M3000

MOTOR AND MOTION CONTROLLER INSTRUCTION SET

M3000 Instruct	tion Set Manual	Change Log
Date	Revision	Changes
08/07/2007	R080707	Initial Release
	<u> </u>	

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

System Semiconductor, reserves the right to make changes without further notice to any products herein to improve reliability, function or design. System Semiconductor does not assume any liability arising out of the application or use of any product or circuit described herein in accordance with System Semiconductor's standard warranty; neither does it convey any license under its patent rights of others. System Semiconductor System Semiconductor System Semiconductor

System Semiconductor's general policy does not recommend the use of its products in life support or aircraft applications wherein a failure or malfunction of the product may directly threaten life or injury. Per System Semiconductor's terms and conditions of sales, the user of System Semiconductor, products in life support or aircraft applications assumes all risks of such use and indemnifies System Semiconductor, against all damages.

CONTENTS

Section 1: Addressing Modes	<i>1</i>
The Program and Data Addressing Modes	1
Register Direct, Single Register Rd	
Register Direct, Two Registers Rd and Rr	
I/O Direct	2
Data Direct	2
Data Indirect with Displacement	2
Data Indirect Addressing	3
Data Indirect with Pre-decrement	3
Data Indirect with Post-increment	
Constant Addressing Using the LPM, ELPM, and SPM Instructions	
Program Memory with Post-increment using the LPM Z+ and ELPM Z+ I	Instruction4
Direct Program Addressing, JMP and CALL	
Indirect Program Addressing, IJMP and ICALL	
Relative Program Addressing, RJMP and RCALL	5
Section 2: Instruction Set Nomenclature	6
Status Register	6
Registers and Operands	
I/O Registers	
Stack	
Flags	6
Section 3: Complete Instruction Set Summary	<i>7</i>
Arithmetic and Logic Instructions	
MCU Control Instructions	
Branch Instructions	
Data Transfer Instructions	
Bit and Bit-Test Instructions	10
Conditional Branch Summary	10
Conditional Branch Summary	
Section 4: Instruction Set Details	11
Section 4: Instruction Set Details	11
Section 4: Instruction Set Details	11 11 12
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry. ADIW – Add Immediate to Word.	11 12 13
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry. ADIW – Add Immediate to Word. AND – Logical AND.	11121314
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry. ADIW – Add Immediate to Word.	1112131415
Section 4: Instruction Set Details. ADC – Add with Carry ADC – Add without Carry ADIW – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG	111213141516
Section 4: Instruction Set Details. ADC – Add with Carry	11121314151617
Section 4: Instruction Set Details. ADC – Add with Carry ADC – Add without Carry ADIW – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG	11121314151617
Section 4: Instruction Set Details. ADC – Add with Carry	111213141516171718
Section 4: Instruction Set Details. ADC – Add with Carry	
Section 4: Instruction Set Details. ADC – Add with Carry	1112131415161717181819
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADIW – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BRCS – Branch if Carry Set BREAK – Break	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADIW – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BRCS – Branch if Carry Set BREAK – Break BREQ – Branch if Equal	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADIW – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BRCS – Branch if Carry Set BREAK – Break BREQ – Branch if Equal BRGE – Branch if Greater or Equal (Signed)	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADIW – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BREAK – Break BREQ – Branch if Equal BRGE – Branch if Greater or Equal (Signed) BRHC – Branch if Half Carry Flag is Cleared	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADIW – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BREAK – Break BREQ – Branch if Equal BRGE – Branch if Greater or Equal (Signed) BRHC – Branch if Half Carry Flag is Cleared BRHS – Branch if Half Carry Flag is Cleared	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADIW – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BRCS – Branch if Carry Set BREAK – Break BREQ – Branch if Equal BRGE – Branch if Greater or Equal (Signed) BRHC – Branch if Half Carry Flag is Cleared BRHS – Branch if Half Carry Flag is Set BRHS – Branch if Global Interrupt is Disabled	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADI – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BREAK – Break BREQ – Branch if Equal BRGE – Branch if Greater or Equal (Signed) BRHC – Branch if Half Carry Flag is Cleared BRHS – Branch if Half Carry Flag is Set BRID – Branch if Global Interrupt is Disabled BRIE – Branch if Global Interrupt is Enabled	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADI – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BREAK – Break BREQ – Branch if Equal BREQ – Branch if Greater or Equal (Signed) BRHC – Branch if Half Carry Flag is Cleared BRHS – Branch if Half Carry Flag is Set BRID – Branch if Global Interrupt is Disabled BRIE – Branch if Global Interrupt is Enabled BRIO – Branch if Lower (Unsigned)	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADIW – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Bit in SREG is Set BRCC – Branch if Carry Cleared BRCS – Branch if Carry Set BREAK – Break BREQ – Branch if Greater or Equal (Signed) BRHC – Branch if Half Carry Flag is Cleared BRHS – Branch if Half Carry Flag is Set BRID – Branch if Global Interrupt is Disabled BRIE – Branch if Global Interrupt is Enabled BRLO – Branch if Lower (Unsigned) BRLT – Branch if Less Than (Signed)	
Section 4: Instruction Set Details. ADC – Add with Carry	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADI – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BREAK – Break BREQ – Branch if Equal BREQ – Branch if Greater or Equal (Signed) BRHC – Branch if Half Carry Flag is Cleared BRHS – Branch if Global Interrupt is Disabled BRID – Branch if Global Interrupt is Enabled BRLO – Branch if Lower (Unsigned) BRLO – Branch if Lower (Unsigned) BRMI – Branch if Minus BRMI – Branch if Not Equal	
ADC – Add with Carry. ADC – Add without Carry ADI – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BREAK – Break BREQ – Branch if Equal BREQ – Branch if Greater or Equal (Signed) BRHC – Branch if Half Carry Flag is Cleared BRHS – Branch if Global Interrupt is Disabled BRID – Branch if Global Interrupt is Enabled BRLO – Branch if Lower (Unsigned) BRLO – Branch if Lower (Unsigned) BRMI – Branch if Minus BRMI – Branch if Minus BRMI – Branch if Not Equal BRNE – Branch if Not Equal BRNE – Branch if Plus	
Section 4: Instruction Set Details. ADC – Add with Carry. ADC – Add without Carry ADI – Add Immediate to Word AND – Logical AND ANDI – Logical AND with Immediate ASR – Arithmetic Shift Right BCLR – Bit Clear in SREG BLD – Bit Load from the T Flag in SREG to a Bit in Register BRBC – Branch if Bit in SREG is Cleared BRBS – Branch if Carry Cleared BRCS – Branch if Carry Cleared BREAK – Break BREQ – Branch if Equal BREQ – Branch if Greater or Equal (Signed) BRHC – Branch if Half Carry Flag is Cleared BRHS – Branch if Global Interrupt is Disabled BRID – Branch if Global Interrupt is Enabled BRLO – Branch if Lower (Unsigned) BRLO – Branch if Lower (Unsigned) BRMI – Branch if Minus BRMI – Branch if Not Equal	

BRVC – Branch if Overflow Cleared	
BRVS – Branch if Overflow Set	28
BSET – Bit Set in SREG	29
BST – Bit Store from Bit in Register to T Flag in SREG	29
CALL – Long Call to a Subroutine	
CBI – Clear Bit in I/O Register	
CBR – Clear Bits in Register	
CLC – Clear Carry Flag	
CLH – Clear Half Carry Flag	
CLI – Clear Global Interrupt Flag	
CLN – Clear Negative Flag	33
CLR – Clear Register	
CLS – Clear Signed Flag	
CLT – Clear T Flag	
CLV – Clear Overflow Flag	
CLZ – Clear Zero Flag	
COM – One's Complement	
CP – Compare	
CPC – Compare with Carry	
CPI – Compare with Immediate	
CPSE – Compare Skip if Equal	
DEC – Decrement	
EICALL - Extended Indirect Call to Subroutine	
EIJMP - Extended Indirect Jump	42
ELPM – Extended Load Program Memory	
EOR – Exclusive OR	
FMUL - Fractional Multiply Unsigned	
FMULS - Fractional Multiply Signed	
FMULSU - Fractional Multiply Signed with Unsigned	48
ICALL – Indirect Call to Subroutine	49
IJMP – Indirect Jump	
IN – Load an I/O Location to Register	
IN(C = Increment	5.1
INC – Increment	
JMP – Jump	52
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X	52 53
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X LD (LDD) – Load Indirect from SRAM to Register Using Index Y	52 53 54
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X LD (LDD) – Load Indirect from SRAM to Register Using Index Y LD (LDD) – Load Indirect from SRAM to Register Using Index Z	52 53 54 55
JMP – Jump	52 53 54 55
JMP – Jump	52 53 54 55 56
JMP – Jump	52 53 54 55 56 56
JMP – Jump	52 53 55 56 56 56
JMP – Jump	52 53 55 56 56 57 58
JMP – Jump	52 53 55 56 56 57 58 59
JMP – Jump	52 53 54 56 56 57 58 59 60
JMP – Jump	52 53 54 56 56 57 58 59 60 60
JMP – Jump	52 53 54 55 56 57 58 59 60 61
JMP – Jump	52 53 54 55 56 57 58 59 60 61
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X. LD (LDD) – Load Indirect from SRAM to Register Using Index Y LD (LDD) – Load Indirect from SRAM to Register Using Index Z LDI – Load Immediate LDS – Load Direct from SRAM LPM – Load Program Memory LSL – Logical Shift Left LSR – Logical Shift Right MOV – Copy Register MOVW – Copy Register Word MUL – Multiply Unsigned MULS – Multiply Signed MULSU – Multiply Signed with Unsigned	52 53 54 55 56 56 57 59 60 60 61 62
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X LD (LDD) – Load Indirect from SRAM to Register Using Index Y LD (LDD) – Load Indirect from SRAM to Register Using Index Z LDI – Load Immediate LDS – Load Direct from SRAM LPM – Load Program Memory LSL – Logical Shift Left LSR – Logical Shift Right MOV – Copy Register MOVW – Copy Register Word MUL – Multiply Unsigned MULS – Multiply Signed MULSU – Multiply Signed with Unsigned NEG – Two's Complement	52 53 54 55 56 57 58 59 60 60 61 62 63
JMP – Jump	52 53 54 55 56 57 58 60 60 61 62 63 64
JMP – Jump	52 53 54 55 56 57 59 60 61 62 63 64 65
JMP – Jump	5253545556575860616263646565
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X. LD (LDD) – Load Indirect from SRAM to Register Using Index Y LD (LDD) – Load Indirect from SRAM to Register Using Index Z LDI – Load Immediate LDS – Load Direct from SRAM LPM – Load Program Memory LSL – Logical Shift Left LSR – Logical Shift Right MOV – Copy Register MOVW – Copy Register Word MUL – Multiply Unsigned MULS – Multiply Signed MULSU – Multiply Signed with Unsigned NEG – Two's Complement NOP – No Operation OR – Logical OR ORI – Logical OR with Immediate OUT – Store Register to I/O Location	52545556575860616263656565
JMP – Jump	52 53 56 56 57 59 60 61 62 63 64 65 65 66
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X. LD (LDD) – Load Indirect from SRAM to Register Using Index Y LD (LDD) – Load Indirect from SRAM to Register Using Index Z LDI – Load Immediate LDS – Load Direct from SRAM LPM – Load Program Memory LSL – Logical Shift Left LSR – Logical Shift Right MOV – Copy Register MOVW – Copy Register Word MUL – Multiply Unsigned MULS – Multiply Signed MULSU – Multiply Signed with Unsigned NEG – Two's Complement NOP – No Operation OR – Logical OR ORI – Logical OR with Immediate OUT – Store Register from Stack PUSH – Push Register on Stack	5254555657586061626365656565
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X. LD (LDD) – Load Indirect from SRAM to Register Using Index Y LD (LDD) – Load Indirect from SRAM to Register Using Index Z LDI – Load Immediate LDS – Load Direct from SRAM LPM – Load Program Memory LSL – Logical Shift Left LSR – Logical Shift Right MOV – Copy Register MOVW – Copy Register Word MUL – Multiply Unsigned MULS – Multiply Signed MULSU – Multiply Signed with Unsigned NEG – Two's Complement NOP – No Operation OR – Logical OR ORI – Logical OR with Immediate OUT – Store Register from Stack PUSH – Push Register on Stack RCALL – Relative Call to Subroutine	5253545556575960616263646565666767
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X. LD (LDD) – Load Indirect from SRAM to Register Using Index Y LD (LDD) – Load Indirect from SRAM to Register Using Index Z LDI – Load Immediate LDS – Load Direct from SRAM LPM – Load Program Memory LSL – Logical Shift Left LSR – Logical Shift Right MOV – Copy Register MOVW – Copy Register Word MUL – Multiply Unsigned MULS – Multiply Signed with Unsigned MULSU – Multiply Signed with Unsigned NEG – Two's Complement NOP – No Operation OR – Logical OR ORI – Logical OR with Immediate OUT – Store Register from Stack PUSH – Push Register on Stack RCALL – Relative Call to Subroutine RET – Return from Subroutine	5253545556575860616263656565666566
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X. LD (LDD) – Load Indirect from SRAM to Register Using Index Y LD (LDD) – Load Indirect from SRAM to Register Using Index Z LDI – Load Immediate LDS – Load Direct from SRAM LPM – Load Program Memory LSL – Logical Shift Left LSR – Logical Shift Right MOV – Copy Register MOVW – Copy Register Word MUL – Multiply Unsigned MULS – Multiply Signed with Unsigned MULSU – Multiply Signed with Unsigned NEG – Two's Complement NOP – No Operation OR – Logical OR ORI – Logical OR with Immediate OUT – Store Register from Stack PUSH – Push Register on Stack RCALL – Relative Call to Subroutine RET – Return from Subroutine RETI – Return from Interrupt	5253545556575860616263656565666566
JMP – Jump LD – Load Indirect from SRAM to Register Using Index X. LD (LDD) – Load Indirect from SRAM to Register Using Index Y LD (LDD) – Load Indirect from SRAM to Register Using Index Z LDI – Load Immediate LDS – Load Direct from SRAM LPM – Load Program Memory LSL – Logical Shift Left LSR – Logical Shift Right MOV – Copy Register MOVW – Copy Register Word MUL – Multiply Unsigned MULS – Multiply Signed with Unsigned MULSU – Multiply Signed with Unsigned NEG – Two's Complement NOP – No Operation OR – Logical OR ORI – Logical OR with Immediate OUT – Store Register from Stack PUSH – Push Register on Stack RCALL – Relative Call to Subroutine RET – Return from Subroutine	5253545556575960616263656565666767

ROR – Rotate Right Through Carry	71
SBC – Subtract with Carry	72
SBCI – Subtract Immediate with Carry	73
SBI – Set Bit in I/O Register	74
SBIC – Skip if Bit in I/O Register is Cleared	74
SBIS – Skip if Bit in I/O Register is Set	
SBIW – Subtract Immediate from Word	
SBR – Set Bits in Register	77
SBRC – Skip if Bit in Register is Cleared	
SBRS – Skip if Bit in Register is Set	
SEC – Set Carry Flag	79
SEH – Set Half Carry Flag	
SEI – Set Global Interrupt Flag	
SEN – Set Negative Flag	
SER – Set All Bits in Register	
SES – Set Signed Flag.	82
SET – Set T Flag	
SEV – Set Overflow Flag	
SEZ – Set Zero Flag	
SLEEP	84
SPM – Store Program Memory	
ST – Store Indirect from Register to Data Space Using Index X	87
ST (STD) - Store Indirect from Register to Data Space Using Index Y	88
ST (STD) - Store Indirect from Register to Data Space Using Index Z	
STS – Store Direct to SRAM	90
SUB – Subtract Without Carry	91
SUBI – Subtract Immediate	
SWAP – Swap Nibbles	
TST – Test for Zero or Minus	93
WDR – Watchdog Reset	94
LIST OF FIGURES	
Figure 1.1: Direct Register Addressing, Single Register	1
Figure 1.2: Direct Register Addressing, Two Registers	
Figure 1.3: I/O Direct Addressing	
Figure 1.4: Direct Data Addressing.	
Figure 1.5: Data Indirect with Displacement	
Figure 1.6: Data Indirect Addressing	
Figure 1.7: Data Indirect Addressing with Pre-decrement	
Figure 1.8: Data Indirect Addressing with Post-increment	
Figure 1.9: Program Memory Constant Addressing	
Figure 1.10: Program Memory Addressing with Post-increment	
Figure 1.11: Direct Program Memory Addressing	
Figure 1.12: Indirect Program Memory Addressing	5
Figure 1.13: Relative Program Memory Addressing	5

LIST OF TABLES

Table 3.1: Arithmetic and Logic Instructions	
Table 3.2: MCU Control Instructions	
Table 3.3: Branch Instructions.	8
Table 3.4: Data Transfer Instructions	9
Table 3.5: Bit and Bit-Test Instructions	10
Table 3.6: Conditional Branch Summary	10

SECTION 1:

ADDRESSING MODES

The Program and Data Addressing Modes

The M3000 Enhanced RISC microcontroller supports powerful and efficient addressing modes for access to the program memory and data memory (SRAM, Register file andI/O Memory). This section describes the different addressing modes supported by the M3000 architecture. In the following figures, OP means the operation code part of the instruction word. To simplify, not all figures show the exact location of the addressing bits.

Register Direct, Single Register Rd

The operand is contained in register Rd.

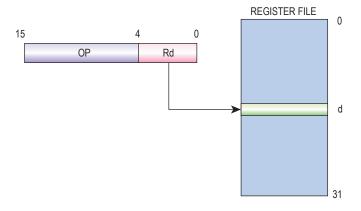


Figure 1.1: Direct Register Addressing, Single Register

Register Direct, Two Registers Rd and Rr

Operands are contained in register Rr and Rd. The result is stored in register Rd.

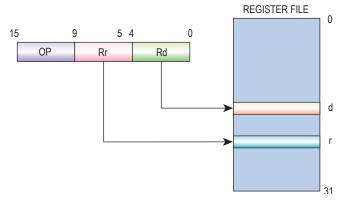


Figure 1.2: Direct Register Addressing, Two Registers

I/O Direct

The operand address is contained in 6 bits of the instruction word. Rr/Rd is the destination or source register address.

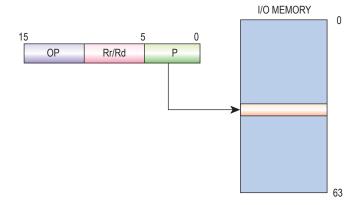


Figure 1.3: I/O Direct Addressing

Data Direct

A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr specify the destination or source register.

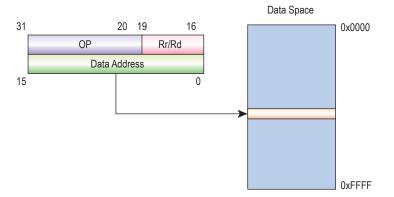


Figure 1.4: Direct Data Addressing

Data Indirect with Displacement

The operand address is the result of the Y or Z-register contents added to the address contained in 6 bits of the instruction word. Rr/Rd specify the destination or source register.

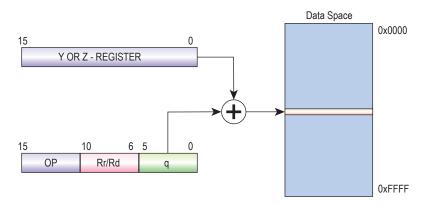


Figure 1. 5. Data Indirect with Displacement

Data Indirect Addressing

The operand address is the contents of the X, Y or the Z-register.

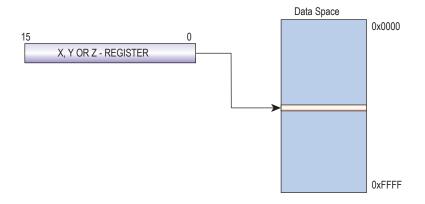


Figure 1. 6: Data Indirect Addressing

Data Indirect with Pre-decrement

The X, Y or the Z-register is decremented before the operation. The operand address is the decremented contents of the X,Y or the Z-register.

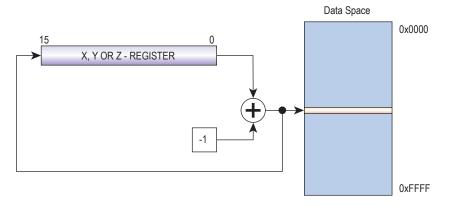


Figure 1.7: Data Indirect Addressing with Pre-decrement

Data Indirect with Post-increment

The X, Y or the Z-register is incremented after the operation. The operand address is the content of the X, Y or the Z-register prior to incrementing.

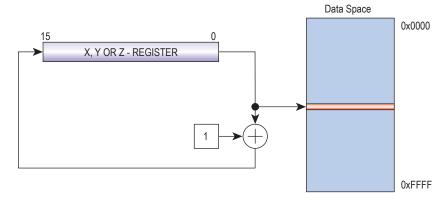


Figure 1.8: Data Indirect Addressing with Post-increment

Constant Addressing Using the LPM, ELPM, and SPM Instructions

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. For LPM, the LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1). For SPM, the LSB should be cleared. If ELPM is used, the RAMPZ Register is used to extend the Z-register.

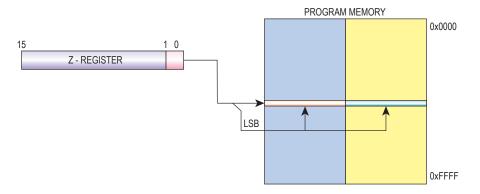


Figure 1.9: Program Memory Constant Addressing

Program Memory with Post-increment using the LPM Z+ and ELPM Z+ Instruction

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. The LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1). If ELPM Z+ is used, the RAMPZ Register is used to extend the Z-register.

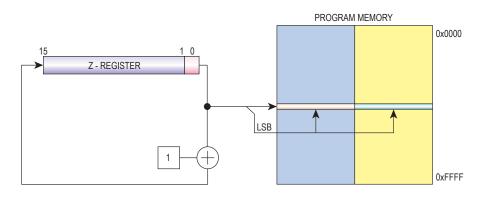


Figure 1.10: Program Memory Addressing with Post-increment

Direct Program Addressing, JMP and CALL

Program execution continues at the address immediate in the instruction words.

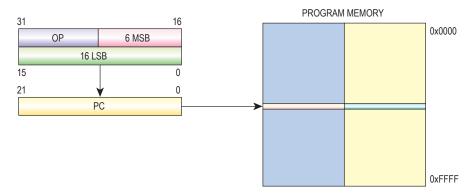


Figure 1.11: Direct Program Memory Addressing

Indirect Program Addressing, IJMP and ICALL

Program execution continues at address contained by the Z-register (i.e., the pc is loaded with the contents of the Z-register).

Figure 1.12: Indirect Program Memory Addressing

Relative Program Addressing, RJMP and RCALL

Program execution continues at address pc + k + 1. The relative address k is -2048 to 2047.

