
EZ-USB® FX3™ Technical Reference Manual

Spec No.: 001-76074 Rev. *E

May 31, 2017

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
www.cypress.com

2 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Copyrights

Copyrights

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation
and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or refer-
enced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as spe-
cifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organi-
zation, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resell-
ers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that
are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software
is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without fur-
ther notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in
this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Cypress products are not
designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weap-
ons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where
the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical
component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure
of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and
hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress
products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities,
including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-
RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respec-
tive owners.

EZ-USB® is a registered trademark and FX3™ is a trademark of Cypress Semiconductor Corporation (Cypress), along with
Cypress® and Cypress Semiconductor™. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 3

Contents

1. Introduction to EZ-USB FX3 19

1.1 Overview of USB 3.0 ..19
1.1.1 Physical Layer...19
1.1.2 Link Layer..20
1.1.3 Protocol Layer ...21

1.1.3.1 Unicast Transactions ...21
1.1.3.2 Token/ Data/Handshake Sequences...21
1.1.3.3 Data Bursting...23
1.1.3.4 End-to-End Flow Control ...24
1.1.3.5 Streams ...25

1.2 SuperSpeed Power Management...25
1.2.1 Function Power Management ...26

1.3 FX3/FX3S Features ..26
1.3.1 FX3 Block Diagram ...28
1.3.2 FX3S Block Diagram...29

1.4 Functional Overview ...29
1.4.1 CPU...29
1.4.2 DMA ..30
1.4.3 USB Interface..30
1.4.4 GPIF II...30
1.4.5 UART Interface ...31
1.4.6 I2C Interface..31
1.4.7 I2S Interface..31
1.4.8 SPI Interface ...31
1.4.9 JTAG Interface ..31
1.4.10 Storage Interface...31

1.4.10.1 SD/MMC Clock Stop..32
1.4.10.2 SD_CLK Output Clock Stop ..32
1.4.10.3 Card Insertion and Removal Detection..32
1.4.10.4 Write Protection (WP)..32
1.4.10.5 SDIO Interrupt ...32
1.4.10.6 SDIO Read-Wait Feature ..32
1.4.10.7 Boot Options..32

1.4.11 Clocking ..33

2. FX3 CPU Subsystem 35

2.1 Features..35

2.2 Block Diagram ..36

2.3 Functional Overview ...36
2.3.1 ARM926EJ-S CPU..36

4 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Contents

2.3.1.1 Processor Modes ..37
2.3.1.2 Processor Registers ..38
2.3.1.3 Exception Vectors ...39
2.3.1.4 MMU..39
2.3.1.5 Cache Memories ...40
2.3.1.6 Tightly Coupled Memories...40
2.3.1.7 JTAG Interface ..41
2.3.1.8 Vectored Interrupt Controller ...41
2.3.1.9 CPU Operating Frequency ..43
2.3.1.10 CPU Power Modes..43
2.3.1.11 Timers ...44

3. Memory and System Interconnect 45

3.1 Features ...45

3.2 Block Diagram ..45

3.3 Functional Overview...46
3.3.1 Memory Regions...46
3.3.2 System Interconnect ...48
3.3.3 Low-Power Operations ...48
3.3.4 Cache Operations...49

3.3.4.1 Cache Coherency..49
3.3.5 Memory Usage ...50

4. Global Controller (GCTL) 53

4.1 GPIO Pins...53
4.1.1 I/O Matrix Configuration..53
4.1.2 I/O Drive Strength ...55
4.1.3 GPIO Pull-up and Pull-down...55
4.1.4 Simple GPIO Override ..55
4.1.5 Complex GPIO Override...55
4.1.6 I/O Power Observability ..56

4.1.6.1 GCTL_IOPOWER ...56
4.1.6.2 GCTL_IOPWR_INTR ..56
4.1.6.3 GCTL_IOPWR_INTR_MASK..56

4.2 Clock Management...56

4.3 Power Management ...58
4.3.1 Power Domains ..58
4.3.2 Power Modes..59
4.3.3 Reset ..59
4.3.4 Hard Reset..59
4.3.5 Soft Reset ...59

5. FX3 DMA Subsystem 61

5.1 DMA Introduction..61

5.2 DMA Features ..61

5.3 DMA Block Diagram ...61

5.4 DMA Overview..62

5.5 DMA Subsystem Components ...63
5.5.1 Clocking ..63

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 5

Contents

5.5.2 Descriptors Buffers, and Sockets..64
5.5.3 DMA Descriptors ...64
5.5.4 DMA Buffer..66

5.5.4.1 Implications of Data Cache Usage ..66
5.5.4.2 Memory Corruption Due to Cache Line Overlap ...67
5.5.4.3 Safe Usage of Data Cache..67
5.5.4.4 ALIGNMENT REQUIREMENT - How Not To Share Cache Lines68

5.5.5 Sockets ...68
5.5.5.1 Software Manipulation of Sockets ...71
5.5.5.2 Initializing a Socket..71
5.5.5.3 Terminating a Socket...71
5.5.5.4 Modifying or Suspending a Socket ..71
5.5.5.5 Inspecting a Socket ...72
5.5.5.6 Wrapping Up a Socket...72

5.5.6 Illustration of Descriptor, Buffer and Socket Usage...72
5.5.7 Understanding DMA Operation: Peripheral to Peripheral ...72
5.5.8 Interrupt Requests...74
5.5.9 DMA Interrupts ..74

5.6 Programming Sequence ...75
5.6.1 Initialization ...75

5.6.1.1 Producer Half...75
5.6.1.2 Consumer Half...75

5.6.2 Peripheral to Peripheral Transfer ..76

5.7 CPU Intervention In Between Ingress and Egress ...79

5.8 Concept of DMA Channels ...80

6. Universal Serial Bus (USB) 81

6.1 Introduction ...81

6.2 Features..81

6.3 Block Diagram ..81

6.4 Overview...82
6.4.1 USB Interface Block ..82
6.4.2 USB 3.0 Function Controller ...82
6.4.3 USB 2.0 Function Controller ...82
6.4.4 USB 2.0 Embedded Host ..82
6.4.5 USB OTG Controller ...83
6.4.6 Charger Detect Controller ...83
6.4.7 End-Point Memory ..83
6.4.8 DMA Adapters...83
6.4.9 USB I/O System..83

6.4.9.1 USB 2.0 OTG PHY ..83
6.4.9.2 USB 3.0 PHY...84

6.5 UIB Top-Level Register Interface ...84

6.6 USB Function Controllers ...86
6.6.1 USB 3.0 Function ..86

6.6.1.1 Clocking...86
6.6.1.2 Interrupt Requests ...87
6.6.1.3 USB 3.0 Functional Description...87

6.6.2 Physical Layer...88

6 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Contents

6.6.3 Link Layer ...89
6.6.4 Protocol Layer...90

6.7 USB 2.0 Function ...92
6.7.1 Clocking ..92
6.7.2 Interrupt Requests ..92
6.7.3 USB 2.0 Functional Description..92

6.7.3.1 Serial Interface Engine..92
6.7.3.2 Token Processor ...92

6.7.4 USB 2.0 Function Registers ...93
6.7.5 USB Reset ..93
6.7.6 USB Suspend ...93
6.7.7 USB Resume ..93
6.7.8 Start of Frame ...93
6.7.9 SETUP Packet..93
6.7.10 IN Packet ..94
6.7.11 OUT Packet ..94

6.8 USB 3.0 and USB 2.0 Function Coordination...94

6.9 USB Function Programming Model ..95
6.9.1 USB 3.0 Initialization...95
6.9.2 USB 3.0 Enable ..96
6.9.3 USB 3.0 Fallback to USB 2.0..97
6.9.4 USB Reset ..98
6.9.5 USB Connect ..99
6.9.6 USB Disconnect..101
6.9.7 Control Request..102
6.9.8 USB Embedded Host..109

6.9.8.1 Clocking...109
6.9.9 Interrupt Requests ..109
6.9.10 Functional Description .. 110

6.9.10.1 Embedded Host...110
6.9.10.2 Scheduler Memory ..110

6.9.11 Embedded Host Programming Model... 112
6.9.11.1 Host Connect...112
6.9.11.2 Host Disconnect ..112
6.9.11.3 Managing Transfers ..113

6.10 USB OTG Controller...115
6.10.1 Interrupt Requests .. 115
6.10.2 USB OTG Programming Model .. 115

6.10.2.1 USB OTG Start and Stop ..115
6.10.2.2 Session Request Protocol ...119
6.10.2.3 Host Negotiation Protocol..121

6.11 USB Charger Detect Controller ..122
6.11.1 USB Charger Detect Register Interface..122
6.11.2 Battery Charger Detection ..122
6.11.3 USB ID Signal Detection...123

7. General Programmable Interface II (GPIF II) 125

7.1 Features ...125

7.2 Block Diagram ..126

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 7

Contents

7.3 Typical GPIF II interface ...126

7.4 Functional Overview ...127
7.4.1 Actions ..127

7.4.1.1 Action - IN_DATA ..129
7.4.1.2 Action - IN_ADDR..130
7.4.1.3 Action - DR_DATA...130
7.4.1.4 Action - DR_ADDR ..131
7.4.1.5 Action - COMMIT...132
7.4.1.6 Action - DR_GPIO ...132
7.4.1.7 Action - LD_ADDR_COUNT..133
7.4.1.8 Action - LD_DATA_COUNT ..133
7.4.1.9 Action - LD_CTRL_COUNT...134
7.4.1.10 Action - COUNT_ADDR ..135
7.4.1.11 Action - COUNT_DATA ...135
7.4.1.12 Action - COUNT_CTRL ...135
7.4.1.13 Action - CMP_ADDR ...135
7.4.1.14 Action - CMP_DATA..136
7.4.1.15 Action - CMP_CTRL ..136
7.4.1.16 Action - INTR_CPU ...137
7.4.1.17 Action - INTR_HOST ...137
7.4.1.18 Action - DR_DRQ ..137

7.4.2 Triggers ...138
7.4.3 Transition Conditions ..138
7.4.4 GPIF II Designer Tool..139
7.4.5 GPIF II Hardware Resources ..139

7.4.5.1 Comparators..139
7.4.5.2 Counters ..140
7.4.5.3 GPIF II Interrupt...140

7.4.6 Threads and Sockets ..140
7.4.6.1 Difference Between PP_MODE=0 and PP_MODE=1...............................140

7.4.7 Addressing ..142
7.4.7.1 Number of Address Lines ..142
7.4.7.2 Assigning Sockets to Threads ...142
7.4.7.3 Addressing Methods..142

7.4.8 Async/Sync ...143
7.4.9 Configuration of Flags ...143
7.4.10 Developing the GPIF II State Machine ..143

7.5 Designing a GPIF II Interface ...143

7.6 GPIF II State Machine Implementation...146
7.6.1 Add a State..146
7.6.2 Add Actions to a State...147
7.6.3 Draw Transitions Between Actions ...147
7.6.4 Add a Transition Equation...148
7.6.5 Set State Properties ..148
7.6.6 Analyzing the Signal Timing of the GPIF II Interface ..149

7.6.6.1 Selection of Time Frame ...149
7.6.6.2 Automatic Timing Scale Selection ...149

7.6.7 Scenario Entry...149
7.6.8 Macro ..151

7.7 GPIF II Constraints ...151

8 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Contents

7.7.1 Mirror States ...151
7.7.2 Mirror State Rules ...152
7.7.3 Mirror State Example ..153
7.7.4 Guidelines for Transition Equation Entry ..154
7.7.5 Intermediate States...155

7.8 Initialization and Configuration of GPIF II Block ...156
7.8.1 GPIF II State Machine Control ..156

7.9 Performing Read and Write Operations Using GPIF II...156

7.10 DMA Channel Creation in FX3 Firmware to Perform GPIF II to USB Data Transfers..........158

7.11 GPIF II State Machine to Read Data into a Socket ..158

7.12 DMA Channel Creation in FX3 Firmware to Perform USB to GPIF II Data Transfers..........159

7.13 GPIF II State Machine to Drive Data from Socket as Data Source159
7.13.1 Alpha Values...160

7.14 GPIF II Read and Write over Registers ..161

7.15 Implementing Synchronous Slave FIFO Interface..162

7.16 Synchronous Slave FIFO Access Sequence and Interface Timing......................................166
7.16.1 Synchronous Slave FIFO Read Sequence Description..167
7.16.2 Synchronous Slave FIFO Write Sequence Description ..169
7.16.3 Slave FIFO Interface Logical Diagram..170
7.16.4 GPIF II State Machine of Slave FIFO Interface ..170

8. Low Performance Peripherals (LPP) 173
8.1 I2C Interface...174

8.1.1 I2C Block Features ...174
8.1.2 I2C Interface Overview ...175

8.2 FX3 I2C Operations Overview..176
8.2.1 Reset and Initialization..176
8.2.2 Preamble ..176
8.2.3 Data Transfer ..176

8.2.3.1 Programming Model ..176
8.2.3.2 Register-Based I2C Transfers...177
8.2.3.3 DMA-Based I2C Transfers ..177
8.2.3.4 Starting a Transaction ...177
8.2.3.5 Terminating Transactions: Software and Hardware Aborts.......................178
8.2.3.6 Multimaster Arbitration ..178
8.2.3.7 Error Conditions ..178

8.2.4 Examples ..178
8.2.4.1 Initialize I2C Block ...178
8.2.4.2 Configure I2C Block ..179
8.2.4.3 Reads and Writes Using Register Transfers ...179
8.2.4.4 Reads and Writes Using DMA Transfers ..180

8.3 Serial Peripheral Interface..181
8.3.1 SPI Block Features ...181
8.3.2 SPI Interface Overview ...182
8.3.3 FX3 SPI Operations Overview..183

8.3.3.1 Reset and Initialization ..183
8.3.3.2 Modes Governing Transfers..183

8.3.4 SSN Control Configurations..183

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 9

Contents

8.3.5 Data Transfers...184

8.4 Programming Model ...184
8.4.1 Register-Based Transfers ...184
8.4.2 DMA-Based Transfers...184

8.5 Examples ..185
8.5.1 Initialize SPI Block...185
8.5.2 Configure SPI Block ..185
8.5.3 Reads and Writes Using Register Transfers ...186
8.5.4 Reads and Writes Using DMA Transfers ..187

8.6 Universal Asynchronous Receiver Transmitter...189
8.6.1 UART block features ...189
8.6.2 UART Overview ..189

8.7 FX3 UART Operations Overview..190
8.7.1 Reset and Initialization ..190
8.7.2 Programming Model..190
8.7.3 Register-Based Transfers ...190

8.7.3.1 DMA-Based Transfers ...190
8.7.3.2 Error Conditions...191

8.7.4 Examples ..191
8.7.4.1 Initialize UART Block ...191
8.7.4.2 FX3 Firmware to Send UART Messages and to Receive Fixed Bytes of Text

191

8.8 Integrated Interchip Sound Interface ..193
8.8.1 I2S Block Features..193
8.8.2 I2S Overview...193
8.8.3 FX3 I2S Operations Overview...194
8.8.4 Programming Model..194

8.8.4.1 Start Transmission...194
8.8.4.2 Mute Condition ..194
8.8.4.3 Pause Condition ..194
8.8.4.4 Buffer Underflow..195
8.8.4.5 Stop Event ...195
8.8.4.6 Fixed Clock Mode..195
8.8.4.7 Data Shift Mode...195
8.8.4.8 Padding ...195
8.8.4.9 Error Conditions...195
8.8.4.10 Examples...195
8.8.4.11 Initialize I2S Block ...196
8.8.4.12 Configure I2S Interface..196
8.8.4.13 Transferring Data from USB Interface to I2S Interface Using DMA Transfers

196

8.9 GPIO...198
8.9.1 GPIO Features ..198
8.9.2 GPIO Overview ...198
8.9.3 Programming Model..198

8.9.3.1 Reset and Initialization ..198
8.9.4 Examples ..199

8.9.4.1 Initialize GPIO Block..199
8.9.4.2 Configure GPIO[45] as Input Pin and GPIO[21] as Output Pin200
8.9.4.3 Configure GPIO[50] to Generate PWM Output ...202

10 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Contents

9. Storage Ports 203

9.1 Storage Interface Block Features...203

9.2 Block Diagram ..203

9.3 Storage Interface (S-Port) ..205

9.4 SD/ MMC/ SDIO Interface ..207
9.4.1 SD/MMC Interface Overview ..207
9.4.2 SDIO Interface Overview ..209

9.5 FX3S S-Port Operations Overview...209
9.5.1 S-port Initialization and Configuration...210

9.5.1.1 Configuring the FX3S I/O Matrix ...210
9.5.1.2 Setting S-Port Interface Parameters ...210
9.5.1.3 Starting the Storage Driver..211
9.5.1.4 Setting the S-Port Clock..212
9.5.1.5 Sending SD/MMC/SDIO Commands ..212
9.5.1.6 Handling SIB Events ...214

9.5.2 Reads and Writes to SD/ MMC Using DMA Transfers ...216
9.5.2.1 Sending Vendor Commands to SD/ MMC...218
9.5.2.2 Setting the Granularity of Write Operations...218
9.5.2.3 Checking Card Status ...218
9.5.2.4 Aborting Ongoing Transaction to S-Port ...218

9.5.3 Working with SDIO Cards ...219
9.5.3.1 Configuration and Initialization ..219
9.5.3.2 Reads and Writes from SDIO Card Registers...219
9.5.3.3 IO_RW_DIRECT Command (CMD52) ..219
9.5.3.4 Setting Function Block Size...224
9.5.3.5 Initialization and Operation of SDIO Functions ...224
9.5.3.6 SDIO Interrupts ...224
9.5.3.7 Enabling and Disabling SDIO Interrupts..225
9.5.3.8 Handling SDIO Interrupts ..225

9.6 FX3S-Specific Features..226
9.6.1 Card Insertion and Removal Detection Mechanism ...226
9.6.2 Handling Card Detection in Software..227
9.6.3 Write Protection ..228
9.6.4 SD/MMC CLOCK STOP ...228
9.6.5 SD_CLK Output Clock Stop..228
9.6.6 SDIO Read-Wait/ Suspend-Resume Feature ...228

9.6.6.1 Read-Wait ...228
9.6.6.2 Suspend-Resume Feature ..229
9.6.6.3 SD3.0 Host Tuning Feature...229
9.6.6.4 Normal and Alternate eMMC4.4 Boot ...230

10. Registers 235

10.1 Introduction...235

10.2 Register Conventions ...236

10.3 Vectored Interrupt Controller (VIC) Registers...237
10.3.1 VIC_IRQ_STATUS ..237
10.3.2 VIC_FIQ_STATUS ...238
10.3.3 VIC_RAW_STATUS ..239
10.3.4 VIC_INT_SELECT ...240

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 11

Contents

10.3.5 VIC_INT_ENABLE ...241
10.3.6 VIC_INT_CLEAR ...242
10.3.7 VIC_PRIORITY_MASK ..243
10.3.8 VIC_VEC_ADDRESS ..244
10.3.9 VIC_VECT_PRIORITY ...245
10.3.10 VIC_ADDRESS ..246

10.4 Global Controller Registers...247
10.4.1 GCTL_IOMATRIX ..247
10.4.2 GCTL_GPIO_SIMPLE ...248
10.4.3 GCTL_GPIO_COMPLEX ...250
10.4.4 GCTL_DS ...252
10.4.5 GCTL_WPU_CFG ..254
10.4.6 GCTL_WPD_CFG ..256
10.4.7 GCTL_IOPOWER ..258
10.4.8 GCTL_IOPOWER_INTR ..260
10.4.9 GCTL_IOPOWER_INTR_MASK ..262
10.4.10 GCTL_SW_INT ..264
10.4.11 GCTL_PLL_CFG ..265
10.4.12 GCTL_CPU_CLK_CFG ...267
10.4.13 GCTL_UIB_CORE_CLK ..268
10.4.14 GCTL_PIB_CORE_CLK ..269
10.4.15 GCTL_GPIO_FAST_CLK ..270
10.4.16 GCTL_GPIO_SLOW_CLK ...272
10.4.17 GCTL_I2C_CORE_CLK ...273
10.4.18 GCTL_UART_CORE_CLK ..274
10.4.19 GCTL_SPI_CORE_CLK ..275
10.4.20 GCTL_I2S_CORE_CLK ...276

10.5 Global Controller Always On Registers ..277
10.5.1 GCTL_WAKEUP_EN ...277
10.5.2 GCTL_WAKEUP_POLARITY ..279
10.5.3 GCTL_WAKEUP_EVENT ..281
10.5.4 GCTL_FREEZE ...283
10.5.5 GCTL_WATCHDOG_CS ...284
10.5.6 GCTL_WATCHDOG_TIMER0 ...286
10.5.7 GCTL_WATCHDOG_TIMER1 ...287

10.6 PIB Registers..288
10.6.1 PIB_CONFIG ...288
10.6.2 PIB_INTR ...290
10.6.3 PIB_INTR_MASK ...292
10.6.4 PIB_CLOCK_DETECT ...294
10.6.5 PIB_RD_MAILBOX ..295
10.6.6 PIB_WR_MAILBOX ...297
10.6.7 PIB_ERROR ..299
10.6.8 PIB_EOP_EOT ..301
10.6.9 PIB_DLL_CTRL ...302
10.6.10 PIB_WR_THRESHOLD ...304
10.6.11 PIB_RD_THRESHOLD ..305
10.6.12 PIB_ID ..306

12 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Contents

10.6.13 PIB_POWER ..307

10.7 GPIF Registers ...308
10.7.1 GPIF_CONFIG ...308
10.7.2 GPIF_BUS_CONFIG ...310
10.7.3 GPIF_BUS_CONFIG2 ...312
10.7.4 GPIF_AD_CONFIG ..313
10.7.5 GPIF_STATUS ..315
10.7.6 GPIF_INTR ..317
10.7.7 GPIF_INTR_MASK ..319
10.7.8 GPIF_CTRL_BUS_DIRECTION ..321
10.7.9 GPIF_CTRL_BUS_DEFAULT ...322
10.7.10 GPIF_CTRL_BUS_POLARITY ..323
10.7.11 GPIF_CTRL_BUS_TOGGLE ...324
10.7.12 GPIF_CTRL_BUS_SELECT ..325
10.7.13 GPIF_CTRL_COUNT_CONFIG ..326
10.7.14 GPIF_CTRL_COUNT_RESET ..327
10.7.15 GPIF_CTRL_COUNT_LIMIT ...328
10.7.16 GPIF_ADDR_COUNT_CONFIG ..329
10.7.17 GPIF_ADDR_COUNT_RESET ..330
10.7.18 GPIF_ADDR_COUNT_LIMIT ..331
10.7.19 GPIF_STATE_COUNT_CONFIG ..332
10.7.20 GPIF_STATE_COUNT_LIMIT ...333
10.7.21 GPIF_DATA_COUNT_CONFIG ..334
10.7.22 GPIF_DATA_COUNT_RESET ..335
10.7.23 GPIF_DATA_COUNT_LIMIT ...336
10.7.24 GPIF_CTRL_COMP_VALUE ...337
10.7.25 GPIF_CTRL_COMP_MASK ..338
10.7.26 GPIF_DATA_COMP_VALUE ..339
10.7.27 GPIF_DATA_COMP_MASK ..340
10.7.28 GPIF_ADDR_COMP_VALUE ..341
10.7.29 GPIF_ADDR_COMP_MASK ...342
10.7.30 GPIF_DATA_CTRL ..343
10.7.31 GPIF_INGRESS_DATA ...344
10.7.32 GPIF_EGRESS_DATA ..345
10.7.33 GPIF_INGRESS_ADDRESS ...346
10.7.34 GPIF_EGRESS_ADDRESS ..347
10.7.35 GPIF_THREAD_CONFIG ..348
10.7.36 GPIF_LAMBDA_STAT ...350
10.7.37 GPIF_ALPHA_STAT ..351
10.7.38 GPIF_BETA_STAT ..352
10.7.39 GPIF_WAVEFORM_CTRL_STAT ...353
10.7.40 GPIF_WAVEFORM_SWITCH ...355
10.7.41 GPIF_WAVEFORM_SWITCH_TIMEOUT ...357
10.7.42 GPIF_CRC_CONFIG ...358
10.7.43 GPIF_CRC_DATA ...359
10.7.44 GPIF_BETA_DEASSERT ..360
10.7.45 GPIF_FUNCTION ..361
10.7.46 GPIF_LEFT_WAVEFORM ...362
10.7.47 GPIF_RIGHT_WAVEFORM ..365

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 13

Contents

10.8 P-Port Registers ...368
10.8.1 PP_ID ...368
10.8.2 PP_INIT ..369
10.8.3 PP_CONFIG ..370
10.8.4 PP_INTR_MASK ..372
10.8.5 PP_DRQR5_MASK ..373
10.8.6 PP_SOCK_MASK ..374
10.8.7 PP_ERROR ...375
10.8.8 PP_DMA_XFER ...376
10.8.9 PP_DMA_SIZE ..377
10.8.10 PP_WR_MAILBOX ..378
10.8.11 PP_MMIO_ADDR ..380
10.8.12 PP_MMIO_DATA ...381
10.8.13 PP_MMIO ...382
10.8.14 PP_EVENT ..383
10.8.15 PP_RD_MAILBOX ...385
10.8.16 PP_SOCK_STAT ...387
10.8.17 PP_BUF_SIZE_CNT ..388

10.9 USB Port Registers...389
10.9.1 UIB_INTR ...389
10.9.2 UIB_INTR_MASK ...391
10.9.3 UIB_ID ..393
10.9.4 UIB_POWER ..394

10.10 USB2 HS/FS/LS PHY Registers...395
10.10.1 PHY_CLK_AND_TEST ..395
10.10.2 PHY_CONF ..397
10.10.3 PHY_CHIRP ...399

10.11 USB2 Device Controller Registers..400
10.11.1 DEV_CS ...400
10.11.2 DEV_FRAMECNT ..402
10.11.3 DEV_PWR_CS ..403
10.11.4 DEV_SETUPDAT ...404
10.11.5 DEV_TOGGLE ...406
10.11.6 DEV_EPI_CS ...408
10.11.7 DEV_EPI_XFER_CNT ...410
10.11.8 DEV_EPO_CS ...411
10.11.9 DEV_EPO_XFER_CNT ...413
10.11.10 DEV_CTRL_INTR_MASK ..414
10.11.11 DEV_CTRL_INTR ..415
10.11.12 DEV_EP_INTR_MASK ..416
10.11.13 DEV_EP_INTR ...417

10.12 USB Controller Miscellaneous Registers..418
10.12.1 CHGDET_CTRL ...418
10.12.2 CHGDET_INTR ..420
10.12.3 CHGDET_INTR_MASK ...421
10.12.4 OTG_CTRL ..422
10.12.5 OTG_INTR ...424
10.12.6 OTG_INTR_MASK ...425

14 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Contents

10.12.7 OTG_TIMER ..426

10.13 USB End Point Manager Registers ..427
10.13.1 EEPM_CS ..427
10.13.2 IEPM_CS ...429
10.13.3 IEPM_MULT ..430
10.13.4 EEPM_ENDPOINT ..431
10.13.5 IEPM_ENDPOINT ..432
10.13.6 IEPM_FIFO ..433

10.14 USB2 Host Controller Registers ...434
10.14.1 HOST_CS ..434
10.14.2 HOST_EP_INTR ..435
10.14.3 HOST_EP_INTR_MASK ..436
10.14.4 HOST_TOGGLE ..437
10.14.5 HOST_SHDL_CS ..439
10.14.6 HOST_SHDL_SLEEP ..441
10.14.7 HOST_RESP_BASE ..442
10.14.8 HOST_RESP_CS ..443
10.14.9 HOST_ACTIVE_EP ...444
10.14.10 OHCI_REVISION ...445
10.14.11 OHCI_CONTROL ..446
10.14.12 OHCI_COMMAND_STATUS ...447
10.14.13 OHCI_INTERRUPT_STATUS ...448
10.14.14 OHCI_INTERRUPT_ENABLE ...449
10.14.15 OHCI_INTERRUPT_DISABLE ..450
10.14.16 OHCI_FM_INTERVAL ...451
10.14.17 OHCI_FM_REMAINING ..452
10.14.18 OHCI_FM_NUMBER ...453
10.14.19 OHCI_PERIODIC_START ...454
10.14.20 OHCI_LS_THRESHOLD ...455
10.14.21 OHCI_RH_PORT_STATUS ...456
10.14.22 OHCI_EOF ...458
10.14.23 EHCI_HCCPARAMS ...459
10.14.24 EHCI_USBCMD ...460
10.14.25 EHCI_USBSTS ..461
10.14.26 EHCI_USBINTR ...462
10.14.27 EHCI_FRINDEX ...463
10.14.28 EHCI_CONFIGFLAG ...464
10.14.29 EHCI_PORTSC ...465
10.14.30 EHCI_EOF ...467
10.14.31 SHDL_CHNG_TYPE ...468
10.14.32 SHDL_STATE_MACHINE ...469
10.14.33 SHDL_INTERNAL_STATUS ...471
10.14.34 SHDL_OHCI ..473
10.14.35 SHDL_EHCI ...477

