoring block in address test			
204-04	A20 address test failed			
204-05				
205-01	Walking I/O test failed			
205-02	Error while saving block in walking I/O test			
205-03	Error while restoring block in walking I/O test			
206-xx	Increment pattern test failed			
207-xx	ECC failure			
210-01	Memory increment pattern test			
210-02	Error while saving memory during increment pattern test			
210-03	Error while restoring memory during increment pattern test			
211-01	Memory random pattern test			
211-02	Error while saving memory during random memory pattern test			
211-03	Error while restoring memory during random memory pattern test			
213-xx	Incompatible DIMM in slot x			
214-xx	Noise test failed			
215-xx	Random address test			

A.6 KEYBOARD ERROR MESSAGES (30x-xx)

Table A-5. Keyboard Error Messages				
Message	Probable Cause	Message	Probable Cause	
300-xx	Failed ID test	303-05	LED test, LED command test failed	
301-01	Kybd short test, 8042 self-test failed	303-06	LED test, LED command test failed	
301-02	Kybd short test, interface test failed	303-07	LED test, LED command test failed	
301-03	Kybd short test, echo test failed	303-08	LED test, command byte restore test failed	
301-04	Kybd short test, kybd reset failed	303-09	LED test, LEDs failed to light	
301-05	Kybd short test, kybd reset failed	304-01	Keyboard repeat key test failed	
302-xx	Failed individual key test	304-02	Unable to enter mode 3	
302-01	Kybd long test failed	304-03	Incorrect scan code from keyboard	
303-01	LED test, 8042 self-test failed	304-04	No Make code observed	
303-02	LED test, reset test failed	304-05	Cannot /disable repeat key feature	
303-03	LED test, reset failed	304-06	Unable to return to Normal mode	
303-04	LED test, LED command test failed			

A.7 PRINTER ERROR MESSAGES (4xx-xx)

	Table	A-6.
Printer	Error I	Messages

Message	Probable Cause	Message	Probable Cause
401-01	Printer failed or not connected	402-11	Interrupt test, data/cntrl. reg. failed
402-01	Printer data register failed	402-12	Interrupt test and loopback test failed
402-02	Printer control register failed	402-13	Int. test, LpBk. test., and data register failed
402-03	Data and control registers failed	402-14	Int. test, LpBk. test., and cntrl. register failed
402-04	Loopback test failed	402-15	Int. test, LpBk. test., and data/cntrl. reg. failed
402-05	Loopback test and data reg. failed	402-16	Unexpected interrupt received
402-06	Loopback test and cntrl. reg. failed	402-01	Printer pattern test failed
402-07	Loopback tst, data/cntrl. reg. failed	403-xx	Printer pattern test failed
402-08	Interrupt test failed	404-xx	Parallel port address conflict
402-09	Interrupt test and data reg. failed	498-00	Printer failed or not connected
402-10	Interrupt test and control reg. failed		

A.8 VIDEO (GRAPHICS) ERROR MESSAGES (5xx-xx)

Table A-7. Video (Graphics) Error Messages

Message	Probable Cause	Message	Probable Cause
501-01	Video controller test failed	508-01	320x200 mode, color set 0 test failed
502-01	Video memory test failed	509-01	320x200 mode, color set 1 test failed
503-01	Video attribute test failed	510-01	640x200 mode test failed
504-01	Video character set test failed	511-01	Screen memory page test failed
505-01	80x25 mode, 9x14 cell test failed	512-01	Gray scale test failed
506-01	80x25 mode, 8x8 cell test failed	514-01	White screen test failed
507-01	40x25 mode test failed	516-01	Noise pattern test failed

See Table A-14 for additional graphics messages.

A.9 DISKETTE DRIVE ERROR MESSAGES (6xx-xx)

Table A-8.
Diskette Drive Error Messages

Message	Probable Cause	Message	Probable Cause
6xx-01	Exceeded maximum soft error limit	6xx-20	Failed to get drive type
6xx-02	Exceeded maximum hard error limit	6xx-21	Failed to get change line status
6xx-03	Previously exceeded max soft limit	6xx-22	Failed to clear change line status
6xx-04	Previously exceeded max hard limit	6xx-23	Failed to set drive type in ID media
6xx-05	Failed to reset controller	6xx-24	Failed to read diskette media
6xx-06	Fatal error while reading	6xx-25	Failed to verify diskette media
6xx-07	Fatal error while writing	6xx-26	Failed to read media in speed test
6xx-08	Failed compare of R/W buffers	6xx-27	Failed speed limits
6xx-09	Failed to format a tract	6xx-28	Failed write-protect test
6xx-10	Failed sector wrap test		

600-xx = Diskette drive ID test

601-xx = Diskette drive format

602-xx = Diskette read test

603-xx = Diskette drive R/W compare test

604-xx = Diskette drive random seek test

605-xx = Diskette drive ID media

606-xx = Diskette drive speed test 607-xx = Diskette drive wrap test

608-xx = Diskette drive write-protect test

609-xx = Diskette drive reset controller test

610-xx = Diskette drive change line test 611-xx = Pri. diskette drive port addr. conflict

612-xx = Sec. diskette drive port addr. conflict

694-00 = Pin 34 not cut on 360-KB drive

697-00 = Diskette type error

698-00 = Drive speed not within limits

699-00 = Drive/media ID error (run Setup)

A.10 SERIAL INTERFACE ERROR MESSAGES (11xx-xx)

Table A-9.Serial Interface Error Messages

Message	Probable Cause	Message	Probable Cause
1101-01	UART DLAB bit failure	1101-13	UART cntrl. signal interrupt failure
1101-02	Line input or UART fault	1101-14	DRVR/RCVR data failure
1101-03	Address line fault	1109-01	Clock register initialization failure
1101-04	Data line fault	1109-02	Clock register rollover failure
1101-05	UART cntrl. signal failure	1109-03	Clock reset failure
1101-06	UART THRE bit failure	1109-04	Input line or clock failure
1101-07	UART Data RDY bit failure	1109-05	Address line fault
1101-08	UART TX/RX buffer failure	1109-06	Data line fault
1101-09	Interrupt circuit failure	1150-xx	Comm port setup error (run Setup)
1101-10	COM1 set to invalid INT	1151-xx	COM1 address conflict
1101-11	COM2 set to invalid INT	1152-xx	COM2 address conflict
1101-12	DRVR/RCVR cntrl. signal failure	1155-xx	COM port address conflict

A.11 MODEM COMMUNICATIONS ERROR MESSAGES (12xx-xx)

	i abie	• A-10).
Serial	Interface	Error	Messages

Serial Interface Error Messages				
Message	Probable Cause	Message	Probable Cause	
1201-XX	Modem internal loopback test	1204-03	Data block retry limit reached [4]	
1201-01	UART DLAB bit failure	1204-04	RX exceeded carrier lost limit	
1201-02	Line input or UART failure	1204-05	TX exceeded carrier lost limit	
1201-03	Address line failure	1204-06	Time-out waiting for dial tone	
1201-04	Data line fault	1204-07	Dial number string too long	
1201-05	UART control signal failure	1204-08	Modem time-out waiting for remote response	
1201-06	UART THRE bit failure	1204-09	Modem exceeded maximum redial limit	
1201-07	UART DATA READY bit failure	1204-10	Line quality prevented remote response	
1201-08	UART TX/RX buffer failure	1204-11	Modem time-out waiting for remote connection	
1201-09	Interrupt circuit failure	1205-XX	Modem auto answer test	
1201-10	COM1 set to invalid inturrupt	1205-01	Time-out waiting for SYNC [5]	
1201-11	COM2 set to invalid	1205-02	Time-out waiting for response [5]	
1201-12	DRVR/RCVR control signal failure	1205-03	Data block retry limit reached [5]	
1201-13	UART control signal interrupt	1205-04	RX exceeded carrier lost limit	
-	failure			
1201-14	DRVR/RCVR data failure	1205-05	TX exceeded carrier lost limit	
1201-15	Modem detection failure	1205-06	Time-out waiting for dial tone	
1201-16	Modem ROM, checksum failure	1205-07	Dial number string too long	
1201-17	Tone detect failure	1205-08	Modem time-out waiting for remote response	
1202-XX	Modem internal test	1205-09	Modem exceeded maximum redial limit	
1202-01	Time-out waiting for SYNC [1]	1205-10	Line quality prevented remote response	
1202-02	Time-out waiting for response [1]	1205-11	Modem time-out waiting for remote connection	
1202-03	Data block retry limit reached [1]	1206-XX	Dial multi-frequency tone test	
1202-11	Time-out waiting for SYNC [2]	1206-17	Tone detection failure	
1202-12	Time-out waiting for response [2]	1210-XX	Modem direct connect test	
1202-13	Data block retry limit reached [2]	1210-01	Time-out waiting for SYNC [6]	
1202-21	Time-out waiting for SYNC [3]	1210-02	Time-out waiting for response [6]	
1202-22	Time-out waiting for response [3]	1210-03	Data block retry limit reached [6]	
1202-23	Data block retry limit reached [3]	1210-04	RX exceeded carrier lost limit	
1203-XX	Modem external termination test	1210-05	TX exceeded carrier lost limit	
1203-01	Modem external TIP/RING failure	1210-06	Time-out waiting for dial tone	
1203-02	Modem external data TIP/RING fail	1210-07	Dial number string too long	
1203-03	Modem line termination failure	1210-08	Modem time-out waiting for remote response	
1204-XX	Modem auto originate test	1210-09	Modem exceeded maximum redial limit	
1204-01	Time-out waiting for SYNC [4]	1210-10	Line quality prevented remote response	
1204-02	Time-out waiting for response [4]	1210-11	Modem time-out waiting for remote connection	

NOTES:

- [1] Local loopback mode[2] Analog loopback originate mode[3] Analog loopback answer mode[4] Modem auto originate test

- [5] Modem auto answer test
- [6] Modem direct connect test

A.12 SYSTEM STATUS ERROR MESSAGES (16xx-xx)

Table A-11.		
System Status Error Messages		
Message	Probable Cause	
1601-xx	Temperature violation	
1611-xx	Fan failure	

A.13 HARD DRIVE ERROR MESSAGES (17xx-xx)

Table A-12.	
Hard Drive Error Messages	S

Message	Probable Cause	Message	Probable Cause
		_	
17xx-01	Exceeded max. soft error limit	17xx-51	Failed I/O read test
17xx-02	Exceeded max. Hard error limit	17xx-52	Failed file I/O compare test
17xx-03	Previously exceeded max. soft error limit	17xx-53	Failed drive/head register test
17xx-04	Previously exceeded max.hard error limit	17xx-54	Failed digital input register test
17xx-05	Failed to reset controller	17xx-55	Cylinder 1 error
17xx-06	Fatal error while reading	17xx-56	Failed controller RAM diagnostics
17xx-07	Fatal error while writing	17xx-57	Failed controller-to-drive diagnostics
17xx-08	Failed compare of R/W buffers	17xx-58	Failed to write sector buffer
17xx-09	Failed to format a track	17xx-59	Failed to read sector buffer
17xx-10	Failed diskette sector wrap during read	17xx-60	Failed uncorrectable ECC error
17xx-19	Cntlr. failed to deallocate bad sectors	17xx-62	Failed correctable ECC error
17xx-40	Cylinder 0 error	17xx-63	Failed soft error rate
17xx-41	Drive not ready	17xx-65	Exceeded max. bad sectors per track
17xx-42	Failed to recalibrate drive	17xx-66	Failed to initialize drive parameter
17xx-43	Failed to format a bad track	17xx-67	Failed to write long
17xx-44	Failed controller diagnostics	17xx-68	Failed to read long
17xx-45	Failed to get drive parameters from ROM	17xx-69	Failed to read drive size
17xx-46	Invalid drive parameters from ROM	17xx-70	Failed translate mode
17xx-47	Failed to park heads	17xx-71	Failed non-translate mode
17xx-48	Failed to move hard drive table to RAM	17xx-72	Bad track limit exceeded
17xx-49	Failed to read media in file write test	17xx-73	Previously exceeded bad track limit
17xx-50	Failed I/O write test		
1700-xx = Hard drive ID test 1719-xx = Hard drive power mode test			

1701-xx = Hard drive format test 1720-xx = SMART drive detects imminent failure

1702-xx = Hard drive read test 1721-xx = SCSI hard drive imminent failure 1703-xx = Hard drive read/write compare test 1724-xx = Net work preparation test 1704-xx = Hard drive random seek test 1736-xx = Drive monitoring test

1705-xx = Hard drive controller test 1771-xx = Pri. IDE controller address conflict 1706-xx = Hard drive ready test 1772-xx = Sec. IDE controller address conflict 1707-xx = Hard drive recalibrate test 1780-xx = Disk 0 failure

1708-xx = Hard drive format bad track test 1781-xx = Disk 1 failure

1709-xx = Hard drive reset controller test 1782-xx = Pri. IDE controller failure 1790-xx = Disk 0 failure

1710-xx = Hard drive park head test 1714-xx = Hard drive file write test 1791-xx = Disk 1 failure 1715-xx = Hard drive head select test 1792-xx = Se. controller failure

1716-xx = Hard drive conditional format test 1793-xx = Sec. Controller or disk failure 1799-xx = Invalid hard drive type 1717-xx = Hard drive ECC test

A.14 HARD DRIVE ERROR MESSAGES (19xx-xx)

Table A-13.Hard Drive Error Messages

Message	Probable Cause	Message	Probable Cause
19xx-01	Drive not installed	19xx-21	Got servo pulses second time but not first
19xx-02	Cartridge not installed	19xx-22	Never got to EOT after servo check
19xx-03	Tape motion error	19xx-23	Change line unset
19xx-04	Drive busy erro	19xx-24	Write-protect error
19xx-05	Track seek error	19xx-25	Unable to erase cartridge
19xx-06	Tape write-protect error	19xx-26	Cannot identify drive
19xx-07	Tape already Servo Written	19xx-27	Drive not compatible with controller
19xx-08	Unable to Servo Write	19xx-28	Format gap error
19xx-09	Unable to format	19xx-30	Exception bit not set
19xx-10	Format mode error	19xx-31	Unexpected drive status
19xx-11	Drive recalibration error	19xx-32	Device fault
19xx-12	Tape not Servo Written	19xx-33	Illegal command
19xx-13	Tape not formatted	19xx-34	No data detected
19xx-14	Drive time-out error	19xx-35	Power-on reset occurred
19xx-15	Sensor error flag	19xx-36	Failed to set FLEX format mode
19xx-16	Block locate (block ID) error	19xx-37	Failed to reset FLEX format mode
19xx-17	Soft error limit exceeded	19xx-38	Data mismatch on directory track
19xx-18	Hard error limit exceeded	19xx-39	Data mismatch on track 0
19xx-19	Write (probably ID) error	19xx-40	Failed self-test
19xx-20	NEC fatal error	19xx-91	Power lost during test

1900-xx = Tape ID test failed 1901-xx = Tape servo write failed

1902-xx = Tape format failed 1903-xx = Tape drive sensor test failed 1904-xx = Tape BOT/EOT test failed 1905-xx = Tape read test failed

1906-xx = Tape read test failed 1906-xx = Tape R/W compare test failed

1907-xx = Tape write-protect failed

A.15 VIDEO (GRAPHICS) ERROR MESSAGES (24xx-xx)

Table A-14. Video (Graphics) Error Messages

Message	Probable Cause	Message	Probable Cause
2402-01	Video memory test failed	2418-02	EGA shadow RAM test failed
2403-01	Video attribute test failed	2419-01	EGA ROM checksum test failed
2404-01	Video character set test failed	2420-01	EGA attribute test failed
2405-01	80x25 mode, 9x14 cell test failed	2421-01	640x200 mode test failed
2406-01	80x25 mode, 8x8 cell test failed	2422-01	640x350 16-color set test failed
2407-01	40x25 mode test failed	2423-01	640x350 64-color set test failed
2408-01	320x200 mode color set 0 test failed	2424-01	EGA Mono. text mode test failed
2409-01	320x200 mode color set 1 test failed	2425-01	EGA Mono. graphics mode test failed
2410-01	640x200 mode test failed	2431-01	640x480 graphics mode test failed
2411-01	Screen memory page test failed	2432-01	320x200 256-color set test failed
2412-01	Gray scale test failed	2448-01	Advanced VGA controller test failed
2414-01	White screen test failed	2451-01	132-column AVGA test failed
2416-01	Noise pattern test failed	2456-01	AVGA 256-color test failed
2417-01	Lightpen text test failed, no response	2458-xx	AVGA BitBLT test failed
2417-02	Lightpen text test failed, invalid response	2468-xx	AVGA DAC test failed
2417-03	Lightpen graphics test failed, no resp.	2477-xx	AVGA data path test failed
2417-04	Lightpen graphics tst failed, invalid resp.	2478-xx	AVGA BitBLT test failed
2418-01	EGA memory test failed	2480-xx	AVGA linedraw test failed

A.16 AUDIO ERROR MESSAGES (3206-xx)

Table A-15.		
Audio Error Message		
Message	Probable Cause	
3206-xx	Audio subsystem internal error	

A.17 DVD/CD-ROM ERROR MESSAGES (33xx-xx)

Table A-16.			
DVD/CD-ROM Drive Error Messages			
Message	Probable Cause		
3301-xx	Drive test failed		
3305-XX	Seek test failed		

See Table A-18 for additional messages.

