

Parker Hannifin

ii Programmer’s Guide

User Information

Warning — ACR series products are used to control electrical and
mechanical components of motion control systems. You should
test your motion system for safety under all potential conditions.
Failure to do so can result in damage to equipment and/or serious
injury to personnel.

ACR series products and the information in this guide are the proprietary property
of Parker Hannifin Corporation or its licensers, and may not be copied, disclosed,
or used for any purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve
the right to change this guide, and software and hardware mentioned therein, at
any time without notice.

In no event will the provider of the equipment be liable for any incidental,
consequential, or special damages of any kind or nature whatsoever, including
but not limited to lost profits arising from or in any way connected with the use of
the equipment or this guide.

© 2003-2007 Parker Hannifin Corporation
All Rights Reserved

Technical Assistance
Contact your local automation technology center (ATC) or distributor.

North America and Asia
Parker Hannifin
5500 Business Park Drive
Rohnert Park, CA 94928
Telephone: (800) 358-9070 or (707) 584-7558
Fax: (707) 584-3793
Email: emn_support@parker.com
Internet: http://www.parkermotion.com

Germany, Austria, Switzerland
Parker Hannifin
Postfach: 77607-1720
Robert-Bosch-Str. 22
D-77656 Offenburg
Telephone: +49 (0) 781 509-0
Fax: +49 (0) 781 509-176
Email: sales.hauser@parker.com
Internet: http://www.parker-emd.com

Europe (non-German speaking)
Parker Hannifin plc
Electromechanical Automation, Europe
Arena Business Centre
Holy Rood Close
Poole
Dorset, UK
BH17 7BA
Telephone: +44 (0) 1202 606300
Fax: +44 (0) 1202 606301
Email: support.digiplan@parker.com
Internet: http://www.parker-emd.com

Italy
Parker Hannifin
20092 Cinisello Balsamo
Milan, Italy via Gounod, 1
Telephone: +39 02 6601 2478
Fax: +39 02 6601 2808
Email: sales.sbc@parker.com
Internet: http://www.parker-emd.com

Technical Support E-mail

emn_support@parker.com

mailto:emn_support@parker.com
http://www.parker.com/
mailto:sales.hauser@parker.com
http://www.parker-emd.com/
http://www.parker-emd.com/
mailto:support.digiplan@parker.com
http://www.parker-emd.com/
http://www.parker-emd.com/
mailto:sales.sbc@parker.com
http://www.parker-emd.com/
http://www.parker-emd.com/
mailto:emn_support@parker.com

 Parker Hannifin

Table of Contents
User Information..ii

Table of Contents ..iii

Change Summary ...5

Programming Basics...7
Aliases ... 7
Program Labels ... 7
Remarks... 8
Command Syntax .. 8
Example Code Conventions ... 11
Programs and Commands ... 12
Kill All Motion Request vs. Kill All Moves ... 14
Program Flow.. 19
Parameters and Bits... 24
Parametric Evaluation .. 27

Basic Setup...31
Before You Begin ... 31
Startup Programs .. 39
Resetting the Controller.. 39
Memory.. 39
Return to Factory Default.. 40
Configuration .. 40

Making Motion ..48
Four Basic Categories of Motion... 48
Move Types... 49
What are Motion Profiles? ... 53
Interaction Between Motion Profilers .. 54
Velocity Profile Commands.. 58
Coordinated Moves Profiler.. 63
Jog Profiler ... 66
Gear Profiler ... 76
Cam Profiler .. 77
Homing .. 77

Servo Loop Fundamentals87
Setpoint Compensation .. 87
Following Error .. 88

Application Examples ...90
Basic Motion ... 90
Enable Drive ... 91
EPL Network ... 92
Homing .. 93
Open Sample .. 96
Teach Array .. 97

Binary Host Interface ...99
Binary Data Transfer .. 99
Binary Data Packets ..101
Binary Parameter Access ...103
Binary Peek Command ..106
Binary Poke Command ..107
Binary Address Command..108
Binary Parameter Address Command ..110
Binary Mask Command..111
Binary Parameter Mask Command ..112

 iii

Parker Hannifin

iv Programmer’s Guide

Binary Move Command..113
Binary SET and CLR ..120
Binary FOV Command ...121
Binary ROV Command ...123
Application: Binary Global Parameter Access ..125

Additional Features ..127
CANopen ...127
Drive Talk ..141
Inverse Kinematics ...147

Troubleshooting ...149
Problem Isolation..149
Information Collection ...149
Troubleshooting Table ...150

Error Handling ..158

Appendix ..167
IP Addresses, Subnets, & Subnet Masks ..167
Output Module Software Configuration Examples ..172

Index..175

 Parker Hannifin

Change Summary
The change summary below lists the latest additions, changes, and
corrections to the ACR Programmer’s Guide and the corresponding
section of ACR-View Online Help.

Revision D Changes
Document 88-028698-01D (ACR Programmer’s Guide) supersedes
document 88-028698-01C. Changes associated with this document
are notated in this section.

Topic Description

Getting Started and
System
Configurations

Removed these sections.

Revision C Changes
Document 88-028698-01C (ACR Programmer’s Guide) supersedes
document 88-028698-01B. Changes associated with this document
are notated in this section.

Topic Description

Programming Basics -
Kill All Motion
Request vs. Kill All
Moves

Added new section which describes and compares
the Kill All Motion axis flag and the Kill All Moves
master flag.

Application Examples Added section with sample code for a more in-
depth examination of the following topics: Basic
Motion, Enable Drive, Homing, Open Sample,
Teach Array.

Additional Features –
CANopen

Added Example 2.

Revision B Changes
Document 88-028698-01B (ACR Programmer’s Guide) supersedes
document 88-028698-01A. Changes associated with this document
are notated in this section.

Topic Description

Program Labels Refined the rules.

Command Syntax Parentheses in Arguments and Syntax section:

use parentheses if a constant is signed or is
changing to a variable.

Example Code

Conventions

New section.

 Change Summary 5

Parker Hannifin

6 Programmer’s Guide

Startup Programs Corrected example program.

Making Motion Reorganized the Making Motion chapter. Added
REN and RES details for Velocity Profile
Commands section. Changed the term in section
titles from “Commanding Motion” to “Move Types.”

Jog Profiler Added Jog Profiler section to Making Motion
chapter.

Error Handling Revised and reformatted sample error handling
program.

 Parker Hannifin

Programming Basics
The following section explains some fundamental concepts of the
AcroBASIC programming language.

Aliases
Alternative names, called aliases, can be assigned to parameters,
bits, constants, and variables to make program code more
readable. Aliases are recognized globally (across user programs).

NOTE: Do not confuse aliases with axis names. You can assign an
axis name to an axis through the ATTACH SLAVE command.

Observe the following rules when creating and using aliases:

• Use a maximum of 24 letters.

• Aliases are case sensitive.

• Do not use numbers, spaces, or special characters (such as _
and @).

• Use caution when using aliases with local variables.

An alias is recognized across programs, while local variables
are limited to the program in which they are created. This can
cause problems if you have created similar local variables in
different programs. For example, if long variables are
dimensioned in three programs, then the alias “counter” is
assigned to LV1 (long variable 1), the controller recognizes
“counter” as an alias in all three programs, though it represents
a counter in only one program.

For more information, see the #DEFINE command in the ACR
Command Language Reference.

► To assign aliases, use the #DEFINE command.

Program Labels
Labels are program pointers which provide a method of branching
to specific locations, including subroutines, within the same
program. Labels can only be defined within a program and
executed with a GOTO or GOSUB from within the same program.

Observe the following rules when creating and using labels:

• Precede the label with an underscore (_) character.

• Use letters (case-sensitive) and numbers, but not spaces or
symbols.

 Programming Basics 7

Parker Hannifin

• Use the RETURN command to indicate the end of the
subroutine.

• Do not put a REM command on the same line as a label.

Example
_START
GOSUB Label1
GOTO START
_Label1
PRINT “Inside Label1 subroutine”
RETURN

Remarks
You can add comments to a program. You can put a REM
statement by itself on a line, or you can place it on the same line
after a program statement.

When following a program statement with a REM statement, observe
the following: place a space, a colon (:), then another space
between the program statement and the REM statement.

Comments consume memory on the controller, and can affect
processing speed. By using an apostrophe (‘) in place of REM, the
controller strips comments on downloading the program. Unlike REM,
when using the apostrophe for comments, the comment must
appear on its own line.
REM this is a comment
‘ this is another comment
ACC 10000 : REM this comment follows a valid program statement

Command Syntax
The AcroBASIC programming language accommodates a wide
range of needs by providing basic motion control building blocks, as
well as sophisticated motion and program flow constructs.

The language comprises simple ASCII mnemonic commands, with
each command separated by a command delimiter (carriage
return, colon, or line feed). The command delimiter indicates that a
command is ready for processing.

The AcroBASIC programming language uses a parent daughter
approach. A parent can have daughter statements; a daughter
statement is considered a sub-statement of the parent.

You can issue many parent statements alone—some provide the
current status related to that particular command, others perform
an action. For example, issuing the DIM command at the system
level provides you with a report of the system dimensions.
Conversely, issuing the CLEAR command at the system level frees the
memory allocated to all programs.

8 Programmer’s Guide

 Parker Hannifin

You can only issue some parent commands in conjunction with a
daughter statement. For example, the FLASH command has the
ERASE, LOAD, IMAGE, RES, and SAVE daughter statements. Therefore,
you can issue the FLASH ERASE, FLASH LOAD, FLASH IMAGE, FLASH
RES, and FLASH SAVE commands, but not FLASH by itself.

Description of Format
Each parent or daughter command shows the necessary elements
to correctly use that command. The following describes how to
interpret the command format presented to you in this guide:

1. Mnemonic Code: The ASCII command.
2. Name: A short description of the command.
3. Format: Indicates the proper syntax and arguments for the

command.
4. Group: The functional group to which the command belongs.
5. Units: Indicates the units of measurement required by the

argument(s) in the command syntax.
6. Data Type: Indicates the class of data required by the

argument(s).
7. Default: Indicates the setting or value automatically selected

unless you specify a substitute.
8. Prompt Level: Indicates the communication level at which you

can use the command. For more information, see
Communication Levels.

9. See Also: Indicates commands related or similar to the
command you are reviewing.

10. Related Topics: Indicates parameter and bit tables related to
the command you are reviewing.

11. Product Revision: To determine whether the command applies
to your specific ACR series controller and firmware revision, see
the Command and Firmware Release table.

 Programming Basics 9

Parker Hannifin

Arguments and Syntax
The syntax of an AcroBASIC command shows you all the
components necessary to use it. Commands can contain required
and optional arguments. They also contain a number of symbols:

• Braces { }—arguments that are optional. Do not type the
braces in your code.

• Parentheses ()—arguments that are optional, and must
appear within the parentheses in your code. Also used to
indicate variables and expressions. If replacing a constant with
a variable or parametric equation, use parentheses to
“contain” the variable/equation. Signed (-) or (+) constants
must be in parentheses.

• Commas (,)—delimiters between arguments in specific
commands. In addition, select commands use commas to
control spacing and line feeds. To understand the separator’s
specific use in a command, refer to the command’s format
and description.

• Semicolons (;)—delimiters between arguments in specific
commands. In addition, select commands use semicolons to
control spacing and line feeds. To understand the separator’s
specific use in a command, refer to the command’s format
and description.

• Slash mark (/)—signifies an incremental move in select
commands.

• Quotes (“ ”)—arguments within the quotes must appear within
quotes in your code.

• Number sign (#)—device arguments following number signs
must include the number sign in your code.

• Ellipsis (…)—arguments can be given for multiple axes

The following examples illustrate how to interpret common syntax:

Example 1
ACC {rate}

In the ACC command, the lower case word rate is an argument.
Arguments act as placeholders for data you provide. If an argument
appears in braces or parentheses, the argument is optional.

For example, the following sets the acceleration ramp to 10,000 units
per second2.

ACC 10000

When you issue a command without an optional argument, the
controller reports back the current setting. Not all commands report
back, and some require you to specify an axis. For example, the
following reports the current acceleration rate in program 0.

P00>ACC
10000

10 Programmer’s Guide

 Parker Hannifin

Example 2
FBVEL {AXIS {value}} {AXIS {value}} ...

Optional arguments can nest. This provides the flexibility to set data
for or receive reports on multiple axes. For example, the following
sets the velocity feedback gain for axes X and Y to 0.0001 and
0.0002 respectively.

FBVEL X 0.0001 Y 0.0002

Because the FBVEL command can report on multiple axes, you
specify at least one axis on which the controller is to report back.

P00>FBVEL X
0.0001
P00>FBVEL X Y
0.0001
0.0002

Example 3
IPB {AXIS {value}} {AXIS {(value1, value2)}} …

The AcroBASIC language provides programming shortcuts. You can
set positive and negative values for commands using one argument.
If the values differ, you can use two arguments. The command
format illustrates when this is possible. For example, the following sets
the in-position band for axis X to ±0.05 and for axis y to 3 and –1.

IPB X 0.05 Y(3, -1)

Notice that the two values for axis Y are given inside parentheses
and separated by a comma, as shown in the format of the
command.

Example 4
HALT {PROGx | PLCx | ALL}

The vertical bar indicates a choice between arguments. For
example, the HALT command lets you stop a user program or PLC
program or all programs.

HALT PROG0
HALT PLC5
HALT ALL

Example Code Conventions
Examples that include code are provided throughout most of the
ACR Series documentation to illustrate a concept, supply model
code samples, or to show multiple ways to employ the commands.

The example code may include the terminal prompt or
configuration code if it is necessary for clarity. Example code is
complete only as far as conveying information about the discussion,
and configuration and other information may need to be added in
order for the code to be of use in an actual application.

NOTE: In ACR Series example code, Axis0 is the X axis, and Axis1 is
the Y axis, unless otherwise specified.

 Programming Basics 11

Parker Hannifin

Programs and Commands
There is a subset of AcroBASIC commands that act right away. While
you can use them in programs, you can also send them from a
terminal emulator and effect changes immediately—commands
such as ACC, DEC, and VEL.

You can also make on-the-fly changes to a program from a terminal
emulator. At the appropriate program prompt (SYS, PROG, or PLC),
you can enter the line of code. The code remains in effect until you
re-download programs, cycle power to the controller, or send the
REBOOT command; the code is not saved.

Immediate Mode Commands
Immediate commands execute on pressing the ENTER key—all
commands are immediate. You can use this to set operating
characteristics, view the current settings, or have the controller
perform the command.

• To view the current master velocity, type the VEL command
with no value.

• To change the current master velocity, type VEL and then the
new value such as VEL 1000.

• To perform a command such as turning on the first of the
digital outputs type SET 32.

Adding Lines of Code to Programs
You can add lines of code to a program that is already downloaded
to the controller. This can be useful when testing or debugging an
application when you do not want to make a permanent change to
the program stored in ACR-View.

Each code statement you want to add must include a line number.
Otherwise the controller could not understand where to place each
code statement. To determine the correct line numbers, turn on line
numbering through the Force Line Numbers with List bit (bit 5651).
Then send the LIST command to display the current program.

Having determined the correct line number placement for the code
statements, enter the line number, a space and the command. Such
as

15 VEL 1000

The new program lines are stored in the program space.

NOTE: Code changes made with this procedure are not reflected
in the program stored in ACR-View. To ensure your changes
are permanent, enter them in the ACR-View Program Editor
and download it to the controller.

12 Programmer’s Guide

 Parker Hannifin

Starting, Pausing, and Halting Programs
Once downloaded to a controller, you can control programs from
the SYS prompt, as well as any PROG or PLC prompt. You must
include the program or PLC number when issuing the command—for
example RUN PROG0, or PAUSE PROG0, or HALT PROG0. The following
commands provide immediate program control from a terminal
editor:

Running a Program
While the program starts, the controller returns to the SYS, PROG, or
PLC prompt. You can then enter immediate commands as the
program runs.

► To start a program, send the RUN command.

Running a Program at Power Up
You can set a specific program to automatically start after powering
up or rebooting the controller,

► In the program editor, enter the PBOOT command as the first line
in a program.

Listening to a Program
While a program is running, you can “listen” to it. The listen mode
displays data from the controller’s print statements and error
messages.

► To enable the listening mode on a running program, send the
LISTEN command.

► To exit the listening mode, press the ESC key (ASCII 27).

Viewing a Running Program
You can also start and listen to a program using a single command.
This is best used for development trouble shooting purposes. It is the
only time you can view program syntax errors.

► To start a program with the listening mode enabled, send the
LRUN command.

► To exit the listening mode, press the ESC key (ASCII 27).

Halting a Program
You can stop motion and end program execution from the SYS,
PROG, and PLC prompts using the HALT command.

NOTE: To terminate a program in the middle of execution based
on a condition, use the END command.

► To stop a program, send the HALT command.

 Programming Basics 13

Parker Hannifin

Pausing a Program
Pausing a program places a feed hold on the current move and
suspends the program at the current command line.

► To suspend a currently running program, send the PAUSE
command.

Resuming a Paused Program
Once paused, you can resume the program—motion and code
execution continue from the places at which they paused.

► To continue program operation, send the RESUME command.

Affecting Multiple Programs
You can control all programs simultaneously using the ALL argument.
For example: RUN ALL, HALT ALL, PAUSE ALL, or RESUME ALL.

► To control all programs, use the ALL argument in a command.

Kill All Motion Request vs. Kill All Moves
This section is to help clarify the difference between Kill All Motion
Request and Kill All Moves.

Kill All Motion Request (KAMR)
Kill All Motion Request (KAMR) is an Axis Flag. The setting of this flag
(e.g., Bit Index 19 of the Quaternary Axis Flags) will stop and prevent
any motion (jog, cam, gear, coordinated/master). Motion for any
other axes on the same Master will also stop and be prevented until
the flag is cleared.

This flag may be explicitly set by the user through the terminal, or
from within an AcroBASIC program, PC program, or HMI.

This flag is automatically set any time motion is “killed” on this axis.
Motion is killed when:

• End of travel limits are encountered.

• CTRL-X or CTRL-Z is issued.

• Drive fault is detected.

• Excess position error is detected.

When this flag is activated (by the user or automatically by the
controller) the controller will:

• Attempt to stop the axis using the current setting for hard limit
deceleration, HLDEC.

• Use the jog profiler to generate the setpoints necessary to
bring the axis to a controlled stop. This may result in a Jog
Offset. Use the JOG RES command to transfer the Jog Offset to

14 Programmer’s Guide

 Parker Hannifin

the Current (coordinated) Position register. Or home the axis to
re-establish the desired zero position.

• Stop any jog, cam, gear, or ballscrew motion on the axis by
clearing the flag that enable those functions on the axis.

• Set the Kill All MOVES flag for the Master that is assigned to
that axis. This will stop and prevent any coordinated motion.

• Set the Kill All MOTION Request flag for any other axes on that
same Master.

Any motion command issued while this flag is set will result in an error
message “Associated Slave Kill Motion Request Active.” This is true if
any axis assigned to the same Master is commanded to move.

The user is responsible for clearing this flag.

To resume motion, first clear the Kill All Motion Request flag for the
axis (and any other axes on the same Master) and then clear the Kill
All Moves flag in the Master.

Enabling a drive using DRIVE ON command will clear the Kill All
Motion Request (KAMR) and Kill All Moves flag if the drive is not
currently enabled

This flag does not halt any programs or PLCs.

The KAMR flags may be cleared for all axes by issuing a CTRL-Y.

Kill All Moves
Kill All Moves is a Master Flag. The setting of this flag (e.g., Bit Index
10 of the Master Flags) will stop and prevent only
coordinated/master motion. Jog, cam or gear motion may continue
if the Kill All Motion Request Axis Flag is not set.

This flag is set if:

• Any axis on the Master receives a Kill All Motion Request (Axis
Flag). See Kill All Motion Request (KAMR) above.

• Stop All Moves flag is set for that Master.

This flag may be explicitly set by the user through the terminal, or
from within an AcroBASIC program, PC program, or Human-Machine
Interface (HMI).

Setting this flag will kill all (coordinated/master) moves without using
any deceleration ramp.

This flag will not stop/kill or prevent any cam, gear, or jog motion.

This flag does not halt any programs or PLCs.

The user is responsible for clearing this flag.

The Kill All Moves flag may be cleared automatically with CTRL-Y

The Stop All Moves flag could be used in place of Kill All Moves if
controlled stopping is desired. Setting the Stop All Moves flag will
cause the current (coordinated) move to decelerate to zero using

 Programming Basics 15

Parker Hannifin

the DEC setting, wait until moves have stopped, then sets the Kill All
Moves flag. The Stop All Moves flag will clear after this sequence is
complete and acknowledged by the processor.

Flag Comparison
The following table shows the bit numbers for Kill All Motion Request
axis flags, and the bit numbers for Kill All Moves masters flags.

Kill All Motion Request

Quaternary Axis Flags

Axis Number

0 1 2 3 4 5 6 7

8467 8499 8531 8563 8595 8627 8659 8691

Axis Number

8 9 10 11 12 13 14 15

8723 8755 8787 8819 8851 8883 8915 8947

Kill All Moves

Master Flags

Master Number

0 1 2 3 4 5 6 7

522 554 586 618 650 682 714 746

Master Number

8 9 10 11 12 13 14 15

7434 7466 7498 7530 7562 7594 7626 7658

Bit Status Window Comparison
Locate the Bit Status Panel by clicking on the plus sign (+) next to
Status Panels on the tree in ACR-View, and clicking on Bit Status.

16 Programmer’s Guide

 Parker Hannifin

Select Axis Flags in the first drop-down menu, Quaternary Axis Flags
in the second drop-down menu, and Quaternary Axis 0 Flags in the
third drop-down menu to display the Kill All Motion Request bit for
Axis 0. A green LED, as circled in red below, indicates that the flag is
set. All motion is stopped for this axis and all other axes on the same
master.

Select Master Flags in the first drop-down menu, Primary Master Flags
in the second drop-down menu, and Primary Master 0 Flags in the
third drop-down menu to display the Kill All Moves Request bit for
Master 0. A green LED, as circled in red below, indicates that the
flag is set.

 Programming Basics 17

Parker Hannifin

Example
This example uses terminal commands.
P00>ATTACH
ATTACH MASTER0
ATTACH SLAVE0 AXIS0 “X”
ATTACH SLAVE1 AXIS1 “Y”
REM ATTACH command will reply with information about what axes
REM are part of the Master group

P00>JOG FWD X : REM Continuous jog move on X axis
P00>SET 8467 : REM This stops motion on X axis. Axis will
REM decelerate using the HLDEC.

P00>JOG FWD Y
REM Associated Slave Kill Motion Request is active. Y-axis motion
REM is prevented due to X-axis KAMR flag.

P00>CLR 8467 CLR8499
P00>JOG FWD Y : REM Y-axis motion is now allowed.

NOTE: Enabling drives using DRIVE ON command will clear the Kill
All Motion Request (KAMR) and Kill All Moves bits if the drive
is not currently enabled.

To Stop All Motion Immediately
Sometimes it is necessary to stop all motion immediately. You can
send CTRL+X to kill motion on all axes, and terminate all program
execution. While CTRL+X is similar to sending the HALT ALL
command, CTRL+X also sets the Kill All Motion Request (KAMR) bit for
each axis. When this occurs, motion is stopped at the rate set with
the HLDEC command. Motion cannot resume until you clear the
KAMR bits.

You can clear all the KAMR bits by sending the CTRL+Y command.
This only clears the KAMR bits; no motion occurs.

For some applications, it may be desirable to disable the drives in
addition to killing all motion. Sending CTRL+Z disables all drives in
addition to the functions of CTRL+X. Disabling the drives is the same
as sending the DRIVE OFF command.

Killing All Motion
Command Description

Ctrl+X

Kills motion on all axes.

Terminates program execution.

Sets the KAMR bit for each axis.

Ctry+Y Clears all KAMR bits.

Ctrl+Z

Kills motion on all axes.

Terminates program execution.

Sets the KAMR bit for each axis.

Disables all drives.

18 Programmer’s Guide

 Parker Hannifin

Program Flow
Code is executed sequentially, following the order in which it is
written. But based on some input, you can shift code execution
elsewhere in a program using conditional statements. Using
conditional statements, you can create code that tests for specific
conditions and repeats code statements.

The conditional statement provides a logical test—a truth
statement—allowing decisions based on whether the conditions are
met. In the code, you create an expression and test whether the
result is true.

You can divide conditional statements into two sub-categories,
selection and repetition.

NOTE: Each level (or nest) uses 4 bytes of memory. For more on
memory use, see How Much Memory?

Selection
The selection structure controls the direction of program flow. Think
of it as a branch in your program. When the conditions are met, the
program moves to a different block of code. AcroBASIC provides
the following conditional statements:

• IF/THEN

• IF/ELSE/ENDIF

• GOSUB

• GOTO

IF/THEN
Programs need to run code based on specific conditions. The
IF/THEN statement lets a program test for a specific condition and
respond accordingly.

The IF portion sets of the condition to test; if the condition proves
true, the THEN portion of the statement executes. If instead the
condition proves false, the THEN statement is ignored and program
execution moves on to the next statement.

NOTE: Enclose the condition being tested in parentheses.

Though the IF/THEN statement provides a single-line test, it can
execute multiple statements when the condition proves true. All the
statements must appear on a single line and be separated by a
space, colon, and another space.

 Programming Basics 19

Parker Hannifin

When using an IF/THEN statement, observe the following:

• You can nest GOTO and GOSUB statements in an IF/THEN
statement.

Example
The following demonstrates several simple IF/THEN statements.
IF (BIT 24) THEN P0 = P0+1
IF (P0 > 4000) THEN GOSUB 100 : P0 = P0-1

IF/ELSE
The IF/ELSE statement provides a powerful tool for program
branching and program flow control. The IF/ELSE statement allows
you to run one set of code if the condition is true, and another set of
code if the condition is false. The IF/ELSE statement must end with
ENDIF.

When using an IF/ELSE statement, observe the following:

• You can nest GOSUB statements in an IF/ELSE statement. The
GOSUB provides a return into the IF/ELSE statement.

• Do not nest GOTO statements in IF/ELSE statements. The GOTO
statement exits the IF/ELSE statements, and does not provide
any link back inside.

• Do not nest IF/THEN statements in IF/ELSE statements—the logic
may not provide the results you expect.

Tip: When troubleshooting programs, use the LIST command to
view the program stored on the controller. In recognizing
IF/ELSE statements, the controller indents the statements
under the IF including the ENDIF. If any statements in the
IF/ELSE are not indented but should be, check the code in
the program editor and re-download.

Example
The following demonstrates different actions based on conditions
being true or false. If the input (bit 24) is true, the long array
increments and axis X moves an incremental 25 units. If false, the
long array decrements and axis Y moves to absolute position 5.
IF (BIT 24)

LA0(1) = LA0(1)+1
X/25
ELSE
LA0(1) = LA0(1)-1
Y5
ENDIF

20 Programmer’s Guide

 Parker Hannifin

ELSEIF Condition
The IF/ELSE statement can include the ELSEIF condition. The ELSEIF
condition lets you create a series of circumstances to test. There is
no practical limit to the number of ELSEIF conditions you can
include. However, they must come before the ELSE condition.

Here is how it works. When the IF condition is true, the subsequent
statements are executed. When the IF condition is false, each ELSEIF
statement is tested in order. When an ELSEIF condition tests true, the
subsequent statements are executed. When the ELSEIF condition test
false, the statements following ELSE condition execute. After
executing the statements following an IF, ELSEIF, or ELSE, the
program moves past the ENDIF to continue program execution.

When using the ELSEIF condition, you can omit the ELSE condition.
When the IF and ELSEIF conditions test false, statement execution
after the ENDIF continues. Think of it as creating a series of IF/THEN
statements.

GOSUB
The GOSUB branches to a subroutine and returns when complete.
You can use GOSUB and RETURN anywhere in a program, but both
must be in the same program. A procedure can contain multiple
RETURN statements. However, on encountering the first RETURN
statement, the program execution branches to the statement
directly following the most recently executed GOSUB statement.

Example
The following example demonstrates a simple GOSUB routine.
GOSUB Label1
…
_Label1
PRINT “Inside Label1 subroutine”
RETURN

GOTO
The GOTO statement provides an unconditional branch within a
procedure. You can only use the GOTO in the procedure in which it
appears.

You can nest GOTO statements in an IF/THEN statement.

NOTE: The GOTO statement makes code difficult to read and
maintain.

 Programming Basics 21

Parker Hannifin

Example
The following demonstrates a simple GOTO statement. The program
sets output bit 32, then moves axis X one incremental unit in the
positive direction. The program pauses until the “Not in Position“ bit
768 is clear, then clears the output, waits 2 seconds, and goes to
LOOP1.
ACC10 DEC10 STP10 VEL1
_LOOP1
SET 32
X/1
INH -768
CLR 32
DWL 2
GOTO LOOP1

Repetition
The repetition structure—known as a loop—controls the repeated
execution of a statement or block of statements.

While the conditions remain true, the program loops (or iterates)
through the specific code. Typically, the repetition structure includes
a variable that changes with each iteration. And a test of the value
determines when the conditions of the expression are satisfied. The
program then moves to the next statement past the repletion
structure.

If the condition is not met, the loop does not execute. In many cases
that is acceptable behavior. Conversely, if the condition is always
met, then the loop does not end. An endless loop is probably not a
desired result, so be mindful when writing the loop conditions.

AcroBASIC also provides the following looping statements:

• FOR/TO/STEP/NEXT

• WHILE/WEND

FOR/TO/STEP/NEXT
When you expect to loop through a block of code for a number of
times, the FOR/NEXT loop is a good choice. It contains a counter, to
which you assign starting and ending values. You also assign a STEP
value (positive direction only), the value by which the counter
increments.

When the FOR/NEXT loop executes the first time, the end value and
the counter are compared. If the current value is past the end
value, the FOR/NEXT loop ends and the statement immediately
following executes. Otherwise, the statement block within the
FOR/NEXT loop executes.

On each encounter of the NEXT statement, the counter increments
and loops back to the FOR statement. The counter is compared to
the end value with each loop. When the counter exceeds the end
value, the loop skips the statement within, and proceeds to execute
the statement immediately following the FOR/NEXT statement.

22 Programmer’s Guide

 Parker Hannifin

You can exit a FOR/NEXT loop before the counter is complete using
a BREAK statement. When the condition is met, the statement
immediately following the FOR/NEXT loop executes.

Example
The following demonstrates a FOR/NEXT loop with a BREAK
statement.
FOR LV0 = 0 TO 499 STEP 1

PRINT LA0(LV0), SA0(LV0)
DWL 0.01
IF (BIT 24)

BREAK
ENDIF

NEXT

WHILE/WEND
The WHILE/WEND loop executes as long as its condition remains true.
You can use the WHLE/WEND anywhere in a program.