10.15 USB3 Link Controller Registers..481
10.15.1 LNK_CONF ..481
10.15.2 LNK_INTR ..482
10.15.3 LNK_INTR_MASK ...484

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 15

Contents

10.15.4 LNK_ERROR_CONF ...486
10.15.5 LNK_ERROR_STATUS ...488
10.15.6 LNK_ERROR_COUNT ..490
10.15.7 LNK_ERROR_COUNT_THRESHOLD ..491
10.15.8 LNK_PHY_CONF ...492
10.15.9 LNK_PHY_MPLL_STATUS ...493
10.15.10 LNK_PHY_TX_TRIM ...494
10.15.11 LNK_PHY_ERROR_CONF ..495
10.15.12 LNK_PHY_ERROR_STATUS ..496
10.15.13 LNK_DEVICE_POWER_CONTROL ..498
10.15.14 LNK_LTSSM_STATE ...500
10.15.15 LNK_LFPS_OBSERVE ..501
10.15.16 LNK_COMPLIANCE_PATTERN_0 ..502
10.15.17 LNK_COMPLIANCE_PATTERN_1 ..503
10.15.18 LNK_COMPLIANCE_PATTERN_2 ..504
10.15.19 LNK_COMPLIANCE_PATTERN_3 ..505
10.15.20 LNK_COMPLIANCE_PATTERN_4 ..506
10.15.21 LNK_COMPLIANCE_PATTERN_5 ..507
10.15.22 LNK_COMPLIANCE_PATTERN_6 ..508
10.15.23 LNK_COMPLIANCE_PATTERN_7 ..509
10.15.24 LNK_COMPLIANCE_PATTERN_8 ..510

10.16 USB3 Protocol Layer Registers ..511
10.16.1 PROT_CS ..511
10.16.2 PROT_INTR ...513
10.16.3 PROT_INTR_MASK ...515
10.16.4 PROT_FRAMECNT ...517
10.16.5 PROT_ITP_TIME ...518
10.16.6 PROT_ITP_TIMESTAMP ...519
10.16.7 PROT_SETUP_DAT ..520
10.16.8 PROT_SEQ_NUM ...522
10.16.9 PROT_EP_INTR ..524
10.16.10 PROT_EP_INTR_MASK ..525
10.16.11 PROT_EPI_CS1 ..526
10.16.12 PROT_EPI_CS2 ..528
10.16.13 PROT_EPI_UNMAPPED_STREAM ..529
10.16.14 PROT_EPI_MAPPED_STREAM ...530
10.16.15 PROT_EPO_CS1 ...531
10.16.16 PROT_EPO_CS2 ...533
10.16.17 PROT_EPO_UNMAPPED_STREAM ..534
10.16.18 PROT_EPO_MAPPED_STREAM ...535

10.17 USB Port - SuperSpeed Ingress Socket Registers...536
10.17.1 UIBIN_ID ..536
10.17.2 UIBIN_POWER ..537

10.18 I2S Registers ..538
10.18.1 I2S_CONFIG ..538
10.18.2 I2S_STATUS ..540
10.18.3 I2S_INTR ...542
10.18.4 I2S_INTR_MASK ...543

16 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Contents

10.18.5 I2S_EGRESS_DATA_LEFT ..544
10.18.6 I2S_EGRESS_DATA_RIGHT ..545
10.18.7 I2S_COUNTER ..546
10.18.8 I2S_SOCKET ...547
10.18.9 I2S_ID ..548
10.18.10 I2S_POWER ..549

10.19 I2C Registers..550
10.19.1 I2C_CONFIG ...550
10.19.2 I2C_STATUS ...552
10.19.3 I2C_INTR ...554
10.19.4 I2C_INTR_MASK ...555
10.19.5 I2C_TIMEOUT ...556
10.19.6 I2C_DMA_TIMEOUT ...557
10.19.7 I2C_PREAMBLE_CTRL ..558
10.19.8 I2C_PREAMBLE_DATA ..559
10.19.9 I2C_PREAMBLE_RPT ...561
10.19.10 I2C_COMMAND ..562
10.19.11 I2C_EGRESS_DATA ...564
10.19.12 I2C_INGRESS_DATA ..565
10.19.13 I2C_CLOCK_LOW_COUNT ..566
10.19.14 I2C_BYTE_COUNT ...567
10.19.15 I2C_BYTES_TRANSFERRED ...568
10.19.16 I2C_SOCKET ...569
10.19.17 I2C_ID ..570
10.19.18 I2C_POWER ..571

10.20 UART Registers..572
10.20.1 UART_CONFIG ...572
10.20.2 UART_STATUS ...574
10.20.3 UART_INTR ...576
10.20.4 UART_INTR_MASK ...577
10.20.5 UART_EGRESS_DATA ...578
10.20.6 UART_INGRESS_DATA ...579
10.20.7 UART_SOCKET ..580
10.20.8 UART_RX_BYTE_COUNT ..581
10.20.9 UART_TX_BYTE_COUNT ..582
10.20.10 UART_ID ..583
10.20.11 UART_POWER ..584

10.21 SPI Registers..585
10.21.1 SPI_CONFIG ...585
10.21.2 SPI_STATUS ...587
10.21.3 SPI_INTR ...589
10.21.4 SPI_INTR_MASK ...590
10.21.5 SPI_EGRESS_DATA ...591
10.21.6 SPI_INGRESS_DATA ...592
10.21.7 SPI_SOCKET ..593
10.21.8 SPI_RX_BYTE_COUNT ..594
10.21.9 SPI_TX_BYTE_COUNT ..595
10.21.10 SPI_ID ..596

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 17

Contents

10.21.11 SPI_POWER ..597

10.22 General Purpose IO Block Registers..598
10.22.1 GPIO_SIMPLE ...598
10.22.2 GPIO_INVALUE0 ...600
10.22.3 GPIO_INVALUE1 ...601
10.22.4 GPIO_INTR0 ..602
10.22.5 GPIO_INTR1 ..603
10.22.6 GPIO_INTR ..604
10.22.7 GPIO_ID ...605
10.22.8 GPIO_POWER ...606

10.23 General Purpose IO Registers (one pin) ..607
10.23.1 PIN_STATUS ...607
10.23.2 PIN_TIMER ..609
10.23.3 PIN_PERIOD ...610
10.23.4 PIN_THRESHOLD ...611

10.24 Low Performance Peripherals Registers ..612
10.24.1 LPP_ID ...612
10.24.2 LPP_POWER ...613

10.25 DMA Socket and Descriptor Registers ...614
10.25.1 SCK_DSCR ..614
10.25.2 SCK_SIZE ..616
10.25.3 SCK_COUNT ...617
10.25.4 SCK_STATUS ..618
10.25.5 SCK_INTR ...621
10.25.6 SCK_INTR_MASK ...623
10.25.7 DSCR_BUFFER ...625
10.25.8 DSCR_SYNC ...626
10.25.9 DSCR_CHAIN ..628
10.25.10 DSCR_SIZE ...629
10.25.11 EVENT ...631

10.26 DMA Adapter Global Registers...632
10.26.1 SCK_INTR ...632
10.26.2 ADAPTER_STATUS ..638
10.26.3 SIB_ID ..639
10.26.4 SIB_POWER ..640
10.26.5 SDMMC_CMD_IDX ...641
10.26.6 SDMMC_CMD_ARG0 ..642
10.26.7 SDMMC_CMD_ARG1 ..643
10.26.8 SDMMC_RESP_IDX ..644
10.26.9 SDMMC_RESP_REG0 ..645
10.26.10 SDMMC_RESP_REG1 ..646
10.26.11 SDMMC_RESP_REG2 ..647
10.26.12 SDMMC_RESP_REG3 ..648
10.26.13 SDMMC_RESP_REG4 ..649
10.26.14 SDMMC_CMD_RESP_FMT ..650
10.26.15 SDMMC_BLOCK_COUNT ...651
10.26.16 SDMMC_BLOCK_LEN ..652
10.26.17 SDMMC_MODE_CFG ...653

18 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Contents

10.26.18 SDMMC_DATA_CFG ..655
10.26.19 SDMMC_CS ..656
10.26.20 SDMMC_STATUS ...658
10.26.21 SDMMC_INTR ...660
10.26.22 SDMMC_INTR_MASK ...662
10.26.23 SDMMC_NCR ..664
10.26.24 SDMMC_NCC_NWR ...665
10.26.25 SDMMC_NAC ..666
10.26.26 SDMMC_HW_CTRL ..667
10.26.27 SDMMC_DLL_CTRL ...668

Revision History 669

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 19

1. Introduction to EZ-USB FX3

EZ-USB® FX3™ is Cypress's high-bandwidth USB 3.0 peripheral controller that provides integrated and flexible features.
FX3 integrates the USB 3.0 and USB 2.0 physical layers (PHYs) along with a 32-bit ARM926EJ-S microprocessor for
powerful data processing and for building custom USB SuperSpeed applications.

To provide high-bandwidth access to USB 3.0 data, FX3 contains a hardware unit called General Programmable Interface,
Generation 2 (GPIF II). GPIF II is an enhanced version of the GPIF in FX2LP™, Cypress's USB 2.0 product. GPIF II provides
easy and glueless connectivity to popular interfaces such as asynchronous SRAM and asynchronous and synchronous
address and data multiplexed interfaces. FX3 implements a DMA-centric architecture that enables direct 375-MBps data
transfer from GPIF II to the USB interface without CPU intervention.

An integrated USB 2.0 USB On-The-Go (OTG) controller enables applications in which FX3 may serve dual high-speed roles;
for example, EZ-USB FX3 may function as a High-Speed On-The-Go (HS-OTG) host to USB Mass Storage Class (MSC)
devices and HID-class devices. FX3 contains 512 KB or 256 KB of on-chip SRAM for code and data. EZ-USB FX3 also
provides interfaces to connect to serial peripherals such as UART, SPI, I2C, and I2S. FX3 comes with application
development tools. The software development kit (SDK) provides application examples for accelerating the time to market.
FX3 complies with the USB 3.0 v1.0 specification and is also backward compatible with USB 2.0. It also complies with the
Battery Charging Specification v1.1 and USB 2.0 OTG Specification v2.0.

In addition to these features, FX3S has an integrated storage controller and can support up to two independent mass storage
devices. It can support SD 3.0 and eMMC 4.41 memory cards. It can also support SDIO on these ports.

This TRM describes the following functional blocks of the FX3/FX3S device: CPU subsystem, memory, global control, DMA,
USB, GPIF II, low-bandwidth (serial and GPIO) peripherals, and storage (storage block is specific to FX3S only). Registers
associated with these functional blocks are documented in the Registers chapter on page 235.

The following sections describe the details of USB 3.0 and briefly outline the EZ-USB FX3/FX3S architecture.

1.1 Overview of USB 3.0

This section gives an overview of USB 3.0 and describes the significant changes in each layer from the USB 2.0 specification,
including the new power management features provided in USB 3.0. Refer to AN57294 - USB 101: An Introduction to
Universal Serial Bus 2.0 for more details on USB 2.0. The USB 2.0 and 3.0 specifications can be downloaded from
http://www.usb.org/developers/docs.

The USB 3.0 specification, released in 2008, allows a maximum signaling rate of 5 Gbps (SuperSpeed), which is 10 times the
signaling rate of High Speed. The USB 3.0 architecture contains three layers: the physical layer, the link layer on top of the
physical layer, and the protocol layer on top of the link layer.

The additional bandwidth provided by USB SuperSpeed transactions can benefit applications like real-time audio and video
streaming that require a higher bus bandwidth at regular intervals. Mass storage applications can also benefit from the
SuperSpeed bandwidth. FX3 has also been used to implement a high-performance PC-based logic analyzer.

1.1.1 Physical Layer

The physical layer refers to the PHY part of the port and the cable connecting the upstream and downstream ports. USB 3.0
cables have separate shielded differential pairs of lines for transmitting and receiving data. These lines exist along with the
USB 2.0 signals. So a USB 3.0 cable contains a total of nine wires including the four wires that are part of the USB 2.0 cable

http://www.cypress.com/?rID=39327
http://www.cypress.com/?rID=39327
http://www.usb.org/developers/docs

20 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

(see Figure 1-1). The SuperSpeed bus employs a dual-simplex approach that allows simultaneous transmission and
reception of packets. In many cases, a SuperSpeed device may be both transmitting and receiving data at the same time. For
example, during burst transactions, a device may be receiving data from the host and returning acknowledgements
associated with the data it already received.

Figure 1-1. Cross-Section of a USB 3.0 Cable

Coming to the power distribution via the USB 3.0 host, 150 mA is considered as the unit load. USB 3.0 host supplies one unit
load of current for unconfigured devices and six unit loads of current for configured devices. The USB 3.0 host detects the
device connection based on the receiver end termination, and the transmitter is responsible for detecting the device
connection. USB 3.0 uses spread-spectrum clocking on its signaling. If spread-spectrum clocking is enabled, then the energy
of the signal is spread over a larger frequency band rather concentrated over a small frequency band at a high level, helping
to reduce the EMI emissions. The USB 3.0 physical layer supports low-frequency periodic signaling (LFPS), which is used to
manage signal initiation and low-power management on the bus on an idle link to consume less power. Table 1-1 lists the
differences between the USB 3.0 and USB 2.0 physical layers.

Table 1-1. Differences Between Physical Layers of USB 3.0 and USB 2.0

1.1.2 Link Layer

 The link layer is responsible for maintaining a reliable and robust communication channel between the host and the device.
The Link Training and Status State Machine (LTSSM) at the core of the USB 3.0 link layer establishes the link connectivity

Feature USB 3.0 USB 2.0

Signaling rate 5 Gbps 480 Mbps

Data transfers Dual simplex Half duplex

Number of pins in the USB cable
9 (VBUS, Ground, D+, D-, SSRX+, SSRX-, SSTX+, SSTX-,
Ground_Drain)

4 (VBUS, Ground, D+, D-)

Data lines in the cable Shielded differential pair (SDP, twisted, or twinax) Unshielded twisted pair (UTP)

Current supplied by the host
150 mA for unconfigured devices, 900 mA for configured
devices

100 mA for unconfigured devices, 500 mA for con-
figured devices

Device detection by the host Receiver end termination Pull-up resistor on D+ or D- lines

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 21

and link power management states and transitions. LTSSM consists of 12 states, including four operational link states (U0,
U1, U2, U3). The link layer offers these four link power states for better power management:

■ U0-Fully powered; link partners are fully powered and ready to send packets

■ U1-Standby with fast recovery; link is in a low-power state and is not ready to send packets but can transition back to U0
within microseconds

■ U2-Standby with slow recovery; link power saving is greater than U1 and transitioning back to U0 within microseconds to
milliseconds

■ U3-Suspend; greatest power savings and longest recovery back to U0 (milliseconds)

■ U1, U2, and U3 have increasingly longer wakeup times into U0 and thus allow transmitters to go into increasingly deeper
sleep.

■ Four link initialization and training states (Rx.Detect, Polling, Recovery, Hot Reset)

■ Two link test states (Loopback and Compliance mode)

■ SS.Inactive (link error state where USB 3.0 is nonoperable)

■ SS.Disabled (SuperSpeed bus is disabled and operates as USB 2.0 only)

Link commands are used to maintain the link flow control and to initiate a change in the link power state.

1.1.3 Protocol Layer

The protocol layer manages the communication rules between a host and device. The SuperSpeed protocol layer includes
the following improvements to enable better performance, efficiency, and power conservation. The information in this section
is provided as background material; the FX3 logic manages protocol details so the application program can deal directly with
USB data.

1.1.3.1 Unicast Transactions

SuperSpeed transactions are routed directly from a root port to the target device with the help of a route string in the packet
header. Therefore, only links in the direct path between the root port and target device see the traffic, which lets other links in
the topology enter or remain in a low-power state.

1.1.3.2 Token/ Data/Handshake Sequences

A USB 2.0 transaction consists of three packets: token, data, and handshake. A transaction is initiated with the token packet
and it is always from the host. Data packets deliver the payload data, which can be sourced by the host or device. The
handshake packet acknowledges the error-free receipt of data and is sent by the receiver of the data. But with SuperSpeed,
to save bandwidth, the token is incorporated into the data packet for OUT transactions; it is replaced by the handshake for IN
transactions. So an ACK packet acknowledges the previous data packet sent and requests the next data packet. The
following examples clarify the differences between USB 2.0 and USB 3.0 IN and OUT transactions.

1.1.3.2.1 IN Transaction Example

Figure 1-2 on page 22 illustrates the differences between USB 2.0 and SuperSpeed OUT transactions. The example on the
left in Figure 1-2 on page 22 shows the sequence of packets required to perform two USB 2.0 IN transactions that require six
packets:

1. Host broadcasts an IN token packet (1) to initiate the transaction.

2. Device returns the requested data packet (2).

3. Host acknowledges receipt of data with an ACK handshake packet (3).

4. Steps 1-3 are repeated.

The example on the right indicates the packet sequence necessary to perform two back-to-back SuperSpeed IN transactions,
which require only five packets to be exchanged:

1. SuperSpeed uses an ACK header (1) to initiate an IN transaction.

2. The SuperSpeed device returns the data packet (2).

22 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

3. The second ACK header (3) both acknowledges receipt of the data and requests a second transaction.

4. The second data packet (4) is delivered by the device.

5. The final ACK header (5) acknowledges receipt of the data, but does not request additional data.

Figure 1-2. USB 2.0 IN Transaction Versus USB 3.0 IN Transaction

1.1.3.2.2 OUT Transaction Example

Figure 1-3 illustrates the differences between USB 2.0 and SuperSpeed OUT transactions. The example on the left shows
two back-to-back OUT transactions that require six packets:

1. Host broadcasts an OUT token packet (1) to initiate the transaction.

2. Host sends a data packet (2) to the device.

3. Device acknowledges receipt of data with an ACK handshake packet (3).

4. Steps 1-3 are repeated

The right side of Figure 1-3 shows the packet sequence required to perform two back-to-back SuperSpeed OUT transactions,
requiring only 4 packets to be exchanged:

1. SuperSpeed USB uses a data header (1) to initiate an OUT transaction and to deliver data to the device.

2. Device acknowledges receipt of data via an ACK packet (2).

3. The second data packet (3) initiates the second transaction and delivers data to the device.

4. Device acknowledges receipt of data via an ACK packet (4), completing the sequence.

Host Controller

High-Speed Device

IN Token

DATA

ACK

IN Token

ACK

DATA

Host Controller

SuperSpeed Device

ACK Header

DATA Header
+ Payload

DATA Header
+ Payload

ACK Header

ACK Header

1

4

6

5

1

3

4

2

3
2

5

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 23

Figure 1-3. USB 2.0 OUT Transaction Versus USB 3.0 OUT Transaction

1.1.3.3 Data Bursting

The SuperSpeed end-to-end protocol supports transmitting the data in bursts (multiple data packets) without receiving an
acknowledgement to improve latency and performance. The protocol allows efficient bus utilization by concurrently
transmitting and receiving over the bus. A transmitter (host or device) can burst multiple packets of data back to back, and the
receiver can transmit data acknowledgements without interrupting the burst of data packets. Also, the host may
simultaneously schedule multiple OUT bursts to be active at the same time as an IN burst. Devices report their ability to
support bursting in their device descriptors. The maximum burst size is 16, and the actual number to be used represents the
number of data packets that can be sent without receiving an acknowledgement.

This bursting approach is explained in Figure 1-3 with an IN endpoint that supports a burst size of four. The host initiates the
burst transfer and indicates the expected sequence number of the first data packet returned (Seq=0) and the number of
packets it wishes to receive (NumP=4). The target device responds with a burst sequence of four data packets without
receiving any handshakes. A fifth data packet cannot be returned until data packet zero is acknowledged and the host has
indicated a request for another data packet (that is, a second ACK packet with NumP=4). In this burst example, the host
continues to request additional data by keeping the NumP value at 4.

Host Controller

High-Speed Device

OUT Token

DATA

ACK

OUT Token

DATA

Host Controller

SuperSpeed Device

ACK Header

DATA Header
+ Payload

1

4

5

6

1

3

2
2

ACK

DATA Header
+ Payload

ACK Header 4

3

24 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 1-4. Data Bursting in SuperSpeed

1.1.3.4 End-to-End Flow Control

USB 2.0 uses polling and the NAK handshake packet for flow control. For example, USB keyboards must be constantly polled
by the host software to check for activity. When an IN token packet is delivered and no keyboard activity has occurred, the
keyboard returns a NAK packet. Subsequently, the host software will poll the device again and receive another NAK. This
process continues until there is renewed activity. SuperSpeed flow control uses a poll-once approach coupled with an
asynchronous ready notification. Consider the IN transaction shown in Figure 1-5. An ACK packet initiates the IN transaction
and if a device responds with "NRDY" (Not Ready), then the host stops talking to that device until the device sends the
"ERDY" (ready) packet saying that now it is ready to transmit the data. So the host does not need to continue polling. This can
significantly reduce SuperSpeed traffic and improve link power management.

ACK Packet

Host TX

Seq = 0; NumP = 4

Device TX

DATA Packet

Seq = 0

DATA Packet

Seq = 1

DATA Packet

Seq = 2

DATA Packet

Seq = 3

ACK Packet

Seq = 1; NumP = 4

ACK Packet

Seq = 4; NumP = 4

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 25

Figure 1-5. End-to-End Flow Control in SuperSpeed

1.1.3.5 Streams

USB 3.0 enhanced the bulk transfer capabilities by adding a concept called "streams." This allows a device to accept multiple
commands on a pipe from the host and to complete them out of order using the stream IDs.

Table 1-2 lists the differences between the USB 3.0 and USB 2.0 protocol layers:

Table 1-2. Differences Between USB 3.0 and USB 2.0 Protocol Layers

1.2 SuperSpeed Power Management

SuperSpeed USB provides a much improved mechanism for entering and exiting low-power states. USB 2.0 implements a
feature known as "Suspend" that forces devices to limit current consumption to 2.5 mA. Entry into the low-power state
requires a minimum of 3 ms, and exit requires more than 20 ms. SuperSpeed power management provides finer granularity
when entering low-power states and reduces entry and exit times. The device can also initiate the low-power link states when
it is idle.

ACK Packet

Host TX

Seq = 0; NumP = 4

Device TX

NRDY Packet

DATA Packet

Seq = 0

ACK Packet

Seq = 1; NumP = 3 (Handshake)

ERDY Packet

ACK Packet

Seq = 0; NumP = 4

Feature USB 3.0 USB 2.0

Bus transaction protocol

Host directly routes the packet to the targeted device with the help of
route string; exception-isochronous timestamp packet

Host broadcasts the packets to all devices-no route
string

Asynchronous traffic flow Polled traffic flow

Simultaneous IN/OUTs IN or Out

Data transfer types
USB 2.0 types with SuperSpeed constraints; bulk has streams capa-
bility

Four types: Control, interrupt, bulk, isochronous

Maximum packet size

Control 512 64

Interrupt 1024 1024

Bulk
1024

Supports streaming functionality Does not support

Isochronous 1024 1024

26 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Power management features are implemented at all layers:

The physical layer supports the remote wakeup signaling.

The link layer supports low-power link state entry and exit with the help of LTSSM and link commands. It offers four link power
states (U0, U1, U2, and U3) for better power management. The following architectural features aid in SuperSpeed link power
management:

■ The much higher transmission rates mean that SuperSpeed transactions complete very quickly, leaving links in the idle
state for a longer period of time.

■ The Unicast approach involves only the links in the direct path between the originating root port and target device, leaving
other links idle.

■ The "poll once and notify" mechanism used in SuperSpeed end-to-end flow control reduces overall link traffic.

Protocol layer supports endpoint busy/ready notifications.

1.2.1 Function Power Management

SuperSpeed power management includes the ability to place a specific function (an interface or a set of interfaces) into a
suspended state. This means that a multifunction device can have some functions suspended while others remain fully
operational. Functions are placed into suspend under software control. The asynchronous Function Wake notification tells
software that a suspended function or device is requesting a remote wakeup.

1.3 FX3/FX3S Features

EZ-USB FX3/FX3S supports the following features.

■ Universal Serial Bus (USB) integration

❐ USB 3.0 and USB 2.0 peripherals compliant with USB 3.0 specification revision 1.0

❐ 5-Gbps USB 3.0 PHY

❐ HS-OTG host and peripheral compliant with OTG Supplement version 2.0

❐ 32 physical endpoints

❐ Support for Battery Charging Spec 1.1 and accessory charger adapter (ACA) detection

■ General Programmable Interface (GPIF II)*

❐ Programmable GPIF II, enabling connectivity to a wide range of external devices

❐ Interface frequency of up to 100 MHz

❐ 8-, 16-, and 32-bit data bus

❐ As many as 16 configurable control signals

■ 32-bit CPU

❐ ARM926EJ core with 200-MHz operation

❐ 512 KB or 256 KB embedded SRAM

■ Additional connectivity to the following peripherals:

❐ I2C master controller up to 1 MHz

❐ I2S master (transmitter only) at sampling frequencies of 32 kHz, 44.1 kHz, and 48 kHz

❐ UART support of up to 4 Mbps

❐ SPI master at 33 MHz

■ Selectable clock input frequencies

❐ 19.2, 26, 38.4, and 52 MHz

❐ 19.2-MHz crystal input support

■ Ultra low-power in core power-down mode

❐ Less than 60 μA with VBATT on and 20 μA with VBATT off

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 27

❐ Independent power domains for core and interfaces

❐ Core and USB operation at 1.2 V

❐ GPIF II, I2S, UART, and SPI operation at 1.8 to 3.3 V

❐ I2C and JTAG operation at 1.2 to 3.3 V

■ Storage interfaces*

❐ Mass storage support

❐ SD 3.0 (SDXC) UHS-1

❐ eMMC 4.41

❐ Two ports that can support memory card sizes up to 2 TB

❐ Built-in RAID (implemented in firmware) with support for RAID0 and RAID1

■ System I/O expansion with two secure digital I/O (SDIO 3.0) ports

■ Support for USB-attached storage (UAS), mass-storage class (MSC), human interface device (HID), full, and Turbo-
MTP™

*Storage interfaces are available only with FX3S and its GPIF data bus width is limited to 16 bits.

Table 1-3. Feature Differences Between FX3 and FX3S

*All serial interfaces might not be available under all configuration options. Refer to the pin description section in the
datasheet for details.

Feature EZ-USB FX3 EZ-USB FX3S

GPIF 8/16/32-bit 8/16-bit

Storage ports No 1 or 2 ports (SD3.0, eMMC4.41, SDIO3.0)

USB 3.0, USB 2.0 Device Yes Yes

HS-OTG Yes Yes

CPU ARM9, 200 MHz ARM9, 200 MHz

Embedded SRAM 256 KB/512 KB 256 KB/512 KB

Serial Interfaces* I2C, SPI, I2S, UART I2C, SPI, I2S, UART

Boot Options I2C, SPI, USB, GPIF based All FX3 boot options + eMMC based boot options

Package
121-ball BGA, 10 x 10 mm, 0.8 mm pitch.

131-ball, WLCSP, 4.7 x 5.1 mm, 0.4 mm pitch
121-ball BGA, 10 x 10 mm, 0.8 mm pitch

28 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

1.3.1 FX3 Block Diagram

Figure 1-6. FX3 Block Diagram

32
EPsGPIF™ II

SS
Peripheral

HS/FS/LS
OTGHost

JTAG

UART SPI

CTL[15:0]

INT#

RESET#

TD
I

TD
O

TR
ST

#

TM
S

TC
K

DQ[31:0]/[15:0]

PMODE[2:0]

SSRX +
SSRX -
SSTX +
SSTX -

D +
D -

FSLC[0]
FSLC[1]
FSLC[2]

CLKIN
CLKIN_32

XTALIN

XTALOUT

OTG_ID

I2SI2C

 SRAM
(512kB/256kB)ARM9

USB

HS/FS
Peripheral

EZ-DtectTM

DMA Interconnect

I2
C

_S
C

L

I2
C

_S
D

A

T
X

R
X

C
T

S
R

T
S

S
S

N
S

C
LK

M
IS

O
M

O
S

I

I2
S

_
C

L
K

I2
S

_
S

D

I2
S

_
W

S
I2

S
_M

C
LK

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 29

1.3.2 FX3S Block Diagram

Figure 1-7. FX3S Block Diagram

Note: For more details on pin mapping and their descriptions, refer to FX3 and FX3S datasheets.

1.4 Functional Overview

1.4.1 CPU

FX3 has an on-chip 32-bit, 200-MHz ARM926EJ-S core CPU. The core has direct access to 16 KB of instruction tightly
coupled memory (TCM) and 8 KB of data TCM. The ARM926EJ-S processor also has associated instruction cache (I-cache)
and data cache (D-cache) memories. Both the instruction and data caches are 8 KB.

FX3 integrates 512 KB or 256 KB (depending on the part number) of embedded SRAM for storing code and data. The
ARM926EJ-S core provides a JTAG interface for firmware debugging.

FX3 interrupts are managed through the standard ARM PrimeCell Vectored Interrupt Controller (PL192) block. This interrupt
controller provides vectored interrupt support with configurable priorities for all interrupt sources.

Examples of the FX3 firmware are available with the Cypress EZ-USB FX3 Development Kit.

For more information about the CPU subsystem, refer to the FX3 CPU Subsystem chapter on page 35.

For more information about the memory map, refer to the Memory and System Interconnect chapter on page 45.