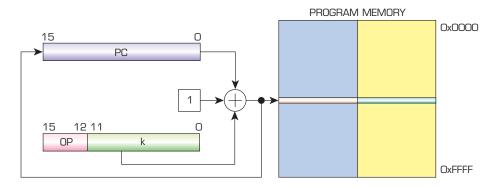


Figure 1.13: Relative Program Memory Addressing

SECTION 2:

INSTRUCTION SET NOMENCLATURE

Status Register SREG: Status register

C: Carry flagZ: Zero flagN: Negative flag

V: Two's complement overflow indicator

S: $N \oplus V$, for signed tests

H: Half Carry flag

T: Transfer bit used by BLD and BST instructions

I: Global interrupt enable/disable flag

Registers and Operands Rd: Destination (and source) register in the register file

Rr: Source register in the register file
R: Result after instruction is executed
K: Constant literal or byte data (8-bit)
k: Constant address data for program counter

b: Bit in the register file or I/O register (3-bit)

s: Bit in the status register (3-bit)

X,Y,Z: Indirect address register (X=R27:R26, Y=R29:R28, Z=R31:R30)

P: I/O port address

q: Displacement for direct addressing (6-bit)

I/O Registers RAMPZ: Register concatenated with the Z register enabling indirect addressing of the whole

Program Area on MCUs with more than 64K bytes of Program Code (ELPM

instruction)

Stack STACK: Stack for return address and pushed registers

SP: Stack Pointer to STACK

Flags \Leftrightarrow : Flag affected by instruction

Flag cleared by instructionFlag set by instruction

-: Flag not affected by instruction

SECTION 3:

COMPLETE INSTRUCTION SET SUMMARY

Arithmetic and Logic Instructions

	Arithmetic and Logic Instructions					
	Mnemonics	Operands	Description	Operation	Flags	# Clock Note
	ADD Rd, Rr Add without Carry		Rd, Rr Add without Carry		Z,C,N,V,S,H	1
ADD	ADC	Rd, Rr	Add With Carry	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,S,H	1
٩	ADIW	Rd, K	Add Immediate to Word	$Rd + 1:Rd \leftarrow Rd + 1:Rd + K$	Z,C,N,V,S	2
ь	SUB	Rd, Rr	Subtract without Carry	Rd ← Rd - Rr	Z,C,N,V,S,H	1
SUBTRACT	SUBI	Rd, K	Subtract Immediate	Rd ← Rd - K	Z,C,N,V,S,H	1
TR	SBC Rd, Rr Subtract with Carry		Subtract with Carry	Rd ← Rd - Rr - C	Z,C,N,V,S,H	1
UB	SBCI	Rd, K	Subtract Immediate with Carry	Rd ← Rd - K - C	Z,C,N,V,S,H	1
S	SBIW Rd, K Subtract Immediate from Word		Subtract Immediate from Word	Rd + 1:Rd ← Rd + 1:Rd - K	Z,C,N,V,S	2
AND	AND Rd, Rr Logical AND Rd ← Rd ← Rr		Z,N,V,S	1		
4	ANDI	Rd, K	Logical AND with Immediate	$Rd \leftarrow Rd \bullet K$	Z,N,V,S	1
	OR	Rd, Rr	Logical OR	Rd ← Rd v Rr	Z,N,V,S	1
OR	ORI Rd, K Logical OR with I		Logical OR with Immediate	Rd ← Rd v K	Z,N,V,S	1
	EOR	Rd, Rr	Exclusive OR	$Rd \leftarrow Rd \oplus Rr$	Z,N,V,S	1
	COM Rd One's Complement		Rd ← 0xFF - Rd	Z,C,N,V,S	1	
SI	NEG Rd Two's Complement		Rd ← 0x00 - Rd	Z,C,N,V,S,H	1	
Ö	SBR Rd, K Set Bit(s) in Register		Rd ← Rd v K	Z,N,V,S	1	
MISCELLANEOUS	CBR	CBR Rd, K Clear Bit(s) in Register		$Rd \leftarrow Rd \bullet [0xFF - K]$ Z,N,N		1
3	INC	Rd	Increment	Rd ← Rd + 1	Z,N,V,S	1
핑	DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V,S	1
IS(TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V,S	1
Σ	CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V,S	1
	SER	Rd	Set Register	Rd ← 0xFF	None	1
	MUL Rd, Rr Multiply Unsigned		R1:R0 ← Rd x Rr [UU]	Z,C	2	
MULTIPLY	MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr [SS]$	Z,C	2
Ë	MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr [SU]$ Z,C		2
[FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow [Rd \times Rr] <<1 [UU]$	Z,C	2
Σ	FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow Rd \times Rr << 1 [SS]$	Z,C	2
	FMULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr << 1 [SU]$	Z,C	2

Table 3.1: Arithmetic and Logic Instructions

MCU Control Instructions

	MCU Control Instructions							
Mnemonics Operands		Description	Operation	Flags	# Clock Note			
BREAK - Break (S		(See Specific Description for BREAK)	None	1				
NOP	NOP – No Operation			None	1			
SLEEP	SLEEP - Sleep		(See Specific Description for SLEEP)	None	1			
WDR	_	Watchdog Reset	(See Specific Description for WDR)	None	1			

Table 3.2: MCU Control Instructions

Branch Instructions

(1) Note: Cycle times for data memory accesses assume internal memory accesses,

and are not valid for accesses via the external RAM interface. For LD, ST, LDS, STS, PUSH, POP, add one cycle plus one cycle for each wait state. For CALL, ICALL, EICALL, RCALL, RET, RETI, add five cycles plus three cycles for each wait state.

	Branch Instructions					
	Mnemonics	Operands	Description	Operation	Flags	# Clock Note
	RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
JUMP	IJMP		Indirect Jump to (Z)	$PC(15:0) \leftarrow Z, PC(21:16) \leftarrow 0$	None	2
S	EIJMP		Extended Indirect Jump to (Z)	$PC(15:0) \leftarrow Z, PC(21:16) \leftarrow$ EIND	None	2
	ЈМР	k	Jump	PC ← k	None	2
	RCALL k Relative Call Subroutine		$PC \leftarrow PC + k + 1$	None	3/4(1)	
	ICALL		Indirect Call to (Z)	$PC(15:0) \leftarrow Z, PC(21:16) \leftarrow 0$	None	3/4(1)
ᆿ	EICALL Extended Indirect Call to (Z)		$PC(15:0) \leftarrow Z, PC(21:16) \leftarrow EIND$	None	4(1)	
4		Call Subroutine	PC ← k	None	4/5(1)	
	RET Subroutine Return		PC ← STACK	None	4/5(1)	
	RETI Interrupt Return		PC ← STACK	I	4/5(1)	
COMPARE	CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3
PA	СР	Rd,Rr	Compare	Rd - Rr	Z,C,N,V,S,H	1
ΨO	CPC	Rd,Rr	Compare with Carry	Rd -Rr - C	Z,C,N,V,S,H	1
ŭ	CPI	Rd,k	Compare with Immediate	Rd - K	Z,C,N,V,S,H	1
	SBRC	Rd,b	Skip if Bit in Register Cleared	if $(Rr(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SKIP	SBRS	Rd,b	Skip if Bit in Register Set	if $(Rr(b)=1)$ PC \leftarrow PC + 2 or 3 if $(I/O(A,b)=0)$ PC \leftarrow PC + 2	None None	1/2/3
Š	SBIC	A, b	Skip if Bit in I/O Register Cleared	or 3		1/2/3
	SBIS	A, b	Skip if Bit in I/O Register Set	If(I/O(A,b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
	BRBS s, k Branch if Status Flag Set		or 3 if (SREG(s) = 1) then PC \leftarrow PC+k + 1	None	1/2	
	BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC \leftarrow PC+k + 1	None	1/2
			if (Z = 1) then PC \leftarrow PC + k	None	1/2	
	BRNE k Branch if Not Equal		if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2	
	BRCS k Branch if Carry Set		if (C = 1) then PC \leftarrow PC + k + 1	None	1/2	
	BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
	BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
	BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
Ŧ	BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRANCH	BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BR.	BRGE	k	Branch if Greater or Equal, Signed	if (N \vee V= 0) then PC \leftarrow PC + k + 1	None	1/2
	BRLT	k	Branch if Less Than, Signed	if (N \vee V= 1) then PC \leftarrow PC + k + 1	None	1/2
	BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
	BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
	BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
	BRTC	k	Branch if T Flag Cleared	if $(T = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
	BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1 if (V = 0) then PC \leftarrow PC + k	None	1/2
	BRVC	k	Branch if Overflow Flag is Cleared	+ 1	None	1/2
	BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
	BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2

Table 3.3: Branch Instructions

Data Transfer Instructions

(1) Note: Cycle times for data memory accesses assume internal memory accesses,

and are not valid for accesses via the external RAM interface. For LD, ST, LDS, STS, PUSH, POP, add one cycle plus one cycle for each wait state. For CALL, ICALL, EICALL, RCALL, RET, RETI, add five cycles plus three cycles for each wait state.

	Data Transfer Instructions						
	Mnemonics Operands Description		Operation	Flags	# Clock Note		
сору	моч	Rd, Rr	Copy Register	Rd ← Rr	None	1	
8	MOVW Rd, Rr Copy Register Pair		Rd+1:Rd ← Rr+1:Rr	None	1		
	LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1	
	LDS	Rd, k	Load Direct from data space	$Rd \leftarrow (k)$	None	2(1)	
	LD Rd		Load Indirect	$Rd \leftarrow (X)$	None	2(1)	
	LD	Rd, X+	Load Indirect and Post-Increment	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2(1)	
₹	LD	Rd, -X	Load Indirect and Pre-Decrement	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2(1)	
L A	LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2(1)	
LOAD DATA	LD	Rd, Y+	Load Indirect and Post-Increment	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2(1)	
ΙVC	LD	Rd, -Y	Load Indirect and Pre-Decrement	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2(1)	
7	LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2(1)	
	LD	Rd, Z	Load Indirect	Rd ← (Z)	None	2(1)	
	LD	Rd, Z+	Load Indirect and Post-Increment	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2(1)	
	LD	Rd, -Z	Load Indirect and Pre-Decrement	$Z \leftarrow Z -1$, $Rd \leftarrow (Z)$	None	2(1)	
	LDD	Rd, Z+q	Load Indirect with Displacement $Rd \leftarrow (Z + q)$			2(1)	
	STS	k, Rr	k, Rr Store Direct to data space $(k) \leftarrow Rd$		None	2(1)	
	ST	X, Rr	Store Indirect	(X) ← Rr	None	2(1)	
	ST	X+, Rr	Store Indirect and Post-Increment	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2(1)	
	ST	-X, Rr	Store Indirect and Pre-Decrement	$X \leftarrow X -1$, $(X) \leftarrow Rr$	None	2(1)	
	ST Y, Rr Store Indirect		(Y) ← Rr	None	2(1)		
STORE	ST Y+, Rr Store Indirect and Post-Increment		$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2(1)		
)TC	ST	-Y, Rr	Store Indirect and Pre-Decrement	$Y \leftarrow Y -1$, $(Y) \leftarrow Rr$	None	2(1)	
V)	STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$ None		2(1)	
	ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2(1)	
	ST	Z+, Rr	Store Indirect and Post-Increment	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2(1)	
	ST	-Z, Rr	Store Indirect and Pre-Decrement	$Z \leftarrow Z -1$, $(Z) \leftarrow Rr$	None	2(1)	
	STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2(1)	
	LPM		Load Program Memory	R0 ← (Z)	None	3	
Σ	LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3	
PGM	LPM	Rd, Z+	Load Program Memory and Post Increment	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	3	
LOAD	ELPM		Increment	$R0 \leftarrow (RAMPZ:Z)$	None	3	
2	ELPM	Rd, Z	Extended Load Program Memory	$Rd \leftarrow (RAMPZ:Z) \leftarrow Z + 1$	None	3	
	ELPM	Rd, Z+	Extended Load Program Memory and Post Increment	$Rd \leftarrow (RAMPZ \mathpunct{:} Z)$	None	3	
	SPM		Store Program Memory	(Z) ← R1:R0	None	_	
ن	IN	Rd, A	In From I/O Location	$Rd \leftarrow I/O(A)$	None	1	
MISC.	OUT	A, Rr	Out To I/O Location	I/O(A) ← Rr	None	1	
Σ	PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2	
	POP	Rd	Pop Register From Stack	$Rd \leftarrow STACK$	None	2	

Table 3.4: Data Transfer Instructions

Bit and Bit-Test Instructions

(1) Note: Cycle times for data memory accesses assume internal memory accesses,

and are not valid for accesses via the external RAM interface. For LD, ST, LDS, STS, PUSH, POP, add one cycle plus one cycle for each wait state. For CALL, ICALL, EICALL, RCALL, RET, RETI in devices with 16-bit PC, add three cycles plus two cycles for each wait state. For CALL, ICALL, EICALL, RCALL, RET, RETI in devices with 22-bit PC, add five cycles plus three cycles for each wait state.

Bit and Bit-Test Instructions							
Mnemonics	Operands	Description	Operation	Flags	# Clock Note		
LSL	Rd	d Logical Shift Left $Rd(n+1)\leftarrow Rd(n), Rd(0)\leftarrow 0, C\leftarrow Rd(7)$		Z,C,N,V,H	1		
LSR	LSR Rd Logical Shift Right		$Rd(n)\leftarrow Rd(n+1),Rd(7)\leftarrow 0,C\leftarrow Rd(0)$	Z,C,N,V	1		
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V,H	1		
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1		
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1		
SWAP	Rd	Swap Nibbles	$Rd(30) \leftrightarrow Rd(74)$	None	1		
BSET	S	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1		
BCLR	S	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1		
SBI	A, b	Set Bit in I/O Register	I/O(A, b) ← 1	None	2		
CBI	A, b	Clear Bit in I/O Register	$I/O(A, b) \leftarrow 0$ Nor		2		
BST	BST Rr, b Bit Store from Register to T		$T \leftarrow Rr(b)$	Т	1		
BLD	BLD Rd, b Bit load from T to Register		$Rd(b) \leftarrow T$	None	1		
SEC	SEC Set Carry		C ← 1		1		
CLC		Clear Carry	C ← 0	С	1		
SEN		Set Negative Flag	N ← 1	N	1		
CLN		Clear Negative Flag	N ← 0	N	1		
SEZ		Set Zero Flag	Z ← 1	Z	1		
CLZ		Clear Zero Flag $Z \leftarrow 0$		Z	1		
SEI		Global Interrupt Enable	I ← 1		1		
CLI		Global Interrupt Disable	I ← 0		1		
SES		Set Signed Test Flag	S ← 1	S	1		
CLS	CLS Clear Signed Test Flag		S ← 0	S	1		
SEV	SEV Set Two's Complement Overflow		V ← 1	V	1		
CLV		Clear Two's Complement Overflow	v V ← 0		1		
SET		Set T in SREG	T ← 1	Т	1		
CLT		Clear T in SREG	T ← 0	Т	1		
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1		
CLH	CLH Clear Half Carry Flag in SREG		H ← 0	Н	1		

Table 3.5: Bit and Bit-Test Instructions

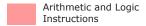
Conditional Branch Summary

Note: Interchange Rd and Rr in the operation before the test (i.e., CP $Rd,Rr \rightarrow CP Rr, Rd)$

	Conditional Branch Summary					
Test	Boolean	Mnemonic	Complementary	Boolean	Mnemonic	Comment
Rd > Rr	Z•(N ⊕ V) = 0	BRLT(1)	Rd ≤ Rr	Z+(N ⊕ V) = 1	BRGE*	Signed
Rd ≥ Rr	(N ⊕ V) = 0	BRGE	Rd < Rr	(N ⊕ V) = 1	BRLT	Signed
Rd = Rr	Z = 1	BREQ	Rd ≠ Rr	Z = 0	BRNE	Signed
Rd ≤ Rr	Z+(N ⊕ V) = 1	BRGE(1)	Rd > Rr	$Z \bullet (N \oplus V) = 0$	BRLT*	Signed
Rd < Rr	(N ⊕ V) = 1	BRLT	Rd ≥ Rr	(N ⊕ V) = 0	BRGE	Signed
Rd > Rr	C + Z = 0	BRLO(1)	Rd ≤ Rr	C + Z = 1	BRLO/BRCS	Unsigned
Rd ≥ Rr	C = 0	BRSH/BRCC	Rd < Rr	C = 1	BRCS	Unsigned
Rd = Rr	Z = 1	BREQ	Rd ≠ Rr	Z = 0	BRNE	Unsigned
Rd ≤ Rr	C + Z = 1	BRSH(1)	Rd > Rr	C + Z = 0	BRLO*	Unsigned
Rd < Rr	C = 1	BRLO/BRCS	Rd ≥ Rr	C = 0	BRSH/BRCC	Unsigned
Carry	C = 1	BRCS	No carry	C = 0	BRCC	Simple
Negative	N = 1	BRMI	Positive	N = 0	BRPL	Simple
Overflow	V = 1	BRVS	No overflow	V = 0	BRVC	Simple
Zero	Z = 1	BREQ	Not zero	Z = 0	BRNE	Simple

Table 3.6: Conditional Branch Summary

SECTION 4:


INSTRUCTION SET DETAILS

ADC - Add with Carry

Mnemonic:	Function:					
ADC	Add With Carry					
Description:	Description:					
Adds two Rd.	Adds two registers and the contents of the C flag and places the result in the destination register Rd.					
Operation:	$Rd \leftarrow Rd + Rr + C$ Syntax: ADC Rd,Rr					
Operand:	$0 \leq d \leq 31, \ 0 \leq r \leq 31$	Program Counter:	PC ← PC + 1			

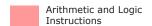
16-Bit Opcod	e:									
		.001		ld		1.1.1				
		001	11	Lrd	dddd			rrr		
Status Regist	er (SREG)	Boolean F	ormula:							
	I	Т	Н	S	V	N	Z	С		
	_	_	⇔	⇔	⇔	⇔	⇔	⇔		
		Rd3	• Rr3 + F	Rr3 • R3	+ R3 • R	.d3				
	н	Set i	f there w	as a carr	y from b	it 3; clea	red			
			wise.							
	S	N ⊕ \	V, For sig	ned tests	5.					
			• Rr7 • R	7 + Rd7	• Rr7 • I					
	V	Set if two's complement overflow resulted from the operation; cleared otherwise. R7								
	I N		f MSB of	the resul	t is set;	cleared o	э.			
	7		Rd7 • Rr6 • Rr5 • R4 • R3 • Rd2 • Rd1 • Rd0							
			f the resu	ılt is 0x0	0; cleare	d otherw				
		Rd7	• Rr7 + F	Rr7 • R7	+ R7 • R	.d7				
	C	Set it clear	t;							
R (Result)	equals Ro	d after the	operatio	n.						
Example:										
		; ad	d R1:	R0 to	R3:R	2				
	r2,r0			_						
adc	r3,r1	; ad	d wit	h car	ry hi	gh by	te			
Words:	1 (2 Bytes)		Cycles	:	1				

Functional Grouping Color Coding

MCU Control Instructions

Branch Instructions

Data Transfer Instructions



ADC - Add without Carry

Mnemonic:	Function:								
ADD	Add Without Carry								
Description:	Description:								
Adds two	Adds two registers without the C flag and places the result in the destination register Rd.								
Operation:	Rd ← Rd + Rr	Rd + Rr Syntax: ADD Rd,Rr							
Operand:	$0 \le d \le 31, \ 0 \le r \le 31$	Program Counter:	PC ← PC + 1						

16-Bit Opcode:									
	00	01	11	Lrd	rd dddd		rr	rr	
		01	11	LIU	rd dddd rrrr				
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	_	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	⇔	\Leftrightarrow	\Leftrightarrow	
		Rd3	Rr3 + F	Rr3 • R3	+ R3 • R	d3			
	Н		there w	as a carr	y from bi	t 3; clea	red		
	S	N ⊕ \	/, For sig	ned tests	S.				
		Rd7 • Rr7 • R7 + Rd7 • Rr7 • R7 Set if two's complement overflow resulted from the operation; cleared otherwise.							
	V								
	N	R7	R7						
			Set if MSB of the result is set; cleared otherwise.						
	z	R7 ∙	R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0						
			Set if the result is 0x00; cleared otherwise.						
		Rd7	Rr7 + F	Rr7 • R7	+ R7 • R	d7			
	С		there w	as carry wise.	from the	MSB of t	he result	:;	
R (Result) ed	quals Rd :	after the	operatio	n.					
Example:									
add r1	,r2	; ad	d r2	 to r1	(r1=1	r1+r2)			
add r1,r2 ; add r2 to r1 (r1=r1+r2) adc r28,r28; add r28 to itself (r28=r28+r28)									
Words: 1	(2 Bytes)			Cycles		1			

Functional Grouping Color Coding

Data Transfer Instructions

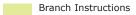
ADIW - Add Immediate to Word

Mnemonic:	Function:								
ADIW	Add Immediate to Word								
Description:									
Adds an immediate value (0 - 63) to a register pair and places the result in the register pair. This instruction operates on the upper four register pairs and is well suited for operations on the pointer registers.									
Operation:	$Rd+1:Rd \leftarrow Rd+1:Rd + K$	Syntax: ADIW Rd+l:K							
Operand:	$d \in \{24,26,28,30\}, 0 \le K \le 63$	Program Counter:PC \leftarrow PC + 1							

16-Bit Opcode:											
	100)1	01	.10	Kk	(dd	KK	KK			
Status Register	Status Register (SREG) Boolean Formula:										
	I T H S V N Z C										
	1	- 1	Н	S		N	Z	С			
	_	_	_	⇔	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow			
	S	S N ⊕ V, For signed tests. Rdh7 • R15 V Set if two's complement overflow resulted from the operation; cleared otherwise.									
	V										
		R15									
	N	Set if MSB of the result is set; cleared otherwise. $ \frac{R15}{R6} \bullet \frac{R14}{R5} \bullet \frac{R13}{R4} \bullet \frac{R12}{R3} \bullet \frac{R11}{R10} \bullet \frac{R10}{R0} \bullet \frac{R9}{R9} \bullet \frac{R8}{R7} \bullet \frac{R7}{R9} \bullet \frac{R10}{R9} \bullet \frac{R}{R9} \bullet R$									
	z										
		Set if	Set if the result is 0x00; cleared otherwise.								
		R15 •	Rdh7								
	С		there w		from the	MSB of	the resul	t;			
R (Result) ed	R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0).										
Example:											
adiw	adiw r24,1 ; Add 1 to r25:r24										
adiw	r30,63 ; Add 63 to the Z pointer(r31:r30)										
Words:	1 (2 Bytes	1 (2 Bytes) Cycles: 1									

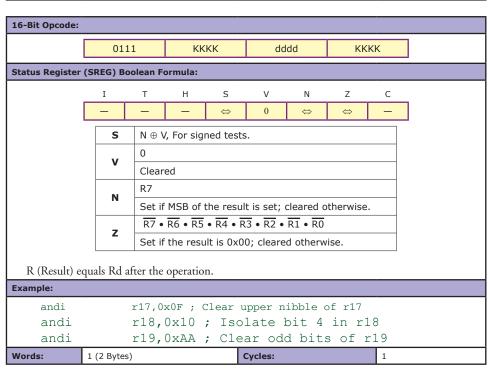


AND - Logical AND


Mnemonic:	Function:								
AND	Logical AND								
Description:	Description:								
I	Performs the logical AND between the contents of register Rd and register Rr and places the result in the destination register Rd.								
Operation:	$Rd \leftarrow Rd \bullet Rr$	Syntax: AND Rd,Rr							
Operand:	$0 \leq d \leq 31, \ 0 \leq r \leq 31$	Program Counter: $PC \leftarrow PC + 1$							

16-Bit Opcode:								
	0010		00rd		dddd		rrrr	
Status Register (SREG) Boolean Formula:								
	I	Т	Н	S	V	N	Z	С
	_	_	_	\Leftrightarrow	0	⇔	\Leftrightarrow	_
	S	N ⊕ \	/, For sigi	ned tests	S.			
	v	0						
		Clear	ed					
	N	R7						
						cleared o	therwise	
	z	R7 •	R6 • R5	• R4 • R	.3 • R2 •	R1 • R0		
	_	Set if	the resu	It is 0x0	0; cleare	d otherw	ise.	
R (Result) ed	quals Rd a	ıfter the	operatio	n.				
Example:								
and r2,r3 ; Bitwise and r2 and r3, result in r26								
ldi r16,1 ; Set bitmask 0000 0001 in r16 and r2,r16 ; Isolate bit 0 in r2								
	•		отаге			L Z		
Words:	1 (2 Bytes	5)		(Cycles:			1

Functional Grouping Color Coding



ANDI - Logical AND with Immediate

Mnemonic:	Function:								
ANDI	Logical AND with Immediate								
Description:	Description:								
1	Performs the logical AND between the contents of register Rd and a constant and places the result in the destination register Rd.								
Operation:	$Rd \leftarrow Rd \bullet K$	Syntax: ANDI Rd,K							
Operand:	$16 \le d \le 31, \ 0 \le K \le 255$	Program Counter:PC \leftarrow PC + 1							

ASR - Arithmetic Shift Right

Operation:

Words:

1 (2 Bytes)

 $Rd(n) \leftarrow Rd(n+1), n=0..6$

Mnemonic: Function: **ASR** Arithmetic Shift Right **Description:** Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 is loaded into the C flag of the SREG. This operation effectively divides a two's complement value by two without changing its sign. The carry flag can be used to round the result.