The WHILE sets the condition, and is followed by statements you
want executed when the condition is true. When the condition is
false, the statement immediately following WEND executes. The
condition is evaluated only at the beginning of the loop.

When using a WHILE/WEND statement, observe the following:

• Do not nest GOTO statements in an WHILE/WEND statement.

• At the start of each loop through the WHILE condition, the
validity of the condition is tested.

Example
The following demonstrates a WHILE/WEND loop. While the encoder
position for axis 2 is less than 1500 units, the WHILE statement
evaluates as true. As the loop runs, the array acts as a counter,
incrementing with each loop; axis X move an incremental 25 units;
the program pauses for 1.5 seconds, then prints the current value of
the array; and if the input (bit 24) is set the loop breaks. When the
encoder count exceeds 1500, the condition is false and execution
moves past the WEND statement.
WHILE (P6176 < 1500)

LA0(1) = LA0(1) + 1
X/25
DWL 1.5
PRINT LA0(1)
IF (BIT 24)

BREAK
ENDIF

WEND

 Programming Basics 23

Parker Hannifin

Other Conditional Statements
There are two additional program flow control commands: INH and
IHPOS. The INH command lets you inhibit (pause) program execution
until the state of a selected bit (set or clear) occurs. Similarly, the
IHPOS command lets you inhibit program execution until a specific
axis position is occurs.

INH
The INH command lets you inhibit program execution based on the
set or clear state of a specified bit.

NOTE: Do not use INH in non-motion programs. If you have multiple
non-motion programs, an inhibit in one non-motion program
affects all non-motion programs.

Example
The following demonstrates inhibiting a program until a certain
condition is met.
INH 2 : REM wait until bit 2 = 1
INH -516 : REM wait until bit 516 = 0

IHPOS
The IHPOS command lets you inhibit program execution based on
the setpoint of a given parameter or a timeout is reached.

NOTE: While intended to inhibit program execution based on an
axis position, you can use any system parameter or user
defined parameter.

Example
The following demonstrates a variety of inhibits for encoder 1.
IHPOS P6160 (40000,5.5) : REM wait until ENC1 >40000, or 5.5 seconds
IHPOS -P6160 (40000,5.5) : REM wait until ENC1 <40000, or 5.5 seconds
IHPOS P6160 (40000,0) : REM wait until ENC1 >40000, no timeout

Parameters and Bits
The ACR series controllers is parameter based, providing extensive
control of settings and operations. The AcroBASIC language
provides a simplified way to interact with the most commonly used
parameters and bits. However, you can increase control and
performance through direct access of the parameters and bits.

There are separate parameter and bit tables. Following each is a
table providing description of the parameters or bits and the
read/write attributes. The factory default state depends on the
specific parameter or bit.

24 Programmer’s Guide

 Parker Hannifin

NOTE: The values for some parameters and bits change
automatically through operation of the ACR controller.
Changing (writing) a value does not ensure the parameter
or bit retains the value over the course of operations. Use
caution—forcing a value to change can cause
unpredictable results.

There are two types of bits: request and non-request.

• Request Bits: The bit is self clearing when processed by the DSP.
All request bits include “request” in the name. In most cases,
there are complimentary flags that perform the opposite
action. For example, the Run Request bit and the Halt Request
bit control the running and halting of programs.

• Non-Request Bits: The bit requires clearing through a program
or manually through a terminal.

Following is a list of the most commonly used parameter and bit
tables:

• Master Parameters

• Master Flags

• Axis Parameters

• Axis Flags

• Object Parameters

• Program Parameters

• Program Flags

Using Parameters and Bits
You can specify parameters and bits in your programs or at a
terminal emulator. Use the following format:

Px or BITx, where x represents the parameter or bit number.

Example
The following demonstrates how to format parameters and bits.
Suppose your program refers to the current position for axis 0 (see
table P12288-P14199 Axis Parameters), and input 24 (see table Bit0-
Bit31 Opto-Isolated Inputs).
P12288
Bit24

Setting Binary Bits
You can use the SET command, or fix the bit value equal to 1.

 Programming Basics 25

Parker Hannifin

Example
The following demonstrates how to set at bit. All methods are valid.
SET 32
Bit32=1
SET Bit32

Clearing Binary Bits
You can use the CLR command, or fix the bit value equal to 0.

Example
The following demonstrates how to set at bit. All methods are valid.
CLR 32
Bit32=0
CLR Bit32

Printing the Current Value
You can send the PRINT command followed by a parameter or bit
whose value you want to see. Bits return the following values:

• -1 when set.

• 0 when clear.

You can use a question mark in place of the PRINT command. The
question mark is a shortcut in a terminal emulator.

NOTE: When printing a system parameter, the value returned is
either an integer or a 32-bit floating point.

When printing a user parameter (P0-P4095), the value returned is
either an integer or 64-bit floating point.

Example
The following demonstrates how to view values stored in parameters
and bits. Parameter 6144 provides the current encoder position;
Bit24 provides the current state of input 24.
PRINT P6144
PRINT Bit24
?P6144
?Bit24

A Word on Aliases
Parameters and bits can use aliases. You only need to assign the
alias once, and then can use it throughout user programs. The alias
lets you provide a name that makes sense for programs, and makes
programs easier to read.

For more information, see Aliases.

26 Programmer’s Guide

 Parker Hannifin

Programming Example
The following program creates a square. You can use ACR-View to
set up the controller. Then enter the program into program 0 and
download it to the controller.
RES X Y : REM reset encoder registers to 0 at startup
_LOOP
ACC 50 : REM set trajectory generator acceleration
DEC 50 : REM set trajectory generator deceleration
STP 50 : REM set trajectory generator stop ramp
VEL 5 : REM set target velocity
X5 : REM move axis to position
Y5 : REM move axis to position
X0 : REM move axis to position
Y0 : REM move axis to position
GOTO LOOP
ENDP

Before running the program, make sure you are at the program 0
prompt in the terminal emulator. The LRUN command lets you listen
to through a terminal to the PRINT statements and error messages.
This is the only way to view program errors.

► To run the program, type LRUN
When ready to exit the listening mode, press the ESC key (ASCII 27).

As the program runs, you can pause the program by setting the
Feedhold Request bit or sending the PAUSE command. The Feedhold
Request bit stops the axes using the deceleration value.

► To set the Feedhold Request bit, type SET 520.
You can resume the program by setting Cycle Start Request bit or
sending the RESUME command. The Cycle Start Request bit starts the
axes using the acceleration value.

► To set the Cycle Start bit, type SET 521.
While the program is in a feedhold, you can check the encoder
position of each axis.

► To view the axis X encoder position, type PRINT P6144.
► To view the axis Y encoder position, type ?P6160

Parametric Evaluation
Most commands take arguments. Often, those command-line
arguments are literals—values that are interpreted as they are
written. For example, axis numbers, bit index numbers, acceleration
or deceleration speeds, or positional values.

In addition to literals, you can use expressions (also called formulas).
The ACR controller can solve complex integer or floating point math.
To use expressions, you must enclose them in parentheses.
Expressions can use the following:

• Constants

• Variables

 Programming Basics 27

Parker Hannifin

• Parameters

• Bits

• Aliases

An expression is comprised of at least one operand and one or more
operators. Operands are values, whether numerals or variables.
Operators are symbols that represent specific actions. For example,
the plus sign (+) represents addition, and the forward slash (/)
represents division. In the expression

A + 7

A and 7 are operands, and + is an operator.

NOTE: For a complete list of operators available, see the Expression
Reference section of the ACR Command Language
Reference.

Operations are performed in the following order:

• Powers

• Multiplication and division

• Addition and subtraction

• Relational operations (such as greater than, less than, not
equal to)

The hyperbolic (sine, cosine, tangent, etc.) and miscellaneous
operators (absolute value, natural log, square root, etc.) require
parentheses around their own expressions. The order of operations
with such operators begins with the deepest nested parentheses.

Parentheses
Using parentheses, you can group operations in an expression to
change the order in which they are performed.

Operational Order
For example, the expression

4 + 6 / 2

provides the answer 7, and not 5, because division performs before
addition. When a mathematical expression contains operators that
have the same rank, operations are performed left to right. For
example, in the expression

2 + 6 / 3 * 5 - 9

division and multiplication perform before addition and subtraction.
The first operation is 6 / 3; the second operation multiplies the result
2 by 5, which results as 10. In the third operation, add 2 to 10, which
results as 12. In the fourth operation, subtract 9 from 12 to produce
the final answer of 3.

28 Programmer’s Guide

 Parker Hannifin

By using parentheses, you can change the order of operations in an
expression. That is, operations in parentheses are performed first,
then operations outside the parentheses. For example, the
expression

(2 + 6 / 3) * 5 - 9

results in an answer of 11, while the expression

(2 + 6 / 3) * (5 - 9)

results in -16 as the answer.

Nested Parentheses
You can also embed parentheses, where operations in the deepest
parentheses are performed first. For example, the expression

((7 + 3) / 2) * 3

contains embedded parentheses. From the example, the first
operation is 7+3, the second operation is 10/2, and the third
operation is 5*3, which results in 15 as the answer.

Examples
The following demonstrate some simple uses of expressions. The
examples assume memory space is allocated for the variables.

Example 1
The following causes axis X to move position to the resulting value of
the expression.
X(P0 + P2 * P30)

Example 2
When the following IF statement proves true, the message “OK”
prints.
IF(P0=1234) THEN PRINT “ok”

Example 3
The following concatenates strings $V1 and $V2, and sets string $V0
equal to the result.
$V0 = $V1 + $V2

Example 4
The following program generates a random number from 0 to 999.
As the program loops, it counts each loop. When the number equals
123, the program exits the loop and prints the count.
PROGRAM
DIM LV(2) : REM dimension 2 long variables
LV0=0 : REM set LV0 equal to 0
_LOOP1
LV1=RND(1000) : REM set LV1 equal to random number
LV0=LV0+1 : REM increment LV0 with each loop
IF (LV1<>123) THEN GOTO LOOP1
PRINT “Done in”;lv0;”tries”
ENDP

 Programming Basics 29

Parker Hannifin

30 Programmer’s Guide

Example 5
The following flashes the first 30 outputs in a random sequence.
PROGRAM

DIM DV(1) : REM dimension 1 floating point variable
_LOOP2
DV0=RND(4294967295) : REM set DV0 equal to random number
P4097= DV0 : REM set onboard outputs equal to DV0
GOTO LOOP2

ENDP

 Parker Hannifin

Basic Setup

Before You Begin
The tables in this section list commands according to the following
command groups:

Axis Limits Non-Volatile

Character I/O Operating System

Drive Control Program Control

Feedback Control Program Flow

Global Objects Servo Control

Interpolation Setpoint Control

Logic Function Transformation

Memory Control Velocity Profile

Warning — ACR Series products are used to control electrical and
mechanical components of motion control systems. You should
test your motion system for safety under all potential conditions.
Failure to do so can result in damage to equipment and/or
serious injury to personnel.

 Basic Setup 31

Parker Hannifin

Axis Limits
Command Description

ALM Set stroke limit ‘A’

BLM Set stroke limit ‘B’

EXC Set excess error band

HLBIT Set hardware limit/homing input

HLDEC Hardware limit deceleration

HLIM Hardware limit enable

IPB Set in-position band

ITB Set in-torque band

JLM Set jog limits

MAXVEL Set velocity limits

PM Position maintenance

SLDEC Software limit deceleration

SLIM Software limit enable

SLM Software positive/negative travel range

TLM Set torque limits

Character I/O
Command Description

CLOSE Close a device

DTALK Drive talk

INPUT Receive data from a device

OPEN Open a device

PRINT Send data to a device

TALK TO Talk to device

Drive Control
Command Description

DRIVE Drive report-back

EPLC Define EPLC

32 Programmer’s Guide

 Parker Hannifin

Feedback Control
Command Description

HSINT High speed interrupt

INTCAP Encoder capture

MSEEK Marker seek operation

MULT Set encoder multipliers

NORM Normalize current position

OOP High speed output

PPU Set axis pulse/unit ratio

REN Match position with encoder

RES Reset or preload encoder

ROTARY Set rotary axis length

Global Objects
Command Description

ADC Analog input control

ADCX Expansion board analog input

AXIS Direct axis access

CIP Ethernet/IP status

DAC Analog output control

ENC Quadrature input control

FSTAT Fast status setup

LIMIT Frequency limiter

MASTER Direct master access

PLS Programmable limit switch

RATCH Software ratchet

SAMP Data sampling control

 Basic Setup 33

Parker Hannifin

Interpolation
Command Description

CIRCCW Counter clockwise circular move

CIRCW Clockwise circular move

INT Interruptible move

INVK Inverse kinematics

MOV Define a linear move

NURB NURBs interpolation mode

SINE Sinusoidal move

SPLINE Spline interpolation mode

TANG Tangential move mode

TARC 3-D circular interpolation

TRJ Start new trajectory

Logic Function
Command Description

CLR Clear a bit flag

DWL Delay for a given period

IHPOS Inhibit on position

INH Inhibit on bit high or low

MASK Safe bit masking

SET Set a bit flag

TRG Start move on trigger

Memory Control
Command Description

CLEAR Clear memory allocation

DIM Allocate memory

MEM Display memory allocation

34 Programmer’s Guide

 Parker Hannifin

Non-Volatile
Command Description

BRESET Disable battery backup

ELOAD Load system parameters

ERASE Clear the EEPROM

ESAVE Save system parameters

FIRMWARE Firmware upgrade/backup

FLASH Create user image in flash

PBOOT Auto-run program

PROM Dump burner image

Operating System
Command Description

ATTACH Define attachments

CONFIG Hardware configuration

CPU Display processor loading

DEF Display the defined variable

#DEFINE Define variable

DETACH Clear attachments

DIAG Display system diagnostics

ECHO Character echo control

HELP Display command list

IP IP address

MODE Binary data formatting

PASSWORD Block uploading programs from board

PERIOD Set base system timer period

PLC Switch to a PLC prompt

PROG Switch to a program prompt

REBOOT Reboot controller card

STREAM Display stream name

SYS Return to system prompt

VER Display firmware version

 Basic Setup 35

Parker Hannifin

Program Control
Command Description

AUT Turn off block mode

BLK Turn on block mode

HALT Halt an executing program

LIST List a stored program

LISTEN Listen to program output

LRUN Run and listen to a program

NEW Clear out a stored program

PAUSE Activate pause mode

REM Program comment

RESUME Release pause mode

RUN Run a stored program

STEP Step in block mode

TROFF Turn off trace mode

TRON Turn on trace mode

Program Flow
Command Description

BREAK Exit a program loop

END End of program execution

ENDP End program without line numbers

FOR / TO / STEP / NEXT Relative program path shift

GOSUB Branch to a subroutine

GOTO Branch to a new line number

IF/ELSE IF/ELSE/ENDIF Conditional execution

IF / THEN Conditional execution

PROGRAM Beginning of program definition

RETURN Return from a subroutine

WHILE/WEND Loop execution conditional

36 Programmer’s Guide

 Parker Hannifin

Servo Control
Command Description

DGAIN Set derivative gain

DIN Dead zone integrator negative value

DIP Dead zone integrator positive value

DWIDTH Set derivative sample period

DZL Dead zone inner band

DZU Dead zone outer band

FBVEL Set feedback velocity

FFACC Set feedforward acceleration

FFVC Feedforward velocity cutoff region

FFVEL Set feedforward velocity

FLT Digital filter move

IDELAY Set integral time-out delay

IGAIN Set integral gain

ILIMIT Set integral anti-windup limit

KVF PV loop feedforward gain

KVI PV loop integral gain

KVP PV loop proportional gain

LOPASS Setup lopass filter

NOTCH Setup notch filter

PGAIN Set proportional gain

Setpoint Control
Command Description

BKL Set backlash compensation

BSC Ballscrew compensation

CAM Electronic cam

GEAR Electronic gearing

HDW Hand wheel

JOG Single axis velocity profile

LOCK Lock gantry axis

UNLOCK Unlock gantry axis

 Basic Setup 37

Parker Hannifin

Transformation
Command Description

FLZ Relative program path shift

OFFSET Absolute program path shift

ROTATE Rotate a programmed path

SCALE Scale a programmed path

Velocity Profile
Command Description

ACC Set acceleration ramp

DEC Set deceleration ramp

F Set velocity in units/minute

FOV Set feedrate override

FVEL Set final velocity

IVEL Set initial velocity

JRK Set jerk parameter (S-curve)

LOOK Lookahead mode

MBUF Multiple move buffer mode

ROV Set rapid feedrate override

SRC Set external time base

STP Set stop ramp

SYNC Synchronization mode

TMOV Set time based move

TOV Time override

VECDEF Define automatic vector

VECTOR Set manual vector

VEL Set target velocity for a move

38 Programmer’s Guide

 Parker Hannifin

Startup Programs
You can set a program to automatically run on powering up or
rebooting the controller. The PBOOT command provides that ability.

• The PBOOT command must appear as the first statement in a
program.

• From a terminal, sending the PBOOT command starts all PBOOT
programs.

• Every PROG and PLC can use PBOOT.

Example
The following program runs on power-up, flashing output 32.
PROGRAM
PBOOT : REM PBOOT must appear as first line
REM Beginning of loop
_LOOP1
BIT 32 = NOT BIT 32
DWL 0.25
GOTO LOOP1
ENDP

Resetting the Controller
When you reset the controller, it shuts down communications, turns
off outputs, and kills all programs. For controllers with non-volatile
memory, the controller stores all conditions.

There are several ways to reset the ACR series controller:

• Cycle power.

• Send the REBOOT command.

Memory
Memory allocation is completely customizable on the ACR series
controllers. The DIM commands allocate memory to program and
PLC spaces, global and local variables, communication streams,
and aliases.

Once you have allocated memory, you cannot change it without
first clearing the memory space. Otherwise, you receive a “Re-
dimensioned block” error.

For information about memory allocation, see Memory Allocations.

 Basic Setup 39

Parker Hannifin

Return to Factory Default
Various commands can return specific sections of the ACR controller
to factory default. To reset the entire ACR controller, you must issue
certain commands in a specific order.

1. Open ACR-View
2. Connect to the controller.
3. Open a Terminal Editor.
4. At the system prompt, enter the following commands in order:

HALT ALL

NEW ALL

DETACH ALL

CLEAR

ERASE

FLASH ERASE (omit for ACR8000)

CONFIG CLEAR

CLEAR DPCB (use only with ACR1505 and ACR8020)

CLEAR FIFO (omit for ACR9000)

CLEAR COM1

CLEAR COM2

BRESET

REBOOT

Configuration
Because the ACR series controller is powerful and flexible, it requires
configuration for your particular application. There are two methods:
you can manually write the configuration code, or use the
Configuration Wizard in the ACR-View software.

As the number of axes increase, the code required to configure a
controller can be extensive. The Configuration Wizard helps ensure
all constituent devices are configured quickly and correctly.

The configuration code for different models of ACR series controllers
varies—dependant on each model’s distinct feature set and
options, as well as various drives, motors and encoders connected
to it. In addition, the firmware revision you have for a controller can
affect which features and AcroBASIC commands are available to
you.

40 Programmer’s Guide

 Parker Hannifin

The wizard makes some choices for you behind the scenes. The
ACR9000 has the largest feature set, and typically requires
configuration for those features. The ACR1505 and ACR8020 may
require different configuration.

The Configuration Wizard, once completed, lets you review the
code it has generated. In that configuration code, you might find
code for features that do not apply to your specific controller. For
example, for an ACR9000 the wizard generates code for CANopen
defaults, though your particular controller may not have the
CANopen option. This does not impair the controller or its
performance.

NOTE: The wizard does not collect data in the same order in which
code is written.

A Note on the Jog/Home/Limits Dialog
In the Configuration Wizard, the Jog/Home/Limits dialog lets you test
and commission a specific axis. You can set a motion profile to
exercise the axis, allowing you to test its performance when jogging
or homing.

The Jog/Home/Limits dialog is only for testing, and does not write
any jogging or homing code.

What is Configuration Code?
To get a sense of what configuration code looks like—the
requirements and order of items, as well as information that goes
into the program space—the following example looks at the code
resulting from the Getting Started-Tutorial.

NOTE: The application is controlled by a 4-axis ACR9000 (Stand
Alone with COM port, Ethernet, USB, standard memory—no
battery backup—, and no daughter card).

The Code
The wizard generates the Primary System Settings automatically, and
does not collect data for this. If you are writing your own
configuration code, it is good coding practice to include the
following at the beginning. The controller is switched to the SYS
prompt. From there, all program execution is halted (HALT ALL), all
user programs and PLC programs are deleted (NEW ALL), all memory
allocations are cleared (CLEAR), and all slaves are detached from
their respective masters (DETACH ALL).
REM -- Primary System Settings for ACR Device
SYS
HALT ALL
NEW ALL
CLEAR
DETACH ALL

 Basic Setup 41

Parker Hannifin

If you do not make any changes to the Memory defaults, the wizard
allocates additional memory to programs zero and one. In addition,
the wizard allocates memory to program 15, which stores wizard
data.
REM-----Allocate system memory-----
DIM PROG0(8192)
DIM PROG1(4096)
DIM PROG2(1000)
DIM PROG3(1000)
DIM PROG4(1000)
DIM PROG5(1000)
DIM PROG6(1000)
DIM PROG7(1000)
DIM PROG8(1000)
DIM PROG9(1000)
DIM PROG10(1000)
DIM PROG11(1000)
DIM PROG12(1000)
DIM PROG13(1000)
DIM PROG14(1000)
DIM PROG15(28672)
REM Some Global Memory is used by Wizard Generated Code
REM P0000 - P0099 Available for User programs
REM P0100 - P0200 Reserved for Software Limits Code
REM P0201 - P4095 Available for User programs
DIM P(100)
DIM DEF(20)

The Configuration Wizard, again, generates default configuration
information. The wizard explicitly sets the ADC mode—the ACR9000
is a 16-bit card and cannot operate otherwise. The next section is
specific to the ACR9000 and does not apply to other ACR
Controllers. Though the controller in this example does not have
CANopen, the wizard generates the set up for CANopen.

When writing your own configuration files, the ADC MODE statement
is not required for the ACR9000. Likewise, if the controller does not
have the CANopen feature, the CANopen setup is not required.
REM -- Hardware Configuration

REM 0 = 12 bit card present, 1 = 16 bit card present
ADC MODE 1

REM CANopen Settings
P32768=5
P32769=125
P32772=50
P32770=0

Then begins axis-specific configuration. The axis feedback and
signal output information comes from the Axis and Feedback
dialogs. The PPU (pulses per programming unit) is computed from
data provided through the Feedback and Scaling dialogs. The
excess error band data comes from the Fault dialogs.
ATTACH AXIS0 ENC0 DAC0 ENC0
AXIS0 PPU 39999.999404
AXIS0 EXC (0.2,-0.2)

42 Programmer’s Guide

 Parker Hannifin

The next section is specific to the ACR9000 and currently does not
apply to other ACR controllers. The Extended I/O section sets and
clears bits related to homing, hardware and software limits, and
drive faults—all performed behind the scenes and does not come
from user supplied data.
REM ACR Extended IO Settings
SET BIT8468
CLR BIT8464
CLR BIT8470
SET BIT8469
CLR BIT8453
CLR BIT8471
ENC0 SRC 0
ENC0 MULT 4

The next section is specific to the ACR9000 and does not apply to
other ACR controllers. From the Servo Gains dialog, the gain values
are fixed.
REM Axis Gains values
AXIS0 PGAIN 0.002441
AXIS0 IGAIN 0
AXIS0 ILIMIT 0
AXIS0 IDELAY 0
AXIS0 DGAIN 1e-005
AXIS0 DWIDTH 0
AXIS0 FFVEL 0
AXIS0 FFACC 0
AXIS0 TLM 10
AXIS0 FBVEL 0

The next section is specific to the ACR9000 and does not apply to
other ACR controllers. From the Fault dialog, the axis limit features
are enabled and values fixed. Then the DAC gain is fixed, and the
Axis is enabled.
REM Axis Limits
AXIS0 HLDEC 500
SET BIT16144
SET BIT16145
SET BIT16148
SET BIT16149
AXIS0 SLM (24,0)
AXIS0 SLDEC 500
CLR BIT16150
CLR BIT16151
DAC0 GAIN 3276.8
AXIS0 ON

The setup for axes 1 and 2 are similar to axis 0.
ATTACH AXIS1 ENC1 DAC1 ENC1
AXIS1 PPU 39999.999404
AXIS1 EXC (0.2,-0.2)
REM ACR Extended IO Settings
SET BIT8500
CLR BIT8496
CLR BIT8502
SET BIT8501
CLR BIT8485
CLR BIT8503
ENC1 SRC 0
ENC1 MULT 4
REM Axis Gains values
AXIS1 PGAIN 0.002441
AXIS1 IGAIN 0
AXIS1 ILIMIT 0

 Basic Setup 43

Parker Hannifin

AXIS1 IDELAY 0
AXIS1 DGAIN 1e-005
AXIS1 DWIDTH 0
AXIS1 FFVEL 0
AXIS1 FFACC 0
AXIS1 TLM 10
AXIS1 FBVEL 0
REM Axis Limits
AXIS1 HLBIT 3
AXIS1 HLDEC 100
SET BIT16176
SET BIT16177
SET BIT16180
SET BIT16181
AXIS1 SLM (24,0)
AXIS1 SLDEC 100
CLR BIT16182
CLR BIT16183
DAC1 GAIN 3276.8
AXIS1 ON

ATTACH AXIS2 ENC2 DAC2 ENC2
AXIS2 PPU 39999.999404
AXIS2 EXC (0.2,-0.2)
REM ACR Extended IO Settings
SET BIT8532
CLR BIT8528
CLR BIT8534
SET BIT8533
CLR BIT8517
CLR BIT8535
ENC2 SRC 0
ENC2 MULT 4
REM Axis Gains values
AXIS2 PGAIN 0.002441
AXIS2 IGAIN 0
AXIS2 ILIMIT 0
AXIS2 IDELAY 0
AXIS2 DGAIN 1e-005
AXIS2 DWIDTH 0
AXIS2 FFVEL 0
AXIS2 FFACC 0
AXIS2 TLM 10
AXIS2 FBVEL 0
REM Axis Limits
AXIS2 HLBIT 6
AXIS2 HLDEC 100
SET BIT16208
SET BIT16209
SET BIT16212
SET BIT16213
AXIS2 SLM (6,0)
AXIS2 SLDEC 100
CLR BIT16214
CLR BIT16215
DAC2 GAIN 3276.8
AXIS2 ON

All the unused axes are turned off—this is done directly with the AXIS
OFF command rather than using bits designated for this purpose.
Turning off the axes reduces CPU load and increases system
performance.
REM Turn off any unused Axes
AXIS3 OFF
AXIS4 OFF
AXIS5 OFF
AXIS6 OFF
AXIS7 OFF

44 Programmer’s Guide

 Parker Hannifin

REM Code Generated by ComACRsrvr Module, File Version: 1.1.2.9 @
Wednesday, March 15, 2006 17:00:43
REM Code Generated from map:program8k v1.1 CodeMap
File:C:\WINDOWS\system32\kjconfig.cmp v3.5
REM Program Level setup for the ACR Card

In the program space, the attachments are made. If you are writing
your own configuration code, it is a good coding practice to
include the a DETACH statement before the ATTACH statements. The
Axis Name comes from the Axis dialog, the master/slave information
comes from the Masters dialog, and the acceleration, deceleration,
and stop ramps and velocity come from the Master dialog.
PROG0
DETACH
ATTACH MASTER0
ATTACH SLAVE0 AXIS0 "X"
ATTACH SLAVE1 AXIS1 "Y"

REM the desired master acceleration
ACC 10

REM the desired master deceleration ramp
DEC 10

REM the desired master stop ramp (deceleration at end of move)
STP 10

REM the desired master velocity
VEL 5

REM the desired acceleration versus time profile.
JRK 0

REM Code Generated by ComACRsrvr Module, File Version: 1.1.2.9 @
REM Wednesday, March 15, 2006 17:00:43

REM Code Generated from map:program8k v1.1 CodeMap
REM File:C:\WINDOWS\system32\kjconfig.cmp v3.5

REM Program Level setup for the ACR Card

PROG1
DETACH
ATTACH MASTER1
ATTACH SLAVE0 AXIS2 "Z"

REM the desired master acceleration
ACC 20

REM the desired master deceleration ramp
DEC 20

REM the desired master stop ramp (deceleration at end of move)
STP 20

REM the desired master velocity
VEL 10

REM the desired acceleration versus time profile.
JRK 0

Resources Reserved for Generated Code
The Configuration Wizard reserves controller resources based on the
controller, its firmware version, and the features you enable. When

 Basic Setup 45

Parker Hannifin

you save the configuration, the wizard generates AcroBASIC code
and saves it to specific user and PLC programs.

The Configuration Wizard saves all configuration data to a Setup.8K
file. Depending on which controller and the firmware version, it may
also save Drive I/O or Configuration Wizard data to various user and
PLC program files.

NOTE: Do not edit the source files generated by the Configuration
Wizard.

Firmware Versions 1.18.15 and up (ACR9000 only)
The wizard generates AcroBASIC code and places it in the Setup.8K
file. The Prog15.8K file contains the configuration wizard data.

Firmware Versions Up to 1.18.14 (All ACR Controllers)
The wizard generates AcroBASIC code and places it in the Setup.8K
file. The Prog7.8K, PLC5.8K, PLC6.8K, and PLC7.8K files contain the
configuration wizard data and code for Hardware Limits, Software
Limits, and Drive Fault (hardware-input based drive fault, or
software-based following error drive fault) features.

PLC programs have limited memory space. If the resulting code
exceeds the limit for a PLC program, the Configuration Wizard splits
it among several PLC programs. The wizard uses the PLC5.8K file first,
and uses the PLC6.8k and PLC7.8k files as needed.

NOTE: By default, the wizard matches motion profiles to programs
of the same number. Because the wizard reserves the
Prog7.8k file for the above-mentioned features, the
MASTER07 motion profile definition is placed in the Prog08.8k
file.

 If no other programs are defined beyond the Prog08.8k file,
the controller continues scanning programs 00-08 without
delay. There is no delay executing the Prog08.8k file and
MASTER07. If any of the programs Prog09 through Prog15 are
used, then Prog08 will not execute as quickly as PROG00 to
PROG07.S

Global (P) Variables
The wizard generates code using global variables P100-P131 for
Software end-of-travel limits routines. Each variable corresponds to a
specific axis and direction of travel, as summarized below.