32
EPsGPIF™ II

SS
Peripheral

HS/FS/LS
OTGHost

JTAG

UART

SPI

CTL[15:0]

INT#

RESET#

TD
I

TD
O

TR
ST

#

TM
S

TC
K

DQ[15:0]

PMODE[2:0]

SSRX +
SSRX -
SSTX +
SSTX -

D +
D -

FSLC[0]
FSLC[1]
FSLC[2]

CLKIN
CLKIN_32

XTALIN

XTALOUT

OTG_ID

I2S

I2C

 SRAM
(512kB/256kB)ARM9

USB

HS/FS
Peripheral

Charger
Detect

DMA
Interconnect

I2
C

_S
C

L

I2
C

_S
D

A

S
1_

C
M

D

S
1

_W
P

S
1_

D
[7

:0
]

SD/MMC controller

S0-port S1-port

S
1

_C
L

K

S
0

_C
LK

S
0_

C
M

D

S
0_

W
P

S
0_

D
[7

:0
]

S
0S

1_
IN

S

30 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

1.4.2 DMA

FX3 enables efficient and flexible DMA transfers between the various peripherals (such as USB, GPIF II, I2S, SPI, and
UART), requiring firmware only to configure data accesses between peripherals. The data transfers are managed by
distributed DMA controllers within each peripheral. For more information about the FX3 DMA interconnect, refer to the FX3
DMA Subsystem chapter on page 61.

1.4.3 USB Interface

The FX3 USB interface supports the following:

■ USB SuperSpeed and High-Speed peripheral functionality is compliant with USB 3.0 specification revision 1.0 and is
backward compatible with the USB 2.0 specification.

■ As a USB peripheral, FX3 supports SuperSpeed, High-Speed, and Full-Speed transfers. As a host, FX3 supports High-
Speed, Full-Speed, and Low-Speed transfers.

■ Complies with OTG Supplement revision 2.0, supporting dual-role operation. As an OTG host, FX3 supports

■ USB classes such as Mass Storage (MSC) and Human Interface Device (HID).

■ Carkit Pass-through UART functionality on USB D+/D- lines based on the CEA-936A specification

■ 16 IN and 16 OUT endpoints

■ CONTROL, BULK, INTERRUPT, and ISOCHRONOUS endpoints

■ USB 3.0 BULK streams feature.

■ USB charger and accessory detection (EZ-DTECT).

The charger detection mechanism complies with the USB Battery Charging Specification revision 1.1. In addition to
supporting this version of the specification, FX3 provides hardware support to detect resistance values on the ID pin.

For more information about the USB block, refer to the Universal Serial Bus (USB) chapter on page 81.

1.4.4 GPIF II

The GPIF II is a programmable state machine that enables a flexible interface that may function either as a master or slave to
industry-standard or proprietary interfaces. The high-performance GPIF II interface provides functionality similar to, but more
advanced than, the FX2LP™ GPIF and Slave FIFO interfaces. Both parallel and serial interfaces may be implemented with
GPIF II.

The GPIF II implements an interface by creating a GPIF II state machine. GPIF II state transitions are based on input signals,
and the control output signals are driven as a result of the GPIF II state transitions. Some popular interfaces that can be
implemented with GPIF II are the Slave FIFO interface, SRAM, Address/Data bus interfaces, and Address Multiplexed
(ADMux) interfaces.

For more information about the synchronous Slave FIFO interface, refer to the application note AN65974 - Designing with the
EZ-USB FX3 Slave FIFO Interface.

The key features of GPIF II are:

■ Functions as a master or slave

■ Provides 256 firmware programmable states

■ Supports 8-bit, 16-bit, 24-bit, and 32-bit parallel data buses

■ Enables interface frequencies up to 100 MHz

■ Supports 14 configurable control pins when a 32-bit data bus is used. All control pins can be either input or outputor bidi-
rectional.

■ Supports 16 configurable control pins when a 16- or 8-bit data bus is used. All control pins can be either input or output or
bidirectional.

http://www.cypress.com/?rID=51581
http://www.cypress.com/?rID=51581

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 31

Cypress's GPIF II Designer tool enables GPIF II designs to be developed quickly and includes examples of common
interfaces. For more information about the GPIF II block, refer to the General Programmable Interface II (GPIF II) chapter on
page 125.

1.4.5 UART Interface

FX3 UART supports full-duplex communication and consists of the TX, RX, CTS, and RTS signals. The UART is capable of
generating a range of baud rates, from 300 bps to 4608 Kbps, selectable by the firmware. If flow control is enabled, then the
FX3 UART transmits data when the CTS input is asserted. In addition, the FX3 UART asserts the RTS output signal when it is
ready to receive data.

1.4.6 I2C Interface

The FX3 I2C interface is compatible with the I2C Bus Specification revision 3. This I2C interface is capable of operating only
as an I2C master; therefore, it may be used to communicate with other I2C slave devices. For example, FX3 may boot from
an EEPROM connected to the I2C interface, as a selectable boot option.

The FX3 I2C master controller also supports multimaster functionality. The FX3 I2C controller is powered by a dedicated
power pin, VIO5, which also powers the JTAG interface. This gives the I2C interface the flexibility to operate at a different
voltage than other serial interfaces.

The I2C controller supports bus frequencies of 100 kHz, 400 kHz, and 1 MHz. When VIO5 is 1.2 V, the maximum operating
frequency is 100 kHz. When VIO5 is 1.8 V, 2.5 V, or 3.3 V, the operating frequencies supported are 400 kHz and 1 MHz. The
I2C controller supports the clock-stretching feature to enable slower devices to exercise flow control. The I2C interface's SCL
and SDA signals require external pull-up resistors, which must be connected to VIO5.

1.4.7 I2S Interface

FX3 has an I2S port to support external audio codec devices. FX3 functions as an I2S master as a transmitter only.

The I2S interface consists of four signals: clock (I2S_CLK), serial data (I2S_SD), word select (I2S_WS), and master system
clock (I2S_MCLK). FX3 can generate the system clock as an output on I2S_MCLK or accept an external system clock input
on I2S_MCLK.

The sampling frequencies supported by the I2S interface are 32 kHz, 44.1 kHz, and 48 kHz.

1.4.8 SPI Interface

FX3 provides an SPI master interface. The maximum operation frequency is 33 MHz. The SPI controller supports four modes
of SPI communication. This controller is a single master controller with a single automated Slave Select, Negative-true (SSN)
control. It supports transaction sizes ranging from 4 bits to 32 bits.

For more information about the UART, I2C, I2S, and SPI interfaces, refer to the Low Performance Peripherals (LPP) chapter
on page 173.

1.4.9 JTAG Interface

The FX3 JTAG interface is a standard five-pin interface to connect to a JTAG debugger to debug the firmware through the
CPU core's on-chip-debug circuitry. Industry-standard debugging tools for the ARM926EJ-S core can be used for FX3
application development.

1.4.10 Storage Interface

FX3S has two independent storage ports (S0-Port and S1-Port). Both storage ports support the following specifications:

■ MMC system specification, MMCA Technical Committee, version 4.41

■ SD specification, version 3.0

■ SDIO host controller compliant with SDIO Specification version 3.00

32 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Both storage ports support the following features:

1.4.10.1 SD/MMC Clock Stop

FX3S supports the stop clock feature, which can save power if the internal buffer is full when receiving data from the SD/
MMC/SDIO.

1.4.10.2 SD_CLK Output Clock Stop

During the data transfer, the SD_CLK clock can be enabled (on) or disabled (stopped) at any time by the internal flow control
mechanism.

SD_CLK output frequency is dynamically configurable using a clock divider from a system clock. The clock choice for the
divisor is user-configurable through a register. For example, the following frequencies may be configured:

■ 400 kHz - For the SD/MMC card initialization

■ 20 MHz - For a card with 0- to 20-MHz frequency

■ 24 MHz - For a card with 0- to 26-MHz frequency

■ 48 MHz - For a card with 0- to 52-MHz frequency (48-MHz frequency on SD_CLK is supported when the clock input to
FX3S is 19.2 MHz or 38.4 MHz)

■ 52 MHz - For a card with 0- to 52-MHz frequency (52-MHz frequency on SD_CLK is supported when the clock input to
FX3S is 26 MHz or 52 MHz)

■ 100 MHz - For a card with 0- to 100-MHz frequency If the DDR mode is selected, data is clocked on both the rising and
falling edge of the SD clock. DDR clocks run up to 52 MHz.

1.4.10.3 Card Insertion and Removal Detection

FX3S supports the following two card insertion and removal detection mechanisms:

■ Use of SD_D[3] data

■ Use of the S0S1_INS pin

1.4.10.4 Write Protection (WP)

The S0_WP/S1_WP (SD Write Protection) on S-Port is used to connect to the WP microswitch of the SD/MMC card
connector. This pin internally connects to a CPU-accessible GPIO for firmware to detect the SD card write protection.

1.4.10.5 SDIO Interrupt

The SDIO interrupt functionality is supported as specified in the SDIO specification version 2.00 (January 30, 2007).

1.4.10.6 SDIO Read-Wait Feature

FX3S supports the optional read-wait and suspend-resume features as defined in the SDIO specification version 2.00
(January 30, 2007).

1.4.10.7 Boot Options

FX3 integrates 32 KB of ROM, which contains a bootloader, allowing FX3 to load boot images from various sources. The boot
mode is selected by the configuration of the PMODE pins as shown in Table 1-3 on page 27

The FX3 boot options are:

■ Boot from USB

■ Boot from I2C

■ Boot from SPI

■ Boot from GPIF II Async ADMux mode

■ Boot from GPIF II Sync ADMux mode

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 33

■ Boot from GPIF II Async SRAM mode

Please refer to the application note AN76405 - EZ-USB FX3 Boot Options.

In addition to these FX3 boot options, FX3S supports the following:

■ Boot from eMMC (Storage port)

■ Boot from PMMC (Processor port)

Table 1-4. Boot Mode Selection Based on PMODE Pins

Z = Pin is floating; left unconnected.

1.4.11 Clocking

FX3 allows either connecting a crystal between the XTALIN and XTALOUT pins or connecting an external clock to the CLKIN
pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins can be left unconnected if they are not used.

The crystal frequency supported is 19.2 MHz, while the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.

FX3 has an on-chip oscillator circuit that uses an external 19.2-MHz (±100 ppm) crystal (when the crystal option is used).
Please refer to the application note AN70707 - EZ-USB FX3/FX3S Hardware Design Guidelines and Schematic Checklist for
guidelines on crystal selection. An appropriate load capacitance is required with a crystal. The FSLC[2:0] pins must be
configured appropriately to select the crystal- or clock-frequency option. The configuration options are listed in Table 1-4.

Table 1-5. Crystal and Clock Frequency Selection

Clock inputs to FX3 must meet the phase noise and jitter requirements specified in the EZ-USB FX3 datasheet.

PMODE[2:0] Pins Boot Option

PMODE[2] PMODE[1] PMODE[0]

Z 0 0 Sync ADMUX (16-bit)

Z 0 1 Async ADMUX (16-bit)

Z 0 Z Async SRAM (16-bit)

Z 1 1 USB Boot

1 Z Z I2C

Z 1 Z I2C; on failure, USB Boot is enabled

0 Z 1 SPI; on failure, USB Boot is enabled

FX3S Specific Boot Options

Z 1 0 PMMC Legacy

0 0 0 S0-port (eMMC); On Failure, USB Boot is enabled

1 0 0 S0-port (eMMC)

FSLC[2] FSLC[1] FSLC[0] Crystal/Clock Frequency

0 0 0 19.2-MHz Crystal

1 0 0 19.2-MHz Input CLK

1 0 1 26-MHz Input CLK

1 1 0 38.4-MHz Input CLK

1 1 1 52-MHz input CLK

34 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 35

2. FX3 CPU Subsystem

The EZ-USB FX3 device has an embedded 32-bit ARM926EJ-S core that delivers a processing capability up to 220 MIPS.
This ARM core is coupled with instruction and data caches, Tightly Coupled Memories (TCM), and a PL192 vectored interrupt
controller (VIC). FX3 also implements the standard ARM JTAG Test Access Point (TAP), which allows you to use standard
JTAG debuggers to debug firmware applications.

The ARM926EJ-S processor is targeted at multitasking applications and can support high-performance and low-power
requirements.

Interrupts in the FX3 device are managed through the standard ARM PL192 VIC block.

2.1 Features

The ARM9 core in the FX3 device supports the following features:

■ Operation at frequencies up to 200 MHz

■ Support for both 32-bit ARM and 16-bit thumb instructions

■ Integrated data and instruction caches of 8 KB each

■ Dedicated instruction and data TCMs for guaranteed low-latency memory access

■ VIC capable of managing 32 internal interrupt sources with programmable interrupt priorities

■ Standard ARM JTAG interface for debugging

■ Clock frequency control for power saving

■ System RAM on FX3 device serves as main storage for code and data

36 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

2.2 Block Diagram

Figure 2-1. CPU Subsystem in FX3 Device

2.3 Functional Overview

Figure 2-1 shows the ARM9 core and the associated blocks in the FX3 device. The CPU is associated with TCM blocks that
enable zero-latency accesses to performance-critical instructions and data, and it provides separate instruction and data
caches for other memory accesses. The PL192 VIC manages interrupts raised by the FX3 hardware blocks.

2.3.1 ARM926EJ-S CPU

The FX3 device has an embedded 32-bit ARM926EJ-S CPU core. This makes the device capable of implementing
multitasking applications where high performance and low power consumption are important.

This ARM9 core supports both 32-bit ARM instructions and 16-bit thumb instructions. The processor has separate advanced
high-performance bus (AHB) interfaces for internal instruction and data accesses. It also has separate instruction and data
TCM interfaces.

Note: The 32-bit ARM instruction set is commonly used in the FX3 SDK from Cypress, as this makes it more convenient to
address all of the available device memory.

Instruction
Cache
(8 KB)

Data
Cache
(8 KB)

ARM926EJ-S Core

AHB Bridge

Instruction AHB
(32 bit x 200 MHz)

Data AHB
(32 bit x 200 MHz)

FX3 System Interconnect (AHB)

PL192
VIC

nIRQ

nFIQ

Interrupt
Requests

ITCM
(16 KB)

DTCM
(8 KB)

Single Cycle ARM TCM Access
(32 bit x 200 MHz)

JTAG
TAP

JTAG
Interface

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 37

The following subsections provide information for programming the FX3 device. The FX3 SDK takes care of these aspects
and initializes the ARM core and memory blocks on the FX3 device. The following detail is only required if you are making any
modifications to the base SDK source code. For more details on the ARM CPU architecture, instruction set, and so on, refer
to the ARM926EJ-S Technical Reference Manual.

2.3.1.1 Processor Modes

The ARM architecture supports seven operating modes, as shown in Table 2-1.

Table 2-1. ARM9 CPU Operating Modes

All of the modes except the user mode are privileged modes that have full access to all system resources and can freely
change modes.

The FIQ, IRQ, supervisor, abort, and undefined modes are entered when specific exceptions occur. These modes have a
separate register set, so that the user mode registers are not corrupted when the exception occurs.

The system mode uses the same set of registers as the user mode and is used to execute OS tasks that do not need a
separate register set.

Run-time stack regions need to be set up for all these modes at system startup. The following code snippet shows how this
can be done using ARM assembly language code. This code is provided by the Cypress FX3 firmware library, and rarely
needs to be modified.

#define FX3_STACK_BASE 0x10000000 /* D-TCM area (8KB) */
#define FX3_SVC_STACK_SIZE 0x1000 /* SVC stack size */
#define FX3_FIQ_STACK_SIZE 0x0200 /* FIQ stack size */
#define FX3_IRQ_STACK_SIZE 0x0400 /* IRQ stack size */
#define FX3_SYS_STACK_SIZE 0x0800 /* SYS stack size */
#define FX3_ABT_STACK_SIZE 0x0100 /* ABT stack size */
#define FX3_UND_STACK_SIZE 0x0100 /* UND stack size */

#define ARM_FIQ_MODE 0xD1 /* Disable Interrupts + FIQ mode */
#define ARM_IRQ_MODE 0xD2 /* Disable Interrupts + IRQ mode */
#define ARM_SVC_MODE 0xD3 /* Disable Interrupts + SVC mode */
#define ARM_ABT_MODE 0xD7 /* Disable Interrupts + ABT mode */
#define ARM_UND_MODE 0xDB /* Disable Interrupts + UND mode */
#define ARM_SYS_MODE 0xDF /* Disable Interrupts + SYS mode */

/* Stack pointers are placed at the top address as the stack grows downwards */
SetupStackPtrs:
 ldr r1, =FX3_STACK_BASE /* Load the stack base address */
 sub r1, r1, #8 /* Prevent overflow */

 ldr r2, =FX3_SYS_STACK_SIZE /* Pickup stack size */
 mov r3, #ARM_SYS_MODE /* Build SYS mode CPSR */
 msr CPSR_cxsf, r3 /* Enter SYS mode */
 add r1, r1, r2 /* Calculate start of SYS stack */

Processor Mode Abbreviation Description

User Usr Normal program execution mode

FIQ Fiq Fast interrupt mode; used for a performance-critical interrupt

IRQ Irq General-purpose interrupt handling mode

Supervisor Svc Protected mode used by operating systems

Abort Abt Instruction/data abort handling mode; used for virtual memory implementation

Undefined Und
Undefined instruction mode; used to support software emulation of hardware coprocessors; generally not useful
on FX3 device.

System Sys Runs privileged operating system tasks

38 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 bic r1, r1, #7 /* Ensure 8-byte alignment */
 mov sp, r1 /* Setup SYS stack pointer */
 mov r10, #0 /* Clear SYS mode sl */
 mov r11, #0 /* Clear SYS fp */

 ldr r2, =FX3_ABT_STACK_SIZE /* Pickup stack size */
 mov r3, #ARM_ABT_MODE /* Build ABT mode CPSR */
 msr CPSR_cxsf, r3 /* Enter ABT mode */
 add r1, r1, r2 /* Calculate start of ABT stack */
 bic r1, r1, #7 /* Ensure 8-byte alignment */
 mov sp, r1 /* Setup ABT stack pointer */
 mov r10, #0 /* Clear ABT mode sl */
 mov r11, #0 /* Clear ABT fp */

 ldr r2, =FX3_UND_STACK_SIZE /* Pickup stack size */
 mov r3, #ARM_UND_MODE /* Build UND mode CPSR */
 msr CPSR_cxsf, r3 /* Enter UND mode */
 add r1, r1, r2 /* Calculate start of UND stack */
 bic r1, r1, #7 /* Ensure 8-byte alignment */
 mov sp, r1 /* Setup UND stack pointer */
 mov r10, #0 /* Clear UND mode sl */
 mov r11, #0 /* Clear UND fp */

 ldr r2, =FX3_FIQ_STACK_SIZE /* Pickup stack size */
 mov r0, #ARM_FIQ_MODE /* Build FIQ mode CPSR */
 msr CPSR_c, r0 /* Enter FIQ mode */
 add r1, r1, r2 /* Calculate start of FIQ stack */
 bic r1, r1, #7 /* Ensure 8-byte alignment */
 mov sp, r1 /* Setup FIQ stack pointer */
 mov sl, #0 /* Clear sl */
 mov fp, #0 /* Clear fp */

 ldr r2, =FX3_IRQ_STACK_SIZE /* Pickup IRQ stack size */
 mov r0, #ARM_IRQ_MODE /* Build IRQ mode CPSR */
 msr CPSR_c, r0 /* Enter IRQ mode */
 add r1, r1, r2 /* Calculate start of IRQ stack */
 bic r1, r1, #7 /* Ensure 8-byte alignment */
 mov sp, r1 /* Setup IRQ stack pointer */

 ldr r2, =FX3_SVC_STACK_SIZE /* Pickup System stack size */
 mov r0, #ARM_SVC_MODE /* Build SVC mode CPSR */
 msr CPSR_c, r0 /* Enter SVC mode */
 add r1, r1, r2 /* Calculate start of SVC stack */
 bic r1, r1, #7 /* Ensure 8-byte alignment */
 mov sp, r1 /* Setup SVC stack pointer */

Hint: The 8-KB D-TCM region can be used for the run-time stack regions if there is no other performance-critical data that
needs to be placed there.

2.3.1.2 Processor Registers

Table 2-2 shows the registers provided by the ARM9 processor core. The CPSR register is used to switch between various
processor modes.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 39

Table 2-2. ARM9 Processor Registers

2.3.1.3 Exception Vectors

The exception vectors that serve as the entry point for each of the exception modes are stored in a table in the main system
memory. These vectors can be placed at one of two addresses: 0x00000000 or 0xFFFF0000. The selection of the exception
vector table location is based on the ARM standard system control coprocessor (CP15) configuration.

As shown in Table 2-3, the normal exception vectors are located in the address range from 0x0 onward, which falls in the
instruction TCM (ITCM) region. The high exception vectors are located in the address range from 0xFFFF0000, which is part
of the BootROM on the FX3 device. As the high-exception vectors are hard-wired to vector to the bootloader on the FX3
device, the normal (user-definable) exception vectors are used when running user applications.

Table 2-3. ARM Exception Vector Locations

The following code snippet shows the procedure to move the exception vectors to address 0x0. This step is done by the FX3
firmware library as part of device initialization.

MRC p15, 0, r1, c1, c0, 0/* Read the CP15 register value */
MOV r2, #0xFFFFDFFF
AND r1, r1, r2/* Mask off the vector location bit. */
MCR p15, 0, r1, c1, c0, 0/* Write back to CP15 register. */

2.3.1.4 MMU

The MMU in the ARM926EJ-S processor is an ARM architecture v5 implementation, which supports the virtual memory
features required by standard embedded operating systems. The MMU uses a set of two-level page tables located in the
main memory to control the address translation, permission checks, and so on.

The data cache on the ARM core can be enabled only if the MMU is enabled. However, most FX3 designs do not use any
secondary storage and do not need a virtual memory system. FX3 provides a fixed set of page tables that maps each physical
address to the equivalent virtual address.

Register Description Attributes

R0-R7 General-purpose registers
These are not banked registers, which means that the same physical register is
used in all processor modes.

R8-R12 General-purpose registers
Two copies of these registers exist. One copy is used only in FIQ mode, and the
other copy is used in all other processor modes.

R13 Stack pointer (SP)
Six copies of this register exist. The user and system modes share one register,
and all other modes have their own SP register.

R14
Link register (LR), used to hold return address when execut-
ing branch instructions

Six copies of this register exist. The user and system modes share one register,
and all other modes have their own LR register.

R15 Used to read/write the program counter Single register that is used across all processor modes.

CPSR
Current program status register, provides status flags,
global interrupt enable control, and so on

The CPSR register reflects the current program status in each of the processor
modes.

SPSR
Saved program status register, provides saved program sta-
tus for each exception mode

Separate copies of this register exist for each of the FIQ, IRQ, supervisor, abort,
and undefined modes.

Exception Type Processor Mode Exception Vector 1 (normal) Exception Vector 2 (high)

Reset Supervisor 0x00000000 0xFFFF0000

Undefined instruction Undefined 0x00000004 0xFFFF0004

Software interrupt (SWI) Supervisor 0x00000008 0xFFFF0008

Prefetch abort Abort 0x0000000C 0xFFFF000C

Data abort Abort 0x00000010 0xFFFF0010

IRQ (interrupt) IRQ 0x00000018 0xFFFF0018

FIQ (interrupt) FIQ 0x0000001C 0xFFFF001C

40 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

2.3.1.5 Cache Memories

The ARM926EJ-S processor has associated instruction and data cache memories. The RAM on the FX3 device holds DMA
data buffers in addition to code and data. The DMA driver and APIs in the FX3 library ensure cache coherency by using the
cache clean and invalidate operations.

The instruction and data caches on FX3 are 8 KB. The caches are four-way set associative with eight word (32-byte) cache
lines. The data cache implements two dirty bits per cache line and is typically configured for write-back operations.

The ARM926EJ-S processor supports the following operations using the CP15 coprocessor interface:

■ Invalidating the entire D-cache or I-cache

■ Invalidating (flushing) regions of the D-cache or I-cache

■ Cleaning the entire D-cache

■ Cleaning regions of the D-cache

■ Locking specified memory regions into the D-cache or I-cache

The CPU also provides a write buffer that is used for writes to regions that are not cacheable or bufferable, and for write-
through operations. It is also used for write misses during write-back operations. A separate write buffer is provided as part of
the D-cache for holding write-back data during cache line eviction or clean operations. Instructions are provided to drain both
write buffers, and the CPU ensures data coherency when read operations are addressed to data that is sitting in the write
buffer.

The following code snippet shows the procedure to enable the caches and the MMU on the FX3 device. Please refer to the
FX3 Memories chapter for more information on cache operations.

MRC p15, 0, r1, c1, c0, 0/* Read CP15 register value */
ORR r1, r1, #0x1000/* Update I-Cache enable bit. */
BIC r1, r1, #0x4000/* Select random replacement. */
ORR r1, r1, #0x05/* Enable MMU and D-Cache. */
MCR p15, 0, r1, c1, c0, 0/* Write modified value back */

2.3.1.6 Tightly Coupled Memories

Some operations, such as interrupt handlers, may not be able to tolerate the added latency created by a cache miss. The
ARM9 CPU provides a zero wait state TCM interface to facilitate quick access to such instructions and data. Firmware
applications can locate performance-critical code and data sections in the TCM regions using the appropriate linker settings.
The FX3 SDK provides a linker script that sets up the recommended memory map for FX3 applications.

As in memory and cache access, separate paths are used for instruction and data access from the TCMs. FX3 implements 16
KB of instruction TCM (ITCM) and 8 KB of data TCM (DTCM). The ITCM area can also be accessed by the data side of the
ARM core. This is required to facilitate loading the code into the ITCM region.

The ITCM region on FX3 is located in the address range 0x0000-0x3FFF, and the DTCM region is located in the address
range 0x10000000-0x10001FFF. The ITCM region is typically used to store the ARM exception vectors and the interrupt
service routine (ISR) code. The DTCM region is typically used to store performance-critical data and the run-time stacks for
various processor modes.

The TCMs must be configured as non-cacheable memories, and any instruction or data movement between the TCM and the
main memory must be performed by the CPU. The TCMs are disabled when the device is reset, and they need to be enabled
by the firmware. This is done by the FX3 library as part of device initialization.

MOV r1, #0x15 /* ITCM address is 0x0 and size is 16 KB. */
MCR p15, 0, r1, c9, c1, 1 /* Initialize the ITCM */
MOV r1, 0x10000011 /* DTCM address is 0x10000000 and size is 8 KB. */
MCR p15, 0, r1, c9, c1, 0 /* Initialize the DTCM */

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 41

2.3.1.7 JTAG Interface

FX3 makes the standard ARM JTAG TAP available for users to connect a JTAG debugger. Only the 5-pin JTAG mode of
debugging is supported, and 2-pin serial wire debug (SWD) mode is not supported by the FX3 device. The JTAG pins are
directly connected to the ARM CPU, and they do not support boundary scan.

The JTAG interface allows the use of industry-standard ARM debug probes to debug the firmware running on FX3. No
Cypress custom software tools are required to enable the debugging.

The JTAG instruction register (IR) length for the ARM926EJ-S device is 4 bits. If multiple devices are connected on the JTAG
chain, the offset and length for the FX3 device have to be set correctly to achieve JTAG connection. Refer to Section 5.10.3 of
the Segger J-Link User Guide for instructions on how to do this when using the J-Link debugger.

2.3.1.8 Vectored Interrupt Controller

The FX3 device provides a number of interrupt notifications for the ARM CPU to handle. Interrupts in the FX3 system are
managed through the standard ARM PrimeCell Vectored Interrupt Controller (PL192) block. This interrupt controller provides
vectored interrupt support with configurable priorities for all interrupt sources.

The PL192 controller supports up to 32 interrupt sources and generates the nIRQ and nFIQ signals to the ARM CPU based
on the configuration. The controller is connected to the CPU on the AHB bus and allows you to perform the interrupt
configuration through a set of memory mapped registers.

Table 2-4 shows the various interrupt sources on the FX3 device, along with their vector numbers.

42 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Table 2-4. FX3 Interrupt Sources

You can configure any of the 32 interrupt sources as fast interrupt request (FIQ), which takes the highest priority among the
interrupts. The rest of the interrupts are prioritized by user code through the VIC_VECT_PRIORITY registers. If two or more
interrupts are programmed with the same priority value, the source with the lower vector number assumes the higher priority.

The PL192 controller allows each of the interrupt sources to be independently masked (disabled) or unmasked (enabled) and
provides registers that report the raw interrupt status and the interrupt status after masking. The vector addresses for various
interrupt sources are programmed through the VIC_VEC_ADDRESS registers. When one or more interrupt sources are
active, the controller identifies the highest priority interrupt, stores the corresponding vector address in the VIC_ADDRESS
register, and then asserts the nIRQ signal to interrupt the ARM CPU.

Refer to section TBD on for information about the various configuration and status registers associated with the VIC.

Some interrupts in the FX3 system need to be prioritized over others to ensure that the application can meet all the USB spec
requirements and transfer rates. In particular, the USB core interrupt must be handled at the highest priority (can be selected
as FIQ), and all the DMA interrupts should be allotted the next high priority level.

To enable a specific interrupt source, the firmware has to do the following:

■ Point the VIC_VEC_ADDRESS register to the ISR.

■ Set the VIC_VECT_PRIORITY register value as desired.