A.18 NETWORK INTERFACE ERROR MESSAGES (60xx-xx)

Table A-17.				
Network Interface Error Messages				
Message Probable Cause Message Probable Cause				
6000-xx	Pointing device interface error	6054-xx	Token ring configuration test failed	
6014-xx	Ethernet configuration test failed	6056-xx	Token ring reset test failed	
6016-xx	Ethernet reset test failed	6068-xx	Token ring int. loopback test failed	
6028-xx	Ethernet int. loopback test failed	6069-xx	Token ring ext. loopback test failed	
6029-xx	Ethernet ext. loopback test failed	6089-xx	Token ring open	

A.19 SCSI INTERFACE ERROR MESSAGES (65xx-xx, 66xx-xx, 67xx-xx)

Table A-18.
SCSI Interface Error Messages

Message	Probable Cause	Message	Probable Cause
6nyy-02	Drive not installed	6nyy-33	Illegal controller command
6nyy-03	Media not installed	6nyy-34	Invalid SCSI bus phase
6nyy-05	Seek failure	6nyy-35	Invalid SCSI bus phase
6nyy-06	Drive timed out	6nyy-36	Invalid SCSI bus phase
6nyy-07	Drive busy	6nyy-39	Error status from drive
6nyy-08	Drive already reserved	6nyy-40	Drive timed out
6nyy-09	Reserved	6nyy-41	SSI bus stayed busy
6nyy-10	Reserved	6nyy-42	ACK/REQ lines bad
6nyy-11	Media soft error	6nyy-43	ACK did not deassert
6nyy-12	Drive not ready	6nyy-44	Parity error
6nyy-13	Media error	6nyy-50	Data pins bad
6nyy-14	Drive hardware error	6nyy-51	Data line 7 bad
6nyy-15	Illegal drive command	6nyy-52	MSG, C/D, or I/O lines bad
6nyy-16	Media was changed	6nyy-53	BSY never went busy
6nyy-17	Tape write-protected	6nyy-54	BSY stayed busy
6nyy-18	No data detected	6nyy-60	Controller CONFIG-1 register fault
6nyy-21	Drive command aborted	6nyy-61	Controller CONFIG-2 register fault
6nyy-24	Media hard error	6nyy-65	Media not unloaded
6nyy-25	Reserved	6nyy-90	Fan failure
6nyy-30	Controller timed out	6nyy-91	Over temperature condition
6nyy-31	Unrecoverable error	6nyy-92	Side panel not installed
6nyy-32	Controller/drive not connected	6nyy-99	Autoloader reported tape not loaded properly

n = 5, Hard drive

yy = 00, ID

= 03, Power check

= 05, Read

= 06, SA/Media = 08, Controller

= 23, Random read

= 28, Media load/unload

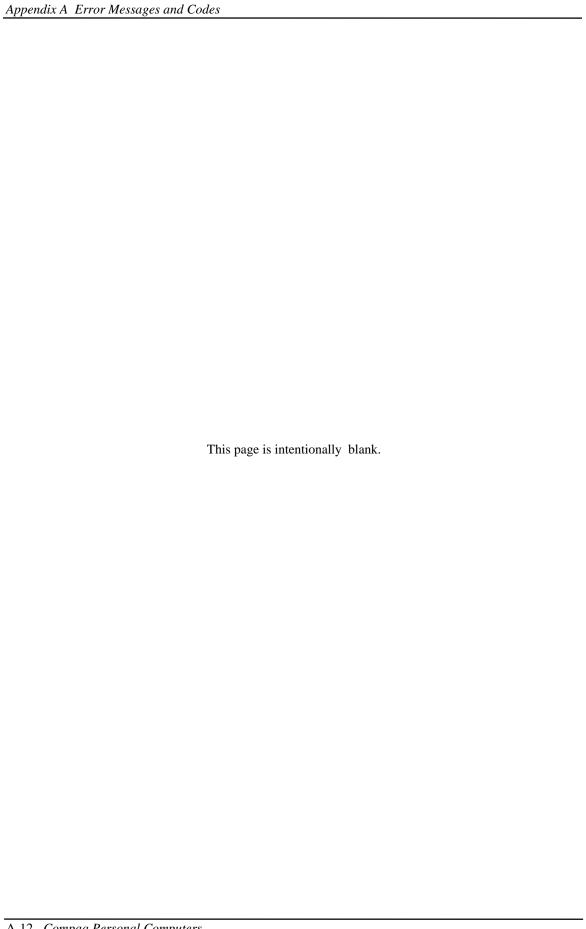

A.20 POINTING DEVICE INTERFACE ERROR MESSAGES (8601-xx)

Table A-19.Pointing Device Interface Error Messages

Message	Probable Cause	Message	Probable Cause
8601-01	Mouse ID fails	8601-07	Right block not selected
8601-02	Left mouse button is inoperative	8601-08	Timeout occurred
8601-03	Left mouse button is stuck closed	8601-09	Mouse loopback test failed
8601-04	Right mouse button is inoperative	8601-10	Pointing device is inoperative
8601-05	Right mouse button is stuck closed	8602-xx	I/F test failed
8601-06	Left block not selected		

^{= 6,} CD-ROM drive

^{= 7,} Tape drive.

Appendix B ASCII CHARACTER SET

B.1 INTRODUCTION

This appendix lists, in Table B-1, the 256-character ASCII code set including the decimal and hexadecimal values. All ASCII symbols may be called while in DOS or using standard text-mode editors by using the combination keystroke of holding the **Alt** key and using the Numeric Keypad to enter the decimal value of the symbol. The extended ASCII characters (decimals 128-255) can only be called using the **Alt** + Numeric Keypad keys.

NOTE: Regarding keystrokes, refer to notes at the end of the table. Applications may interpret multiple keystroke accesses differently or ignore them completely.

Table B-1. ASCII Character Set											
Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol
0	00	Blank	32	20	Space	64	40	@	96	60	- Cyllibol
1	01	\odot	33	21	!	65	41	Ä	97	61	а
2	02		34	22	"	66	42	В	98	62	b
3	03	Ÿ	35	23	#	67	43	С	99	63	С
4	04	•	36	24	\$	68	44	D	100	64	d
5	05	*	37	25	%	69	45	E	101	65	е
6	06	^	38	26	&	70	46	F	102	66	f
7	07	•	39	27	4	71	47	G	103	67	g
8	08	0	40	28	(72	48	Н	104	68	ň
9	09	\bigcirc	41	29)	73	49	I	105	69	I
10	0A		42	2A	*	74	4A	J	106	6A	j
11	0B		43	2B	+	75	4B	K	107	6B	k
12	0C	Ţ	44	2C	•	76	4C	L	108	6C	I
13	0D	Ţ	45	2D	-	77	4D	M	109	6D	m
14	0E	. P	46	2E		78	4E	N	110	6E	n
15	0F	₩	47	2F	/	79	4F	0	111	6F	0
16	10	•	48	30	0	80	50	P	112	70	р
17	11	•	49	31	1	81	51	Q	113	71	q
18	12	‡	50	32	2	82	52	R	114	72	r
19	13	!!	51	33	3	83	53	S	115	73	S
20	14	¶	52	34	4	84	54	T	116	74	t
21	15	§	53	35	5	85	55	U	117	75	u
22	16	<u>_</u>	54	36	6	86	56	V	118	76 77	V
23	17		55	37	7	87	57	W	119	77 70	W
24	18	↑	56	38	8	88	58	X	120	78	X
25	19	\downarrow	57	39	9	89	59	Y	121	79	У
26	1A	\rightarrow	58	3A		90	5A	Z	122	7A	Z
27	1B	\leftarrow	59	3B	;	91	5B	Į,	123	7B	{
28	1C		60	3C	<	92	5C	\	124	7C	Į
29	1D	\leftrightarrow	61	3D	=	93	5D	j	125	7D	}
30	1E	_	62	3E	>	94	5E	٨	126	7E	^
31	1F	▼	63	3F	?	95	5F		127	7F	△ [1]
										С	ontinued

Table B-1. ASCII Code Set (Continued)

Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol
128	80	Ç	160	A0	á	192	C0	L	224	E0	α
129	81	ü	161	A1	í	193	C1	Τ	225	E1	ſŠ
130	82	é	162	A2	Ó	194	C2	Т	226	E2	Γ
131	83	â	163	A3	ú	195	C3	ŀ	227	E3	П
132	84	ä	164	A4	ñ	196	C4	_	228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
134	86	å	166	A6	a	198	C6	F	230	E6	μ
135	87	Ç	167	A7	0	199	C7	╟	231	E7	τ
136	88	ê	168	A8	خ	200	C8	<u>L</u>	232	E8	Φ
137	89	ë	169	A9	_	201	C9	1	233	E9	Θ
138	8A	è	170	AA	7	202	CA	<u>1</u> L	234	EA	Ω
139	8B	ï	171	AB	1/2	203	CB	ī	235	EB	δ
140	8C	î	172	AC	1/4	204	CC	Ţ	236	EC	∞
141	8D	ì Ä	173	AD	i	205	CD	=	237	ED	φ
142	8E	Ä	174	ΑE	«	206	CE	#	238	EE	ε
143	8F	Å	175	AF	>>	207	CF	≟	239	EF	Π
144	90	É	176	B0		208	D0	Ш	240	F0	=
145	91	æ	177	B1		209	D1	₹	241	F1	±
146	92	Æ	178	B2		210	D2	${\mathbb I}$	242	F2	\geq
147	93	ô	179	В3	- 1	211	D3	L	243	F3	≤
148	94	ö	180	B4	+	212	D4	Ŀ	244	F4	ſ
149	95	ò	181	B5	4	213	D5	F	245	F5	J
150	96	û	182	B6	\dashv	214	D6	Г	246	F6	÷
151	97	ù	183	B7	П	215	D7	#	247	F7	≈
152	98	Ÿ	184	B8	٦	216	D8	+	248	F8	0
153	99	Ö	185	B9	╣	217	D9	J	249	F9	•
154	9A	Ü	186	BA		218	DA	Г	250	FA	•
155	9B	¢	187	BB]	219	DB		251	FB	\checkmark
156	9C	£	188	BC		220	DC	-	252	FC	n
157	9D	¥	189	BD	Ш	221	DD		253	FD	2
158	9E	Rs.	190	BE]	222	DE]	254	FE	
159	9F	f	191	BF	1	223	DF		255	FF	Blank

NOTES:

[1] Symbol not displayed. Keystroke Guide:

Dec#	Keystroke(s)
0	Ctrl 2
1-26	Ctrl A thru Z respectively
27	Ctrl [
28	Ctrl
29	Ctrl]
30	Ctrl 6
31	Ctrl -
32	Space Bar
33-43	Shift and key w/corresponding symbol
44-47	Key w/corresponding symbol
48-57	Key w/corresponding symbol, numerical keypad w/Num Lock active
58	Shift and key w/corresponding symbol
59	Key w/corresponding symbol
60	Shift and key w/corresponding symbol
61	Key w/corresponding symbol
62-64	Shift and key w/corresponding symbol
65-90	Shift and key w/corresponding symbol or key w/corresponding symbol and Caps Lock active
91-93	Key w/corresponding symbol
94, 95	Shift and key w/corresponding symbol
96	Key w/corresponding symbol
97-126	Key w/corresponding symbol or Shift and key w/corresponding symbol and Caps Lock active
127	Ctrl -
128-255	Alt and decimal digit(s) of desired character

Appendix C KEYBOARD

C.1 INTRODUCTION

This appendix describes the Compaq keyboard that is included as standard with the system unit. The keyboard complies with the industry-standard classification of an "enhanced keyboard" and includes a separate cursor control key cluster, twelve "function" keys, and enhanced programmability for additional functions.

This appendix covers the following keyboard types:

- Standard enhanced keyboard.
- Space-Saver Windows-version keyboard featuring additional keys for specific support of the Windows operating system.
- Easy Access keyboard with additional buttons for internet accessibility functions.

Only one type of keyboard is supplied with each system. Other types may be available as an option.

NOTE: This appendix discusses only the keyboard unit. The keyboard interface is a function of the system unit and is discussed in Chapter 5, Input/Output Interfaces.

Topics covered in this appendix include the following:

Keystroke processing (C.2) page C-2
 Connectors (C.3) page C-16

C.2 KEYSTROKE PROCESSING

A functional block diagram of the keystroke processing elements is shown in Figure C-1. Power (+5 VDC) is obtained from the system through the PS/2-type interface. The keyboard uses a Z86C14 (or equivalent) microprocessor. The Z86C14 scans the key matrix drivers every 10 ms for pressed keys while at the same time monitoring communications with the keyboard interface of the system unit. When a key is pressed, a Make code is generated. A Break code is generated when the key is released. The Make and Break codes are collectively referred to as scan codes. All keys generate Make and Break codes with the exception of the Pause key, which generates a Make code only.

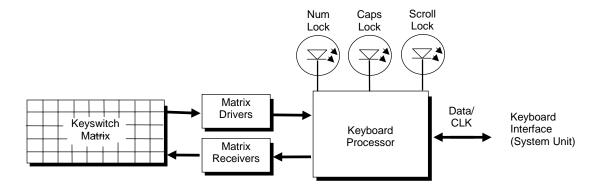
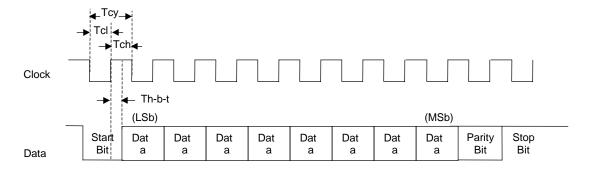


Figure C-1. Keystroke Processing Elements, Block Diagram


When the system is turned on, the keyboard processor generates a Power-On Reset (POR) signal after a period of 150 ms to 2 seconds. The keyboard undergoes a Basic Assurance Test (BAT) that checks for shorted keys and basic operation of the keyboard processor. The BAT takes from 300 to 500 ms to complete.

If the keyboard fails the BAT, an error code is sent to the CPU and the keyboard is disabled until an input command is received. After successful completion of the POR and BAT, a completion code (AAh) is sent to the CPU and the scanning process begins.

The keyboard processor includes a 16-byte FIFO buffer for holding scan codes until the system is ready to receive them. Response and typematic codes are not buffered. If the buffer is full (16 bytes held) a 17th byte of a successive scan code results in an overrun condition and the overrun code replaces the scan code byte and any additional scan code data (and the respective key strokes) are lost. Multi-byte sequences must fit entirely into the buffer before the respective keystroke can be registered.

C.2.1 PS/2-TYPE KEYBOARD TRANSMISSIONS

The PS/2-type keyboard sends two main types of data to the system; commands (or responses to system commands) and keystroke scan codes. Before the keyboard sends data to the system (specifically, to the 8042-type logic within the system), the keyboard verifies the clock and data lines to the system. If the clock signal is low (0), the keyboard recognizes the inhibited state and loads the data into a buffer. Once the inhibited state is removed, the data is sent to the system. Keyboard-to-system transfers (in the default mode) consist of 11 bits as shown in Figure C-2.

Parameter	Minimum	Nominal	Maximum	
Tcy (clock cycle)	60 us		80 us	
Tcl (clock low)	30 us	41 us	50 us	
Tch (clock high)	30 us		40 us	
Th-b-t (high-before-transmit)		20 us		

Figure C–2. PS/2 Keyboard-To-System Transmission, Timing Diagram

The system can halt keyboard transmission by setting the clock signal low. The keyboard checks the clock line every 60 us to verify the state of the signal. If a low is detected, the keyboard will finish the current transmission **if** the rising edge of the clock pulse for the parity bit has not occurred. The system uses the same timing relationships during reads (typically with slightly reduced time periods).

The enhanced keyboard has three operating modes:

- ♦ Mode 1 PC-XT compatible
- ♦ Mode 2 PC-AT compatible (default)
- Mode 3 Select mode (keys are programmable as to make-only, break-only, typematic)

Modes can be selected by the user or set by the system. Mode 2 is the default mode. Each mode produces a different set of scan codes. When a key is pressed, the keyboard processor sends that key's make code to the 8042 logic of the system unit. The When the key is released, a release code is transmitted as well (except for the Pause key, which produces only a make code). The 8042-type logic of the system unit responds to scan code reception by asserting IRQ1, which is processed by the interrupt logic and serviced by the CPU with an interrupt service routine. The service routine takes the appropriate action based on which key was pressed.

C.2.2 USB-TYPE KEYBOARD TRANSMISSIONS

The USB-type keyboard sends essentially the same information to the system that the PS/2 keyboard does except that the data receives additional NRZI encoding and formatting (prior to leaving the keyboard) to comply with the USB I/F specification (discussed in chapter 5 of this guide).

Packets received at the system's USB I/F and decoded as originating from the keyboard result in an SMI being generated. An SMI handler routine is invoked that decodes the data and transfers the information to the 8042 keyboard controller where normal (legacy) keyboard processing takes place.

C.2.3 KEYBOARD LAYOUTS

Figures C-3 through C-8 show the key layouts for keyboards shipped with Compaq systems. Actual styling details including location of the Compaq logo as well as the numbers lock, caps lock, and scroll lock LEDs may vary.

C.2.3.1 Standard Enhanced Keyboards

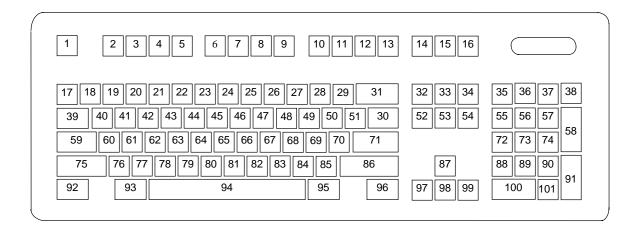


Figure C-3. U.S. English (101-Key) Keyboard Key Positions

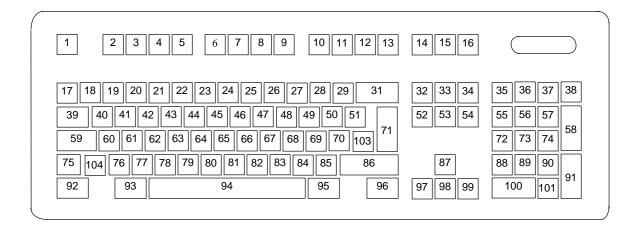


Figure C-4. National (102-Key) Keyboard Key Positions

C.2.3.2 Windows Enhanced Keyboards

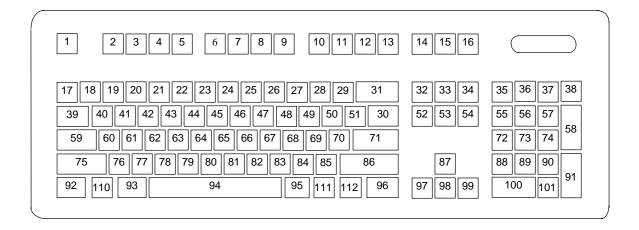


Figure C-5. U.S. English Windows (101W-Key) Keyboard Key Positions

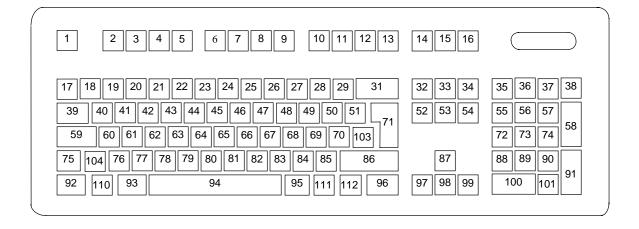
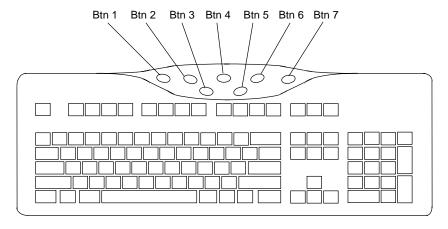
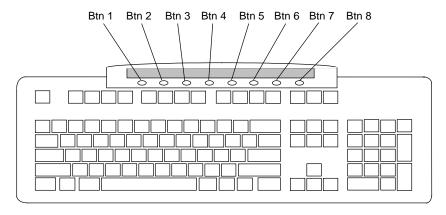



Figure C-6. National Windows (102W-Key) Keyboard Key Positions

C.2.3.3 Easy Access Keyboards

The Easy Access keyboard is a Windows Enhanced-type keyboard that includes special buttons allowing quick internet navigation. Depending on system, either a 7-button or an 8-button layout may be supplied.

The 7-button Easy Access Keyboard uses the layout shown in Figure C-7 and is available with either a legacy PS/2-type connection or a Universal Serial Bus (USB) type connection.



NOTE:

Main key positions same as Windows Enhanced (Figures C-5 or C-6).

Figure C-7. 7-Button Easy Access Keyboard Layout

The 8-button Easy Access Keyboard uses the layout shown in Figure C-8 and uses the PS/2-type connection.

NOTE:

Main key positions same as Windows Enhanced (Figures C-5 or C-6).

Figure C-8. 8-Button Easy Access Keyboard Layout

C.2.4 KEYS

All keys generate a make code (when pressed) and a break code (when released) with the exception of the **Pause** key (pos. 16), which produces a make code only. All keys with the exception of the **Pause** and Easy Access keys are also typematic, although the typematic action of the **Shift, Ctrl, Alt, Num Lock, Scroll Lock, Caps Lock**, and **Ins** keys is suppressed by the BIOS. Typematic keys, when held down longer than 500 ms, send the make code repetitively at a 10-12 Hz rate until the key is released. If more than one key is held down, the last key pressed will be typematic.

C.2.4.1 Special Single-Keystroke Functions

The following keys provide the intended function in most applications and environments.

Caps Lock - The **Caps Lock** key (pos. 59), when pressed and released, invokes a BIOS routine that turns on the caps lock LED and shifts into upper case key positions 40-49, 60-68, and 76-82. When pressed and released again, these keys revert to the lower case state and the LED is turned off. Use of the **Shift** key will reverse which state these keys are in based on the **Caps Lock** key.

Num Lock - The **Num Lock** key (pos. 32), when pressed and released, invokes a BIOS routine that turns on the num lock LED and shifts into upper case key positions 55-57, 72-74, 88-90, 100, and 101. When pressed and released again, these keys revert to the lower case state and the LED is turned off.

The following keys provide special functions that require specific support by the application.