NOTE: Do not change these values in user programs unless
specifically modifying them to change the end-of-travel
limit.

• P100-P115 Positive Software End-of-Travel Limits: For example,
P100 contains the value for Axis0, P101 for Axis1, etc.

46 Programmer’s Guide

 Parker Hannifin

• P116-P131 Negative Software End-of-Travel Limits: For example,
P116 contains the value for Axis0, P117 for Axis1, etc.

User Flags (Group 5-8)
The wizard generates code using bits 1952-2047 for drive-fault and
end-of-travel routines. Each range of bits correspond to a range of
axes and a specific drive or travel limit function, as summarized
below.

Items marked with an asterisk (*) apply only to 16-axis ACR series
controllers. Therefore, an 8-axis controller can use the flags otherwise
used for axes 8-16.

• Bits 1952-1959 Drive Faulted Flag Axes 0-7: Triggered by
conditions that fault a drive (either hardware input or following
error) and is used in the PLC program to stop motion on the
specific axis.

• Bits 1960-1967 Drive Faulted Flag Axes 8-15*: Triggered by
conditions that fault a drive (either hardware input or following
error) and is used in the PLC program to stop motion on the
specific axis.

• Bits 1968-1975 Drive Disabled Flag Axis 0-7: Triggered when a
drive is faulted (or optionally when motion is killed) and is used
by the PLC program to set the Drive Disable output.

• Bits 1976-1983 Drive Disabled Flag Axis 8-15*: Triggered when
a drive is faulted (or optionally when motion is killed) and is
used by the PLC program to set the Drive Disable output.

• Bits 1984-1991 Drive Enable Flag Axis 0-7: Triggered when a
drive is faulted or disabled, the flag signals the Drive Enable
function to clear the faulted condition and enable the drive.

• Bits 1992-1999 Drive Enable Flag Axis 8-15*: Triggered when a
drive is faulted or disabled, the flag signals the Drive Enable
function to clear the faulted condition and enable the drive.

• Bits 2000-2007 Software Limit Flag Axis 0-7: Triggered when a
software limit is hit.

• Bits 2008-2015 Software Limit Flag Axis 8-15*: Triggered when a
software limit is hit.

• Bits 2016-2023 Hardware Positive Limit Flag Axis 0-7: Triggered
when a hardware limit is hit.

• Bits 2024-2031 Hardware Positive Limit Flag Axis 8-15*:
Triggered when a positive hardware limit is hit.

• Bits 2032-2039 Hardware Negative Limit Flag Axis 0-7:
Triggered when a hardware negative limit is hit.

• Bits 2040-2047 Hardware Negative Limit Flag Axis 8-15*:
Triggered when a negative hardware limit is hit.

 Basic Setup 47

Parker Hannifin

Making Motion
Now that the controller is configured, it is ready to make motion. The
ACR controller can perform linear, circular, or more complex motion
with a single axis or multiple axes.

Four Basic Categories of Motion
There are four basic categories of motion used in motion control:
coordinated, jog, gear, and cam.

• Coordinated Moves Profiler (Multi-Axis Profile): Use the MOV
command for linear-interpolated incremental and absolute
moves. It also allows circular interpolation (CIRCW, CIRCCW,
SINE, and TARC). The trajectory values are “path” values.

• Jog Profiler (Single-Axis Profile): Use the JOG commands for
incremental, absolute, or continuous moves. The Jog Profiler is
axis-independent, meaning that each axis uses its own
trajectory values independent of other axes.

• Gear Profiler (Electronic Gear): Use the GEAR commands to
control motion based on an external source—such as an
electronic gearbox, trackball, follower axis, feed-to-length, or
changes of ratio related to position.

• Cam Profiler (Electronic Cam): Use the CAM commands to
control irregular motion using data tables. The Cam Profiler
provides control of complex motion, and is best used in
situations where the Gear Profiler is unable to perform
satisfactorily.

Regardless of the type of motion or number of axes used, the
controller must always be set up for coordinated motion. This may
be done by using the Configuration Wizard or by writing custom
configuration code, and including master, slave, and axis
attachment statements. The attachment statements make the basic
connections to a coordinated motion profiler. For more information,
see Attachments.

After making the necessary attachments, a motion profile can be
defined. The following sections examine the different move types
and motion profilers.

48 Programmer’s Guide

 Parker Hannifin

Move Types
To command motion, use a command appropriate to the desired
type of motion, such as JOG (single-axis profile), CIRCW (Two-
Dimensional Clockwise Circle), CIRCCW (Two-Dimensional Counter
Clockwise Circle), SINE (Sinusoidal Move), or TARC (3-D Arc) The
MOV (Define a Linear Move) command activates linear-interpolated
motion.

When the user includes several axes in a single statement, the
controller coordinates the moves (meaning the axes complete their
respective moves at the same time.) Whereas, if each axis is written
as an independent statement, the controller treats them as
independent moves and they are performed one at a time.

The MOV command is not necessary for coordinated motion
because the controller recognizes an axis name and a value as
commanded motion, such as X500. When multiple axes are written in
a single statement, such as X500 Y100, the motion is coordinated.

NOTE: When commanding motion, you must use the axis name; the
axis number is not a valid way to indicate an axis. For more
information on Axis names, see Slaves and Axis Names.

Absolute Motion
Absolute motion is commanded with respect to the established
“home” or reference location.

To make a linear-interpolated move with the MOV command, use
the arguments axis target, specifying the axis name followed by the
target position.

Example 1
The following moves the X axis to the absolute position of 10 units.
MOV X10

Example 2
To command linear-interpolated motion without MOV, the axis and
position must be designated. The following also moves the X axis to
the absolute position of 10 units in an identical manner as Example
1.
X10

Example 3
If motion is commanded for multiple axes on a single line, the
controller treats it as coordinated motion. The X and Y axes
complete their respective moves at the exact same time.
X20 Y-30

 Making Motion 49

Parker Hannifin

Incremental Motion
Incremental motion is commanded relative to the current position.

To move an incremental distance (a distance “relative” to the
current position), use a slash mark (/) following the axis.

NOTE: The slash mark is only applicable in linear-interpolated
motion.

Example 1
In this example, the X axis moves an incremental distance of 20 units
from its current position. Then the Y axis moves a decremental
distance of 30 units from its current position.
X/20
Y/-30

Example 2
The X axis makes an incremental move, Y axis makes an absolute
move, and Z axis makes a decremental move. Written on the same
line, this is a coordinated move; all axes complete their moves at
the same time.
X/2 Y2 Z/-2

Comparing Absolute and Incremental Motion
Different types of motion can be used to achieve the same result.
The following examples show absolute and incremental motion, and
a combination of the two. All three examples end at the absolute
position of 400 units.

Example—Absolute Motion
The X axis is commanded to the following absolute positions:
X0
X100
X200
X300
X400

50 Programmer’s Guide

 Parker Hannifin

Example—Incremental Motion
The X axis is commanded to the following relative positions:
X0
X/-400
X/500
X/200
X/100

Example—Absolute and Relative
The X axis is commanded to the following absolute and incremental
positions.
x/-400
x200
x/50
x400

Combining Types of Motion
The user can command multiple types of motion (linear, circular, or
sinusoidal) in a single statement. The controller coordinates the
motion of all axes in the statement regardless of the type of motion.

Example
The following illustrates a coordinated move where the X axis
performs linear-interpolation and the Y axis performs sinusoidal
interpolation.
X2 SINE Y(0,90,90,100)

 Making Motion 51

Parker Hannifin

Immediate Mode
While a program is running, the master velocity can be changed for
a master (and all axes attached to it). The change is instantaneous,
and takes effect even if the axis or axes are moving.

Use the FOV (Set Feedrate Override) command to set a floating-
point scaling factor to adjust the master velocity. If a move is in
progress, the master uses the established acceleration or
deceleration ramp to adjust to the new velocity.

NOTE: The FOV command does not change the master velocity
permanently and the change is not saved. To make a
permanent change, adjust the master velocity in the
program code either manually or through the Configuration
Wizard.

For more information about feedrate override, see the FOV
command in the ACR Command Language Reference.

Example
The following is typed in at the prompt by the user. It reduces the
master velocity for all attached axes to 75%, then 50%, and then
returns the velocity to 100%.
FOV 0.75
FOV 0.50
FOV 1.00

Differences Between FOV and VEL
While a program is running, both the FOV and VEL (Set Target
Velocity for a Move) commands can be set, but each affects
motion differently:

• FOV immediately affects all axes attached to the master.

• VEL is buffered in memory. The newly commanded velocity
does not take effect until current motion is completed.

52 Programmer’s Guide

 Parker Hannifin

What are Motion Profiles?
To make motion, the user must define the motion profile. The
acceleration, deceleration, stop ramps, velocity, and distance
(ACC, DEC, STP, VEL, and MOV commands, respectively) set the
motion profile values.

• Acceleration: The ACC (Set Acceleration Ramp) command
sets the master acceleration. The master acceleration is used
to ramp from lower to higher speeds. The value is in units per
second 2.

• Velocity: The VEL (Set Target Velocity for a Move) command
sets the target velocity for subsequent moves. The value is in
units per second.

• Deceleration: The DEC (Set Deceleration Ramp) command sets
the deceleration used to ramp from higher to lower speeds.
The value is in units per second 2.

The deceleration ramp is only used when the stop ramp is zero.
Use the DEC ramp to blend moves.

• Stop: Use the STP (Set Stop Ramp) command to set the master
deceleration ramp used at the end of the next move. The
value is in units per second 2.

When the stop ramp is set to zero, the move ends without
ramping down. This allows you to merge back-to-back moves.
The final velocity of the first move becomes the initial velocity
of the second move.

Motion profiles can be graphically represented. The following
illustrates the ACC, DEC, and STP values as a typical trapezoidal
motion profile.

All motion profile values are entered in user-based units (inches,
millimeters, degrees, revolutions, or other units). Use the PPU (Set Axis
Pulse per Unit Ratio) command to relate the feedback pulse to the
unit of measure. (The PPU command sets the ratio of pulses per
programming unit.) The controller computes the motion trajectory
from the motion profile data.

 Making Motion 53

Parker Hannifin

Motion profile values for each master can be set in two ways:

► Through the Configuration Wizard.
► In a program using the appropriate motion profile statements

(ACC, DEC, STP, or VEL).
In either case, the program continues to use those motion profile
values until new values are commanded.

NOTE: Motion profile values in a specific program can be changed
from within a different program using the MASTER (Direct
Master Access) command. A master must be attached to
each program, and is usually the same number as the
program number. For more information about masters, see
Master/Slave Attachments.

 For example, to change the velocity in program zero to 500,
send the following: MASTER0 VEL500.

Example
The following example assumes a 1000 line encoder attached to a
motor. The MULT (Set Encoder Multipliers) command brings the value
to 4000. Then PPU X4000 sets the programming units to revolutions
(4000 pulses/rev) for the rest of the program. The X axis moves 200
revolutions at 20 revs/second, using 10 revs/second² ramps.
MULT X4
PPU X4000
ACC 10
DEC 10
STP 10
VEL 20
MOV X200

Interaction Between Motion Profilers
Any combination of motion profilers can be used to carry out motion
for an application. As stated previously, the controller must be set up
for coordinated motion. Once this is done, the other motion profilers
can be accessed through the JOG, GEAR, and CAM commands.

Before writing code, it is important to understand how the motion
profilers interrelate.

• Each motion profiler calculates its own commanded position—
the absolute and relative moves for an axis or axes.

• No motion profiler supersedes another; there is no hierarchy
among the profilers.

54 Programmer’s Guide

 Parker Hannifin

Primary Setpoint
All profilers feed their commanded positions to a summation point,
and the result is the Primary Setpoint for each axis. See Figure 1.

Figure 1 Primary Setpoint Summation

In effect, the Jog, Gear, and Cam profilers act as offsets to the
Coordinated Motion Profiler. The example below demonstrates the
offset concept.

Example
Suppose an application cuts four diamond shapes from sheets of
stock. The program commands motion of axes X, Y, and Z. For
simplicity, this example focuses only on the X and Y axes.

Rather than plotting the cutting motion by providing the coordinates
for each diamond, the code in this example provides the
coordinates for one diamond and uses the Jog Profiler to offset the
coordinates for the remaining diamonds.

The axes are attached to a Coordinated Moves Profiler (see
Master/Slave Attachments). The cutting tool starts at coordinates (0,
0) in the lower left quadrant of the stock. Subsequent diamonds are
cut in sequence from upper left, upper right, and lower right
quadrants. The first shape is cut based on the following moves:
X-2 Y1
X0 Y2
X2 Y1
X0 Y0

For the second shape, instead of providing a new set of X and Y
coordinates, a jog statement is used to shift the Y axis 3 units. You
can then provide the same coordinates used to cut the first shape.
The new starting position becomes coordinates (0, 3).
JOG ABS Y3
X-2 Y1
X0 Y2
X2 Y1
X0 Y0

 Making Motion 55

Parker Hannifin

To cut the third and fourth diamond shapes, jog statements again
shift the starting positions for axes X and Y. After each jog statement,
the coordinates of the first shape are reused.
JOG ABS X5
X-2 Y1
X0 Y2
X2 Y1
X0 Y0

JOG ABS Y0
X-2 Y1
X0 Y2
X2 Y1
X0 Y0

So what is happening? Each motion profiler calculates its own
commanded position, which is sent to a summation point. The
coordinated move, jog, gear, and cam data is combined for each
axis to create a setpoint.

The Coordinated Moves Profiler always starts and ends at
coordinates (0, 0). With the first shape, there are no JOG, GEAR, or
CAM commands, so the setpoint for the X and Y axes is (0,0):

56 Programmer’s Guide

 Parker Hannifin

For the second shape, the jog statement tells the Jog Profiler to start
the Y axis at 3 units. At the summation point, this data is added to
the values from the other profilers to yield a Y-axis setpoint of +3:

For the third shape, the jog statement adjusts the starting point
again, this time changing the X axis to 5. The Y axis has not been
jogged so it stays at its previous value of +3:

For the fourth shape, the jog statement adjusts the starting point for
the Y axis back to 0. The X axis has not been jogged so it stays at its
previous value of +5:

Without offsets, coordinates for each shape would have to be
calculated (and debugged). Instead, one set of coordinates can be
reused and the starting point shifted through an offset.

 Making Motion 57

Parker Hannifin

Velocity Profile Commands
A basic motion profile for coordinated motion, controlled by an
attached master, consists of acceleration, deceleration, stop ramps
and a velocity. You can further control coordinated motion using
additional velocity profile commands.

Axis motion with gear, cam, or jog offsets are controlled solely by
their associated commands—for example, CAM OFFSET, CAM SCALE,
GEAR ACC, GEAR RATIO, JOG DEC, or JOG JRK.

NOTE: To check the setting of a specific motion profile command,
enter the command without any arguments.

NOTE: To disable a command, set its value to zero.

Use the ESAVE command to save coordinated motion and feedback
control values in the controller. Otherwise, the system parameters,
motion profiles, and master and axis attachments are retained by
the controller only until the controller is rebooted or its power
cycled. Then all data reverts to its default values.

Velocity Profile Setup
The following commands further shape and refine the coordinated
motion profile. For more information about each command, see the
ACR Command Language Reference.

• F (Set Velocity in Units per Minute)—sets a move velocity in
units/minute. The F command otherwise functions the same as
the VEL command.

• FOV (Set Feedrate Override)—sets the move velocity manually,
without changing the current VEL value. Use FOV to
superimpose an additional move onto existing motion.
Typically, the FOV provides a manual way to change velocity
from a terminal. You can also assign the FOV to an input,
providing users a manual way to initiate the superimposed
move. For more information, see Immediate Mode.

• FVEL (Set Final Velocity)—sets a final velocity value. When a STP
value has been set, FVEL can be used to set a target final
velocity value. The value is used to slow down between moves,
but not stop. Moreover, a move only ramps down to the FVEL
value, never up to the value.

• JRK (Set Jerk Parameter)—sets the slope of acceleration versus
time profile. An s-curve profile provides a smoother motion
control by reducing the jerk (rate of change) in acceleration
and deceleration portions of the move profile. Because s-curve
profiling reduces jerk, it improves position tracking
performance.

58 Programmer’s Guide

 Parker Hannifin

• ROTARY (Set Rotary Axis Length)—sets a rotary axis length used
in a shortest-distance calculation. The resulting move is never
longer than half the rotary axis length.

• TMOV (Time Based Move)—sets the time (in seconds) in which
the move is completed. The controller calculates a new master
motion profile to complete the move in the specified time. The
new motion profile values for acceleration, deceleration, stop
ramps, and velocity are no greater than the user-specified
values.

• VECDEF (Define Automatic Vector)—controls how the
Coordinated Moves Profiler calculates the master move
vector. The VECDEF command defines the weight each axis
receives in the vector calculation. The default value is 1 for
every axis.

In some applications, it is not desirable to include an axis in the
motion profile calculation. Suppose there is an application with
coordinated motion for axes X, Y, and Z, and rotary axis A.
Setting the axis A value to zero removes it from the vector
calculation. Axis A makes its move within the defined motion
profile, but is not part of the calculation itself.

• VECTOR (Set Manual Vector)—sets an independent vector
value for an axis removed from the motion profile calculation
through the VECDEF command. Because the axis is no longer
part of the motion profile calculation, it has no master velocity
with which it can make independent moves. The VECTOR
command provides that value so the axis can make
independent moves.

Feedback Control Commands
The feedback control commands affect the velocity profiles and
define the encoder feedback used by axes in the current program.
Values must be set for each axis.

• MULT (Set Encoder Multipliers)—sets the count direction and
the hardware multiplication for the encoder of a given axis.
This command affects tuning gains, directions, distances,
velocities, and accelerations.

Caution —Damage to equipment and/or serious
injury to personnel may result if MULT is changed
to a value inappropriate to the application.

Carefully consider the effects throughout the
application before applying a new value, and
perform a test without the load or mechanics
attached.

 Making Motion 59

Parker Hannifin

• PPU (Set Axis Pulse per Unit Ratio)—sets the pulses per
programming unit for an axis, allowing convenient units for
motion profile such as inches, millimeters, or degrees. The PPU
for each axis is independent of that of other axes.

Caution —Damage to equipment and/or serious
injury to personnel may result if PPU is changed to
a value inappropriate to the application.

Carefully consider the effects throughout the
application before applying a new value, and
perform a test without the load or mechanics
attached.

• REN (Match Position with Encoder)—sets the commanded
position equal to the actual position for a given axis, thus
removing the following error.

• RES (Reset or Preload Encoders)—sets the commanded position
and actual encoder position to zero for a given axis. It also
allows the user to pre-load an axis with a position.

60 Programmer’s Guide

 Parker Hannifin

REN Details
The REN command copies the actual position from the encoder into
the Secondary Setpoint of the servo loop. The values for the Primary
Setpoint register and for the Coordinated Moves Profiler’s offset are
then calculated backwards from the Secondary Setpoint. This action
removes the following error.

In the example in Figure 2, the actual position is 11. That number is
copied into the register for the Secondary Setpoint, and the Primary
Setpoint is then calculated (11).

The Jog, Gear, and Cam profilers’ offsets do not change. The values
in their registers are subtracted from the Primary Setpoint to get the
offset for the Coordinated Moves Profiler:

11–[2+3+4]=2

Figure 2 Calculations for REN Command

 Making Motion 61

Parker Hannifin

RES Details
The RES command is used to zero out the primary setpoint (RES), or
to preload positions into the Coordinated Moves Profiler and Actual
Position registers (example: RES X10).

See Figure 3 for a diagram of the profiler and summation registers for
the command RES X10. The values of the Coordinated Moves
Profiler, Primary and Secondary Setpoints, and Actual Position
registers have been changed to 10. The remaining profilers have
been changed to zero.

Figure 3 Register Values for RES X10

If RES is used without an axis and preload value, all the registers shown in
Figure 3 would be zero (0).

62 Programmer’s Guide

 Parker Hannifin

Coordinated Moves Profiler
The Coordinated Moves Profiler (formerly called the current position
profiler) controls motion for multiple axes using a single set of motion
profile values. The MOV command (Define a Linear Move)
commands absolute and incremental motion.

NOTE: The MOV command is not necessary for coordinated
motion. The controller recognizes the axis name and a value
as commanded motion, such as X500.

 Multiple axes can be commanded in a single code
statement, such as X500 Y100; the motion is coordinated.

No matter what the designed application is, the controller must first
be configured for coordinated (linear interpolated) motion. This
does not limit the user from simultaneously using the other motion
profilers—jog, gear, or cam. Information regarding which elements it
is working with is provided to the Coordinated Moves Profiler by the
master, slave, and axis attachment statements. The other motion
profilers look to the Coordinated Moves Profiler for the configuration
data. For more information about making attachments, see
Attachments.

When multiple axes are moving, the Coordinated Moves Profiler
computes the vector based on all the axes target points. The vector
moves at the values set through the motion profile (ACC, DEC, STP,
and VEL), and is scaled for each axis. Therefore, all axes start,
accelerate, decelerate, and stop at the same time.

When only one axis is moving, the ACC, VEL, and STP are the same
as the master.

NOTE: The Coordinated Moves Profiler typically uses the clock as its
timebase.

Example 1
Two axes are attached to the same master and instructed to move
to absolute positions: axis X to 25 millimeters and axis Y to 15
millimeters. All axes start, accelerate, decelerate, and stop together.
ACC 750 DEC 750 VEL 75 STP 750
X25 Y15

 Making Motion 63

Parker Hannifin

Example 2
Two axes are attached to the same master, and the program moves
one axis to an absolute position: axis X to 25 millimeters. As only axis
X is commanded to move, axis Y is not included in the motion
trajectory calculation.
ACC 750 DEC 750 VEL 75 STP 750
X25

64 Programmer’s Guide

 Parker Hannifin

 Making Motion 65

Parker Hannifin

Jog Profiler
Each axis has a dedicated Jog Profiler which can, using a set of
motion profile values, control absolute, incremental, or continuous
motion for that axis. It can do this independently or in conjunction
with the other profilers (Cam, Gear, and Coordinated Moves).

NOTE: Multiple axes may be commanded in a single jog
statement, such as JOG ABS X500 Y100. The motion is not
coordinated.

For any application, the controller is first configured for coordinated
motion. This does not exclude simultaneously using the other motion
profilers.

The Jog Profiler looks to the Coordinated Moves Profiler for its
configuration data (master, slave, and axis attachment statements).
For more information about making attachments, see Attachments.

The Jog Profiler computes motion based on axis target positions and
on the motion profile values (JOG ACC, JOG DEC, JOG JRK, and
JOG VEL). The motion profile is scaled by the PPU (pulses per
programming unit) for each axis. All axes may start, accelerate, and
decelerate at different times.

NOTE: The Jog Profiler typically uses the clock as its timebase.

NOTE: The ACR controller uses the Jog Profiler for jogging and
homing routines. If the acceleration, deceleration, velocity,
and jerk values are set for jogging, those values are also
used for homing. Therefore, it is a good programming
practice to declare the motion profile at the beginning of
every jog subroutine. Doing so ensures the correct motion
values are used for a jogging or homing routine, regardless
how the program branches to a subroutine.

NOTE: The Configuration Wizard contains a Jog/Home
Commissioning dialog. The dialog only allows the user to test
the setup of an axis—it does not produce jogging or homing
code.

66 Programmer’s Guide

 Parker Hannifin

Example 1
Two axes are set to different acceleration, deceleration, and
velocities, and are moved the same distance.
JOG ACC X1000 Y500
JOG DEC X1000 Y500
JOG VEL X25 Y50
JOG INC X10 Y10

Figure 4 looks at the commanded motion of the X axis. In the upper
graph (velocity motion profile), JOG ACC and JOG DEC determine
the acceleration and deceleration values, which always graph as
ascending and descending slopes, respectively. JOG VEL always
graphs as a horizontal line once the axis is up to speed. The area
under the velocity profile graph is the distance traveled.

Figure 4 X-Axis Velocity and Position Profiles

In the lower graph (position motion profile) of Figure 4, the curve between t0 and
t1 shows the change in position during the time it takes for the X axis to
accelerate from zero to the target velocity. Likewise, the curve between t2 and t3
shows the change in position during deceleration to zero. (The actual
acceleration and deceleration curves shown are approximated due to the
resolution of the graph.) The straight line between points P1 and P2 is where the
X-axis movement is a constant velocity.

 Making Motion 67

Parker Hannifin

Figure 5 looks at the movement for the Y axis, characterized by more gradual
slopes for acceleration and deceleration values of 500 in the velocity motion
profile (as compared to the X-axis’ values of 1000).

Figure 5 Y-Axis Velocity and Position Profiles

Again, the straight line between points P1 and P2 on the position motion profile is
where the Y-axis movement is a constant velocity.

Figure 6 shows the velocity motion profiles for both the X and Y axes
superimposed. The Y axis is dashed. Due to a higher JOG VEL value, the Y axis
finishes its commanded motion in less time than the X axis.

Figure 6 X and Y Velocity Motion Profiles

68 Programmer’s Guide

 Parker Hannifin

Figure 7 graphs the change in position for the X and Y axes. The Y axis is
dashed. The overall slope of the position curve for the Y axis is steeper,
reflecting its higher JOG VEL value (JOG VEL X25 Y50).

Comparing the first curve after t0 for the axes show that a higher acceleration
value presents as a more gradual curve (JOG ACC X1000 Y500).

Figure 7 X and Y Position Motion Profiles

Example 2
The JOG VEL value is changed while a single axis is in motion (on the
fly (OTF)).
JOG ACC X20
JOG DEC X25
JOG VEL X10
JOG INC X10
DWL 1.0
JOG VEL X5

At one second (t0 + 1.0 sec.), the axis is commanded to decrease
speed to the new velocity. See Figure 8 for the velocity profile.
Motion ends at t1.

Figure 8 Change in JOG VEL Value “On the Fly”

 Making Motion 69

Parker Hannifin

Example 3
To illustrate sequential jog moves, two axes are attached to the
same program. The program moves each axis an incremental
distance of 10 units using two separate moves. The program waits
until the Jog Active Bit (Bit792) is off, indicating that Axis X has
finished its move, after which time the Y axis is commanded to move
to its incremental position. Figure 9 shows the velocity profile of this
example.
JOG ACC X1000 Y500
JOG DEC X1000 Y500
JOG VEL X25 Y50
JOG INC X10
INH -792
JOG INC Y10

Figure 9 Velocity Profile of Sequential Jog Moves

70 Programmer’s Guide

 Parker Hannifin

JOG VEL Details
Figure 10 shows the bit profiles for the Jog Flags (Bits 792 through
796) as a JOG VEL command is executed.

Figure 10 JOG VEL Command and Bit Profiles

 Making Motion 71

Parker Hannifin

JOG Commands
See the ACR Command Language Reference for detailed
information, including necessary arguments, on JOG (Single Axis
Velocity Profile) and its associated commands:

• JOG ABS (Jog to Absolute Position)—uses the current jog
settings to jog an axis to an absolute jog offset.

• JOG ACC (Set Jog Acceleration)—sets the programmed jog
acceleration for an axis.

• JOG DEC (Set Jog Deceleration)—sets the programmed jog
deceleration for an axis.

• JOG FWD (Jog Axis Forward)—initiates a ramp to the velocity
programmed by the JOG VEL command.

• JOG HOME (Go Home)—instructs the controller to search for
the home position in the direction and on the axes specified.

• JOG HOMVF (Home Final Velocity)—specifies the velocity to
use when the homing operation makes the final approach.

• JOG INC (Jog an Incremental Distance)—uses the current jog
settings to jog an axis an incremental distance from the current
jog offset.

• JOG JRK (Set Jog Jerk (S-curve))—controls the slope of the
acceleration versus time profile.

• JOG OFF (Stop Jogging Axis)—initiates a ramp down to zero
speed.

• JOG REN (Transfer Current Position into Jog Offset)—either
clears or preloads the current position of a given axis and adds
the difference to the jog offset parameter.

• JOG RES (Transfer Jog Offset Into Current Position)—either
clears or preloads the jog offset of a given axis and adds the
difference to the current position.

• JOG REV (Jog Axis Backward)—initiates a ramp in the negative
direction to the velocity programmed with the JOG VEL
command.

• JOG SRC (Set External Timebase)—specifies the timebase for
jogging.

• JOG VEL (Set Jog Velocity)—sets the programmed jog velocity
for an axis.

72 Programmer’s Guide

 Parker Hannifin

JOG REN Details
The JOG REN command (Transfer Current Position into Jog Offset)
clears the Coordinated Moves Profiler of a given axis and adds the
difference to the Jog Profiler offset (example: JOG REN X). It can
also be used to preload a position into the Coordinated Moves
Profiler (adjusting the Jog Profiler to make up the difference)
(example: JOG REN X2). In either case, the Gear and Cam profilers
and the Primary and Secondary setpoints do not change.

The drawing in Figure 11 illustrates JOG REN as it clears the
Coordinated Moves Profiler.

Figure 11 JOG REN Clears Coordinated Moves Profiler (JOG REN X)

 Making Motion 73

Parker Hannifin

The drawing in Figure 12 illustrates JOG REN as it preloads the Coordinated
Moves Profiler.

Figure 12 JOG REN Preloads the Coordinated Moves Profiler (JOG REN X2)

74 Programmer’s Guide

 Parker Hannifin

JOG RES Details
The JOG RES command (Transfer Jog Offset Into Current Position)
clears the Jog Profiler offset of a given axis, and adds the difference
to the Coordinated Moves Profiler (example: JOG RES X). It can also
preload the Jog Profiler offset, and, again, adjusts the Coordinated
Moves Profiler to make up the difference (example: JOG RES X2). In
either case, the Gear and Cam profilers and the Primary and
Secondary setpoints do not change.

The drawing in Figure 13 illustrates JOG RES as it clears the Jog
Profiler.

Figure 13 JOG RES Clears Jog Profiler (JOG RES X)

 Making Motion 75

Parker Hannifin

The drawing in Figure 14 illustrates JOG RES as it preloads the Jog
Profiler.

Figure 14 JOG RES Preloads the Jog Profiler (JOG RES X2)

Gear Profiler
The Gear Profiler controls motion for axes needing to match their
motion output to some form of input (see SRC command—Set
External Timebase—for available sources). The input source is usually
external, such as an electronic gearbox, trackball, follower axis, or
changes of ratio related to position.

NOTE: The Gear Profiler typically uses a source other than the
clock as its timebase.

• GEAR RES (Reset or Preload Gearing Output)—this command
either clears or preloads the gear offset for the given axis.

76 Programmer’s Guide

 Parker Hannifin

Cam Profiler
The Cam Profiler controls motion for axes needing precise motion. It
uses an array of target points in relation to an externally sourced
timebase (see SRC command—Set External Timebase—for available
sources). By breaking the motion into discrete target points, the cam
arrives at the exact point needed.