Vector
Number

Interrupt Source Description Comments

0 GCTL_CORE
Interrupt raised on FX3 waking up from suspend or standby
low-power modes.

1 SW_INTR Software interrupt
This is a custom implementation of the software
interrupt scheme.

2 UNUSED Do not enable.

3 UNUSED Do not enable.

4 WATCHDOG_TIMER
Watchdog timer interrupt; the watchdog timer functions on
the basis of a 32-kHz clock signal with a user-configured
period

This is commonly used for OS scheduling on the
FX3 device.

5 UNUSED Do not enable.

6 GPIF_DMA DMA socket interrupt from the GPIF block

7 GPIF_CORE
General-purpose GPIF interrupts; indicates conditions such
as state machine interrupt, GPIF errors, mailbox register
access, and so on

8 USB_DMA DMA socket interrupt from the USB block
Applies to both USB device and host mode opera-
tion.

9 USB_CORE
General-purpose USB interrupts; indicates various condi-
tions triggered during device or host operation of the USB
block

10 UNUSED Do not enable.

11 STORAGE_DMA DMA socket interrupt from the storage (SD/MMC) interface Applies only to the FX3S™ devices.

12 STORAGE0_CORE General-purpose interrupt from storage interface 0 Applies only to the FX3S™ devices.

13 STORAGE1_CORE General purpose interrupt from storage interface 1. Applies only to the FX3S™ devices.

14 UNUSED Do not enable.

15 I2C_CORE
General-purpose I2C interrupt; indicates conditions such as
transfer completion, error detect, and so on

16 I2S_CORE General-purpose I2S interrupt

17 SPI_CORE General-purpose SPI interrupt

18 UART_CORE General-purpose UART interrupt

19 GPIO_CORE
General-purpose GPIO interrupt; common for both simple
and complex GPIOs

20 PERIPH_DMA
DMA socket interrupt from any serial peripheral block (I2C,
I2S, SPI, or UART).

21 GCTL_POWER
Power detect interrupt; indicates voltage changes on any
power inputs that can be dynamically changed during
device operation.

This is commonly used for VBus voltage detection.

22-31 UNUSED Do not enable.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 43

■ Enable the interrupt by setting the corresponding bit in the VIC_INT_ENABLE register.

The following code snippet shows the procedure for setting up Fx3IntHandler as the ISR for interrupt vector i:

CY_U3P_VIC_VEC_ADDRESS[i] = Fx3IntHandler;/* ISR address. */
CY_U3P_VIC_VECT_PRIORITY[i] = 2;/* Set the priority to 2. */
CY_U3P_VIC_INT_ENABLE |= (1 << i);/* Enable the interrupt. */

The VIC sets the VIC_ADDRESS register to point to the vector for the active interrupt with the highest priority before making
the nIRQ signal active. The IRQ exception vector is designed to jump to the address pointed by the VIC_ADDRESS register.

The ISR is responsible for saving all the necessary context information, including the non-banked registers, while executing.
Nesting of interrupts is not allowed by the VIC. The ISR needs to clear the interrupt by writing any value to the
VIC_ADDRESS register before the next interrupt can be raised.

As direct interrupt nesting is not supported by the VIC, it is recommended that the handling of low-priority interrupts be
deferred to allow higher priority interrupts to run with bounded latency. The firmware needs to mask out the deferred interrupts
until the source of the interrupt has been cleared to avoid repeated interrupt calls. This can be done by setting the
corresponding bit in the VIC_INT_CLEAR register.

CY_U3P_VIC_INT_CLEAR = (1 << i);/* Mask out interrupt vector i. */

Note: The ARM CPU uses the ARM instruction set when starting to execute any interrupt handlers. If the ISR uses the thumb
instruction set, the firmware needs to ensure that the switch to thumb mode is done before entering the ISR.

Refer to the PL192 Technical Reference Manual for more details on the interrupt controller and its use.

2.3.1.9 CPU Operating Frequency

The operating clock for the FX3 CPU is derived from the input clock or crystal frequency.

First, the input clock is multiplied to generate the FX3 system clock. The system clock frequency is 384 MHz when the FX3
device is clocked using a 19.2-MHz crystal or a 38.4-MHz clock input. The system clock frequency is 416 MHz when the FX3
device is clocked using a 26-MHz or 52-MHz input clock.

The CPU clock is then derived from the system clock using a programmable divider. The minimum divisor supported is 2,
which means that the maximum CPU clock frequency is 192 MHz or 208 MHz, depending on the clock source.

Note: While the multipliers used to derive the system clock are programmable, Cypress strongly recommends the use of the
previously mentioned default frequencies. The device has not been tested for proper functioning at other frequencies.

The CPU clock frequency can be reduced by specifying divisor values greater than 2. As the clocks used by the DMA engine
and the memory mapped I/O (MMIO) register interface are derived from the CPU clock, reducing the CPU clock frequency
will also reduce them and result in reduced data transfer throughput. Reducing the clock frequency will also increase the
effective interrupt latency and can cause USB specification compliance errors. Therefore, Cypress recommends that you use
a reduced clock rate only when USB 3.0 connections are not active.

Refer to the chapter on FX3 Global Control (GCTL) for details on how to configure the device clocks.

2.3.1.10 CPU Power Modes

The FX3 CPU supports low-power modes, which can be used when the device is not active. The CPU supports the following
power modes:

Normal mode: The CPU operates at a clock frequency determined by the programmed dividers.

Suspend mode: This applies to both the L1 and L2 modes of the FX3 device. The clock to the CPU is gated in this mode,
and the CPU is placed in the wait for interrupt state. Firmware execution resumes from the next instruction, once the device
wakes from the L1/L2 mode.

44 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Standby mode: This applies to the L3 mode of the FX3 device. The CPU is powered down, while the program RAM content
is retained. Firmware execution starts from the reset vector once the device wakes from the L3 mode.

2.3.1.11 Timers

The ARM CPU does not have any associated timer blocks. The FX3 device provides a pair of general-purpose timers that can
also provide the watchdog functionality. These timers are provided as part of the Global Control block on the FX3 device.
These timers operate on a 32-kHz input clock and can be configured in one of the free running counter, timer with interrupt, or
watchdog reset modes.

Note: If the system provides a clock input through the CLKIN_32 pin of the FX3 device, the timer uses this clock. If not, the
32-kHz clock is derived from the system clock, which runs at about 200 MHz.

The WATCHDOG_CS register in the GCTL block controls the operation of these timers. The relevant bits in this register are
shown in Table 2-5.

Table 2-5. Watchdog Timer Control Register

The actual counter values for the timers are stored in the WATCHDOG_TIMER0 and WATCHDOG_TIMER1 registers. When
the timer is configured in reset mode, the firmware is expected to restore this register to its initial value before the counter limit
(lowest BITS bits getting set) is reached.

Hint: As a single interrupt vector is used for both timers, the ISR needs to check the INTR bits in the WATCHDOG_CS register
to identify the timer that triggered the interrupt.

Field Name Bit Range Description

MODE0 1:0

0-Free running mode; counter wraps around after reaching 0xFFFFFFFF.

1-Interrupt mode; raises WATCHDOG_TIMER interrupt when lowest significant BITS0 bits of the counter are cleared

2-Reset mode; resets the FX3 when lowest significant BITS0 bits of the counter are cleared

3-Disabled

INTR0 2 Interrupt status for timer 0

BITS0 7:3 Number of bits to be considered when checking for counter limit

MODE1 9:8 Timer mode for timer 1

INTR1 10 Interrupt status for timer 1

BITS1 15:11 Number of bits to be considered when checking for counter limit

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 45

3. Memory and System Interconnect

The memory subsystem on the FX3 device comprises the system RAM that forms the main memory, SRAM controller, and
AHB-based interconnect that allows the ARM CPU and the hardware blocks to access these memories. The MMIO
interconnect provides access to registers in various peripheral blocks.

Because USB data moves through the system RAM (where USB endpoint buffers are implemented), FX3 implements a
specialized memory controller to arbitrate between the various types of traffic with high throughput and predictable latency.
Details on the arbitration mechanism and priorities are provided in System Interconnect on page 48.

3.1 Features

The FX3 memory and system interconnect supports the following:

■ 512 KB or 256 KB of system memory, depending on the FX3 part number selected

■ 16 KB of Instruction Tightly Couple Memory (I-TCM) and 8 KB of Data Tightly Couple Memory (D-TCM).

■ DMA architecture that can deliver 800 MBps bandwidth to memory

■ MMIO register access from CPU at up to 50 MBps (12.5 million 32-bit register accesses per second)

■ Guaranteed and bounded memory access latency for both CPU and DMA accesses

3.2 Block Diagram

Figure 3-1 shows a block diagram of the memory and system interconnect on the FX3 device.

46 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 3-1. CPU Subsystem in the FX3 Device

3.3 Functional Overview

3.3.1 Memory Regions

Figure 3-2 shows the memory map of the FX3 device.

Instruction
Cache
(8 KB)

Data
Cache
(8 KB)

ARM926EJ-S Core

AHB Bridge

Instruction AHB
(32 bit x 200 MHz)

Data AHB
(32 bit x 200 MHz)

FX3 System Interconnect (AHB)

PL192
VIC

nIRQ

nFIQ

Interrupt
Requests

ITCM
(16 KB)

DTCM
(8 KB)

Single Cycle ARM TCM Access
(32 bit x 200 MHz)

JTAG
TAP

JTAG
Interface

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 47

Figure 3-2. FX3 Device Memory Map

Note: The memory map shown is for the CYUSB3014 part, which implements 512 KB of system RAM. For other parts such
as CYUSB3011, the system RAM region is limited to 256 KB (from 0x40000000 to 0x4003FFFF).

The major memory regions on the FX3 device are the following:

■ ITCM-16 KB dedicated space for holding exception vectors and ISR code. While it is possible to read and write to the
ITCM memory region from the ARM CPU, it is not possible to use this memory region as a target for DMA transfers.

■ DTCM-8 KB memory region that can be used for holding frequently accessed data structures, ISR data, run-time stacks,
and more. It is not possible to use this region as a target for DMA transfers.

■ System RAM-The main SRAM region that is used for code and data storage as well as for buffering any data that is flow-
ing through the FX3 device. The System RAM region can be 256 KB or 512 KB, depending on the FX3 part being used.
The first 12 KB of this region is reserved for storing DMA-related data structures (descriptors) that are used by the FX3
hardware. The remainder of the System RAM can be used as required by the application. Figure 3-2 shows the commonly
used subdivisions for the RAM region.

ITCM (16 KB)

DTCM (8 KB)

SYSTEM RAM
(512 KB*)

MMIO Register
Space (256 MB)

Unused

Unused

Exception Vectors

ISR Code

ISR Data,
Runtime stacks etc.

DMA Descriptors

Code

Unused

BootROM (32 KB)

Unused

VIC Registers

Data

DMA buffers

LPP Registers

PIB (GPIF)
Registers

S-Port Registers
(FX3S only)

USB Registers

GCTL Registers

Unused

0x00000000

0x10000000

0x40000000

0xE0000000

0xF0000000

0xFFFFF000

0x00000000

0x00000100

0x00003FFF

0x10000000

0x10001FFF

0x40000000
0x40003000

0xE0000000

0xE0010000

0xEFFFFFFF

I2S Registers

I2C Registers

UART Registers

SPI Registers

GPIO Registers

Unused

LPP Common

LPP DMA Regs

Unused

0xE0000000

0xE0000400

0xE0000800

0xE0000C00

0xE0001000

0xE0001400

0xE0007F00

0xE0008000

0xE0008120

0xE000FFFF

Note: Some FX3 parts (CYUSB3011,
 CYUSB3012) only have 256 KB
 of SYSTEM RAM available.

Page table (Opt.)

0xE004FFFF

0xE0040000

0xE0030000

0xE0020000

0x4007FFFF

48 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

■ MMIO-The register space that holds all the configuration and status registers implemented by all the blocks on the FX3
device. While a total memory region of 256 MB has been allocated for the registers, most of this memory is unused and
unimplemented. Refer to the chapters on each of the FX3 hardware blocks for information on the registers corresponding
to those blocks.

■ BootROM-A 32 KB ROM region that is preprogrammed with the FX3 device bootloader. The bootloader implements mul-
tiple boot modes such as USB boot, I2C boot, SPI boot, and GPIF boot. The desired boot mode is selected through a set
of pin straps. This memory region is not accessible to FX3 user applications.

■ VIC-Control and status registers for the VIC block. They are separate from the other MMIO registers and are located at
the address 0xFFFFF000.

3.3.2 System Interconnect

The FX3 device implements a hierarchical AHB-based interconnect system that allows the device interfaces and the ARM
CPU to access the system memory with high throughput and bounded latency. Different parts of the FX3 device function at
different clock rates. The ARM CPU typically runs on a 200 MHz clock and has separate 32-bit wide buses for instruction and
data access. The DMA interconnect runs at 100 MHz and has separate 64-bit buses for read and write accesses. The MMIO
interconnect runs at 100 MHz and has a single 32-bit bus for all register accesses. The system RAM is organized as 128-bit
wide memories and is clocked at 200 MHz.

As the DMA interconnect provides separate buses for read and write transfers, it can issue one read access and one write
access during each DMA clock cycle. This means that the DMA interconnect can simultaneously support DMA read and DMA
write traffic at 800 MBps each (100 MHz times 8 bytes in the 64-bit bus equals 800 MBps).

The system interconnect supports the following kinds of transfers:

■ CPU traffic to system RAM

■ DMA traffic to system RAM

■ CPU accesses to MMIO registers

■ DMA accesses to MMIO registers

Note: DMA access to MMIO registers is used to synchronize data transfers between a pair of communicating hardware
blocks.

A specialized FX3 memory controller arbitrates between all these accesses. The memory controller connects to the high-
speed system interconnect, which has two 128-bit wide buses running at 200 MHz. The memory controller guarantees equal
SRAM bandwidth for CPU and DMA accesses. It also allows the DMA controller to use any unused CPU cycles so that typical
FX3 applications can sustain a higher bandwidth.

3.3.3 Low-Power Operations

FX3 supports low-power operating modes in which the device clocks can be turned off and most of the blocks can be
powered off. Table 3-1 shows the state of various FX3 blocks in the different power modes.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 49

Table 3-1. State of FX3 Blocks in Low-Power Modes

The device supports two variants of suspend modes: L1 and L2. All the device blocks will be in the clock gated state in the L1
mode. This mode can be entered when the USB connection to the FX3 device has been suspended by the host, and the
device should be configured to wake up on any USB bus activity.

The USB block is powered off in the L2 suspend mode. This mode can be entered only if the VBus input to the device is
turned off. The device can be configured to wake up when the VBus input is detected.

In the standby mode, most of the blocks on the device are powered off. Only the system RAM and the logic required to detect
wakeup requests are left powered on. Since the CPU as well as all the blocks including USB are powered off in this mode,
firmware operation after wakeup is similar to that on a warm reset of the device.

3.3.4 Cache Operations

The FX3 device has dedicated instruction and data caches that improve access latencies to the SYSTEM RAM region. The
caches are not used for TCM, MMIO, and VIC access. TCMs guarantee single-cycle access for both instructions and data,
and they do not require a cache. The MMIO and VIC registers need to be updated atomically, and they are configured as not
cacheable.

The ARM9 architecture supports the following cache operations:

■ Flushing the entire I-cache or D-cache

■ Cleaning (writing back to memory) the entire D-cache

■ Flushing (evicting) a memory region from the I-cache or D-cache

■ Cleaning (writing back to memory) a memory region from the D-cache

■ Loading a specific memory region into the I-cache or D-cache

Please refer to the ARM926EJ-S Technical Reference Manual or the ARM System Developer's Guide for details on how to
perform these operations.

Enabling the instruction cache is recommended for all FX3 applications. Enabling the data cache helps improve performance
in applications where the FX3 CPU performs data manipulations.

3.3.4.1 Cache Coherency

Almost all FX3 applications involve transferring data in or out through one or more of the device interfaces. All these data
transfers are achieved through the distributed DMA fabric on the device and make use of a part of the system RAM for
buffering.

As the system RAM is used for DMA buffers as well as for code and data storage, there is a possibility of cache/memory
corruption when the D-cache is enabled. The firmware application needs to avoid this possibility using the following
guidelines. These steps are handled by the FX3 firmware library when the DMA APIs in the SDK are used.

1. As data is loaded or evicted from the cache one line at a time, it is likely that any data that shares a cache line with a DMA
data buffer will be corrupted. Ensure that no code/data shares a cache line with DMA buffers to avoid this possibility.

Hint: It is recommended that all DMA buffers be located in a separate memory region within the system RAM. It is also
recommended that each DMA buffer occupy an integral number of cache lines (32 bytes) to ensure that an adjacent DMA
buffer is not corrupted by a data transfer.

Device Block Normal Mode Suspend (L1) Mode Suspend (L2) Mode Standby (L3) Mode

ARM9 CPU ON Waiting for interrupt Waiting for interrupt OFF

System RAM ON Clock gated Clock gated Clock gated

USB block ON Clock gated OFF OFF

GPIF ON Clock gated Clock gated OFF

Serial peripherals
(UART, I2C, I2S and SPI)

ON Clock gated Clock gated OFF

GPIO ON Holds previous state Holds previous state Holds previous state

50 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

2. Ensure that the memory region corresponding to a DMA buffer is cleaned from the D-cache before initiating any egress
(data output from FX3) data transfers.

3. Ensure that the memory region corresponding to a DMA buffer is flushed (evicted) from the D-cache before initiating any
ingress (data input into FX3) data transfers.

3.3.5 Memory Usage

The TCM and system RAM regions on the FX3 device are general purpose and can be used by the firmware application as
desired. The only constraints are as follows:

■ The initial part of the I-TCM (approximately 256 bytes starting at address 0) is reserved for setting up the ARM exception
vectors.

■ The initial part of the system RAM (12 KB starting from address 0x40000000) is reserved for setting up DMA transfer-
related data structures.

■ The TCM regions cannot be used for direct data transfers, as the DMA engine does not support data transfers from/to
these regions.

This section provides guidelines on mapping out the firmware code, data, and DMA buffers within the available memory on
the device.

Table 3-2 shows the memory sections required by an FX3 firmware application. Figure 3-3 shows the mapping of these
sections to FX3 memory addresses in a typical application. The size of the sections other than exception vectors and DMA
descriptors can be set according to the needs of the application.

Table 3-2. Memory Regions Used by an FX3 Application

Section Name Description

Vectors ARM exception vectors; needs to be located at the beginning of the I-TCM region

Text All executable code for the application

Data Explicitly initiated global data used by the application

BSS Uninitialized global data used by the application

Stacks Stack regions for the ARM processor operating modes (supervisor, user, IRQ, FIQ, abort, and undefined)

Heap
Run-time heap for dynamic allocation (malloc or new) of variables used by the application; this section is optional and is only required
if dynamic memory allocation (malloc, free, new, delete) is used

DMA descriptors
Memory region reserved for DMA transfer-related data structures; these structures are used by the FX3 hardware and have to be
located at the beginning of the system RAM region

DMA buffer
Memory region reserved for DMA data buffers used by the application; as larger DMA buffers can improve data transfer throughput, it
is recommended that as much memory as is possible be allocated to this section

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 51

Figure 3-3. Memory Map for Typical FX3 Firmware Application

The memory map for the firmware application is specified through a linker script file. The format of the linker script file used by
the standard GNU C compiler for ARM processors is documented here.

DMA Descriptors (12 KB)

Runtime Stack
+

Frequently accessed data

Interrupt Service Routines
+

Other frequently executed code

Exception Vectors (256 Bytes)

0x0000 0000

0x0000 0100

0x0000 3FFF

0x1000 0000

0x1000 1FFF

0x4000 0000

0x4000 3000

Text Section

Data Section

BSS

Runtime Heap (Optional)

DMA Buffer Area

0x4007 FFFF

I-TCM

D-TCM

SYSTEM RAM

52 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 53

4. Global Controller (GCTL)

The FX3 Global Controller (GCTL) supports I/O configuration, clock management, power management, and watchdog timer
configuration. The GCTL features include the following:

■ Can generate up to 500-MHz master clock

■ Serves as a clock source for various peripherals (like UIB, PIB, and LPP) in FX3

■ Supports simple and complex GPIO configuration

■ Supports special function (like SPI and GPIF II) I/O configuration

■ Supports watchdog timer configuration

■ Supports power mode control and various wakeup source configuration

4.1 GPIO Pins

All 60 GPIO pins in FX3 can function as GPIOs. Each is multiplexed to support other functions/peripheral blocks (like UART,
SPI, and so on). By default, the pins are allocated in groups to either one function block or the other, depending on the inter-
face mode, in their respective power domains. In a typical application, all FX3 peripheral blocks are not used. Also, not all
pins of the blocks being used are utilized. Unused pins in each block may be overridden as simple or complex GPIO pins on
a pin-by-pin basis.

Simple GPIOs provide software-controlled and observable input and output capability only. In addition, they can also raise
interrupts. Complex GPIOs add three timer/counter registers for each group and support a variety of time-based functions.
They work off a slow or fast clock. Complex GPIOs can also be used as general-purpose timers by the firmware. There are
eight complex I/O pin groups, the elements of which are chosen in a modulo 8 fashion (complex I/O group 0: GPIO 0, 8, 16;
complex I/O group 1: GPIO 1, 9, 17, and so on). Each group can have different complex I/O functions (like PWM, one shot,
and so on). However, only one pin from a group can use the complex I/O functions. The rest of the pins in the group are used
as block I/O or simple GPIO. Refer to Table 7 in the EZ-USB FX3 datasheet for the GPIO configuration options.

4.1.1 I/O Matrix Configuration

I/O matrix configuration is used to configure the interface mode for I/O pins. The GCTL_IOMATRIX register must be config-
ured before accessing any alternate function pins. Table 4-1 lists the I/O pin alternate functions.

54 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Table 4-1. I/O Pin Alternate Function(s)

* 24- or 32-bit GPIF II bus width is not supported by all FX3 chips. If the FX3 chip does not support more than a 16-bit bus
width, then alternate functions are not applicable. Refer to the EZ-USB FX3 datasheet for more details.

** If the GPIF II bus width is configured to 8 or 16 bits, then UART lines are available on the GPIO[46] to GPIO[49] pins, and
SPI lines are available on the GPIO[53] to GPIO[56] pins. If the GPIF II bus width is configured to 24 or 32 bits, then UART
lines are available on the GPIO[53] to GPIO[56] pins, and SPI is not supported.

Table 4-2 lists the FX3 registers associated with GPIO pin control. These registers are described in detail in following tables.

Table 4-2. Registers Associated with GPIO Pins

See I/O Matrix Configuration Register on page 247

The FX3 SDK API CyU3PDeviceConfigureIOMatrix configures the GCTL_IOMATRIX register. A code snippet to configure the
I/O matrix follows. Refer to the SDK firmware example for the complete details on the IOMATRIX configuration.

/* Configure the IO matrix for the device.
 * 32 bit bus width is disabled.
 * S0 port is disabled.
 * S1 port is disabled.
 * UART is enabled on S1 port.
 * IOs 43, 45, 52 and 57 are chosen as GPIO. */
 */
 io_cfg.isDQ32Bit = CyFalse;
 io_cfg.s0Mode = CY_U3P_SPORT_INACTIVE;
 io_cfg.s1Mode = CY_U3P_SPORT_INACTIVE;
 io_cfg.gpioSimpleEn[0] = 0;
 io_cfg.gpioSimpleEn[1] = 0x02102800;
 io_cfg.gpioComplexEn[0] = 0;
 io_cfg.gpioComplexEn[1] = 0;

Pin Names Alternate Function Comments

GPIO[0] to GPIO[15] DQ[0] to DQ[15] GPIF II data pins

GPIO[16] PCLK or CLK GPIF II clock pin

GPIO[17] to GPIO[29] CTL[x] GPIF II control pins

GPIO[30] to GPIO[32] PMOD[x] Boot mode

GPIO[33] to GPIO[44]* DQ[16] to DQ[27] GPIF II data pins

GPIO[45] - No alternate function

GPIO[46] to GPIO[49]** DQ[28] to DQ[31] or UART GPIF II data pins or UART pins

GPIO[50] to GPIO[52] and GPIO[57] I2S

GPIO[53] to GPIO[56]** SPI or UART

GPIO[58] to GPIO[59] I2C

GCTL_IOMATRIX GCTL_DS

GCTL_WPU_CFG0 GCTL_WPU_CFG1

GCTL_WPD_CFG0 GCTL_WPD_CFG1

GCTL_GPIO_SIMPLE0 GCTL_GPIO_SIMPLE1

GCTL_GPIO_COMPLEX0 GCTL_GPIO_COMPLEX1

LPP_GPIO_ID LPP_GPIO_POWER

LPP_GPIO_PIN_STATUS(n) LPP_GPIO_PIN_TIMER(n)

LPP_GPIO_PIN_THRESHOLD(n) LPP_GPIO_SIMPLE(n)

LPP_GPIO_DRIVE_LO_EN LPP_GPIO_DRIVE_HI_EN

LPP_GPIO_INPUT_EN LPP_GPIO_PIN_INTR

LPP_GPIO_INVALUE0 LPP_GPIO_INVALUE1

LPP_GPIO_INTR0_REG LPP_GPIO_INTR1_REG

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 55

 io_cfg.useUart = CyTrue;
 io_cfg.useI2C = CyFalse;
 io_cfg.useI2S = CyFalse;
 io_cfg.useSpi = CyFalse;
 io_cfg.lppMode = CY_U3P_IO_MATRIX_LPP_UART_ONLY;
 status = CyU3PDeviceConfigureIOMatrix (&io_cfg);
 if (status != CY_U3P_SUCCESS)
 {
 goto handle_fatal_error;
 }

4.1.2 I/O Drive Strength

The drive strength for I/O pins is programmable even if the pin is configured for an alternate function. The I/O pin drive
strength can be set to quarter strength, half strength, three-quarter strength, or full strength by configuring the appropriate bits
in the GCTL_DS register.

See I/O Drive Strength Configuration Register on page 252.

In the FX3 SDK, I/Os on the FX3 device are grouped based on function into multiple interfaces (GPIF, I2C, I2S, SPI, UART).
The I/O drive strength for each group can be separately configured using APIs.

■ CyU3PSetPportDriveStrength

■ CyU3PSetI2cDriveStrength

■ CyU3PSetGpioDriveStrength

■ CyU3PSetSerialIoDriveStrength

4.1.3 GPIO Pull-up and Pull-down

FX3 supports internal weak (50 K ohm) pull-up or pull-down I/O pins. A weak pull-up on I/O can be enabled by setting
GCTL_WPU_CFG registers. A weak pull-down on I/O can be enabled by setting the GCTL_WPD_CFGx registers. The
default state of the IOs at power-on and after reset is tristate.

See the following:

■ GCTL_WPU_CFG on page 254

■ GCTL_WPD_CFG on page 256

The FX3 SDK API CyU3PGpioSetIoMode is used to set pull-up or pull-down on an I/O pin.

4.1.4 Simple GPIO Override

FX3 supports the simple GPIO override option to configure any I/O as a simple GPIO pin. Register
CY_U3P_GCTL_GPIO_SIMPLE is used to set the simple GPIO override. Data pins DQ[0[to DQ[31] can be configured as
Simple GPIOs using IO matrix configuration and the override is not needed whereas all other GPIO pins needs the override to
function as simple GPIO. Refer to GPIO on page 198 for more details on GPIO configuration.

See GCTL_GPIO_SIMPLE on page 248.

The FX3 SDK API CyU3PDeviceGpioOverride is used to configure the CY_U3P_GCTL_GPIO_SIMPLE register.

4.1.5 Complex GPIO Override

FX3 supports the complex GPIO override option to configure any I/O as a complex GPIO pin. Register
CY_U3P_GCTL_GPIO_COMPLEX is used to set the complex GPIO override. Refer to GPIO on page 198 for more details on
GPIO configuration.

See GCTL_GPIO_COMPLEX on page 250.

56 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

The FX3 SDK API CyU3PDeviceGpioOverride is used to configure the CY_U3P_GCTL_GPIO_COMPLEX register.

4.1.6 I/O Power Observability

Three GCTL registers-GCTL_IOPOWER, GCTL_IOPWR_INTR, and GCTL_IOPWR_INTR_MASK-allow the firmware to
monitor the power status of various I/O blocks.

4.1.6.1 GCTL_IOPOWER

See GCTL_IOPOWER on page 258.

4.1.6.2 GCTL_IOPWR_INTR

See GCTL_IOPOWER_INTR on page 260.

4.1.6.3 GCTL_IOPWR_INTR_MASK

See GCTL_IOPOWER_INTR_MASK on page 262.

4.2 Clock Management

Clocks for FX3 peripherals can be configured using the GCTL registers. To enable an FX3 functional block (UART, SPI, and
so on), configure the corresponding clock. The clock can be disabled for the unused functional blocks to save power.

As shown in Figure 4-1, CLKIN and PLL clock are the two input clock sources to the GCTL block. CLKIN is the chip reference
clock provided by a 19.2-MHz, 26-MHz, 38.4-MHz, or 52-MHz external clock source or a 19.2-MHz crystal. It is used as the
source clock for the PLL, which generates a master clock at frequencies up to 500 MHz. This PLL output clock is used to gen-
erate all the core clocks in the system.

Programmable dividers generate clocks in GCTL (except the blocks that contain their own PLL, for example, USB block). All
generated clocks have a configurable divide capability and on/off programmability.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 57

Figure 4-1. Clock System Block Diagram

Four system clocks are obtained by dividing the master clock by 1, 2, 4, and 16. The system clocks are then used to generate
clocks for most peripherals in the device through the respective Clock Select and Divide (CSD) block. A CSD block is used to
select one of the four system clocks and then divide it using the specified divider value. The depth of the divider is different for
different peripherals.