Syntax:

ASR Rd

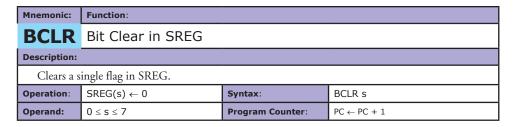
Operand:	$0 \le d \le 31$		Program Counter:			PC ← PC + 1			
16-Bit Opcode):								
	100	1 010)d	ddd	d	0101]	
Status Registe	Status Register (SREG) Boolean Formula:								
Courtain Region	. ,			.,					
	I	ТН	S	V	N	Z	С	1	
	_	- -	\Leftrightarrow	⇔	\Leftrightarrow	⇔	\Leftrightarrow]	
	S	N ⊕ V, For sign	ed tests	5.					
		N ⊕ C (For N a	nd C aft	er the shif	ft)				
	v	Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).							
		R7							
	N	Set if MSB of tl	he resul	t is set; cl	eared	otherwise	e		
	_	R7 • R6 • R5 •	• R4 • R3 • R2 • R1 • R0						
	Z	Set if the resul	t is 0x0	0; cleared	othe	wise.			
		Rd0							
	С	Set if, before the cleared otherw		the LSB o	of Rd	was set;			
R (Result)	equals Rd af	ter the operation							
Example:	equals rea ar	ter the operation							
asr	r17,0xF0	;	r16 Loa	d deciner16 / d -4 in	2	16 int	to r1	6	

Cycles:

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions


Branch Instructions

Data Transfer Instructions

BCLR - Bit Clear in SREG

16-Bit Opcode:									
	1001		01	100	0 1sss		1000		
Status Register (SREG) Boolean Formula:									
	I	I T H S V N Z C							
	\Leftrightarrow	⇔	⇔	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	⇔	
	I	0 if s	= 7; Un	changed	otherwis	е			
	Т	0 if s	= 6; Un	changed	otherwis	е			
	Н	0 if s	= 5; Un	changed	otherwis	е			
	S	0 if s	= 4; Un	changed	otherwis	е			
	V	0 if s	= 3; Un	changed	otherwis	е			
	N	0 if s	= 2; Un	changed	hanged otherwise				
	Z	0 if s	= 1; Un	changed	otherwis	е			
	С	0 if s	= 0; Un	changed	otherwis	е			
xample:									
bclr 0 ; Clear carry flag									
bclr 7 ; Disable interrup									
/ords: 1	(2 Bytes)			Cycles		1			

BLD – Bit Load from the T Flag in SREG to a Bit in Register

Mnemonic:	Function:	Function:								
BLD	Bit Load from the T Flag in SREG to a Bit in Register									
Description:										
Copies th	e T flag in the SREG (status re	egister) to bit b in regis	ter Rd.							
Operation:	$Rd(b) \leftarrow T$	Syntax: BLD Rd,b								
Operand:	$0 \le d \le 31, \ 0 \le b \le 7$	Program Counter: PC ← PC + 1								

16-Bit Opcode	16-Bit Opcode:									
	11	1111		100d		1sss		0b		
Status Regist	Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С		
	_	_	_	_	_	_	_	_		
Example:										
	; Copy bit									
bst	bst r1,2 ; Store bit 2 of r1 in T flag									
bld	bld r0,4 ; Load T flag into bit 4 of r0									
Words:	1 (2 Bytes)		Cycles:			1				

BRBC – Branch if Bit in SREG is Cleared

Mnemonic: Function:

BRBC Branch if Bit in SREG is Cleared

Description:

Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is cleared. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form.

Operation:	If SREG(s) = 0 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRBC s,k
Operand:	$0 \le s \le 7, -64 \le k \le +63$	Program Counter:	$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition false

16-Bit Opcode:											
	1111	01kk	kkkk	ksss							
Status Register (SREG) Boolean Formula:											
	I T	H S	V N	Z C							
Example:											
	20,5 ; Co 1,noteq ; Br	-									
<pre>noteq:nop ; Branch destination (do nothing)</pre>											
Words:	1 (2 Bytes)	Cycle	es:	1 if condition is f 2 if condition is t							

BRBS - Branch if Bit in SREG is Set

Mnemonic: Function: **BRBS** Branch if Bit in SREG is Set Description: Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is set. This instruction branches relatively to PC in either direction (PC - 64 ≤ destination ≤ PC + 63). The parameter k is the offset from PC and is represented in two's complement form. If SREG(s) = 1 then PC BRBS s,k Operation: \leftarrow PC + k + 1, else PC \leftarrow Syntax: PC + 1 $PC \leftarrow PC + k + 1$ Operand: $0 \leq \ s \leq \ 7 \text{, } -64 \leq \ k \leq \ +63$ **Program Counter:** $PC \leftarrow PC + 1$, if condition is false

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

16-Bit Opcode:											
	11	11	001	kk	kk	kk	ks	SS			
Status Register (SREG) Boolean Formula:											
	I	Т	Н	S	V	N	Z	С			
	_	_	_	_	_	_	_	_			
Example:											
bst r	0,3		;	Loa	Load T bit with bit 3 of r0						
brbs	6,bitse	et	;	Bran	ich T k	oit w	as set				
bitse	t:nop		;	: Bran	ch des	stina	tion (c	do notl	ning)		
Words:	Vords: 1 (2 Bytes)				Cycles: 1 if condition is fals 2 if condition is true						

BRCC - Branch if Carry Cleared

Mnemonic: Function: **BRCC** Branch if Carry is Cleared Description: Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 0,k.) If C = 0 then $PC \leftarrow PC + k$ Operation: Syntax: BRCC k + 1, else PC \leftarrow PC + 1 $PC \leftarrow PC + k + 1$ Program Counter: Operand: $-64 \le k \le +63$ $PC \leftarrow PC + 1$, if condition is false

16-Bit Opcode:	16-Bit Opcode:											
	1111 01kk		kkkk	k000								
Status Register (SREG) Boolean Formula:												
I T H S V N Z C												
Example:												
1	22,r23 nocarry	•	Add r23 to r22 Branch if carry cleared									
	nocarry:nop ; Branch destination (do nothing)											
Words:	1 (2 Bytes)		Cycles:	se e								

BRCS - Branch if Carry Set

Function: Mnemonic: **BRCS** Branch if Carry is Set Description: Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is set. This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 0,k.) If C = 1 then $PC \leftarrow PC + k$ BRCS k Operation: Syntax: + 1, else PC \leftarrow PC + 1 $PC \leftarrow PC + k + 1$ Program Counter: Operand: $-64 \le k \le +63$ $PC \leftarrow PC + 1$, if condition is false

16-Bit Opcode:											
	1111	00kk	kkkk	k000							
Status Register (SREG) Boolean Formula:											
	I T	H S	V N	Z C							
Example:											
_	26,0x56 ; Com carry ; Br	-									
carry: nop ; Branch destination (do nothing)											
Words:	1 (2 Bytes)	Cycl	es.	L if condition is false 2 if condition is true							

BREAK - Break

Mnemonic: Function: **BREAK** Break Description: The BREAK instruction is used by the On-chip Debug system and is normally not used in the application software. When the BREAK instruction is executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip Debugger access to internal resources. On-Chip Debug System Break **BREAK** Operation: Syntax: Program Operand: None $PC \leftarrow PC + 1$ Counter:

16-Bit Opcode:										
	1001		0101		1001		1000			
Status Register (SREG) Boolean Formula:										
	I	Т	Н	S	V	N	Z	С		
	_	_		_						
Example:										
None										
Words:	1 (2 Bytes)				Cycles:		1			

BREQ - Branch if Equal

Mnemonic: Function:

BREQ

Branch if Equal

Description:

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is set. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed binary number represented in Rd was equal to the unsigned or signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 1,k.)

	If Rd = Rr (Z = 1) then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BREQ k
Operand:	-64 ≤ k ≤ +63		$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16-Bit Opcode:											
	11	1111 001		kk	kkkk		k001				
Status Register (SREG) Boolean Formula:											
	I	Т	Н	S	V	N	Z	С			
	_	_	_	_	_	_	-	_			
Example:											
1	bst r0,3 ; Load T bit with bit 3 of r0 brbs 6,bitset ; Branch T bit was set										
1	bitset:nop ; Branch destination (do nothing)										
Words:	1 (2 Byte	L (2 Bytes)					1 if condition is false 2 if condition is true				

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

BRGE – Branch if Greater or Equal (Signed)

Mnemonic: Function:

BRGE Branch if Greater or Equal (Signed)

Description:

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC if S is cleared. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary number represented in Rd was greater than or equal to the signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 4,k.)

Operation	If Rd \geq Rr (N \oplus V = 0) then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRGE k
Operand:	-64 ≤ k ≤ +63		$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16-Bit Opcode:												
	1111		01kk		kkkk		k100					
Status Register (SREG) Boolean Formula:												
	I	Т	Н	S	V	N	Z	С				
	_	_	_ [_	_ [_	_	_				
Example:												
cp r11 brge	,r12 greate	ed	,	_	_		r11 an = r12		gned)			
	greateq: nop ; Branch destination (do nothing)											
Words:	Words: 1 (2 Bytes) Cycles: 1 if condition is fals 2 if condition is true											

BRHC – Branch if Half Carry Flag is Cleared

Mnemonic: Function: **BRHC** Branch if Half Carry Flag is Cleared Description: Conditional relative branch. Tests the Half Carry flag (H) and branches relatively to PC if H is cleared. This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 5,k.) If H = 0 then $PC \leftarrow PC + k + 1$, BRHC k Operation: Syntax: else $PC \leftarrow PC + 1$ $PC \leftarrow PC + k + 1$ Program $-64 \le k \le +63$ Operand: Counter: $PC \leftarrow PC + 1$, if condition is false

16-Bit Opcode										
	1111		01kk		kk	kkkk		.01		
Status Registe	r (SREG) Bo	oolean F	ormula:							
	I	Т	Н	S	V	N	Z	С		
	_	_	_	_	_	_	_	_		
Example:										
brhc h	ıclear	; Bra	nch if	half o	carry f	lag cl	eared			
hclear: nop ; Branch destination (do nothing)										
Words:	1 (2 Byte	s)			Cycles		1 if condit 2 if condit			

BRHS – Branch if Half Carry Flag is

Operand:

 $-64 \le k \le +63$

Mnemonic: Function: **BRHS** Branch if Half Carry Flag is Set Description: Conditional relative branch. Tests the Half Carry flag (H) and branches relatively to PC if H is set. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 5,k.) If H = 1 then $PC \leftarrow PC + k + 1$, Operation: Syntax: BRHS k $\text{else PC} \leftarrow \text{PC} + 1$ $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false Program

16-Bit Opcode:											
	1111		00kk		kkkk		k101				
Status Register (SREG) Boolean Formula:											
	I	Т	Н	S	V	N	Z	С			
	_	_	-	_	_	_	_	_			
Example:											
brhs h	set	; Bra	nch if	half c	arry f	lag se	t				
hset: nop ; Branch destination (do nothing)											
Words:	Vords: 1 (2 Bytes)					Cycles: 1 if condition is false 2 if condition is true			!		

BRID - Branch if Global Interrupt is **Disabled**

Mnemonic:	Function:		
BRID	Branch if Global Interrupt	is Disabl	ed
Description:			
is cleared. T PC + 64). T	al relative branch. Tests the Global Int This instruction branches relatively to The parameter k is the offset from PC t to instruction BRBC 7,k.)	PC in either o	direction (PC - $63 \le destination \le$
Operation:	If I = 0 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRID k
Operand:	-64 ≤ k ≤ +63	Program Counter:	$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

16-Bit Opcode:	16-Bit Opcode:										
	11	1111		01kk		kkkk		11			
Status Register (SREG) Boolean Formula:											
	I	Т	Н	S	V	N	Z	С			
	_	_	_	-	_	_	_	_			
Example:											
brid i	ntdis	; Bran	nch if	interr	upt dis	sabled					
	 .s: nor	p ; Br	anch	desti	natio	n (do	noth	ing)			
Words:	1 (2 Byte	es)			Cycles:		if conditi if conditi				

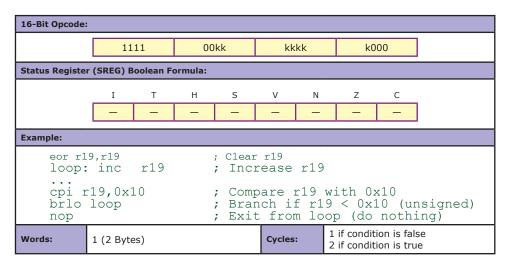
BRIE - Branch if Global Interrupt is Enabled

Mnemonic: Function: **BRIE** Branch if Global Interrupt is Enabled **Description:**

Conditional relative branch. Tests the Global Interrupt flag (I) and branches relatively to PC if I is set. This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 7,k.)

Operation:	If I = 1 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRIE k
Operand:	-64 ≤ k ≤ +63	3	$ \begin{array}{l} PC \leftarrow PC + k + 1 \\ PC \leftarrow PC + 1, \ \text{if condition is false} \end{array} $

16-Bit Opcode:											
	11:	k111									
Status Register (SREG) Boolean Formula:											
	I	Т	Н	S	V	N	Z	С			
	_	_	-	_	_	_	_	_			
Example:											
	nten : nop				_		noth	ing)			
Words:	1 (2 Byte	s)			Cycles:	_	if condit if condit				


BRLO - Branch if Lower (Unsigned)

Mnemonic: Function: BRLO Branch if Lower (Unsigned)

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is set. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned binary number represented in Rd was smaller than the unsigned binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 0,k.)

Oneration	If Rd < Rr (C = 1) then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRLO k
Operand:	-64 ≤ k ≤ +63	3	$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

BRLT - Branch if Less Than (Signed)

Mnemonic: Function:

BRLT Branch if Less Than (Signed)

Description:

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC if S is set. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary number represented in Rd was less than the signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 4,k.)

	If Rd < Rr (N \oplus V = 1) then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRLT k
Operand:	-64 ≤ k ≤ +63		$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16-Bit Opcode:										
	111	1111		00kk		kkkk		100		
Status Register (SREG) Boolean Formula:										
	I	Т	Н	S	V	N	Z	С		
	_	_	-	_	-	_	_	_		
Example:										
	,r1 less					. (si	gned)			
less:	nop	; Bra	anch c	desti	nation	ı (do	noth	ing)		
Words:	1 (2 Byte	s)		·	Cycles:		1 if condit 2 if condit			

BRMI - Branch if Minus

Mnemonic:	Function

BRMI Branch if Minus

Description:

Conditional relative branch. Tests the Negative flag (N) and branches relatively to PC if N is set. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 2,k.)

Operation:	If N = 1 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRMI k
Operand:	-64 ≤ k ≤ +63	3	$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

16-Bit Opcode:	16-Bit Opcode:										
	1111		00kk		kkkk		k010				
Status Register (SREG) Boolean Formula:											
	I	Т	Н	S	V	N	Z	С			
	_	_	_	_	_	_	_	_			
Example:											
ubi r1: brmi	8,4 neg		tract 4			negat	ive				
	nop	; Bra	anch o	desti	natior	n (do	noth	ing)			
Words:	1 (2 Byte	es)	·	·	Cycles:		l if condit 2 if condit				

BRNE - Branch if Not Equal

Mnemonic: Function:

BRNE Branch if Not Equal

Description:

Operand:

 $\text{-}64 \leq k \leq \text{+}63$

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is cleared. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed binary number represented in Rd was not equal to the unsigned or signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 1,k.)

Operation:	If Rd \neq Rr (Z = 0) then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRNE k
Operand:	-64 ≤ k ≤ +63	3	$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16-Bit Opcode	16-Bit Opcode:											
	11	11	00kk		kkkk		k001					
Status Register (SREG) Boolean Formula:												
	I	Т	Н	S	V	N	Z	С				
	_	_	_	_	_	_	_	_				
Example:												
eor r2 loop:	7,r27 inc	r27		; Clear ; Inc:	r27 rease	r27						
cpi r	cpi r27,5 ; Compare r27 to 5 brne loop ; Branch if r27<>5											
Words:	1 (2 Byte	es)			Cycles	_	if condit					

BRPL - Branch if Plus

Mnemonic: Function: **BRPL** Branch if Plus Description: Conditional relative branch. Tests the Negative flag (N) and branches relatively to PC if N is cleared. This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 2,k.) If N = 0 then $PC \leftarrow PC + k + 1$, Operation: Syntax: BRPL k else PC \leftarrow PC + 1 $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false **Program**

16-Bit Opcode:									
To Dit opcouci									1
	11	.11	01	.kk	kkk	κk	k0	10	
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	-	_	_	_	
Example:									
subi	r26,0	x50		; Subt	ract	0x50	from	r26	
brpl p	positiv	<i>т</i> е		; Bran	ch if	r26 j	positiv	re	
•••									
<pre>positive:nop</pre>									
Words:	1 (2 Bytes)				Cycles:		1 if condition is false 2 if condition is true		

BRSH – Branch if Same or Higher (Unsigned)

Mnemonic: Function:

BRSH Branch if Same or Higher (Unsigned)

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. If the instruction is executed immediately after execution of any of the instructions CP, CPI, SUB or SUBI the branch will occur if and only if the unsigned binary number represented in Rd was greater than or equal to the unsigned binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 0,k.)

Operation:	If Rd \geq Rr (C = 0) then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRSH k
Operand:	-64 ≤ k ≤ +63		$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16-Bit Opcode:	16-Bit Opcode:								
	11	1111		01kk		kkkk		00	
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	-	-	_	_	_	_	_	
Example:									
l	subi r19,4 ; Subtract 4 from r19 brsh highsm ; Branch if r19 >= 4 (unsigned)								lgned)
highsm:nop; Branch destination (do nothing)									
Words:	1 (2 Bytes)			Cycles:		1 if condition is false 2 if condition is true			

BRTC - Branch if the T Flag is Cleared

Mnemonic: Function:

BRTC Branch if the T Flag is Cleared

Description:

Conditional relative branch. Tests the T flag and branches relatively to PC if T is cleared. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 6,k.)

Operation	If T = 0 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRTC k
Operand:	-64 ≤ k ≤ +63		$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

16-Bit Opcode:								
	1111	1111 01kk		kkkk		k110		
Status Register (SREG) Boolean Formula:								
	I T	Н	S	V	N	Z	С	
			-	-	_	_	_	
Example:								
	bst r3,5 ; Store bit 5 of r3 in T flag brtc tclear ; Branch if this bit was cleared							
tclear: nop ; Branch destination (do nothing)								
Words:	1 (2 Bytes)			Cycles:			ion is fal	

BRTS - Branch if the T Flag is Set

Mnemonic: Function:

BRTS Branch if the T Flag is Set

Description:

Operand:

 $-64 \le k \le +63$

Conditional relative branch. Tests the T flag and branches relatively to PC if T is set. This instruction branches relatively to PC in either direction (PC - $63 \le$ destination \le PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 6,k.)