Print Scrn - The **Print Scrn** (pos. 14) key can, when pressed, generate an interrupt that initiates a print routine. This function may be inhibited by the application.

Scroll Lock - The **Scroll Lock** key (pos. 15) when pressed and released, , invokes a BIOS routine that turns on the scroll lock LED and inhibits movement of the cursor. When pressed and released again, the LED is turned off and the function is removed. This keystroke is always serviced by the BIOS (as indicated by the LED) but may be inhibited or ignored by the application.

Pause - The **Pause** (pos. 16) key, when pressed, can be used to cause the keyboard interrupt to loop, i.e., wait for another key to be pressed. This can be used to momentarily suspend an operation. The key that is pressed to resume operation is discarded. This function may be ignored by the application.

The Esc, Fn (function), Insert, Home, Page Up/Down, Delete, and End keys operate at the discretion of the application software.

C.2.4.2 Multi-Keystroke Functions

Shift - The **Shift** key (pos. 75/86), when held down, produces a shift state (upper case) for keys in positions 17-29, 30, 39-51, 60-70, and 76-85 as long as the **Caps Lock** key (pos. 59) is toggled off. If the **Caps Lock** key is toggled on, then a held **Shift** key produces the lower (normal) case for the identified pressed keys. The **Shift** key also reverses the **Num Lock** state of key positions 55-57, 72, 74, 88-90, 100, and 101.

Ctrl - The **Ctrl** keys (pos. 92/96) can be used in conjunction with keys in positions 1-13, 16, 17-34, 39-54, 60-71, and 76-84. The application determines the actual function. Both **Ctrl** key positions provide identical functionality. The pressed combination of **Ctrl** and **Break** (pos. 16) results in the generation of BIOS function INT 1Bh. This software interrupt provides a method of exiting an application and generally halts execution of the current program.

Alt - The **Alt** keys (pos. 93/95) can be used in conjunction with the same keys available for use with the **Ctrl** keys with the exception that position 14 (**SysRq**) is available instead of position 16 (**Break**). The **Alt** key can also be used in conjunction with the numeric keypad keys (pos. 55-57, 72-74, and 88-90) to enter the decimal value of an ASCII character code from 1-255. The application determines the actual function of the keystrokes. Both **Alt** key positions provide identical functionality. The combination keystroke of **Alt** and **SysRq** results in software interrupt 15h, AX=8500h being executed. It is up to the application to use or not use this BIOS function.

The **Ctrl** and **Alt** keys can be used together in conjunction with keys in positions 1-13, 17-34, 39-54, 60-71, and 76-84. The **Ctrl** and **Alt** key positions used and the sequence in which they are pressed make no difference as long as they are held down at the time the third key is pressed. The **Ctrl**, **Alt**, and **Delete** keystroke combination (required twice if in the Windows environment) initiates a system reset (warm boot) that is handled by the BIOS.

C.2.4.3 Windows Keystrokes

Windows-enhanced keyboards include three additional key positions. Key positions 110 and 111 (marked with the Windows logo) have the same functionality and are used by themselves or in combination with other keys to perform specific "hot-key" type functions for the Windows operating system. The defined functions of the Windows logo keys are listed as follows:

Keystroke **Function** Window Logo Open Start menu Window Logo + F1 Display pop-up menu for the selected object Window Logo + TAB Activate next task bar button Window Logo + E Explore my computer Find document Window Logo + F Window Logo + CTRL + F Find computer Window Logo + M Minimize all Shift + Window Logo + M Undo minimize all Window Logo + R Display Run dialog box Window Logo + PAUSE Perform system function Window Logo + 0-9 Reserved for OEM use (see following text)

The combination keystroke of the Window Logo + 1-0 keys are reserved for OEM use for auxiliary functions (speaker volume, monitor brightness, password, etc.).

Key position 112 (marked with an application window icon is used in combination with other keys for invoking Windows application functions.

C.2.4.4 Easy Access Keystrokes

The Easy Access keyboards (Figures C-7 and C-8) include additional keys (also referred to as buttons) used to streamline internet access and navigation.

These buttons, which can be re-programmed to provide other functions, have the default functionality described below:

7-Button Easy Access Keyboard:

Button #	Description	Default Function	
1	Check email	Email	
2	Go to community	Emoney	
3	Extra web site	Compaq web site	
4	Go to favorite web site	AltaVista web site	
5	Internet search	Search	
6	Instant answer	Travel expenses	
7	E-commerce	Shopping	

8-Button Easy Access Keyboard:

Button #	Description	Default Function
1	Go to favorite web site	Customer web site of choice
2	Go to AltaVista	AltaVista web site
3	Search	AltaVista search engine
4	Check Email	Launches user Email
5	Business Community	Industry specification info
6	Market Monitor	Launches Bloomberg market monitor
7	Meeting Center	Links to user's project center
8	News/PC Lock	News retrieval service

All buttons may be re-programmed by the user through the Easy Access utility.

C.2.5 KEYBOARD COMMANDS

Table C-1 lists the commands that the keyboard can send to the system (specifically, to the 8042-type logic).

Table C-1.					
Ke	Keyboard-to-System Commands				
Command Value Description					
Key Detection Error/Over/run	00h [1] FFh [2]	Indicates to the system that a switch closure couldn't be identified.			
BAT Completion AAh Indicates to the system that the BAT has been success		Indicates to the system that the BAT has been successful.			
BAT Failure FCh Indicates failure of the BAT by the keyboard.		Indicates failure of the BAT by the keyboard.			
Echo EEh Indicates that the Echo command was keyboard.		Indicates that the Echo command was received by the keyboard.			
Acknowledge (ACK) FAh		Issued by the keyboard as a response to valid system inputs (except the Echo and Resend commands).			
Resend FEh Issued by the keyboard following an invalid input		Issued by the keyboard following an invalid input.			
Keyboard ID 83ABh		Upon receipt of the Read ID command from the system, the keyboard issues the ACK command followed by the two IDS bytes.			

Note:

C.2.6 SCAN CODES

The scan codes generated by the keyboard processor are determined by the mode the keyboard is operating in.

- Mode 1: In Mode 1 operation, the keyboard generates scan codes compatible with 8088-/8086-based systems. To enter Mode 1, the scan code translation function of the keyboard controller must be disabled. Since translation is not performed, the scan codes generated in Mode 1 are identical to the codes required by BIOS. Mode 1 is initiated by sending command F0h with the 01h option byte. Applications can obtain system codes and status information by using BIOS function INT 16h with AH=00h, 01h, and 02h.
- ♦ Mode 2: Mode 2 is the default mode for keyboard operation. In this mode, the 8042 logic translates the make codes from the keyboard processor into the codes required by the BIOS. This mode was made necessary with the development of the Enhanced III keyboard, which includes additional functions over earlier standard keyboards. Applications should use BIOS function INT 16h, with AH=10h, 11h, and 12h for obtaining codes and status data. In Mode 2, the keyboard generates the Break code, a two-byte sequence that consists of a Make code immediately preceded by F0h (i.e., Break code for 0Eh is "F0h 0Eh").
- Mode 3: Mode 3 generates a different scan code set from Modes 1 and 2. Code translation must be disabled since translation for this mode cannot be done.

^[1] Modes 2 and 3.

^[2] Mode 1 only.

Table C-2. Sevboard Scan Code

		Keyboard Sc			
Key		Make / Break Codes (Hex)			
Pos.	Legend	Mode 1	Mode 2	Mode 3	
1	Esc	01/81	76/F0 76	08/na	
2	F1	3B/BB	05/F0 05	07/na	
3	F2	3C/BC	06/F0 06	0F/na	
4	F3	3D/BD	04/F0 04	17/na	
5	F4	3E/BE	0C/F0 0C	1F/na	
6	F5	3F/BF	03/F0 03	27/na	
7	F6	40/C0	0B/F0 0B	2F/na	
8	F7	41/C1	83/F0 83	37/na	
9	F8	42/C2	0A/F0 0A	3F/na	
10	F9	43/C3	01/FO 01	47/na	
11	F10	44/C4	09/F0 09	4F/na	
12	F11	57/D7	78/F0 78	56/na	
13	F12	58/D8	07/F0 07	5E/na	
14	Print Scrn	E0 2A E0 37/E0 B7 E0 AA	E0 2A E0 7C/E0 F0 7C E0 F0 12	57/na	
17	T THIR OCH	E0 37/E0 B7 [1] [2]	E0 7C/E0 F0 7C [1] [2]	37/114	
		54/84 [3]	84/F0 84 [3]		
15	Scroll Lock	46/C6	7E/F0 7E	5F/na	
16	Pause	E1 1D 45 E1 9D C5/na	E1 14 77 E1 F0 14 F0 77/na	62/na	
10	1 ausc	E0 46 E0 C6/na [3]	E0 7E E0 F0 7E/na [3]	02/114	
17	`	29/A9	0E/F0 E0	0E/F0 0E	
18	1	02/82	16/F0 16	46/F0 46	
19	2	03/83	1E/F0 1E	1E/F0 1E	
20	3	04/84	26/F0 26	26/F0 26	
21	4	05/85	25/F0 25	25/F0 25	
22	5	06/86	2E/F0 2E	2E/F0 2E	
23	6	07/87	36/F0 36	36/F0 36	
24	7	08/88	3D/F0 3D	3D/F0 3D	
25	8	09/89	3E/F0 3E	3E/F0 3E	
26	9	0A/8A	46/F0 46	46/F0 46	
27	0	0B/8B	45/F0 45	45/F0 45	
28	-	0C/8C	45/10 45 4E/F0 4E	45/F0 45 4E/F0 4E	
29	=	0D/8D	55/F0 55	55/F0 55	
30		2B/AB	5D/F0 5D	5C/F0 5C	
31	Backspace	0E/8E	66/F0 66	66/F0 66	
32	Insert	E0 52/E0 D2	E0 70/E0 F0 70	67/na	
32	insert	E0 52/E0 D2 E0 AA E0 52/E0 D2 E0 2A [4]	E0 70/E0 F0 70 E0 F0 12 E0 70/E0 F0 70 E0 12 [5]	67/na	
		E0 2A E0 52/E0 D2 E0 2A [4] E0 2A E0 52/E0 D2 E0 AA [6]	E0 12 E0 70/E0 F0 70 E0 12 [5]		
33	Home	E0 47/E0 D2	E0 6C/E0 F0 6C	6E/na	
55	TIOTHE	E0 AA E0 52/E0 D2 E0 2A [4]	E0 F0 12 E0 6C/E0 F0 6C E0 12 [5]	OL/IIA	
		E0 2A E0 47/E0 C7 E0 AA [6]	E0 12 E0 6C/E0 F0 6C E0 F0 12 [6]		
34	Page Up	E0 49/E0 C7	E0 7D/E0 F0 7D	6F/na	
0.	r ago op	E0 AA E0 49/E0 C9 E0 2A [4]	E0 F0 12 E0 7D/E0 F0 7D E0 12 [5]	017114	
		E0 2A E0 49/E0 C9 E0 AA [6]	E0 12 E0 7D/E0 F0 7D E0 F0 12 [6]		
35	Num Lock	45/C5	77/F0 77	76/na	
36	/	E0 35/E0 B5	E0 4A/E0 F0 4A	77/na	
	•	E0 AA E0 35/E0 B5 E0 2A [1] E0 F0 12 E0 4A/E0 F0 4A E		/1104	
37	*	37/B7 7C/F0 7C		7E/na	
38	-	4A/CA 7B/F0 7B		84/na	
39	Tab	0F/8F	0D/F0 0D	0D/na	
40	Q	10/90	15/F0 15	15/na	
	~	10/00	10/1 0 10	15/114	

Continued

([x] Notes listed at end of table.)

Table C-2. Keyboard Scan Codes (Continued)

Key Make / Break Codes (Hex)			ce / Break Codes (Hex)		
Pos	Legend	Mode 1	Mode 2	Mode 3	
41	W	11/91	1D/F0 1D	1D/F0 1D	
42	E	12/92	24/F0 24	24/F0 24	
43	R	13/93	2D/F0 2D	2D/F0 2D	
44	Т	14/94	2C/F0 2C	2C/F0 2C	
45	Υ	15/95	35/F0 35	35/F0 35	
46	U	16/96	3C/F0 3C	3C/F0 3C	
47		17/97	43/F0 43	43/F0 43	
48	0	18/98	44/F0 44	44/F0 44	
49	Р	19/99	4D/F0 4D	4D/F0 4D	
50	[1A/9A	54/F0 54	54/F0 54	
51]	1B/9B	5B/F0 5B	5B/F0 5B	
52	Delete	E0 53/E0 D3 E0 AA E0 53/E0 D3 E0 2A [4] E0 2A E0 53/E0 D3 E0 AA [6]	E0 71/E0 F0 71 E0 F0 12 E0 71/E0 F0 71 E0 12 [5] E0 12 E0 71/E0 F0 71 E0 F0 12	64/F0 64	
			[6]		
53	End	E0 4F/E0 CF E0 AA E0 4F/E0 CF E0 2A [4] E0 2A E0 4F/E0 CF E0 AA [6]	E0 69/E0 F0 69 E0 F0 12 E0 69/E0 F0 69 E0 12 [5] E0 12 E0 69/E0 F0 69 E0 F0 12 [6]	65/F0 65	
54	Page Down	E0 51/E0 D1 E0 AA E0 51/E0 D1 E0 2A [4] E0 @a E0 51/E0 D1 E0 AA [6]	E0 7A/E0 F0 7A E0 F0 12 E0 7A/E0 F0 7A E0 12 [5] E0 12 E0 7A/E0 F0 7A E0 F0 12 [6]	6D/F0 6D	
55	7	47/C7 [6]	6C/F0 6C [6]	6C/na [6]	
56	8	48/C8 [6]	75/F0 75 [6]	75/na [6]	
57	9	49/C9 [6]	7D/F0 7D [6]	7D/na [6]	
58	+	4E/CE [6]	79/F0 79 [6]	7C/F0 7C	
59	Caps Lock	3A/BA	58/F0 58	14/F0 14	
60	Α	1E/9E	1C/F0 1C	1C/F0 1C	
61	S	1F/9F	1B/F0 1B	1B/F0 1B	
62	D	20/A0	23/F0 23	23/F0 23	
63	F	21/A1	2B/F0 2B	2B/F0 2B	
64	G	22/A2	34/F0 34	34/F0 34	
65	Н	23/A3	33/F0 33	33/F0 33	
66	J	24/A4	3B/F0 3B	3B/F0 3B	
67	K	25/A5	42/F0 42	42/F0 42	
68	L	26/A6	4B/F0 4B	4B/F0 4B	
69	,	27/A7	4C/F0 4C	4C/F0 4C	
70	4	28/A8	52/F0 52	52/F0 52	
71	Enter	1C/9C	5A/F0 5A	5A/F0 5A	
72	4	4B/CB [6]	6B/F0 6B [6]	6B/na [6]	
73	5	4C/CC [6]	73/F0 73 [6]	73/na [6]	
74	6	4D/CD [6]	74/F0 74 [6]	74/na [6]	
75	Shift (left)	2A/AA	12/F0 12	12/F0 12	
76	Z	2C/AC	1A/F0 1A	1A/F0 1A	
77	X	2D/AD	22/F0 22	22/F0 22	
78	С	2E/AE	21/F0 21	21/F0 21	
79	V	2F/AF	2A/F0 2A	2A/F0 2A	
80	В	30/B0	32/F0 32	32/F0 32	

Continued

([x] Notes listed at end of table.)

Table C-2. Keyboard Scan Codes (Continued)

Key		Make / Break Codes (Hex)		
Pos.	Legend	Mode 1	Mode 2	Mode 3
81	N	31/B1	31/F0 31	31/F0 31
82	М	32/B2	3A/F0 3A	3A/F0 3A
83	,	33/B3	41/F0 41	41/F0 41
84		34/B4	49/F0 49	49/F0 49
85	/	35/B5	4A/F0 4A	4A/F0 4A
86	Shift (right)	36/B6	59/F0 59	59/F0 59
87		E0 48/E0 C8	E0 75/E0 F0 75	63/F0 63
		E0 AA E0 48/E0 C8 E0 2A [4]	E0 F0 12 E0 75/E0 F0 75 E0 12 [5]	
		E0 2A E0 48/E0 C8 E0 AA [6]	E0 12 E0 75/E0 F0 75 E0 F0 12 [6]	
88	1	4F/CF [6]	69/F0 69 [6]	69/na [6]
89	2	50/D0 [6]	72/F0 72 [6]	72/na [6]
90	3	51/D1 [6]	7A/F0 7A [6]	7A/na [6]
91	Enter	E0 1C/E0 9C	E0 5A/F0 E0 5A	79/F0
				79[6]
92	Ctrl (left)	1D/9D	14/F0 14	11/F0 11
93	Alt (left)	38/B8	11/F0 11	19/F0 19
94	(Space)	39/B9	29/F0 29	29/F0 29
95	Alt (right)	E0 38/E0 B8	E0 11/F0 E0 11	39/na
96	Ctrl (right)	E0 1D/E0 9D	E0 14/F0 E0 14	58/na
97		E0 4B/E0 CB	E0 6B/Eo F0 6B	61/F0 61
		E0 AA E0 4B/E0 CB E0 2A [4]	E0 F0 12 E0 6B/E0 F0 6B E0 12[5]	
		E0 2A E0 4B/E0 CB E0 AA [6]	E0 12 E0 6B/E0 F0 6B E0 F0 12[6]	
98	E0 50/E0 D0		E0 72/E0 F0 72	60/F0 60
		E0 AA E0 50/E0 D0 E0 2A [4]	E0 F0 12 E0 72/E0 F0 72 E0 12[5]	
		E0 2A E0 50/E0 D0 E0 AA [6]	E0 12 E0 72/E0 F0 72 E0 F0 12[6]	
99		E0 4D/E0 CD	E0 74/E0 F0 74	6A/F0 6A
		E0 AA E0 4D/E0 CD E0 2A [4]	E0 F0 12 E0 74/E0 F0 74 E0 12[5]	
100		E0 2A E0 4D/E0 CD E0 AA [6]	E0 12 E0 74/E0 F0 74 E0 F0 12[6]	70/ [0]
100	0	52/D2 [6]	70/F0 70 [6]	70/na [6]
101	•	53/D3 [6]	71/F0 71 [6]	71/na [6]
102	na	7E/FE	6D/F0 6D	7B/F0 7B
103	na	2B/AB	5D/F0 5D	53/F0 53
104	na "A": 25)	36/D6	61/F0 61	13/F0 13
110	(Win95)	E0 5B/E0 DB	E0 1F/E0 F0 1F	8B/F0 8B
	[7]	E0 AA E0 5B/E0 DB E0 2A [4]	E0 F0 12 E0 1F/E0 F0 1F E0 12 [5]	
111	(\MinOE)	E0 2A E0 5B/E0 DB E0 AA [6] E0 5C/E0 DC	E0 12 E0 1F/E0 F0 1F E0 F0 12 [6] E0 2F/E0 F0 27	00/50.00
TTT	(Win95)	E0 AA E0 5C/E0 DC E0 2A [4]	E0 2F/E0 F0 27 E0 F0 12 E0 27/E0 F0 27 E0 12 [5]	8C/F0 8C
	[7]	E0 AA E0 5C/E0 DC E0 AA [4] E0 2A E0 5C/E0 DC E0 AA [6]	E0 F0 12 E0 27/E0 F0 27 E0 12 [5] E0 12 E0 27/E0 F0 27 E0 F0 12 [6]	
112	(Win	E0 2A E0 5C/E0 DC E0 AA [6]	E0 2F/E0 F0 2F	8D/F0 8D
112		E0 3D/E0 DD E0 AA E0 5D/E0 DD E0 2A [4]	E0 2F/E0 F0 2F E0 F0 12 E0 2F/E0 F0 2F E0 12 [5]	0D/FU 0D
	Apps) [7]	E0 2A E0 5D/E0 DD E0 2A [4]	E0 12 E0 2F/E0 F0 2F E0 12 [5] E0 12 E0 2F/E0 F0 2F E0 F0 12 [6	
	[/]	LU 2A EU 3D EU DD EU AA [6]	LU 12 EU 2F/EU FU 2F EU FU 12 [0	0 "

Continued

([x] Notes listed at end of table.)