The CPU clock is derived by selecting and dividing one of the four system clocks by an integer factor between 1 and 16. The
bus clocks are derived from the CPU clock. Independent 4-bit dividers are provided for both the DMA and MMIO bus clocks.

50 us
Delay CSD

/4

XTAL
Osc

CSD

CSD

CSD

CSD

CSD

CSD

CSD

CSD

CSD

CSD

CSD

PLL

/4

CSD

GCTL BACKUP

CLKIN_32

XTAL IN

XTAL OUT

CLKIN

FSLC[2]

GCTL_PLL_CFG

GCTL_GPIO_SLOW_CLK_CFG

GCTL_GPIO_FAST_CLK_CFG

GCTL_CPU_CLK_CFG

GCTL_PIB_CLK_CFG

GCTL_I2C_CLK_CFG

GCTL_UART_CLK_CFG

GCTL_SPI_CLK_CFG

GCTL_I2S_CLK_CFG

Standby Clock

Reference Clock

Standby Edge

Standby GPIO Clock

Slow GPIO Clock

Simple GPIO Clock

Fast GPIO Clock

CPU Clock

DMA Clock

MMIO Clock

PIB Clock

I2C Clock

UART Clock

SPI Clock

I2S Clock

pad

in

out

oe_n

enable

enable

Master(System) Clock

GCTL

58 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

The frequency of the MMIO clock, however, must be an integer divide of the DMA clock frequency. It is not recommended to
drop the frequency of the CPU clock and DMA clock while the device is handling any data traffic.

A 32-kHz external clock source is used for low-power operation during standby. In the absence of a 32-kHz input clock
source, the application can derive it from the input reference clock.

Certain peripherals deviate from the clock derivation described above. The fast clock source of GPIO is derived from the sys-
tem clocks using a CSD. The core clock is a fixed division of the fast clock. The slow clock source of GPIO is obtained directly
from the reference clock using a programmable divider. The standby clock is used to implement wakeup on GPIO. The I2S
block can be run off an internal clock derived from the system clocks or from an external clock sourced through the
I2S_MCLK pin of the device.

Exceptions to the general clock derivation strategy are blocks that contain their own PLL, because they include a PHY that
provides its clock reference, for example, the USB2PHY and the USB3PHY. Refer to Universal Serial Bus (USB) chapter on
page 81 for more details on the USB block clocking.

The CPU, DMA, and MMIO clock domains are synchronous to each other. However, every peripheral assumes its core clock
to be fully asynchronous from other peripheral core clocks, the computing clock, or the wakeup clock.

Table 4-3. Registers Associated with Clock Management

4.3 Power Management

Table 4-4. Registers Associated with Power Management

4.3.1 Power Domains

Power supply domains in FX3 can be classified in four categories: core power domain, memory power domain, I/O power
domain, and always-on power domain.

The core power domain encompasses a large section of the device, including the CPU, peripheral logic, and interconnect fab-
ric. The system SRAM resides in the memory power domain. I/O logic dwells in the respective peripheral I/O power domain.
The peripheral I/O power domain includes the I2C-IO power domain, I2S-IO power domain, UART-IO power domain, SPI
power domain, IO-GPIO power domain, Clock IO power domain, USB IO power domain, and Processor Port IO power
domain. The always-on power domain hosts the power management controller, the wakeup sources, and their associated
logic.

Wakeup sources force a system in the suspend or standby state to switch to the normal power operation mode. These are
distributed across peripherals and configured in the always-on global configuration block. Some of them include level match
on level sensitive wakeup I/Os, toggle on edge sensitive wakeup I/Os, activity on the USB 2.0 data lines, OTG ID change,
LFPS detection on USB 3.0 RX lines, USB connect event, and watchdog timer-timeout event.

The always-on global configuration block runs off the standby clock and is turned off only in the lowest power state (core
power down).

CY_U3P_GCTL_PLL_CFG CY_U3P_GCTL_GPIO_FAST_CLK

CY_U3P_GCTL_CPU_CLK_CFG CY_U3P_GCTL_GPIO_SLOW_CLK

CY_U3P_GCTL_UIB_CORE_CLK CY_U3P_GCTL_I2C_CORE_CLK

CY_U3P_GCTL_PIB_CORE_CLK CY_U3P_GCTL_UART_CORE_CLK

CY_U3P_GCTL_SIB0_CORE_CLK CY_U3P_GCTL_SPI_CORE_CLK

CY_U3P_GCTL_SIB1_CORE_CLK CY_U3P_GCTL_I2S_CORE_CLK

CY_U3P_GCTL_CONTROL CY_U3P_GCTL_FREEZE

CY_U3P_GCTL_WAKEUP_EN CY_U3P_GCTL_WATCHDOG_CS

CY_U3P_GCTL_WAKEUP_POLARITY CY_U3P_GCTL_WATCHDOG_TIMER0

CY_U3P_GCTL_WAKEUP_EVENT CY_U3P_GCTL_WATCHDOG_TIMER1

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 59

4.3.2 Power Modes

At any instant, FX3 is in one of the four power modes: normal, suspend, standby, or core power down. When FX3 is actively
executing its tasks, the system is in normal mode. The clock gating techniques in peripherals minimize the overall power con-
sumption.

On detecting prolonged periods of inactivity, the firmware can place FX3 in suspend mode. All ongoing port (peripheral) activ-
ities/transfers are completed, ports are disabled, and wakeup sources are set before entering the suspend state. In applica-
tions involving USB 3.0, the USB3 PHY is forced into the U3 state. USB2PHY, if used, is forced into suspend. The system
RAM transitions to a low-power mode in which read and write to RAM cannot be performed. The CPU is forced into the halt
state. The ARM core retains its state, including its program counter. All clocks except the 32-kHz standby are turned off by
disabling the system PLL through the global configuration block. In the absence of clocks, the I/O pins can be frozen to retain
their state as long as the I/O power domain is not turned off The INT# pin can be configured to indicate the presence of FX3
in low-power mode.

Further reduction in power is achieved by having the firmware place FX3 into the standby state, where in addition to disabling
clocks, the core power domain is turned off. As in suspend mode, the I/O states of powered peripheral I/O domains are frozen
and the ports are disabled. The essential configuration registers of logic blocks are first saved to the system RAM. Then the
system RAM itself is forced into the low-power memory retention only mode. The warm boot setting is enabled in the global
configuration block. Finally, the core is powered down. When FX3 comes out of standby, the CPU goes through a reset; the
bootloader senses the warm boot mode and restores the system to its original state after reloading the configuration values
(including the firmware resume point) from the system RAM.

Optionally, FX3 can be placed in core powered-down mode from standby mode, which also involves removing power from the
VDD pins. The contents of system SRAM are lost, and I/O pins retain their states, if suitably configured in the firmware. When
power is reapplied to the VDD pins, FX3 performs the normal power-on reset (POR) sequence.

4.3.3 Reset

Resets in FX3 are classified into two categories: hard reset and soft reset.

4.3.4 Hard Reset

A POR or a Reset# pin assertion initiates a hard reset. This sets all register bits to their default states and restarts the pro-
gram but retains the states of all register bits.

4.3.5 Soft Reset

A soft reset is generated by setting the appropriate bits in the GCTL_CONTROL register. There are two types of soft resets:
CPU reset and whole device reset.

■ CPU resets the CPU program counter. The firmware does not need to be reloaded following a CPU reset.

■ Whole device reset is identical to hard reset. The firmware must be reloaded following a whole device reset.

60 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 61

5. FX3 DMA Subsystem

5.1 DMA Introduction

At the heart of the FX3 is a sophisticated, distributed DMA controller that is capable of moving data at 800 MBps that allows
high-performance data transfers between memories and peripherals without CPU intervention. Multiple Advanced High-
performance Buses (AHB, as defined by the ARM System Architecture) are used to interconnect the system elements. The
EZ-USB FX3 device architecture includes a DMA fabric that is used to route data between various peripheral interfaces and/
or the system memory of the device.

This chapter focuses on FX3 DMA transfer basics and the registers FX3 firmware uses to initialize and initiate DMA transfers.
For a more advanced and practical DMA usage model, including types of DMA channels and common data transfer
scenarios, refer to the "DMA Engine" section in the "FX3 Firmware" chapter of the FX3 Programmers Manual.

5.2 DMA Features

The DMA subsystem in the FX3 device includes the following features:

■ Distributed DMA controllers

■ Data transfer support in either direction between:

■ Memory and peripheral

■ Peripheral and peripheral

■ Two gateways (virtual ports) of the same peripheral

■ Localized DMA adapter (local DMA controller) to each peripheral

5.3 DMA Block Diagram

Non-CPU-intervened data transfers between a peripheral and CPU (system memory) or between two different peripherals or
between two different gateways of the same peripheral are collectively referred to as DMA in FX3. All the data in the DMA
subsystem flows through the system memory.

The Advanced Microcontroller Bus Architecture - Advanced High Performance Bus (AMBA AHB) interconnect forms the
central nervous system of FX3. More details on AHB can be understood from the section "Interconnect Fabric" under chapter
"FX3 Overview" in FX3 Programmer's Manual. Figure 5-1 shows how the CPU accesses the System Memory using the
System AHB. All peripheral DMA paths connect to the DMA AHB. Bridges between the System bus and the DMA bus are
essential in routing the DMA traffic through the System memory. The width of a peripheral connection to the AHB determines
its throughput. The peripheral core implements the actual logic of the peripheral (I2C, GPIF, and USB).

62 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 5-1. Block Diagram of FX3 DMA Subsystem

5.4 DMA Overview

FX3 contains a standard, configurable, DMA adapter that is replicated for each DMA-capable peripheral, as depicted in
Figure 5-2. This architecture provides the FX3 distributed DMA controllers. There is only one DMA adapter for all low-
performance peripherals. The DMA adapter is essentially a local DMA controller that initiates DMA transactions to and from
the system memory on behalf of the peripheral that it services. With hardware synchronization between DMA adapters, data
transfers can occur seamlessly between peripherals.

Peripheral 1

Peripheral Core
logic

DMA Adapter

Peripheral 2

P
e
ri
p
h
e
ra
l C
o
re

lo
gi
c

D
M
A
 A
d
ap

te
r

I/O Matrix

I/O Pads

I/
O
 M

at
ri
x

I/
O
 P
ad

s

System Memory

CPU

Bridge

DMA AHB

Peripheral 1 AHB

Peripheral 2 AHB

System AHB

FX3

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 63

Figure 5-2. Distributed DMA Controllers

5.5 DMA Subsystem Components

5.5.1 Clocking

The FX3 DMA subsystem runs on an internal DMA bus clock, dma_bus_clk_i, that is divided down from the CPU clock. The
DMA bus clock divider value is determined by the DMA_DIV field of GCTL_CPU_CLK_CFG, as shown below:

DMA Bus clock divider = (GCTL_CPU_CLK_CFG.DMA_DIV + 1)

See GCTL_CPU_CLK_CFG register on page 267

Divide by 1 (i.e. GCTL_CPU_CLK_CFG.DMA_DIV = 0) is illegal and will result in undefined behavior. Thus, the range of
allowed divider values is 2 to 16 (GCTL_CPU_CLK_CFG.DMA_DIV => 1 to 15).

A typical dma_bus_clk_i frequency is set to one-half the CPU clock during device initialization. For example, if the CPU clock
is set to 192 MHz, the register setting GCTL_CPU_CLK_CFG.DMA_DIV=1 (divider = 2) will result in a 96 MHz of
dma_bus_clk_i frequency. Table 5-1 summarizes the DMA clock information.

WR DMA
Adapter

SIB

High Speed System Interconnect
(Accelerated AHB, 2 x 128b x 200MHz, 3.2+3.2GB/s)

Main System SRAM
Instances Array

512KB, 128b, 200MHz, 0ws
3.2GB/s

ARM926EJ-S

Instr
TCM

(16KB)

Data
TCM
(8KB)

ARM TCM
200MHz x 32b

Instr
Cache
(8KB)

Data
Cache
(8KB)

Memory Controller
3.2GB/s

(Up to 100 % Utilization)

AHB Bridge
(Synchronous)

ARM TCM
200MHz x 32b

2x AHB
200 MHz x 32b

1,8cy bursts 1,4,8cy bursts

1cy accesses

Acc AHB
2x 200MHz x 128b

1cy bursts

Acc AHB
2x 200 MHz x 128b

1cy bursts

1cy accesses

UIBPIBUART

AHB Bridge
(Synchronous)

I2SI2C SPIGPIO

SRAM
200MHz x 128b

Main DMA Interconnect
(Accelerated AHB, 2x 100MHz x 64b, 800+800MB/s)

DMA
Adapter

DMA
Adapter

DMA
Adapter

AHB Bridge
(Synchronous)

AHB Bridge
(Synchronous)

RD DMA
Adapter

Acc AHB (RD only)
200MHz x 128 b

Acc AHB
2x 200 MHz x 128b

Acc AHB
2x 200MHz x 128b

1cy bursts1cy bursts1cy bursts

AHB
100MHz x 32b1cy bursts

Acc AHB
2x 100 MHz x 64b2cy bursts

Acc AHB (RD only)
100MHz x 64b2cy bursts

Register Access

DMA Traffic

Registers & DMA

(Arrow points mast ter -to-slave)

Denotes async clock crossing
from bus to core clock domains

Clock Sources :
Bus /CPU SysPLL Locked 1:1 or 1:2, typ 100 /200MHz
SIB/PIB/LPP SysPLL Individual Diviers

Async coupled to bus /cpu
UIB USB2PLL 120 MHz (Adapter), 30MHz (SIE/TP)

USB3PLL 125 MHz (SuperSpeed mode only)

GCTL

AHB Bridge
(Synchronous)

AHB (WR only)
200 MHz x 128 b

1cy bursts

MMIO Interconnect
(AHB, 100MHz x 32b, ~50-100MB/s)

Acc AHB (WR only)
100 MHz x 64b2cy bursts

64 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Note: The maximum DMA clock frequency is half of the CPU clock frequency, as the minimum allowed divider value is '2'.
Therefore, reducing the CPU clock frequency will result in reducing the DMA clock frequency and limit system performance.
The default clock settings for FX3 are:

■ CPU clock = System clock / 2

■ DMA clock = CPU clock / 2

It is recommended that the default clock settings be retained in all cases.

Table 5-1. DMA Clock

The CPU, DMA, and MMIO clock domains are synchronous to each other. However, every peripheral assumes its core clock
to be fully asynchronous from other peripheral core clocks, the computing clock, or the wakeup clock.

If the core (peripheral) clock is faster than the bus clock, the DMA adapter for the block runs in the core clock domain and the
DMA adapter reconciles the clocks on its interconnect side. If the core clock is slower than the bus clock, the DMA adapter for
that block runs in the bus clock domain and the DMA adapter reconciles the clocks on its core IP side. This is shown in
Figure 5-3.

Figure 5-3. DMA Adapter Clock

5.5.2 Descriptors Buffers, and Sockets

DMA descriptors are DMA instructions in a set of registers allocated in the FX3 RAM. A DMA descriptor holds information
about the address and size of the DMA buffer as well as pointers to the next DMA Descriptor. These pointers create DMA
descriptor chains. Descriptors enable the synchronization between sockets as described below.

A DMA buffer is a section of RAM used for intermediate storage of data transferred through the FX3 device. DMA buffers are
allocated from the system RAM by the FX3 firmware; their addresses are stored as part of DMA descriptors. Every buffer
created in the system memory has a descriptor associated with it that contains buffer information such as its address, empty/
full status, and the next buffer/descriptor in the chain.

A socket is a point of connection between a peripheral hardware block and the FX3 RAM. Each peripheral hardware block on
FX3 such as USB, GPIF, UART, and SPI has a fixed number of sockets associated with it. The number of parallel data
channels through a peripheral is equal to the number of its sockets. The socket implementation includes a set of registers that
point to the active DMA descriptor and the enable or flag interrupts associated with the socket. Sockets can directly signal
each other through events or they can signal the FX3 CPU via interrupts. This signaling is configured by firmware.

5.5.3 DMA Descriptors

Descriptors are data structures that keep track of the resources (memory buffers and sockets) used for a DMA transfer. This
data structure is directly interpreted by the DMA hardware on FX3, and has to be located in a specific memory region of the

Domain Typ/ Max Freq Configuration Register Source Description

dma_bus_clk_i 100 MHz GCTL_CPU_CLK_CFG.DMA_DIV DMA access clock

Core Logic
Block XYZ

I / O
PadsDMA / Bus

Adapter

Wake Up
Logic

I / O
Matrix

S
ys

te
m

In
te

rc
on

ne
ct

s

Block XYZ
Clock Domain

Always - On
Clock / Power / Reset Domain

Processor / Bus
Clock Domain

wakeup

Block XYZ Power Domain

Core Logic
Block XYZ

I / O
Pads

DMA / Bus
Adapter

Wake Up
Logic

I / O
MatrixS

ys
te

m

In
te

rc
on

ne
ct

s

Block
XYZ
Clock

Domain

Always - On
Clock / Power / Reset Domain

Processor / Bus
Clock Domain

wakeup

Block XYZ Power Domain

(a) Core Clock >Bus clock (b) Bus clock>Core Clock

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 65

FX3 RAM as described in the Memory and System Interconnect chapter on page 45. During a transfer, descriptors are loaded
into the active socket one at a time for execution.

Figure 5-4. FX3 DMA Descriptor Structure

Each descriptor contains four 32-bit words. Figure 5-4 details the fields of the data structure.

DSCR_BUFFER provides the pointer of the buffer used for this transfer.

DSCR_SYNC defines the source and destination of this transfer. Depending on the use case, the event generation and
interrupt can be enabled for either or both the consumer and producer half. Events are used to signal the peer socket,
whereas interrupts are used to notify the CPU

A unique IP_NUM, which is assigned to each DMA-capable peripheral, is used for the source (producer) and destination
(consumer) of the transfer. A unique IP_NUM, which is assigned to each DMA-capable peripheral, is used for the source
(producer) and destination (consumer) of the transfer.

IP_NUM together with the socket number determines the actual socket identity. Table 5-2 details how sockets are identified
by IP identification and socket number.

DSCR_CHAIN contains the pointers to next descriptors for the producer and consumer respectively.

DSCR_SIZE defines the size of the buffer and transfer byte count. The specific transfer status can also be set or monitored
by the following bits:

■ BUFFER_OCCUPIED indicates that data is available in the associated buffer.

■ BUFFER_ERROR indicates whether the data is valid or in error.

❐ EOP marks this transfer with end-of-packet. The socket can use this to suspend an EOP condition.

■ MARKER is simply a software indicator for this specific transfer.

See the following register descriptions:

■ DSCR_BUFFER on page 625

■ DSCR_SYNC on page 626

■ DSCR_CHAIN on page 628

■ DSCR_SIZE on page 629

The following C code example is the DMA descriptor data structure used in the FX3 SDK.

/** \brief Descriptor data structure.

 Description\n
 This data structure contains the fields that make up a DMA descriptor on
 the FX3 device.

 Each structure member is composed of multiple fields as shown below. Refer
 to the sock_regs.h header file for the definitions used.

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name

0X00 DSCR_BUFFER

0X04 EN
_
P
R
O
D
_
IN
T

EN
_
P
R
O
D
_
EV

T

EN
_
C
O
N
S_

IN
T

EN
_
C
O
N
S_

EV
T

DSCR_SYNC

0X08 DSCR_CHAIN

0X0C B
U
FF
ER

_
O
C
C
U
P
IE
D

B
U
FF
ER

_
ER

R
O
R

EO
P

M
A
R
K
ER

DSCR_SIZEBUFFER_SIZE

BUFFER_ADDRESS

PROD_IP_NUM PROD_SCK CONS_IP_NUM CONS_SCK

PROD_NEXT_DSCR CONS_NEXT_DSCR

BYTE_COUNT

66 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 buffer: (CY_U3P_BUFFER_ADDR_MASK)

 sync: (CY_U3P_EN_PROD_INT | CY_U3P_EN_PROD_EVENT | CY_U3P_PROD_IP_MASK |
 CY_U3P_PROD_SCK_MASK | CY_U3P_EN_CONS_INT | CY_U3P_EN_CONS_EVENT |
 CY_U3P_CONS_IP_MASK | CY_U3P_CONS_SCK_MASK)

 chain: (CY_U3P_WR_NEXT_DSCR_MASK | CY_U3P_RD_NEXT_DSCR_MASK)

 size: (CY_U3P_BYTE_COUNT_MASK | CY_U3P_BUFFER_SIZE_MASK | CY_U3P_BUFFER_OCCUPIED |
 CY_U3P_BUFFER_ERROR | CY_U3P_EOP | CY_U3P_MARKER)

 **\see\n
 *\see CyU3PDmaDscrGetConfig
 *\see CyU3PDmaDscrSetConfig
 */
typedef struct CyU3PDmaDescriptor_t
{
 uint8_t *buffer; /**< Pointer to buffer used. */
 uint32_t sync; /**< Consumer, Producer binding. */
 uint32_t chain; /**< Next descriptor links. */
 uint32_t size; /**< Current and maximum sizes of buffer. */
} CyU3PDmaDescriptor_t;

The actual DMA descriptors are maintained in the FX3 System RAM starting from address 0x40000010. The end of this
space is not defined by hardware and is determined by the firmware. There are a fixed number of fixed-size descriptors in a
fixed location in the main memory. Because of this, the hardware can directly access a descriptor with its descriptor number.

Firmware is responsible for setting up each of the descriptors and linking them to each other and to the sockets. DMA
adapters will load the content of the active DMA descriptor in the socket register region as and when required.

5.5.4 DMA Buffer

DMA buffers are data buffers allocated in the system memory used for DMA. They can be of any size within the memory
region and byte aligned. However, if the ARM data cache is enabled, it requires that the full buffer must be 32-byte aligned
and of a size that is a multiple of 32 bytes.

A data packet contained in the buffer may be smaller than one buffer or even of zero size. A packet may be split over multiple
buffers, or multiple packets can be in one buffer.

Every buffer created in the System memory has a descriptor associated with it. Descriptors are thus associated with buffers
and have a producer, a consumer or both, or neither. A descriptor without a producer and consumer is called "free".
Synchronization between producers and consumers happens at the level of descriptors and buffers. Multiple descriptors may
refer to the same buffer. When more than one descriptor is used to describe the same buffer, it is the responsibility of
FIRMWARE to make sure that the descriptors are coherent and synchronized with respect to each other. Descriptors contain
meta-data about the data in the buffer (in addition to the location and size), in particular the number of valid bytes (refer to
Figure 5-4 and DSCR_SIZE on page 629).

Since a 12-bit field (DSCR_SIZE.BUFFER_SIZE) is used to indicate the size of the DMA buffers in multiples of 16 bytes, the
maximum size of an individual DMA buffer can be as much as 0xFFF0 bytes, as depicted below. Multiple such DMA buffers
can be allocated for a single DMA transfer.
Maximum DMA buffer size allowed = (2^14 - 1) * 16 = 64Kb - 16B = 0xFFF0 bytes

5.5.4.1 Implications of Data Cache Usage

FX3 uses the same 512 KB of system RAM for code and data storage as well as for memory buffers that are used for DMA
transfers into or out of the device. The ARM 926EJ-S core on the device also includes an 8 KB data cache. The data cache is
four-way set associative with a cache-line size of 32 bytes and two dirty bits (one for each 16-byte region) per cache line. The

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 67

use of the data cache will give a good performance boost to any application that involves firmware access of the data buffer
contents. However, this also leads to a risk of memory corruption in the cases where a cache line contains both software data
structures and DMA data content. The following three sub-sections deal with this issue.

5.5.4.2 Memory Corruption Due to Cache Line Overlap

Consider the scenario represented in Figure 5-5. In this case, both cache lines 0 and 3 have an overlap of firmware data
along with the DMA buffer space. If the DMA buffer is being filled with data by any of the hardware blocks on the device, and
the firmware needs to access this data, memory corruption can happen as described below.

1. If the firmware tries to access the data in the buffer directly, stale memory content from the cache will be retrieved.

2. If the firmware flushes the cache line(s) and then accesses the data in the buffer, any updates to the firmware data struc-
tures will be lost.

3. If the firmware cleans the cache line(s) and then accesses the data buffer, the part of DMA buffer that shares a cache line
with the firmware data will get corrupted.

Figure 5-5. Unsafe Overlap of Firmware Data with DMA Buffer

The firmware needs to ensure that the software data structures and DMA buffers do not share cache lines to prevent these
problems.

5.5.4.3 Safe Usage of Data Cache

Consider the scenario in Figure 5-6. In this case, the DMA buffer does not share any cache lines with the firmware data.

Figure 5-6. Safe Overlap of Firmware Data with DMA Buffer

In this case, there is no possibility of the CPU and/or hardware seeing bad data due to the data cache. Whenever the CPU
wants to read a data buffer that has been filled by the DMA hardware, it can flush the corresponding region from the cache
and then initiate a read. Whenever the CPU wants to commit a buffer containing data for an egress DMA operation, it can
clean the region from the cache and then initiate the DMA operation.

Cache Line 0

Cache Line 3

Cache Line 1

Cache Line 2

Cache Line N

DMA Buffer

FW Data

FW Data

Unused

Cache Line 0

Cache Line 3

Cache Line 1

Cache Line 2

Cache Line N

FW Data Unused

Unused
FW Data

DMA Buffer

Cache Line 4

68 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

5.5.4.4 ALIGNMENT REQUIREMENT - How Not To Share Cache Lines

The basic requirement is that DMA buffers that may be modified by the hardware should not share a cache line with software
data elements. This translates to a requirement that all DMA buffers which may be used for ingress (data coming in to FX3
and being written into memory by the DMA hardware) transfers should be 32-byte aligned and occupy an integral number of
cache lines (32 bytes each).

This restriction only applies to DMA buffers that may be used for ingress data transfers. The restriction does not apply to DMA
buffers that are used only as a source of egress data.

5.5.5 Sockets

A socket is the unidirectional virtual port (gateway) used by a peripheral (IP) block to transfer data to/ from the system SRAM.
Each DMA transfer involves one or two sockets. A socket represents either the consuming or the producing half of a transfer.
For a transfer from one peripheral to another, two sockets are involved. A socket is either a consuming socket or a producing
socket at any point in time-not both at the same time.

An FX3 DMA-capable peripheral has multiple sockets in the DMA adapter. The number of sockets and their properties
depend on the specific DMA adapter to the peripheral. Each peripheral block (IP block) in the device can support a predefined
number of sockets which is the maximum number of independent data flows that can be done through that IP at a given point
of time. A producer (ingress) socket is one which moves data from the IP block to the system SRAM. A consumer (egress)
socket is one which takes data from the system SRAM and moves it out through the IP block. Each socket can be identified
with the IP number and the socket number. Table 5-2 is the socket summary for each FX3 peripheral.

Note: Separate DMA adapters are used for USB IN and OUT endpoints to allow greater USB data bandwidth. Interrupts from
both adapters are combined into a single interrupt vector.

Table 5-2. Peripheral DMA Sockets

Each socket has its own register set that the firmware uses to control the DMA operations. The socket register base address
is located at offset 0x8000 from the base address of the peripheral.

Each register set occupies a 128-byte address space with some gaps in between. Figure 5-7 details the socket registers and
their field definitions.

SCK_DSCR on page 614 describes the current descriptor to be loaded for this socket.

SCK_SIZE on page 616 sets the amount of data to be transferred. A zero value in this register means the data amount is
infinite.

FX3 Peripheral/
IP block

IP_NUM Socket Count Specific Property Notes

GPIF II 0x01 32
Socket 0-15: Bidirectional Socket

16-31: Ingress only

USB 0x03 16 Socket 0-15 for USB Egress: Egress Only
This maps to IN endpoints where FX3 sends
data out.

USB-IN 0x04 16 Socket 0-15 for USB Ingress: Ingress Only
This maps to OUT endpoints where FX3
receives data.

Storage 0x02 8 All are Bidirectional FX3S Only

Serial Peripherals
(UART, I2C, I2S, SPI)

0x00 8

Socket 0-1 for I2S: Egress only

Socket 2 for I2C data out: Egress only

Socket 3 for UART data out: Egress only

Socket 4 for SPI data out: Egress only

Socket 5 for I2C data in: Ingress only

Socket 6 for UART data in: Ingress only

Socket 7 for SPI data in: Ingress only

The purpose of each socket in this adapter
is fixed and cannot be changed.

CPU 0x3F 2
Socket 0 for CPU data in

Socket 1 for CPU data out

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 69

SCK_COUNT on page 617 reports the amount of data transferred.

SCK_STATUS on page 618 is the socket control and status register.

SCK_INTR on page 621 is the interrupt request register that indicates the status of the interrupt source. The same register is
used to clear the interrupt status.

SCK_INTR_MASK on page 623 is used to enable the interrupt source to CPU.

DSCR_BUFFER on page 625, DSCR_SYNC on page 626, DSCR_CHAIN on page 628, and DSCR_SIZE on page 629
indicate the currently loaded active descriptor in the socket. Figure 5-4 details the field definition of the descriptor.

EVENT is the socket-event communication register. FX3 DMA supports two possible events:

■ Consume event: Data has been read out of the buffer.