The Cam Profiler provides linear interpolation between points,
regardless of how many points are necessary for the move. All
changes in motion are real time. The Cam Profiler does not compile
motion.

NOTE: The Cam Profiler typically uses a source other than the clock
as its timebase.

• CAM RES (Transfer Cam Offset)—this command either clears or
preloads the cam offset of a given axis and adds the
difference to the current position. It also clears out any cam
shift that may have been built up by an incremental cam.

Homing
The homing operation is a sequence of moves that position an axis
using the Home Limit inputs. The goal of the homing operation is to
return the load to a repeatable starting location.

When the homing operation successfully completes, the controller
sets the absolute position register to zero, establishing a zero
reference position. For servo axes using analog feedback, the
controller sets the voltage register to zero.

The Jog Profiler controls homing operations. If the acceleration,
deceleration, velocity, and jerk values are set for jogging, those
values are also used for homing.

NOTE: It is a good programming practice to declare the motion
profile at the beginning of every jog subroutine. Doing so
ensures the correct motion values are used for a jogging or
homing routine, regardless how the program branches to a
subroutine.

NOTE: A homing routine cannot be started for an axis that is
already in motion.

 Making Motion 77

Parker Hannifin

NOTE: Relevance of positive and negative direction—

NOTE: If an end-of-travel limit is encountered during the homing

operation, motion is reversed and the home switch is sought
in the opposite direction. If a second limit is encountered,
the homing operation is terminated, stopping motion at the
second limit.

NOTE: For homing operations, always use the clock as the source
of the Jog Profiler.

The controller uses the following guidelines for all backup-enabled
profiles:

• Search for the selected edge at the velocity set with the JOG
VEL command (Set Jog Velocity).

• Use the direction given in the JOG HOME command (Go
Home). If the home input is already active, start toward the
selected edge. On finding the selected edge, decelerate.

• Return to the selected edge at the velocity set with the JOG
HOMVF command (Home Final Velocity). If the returning
direction is the same as the selected final direction, the profile
is complete. Otherwise, find the edge again in the selected
final direction (using the velocity set with the JOG HOMVF
command).

Example
The homing routine sets the conditions for homing; a motion profile,
the inputs related to homing, and homing velocity. In addition,
specific bit conditions are set out. The JOG HOME command then
starts the homing process.

The WHILE/WEND statement (Loop Execution Conditional) causes the
program to wait until the homing conditions it contains are met. In
the first AND statement, axis 0 cannot have found home and cannot
have failed to find home. The second AND statement does the same
for axis 1. Once conditions are met, the code within the WHILE/WEND
statement is executed.

Finally, the program prints that the Y axis homing is successful, and
initiates Z channel homing (MSEEK command—Marker Seek
Operation) for axis X. When axis X has successfully completed the Z
channel homing, the program prints that X axis homing is successful.

78 Programmer’s Guide

 Parker Hannifin

JOG VEL X10 Y10 : REM Set axes jog parameters used during homing
JOG ACC X100 Y100
JOG DEC X100 Y100

HLBIT X0 Y3 : REM X uses 1Home (input2), Y uses 2Home (input5)
HLIM X3 Y3 : REM enable EOT limit checking for box axes

JOG HOMVF X0.1 Y0.1 : REM Set backup to home velocity
SET 16144 SET 16145 : REM Invert axis0 level of limit inputs
SET 16176 SET 16177 : REM Invert axis1 level of limit inputs
CLR 16152 CLR 16184 : REM Disable backup to home
CLR 16153 CLR 16185 : REM Look for positive edge of sensor
CLR 16154 CLR 16186 : REM Final homing direction will be positive

JOG HOME X-1 Y1 : REM start homing x negative, y positive

REM The WHILE/WEND statement uses Boolean logic to define homing
REM conditions. Bits 16134 and 16166 are the Found Home bits for axes
WHILE (((NOT BIT 16134) AND (NOT BIT 16135)) OR ((NOT BIT 16166) AND (NOT
BIT 16167)))
WEND

IF (BIT 16166) THEN PRINT "Y HOMING SUCCESSFUL“
IF (BIT 16134)

MSEEK X(1,0)
INH –516
IF (BIT 777)

PRINT "X HOMING SUCCESSFUL“
ENDIF

ENDIF

ENDP

Homing Subroutines
Typically, the homing code is a subroutine in a program. The Jog
commands define the motion (JOG ACC, JOG DEC, JOG HOME, JOG
HOMVF, JOG JRK, and JOG VEL), and three bits in the Quinary Axis
Flags (Bit16128-Bit16639) control other aspects of a homing routine.

• Home Backup Enable (bit index 24).

• Home Negative Edge Select (bit index 25).

• Home Final Direction (bit index 26).

The JOG HOME command simultaneously homes multiple axes. The
arguments axis direction allow the user to specify an axis and the
direction in which it seeks the homing region. For example JOG
HOME X1 Y-1 homes the X axis in the positive direction, and the Y
axis in the negative direction.

The following diagrams illustrate the combinations and interactions
of the three homing bits (above) and the JOG HOME command.

Basic Homing (Homing Backup Disabled)
When the Home Backup Enable bit (Bit 24) is clear, the controller
ignores the Home Negative Edge Select bit (Bit 25) and Home
Negative Final Direction bit (Bit 26). Consequently, when the
controller finds any homing edge (positive or negative), the move
decelerates. The controller does not attempt to back up to the
found edge.

 Making Motion 79

Parker Hannifin

Figures A and B show the homing operation when the Home Backup
Enable, Home Negative Edge Select, and Home Negative Final
Direction bits are clear (Quinary Axis Flags, Bit16128-Bit16639).

Figure A
Homing Profile
Attributes:

• JOG HOME X1

• Home Backup
Enable (bit
index 24) is
clear.

• Home Negative
Edge Select (bit
index 25) is
clear.

• Home Negative
Final Direction
(bit index 26) is
clear.

Figure B

Homing Profile
Attributes:

• JOG HOME X-1

• Home Backup
Enable (bit
index 24) is
clear.

• Home Negative
Edge Select (bit
index 25) is
clear.

• Home Negative
Final Direction
(bit index 26) is
clear.

80 Programmer’s Guide

 Parker Hannifin

Positive Homing (Homing Backup Enabled)
Figures C through F show the homing operation when the Home
Backup Enable bit is set (parameters 4600-4615).

The seven steps below describe a sample homing operation, as
illustrated in Figure C. Figures D through F show the homing
operation for different values of the Home Negative Edge Select
and Home Negative Final Direction bits—the Home Backup Enable
bit is set.

1. A positive home move is started with the JOG HOME X1
command at the JOG ACC and JOG JRK accelerations.
Default JOG ACC is 10 revs (or volts or inches) per sec2.

2. The JOGVEL velocity is reached (move continues at that
velocity until home input goes active).

3. The negative edge of the home input is ignored and the move
continues until the positive edge is detected. At this time the
move is decelerated at the JOG DEC and JOG JRK command
values.

4. After stopping, the direction is reversed and a second move
with a peak velocity specified by the JOG HOMVF value is
started.

5. This move continues until the positive edge of the home input is
reached.

6. Upon reaching the positive edge, the move is decelerated at
the JOG DEC and JOG JRK command values, the direction is
reversed, and another move is started in the positive direction
at the JOG HOMVF velocity.

7. As soon as the home input positive edge is reached, this last
move is immediately terminated. The load is at home and the
absolute position register is reset to zero.

Figure C

Homing Profile
Attributes:

• JOG HOME X1

• Home Backup
Enable (bit index
24) is set.

• Home Negative
Edge Select (bit
index 25) is clear.

• Home Negative
Final Direction (bit
index 26) is clear.

 Making Motion 81

Parker Hannifin

Figure D

Homing Profile
Attributes:

• JOG HOME X1

• Home Backup
Enable (bit index
24) is set.

• Home Negative
Edge Select (bit
index 25) is set.

• Home Negative
Final Direction (bit
index 26) is clear.

Figure E

Homing Profile
Attributes:

• JOG HOME X1

• Home Backup
Enable (bit index
24) is set.

• Home Negative
Edge Select (bit
index 25) is clear.

• Home Negative
Final Direction (bit
index 26) is set.

Figure F

Homing Profile
Attributes:

• JOG HOME X1

• Home Backup
Enable (bit
index 24) is set.

• Home Negative
Edge Select (bit
index 25) is set.

• Home Negative
Final Direction
(bit index 26) is
set.

82 Programmer’s Guide

 Parker Hannifin

Negative Homing (Homing Backup Enabled)
Figures G through J show the homing operation for different values
of the Home Negative Edge Select and Home Negative Final
Direction bits—the Home Backup Enable bit is set.

Figure G

Homing Profile
Attributes:

• JOG HOME X-1

• Home Backup
Enable (bit
index 24) is set.

• Home Negative
Edge Select (bit
index 25) is set.

• Home Negative
Final Direction
(bit index 26) is
set.

Figure H
Homing Profile
Attributes:

• JOG HOME X-1

• Home Backup
Enable (bit index
24) is set.

• Home Negative
Edge Select (bit
index 25) is clear.

• Home Negative
Final Direction (bit
index 26) is set.

 Making Motion 83

Parker Hannifin

Figure I

Homing Profile
Attributes:

• JOG HOME X-1

• Home Backup
Enable (bit index
24) is set.

• Home Negative
Edge Select (bit
index 25) is set.

• Home Negative
Final Direction (bit
index 26) is clear.

Figure J

Homing Profile
Attributes:

• JOG HOME X-1

• Home Backup
Enable (bit index
24) is set.

• Home Negative
Edge Select (bit
index 25) is clear.

• Home Negative
Final Direction (bit
index 26) is clear.

84 Programmer’s Guide

 Parker Hannifin

Limit Detection
The Configuration Wizard assists with setting up the Hardware and
Software Limits Detection.

When limits are enabled, motion stops when the load encounters a
limit. If the load hits a hardware limit, motion stops at the rate set by
the HLDEC; if the load hits a software limit, motion stops at the rate
set by the SLDEC.

Dedicated I/O for Homing
For each axis, the user can assign which inputs are used for positive
and negative hardware limits, and the input used for homing. The
inputs can be assigned or changed using the HLBIT command (no
corresponding parameter exists).

Use the HLBIT command to set the input for the positive hardware
limit, and the controller sets the next two contiguous inputs for the
negative hardware limit and homing.

For example, to assign input three as the positive hardware limit for
axis Y, send the command HLBIT Y3; as a result, input 3 becomes
the positive hardware limit, input 4 becomes the negative hardware
limit, and input 5 becomes the homing input.

 Making Motion 85

Parker Hannifin

86 Programmer’s Guide

NOTE: There are no restrictions regarding how to assign hardware
limits and homing inputs. However, you should exercise
caution because it is possible to create imaginary limit and
home inputs. This is because the controller assumes all three
inputs are in the same multiple of 32 bits. The assignment of
inputs does not roll over to the next block of 32 bits. For
example, if the positive hardware limit is assigned to input
31, the negative hardware limit and homing inputs are not
assigned. Instead, they become imaginary inputs with a
value of zero.

 Parker Hannifin

Servo Loop Fundamentals
Each of the profilers contains a register with a value of the current
offset. These values are added together and the summation is
called the Primary Setpoint (PSP).

PSP = Coordinated Moves + Jog + Gear + Cam

See Figure 15 for a diagram of the Primary Setpoint summation.

Figure 15 Primary Setpoint Summation

Setpoint Compensation
There are two mechanical characteristics that the controller takes
into consideration and compensates for: hysteresis losses and non-
linear position error, which are processed by the Backlash Generator
and Ballscrew Profiler, respectively.

• Backlash Generator: Used to compensate for error introduced
by hysteresis in mechanical gearboxes. Backlash is used in the
Secondary Setpoint summation if the Primary Setpoint value is
positive. (Use the BKL command—Set Backlash
Compensation—to set the compensation, or, without an
argument, to display the current setting for an axis.)

• Ballscrew Profiler: Used to compensate for non-linear position
error introduced by mechanical ballscrews and gearboxes.
(Use the BSC command—Ballscrew Compensation— to initialize
and control ballscrew compensation for an axis.)

The values of the Backlash Generator and Ballscrew Profiler are
added to the Primary Setpoint, and this summation is called the
Secondary Setpoint (SSP).

SSP = PSP + Backlash + Ballscrew

 Servo Loop Fundamentals 87

Parker Hannifin

The information up to and including the SSP is the commanded
position. See Figure 16.

Figure 16 Secondary Setpoint Summation

Viewing the Setpoint Calculations
Servo loop calculations for the actual position of an axis can be
observed in ACR-View. The Servo Loop Status window shows the
motion offsets, primary and secondary setpoints, servo gains and
other values, and how they result in the final position output.

► In the Project Workspace, click Status Panel, then click Servo
Loop Status.

Following Error
The Secondary Setpoint is compared with the value of the Actual
Position received from a feedback device. See Figure 17. The
difference between the Secondary Setpoint and Actual Position is
called the Following Error:

Following Error = SSP - ACT POS

The controller makes adjustments to the motor position through a
constant cycle of comparison and correction. Following Error is used
by the PID loop (servo control algorithm) to keep the Actual Position
equal (or approaching equal to) the Secondary Setpoint.

88 Programmer’s Guide

 Parker Hannifin

 Servo Loop Fundamentals 89

Figure 17 Following Error

Parker Hannifin

Application Examples
The sample programs in this section provide more in-depth
examination of the following topics:

Basic Motion

Enable Drive

EPL Network

Homing

Open Sample

Teach Array

Basic Motion

PROGRAM

GOSUB BasicABSMotion : REM subroutine for absolute moves
GOSUB BasicINCMotion : REM subroutine for incremental moves
GOSUB BasicCOMBOMotion
REM subroutine for combination of absolute and incremental moves
GOSUB JogABSMotion : REM subroutine for absolute jog moves
GOSUB JogINCMotion : REM subroutine for incremental jog moves
GOSUB JogCOMBOMotion
REM subroutine for combination of absolute and incremental jog moves

END

'SUBROUTINE OF Basic Absolute Moves
_BasicABSMotion

'ABSOLUTE MOVES
X0
X100
X200
X300
X400
INH -516
RETURN

'SUBROUTINE OF Basic Incremental Moves
_BasicINCMotion

X/-800
X/500
X/200
X/100
INH -516
RETURN

'SUBROUTINE OF Basic both Absolute and Incremental Moves
_BasicCOMBOMotion
X/-400
X200

90 Programmer’s Guide

 Parker Hannifin

X/50
X400
INH -516
RETURN

'SUBROUTINE OF Jog Absolute Moves
_JogABSMotion
JOG ABS X-400
INH -792
JOG ABS X-300
INH -792
JOG ABS X-200
INH -792
JOG ABS X-100
INH -792
JOG ABS X0
INH -792
RETURN

'SUBROUTINE OF Jog Incremental Moves
_JogINCMotion
JOG INC X-800
INH -792
JOG INC X500
INH -792
JOG INC X200
INH -792
JOG INC X100
INH -792
RETURN

'SUBROUTINE OF both Absolute and Incremental Moves
_JogCOMBOMotion
JOG INC X-400
INH -792
JOG ABS X-200
INH -792
JOG INC X50
INH -792
JOG ABS X0
INH -792
RETURN

ENDP

Enable Drive

PROGRAM

GOSUB ENABLEDRIVE : REM GO TO SUBROUTINE "ENABLEDRIVE"

END

'SUBROUTINE OF ENABLEDRIVE
_ENABLEDRIVE

DRIVE ON X Y : REM TURNS ON OUTPUT TO ENABLE DRIVE

DWL 0.2 : REM WAIT 2ms

IF (BIT 8465) THEN PRINT "Axis0 is enable"
REM AXIS0 IS ENABLE, PRINT MESSAGE
IF (bit 8497) THEN PRINT "Axis1 is enable"
REM AXIS1 IS ENABLE, PRINT MESSAGE

IF (NOT BIT8465) THEN PRINT "Axis0 is not enable"

 Application Examples 91

Parker Hannifin

REM AXIS0 IS NOT ENABLE, PRINT MESSAGE
IF (NOT bit8467) THEN PRINT "Axis1 is not enable"
REM AXIS1 IS NOT ENABLE, PRINT MESSAGE

RETURN : REM RETURN BACK TO GOSUB

ENDP

EPL Network

#DEFINE ResetEPLNetwork BIT150

PROGRAM

GOSUB EnableEPLNetwork : REM GO TO SUBROUTINE EnableEPLNetwork

END

'SUBROUTINE OF EnableEPLNetwork
_EnableEPLNetwork

INH 16648 : REM CHECK FOR CONTROLLER TO ACKNOWLEDGE EPL CARD

IF (NOT Bit16649) THEN EPLC ON
REM IF EPL NETWORK NOT OPERATIONAL, THEN START EPLC NETWORK

DWL 0.2

WHILE (BIT 16640)
REM INFINITE LOOP THAT WAITS TO EPL NETWORK TO START
WEND

IF (BIT 16649) THEN PRINT "EPL NETWORK OPERATIONAL"
REM IF NETwoRK OPERATIONAL, PRINT MESSAGE TO SCREEN

'IF THE NETWORK IS NOT OPERATIONAL AT
'THIS POINT THEN TRY TO RESET IT

'IF NETWORK IS NOT OPERATIONAL, PRINT MESSAGE TO SCREEN
IF (BIT 16650) THEN PRINT "EPL NETWORK START FAILED, GOING TO RESET
NETWORK"

IF (NOT BIT 16649)
 EPLC OFF : REM RESET EPL NETWORK
 SET ResetEPLNetwork : REM SET RESET EPL NETWORK LATCHED BIT
 INH -16657 : REM INHIBIT PROGRAM UNTIL EPL NETWORK RESETS
 EPLC ON : REM START EPL NETWORK AGAIN
 INH -16656
 REM INHIBIT PROGRAM UNTIL START EPL NETWORK HAS FINISHED
ENDIF

'CHECK IF EPL NETWORK IS STILL NOT OPERATIONAL
'AND ALREADY RESET NETWORK

IF ((NOT BIT 16649) AND (ResetEPLNetwork))
PRINT "EPL network problem occurred."
ENDIF

ENDP

92 Programmer’s Guide

 Parker Hannifin

Homing

Homing Example 1

PROGRAM

GOSUB HOMING : REM GO TO SUBROUTINE HOMING

END

'SUBROUTINE HOMING
_HOMING
JOG VEL X1 Y1 : REM Set axes jog parameters used during homing
JOG ACC X10 Y10
JOG DEC X10 Y10

HLBIT X0 Y3
'X uses PosEOT (input0), NegEOT (input1), Home (input2)
'Y uses PosEOT (input3), NegEOT (input4), Home (input5)

JOG HOMVF X0.1 Y0.1 : REM Set backup to home velocity

JOG HOME X-1 Y1 : REM start homing x negative, y positive

'Infinite WHILE statement while both are still trying to HOME
WHILE (((NOT BIT 16134) AND (NOT BIT 16135)) AND ((NOT BIT 16166) AND (NOT
BIT 16167)))
WEND

'Prints Information regarding "Y" Axis homing
IF (BIT 16166) THEN PRINT "Y HOMING SUCCESSFUL" : SET 128
IF (BIT 16167) THEN PRINT "Y HOMING UNSUCCESSFUL"

'Checks if "X" Axis homing successful. If successful, the axis
‘will look for the index marker.

ACC 10 : REM set motion profile for mseek incremental move
DEC 10
VEL 0.5
STP 10
IF (BIT 16134)
 MSEEK X(1,0) : REM Performs search for index marker in 1 incremental
unit move
 INH –516 : REM Waits for Master to Not be "IN MOTION"
 IF (BIT 777) : REM if Capture of Index Marker was complete
 PRINT "X HOMING SUCCESSFUL" : REM Prints information
 SET 129
 ENDIF
 ENDIF
'If "X" Axis did not Home Successful, Print information
IF (BIT 16135) THEN PRINT "X HOMING UNSUCCESSFUL"

RETURN

ENDP

 Application Examples 93

Parker Hannifin

Homing Example 2
Homing Example XYZ System

PROG0
PROGRAM

GOSUB EnableDrives
GOSUB HomeAll
REM insert application code here
END : REM end program

_EnableDrives
DRIVE ON X Y Z
DWL 0.15
REM wait 150ms for servos to enable before commanding moves
RETURN

_HomeAll
HLIM X3 : REM enable limits
HLIM Y3 : REM enable limits
HLIM Z3 : REM enable limits
JOG ACC X500 : REM set jog accel for homing
JOG DEC X500 : REM set jog decel for homing
JOG VEL X100 : REM set jog velocity for homing
JOG HOMVF X25 : REM set jog final velocity for homing
JOG ACC Y300 : REM set jog accel for homing
JOG DEC Y300 : REM set jog decel for homing
JOG VEL Y75 : REM set jog velocity for homing
JOG HOMVF Y15 : REM set jog final velocity for homing
JOG ACC Z100 : REM set jog accel for homing
JOG DEC Z100 : REM set jog decel for homing
JOG VEL Z25 : REM set jog velocity for homing
JOG HOMVF Z5 : REM set jog final velocity for homing

REM X Axis settings
SET 16152 : REM Backup to edge is enabled
CLR 16153 : REM Backup to positive edge
CLR 16154 : REM set Final approach direction is positive

REM Yaxis settings
SET 16184 : REM Backup to edge is enabled
CLR 16185 : REM Backup to positive edge
SET 16186 : REM set Final approach direction is negative

REM Z Axis settings
SET 16216 : REM Backup to edge is enabled
SET 16217 : REM Backup to negative edge
SET 16218 : REM set Final approach direction is negative

REM Home Z Axis first
JOG HOME Z-1

REM Home Successful: BIT16198
REM Home Failed: BIT16199
WHILE (NOT BIT 16198)
IF (BIT 16199) THEN GOTO HomeFailed
WEND
REM Z is successful, home X and Y
JOG HOME X1 Y-1

REM X Home Successful: BIT16134
REM X Home Failed: BIT16135
REM Y Home Successful: BIT16166
REM Y Home Failed: BIT16167

94 Programmer’s Guide

 Parker Hannifin

WHILE (NOT BIT 16134 OR NOT BIT16166)
REM Jump to User error routine if home fails
IF (BIT 16135 OR BIT 16167) THEN GOTO HomeFailed
WEND

REM now find the Z markers for each axis encoder for
REM more accurate positioning
REM MSEEK uses master move profile settings

ACC 250
VEL 50
DEC 250
STP 250
JRK 1250

REM X axis ballscrew is 10mm per motor rev, so command a move
REM of 10.5 to ensure 1 rev
MSEEK X(10.5,0)
REM Rising First Marker : Z Mark, ENC0
REM Hardware Capture Parameter : P12292
REM Capture Complete Flag : BIT777

REM Y axis ballscrew is 10mm per motor rev, so command a move
REM of 10.5 to ensure 1 rev
MSEEK Y(10.5,0)
REM Rising First Marker : Z Mark, ENC1
REM Hardware Capture Parameter : P12548
REM Capture Complete Flag : BIT809

REM Z axis ballscrew is 5mm per motor rev, so command a move
REM of 5.5 to ensure 1 rev
MSEEK Z(5.5,0)
REM Rising First Marker : Z Mark, ENC2
REM Hardware Capture Parameter : P12804
REM Capture Complete Flag : BIT841

REM all position counters are now set to 0 by successful MSEEKs.
REM If home sensors/Z marks are not at the desired
REM machine zero location, move to “true zero”
REM or preload current location settings “RES X97 Y57.5 Z4.4”
X-97 Y-57.5 Z –4.4
INH –516 : REM wait until moves are complete
RES X Y Z : REM reset all counters to 0

REM change master move profile back to normal operation settings
ACC 750 VEL 250 DEC 750 STP 750 JRK 2250
REM change jog profiles back to normal operation settings

JOG ACC X1000 Y1000 Z200
JOG DEC X1000 Y1000 Z200
JOG VEL X300 Y300 Z100
RETURN : REM go back to main program execution

_ HomeFailed
IF (BIT 16199) THEN PRINT “ Z Homing Failed”
IF (BIT 16135) THEN PRINT “ X Homing Failed”
IF (BIT 16167) THEN PRINT “ Y Homing Failed”

END

ENDP

 Application Examples 95

Parker Hannifin

Open Sample
PROGRAM

CLEAR : REM Clear any variables dimension in program
DIM $V(1,10) : REM Dimensions one string variable of length 10

GOSUB OPENPORT : REM Go to SUBROUTINE OPENPORT

END

'SUBROUTINE OPENPORT
_OPENPORT

'Opens Ethernet Stream2
OPEN "STREAM3:" AS #1

'Continuous loop as long as "X" is not entered
_LOOP1

'Set String Variable 0 to nothing
$V0 = ""

PRINT #1, ""
PRINT #1, "What kind of fruit do you want?"
PRINT #1, "(A)pple, (B)anana, (C)oconut"
PRINT "I would like to have a";

'Infinite WHILE loop if they do not enter anything
WHILE ($V0 = "")
$V0 = UCASE$(INKEY$(1))
REM Stores Keyboard entry into String Variable 0
WEND

IF ($V0 = "A") THEN PRINT "n Apple"
REM If "A" was entered, then print n Apple
IF ($V0 = "B") THEN PRINT " Banana"
REM If "B" was entered, then print Banana
IF ($V0 = "C") THEN PRINT " Coconut"
REM If "C" was entered, then print Coconut
IF ($V0 = "X") THEN GOTO LOOP2
REM If "X" was entered, then goto LOOP2 to terminate program
IF ($V0 = CHR$(27)) THEN GOTO LOOP2
REM If "ESC key" was entered, then goto LOOP2 to terminate program

'Goes back to LOOP1
GOTO LOOP1

_LOOP2
PRINT #1, "Program terminated"
CLOSE #1
RETURN

ENDP

96 Programmer’s Guide

 Parker Hannifin

Teach Array

PROGRAM

CLEAR : REM Clear out any variables dimensioned
DIM LV(2) : REM Dimension 2 Long Variables
DIM DA(1) : REM Dimension 1 Double Array
DIM $V(1,10) : REM Dimension 1 String Variable of length 10

'Go to SUBROUTINE Teach
GOSUB Teach

END

_Teach
RES X : REM Reset position to zero
DRIVE OFF X : REM DISABLE DRIVE, teach points by manually move motor.

'Start of InputPoints Routine
_InputPoints

'Print to the terminal "points to teach" and stores value into String
‘Variable 0
INPUT; "Enter number of points to teach (value must greater than 0) = ";
$V0
'Stores the Value of String Variable 0 into Long Variable 1
LV1 = VAL($V0)

PRINT ""
PRINT LV1

'If Statement to check if value entered is correct
IF (LV1<=0)
 PRINT "ENTERED VALUE IS NOT VALID "; $V0
 PRINT "Value must be a number greater than 0"
 GOTO InputPoints
 ENDIF

DIM DA0(LV1) : REM dimension array equal to number of points to teach

'use input 24 to tell controller to collect a teach point
'FOR/TO/STEP/NEXT loop to teach points into array
FOR LV0 = 0 TO (LV1-1) STEP 1
 PRINT "TURN MOTOR, THEN HIT INPUT 24 TO TEACH POINT"
 INH 24 : REM Inhibits the program until Input 24 is pressed
 DA0(LV0)=P12290/P12375 : REM Stores Double Array entry with Encoder
Positive divide by PPU of Axis0
 INH -24 : REM Waits for Input 24 to turn off
 NEXT

PRINT "Teach Completed, Total Points Taught = ";LV1
PRINT "Press Input 24 to enable drives and move to zero/start position "
INH 24
INH -24

DRIVE ON X : REM Enable Axis0 "X"
DWL 0.5
X0 : REM Moves to Zero Position
INH -516 : REM Waits for Motion to be completed
PRINT "Input 24 to run taught points"
INH 24

 Application Examples 97

Parker Hannifin

'FOR/TO/STEP/NEXT loop to make absolute moves to position taught
FOR LV0=0 TO (LV1-1) STEP 1
 X(DA0(LV0))
 INH -516
 PRINT DA0(LV0) : REM Print to terminal the Position it move to.
 NEXT

RETURN

ENDP

98 Programmer’s Guide

 Parker Hannifin

Binary Host Interface
You can enhance communications with the ACR series controller
through the binary host interface.

Binary Data Transfer
The binary data transfers in this chapter consist of a control
character (Header ID) followed by a stream of data encoded
according to the current state of the MODE command. Note that
regardless of the mode, the Header ID is never converted during
binary data transfer.

During binary transfers to the card, the delay between bytes must
be no more than the communications timeout setting for the given
channel. If the timeout activates, the transfer is thrown out and the
channel goes back to waiting for a normal character or a binary
header ID. The default communication timeout is 50 milliseconds.

The following is a list of valid data conversion modes. The default
mode for the FIFO channel is zero and the default for the COM1 and
COM2 channels is one. Note that high bit stripping cannot be done
without also activating the control character-prefixing mode.

Mode Description

MODE 0 No Conversion

MODE 1 Control Character Prefixing

MODE 2 No Conversion

MODE 3 Control Character Prefixing and High Bit
Stripping

Control Character Prefixing
Control character prefixing follows Kermit communications protocol
conventions. The escape code for control character prefixing is the
'#' character. The control character-prefixing mode prevents valid
data within a binary packet from being confused with the serial XON
/ XOFF flow control codes.

Transmitting
If the character to be sent is either a 0x7F or a character in the
range of 0x00 to 0x1F, the character is 'XORed' with 0x40 and
proceeded with a '#' character. Otherwise, the byte is sent normally.

For example, if the character to be sent is 0x01, the character is
transmitted as a "#A" string. (0x01 XOR 0x40 = 0x41 = 'A') The special
case where the character to be sent is the '#' character is handled
with the two character "##" string.

 Binary Host Interface 99

Parker Hannifin

Receiving
When receiving control prefix encoded data, a '#' character is
thrown away and causes the next character to be read from the
data stream. If the character is in the range of 0x3F to 0x5F, the
character is 'XORed' with 0x40 to decode the true value. Otherwise,
the character is used exactly as read from the stream.

High Bit Stripping
High bit stripping follows Kermit communications protocol
conventions for 7-bit data paths. The escape code for high bit
stripping is the '&' character and must be used in conjunction with
the control character prefixing described above.

High bit stripping is for cases in which a 7-bit data path must be used
for binary data transfer. This mode introduces a large overhead in
the transfer of binary data since over half of the bytes are
expanded to two byte sequences and several are expanded to
three bytes. If possible, an 8-bit data path should be used for binary
data transfer.