Table C-2. Keyboard Scan Codes (Continued)

Key		Mal	Make / Break Codes (Hex)		
Pos.	Legend	Mode 1	Mode 2	Mode 3	
Btn 1	[8]	E0 1E/E0 9E	E0 1C/E0 F0 1C	95/F0 95	
Btn 2	[8]	E0 26/E0 A6	E0 4B/E0 F0 4B	9C/F0 9C	
Btn 3	[8]	E0 25/E0 A5	E0 42/E0 F0 42	9D/F0 9D	
Btn 4	[8]	E0 23/E0 A3	E0 33/E0 F0 33	9A/F0 9A	
Btn 5	[8]	E0 21/E0 A1	E0 2B/E0 F0 2B	99/F0 99	
Btn 6	[8]	E0 12/E0 92	E0 24/E0 F0 24	96/F0 96	
Btn 7	[8]	E0 32/E0 B2	E0 3A/E0 F0 3A	97/F0 97	
Btn 1	[9]	E0 23/E0 A3	E0 33/E0 F0 33	9A/F0 9A	
Btn 2	[9]	E0 1F/E0 9F	E0 1B/E0 F0 1B	80/F0 80	
Btn 3	[9]	E0 1A/E0 9A	E0 54/E0 F0 54	99/F0 99	
Btn 4	[9]	E0 1E/E0 9E	E0 1C/E0 F0 1C	95/F0 95	
Btn 5	[9]	E0 13/E0 93	E0 2D/E0 F0 2D	0C/F0 0C	
Btn 6	[9]	E0 14/E0 94	E0 2C/E0 F0 2C	9D/F0 9D	
Btn 7	[9]	E0 15/E0 95	E0 35/E0 F0 35	96/F0 96	
Btn 8	[9]	E0 1B/E0 9B	E0 5B/E0 F0 5B	97/F0 97	

NOTES:

All codes assume Shift, Ctrl, and Alt keys inactive unless otherwise noted.

NA = Not applicable

- [1] Shift (left) key active.
- [2] Ctrl key active.
- [3] Alt key active.
- [4] Left Shift key active. For active right Shift key, substitute AA/2A make/break codes for B6/36

codes.

- [5] Left Shift key active. For active right Shift key, substitute F0 12/12 make/break codes for F0 59/59 codes.
- [6] Num Lock key active.
- [7] Windows keyboards only. [8] 7-Button Easy Access keyboard. [9] 8-Button Easy Access keyboard.

C.3 CONNECTORS

Two types of keyboard interfaces are used in Compaq systems: PS/2-type and USB-type. System units that provide a PS/2 connector will ship with a PS/2-type keyboard but may also support simultaneous connection of a USB keyboard. Systems that do not provide a PS/2 interface will ship with a USB keyboard. For a detailed description of the PS/2 and USB interfaces refer to chapter 5 "Input/Output" of this guide. The keyboard cable connectors and their pinouts are described in the following figures:

Pin	Function	
1	Data	
2	Not connected	
3	Ground	
4	+5 VDC	
5	Clock	
6	Not connected	

Figure C–9. PS/2 Keyboard Cable Connector (Male)

Pin	Function	
1	+5 VDC	
2	Data (+)	
3	Data (-)	
4	Ground	

Figure C-10. USB Keyboard Cable Connector (Male)

Appendix D COMPAQ/NVIDIA TNT2 PRO AGP GRAPHICS CARD

D.1 INTRODUCTION

This appendix describes the Compaq/NVIDIA TNT2 Pro AGP Graphics Card used in the standard configuration on some models and also available as an option. This card (layout shown in the following figure) installs in a system's AGP slot. The Compaq/NVIDIA TNT2 Pro graphics card (P/N 189998-B21) provides high 2D performance as well as 3D capabilities.

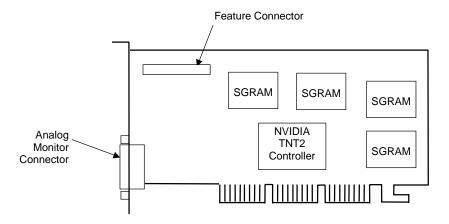


Figure D-1. Compaq/NVIDIA TNT2 Pro AGP Graphics Card (P/N 198998-B21) Layout

This appendix covers the following subjects:

♦	Functional description (D.2)	page D-2
•	Display modes (D.3)	page D-3
•	Software support information (D.4)	page D-4
•	Monitor power management (D.5)	page D-4
•	Connectors (D.6)	page D-5

D.2 FUNCTIONAL DESCRIPTION

The NVIDIA TNT2 Pro-SD Graphics Card provides high performance 2D and 3D display imaging. The card's AGP design provides an economical approach to 3D processing by offloading 3D effects such as texturing, z-buffering and alpha blending to the system memory while 16 megabytes of on-board SGRAM stores the main display image.

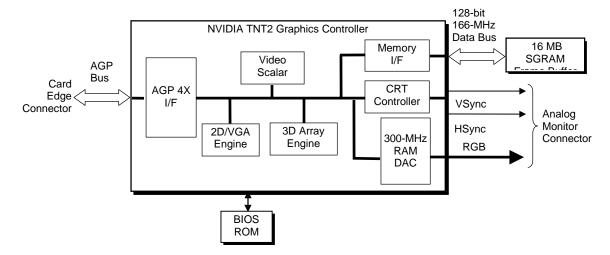


Figure D-2. NVIDIA TNT2 Pro Graphics Card Block diagram

The NVIDIA TNT2 Pro Graphics Card includes the following features:

- ♦ 16-MB SGRAM frame buffer using 128-bit 166-MHz access
- AGP 4X transfers with sideband addressing
- ♦ 2D drawing engine
- ♦ 3D rendering engine
- ♦ 300-MHz RAMDAC
- ♦ 32-bit Z/stencil buffer eliminates hidden screen portions for faster loading
- ♦ 32-bit color for increased image quality
- ♦ 30-fps full-screen DVD playback
- Dual-monitor support with a PCI graphics card

D.3 DISPLAY MODES

The graphics display modes supported by the NVIDIA TNT2 Pro Graphics are listed in Table D-1.

Table D-1.			
NVIDIA TNT2 Pro Graphics Display M	lodes		

D 1.0		0 1 D 1	
Resolution	Bits per pixel	Color Depth	Max. Refresh Frequency (Hz)
640 x 480	8	256	85
640 x 480	16	65K	85
640 x 480	24	16.7M	85
_800 x 600	8	256	85
800 x 600	16	65K	85
800 x 600	24	16.7M	85
1024 x 768	8	256	85
1024 x 768	16	65K	85
1024 x 768	24	16.7M	85
1152 x 864	8	256	85
1152 x 864	16	65K	85
1152 x 864	24	16.7M	85
1280 x 1024	8	256	85
1280 x 1024	16	65K	85
1280 x 1024	24	16.7M	85
1600 x 1200	8	256	85
1600 x 1200	16	65K	85
1600 x 1200	24	16.7M	85
1800 x 1440	8	256	85
1800 x 1440	16	65K	85
1800 x 1440	24	16.7M	85
1920 x 1080	8	256	85
1920 x 1080	16	65K	85
1920 x 1080	24	16.7M	85
1920 x 1200	8	256	75

D.4 SOFTWARE SUPPORT INFORMATION

The NVIDIA TNT2 Pro graphics card is fully compatible with software written for legacy video modes (VGA, EGA, CGA) and needs no driver support for those modes.

Drivers are provided with or available for the card to provide extended mode support for the current operating systems and programming environments such as:

- ♦ Windows 98, 95
- ♦ Windows NT 4.0, 3.51
- ♦ Windows 3.11, 3.1
- ◆ OS/2
- ♦ Quick Draw
- ♦ MS Direct Draw and Direct X
- ♦ Direct 3D
- ♦ OpenGL

D.5 POWER MANAGEMENT AND CONSUMPTION

This controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table I-2 lists the monitor power conditions.

	Table D-2. Monitor Power Management Conditions				
HSYNC	VSYNC	Power Mode	Description		
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to tiemout, generates an SMI to initiate the Suspend mode.		
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.		
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.		

The graphics card's maximum power consumption on the AGP bus is listed below:

Maximum current draw @ 3.3 VDC: 3.0 A Maximum current draw @ 5.0 VDC: 50 mA Maximum current draw @ 1.5 VDC: 10 mA Maximum power consumption: 10.2 watts

D.6 CONNECTORS

There are two connectors associated with the graphics subsystem; the display/monitor connector and the Feature connector.

NOTE: The graphic card's edge connector mates with the AGP slot connector on the system board. This interface is described in chapter 4 of this guide.

The DB-15 disply/monitor connector is provided for connection of a compatible RGB/analog monitor. The Feature connector allows the attachment of an optional card such as a video tuner.

D.6.1 MONITOR CONNECTOR

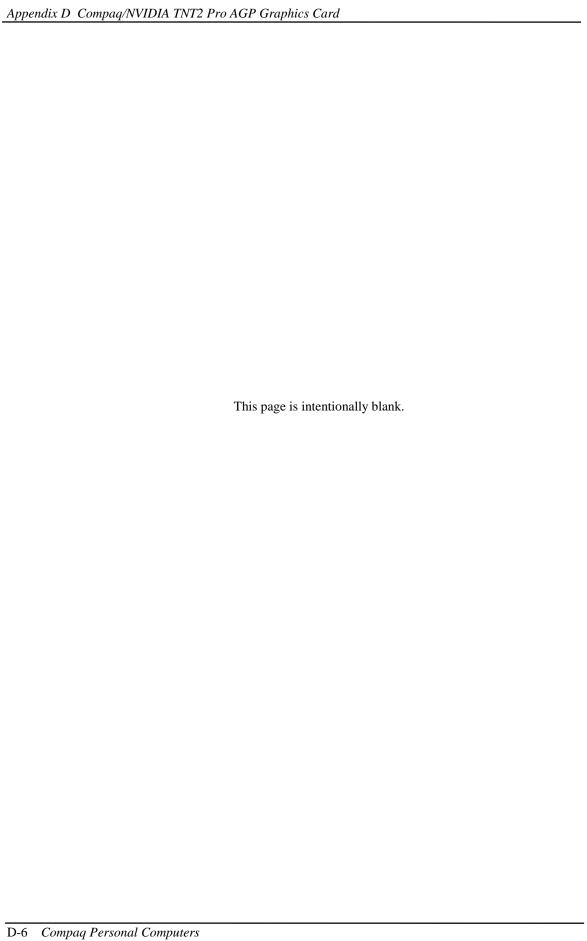


Figure D-3. VGA Monitor Connector, (Female DB-15, as viewed from rear).

Table D-3. DB-15 Monitor Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description	
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]	
2	G	Blue Analog	10	GND	Ground	
3	В	Green Analog	11	NC	Not Connected	
4	NC	Not Connected	12	SDA	DDC2-B Data	
5	GND	Ground	13	HSync	Horizontal Sync	
6	R GND	Red Analog Ground	14	VSync	Vertical Sync	
7	G GND	Green Analog Ground	15	SCL	DDC2-B Clock	
8	B GND	Blue Analog Ground				
NOTEC.						

NOTES:

[1] Fuse automatically resets when excessive load is removed.

Appendix E COMPAQ/NVIDIA GeForce2 GTS AGP GRAPHICS CARD

E.1 INTRODUCTION

This appendix describes the Compaq/NVIDIA GeForce2 GTS AGP Graphics Card used in the standard configuration on some models and also available as an option. This card (layout shown in the following figure) installs in a system's AGP slot. The Compaq/NVIDIA GeForce2 GTS graphics card (P/N 189998-B21) provides high 2D performance as well as 3D capabilities.

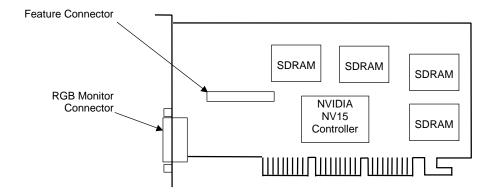


Figure E-1. Compaq/NVIDIA GeForce2 GTS AGP Graphics Card (P/N 179642-001) Layout

This appendix covers the following subjects:

♦	Functional description (D.2)	page D-2
•	Display modes (D.3)	page D-3
•	Software support information (D.4)	page D-4
•	Monitor power management (D.5)	page D-4
•	Connectors (D.6)	page D-5

E.2 FUNCTIONAL DESCRIPTION

The NVIDIA GeForce2 GTS-SD Graphics Card provides high performance 2D and 3D display imaging. The card's AGP design provides an economical approach to 3D processing by offloading 3D effects such as texturing, z-buffering and alpha blending to the system memory while 32 megabytes of on-board SDRAM stores the main display image.

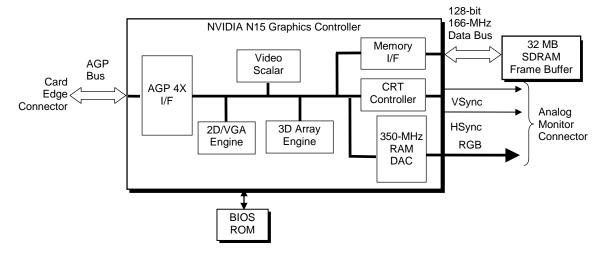


Figure E-2. NVIDIA GeForce2 GTS Graphics Card Block diagram

The NVIDIA GeForce2 GTS Graphics Card includes the following features:

- ♦ 16-MB SDRAM frame buffer using 128-bit 166-MHz access
- ♦ AGP 4X transfers with sideband addressing
- ♦ 2D drawing engine with:
 - 128-bit BitBLTs, rectangle/polygon fills, line draws
 - Hardware cursor
 - 8-/16-/32-bpp mode acceleration
- ♦ 3D accelerator with:
 - Hardware transform and lighting
 - · Single-pass dual textures
 - 4 rendering pipelines
 - Anistropic filtering
 - 8-bit stencil buffer
 - Specular lighting diffuse shading
 - 16-/24-bit Z-buffering
- ♦ 350-MHz RAMDAC
- ♦ VESA compliancy:
 - VIP 1.1 connector
 - DDC2B monitor support
 - DPMS, EPA Energy Star, and ACPI-compliant power management

E.3 DISPLAY MODES

The graphics display modes supported by the NVIDIA GeForce2 GTS Graphics are listed in Table E-1.

Table E-	1.
NVIDIA GeForce2 GTS Gra	phics Display Modes

Resolution	Bits per pixel	Color Depth	Max. Refresh Frequency (Hz)
640 x 480	8	256	240
640 x 480	16	65K	240
640 x 480	32	16.7M	240
800 x 600	8	256	240
800 x 600	16	65K	240
800 x 600	32	16.7M	240
960 x 720	8	256	120
960 x 720	16	65K	120
960 x 720	32	16.7M	120
1024 x 768	8	256	240
1024 x 768	16	65K	240
1024 x 768	32	16.7M	200
1152 x 864	8	256	200
1152 x 864	16	65K	200
1152 x 864	32	16.7M	170
1280 x 960	8	256	170
1280 x 960	16	65K	170
1280 x 960	32	16.7M	150
1280 x 1024	8	256	170
1280 x 1024	16	65K	170
1280 x 1024	32	16.7M	150
1600 x 900	8	256	150
1600 x 900	16	65K	150
1600 x 900	32	16.7M	120
1600 x 1200	8	256	120
1600 x 1200	16	65K	120
1600 x 1200	32	16.7M	100
1920 x 1080	8	256	100
1920 x 1080	16	65K	100
1920 x 1080	32	16.7M	75
1920 x 1200	8	256	100
1920 x 1200	16	65K	100
1920 x 1200	32	16.7M	85
1920 x 1440	8	256	85
1920 x 1440	16	65K	85
1920 x 1440	32	16.7M	75
2048 x 1536	8	256	75
2048 x 1536	16	65K	75
2048 x 1536	32	16.7M	65

E.4 SOFTWARE SUPPORT INFORMATION

The NVIDIA GeForce2 GTS graphics card is fully compatible with software written for legacy video modes (VGA, EGA, CGA) and needs no driver support for those modes.

Drivers are provided with or available for the card to provide extended mode support for the current operating systems and programming environments such as:

- ♦ Windows 98, 95
- ♦ Windows NT 4.0, 3.51
- ♦ Windows 3.11, 3.1
- ♦ OS/2
- ♦ Quick Draw
- ♦ MS Direct Draw and Direct X
- ♦ Direct 3D
- ♦ OpenGL

PCI bus configuration data:

Vendor ID: 10DEh Device ID: 0150h

E.5 POWER MANAGEMENT AND CONSUMPTION

This controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table E-2 lists the monitor power conditions.

Table E-2. Monitor Power Management Conditions				
HSYNC	VSYNC	Power Mode	Description	
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to tiemout, generates an SMI to initiate the Suspend mode.	
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.	
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.	

E.6 CONNECTORS

There are two connectors associated with the graphics subsystem; the display/monitor connector and the Feature connector.

NOTE: The graphic card's edge connector mates with the AGP slot connector on the system board. This interface is described in chapter 4 of this guide.

E.6.1 MONITOR CONNECTOR

The display/monitor connector is provided for connection of a compatible RGB/analog monitor.

Figure E-3. VGA Monitor Connector, (Female DB-15, as viewed from rear).

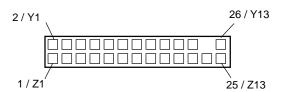
Table E-3. DB-15 Monitor Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description	
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]	
2	G	Blue Analog	10	GND	Ground	
3	В	Green Analog	11	NC	Not Connected	
4	NC	Not Connected	12	SDA	DDC2-B Data	
5	GND	Ground	13	HSync	Horizontal Sync	
6	R GND	Red Analog Ground	14	VSync	Vertical Sync	
7	G GND	Green Analog Ground	15	SCL	DDC2-B Clock	
8	B GND	Blue Analog Ground				

NOTES:

[1] Fuse automatically resets when excessive load is removed.

E.6.2 VIDEO FEATURE CONNECTOR

The Video Feature connector allows a video peripheral such as a TV tuner card to provide video input to the graphics card. This interface is compliant with VESA VIP specification 1.1.



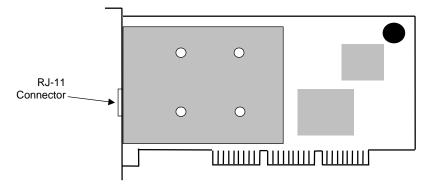

Figure E-4. Feature Connector (26-Pin Header)

			Table E-4.	ut	
Pin	Signal	Description	Pin	Signal	Description
1 / Z1	GND	Ground	2 / Y1	P0	Pixel Data 0
3 / Z2	GND	Ground	4 / Y2	P1	Pixel Data 1
5 / Z3	GND	Ground	6 / Y3	P2	Pixel Data 2
7 / Z4	HAD1		8 / Y4	P3	Pixel Data 3
9 / Z5	HAD0	External Sync	10 / Y5	P4	Pixel Data 4
11 / Z6	HCTL	External Clock	12 / Y6	P5	Pixel Data 5
13 / Z7	SCL	Serial Clock	14 / Y7	P6	Pixel Data 6
15 / Z8	GND	Ground	16 / Y8	P7	Pixel Data 7
17 / Z9	GND	Ground	18 / Y9	DCLK	Pixel Data Clock
19 / Z10	GND	Ground	20 / Y10	NC	Not Connected
21 / Z11	GND	Ground	22 / Y11	NC	Not Connected
23 / Z12	VIRQ		24 / Y12		Key
25 / Z13	SDA	Serial Data	26 / Y13	GND	Ground

Appendix F COMPAQ/LUCENT V.90 56K PCI MODEM

F.1 INTRODUCTION

This appendix describes the Compaq/Lucent V.90 56K PCI modem (Compaq SP# 146803-001). This modem installs in a PCI slot, allowing it to be auto-configured into the system.