■ Produce event: Data has been filled into the buffer.

When a DMA transfer involves two sockets, the producer socket sends a produce event to the peer consumer socket after
data is written to the buffer. Similarly, the consumer socket sends a consume event to the peer producer socket after the data
is read from the buffer. The event signaling between the two sockets is usually handled by hardware, and the CPU is not
involved through the entire transfer. However, there are situations when the firmware needs to generate the event manually
by writing the appropriate event in the EVENT register.

Figure 5-7. FX3 DMA Socket Registers

For detailed field description, see the following:

■ SCK_DSCR on page 614

■ SCK_SIZE on page 616

■ SCK_COUNT on page 617

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name

0x00 SCK_DSCR

0x04 SCK_SIZE

0x08 SCK_COUNT

0x0C G
O
_
EN

A
B
LE

G
O
_
SU

SP
EN

D

U
N
IT

W
R
A
P
U
P

SU
SP
_
EO

P

SU
SP
_
TR

A
N
S

SU
SP
_
LA

ST

SU
SP
_
P
A
R
TI
A
L

EN
_
C
O
N
S_

EV
EN

TS

EN
_
P
R
O
D
_
EV

EN
TS

TR
U
N
C
A
TE

EN
A
B
LE
D

SU
SP
EN

D
ED

ZL
P
_
R
C
V
D

A
V
L_
EN

A
B
LE

SCK_STAUS

0x10 LA
ST
_
B
U
F

P
A
R
TI
A
L_
B
U
F

TR
A
N
S_

D
O
N
E

ER
R
O
R

SU
SP
EN

D

ST
A
LL

D
SC
R
_
N
O
T_
A
V
L

D
SC
R
_
IS
_
LO

W

C
O
N
SU

M
E_

EV
EN

T

P
R
O
D
U
C
E_

EV
EN

T

SCK_INTR

0x14 LA
ST
_
B
U
F

P
A
R
TI
A
L_
B
U
F

TR
A
N
S_
D
O
N
E

ER
R
O
R

SU
SP

EN
D

ST
A
LL

D
SC

R
_
N
O
T_

A
V
L

D
SC

R
_
IS
_
LO

W

C
O
N
SU

M
E_
EV

EN
T

P
R
O
D
U
C
E_

EV
EN

T

SCK_INTR_MASK

0x18

0x1C

0x20 DSCR_BUFFER

0x24 DSCR_SYNC

0x28 DSCR_CHAIN

0x2C DSCR_SIZE

0x30

…

0x78

0x7C EV
EN

T_
Ty
p
e

EVENT

Reserved

Currently loaded active descriptor

Reserved

ACTIVE_DSCRReserved

BUFFER_ADDRESS

DSCR_COUNT

Reserved

DSCR_NUMBERDSCR_LOW

TRANS_SIZE

TRANS_COUNT

AVL_COUNTAVL_MINReservedSTATE

Reserved

70 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

■ SCK_STATUS on page 618

■ SCK_INTR on page 621

■ SCK_INTR_MASK on page 623

Each socket can be identified to be in one of the states listed in Table 5-2. The SCK_STATUS.STATE field can be read to
understand the socket state. More on the socket states will be discussed later.

Table 5-3. Socket States

The following C code example shows the DMA socket data structure used in the FX3 SDK.

/** \brief DMA socket register structure.

 Description\n
 Each hardware block on the FX3 device implements a number of DMA sockets through
 which it handles data transfers with the external world. Each DMA socket serves as
 an endpoint for an independent data stream going through the hardware block.

 Each socket has a set of registers associated with it, that reflect the configuration
 and status information for that socket. The CyU3PDmaSocket structure is a replica
 of the config/status registers for a socket and is designed to perform socket configura-
tion
 and status checks directly from firmware.

 See the sock_regs.h header file for the definitions of the fields that make up each
 of these registers.

 **\see
 *\see CyU3PDmaSocketConfig_t
 */
typedef struct CyU3PDmaSocket_t
{
 uvint32_t dscrChain; /**< The descriptor chain associated with the socket
*/
 uvint32_t xferSize; /**< The transfer size requested for this socket. The
size can
 be specified in bytes or in terms of number of
buffers,
 depending on the UNIT field in the status value. */
 uvint32_t xferCount; /**< The completed transfer count for this socket. */
 uvint32_t status; /**< Socket configuration and status register. */

Socket State
SCK_STATUS.STATE

Value
Description

DESCR 0
Descriptor state. This is the default initial state indicating the descriptor registers are NOT valid in the
adapter. The adapter will start loading the descriptor from the memory if the socket becomes enabled and
not suspended. Suspend has no effect on any other state.

STALL 1 Stall state. The socket is stalled, waiting for data to be loaded into the Fetch Queue or waiting for an event.

ACTIVE 2 Active state. The socket is available for core data transfers.

EVENT 3
Event state. Core transfer is done. The descriptor is being written back into the memory and an event is
being generated if enabled.

CHECK1 4
Check states. An active socket gets here based on the core's EOP request to check the transfer size and
determine whether the buffer should be wrapped up. Depending on result, the socket will either go back to
the Active state or move to the Event state.

SUSPENDED 5 The socket is suspended

CHECK2 6
Check states. An active socket gets here based on the core's EOP request to check the transfer size and
determine whether the buffer should be wrapped up. Depending on result, the socket will either go back to
the Active state or move to the Event state.

WAITING 7 Waiting for confirmation that the event was sent.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 71

 uvint32_t intr; /**< Interrupt status register. */
 uvint32_t intrMask; /**< Interrupt mask register. */
 uvint32_t unused2[2]; /**< Reserved register space. */
 CyU3PDmaDescriptor_t activeDscr; /**< Active descriptor information. See
cyu3descriptor.h for definition. */
 uvint32_t unused19[19]; /**< Reserved register space. */
 uvint32_t sckEvent; /**< Generate event register. */
} CyU3PDmaSocket_t;

5.5.5.1 Software Manipulation of Sockets

Sockets are to be initialized, inspected, and modified by firmware as described in this section.

5.5.5.2 Initializing a Socket

Sockets can be initialized only when in the IDLE state, that is, SCK_STATUS.ENABLED=0. If this is not the case, the socket
must first be terminated (see 5.5.5.3 Terminating a Socket on page 71).

The general procedure is as follows:

1. Descriptors are allocated or located and initialized in memory. These descriptors are chained appropriately.

2. The SCK_xxx registers are initialized with the proper configuration values. This includes SCK_DSCR, which contains the
number of the first descriptor to be loaded. DSCR_xxx registers are not initialized - the DMA adapter will load those by
itself.

3. SCK_STATUS.GO_ENABLE is set to '1' to activate the socket (if so desired).

5.5.5.3 Terminating a Socket

Sockets can be terminated at any time. If a socket is active, its activities will be aborted after an unspecified amount of time.

The general procedure is as follows:

1. SCK_STATUS.GO_ENABLE is cleared to '0'. The IP will continue to perform an unspecified amount of its pending activity.

2. It is permissible to write '0' multiple times to SCK_STATUS.GO_ENABLE while the socket is being terminated, but it is ille-
gal to write '1' to it during this time.

3. SCK_STATUS.ENABLED is read back until its value changes to '0'. No further activity emanates from this socket after
SCK_STATUS.enabled is observed as cleared.

5.5.5.4 Modifying or Suspending a Socket

Sockets are normally modified safely only when in the suspend state. A socket that is active or stalled must first be
suspended. A socket that is suspended will not complete an ongoing transfer, but rather go into the suspended state almost
immediately. It is possible though, that going into the suspend state safely takes a noticeable (but small) number of cycles.

The general procedure is as follows:

1. SCK_STATUS.GO_SUSPEND is set to '1'.

2. SCK_STATUS.SUSPENDED is read back until its value changes to '1' or SCK_INTR.SUSPEND is used as the interrupt
source to indicate the the suspend status.

3. Any changes are made to SCK_xxx or DSCR_xxx registers.

4. SCK_STATUS.GO_SUSPEND is cleared. If SCK_DSCR.active_dscr was modified, the socket will load the new descrip-
tor from the memory[otherwise it will resume the operation using the current contents of DSCR_xxx.

Note that SCK_STATUS.SUSPENDED will only take effect after the transfer of the current buffer completes. This may take a
long time.

Note that it is also possible to modify sockets that are in the stalled state, provided that it is known that no synchronization
EVENT(s) will occur. This is normally the case when the socket is waiting for firmware to generate an event, that is, the socket
is not coupled to another socket in another adapter. In this case it is not necessary to first suspend the socket.

72 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

5.5.5.5 Inspecting a Socket

Sockets can be inspected at any time. When a socket is active, values are not guaranteed to be accurate due to the activity
and clock domain crossing issues. The general procedure is as follows:

1. Any value in SCK_xxx or DSCR_xxx registers is read twice in succession.

2. If the values of two reads match they are accurate. If they are different, go back to step 1.

5.5.5.6 Wrapping Up a Socket

A socket that is in the Active state, but that is not expected to send/receive any more data can be forcibly wrapped up by
asserting SCK_STATUS.WRAPUP. This should never be done for sockets that are not in the Active state or that may send/
receive data. This option is normally used when the core IP has transitioned into an error or partial completion state and the
firmware is required to clean up the remaining, unexecuted, portion of the transfer.

5.5.6 Illustration of Descriptor, Buffer and Socket Usage

Figure 5-8 below sums up the concepts discussed in sections 5.5.2 Descriptors Buffers, and Sockets on page 64 to 5.5.5
Sockets on page 68.

Figure 5-8. Sockets, Descriptors, and Buffers

5.5.7 Understanding DMA Operation: Peripheral to Peripheral

This section explains in a high level how DMA descriptors, buffers, and sockets are tied together to achieve the required DMA
operation, with the help of an example peripheral-to-peripheral DMA operation.

Sockets
* Each IP block has its own sockets
* Sockets can use same or different descriptors
* Sockets use circular or linear list of descriptors
* Unlimited number of descriptors per socket

IP Block A

Descriptor #0

Descriptor #5

Descriptor #9

Descriptor #315

Socket #M

Socket #0

Buffer #0
Buffer #0

Buffer #0
Buffer #0

IP Block B

Descriptor #0

Descriptor #7

Descriptor #9

Descriptor #278

Socket #N

Socket #0

Descriptors
* Descriptors point to exactly one buffer
* Descriptors are either consuming or producing
* Multiple descriptors can point to the same buffer
* Synchronization is done by using same descriptor
* Descriptors have status (free/occupied, #bytes, ...)

Buffers
* Buffers are regions in main memory
* Buffers can have any size (in bytes)
* Buffers can be anywhere (byte aligned)
* Buffer pool is managed in software
* Multiple descriptors can use the same buffer
* Buffers may contain packets smaller than its size
* Buffers may contain zero length packets

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 73

Figure 5-9. FX3's DMA System

The producer behaves in the following way:

1. When a producer has filled a buffer (an end-of-packet or a buffer-full event occurred - note that packets can be empty), it
updates the descriptor associated with the buffer in the main memory to indicate that the buffer is full (DMA-to-memory
write transaction).

2. The producer then sends a produce event to the consuming socket of its descriptor (DMA-to-MMIO write transaction).
This event contains the number of the descriptor to which it relates.

3. The producer then loads the next descriptor for the socket and makes it active (DMA-to-memory read transaction).

4. If the new descriptor indicates its buffer space is occupied, the socket stalls. If a consume event is received for the current
descriptor, the descriptor is either updated using the data in the event or reloaded from the memory. (DMA-to-memory
read transaction). DMA data write transfers may resume. Go to step (1)

5. If no descriptor is available (next_dscr=0xFFFF), the socket is suspended. When the software extends the descriptor list
and explicitly 'resumes', the IP block operation continues. Go to step (3).

The consumer behavior is exactly symmetric:

1. When a consumer has emptied a buffer (an end-of-packet or a buffer empty event occurred), it updates the descriptor
associated with the buffer in the main memory to indicate that the buffer is empty and available (DMA-to memory write
transaction).

2. The consumer then sends a consume event to the producing socket of its descriptor (DMA-to-MMIO write transaction).
This event contains the number of the descriptor to which it relates.

3. The consumer then loads the next descriptor for the socket and makes it active (DMA-to-memory read transaction).

4. If the new descriptor indicates its buffer is empty, the socket stalls. If a produce event is received for the current descriptor,
the descriptor is either updated using the data from the event or reloaded from the memory. (DMA-to-memory read trans-
action). DMA data read transfers may resume. Go to step (1)

5. If no descriptor is available the socket is suspended. When the software extends the descriptor list and explicitly
'resumes', the IP block operation continues. Go to step (3).

SystemDMA
Engine

Socket

Peripheral 1

DMA descriptor 0

DMA descriptor 1

DMA descriptor 2

DMA descriptor 3

DMA
Engine

DMA descriptor 0

DMA descriptor 1

DMA descriptor 2

DMA descriptor 3

Socket

Peripheral 2

PL192
VIC

Arm

74 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Refer to the section "Setting up the DMA System" in AN75779, where it is explained graphically in a high-level how the
socket, descriptor, and buffers are tied together in the FX3 DMA system.

5.5.8 Interrupt Requests

Each DMA-capable peripheral block has dedicated global interrupt request lines to the PL192 VIC. Refer to 2.3.1.8 Vectored
Interrupt Controller on page 41 for more details. Table 2-4 on page 42 in 2.3.1.8 Vectored Interrupt Controller on page 41 lists
the various FX3 interrupt sources. Table 5-4 describes the DMA interrupt lines.

Table 5-4. Global DMA Interrupt Request to VIC

5.5.9 DMA Interrupts

Although DMA transfer takes place independently from CPU execution, the CPU may need to be notified when certain
transfer conditions are met, when an error has occurred, or when the transfer is complete. See SCK_INTR on page 632.

Each peripheral has a global SCK_INTR register, in which each bit represents the socket number that generates the interrupt.
The bit description is as described above. There is also a per-socket SCK_INTR in which each bit represents the interrupt
source from the corresponding socket. Bit description is explained in 5.5.5 Sockets on page 68. The logical OR of all socket
interrupts presented in the per-socket SCK_INTR register represents the corresponding bit in the peripheral global
SCK_INTR register. This is illustrated in Figure 5-10.

Figure 5-10. Global and Per-Socket SCK_INTR Register

When a DMA interrupt occurs, the CPU is notified by VIC with the DMA interrupt line specific to the peripheral, as shown in
Table 5-4. Then the CPU can check the peripheral's global SCK_INTR register to find the socket number that needs attention.

Interrupt VIC Line Interrupt Source Description

GPIF_DMA 6 GPIF DMA adapter DMA socket interrupt from the GPIF block

USB_DMA 8 USB DMA adapter
Applies to both USB device and host mode opera-
tion

STORAGE_DMA 11 Storage (SD/MMC) interface DMA adapter Applies only to FX3S devices

PERIPH_DMA 20 Serial peripheral block DMA adapter

Socket 0

…….. src0src1src x SCK_INTR

.

.

.

.

.

GLOBAL SCK_INTR

…….. int0int1int n

int0

int1

int n

Peripheral Block A

Socket 1

…….. src0src1src x SCK_INTR

Socket n

…….. src0src1src x SCK_INTR

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 75

The Global SCK_INTR register is read-only and the interrupt bits are cleared by clearing the interrupt cause or bit in the per-
socket SCK_INTR register itself. Once the CPU finds the socket number, it can find the source of the interrupt from the per-
socket SCK_INTR register of the corresponding socket.

5.6 Programming Sequence

5.6.1 Initialization

The default state of most sockets is indicated in the register map. Briefly, in the default state the socket is disabled and holds
no descriptor. Sockets are initialized as described in the 5.5.5.2 Initializing a Socket on page 71 .The same steps are detailed
below.

1. Initialize and allocate descriptor(s) in the main memory. The base address for descriptor allocation starts at 0x40000010.
In addition to specifying where the data buffer is located, each descriptor data structure must be configured properly with
its associated peripherals, sockets, and event/interrupt flags for both consumer and producer halves. If a list of descriptors
is used, descriptors can be chained with DSCR_CHAIN field of the descriptor structure. The DSCR_CHAIN specifies the
next descriptor number in the chain for both consumer and producer. A value of 0xFFFF terminates the descriptor chain.

2. Initialize sockets with SCK_xxx registers. In addition to specifying the associated descriptor (or top of the descriptor chain)
for the socket, these registers control how the socket behaves during the transfer, that is, ., interrupt/event generation and
current status of the socket.

3. Enable socket(s). Sockets can be enabled by writing the SCK_STATUS.go_enable bit. Once socket is enabled, it loads
the descriptor specified in SCK_DSCR register (top of descriptor chain) and starts the transfer accordingly.

5.6.1.1 Producer Half

When the socket for the producer half is enabled, it loads the descriptor specified in the SCK_DSCR register and makes it
active. With a valid buffer specified by the active descriptor, the socket goes to the active state and starts to fill the data buffer.

When the producer socket has filled the buffer, it updates the active descriptor associated with the buffer in main memory and
then sends a produce event to its peer consuming socket defined in the dscr_sync field of the descriptor structure along with
the descriptor number itself.

If there is a valid peripheral consumer socket specified in the descriptor, the producer notifies the consumer socket by writing
to the EVENT register in the consumer socket. The EVENT value will indicate the DMA descriptor that has been updated and
specify that a PRODUCE event is being sent.

If the descriptor does not specify a valid consumer socket, it is the firmware's responsibility to identify and work on the
descriptor that has been produced. The SCK_INTR_MASK.PRODUCE_EVENT bit can be set to enable notification of
produce events to the CPU through the DMA interrupt. The firmware can then take appropriate actions to use the data that
has been received.

The producer socket then loads the next descriptor in the chain and makes it active. If the descriptor indicates its buffer space
is not available, the socket goes to the stall state. When the buffer is available as indicated from the socket's EVENT register,
the socket becomes active again and starts to fill the buffer pointed by the active descriptor.

If a consume event is received for the current descriptor, the descriptor is either updated using data in the EVENT register or
reloaded from memory.

If no descriptor is available (next_dscr=0xFFFF), the socket goes to the suspend state.

A DMA transfer from a peripheral to the system memory involves only the producer half.

5.6.1.2 Consumer Half

Similar to the producer half, when the socket for the consumer half is enabled, it loads the descriptor specified in the
SCK_DSCR register and makes it active. If the consumer socket is enabled at the same time as the producer socket, most
likely the buffer is waiting to be filled by the producer and is not available for the consumer socket. In this case, the consumer
socket goes to the stall state and waits for the buffer to become available upon a produce event.

76 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

When the buffer is available, it goes to the active state and starts consuming data in the buffer. When the consumer socket
has emptied a buffer, it updates the descriptor associated with the buffer in main memory and then sends a consume event to
its peer producer socket defined in the dscr_sync field of the descriptor structure, along with the descriptor number itself.

If the descriptor does not specify a valid producer socket, it is the firmware's responsibility to populate the data buffer in the
next descriptor in the descriptor chain. The SCK_INTR_MASK.CONSUME_EVENT bit can be set to enable notification of
consume events to the CPU through the DMA interrupt. The firmware can then take appropriate actions to populate the next
buffer.

The consumer socket then loads the next descriptor in the chain and makes it active. If the descriptor indicates its buffer
space is empty, the socket goes to the stall state. Until the buffer is filled as indicated from the socket's EVENT register, the
socket becomes active again and starts to empty the buffer pointed by the active descriptor.

If a produce event is received for the current descriptor, the descriptor is either updated using data from the event or reloaded
from memory.

If no descriptor is available (next_dscr=0xFFFF), the socket goes to the suspend state.

A DMA transfer from the system memory to a peripheral involves only the consumer half.

5.6.2 Peripheral to Peripheral Transfer

A DMA transfer from one peripheral to another peripheral involves both the producer and consumer halves. The sequence of
events for producer and consumer are identical to that when they are standalone, except when the producer half completes
the transfer, a produce event will be sent from the producer socket to the peer consumer socket to trigger the consumer half.
In this case, the whole peripheral to peripheral transfer can take place without CPU intervention in the transfer itself.
Figure 5-11 depicts the connection model used to describe peripheral to peripheral transfers. It also considers the software
drivers for the ingress and egress peripherals (that are mutually independent) and the higher level s/w that manages the
endpoint.

Figure 5-11. Peripheral - Peripheral DMA Transfer

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 77

The example code shows how to setup transfers and process corresponding interrupts.

/* Summary:
 A one shot dma setup and transfer function.
 */
CyFx3BootErrorCode_t
CyFx3BootUsbDmaXferData (
 uint8_t epNum,
 uint32_t address,
 uint32_t length ,
 uint32_t timeout
)
{
 uint8_t direction = epNum & 0x80;
 PSCK_T s;
 uint16_t id, sc, ch;
 PDSCR_T dscr = DSCR(0);
 uint32_t size = length;
 uint32_t *buf;

 CyFx3BootErrorCode_t status;

 if (((epNum & 0x0F) == 0) && (IsNewCtrlRqtReceived ()))
 return CY_FX3_BOOT_ERROR_ABORTED;

 buf = (uint32_t*)address;
 if (direction)
 s = (PSCK_T)&UIB->sck[epNum & 0x0F];
 else
 s = (PSCK_T)&UIBIN->sck[epNum & 0x0F];

 /* Initializing socket */
 id = ((uint32_t)s>>16) & 0x1f; /* use bit16-20 to decode IP_NUM */
 ch = ((uint32_t)s>>7) & 0x1f; /* use bit7-11 to decode socket number */

 s->status = CY_U3P_LPP_SCK_STATUS_DEFAULT; /* Default SCK_STATUS register setting. Refer
 SCK_STATUS register description */
 while (s->status & CY_U3P_LPP_ENABLED) /* checking if the socket is active */
 __nop ();
 s->status = CY_U3P_LPP_SCK_STATUS_DEFAULT | CY_U3P_LPP_UNIT; /* setting SCK_STATUS.unit
= 1*/
 s->intr = 0xFF; /* clear all previous interrupt */
 s->dscr = DSCR_ADDR(dscr); /* Loading the first descriptor (top of descriptor
chain) */
 s->size = 1;
 s->count = 0;

 dscr->buffer = (uint32_t)buf;
 sc = (size & 0xf) ? (size & cSizeMask) + 0x10 : (size & cSizeMask);
 if (sc == 0)
 sc = 16;

 if (direction) /* 1=TX: SYSMEM to device */
 {
 dscr->sync = ((ch << CY_U3P_LPP_CONS_SCK_POS) | (id << CY_U3P_LPP_CONS_IP_POS) |
 (CPU_SCK_NUM << CY_U3P_LPP_PROD_SCK_POS) | (CPU_IP_NUM <<
CY_U3P_LPP_PROD_IP_POS) |

78 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 (CY_U3P_LPP_EN_CONS_EVENT|CY_U3P_LPP_EN_CONS_INT) |
(CY_U3P_LPP_EN_PROD_EVENT|CY_U3P_LPP_EN_PROD_INT)
);
 dscr->size = ((size & (cTX_EN-1)) << CY_U3P_LPP_BYTE_COUNT_POS) | sc |
CY_U3P_LPP_BUFFER_OCCUPIED;
 }
 else /* 0=RX: Device to SYSMEM */
 {
 dscr->sync = ((CPU_SCK_NUM << CY_U3P_LPP_CONS_SCK_POS) | (CPU_IP_NUM <<
CY_U3P_LPP_CONS_IP_POS) |
 (ch << CY_U3P_LPP_PROD_SCK_POS) | (id << CY_U3P_LPP_PROD_IP_POS) |
 (CY_U3P_LPP_EN_CONS_EVENT|CY_U3P_LPP_EN_CONS_INT) |
(CY_U3P_LPP_EN_PROD_EVENT|CY_U3P_LPP_EN_PROD_INT)
);
 dscr->size = sc;
 }

 dscr->chain = (0xFFFFFFFF);

 s->status |= CY_U3P_LPP_GO_ENABLE;
 status = CY_FX3_BOOT_ERROR_TIMEOUT;

 do
 {
 if (s->intr & CY_U3P_LPP_ERROR)
 {
 status = CY_FX3_BOOT_ERROR_XFER_FAILURE;
 break;
 }

 UsbDelayFunction (100);

 if (direction)
 {
 if (s->intr & CY_U3P_LPP_CONSUME_EVENT)
 {
 status = CY_FX3_BOOT_SUCCESS;
 break;
 }
 }
 else
 {
 if (s->intr & CY_U3P_LPP_PRODUCE_EVENT)
 {
 status = CY_FX3_BOOT_SUCCESS;
 break;
 }
 }

 if ((timeout != CY_FX3_BOOT_NO_WAIT) && (timeout != CY_FX3_BOOT_WAIT_FOREVER))
 {
 timeout --;
 }

 if (((epNum & 0x0F) == 0) && (IsNewCtrlRqtReceived ()))
 {
 /* This request has been aborted due to a new control request. Just reset
 the USB socket and return an error. */

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 79

 s->status &= ~(CY_U3P_LPP_GO_ENABLE | CY_U3P_LPP_WRAPUP);
 s->intr = 0xFF;
 while (s->status & CY_U3P_LPP_ENABLED)
 __nop ();

 /* Flush EP0-IN as well. */
 UIB->eepm_endpoint[0] |= CY_U3P_UIB_SOCKET_FLUSH;
 CyFx3BootBusyWait (10);
 UIB->eepm_endpoint[0] &= ~CY_U3P_UIB_SOCKET_FLUSH;

 status = CY_FX3_BOOT_ERROR_ABORTED;
 break;
 }

 } while (timeout > 0);

 return status;
}

5.7 CPU Intervention In Between Ingress and Egress

Although it is rarely needed, it is possible to interpose a CPU intervention in between an ingress and egress DMA adapter.
Conceptually, this means the CPU (the software component) acts as the consumer agent to the producing (ingress) adapter
and acts as the producer agent to the consuming (egress) adapter. This model is depicted in Figure 5-12.

Figure 5-12. CPU Intervention in DMA Transfer Path

This mode will have a significant negative performance impact on high-bandwidth transfers because the CPU gets into the
critical path of every buffer transferred. This mode should only be used to handle special case stream requirements or to
implement processing of the actual data by the CPU such as DSP applications.

80 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

5.8 Concept of DMA Channels

A DMA channel is a software construct that encapsulates all of the DMA elements used (discussed so far in this chapter) in a
single data flow. The DMA manager in the FX3 firmware library introduces the notion of a DMA channel that encapsulates the
hardware resources such as sockets, buffers and descriptors used for handling a data flow through the device. The channel
concept is used to hide the complexity of configuring all of these resources in a consistent manner. The DMA manager
provides API functions that can be used to create data flows between any two interfaces on the FX3 device.

The DMA channel implementation where sockets can directly signal each other through events or can signal the FX3 CPU via
interrupts, when configured by firmware, is called automatic DMA channel. Alternatively, when there is CPU intervention as
explained in section DMA Features on page 61, it is called a manual DMA channel. For more details on DMA channels and
types of DMA channels supported, refer DMA Engine section in FX3 Programmer’s Manual.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 81

6. Universal Serial Bus (USB)

6.1 Introduction

USB is a successful peripheral interconnect defined and heavily adopted in consumer electronics and PC peripherals. The
first version of the specification, USB 1.0, released in 1996, defined two transfer speeds to address the different types of
devices available at that time: 1.5 Mbps (Low Speed) to address devices such as keyboards and joysticks; and 12 Mbps (Full
Speed) to address devices such as disk drives. The USB 2.0 specification, released in 2000, supports a maximum signaling
rate of 480 Mbps (High Speed), which is 40 times the signaling rate of Full Speed. With the introduction of USB OTG, USB
went beyond a peripheral interconnect. It enabled printers to use USB to directly connect to cameras and PDAs to use USB-
connected keyboards and mice. The new generation USB 3.0 is the next revolution in device interconnect technology. It
features the same ease of use and flexibility that users expect, at a much higher (5-Gbps) data rate and advanced power
management.

6.2 Features

The FX3 USB subsystem features the following controllers to support many advanced features of the USB standard:

■ USB Interface Block (UIB)

❐ USB 3.0 function controller

❐ USB 2.0 function controller

❐ USB 2.0 embedded host controller

❐ USB 2.0 OTG controller

❐ USB charger detect controller

■ USB I/O system

❐ Dedicated USB 2.0 OTG PHY and USB 3.0 PHY

❐ Accessory Charger Adaptor (ACA) and integrated voltage regulator

The USB 3.0 and USB 2.0 subsystems have dedicated transceivers, but they share the same I/O interconnect in the back
end. This means that only one of the USB 3.0 or USB 2.0 controller can be active at a time.

The FX3 USB subsystem supports the following modes of operation:

■ USB 3.0 peripheral in SuperSpeed (5 Gbps)

■ USB 2.0 peripheral in High/Full Speed (480/12 Mbps, respectively)

■ USB 2.0 host in High/Full/Low Speed (480/12/1.5 Mbps respectively), with one downstream port; the hub is not supported

■ USB 2.0 OTG dual-role device (DRD), with Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)
support

6.3 Block Diagram

Figure 6-1 shows the top-level block diagram of the FX3 USB subsystem.

82 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 6-1. EZ-USB FX3 USB Subsystem

6.4 Overview

6.4.1 USB Interface Block

The FX3 USB Interface Block (UIB) includes the following components:

6.4.2 USB 3.0 Function Controller

The USB 3.0 function controller implements both the link and protocol layers of the USB 3.0 specification.

