

INSTALLATION AND OPERATING INSTRUCTIONS FOR MW-CBDA SERIES 10W-80-A COMPACT BI-DIRECTIONAL AMPLIFIERS

INSTALLATION & OPERATING INSTRUCTIONS

CBDA 10W-80-A COMPACT BI-DIRECTIONAL AMPLIFIERS

TABLE OF CONTENTS

PARAGRAPH	PAGE No
BDA OVERVIEW	3
BLOCK DIAGRAM DESCRIPTION	3
STEP ATTENUATOR & RF GAIN & SETTING	4
AGC FUNCTION	5
AGC & GAIN CONTROLS	5
BDA INSTALLATION	6
BASE/DONOR ANTENNA INSTALLATION	6
REMOTE/MOBILE ANTENNA INSTALLATION	6
ANTENNA ISOLATION	6
INSTALLATION STEPS	7
DIAGNOSTICS GUIDE	8
ELECTRICAL SPECIFICATIONS	9
SYSTEM FREQUENCY RANGE	9
ENVIRONMENTAL CONDITIONS	10
MECHANICAL SPECIFICATIONS	10
RF EXPOSURE WARNING	10
LIMITED WARRANTY	12

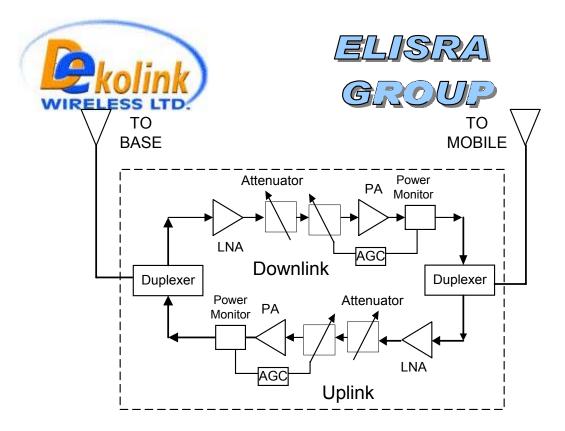
LIST OF DRAWINGS

DRAWING	PAGE No
BDA RF BLOCK DIAGRAM	4
AGC AMPLIFIER	5
MECHANICAL OUTLINE	11

BDA OVERVIEW:

The Compact Bi-Directional Amplifier (CBDA) assembly provides an exceptional repeater/booster performances to extend the coverage area of radio communications in buildings and RF shielded environments.

Features such as high linearity power amplifiers are contributing for the overall improved system linearity performances. The unit is based on a duplexed path configuration, having sharp out of band attenuation for improved isolation between the receiving and transmitting paths.


BLOCK DIAGRAM DESCRIPTION:

The CBDA Downlink path receives the RF signals from base station amplifies them and transmits them to the subscriber. The BDA Uplink path receives the RF signals from the subscriber amplifies them and transmits them to the base station. Two duplexers frequency separate the signals to the proper amplifying path and isolate the two signals.

For each path two amplifiers do the path signal amplification; a low noise amplifier (LNA) and a high power amplifier. The low noise amplifier has a 30 dB step attenuator at its output. The step attenuator is used to set the BDA repeater gain.

The power amplifiers in the BDA have an AGC option switch. When switched on, the AGC circuit limits the amplifier output power. The AGC circuit senses the output power and introduces more attenuation, when the output power exceeds the preset level. This way the gain of the amplifier is reduced, its output power is limited and the intermodulations products are kept below the desired level.

The AGC amplifier has a Power LED lamp that illuminates when the output power has reached the preset power limit.

BDA RF BLOCK DIAGRAM

Step Attenuator & RF Gain Setting

For proper operation of the BDA; the isolation between the base station antenna and the mobile antenna should exceed the BDA gain by at least 12 dB. If the BDA gain were higher than the isolation between the antennas, oscillation would start and would saturate the amplifier. Isolation few dB higher than the BDA gain cannot start oscillations but would cause gain ripple in the band.

The step attenuator on the low noise amplifier can reduce the BDA gain. The BDA gain can be stepped down by the amount indicated on the step attenuator.