Transmitting
If the character to be sent is greater than 0x7F, the character is
'ANDed' with 0x7F and proceeded with the '&' character. Note that
the AND may result in a control code which must then handled by
control character prefixing. The original character may also need to
be sent with control character prefixing.

For example, if the character to be sent is 0xC2, the character is
transmitted as a "&B" string. (0xC2 AND 0x7F = 0x42 = 'B') As another
example, if character to be sent is 0x83, the character is transmitted
as the three character "&#C" string. (0x83 AND 0x7F = 0x03 (control
character)) The special case where the character to be sent is the
'&' character is handled with the two character "#&" string.

Receiving
When receiving high bit encoded data, '#' characters are handled
as normal control character prefix sequences. If the received
character is neither a '#' nor a '&' character, the character is used
exactly as read from the stream.

If the received character is the '&' character, it is thrown away and
causes the next character to be read from the data stream. This
new character may be a '#' character, which will initiate control
prefix decoding sequence. The result is a value in the range of 0x00
to 0x7F, which is then 'ORed' with 0x80 to re-establish the high bit in
the data.

100 Programmer’s Guide

 Parker Hannifin

Binary Data Packets
Packets allow binary access to system parameters at any time. This
method must be used if commands are sitting in the input queue
since PRINT statements would also be buffered. The packet is the
quickest way to access information such as current position and
following error for display in an application program.

Packet Request
Packets are requested by sending a four-byte binary request record.
The following is a list of the bytes contained in this record:

Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Group Code

Byte 2 Group Index

Byte 3 Isolation Mask

Group Code and Index
The group code and group index work as a pair to select the data
coming back in a data packet. The group code selects a general
data grouping and the group index selects a set of eight fields
within that group. The isolation mask then selects which of these
eight fields is to compose the final data packet.

Isolation Mask
The isolation mask acts as a filter to select only the specific data
required (for example, actual position for AXIS 2, AXIS 3 and AXIS 5.)
If a bit is set in this mask, the corresponding data field is allowed to
return in the data packet. In order to return all eight fields, the
isolation mask must be 0xFF. Mask Bit0 is used to isolate the first field
in a group and Bit7 is used to isolate the last field.

 Binary Host Interface 101

Parker Hannifin

Parameter Access
The following is a list of groups and what the isolation mask will
isolate:

Group Description Isolation Usage

0x10 Flag Parameters Eight consecutive parameters

0x18 Encoder Parameters ENC0-ENC15

0x19 DAC parameters DAC0-DAC7

0x1A PLC parameters PLC0–PLC7

0x1B Miscellaneous Eight consecutive parameters

0x1C Program Parameters PROG0 - PROG15

0x20 Master Parameters MASTER0 - MASTER7

0x28 Master Parameters MASTER8 - MASTER15

0x30 Axis Parameters AXIS0 - AXIS7

0x38 Axis Parameters AXIS8 - AXIS15

0x40 CMT Parameters CMT0 - CMT7

0x50 Logging Parameters Eight consecutive parameters

0x60 Encoder Parameters ENC16 - ENC23

Packet Retrieval

Packet Header
After a packet request is received, the ACR2000/ACR8000/ACR8010
responds by sending back a four-byte packet header. This header is
a direct echo of the request record. The echoing allows host
software to do asynchronous sampling. A request can be sent by
one part of the program and packet retrieval can be done by a
centralized receiver. This routine would recognize the 0x00 in the
header as an incoming packet and act accordingly.

In a synchronous retrieval mode, it is possible for extra data to be in
front of an incoming packet header. This would occur if there is any
ASCII data pending at the time of the request, such as during a LIST.
In order to retrieve a packet correctly, the host software must be
able to process this data while waiting for the packet header to
arrive. This should not be a problem, however, if all system echoing is
turned off and no ASCII data retrieval is being done.

Packet Data
After the packet header is received, the data arrives as a set of four
byte fields. The bits in the isolation mask determine the number of
fields and what they apply to. If the mask is 0xFF, a total of eight
fields (32 bytes) would follow. The first field to be returned
corresponds to the bit position of the lowest bit in the mask that is
set.

102 Programmer’s Guide

 Parker Hannifin

Long integers (LONG) are returned as a four-byte field. Floating
point numbers (FP32) are returned in 32-bit IEEE floating-point format.
Both types of field are returned with the low order byte first.

Usage Example
This example requests actual positions from axis 2, 3 and 5:

Fields: Header Axis2 Axis3 Axis5

Output: 00 30 02 2C

Input: 00 30 02 2C 20 21 22 23 30 31 32 33 50 51 52 53

Actual Positions:

AXIS2: 0x23222120

AXIS3: 0x33323130

AXIS5: 0x53525150

Binary Parameter Access
Binary parameter access provides a method of reading from and
writing to single system parameters on the card. Unlike binary data
packets, binary parameter access uses the index of the parameter
directly from Appendix A. There are no groups or masks.

A parameter access header consists of a Header ID (0x00) followed
by a Packet ID code and a 2-byte parameter index. The Packet ID
codes for the different types of packets are shown below. The
following pages define each of the packets in detail.

Packet ID Codes
Code Packet Type Description

0x88 Binary Get Long Receive long integer from
card

0x89 Binary Set Long Send long integer to card

0x8A Binary Get IEEE Receive IEEE value from
card

0x8B Binary Set IEEE Send IEEE value to card

 Binary Host Interface 103

Parker Hannifin

Usage Example
This example requests current position from axis 0 parameter P12288:

Fields: Header Parameter Value

Output: 00 88 00 30

Input: 00 88 00 30 10 11 12 00

Current Position Parameter Value:

AXIS0: 0x00121110

Binary Get Long
This packet gets a single parameter from the card. The parameter
index is a 2-byte value sent low-order byte first. The parameter value
in the receive packet is a 4-byte long integer received low-order
byte first.

Transmit Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x88)

Byte 2-3 WORD Parameter Index

Receive Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x88)

Byte 2-3 WORD Parameter Index

Byte 4-7 LONG Parameter Value

Binary Set Long
This packet sets a single parameter on the card. The parameter
index is a 2-byte value sent low-order byte first. The parameter value
is a 4-byte long integer and is sent low order byte first.

Transmit Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x89)

Byte 2-3 WORD Parameter Index

Byte 4-7 LONG Parameter Value

104 Programmer’s Guide

 Parker Hannifin

Receive Packet
None.

Binary Get IEEE
This packet gets a single parameter from the card. The parameter
index is a 2-byte value sent low-order byte first. The parameter value
in the receive packet is a 4-byte image of an IEEE floating point
number received low-order byte first.

Transmit Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x8A)

Byte 2-3 WORD Parameter Index

Receive Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x8A)

Byte 2-3 WORD Parameter Index

Byte 4-7 IEEE32 Parameter Value

Binary Set IEEE
This packet sets a single parameter on the card. The parameter
index is a 2-byte value sent low-order byte first. The parameter value
is a 4-byte image of an IEEE floating point number and is sent low-
order byte first.

Transmit Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x8B)

Byte 2-3 WORD Parameter Index

Byte 4-7 IEEE32 Parameter Value

Receive Packet
None.

 Binary Host Interface 105

Parker Hannifin

Binary Peek Command
A binary peek command consists of a four-byte header followed by
an address and the data to be fetched from that address. The
header contains a data conversion code that controls pointer
incrementing and theFP32 -> IEEE floating point conversion.

Note: Refer to Binary Global Parameter Access Note at end of
Binary Host Interface section for details.

The command returns the header and peek address followed by the
requested data.

Binary Peek Packet

Transmit Packet
Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x90)

Byte 2 Conversion Code

Byte 3 Peek Word Count

Long 0 Peek Address

Receive Packet
Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x90)

Byte 2 Conversion Code

Byte 3 Peek Word Count

Long 0 Peek Address

Long 1 Peek Data 0

Long 2 Peek Data 1

 :

Long N Peek Data (Count - 1)

Conversion Codes
Code Source Destination

0x00 LONG LONG

0x01 FP64 IEEE32

0x02 FP32 IEEE32

106 Programmer’s Guide

 Parker Hannifin

Usage Example

NOTE: Addresses shown are for example only. Addresses will vary
from card to card, depending on system memory
allocation.

This example peeks at three words, starting at peek address
0x404500:

Fields: Header Address Data0 Data1 Data2

Output: 00 90 00 03 00 50 40 00

Input: 00 90 00 03 00 50 40 00 10 11 12 13 20 21 22 23 30 31 32 33

Requested data at address:

0x405000: 0x13121110

0x405001: 0x23222120

0x405002: 0x33323130

Binary Poke Command
A binary poke command consists of a four-byte header followed by
an address and the data to be stored at that address. There is no
information returned from this command. The header contains a
data conversion code that controls pointer incrementing and the
IEEE ->FP32 floating point conversion.

NOTE: Refer to Binary Global Parameter Access Note at end of
Binary Host Interface section for details.

Binary Poke Packet
Transmit Packet

Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x91)

Byte 2 Conversion Code

Byte 3 Poke Word Count

Long 0 Poke Address

Long 1 Poke Data 0

Long 2 Poke Data 1

 :

Long N Poke Data (Count - 1)

 Binary Host Interface 107

Parker Hannifin

Receive Packet
None.

Conversion Codes
Code Source Destination

0x00 LONG LONG

0x01 IEEE32 FP64

0x02 IEEE32 FP32

Usage Example

NOTE: Addresses shown are for example only. Addresses will vary
from card to card, depending on system memory
allocation.

This example pokes data into three words, starting at poke address
0x405000:

Fields: Header Address Data0 Data1 Data2

Output: 00 91 00 03 00 50 40 00 10 11 12 13 20 21 22 23 30 31 32 33

Data poked into addresses:

0x405000: 0x13121110

0x405001: 0x23222120

0x405002: 0x33323130

Binary Address Command
A binary address command consists of a four-byte header
containing a program number and a parameter code. The
command returns the header followed by the base address of the
parameter type in question. If the returned address is zero, no
parameters of that type have been allocated in the given program.

Peeking at the returned address will return the number of variables
dimensioned for the requested type. In the case of numeric
variables, (DV,SV,LV) the count will be followed by the actual
numeric data. For arrays, (DA, SA, LA) the count will be followed by
the addresses of the individual arrays. These addresses point to
storage areas as if they were normal numeric variables of the same
type (count followed by data.)

108 Programmer’s Guide

 Parker Hannifin

Binary Address Packet

Transmit Packet
Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x92)

Byte 2 Program Number

Byte 3 Parameter Code

Receive Packet
Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x92)

Byte 2 Program Number

Byte 3 Parameter Code

Long 0 Parameter Address

Parameter Codes
Code Mnemonic Description

0x00 DV Double Variables

0x01 DA Double Arrays

0x02 SV Single Variables

0x03 SA Single Arrays

0x04 LV Long Variables

0x05 LA Long Arrays

0x06 $V String Variables

0x07 $A String Arrays

Usage Example

NOTE: Addresses shown are for example only. Addresses will vary
from card to card, depending on system memory
allocation.

This example requests the starting address of the Single Variable
information for Program 5:

Fields: Header Parameter Address

Output: 00 92 05 02

Input: 00 92 05 02 00 80 40 00

Starting address of the Single Variable information for Program 5:

Address: 0x408000

 Binary Host Interface 109

Parker Hannifin

Binary Parameter Address Command
A binary parameter address command consists of a four-byte
header containing a parameter index. The command returns the
header followed by the address of the parameter. If the returned
address is zero, the parameter index was invalid.

Binary Address Packet

Transmit Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x93)

Byte 2-3 WORD Parameter Index

Receive Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x93)

Byte 2-3 WORD Parameter Index

Long 0 LONG Parameter Address

Usage Example

NOTE: Addresses shown are for example only. Addresses will vary
from card to card, depending on system memory
allocation.

This example requests the address of the axis 0 current position
parameter:

Fields: Header Parameter Address

Output: 00 93 00 30

Input: 00 93 00 30 31 50 40 00

Current Position Parameter Address:

AXIS0: 0x405031

110 Programmer’s Guide

 Parker Hannifin

Binary Mask Command
A binary mask command consists of a four-byte header followed by
an address and two bit masks to be combined with the data at that
address. There is no information returned from this command. The
address must point to a long integer storage area. The NAND mask is
used to clear bits and the OR mask is used to set bits. The data is
modified as follows:

data = (data AND NOT nandmask) OR ormask

Binary Mask Packet

Transmit Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x94)

Byte 2 BYTE Reserved (0x00)

Byte 3 BYTE Reserved (0x00)

Long 0 BYTE Data Address

Long 1 BYTE NAND Mask

Long 2 BYTE OR Mask

Receive Packet
None.

Usage Example

NOTE: Addresses shown are for example only. Addresses will vary
from card to card, depending on system memory
allocation.

This example uses the Binary Mask Command to clear all of the
Opto-isolated Outputs and then set Output 32. The data address for
Opto-isolated Outputs Parameter P4097 is assumed to have been
previously returned using the Binary Parameter Address Command
on the previous page.

Fields: Header Parameter Address NAND Mask OR Mask

Output: 00 94 00 00 43 60 40 00 FF FF FF FF 01 00 00 00

Opto-isolated Output Parameter P4097 Modified Data at address:

0x406043: 0x00000001

 Binary Host Interface 111

Parker Hannifin

Binary Parameter Mask Command
A binary parameter mask command consists of a four-byte header
followed by two bit masks to be combined with a system parameter.
There is no information returned from this command. The parameter
index in the header must be a long integer. The NAND mask is used
to clear bits and the OR mask is used to set bits. The data is modified
as follows:

data = (data AND NOT nandmask) OR ormask

Binary Mask Packet

Transmit Packet
Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x95)

Byte 2-3 WORD Parameter Index

Long 0 LONG NAND Mask

Long 1 LONG OR Mask

Receive Packet
None.

Usage Example
This example uses the Binary Parameter Mask Command to clear all
of the Opto-isolated Outputs and then set Output 32.

Fields: Header NAND Mask OR Mask

Output: 00 95 01 10 FF FF FF FF 01 00 00 00

Opto-isolated Output Parameter P4097 Modified Data:

P4097: 0x00000001

112 Programmer’s Guide

 Parker Hannifin

Binary Move Command
A binary move consists of a variable length header followed by a
number of four-byte data fields. The bit-mapped information in the
header determines the number of data fields and their content. All
data fields are sent low order byte first.

Binary Move Packet
Data Field Data Type Description

Head 00 BYTE Header ID (0x04)

Head 01 BYTE Header Code 0

Head 02 BYTE Header Code 1

Head 03 BYTE Header Code 2

Head 04 BYTE Header Code 3

Head 05 BYTE Header Code 4

Head 06 BYTE Header Code 5

Head 07 BYTE Header Code 6

Head 08 BYTE Header Code 7

Data 00 IEEE32 Master VEL

Data 01 IEEE32 Master FVEL

Data 02 IEEE32 Master ACC/DEC

Data 03 LONG* Slave 0 Target or NURB/Spline control point

Data 04 LONG* Slave 1 Target or NURB/Spline control point

Data 05 LONG* Slave 2 Target or NURB/Spline control point

Data 06 LONG* Slave 3 Target or NURB/Spline control point

Data 07 LONG* Slave 4 Target or NURB/Spline control point

Data 08 LONG* Slave 5 Target or NURB/Spline control point

Data 09 LONG* Slave 6 Target or NURB/Spline control point

Data 10 LONG* Slave 7 Target or NURB/Spline control point

Data 11 LONG* Slave 8 Target or NURB/Spline control point

Data 12 LONG* Slave 9 Target or NURB/Spline control point

Data 13 LONG* Slave 10 Target or NURB/Spline control
point

Data 14 LONG* Slave 11 Target or NURB/Spline control
point

Data 15 LONG* Slave 12 Target or NURB/Spline control
point

Data 16 LONG* Slave 13 Target or NURB/Spline control
point

Data 17 LONG* Slave 14 Target or NURB/Spline control
point

Data 18 LONG* Slave 15 Target or NURB/Spline control
point

Data 19 LONG* Primary Center

Data 20 LONG* Secondary Center

Data 21 IEEE32 Primary Scaling or NURB/Spline Knot

Data 22 IEEE32 Secondary Scaling or NURB Weight

* These fields are in IEEE32 format if bit 2 of header code 3 is set

 Binary Host Interface 113

Parker Hannifin

There are two versions defined for Header Code 0 based on
Secondary Master Flag Bit Index 5, Enable Rapid Move Modes.

The default-disabled mode for this flag (Secondary Master Flag Bit
Index 5 cleared) uses the following Header Code 0 definition. This
Header Code 0 definition is compatible with ACR2000/ACR8000
Firmware Versions 1.17.04 and below, and is compatible with all
AcroCut/AcroMill software versions.

Header Code 0
Enable Rapid Move Modes flag disabled—default cleared value:

Data Field Data Type Description

Bit 0 FVEL Lockout Forces FVEL to zero for this move

Bit 1 FOV Lockout Forces FOV to 1.0 for this move

Bit 2 STP Ramp Activate Sets STP equal to DEC, else STP 0

Bit 3 Code 3 Present Header contains "Header Code 3"

Bit 4 Velocity Data Present Packet contains master VEL

Bit 5 Acceleration Data
Present

Packet contains master ACC/DEC

Bit 6 Counter Dir Count down if set, else up

Bit 7 Counter Mode Master move counter enable

The enabled mode for this flag (Secondary Master Flag Bit Index 5
Set) uses the following Header Code 0 definition. This Header Code 0
definition is compatible with ACR2000/ACR8000/ACR8010 Firmware
Versions 1.17.05 and above, and is not compatible with AcroCut/
AcroMill Software Versions 1.15.00 and below. The Move Modes for
this header code are defined following the header code definitions.

Header Code 0
Enable Rapid Move Modes flag enabled—set value:

Data Field Data Type Description

Bit 0 Move Mode Bit 1 Selects the move mode for this move

along with Header Code 0 Bit 2.

Bit 1 FOV/ROV Lockout Forces FOV or ROV to 1.0 for this

move

Bit 2 Move Mode Bit 0 Selects the move mode for this move

along with Header Code Bit 0.

Bit 3 Code 3 Present Header contains "Header Code 3"

Bit 4 Velocity Data Present Packet contains master VEL

Bit 5 Acceleration Data

Present

Packet contains master ACC/DEC

Bit 6 Counter Dir Count down if set, else up

Bit 7 Counter Mode Master move counter enable

114 Programmer’s Guide

 Parker Hannifin

Header Code 1
Data Field Data Type Description

Bit 0 Master Bit 0

Bit 1 Master Bit 1

Bit 2 Master Bit 2

Master for this move packet

Bit 3 Interrupt Select Interrupt host when move starts

Bit 4 Arc Direction CCW if set, else CW

Bit 5 Arc Mode Packet contains center points or
Spline Knot present

Bit 6 Arc Plane Bit 0 Primary and secondary axis or NURB
Mode

Bit 7 Arc Plane Bit 1 For binary arc move commands or
SPLINE Mode

Header Code 2
Data Field Data Type Description

Bit 0 Slave 0 Present

Bit 1 Slave 1 Present

Bit 2 Slave 2 Present

Bit 3 Slave 3 Present

Bit 4 Slave 4 Present

Bit 5 Slave 5 Present

Bit 6 Slave 6 Present

Bit 7 Slave 7 Present

Slave target positions to be contained

in this move packet

Header Code 3
Data Field Data Type Description

Bit 0 Incremental Target Target positions are incremental

Bit 1 Incremental Center Center points are incremental

Bit 2 Floating Point Data Targets and centers are IEEE32

Bit 3 Arc Radius Scaling Packet contains radius scaling /
NURB/Spline

Bit 4 FVEL Data Present Packet contains master FVEL

Bit 5 Block Skip Check Sets the master Block Skip Check

Bit 6 NURB or Spline Move data packet for NURB or Spline
Interpolation

Bit 7 Extended Codes Extended codes 4,5,6 and 7 are
present. This bit should be set if
DBCB is used

 Binary Host Interface 115

Parker Hannifin

Header Code 4
Data Field Data Type Description

Bit 0

Bit 1

Bit 2

Reserved Reserved

Bit 3 Master Bit 3 Master for this move packet

Bit 4

Bit 5

Bit 6

Bit 7

Reserved Reserved

Header Code 5
Data Field Data Type Description

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Reserved Reserved

Header Code 6
Data Field Data Type Description

Bit 0 Slave 8 Present

Bit 1 Slave 9 Present

Bit 2 Slave 10 Present

Bit 3 Slave 11 Present

Bit 4 Slave 12 Present

Bit 5 Slave 13 Present

Bit 6 Slave 14 Present

Bit 7 Slave 15 Present

Slave target positions to be contained
in this move packet

116 Programmer’s Guide

 Parker Hannifin

Header Code 7
Data Field Data Type Description

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Reserved Reserved

The following Move Modes definition applies to Header Code 0 used
with the Master Enable Rapid Move Modes flag set.

Move Modes
Bits 0 and 2 in Header Code 0 indicate which type of move mode is
contained in the binary move packet as follows:

Bit 1
(Header Code 0 Bit 0)

Bit 0
(Header Code 0 Bit 2)

Move Mode

0 0 Move Mode 0 - Feed
Continuous

0 1 Move Mode 1 - Feed Cornering

1 0 Move Mode 2 - Feed Stopping

1 1 Move Mode 3 – Rapid

Where: 0 = Bit Cleared; 1 = Bit Set

Example 1
The following illustrates Move Mode 0—Feed Continuous:

 Binary Host Interface 117

Parker Hannifin

Example 2
The following illustrates Move Mode 1—Feed Cornering:

Example 3
The following illustrates Move Mode 2—Feed Stopping:

118 Programmer’s Guide

 Parker Hannifin

Example 4
The following illustrates Move Mode 3—Rapid:

Linear Moves
The bits in header code 2 indicate which target positions are
contained in the binary move packet. If the "incremental target" bit
in header code 3 is set, the targets are relative to the current target
positions of the slaves; otherwise, the targets are absolute. The
"floating point data" bit in header code 3 indicates that the target
data is in IEEE floating point format, otherwise they are long integers.

Arc Moves
When the "arc mode" bit in header code 1 is set, a circular arc is
generated using two of the first three slaves attached to a master.
Any slaves that are given a target position, but are not part of the
circular interpolation, are executed as normal linear moves. This
allows for helical interpolation.

The "arc plane" bits in header code 1 are combined to generate a
number from 0 to 3 that defines the primary and secondary axes for
the arc as follows:

Arc Plane Primary Axis Secondary Axis

0 Slave 0 Slave 1

1 Slave 1 Slave 2

2 Slave 2 Slave 0

3 Reserved Reserved

 Binary Host Interface 119

Parker Hannifin

The "arc direction" bit in header code 1 indicates the direction of
the arc relative to the primary and secondary axes. A counter-
clockwise arc is defined as an arc from the positive primary axis
toward the positive secondary axis.

The radius of the arc will be equal to the distance between the arc
target position and the given center point. If the arc target position
is equal to the target position of the previous move, a 360-degree
path will be generated. The target position of the previous move
must lie on the defined arc or the axes will jump to that location
before the arc begins.

If the "incremental center" bit in header code 3 is set, the center
points are relative to the current target positions of the slaves,
otherwise the center points are absolute. The "floating point data"
bit in header code 3 indicates that the given center points are in
IEEE floating point format, otherwise they are long integers.

NURB or SPLINE Moves
When the "NURB or Spline" bit in header code 3 (Bit 6) is set, the
move data packet includes NURB or Spline curve data. In addition,
bit 5 and 6 in header code 1 will differentiate if the data is NURB or
Spline. Bit 5 of header code 1 is set when Spline data includes Knots.

The control points for NURB and Spline are sent as DATA3 thru
DATA10, similar to the way the normal slave targets are sent. Load
the Knot in DATA13 and Weight in DATA14 and set the Bit 3 of code
3.

Binary SET and CLR
The immediate setting and clearing of bits can be accomplished
with a 3-byte binary command sequence. This sequence is a 1-byte
command header followed by a two-byte index value. The index
value is sent low order byte first. The command is not queued and
the set or clear occurs when the command is first seen by the board.

Binary SET
Data Type Description

Byte 0 Header ID (0x1C)

Byte 1 Index Byte 0

Byte 2 Index Byte 1

Byte 3 0x00, this byte is for
ACR8020 DPCB only.

120 Programmer’s Guide

 Parker Hannifin

Binary CLR
Data Type Description

Byte 0 Header ID (0x1D)

Byte 1 Index Byte 0

Byte 2 Index Byte 1

Byte 3 0x00, this byte is for
ACR8020 DPCB only.

Usage Example
Binary Output Description

1C 08 02 Set bit 520 (0x0208)

1D 20 00 Clear bit 32 (0x0010)

Binary FOV Command
The immediate setting of feedrate override for any or all axes can
be accomplished with an 8-byte binary command sequence. This
sequence is a 4-byte command header followed by a 4-byte FOV
value. The command is not queued and the FOV occurs when the
command is first seen by the board.

The second byte in the header is a bit mask that determines which
masters are affected by the FOV value that follows. The FOV value is
an image of an IEEE 32-bit floating-point value, sent low order byte
first.

For more than eight masters the header bit mask Byte 1 should be
set zero, and then the two optional 16 master header bit mask Byte
2 and Byte 3 should be filled accordingly.

Binary Format
Data Type Description

Byte 0 Header ID (0x07)

Byte 1 Header Bit Mask

Byte 2 16 Master Header Bit Mask, Part 1

Byte 3 16 Master Header Bit Mask, Part 2

Byte 4 FOV Byte 0

Byte 5 FOV Byte 1

Byte 6 FOV Byte 2

Byte 7 FOV Byte 3

 Binary Host Interface 121

Parker Hannifin

Header Bit Mask
Data Type Description

Bit 0 Master 0 Affected

Bit 1 Master 1 Affected

Bit 2 Master 2 Affected

Bit 3 Master 3 Affected

Bit 4 Master 4 Affected

Bit 5 Master 5 Affected

Bit 6 Master 6 Affected

Bit 7 Master 7 Affected

NOTE: Masters affected by the FOV contained
in this command.

16 Master Header Bit Mask, Part 1
Data Type Description

Bit 0 Master 0 Affected

Bit 1 Master 1 Affected

Bit 2 Master 2 Affected

Bit 3 Master 3 Affected

Bit 4 Master 4 Affected

Bit 5 Master 5 Affected

Bit 6 Master 6 Affected

Bit 7 Master 7 Affected

NOTE: Masters affected by the FOV contained
in this command.

16 Master Header Bit Mask, Part 2
Data Type Description

Bit 8 Master 8 Affected

Bit 9 Master 9 Affected

Bit 10 Master 10 Affected

Bit 11 Master 11 Affected

Bit 12 Master 12 Affected

Bit 13 Master 13 Affected

Bit 14 Master 14 Affected

Bit 15 Master 15 Affected

NOTE: Masters affected by the FOV contained
in this command.

122 Programmer’s Guide

 Parker Hannifin

Usage Example
This example uses the following IEEE conversions:

0.500 = 3F000000

0.123 = 3DFBE76D

Binary Output Description

07 08 00 00 00 00 00 3F Set Master 3 FOV to 0.5

07 05 00 00 6D E7 FB 3D Set Master 0 and Master 2 FOV to 0.123

Binary ROV Command
(Version 1.17.05 & Up)

The immediate setting of rapid feedrate override for any or all axes
can be accomplished with an 8-byte binary command sequence.
This sequence is a 4-byte command header followed by a 4-byte
ROV value. The command is not queued and the ROV occurs when
the command is first seen by the board.

The second byte in the header is a bit mask that determines which
masters are affected by the ROV value that follows. The ROV value is
an image of an IEEE 32-bit floating-point value, sent low order byte
first.

For more than eight masters the header bit mask Byte 1 should be
set zero, and then the two optional 16 master header bit mask Byte
2 and Byte 3 should be filled accordingly.

Binary Format
Data Type Description

Byte 0 Header ID (0x1F)

Byte 1 Header Bit Mask

Byte 2 16 Master Header Bit Mask, Part 1

Byte 3 16 Master Header Bit Mask, Part 2

Byte 4 ROV Byte 0

Byte 5 ROV Byte 1

Byte 6 ROV Byte 2

Byte 7 ROV Byte 3

 Binary Host Interface 123

Parker Hannifin

Header Bit Mask
Data Type Description

Bit 0 Master 0 Affected

Bit 1 Master 1 Affected

Bit 2 Master 2 Affected

Bit 3 Master 3 Affected

Bit 4 Master 4 Affected

Bit 5 Master 5 Affected

Bit 6 Master 6 Affected

Bit 7 Master 7 Affected

NOTE: Masters affected by the ROV contained in this command.

16 Master Header Bit Mask, Part 1
Data Type Description

Bit 0 Master 0 Affected

Bit 1 Master 1 Affected

Bit 2 Master 2 Affected

Bit 3 Master 3 Affected

Bit 4 Master 4 Affected

Bit 5 Master 5 Affected

Bit 6 Master 6 Affected

Bit 7 Master 7 Affected

NOTE: Masters affected by the ROV contained in this command.

16 Master Header Bit Mask, Part 2
Data Type Description

Bit 8 Master 8 Affected

Bit 9 Master 9 Affected

Bit 10 Master 10 Affected

Bit 11 Master 11 Affected

Bit 12 Master 12 Affected

Bit 13 Master 13 Affected

Bit 14 Master 14 Affected

Bit 15 Master 15 Affected

NOTE: Masters affected by the ROV contained in this command.

124 Programmer’s Guide

 Parker Hannifin

Usage Example
This example uses the following IEEE conversions:

0.500 = 3F000000

0.123 = 3DFBE76D

Binary Output Description

07 08 00 00 00 00 00 3F Set Master 3 ROV to 0.5

07 05 00 00 6D E7 FB 3D Set Master 0 and Master 2 ROV to 0.123

Application: Binary Global Parameter Access
Also see Binary Peek and Binary Poke commands.

Description
Global user variables (see Variable Memory Allocation) can be read
and set using the Binary Peek and Poke Command interface.

NOTE: A maximum word count of 255 can be used when using the
Binary Peek and Poke Command interface.

System Pointer Address (hardware dependent)
Controller System Pointer

Address

ACR1200 0x400008

ACR1500 0xC08008

ACR2000 0x400008

ACR8000 0x403E08

ACR8010 0x403E08

ACR8020 0x400009

Reading Global Variables
Peek at the System Pointer Address (see above information) to
receive the Global_Variable_Address.

• If the returned address is zero, there are no dimensioned global
variables (see the DIM command).

• If the returned address is other than zero, peek at this address
to receive the number of dimensioned global variables.