NOTE: Actual layout may vary.

Figure F-1. Compaq/Lucent V.90 56K PCI Modem (PCA #152972) Layout

This appendix covers the following subjects:

•	Functional description (F.2)	page F-2
♦	Operating parameters (F.3)	page F-3
♦	Power management (F.4)	page F-4
♦	Programming (F.5)	page F-5
•	Connectors (F.6)	page F-5

F.2 FUNCTIONAL DESCRIPTION

The Compaq/Lucent V.90 56K PCI modem provides data communication over a standard telephone network at transfer rates of up to 56 kilobits per second. The modem also supports facsimile (fax) transfers at up to 14.4 kilobits per second. Auto-detection of operating speed and compression mode is also provided. This modem is of the "controllerless" type, meaning that while the UART, DSP and DAA functions (Figure F-2) are provided by hardware the operational functions are largely handled by the modem driver. The modem driver is automatically loaded upon modem activity and automatically unloaded when the modem activity ceases.

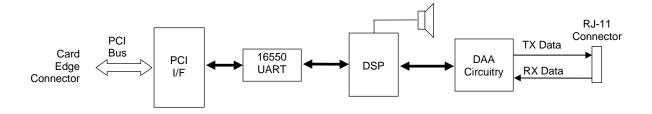


Figure F-2. Compaq/Lucent V.90 56K PCI Modem Block diagram

The Compaq/Lucent V.90 56K PCI Modem includes the following key features:

- ♦ ITU-T V.90 56 Kbs and K56Flex support w/auto-negotiation of mode
- ♦ 14400 bps send/receive fax support
- ♦ ITU-T V.42 error correction (LAPM and MNP)
- V.42bis and MNP Class 5 data compression
- ♦ TIA/EIA 602 standard AT comment set
- ♦ 115.2 kbps UART speed
- ♦ PCI 2.2 compliant
- ♦ PC99 compliant
- ♦ APM, ACPI power management support
- ♦ Windows 95, 98, NT4.0 support

Modem operation begins when a program in a virtual machine (VM) attempts to access the comport designated for the modem's 16550 UART. A callback procedure is initiated, which loads the driver that takes over the trapping of the UART's I/O ports. A background timer is started that checks for transmit empty / receiver ready states or any other interrupt condition. The comport for the modem remains open until the DOS VM is terminated. The driver will then unload itself and the comport will be released.

F.3 OPERATING PARAMETERS

The operating parameters consists of UART transfer rates and transmission modes.

F.3.1 UART TRANSFER RATES

The transfer rate between the modem's UART and the PCI interface (also known as the DTE-to-DCE transfer rate) is selectable and generally set to match the modem's typical transmission mode. The modem supports the standard rates of 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, and 115200 bps as well as the high-speed rate of 230400 bps.

F.3.2 TRANSMISSION MODES

The Compaq/Lucent V.90 56K PCI Modem supports the transmission modes listed in table F-1.

Table F-1.						
	Operational Modes					
Mode Standard	Transfer Type	Transfer Rate (see text below)				
K56Flex (see note)	Data	56000, 54000, 52000, 50000, 48000, 46000, 44000, 42000, 40000, 38000, 36000, 34000, 32000 bps				
ITU-T V.90 (see note)	Data	56000, 54667, 53333, 52000, 50667, 49333, 48000, 46667, 45333, 42667, 41333, 40000, 38667, 37333, 36000, 34667, 33333, 32000, 30667, 29333, 28000 bps				
ITU-T V.34Annex12	Data	33600, 31200 bps				
ITU-T V.34	Data	28800, 26400, 24000, 21600, 19200, 16800, 14400, 12000, 9600, 7200, 4800 bps				
ITU-T V.32bis	Data	14400, 12000, 9600, 7200, 4800 bps				
ITU-T V.32	Data	9600, 4800 bps				
ITU-T V.17	Group 3 Fax	14400, 12000 bps				
ITU-T V.29	Group 3 Fax	9600, 7200 bps				
ITU-T V.27ter	Group 3 Fax	4800, 2400 bps				
ITU-T V.22bis	Data	2400 bps				
ITU-T V.23	Data	1200 / 75 bps				
ITU-T V.22	Data	1200 bps				
ITU-T V.21	Group 3 Fax	300 bps				
BELL 212A	Data	1200 baud				
BELL 102	Data	300 baud				

NOTE:

For 56K operation to occur with this device, the following criteria must be met:

- Distant end modem must support 56K modem technology \boldsymbol{and} be digitally terminated.
- Transmission path must contain no more than one analog-to-digital conversion.

The criteria for 56K operation (see note under table F-1) are likely to be met when connecting to an internet service provider (ISP) through a local phone number. Note also that the 56K transfer rate applies **only** to receive data (i.e., "downloads"). Data will be transmitted ("uploaded") at a maximum rate of 33.6 Kb/s.

F.4 POWER MANAGEMENT

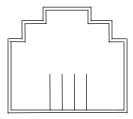
The modem supports both APM and ACPI power management environments using methods defined in the PCI 2.2 specification.

F.4.1 APM ENVIRONMENT

In the APM environment, the modem will be placed in Standby (as the result of either a user-initiated action or by OS timer) **unless** the modem is online or transferring data. If a thermal shutdown condition occurs, then the modem will be forced into Standby **regardless** of the operational state.

F.4.2 ACPI ENVIRONMENT

The modem supports the ACPI power management environment and is compliant with PCI specification 2.2 (PME- signaling). The card can provide system wake-up from a ring condition .


F.5 PROGRAMMING

The Compaq/Lucent V.90 56K PCI Modem card is a "controllerless" modem, meaning that all operating parameters are controlled by the modem driver. Modem updates (if any) will be facilitated only through the driver. Flash ROM is not involved. The modem is identified on the PCI bus with the following values:

Vender ID (PCI Configuration space address 00h): 11C1h Device ID (PCI Configuration space address 02h): 0441h

F.6 CONNECTOR

The card includes an RJ-11 connector for connection to an analog phone line. The signal is carried on the two center conductors.

Figure F-3. RJ-11 Connector, (Female, as viewed from rear).

Appendix G COMPAQ/ELSA Gloria II AGP GRAPHICS CARD

G.1 INTRODUCTION

This appendix describes the Compaq/ELSA GLoria II AGP Graphics Card used in the standard configuration on some models and also available as an option. This card (layout shown in the following figure) installs in a system's AGP slot. The Compaq/ELSA GLoria II graphics card (P/N 174565-001) provides high 2D performance as well as mid-level 3D capabilities.

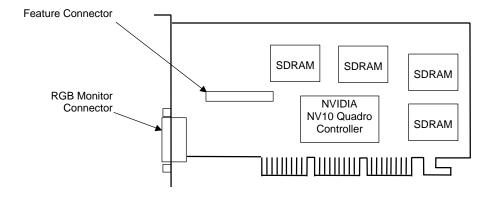


Figure G-1. Compaq/ELSA GLoria II AGP Graphics Card (P/N 174565-001) Layout

This appendix covers the following subjects:

•	Functional description (D.2)	page D-2
•	Display modes (D.3)	page D-3
•	Software support information (D.4)	page D-4
•	Monitor power management (D.5)	page D-4
*	Connectors (D.6)	page D-5

G.2 FUNCTIONAL DESCRIPTION

The ELSA GLoria II-SD Graphics Card provides high performance 2D and 3D display imaging. The card's AGP design provides an economical approach to 3D processing by off-loading 3D effects such as texturing, z-buffering and alpha blending to the system memory while 64 megabytes of on-board SDRAM stores the main display image.

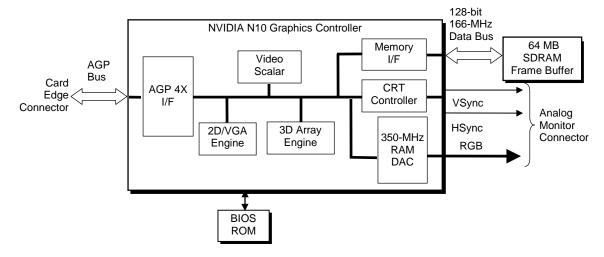


Figure G-2. ELSA GLoria II Graphics Card Block diagram

The ELSA GLoria II Graphics Card includes the following features:

- ♦ 64-MB SDRAM frame buffer using 128-bit 166-MHz access
- ♦ AGP 4X transfers with sideband addressing
- ♦ 2D drawing engine with:
 - 128-bit BitBLTs, rectangle/polygon fills, line draws
 - Hardware cursor
 - 8-/16-/32-bpp mode acceleration
- ♦ DVD support with:
 - Hardware-accelerated MPEG2 (720 x 480)
 - HDTV format support (720i-1080i, 720p-1080p)
- 3D accelerator with:
 - Hardware transform and lighting
 - Single-pass dual textures
 - 4 rendering pipelines
 - Anistropic filtering
 - 8-bit stencil buffer
 - Specular lighting diffuse shading
 - 16-/24-bit Z-buffering
- ♦ 350-MHz RAMDAC
- ♦ VESA compliancy:
 - DVI/DFP connector
 - DDC2B monitor support
 - DPMS, EPA Energy Star, and ACPI-compliant power management

G.3 DISPLAY MODES

The graphics display modes supported by the ELSA GLoria II Graphics are listed in Table G-1.

Table G-1.ELSA GLoria II Graphics Display Modes

	Max. Vertical Memory Used					
Resolution	Bits per pixel	Color Depth	Refresh Freg. [1]	For Texture		
640 x 480	8	256	120	64.3 MB		
640 x 480	 16	65K	120	63.7 MB		
640 x 480	32	16.7M	120	63.7 MB		
800 x 600	<u> </u>	256	120	63.6 MB		
	o 16	65K	120	62.7 MB		
800 x 600	32	16.7M	120	59 9 MB		
800 x 600						
1024 x 768	8	256	120	62.4 MB		
1024 x 768	16	65K	120	60.9 MB		
1024 x 768	32	16.7M	120	56.2 MB		
1152 x 864	8	256	100	61.6 MB		
1152 x 864	16	65K	100	59.7 MB		
1152 x 864	32	16.7M	100	53.8 MB		
1280 x 1024	8	256	100	60.4 MB		
1280 x 1024	16	65K	100	57.9 MB		
1280 x 1024	32	16.7M	100	50.2 MB		
1536 x 960	8	256	100	59.8 MB		
1536 x 960	16	65K	100	56.9 MB		
1536 x 960	32	16.7M	100	48.3 MB		
1600 x 1000	8	256	85	59.3 MB		
1600 x 1000	16	65K	85	56.2 MB		
1600 x 1000	32	16.7M	85	46.8 MB		
1600 x 1200	8	256	85	58.0 MB		
1600 x 1200	16	65K	85	54.3 MB		
1600 x 1200	32	16.7M	75	43.0 MB		
1600 x 1280	8	256	85	57.3 MB		
1600 x 1280	16	65K	85	53.5 MB		
1600 x 1280	32	16.7M	75	41.5 MB		
1792 x 1120	8	256	85	57.7 MB		
1792 x 1120	16	65K	85	53.8 MB		
1792 x 1120	32	16.7M	75	42.0 MB		
1920 x 1080	8	256	85	57.4 MB		
1920 x 1080	16	65K	85	53.4 MB		
1920 x 1080	32	16.7M	75	41.2 MB		
1920 x 1200	8	256	85	56.5 MB		
1920 x 1200	16	65K	75	52.0 MB		
1920 x 1200	32	16.7M	75	38.5 MB		

NOTE:

^[1] Value reflects hardware capabilities only. May be restricted by operating system.

G.4 SOFTWARE SUPPORT INFORMATION

The ELSA GLoria II graphics card is fully compatible with software written for legacy video modes (VGA, EGA, CGA) and needs no driver support for those modes.

Drivers are provided with or available for the card to provide extended mode support for the current operating systems and programming environments such as:

- ♦ Windows 2000
- ♦ Windows NT 4.0
- Autodesk AutoCAD R14 and 2000
- ♦ Kintex 3D Studio Max
- ◆ 2D GDI
- ♦ MS DirectDraw DX6-7, ActiveX, DirectX, Direct3D,
- ♦ OpenGL 1.1 and 1.2

PCI bus configuration data:

Vendor ID: 10DEh Device ID: 0150h

G.5 POWER MANAGEMENT AND CONSUMPTION

This controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table G-2 lists the monitor power conditions.

Table G-2. Monitor Power Management Conditions					
HSYNC	VSYNC	Power Mode	Description		
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to tiemout, generates an SMI to initiate the Suspend mode.		
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.		
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.		

G.6 CONNECTORS

There are two connectors associated with the graphics subsystem; the display/monitor connector and the Feature connector.

NOTE: The graphic card's edge connector mates with the AGP slot connector on the system board. This interface is described in chapter 4 of this guide.

G.6.1 MONITOR CONNECTOR

The display/monitor connector is provided for connection of a compatible RGB/analog monitor.

Figure G-3. VGA Monitor Connector, (Female DB-15, as viewed from rear).

Table G-3. DB-15 Monitor Connector Pinout							
Pin	Signal	Description	Pin	Signal	Description		
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]		
2	G	Blue Analog	10	GND	Ground		
3	В	Green Analog	11	NC	Not Connected		
4	NC	Not Connected	12	SDA	DDC2-B Data		
5	GND	Ground	13	HSync	Horizontal Sync		
6	R GND	Red Analog Ground	14	VSync	Vertical Sync		
7	G GND	Green Analog Ground	15	SCL	DDC2-B Člock		
8	B GND	Blue Analog Ground					

NOTES:

[1] Fuse automatically resets when excessive load is removed.

G.6.2 VIDEO FEATURE CONNECTOR

The Video Feature connector allows a video peripheral such as a TV tuner card to provide video input to the graphics card. This interface is compliant with VESA VIP specification 1.1.

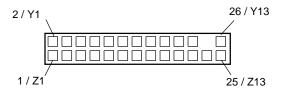


Figure G-4. Feature Connector (26-Pin Header)

Table G-4. Video In Connector Pinout							
Pin	Signal	Description	Pin	Signal	Description		
1 / Z1	GND	Ground	2 / Y1	P0	Pixel Data 0		
3 / Z2	GND	Ground	4 / Y2	P1	Pixel Data 1		
5 / Z3	GND	Ground	6 / Y3	P2	Pixel Data 2		
7 / Z4	HAD1		8 / Y4	P3	Pixel Data 3		
9 / Z5	HAD0	External Sync	10 / Y5	P4	Pixel Data 4		
11 / Z6	HCTL	External Clock	12 / Y6	P5	Pixel Data 5		
13 / Z7	SCL	Serial Clock	14 / Y7	P6	Pixel Data 6		
15 / Z8	GND	Ground	16 / Y8	P7	Pixel Data 7		
17 / Z9	GND	Ground	18 / Y9	DCLK	Pixel Data Clock		
19 / Z10	GND	Ground	20 / Y10	NC	Not Connected		
21 / Z11	GND	Ground	22 / Y11	NC	Not Connected		
23 / Z12	VIRQ		24 / Y12		Key		
25 / Z13	SDA	Serial Data	26 / Y13	GND	Ground		

Appendix H COMPAQ/Matrox Millennium G450 AGP GRAPHICS CARD

H.1 INTRODUCTION

This appendix describes the Compaq/Matrox Millennium G450 AGP Graphics Card used in the standard configuration on some models and also available as an option. This card (layout shown in the following figure) installs in a system's AGP slot. The Compaq/Matrox Millennium G450 graphics card (SP# 203626-001) provides high 2D performance and entry-level 3D capabilities. This card features a dual-RAMDAC design for driving two analog displays.

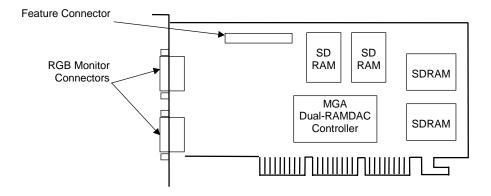


Figure H-1. Compaq/Matrox Millennium G450 AGP Graphics Card Layout (PCA# 202901-001)

This appendix covers the following subjects:

*	Functional description (D.2)	page D-2
•	Display modes (D.3)	page D-3
♦	Software support information (D.4)	page D-4
♦	Monitor power management (D.5)	page D-4
•	Connectors (D.6)	page D-5

H.2 FUNCTIONAL DESCRIPTION

The Matrox Millennium G450-SD Graphics Card provides high performance 2D and 3D display imaging. The card's AGP design provides an economical approach to 3D processing by offloading 3D effects such as texturing, z-buffering and alpha blending to the system memory while 32 megabytes of on-board SDRAM stores the main display image.

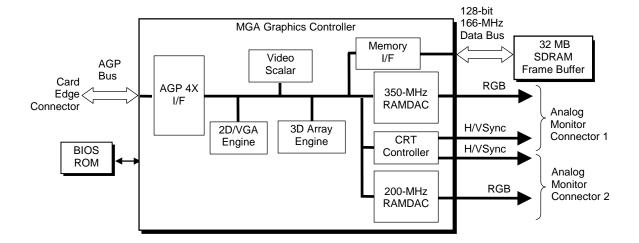


Figure H-2. Matrox Millennium G450 Graphics Card Block diagram

The Matrox Millennium G450 Graphics Card includes the following features:

- ♦ 64-MB SDRAM frame buffer using 128-bit 166-MHz access
- ♦ AGP 4X transfers with sideband addressing
- ♦ 2D drawing engine with:
 - 128-bit BitBLTs, rectangle/polygon fills, line draws
 - Hardware cursor
 - 8-/16-/32-bpp mode acceleration
- ♦ Dual-head features:
 - Two analog monitor (RGB) ports
 - DVD max mode
 - DualHead zoom mode
 - DualHead clone mode
 - DualHead TV output mode
- ♦ 3D accelerator with:
 - Hardware transform and lighting
 - Anistropic filtering
 - Specular lighting diffuse, flat and Gouraud shading
 - 16-/24-bit Z-buffering
- ♦ 360-MHz primary RAMDAC, 200-MHz secondary RAMDAC
- ♦ VESA compliancy:
 - Dual DDC2B monitor support
 - VIP 2.0 interface
 - DPMS, EPA Energy Star, and ACPI-compliant power management

H.3 DISPLAY MODES

The graphics display modes supported by the Matrox Millennium G450 Graphics are listed in Table H-1.