6.4.3 USB 2.0 Function Controller

The USB 2.0 function controller implements the protocol layer of the USB 2.0 specification with an integrated serial interface
engine (SIE) and a token processor (TP).

6.4.4 USB 2.0 Embedded Host

The FX3 USB 2.0 embedded host is simpler than a full-featured PC-based controller. Embedded USB hosts are defined to
support a limited peripheral list and to operate with limited memory (compared to a PC). In essence, the host controller
functions like a device controller, with added scheduling capability to control and initiate data traffic on the bus. The USB 2.0
embedded host includes the following features:

■ EHCI-like interface in high-speed mode (EHCI is the PC-based Enhanced Host Controller Interface)

UIB

USB Core

USB IO SYSTEM

USB2 OTG Host

USB2 Device

USB 3.0 PHY

USB 2.0 OTG PHY

USB3 Device

S
E

R
IA

L
IN

T
E

R
F

A
C

E
E

N
G

IN
E

S
C

H
E

D
U

L
E

R

INTERRUPT/
CONFIG

REGISTERS
CHG DETECT
CONTROLLER

OTG
CONTROLLER

L
IN

K
L

A
Y

E
R

P
IP

E
 3

.0
32

b
1

25
M

H
z

48
0

M
H

z
10

b
50

0M
H

z

refclk
19.2/26/
38.4/52

MHz

ID
OTG

TO
K

E
N

P
R

O
C

E
S

S
O

R

L
IN

K
L

A
Y

E
R

P
R

O
T

O
C

O
L

L
A

Y
E

R

S
E

R
IA

L
IN

T
E

R
F

A
C

E
E

N
G

IN
E

TO
K

E
N

P
R

O
C

E
S

S
O

R

U
S

B
2.

0
 P

H
Y

 M
U

X

A
D

A
P

T
E

R
IN

T
E

R
F

A
C

E
L

A
Y

E
R

E
P

M
 M

U
X

D
M

A
A

D
A

P
T

E
R

 #
1

MMIO
AHB 32b
100MHz

DMA
AHB 2x64b
100MHz

U
T

M
I+

16
b

 3
0M

H
z

P
C

S

S
E

R
D

E
S

S
S

C
R

E
F

C
L

K
P

LL

1
25

M
H

z

TX-

TX+

RX-

RX+

ACA

U
T

M
I

TX
/R

XDP

DM

VBUS

R
E

F
C

L
K

P
LL

30
M

H
z

E
G

R
E

S
S

E
N

D
 P

O
IN

T
M

A
N

A
G

E
R

A
D

A
P

T
E

R
IN

T
E

R
F

A
C

E
L

A
Y

E
R

IN
G

R
E

S
S

E
N

D
 P

O
IN

T
M

A
N

A
G

E
R

D
M

A
A

D
A

P
T

E
R

 #
2

Voltage
Regulator

VBAT

3.3V

2.5V

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 83

■ OHCI-like interface in full- and low-speed modes (OHCI is the PC-based Open Host Controller Interface)

■ Support for point-to-point communications with one downstream port

■ Performance of all transaction scheduling in hardware

■ DMA adapter interface common to other FX3 peripherals

■ Fixed, one-to-one unidirectional endpoint to DMA socket mapping

■ Shared hardware endpoint managers (EPMs) among USB 2.0 device, USB 2.0 host, and USB 3.0 device controllers

6.4.5 USB OTG Controller

The FX3 USB subsystem is capable of supporting a USB 2.0 host, USB 2.0 peripheral, and a USB 3.0 peripheral. The FX3
OTG controller has global control of these functions. Dynamic role swapping is limited to USB 2.0 only by enabling the
appropriate USB 2.0 host or peripheral controller. The necessary control interface of the OTG controller facilitates:

■ Global control of the embedded host, and the USB 2.0 device function

■ Session Request Protocol (SRP) support per the OTG 2.0 specification

■ Host Negotiation Protocol (HNP) support per the OTG 2.0 specification

6.4.6 Charger Detect Controller

The FX3 charger detect controller provides a control interface to the USB Accessory Charger Adapter supporting:

■ EZ-Detect USB Battery Charging Revision 1.1

■ Selectable standard ACA mode or Motorola Enhanced Mini-USB mode

■ ID pin resistance value decoding

■ Car-kit pass through UART functionality

6.4.7 End-Point Memory

The end-point memory (EPM) supports data transfers through the USB 2.0 host controller, USB 2.0 function controller, and
USB 3.0 function controller blocks. It also supports the USB 3.0 bulk stream protocol. Two EPM units are available, dedicated
to each data direction.

6.4.8 DMA Adapters

The UIB has two dedicated DMA adapters that manage all DMA data flow in and out of the UIB block, one for each direction.
These DMA adapters are shared among the USB 3.0 device, USB 2.0 device, and USB 2.0 host controllers. Endpoint to DMA
socket mapping is fixed and unidirectional; that is, ingress endpoints 0 to 16 are mapped to UIB ingress DMA sockets 0 to 16,
and egress endpoints 0 to 16 are mapped to UIB DMA sockets 0 to 16. Hence the terms "socket" and "endpoint" are
interchangeable within the USB block. The DMA adapter is identical to those within other FX3 peripherals. Refer to the DMA
Subsystem chapter of this TRM to learn how the FX3 DMA works.

6.4.9 USB I/O System

6.4.9.1 USB 2.0 OTG PHY

Within USB 2.0 subsystems, FX3 has a USB 2.0 transceiver with a UTMI+ interface to the back-end, multiplexed between the
USB 2.0 function and USB 2.0 embedded host controllers. It contains the required transceiver and OTG functionality,
including:

■ Standard four-wire signaling (VBUS, D+, D-, GND)

■ USB 2.0 High-/Full-/Low-Speed data transmission rate

■ USB 2.0 test modes fully supported

■ VBUS sensing for connection detection

■ Sampling of the USB_ID input for detection of A-device or B-device connection

84 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

■ Charging and discharging of DP line for starting a session as B-device

6.4.9.2 USB 3.0 PHY

For USB 3.0, FX3 has a separate, dedicated USB 3.0 transceiver with a PIPE 3-compliant interface directly connected to the
back-end USB 3.0 function controller. It includes these features:

■ Dedicated, dual-simplex differential pairs for data transmit (SSTX+/-) and receive (SSRX+/-)

■ Sideband functionality (such as reset, wake) with Low Frequency Periodic Signaling (LFPS)

■ USB hot plug with receiver termination for connect/disconnect detection

■ 5-Gbps SuperSpeed data transmission rate over 3-meter USB 3.0 cable

■ Integrated transmitter, receiver, spread-spectrum clock (SSC) generation, PLL and ESD protection

■ Full support for USB 3.0 test modes

6.5 UIB Top-Level Register Interface

FX3 features a common top-level register interface shared among all UIB functional blocks, as shown in the following code.
Some functional blocks may also have their own specific register interface, which is described in their respective sections.

/* FX3 UIB Top Level Register Interface */

#define UIB_BASE_ADDR (0xe0030000)

typedef struct
{
 uvint32_t intr; /* 0xe0030000 */
 uvint32_t intr_mask; /* 0xe0030004 */
 uvint32_t rsrvd0[1024];
 uvint32_t phy_clk_and_test; /* 0xe0031008 */
 uvint32_t reserved[2];
 uvint32_t phy_chirp; /* 0xe0031014 */
 uvint32_t rsrvd1[250];
 uvint32_t dev_cs; /* 0xe0031400 */
 uvint32_t dev_framecnt; /* 0xe0031404 */
 uvint32_t dev_pwr_cs; /* 0xe0031408 */
 uvint32_t dev_setupdat0; /* 0xe003140c */
 uvint32_t dev_setupdat1; /* 0xe0031410 */
 uvint32_t dev_toggle; /* 0xe0031414 */
 uvint32_t dev_epi_cs[16]; /* 0xe0031418 */
 uvint32_t dev_epi_xfer_cnt[16]; /* 0xe0031458 */
 uvint32_t dev_epo_cs[16]; /* 0xe0031498 */
 uvint32_t dev_epo_xfer_cnt[16]; /* 0xe00314d8 */
 uvint32_t dev_ctl_intr_mask; /* 0xe0031518 */
 uvint32_t dev_ctl_intr; /* 0xe003151c */
 uvint32_t dev_ep_intr_mask; /* 0xe0031520 */
 uvint32_t dev_ep_intr; /* 0xe0031524 */
 uvint32_t rsrvd2[182];
 uvint32_t chgdet_ctrl; /* 0xe0031800 */
 uvint32_t chgdet_intr; /* 0xe0031804 */
 uvint32_t chgdet_intr_mask; /* 0xe0031808 */
 uvint32_t otg_ctrl; /* 0xe003180c */
 uvint32_t otg_intr; /* 0xe0031810 */
 uvint32_t otg_intr_mask; /* 0xe0031814 */
 uvint32_t otg_timer; /* 0xe0031818 */
 uvint32_t rsrvd3[249];
 uvint32_t eepm_cs; /* 0xe0031c00 */

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 85

 uvint32_t iepm_cs; /* 0xe0031c04 */
 uvint32_t iepm_mult; /* 0xe0031c08 */
 uvint32_t rsrvd4[13];
 uvint32_t eepm_endpoint[16]; /* 0xe0031c40 */
 uvint32_t iepm_endpoint[16]; /* 0xe0031c80 */
 uvint32_t iepm_fifo; /* 0xe0031cc0 */
 uvint32_t rsrvd5[207];
 uvint32_t host_cs; /* 0xe0032000 */
 uvint32_t host_ep_intr; /* 0xe0032004 */
 uvint32_t host_ep_intr_mask; /* 0xe0032008 */
 uvint32_t host_toggle; /* 0xe003200c */
 uvint32_t host_shdl_cs; /* 0xe0032010 */
 uvint32_t host_shdl_sleep; /* 0xe0032014 */
 uvint32_t host_resp_base; /* 0xe0032018 */
 uvint32_t host_resp_cs; /* 0xe003201c */
 uvint32_t host_active_ep; /* 0xe0032020 */
 uvint32_t ohci_revision; /* 0xe0032024 */
 uvint32_t ohci_control; /* 0xe0032028 */
 uvint32_t ohci_command_status; /* 0xe003202c */
 uvint32_t ohci_interrupt_status; /* 0xe0032030 */
 uvint32_t ohci_interrupt_enable; /* 0xe0032034 */
 uvint32_t ohci_interrupt_disable; /* 0xe0032038 */
 uvint32_t ohci_fm_interval; /* 0xe003203c */
 uvint32_t ohci_fm_remaining; /* 0xe0032040 */
 uvint32_t ohci_fm_number; /* 0xe0032044 */
 uvint32_t ohci_periodic_start; /* 0xe0032048 */
 uvint32_t ohci_ls_threshold; /* 0xe003204c */
 uvint32_t reserved1;
 uvint32_t ohci_rh_port_status; /* 0xe0032054 */
 uvint32_t ohci_eof; /* 0xe0032058 */
 uvint32_t ehci_hccparams; /* 0xe003205c */
 uvint32_t ehci_usbcmd; /* 0xe0032060 */
 uvint32_t ehci_usbsts; /* 0xe0032064 */
 uvint32_t ehci_usbintr; /* 0xe0032068 */
 uvint32_t ehci_frindex; /* 0xe003206c */
 uvint32_t ehci_configflag; /* 0xe0032070 */
 uvint32_t ehci_portsc; /* 0xe0032074 */
 uvint32_t ehci_eof; /* 0xe0032078 */
 uvint32_t shdl_chng_type; /* 0xe003207c */
 uvint32_t shdl_state_machine; /* 0xe0032080 */
 uvint32_t shdl_internal_status; /* 0xe0032084 */
 uvint32_t rsrvd6[222];
 struct
 {
 uvint32_t shdl_ohci0; /* 0xe0032400 */
 uvint32_t shdl_ohci1; /* 0xe0032404 */
 uvint32_t shdl_ohci2; /* 0xe0032408 */
 } ohci_shdl[64];
 uvint32_t rsrvd7[64];
 struct
 {
 uvint32_t shdl_ehci0; /* 0xe0032800 */
 uvint32_t shdl_ehci1; /* 0xe0032804 */
 uvint32_t shdl_ehci2; /* 0xe0032808 */
 } ehci_shdl[64];
 uvint32_t rsrvd8[5376];
 uvint32_t id; /* 0xe0037f00 */
 uvint32_t power; /* 0xe0037f04 */

86 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 uvint32_t rsrvd9[62];
 struct
 {
 uvint32_t dscr; /* 0xe0038000 */
 uvint32_t size; /* 0xe0038004 */
 uvint32_t count; /* 0xe0038008 */
 uvint32_t status; /* 0xe003800c */
 uvint32_t intr; /* 0xe0038010 */
 uvint32_t intr_mask; /* 0xe0038014 */
 uvint32_t rsrvd10[2];
 uvint32_t dscr_buffer; /* 0xe0038020 */
 uvint32_t dscr_sync; /* 0xe0038024 */
 uvint32_t dscr_chain; /* 0xe0038028 */
 uvint32_t dscr_size; /* 0xe003802c */
 uvint32_t rsrvd11[19];
 uvint32_t event; /* 0xe003807c */
 } sck[16];
 uvint32_t rsrvd12[7616];
 uvint32_t sck_intr0; /* 0xe003ff00 */
 uvint32_t sck_intr1; /* 0xe003ff04 */
 uvint32_t sck_intr2; /* 0xe003ff08 */
 uvint32_t sck_intr3; /* 0xe003ff0c */
 uvint32_t sck_intr4; /* 0xe003ff10 */
 uvint32_t sck_intr5; /* 0xe003ff14 */
 uvint32_t sck_intr6; /* 0xe003ff18 */
 uvint32_t sck_intr7; /* 0xe003ff1c */
 uvint32_t rsrvd13[56];
} UIB_REGS_T, *PUIB_REGS_T;

#define UIB ((PUIB_REGS_T) UIB_BASE_ADDR)

6.6 USB Function Controllers

6.6.1 USB 3.0 Function

6.6.1.1 Clocking

There are five independent clock domains in the UIB block supporting the USB 3.0 function, as listed in Table 6-1.

Table 6-1. USB 3.0 Function Clocks

In addition, the EPM uses a clock, uib_epm_clk_i, that is 125 MHz when the USB 3.0 function controller is active. The
uib_epm_clk_i configuration source is from GCTL_UIB_CORE_CLK.EPMCLK_SRC and enabled by
GCTL_UIB_CORE_CLK.CLK_EN.

Domain Typ Freq Configuration Source Description

dma_bus_clk_i 100 MHz GCTL_CPU_CLK_CFG.DMA_DIV DMA access clock

mmio_bus_clk_i 100 MHz GCTL_CPU_CLK_CFG.MMIO_DIV MMIO register access clock

uib_ssc_i 125 MHz Driven from USB 3.0 PHY USB 3.0 spread-spectrum clock

standby_clk_i 32 kHz Always-on Always-on clock for low-power modes

uib_ref_clk_i 19.2/26/38.4/52 MHz External input clock USB3.0 PHY reference clock

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 87

6.6.1.2 Interrupt Requests

The UIB block has three global interrupt sources to the VIC, listed in Table 6-2, which are shared among USB 3.0, USB 2.0,
and OTG controllers.

Table 6-2. USB Global Interrupt Sources to VIC

UIB has a global interrupt register, UIB_INTR, which contains interrupt sources from the respective functional blocks (USB
3.0 function, USB 2.0 function, USB 2.0 host, USB 2.0 OTG, charger detect, EPM). The UIB core interrupt to VIC is the logical
OR of interrupt sources in UIB_INTR.

The USB 3.0 link layer interrupts are located in UIB_LNK_INTR. UIB_INTR.LNK_INT is the logical OR of the interrupt sources
in UIB_LNK_INTR.

USB 3.0 protocol layer interrupts are located in UIB_PROT_INTR. UIB_INTR.PROT_INT is the logical OR of the interrupt
sources in UIB_PROT_INTR.

USB 3.0 function endpoint interrupts are located in UIB_PROT_EP_INTR. UIB_INTR.PROT_EP_INT is the logical OR of the
interrupt sources in UIB_PROT_EP_INTR.

6.6.1.3 USB 3.0 Functional Description

The SuperSpeed bus is a layered communications architecture that comprises the following elements:

SuperSpeed interconnect: The SuperSpeed interconnect is the manner in which devices are connected to and communicate
with the host over the SuperSpeed bus. It includes the topology of devices connected to the bus, the communication layers,
the relationships between them, and how they interact to accomplish information exchanges between the host and devices.

Devices: Devices implement the required function end of SuperSpeed communication layers to provide a specific function of
the application, for example, a mass storage device. The terms "USB device" and "USB function" are interchangeable.

Host: The host implements the required host end of SuperSpeed communication layers to use the functions of the attached
devices. It owns the SuperSpeed data activity schedule and management of the SuperSpeed bus and all devices connected
to it.

As shown in Figure 6-2, the rows (device or host, protocol, link, physical) represent the communication layers of the
SuperSpeed interconnect, namely:

■ Physical (PHY) layer

■ Link layer

■ Protocol layer

■ The FX3 USB 3.0 function controller design follows the same basic SuperSpeed architecture.

Interrupt VIC Line Interrupt Source Description

usbdma_int 8 UIB DMA sockets UIB DMA interrupt

usbcore_int 9
USB 3.0 function, USB 2.0 function, USB 2.0 host, USB
2.0 OTG, charger detect, EPM

UIB core interrupt

usbep0_int 10 USB 3.0 device or USB 2.0 device EP0 interrupt that is used only in device mode

88 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 6-2. SuperSpeed (USB 3.0) Architecture

6.6.2 Physical Layer

The physical layer defines the PHY portion of the port and the physical connection between a downstream facing port (on a
host or hub) and an upstream facing port (on a device). The FX3 USB 3.0 function physical connection comprises two
differential data pairs, one transmit path and one receive path. The nominal signaling data rate is 5 Gbps. The electrical
aspects of each path are characterized as a transmitter, channel, and receiver; these collectively represent a unidirectional
differential link. Each differential link is AC-coupled with capacitors located on the transmitter side of the differential link. The
channel includes the electrical characteristics of the cables and connectors.

At an electrical level, each differential link is initialized by enabling its receiver termination. The transmitter is responsible for
detecting the far-end receiver termination as an indication of a bus connection and informing the link layer so the connect
status can be factored into link operation and management. When receiver termination is present but no signaling is occurring
on the differential link, it is considered to be in the electrical idle state. In this state, LFPS is used to signal initialization and
power management information. The LFPS is relatively simple to generate and detect and uses very little power.

FX3 USB 3.0 PHY has its own clock domain with Spread Spectrum Clock (SSC) modulation. The USB 3.0 cable does not
include a reference clock, so the clock domains on each end of the physical connection are not directly connected. Bit-level
timing synchronization relies on the local receiver aligning its bit recovery clock to the remote transmitter's clock by phase-
locking to the signal transitions in the received bit stream. The receiver needs enough transitions to reliably recover clock and
data from the bit stream. To assure that adequate transitions occur in the bit stream independent of the data content being
transmitted, the transmitter encodes data and control characters into symbols using an 8b/10b code. Control symbols are
used to achieve byte alignment and are used for framing data and managing the link. Special characteristics make control
symbols uniquely identifiable from data symbols.

The signal (timing, jitter tolerance, and so on) and electrical (DC characteristics, channel capacitance, and so on.)
performance of SuperSpeed links is defined with compliance requirements specified in terms of transmit and receive signaling
eye diagrams. The FX3 USB 3.0 function physical layer receives 8-bit data from the link layer and scrambles the data to
reduce EMI emissions. It then encodes the scrambled 8-bit data into 10-bit symbols for transmission over the physical
connection. The resultant data is sent at a rate that includes spread spectrum to further lower the EMI emissions. The bit
stream is recovered from the differential link by the receiver, assembled into 10-bit symbols, and decoded and descrambled,
producing 8-bit data that is then sent to the link layer for further processing.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 89

FX3 PHY carries out the physical layer control settings and operations via the PHY register interface, which is combined with
the link layer register interface for easy firmware implementation.

6.6.3 Link Layer

A SuperSpeed link is a logical and physical connection of two ports. The connected ports are called "link partners." A port has
a physical part and a logical part. The FX3 USB 3.0 function link layer defines the logical portion of a port and the
communications between link partners.

The logical portion of a port contains:

■ State machines for managing its end of the physical connection. These include physical layer initialization and event
management, that is, connect, removal, and power management.

■ State machines and buffering for managing information exchanges with the link partner. It implements protocols for flow
control, reliable delivery (port to port) of packet headers, and link power management.

■ Buffering for data and protocol layer information elements.

The logical portion of a port does the following:

■ Provides the correct framing of sequences of bytes into packets during transmission; for example, insertion of packet
delimiters

■ Detects received packets, including packet delimiters and error checks of received header packets (for reliable delivery)

■ Provides an appropriate interface to the protocol layer for pass-through of protocol-layer packet information exchanges

The FX3 USB 3.0 function physical layer provides the logical port with an interface through which it can do the following:

■ Manage the state of its PHY (that is, its end of the physical connection), including power management and events
(connection, removal, and wake).

■ Transmit and receive byte streams, with additional signals that qualify the byte stream as control sequences or data. The
physical layer includes discrete transmit and receive physical links; therefore, a port can simultaneously transmit and
receive control and data information.

The FX3 USB 3.0 function controller has a unified register interface for physical and link layers as in the following code. The
register level programming is managed by the USB driver block in the FX3 SDK.

/* FX3 USB 3.0 Function Physical Layer and Link Layer Register Interface */

#define USB3LNK_BASE_ADDR (0xe0033000)

typedef struct
{
 uvint32_t lnk_conf; /* 0xe0033000 */
 uvint32_t lnk_intr; /* 0xe0033004 */
 uvint32_t lnk_intr_mask; /* 0xe0033008 */
 uvint32_t lnk_error_conf; /* 0xe003300c */
 uvint32_t lnk_error_status; /* 0xe0033010 */
 uvint32_t lnk_error_count; /* 0xe0033014 */
 uvint32_t lnk_error_count_threshold; /* 0xe0033018 */
 uvint32_t lnk_phy_conf; /* 0xe003301c */
 uvint32_t reserved0[3];
 uvint32_t lnk_phy_mpll_status; /* 0xe003302c */
 uvint32_t reserved1[3];
 uvint32_t lnk_phy_tx_trim; /* 0xe003303c */
 uvint32_t lnk_phy_error_conf; /* 0xe0033040 */
 uvint32_t lnk_phy_error_status; /* 0xe0033044 */
 uvint32_t reserved2[2];
 uvint32_t lnk_device_power_control; /* 0xe0033050 */
 uvint32_t lnk_ltssm_state; /* 0xe0033054 */

90 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 uvint32_t reserved3[3];
 uvint32_t lnk_lfps_observe; /* 0xe0033064 */
 uvint32_t reserved4[52];
 uvint32_t lnk_compliance_pattern_0; /* 0xe0033138 */
 uvint32_t lnk_compliance_pattern_1; /* 0xe003313c */
 uvint32_t lnk_compliance_pattern_2; /* 0xe0033140 */
 uvint32_t lnk_compliance_pattern_3; /* 0xe0033144 */
 uvint32_t lnk_compliance_pattern_4; /* 0xe0033148 */
 uvint32_t lnk_compliance_pattern_5; /* 0xe003314c */
 uvint32_t lnk_compliance_pattern_6; /* 0xe0033150 */
 uvint32_t lnk_compliance_pattern_7; /* 0xe0033154 */
 uvint32_t lnk_compliance_pattern_8; /* 0xe0033158 */
} USB3LNK_REGS_T, *PUSB3LNK_REGS_T;

#define USB3LNK ((PUSB3LNK_REGS_T) USB3LNK_BASE_ADDR)

6.6.4 Protocol Layer

The FX3 USB 3.0 function protocol layer defines the "end-to-end" communication rules between a host and device. The
SuperSpeed protocol provides for application data information exchanges between a host and a device endpoint. This
communications relationship is called a "pipe." It is a host-directed protocol, which means the host determines when
application data is transferred between the host and the device. SuperSpeed is not a polled protocol, as a device can
asynchronously request service from the host on behalf of a particular endpoint.

All protocol layer communications are accomplished via the exchange of packets. Packets are sequences of data bytes with
specific control sequences that serve as delimiters managed by the link layer. Unlike USB 2.0 which uses a broadcast
mechanism, host-transmitted protocol packets are routed through intervening hubs directly to a peripheral device. A
peripheral device considers itself that targeted by any protocol layer packet it receives. Device transmitted protocol packets
simply flow upstream through hubs to the host.

Packet headers are the building blocks of the protocol layer. They are fixed-size packets with type and subtype field
encodings for specific purposes. A small record within a packet header is utilized by the link layer (port to port) to manage the
flow of the packet from port to port. Packet headers are delivered through the link layer (port to port) reliably. The remaining
fields are utilized by the end-to-end protocol.

Application data is transmitted within data packet payloads, which are preceded (in the protocol) by specifically encoded data
packet headers. Data packet payloads are not delivered reliably through the link layer (however, the accompanying data
packet headers are delivered reliably). The protocol layer supports the reliable delivery of data packets via explicit
acknowledgement (header) packets and the retransmission of lost or corrupt data. Not all data information exchanges utilize
data acknowledgements.

Data may be transmitted in bursts of back-to-back sequences of data packets (depending on the scheduling by the host). The
protocol allows efficient bus utilization by concurrently transmitting and receiving over the link. For example, a transmitter
(host or device) can burst multiple packets of data back to back, while the receiver can transmit data acknowledgements
without interrupting the burst of data packets. The number of data packets in a specific burst is scheduled by the host.
Furthermore, a host may simultaneously schedule multiple OUT bursts to be active at the same time as an IN burst.

The protocol provides flow control support for some transfer types. A device-initiated flow control is signaled by a device via a
defined protocol packet. A host-initiated flow control event is realized via the host schedule (host will simply not schedule
information flows for a pipe unless it has data or buffering available). On receipt of a flow control event, the host removes the
pipe from its schedule. Resumption of scheduling information flows for a pipe may be initiated by the host or device. A device
endpoint notifies a host of its readiness (to source or sink data) via an asynchronously transmitted "ready" packet. On receipt
of the "ready" notification, the host adds the pipe to its schedule, assuming that it still has data or buffering available.
Independent information streams can be explicitly delineated and multiplexed on the bulk transfer type. This means that
through a single pipe instance, more than one data stream can be tagged by the source and identified by the sink. The
protocol provides for the device to direct which data stream is active on the pipe.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 91

Devices may asynchronously transmit notifications to the host. These notifications are used to convey a change in the device
state. A host transmits a special packet header to the bus that includes the host's timestamp. The value in this packet is used
to keep devices in synchronization with the host. In contrast to other packet types, the timestamp packet is forwarded down all
paths not in a low-power state. The timestamp packet transmission is scheduled by the host at a specification-determined
period.

The FX3 USB 3.0 function controller has a dedicated register interface for the protocol layer as shown in the following code.
The register level programming and the interrupt handling is performed by the USB driver in the FX3 SDK.

/* FX3 USB 3.0 Function Protocol Layer Register Interface */

#define USB3PROT_BASE_ADDR (0xe0033400)

typedef struct
{
 uvint32_t prot_cs; /* 0xe0033400 */
 uvint32_t prot_intr; /* 0xe0033404 */
 uvint32_t prot_intr_mask; /* 0xe0033408 */
 uvint32_t reserved0[3];
 uvint32_t prot_lmp_port_capability_timer; /* 0xe0033418 */
 uvint32_t prot_lmp_port_configuration_timer; /* 0xe003341c */
 uvint32_t reserved1[2];
 uvint32_t prot_framecnt; /* 0xe0033428 */
 uvint32_t reserved2;
 uvint32_t prot_itp_time; /* 0xe0033430 */
 uvint32_t prot_itp_timestamp; /* 0xe0033434 */
 uvint32_t prot_setupdat0; /* 0xe0033438 */
 uvint32_t prot_setupdat1; /* 0xe003343c */
 uvint32_t prot_seq_num; /* 0xe0033440 */
 uvint32_t reserved3[6];
 uvint32_t prot_lmp_received; /* 0xe003345c */
 uvint32_t reserved4[5];
 uvint32_t prot_ep_intr; /* 0xe0033474 */
 uvint32_t prot_ep_intr_mask; /* 0xe0033478 */
 uvint32_t rsrvd0[33];
 uvint32_t prot_epi_cs1[16]; /* 0xe0033500 */
 uvint32_t prot_epi_cs2[16]; /* 0xe0033540 */
 uvint32_t prot_epi_unmapped_stream[16]; /* 0xe0033580 */
 uvint32_t prot_epi_mapped_stream[16]; /* 0xe00335c0 */
 uvint32_t prot_epo_cs1[16]; /* 0xe0033600 */
 uvint32_t prot_epo_cs2[16]; /* 0xe0033640 */
 uvint32_t prot_epo_unmapped_stream[16]; /* 0xe0033680 */
 uvint32_t prot_epo_mapped_stream[16]; /* 0xe00336c0 */
 uvint32_t prot_stream_error_disable; /* 0xe0033700 */
 uvint32_t prot_stream_error_status; /* 0xe0033704 */
} USB3PROT_REGS_T, *PUSB3PROT_REGS_T;

#define USB3PROT ((PUSB3PROT_REGS_T) USB3PROT_BASE_ADDR)

92 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

6.7 USB 2.0 Function

6.7.1 Clocking

There are five independent clock domains in the UIB block supporting the USB 2.0 function, as listed in Table 6-3.