Operation:	If T = 1 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1	Syntax:	BRTS k		
Operand:	-64 ≤ k ≤ +63		$PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false		

16-Bit Opcode:									
	11	11	00kk		kkkk		k1	10	
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	_	-	_	_	_	_	_	
Example:									
brts	<pre>bst r3,5</pre>								
tset: nop ; Branch destination (do nothing)									
Words:	1 (2 Byte	1 (2 Bytes)				Cvcles:		1 if condition is false 2 if condition is true	

BRVC - Branch if Overflow Cleared

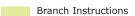
Mnemonic: Function: **BRVC** Branch if Overflow Cleared Description: Conditional relative branch. Tests the Overflow flag (V) and branches relatively to PC if V is cleared. This instruction branches relatively to PC in either direction (PC - 63 ≤ destination ≤ PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 3,k.) If V = 0 then $PC \leftarrow PC + k + 1$, BRVC k Operation: Syntax: else PC \leftarrow PC + 1 $\begin{array}{l} \text{PC} \leftarrow \text{PC} + \text{k} + 1 \\ \text{PC} \leftarrow \text{PC} + 1, \text{if condition is false} \end{array}$

Program Counter:

16-Bit Opcode:	16-Bit Opcode:								
	11	1111		01kk		kkkk		11	
Status Registe	Status Register (SREG) Boolean Formula:								
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	_	_	
Example:	Example:								
brvc	add r3,r4 ; Add r4 to r3 brvc noover; Branch if no overflow noover: nop; Branch destination (do nothing)								
Words:	1 (2 Byte	L (2 Bytes) Cycles:					1 if condition is false 2 if condition is true		

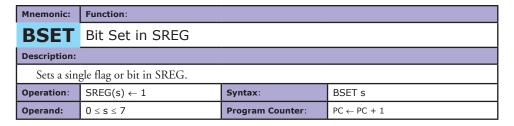
BRVS - Branch if Overflow Set

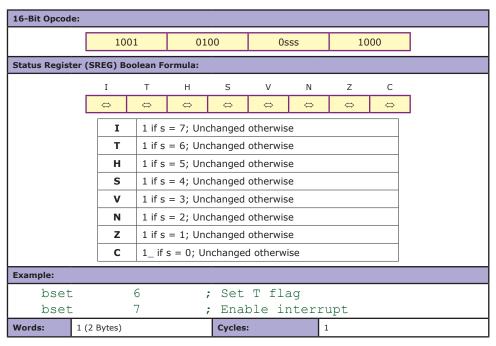
Mnemonic: Function: **BRVS** Branch if Overflow Set Description: Conditional relative branch. Tests the Overflow flag (V) and branches relatively to PC if V is set. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 3,k.) If V = 1 then $PC \leftarrow PC + k + 1$, Operation: Syntax: BRVS k else PC \leftarrow PC + 1 $PC \leftarrow PC + k + 1$ Program Counter: Operand: $\textbf{-64} \leq k \leq \textbf{+63}$


 $PC \leftarrow PC + 1$, if condition is false

16-Bit Opcode:									
	1111	00kk	kkkk	k011					
Status Register (SREG) Boolean Formula:									
	I T	н s	V N	z c					
Example:									
	add r3,r4 ; Add r4 to r3 brvs overfl ; Branch if overflow								
overfl: nop ; Branch destination (do nothing)									
Words:	1 (2 Bytes)		Cycles	1 if condition is fals 2 if condition is tru					

Functional Grouping Color Coding





BSET - Bit Set in SREG

BST - Bit Store from Bit in Register to T Flag in SREG

Mnemonic:	Function:							
BST	Bit Store from Bit in Register to T Flag in SREG							
Description:								
Stores bit	Stores bit b from Rd to the T flag in SREG (status register).							
Operation:	$T \leftarrow Rd(b)$ Syntax: BST Rd,b							
Operand:	$0 \le d \le 31, \ 0 \le b \le 7$	Program Counter:	PC ← PC + 1					

16-Bit Opcode	16-Bit Opcode:								
	11	.11	101d dddd		ldd	0bbb			
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	\Leftrightarrow	_	_	_	-	-	_	
	Т	T 0 if s = 6; Unchanged otherwise Bit b in Rd is cleared, set to 1 otherwise							
Example:									
; Copy bit bst r1,2 ; Store bit 2 of r1 in T flag bld r0,4 ; Load T into bit 4 of r0									
Words:	1 (2 Bytes)			Cycles	:	1			

CALL - Long Call to a Subroutine

Mnemonic:	Function:							
CALL	Long Call to a Subroutine							
Description:								
Calls to a subroutine within the entire program memory. The return address (to the instruction after the CALL) will be stored onto the stack. (See also RCALL.)								
Operation:	PC ← k	Syntax:	CALL k					
	0.114M	Program Counter:	PC ← k					
Operand:	0 ≤ k < 4M	Stack:	STACK ← PC+2 SP ← SP-3 (3 bytes, 22 bits)					

32-Bit Opcode:									
	10	1001		010k		kkkk		111k	
	kk	kk	kl	kk	kk	kk	kk	kk	
Status Register	(SREG) E	Boolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	_	_	
Example:									
mov r16,r0 call check nop			; Copy r0 to r16 ; Call subroutine ; Continue (do nothing)						
				; Check if r16 has a special					
value breq error ret			; Branch if equal ; Return from subroutine						
error: rjmp error			or	; Infinite loop					
Words:	2 (4 Bytes)				Cycles	Cycles: 5		 5	

CBI - Clear Bit in I/O Register

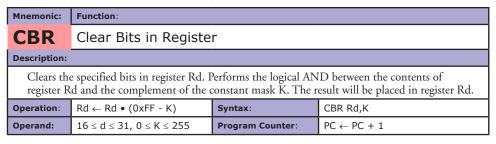
Mnemonic:	Function:						
CBI	Clear Bit in I/O Register						
Description:							
Clears a specified bit in an I/O register. This instruction operates on the lower 32 I/O registers – addresses 0-31.							
Operation:	I/O(P,b) ← 0	Syntax:	CBI P,b				
Operand:	$0 \le P \le 31, \ 0 \le b \le 7$	Program Counter:	PC ← PC + 1				

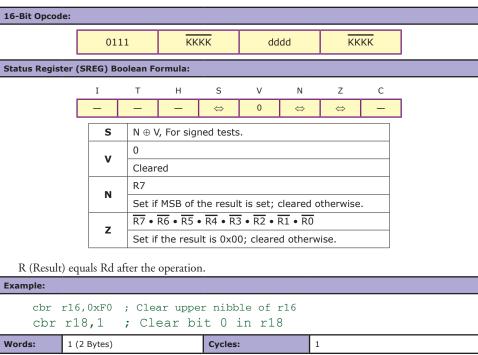
Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions


Data Transfer Instructions


16-Bit Opcode:									
	1001		1000		рррр		pl	pbbb	
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	_	_	
Example:									
cbi 0x	12,7	; Cle	ar bit	7 in E	ort D				
Words:	1 (2 Byte	es)			Cycles:		2		

CBR - Clear Bits in Register

CLC - Clear Carry Flag

Mnemonic:	Function:								
CLC	Clear Carry Flag								
Description:	Description:								
Clears the	e Carry flag (C) in SREG (statt	us register).							
Operation:	Operation: $C \leftarrow 0$ Syntax: CLC								
Operand:	None	Program Counter:	PC ← PC + 1						

16-Bit Opcod	e:									
		10	01	0100		10	000	10	000	
Status Regist	er (S	REG) B	G) Boolean Formula:							
		I	Т	Н	S	V	N	Z	С	
		_	_	_	_	_	_	_	0	
		С	0 Carry	Flag Cle	ared					
Formula			,							
Example:						<u> </u>				
	r0,r	c 0		r0 to						
clc			; Cl	ear c	arry	flag				
Words:	1 (2	Bytes)			Cycles	:		1		

CLH – Clear Half Carry Flag

Mnemonic:	Function:								
CLH	Clear Half Carry Flag								
Description:	n:								
Clears the	e Half Carry flag (H) in SREG	(status register).							
Operation:	$H \leftarrow 0$ Syntax: CLH								
Operand:	None	Program Counter:	PC ← PC + 1						

16-Bit Opcode:	16-Bit Opcode:										
	1001		0100		1101		10	00			
Status Register (SREG) Boolean Formula:											
	I	С									
	_	-	0	-	_	_	_	_			
	н	0									
		Half Carr	y Flag Cl	Cleared							
Example:											
clh ; Clear the Half Carry flag											
Words: 1	(2 Bytes)		С	ycles:		1	L				

CLI - Clear Global Interrupt Flag

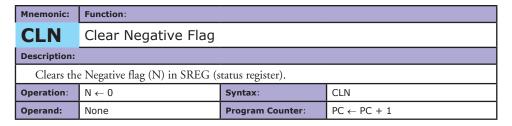
Mnemonic:	Function:									
CLI	Clear Global Interrupt Flag									
Description:	Description:									
Clears the	e Global Interrupt flag (I) in Sl	REG (status register).								
Operation:	Operation: I \leftarrow 0 Syntax: CLI									
Operand:	None	Program Counter:	PC ← PC + 1							

16-Bit Opcode	e:											
		1001 0100		00	1111		10	000				
Status Register (SREG) Boolean Formula:												
		I	Т	Н	S	V	N	Z	С			
		0	_	_	_	_	_	_	_			
	Ī		0									
		Н	Globa	l Interru	pt Flag Cleared							
Example:												
cli				;	Disab	le int	errupt	s				
in	r11	L,0x1	- 6	;	Read	d port	В					
sei				;	: Enal	ole in	nterr	upts				
Words:	1 (2	Bytes)			Cycles			1	•			

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

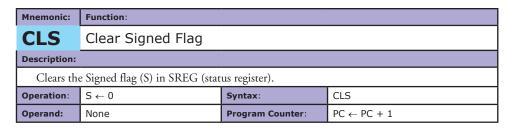

Branch Instructions

Data Transfer Instructions

CLN – Clear Negative Flag

16-Bit Opcod	e:									
		1001			00	1010		1000		
Status Register (SREG) Boolean Formula:										
	I T H S V N Z C									
	-	- [-	_	_	-	0	_	_	
		N 0								
			Negat	tive Flag	Cleared					
Example:	Example:									
add r2,r3 ; Add r3 to r2										
cln ; Clear negative flag										
Words:	1 (2 By	Bytes) Cycles: 1								

CLR - Clear Register


Mnemonic:	Function:	Function:									
CLR	Clear Register										
Description:											
1	Clears a register. This instruction performs an Exclusive OR between a register and itself. This will clear all bits in the register.										
Operation:	$Rd \leftarrow Rd \oplus Rd$	8									
Operand:	0 ≤ d ≤ 31	Program Counter:	PC ← PC + 1								

16-Bit Opcode	(see EOR R	d,Rd):										
	00	10	01	dd	dd	ldd	dddd]			
Status Register (SREG) Boolean Formula:												
	I T H S V N Z C											
	_	_	_	0	0	0	1	_]			
		0										
	S	Clear	ed									
	v	0										
		Clear 0	ed									
	N	Clear	ed									
		1	cu									
	Z	Set										
R (Result)	equals Rd a	after the	operatio	n.								
Example:												
clr ri loop	18 : inc r	18		; clear r18 ; increase r18								
cpi : brne	r18,0x5 loop	0		; Com	pare :	r18 t	o 0x5	0				
Words:	1 (2 Bytes)			Cycles			1					

CLS – Clear Signed Flag

16-Bit Opcode	16-Bit Opcode:											
		100)1	010	00	11	1100		00			
Status Regist	er (SR	r (SREG) Boolean Formula:										
	I T H S V N Z C											
		-	_	_	0	_	_	_	_			
		_ 0										
		S	Signe	d Flag Cl	eared	red						
Example:												
add r	2,r3 ; Add r3 to r2											
cls	cls ; Clear signed flag											
Words:	1 (2 B	Bytes)			Cycles		1	L				

CLT - Clear T Flag

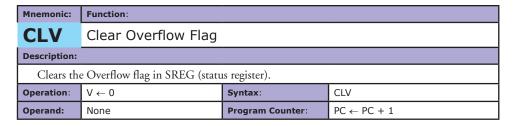
Mnemonic:	Function:								
CLT	Clear T Flag								
Description:									
Clears the	e T flag in SREG (status registe	er).							
Operation:	T ← 0	$T \leftarrow 0$ Syntax: CLT							
Operand:	None	Program Counter:	PC ← PC + 1						

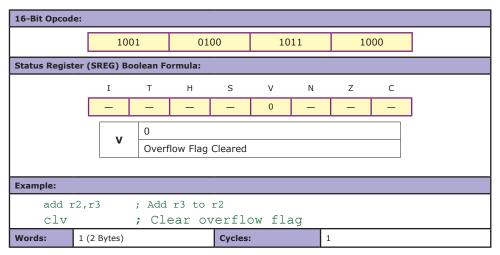
16-Bit Opcod	e:										
		1001		0100		1110		10	00		
Status Regist											
		I	Т	Н	S	V	N	Z	С		
		-	0	-	_	_	_	_	_	ı	
		Т									
Example:											
clt			; C	lear I	flaq	9					
Words:	1 (2	Bytes)			Cycles:			1			

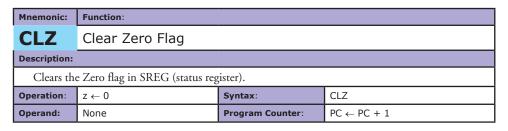
Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions


Branch Instructions

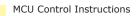

Data Transfer Instructions



CLV - Clear Overflow Flag

CLZ - Clear Zero Flag

16-Bit Opcode	e:									
		10	01	01	00	10	01	10	000	
Status Registe	Status Register (SREG) Boolean Formula:									
		I	Т	Н	S	V	N	Z	С	
		_	_	_	_	_	_	0	_	
	Z 0									
				Overflow Flag Cleared						
Example:										
add r	add r2,r3 ; Add r3 to r2									
clz	clz ; Clear zero									
Words:	1 (2	Bytes)			Cycles			1		·


COM – One's Complement

Mnemonic:	Function:							
COM	Clear Bits in Register							
Description:								
This instruction performs a one's complement of register Rd.								
Operation:	Rd ← 0xFF - Rd	Syntax:	COM Rd					
Operand:	$0 \le d \le 31$ Program Counter: $PC \leftarrow PC + 1$							

16-Bit Opcode:									
	100	1	01	L0d	do	ddd	00	000	
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	_	_	⇔	0	\Leftrightarrow	⇔	1	
_	S	I N A V	/ For sig	ned tests					_
	-	0	, i oi sig	neu tests					
	V	Clear	ed						
		R7							
	N	Set if	f MSB of						
	7	R7 •	R6 • R5						
		Set if	Set if the result is 0x00; cleared otherwise.						
	С	1							
		Set							
R (Result) equ	uals Rd a	fter the	operatio	n.					
Example:			•						
com r4		; Ta	ke on	e's c	omple	ment (of r4		
breq z	ero ; Branch if zero								
7870.	zero: nop ; Branch destination (do nothing)								
	2 Bytes)	, 101	ancn	Cycles		11 (00		1119/	

Functional Grouping Color Coding

CP – Compare

Mnemonic:	Function:						
CP	Compare						
Description:							
This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditional branches can be used after this instruction.							
Operation:	Rd - Rr	Syntax:	CP Rd,Rr				
Operand:	$0 \le d \le 31, 0 \le r \le 31$	Program Counter:	$PC \leftarrow PC + 1$				

16-Bit Opcode:										
	000	01 01rd		dddd		rrrr				
Status Register	Status Register (SREG) Boolean Formula:									
	I	т								
	_	_	⇔	⇔	⇔	⇔	⇔	⇔		
		<u>D42</u> .	D2 D	2 . D2 .	R3 • Rd.				_]	
	н				w from b		arod othe	orwico	_	
	s		For signe			iit 3, tied	area ourie	ei wise		
					• Rr7 • R	 7				
	v		wo's con							
		R7	7							
	N	Set if I	Set if MSB of the result is set; cleared otherwise.							
	Z	R7 • R	R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0							
		Set if t	he result	is 0x00	; cleared	otherwi	se.			
		Rd7 ●	Rr7 + Rr	7• R7 +	R7 • Rd7	7				
	С				e of the c of Rd; cl			arger		
R (Result) a	after the op	eration.								
Example:										
cp r4,r19 ; Compare r4 with r1					th r19	9				
brne	brne noteq			; Bra	nch if	fr4 <	<> r19	9		
	noteg: nop ; Branch destination (do :						no+h;na\			
_	: nop		-			estina 1		(ao	nothing)	
Words: 1	(2 Bytes)			Cycles		1				

CPC – Compare with Carry

Mnemonic: Function: **CPC** Compare with Carry Description: This instruction performs a compare between two registers Rd and Rr and also takes into account the previous carry. None of the registers are changed. All conditional branches can be used after this instruction. Operation: Rd - Rr - C CPC Rd,Rr Syntax: Operand: $0 \leq d \leq 31, \ 0 \leq r \leq 31$ **Program Counter:** $PC \leftarrow PC + 1$

16-Bit Opcode:									
	00	00	01	.rd	dd	dddd		rrrr	
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	_	⇔	⇔	⇔	⇔	\Leftrightarrow	⇔	
		Rd3 •	Rr3 + Rr	3 • R3 +	R3 • Rd	3			
	Н	Set if t	here was	s a borro	w from b	it 3; clea	red othe	erwise	
	S	N ⊕ V,	For sign	ed tests.					
		Rd7 •	Rd7 • R7	+ Rd7 •	Rr7 • R	7			
	V		Set if two's complement overflow resulted from the operation; cleared otherwise						
	N	N R7							
	IN .	Set if I	Set if MSB of the result is set; cleared otherwise.						
		R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0 • Z							
	Z		us value cleared o		unchang	hanged when the result is			
		Rd7 •	Rr7 + Rr	7• R7 +	R7 • Rd7	7			
	С		Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise						
R (Result) aft	ter the op	peration.							
Example:									
		; Coi	mpare	r3:r2	2 with	n r1:r	0		
cp r2	,r0	; Coi	mpare low byte						
cpc r3	cpc r3,r1 ; Compare high byte								
brne n	oteq	; Br	anch :	if not	t equa	al			

noteq: nop ; Branch destination (do nothing)

Cycles:

Functional Grouping Color Coding

Words:

1 (2 Bytes)

Arithmetic and Logic Instructions

MCU Control Instructions

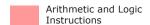
Branch Instructions

Data Transfer Instructions

CPI – Compare with Immediate

Mnemonic:	Function:							
CPI	Compare with Immediate							
Description:	ption:							
1	This instruction performs a compare between register Rd and a constant. The register is not changed. All conditional branches can be used after this instruction.							
Operation:	Rd - K	Syntax:	CPI Rd,K					
Operand:	$16 \le d \le 31, 0 \le K \le 255$	$\leq 31, 0 \leq K \leq 255$ Program Counter : PC \leftarrow PC + 1						

16-Bit Opcode:									
10-Bit Opcode:									
	001)11 KK		KK	dddd		Kk	KKK	
Chattan Baristan (CDEC) Bardena Farmuda									_
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	_	\Leftrightarrow	\Leftrightarrow	⇔	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	
		I 							_
	н		K3 + K3						
		Set if t	there was	s a borro	w from b	it 3; cle	eared other	erwise	
	S	N ⊕ V,	For sign	ed tests.					
		Rd7 •	Rd7 • R7	+ Rd7	Rr7 • R	7			
	V	Set if t	wo's con	nplemen	toverflov	v result	ed from t	he	
		operat	operation; cleared otherwise						
	N	R7							
	l N	Set if I	Set if MSB of the result is set; cleared otherwise.						
		R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0							
	Z	Previo	Previous value remains unchanged when the result is						
			cleared o						
		Rd7 ●	K7 + K7	R7 + R	7 • Rd7				
	С	Set if t	the absol	ute value	e of K is I	arger t	han the		
		absolu	te value	of Rd; cl	eared oth	nerwise			
D /D 1) C 1								
) after the op	eration.							
Example:									
cpi r19,3 ; Compare r19 with 3									
brne error ; Branch if r19<>3									
•••									
error: nop ; Branch destination (do nothing)									
Words:	1 (2 Bytes)			Cycles			1		
	•								



CPSE – Compare Skip if Equal

Mnemonic:	Function:						
CPSE	Compare Skip if Equal						
Description:							
This instruction performs a compare between two registers Rd and Rr, and skips the next instruction if Rd = Rr.							
Operation:	If Rd = Rr then PC \leftarrow PC + 2 (or 3) else PC \leftarrow PC + 1	CPSE Rd,Rr					
Operand:	$0 \le d \le 31, \ 0 \le r \le 31$	Program Counter:	$PC \leftarrow PC + 1$, Condition false - no skip $PC \leftarrow PC + 2$, Skip a one word instruction $PC \leftarrow PC + 3$, Skip a two word instruction				

16-Bit Opcod	16-Bit Opcode:								
	00	01	00	rd	dd	dd	r	rrr	
Status Regist	er (SREG) B	oolean Fo	rmula:						
	I	Т	Н	S	V	N	Z	С	
	_	-	_	_	_	_	_	_	
Example:									
cpse	<pre>inc r4 ; Increase r4 cpse r4,r0 ; Compare r4 to r0 neg r4 ; Only executed if r4<>r0 nop ; Continue (do nothing)</pre>								
Words:	1 (2 Bytes)			Cycles			1		

Functional Grouping Color Coding

Data Transfer Instructions

DEC - Decrement

Mnemonic:	Function:
DEC	Decrement
Description	

Subtracts one (1) from the contents of register Rd and places the result in the destination register Rd.

The C flag in SREG is not affected by the operation, thus allowing the DEC instruction to be used on a loop counter in multiple-precision computations.

When operating on unsigned values, only BREQ and BRNE branches can be expected to perform consistently. When operating on two's complement values, all signed branches are available.

Operation:	Rd ← Rd - 1	Syntax:	DEC Rd
Operand:	$0 \le d \le 31$	Program Counter:	$PC \leftarrow PC + 1$

16-Bit Opcode:										
	10	01	01	0d	dd	dd	10)10		
Status Register	(SREG) B	oolean F	ormula:							
	I	Т	Н	S	V	N	Z	С		
	_	_	_	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	-		
		$N \oplus V$								
	S	For signed tests.								
		R7 • R	.6 • R5 •	R4 • R3	• R2 • R	1 • R0				
	v	operat	ion; clea ow occurs	red other	rwise. Tw	o's com	ed from tl plement 30 before			
	N	R7								
		Set if	MSB of th	ne result	is set; cl	eared o	therwise.			
	z	R7 • R	.6 • R5 •	R4 • R3	• R2 • R	R2 • R1 • R0				
		Set if	the resul	t is 0x00	; Cleared	lotherw	ise			
R (Result) e	quals Rd	after the	operatio	n.						
Example:										
10	oop:				; Add	d r2	tant in to r1			
			loop		•		nt r1 if r1			
		nop	±00P		,			nothi	ng)	
Words: 1	(2 Bytes)			Cycles			1			

EICALL - Extended Indirect Call to Subroutine

Mnemonic: Function: **EICAL** Extended Indirect Call to a Subroutine Description: Indirect call of a subroutine pointed to by the Z (16 bits) Pointer Register in the Register File and the EIND Register in the I/O space. This instruction allows for indirect calls to the entire Program memory space. The Stack Pointer uses a post-decrement scheme during EICALL. $PC(15:0) \leftarrow Z(15:0)$ Operation: Syntax: **EICALL** $PC(21:16) \leftarrow EIND$ **Program Counter:** Stack Operand: None $\mathsf{STACK} \leftarrow \mathsf{PC} + 1$ Stack: $SP \leftarrow SP - 3(3 \text{ bytes, } 22 \text{ bits})$

16-Bit Opcode:									
	100	01	01	01	000	01	10	01	
Status Register	(SREG) B	oolean Fo	rmula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	-	_	
Example:									
ldi r16 out E1 ldi r3 ldi r3 eical1	IND,r1 30,0x0 31,0x1	0 (p EIND		-	er	
Words:	1 (2 B	Bytes)		Cycle	s:		4		

EIJMP - Extended Indirect Jump

Mnemonic:	Function:		
EIJMP	Extended Indirec	t Jump to an Ad	dress
Description:			
	Register in the I/O space. T		Register in the Register File or indirect jumps to the entire
Operation:	PC(15:0) ← Z(15:0) PC(21:16) ← EIND	Syntax:	EICALL
Onevend	None	Program Counter:	See Operation
Operand:	None	Stack:	Not Affected

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

16-Bit Opcode:								
	1001		0100		0001		10	01
Status Register	(SREG) B	oolean F	ormula:					
	I	Т	Н	S	V	N	Z	С
	_	_	_	_	_	_	_	_
Example:								
out El ldi ra ldi ra	ldi r16,0x05 ; Set up EIND and Z pointer out EIND,r16 ldi r30,0x00 ldi r31,0x10							
eijmp				; Jum	p to ()x051()00	
Words:	1 (2 8	Bytes)		Cycle	s:		2	

ELPM – Extended Load Program Memory

Mnemonic: Function:

ELPM

Extended Load Program Memory

Description:

Loads one byte pointed to by the Z register and the RAMPZ Register in the I/O space, and places this byte in the destination register Rd. This instruction features a 100% space effective constant initialization or constant data fetch. The Program memory is organized in 16-bit words while the Z pointer is a byte address. Thus, the least significant bit of the Z pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This instruction can address the entire Program memory space. The Z-pointer Register can either be left unchanged by the operation, or it can be incremented. The incrementation applies to the entire 24-bit concatenation of the RAMPZ and Z pointer Registers.