AGC FUNCTION

The BDA has AGC function on both paths that serve to prevent the saturation of the power amplifier. Their amplifier has a directional coupler and a detector at the output of the high power amplifier to monitor the output power. When a high signal is received the automatic level control detects the amplitude and sends a feedback signal to a voltage variable attenuator which attenuates the signal level so that the output power of the amplifier does not exceed the preset limit. The LED on the amplifier illuminates when the power out the amplifier is within the set limit (when the AGC is On and when the AGC is OFF).

The switch on the RF amplifier enables the AGC function. If the AGC is disabled then the amplifier gives maximum gain.

AGC AND GAIN CONTROLS

The AGC and GAIN SETTING functions for the up link path are reached by opening the small slide door located on the CBDA left side, adjacent to the BASE antenna port. For the down link path the door is on the right side adjacent to the MOBILE antenna port

RF Power LED: The LED illuminates when the output power exceeds the AGC Set .

AGC ON / OFF Switch: When OFF the amplifier works with its highest gain (AGC Function OFF). When set to ON (AGC Function ON) the amplifier power output cannot exceed the set limit.

Gain setting: By using the rotary knob, the attenuation can be adjusted in 2 dB steps.

OTT AGC	TO CPER TURN ECREW HALF TORN ECREW HALF BLIDE WINDOW OPEN TO TO CLOSE SOFEN	OFF AGC	TO OPER. TURN CREW HALF ATURN CCW AND ELIDE WINDOW OPEN TO TO CLOSE POPEN

BDA INSTALLATION

Install the BDA Repeater in a shielded, ventilated and easy to reach area. Use low loss cables to connect antennas to the BDA. Install the BDA close to the service area to improve output power and noise figure. Mount the BDA with RF connecters pointing down. The RF connection is made via two type "N" female connectors. The RF connector labeled "Base" must be connected to the antenna; usually a Yagi; pointing to the base station. The RF connection labeled "Mobile" must be connected to the antenna pointing into the area to be covered by the BDA.

BASE / DONOR ANTENNA INSTALLATION

Typically this is a directional antenna such as Yagi or Dish antenna of 10 to 15 dB gain. This antenna is pointed to the base station to get maximum input power. This antenna should be in line of sight with the base site. Raise this antenna higher if no line of sight is achieved. The required Base signals should be the dominant signals; at least 6 dB higher power than other signals.

Choose the antenna site to get the maximum isolation from the remote (mobile serving) antenna.

REMOTE / MOBILE ANTENNA INSTALLATION

The remote antenna is an Omni antenna or a directional antenna according to the coverage requirements.

For indoor applications covering a large building, the RF signals are split using power dividers and distributed to many antennas each covering a floor or a small area.

ANTENNA ISOLATION

For proper operation the isolation between these two antennas must be at least 12 dB higher than the BDA gain. Lower isolation would lead to high in-band ripple. Oscillations will build up when the isolation is lower than BDA gain.

The isolation between the antennas is critical for high gain outdoor repeaters.

To measure the isolation; inject a known signal into one antenna and measure the power at the other antenna. This should be done across the frequency range of both uplink and downlink bands.

INSTALLATION STEPS

- 1. Install all antennas and connect them to the BDA inputs.
- 2. Open the access windows at the sides of the BDA so that the variable attenuator is reached and the LED is visible.
- 3. Turn the AGC On. This AGC limits the output power of the BDA. The AGC on the Downlink path guarantees constant downlink power when and if the Donor power changes.
- 4. Set downlink gain to minimum; uplink gain to minimum (by increasing the attenuation).
- 5. Increase the downlink channel gain (by decreasing the attenuation) till the LED turns from off to on. This is the best gain setting giving highest usable power.
- The LED on the downlink power amplifier will illuminate if adequate donor power has reached the BDA. If the donor power is low the LED will not lit and the BDA usable power is not used efficiently.
- 7. Set the uplink gain to the same as the downlink gain.
- 8. Check that the uplink LED on the BDA monitor does not lit permanently. This LED would lit permanently If the isolation between antennas is low (BDA oscillations) or the BDA is faulty.
- 9. If the uplink LED light permanently then:
 - Disconnect one of the cables from the BDA connectors and connect a load at the connectors.
 - If the LED on this amplifier illuminates permanently then the BDA is faulty (oscillating) and needs replacing.
 - If the LEDs stops illuminating then the isolation between the donor and remote antennas is low. Either improve the isolation (e.g. increase separation) or reduce BDA gain.
 - To reduce gain, reconnect the antenna cables. Reduce the gain at both uplink and downlink path until this LED stops illuminating. Reduce the gain further by 10 dB.
 This is the maximum usable gain.