Table H-1.	
Matrox Millennium G450 Graphics Display M	odes

Matrox Millennium G450 Graphics Display Modes				
			Max. Vertical	Supporting
Resolution	Bits per pixel	Color Depth	Refresh Freq. [1]	RAMDAC
640 x 480	8	256	85 Hz	Primary
640 x 480	16	65K	85 Hz	Primary, Secondary
640 x 480	24	16.7M	85 Hz	Primary
640 x 480	32	16.7M	85 Hz	Primary, Secondary
800 x 600	8	256	85 Hz	Primary
800 x 600	16	65K	85 Hz	Primary, Secondary
800 x 600	24	16.7M	85 Hz	Primary
800 x 600	32	16.7M	85 Hz	Primary, Secondary
1024 x 768	8	256	85 Hz	Primary
1024 x 768	16	65K	85 Hz	Primary, Secondary
1024 x 768	24	16.7M	85 Hz	Primary
1024 x 768	32	16.7M	85 Hz	Primary, Secondary
1152 x 864	8	256	75 Hz	Primary
1152 x 864	16	65K	75 Hz	Primary, Secondary
1152 x 864	24	16.7M	75 Hz	Primary
1152 x 864	32	16.7M	75 Hz	Primary, Secondary
1280 x 960	8	256	85 Hz	Primary
1280 x 960	16	65K	85 Hz	Primary, Secondary
1280 x 960	24	16.7M	85 Hz	Primary
1280 x 960	32	16.7M	85 Hz	Primary, Secondary
1280 x 1024	8	256	85 Hz	Primary
1280 x 1024	16	65K	85 Hz	Primary, Secondary
1280 x 1024	24	16.7M	85 Hz	Primary
1280 x 1024	32	16.7M	85 Hz	Primary, Secondary
1600 x 1200	8	256	85 Hz	Primary
1600 x 1200	16	65K	85 Hz	Primary, Secondary
1600 x 1200	24	16.7M	85 Hz	Primary
1600 x 1200	32	16.7M	85 Hz	Primary, Secondary
1800 x 1440	8	256	85 Hz	Primary
1800 x 1440	16	65K	85 Hz	Primary
1800 x 1440	24	16.7M	85 Hz	Primary
1856 x 1392	8	256	85 Hz	Primary
1856 x 1392	16	65K	85 Hz	Primary
1856 x 1392	24	16.7M	85 Hz	Primary
1920 x 1440	8	256	85 Hz	Primary
1920 x 1440	16	65K	85 Hz	Primary
1920 x 1440	24	16.7M	85 Hz	Primary
2048 x 768	8	256	75 Hz	Primary
2048 x 768	16	65K	75 Hz	Primary

NOTE:

[1] Value reflects hardware capabilities only. May be restricted by operating system.

H.4 SOFTWARE SUPPORT INFORMATION

The Matrox Millennium G450 graphics card is fully compatible with software written for legacy video modes (VGA, EGA, CGA) and needs no driver support for those modes.

Drivers are provided with or available for the card to provide extended mode support for the current operating systems and programming environments such as:

- ♦ Windows 2000
- ♦ Windows NT 4.0
- Autodesk AutoCAD R14 and 2000
- ♦ Kintex 3D Studio Max
- ♦ 2D GDI
- ♦ MS DirectDraw DX6-7, ActiveX, DirectX, Direct3D,
- ♦ OpenGL 1.1 and 1.2

H.5 POWER MANAGEMENT AND CONSUMPTION

This controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table H-2 lists the monitor power conditions.

	Table H-2. Monitor Power Management Conditions					
HSYNC	VSYNC	Power Mode	Description			
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to tiemout, generates an SMI to initiate the Suspend mode.			
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.			
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.			

H.6 CONNECTORS

There are three connectors associated with the graphics subsystem; two display/monitor connectors and the Feature connector.

NOTE: The graphic card's edge connector mates with the AGP slot connector on the system board. This interface is described in chapter 4 of this guide.

H.6.1 MONITOR CONNECTOR

The display/monitor connector is provided for connection of a compatible RGB/analog monitor.

Figure H-3. VGA Monitor Connector, (One of two female DB-15, as viewed from rear).

	Table H-3. DB-15 Monitor Connector Pinout						
Pin	Pin Signal Description Pin Signal Description						
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]		
2	G	Blue Analog	10	GND	Ground		
3	В	Green Analog	11	NC	Not Connected		
4	NC	Not Connected	12	SDA	DDC2-B Data		
5	GND	Ground	13	HSync	Horizontal Sync		
6	R GND	Red Analog Ground	14	VSync	Vertical Sync		
7	G GND	Green Analog Ground	15	SCL	DDC2-B Člock		
8	B GND	Blue Analog Ground					

NOTES:

[1] Fuse automatically resets when excessive load is removed.

H.6.2 VIDEO FEATURE CONNECTOR

The Video Feature connector allows a video peripheral such as a TV tuner card to provide video input to the graphics card. This interface is compliant with VESA VIP specification 1.1.

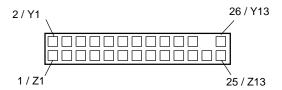
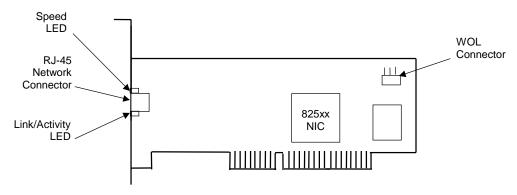


Figure H-4. Feature Connector (26-Pin Header)

		Video In	Table G-4. Connector Pinou	ut	
Pin	Signal	Description	Pin	Signal	Description
1 / Z1	GND	Ground	2 / Y1	P0	Pixel Data 0
3 / Z2	GND	Ground	4 / Y2	P1	Pixel Data 1
5 / Z3	GND	Ground	6 / Y3	P2	Pixel Data 2
7 / Z4	HAD1		8 / Y4	P3	Pixel Data 3
9 / Z5	HAD0	External Sync	10 / Y5	P4	Pixel Data 4
11 / Z6	HCTL	External Clock	12 / Y6	P5	Pixel Data 5
13 / Z7	SCL	Serial Clock	14 / Y7	P6	Pixel Data 6
15 / Z8	GND	Ground	16 / Y8	P7	Pixel Data 7
17 / Z9	GND	Ground	18 / Y9	DCLK	Pixel Data Clock
19 / Z10	GND	Ground	20 / Y10	NC	Not Connected
21 / Z11	GND	Ground	22 / Y11	NC	Not Connected
23 / Z12	VIRQ		24 / Y12		Key
25 / Z13	SDA	Serial Data	26 / Y13	GND	Ground


Appendix I COMPAQ/INTEL NETWORK INTERFACE CONTROLLER ADAPTERS

I.1 INTRODUCTION

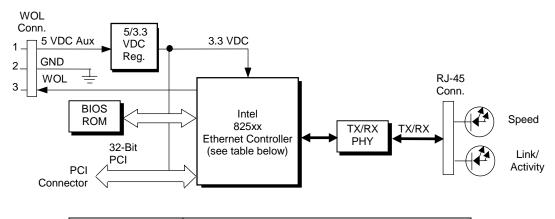
This appendix describes Compaq/Intel Network Interface Controller adapters that may be included in the standard configuration on some models and available as options for all models. This appendix describes the following devices:

- ◆ Compaq/Intel PRO/100+ Management Adapter (SP# 116188-001)
- ♦ Compaq/Intel PRO/100 S Management Adapter (SP# 215774-001)

Each adapter card installs in a PCI slot to provide a system with network interface capability. **Unless otherwise indicated, the following information applies to both adapter cards.**

NOTES:

PRO/100+ Management Adapter, PCA# 108897 PRO/100 S Management Adapter, PCA# 213464


Figure I-1. Intel PRO/100+ or PRO/100 S Management Adapter Card Layout

This appendix covers the following subjects:

•	Functional description (I.2)	page I-2
♦	Power management (I.3)	page I-4
♦	Adapter programming (I.4)	page I-5
♦	Network connector (I.5)	page I-6
•	Adapter specifications (I.6)	page I-6

I.2 FUNCTIONAL DESCRIPTION

The Intel PRO/100+ and the PRO/100 S Management Adapters are based on the Intel 82559 and 82550 Ethernet Controllers (respectively) supported by firmware in flash ROM (Figure I-2). Each adapter can operate in half- or full-duplex modes and provides auto-negotiation of both mode and speed. Half-duplex operation features an Intel-proprietary collision reduction mechanism while full-duplex operation follows the IEEE 802.3x flow control specification. Transmit and receive FIFOs of three kilobytes each reduce the chance of overrun while waiting for bus access. Each card includes an on-board 5/3.3 VDC regulator circuit and WOL connector in support of Wake-On-LAN functionality.

C	Controller Type	Featured on
8	32559	Intel PRO/100+ Management Adapter
8	32550	Intel PRO/100 S Management Adapter

Figure I-2. Intel PRP/100+ Management Adapter, Block diagram

Key features of these adapters include:

- ♦ 3-KB transmit and 3-KB receive FIFOs
- ♦ PCI ver. 2.2 compliant (PME- support)
- ♦ Dual-mode support with auto-switching between 10BASE-T and 100BASE-TX
- ♦ Both APM and ACPI power management support
- ◆ D0-D3 power state wake event support
- Boot ROM with PXE and RPL support

The 82559 and 82550 controllers feature high and low priority queues and provides priority-packet processing for networks that support that feature. The controller's micro-machine processes transmit and receive frames independently and concurrently. Receive runt (undersized) frames are not passed on as faulty data but discarded by the controller, which also directly handles such errors as collision detection or data under-run. An EEPROM is used to store identification, configuration, and connection parameters.

The 82550 controller provides all the functionality of the 82559 plus IP security (IPSEC) support through a hardware accelerator engine.

I.2.1 AOL FUNCTION

The adapter's Alert-On-LAN (AOL) function provides a AOL-compliant system unit with the ability to communicate system status to a management console, even while the system is powered down. When installed in an AOL-compliant system, the adapter receives alert messages from the system's I/O Controller Hub (ICH) over the PCI bus. Each alert message decoded by the adapter results in a pre-constructed status message being transmitted over the network to a management console.

Alert-On-LAN functionality occurs independent of software, driver, or even processor intervention. The adapter can report following conditions:

- ♦ System tampering Removal of the chassis cover
- ♦ BIOS failure System fails to boot successfully
- ♦ OS problem System fails to load operating system after boot
- ♦ Missing/faulty processor Processor fails to fetch first instruction
- ♦ Thermal condition High temperature detected in system
- ♦ Heartbeat Indication of system's presence on the network (sent approximately every 30 seconds)

NOTE: The system unit must be plugged into a live AC outlet for the AOL function to be operative. **Controlling a system unit's power through an AC outlet strip will, when the strip is turned off, disable AOL functionality.**

The AOL implementation requirements are as follows:

- 1. System unit featuring the 810, 810e, 820, or 850 (or later) chipset.
- 2. Intel PRO/100+ Management Adapter Driver 3.1 or later (available from Compaq).
- 3. Client-side utility agent software (available from Compaq).
- 4. Management console running one of the following:
 - a. HP OpenView Network Node Manager 6.x.
 - b. Intel LANDesk Client Manager.
 - c. Compaq Insight Manager.

I.2.2 WAKE UP FUNCTIONS

The adapter provides two types of wake-up signaling: the PME- signal and the WOL signal.

The adapter provides PME- signal support for systems compliant with PCI ver. 2.2. The detection of any wake event results in the adapter's assertion of the PME- signal, which can be used by the system unit to initiate the power-up sequence. System software is responsible for the clearing the PME- signal.

The adapter also includes a WOL interface for systems supporting that method of wake-up. The adapter asserts the WOL signal for 50 milliseconds upon detection of a Magic Packet. The WOL signal is routed to the system unit (through a three-conductor cable connection) for initializing a power-up sequence.

I.2.3 IPSEC FUNCTION

The 82550 controller used on the Intel PRO/100 S Management Adapter includes an encryption engine that provides on-the-fly encryption and/or authentication of transmit data without additional use of system memory and software. This function, referred to as IP security (IPSEC), uses a configurable algorithm and established Data Encryption Standards (DES) to provide high performance (full transmission rate) encryption. Received IPSEC data frames are re-submitted to the controller for processing and then returned to the driver.

Key features of IPSEC support include:

- ♦ Encryption capability of 56-bit DES to 168-bit 3DES
- ♦ Out-of-order processing of non-security transmit frames during security mode
- ♦ SHA-1 and MD-5 authentication with optional HMAC cryptographic hashing

I.3 POWER MANAGEMENT SUPPORT

These adapters support APM and ACPI power management environments as well as the Wiredfor-Management (WfM) and Wake-On-LAN (WOL) standards. The adapter is designed to be powered up as long as the system unit is plugged into a live AC outlet to provide system "wake-up" functionality. Power is provided by either the auxiliary 3.3 VDC power rail of the PCI bus (when installed in systems compliant with PCI ver. 2.2) or by auxiliary 5 VDC through the WOL connector.

NOTE: Controlling a system unit's power through an AC outlet strip will, with the strip turned off, disable wake-up functionality.

I.3.1 APM ENVIRONMENT

The Advanced Power Management (APM) functionality of system wake up is implemented through the system's APM-compliant BIOS and Magic Packet-compliant hardware. This environment is not dependent on operating system (OS) intervention allowing a unit plugged into a live AC outlet to be turned on remotely over the network (i.e., "remote wake-up") even if the OS has not been installed. In APM mode the controller will respond upon receiving a Magic Packet, which is a packet where the node's address is repeated 16 times. Upon Magic Packet reception, the adapter asserts the PME- signal (on the PCI bus) resulting in the system unit's power control logic turning on the system and initiating the boot sequence. After the boot sequence the BIOS clears the PME- signal so that subsequent wake up events will be detected.

I.3.2 ACPI ENVIRONMENT

The Advanced Configuration and Power Interface (ACPI) functionality of system wake up is implemented through an ACPI-compliant OS (such as Windows NT 5.0) and is the default power management mode. The following wake up events may be individually enabled/disabled through the software driver supplied with the adapter:

- ♦ Magic Packet Packet with node address repeated 16 times in data portion.
- ◆ Individual address match Directed acket with matching user-defined byte mask.
- ♦ Multicast address match Directed packet with matching user-defined sample frame.
- ♦ ARP (address resolution protocol) packet
- Flexible packet filtering Packets that match defined CRC signature.
- ♦ NBT query (under Ipv4)
- ♦ IPX Diagnostic
- ♦ TCO packet
- ♦ VLAN Type

When an enabled event is received the controller asserts the PME- signal that is used to initiate the wakeup sequence.

I.4 ADAPTER PROGRAMMING

Programming the adapter consists of configuration, which occurs during POST, and control, which occurs at runtime.

I.4.1 CONFIGURATION

The adapter's 82559 or 82550 NIC controller is a PCI device and configured though PCI configuration space registers using PCI protocol described in chapter 4 of this guide. The PCI configuration registers are listed in the following table:

		Tab PCI Configur	o le I-1. ation Reg	gisters	
PCI Conf.		Value on	PCI Conf.		Value on
Addr.	Register	Reset	Addr.	Register	Reset
00-01h	Vender ID	8086h	10-13h	Cntrl. Reg. Base Addr. (Mem)	0000h
02-03h	Device ID	1229h	14-17h	Cntrl. Reg. Base Addr. (I/O)	00h
04-05h	PCI Command	0000h	18-1Bh	Flash Mem. Base Addr.	00h
06-07h	PCI Status	0280h	2C-2Dh	Subsystem Vender ID	
08h	Revision ID	xxh	2E-2Fh	Subsystem ID	
09-0Bh	Class Code	01h	30-33h	Expansion ROM Base Addr.	
0Ch	Cache Line Size	01h	34h	Cap-Ptr	
0Dh	Latency Timer	04h	3C-3D	Interrupt Line/Pin	
0Eh	Header Type	00h	3E-3Fh	Min Gnt/Max Lat	
0Fh	BIST	00h	DC-E3h	Power Mgmt. Functions	

NOTE:

Assume unmarked gaps are reserved and/or not used.

I.4.2 CONTROL

The adapter's 82559 or 82550 controller is controlled though registers that may be mapped in system memory space or variable I/O space. The registers are listed in the following table:

Table G-2. Control Registers				
Offset No. of Offset Addr. / Register Bytes Addr. / Register				
00h SCB Status	2	19h Flow Control Register	2	
02h SCB Command	2	1Bh PMDR	1	
04h SCB General Pointer	4	1Ch General Control	1	
08h PORT	4	1Dh General Status	1	
0Ch Flash Control Reg.	2	1E-2Fh Reserved	10	
0Eh EEPROM Control Reg.	2	30h Function Event Register	4	
10h Mgmt. Data I/F Cntrl. Reg.	4	34h Function Event Mask Register	4	
14h Rx Direct Mem. Access Byte Cnt.	4	38h Function Present State Register	4	
18h Early Receive Interrupt	1	20h Force Event Register	4	

Not implemented in these systems (CardBus registers).

I.5 NETWORK CONNECTOR

Figure I-3 shows the RJ-45 connector used for the NIC interface. This connector includes the two status LEDs as part of the connector assembly.

Figure I-3. Ethernet TPE Connector (RJ-45, viewed from card edge)

I.6 ADAPTER SPECIFICATIONS

	Table I-3. Adapter Specifications			
Parameter				
Modes Supported	10BASE-T half duplex @ 10 MB/s 10Base-T full duplex @ 20 MB/s 100BASE-TX half duplex @ 100 MB/s 100Base-TX full duplex @ 200 MB/s			
Encryption Standards (82550 only)	DES/3DES, HMAC SHA-1, MD5			
Standards Compliance	IEEE VLAN (802.1A) IEEE 802.2 IEEE 802.3 & 802.3u IEEE Intel priority packet (801.1p)			
OS Driver Support	MS Windows 95,98, and 2000 beta MS Windows NT 3.51 & 4.0 Novell Netware 3.11, 3.12, & 4.1x; 5 Server Sunsoft Solaris SCO UnixWare Open Desktop OpenServer			
Boot ROM Support	Intel PRO/100 Boot Agent (PXE 2.0, RPL)			
F12 BIOS Support	Yes			
Bus Inteface	PCI 2.2			
Power Management Support Power Comsumption	APM, ACPI, PCI Power Management Spec. 0.750 mW (max)			

Appendix J COMPAQ/NVIDIA QUADRO2 MXR AGP GRAPHICS CARD

J.1 INTRODUCTION

This appendix describes the Compaq/NVIDIA Quadro2 MXR AGP Graphics Card used in the standard configuration on some models and also available as an option. This card (layout shown in the following figure) installs in a system's AGP slot. The Compaq/NVIDIA Quadro2 MXR graphics card (SP# 221412-001) provides high 2D performance as well as entry-level 3D capabilities.

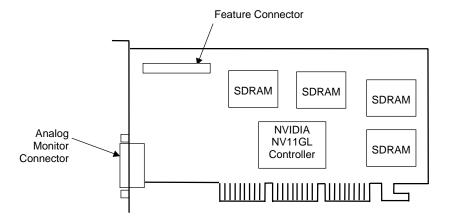


Figure J-1. Compaq/NVIDIA Quadro2 MXR AGP Graphics Card (PCA# 221411-001) Layout

This appendix covers the following subjects:

♦	Functional description (D.2)	page D-2
•	Display modes (D.3)	page D-3
•	Software support information (D.4)	page D-4
♦	Monitor power management (D.5)	page D-4
•	Connectors (D.6)	page D-5

J.2 FUNCTIONAL DESCRIPTION

The NVIDIA Quadro2 MXR Graphics Card provides high performance 2D and 3D display imaging. The card's AGP design provides an economical approach to 3D processing by offloading 3D effects such as texturing, z-buffering and alpha blending to the system memory while 32 megabytes of on-board SDRAM stores the main display image.

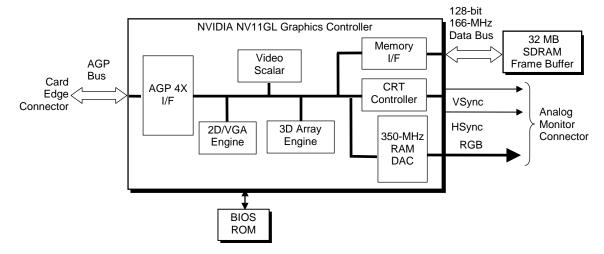


Figure J-2. NVIDIA Quadro2 MXR Graphics Card Block diagram

The NVIDIA Quadro2 MXR Graphics Card includes the following features:

- ♦ 32-MB SDRAM frame buffer using 128-bit 183-MHz access
- AGP 4X transfers with sideband addressing
- ♦ 2D drawing engine
- ♦ 3D rendering engine
- ♦ 350-MHz RAMDAC
- ♦ 32-bit Z/stencil buffer eliminates hidden screen portions for faster loading
- ♦ 32-bit color for increased image quality
- ♦ 30-fps full-screen DVD playback
- ♦ Dual-monitor support with a PCI graphics card

J.3 DISPLAY MODES

The 2D graphics display modes supported by the NVIDIA Quadro2 MXR Graphics are listed in Table J-1.