Read a global variable P(index) using the following addressing
scheme for Peek:

• Peek address = Global_Variable_Address + 1 + (index * 2)

• Where index = 0 to (no. of dimensioned global variables – 1)

 Binary Host Interface 125

Parker Hannifin

126 Programmer’s Guide

Even though global variables are stored on-board as floating point
64 (FP64) numbers, they are returned as IEEE32 numbers (Conversion
Code 0x01).

Setting Global Variables
Peek at the System Pointer Address (see System Pointer Address on
previous page) to receive the Global_Variable_Address.

• If the returned address is zero, there are no dimensioned global
variables (see the DIM command).

• If the returned address is other than zero, peek at this address
to receive the number of dimensioned global variables.

To prevent corruption of user memory, always verify P(index) is within
the dimensioned global variable range before performing a POKE
command.

Set a global variable P(index) using the following addressing scheme
for Poke:

• Poke address = Global Variable Address + 1 + (index * 2)
Where index = 0 to (number of dimensioned global variables –
1)

Even though global variables are sent as IEEE32 numbers, they are
stored on-board as floating point 64 (FP64) numbers (Conversion
Code 0x01).

 Parker Hannifin

Additional Features

CANopen
The CANopen feature on ACR series controllers provides
standardized network communication and flexible configuration for
motion control.

Limited Amounts of Nodes and I/O
• 4 external I/O nodes

• 64 bytes (512 bits) of digital inputs total for 4 nodes

• 64 bytes (512 bits) of digital outputs total for 4 nodes

• 32 analog inputs total for 4 nodes

• 32 analog outputs total for 4 nodes

Alternate Mapping of Digital I/O
The current version of ACR9000 firmware does not allow flags
numbered higher than 8191 to be accessed by the PLC programs.
The digital I/O mapping option (P32771) allows the first I/O bits of
one or more nodes to appear at the flags that had been used for
the XIO boards of other ACR products (P4104-P4111).

The value of P32771 is evaluated and implemented each time the
network is started (via bit 11265). Values of P32771 less than or equal
to zero do not result in any re-mapping, so CANopen digital I/O
appears at the original location. Values of 1, 2, or 3 will result in the
equal re-mapping of node 0 only, node 0 and 1 only, or all 4 nodes
respectively. The meaning of P4104-P4111 is given below for the
various values of P32771.

XIO Flags
Parameters

P32771 = 1 P32771 = 2 P32771 >=3

4104 Node0 DI 0-31 Node0 DI 0-31 Node0 DI 0-31

4105 Node0 DO 0-31 Node0 DO 0-31 Node0 DO 0-31

4106 Node0 DI 32-63 Node0 DI 32-63 Node1 DI 0-31

4107 Node0 DO 32-63 Node0 DO 32-63 Node1 DO 0-31

4108 Node0 DI 64-95 Node1 DI 0-31 Node2 DI 0-31

4109 Node0 DO 64-95 Node1 DO 0-31 Node2 DO 0-31

4110 Node0 DI 96-127 Node1 DI 32-63 Node3 DI 0-31

4111 Node0 DO 96-127 Node1 DO 32-63 Node3 DO 0-31

Any digital input or output of any node that appears in this table will
not appear in the standard mapping of CANopen digital I/O. In

 Additional Features 127

Parker Hannifin

other words, each I/O bit is controlled by only one flag. In addition,
this table represents the maximum amounts of I/O that can appear
at XIO flag parameters 4104-4111. For example, if P32771= 1 and
Node 0 only has 32 physical inputs and outputs, only flag parameters
4104 and 4105 have meaning.

Semi-Automatic Network Configuration
The network configuration is as automatic as possible, but the user
must adjust some settings. The ACR9000 controller automatically sets
other configuration parameters required for CANopen, including the
global analog data enable (For more information, see the Parker I/O
manual). The table below gives the parameters the user must set,
along with their default values. The default values apply on power
up if user supplied values have not been saved with the ESAVE
command. Each parameter is described in further detail in
subsequent paragraphs.

Parameter P number Default value

Master Node Id P32768 5

Bit Rate (kilobits/second) P32769 125

Number of slave nodes P32770 1 (valid range
0-4)

Cyclic Period (milliseconds) P32772 50

Node 0 ID (required if
P32770 > 0)

P33024 1

Node 1 ID (required if
P32770 > 1)

P33040 0

Node 2 ID (required if
P32770 > 2)

P33056 0

Node 3 ID (required if
P32770 = 4)

P33072 0

Bit Rate and Node Addresses
Every node on a CANopen bus must have a unique ID number, and
must use the same bit rate. The slave I/O nodes have DIP switches
that allow the user to set bit rate and node ID number. ACR9000 will
have a default node ID number of 5, but this may be changed by
modifying parameter P32768. The user must set a ACR9000
parameter (P32769) to allow the master to know and set its bit rate
to match the nodes on the bus. The bit rate may only be set as high
as allowed by the bus length and the existing nodes. This will usually
be 1 megabit/second.

128 Programmer’s Guide

 Parker Hannifin

For available bit rates and constraints of bus length, see the CiA
Draft standard 301, version 4.02, table 2. The default bit rate is
125Kbit/second. Bit rate and master node numbers are saved with
the ESAVE command.

Transmission Cycle Period
ACR9000 uses a periodic cyclic transmission protocol between the
master and the nodes for digital and analog outputs, and for analog
inputs. Digital inputs transmit to the ACR9000 only when their input
state has changed. Each cycle, the master sends a synchronization
message to all slave nodes. The slave nodes respond by latching
and transmitting back their analog inputs, and by asserting the
output states commanded by the master before the synchronization
message. The cycle period should be calculated to be as fast as
possible, and is dependent on the bit rate, the node types, and the
number I/O bits on the nodes. Two factors limit the speed of the
transmission cycle. One is the total amount data that needs to be
transmitted at the selected bit rate. The other is the processing load
of the slowest node on the bus.

For the former constraint, the number of bits is divided by the bit rate
for the required time. Bits are sent in messages of 125 bits each.
Each node has messages for its data, plus one to report health. The
ACR9000 also sends a sync message. In the formulas below, digital
inputs are ignored, since these will not transmit periodically.

Node messages = (node analog inputs +3)/4 + (node digital
outputs +63)/64 + (node analog outputs +3)/4 + 1

Total messages = Sum of Node messages +1

Required time (milliseconds) = (Total messages * 125) /bit rate in
Kilobits/s

This time should be rounded up to the next higher integer number of
milliseconds. For example, suppose there are two nodes. One node
has 100 digital outputs and 10 each analog inputs and outputs. The
second node has 20 digital outputs and 5 each analog inputs and
outputs. The first node has nine messages, and the second has six
messages. The total is 16 messages. At the 1-megabit rate, 2
milliseconds are required. At the 125K rate, 16 milliseconds are
required.

(16 * 125)/1000 = 2

(16 * 125)/125 = 16

The second constraint is individual node speed. Parker offers the
PIO-337 and PIO-347 fieldbus couplers, and these have been
characterized for speed. The time required depends on the coupler
and the amount and type of I/O on the coupler. There is a base time
required just to respond to the ACR9000’s sync signal, plus additional
time per point. The sum represents minimum type required by the
node. Using the first node of the example above, and the timing in
the table below, the time using a PIO-347 would be 31 milliseconds,
and using a PIO-337 would be five milliseconds. Using the second

 Additional Features 129

Parker Hannifin

node of the example above, and the timing in the table below, the
time using a PIO-347 would be 12 milliseconds, and using a PIO-337
would be two milliseconds.

Node Type Base time
(milliseconds)

time/digital point
(microseconds)

time/analog point
(microseconds)

PIO-347

5 100 270

PIO-337 1 15 40

Health Period and Node Health
Node health is a way for the master to periodically (known as the
Health Period) ascertain that all nodes are still alive, and to respond
appropriately if one goes “off line”. ACR9000 uses the Heart Beating
protocol for nodes that support it, and Node Guarding protocol for
other nodes. These are standard CANopen features. Compatibility is
determined automatically when the network is started. The Health
period is set to 10 times the Cycle Period.

Starting and Configuring the Network
An ACR9000 network master may start and reset the network at any
time. When the network is started via bit 11265, the ACR9000 initially
places all slave nodes into the “Pre-operational” state. During this
state, the ACR9000 interrogates and configures the slaves as
required. The slaves are then placed into the “Operational” state,
and automatic transfer between the slave’s physical I/O and the
ACR9000’s I/O parameters and bits takes place.

Before the network may become in the “Operational” state, the
master must know how many slave nodes there are, what the node
numbers are, and how many and what type of I/O are on each
node.

In some applications, the external nodes may be powered after
ACR9000, and hence not available for configuration on ACR9000’s
power up. For this reason, the ACR9000 user is required to explicitly
request network start via a control flag. The flag (bit 11265) is used
for starting the network. The flag is self-clearing (cleared
automatically by ACR9000 when the attempt to start the network
has completed). There are also status bits and parameters to
indicate the results of starting the network. Examples would be error
bits, bit rate, cycle period, node status, etc. A typical application
scenario would be as follows.

• Perform application initialization, and dwell or otherwise
determine that external nodes are powered up.

• Write to any required parameters if the values are not yet
correct.

• Assert bit 11265 requesting I/O network start.

130 Programmer’s Guide

 Parker Hannifin

• Check for success and any other status of interest. For
example, application operation may depend on I/O present,
or expected I/O may be verified.

• Proceed with application that depends on external I/O

AcroBASIC Language Access to CANopen I/O
All “objects” (for example steppers, encoders, axes, and masters) in
an ACR controller may be accessed via bits and parameters as well
as commands. In many cases, (for example, ADC inputs) the values
may be accessed only through bits or parameters. An external
digital input or output is the same in function and use as an on
board digital input or output, and are used in the same way in the
language. This is true not just for SET and CLR, but for IF, WHILE, INH,
LD, and any other command that has a flag as an argument. This
also applies to using parameters with analog I/O. To be consistent
with the current language, extend all existing on board I/O
functionality to external I/O, and facilitate backward compatibility
with existing applications, external I/O are represented with bits and
parameters in exactly the same way onboard I/O is.

Network and Node Information Parameters and Flags
After ACR9000 has started the CANopen network, and discovered
and characterized nodes on the network, it fills in an information
parameter block for the network and each discovered node. It also
updates the Extended I/O Control/Status flags shown below.

Extended I/O Control/Status (P4448) Flag Number

Control Flags

Start Network 11265

Reset Network 11266

Reserved 11267

Status Flags

CANopen controller installed 11268

Network Operational 11269

Network Start Failed 11270

Node Failure 11271

SW Rx Overflow 11272

HW Rx Overflow 11273

 Additional Features 131

Parker Hannifin

Field Description Read/
Write

Description

Start Network R/W When set, this flag will attempt to
communicate with the CANopen
network. This flag is automatically
cleared by the controller when the
attempt to start the network has
completed. See the section on
“Starting and Configuring the
Network” for more details.

Reset Network R/W When set this flag will reset all of the
Extended I/O nodes. This may be
needed if there is a baud rate, node
ID, wiring change, unrecoverable error
or a loss in communications.

CANopen Controller
Installed

R This flag is set if the controller has the
CANopen hardware and cleared if it
does not.

Network Operational R This flag is set when the CANopen
network is in the “Operational” state
and communicating. It is cleared if
there is no communication or some
other error. Check the below flags for
more information on the error, the
CANopen LED or the DIAG command.

Network Start Failed R This flag is set when a request to start
the network was issued and there was
a failure. Check the below flags for
more information, the CANopen LED
and the DIAG command.

Node Failure R This flag is set when one, more nodes
are lost, or not responding while the
network is operational. Check the
below flags for more information, the
CANopen LED and the DIAG
command.

SW Rx Overflow R A flag indicating that the software
receive buffer has overflowed.

HW Rx Overflow R A flag indicating that the hardware
receive buffer has overflowed.

132 Programmer’s Guide

 Parker Hannifin

The description and parameter numbers are shown in the following
table. The control parameters are those that should be set before
attempting to start the network. The status parameters are those
that the controller will set because of attempting to start the
network.

Extended I/O Control/Status

Control Parameters

Master node ID P32768

Bit Rate (Kb) P32769

Number of slave nodes P32770

Alt Digital I/O Mapping P32771

Cyclic Period (milliseconds) P32772

Status Parameters

Health Period (milliseconds) P32773

Reserved P32774

Number of digital inputs bytes P32775

Number of digital outputs bytes P32776

Number of analog inputs P32777

Number of analog outputs P32778

Bus state (see table below) P32779

Reserved P32782

Reserved P32783

Field Description Read/

Write
Description

Master Node ID R/W The controller’s ID in the CANopen

Network

Bit Rate R/W The bit rate in Kb for the CANopen

Network

Number of Slave

Nodes

R/W The number of slave nodes not

including the controller/master.

Alternate Mapping of

Digital I/O

R/W Remap CANopen Digital Inputs and

Outputs to lower XIO bits. See
Alternate Mapping of Digital I/O
section.

Cyclic Period R/W The time between updating data on

the network.

Health Period R The Health period this is always set to

10 times the Cyclic Period. See the
“Health Period and Node Health”
section for more detail.

Number of Digital

Input Bytes

R The total number of bytes (1 byte = 8

bits) taken for digital inputs on the
network.

 Additional Features 133

Parker Hannifin

134 Programmer’s Guide

Field Description Read/
Write

Description

Number of Digital
Output Bytes

R The total number of bytes (1 byte = 8
bits) taken for digital outputs on the
network.

Number of Analog
inputs

R The total number of analog inputs on
the network.

Number of Analog
Outputs

R The total number of analog outputs on
the network.

Bus State R Indicates the current bus state. See
the next page for more detail on what
this value means.

The CANopen STATUS LED table below gives the possible LED
indicator states and the corresponding CAN state and controller.
The only normal states are “PRE-OPERATIONAL” and “OPERATIONAL”.
Any red in the CAN LED indicates a problem. All states listed below
are consistent with CiA DR-303-3 “Indicator Specification”, although
not all possible states listed in that document can occur in the
ACR9000. In addition, the ”off” and “blinking red” indications are
unique to the ACR9000, not included and not conflicting with the
states listed in CiA DR-303-3 “Indicator Specification”.

The CANopen status LED is located just below the CANopen
connector on the ACR9000.

CANopen STATUS
LED

CiA DR 303-3
CAN state

Description Possible
ACR9000
state(s)

OFF N/A No CAN controller

detected

0

Blinking Green Pre-

Operational

CANopen is in the pre-

operational state.

1,3,4,5

Solid Green Operational The network is now

exchanging data

2

One Red blink

inside blinking
Green

Warning limit

reached

At least one of the error

counters of the CAN
controller chip has
reached or exceeded the
warning level (too many
error frames)

6

Two Red blinks

inside blinking
Green

Error control

event (Health
event)

A guard event or

heartbeat event has
occurred.

7

Solid Red Bus Off The CAN controller is bus

off

10

Blinking Red N/A ACR internal error or

transmission overrun

8,9

 Parker Hannifin

The Bus State Description table below gives the possible bus states
and the corresponding CAN LED indicator state. The only normal
states are “READY TO START” and “NETWORK STARTED”. Any red in
the CAN LED indicates a problem.

Bus State Description (parameter P32779) Bus
State

CAN LED State

PRE-INITIALIZED. The network has not been
initialized yet. This should only happen during
power up or reset. If the CAN LED stays OFF, it
indicates that the ACR9000 did not detect its
internal CAN controller chip.

0 off

PRE_OPERATIONAL. The user’s node information
and bit rate have been verified and the CAN
controller is ready to accept the “start network” bit.
(11265)

1 Blinking Green

NETWORK STARTED. Successful network start. 2 Solid Green

INVALID MASTER NODE ID. The ACR9000 node ID
must be between 1 and 127 inclusive.

3 Solid Red

INVALID MODULE NODE INFORMATION. The module
node IDs must be between 1 and 127 inclusive,
must be unique, and not the same as the master
node ID. A maximum of 4 module nodes is allowed.

4 Solid Red

CHARACTERIZATION ERROR. An expected external
node has not responded to interrogation during
attempt to start network. Will occur if a stated node
ID does not match the actual node ID, or if the
node is missing or at the wrong bit rate or not
operational. The network is still ready to start once
the external node problem is resolved.

5 Blinking Green

EXCESS BUS ERRORS. The controller chip has too
many bus errors. One possible reason would be
incorrect bit rate on one or more modules.

6 One Red blink
inside blinking
Green

HEALTH EVENT. A node has stopped sending
heartbeat or node guard responses. The errant
node will have a node state of 0 (dead). See table
below. One possible reason would be node receive
overrun caused by a cyclic period that is too fast
for the node.

7 Two Red blinks
inside blinking
Green

INTERNAL ERROR. A firmware or hardware internal
error has occurred on power up or after an attempt
to start the network. Requires factory consultation

8 Blinking Red

TRANSMISSION OVERFLOW. The amount of data
that must be transferred each cyclic update is
greater than the bit rate allows. Increase the bit
rate or decrease the cyclic rate.

9 Blinking Red

BUS OFF. The CAN controller is bus off, and the
network must be re-started.

10 Solid Red

 Additional Features 135

Parker Hannifin

The Node ID must be set by the user to match the node ID settings
on the actual nodes. All other node information is filled in by the
controller after the network is started. The node information is saved
with the ESAVE command, and user applications may use it to verify
expected network configuration, or make run time application
decisions.

This information could serve as a source for a front-end software GUI
that displays bus and node status, although no configuration would
be possible. Another possibility would be to implement a sort of
“Network Configuration Verify” command that would allow the
application to easily verify that the configuration is the same every
time.

In the table below, nodes are numbered 0-3, like all other ACR
objects. This is the node number, from the ACR9000 point of view.
The node ID is the setting on that node’s DIP switch, and must be
between 1 and 127, but may not conflict with the chosen Master
node ID.

Description/Node number 0 1 2 3

Node Id 33024 33040 33056 33072

Number of Digital Inputs

(bytes)

33025 33041 33057 33073

Number of Digital Outputs

(bytes)

33026 33042 33058 33074

Number of Analog Inputs 33027 33043 33059 33075

Number of Analog Outputs 33028 33044 33060 33076

Health Type (0=not present,

1=heartbeat, 2= lifeguarding)

33029 33045 33061 33077

Node state (0=dead, 1=live) 33030 33046 33062 33078

136 Programmer’s Guide

 Parker Hannifin

Flags for Extended Digital I/O
Each possible node will have two blocks of flag parameters, each 16
parameters in length, to accommodate the possible 512 bits each of
extended digital inputs and outputs. Flag parameter numbers are
shown the table below.

32 bit block type Starting parameter Ending
parameter

Node 0 digital inputs 4456 4471

Node 0 digital outputs 4472 4487

Node 1 digital inputs 4488 4503

Node 1 digital outputs 4504 4519

Node 2 digital inputs 4520 4535

Node 2 digital outputs 4536 4551

Node 3 digital inputs 4552 4567

Node 3 digital outputs 4568 4583

For each node, the lowest bit number for extended digital inputs
block of that node will correspond the lowest numbered digital input
on that node on the network. Numbering will proceed upward for all
the digital inputs on that numbered node. The same process occurs
for the Digital Outputs. This continues until the actual number of
digital inputs and outputs on the network or maximum number (512)
of digital I/O is reached. For example, the first digital input on node
0 is bit 11520, and the first digital input on node 2 is bit 13568.

Each node will have an information parameter block, described
later in this text. This block will contain, among other things, the
number of bytes of digital inputs and outputs. Digital I/O are
assigned in blocks of eight, so the number of bits assigned to each
node is a multiple of eight. For example, suppose node 2 has 12
digital inputs. Node 2’s inputs would be bits 13568-13579, even
though the node status parameter indicates that it has two bytes of
inputs. The same numbering rules apply to digital outputs.

Analog Inputs and Outputs
Analog inputs and outputs are implemented by ADCs and DACs
respectively, and unlike digital I/O, the analog values represent
something with units and a range. For example, a DAC might assert
–5V to 5V, or 0-20 mA, or some range of pressure, force, or speed.
The ADCs and DACs also have variable binary resolution (10, 12, 14
or 16 bits). All CANopen values are left shifted to occupy the entire
16 bits as a two’s complement signed number, even if the actual
ADC or DAC is less than 16 bits. This does not increase the analog
resolution. In addition, the sign of the resulting 16-bit number is the
same as the sign of the physical quantity it represents instead of
being offset. A value of 32767 represents full scale positive for the
device, and -32768 represents full scale negative for the device.

 Additional Features 137

Parker Hannifin

For example a 0-10V DAC would take values of 0-32767, and a ±10V
device would take values of –32768 to 32767. However, a ±5V
device would also take values of –32768 to 32767. To translate from
this raw binary number to the range and units being controlled or
measured, ACR9000 employs entered offsets and gains.

An offset has the same units as the user units of the analog value, for
example volts or milliamps, and translates the center of the analog
range to a value that allows a gain to be applied. A DAC gain has
the units of full-scale binary resolution per user unit. The DAC range is
16-bit or 65536 DAC counts, regardless of the actual DAC resolution.

For example, suppose a 12-bit DAC asserts –10V to +10V, where a
value of 32768 will assert –10V and 32767 will assert +10V. In this
case, the offset is 0V, and the gain is (65536/20 = 3276.8). If the user
wants to assert 7.5V, a value of 7.5 *3276.8 = 24576 must be written
to the DAC.

The process is different for an ADC. An ADC gain has the units of full-
scale user units. For example, if the input of the analog device were
a maximum of +/- 10V, then the gain would be 10. Alternatively, if
the input of the analog device were a maximum of +/- 20ma, then
the gain would be 20. Internally the raw analog count value is
normalized such that +/-1.0 represents full scale positive and
negative before the user gain is applied, and user offset added.

The ACR9000 automatically performs this arithmetic so that the
analog values appear to the user as user units, not raw DAC or ADC
counts. The user must know the analog range of the DAC or ADC in
order to calculate the appropriate gain for entry into the ACR9000
parameter structure. Offset values will usually be zero unless an
actual physical offset is required. ACR9000 uses default values for
gains and offsets if the user does not overwrite the defaults. All
default-offset values are zero. All default ADC gains are ten (10.0),
and all default DAC gains are 3276.8.

The DAC and ADC values, gains, and offsets are accessed in blocks
of eight parameters each, as shown in the table below. Since each
node may accommodate all 32 analog inputs and outputs, a range
of 512 bits is reserved for each node. The parameter numbers
correspond to a range of 33280-33791 for the lowest numbered
node, 33792-34303 for the next node, etc. The table below shows the
parameter mapping for the lowest number node. For each higher
number node, add 512.

138 Programmer’s Guide

 Parker Hannifin

DAC Parameter/DAC number 0 1 … 31

DAC Output Value P33280 P33296 … P33776

Reserved P33281 P33297 … P33777

DAC Gain P33282 P33298 … P33778

DAC Offset P33283 P33299 … P33779

Reserved P33284 P33300 … P33780

Reserved P33285 P33301 … P33781

Reserved P33286 P33302 … P33782

Reserved P33287 P33303 … P33783

ADC Parameter/ADC number 0 1 … 31

ADC Input Value P33288 P33304 … P33784

Reserved P33289 P33305 … P33785

ADC Gain P33290 P33306 … P33786

ADC Offset P33291 P33307 … P33787

Reserved P33292 P33308 … P33788

Reserved P33293 P33309 … P33789

Reserved P33294 P33310 … P33790

Reserved P33295 P33311 … P33791

These tables appear similar to the other parameter tables for ACR
DACs and ADC’s, but there is no relationship in function. Nor do the
other DAC and ADC commands have any function for ACR9000
extended analog I/O. The DAC commands assume their use as
command outputs for drives, and ACR9000 does not have the type
of ADCs that are assumed by other ADC commands.

Saved Parameters
All the parameters required to set up the extended I/O network are
saved with the ESAVE command, and automatically recalled on
power up. In addition, some of the parameters determined by the
controller, such as the total number of analog and digital I/O, are
also saved with the ESAVE command. This allows an application to
compare the total I/O expected before the network is started with
the actual amount found when the network is started. The exact
parameters saved and recalled are P32768 through P32778, the
node IDs for each node, and the gains and offsets for all DAC and
ADC parameter blocks of each node.

Example 1
The following example uses two Parker I/O nodes. The first,
configured as node 3, has a PIO-337, four digital inputs, four digital
outputs, four analog inputs (0 to 10 VDC) and two analog outputs (0
to 10 VDC). The second, configured as node 4, has a PIO-347, four
digital inputs, four digital outputs, four analog inputs (0 to 10 VDC)

 Additional Features 139

Parker Hannifin

and two analog outputs (0 to 10 VDC). They are both configured at
a bit rate of 1 Mb. The example shows the required setup, and how
to use the data in a very basic program.
P32768 = 5 : REM SET THE CONTROLLER ID TO 5
P32769 = 1000 : REM SET THE BIT RATE TO 1 Mb
P32770 = 2 : REM TELL THE CONTROLLER THERE
:REM ARE 2 SLAVES ON THE NETWORK
P33024 = 3 : REM SET NODE 0 TO PHYSICAL NODE 3
P33040 = 4 : REM SET NODE 1 TO PHYSICAL NODE 4
P33056 = 0 : REM SET NODE 2 TO NOTHING
P33072 = 0 : REM SET NODE 2 TO NOTHING
P32772 = 50 : REM SET THE CYCLIC PERIOD TO 50 ms
SET11265 : REM START THE NETWORK
DWL1 : REM DWELL FOR A SECOND TO ALLOW THE
REM NETWORK TO BECOME OPERATIONAL

IF (NOT BIT 11269) THEN SET 11266
REM IF THE NETWORK IS NOT OPERATIONAL AT
REM THIS POINT THEN TRY TO RESET IT

REM MORE CODE MAY BE NEEDED HERE TO ENSURE THE NETWORK IS OPERATIONAL

INH 11520 : REM WAIT UNTIL THE FIRST DIGITAL INPUT ON
REM NODE 0 IS ON

SET 12033 : REM TURN ON DIGITAL OUTPUT 2 ON NODE 0
SET 13057 : REM TURN ON DIGITAL OUTPUT 2 ON NODE 1
IF (P33288 > 5.0) THEN P33792 = 2.5
REM IF ANALOG INPUT 1 FROM NODE 0 IS
REM GREATER THAN 5 VDC THEN SET ANALOG
REM OUTPUT 1 ON NODE 1 TO 2.5 VDC
INH –11520 : REM WAIT UNTIL THE FIRST DIGITAL INPUT ON
REM NODE 0 IS OFF
CLR 12033 : REM TURN OFF DIGITAL OUTPUT 2 ON NODE 0
CLR 13057 : REM TURN OFF DIGITAL OUTPUT 2 ON NODE 1
P33792 = 0 : REM RESET ANALOG OUTPUT 1 ON NODE 1 TO 0

Example 2

#DEFINE ResetCANNetwork BIT151

PROGRAM

GOSUB EnableCANopen

END

_EnableCANopen

P32768 = 5 : REM SET THE CONTROLLER ID TO 5
P32769 = 125 : REM SET THE BIT RATE TO 125 kbps
P32770 = 1 : REM TELL THE CONTROLLER THERE IS 1 SLAVE ON THE NETWORK
P33024 = 1 : REM SET NODE 0 TO PHYSICAL NODE 1

P32772 = 50 : REM SET THE CYCLIC PERIOD TO 50 ms
SET 11265 : REM START THE NETWORK
INH -11265 : REM INHIBIT PROGRAM UNTIL START NETWORK HAS FINISHED

'IF THE NETWORK IS NOT OPERATIONAL AT
'THIS POINT THEN TRY TO RESET IT

IF (NOT BIT 11269)
 SET 11266 : REM RESET NETWORK
 SET ResetCANNetwork : REM SET RESET NETWORK LATCHED BIT
 INH -11266 : REM INHIBIT PROGRAM UNTIL NETWORK RESETS
 SET 11265 : REM START NETWORK AGAIN

140 Programmer’s Guide

 Parker Hannifin

 INH -11265 : REM INHIBIT PROGRAM UNTIL START NETWORK HAS FINISHED
 ENDIF

'CHECK IF NETWORK IS STILL NOT OPERATIONAL
'AND ALREADY RESET NETWORK

IF ((NOT BIT 11269) AND (ResetCANNetwork))
 PRINT "CANopen network problem occurred."
 ENDIF

RETURN

ENDP

Drive Talk
The Drive Talk feature on ACR series controllers provides
communication with Aries drives through the Axis connectors. You
can include Drive Talk in programs and PLC programs. Machine
builders, for example, could configure and monitor drive data—such
as motor and drive temperatures, drive under or over voltages, and
excessive torque—through a custom HMI status panel.

Drive Talk lets you:

• Set the controller to automatically assign addresses to Aries
drives. Subsequently, programs can use axis aliases and the
controller manages the drive address-prefixing.

• Get existing drive configuration data, and send new
configuration data.

• Get drive status data.

• Set which error data the Aries drive logs.

Communication
The Axis connectors provide an RS-485 communication interface to
the drive through the COM2 port. Parker drives supporting Drive Talk
automatically detect RS-232/485 on power up; therefore, the drives
must be connected to ACR series controller before being powered
up. Otherwise, the drives set the communication interface as RS-232.

Parameters and Bits
Drive Talk uses the following parameters and bits:

• P28672–P28672 Drive Talk Parameters

• Bit8960–Bit9455 Drive Talk Error-Log Flags

• Bit9472–Bit9983 Drive Talk Drive-Status 1 Flags

• Bit9984–10495 Drive Talk Drive-Status 2 Flags

• Bit10496–Bit11007 Drive Talk Drive-Control Flags

• Bit 11040–Bit11071 Stream Flags for Drive Talk—LPT1

 Additional Features 141

Parker Hannifin

• Bit11072–Bit11103 Stream Flags for Drive Talk—COM1

• Bit11104–Bit11135 Stream Flags for Drive Talk—COM2

• Bit11168–Bit11199 DPCB/Stream 3 Flags for Drive Talk

• Bit11200–Bit11231 Stream 4 Flags for Drive Talk

• Bit11232–Bit11263 Stream 5 Flags for Drive Talk

Auto-Addressing
You can have the controller automatically assign address numbers
to drives that are connected and use the Drive Talk feature.

By default, auto-addressing is disabled. When enabled, an ACR
controller assigns addresses only to the Aries drives connected and
powered up.

For all Aries drives, the default address is zero—zero represents a
non-address to the drive. Therefore, the first acceptable address is
one.

The ACR controllers assigns each drive an address relative to the axis
to which the drive is connected. As the numbering for controller
axes begins with zero and the drives cannot accept an address of
zero, the addressing scheme is “off” by one. This is best illustrated
through an example.