DIAGNOSTICS GUIDE

The BDA provides long term, carefree operation and requires no periodic maintenance.

This section covers possible problems related to the installation environment.

RF Faults and RF Power Amplifiers LED Indications:

The LEDs on the power amplifier are set to turn on when the transmitted power has reached or exceeded the specified composite power.

Normally the LED at the downlink power amplifier should be on indicating good forward power transmission. The LED on the uplink power amplifier turns on only when a near by mobile is transmitting.

Indication	Cause	Action
Downlink LED does	Indicates low RF power at	Check base antenna connection
not light	downlink path	Check antenna alignment to base.
		Increase BDA RFgain.
Downlink LED lights	Indicates good power	Turn AGC on, or reduce gain so that LED
(This is not a fault)	transmission in the downlink	just turns from off to on.
	amplifier.	Set the same gain for the uplink channel
	Make sure the amplifier is	
	not overloaded	
Uplink LED lights all	Bad antenna isolation	Improve the isolation between the
the time	causing the repeater system	antennas or reduce RF gain. To verify
	to oscillate	disconnect one RF port; LED should turn
		off
Uplink LED lights all	Faulty system. Can be	System fault. To verify disconnect one RF
the time	diplexer or power amplifier	port to verify. If LED remains on then
	fault	system is faulty.
Excessive	Amplifier oscillation caused	Improve the isolation between the
intermodulation or	by insufficient isolation	antennas or reduce RF gain.
spurious		
Excessive noise in	High input power causing	Turn AGC on, or reduce gain so that LED
downlink	amplifier overload	just turns from off to on. Set the same
		gain for the uplink channel

ELECTRICAL SPECIFICATIONS:

Frequency Range (MHz)	SEE TABLE	
Passband Gain @Min attenuation	80 dB nominal	
Passband Ripple	± 1.5 dB typical	
Manual Attenuation Range	0 to 30 dB in 2 dB step	
Noise Figure	6.0 dB max	
Impedance level	50 ohms	
V.S.W.R In/Out	1.5 : 1 max	
AGC Selection	By ON/OFF Switch	
AGC Attenuation Range	25 dB typical	
AGC LED Indication	LED turn ON when power reaches AGC Set	
	Power Level. (both at On and Off positions).	
AGC Factory Power Preset	Up link: +24 dBm nom.	
	Down link: +30 dBm nom.	
Amplifier Power Output	Up Link : 1 Watts	
@1 dB Compression	Down Link : 10 Watts	
3rd Order output Intercept point	Up Link: +45 dBm typical Down Link: +50 dBm typical	
Power Supply	110/220V AC, 50-60 Hz /1A	