Table J-1.NVIDIA Quadro2 MXR Graphics Display Modes

Max. Refresh Memor					
Resolution	Bits per pixel	Color Depth	Frequency (Hz) [1]	For Texture	
640 x 480	8	256	240	N/A	
640 x 480	16	65K	240	N/A	
640 x 480	32	16.7M	240	28.4 MB	
800 x 600	8	256	240	N/A	
800 x 600	16	65K	240	N/A	
800 x 600	32	16.7M	240	26.4 MB	
1024 x 768	8	256	200	N/A	
1024 x 768	16	65K	200	N/A	
1024 x 768	32	16.7M	200	22.8 MB	
1152 x 864	8	256	170	N/A	
1152 x 864	16	65K	170	N/A	
1152 x 864	32	16.7M	170	20.3 MB	
1280 x 1024	8	256	150	N/A	
1280 x 1024	16	65K	150	N/A	
1280 x 1024	32	16.7M	150	16.6 MB	
1600 x 1000	8	256	120	N/A	
1600 x 1000	16	65K	120	22.6 MB	
1600 x 1000	32	16.7M	120	13.3 MB	
1600 x 1200	8	256	100	N/A	
1600 x 1200	16	65K	100	20.8 MB	
1600 x 1200	32	16.7M	100	9.5 MB	
1600 x 1280	8	256	100	N/A	
1600 x 1280	16	65K	100	20.0 MB	
1600 x 1280	32	16.7M	100	8.0 MB	
1920 x 1080	8	256	85	N/A	
1920 x 1080	16	65K	85	19.9 MB	
1920 x 1080	32	16.7M	85	7.7 MB	
1920 x 1200	8	256	85	N/A	
1920 x 1200	16	65K	85	18.5 MB	
1920 x 1200	32	16.7M	85	5.0 MB	

NOTE:

^[1] Values reflect hardware capability. May be restricted to lower frequency by operating system.

J.4 SOFTWARE SUPPORT INFORMATION

The NVIDIA Quadro2 MXR graphics card is fully compatible with software written for legacy video modes (VGA, EGA, CGA) and needs no driver support for those modes.

Drivers are provided with or available for the card to provide extended mode support for the current operating systems and programming environments such as:

- ♦ Windows 3.1, 95, 98, 2000, ME
- ♦ Windows NT 4.0, 3.51
- ♦ Whistler
- ♦ Linux
- ♦ OS/2
- Quick Draw
- ♦ MS Direct Draw and Direct X
- ♦ Direct 3D
- ♦ OpenGL

J.5 POWER MANAGEMENT AND CONSUMPTION

This controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table J-2 lists the monitor power conditions.

Table J-2. Monitor Power Management Conditions					
HSYNC	VSYNC	Power Mode	Description		
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to timeout, generates an SMI to initiate the Suspend mode.		
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.		
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.		

J.6 CONNECTORS

There are two connectors associated with the graphics subsystem; the display/monitor connector and the Feature connector.

NOTE: The graphic card's edge connector mates with the AGP slot connector on the system board. This interface is described in chapter 4 of this guide.

The DB-15 disply/monitor connector is provided for connection of a compatible RGB/analog monitor. The Feature connector allows the attachment of an optional card such as a video tuner.

J.6.1 MONITOR CONNECTOR

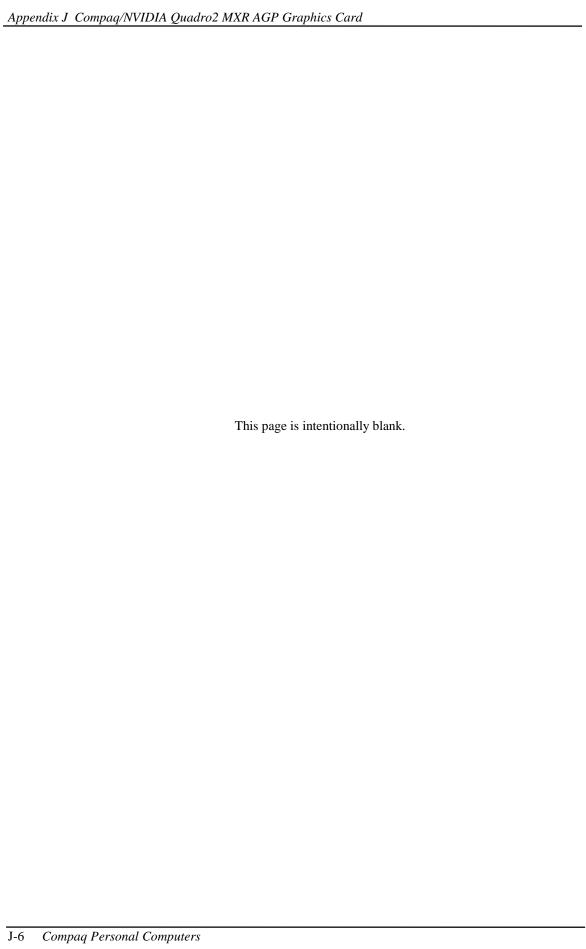


Figure J-3. VGA Monitor Connector, (Female DB-15, as viewed from rear).

Table F-3. DB-15 Monitor Connector Pinout						
Pin	Pin Signal Description Pin Signal Description					
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]	
2	G	Blue Analog	10	GND	Ground	
3	В	Green Analog	11	NC	Not Connected	
4	NC	Not Connected	12	SDA	DDC2-B Data	
5	GND	Ground	13	HSync	Horizontal Sync	
6	R GND	Red Analog Ground	14	VSync	Vertical Sync	
7	G GND	Green Analog Ground	15	SCL	DDC2-B Clock	
8	B GND	Blue Analog Ground				

NOTES:

[1] Fuse automatically resets when excessive load is removed.

Appendix K COMPAQ PCI 10/100 ETHERNET ADAPTER

K.1 INTRODUCTION

This appendix describes Compaq PCI 10/100 Ethernet Adapter (SP# 118042-001) that may be included in the standard configuration on some models and available as options for all models. The adapter card installs in a PCI slot to provide a system with network interface capability.

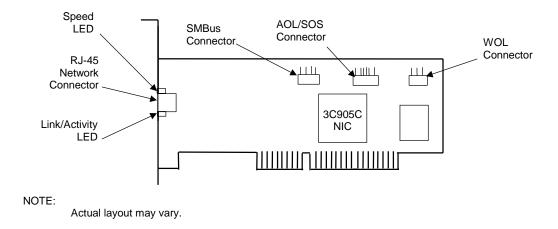


Figure K-1. Compaq PCI 10/100 Ethernet Adapter Card Layout (PCA# 402355-001)

This appendix covers the following subjects:

•	Functional description (K.2)	page K-2
♦	Power management (K.3)	page K-4
♦	Adapter programming (K.4)	page K-5
♦	Network connector (K.5)	page K-6
•	Adapter specifications (K.6)	page K-6

K.2 FUNCTIONAL DESCRIPTION

The Compaq PCI 10/100 NIC Adapter is based on the 3C905C Network Interface Controller supported by firmware in flash ROM (Figure K-2). The adapter can operate in half- or full-duplex modes and provide auto-negotiation of both mode and speed. Full-duplex operation follows the IEEE 802.3x flow control specification. Transmit and receive FIFOs of three kilobytes each reduce the chance of overrun while waiting for bus access. Each card includes an on-board 5/3.3 VDC regulator circuit and WOL connector in support of Wake-On-LAN functionality.

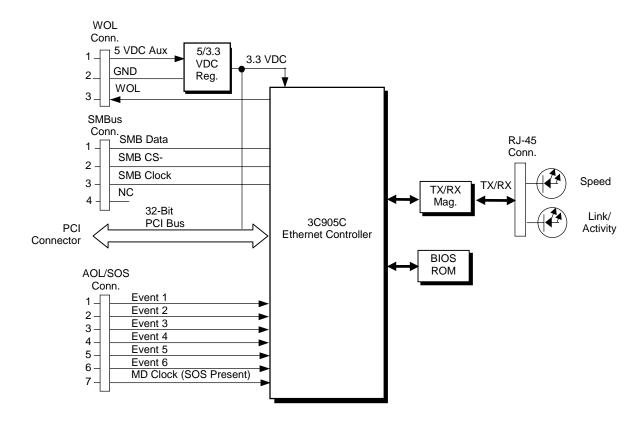


Figure K-2. Compaq PCI 10/100 Ethernet Adapter, Block diagram

Key features of these adapters include:

- 2-KB transmit and 2-KB receive FIFOs
- ♦ 32-bit DMA bus mastering
- ♦ PCI ver. 2.2 compliant (PME- support)
- ♦ 10/100BASE-T half/full duplex (IEEE 802.3)
- ♦ Supports both 100BASE-TX and 100BASE-T4
- ♦ Nway 10/100 auto-negotiation support
- ♦ Both APM and ACPI power management support
- ♦ AOL/SOS interface for Remote Sense Alert support
- ♦ D0-D3 power state wake event support
- Boot ROM with PXE and RPL support

K.2.1 AOL FUNCTION

The adapter's Alert-On-LAN (AOL) function provides a AOL-compliant system unit with the ability to communicate system status to a management console, even while the system is powered down. When installed in an AOL-compliant system, the adapter receives alert messages from the system's I/O Controller Hub (ICH) over the SMBus. Each alert message decoded by the adapter results in a pre-constructed status message being transmitted over the network to a management console. Alert-On-LAN functionality occurs independent of software, driver, or even processor intervention. The adapter can report following conditions:

- ♦ System tampering Removal of the chassis cover
- ♦ BIOS failure System fails to boot successfully
- ♦ OS problem System fails to load operating system after boot
- ♦ Missing/faulty processor Processor fails to fetch first instruction
- ♦ Thermal condition High temperature detected in system
- ♦ Heartbeat Indication of system's presence on the network (sent approximately every 30 seconds)

NOTE: The system unit must be plugged into a live AC outlet for the AOL function to be operative. **Controlling a system unit's power through an AC outlet strip will, when the strip is turned off, disable AOL functionality.**

NOTE: Since AOL implements the SMBus, a cable connection from the SMBus connector on the card to a corresponding SMBus connector on the system board may be required. Compaq desktop system boards with AOL support inter-connect the SMBus with the PCI bus and do not require a SMBus cable connection.

The AOL implementation requirements are as follows:

- 1. System unit featuring the 810, 810e, 820, or 850 (or later) chipset.
- 2. Intel PRO/100+ Management Adapter Driver 3.1 or later (available from Compaq).
- 3. Client-side utility agent software (available from Compag).
- 4. Management console running one of the following:
 - a. HP OpenView Network Node Manager 6.x.
 - b. Intel LANDesk Client Manager.
 - c. Compaq Insight Manager.

K.2.2 RSA FUNCTION

This adapter provides support for systems using the Remote System Alert (RSA) method of generating alerts over the network. The RSA method is similar to the AOL function described previously but does not use the PCI's SMBus for alert transactions. The RSA method uses an AOL/SOS connector is provided on the card for connection to a compliant system board through a 7-conductor cable assembly. Up to six events may be detected by the adapter such as:

- ♦ BIOS fail
- ♦ OS fail
- ♦ Intrusion
- ♦ Fan alert
- Power alert
- ♦ Heartbeat

The RSA implementation requirements are as follows:

- 1. System unit featuring the 810, 810e, 820, or 850 (or later) chipset.
- 2. 7-conductor AOL/SOS cable assembly.
- 3. 3Com EtherDisk Driver 5.x or later (available from Compaq).
- 4. Client-side utility software (included with driver).
- 5. Server-side utility software (available from Compaq).
- 6. Management console running one of the following:
 - a. HP OpenView Network Node Manager 6.x.
 - b. Intel LANDesk Client Manager.

K.2.3 WAKE UP FUNCTIONS

The adapter provides two types of wake-up signaling: the PME- signal and the WOL signal.

The adapter provides PME- signal support for systems compliant with PCI ver. 2.2. The detection of any wake event results in the adapter's assertion of the PME- signal, which can be used by the system unit to initiate the power-up sequence. System software is responsible for the clearing the PME- signal.

The adapter also includes a WOL interface for systems supporting that method of wake-up. The adapter asserts the WOL signal for 50 milliseconds upon detection of a Magic Packet. The WOL signal is routed to the system unit (through a three-conductor cable connection) for initializing a power-up sequence.

K.3 POWER MANAGEMENT SUPPORT

These adapters support APM and ACPI power management environments as well as the Wiredfor-Management (WfM) and Wake-On-LAN (WOL) standards. The adapter is designed to be powered up as long as the system unit is plugged into a live AC outlet to provide system "wake-up" functionality. Power is provided by either the auxiliary 3.3 VDC power rail of the PCI bus (when installed in systems compliant with PCI ver. 2.2) or by auxiliary 5 VDC through the WOL connector.

NOTE: Controlling a system unit's power through an AC outlet strip will, with the strip turned off, disable wake-up functionality.

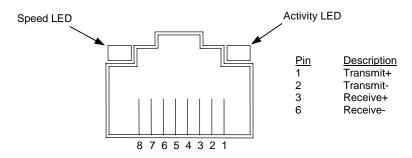
K.3.1 APM ENVIRONMENT

The Advanced Power Management (APM) functionality of system wake up is implemented through the system's APM-compliant BIOS and Magic Packet-compliant hardware. This environment is not dependent on operating system (OS) intervention allowing a unit plugged into a live AC outlet to be turned on remotely over the network (i.e., "remote wake-up") even if the OS has not been installed. In APM mode the controller will respond upon receiving a Magic Packet, which is a packet where the node's address is repeated 16 times. Upon Magic Packet reception, the adapter asserts the PME- signal (on the PCI bus) resulting in the system unit's power control logic turning on the system and initiating the boot sequence. After the boot sequence the BIOS clears the PME- signal so that subsequent wake up events will be detected.

K.3.2 ACPI ENVIRONMENT

The Advanced Configuration and Power Interface (ACPI) functionality of system wake up is implemented through an ACPI-compliant OS (such as Windows NT 5.0) and is the default power management mode. The following wake up events may be individually enabled/disabled through the software driver supplied with the adapter:

- ♦ Magic Packet Packet with node address repeated 16 times in data portion.
- ◆ Individual address match Directed acket with matching user-defined byte mask.
- ♦ Multicast address match Directed packet with matching user-defined sample frame.
- ♦ ARP (address resolution protocol) packet
- Flexible packet filtering Packets that match defined CRC signature.
- ♦ NBT query (under IP 4.0)
- ♦ IPX Diagnostic
- ♦ TCO packet
- ♦ VLAN Type


When an enabled event is received the controller asserts the PME- signal that is used to initiate the wakeup sequence.

K.4 CONNECTORS

In addition to the PCI card edge connector, the NIC adapter includes four on-board connectors; the RJ-45 network connector, an AOL/SOS connector, a WOL connector, and a SMBus connector.

K.4.1 NETWORK CONNECTOR

Figure K-3 shows the RJ-45 connector used for the NIC interface. This connector includes the two status LEDs as part of the connector assembly.

Figure K-3. Ethernet TPE Connector (RJ-45, viewed from card edge)

K.4.2 AOL/SOS CONNECTOR

Figure K-4 shows the AOL/SOS connector. This connector is used for systems employing the Remote System Alert (RSA) method of providing alerts to a network.

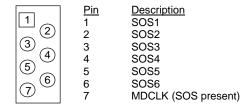
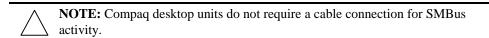



Figure K-4. AOL/SOS Connector (7-pin Header)

K.4.3 SMBUS CONNECTOR

Figure K-5 shows the SMBus connector. This connector is used for systems employing AOL functionality and requiring a cable connection for SMBus activity.

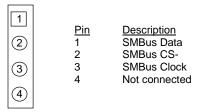


Figure K-5. AOL/SOS Connector (4-pin Header)

K.4.4 WOL CONNECTOR

Figure K-6 shows the WOL connector. This connector is used for systems employing remote wake-up.

Figure K-6. WOL Connector (3-pin Header)

K.5 ADAPTER SPECIFICATIONS

Table K-1. Adapter Specifications				
Parameter				
Modes Supported	10BASE-T half duplex @ 10 MB/s 10Base-T full duplex @ 20 MB/s 100BASE-TX half duplex @ 100 MB/s 100Base-TX full duplex @ 200 MB/s			
Encryption Standards (82550 only)	DES/3DES, HMAC SHA-1, MD5			
Standards Compliance	IEEE 802.1A, 802.1P, 802.1Q IEEE 802.3, 802.3u, & 802.3x Microsoft PC97, PC98, PC99 NetPC DMI 1.0 & 2.0 WfM 1.1a & 2.0			
OS Driver Support	MS Windows 95 & 98 MS Windows NT 3.51 & 4.0			
Boot ROM Support	Intel PRO/100 Boot Agent (PXE 2.0, RPL)			
F12 BIOS Support	Yes			
Bus Inteface	PCI 2.2			
Card size	PCI half-length card			
Power Management Support	APM, ACPI, PCI Power Management Spec.			
Power Comsumption	5.0 or 3.3 VDC @ 375 ma			

Appendix L COMPAQ/ADAPTEC 29160N SCSI HOST ADAPTER

L.1 INTRODUCTION

The Compaq/Adaptec 29160N SCSI Host Adapter (Compaq SP# 158364-001) is a PCI peripheral that provides high performance interfacing with compatible SCSI peripherals, typically SCSI hard drives. The card installs in a PCI slot and supports full bus mastering capability.

This appendix covers the following subjects:

♦	Functional description (L.2)	page L-2
•	SCSI adapter programming (L.3)	page L-3
•	Specifications (L.4)	page L-3
•	SCSI connectors (L.5)	page L-4

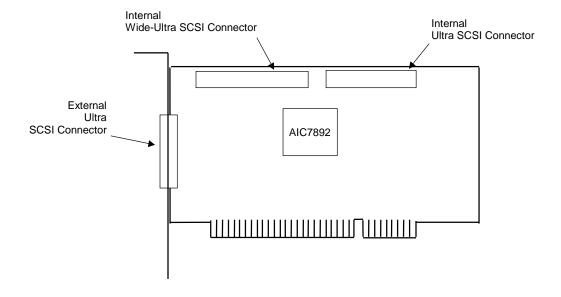


Figure L-1. Compaq/Adaptec 29160N SCSI Host Adapter Card Layout (PCA# 157342-001)

L.2 FUNCTIONAL DESCRIPTION

A block diagram of the SCSI Adapter is shown in Figure L-2. The adapter's architecture is based on the AIC-7892 SCSI controller working off the 32-bit, 66-/33-MHz PCI bus. Providing full bus mastering capability, the adapter supports data transfers up to 266 MB/s using the burst mode rate on a 66-MHz 32-bit PCI bus. The AIC-7892 controller is an Ultra160 controller with an on-board 20-MIPS SCSI sequencer that can process SCSI commands without intervention from the host microprocessor. The sequencer uses micro-code that is downloaded from the host during initialization. Single-ended SCSI drivers are built into the controller and a 1-K data FIFO and an internal 4-KB SRAM memory. An LED is provided to indicate SCSI bus activity.

The AIC7892 provides a memory interface that is used by the Serial EEPROM and the BIOS ROM. The serial EEPROM stores non-volatile configuration data and the BIOS ROM (which is a flash ROM) contains additional configuration data and SCSI functions. The programmable array logic (PAL) controls the Serial EEPROM-to-AIC7892 interface.