Devices with Self-Programming capability can use the ELPM instruction to read the Fuse and Lock bit value. Refer to the device documentation for a detailed description.

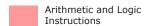
The result of these combinations is undefined:

ELPM r30, Z+

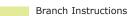
ELPM r31, Z+

Operation:	(i) R0 ← (RAMPZ:Z) ii) Rd ← (RAMPZ:Z)	Comments:	(i) RAMPZ:Z: Unchanged, RO implied destination register. (ii) RAMPZ:Z: Unchanged (iii) RAMPZ:Z: Post-incremented
	(iii) Rd ← (RAMPZ:Z) (RAMPZ:Z) ← (RAMPZ: Z) + 1	Syntax:	(i) ELPM (ii) ELPM Rd, Z (iii) ELPM Rd, Z+
Operand:	(i) None, RO Implied (ii) $0 \le d \le 31$ (iii) $0 \le d \le 31$	Program Counter:	 (i) PC ← PC + 1 (ii) PC ← PC + 1 (iii) PC ← PC + 1

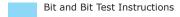
16-Bit Opcod	le:										
	(i)	10	01		0101		1101		1000		
	(ii)	10	01		000d		dddd		0110		
	(iii)	10	01		000d		dddd		0111		
Status Regist	ter (SR	EG) Boole	an Forn	nula:							
		I	Т	Н	S	V	N	Z	С		
			-	-	_	_	_	-			
Example:							'		'		
ldi ldi elpm Tabl	RAMP ZH,b ZL,b ir16,	Z,ZL yte2 (yte2 (Z+ ;	Table Table Load	- e_1<< cons ry po	(1) (1) stant pinted	from d to d	progr oy RAM	am PZ:Z	Point(Z is when ZI	r31	
· aw	0 37	J0							hen ZI		
Words:		1 (2 Bytes	5)		Cycle	es:		3			



EOR - Exclusive OR


Mnemonic:	Function:		
EOR	Exclusive OR		
Description:			
1	the logical EOR between the c he destination register Rd.	contents of register Rd a	and register Rr and places the
Operation:	$Rd \leftarrow Rd \oplus Rr$	Syntax:	EOR Rd,Rr
Operand:	$0 \leq d \leq 31,~0 \leq r \leq 31$	Program Counter:	PC ← PC + 1

16-Bit Opcode:											
	00	10	01	.rd	dd	dd	rr	rr			
Status Register	(SREG) B	oolean F	ormula:								
	I	Т	Н	S	V	N	Z	С			
	_	_	_	\Leftrightarrow	0	⇔	\Leftrightarrow	_			
	S	N ⊕ V	ned tests	•							
	v	0		5.							
		Cleared									
	N	Set if	MSB of th	ne result	is set; cl	eared otl	nerwise.				
	z	R7 • R	6 • R5 •	R4 • R3	• R2 • R	1 • R0					
		Set if	the result	t is 0x00	; Cleared	otherwi	se				
R (Result) e	quals Rd	after the	operation	n.							
Example:											
l	4,r4 ; 0,r22			exclu	ısive	or be	tween	r0 a	c		
Words: 1	(2 Bytes)			Cycles	:	1					


Functional Grouping Color Coding

FMUL – Fractional Multiply Unsigned

Mnemonic:	Function	:							
FMUL	Fractio	onal N	Multiply (Jnsig	ned				
Description:									
This instruct bit left.	ion perfor	ms 8-bi	$t \times 8$ -bit $\rightarrow 1$	6-bit u	ınsigned	multiplica	ation and	shifts th	e result one
Rd		_	Rr				R1		RO
Multiplic	and	Х	Multipli	er	Æ	Produ	ıct High	Pro	oduct Low
8			8					16	
	ndix point. format ((N nputs, resu tt to be in t the same n	A multi N1+N2). Ilting in the same umber o	plication between (Q1+Q2)). For a (2.14) format as the of cycles as M	ween two for sign that for the input UL.	vo numb al process he produ s. The FN	ers in the fising applic act. A left s MUL instr	formats (I cations, th shift is req ruction in	N1.Q1) ne format quired for corporat	and (N2.Q2) (1.7) is widely the high byte es the shift
	n. This inst signed mu t. Note: the s a number	truction ultiplicat e result o in the (is therefore noise the FMUL 1.15) format.	nost use oit inpu operat The M	eful for ca tts in the ion may s ISB of th	alculating (1.15) for suffer from the multiplication in the control of the contro	one of the mat, yield n a 2's cor cation be	e partial _l ling a res nplemen	products when ult in the at overflow if
The multiplic where the im the implicit r	plicit radix	point li	es between bi	it 6 and	bit 7. Tl	ne 16-bit i	ınsigned	fractiona	l product with
Operation:	R1:RO ← [Unsigned unsigned 1.7]	ed (1.5)		Synt	ax:		FMUL R	d,Rr	
Operand:	16 ≤ d ≤	23, 16	≤ r ≤ 23	Prog	ram Cou	nter:	PC ← P	C + 1	
46 87 0 1									
16-Bit Opcode:							'		1
	000	00	0011		0d	dd	1r	rr	
Status Register	(SREG) Bo	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
		_	-	-	-	_	⇔	⇔	
		R16							
	С	otherv					,		
	z	R6 • F	R14 • R13 • R5 • R4 • R3	• R2	R1 • R	0		7 •	
		Set if	the result is	UXUU;	Cleared	otnerwis	se		
R (Result) ed	quals R1, l	R0 after	the operation	n.					
Example:									
See Ex	xample	on	followi	ng p	age				

Cycles:

Words:

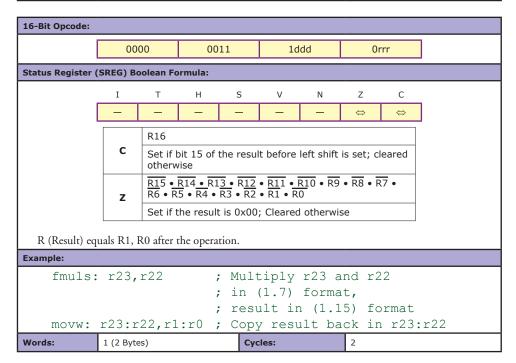
1 (2 Bytes)


```
Example:
; *DESCRIPTION
;* Signed fractional multiply of two 16-bit numbers
;* with 32-bit result.
; *USAGE
;* r19:r18:r17:r16 = ( r23:r22 * r21:r20 ) << 1
fmuls16x16 32:
   clrr2
   fmulsr23, r21 ; ((signed)ah * (signed)bh) << 1
   movwr19:r18, r1:r0
   fmulr22, r20
                      ;(al * bl) << 1
   adcr18, r2
   movwr17:r16, r1:r0
   fmulsur23, r20 ; ((signed)ah * bl) << 1
   sbcr19, r2
   addr17, r0
   adcr18, r1
   adcr19, r2
   fmulsur21, r22
                    ;((signed)bh * al) << 1
   sbcr19, r2
   addr17, r0
   adcr18, r1
   adcr19, r2
```

Functional Grouping Color Coding

- Arithmetic and Logic Instructions
- MCU Control Instructions
- **Branch Instructions**
- Data Transfer Instructions
- Bit and Bit Test Instructions

FMULS - Fractional Multiply Signed


Mnemonic: Function: **FMULS** Fractional Multiply Signed Description: This instruction performs 8-bit \times 8-bit \rightarrow 16-bit signed multiplication and shifts the result one bit Rd Rr R1 RO Multiplier Multiplicand Product High Χ Product Low 8

Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of the radix point. A multiplication between two numbers in the formats (N1.Q1) and (N2. Q2) results in the format ((N1+N2).(Q1+Q2)). For signal processing applications, the format (1.7) is widely used for the inputs, resulting in a (2.14) format for the product. A left shift is required for the high byte of the product to be in the same format as the inputs. The FMUL instruction incorporates the shift operation in the same number of cycles as MULS.

The multiplicand Rd and the multiplier Rr are two registers containing signed fractional numbers where the implicit radix point lies between bit 6 and bit 7. The 16-bit signed fractional product with the implicit radix point between bit 14 and bit 15 is placed in R1 (high byte) and R0 (low byte).

Note that when multiplying 0x80 (-1) with 0x80 (-1) the result of the shift operation is 0x8000 (-1). The shift operation thus gives two's complement overflow. This must be checked and handled by software.

Operation:	R1:R0 \leftarrow Rd \times Rr [Signed (1.5) \leftarrow signed (1.7) \times signed 1.7]	Syntax:	FMULS Rd,Rr
Operand:	16 ≤ d ≤ 23, 16 ≤ r ≤ 23	Program Counter:	PC ← PC + 1

FMULSU - Fractional Multiply Signed with Unsigned

Mnemonic:

Function:

FMULSU

Fractional Multiply Signed with Unsigned

Description:

This instruction performs 8-bit \times 8-bit \rightarrow 16-bit signed multiplication and shifts the result one bit

R1 RO Rd Rr Multiplicand Multiplier Product High X Product Low 8 8

Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of the radix point. A multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the format ((N1+N2).(Q1+Q2)). For signal processing applications, the format (1.7) is widely used for the inputs, resulting in a (2.14) format for the product. A left shift is required for the high byte of the product to be in the same format as the inputs. The FMULSU instruction incorporates the shift operation in the same number of cycles as MULSU.

The (1.7) format is most commonly used with signed numbers, while FMULSU performs a multiplication with one unsigned and one signed input. This instruction is therefore most useful for calculating two of the partial products when performing a signed multiplication with 16-bit inputs in the (1.15) format, yielding a result in the (1.31) format. Note: the result of the FMULSU operation may suffer from a 2's complement overflow if interpreted as a number in the (1.15) format. The MSB of the multiplication before shifting must be taken into account, and is found in the carry bit. See the following example.

The multiplicand Rd and the multiplier Rr are two registers containing fractional numbers where the implicit radix point lies between bit 6 and bit 7. The multiplicand Rd is a signed fractional number, and the multiplier Rr is an unsigned fractional number. The 16-bit signed fractional product with the implicit radix point between bit 14 and bit 15 is placed in R1 (high byte) and R0 (low byte).

Operation:	R1:R0 \leftarrow Rd \times Rr [Signed (1.5) \leftarrow signed (1.7) \times unsigned 1.7]	Syntax:	FMULSU Rd,Rr
Operand:	$16 \le d \le 23, \ 16 \le r \le 23$	Program Counter:	PC ← PC + 1

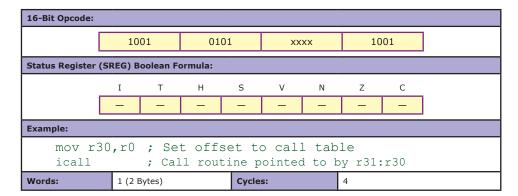
16-Bit Opcode:										
	0000		00	11	1d	dd	11	rrr		
Status Register	(SREG)	Boolean F	ormula:							
	I	Т	Н	S	V	N	Z	С		
	_	_	_	_	_	_	⇔	\Leftrightarrow		
		R16	<u> </u>							
	С		Set if bit 15 of the result before left shift is set; cleared otherwise							
	Z	R15 • R6 • R	<u>R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 •</u> R6 • R5 • R4 • R3 • R2 • R1 • R0							
		Set if	Set if the result is 0x00; Cleared otherwise							
R (Result) eq	uals R1	, R0 after	the opera	ition.						
Example:										
See Co	See Code Example on the following page									
Words:	1	(2 Bytes)			Cycles:		2			

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions


Data Transfer Instructions


```
; *DESCRIPTION
;* Signed fractional multiply of two 16-bit numbers
;* with 32-bit result.
; *USAGE
;* r19:r18:r17:r16 = ( r23:r22 * r21:r20 ) << 1
fmuls16x16 32:
   clrr2
   fmulsr23, r21 ; ((signed)ah * (signed)bh) << 1
   movwr19: r18, r1:r0
   fmulr22, r20
                      ;(al * bl) << 1
   adcr18, r2
   movwr17:r16, r1:r0
   fmulsur23, r20
                      ;((signed)ah * bl) << 1
   sbcr19, r2
   addr17, r0
   adcr18, r1
   adcr19, r2
   fmulsur21, r22
                     ;((signed)bh * al) << 1
   sbcr19, r2
   addr17, r0
   adcr18, r1
   adcr19, r2
```

ICALL - Indirect Call to Subroutine

Mnemonic:	Function:	Function:							
ICALL	Indirect Call to a	Indirect Call to a Subroutine							
Description:									
The Z pointer		l allows call to a subrou	r register in the register file. tine within the current 64K						
Operation:	$PC(15-0) \leftarrow Z(15-0)$	Syntax:	ICALL						
Program Counter: See Operation									
Operand:	None	Stack:	STACK \leftarrow PC + 1 SP \leftarrow SP - 3 (3 bytes, 22 bits)						

IJMP - Indirect Jump

Mnemonic:	Function:							
IJMP	Indirect Jump							
Description:								
The Z pointer	Indirect jump to the address pointed to by the Z (16 bits) pointer register in the register file. The Z pointer register is 16 bits wide and allows jump within the current 64K words (128K bytes) section of program memory.							
Operation:	PC(15-0) ← Z(15-0) PC(21-16) is unchanged	PC(15-0) ← Z(15-0) Suptov: IIMD						
Onevend	None	Program Counter:	See Operation					
Operand:	None	Stack:	Not Affected					

16-Bit Opcode:									
	1001		0100)	XXX	XXXX		1001	
Status Register	(SREG) B	oolean Fo	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	-	_	_	_	_	_	
Example:									
<pre>mov r30,r0 ; Set offset to jump table ijmp ; Jump to routine pointed to by r31:r30</pre>									
Words: 1 (2 Bytes)				Сус	les:		2		

IN - Load an I/O Location to Register

Mnemonic:	Function:							
IN	Load I/O Location To Register							
Description:								
Loads data from the register file.	1 '	ers, Configuration regi	sters, etc.) into register Rd in					
Operation:	$Rd \leftarrow I/O(P)$ Syntax: IN Rd,P							
Operand:	$0 \le d \le 31, \ 0 \le P \le 63$	Program Counter:	PC ← PC + 1					

16-Bit Opcode:									
	10)11	OF	PPd	dd	ldd	PF	PP	
Status Register	(SREG) E	Boolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	_	_	
Example:									
in r2	5,0x1	. 6		; Rea	d Por	t B			
cpi r2	25,4			; Com	pare	read v	value	to co	onstant
breq e	exit			; Bra	nch i	f r25=	=4		
exit: nop ; Branch destination (do nothing)							nothing)		
Words:	1 (2	Bytes)		Сус	les:		1		

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

INC - Increment

Mnemonic: Function: INC Increment

Description:

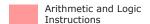
Adds one (1) to the contents of register Rd and places the result in the destination register Rd.

The C flag in SREG is not affected by the operation, thus allowing the INC instruction to be used on a loop counter in multiple-precision computations.

When operating on unsigned numbers, only BREQ and BRNE branches can be expected to perform consistently. When operating on two's complement values, all signed branches are available.

Operation:	$Rd \leftarrow Rd + 1$	Syntax:	INC Rd
Operand:	$0 \le d \le 31$	Program Counter:	PC ← PC + 1

16-Bit Opcode:	16-Bit Opcode:									
	10]								
Status Register (SREG) Boolean Formula:										
	I	Т	Н	S	V	N	Z	С	_	
	_	_	_	\Leftrightarrow	⇔	⇔	\Leftrightarrow	_		
	s	N ⊕ V								
		_	ned test		• R2 • R	1 • PO				
	v	Two's	omplem		flow occi	urs if and	only if F	Rd was		
	N	R7 Set if N	1SB of th	ne result	is set; c	leared oth	nerwise			
	_	R7 • R	6 • R5 •	R4 • R3	• R2 • R	1 • R0				
	Z	Set if t	he resul	t is 0x00	; Cleared	d otherwis	se			
R (Result) eq	uals Rd a	fter the o	peration							
Example:			1							
-	clr r22 ; clear r22 loop: inc r22 ; increment r22									
cpi r2	cpi r22,0x4F ; Compare r22 to 0x4f brne loop ; Branch if not equal									
Words:	1 (2 Byte	es)			cles:		1			



JMP – Jump


Mnemonic:	Function:							
JMP	Jump							
Description:								
Jump to an add	lress within the entire 4M (v	words) program memor	ry. See also RJMP.					
Operation:	PC ← k	Syntax:	JMP k					
Program Counter: PC ← k								
Operand:	0 ≤ k < 4M	Stack:	Unchanged					

32-Bit Opcode:	32-Bit Opcode:								
	10	01	01	0K	kk	kk	11	0k	
	kk	kk	kk	kk	kkkk		kkkk		
Status Register	(SREG) B	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	_	_	
xample:									
mov r1,r0 ; Copy r0 to r1 jmp farplc ; Unconditional jump									
	farplc: nop ; Jump destination (do nothing)								
Words: 2 (4 Bytes)					les:		3		

Functional Grouping Color Coding

LD - Load Indirect from SRAM to Register Using Index X

Mnemonic: Function: LD Load Indirect from SRAM to Register using Index X

Description:

Loads one byte indirect from SRAM, I/O location or register file to register. This memory location is pointed to by the X (16 bits) pointer register in the register file. Memory access is limited to the current SRAM, I/O location or register file page of 64K bytes.

The X pointer register can either be left unchanged by the operation, or it can be incremented or decremented. These features are especially suited for accessing arrays, tables and stack pointer usage of the X pointer register.

The results loaded by the following instructions are undefined:

ld r26, X+

ld r27, X+

ld r26, -X

ld r27, -X

	(i) $Rd \leftarrow (X)$	Comments:	(i) X: Unchanged (ii) X: Post-incremented (iii) X: Pre-decremented
Operation:	(ii) $Rd \leftarrow (X)$, $X \leftarrow X + 1$ (iii) $X \leftarrow X - 1$, $Rd \leftarrow (X)$	Syntax:	(i) LD Rd, X (ii) LD Rd, X+ (iii) LD Rd, -X
Operand:	(i) $0 \le d \le 31$ (ii) $0 \le d \le 31$ (iii) $0 \le d \le 31$	Program Counter:	(i) PC ← PC + 1 (ii) PC ← PC + 1 (iii) PC ← PC + 1

16-Bit Opcoo	le:									
	(i)	1001	000)d	dddd	1100				
	(ii)	1001	000)d	dddd	1101				
	(iii)	1001	000		dddd	1110				
	(111)	1001	000	, u	uuuu	1110				
Status Regis	ter (SR	EG) Boolean Form	ula:							
		I T	Н	S	V N	Z C				
			_ -	_						
Example:										
-				_						
	r27		;	; Clear X high byte						
ldi	r26,	,0x1F	;	Set X	low byte	e to 0x1F				
ld	r0,2	<+	; I	load	r0 with r	memory loc. 0x1F-				
				; R31(X post inc)						
ld	r1.X			; Load r1 with memory loc. 0x20-I/O loc.						
	,			: 0x00						
ldi	r26,0	x60	; S	et. X 1	ow byte to	0×60				
ld	•				-	ry loc. 0x60-SRAM loc.				
	,		; 0			1, 100. 01100 51411 100.				
1.4	, 3223									
Ια .	13, A		; Load r3 with memory loc. 0x5F-I/O loc.							
			; 0x3F(X pre dec)							
Words:	1 (2 B	vtes)		Cycles:		2				
	- (- 0	,,		3,0.001		I -				

LD (LDD) – Load Indirect from SRAM to Register Using Index Y

Mnemonic:

Function:

LD(LDD)

Load Indirect from SRAM to Register using Index Y

Description:

Loads one byte indirect with or without displacement from SRAM, I/O location or register file to register. The memory location is pointed to by the Y (16 bits) pointer register in the register file. Memory access is limited to the current SRAM, I/O location or register file page of 64K bytes.

The Y pointer register can either be left unchanged by the operation, or it can be incremented or decremented. These features are especially suited for accessing arrays, tables and stack pointer usage of the Y pointer register.

The results loaded by the following instructions are undefined:

ld r28, Y+

ld r29, Y+

ld r28, -Y

ld r29, -Y

			CONCINENT OF THE PROPERTY OF T
			(i) Y: Unchanged
Operation:			(ii) Y: Post-incremented
	(i) Rd ← (Y)	Comments:	(iii) Y: Pre-decremented
	(ii) $Rd \leftarrow (Y), Y \leftarrow Y + 1$		(iv) Y: Unchanged q: Displacement
	$(iii) Y \leftarrow Y - 1, Rd \leftarrow (Y)$		(i) LD Rd, Y
	(iv) Rd \leftarrow (Y+q)	Syntax:	(ii) LD Rd, Y+
		Sylicax.	(iii) LD Rd, -Y
			(iv) LDD Rd, Y=q
	(i) 0 ≤ d ≤ 31		(i) PC ← PC + 1
0	(ii) 0 ≤ d ≤ 31	Program	(ii) PC ← PC + 1
Operand:	(iii) 0 ≤ d ≤ 31	Counter:	(iii) PC ← PC + 1
	(iv) $0 \le d \le 31$, $0 \le q \le 63$		(iv) PC ← PC + 1

(i) 1001 000d dddd 1000 1001 000d dddd 1001 (ii) 1001 000d 1010 (iii) dddd 10q0 qq0d dddd 1qqq

Status Register (SREG) Boolean Formula:

I	Т	Н	S	V	N	Z	С
_	_	_	_	_	_	_	_

Example:

16-Bit Opcode:

clr r29 ;	Clear Y high byte
ldi r28,0x1F	; Set Y low byte to 0x1F
ld r0,Y+ ;	Load r0 with mem loc. 0x1F-R31 (Y post inc)
ld r1,Y ;	Load r1 with mem loc. 0x20-I/O loc. 0x00
ldi r28,0x60	; Set Y low byte to 0x60
ld r2,Y ;	Load r2 with mem loc. 0x60-SRAM loc. 0x60
ld r3,-Y ;	Load r3 with mem loc. 0x5F-I/O loc. 0x3F
	(Y pre dec)
ldd r4,Y+2 ;	Load r4 with mem loc. 0x61-SRAM loc. 0x61

Words: 1 (2 Bytes) **Cycles:** 2

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

LD (LDD) - Load Indirect from SRAM to Register Using Index Z

Mnemonic:

Function:

LD(LDD)

Load Indirect from SRAM to Register using Index Z

Description:

Loads one byte indirect with or without displacement from SRAM, I/O location or register file to register. The memory location is pointed to by the Z (16 bits) pointer register in the register file. Memory access is limited to the current SRAM, I/O location or register file page of 64K

The Z pointer register can either be left unchanged by the operation, or it can be incremented or decremented. These features are especially suited for accessing arrays, tables and stack pointer usage of the Z pointer register.