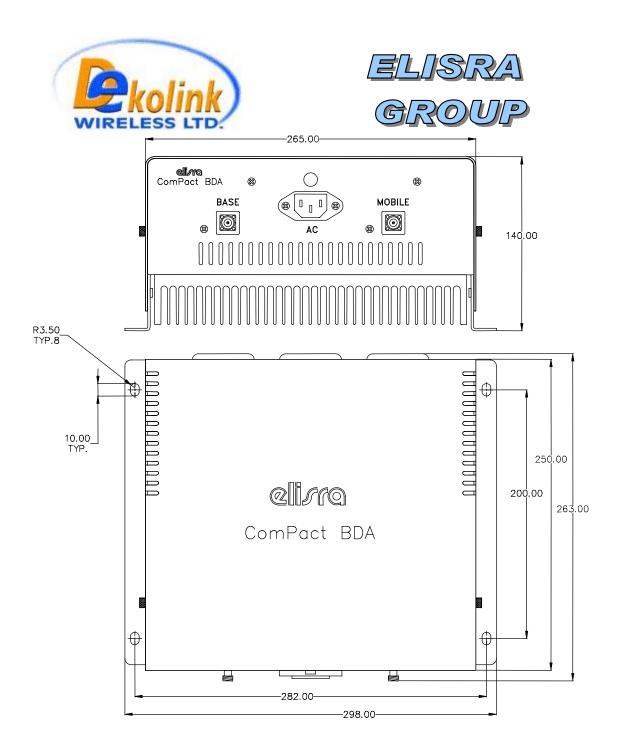
System Frequency Range

		DOWN-	UP-
SYSTEM TYPE	MODEL No	LINK	LINK
E-SMR (iDEN)	MW-CBDA-ESMR-10W80A	851-866	806-821
SMR 800-Public Safety	MW-CBDA-SMR-10W80A-PS8	851-869	806-824
SMR - 900 MHz	MW-CBDA-SMR-10W80A-PS9	<mark>935-941</mark>	<mark>896-902</mark>
GSM	MW-CBDA-GSM-10W80A	935-960	890-915
TDMA Band B	MW-CBDA-CELLB-10W80A	880-894	835-849
CDMA/TDMA/N-AMPS	MW-CBDA-AB-10W80A	870-894	825-849

ENVIRONMENTAL CONDITIONS:

Operating temperature	- 30°C to + 50°C
Storage temperature	- 50°C to + 90°C

MECHANICAL SPECIFICATIONS:


Size mm(Inch)	265(10.4) x 250(9.8) x140(5.5)
RF Connectors	N-type Female
Weight	8 kg. Approx

RF EXPOSURE WARNING

In order to satisfy the FCC RF exposure requirements, you must ensure that the installation complies with the following:

One antenna is connected via cable that has typical 1~10 dB attenuation (depends on the length of the cable) to the BDA BASE port. This antenna is installed outdoor and has very sharp beam (Yagi type or similar) pointed to the donor (BTS). This type of antenna has about 10 dBi gain. Typical specifications: gain: 8 dBd (=10.1 dBi), VSWR: better than 1.5:1, Impedance: 50 ohm. The outdoor antenna must be installed to provide a minimum separation distance of 0.5 m (50 cm) from persons within the area.

The second antenna is connected via cable that has typical 1~10 dB attenuation (depends on the length of the cable) to the CBDA MOBILE port. This type of antenna is omnidirecttional (isotropic), or wide beam, with 0 to 2 dBi typical gain and is installed and distributes indoor (in buildings, tunnels, basements, park lots, shopping centers etc.). Typical specifications: gain: 2 dBi, VSWR: better than 2:1, Impedance: 50 ohm. The indoor antenna must be installed to provide a minimum separation distance of 0.2 m (20 cm) from persons within the area.

MECHANICAL OUTLINE

DEKOLINK WIRELESS LIMITED WARRANTY

Dekolink Wireless [Ltd.] ("Dekolink"), manufacturer of this product (the "Product") warrants to the original purchaser ("Purchaser") that the Product is free from defects in materials and workmanship for a term that ends on the earlier of twelve (12) months from the date of activation of the Product or fifteen (15) months from the date of shipment of the Product by Dekolink. The obligations of Dekolink under this warranty shall be limited solely to the repair or exchange or giving credit for, at the option of Dekolink, any Product that may prove defective in accordance with evidence satisfactory to Dekolink. Any repair or replacement of the Product by Dekolink shall not extend the original warranty period. This warranty is exclusive to the original Purchaser and is not assignable.

This warranty applies only upon the condition that the Product has been installed, maintained and operated under conditions of normal use. The provisions of this warranty shall not apply if, in Dekolink's judgment, the Product has been subject to misuse or neglect, damaged in an accident or by act of vandalism, or repaired or altered in any way that adversely affects its performance or reliability.

To obtain warranty service, Purchaser may, upon the prior written authorization of Dekolink or its authorizerd service representative, return the defective Product to Dekolink's authorized service center. All shipping and insurance charges are the sole responsibility of Purchaser and are not included in this warranty. Dekolink expressly excludes and disclaims all other warranties, including but not limited to any warranties of merchantability or fitness for a particular purpose.

Dekolink shall in no event be liable for any special, indirect, incidental, consequential or punitive damages or for loss, damage, or expense, including loss of use, profits, revenue, or goodwill, directly or indirectly arising from purchaser's use or inability to use the merchandise, or for loss or destruction of other property or from any other cause, even if Dekolink. has been advised of the possibility of such damage. some states do not allow the exclusion or limitation of incidental or consequential damages so these limitations may not apply under certain circumstances.

The liability of Dekolink shall in no event exceed an amount equivalent to the purchase price paid by the purchaser for the defective product.

This warranty shall not be extended, altered or varied except by a written instrument duly signed by Dekolink.