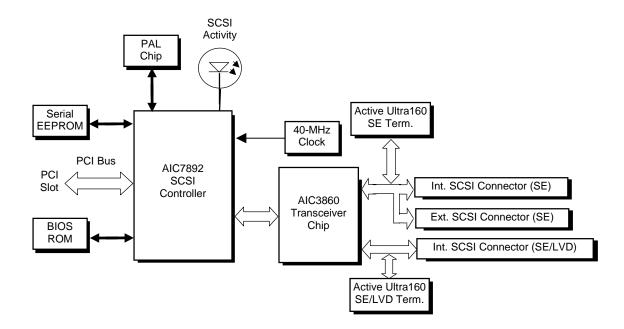


Figure L-2. Compaq/Adaptec Ultra SCSI Adapter Card Block Diagram

The AIC7892 controller supports dual-mode low-voltage differential (LVD) SCSI I/O up to the Ultra160 data rate of 160 Mbytes. Both single-ended (SE) and LVD devices can co-exist on the SCSI bus, although operation will default to the SE mode. In SE mode, transfer rates are limited to the speed of the slower device. High-voltage differential (HVD) devices are supported for rates up to Ultra speeds.

The AIC7892 also supports cyclic redundancy check (CRC) codes, an improvement over parity checking used earlier.

L.3 SCSI ADAPTER PROGRAMMING

L.3.1 SCSI ADAPTER CONFIGURATION

The Adaptec SCSI Host Adapter Card is a PCI device and configured using PCI protocol and PCI Configuration Space registers (PCI addresses 00h-FFh) as discussed in Chapter 4 of this guide. Configuration is accomplished by BIOS during POST and re-configurable with software. The vender ID and device ID for the adapter are as follows:

Vender ID (PCI config. addr. 00h): 9005h Device ID (PCI config, addr. 02h): 0080h

L.3.2 SCSI ADAPTER CONTROL

Control of the SCSI host adapter is affected through I/O mapped registers mapped as listed in Table L-1.

	Table L-1.
	Ultra SCSI Host Adapter Card
	Control Register Mapping
I/O Addr.	Function
n00h-n1Fh	SCSI Register Array
n20h-n5Fh	Scratch RAM
n60h-n7Fh	Phase Engine (Sequencer)
n80h-n9Fh	Host Registers
n00h-nFFh	SCB Array

n = prefix address supplied by the BASEADR0 PCI Config. Reg.

L.4 SPECIFICATIONS

The operating specifications are listed in Table L-2.

Table L-2.				
Ultra SCSI Host Adapter Card Specifications				
Operating Voltage	+5 VDC			
Maximum Current Draw	2 A			
Operating Temperature	32°F (0°C) to 131°F (55°C)			

L.5 SCSI CONNECTORS

This SCSI card provides two internal header-type connectors (one 50-pin, one 68-pin) and one external D-type connector (50-pin).

L.5.1 EXTERNAL 50-PIN ULTRA SCSI CONNECTOR

The card provides one external 50-pin D-type Ultra SCSI connector. External cabling should meet T-10 SPI-2 standards (50-conductor, round shielded).

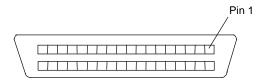


Figure L–3. External Ultra SCSI Connector (50-pin)

Table L-3. External Ultra SCSI Connector Pinout					
Pin	Signal	Function	Pin	Signal	Function
1	GND	Ground	26	DB0-	Data Bit 0
2	GND	Ground	27	DB1-	Data Bit 1
3	GND	Ground	28	DB2-	Data Bit 2
4	GND	Ground	29	DB3-	Data Bit 3
5	GND	Ground	30	DB4-	Data Bit 4
6	GND	Ground	31	DB5-	Data Bit 5
7	GND	Ground	32	DB6-	Data Bit 6
8	GND	Ground	33	DB7-	Data Bit 7
9	GND	Ground	34	DBP	Data Bus Pulse
10	GND	Ground	35	GND	Ground
11	GND	Ground	36	GND	Ground
12	GND	Ground	37	GND	Ground
13	RSVD	Reserved	38	TERMPWR	Termination Power
14	GND	Ground	39	GND	Ground
15	GND	Ground	40	GND	Ground
16	GND	Ground	41	ATN-	Attention
17	GND	Ground	42	GND	Ground
18	GND	Ground	43	BSY-	Busy
19	GND	Ground	44	ACK-	Acknowledge
20	GND	Ground	45	SBRST-	Burst
21	GND	Ground	46	MSG-	Message Activity
22	GND	Ground	47	SEL-	Select
23	GND	Ground	48	C-/D	Control/Data Transfer Indicator
24	GND	Ground	49	REQ-	Request
25	GND	Ground	50	I-/O	Input/Output Indicator

L.5.2 INTERNAL 50-PIN ULTRA SCSI CONNECTOR

The card provides one internal 50-pin header-type Ultra SCSI connector. Internal cabling to this connector should consists of an unshielded connector with a 50-conductor flat cable as specified in ANSI standard X3T9.2/375R.

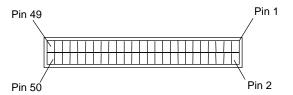
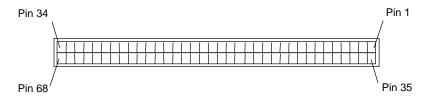



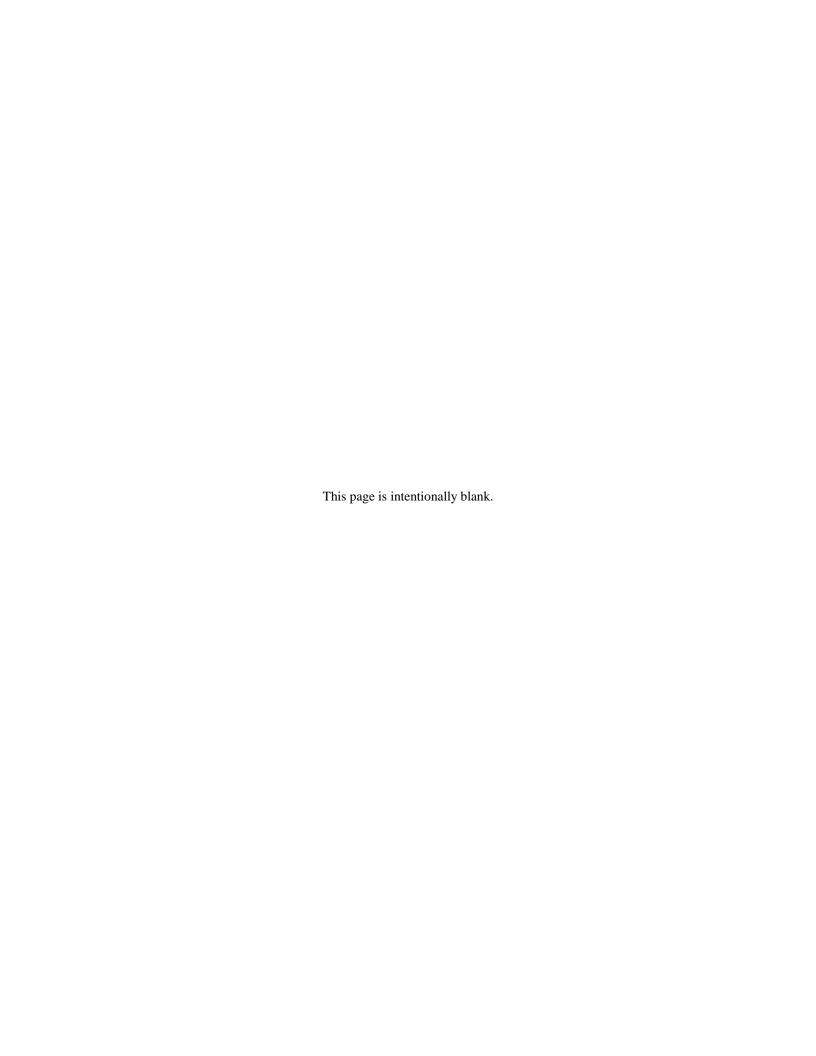
Figure L-4. Internal 50-Pin Ultra SCSI Connector

Table L-4.					
Internal 50-Pin Ultra SCSI Connector Pinout					
Pin	Signal	Function	Pin	Signal	Function
1	GND	Ground	2	DB0-	Data Bit 0
3	GND	Ground	4	DB1-	Data Bit 1
5	GND	Ground	6	DB2-	Data Bit 2
7	GND	Ground	8	DB3-	Data Bit 3
9	GND	Ground	10	DB4-	Data Bit 4
11	GND	Ground	12	DB5-	Data Bit 5
13	GND	Ground	14	DB6-	Data Bit 6
15	GND	Ground	16	DB7-	Data Bit 7
17	GND	Ground	18	DBP	Data Bus Pulse
19	GND	Ground	20	GND	Ground
21	GND	Ground	22	CS	Cable Sense
23	Open	Open	24	Open	Open
25	Open	Open	26	TERMPWR	Termination Power
27	Open	Open	28	Open	Open
29	GND	Ground	30	GND	Ground
31	GND	Ground	32	ATN-	Attention
33	GND	Ground	34	GND	Ground
35	GND	Ground	36	BSY-	Busy
37	GND	Ground	38	ACK-	Acknowledge
39	GND	Ground	40	SBRST-	Reset
41	GND	Ground	42	MSG-	Message Activity
43	GND	Ground	44	SEL-	Select
45	GND	Ground	46	C-/D	Control/Data Transfer Indicator
47	GND	Ground	48	REQ-	Request
49	GND	Ground	50	I-/O	Input/Output Indicator

L.5.3 INTERNAL 68-PIN ULTRA160 SCSI CONNECTOR

The card provides one internal 68-pin Ultra160 SCSI connector. This connection is designed for a 68-conductor unshielded Twist 'N Flat cable as specified in the T-10 SPI-2 standard.

Figure L–5. Ultra 160 SCSI Connector (68-pin header type)


Table L-5. Ultra160 SCSI Connector Pinout						
D:						
Pin	Signal	Function	Pin	Signal	Function	
1	GND	Ground	35	DB12	Data Bit 12	
2	GND	Ground	36	DB13	Data Bit 13	
3	GND	Ground	37	DB14	Data Bit 14	
4	GND	Ground	38	DB15	Data Bit 15	
5	GND	Ground	39	DBP-	Data Bus Parity	
_6	GND	Ground	40	DB0-	Data Bit 0	
7	GND	Ground	41	DB1-	Data Bit 1	
8	GND	Ground	42	DB2-	Data Bit 2	
9	GND	Ground	43	DB3-	Data Bit 3	
10	GND	Ground	44	DB4-	Data Bit 4	
11	GND	Ground	45	DB5-	Data Bit 5	
12	GND	Ground	46	DB6-	Data Bit 6	
13	GND	Ground	47	DB7-	Data Bit 7	
14	GND	Ground	48	DBP-	Data Bus Parity	
15	GND	Ground	49	GND	Ground	
16	GND	Ground	50	GND	Ground	
17	TERMPWR	Termination Power	51	TERMPWR	Termination Power	
18	TERMPWR	Termination Power	52	TERMPWR	Termination Power	
19	GND	Ground	53	Int_Out-	Interrupt Out	
20	GND	Ground	54	SBRST-	Burst	
21	GND	Ground	55	ATN-	Attention	
22	GND	Ground	56	GND	Ground	
23	GND	Ground	57	BSY-	Busy	
24	GND	Ground	58	ACK-	Acknowledge	
25	GND	Ground	59	RESET-	Reset	
26	GND	Ground	60	MSG-	Message Activity	
27	GND	Ground	61	SEL-	Select	
28	GND	Ground	62	C-/D	Control/Data Transfer Indicator	
29	GND	Ground	63	REQ-	Request	
30	GND	Ground	64	I-/O	Input/Output Indicator	
31	GND	Ground	65	DB8-	Data Bit 8	
32	GND	Ground	66	DB9-	Data Bit 9	
33	GND	Ground	67	DB10-	Data Bit 10	
34	GND	Ground	68	DB11-	Data Bit 11	

INDEX

3D effects, D-2, E-2, G-2, H-2, J-2	Audio, Mic In, 5-26
abbreviations, 1-3	Audio, Speaker, 5-27
AC97 link bus, 5-29	diskette drive interface, 5-7
Accelerated Graphics Port (AGP), 4-10	display (VGA monitor), D-5, E-5, G-5, H-5, J-
ACPI, I-5, K-5	5
acronyms, 1-3	IDE interface, 5-3
AGP, 4-10	keyboard/pointing device interface, 5-21
Alert-On-LAN, 5-33	Network RJ-45, 5-36
AOL, 5-33	parallel interface, 5-15
AOL requirements, 5-34, 5-36	PCI bus, 4-9
APIC, 4-16	serial interface (RS-232), 5-8
APM, I-5, K-5	Ultra SCSI (50-pin D-type), L-4
APM BIOS support, 7-19	Ultra SCSI (50-pin header type), L-5
* *	
arbitration, PCI bus master, 4-6	Universal Serial Bus interface, 5-25
ASCII character set, B-1	VGA pass-through (feature), E-6, G-6 , H-6
audio, 5-26	Wide Ultra SCSI (68-pin header type), L-6
audio controller (AC97), 5-28	continuity module, 3-6
audio subsystem, 2-14	cooling, 4-34
backplane, 2-6	core voltage, 6-6
battery replacement, 4-20	CRIMM, 3-6
BIOS, ROM, 7-1	Data Encryption Standards (DES), I-4
blinking LED, 6-4	DES, I-4
boot block ROM, 7-2	device ID (PCI), 4-4
boot status, 4-33	DIMM detection, 7-5
cable lock, 4-32	DIMM support, 7-14
Celeron processor, 2-10	Direct Rambus, 3-5
chipsets, 2-11	diskette drive interface, 5-4
Client Management, 7-12	display modes, D-3, E-3, G-3 , H-3, J-3
clock generation, 4-20	DMA, 4-19
CMOS, 4-20	DMI, 7-16
CMOS, archive, 4-22	drive fault prediction, 7-15
CMOS, clearing, 4-21	DSP, F-2
CMOS, restoring, 4-22	dual-head support, H-2
codec, audio, 5-30	East Access keys, C-10
Configuration Cycle, 4-4	Easy Access keyboards, C-7
configuration cycle (PCI), 4-4	· · · · · · · · · · · · · · · · · · ·
configuration memory, 4-20	effects, 3D, D-2, E-2, G-2 , H-2 , J-2
•	EIDE interface, 5-1
configuration space (PCI), 4-5	Enhanced Parallel Port (EPP), 5-12
connector	events, wake up, 6-4
RJ-11 (modem), F-4	expansion card cage, 2-6
Connector	Extended Capabilities Port (ECP), 5-12
AGP bus, 4-14	features, standard, 2-2
Audio, CD, 5-27	flash ROM, 7-2
audio, headphones out, 5-26	flash status, 4-33
audio, line in, 5-26	general purpose I/O, 4-36
audio, line out, 5-26	GPIO, 4-36

I/O controller, 4-38	notational conventions, 1-1, 1-2
graphics card, D-1, E-1, F-1, G-1 , H-1 , J-1, K-1,	operational status indications (LED), 4-33
L-1	option ROM, 4-7
graphics subsystem, 2-13	options, 2-3
graphics, 3D, D-2, E-2, G-2 , H-2 , J-2	packet (Rambus), 3-7
Hard drive activity indicator, 4-39	parallel interface, 2-12, 5-11
Hub link bus, 4-7	password, clearing, 4-21
I/O controller (LPC47B34x), 4-37	password, power-on, 4-31
I/O map, 4-35	PC600/700/800, 3-6
IDE interface, 5-1	PCI bus, 4-2
IDSEL, 4-4	PCI Configuration Space, 4-5
index addressing, 1-2	PCI interrupts, 4-7
interface	PCI modem, F-2
audio, 2-14, 5-26	PCI ver. 2.2, 5-33
diskette drive, 5-4	Pentium 4 processor, 3-2
IDE, 5-1	Pentium II, 2-11
keyboard/pointing device, 5-16	Pentium II processor, 2-10
	pinouts, header (connector), 6-8
parallel, 2-12, 5-11	•
serial, 2-12, 5-8	Plug 'n Play, 2-2, 2-12, 7-15
USB, 2-12, 5-22	Plug 'n Play BIOS function, 7-15
interrupts 4.15	power button, 6-3
maskable (IRQn), 4-15	Power Button Override, 4-22
nonmaskable (NMI, SMI), 4-17	power consumption, graphics card, D-4
interrupts, PCI, 4-7	power distribution, 6-5
IPSEC, I-4	Power indicator, 4-39
K56Flex, F-2	power LED, 6-4
key (keyboard) functions, C-8	power management
keyboard, C-1	ACPI, 4-32
keyboard (micro)processor, C-2	PCI, 4-7
keyboard layouts, C-5	Rambus, 3-8
keyboard, USB, C-4	power management BIOS function, 7-17
keyboards, Easy Access, C-7	power mangement, F-4
keys, Easy Access, C-10	power supply, 6-1
keys, Windows, C-9	power supply assembly, 6-2
LED indications, 6-3, 6-4	power-on password, 4-31
LED indications (status), 4-33, 4-39	processor upgrading, 3-4
LED, HD, 4-39	processor, Celeron, 2-10
LED, network status, K-2	processor, Pentium 4, 3-2
LED, Power, 4-39	processor, Pentium II, 2-10
LEDs, system board, 6-3	RAM, 2-12
Low Pin-Count (LPC) Bus, 4-7	Rambus, 3-5
low voltages, 6-6	RDRAM, 3-5
LPC bus, 4-7	reference sources, 1-1
LPC47B34x I/O controller, 4-37	remote flashing, 7-2
mass storage, 2-12	remote sense alert, 5-35
memory detection, 7-5	restoring CMOS, 4-22
memory map, 3-9	RIMM, 3-5, 3-6
memory, system (RAM), 2-12	ROM BIOS, 7-1
microphone, 5-26	ROM flashing, 7-2
1	•
monitor power control, D-4, E-4, G-4 , H-4, J-4	ROM, option, 4-7
mouse interface, 5-18	RS-232, 5-8
network interface controller card, I-1	RTC, 4-20
network support, 5-33	scan codes (keyboard), C-11
NIC card, I-1	SDRAM, E-2, G-2, H-2
NLX card, K-1	security functions, 4-31

security, interface, 4-32 system ROM, 7-1 sensor, thermal, 4-34 system status indications, 4-33, 4-39 serial interface, 2-12, 5-8 TAFI, 4-34 temperature status, 7-14 SGRAM, D-2, J-2 thermal sensing, 4-34 sideband addressing, 4-11 signal distribution, 6-7, 6-8 transmission modes (modem), F-3 **SMBIOS**, 7-16 troubleshooting, 6-3 SMI, 4-18 typematic, C-8 Sound Blaster 128 audio, 5-26 UART, 5-8, F-2 specifications UART transfer modes (modem), F-3 electrical, 2-14 Universal Serial Bus (USB) interface, 5-22 environmental, 2-14 upgrading, BIOS, 7-2 physical, 2-15 upgrading, processor, 3-4 power supply, 6-7, 6-8 USB interface, 5-22 Specifications USB keyboard, C-4 8x CD-ROM Drive, 2-16 USB legacy support, 7-23 Audio subsystem, 5-32 USB ports, 2-12 Diskette Drive, 2-15 V.90, F-2 SCSI Host Adapter, L-3 vender ID (PCI), 4-4 specifications, network adapter, I-7, K-8 VESA connector, E-6, G-6, H-6 specifications, system, 2-14 voltage, core, 6-6 SSE2, 3-2 wake up (power), 6-4 status, system (LED), 4-33, 4-39 wake up events, 6-4 system board, 2-7 Wake-On-LAN, 6-4 system board LEDs, 6-3 Windows keys, C-9 system ID, 7-6, 7-14 WOL, 6-4, I-5, K-5, K-7 system memory, 2-12 system resources, 4-15