The results loaded by the following instructions are undefined:

ld r30, Z+

ld r31, Z+

ld r30, -Z

ld r31, -Z

			(i) Z: Unchanged
			(ii) Z: Post-incremented
	(i) Rd ← (Z)	Comments:	(iii) Z: Pre-decremented
Operation:	(ii) Rd \leftarrow (Z), Z \leftarrow Z + 1		(iv) Z: Unchanged q: Displacement
	(iii) $Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$		(i) LD Rd, Z
	(iv) Rd \leftarrow (Z+q)	Combons	(ii) LD Rd, Z+
		Syntax:	(iii) LD Rd, -Z
			(iv) LDD Rd, Z+q
	(i) 0 ≤ d ≤ 31		(i) PC ← PC + 1
Operand:	(ii) 0 ≤ d ≤ 31	Program	(ii) PC ← PC + 1
Operanu.	(iii) 0 ≤ d ≤ 31	Counter:	(iii) PC ← PC + 1
	(iv) $0 \le d \le 31$, $0 \le q \le 63$		(iv) PC ← PC + 1

6-Bit Opcode:	-Bit Opcode:								
(i)	1001	000d	dddd	0000					
(ii)	1001	000d	dddd	0001					
(iii	1001	000d	dddd	0010					
(iv) 10q0	qq0d	dddd	Одад					
tatus Pogistor (SPEG) Roolean Forn	nula:							

I	Т	Н	S	V	N	Z	С
_	_	_	_	_	_	_	_

Example:				
clr r29	; Clear Z hi	igh byte		
ldi r28,0	x1F ; Set Z low	byte to 0x1F	?	
ld r0,Z+	; Load r0 wi	ith mem loc. O	0x1F-R31 (Z post inc)	
ld r1,Z	; Load r1 wi	ith mem loc. O	0x20-I/O loc. 0x00	
ldi r28,0	x60 ;	Set Z low byte	te to 0x60	
ld r2,Z	; Load r2 wi	ith mem loc. 0	0x60-SRAM loc. 0x60	
ld r3,-Z	; Load r3 wi	ith mem loc. 0	0x5F-I/O loc. 0x3F	
	; (Z pre ded	,		
ldd r4,Z+	2 ; Load r4 wi	ith mem loc. O	0x61-SRAM loc. 0x61	
Words:	1 (2 Bytes)	Cycles:	2	

LDI – Load Immediate

Mnemonic:	Function:					
LDI	Load Immediate					
Description:	ption:					
Loads an 8-bit	constant directly to register	16 to 31.				
Operation:	Rd ← K	Syntax:	LDI Rd,K			
Operand:	$16 \le d \le 31, \ 0 \le K \le 255$	Program Counter:	PC ← PC + 1			

32-Bit Opcode:								
	11	10	KKKK		dddd		KKKK	
Status Register	(SREG) B	oolean Fo	ormula:					
	I	Т	Н	S	V	N	Z	С
	_	_	_	_	-		_	_
Example:								
clr r31 ; Clear Z high byte ldi r30,0xF0 ; Set Z low byte to 0xF0 lpm ; Load constant from program ; memory pointed to by Z								
Words:	1 (2 E	Bytes)		Сус	les:		1	

LDS - Load Direct from SRAM

Mnemonic:	Function:						
LDS	Load Direct From SRAM						
Description:							
access is limited	from the SRAM to a register. A to the current SRAM page of 6 er to access memory above 64K l	64K bytes. The LDS ins					
Operation:	$Rd \leftarrow K$	Syntax:	LDS Rd,K				
Operand:	$0 \le d \le 31, \ 0 \le k \le 65535$	Program Counter:	PC ← PC + 2				

32-Bit Opcode:									
	10	001	00	0d	dd	ldd	0	000	
	kk	kk	kk	kk	kk	kk	k	kkk	
Status Register	(SREG) E	Boolean F	ormula:						-
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	_	_	
Example:									
lds r	2,0xF	F00		; Loa	d r2 v	with t	the c	ontent	s of
				; SRA	M loca	ation	0xFF	0.0	
add ri	2,r1			; add	r1 to	or2			
sts 0:	xFF00	, r2		; Wri	te ba	ck			
Words:	2 (4	Bytes)			Cycles:		3		

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

LPM - Load Program Memory

Mnemonic: Function:

LPM Load Program Memory

Description:

Loads one byte pointed to by the Z register into the register Rd. This instruction features a 100% space effective constant initialization or constant data fetch. The program memory is organized in 16-bit words the Z pointer is a byte address. Thus, the LSB of the Z pointer selects the low byte (ZLSB = 0) or high byte (ZLSB = 1). This instruction can address the first 64K bytes (32K words) of program memory. The Z-pointer register can either be left unchanged by the operation or it can be incremented. The incrementation does not apply to the RAMPZ register.

Devices with Self-Programming capability can use the LPM instruction to read the Fuse and Lock bit values. Refer to the device documentation for a detailed description.

The result of these combinations is undefined:

LPM r30, Z+

LPM r31, Z+

	(i) R0 ← (Z)	Comments:	(i) Z: Unchanged, R0 implied destination register (ii) Z: Unchanged (iii) Z: Post-incremented
Operation:	(ii) $Rd \leftarrow (Z)$ (iii) $Rd \leftarrow (Z)$, $Z \leftarrow Z + 1$	Syntax:	(i) LPM (ii) LPM Rd, Z (iii) LPM Rd, Z+
Operand:	(i) None, R0 implied(ii) 0 ≤ d ≤ 31(iii) 0 ≤ d ≤ 31	Program Counter:	PC ← PC + 1

16-Bit Opcod	16-Bit Opcode:								
	(i)	1001	0101	1100	1000				
	(ii)	1001	000d	dddd	0100				
	(iii)	1001	000d	dddd	0101				

Status Register (SREG) Boolean Formula:

I	Т	Н	S	V	N	Z	С

Example:

```
ldi ZH, high (Table 1<<1) ; Initialize Z-pointer
   ldi Zl, low (Table 1<<1)
   lpm r16, Z ; Load constant from program
               ; memory pointed to by Z (r31:r30)
   Table 1:
   .dw 0x5876 ; 0x76 is addresses when ZLSB = 0
                ; 0x58 is addresses when ZLSB = 1
Words:
             1 (2 Bytes)
                                  Cycles:
                                            3
```


LSL - Logical Shift Left

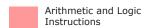
 Mnemonic:
 Function:

 LSL
 Logical Shift Left

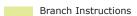
 Description:

 Shifts all bits in Rd one place to the left. Bit 0 is cleared. Bit 7 is loaded into the C flag of the SREG. This operation effectively multiplies unsigned value by two.

 Operation:
 $C \leftarrow b7...b0 \leftarrow 0$


 Syntax:
 LSL Rd

 Operand:
 $0 \le d \le 31$


 Program Counter:
 $PC \leftarrow PC + 1$

16-Bit Opcode:											
	000	00	11	dd	do	ldd	dd	ldd			
Status Register (SREG) Bo	oolean Fo	rmula:								
	I	Т	Н	S	V	N	Z	С			
	-	_	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow			
	Н	Rd3									
	S	N ⊕ V									
	3	For sig	ned test	S							
		N ⊕ C	(for N ar	nd C afte	r the shif	t)					
	V	Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift)									
	N	R7									
		Set if MSB of the result is set; cleared otherwise									
	z	R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0									
		Set if the result is 0x00; Cleared otherwise									
		Rd7									
	С	Set if, otherw		ne shift,	the MSB	of Rd wa	s set; cle	eared			
R (Result) equ	ials Rd a	fter the c	neration								
Example:	1410 TCI 4.	iter the c	Peration								
add r0	r1	• Ada	7 r/ 1	-0 r0							
lsl r0					oy 2						
Words:	1 (2 Byte	`			cles:		1				

Functional Grouping Color Coding

LSR – Logical Shift Right

Mnemonic:	Function:								
LSR	Logical Shift Right								
Description:	Description:								
SREG. This	Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is loaded into the C flag of the SREG. This operation effectively divides an unsigned value by two. The C flag can be used to round the result.								
Operation:									
Operand:	$0 \le d \le 31$ Program Counter: PC \leftarrow PC + 1								

16-Bit Opcode:										
	10	01	01	.0d	do	ldd	01	110		
Status Register (SREG) Bo	oolean Fo	rmula:							
	ī	т	Н	S	V	N		C		
	_				⋄	0	<u>∠</u>		1	
l										
	s	S N ⊕ V								
		For signed tests								
		$N \oplus C$ (for N and C after the shift)								
	V Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift)									
	N	0								
	z	R7 • R	6 • R5 •	R4 • R3	• R2 • R	1 • R0				
		Set if t	Set if the result is 0x00; Cleared otherwise							
		Rd0								
	С	Set if, otherw		ne shift, t	the LSB	of Rd was	s set; cle	eared		
R (Result) eq	uals Rd a	fter the o	peration							
Example:			1							
add r0		: Add	d r4 t	o rn						
lsr r0					2					
Words:	1 (2 Byte	es)		Сус	les:		1			

MOV - Copy Register

Mnemonic:	Function:									
MOV	Copy Register									
Description:	Description:									
	n makes a copy of one register ir ile the destination register Rd is									
Operation:	$Rd \leftarrow Rr$ Syntax: MOV Rd, Rr									
Operand:	$0 \le d \le 31, \ 0 \le r \le 31$ Program Counter: $PC \leftarrow PC + 1$									

32-Bit Opcode:								
	0010	11rd	dddd	rrrr]			
Status Register (SREG) Boolean Formula:								
	I T	H S	V N	Z C				
	- -]			
Example:								
mov r16,r0 ; Copy r0 to r16 call check ; Call subroutine check: cpi r16,0x11 ; Compare r16 to 0x11								
ret		; Ret	urn from s	ubroutine				
Words:	1 (2 Bytes)		Cycles:	1				

MOVW - Copy Register Word

```
Mnemonic:
                     Function:
MOVW
                     Copy Register Word
Description:
    This instruction makes a copy of one register pair into another register pair. The source register
   pair Rr+1:Rr is left unchanged, while the destination register pair Rd+1:Rd is loaded with a
   copy of Rr + 1:Rr.
Operation:
                     \mathsf{Rd} \, + \, 1 \mathpunct{:} \mathsf{Rd} \leftarrow \mathsf{Rr} \, + \, 1 \mathpunct{:} \mathsf{Rr}
                                                                  Syntax:
                                                                                          MOVW Rd+1:Rd,Rr+1Rr
Operand:
                     d \in \{0,2,...,30\}, \, r \in \{0,2,...,30\}
                                                                  Program Counter:
                                                                                          \mathsf{PC} \leftarrow \mathsf{PC} + 1
```

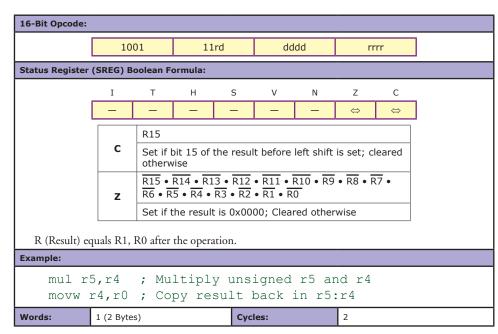
32-Bit Opcode:								
	0000 00		001	dddd		rrrr		
Status Register	(SREG) B	oolean F	ormula:					
	I	Т	Н	S	V	N	Z	С
	_	_	_	_	_	_	_	_
Example:								
	movw r17:16,r1:r0 call check			-	-	r0 to		16
check		r16,	0x11	; Com	pare	r16 t	o 0x11	L
cpi ri	•	32		; Com	pare	r17 t	o 0x32	2
ret	•			; Ret	urn f	from s	ubrout	ine
Words:	1 (2 Byt	es)			Cyc	es:	1	

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions


Data Transfer Instructions

MUL – Multiply Unsigned

Mnemonic:	Function:							
MUL	Multiply Uns	igned						
Description:								
This instruc	tion performs 8-bit	\times 8-bit \rightarrow 16-b	bit unsigne	d multip	lication.			
Rd								
Multiplic	and X	Multiplier	ight] ightarrow ightarrow	Produ	ıct High	Product Low		
8	8 16							
The 16-bit i multiplicand	The multiplicand Rd and the multiplier Rr are two registers containing unsigned numbers. The 16-bit unsigned product is placed in R1 (high byte) and R0 (low byte). Note that if the multiplicand or the multiplier is selected from R0 or R1 the result will overwrite those after multiplication.							
Operation:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					r		
Operand:	$0 \le d \le 31, \ 0 \le r \le 31$	31 Pro	ogram Cour	nter:	PC ← PC -	+ 1		

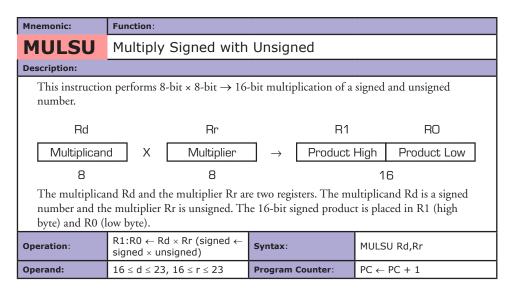


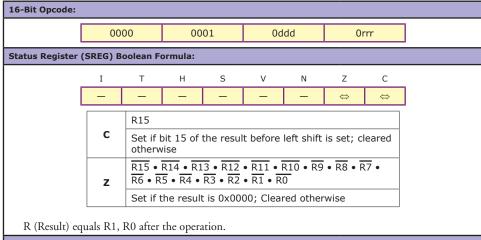
MULS – Multiply Signed

Mnemonic:	Function:										
MULS	Multiply S	igned									
Description:											
This instruc	tion performs 8	-bit × 8-bit →	16-bit si	igned	multiplic	ation.					
Rd		Rr			R	11	RO				
Multiplic	and X Multiplier → Product High Product Low										
8		8				10	6				
_	icand Rd and th d product is pla	_		-			ed numbers. The				
Operation:										R1:R0 \leftarrow Rd \times Rr (signed \leftarrow signed \times signed \times signed)	
Operand:	16 ≤ d ≤ 31, 10	5 ≤ r ≤ 31	Prograi	m Cou	inter:	PC ← PC	+ 1				

16-Bit Opcode:									
	0000		0010		dddd		rrrr		
Status Register	(SREG) B	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	\Leftrightarrow	\Leftrightarrow	
D (D 1)	c z	R15 Set if bit 15 of the result before left shift is set; cleared otherwise $ \frac{R15 \cdot R14 \cdot R13 \cdot R12 \cdot R11 \cdot R10 \cdot R9 \cdot R8 \cdot R7 \cdot R6 \cdot R5 \cdot R4 \cdot R3 \cdot R2 \cdot R1 \cdot R0}{R0 \cdot R5 \cdot R4 \cdot R3 \cdot R2 \cdot R1 \cdot R0} $ Set if the result is 0x0000; Cleared otherwise							
R (Result) ec	juals R1,	R0 after	the opera	ation.					
muls	muls r21,r20; Multiply signed r21 and r20 movw r20,r0; Copy result back in r21:r20								
Words:	1 (2 Bytes	s)		Сус	les:		2		

Functional Grouping Color Coding





MULSU - Multiply Signed with Unsigned

Example: ; * Description ;* Signed multiply of two 16-bit numbers with ;* 32-bit result. ; * Usage ;* r19:r18:r17:r16 = r23:r22 * r21:r20 muls16x16 32: clrr2 (signed) ah * (signed) bh mulsr23, r21; movwr19:r18, r1:r0 mulr22, r20; al * bl movwr17:r16, r1:r0 mulsur23, r20; (signed) ah * bl sbcr19, r2 addr17, r0 adcr18, r1 adcr19, r2 mulsur21, r22; (signed) bh * bl sbcr19, r2 addr17, r0 adcr18, r1 adcr19, r2

Cycles:

Words:

1 (2 Bytes)

2

NEG - Two's Complement

Mnemonic:	Function:								
NEG	Two's Complement								
Description:	Description:								
Replaces the	contents of register Rd with it	ts two's complement; th	ne value 0x80 is left unchanged						
Operation:	$Rd \leftarrow 0x00 - Rd$ Syntax: NEG Rd								
Operand:	$0 \leq d \leq 31$	Program Counter:	PC ← PC + 1						

16-Bit Opcode:										
	100	01	01	0d	dd	dd	0001			
Status Register ((SREG) B	oolean F	ormula:						_	
	I	т	Н	S	V	N	Z	С		
	_	_	⇔	⇔		⇔	⇔	⇔	1	
ı		D2 D	12						_	
	н	R3 • R			6 1-	:- 2l				
		Set if t	nere was	a borro	w from b	ort 3; ciea	area otne	rwise		
	s		nad tast							
			ned tests		• <u>P2</u> • <u>P</u>	1 • <u>P</u> 0				
	.,	$R7 \bullet \overline{R6} \bullet \overline{R5} \bullet \overline{R4} \bullet \overline{R3} \bullet \overline{R2} \bullet \overline{R1} \bullet \overline{R0}$ Set if there is a two's complement overflow from the								
	V	implied	implied subtraction from zero;							
		cleared otherwise.								
	N	R7 Set if MSB of the result is set; cleared otherwise								
							nerwise			
	Z	$\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is 0.00000. Cleaned attenuing								
		Set if the result is 0x0000; Cleared otherwise R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0								
							atraction	from		
	С		leared of		in the im	ipiieu sui	Duraction	110111		
		The C	flag will b	oe set in	all cases	except	when the	:		
		conten	ts of Reg	ister aft	er operat	ion is 0x	:00			
R (Result) eq	uals Rd a	fter the	operation	ı .						
Example:			•							
sub		r11,	r0	; Sub	tract	r0 f	rom rí	L1		
brpl		-	pos. ; Branch if result positive							
neg		r11	r11 ; Take two's complement of r11							
pos:		nop		; Bra	nch de	estina	ation	(do	nothing)	
Words:	1 (2 Byte:	s)		Сус	les:		1			

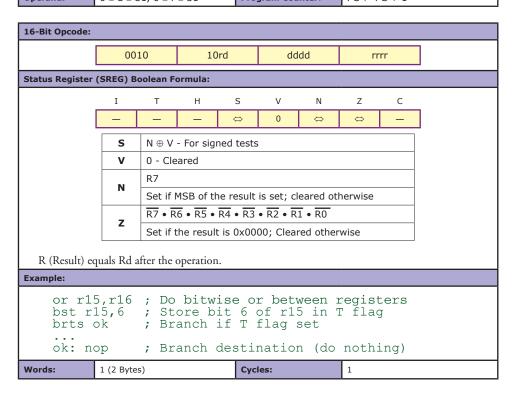
Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions


NOP - No Operation

Mnemonic:	Function:							
NOP	No Operation							
Description:								
This instruction performs a single cycle No Operation.								
Operation:	No Syntax: NOP							
Operand:	None Program Counter : $PC \leftarrow PC + 1$							

16-Bit Opcode:									
	0000		0000		0000		0000		
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	_	_	
Example:									
clr r16 ; Clear ser r17 ; Set r out 0x18,r16 ; Write nop ; Wait out 0x18,r17 ; Write						ros to nothi	ing)		
Words:	ords: 1 (2 Bytes)			Cycl	Cycles:				

OR - Logical OR

Mnemonic:	Function:								
OR	Logical OR								
Description:	Description:								
Performs the logical OR between the contents of register Rd and register Rr and places the result in the destination register Rd.									
Operation:	$Rd \leftarrow Rd \vee Rr$ Syntax: OR Rd,Rr								
Operand:	$0 \le d \le 31, \ 0 \le r \le 31$	Program Counter:	PC ← PC + 1						

ORI - Logical OR with Immediate

 Mnemonic:
 Function:

 ORI
 Logical OR with Immediate

 Description:

 Performs the logical OR between the contents of register Rd and a constant and places the result in the destination register Rd.

 Operation:
 Rd ← Rd v K
 Syntax:
 ORI Rd, K

 Operand:
 0 ≤ d ≤ 31, 0 ≤ K ≤ 31
 Program Counter:
 PC ← PC + 1

16-Bit Opcode:											
	0110		KKKK		dddd		KKKK				
Status Register (SREG) Boolean Formula:											
	I	Т	Н	S	V	N	Z	С			
	_	_	_	\Leftrightarrow	0	⇔	\Leftrightarrow	_			
	S	N ⊕ V	N ⊕ V - For signed tests								
	٧	0 - Cle	0 - Cleared								
	N	R7	R7								
	14		Set if MSB of the result is set; cleared otherwise								
	z	R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0									
	_	Set if the result is 0x0000; Cleared otherwise									
R (Result) equals Rd after the operation.											
Example:											
ori		r16,	0xF0		; Set	t high	n nibk	ole of	r16		
ori		r17,	1		; Set	t bit	0 of	r17			
Words:	1 (2 Bytes)			Cycl	les:		1				

OUT - Store Register to I/O Location

 Mnemonic:
 Function:

 OUT
 Store Register to I/O Location

 Description:

 Stores data from register Rr in the register file to I/O Space (Ports, Timers, Configuration registers etc.).