For example, you have a eight axis ACR controller, and axes 0, 1, 4,
and 7 are connected to drives with the Drive Talk feature. The auto-
address sequence is as follows: the drive connected to axis 0 is
assigned address “1”; the drive connected to axis 1 is assigned
address “2”; the drive connected to axis 4 is assigned address “5”;
and the drive connected to axis 7 is assigned address “8”.

Enabling Auto-Addressing
► To enable auto-addressing, set the “Auto Address Request” bit

(bit index 0, Drive Talk Drive-Control Flags).

Drive Control Flags
The “Drive Talk Drive Control Flags” let you get and send
configuration data, set up the Aries error log, and retrieve status
data.

NOTE: All Drive Talk control bits are self-clearing. To perform an
action one time, set the control bit. When the bit is cleared,
the action is complete or the action has timed out.

Configuration
You can get and send the configuration data of an Aries drive. On
power up the controller does not contain any drive configuration
data. When you get drive configuration data, the controller stores it
in the “Drive Talk Parameters”.

142 Programmer’s Guide

 Parker Hannifin

Upload
► To upload configuration data, set the “Get Configuration

Request” bit (bit index 1, “Drive Talk Drive-Control Flags”).

Download
► To download configuration data, set the “Send Configuration

Request” bit (bit index 2, “Drive Talk Drive-Control Flags”).

Error Log Flags
You can set the Aries drive to log errors you are concerned with.
Using the “Drive Talk Error-Log Flags”, set the bits for those errors you
want to monitor. Then use the “Send ERRORL Request” bit to send
the request to the Aries drive. The Aries drive logs the error data as
text.

Because the Aries error log is maintained as a text file, there is no
parameter or bit data the ACR controller can get. You can read the
error log by directly accessing the Aries drive. For more information,
see the section titled Using the “DTALK” Mode (below), and the Aries
User Guide, p/n 88-021610-01.

► To indicate what errors a drive is to log, set the bits in “Drive Talk
Error-Log Flags.”

► To send the error data request, set the “Send ERRORL Request”
bit (bit index 3, “Drive Talk Drive-Control Flags”).

Drive Status Flags
You can get status data of an Aries drive. On power up the
controller does not contain drive status data. In the “Drive Talk Drive-
Control Flags” (bit index 8-25) you can select what status data the
controller gets. Then set the “Get Drive Data Request” bit (bit index
4) to retrieve the status data. The controller stores the drive status
data in the “Drive Talk Parameters”.

The “Drive Talk Drive-Control Flags” also contain “Drive Talk Drive
Status 1” and “Drive Talk Drive Status 2” bits (bit indexes 28 and 29).
Unlike bit indexes 8-25, the data retrieved for bit indexes 28 and 29
are stored in the “Drive Talk Drive Status 1 Flag” and “Drive Talk Drive
Status 2 Flag” bits.

► To indicate what status data you want, set the “Drive Talk Drive-
Control Flags” (bit index 8-29).

► To get drive status data, set the “Get Drive Data Request” bit
(bit index 4, “Drive Talk Drive-Control Flags”).

NOTE: The rate at which the controller updates data is governed
by the number of participating axes and the baud at which
Drive Talk communication is set.

 Additional Features 143

Parker Hannifin

Using Drive Talk
The most sensible way to enable Drive Talk is through a program. If
you have a startup program (see the PBOOT command) for your
ACR controller, consider including the Drive Talk code in it.

NOTE: Be sure all Aries drives are connected to the ACR controller
before power up (due to the Aries communication auto-
detect—see the section titled Communication, above).

To enable Drive Talk, do the following:

1. Send the OPEN DTALK command as follows:
OPEN DTALK “COM2:9600,N,8,1” AS #1

2. Set the “Communication Device” parameter (in “Drive Talk
Parameters”) for each axis to which an Aries drive is
connected.

3. Set the “Drive Type” parameter (in “Drive Talk Parameters”) to
zero (Aries) for each axis to which an Aries drive is connected.

4. Clear the “Stream Drive Lost”, “Stream Drive Timeout”, and
“Stream Address Error” bits for COM2 (bits 1112, 11123, and
11124 in “Stream Flags for Drive Talk COM2”).

5. Set the “Auto Address Request” bit (in “Drive Talk Drive-Control
Flags”) for each axis to which an Aries drive is connected.

Once set up, you can do the following You can then get and send
configuration data, set the error log for the drive, and get drive
status data.

Example
The following example demonstrates the set up for two axes with
Aries drives:
OPEN DTALK “COM2:9600,N,8,1” AS #1 REM OPEN PORT
P28672=1 : REM SET DEVICE NUMBER FOR DRIVE 1
P28928=1 : REM SET DEVICE NUMBER FOR DRIVE 2
P28673=0 : REM SET DRIVE TALK AXIS1 TO ARIES DRIVES
P28929=0 : REM SET DRIVE TALK AXIS2 TO ARIES DRIVES
CLR 11122 : REM RESET TIMEOUT
CLR 11123 : REM RESET TIMEOUT
CLR 11124 : REM RESET TIMEOUT
SET 10505 : REM GET TPE AXIS0 USING GET DRIVE DATA
SET 10500 : REM UPDATE DATA AXIS0 USING
REM GET_DRIVE_DATA_REQUEST
SET 10537 : REM GET TPE AXIS1 USING GET DRIVE DATA
SET 10532 : REM UPDATE DATA AXIS1 USING
REM GET_DRIVE_DATA_REQUEST
?P28693 : REM SHOW TPE AXIS0 ON TERMINAL
?P28949 : REM SHOW TPE AXIS1 ON TERMINAL

SET 10500 : REM GET TPE AXIS1 USING GET DRIVE DATA
SET 10532 : REM UPDATE DATA AXIS1 USING
REM GET_DRIVE_DATA_REQUEST
?P28693 : REM SHOW TPE AXIS0 ON TERMINAL
?P28949 : REM SHOW TPE AXIS1 ON TERMINAL

Closing Drive Talk
► To close a Drive Talk session, use the CLOSE command.

144 Programmer’s Guide

 Parker Hannifin

Using the “Pass Through” Mode
To communicate directly to the Aries drive, you can set the ACR
controller into a “pass through” mode—where the controller acts as
a communication conduit to another device. Use the “pass-
through” mode to trouble shoot the Aries drive, or run a program
and monitor its progress and output (see LRUN command).

NOTE: When set in the “pass through” mode, the ACR controller no
longer accepts AcroBASIC commands.

Think of the commands functioning like a switch. The ACR controller
accepts AcroBASIC commands until it enters Drive Talk. Once in
Drive Talk, the controller communicates with the Aries drive—
programs and PLCs can get and send configuration data, and get
drive status data. In “pass through” mode, the controller acts as a
communication conduit to the drive.

The following diagram helps illustrate the switch concept:

Because the “pass through” mode is an extension of Drive Talk, you
first have to enable Drive Talk on the ACR controller. Once enabled,
you can then enter the “pass through” mode. To do this, send the
DTALK command from a terminal. For more information, see DTALK in
the ACR Command Language Reference.

Once in “pass through” mode, you can communicate with an Aries
drive using its native command language.

NOTE: You can only use the DTALK command to set the controller
into the “pass through” mode. Subsequent communication
with the Aries drive is performed through a terminal, using
the Aries command language. Do not use the DTALK
command in a ACR controller program or PLC.

 Additional Features 145

Parker Hannifin

Example
The following example opens a Drive Talk session, then enters the
“pass through” mode.
P00>OPEN DTALK "COM2:9600,N,8,1" AS #1 : REM OPEN DRIVE TALK PORT FOR REM
DEVICE NUMBER 1
P00>P28672=1 : REM SET AXIS0’S DEVICE NUMBER FOR DTALK
REM TO 1, MUST MATCH THE OPEN COMMAND ABOVE
P00>P28673=0 : REM SET AXIS0 TO AN ARIES DRIVE
P00>CLR11122 CLR11123 CLR11124 : REM CLEAR ALL TIMEOUT BITS
P00>SET11104 : REM START AUTO ADDRESS
P00>DTALK X : REM START TALKING DIRECTLY TO THE DRIVE

REM PRESS ESCAPE TO EXIT
TPE
*0
TPE
*2576
TREV

*Aries OS Revision 2.00
DMODE
*2

P00>

Exiting “Pass Through” Mode
Exiting the “pass through” mode and closing the Drive Talk session
are two distinct acts. Though you exit the “pass through” mode, the
Drive Talk session remains open. See the section titled Closing Drive
Talk (above).

► To exit the “pass through” mode from the terminal, send the
escape character (ASCII 27).

146 Programmer’s Guide

 Parker Hannifin

Inverse Kinematics
Kinematics is a branch of mechanics that provides a mathematical
means of describing motion. Inverse kinematics looks at a position
and works backwards to determine the motions necessary to obtain
that position.

Robotic applications frequently use inverse kinematics. Algorithms
describe the mechanical system, and translate the rotational motion
of robotics into Cartesian coordinates. Consequently, an end user
provides simple Cartesian coordinates for an application, and the
inverse kinematics calculates necessary movements to reach that
position.

Suppose an application has a cutting tool at the end of a 4-axis
robotic arm, and an HMI. The controller, using algorithms developed
by the application builder, transforms the motion target-points from
Cartesian coordinates to rotational coordinates to position the arm
joints and cutting tool. Once transformed, the controller interpolates
the target points to generate a motion path. See the illustration
below:

Programming the Inverse Kinematics
Each application is different. The algorithm for your application can
consist of equations, logical expressions, and commands in the
AcroBASIC language. You can do the following:

• Store algorithms in any of the programs 0 through 15 (be sure
to dimension memory for the program).

• Save the program to Flash memory.

• Use the PASSWORD command to protect the program from
uploading or listing.

• Include the INVK commands in a program, or in the setup
before a program.

 Additional Features 147

Parker Hannifin

148 Programmer’s Guide

Example
The following program results in a circle instead of a straight line
because of the transformation described in program 7 (PROG7).
PROG7
PROGRAM
P12361= sin(P12360) : REM Describe transformation in PROG7
P12617= cos(P12360) : REM Describe transformation in PROG7
ENDP
PROG0
ATTACH MASTER0
ATTACH SLAVE0 AXIS0 "X"
ATTACH SLAVE1 AXIS1 "Y"
PPU X 2000 Y 2000 : REM Scale commands to engineering units
ACC 100 DEC 100 STP 0 VEL 0
INVK PROG7 : REM Tell MASTER0 where the transformation are
INVK ON : REM Turn on the Kinematics
PROGRAM0_start
X / 0.2 : REM Incremental move in Cartesian space
GOTO start

 Parker Hannifin

Troubleshooting
When a system does not function as expected, the first thing to do is
identify and isolate the problem. When this is accomplished, steps
may be taken toward resolution.

Problem Isolation
The first step is to isolate each system component and ensure that
each component functions properly when it is run independently.
This may require dismantling the system and putting it back together
piece by piece to detect the problem. If additional units are
available, it may be helpful to exchange them with the system’s
existing components to help identify the source of the problem.

Determine if the problem is mechanical, electrical, or software
related, and note whether it can be recreated or is repeatable.

Random events may appear to be related, but they are not
necessarily contributing factors to the problem.

There may be more than one problem. Isolate and solve one
problem at a time.

Information Collection
Document all testing and problem isolation procedures. If the
problem is particularly difficult to isolate, be sure to note all
occurrences of the problem along with as much specific information
as possible. These notes may come in handy later, and will also help
prevent duplication of testing efforts.

Once the problem is isolated, refer to Table 1, Common Problems
and Their Solutions. If instructed to contact Parker Technical
Assistance, please refer to Technical Assistance for contact
information.

 Troubleshooting 149

Parker Hannifin

Troubleshooting Table
This section includes a table of common problems and their solutions.

For locations of the ACR90x0 controllers’ status LEDs, and for non-problem indications, see Chapter 2,
Specifications, in the ACR9000 Hardware Installation Guide. Table 1 in this chapter only lists problem LED
indications.

PROBLEM CAUSE / VERIFICATION SOLUTION
Power Status LED

Power status LED is
not on

There is no power to the controller. Check for disconnected power cable.

Check for blown fuse.

Verify the power source meets requirements outlined in
Chapter 2, Specifications, of the ACR9000 Hardware
Installation Guide.

Power status LED is
steady red

There is inadequate power to the controller. 1. Verify the power source meets requirements outlined in
Chapter 2, Specifications, of the ACR9000 Hardware
Installation Guide.

2. Remove all cables except power.

 If the LED turns green after removing the cables, re-
attach the cables one at a time to determine which
cable or device is causing the problem.

 If the LED does not turn green, contact Parker
Technical Assistance.

Power status LED is
alternating red/green

Controller encountered error during boot process. Contact Parker Technical Assistance.

150 Programmer’s Guide

Parker Hannifin

 Troubleshooting 151

PROBLEM CAUSE / VERIFICATION SOLUTION
Axis Status LED

Axis status LED is not

on

Axis is disabled with no fault (normal state for

steppers or servo motors).

Enable drive.

Axis status LED is red Axis fault. Motion on this axis is disabled during a

fault state.

NOTE: The LED illuminates red whenever the drive
fault input is activated (drive faulted, no axis cable
connected, etc.)

Check for faulted drive. Enable drive. (Refer to Operation

section of this table.)

Check for axis cable disconnected.

CANopen LED

CANopen LED is red,
single flash

Excess bus errors: At least one CAN controller error
counter has reached or exceeded the warning level
(too many error frames).

The controller chip has too many bus errors. One possible
reason would be incorrect bit rate on one or more modules.

Error control event: guard event (NMT-slave or NMT-
master) has occurred.

CANopen LED is red,
double flash

Error control event: heartbeat event (heartbeat
consumer) has occurred.

Health Event: A node has stopped sending heartbeat or node
guard responses. The errant node will have a node state of 0
(dead). One possible reason would be node received overrun
caused by a cyclic period that is too fast for the node.

Another possible reason is the connection between the master
and slave has been severed.

CANopen LED is red,

triple flash

Sync error: SYNC message has not been received

within the configured communication cycle period
timeout.

Object 0x1006 contains the sync cycle period in ms. The sync

cycle period time out should be the configured sync cycle
period multiplied by 1.5.

CANopen LED is off Controller is executing a reset. This is not a problem unless the controller is finished executing

a reset. If the LED does not turn on after a reset, check the
connection to the controller.

Ethernet Status LED

Ethernet link/activity:

yellow LED is off

No Ethernet link is detected. Check for the correct type of cable.

Verify the cable pinout matches the ACR90x0. (See the section
“Ethernet and ETHERNET Powerlink Connectors” in Chapter 2,
Specifications, of the ACR9000 Hardware Installation Guide.)

Ethernet speed: green
LED is flashing

Ethernet port is getting intermittent 10Mbps and
100Mbps connection.

Verify the Ethernet card in the PC is functioning correctly.

Verify the ACR controller Ethernet port is functioning correctly.

Parker Hannifin

152 Programmer’s Guide

PROBLEM CAUSE / VERIFICATION SOLUTION
EPL Status LED

EPL link/activity:

yellow LED is off

No Ethernet link is detected. Check for the correct type of cable.

Verify the cable pinout matches the ACR90x0. (See the section
“Ethernet and ETHERNET Powerlink Connectors” in Chapter 2,
Specifications, of the ACR9000 Hardware Installation Guide.)

Ethernet speed: green
LED is flashing

Ethernet port is getting intermittent 10Mbps and
100Mbps connection.

Verify the Ethernet card in the PC is functioning correctly.

Verify the ACR controller Ethernet port is functioning correctly.

Serial Communication

Incorrect cable.

Check that the serial cable is a null modem serial
communication cable.

Incorrect COM port settings. Check COM port settings.

Bits per second: 38400
Data bits: 8
Parity: None
Stop bits: 1

Flow control: XON/XOFF

Problem
communicating with
controller

Incorrect USB-serial adapter. Check for an incompatible USB to serial adapter.

Recommended: BAFO BF-810

USB Communication

Communication Error:

17054

USB driver not installed. Reconnect ACR90x0 controller. Windows will detect new

hardware.

Install the driver from Parker technical support or CD.

http://www.parkermotion.com/support.htm

Parker Hannifin

 Troubleshooting 153

PROBLEM CAUSE / VERIFICATION SOLUTION
Ethernet Communication

Communication Error:

11003

Using straight through (patch) Ethernet cable. Change to a crossover Ethernet cable.

Communication Error:

11010

Using crossover Ethernet cable through router/hub. Change to a straight through Ethernet cable.

Communication Error:

11003

Wrong computer IP address and/or subnet mask. Change IP address of computer in Ethernet card settings.

Communication Error:

10061

Same IP address as ACR9000. Change IP address of computer in Ethernet card settings.

Communication Error:

11010

Wrong IP address configured in ACR-View

communication window.

Enter in correct ACR9000 IP address.

PCI Card Communication

Controller is not

present in Windows
Device Manager

AMCSPCI driver card not installed correctly. Reinsert the ACR1505 or ACR8020.

Check for compatible operating systems.

Communication Error:

17080

ACR-View cannot establish communication. Check PCI communications.

Shut down computer and restart.

Operation

Check if 24 VDC is applied to the Motion Enable Input. Motion enable input is open.

Verify by checking Status Panels Bit Status
Miscellaneous Control Flags.

Bit 5646 indicates status of 24VDC Motion Enable Input.

Bit 5645 indicates if Motion Enable Input has been latched.

If both 5645 and 5646 are set, reapply 24V to Motion Enable
Input.

If only 5645, then SET 5647 to clear 5645 latch.

For Encoder Signal Fault: Check for incorrect termination.
Noise in the system can cause missed and/or false encoder
feedback values.

Encoder signal fault and/or encoder signal is lost.

Verify by checking Status Panels Bit Status
Encoder Flags.

NOTE: Each encoder input has specific flag sets. For Encoder Signal Lost: Check feedback cables.

Drive will not enable

Amplifier/drive is not powered on. Check if power is applied to the amplifier/drive.

Parker Hannifin

154 Programmer’s Guide

PROBLEM CAUSE / VERIFICATION SOLUTION
Excess position error (EXC). (Motor has exceeded

maximum position error.)

Verify by checking Status Panels Bit Status Axis
Flags Primary Axis Flags.

(Each axis is indicated by Bit “Not Excess Error.”)

Increase the EXC setting.

Incorrect configuration for motor attached. Correct the configuration for servo or stepper through the
Configuration Wizard.

Servo motor running open loop.

Verify that the drives are running open loop: Status
Panels Bit Status Axis Flags Primary Axis
Flags.

(Each axis is indicated by Bit “Open Servo Loop.”)

Disable drive and clear the appropriate Bit.

Tuning gains are not set correctly.

Check if the tuning gains are set too low: Status
Panels Numeric Status Axis Parameters Servo
Parameters.

Refer to Servo Tuning Tutorial.

Drive will enable, but
will not hold torque

Torque limit is not set correctly.

Verify torque limit setting: Status Panels Numeric
Status Axis Parameters Limit Parameters
Plus/Minus Torque Limit.

Example: TLM X1 indicates torque is limited to 10% of drive
motor capacity for axis X.

Parker Hannifin

 Troubleshooting 155

PROBLEM CAUSE / VERIFICATION SOLUTION
Stepper output motion does not occur. ACR

controller not configured for stepper output in
Configuration Wizard.

Correct configuration for stepper through Configuration Wizard.

Tuning gains must remain at default values: PGAIN
0.002441406; IGAIN, ILIMIT, IDELAY, DGAIN, DWIDTH,
FFVEL, FFACC, and TLM=0.

Axis encountered limits.

Verify: Status Panels Bit Status Axis Flags
Quinary Axis Flags.

(Each axis is indicated by Bit “Positive/Negative End-
of-Travel Limit Encountered.”)

Clear the appropriate Positive/Negative End-of-Travel Limit

Encountered Bit.

Clear any Master Kill All Motion Request Bits and Axis Kill All
Motion Request Bits.

Master Kill All Moves request is active.

Verify: Status Panels Bit Status Master Flags.

(Each master is indicated by Bit “Kill All Moves
Request.”)

Clear the appropriate Master Kill All Moves Request Bit.

Also clear all associated Slave Kill All Motion Request Bits.

Axis Kill All Motion Request is active.

Verify: Status Panels Bit Status Axis Flags
Quaternary Axis Flags.

(Each axis is indicated by Bit “ACR9000 Kill All
Motion Request.”)

Clear the appropriate Axis ACR9000 Kill All Motion Request Bit.

Master in feedhold or feedholding state.

Verify: Status Panels Bit Status Master Flags.

(Each master is indicated by Bit “In Feedhold or
Feedholding.”)

Set the appropriate Cycle Start Request Bit.

Slave axis not attached to master.

Check the configuration by going into the correct
PROG level. Type ATTACH.

Correct the configuration through the Configuration Wizard and
download the setup code.

Jog or Master Velocity set to zero (no Master

Profile).

Check these parameters by going into the correct
PROG level. Type VEL or JOG VEL.

Assign Velocity or Jog Velocity values. Example: VEL 1 or JOG

VEL X 1.

Drive will enable, but

motor will not move

Commanded feedrate override set to zero.

Check the feedrate override by going into the correct
PROG level. Type FOV.

Assign the appropriate feedrate override value.

Example: FOV 1 indicates a master feedrate of 1.

Parker Hannifin

156 Programmer’s Guide

PROBLEM CAUSE / VERIFICATION SOLUTION
Torque Limit is set to zero.

Verify Torque Limit setting by Status Panels
Numeric Status Axis Parameters Limit
Parameters Plus/Minus Torque Limit

Assign the appropriate Torque Limit value.

Example: TLM X1 indicates torque is limited to 10% of drive
motor capacity for axis X.

Feedback device counts are missing Check the feedback cable and connections.

Check the amplifier to send back correct signals.

Improper operation

(for PCI controller cards) Incorrect termination /
pull-up resistor.

Check that the correct type of resistor (termination or pull-up)
is installed for the type of encoder being used.

Incorrect tuning gain settings. Check tuning gain settings. Servo motors make
audible noise Incorrect motor commutation. Verify drive settings, motor connections.

Incorrect move mode, absolute vs. incremental Make sure the move mode is correct ABS vs. INC. Incorrect commanded
distance or position Incorrect PPU setting. Correct PPU setting for position or distance.

Check the commanded velocity by going into the
correct PROG level. Type (for example) VEL or JOG
VEL X.

Assign the appropriate velocity value. Example: VEL 10 or JOG
VEL X 10.

Incorrect commanded
velocity

Check the feedrate override by going into the correct
PROG level. Type FOV.

Assign the appropriate feedrate override value. Example: FOV
1 indicates a master feedrate of 1.

Incorrect torque limit Verify Torque Limit setting by Status Panels
Numeric Status Axis Parameters Limit
Parameters Plus/Minus Torque Limit.

Assign the appropriate Torque Limit value. Example: TLM X1
indicates torque is limited to 10% of drive motor capacity.

“Not valid while in
motion” message
received

Tried to enable/disable axis while motion is
commanded.

Check if axis is making coordinated motion: Status Panels Bit
Status Master Flags. (Each master is indicated by Bit “In
Motion.”)

Check if the axis is making jog motion: Status Panels Bit
Status Axis Flags Primary Axis Flags. (Each axis is
indicated by Bit “Jog Active.”)

Parker Hannifin

 Troubleshooting 157

PROBLEM CAUSE / VERIFICATION SOLUTION
Motion stops

unexpectedly

Axis has encountered soft limits.

Verify: Status Panels Bit Status Axis Flags
Quinary Axis Flags. (Each axis is indicated by Bit
“Positive/Negative Soft Limit Encountered.”)

Jog off the limit. Clear the appropriate Positive/Negative Soft

Limit Encountered Bit. Clear the associated Master Kill All
Moves Request Bits.

 Axis has encountered Positive/Negative End-of-
Travel (EOT) Limits.

Check if EOT limits have been encountered: Status
Panels Bit Status Axis Flags Quinary Axis
Flags. (Each axis is indicated by Bit
“Positive/Negative EOT Limit Encountered.”

Clear the appropriate Positive/Negative End-of-Travel Limit
Encountered Bit. Clear any Master Kill All Motion Request Bit,
and any Axis Kill All Motion Request Bits.

I/Os not working Positive/Negative End-of-Travel (EOT) Limits not
working.

Check the wiring of the limits, referring to their
respective hardware installation guides.

Check if the Positive/Negative EOT Limits are
enabled: Status Panels Bit Status Axis Flags
Quinary Axis Flags. (Each axis is indicated by Bit
“Positive/Negative EOT Limit Enable.”)

Check that the associated inputs toggled:

 If using onboard I/O: Status Panels Bit Status
Onboard I/O and User Flags (0-3).

 If using Expansion I/O: Status Panels Bit Status
CANopen Flags (ACR9000).

NOTE: A triggered output will create a contact closure, not a

voltage source.

I/O not working
properly

Incorrect I/Os wiring. Check wiring and external circuitry. Refer to ACR9000
Hardware Installation Guide.

Analog output / encoder multiplier mismatch.

Verify analog output by Status Panels Numeric
Status Object Parameters DAC Parameters.

Verify encoder input by Status Panels Numeric
Status Object Parameters Encoder Parameters.

If encoder feedback is correct for appropriate direction, change
“DAC GAIN” to the opposite value.

If encoder feedback is not correct for appropriate direction,
change “ENC MULT” to the opposite value.

Amplifier has an analog input offset. Correct the analog offset in the amplifier.

Electrical noise. Reduce electrical noise or move the product away from the

noise source.

Improper shielding. Use shielded, twisted pair wiring for encoder inputs,

DAC/stepper outputs, and ADC inputs.

Servo motor runs
away;

Improper wiring. Check wiring for shorts, opens, and mis-wired connections.

Table 1 Common Problems and Their Solutions

Parker Hannifin

Error Handling
This section on error handling addresses error checking and
recovery, which is to be programmed into each application. Error
handling is then done automatically as the application runs, and is
helpful in diagnosing problems.

Sample Program (ACR90x0)
The following is an example error handling routine for the ACR90x0
with firmware revision 1.18.15 and above. It was written to handle
possible axis, CANopen, and Motion Enable Input error conditions.

Parker does not intend this to be an actual application solution. Use
this program as an example for error handling, and tailor the routines
for your specific needs.

This program is modular to illustrate the use of subroutines which
decrease programming and debugging time.

Program Notes:

► This program checks for errors in program 0 (PROG0) and master
0. It does not attempt to recover from the fault; it only prints
error messages to a terminal (using string variables).

► This code can be used in any unused program from PROG1 to
PROG7.

► When an Axis Kill All Motion Request is set, this program clears
related error conditions, such as Software and Hardware End-of-
Travel (EOT) flags, because they are not self-clearing.

► Each application will have different requirements, and code
should be created specifically for individual applications.

This example program uses four parameters for storing error codes
(arbitrarily assigned to P50, P51, P52 and P53) that can be retrieved
from an operator interface.

This error program can be started from the "main" or startup program
using the RUN command, or by setting the appropriate Program Run
Request flag (for example, Bit 1032 for program 0). It can also be
started by putting PBOOT in the first line of the example program
(remove REM from the line with PBOOT in it).

REM Generic Two-axis Error Checking and Recovery Routine for ACR9000
' ****************************DISCLAIMER***************************
' While precautions have been taken in the preparation of this note,
' Parker and the author assume no responsibility for errors or
' omissions. Neither is any liability assumed for damages resulting
' from the use of the information contained herein.

158 Programmer’s Guide

Parker Hannifin

' This software program is provided free of charge and without
' warranty of any kind, either expressed or implied. In no event
' will PARKER HANNIFIN CORPORATION be liable for any damages,
' including but not restricted to lost profits, lost savings, or
' component failure arising out of the use or inability to use this
' software program. The sole purpose of this program is to
' demonstrate the functional application of the customer’s desired
' application. It is the responsibility of the user to insure that
' this program is not misused.
' ***

REM Assign user names (aliases) to system flags and parameters.
REM Ensure a minimum memory allocation for 50 aliases when setting
REM up project in ACR-View's Configuration Wizard. Program memory
REM requirement should be at least 15000 bytes to store and run
REM program.

#DEFINE XPosSoftEOT BIT16140
#DEFINE XNegSoftEOT BIT16141
#DEFINE YPosSoftEOT BIT16172
#DEFINE YNegSoftEOT BIT16173

#DEFINE XPosHardEOT BIT16132
#DEFINE XNegHardEOT BIT16133
#DEFINE YPosHardEOT BIT16164
#DEFINE YNegHardEOT BIT16165

#DEFINE XNotExcessError BIT769
#DEFINE YNotExcessError BIT801

#DEFINE XDriveFault BIT8477
#DEFINE YDriveFault BIT8509

#DEFINE HaltProgOnError BIT128
#DEFINE PrintErrors BIT129
#DEFINE ErrorOccurred BIT130
#DEFINE ClearErrorCodes BIT131

#DEFINE KillMasterMoves BIT522
#DEFINE XKillAllMotion BIT8467
#DEFINE YKillAllMotion BIT8499
#DEFINE XExcessErrorFault BIT8479
#DEFINE YExcessErrorFault BIT8511
#DEFINE XDriveEnabled BIT8465
#DEFINE YDriveEnabled BIT8497

#DEFINE XEncoderFault BIT2560 : REM BIT 2560,2561 are for ENC0
#DEFINE XEncoderLost BIT2561
#DEFINE YEncoderFault BIT2592 : REM BIT 2592,2593 are for ENC1
#DEFINE YEncoderLost BIT2593

#DEFINE MotionEnableOpen BIT5646
#DEFINE LatchedMEIOpen BIT5645

 Error Handling 159

Parker Hannifin

REM error codes to retrieve via front end application
#DEFINE MEIErrorCode P50
#DEFINE CANopenErrorCode P51
#DEFINE XErrorCode P52
#DEFINE YErrorCode P53

REM additional variables used to determine when the error occurred
#DEFINE Time LV0
#DEFINE ms LV1
#DEFINE seconds LV2
#DEFINE ExcSeconds LV3
#DEFINE minutes LV4
#DEFINE ExcMinutes LV5
#DEFINE hours LV6
#DEFINE ExcHours LV7
#DEFINE days LV8

PROGRAM
PBOOT : REM program will execute when controller power is turned on

REM dimension some string variables for error message
REM storage/display and integers for clock
DIM $V(10,80)
DIM LV10

REM initialize error codes to zero
MEIErrorCode = 0
CANopenErrorCode = 0
XErrorCode = 0
YErrorCode = 0

REM clear "PrintErrors" to prevent forced printing of error messages
SET PrintErrors

REM clear "ClearErrorCodes" to prevent this program from clearing
REM codes after printing
SET ClearErrorCodes

_LoopStart
REM --- Print out errors to a terminal if "PrintErrors" bit is set
IF (PrintErrors)

'OPEN "COM1:38400,n,8,1" AS # 1
'OPEN "STREAM1:" AS #1 : REM for USB
'OPEN "STREAM2:" AS #1 : REM for Enet, 1st connection
OPEN "STREAM3:" AS #1 : REM for Enet, 2nd connection
ELSE
CLOSE #1
ENDIF

REM --------- Check Motion Enable Input ---------
IF (MotionEnableOpen AND MEIErrorCode = 0)

SET ErrorOccurred
MEIErrorCode = 1
$V0 = "Motion Enable Input is open"
ELSE IF (NOT MotionEnableOpen and MEIErrorCode = 1)
MEIErrorCode = 0

160 Programmer’s Guide

Parker Hannifin

 Error Handling 161

SET 5647 : REM request reset of the MEI input latched status
REM flag (bit 5645)

INH -5647 : REM wait until request has finished
REM Clear axis KAMR flags

CLR XKillAllMotion
CLR YKillAllMotion
$V0 = "Motion Enable Input is good"
ENDIF

REM - Check CANopen (PIO) status (only needed if using CANopen I/O)
IF (P32779 > 0)

IF (P32779 = 2)
$V1 = "CANopen status is good"
CANopenErrorCode = 0
ELSE IF (P32779 = 1)
$V1 = "CANopen is ready to start (SET 11265)"
CANopenErrorCode = 0
ELSE IF (P32779 > 2 AND CANopenErrorCode = 0)
REM prevents recursive error display
CANopenErrorCode = P32779
SET ErrorOccurred
$V1 = "CANopen network problem occurred."
ENDIF

ENDIF

REM --------- SOFTWARE EOT's -------------------------
REM Software End-of-Travels (EOT's) do not set the axis
REM Kill All Motion Request (KAMR) flags so must be
REM handled separately.