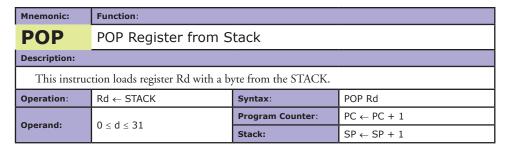
 Operation:
 $P \leftarrow Rr$ Syntax:
 OUT P,Rr

 Operand:
 $0 \le r \le 31$, $0 \le P \le 63$ Program Counter:
 $PC \leftarrow PC + 1$

Arithmetic and Logic Instructions MCU Control Instructions Branch Instructions Data Transfer Instructions

Bit and Bit Test Instructions

Functional Grouping


	1011		1PF	Pr	rrrr		PPPP			
Status Register (SREG) Boolean Formula:										
	I	Т	Н	S	V	N	Z	С		
	-	-	-	-	_	_	_	_		
Example:										
clr ri	clr r16 ; Clear r16									
ser ri	L7	; Se	t r17							
out 02	k18,r1	6	;	Wri	te ze:	ros to	o Port	В		
nop	; Wait (do nothing)									
out 02	k18,r1	7	;	Wri	te one	es to	Port	В		
Words:	1 (2 Bytes	5)		Сус	les:		1			
	. ,									

16-Bit Opcode:

POP - Pop Register from Stack

16-Bit Opcode:										
	1001		000d		dddd		1111			
Status Register	Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	٧	N	Z	С		
	_	_	_	_	_	_	_	_		
Example:										
call		rout	ine	; Cal	l sub	routi	ne			
routi	ne:	push push						the st		
		pop pop ret		r13 r14	; Re	store	r14	subrou	ıtine	
Words:	1 (2 Byte	es)		Сус	les:		2			

PUSH - Push Register on Stack

Mnemonic:	Function:								
PUSH	Push Register on Stack								
Description:									
This instruc	This instruction stores the contents of register Rr on the STACK.								
Operation:	STACK ← Rr	Syntax:	PUSH Rr						
Operand:	0 < r < 31	Program Counter:	PC ← PC + 1						
	0 2 1 2 21	Stack:	SP ← SP - 1						

16-Bit Opcode:									
	1001 0		d	dddd	1111				
Status Register	(SREG) Boolea	n Formula:							
	I T	Н	S	V N	Z C				
		_	-		- -				
Example:									
call	ro	utine ;	Call	subroutir	ne				
±					on the st				
	poj poj re	p r	14 ;	Restore Restore Return f		ıtine			
Words:	1 (2 Bytes)		Cycles	:	2				

RCALL - Relative Call to Subroutine

Mnemonic: Function: **RCALL** Relative Call to Subroutine Description: Stores data from register Rr in the register file to I/O Space (Ports, Timers, Configuration $\mathsf{PC} \leftarrow \mathsf{PC} + \mathsf{k} + \mathsf{1}$ RCALL k Operation: Syntax: $PC \leftarrow PC + k + 1$ **Program Counter:** Operand: $-2K \le k < 2K$ Stack: $\mathsf{STACK} \leftarrow \mathsf{PC} + 1,\, \mathsf{SP} \leftarrow \mathsf{SP}\text{-}3$

16-Bit Opcode:									
	1101		k	kkkk		kkkk			
Status Register	(SREG) E	Boolean Fo	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	-	-	
Example:									
rcall		rout	ine	; Cal	l subr	routi	ne		
routine: push		r14		; Sav	ve r1	4 on the	e st	ack	
pop ret			r14 ; Restore ; Return				brou	tine	
Words:	1 (2 Bytes)			Cyc	ycles: 3				

RET - Return from Subroutine

16-Bit Opcode:

Mnemonic:	Function:								
RET	Return From a Subroutine								
Description:									
Returns fror	Returns from subroutine. The return address is loaded from the STACK.								
Operation:	PC(21-0) ← STACK	Syntax:	RET						
Operandi	None	Program Counter:	See Operation						
Operand:	None	Stack:	SP ← SP+3						

TO DIE OPCOUC.									
	10	001	01	01	00	000	10	00	
tatus Register	(SREG) I	Boolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	_	_	
Example:									
call		rout	ine	; Cal	l sub	routi	ne		
routi	ne:	push		r14	,	ve r1	4 on	the st	ack
		pop ret		r14	,			subrou	ıtin
/ords:	1 (2 Byte	es)		Сус	les:		4		

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

RETI – Return from Interrupt

Mnemonic: Function: RETI

Return From Interrupt Description:

Returns from interrupt. The return address is loaded from the STACK and the global interrupt flag is set.

Note that the Status Register is not automatically stored when entering an interrupt routine and is not restored when returning from an interrupt routine. This must be handled by the application program. The Stack Pointer uses a pre-increment scheme during RETI.

Operation:	PC(21-0) ← STACK	$PC(21-0) \leftarrow STACK$ Syntax:			
Operand:	None	Program Counter:	See Operation		
	None	Stack:	SP ← SP+3		

16-Bit Opcode:											
	1001		0101		0001		1000				
Status Register	(SREG) B	oolean Fo	ormula:								
	I	Т	Н	S	V	N	Z	С			
	1	_	_	_	_	_	_	_			
	I	1, The	I flag is	set.							
Example:											
ex	tint:	push	r0	; Sav	e r0 c	on the	e stad	ck			
		pop reti	r0	; Res	tore r urn ar	nd ena	able i	inter	rupts		
Words:	1 (2 Bytes)			Сус	les:		4		·		

RJMP – Relative Jump

Mnemonic: Function:

RJMP Relative Jump

Description:

Relative jump to an address within PC - 2K and PC + 2K (words). In the assembler, labels are used instead of relative operands. For AVR microcontrollers with program memory not exceeding 4K words (8K bytes) this instruction can address the entire memory from every address location.

Operation:	$PC \leftarrow PC + k + 1$	Syntax:	RJMP k		
Onevend	-2K < k < 2K	Program Counter:	PC ← PC + k + 1		
Operand:	-2K ≤ K < 2K	Stack:	Unchanged		

16-Bit Opcode:									
	1100 kkkk			kkkk		kkkk]	
Status Register	(SREG) B	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	-	_	_	_	_	_]
Example:									
cpi r16,0x42 ; Compare r16 to 0x42 brne error ; Branch if r16 <> 0x42 rjmp ok ; Unconditional branch error: add r16,r17 ; Add r17 to r16 inc r16 ; Increment r16 ok: nop ; Destination for rjmp (do nothing)									
Words:	1 (2 Bytes)			Сус	les:	2			

ROL – Rotate Left Through Carry

Mnemonic: Function: ROL Rotate Left Through Carry Description: Shifts all bits in Rd one place to the left. The C flag is shifted into bit 0 of Rd. Bit 7 is shifted into the C flag. Operation: Syntax: ROL Rd C ← b7...b0 ← C $0 \leq d \leq 31$ $\mathsf{PC} \leftarrow \mathsf{PC} + 1$ Operand: **Program Counter:**

16-Bit Opcode:										
10-Bit Opcode:										
Ĺ	00	01	11	dd	dd	dd	dddd			
Status Register (SREG) B	oolean F	ormula:							
	I	Т	Н	S	V	N	Z	С		
	-	_	⇔	⇔	\Leftrightarrow	⇔	\Leftrightarrow	\Leftrightarrow		
_	н	Rd3	Rd3							
		N ⊕ V								
	S	For sig	ned tests	S						
		N ⊕ C	N ⊕ C (for N and C after the shift)							
	v		Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift)							
	N	R7								
		Set if MSB of the result is set; cleared otherwise								
	z	R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0								
			the result	t is 0x00	00; Clear	red other	wise			
		Rd7								
	С	Set if, otherv	before th	ne shift, t	the MSB	of Rd wa	s set; cl	eared		
R (Result) eq	uals Rd a	after the	operation	ı .						
Example:										
rol r1	6	; Ro	tate !	left						
brcs		oneenc ; Branch if carry set								
oneenc		;Bra	nch de	estina	ation	(do 1	nothi	ng)		
Words:	1 (2 Byte	s)		Сус	les:		1			

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

ROR – Rotate Right Through Carry

Mnemonic:	Function:								
ROR	Rotate Right Through Carry								
Description:									
l	Shifts all bits in Rd one place to the right. The C flag is shifted into bit 7 of Rd. Bit 0 is shifted into the C flag.								
Operation:	$ \begin{array}{c} \rightarrow\\ C \rightarrow b7b0 \rightarrow C \end{array} $	Syntax: ROR Rd							
Operand:	$0 \le d \le 31$ Program Counter: $PC \leftarrow PC + 1$								

16-Bit Opcode:									
	000	01	01	0d	dddd		0111		1
Status Register ((SREG) B	oolean F	ormula:						<u></u>
	I	т	Н	S	V	N	Z	С	
	_	_	_	\Leftrightarrow	⇔	\Leftrightarrow	⇔	⇔	
		N ⊕ V							_
	S		ned test	 S					
		N ⊕ C	(for N ar	nd C afte	r the shif	ft)			
	v		Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the						
	N	R7							
		Set if MSB of the result is set; cleared otherwise							
	z	R7 • R	R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0						
		_	Set if the result is 0x0000; Cleared otherwise						
		Rd7	Rd7						
	С	Set if, otherw		ne shift,	the MSB	of Rd wa	s set; cl	eared	
R (Result) eq	uals Rd a	after the	operation	1.					•
Example:									
ror r1	.5	; Ro	tate	left					
brcc		zero	enc	; Bra	nch i	f car	ry se	t	
	<pre>oneenc:nop ;Branch destination (do nothing)</pre>								
Words:	1 (2 Byte	s)		Сус	les:		1		

SBC - Subtract with Carry

Mnemonic: Function: **SBC** Subtract with Carry Description: Subtracts two registers and subtracts with the C flag and places the result in the destination Operation: $Rd \leftarrow Rd - Rr - C$ Syntax: SBC Rd,Rr $PC \leftarrow PC + 1$ $0 \leq d \leq 31, \ 0 \leq r \leq 31$ Operand: **Program Counter:**

16-Bit Opcode:										
	000	00	10	rd	dddd		rrrr			
Status Register ((SREG) B	oolean F	ormula:						_	
-	I	т	Н	S	V	N	Z	С		
1	_			⇔	, \	0	0	0	1	
ı									_	
	н				R3 • Rd					
		_	here was	a borro	w from b	it 3; clea	red othe	erwise		
	S	N ⊕ V								
			ned tests		Rr7 • R7	7				
	v	- 107					d from th	10		
			Set if two's complement overflow resulted from the operation; cleared otherwise R7 Set if MSB of the result is set; cleared otherwise							
	N	R7								
	IN .									
		R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0 • Z								
	Z		Previous value remains unchanged when the result is zero; cleared otherwise							
		Rd7 •	Rr7 + Rr	7 • R7 +	- R7 • Rd	7				
	С	previo		is larger	e of the o than the					
R (Result) eq	uals Rd a	ıfter the	operation	1.						
Example:										
									_	
2	h 202	70 O			tract			n r3:	r2	
	b r2, c r3,				tract		_	z bia	h byte)	
				, bub	LIACL	vv ⊥ ∪11	Carry	y 1119	II DYCE,	
Words:	1 (2 Bytes	s)		Сус	les:		1			

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

SBCI – Subtract Immediate with Carry

Mnemonic:	Function:						
SBCI	Subtract Immediate with Carry						
Description:							
Subtracts a constant from a register and subtracts with the C flag and places the result in the destination register Rd.							
Operation:	$Rd \leftarrow Rd - K - C$	Syntax:	SBCI Rd,k				
Operand:	$0 \le d \le 31, \ 0 \le r \le 31$ Program Counter: $PC \leftarrow PC + 1$						

16-Bit Opcode:	16-Bit Opcode:								
	010	00	KK	KK	dddd		KKKK		1
Status Register	(SREG) Re	nolean Fo	ormula						
Status Register					.,				
l ,	I	Т	Н	S	V	N	Z	С	1
l			\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	J
	н	Rd3 ∙	Rr3 + Rr	3 • R3 +	R3 • Rd3	3			
		Set if t	here was	a borro	w from b	it 3; clea	ared other	erwise	
	s	N ⊕ V							
		_	ned tests						
		Rd7 •	Rr7 • R7	+ Rd7 •	Rr7 • R7	,			
	V		Set if two's complement overflow resulted from the operation; cleared otherwise						
	N	R7							
		Set if MSB of the result is set; cleared otherwise							
		R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0 • Z							
	Z		us value cleared of		unchang	ed when	the resu	ılt is	
		Rd7 •	Rr7 + Rr	7 • R7 +	R7 • Rd	7			
	С	previou		s larger	e of the c than the				
R (Result) eq	uals Rd a	fter the	operation						
Example:									
				; Sub	tract	0x4F2	23 fr	om r1	7:r16
subi r	,				tract		_		
sbci r	17,0x	:4F		; Sub	tract	with	carr	y hig	h byte
Words:	1 (2 Bytes	s)		Сус	les:		1		

SBI - Set Bit in I/O Register

Mnemonic:	Function:							
SBI	Set Bit in I/O Register							
Description:	Description:							
1 ^	Sets a specified bit in an I/O register. This instruction operates on the lower 32 I/O registers – addresses 0-31.							
Operation:	$I/O(P,b) \leftarrow 1$ Syntax: SBI P,b							
Operand:	$0 \le P \le 31, \ 0 \le b \le 7$	Program Counter:	C ← PC + 1					

16-Bit Opcode:								
	1001	1010	PPPP	Pbbb				
Status Register	Status Register (SREG) Boolean Formula:							
	I T	H S	V N	Z C				
Example:								
out	0x1E,r0	; Wri	te EEPROM a	address				
sbi	0x1C,0	; Set	Set read bit in EECR					
in	r1,0x1D							
Words:	1 (2 Bytes)	Сус	les:	2	·			

SBIC - Skip if Bit in I/O Register is Cleared

Mnemonic:	Function:							
SBIC	Skip if Bit in I/O Register is Cleared							
Description:								
l	This instruction tests a single bit in an I/O register and skips the next instruction if the bit is cleared. This instruction operates on the lower 32 I/O registers – addresses 0-31.							
Operation:	If $I/O(P,b) = 0$ then $PC \leftarrow PC + 2$ (or 3) else $PC \leftarrow PC + 1$							
Operand:	$0 \le P \le 31, \ 0 \le b \le 7$	Program Counter:	PC \leftarrow PC + 1, If condition is false, no skip. PC \leftarrow PC + 2, If next instruction is one word. PC \leftarrow PC + 3, If next instruction is JMP or CALL					

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

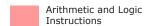
Data Transfer Instructions

16-Bit Opcode:								
	1001	1001	PPPP	Pbbb				
Status Register (SREG) Boolean Formula:								
	I T	H S	V N	Z C				
Example:								
e2wai	t: sbic0x1	C,1 ; Sk	ip next ins					
	rjmp	e2wait	; EEPROM w	rite not fir	nished			
	nop		; Continue	(do nothing	1)			
Words:	1 (2 Bytes)	C)	/cles:	1 if condition is false (no skip), 2 if condition is true (skip is executed)				

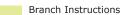
SBIS - Skip if Bit in I/O Register is Set

Mnemonic:	Function:							
SBIS	Skip if Bit in I/O Register is Set							
Description:								
This instruction tests a single bit in an I/O register and skips the next instruction if the bit is set. This instruction operates on the lower 32 I/O registers – addresses 0-31.								
Operation:	If $I/O(P,b) = 0$ then PC \leftarrow PC + 2 (or 3) else PC \leftarrow PC + 1 Syntax: SBIC P,b							
Operand:	$0 \le P \le 31, \ 0 \le b \le 7$	Program Counter:	PC \leftarrow PC + 1, If condition is false, no skip. PC \leftarrow PC + 2, If next instruction is one word. PC \leftarrow PC + 3, If next instruction is JMP or CALL					

16-Bit Opcode:	16-Bit Opcode:								
	1001	1011		PPPP		Pbbb			
Status Register (SREG) Boolean Formula:									
	I T	Н	S	V	N	Z	С		
			-	_	_	_	_]	
Example:	Example:								
waits	et: sbis 0:	x10,0			ip nez Port			bit 0	
rj	jmp waitset	:	;	Вi	t not	set			
no	p		;	Со	ntinu	e (do	noth	ing)	
Words:	1 (2 Bytes)	Cycles	:			ndition is	false (no skip), true (skip is		



SBIW - Subtract Immediate from Word


Mnemonic:	Function:							
SBIW	Subtract Immediate From Word							
Description:	Description:							
pair. This in	Subtracts an immediate value (0-63) from a register pair and places the result in the register pair. This instruction operates on the upper four register pairs, and is well suited for operations on the pointer registers.							
Operation:	Rd+1:Rd ← Rd+1:Rd - K	$Rd+1:Rd \leftarrow Rd+1:Rd - K$ Syntax: SBIW Rdl,K						
Operand:	$d \in \{24,26,28,30\}, \ 0 \le K \le 63$	\in {24,26,28,30}, 0 ≤ K ≤ 63 Program Counter : PC ← PC + 1						

16-Bit Opcode:									
	100	01	01	11	KK	(dd	KKKK		1
Status Register ((SREG) B	oolean F	ormula:						
The state of the s	I T H S V N Z C								
l ,	1	'	П	\$	v ⇔	IN ⇔	⇔	φ	1
l l	_								J
		N ⊕ V							
	S	For sig	ned test	s					
		Rdh7	R15						
	V	1	et if two's complement overflow resulted from the peration; cleared otherwise						
		N R15 Set if MSB of the result is set; cleared otherwise $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	N								
	Z								
		Set if t	he resul	t is 0x00	00; clear	ed other	wise		
		R15 •	Rdh7						
	С				e of K is eared otl		an the		
R (Result) ec	uals Rdh	: Rdl afi	er the or	peration	(Rdh7-R	dh0 = R1	5-R8, Rd	l7-Rdl0=1	R7-R0)
Example:			1				·		
sbiw r	,							ıter(r	29:r28)
Words:	1 (2 Byte:	s)			Cycles:		2		

Functional Grouping Color Coding

Data Transfer Instructions

SBR – Set Bits in Register

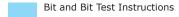
Mnemonic:	Function:		
SBR	Set Bits in Register		
Description:			
	d bits in register Rd. Performs ant mask K and places the resul		
Operation:	$Rd \leftarrow Rd \vee K$	Syntax:	SBR Rd, K
Operand:	$16 \le d \le 31, \ 0 \le K \le 255$	Program Counter:	PC ← PC + 1

16-Bit Opcode:									
	01	0110 KKKK dddd KKKK							
Status Register	(SREG) B	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	⇔	0	\Leftrightarrow	⇔	_	
	S	N ⊕ V	- For sig	ned tests	5				
	V	0 - Cle	ared						
	N	R7							
	N	Set if	MSB of th	ne result	is set; cl	eared ot	herwise		
	z	R7 • R	6 • R5 •	R4 • R3	• R2 • R	1 • R0			
		Set if	he resul	t is 0x00	; Cleared	lotherwi	se		
R (Result) eq	juals Rd a	after the	operation	1.					
Example:									
sbr 1	r16,3			; Set	bits	0 and	d 1 in	n r16	
sbr 1	r17,0x	xF0		; Set	4 MSI	B in :	r17		
Words:	1 (2 Byte	s)		Сус	les:		1		

SBRC - Skip if Bit in Register is Cleared

Mnemonic:	Function:		
SBRC	Skip if Bit in Registe	r is Cleared	
Description:			
This instruc	tion tests a single bit in a regist	ter and skips the next is	nstruction if the bit is cleared.
Operation:	If $Rr(b) = 0$ then $PC \leftarrow PC + 2$ (or 3) else $PC \leftarrow PC + 1$	Syntax:	SBRC Rr,b
Operand:	$0 \le r \le 31, \ 0 \le b \le 7$	Program Counter:	$PC \leftarrow PC + 1$, Condition false, no skip $PC \leftarrow PC + 2$, Skip a one word instruction $PC \leftarrow PC + 3$, Skip a two work instruction

16-Bit Opcode:								
	1111	110r		rr	rr	0bl	bb	
Status Register	(SREG) Boolea	n Formula:						
	I T	Н	S	V	N	Z	С	
		_	-	_	_	_	_	
Example:								
sbrc	r0,7 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Subtract Skip if b Only exec Continue	it ' ute	7 in 1 d if 1	r0 cle) not	cleared
Words:	1 (2 Bytes)		Cycl	es:		2 if con execute skipped 3 If cor execute	idition is ed) and t I is 1 wo	true (skip is the instruction


Functional Grouping Color Coding

SBRS - Skip if Bit in Register is Set

Mnemonic:	Function:		
SBRS	Skip if Bit in Registe	r is Set	
Description:			
This instru	ction tests a single bit in a regis	ter and skips the next is	nstruction if the bit is cleared.
Operation:	If Rr(b) = 1 then PC \leftarrow PC + 2 (or 3) else PC \leftarrow PC + 1	Syntax:	SBRS Rr,b
Operand:	$0 \le r \le 31, \ 0 \le b \le 7$	Program Counter:	$PC \leftarrow PC + 1$ condition false - no skip $PC \leftarrow PC + 2$ skip a one word instruction $PC \leftarrow PC + 3$ skip a JMP or a CALL

16-Bit Opcode:					
	1111	111r	rrrr	0bbb	
Status Register	(SREG) Boolean F	ormula:			
	I T	H S	V N	Z C	
Example:					
l		o if bit 7	in r0 set if bit 7 in	r0 not s	set
Words:	1 (2 Bytes)	Сус	les:	1 if condition is 2 if condition is executed)	(17

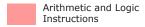
SEC – Set Carry Flag

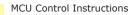
Mnemonic:	Function:		
SEC	Set Carry Flag		
Description:			
Sets the Car	ry flag (C) in SREG (status reg	gister).	
Operation:	C ← 1	Syntax:	SEC
Operand:	None	Program Counter:	PC ← PC + 1

16-Bit Opcode:								
	10	01	01	.00	00	000	10	000
Status Register	(SREG) B	oolean F	ormula:					
	I	Т	Н	S	V	N	Z	С
	_	_	_	_	_	_	_	1
	С	1 - Ca	rry Flag s	Set				
Example:								
sec adc		r0,r			carry r0+r1	_	3	
Words:	1 (2 Byte	es)		Сус	les:		1	

SEH - Set Half Carry Flag

Mnemonic:	Function:		
SEH	Set Half Carry Flag		
Description:			
Sets the Ha	lf Carry flag (C) in SREG (stat	us register).	
Operation:	H ← 1	Syntax:	SEH
Operand:	None	Program Counter:	PC ← PC + 1

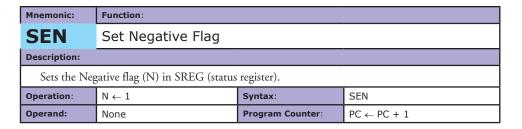

16-Bit Opcode:									
	10	01	010	0	01	01	10	00]
Status Register	(SREG) B	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	1	_	_	_	_	_	
	Н	1 - Ha	f Carry Fla	ag Set					-
Example:									
seh		; Se	t half	car	ry fla	ag			
Words:	1 (2 Byte	es)		Cyc	les:		1		


SEI - Set Global Interrupt Flag

Mnemonic:	Function:		
SEI	Set Global Interrupt	Flag	
Description:			
Sets the Hal	f Carry flag (C) in SREG (stat	us register).	
Operation:	I ← 1	Syntax:	SEI
Operand:	None	Program Counter:	PC ← PC + 1