REM --------- X Software EOT's ---------
IF (XPosSoftEOT AND XErrorCode <> 1)

INH -792
Set ErrorOccurred
XErrorCode = 1
$V2 = "Positive Software End-of-travel hit, Axis 0"
CLR XPosSoftEOT : REM EOT flag is automatically cleared,

REM but we clear it to prevent recursive
REM printing of error

INH –XPosSoftEOT
CLR KillMasterMoves
ENDIF

IF (XNegSoftEOT AND XErrorCode <> 2)

INH -792
Set ErrorOccurred
XErrorCode = 2
$V2 = "Negative Software End-of-travel hit, Axis 0"
CLR XNegSoftEOT : REM EOT flag is automatically cleared,

REM but we clear it to prevent recursive
REM printing of error

INH -XNegSoftEOT
CLR KillMasterMoves
ENDIF

Parker Hannifin

REM --------- Y Software EOT's ---------
IF (YPosSoftEOT AND YErrorCode <> 1)

INH -824
Set ErrorOccurred
YErrorCode = 1
$V3 = "Positive Software End-of-travel hit, Axis 1"
CLR YPosSoftEOT : REM EOT flag is automatically cleared,

REM but we clear it to prevent recursive
REM printing of error

INH -YPosSoftEOT
CLR KillMasterMoves
ENDIF

IF (YNegSoftEOT AND YErrorCode <> 2)
INH -824
Set ErrorOccurred
YErrorCode = 2
$V3 = "Negative Software End-of-travel hit, Axis 1"
CLR YNegSoftEOT : REM EOT flag is automatically cleared,

REM but we clear it to prevent recursive
REM printing of error

INH -YNegSoftEOT
CLR KillMasterMoves
ENDIF

REM --------- Check Axis X ---------
IF (XKillAllMotion AND NOT LatchedMEIOpen)

INH -792 : REM When KAMR flag is set, all motion stops with
REM JOG move

SET ErrorOccurred
XErrorCode = 0 : REM Error number for axis 0
REM some "master" programs can be resumed, all others must be
REM halted when error occurs.

IF (HaltProgOnError)

HALT PROG0 : REM stop program 0 and kill interpolated motion
REM (MOV, CIRCW, CIRCCW, SINE)

ELSE
PAUSE PROG0 : REM issue RESUME PROG0 or CLR1048 to

REM resume main prog
ENDIF

REM --------- Hardware EOT's ----------
IF (XPosHardEOT)

XErrorCode = 3
$V2 = "Positive Hardware End-of-travel hit, Axis 0"
CLR XPosHardEOT : REM EOT flag is not automatically

REM cleared, program must clear it
ENDIF

IF (XNegHardEOT)

XErrorCode = 4
$V2 = "Negative Hardware End-of-travel hit, Axis 0"
CLR XNegHardEOT : REM EOT flag is not automatically

REM cleared, program must clear it
ENDIF

162 Programmer’s Guide

Parker Hannifin

REM --------- Excess position error ----------
IF (XExcessErrorFault)

XErrorCode = 5
$V2 = "Axis 0 disabled due to excess position error"
CLR XExcessErrorFault
ENDIF

REM -- Use only for servo axes !!! Encoder Signal Lost or Fault

IF (NOT XDriveEnabled AND (XErrorCode = 0) AND (XEncoderFault OR
XEncoderLost))

XErrorCode = 6
$V2 = "Axis 0 disabled due to encoder fault"
ENC 0 RES : REM try to reset encoder
ENDIF

REM if none of the errors above, then possible Drive Fault
REM Input caused error.
IF (XErrorCode = 0)

$V2 = ""
REM Drive Fault
IF (XDriveFault)

$V2 = $V2 + "Latched Drive Fault, Axis 0."
ELSE
$V2 = "Other fault (user set KAMR bit, EPL Network Fault, etc.)"
ENDIF
XErrorCode = 7 : REM no separate code for drive fault

ENDIF

REM --------- Clear KILL bits ---------
CLR XKillAllMotion : REM BIT8467
CLR KillMasterMoves : REM BIT522

ENDIF : REM end of Axis X checking

IF (XErrorCode = 0)
$V2 = "No errors on axis 0"
REM XErrorCode should be cleared/acknowledged by HMI/operator
REM interface
ENDIF

REM --------- Check Axis Y ---------
IF (YKillAllMotion AND NOT LatchedMEIOpen)

INH -824 : REM When KAMR flag is set, all motion stops with
REM JOG move

SET ErrorOccurred
YErrorCode = 0 : REM Error number for Axis 1
REM some "master" programs can be resumed, all others must be
REM halted when error occurs.
IF (HaltProgOnError)

HALT PROG0
ELSE
PAUSE PROG0 : REM issue RESUME PROG0 to continue
ENDIF

 Error Handling 163

Parker Hannifin

REM --------- Hardware EOT's ---------
IF (YPosHardEOT)

YErrorCode = 3
$V3 = "Positive Hardware End-of-travel hit, Axis 1"
CLR YPosHardEOT : REM EOT flag is not automatically

REM cleared, program must clear it
ENDIF

IF (YNegHardEOT)
YErrorCode = 4
$V3 = "Negative Hardware End-of-travel hit, Axis 1"
CLR YNegHardEOT : REM EOT flag is not automatically

REM cleared, program must clear it
ENDIF

REM --------- Excess position error ------------
IF (YExcessErrorFault)

YErrorCode = 5
$V3 = "Axis 1 disabled due to excess position error"
CLR YExcessErrorFault
ENDIF

REM -- Use only for servo axes !!! Encoder Signal Lost or Fault

IF (NOT YDriveEnabled AND (YErrorCode = 0) AND (YEncoderFault OR
YEncoderLost))

YErrorCode = 6
$V3 = "Axis 1 disabled due to encoder fault"
ENC 1 RES : REM try to reset encoder
ENDIF

REM if none of the errors above, then possible Drive Fault Input
REM caused error.
IF (YErrorCode = 0)

$V3 = ""
REM Drive Fault
IF (YDriveFault)

$V3 = $V3 + "Latched Drive Fault, Axis 1."
ELSE
$V3 = "Other fault (user set KAMR bit, EPL Network Fault, etc.)"
ENDIF

YErrorCode = 7 : REM no separate code for drive fault vs.
ENDIF

REM --------- Clear KILL bits ---------
CLR YKillAllMotion : REM BIT8499
CLR KillMasterMoves : REM BIT522

ENDIF : REM end of Axis Y checking

IF (YErrorCode = 0)

$V3 = "No errors on Axis 1"
REM YErrorCode should be cleared/acknowledged by HMI/front end
REM application
ENDIF

164 Programmer’s Guide

Parker Hannifin

REM --------- Print error out comm1 to terminal ---------
IF (ErrorOccurred)

REM Print time since controller power on or reset
GOSUB CheckTime

IF (MEIErrorCode > 0)

PRINT #1, "MEI Error ";MEIErrorCode;" -> ";$V0
REM Motion Enable Input status

ENDIF
IF (CANopenErrorCode > 0)

PRINT #1, "CANopen Error ";CANopenErrorCode;" -> ";$V1
REM CANopen status

ENDIF
IF (XErrorCode > 0)

PRINT #1, "Axis 0 Error ";XErrorCode;" -> ";$V2 : REM Axis 0
REM status

ENDIF
IF (YErrorCode > 0)

PRINT #1, "Axis 1 Error ";YErrorCode;" -> ";$V3 : REM Axis 1
REM status

ENDIF
PRINT #1, "" : REM print a blank line between error messages

REM error codes must be cleared by HMI or by this program
IF (ClearErrorCodes) : REM set Axis ClearErrorCodes to have

REM program clear codes automatically
XErrorCode = 0
YErrorCode = 0
ENDIF

CLR ErrorOccurred
ENDIF

GOTO LoopStart

_CheckTime
REM This implements a "clock" for showing time since power up or
REM reboot, assuming P6916 is not set by user. P6916 resets to zero
REM at 2**31 (2^31). P6916 is a free-running clock in milliseconds

Time = P6916 : REM capture current time in ms.

REM extract the millisecond portion
ms = Time MOD 1000 : REM extract any ms less than 1 full second

REM extract the second portion
REM remove ms from the Time and convert time to seconds
seconds = (Time - ms)/1000

ExcSeconds = seconds MOD 60 : REM extract any seconds less than a

REM full minute

REM extract the minute portion
REM remove seconds from the Time and convert time to minutes
minutes = (seconds - ExcSeconds) / 60

REM extract any minutes less than a full hour

 Error Handling 165

Parker Hannifin

166 Programmer’s Guide

ExcMinutes = minutes MOD 60

REM extract the hour portion
REM remove excess minutes and convert to full hours
hours = (minutes - ExcMinutes) /60

REM remove any hours less than a full day
ExcHours = hours mod 24

REM only full days are left. Only works up to <25 days.
REM remove excess hours and convert what's left to days
days = (hours - ExcHours)/24

PRINT #1, "Approximate Time Running : ";days;" Days ";
PRINT #1, USING "##";ExcHours;" Hours ";
PRINT #1, USING "##";ExcMinutes;" Minutes ";
PRINT #1, USING "##";ExcSeconds;".";ms;" Seconds "
RETURN

ENDP

Parker Hannifin

Appendix
The appendix contains supplemental materials not directly
related to any specific ACR series controller discussion.

IP Addresses, Subnets, & Subnet Masks
The factory assigns an IP address of 192.168.10.40 and a subnet
mask of 255.255.255.0 to each controller. Before adding the
controller to your network, assign it an IP address and subnet
mask appropriate for your network.

Caution —Talk with your Network Administrators before
assigning an IP address or subnet mask to a controller. They
can provide you with an available IP address, as well as which
subnet mask is appropriate for your particular network
configuration.

Isolate the ACR9000 controller and related devices on their
own subnet. The high-volume traffic on networks can affect
the ACR9000 controller's performance. A closed network
restricts the flow of traffic to only the controller and related
devices.

The IP address and subnet mask you assign each controller
determines to which subnet each controller belongs. To manage
the flow of data across a network, it can be divided into subnets
smaller networks within a network to provide more efficient
delivery of data.

IP Addresses
An IP address is an identifier for a device on a TCP/IP network.
Every device connected to the Internet must use a unique IP
Address.

The IP address is comprised of a 32-bit binary address that is
subdivided into four 8-bit segments known as octets. Because
people do not generally think in binary, the address is expressed
in dotted decimal format. Each binary octet is converted to a
decimal number ranging from 0 to 255, with each octet
separated by a decimal point. For example, an IP address in
dotted decimal format looks like the following:

192.168.10.120

 Appendix 167

Parker Hannifin

The address consists of a network ID and a host ID. The network
ID acts as a general address, like a zip code; The host ID is the
address for a specific device within the network, like a home
address. Most IP addresses fall into one of the following address
classes:

• Class A range. The first 8 bits are for the network ID; The
remaining 24 bits are for the host ID.

• Class B range. The first 16 bits are for the network ID; The
remaining 16 bits are for the host ID.

• Class C range. The first 24 bits are for the network ID; The
remaining 8 bits are for the host ID.

The number of bits used for the network ID determine how many
hosts a given address can support. Class A networks provide a
small number of network IDs but a very large number of host IDs.
And class C networks provide a huge number of network IDs but
a small number of host IDs.

Before a computer or router can send data, it has to identify the
network ID through the address class. Each class is assigned a
range of numbers.

Address
Class

First octet in dotted
decimal format
begins with

Excluded from Internet,
Allowed for Intranet

A 0 to 127 10.0.0.0 to

10.255.255.255

127.0.0.0 to
127.255.255.255

B 128 to 191 172.16.0.0 to
172.31.255.255

C 192 to 223 192.168.0.0 to
192.168.255.255

Certain IP addresses have particular meanings and are not
assigned to host devices.

• Using zeroes as a host ID signifies the entire network. For
example, the IP address of 192.168.0.0 indicates network
192.168 where specific hosts can be found.

• Using 255 in an octet indicates a broadcast, where data is
sent to all host devices on a network. For example, the IP
Address 192.168.255.255 will broadcast data to all host
devices in that network.

168 Programmer’s Guide

Parker Hannifin

Suppose you have 6 computers in a class C network. All share
the same network address 192.168.10. in the first three octets. The
final octet for each computer is different, and represents the
host ID.

Some addresses are reserved for private networks or intranets,
where networks are masked or protected from the Internet:

10.0.0.0 to 10.255.255.255

172.16.0.0 to 172.31.255.255

192.168.0.0 to 192.168.255.255

For additional information on private IP addresses, refer to IEEE
specification RFC 1918 Address Allocation for Private Internets.
You can view it at http://www.faqs.org/rfcs/rfc1918.html

Subnets
As networks increase in size, it becomes more complex to deliver
information. Subnets provide a logical way to break apart
network addresses into smaller, more manageable groups. There
are additional benefits including more efficient communications
between devices, and increases to the overall network capacity.

Subnet IDs
When sending data from one host to another, routers use the
network ID (see above) in the IP address to locate the network.
On finding the network, the network is searched for the specific
host. With a great deal of network traffic this proves
cumbersome. Under these circumstances, an IP address does not
provide enough information for routers and host devices to
efficiently locate a host device.

 Appendix 169

http://www.faqs.org/rfcs/rfc1918.html

Parker Hannifin

To provide another level of addressing, some of the host ID is
borrowed to create a subnet ID. The subnet ID allows you to
logically group devices together (often related to a specific
network segment). Once data arrives at the network, the subnet
ID allows routers or host devices to locate the appropriate
network segment, and then the host.

Suppose you have a class C network, comprised of 6 computers.
All share the same network ID 192.168. but are divided into two
subnets. Three computers use 192.168.10., where 10. is the subnet
ID; the remaining three use 192.168.5., where 5. is the subnet ID.

Subnet Masks
A subnet mask determines how many bits after the network ID
are used for the subnet ID. As the subnet ID increases, the
number of host IDs available for that network decrease. Similarly,
a smaller subnet ID allows you to increase the number of hosts on
the network. For simplicity, this discussion only looks at complete
octets in dotted decimal format, and does not explore
converting partial masks from binary to decimal.

170 Programmer’s Guide

Parker Hannifin

What subnet mask to use depends on your network
configuration, and address class. Where the host ID appears in
the IP address, use a zero in the subnet mask. And where the
network ID and subnet ID appear, use 255 in the subnet mask.
Suppose on network 172.20.0.0 (class B) you have to set up a
new computer. You assign it 172.20.44.180 as the IP address. As a
class B network, the first two octets are reserved for the network
ID. The third octet is reserved for the subnet ID, and the last octet
is for the host ID. So using the subnet mask 255.255.255.0 identifies
the final octet as the host ID.

 Appendix 171

Parker Hannifin

Output Module Software Configuration
Examples

The following commands are used to configure the ACR1200,
ACR1500, ACR2000, ACR8000, ACR8010 output modules for
operation:

► CONFIG tells the control what type of output module is
installed.

► ATTACH AXIS attaches the axis to signal output and
feedback.

► ESAVE saves the axis attachments.

Example 1
The following example configures an eight axis
ACR8000/ACR8010 board for eight axis of open-loop steppers
(two stepper output modules); also included on the board is an
analog input module (ADC input module):
CONFIG NONE STEPPER4 STEPPER4 NONE
ATTACH AXIS0 STEPPER0 STEPPER0
ATTACH AXIS1 STEPPER1 STEPPER1
ATTACH AXIS2 STEPPER2 STEPPER2
ATTACH AXIS3 STEPPER3 STEPPER3
ATTACH AXIS4 STEPPER4 STEPPER4
ATTACH AXIS5 STEPPER5 STEPPER5
ATTACH AXIS6 STEPPER6 STEPPER6
ATTACH AXIS7 STEPPER7 STEPPER7
ESAVE

Example 2
The following example configures an eight axis
ACR8000/ACR8010 board for four closed-loop servos and four
open-loop steppers (one DAC output module and one stepper
output module):
CONFIG ENC4 DAC4 STEPPER4 NONE
ATTACH AXIS0 ENC0 DAC0
ATTACH AXIS1 ENC1 DAC1
ATTACH AXIS2 ENC2 DAC2
ATTACH AXIS3 ENC3 DAC3
ATTACH AXIS4 STEPPER4 STEPPER4
ATTACH AXIS5 STEPPER5 STEPPER5
ATTACH AXIS6 STEPPER6 STEPPER6
ATTACH AXIS7 STEPPER7 STEPPER7

Example 3
The following example configures an eight axis ACR8010 board
for two closed-loop servos with two commutator and two
open-loop steppers (one DAC output module and one stepper
output module):
CONFIG ENC4 DAC4 STEPPER4 NONE
ATTACH AXIS0 ENC0 CMT0 ENC0
ATTACH AXIS1 ENC2 CMT1 ENC2
ATTACH AXIS4 STEPPER4 STEPPER4
ATTACH AXIS5 STEPPER5 STEPPER5
ATTACH AXIS6 STEPPER6 STEPPER6

172 Programmer’s Guide

Parker Hannifin

ATTACH AXIS7 STEPPER7 STEPPER7
AXIS2 OFF
AXIS3 OFF
CMT0 ENC0 ENC1
CMT0 DAC0 DAC1
CMT1 ENC2 ENC3
CMT1 DAC2 DAC3

Example 4
The following example configures a four axis ACR1500 with four
on-board stepper outputs or a four axis ACR2000 with one
stepper output module for four open-loop steppers. Also
included on the board is an analog input module (ADC input
module).

NOTE: On the ACR1500 and ACR2000 card, the attach axis
statements for AXIS4 through AXIS7 must be left in the
default configuration to ensure proper operation.

CONFIG NONE STEPPER4 NONE ADC8
ATTACH AXIS0 STEPPER0 STEPPER0
ATTACH AXIS1 STEPPER1 STEPPER1
ATTACH AXIS2 STEPPER2 STEPPER2
ATTACH AXIS3 STEPPER3 STEPPER3
ESAVE

Example 5
The following example configures a two axis ACR1200 with two
on-board stepper outputs or a four axis ACR2000 with one
stepper output module for four open-loop steppers. Also
included on the board is an analog input module (ADC input
module).

NOTE: On the ACR1500 and ACR2000 card, the attach axis
statements for AXIS4 through AXIS7 must be left in the
default configuration to ensure proper operation.

CONFIG NONE STEPPER4 NONE ADC8
ATTACH AXIS0 STEPPER0 STEPPER0
ATTACH AXIS1 STEPPER1 STEPPER1
ATTACH AXIS2 STEPPER2 STEPPER2
ATTACH AXIS3 STEPPER3 STEPPER3
ESAVE

Example 6
The following example configures a four axis ACR1500 with two
on-board DAC outputs for two closed loop servos. Also included
on the board is an analog input module (ADC input module).

NOTE: On the ACR1200 card, the attach axis statements for
AXIS3 through AXIS7 must be left in the default
configuration to ensure proper operation.

CONFIG ENC3 DAC2 NONE ADC8
ATTACH AXIS0 ENC0 DAC0
ATTACH AXIS1 ENC1 DAC1
ESAVE

 Appendix 173

Parker Hannifin

174 Programmer’s Guide

Example 7
The following example configures a 2 axis ACR1200 with one on-
board DAC output and one on-board stepper output for one
closed loop servo and one open-loop stepper. Also included on
the board is an analog input module (ADC input module).

NOTE: On the ACR1200 card, the attach axis statements for
AXIS2 through AXIS7 must be left in the default
configuration to ensure proper operation.

CONFIG ENC3 DACSTEP2 NONE ADC8
ATTACH AXIS0 ENC0 DAC0
ATTACH AXIS1 STEPPER0 STEPPER0
ESAVE

Parker Hannifin

Index
AcroBASIC

commands 12
syntax 8

aliases
bits7, 26
constants 7
DEFINE 7
parameters..........................7, 26
variables 7

bits
aliases 26
clearing.................................. 26
overview 24
printing.................................. 26
setting 25
using 25

branching
repetition 22
selection 19

CANopen
AcroBASIC.............................131
analog

inputs................................137
outputs..............................137

bit
rate128
resulution137

bus states135
health period130
heart beating protocol.............130
information parameters...........131
LED status.............................134
mapping digital I/O127
network configuration128
node

address128
availability127
guarding protocol130
ID 136
speed................................129

parameters
extended I/O......................137
saving139

start network.........................130
transmission cycle129

change summary 5
commands

format 9
immediate mode 12
syntax8, 10

communication
troubleshooting.............. 152, 153

configuration
example................................. 41
firmware revision 45
global varaibles....................... 46
reserved resources 45
user groups 47

cycling power 39
dedicated I/O

homing 85

Drive Talk
auto-address......................... 142
bits 141
configuration flags 142
drive status flags................... 143
error flags 143
parameters 141
pass through mode 145
RS-232................................. 141
RS-485................................. 141
starting 144
stopping 144

EPL network 92
errors

documenting......................... 149
error handling 158
sample program 158

factory default 40
feedback

control 59
formulas 27
homing

backup enable.............. 79, 81, 83
bits .. 79
commands.............................. 79
dedicated I/O.......................... 85
direction................................. 77
example code.....................78, 93
final direction79, 83
jogging................................... 77
limit deceleration..................... 85
limit detection 85
limit range.............................. 85
negative edge selection79, 83
overview 77
subroutine 79

LED
troubleshooting150, 151, 152

limits
homing................................... 77

linear interpolation
coordinated moves profiler 63

mathematical operations.............. 27
memory allocation....................... 39
motion

absolute 49
cam profiler48, 77
commanding49, 58
comparison............................. 50
coordinated moves profiler ..48, 63
feedback control...................... 59
gear profiler.......................48, 76
immediate 52
incremental 50
jog profiler.............................. 48
profiler interaction 54
profiles................................... 53
servo loop status 88
velocity profiles53, 58

 175

Parker Hannifin

176 Programmer’s Guide

parameters
aliases 26
overview 24
using 25

parametric evaluation 27
PBOOT command........................ 39
problems149
program

adding code on-the-fly............. 12
branching

repetition............................ 22
selection............................. 19

halting 13
labels....................................... 7
listening................................. 13
pausing.................................. 14
resuming................................ 14

running 13
starting 13
starting, automatically 13
start-up.................................. 39

program flow
pause..................................... 24
repetition................................ 22
selection................................. 19

rebooting controller 39
REM statementSee remarks
remarks

format......................................8
RFS See factory default
start-up program 39
teach array 97
technical support ii
troubleshooting.................. 149, 150

	Technical Assistance
	Change Summary
	Revision D Changes
	Revision C Changes
	Revision B Changes

	Programming Basics
	Aliases
	Program Labels
	Example

	Remarks
	Command Syntax
	Description of Format
	Arguments and Syntax

	Example Code Conventions
	Programs and Commands
	Immediate Mode Commands
	Adding Lines of Code to Programs
	Starting, Pausing, and Halting Programs
	Running a Program
	Running a Program at Power Up
	Listening to a Program
	Viewing a Running Program
	Halting a Program
	Pausing a Program
	Resuming a Paused Program
	Affecting Multiple Programs

	Kill All Motion Request vs. Kill All Moves
	Kill All Motion Request (KAMR)
	Kill All Moves
	Flag Comparison
	Bit Status Window Comparison
	To Stop All Motion Immediately

	Program Flow
	Selection
	IF/THEN
	IF/ELSE
	ELSEIF Condition

	GOSUB
	GOTO

	Repetition
	FOR/TO/STEP/NEXT
	WHILE/WEND

	Other Conditional Statements
	INH
	IHPOS

	Parameters and Bits
	Using Parameters and Bits
	Setting Binary Bits
	Clearing Binary Bits
	Printing the Current Value

	A Word on Aliases
	Programming Example

	Parametric Evaluation
	Operational Order
	Nested Parentheses
	Examples

	Basic Setup
	Before You Begin
	Axis Limits
	Character I/O
	Drive Control
	Feedback Control
	Global Objects
	Interpolation
	Logic Function
	Memory Control
	Non-Volatile
	Operating System
	Program Control
	Program Flow
	Servo Control
	Setpoint Control
	Transformation
	Velocity Profile

	Startup Programs
	Resetting the Controller
	Memory
	Return to Factory Default
	Configuration
	A Note on the Jog/Home/Limits Dialog
	What is Configuration Code?
	The Code

	Resources Reserved for Generated Code
	Firmware Versions 1.18.15 and up (ACR9000 only)
	Firmware Versions Up to 1.18.14 (All ACR Controllers)
	Global (P) Variables
	User Flags (Group 5-8)

	Making Motion
	Four Basic Categories of Motion
	Move Types
	Absolute Motion
	Incremental Motion
	Comparing Absolute and Incremental Motion
	Combining Types of Motion
	Immediate Mode
	Differences Between FOV and VEL

	What are Motion Profiles?
	Interaction Between Motion Profilers
	Primary Setpoint

	Velocity Profile Commands
	Velocity Profile Setup
	Feedback Control Commands
	REN Details
	RES Details

	Coordinated Moves Profiler
	Jog Profiler
	JOG VEL Details
	JOG Commands
	JOG REN Details
	JOG RES Details

	Gear Profiler
	Cam Profiler
	Homing
	Homing Subroutines
	Basic Homing (Homing Backup Disabled)
	Positive Homing (Homing Backup Enabled)
	Negative Homing (Homing Backup Enabled)

	Limit Detection
	Dedicated I/O for Homing

	Servo Loop Fundamentals
	Setpoint Compensation
	Viewing the Setpoint Calculations

	Following Error

	Application Examples
	Basic Motion
	Enable Drive
	EPL Network
	Homing
	Homing Example 1
	Homing Example 2

	Open Sample
	Teach Array

	Binary Host Interface
	Binary Data Transfer
	Control Character Prefixing
	Transmitting
	Receiving

	High Bit Stripping
	Transmitting
	Receiving

	Binary Data Packets
	Packet Request
	Group Code and Index
	Isolation Mask
	Parameter Access
	Packet Retrieval
	Packet Header
	Packet Data
	Usage Example

	Binary Parameter Access
	Packet ID Codes
	Usage Example
	Binary Get Long
	Transmit Packet
	Receive Packet

	Binary Set Long
	Transmit Packet
	Receive Packet

	Binary Get IEEE
	Transmit Packet
	Receive Packet

	Binary Set IEEE
	Transmit Packet
	Receive Packet

	Binary Peek Command
	Binary Peek Packet
	Transmit Packet
	Receive Packet
	Conversion Codes
	Usage Example

	Binary Poke Command
	Binary Poke Packet
	Transmit Packet
	Receive Packet
	Conversion Codes
	Usage Example

	Binary Address Command
	Binary Address Packet
	Transmit Packet
	Receive Packet
	Parameter Codes
	Usage Example

	Binary Parameter Address Command
	Binary Address Packet
	Transmit Packet
	Receive Packet

	Usage Example

	Binary Mask Command
	Binary Mask Packet
	Transmit Packet
	Receive Packet

	Usage Example

	Binary Parameter Mask Command
	Binary Mask Packet
	Transmit Packet
	Receive Packet

	Usage Example

	Binary Move Command
	Binary Move Packet
	Header Code 0
	Header Code 0

	Header Code 1
	Header Code 2
	Header Code 3
	Header Code 4
	Header Code 5
	Header Code 6
	Header Code 7
	Move Modes
	Linear Moves
	Arc Moves
	NURB or SPLINE Moves

	Binary SET and CLR
	Binary SET
	Binary CLR
	Usage Example

	Binary FOV Command
	Binary Format
	Header Bit Mask
	16 Master Header Bit Mask, Part 1
	16 Master Header Bit Mask, Part 2
	Usage Example

	Binary ROV Command
	Binary Format
	Header Bit Mask
	16 Master Header Bit Mask, Part 1
	16 Master Header Bit Mask, Part 2

	Usage Example

	Application: Binary Global Parameter Access
	Description
	System Pointer Address (hardware dependent)
	Reading Global Variables
	Setting Global Variables

	Additional Features
	CANopen
	Limited Amounts of Nodes and I/O
	Alternate Mapping of Digital I/O
	Semi-Automatic Network Configuration
	Bit Rate and Node Addresses
	Transmission Cycle Period
	Health Period and Node Health
	Starting and Configuring the Network

	AcroBASIC Language Access to CANopen I/O
	Network and Node Information Parameters and Flags
	Flags for Extended Digital I/O
	Analog Inputs and Outputs
	Saved Parameters

	Drive Talk
	Communication
	Parameters and Bits
	Auto-Addressing
	Enabling Auto-Addressing

	Drive Control Flags
	Configuration
	Upload
	Download

	Error Log Flags
	Drive Status Flags

	Using Drive Talk
	Closing Drive Talk
	Using the “Pass Through” Mode
	Exiting “Pass Through” Mode

	Inverse Kinematics
	Programming the Inverse Kinematics

	Troubleshooting
	Problem Isolation
	Information Collection
	Troubleshooting Table

	Error Handling
	Sample Program (ACR90x0)

	Appendix
	IP Addresses, Subnets, & Subnet Masks
	IP Addresses
	Subnets
	Subnet IDs
	Subnet Masks

	Output Module Software Configuration Examples