16-Bit Opcode:		16-Bit Opcode:								
	10	1001 0100 0111 1000								
Status Register	(SREG) B	oolean F	ormula:							
	I	Т	Н	S	V	N	Z	С		
	1	_	_	_	_	_	_	_		
	I	1 - Glo	bal Inter	rupt Fla	g Set					
Example:										
cli ; Disable interrupts in r13,0x16 ; Read Port B sei ; Enable interrupts										
Words:	1 (2 Byte	es)		Сус	les:		1			

Functional Grouping Color Coding


Branch Instructions

Data Transfer Instructions

SEN – Set Negative Flag

16-Bit Opcode:									
	10	01	010	00	001	10	10	00	
Status Register	(SREG) B	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	1	_	_	
	N	1 - Ne	gative Fla	g Set					
Example:									
add r	2,r19	; Ad	d r19	to r	2				
sen		; Se	t nega	ative	flag				
Words:	1 (2 Byte	s)		Сус	les:		1		

SER - Set All Bits in Register

Mnemonic:	Function:		
SER	Set All Bits in Regist	er	
Description:			
Load 0xFF	directly into Register Rd		
Operation:	Rd ← 0xFF	Syntax:	SER
Operand:	None	Program Counter:	PC ← PC + 1

16-Bit Opcode):				
	1110	1111	dddd	1111	
Status Registe	er (SREG) Boolean	Formula:			
	I T	H S	V N	Z C	
Example:					
clr	r16 ; C	lear r16			
ser	r17	; Set	r17		
out	0x18,r16	; Wri	te zeros to	o Port B	
nop		; Del	ay (do notl	ning)	
out	0x18,r17	; Wri	te ones to	Port B	
Words:	1 (2 Bytes)	Сус	les:	1	

SES – Set Signed Flag

Mnemonic:	Function:		
SES	Set Signed Flag		
Description:			
Sets the Sign	ned flag (S) in SREG (status re	gister).	
Operation:	S ← 1	Syntax:	SES
Operand:	None	Program Counter:	PC ← PC + 1

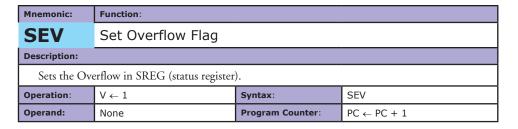
16-Bit Opcode:									
	10	01	010	00	01	00	10	00	
Status Register	(SREG) B	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	-	1	_	_	_	_	
	S	1 - Sig	ned Flag	Set					
Example:									
add r	2,r19	; Ad	d r19	to r	2				
ses		; Se	t Sigr	ned fi	lag				
Words:	1 (2 Byte	es)		Cycl	les:		1		

SET – Set T Flag

Mnemonic:	Function:		
SET	Set T Flag		
Description:			
Sets the T ir	n SREG (status register).		
Operation:	T ← 1	Syntax:	SET
Operand:	None	Program Counter:	PC ← PC + 1

16-Bit Opcode:					
	1001	0100	0110	1000	
Status Register	(SREG) Boolean I	ormula:			
	I T	H S	V N	Z C	
	- 1				
	T 1 - T	Flag Set			
Example:					
set	; Se	et T flag			
Words:	1 (2 Bytes)	Сус	les:	1	·

Functional Grouping Color Coding



Data Transfer Instructions

SEV – Set Overflow Flag

16-Bit Opcode:									
	10	01	010	00	00	11	10	00	
Status Register	(SREG) B	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	1	_	_	_	
	V	1 - Ov	erflow Fla	ıg Set					
Example:									
add r	2,r19	; Ad	d r19	to r	2				
sev		; Se	t ove	flow	flag				
Words:	1 (2 Byte	s)		Сус	les:		1		

SEZ – Set Zero Flag

Mnemonic:	Function:		
SEZ	Set Zero Flag		
Description:			
Sets the Zer	o Flag in SREG (status register).	
Operation:	Z ← 1	Syntax:	SEZ
Operand:	None	Program Counter:	PC ← PC + 1

16-Bit Opcode:									
	100	1	010	00	00	001	10	000	
Status Register	(SREG) Bo	olean Fo	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	-	-	-	_	_	1	_	
	V	1 - Ov	erflow Fla	g Set					
Example:									
add r	2,r19	; Ad	d r19	to r	2				
sez		; Se	t zero	flag	3				
Words:	1 (2 Bytes)		Cycl	les:		1		

SLEEP

Mnemonic:	Function:		
SLEEP	Sleep Mode		
Description:			
	ction sets the circuit in sleep mo mentation for detailed descript		U control register. Refer to the
Operation:	See Description	Syntax:	SLEEP
Operand:	None	Program Counter:	PC ← PC + 1

16-Bit Opcode:									
	10	01	010	01	1000		1000		
Status Register	(SREG) B	oolean F	ormula:						
	I	Т	Н	S	V	N	Z	С	
	_	_	_	_	_	_	_	_	
Example:									
mov r	•								
sleep		; Pu	t MCU	in s	leep 1	mode			
Words:	1 (2 Byte	es)		Сус	les:		1		

SPM – Store Program Memory

Note: R1 determines the instruction high byte, and R0 determines the instruction low byte.

Mnemonic: Function: **SPM** Store Program Memory Description: To erase and /or write to FLASH (Code Space). Reference M3000 Manual Section 9: Instruction Memory Programming. (ii) $(RAMPZ:Z) \leftarrow R1:R0$ Write Program Memory Word (iii) (RAMPZ:Z) \leftarrow R1:R0 Write Temporary Page Buffer Operation: (iv) $(RAMPZ:Z) \leftarrow TEMP$ Write Temporary Page Buffer to Program Memory Syntax: SPM Operand: None **Program Counter:** $\mathsf{PC} \leftarrow \mathsf{PC} + 1$

16-Bit Opcode:										
	10									
Status Register (SREG) Boolean Formula:										
	I	Т	Н	S	V	N	Z	С		
Example:	Example:									
See Following Page for Examples										
Words:	1 (2 Byte	s)		Сус	les:		Depen	ds on Op	eration	

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

ST - Store Indirect from Register to Data Space Using Index X

Mnemonic: Function:

ST

Store Indirect From Register to Data Space Using Index X

Description:

Stores one byte indirect from a register to data space. For parts with SRAM, the data space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the Register File only. The EEPROM has a separate address space.

The data location is pointed to by the X (16 bits) Pointer Register in the Register File. Memory access is limited to the current data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the RAMPX in register in the I/O area has to be changed.

The X pointer Register can either be left unchanged by the operation, or it can be postincremented or pre-decremented. These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the X pointer Register. Note that only the low byte of the X pointer is updated in devices with no more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPX Register in the I/O area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the increment/decrement is added to the entire 24-bit address on such devices.

The results stored by the following instructions are undefined:

ST X+, r26 ST X+, r27 ST -X, r26 ST -X, r27

(i) $(X) \leftarrow Rr$ X: Unchanged Operation: (ii) $(X) \leftarrow Rr, X \leftarrow X+1$ X: Post-incremented (iii) $X \leftarrow X - 1$, $(X) \leftarrow Rr$ X: Pre-decremented ST X, Rr ST X+, Rr Syntax: (ii) Operand: $0 \le r \le 31$ (For All) (iii) ST -X, Rr $PC \leftarrow PC + 1$ (For All) **Program Counter:**

16-Bit Opcode:	6-Bit Opcode:										
	(i)	1001	001r	rrrr	1100						
	(ii)	1001	001r	rrrr	1101						
	(iii)	1001	001r	rrrr	1110						

Status Register (SREG) Boolean Formula:

I	Т	Н	S	V	N	Z	С
_	_	_	_	_	_	_	_

Example:

```
; Clear X high byte
   clr r27
   ldi r26,0x60
                         ; Set X low byte to 0x60
   st X+, r0
               ; Store r0 in data loc. 0x60 (X post inc)
              ; Store r1 in data space location 0x61
   st X,r1
   ldi r26,0x63
                         ; Set X low byte to 0x63
                ; Store r2 in data space location 0x63
   st X,r2
                ; Store r3 in data loc. 0x62 (X pre dec)
   st - X, r3
         1 (2 Bytes)
                            Cycles:
                                           2
Words:
```


ST (STD) – Store Indirect from Register to Data Space Using Index Y

Mnemonic: Function:

ST Store Indir

Store Indirect From Register to Data Space Using Index X

Description:

Stores one byte indirect with or without displacement from a register to data space. For parts with SRAM, the data space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the Register File only. The EEPROM has a separate address space.

The data location is pointed to by the Y (16 bits) Pointer Register in the Register File. Memory access is limited to the current data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the RAMPY in register in the I/O area has to be changed.

The Y pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented. These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the Y pointer Register. Note that only the low byte of the Y pointer is updated in devices with no more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPY Register in the I/O area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the increment/ decrement/displacement is added to the entire 24-bit address on such devices.

The results stored by the following instructions are undefined:

ST Y+, r28 ST Y+, r29 ST -Y, r28 ST -Y, r29

Operation:	(i) $(Y) \leftarrow Rr$ (ii) $(Y) \leftarrow Rr, Y \leftarrow Y+1$ (iii) $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ (iiii) $(Y+q) \leftarrow Rr$	Y: Unchanged Y: Post incremented Y: Pre decremented Y: Unchanged, q: Dis	splacement
Operand:	$0 \le r \le 31$ (For i - iii) (iiii) $0 \le r \le 31$, $0 \le q \le 63$	Syntax:	(i) ST Y, Rr (ii) ST Y+, Rr (iii) ST -Y, Rr (iiii) STD Y+q, Rr
		Program Counter:	$PC \leftarrow PC + 1 \text{ (For All)}$

16-Bit Opcode:	L6-Bit Opcode:									
	(i)	1000	001r	rrrr	1000					
	(ii)	1001	001r	rrrr	1001					
	(iii)	1001	001r	rrrr	1010					
	(iiii)	10q0	qq1r	rrrr	1qqq					

Status Register (SREG) Boolean Formula:

_	_	_	_	_	_	_	_
I	Т	Н	S	V	N	Z	С

Example:

clr r29			;	Clear Y high byte
ldi r28,0x6	0		;	Set Y low byte to 0x60
st Y+,r0	;	Store	r0	in data loc. 0x60 (Y post inc)
st Y,r1	;	Store	r1	in data space location 0x61
ldi r28,0x6	3		;	Set Y low byte to 0x63
st Y,r2	;	Store	r2	in data space location 0x63
st -Y,r3	;	Store	r3	in data loc. 0x62 (Y pre dec)
std Y+2, r4				in in data space location 0x64

Words: 1 (2 Bytes) Cycles: 2

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

Data Transfer Instructions

ST (STD) - Store Indirect from Register to Data Space Using Index Z

Mnemonic:

Function:

ST(STD)

Store Indirect From Register to Data Space Using Index Z

Description:

Stores one byte indirect with or without displacement from a register to data space. For parts with SRAM, the data space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the Register File only. The EEPROM has a separate address space.

The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is limited to the current data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the RAMPZ in register in the I/O area has to be changed.

The Z pointer Register can either be left unchanged by the operation, or it can be postincremented or pre-decremented. These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the Z pointer Register. Note that only the low byte of the Z pointer is updated in devices with no more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPZ Register in the I/O area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the increment/ decrement/displacement is added to the entire 24-bit address on such devices.

The results stored by the following instructions are undefined:

ST Z+, r30 ST Z+, r31 ST -Z, r30 ST -Z, r31

-Bit Opcode:				
(i)	1000	001r	rrrr	0000
(ii)	1001	001r	rrrr	0001
(iii)	1001	001r	rrrr	0010
(iiii)	10q0	qq1r	rrrr	0qqq

Status Register (SREG) Boolean Formula:

I	Т	Н	S	V	N	Z	С

Example:

```
clr r29
                    ; Clear Y high byte
ldi r28,0x60
                    ; Set Y low byte to 0x60
st Y+,r0
           ; Store r0 in data loc. 0x60 (Y post inc)
           ; Store r1 in data space location 0x61
st Y,r1
ldi r28,0x63
                   ; Set Y low byte to 0x63
st Y,r2
           ; Store r2 in data space location 0x63
           ; Store r3 in data loc. 0x62 (Y pre dec)
st - Y, r3
std Y+2,r4 ; Store r4 in in data space location 0x64
```


STS - Store Direct to SRAM

 Mnemonic:
 Function:

 STS
 Store Direct to SRAM

 Description:
 Stores one byte from a Register to the SRAM. A 16-bit address must be supplied. Memory access is limited to the current SRAM page of 64K bytes. The SDS instruction uses the RAMPZ register to access memory above 64K bytes.

 Operation:
 (k) ← Rr
 Syntax:
 STS k,Rr

 Operand:
 0 ≤ r ≤ 31, 0 ≤ k ≤ 65535
 Program Counter:
 PC ← PC + 2

16-Bit Opcode:									
	10	01	00	1d	dd	ldd	00	000]
	kkkk		kk	kk	kk	kk	kk	kk]
Status Register (SREG) Boolean Formula:									
	I	Т	Н	S	٧	N	Z	С	
	_	_	_	_	_	_			
Example:									
lds r	lds r2,0xFF00 ; Load r2 with the contents of								
	; SRAI	M loca	ation	0xFF(0 (
add r2,r1 ; a					r1 to	or2			
sts 0	xFF00,	,r2		; Wri	te ba	ck			
Words:	2 (4 Byte	es)		Сус	les:		3		

Functional Grouping Color Coding

Arithmetic and Logic Instructions

MCU Control Instructions

Branch Instructions

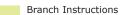
Data Transfer Instructions

SUB – Subtract Without Carry

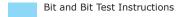
Mnemonic:	Function:							
SUB	Subtract Without Carry							
Description:	cription:							
Subtracts tw	Subtracts two registers and places the result in the destination register Rd.							
Operation:	Rd ← Rd - Rr	Syntax:	SUB Rd,Rr					
Operand:	$0 \le d \le 31, \ 0 \le r \le 31$	Program Counter:	PC ← PC + 1					

16-Bit Opcode:									
	000	01	10	rd	dd	dd	rr	rr	1
Status Register	(SREG) B	oolean Formula:							_
- Status Register									
,	I	Т	Н	S	V	N	Z	С	
	_	_	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	
		Rd3 •	Rr3 + Rr	3 • R3 +	R3 • Rd	3			
	Н	Set if t	here was	a borro	w from b	it 3; clea	ared othe	rwise	
	s	N ⊕ V							
	5	For sig	ned tests	5					
		Rd7 •	Rr7 • R7	+ Rd7 •	Rr7 • R7	7			
	V		wo's com on; clea		overflov rwise	v resulte	d from th	ne	
	N	R7							
	l N	Set if I	1SB of th	e result	is set; cl	eared ot	herwise		
	Z	R7 • R	6 • R5 •	R4 • R3	• R2 • R	1 • R0			
		Set if t	he result	is 0x00	; cleared	otherwis	se		
		Rd7 ∙	Rr7 + Rr	7 • R7 +	R7 • Rd	7			
	С				of the c			arger	
R (Result) ec	uals Rd	after the	operatio	n					
Example:									
sub		r13,	r12	; Sub	tract	r12	from 1	13	
brne		note	q .	; Bra	nch if	f r12	<>r13		
noteq:		nop		; Bra	nch de	estina	ation	(do	nothing)
Words:	1 (2 Byte	s)			Cycles:		1		

SUBI - Subtract Immediate


Mnemonic: Function: **SUBI** Subtract Immediate Description: Subtracts a register and a constant and places the result in the destination register Rd. This instruction is working on Register R16 to R31 and is very well suited for operations on the X, Y and Z pointers. Operation: $Rd \leftarrow Rd - K$ SUBI Rd,K Syntax: $\mathsf{PC} \leftarrow \mathsf{PC} + 1$ $0 \leq d \leq 31,~0 \leq K \leq 255$ Operand: **Program Counter:**

16-Bit Opcode:									
	010	01	KK	KK	dd	dd	KK	KK	1
Status Register (SREG) Bo	oolean Fo	ormula:						
	T	Т	Н	S	V	N	7	C	
I г	1	1	н ⇔	\$	∨ ⇔	⇔	∠	φ	1
"			\(\frac{1}{2}\)	\hookrightarrow	\hookrightarrow	\hookrightarrow	₩	<u> </u>	J
	н	Rd3 • I	Rr3 + Rr	3 • R3 +	R3 • Rd3	3			
		Set if t	here was	a borro	w from b	it 3; clea	red othe	erwise	
	s	$N \oplus V$							
		For sig	ned tests	5					
		Rd7 •	Rr7 • R7	+ Rd7 •	Rr7 • R7	,			
	V		wo's com on; clear		t overflow rwise	resulte	d from th	ne	
	N	R7							
	IN .	Set if N	1SB of th	e result	is set; cl	eared ot	herwise		
	z	R7 • R	6 • R5 •	R4 • R3	• R2 • R	L • R0			
		Set if t	he result	is 0x00	; cleared	otherwis	se		
		Rd7 • I	Rr7 + Rr	7 • R7 +	R7 • Rd	7			
	С				e of the c of Rd; cl			arger	
R (Result) eq	uals Rd a	after the	operatio	n					
Example:									
subi		r22,	0x11		; Suk	otract	0x11	l fro	m r22
brne		note	9 A	; Bra	nch if	f r22<	<>0x11	L	
noteq:		non		• Bra	nch de	estin:	ation	(do	nothing)
l noceq.		1101	,	, рга	iicii de	. U L 110	1 C T O I I	(40	iio ciiriig)
Words:	1 (2 Bytes	s)			Cycles:		1		


Functional Grouping Color Coding

SWAP - Swap Nibbles

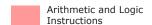
Mnemonic:	Function:		
SWAP	Swap Nibbles		
Description:			
Swaps high	and low nibbles in a register.		
Operation:	$R(7:4) \leftarrow Rd(3:0), R(3:0) \leftarrow Rd(7:4)$	Syntax:	SWAP Rd
Operand:	$0 \le d \le 31$	Program Counter:	PC ← PC + 1

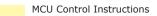
16-Bit Opcode:										
	10	1001		01dd		dddd		0010		
Status Register (SREG) Boolean Formula:										
	I	Т	Н	S	V	N	Z	С		
	_	_	_	_	_	_	_	_		
Example:										
inc r	1	; In	creme	nt r1						
swap :	r1	; Sw	ap hig	gh and	d low	nibbl	Le of	r1		
inc r	inc r1 ; Increment					high nibble of r1				
swap :	swap r1 ; Swap back									
Words:	1 (2 Byte	es)		Cycl	les:		1			

TST - Test for Zero or Minus

Mnemonic:	Function:		
TST	Test for Zero or Minus		
Description:			
	gister is zero or negative. Performs a remain unchanged.	a logical AND between	a register and itself. The
Operation:	$Rd \leftarrow Rd - K$	Syntax:	SUBI Rd,K
Operand:	$0 \le d \le 31, \ 0 \le K \le 255$	Program Counter:	$PC \leftarrow PC + 1$

16-Bit Opcode:									
	00:	0010 00dd dddd dddd							
Status Register	(SREG) B	GREG) Boolean Formula:							
	I	Т	Н	S	V	N	Z	С	
	_	_	_	\Leftrightarrow	0	⇔	⇔	_	
	S	N ⊕ V	- For sigr	ned tests	5				
	V	0 - Cle	eared						
	N	R7							
			MSB of th				herwise		
	z	R7 • R	.6 • R5 •	R4 • R3	• R2 • R	1 • R0			
		Set if	the result	is 0x00	; cleared	l otherwi	se		
R (Result) ed	quals Rd								
Example:									
		r0		; Tes	t ŗO.	<i>c</i> 0	^		
breq		zero		; Bra	nch i	i r0=	U		
zero:		nop		; Bra	nch d	estin	ation	(do	nothin
Words:	1 (2 Bytes	s)			Cycles:		1		




WDR - Watchdog Reset

Mnemonic:	Function:		
WDR	WatchDog Reset		
Description:			
	tion resets the Watchdog Time by the WD prescaler. See the W		
Operation:	WD timer restart.	Syntax:	WDR
Operand:	None	Program Counter:	PC ← PC + 1

16-Bit Opcode:								
	1001		0101		1010		1000	
Status Register (SREG) Boolean Formula:								
	I	Т	Н	S	V	N	Z	С
	_		_	_	_	_	_	
Example:								
wdr	; Reset watchdog timer							
Words:	1 (2 Bytes)				Cycles:			

Functional Grouping Color Coding

WARRANTY

System Semiconductor ("SSI"), warrants only to the purchaser of the Product from SSI (the "Customer") that the product purchased from SSI (the "Product") will be free from defects and meets the applicable specifications at the time of sale. Customer's exclusive remedy under this Limited Warranty shall be the repair or replacement, at Company's sole option, of the Product, or any part of the Product, determined by SSI to be defective.

This Limited Warranty does not extend to any Product damaged by reason of alteration, accident, abuse, neglect or misuse or improper or inadequate handling; improper or inadequate wiring utilized or installed in connection with the Product; installation, operation or use of the Product not made in strict accordance with the specifications and written instructions provided by SSI; use of the Product for any purpose other than those for which it was designed; ordinary wear and tear; disasters or Acts of God; unauthorized attachments, alterations or modifications to the Product; the misuse or failure of any item or equipment connected to the Product not supplied by SSI; improper maintenance or repair of the Product; or any other reason or event not caused by SSI.

SSI HEREBY DISCLAIMS ALL OTHER WARRANTIES, WHETHER WRITTEN OR ORAL, EXPRESS OR IMPLIED BY LAW OR OTHERWISE, INCLUDING WITHOUT LIMITATION, **ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE**. CUSTOMER'S SOLE REMEDY FOR ANY DEFECTIVE PRODUCT WILL BE AS STATED ABOVE, AND IN NO EVENT WILL THE SSI BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR INDIRECT DAMAGES IN CONNECTION WITH THE PRODUCT.

This Limited Warranty shall be void if the Customer fails to comply with all of the terms set forth in this Limited Warranty. This Limited Warranty is the sole warranty offered by SSI with respect to the Product. SSI does not assume any other liability in connection with the sale of the Product. No representative of SSI is authorized to extend this Limited Warranty or to change it in any manner whatsoever. No warranty applies to any party other than the original Customer.

SSI and its directors, officers, employees, subsidiaries and affiliates shall not be liable for any damages arising from any loss of equipment, loss or distortion of data, loss of time, loss or destruction of software or other property, loss of production or profits, overhead costs, claims of third parties, labor or materials, penalties or liquidated damages or punitive damages, whatsoever, whether based upon breach of warranty, breach of contract, negligence, strict liability or any other legal theory, or other losses or expenses incurred by the Customer or any third party.

System Semiconductor's general policy does not recommend the use of its products in life support or aircraft applications wherein a failure or malfunction of the product may directly threaten life or injury. Per System Semiconductor's terms and conditions of sales, the user of System Semiconductor, products in life support or aircraft applications assumes all risks of such use and indemnifies System Semiconductor, against all damages.

M3000 Motor and Motion Controller Instruction Set Manual P/N: SS-MAN-3000 Part 2 of 2

Phone: 860-295-6170

Fax: 860-295-8318