Table 6-3. USB 2.0 Function Clocks

In addition, the EPM uses a clock uib_epm_clk_i that is 100 MHz when the USB 2.0 function controller is active. The
uib_epm_clk_i configuration source is from GCTL_UIB_CORE_CLK.EPMCLK_SRC and enabled by
GCTL_UIB_CORE_CLK.CLK_EN.

6.7.2 Interrupt Requests

The UIB block has three global interrupt sources to the VIC, listed in Table 6-2, which are shared among USB 3.0, USB 2.0
and OTG controllers.

UIB has a global interrupt register, UIB_INTR, which contains interrupt sources from the respective functional blocks (USB
3.0 function, USB 2.0 function, USB 2.0 host, USB 2.0 OTG, charger detect, EPM). The UIB core interrupt to VIC is the logical
OR of interrupt sources in UIB_INTR.

USB 2.0 function controller interrupts are located in UIB_DEV_CTL_INTR. UIB_INTR.DEV_CTL_INT is the logical OR of the
interrupt sources in UIB_DEV_CTL_INTR.

USB 2.0 function endpoint interrupts are located in UIB_DEV_EP_INTR. UIB_INTR.DEV_EP_INT is the logical OR of the
interrupt sources in UIB_DEV_EP_INTR.

6.7.3 USB 2.0 Functional Description

The USB 2.0 function controller hardware includes an a Serial Interface Engine (SIE) and Token Processor (TP). It does the
following:

■ Handles the handshake between the endpoint and the host device

■ Generates an interrupt when valid data packets are received

■ Generates an interrupt when an error in transmission occurs

■ Moves valid data to/from the endpoint

■ Handles all the bit stuffing required

6.7.3.1 Serial Interface Engine

The SIE is responsible for handling the USB traffic at the byte-level and for detecting the suspend, reset, and resume USB
bus states. It parses the traffic, decoding the types of packets that have been received and translating the packet types into
bytes for transmission back to the host on the USB bus.

6.7.3.2 Token Processor

The TP handles most of the protocol described in chapter 8 of the USB specification. It receives the USB basic protocol
commands from the host and generates the appropriate sequence of responses by synchronizing the frame timer, receiving/

Domain Typ Freq Configuration Source Description

dma_bus_clk_i 100 MHz GCTL_CPU_CLK_CFG.DMA_DIV DMA access clock

mmio_bus_clk_i 100 MHz GCTL_CPU_CLK_CFG.MMIO_DIV MMIO register access clock

uib_sieclock_i 30 MHz Driven from USB 2.0 OTG PHY USB 2.0 serial interface engine clock

standby_clk_i 32 kHz Always-on Always-on clock for low-power modes

uib_ref_clk_i 19.2/26/38.4/52 MHz External input clock USB 2.0 PHY reference clock

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 93

transmitting data, or receiving/transmitting handshake responses to the commands themselves. It does all of this based on
the information provided by the SIE, which is responsible for decoding the bytes into those commands.

6.7.4 USB 2.0 Function Registers

The FX3 USB 2.0 function registers can be accessed directly from the UIB top-level register interface. These registers are
shown below and are programmed by the USB driver in the FX3 SDK.

/* FX3 USB 2.0 Function Register Interface */
/* These definitions extracted from the Top Level UIB register interface */

 uvint32_t phy_clk_and_test; /* 0xe0031008 */
 uvint32_t phy_chirp; /* 0xe0031014 */
 uvint32_t dev_cs; /* 0xe0031400 */
 uvint32_t dev_framecnt; /* 0xe0031404 */
 uvint32_t dev_pwr_cs; /* 0xe0031408 */
 uvint32_t dev_setupdat0; /* 0xe003140c */
 uvint32_t dev_setupdat1; /* 0xe0031410 */
 uvint32_t dev_toggle; /* 0xe0031414 */
 uvint32_t dev_epi_cs[16]; /* 0xe0031418 */
 uvint32_t dev_epi_xfer_cnt[16]; /* 0xe0031458 */
 uvint32_t dev_epo_cs[16]; /* 0xe0031498 */
 uvint32_t dev_epo_xfer_cnt[16]; /* 0xe00314d8 */
 uvint32_t dev_ctl_intr_mask; /* 0xe0031518 */
 uvint32_t dev_ctl_intr; /* 0xe003151c */
 uvint32_t dev_ep_intr_mask; /* 0xe0031520 */
 uvint32_t dev_ep_intr; /* 0xe0031524 */

6.7.5 USB Reset

USB 2.0 reset is detected by the SIE and is reported to the TP. The URESET bit in the DEV_CTL_INTR register is set, and
the corresponding interrupt is generated (if not masked).

6.7.6 USB Suspend

USB 2.0 suspend is detected by the SIE and is reported to the TP. The SUSP bit in the DEV_CTL_INTR register is set, and
the corresponding interrupt is generated (if not masked).

6.7.7 USB Resume

USB 2.0 resume is detected by the SIE and is reported to the TP. The SUSP bit in the DEV_CTL_INTR register is cleared,
and the corresponding interrupt is generated (if not masked). A resume by the device is generated by the firmware, setting
the SIGRSUME bit in the PWR_CS register. The firmware must also clear this bit to end the resume signaling.

6.7.8 Start of Frame

Start of frame (SOF) timer packets are received by the SIE and reported to the TP. The SOF bit in the UIB_DEV_CTL_INTR
register is set, and the corresponding interrupt is generated (if not masked). The frame number is stored in the FRAMECNT
register. The SIE is capable to generating synthetic SOF notifications to replace any SOF packets that get lost. The feature
can be controlled using the NOSYNSOF bit in the DEV_PWR_CS register.

6.7.9 SETUP Packet

SETUP packets (to endpoint 0) are received by the SIE and reported to the TP. The SETUP data is stored in registers
DEV_SETUPDAT0 and DEV_SETUPDAT0 1. The SUDAV bit in the DEV_CTL_INTR register is set, as is the SUTOK bit if the

94 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

packet is received correctly, and their corresponding interrupts are generated if not masked. Upon receipt of a SetAddress
command from the host, the DEV_CS register field DEVICEADDR is updated with the new device address.

6.7.10 IN Packet

IN packets are received by the SIE and reported to the TP, which generates the appropriate responses to the SIE and
updates the corresponding DEV_EPO_CS register for the endpoint to which the packet was sent.

6.7.11 OUT Packet

OUT packets are received by the SIE and reported to the TP, which generates the appropriate responses to the SIE and
updates the corresponding DEV_EPO_CS register for the endpoint to which the packet was sent.

6.8 USB 3.0 and USB 2.0 Function Coordination

When the FX3 is functioning as a USB device, the USB 3.0 PHY or the USB 2.0 PHY needs to be turned on based on the
capabilities of the USB host to which FX3 is connected. The USB 3.0 specification requires that only one of the PHY layers be
operational at most times during the USB device operation. The exception to this rule is a small time window in which the
device is attempting to move from USB 2.0 mode to USB 3.0 mode. The firmware application on FX3 is responsible for
identifying the host capabilities and setting the USB connection accordingly. The following procedure should be used by the
FX3 firmware for USB connection negotiation:

1. Wait for a valid VBus voltage (GCTL_IOPWR interrupt).

2. Turn on the USB 3.0 PHY to start 3.0 receiver detection.

a. If receiver detection succeeds, the LNK_LTSSM_CONNECT interrupt will be received. If this interrupt is received, the
device will proceed with enumeration in USB 3.0 mode.

3. If receiver detection fails, the LNK_LTSSM_DISCONNECT interrupt will be received. If this interrupt is received:

a. Turn off USB 3.0 PHY and turn on USB 2.0 PHY.

b. A USB 2.0 bus reset will be received as part of USB 2.0 connection startup.

c. The 3.0 PHY should be re-enabled on receiving the URESET interrupt that is triggered on a 2.0 bus reset. Both the 2.0
and 3.0 PHYs will be active at this time.

d. If the 3.0 receiver detection succeeds (LNK_LTSSM_CONNECT):

i.Turn off the USB 2.0 PHY.

ii.Proceed with enumeration as a USB 3.0 device.

e. If the 3.0 receiver detection fails (LNK_LTSSM_DISCONNECT):

i.Turn off the USB 3.0 PHY.

ii.Check number of times that 3.0 receiver detection has failed. If this count is greater than 3:

4. Proceed with enumeration as a USB 2.0 device.

5. There is no need to attempt 3.0 enumeration on any further bus resets.

Any PHYs that are enabled need to be disabled when the VBus voltage is removed. The entire previous procedure needs to
be repeated when valid VBus is detected again.

Note that USB 3.0 PHY on the FX3 needs to be turned off when VBus is removed or a host disconnect is discovered by other
means. If the 3.0 PHY is left turned on, the 3.0 link startup is liable to fail when connected again to the host.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 95

6.9 USB Function Programming Model

6.9.1 USB 3.0 Initialization

Before USB 3.0 is operational, the function controller needs to be initialized. The following code example from the FX3 SDK
implements the UIB initialization sequence for the USB 3.0 function.

static void
CyU3PUibInit (
 void)
{
 uint8_t ep = 0;

 /* Enable the Power regulators*/
 GCTLAON->wakeup_en = 0;
 GCTLAON->wakeup_polarity = 0;

 /* Link_phy_conf enable Rx terminations */
 USB3LNK->lnk_phy_conf = 0xE0000001;
 USB3LNK->lnk_error_conf = 0xFFFFFFFF;
 USB3LNK->lnk_intr = 0xFFFFFFFF;
 USB3LNK->lnk_intr_mask = CY_U3P_UIB_LGO_U3 | CY_U3P_UIB_LTSSM_CONNECT |
 CY_U3P_UIB_LTSSM_DISCONNECT | CY_U3P_UIB_LTSSM_RESET | CY_U3P_UIB_LTSSM_STATE_CHG;

 USB3PROT->prot_ep_intr_mask = 0;
 USB3PROT->prot_intr = 0xFFFFFFFF;
 USB3PROT->prot_intr_mask = (CY_U3P_UIB_STATUS_STAGE |
 CY_U3P_UIB_SUTOK_EN | CY_U3P_UIB_EP0_STALLED_EN |
 CY_U3P_UIB_TIMEOUT_PORT_CAP_EN | CY_U3P_UIB_TIMEOUT_PORT_CFG_EN |
CY_U3P_UIB_LMP_RCV_EN |
 CY_U3P_UIB_LMP_PORT_CAP_EN | CY_U3P_UIB_LMP_PORT_CFG_EN);

 /* Disable all EPs except EP0 */
 for (ep = 1; ep < 16; ep++)
 {
 UIB->dev_epo_cs[ep] &= ~CY_U3P_UIB_EPO_VALID;
 USB3PROT->prot_epo_cs1[ep] = 0;
 UIB->dev_epi_cs[ep] &= ~CY_U3P_UIB_EPI_VALID;
 USB3PROT->prot_epi_cs1[ep] = 0;
 }

 /* Disable all UIB interrupts at this stage. */
 UIB->intr_mask &= ~(CY_U3P_UIB_DEV_CTL_INT | CY_U3P_UIB_DEV_EP_INT | CY_U3P_UIB_LNK_INT
|
 CY_U3P_UIB_PROT_INT | CY_U3P_UIB_PROT_EP_INT | CY_U3P_UIB_EPM_URUN);

 /* Enable the Vbus detection interrupt at this stage. */
 GCTL->iopwr_intr = 0xFFFFFFFF;
 GCTL->iopwr_intr_mask = CY_U3P_VBUS;
 CyU3PVicEnableInt (CY_U3P_VIC_GCTL_PWR_VECTOR);

}

96 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

6.9.2 USB 3.0 Enable

Once the USB 3.0 function controller is initialized, it needs to be enabled. The following code snippet from the FX3 SDK
implements the sequence to enable the USB 3.0 function controller.

static void
CyU3PUsbEnableUsb3 (
 void)
{
 UIB->intr_mask &= ~(CY_U3P_UIB_DEV_CTL_INT | CY_U3P_UIB_DEV_EP_INT |

CY_U3P_UIB_LNK_INT | CY_U3P_UIB_PROT_INT | CY_U3P_UIB_PROT_EP_INT | CY_U3P_UIB_EPM_URUN);

 /* Make sure that all relevant USB 3.0 interrupts are enabled. */
 USB3LNK->lnk_intr = 0xFFFFFFFF;
 USB3LNK->lnk_intr_mask = CY_U3P_UIB_LGO_U3 |
 CY_U3P_UIB_LTSSM_CONNECT | CY_U3P_UIB_LTSSM_DISCONNECT | CY_U3P_UIB_LTSSM_RESET |
CY_U3P_UIB_LTSSM_STATE_CHG;
 USB3PROT->prot_intr = 0xFFFFFFFF;
 USB3PROT->prot_intr_mask = (CY_U3P_UIB_STATUS_STAGE | CY_U3P_UIB_SUTOK_EN |
CY_U3P_UIB_EP0_STALLED_EN |
 CY_U3P_UIB_TIMEOUT_PORT_CAP_EN | CY_U3P_UIB_TIMEOUT_PORT_CFG_EN |
CY_U3P_UIB_LMP_RCV_EN |
 CY_U3P_UIB_LMP_PORT_CAP_EN | CY_U3P_UIB_LMP_PORT_CFG_EN);

 /* Set port config and capability timers to their initial values. */
 USB3PROT->prot_lmp_port_capability_timer = CY_U3P_UIB_PROT_LMP_PORT_CAP_TIMER_VALUE;
 USB3PROT->prot_lmp_port_configuration_timer = CY_U3P_UIB_PROT_LMP_PORT_CFG_TIMER_VALUE;

 /* Turn on AUTO response to LGO_U3 command from host. */
 USB3LNK->lnk_compliance_pattern_8 |= CY_U3P_UIB_LFPS;
 USB3LNK->lnk_phy_conf = 0xE0000001;

 CyU3PSetUsbCoreClock (1, 0);
 CyU3PBusyWait (10);

 /* Force LTSSM into SS.Disabled state for 100us after the PHY is turned on. */
 USB3LNK->lnk_ltssm_state = (CY_U3P_UIB_LNK_STATE_SSDISABLED <<
CY_U3P_UIB_LTSSM_OVERRIDE_VALUE_POS) |
 CY_U3P_UIB_LTSSM_OVERRIDE_EN;
 UIB->otg_ctrl |= CY_U3P_UIB_SSDEV_ENABLE;
 CyU3PBusyWait (100);
 USB3LNK->lnk_ltssm_state &= ~CY_U3P_UIB_LTSSM_OVERRIDE_EN;

 USB3LNK->lnk_conf = (USB3LNK->lnk_conf & ~CY_U3P_UIB_EPM_FIRST_DELAY_MASK) |
 (12 << CY_U3P_UIB_EPM_FIRST_DELAY_POS) | CY_U3P_UIB_LDN_DETECTION;
 USB3LNK->lnk_phy_mpll_status = 0x00310018 | CY_U3P_UIB_SSC_EN;

 CyFx3UsbWritePhyReg (0x0030, 0x00C0);

 CyU3PBusyWait (20);
 UIB->intr_mask |= (CY_U3P_UIB_DEV_CTL_INT | CY_U3P_UIB_DEV_EP_INT |

CY_U3P_UIB_LNK_INT | CY_U3P_UIB_PROT_INT | CY_U3P_UIB_PROT_EP_INT | CY_U3P_UIB_EPM_URUN);
}

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 97

6.9.3 USB 3.0 Fallback to USB 2.0

When the USB 3.0 termination detection or link training fails, the FX3 UIB can fall back to USB 2.0 mode. The following
function implements this fallback mechanism.

static void
CyU3PUsbFallBackToUsb2 (

void)
{
 CyFx3UsbWritePhyReg (0x1005, 0x0000);

 /* Force the link state machine into SS.Disabled. */
 USB3LNK->lnk_ltssm_state = (CY_U3P_UIB_LNK_STATE_SSDISABLED <<
 CY_U3P_UIB_LTSSM_OVERRIDE_VALUE_POS) |
 CY_U3P_UIB_LTSSM_OVERRIDE_EN;

 /* Keep track of the number of times the 3.0 link training has failed. */
 glUibDeviceInfo.tDisabledCount++;

 /* Change EPM config to full speed */
 CyU3PBusyWait (2);
 CyU3PSetUsbCoreClock (2, 2);
 CyU3PBusyWait (2);

 /* Switch the EPM to USB 2.0 mode, turn off USB 3.0 PHY and remove Rx Termination. */
 UIB->otg_ctrl &= ~CY_U3P_UIB_SSDEV_ENABLE;
 CyU3PBusyWait (2);
 UIB->otg_ctrl &= ~CY_U3P_UIB_SSEPM_ENABLE;

 UIB->intr_mask &= ~(CY_U3P_UIB_DEV_CTL_INT | CY_U3P_UIB_DEV_EP_INT | CY_U3P_UIB_LNK_INT
|
 CY_U3P_UIB_PROT_INT | CY_U3P_UIB_PROT_EP_INT | CY_U3P_UIB_EPM_URUN);

 USB3LNK->lnk_phy_conf &= 0x1FFFFFFF;
 USB3LNK->lnk_phy_mpll_status = glUsbMpllDefault;

 /* Power cycle the PHY blocks. */
 GCTLAON->control &= ~CY_U3P_GCTL_USB_POWER_EN;
 CyU3PBusyWait (5);
 GCTLAON->control |= CY_U3P_GCTL_USB_POWER_EN;
 CyU3PBusyWait (10);

 /* Clear USB 2.0 interrupts. */
 UIB->dev_ctl_intr = 0xFFFFFFFF;
 UIB->dev_ep_intr = 0xFFFFFFFF;
 UIB->otg_intr = 0xFFFFFFFF;

 /* Reset the EP-0 DMA channels. */
 CyU3PDmaChannelReset (&glUibChHandle);
 CyU3PDmaChannelReset (&glUibChHandleOut);

 /* Clear and disable USB 3.0 interrupts. */
 USB3LNK->lnk_intr_mask = 0x00000000;
 USB3LNK->lnk_intr = 0xFFFFFFFF;
 USB3PROT->prot_intr_mask = 0x00000000;
 USB3PROT->prot_intr = 0xFFFFFFFF;

 UIB->intr_mask |= (CY_U3P_UIB_DEV_CTL_INT | CY_U3P_UIB_DEV_EP_INT |

98 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

CY_U3P_UIB_LNK_INT | CY_U3P_UIB_PROT_INT | CY_U3P_UIB_PROT_EP_INT | CY_U3P_UIB_EPM_URUN);

 /* Disable EP0-IN and EP0-OUT (USB-2). */
 UIB->dev_epi_cs[0] &= ~CY_U3P_UIB_EPI_VALID;
 UIB->dev_epo_cs[0] &= ~CY_U3P_UIB_EPO_VALID;

 glUibDeviceInfo.usbSpeed = CY_U3P_FULL_SPEED;
 glUibDeviceInfo.isLpmDisabled = CyFalse;
 UIB->ehci_portsc = CY_U3P_UIB_WKOC_E;

 /* Enable USB 2.0 PHY. */
 CyU3PBusyWait (2);
 UIB->otg_ctrl |= CY_U3P_UIB_DEV_ENABLE;

 CyU3PBusyWait (100);
 CyFx3Usb2PhySetup ();
 UIB->phy_clk_and_test = (CY_U3P_UIB_DATABUS16_8 | CY_U3P_UIB_VLOAD |
CY_U3P_UIB_SUSPEND_N |
 CY_U3P_UIB_EN_SWITCH);
 CyU3PBusyWait (80);

 CyU3PSetUsbCoreClock (2, 0);

 /* For USB 2.0 connections, enable pull-up on D+ pin. */
 CyU3PConnectUsbPins ();
}

6.9.4 USB Reset

The following code example implements the USB 3.0 reset handler to handle the USB reset event. The USB 3.0 reset event
is detected by the LTSSM_RESET bit of the LNK_INTR link layer interrupt register.

void CyU3PUsbSSReset(void)
{
 uint8_t ep = 0;

 /* Reset the EPM mux. */
 UIB->iepm_cs |= (CY_U3P_UIB_EPM_FLUSH | CY_U3P_UIB_EPM_MUX_RESET);
 CyU3PBusyWait (1);
 UIB->iepm_cs &= ~(CY_U3P_UIB_EPM_FLUSH | CY_U3P_UIB_EPM_MUX_RESET);
 CyU3PBusyWait (1);

 CyU3PUsbFlushEp (0x00);
 CyU3PUsbFlushEp (0x80);

 /* Enable USB 3.0 control eps. */
 USB3PROT->prot_epi_cs1[0] |= CY_U3P_UIB_SSEPI_VALID;
 UIB->eepm_endpoint[0] = 0x200; /* Control EP transfer size is 512
bytes. */
 USB3PROT->prot_epo_cs1[0] |= CY_U3P_UIB_SSEPO_VALID;
 UIB->iepm_endpoint[0] = 0x200; /* Control EP transfer size is 512
bytes. */

 CyU3PUsbResetEp (0x00);
 CyU3PUsbFlushEp (0x00);
 CyU3PUsbResetEp (0x80);
 CyU3PUsbFlushEp (0x80);

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 99

 UIB->eepm_endpoint[0] = 0x200; /* Control EP transfer size is 512
bytes. */
 UIB->iepm_endpoint[0] = 0x200; /* Control EP transfer size is 512
bytes. */

 for (ep = 1; ep < 16; ep++)
 {
 /* Reset, flush and clear stall condition on all valid endpoints. */
 if (glPcktSizeIn[ep].valid == CyTrue)
 {
 CyU3PUsbFlushEp (ep | 0x80);
 CyU3PUsbStall (ep | 0x80, CyFalse, CyTrue);
 }
 if (glPcktSizeOut[ep].valid == CyTrue)
 {
 CyU3PUsbFlushEp (ep);
 CyU3PUsbStall (ep, CyFalse, CyTrue);
 }
 }

}

6.9.5 USB Connect

The following code example implements the USB connect handler to handle the USB connect event. This event is detected
by the LTSSM_CONNECT bit of the LNK_INTR link layer interrupt register.

void CyU3PUsbSSConnecthandler (void)
{
 uint32_t state;
 uint32_t glUsb3TxTrimVal = 0x0B569011;

 /* hardware specific setting for USB 3.0 Phy */
 USB3LNK->lnk_phy_tx_trim = glUsb3TxTrimVal;
 CyFx3UsbWritePhyReg (0x1006, 0x180);
 CyFx3UsbWritePhyReg (0x1024, 0x0080);

 /* If USB 2.0 PHY is enabled, switch it off and take out the USB 2.0 pullup. */
 if (UIB->otg_ctrl & CY_U3P_UIB_DEV_ENABLE)
 {
 state = USB3LNK->lnk_ltssm_state & CY_U3P_UIB_LTSSM_STATE_MASK;
 while ((UIB->otg_ctrl & CY_U3P_UIB_SSDEV_ENABLE)
 && (state == CY_U3P_UIB_LNK_STATE_POLLING_LFPS))
 {
 CyU3PThreadRelinquish ();
 state = USB3LNK->lnk_ltssm_state & CY_U3P_UIB_LTSSM_STATE_MASK;
 }

 if (state == CY_U3P_UIB_LNK_STATE_COMP)
 {
 if (!glUibDeviceInfo.ssCmdSeen)
 {
 CyU3PUsbAddToEventLog (CYU3P_USB_LOG_USBSS_DISCONNECT);
 CyU3PUsbSSDisConnecthandler ();
 }
 return;

100 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 }

 if ((UIB->otg_ctrl & CY_U3P_UIB_SSDEV_ENABLE) == 0)
 {
 return;
 }

 CyU3PDisconUsbPins ();
 UIB->otg_ctrl &= ~CY_U3P_UIB_DEV_ENABLE; /* Disable USB 2.0 PHY. */
 UIB->dev_ctl_intr = UIB->dev_ctl_intr;
 }

 /* Switch EPM clock to USB 3.0 mode. */
 CyU3PSetUsbCoreClock (1, 1);

 USB3LNK->lnk_phy_conf = 0xE0000001;

 glUibDeviceInfo.usbSpeed = CY_U3P_SUPER_SPEED; /* Remember connection speed. */
 UIB->otg_ctrl |= CY_U3P_UIB_SSEPM_ENABLE; /* Switch EPMs for USB-SS. */

 /* Reset the EPM mux. */
 UIB->iepm_cs |= (CY_U3P_UIB_EPM_FLUSH | CY_U3P_UIB_EPM_MUX_RESET);
 CyU3PBusyWait (1);
 UIB->iepm_cs &= ~(CY_U3P_UIB_EPM_FLUSH | CY_U3P_UIB_EPM_MUX_RESET);
 CyU3PBusyWait (1);

 /* Update the PHY to not send spurious LFPS. */
 CyFx3UsbWritePhyReg (0x0030, 0x00C0);
 CyFx3UsbWritePhyReg (0x1010, 0x0080);

 CyU3PUsbFlushEp (0x00);
 CyU3PUsbFlushEp (0x80);

 /* Enable USB 3.0 control eps. */
 USB3PROT->prot_epi_cs1[0] |= CY_U3P_UIB_SSEPI_VALID;
 UIB->eepm_endpoint[0] = 0x200; /* Control EP transfer size is 512
bytes. */
 USB3PROT->prot_epo_cs1[0] |= CY_U3P_UIB_SSEPO_VALID;
 UIB->iepm_endpoint[0] = 0x200; /* Control EP transfer size is 512
bytes. */

 CyU3PUsbResetEp (0x00);
 CyU3PUsbFlushEp (0x00);
 CyU3PUsbResetEp (0x80);
 CyU3PUsbFlushEp (0x80);

 UIB->eepm_endpoint[0] = 0x200; /* Control EP transfer size is 512
bytes. */
 UIB->iepm_endpoint[0] = 0x200; /* Control EP transfer size is 512
bytes. */

 /* Propagate the event to the application. */
 if (glUsbEvtCb != NULL)
 {
 glUsbEvtCb (CY_U3P_USB_EVENT_CONNECT, 0x01);
 }

 /* Configure the EPs for super-speed operation. */

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 101

 CyU3PUsbEpPrepare (CY_U3P_SUPER_SPEED);
}

6.9.6 USB Disconnect

The following code example implements the USB disconnect handler to handle the USB disconnect event. This event is
detected by the LTSSM_DISCONNECT bit of the LNK_INTR link layer interrupt register.

static void
CyU3PUsbSSDisConnecthandler (
 void)
{
 /* If we still have VBUS, try to connect in USB 2.0 mode. */
 if (CyU3PUsbCanConnect ())
 {
 if (UIB->otg_ctrl & CY_U3P_UIB_DEV_ENABLE)
 {
 /* If the 2.0 PHY is already on, simply turn off the USB 3.0 PHY. */
 UIB->otg_ctrl &= ~(CY_U3P_UIB_SSDEV_ENABLE | CY_U3P_UIB_SSEPM_ENABLE);
 CyU3PBusyWait (2);

 /* Need to disable interrupts while updating the MPLL. */
 UIB->intr_mask &= ~(CY_U3P_UIB_DEV_CTL_INT | CY_U3P_UIB_DEV_EP_INT |
CY_U3P_UIB_LNK_INT |
 CY_U3P_UIB_PROT_INT | CY_U3P_UIB_PROT_EP_INT | CY_U3P_UIB_EPM_URUN);
 CyU3PBusyWait (1);
 USB3LNK->lnk_phy_conf &= 0x1FFFFFFF;
 USB3LNK->lnk_phy_mpll_status = glUsbMpllDefault;
 CyU3PBusyWait (1);
 UIB->intr_mask |= (CY_U3P_UIB_DEV_CTL_INT | CY_U3P_UIB_DEV_EP_INT |
 CY_U3P_UIB_LNK_INT | CY_U3P_UIB_PROT_INT | CY_U3P_UIB_PROT_EP_INT |
 CY_U3P_UIB_EPM_URUN);

 CyU3PSetUsbCoreClock (2, 0);
 }
 else
 {
 glUibDeviceInfo.usbSpeed = CY_U3P_FULL_SPEED;
 CyU3PUsbPhyDisable (CyTrue);

 if (glUibDeviceInfo.usb2Disable)
 {
 glUibDeviceInfo.usbState = CY_U3P_USB_CONFIGURED;
 glUibDeviceInfo.usbSpeed = CY_U3P_NOT_CONNECTED;
 glUibDeviceInfo.isConnected = CyFalse;
 if (glUsbEvtCb != NULL)
 glUsbEvtCb (CY_U3P_USB_EVENT_USB3_LNKFAIL, 0);
 }
 else
 {
 CyU3PUsbPhyEnable (CyFalse);
 }
 }
 }
 else
 {
 /* If no VBUS, disconnect and turn off PHYs. */

102 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 CyU3PUibVbusChangeHandler ();
 }
}

6.9.7 Control Request

The following code example implements the USB control request handler to handle setup commands from the host. Note that
this function is implemented for both USB 3.0 and USB 2.0 functions.

For USB 3.0, the control request event is detected by the SUTOK_EV bit of the PROT_INTR protocol layer interrupt register.
When the control event occurs, setup data from the host is stored in the protocol layer registers PROT_SETUPDAT0 and
PROT_SETUPDAT1.

For USB 2.0, the control request event is detected by the SUDAV bit of the USB 2.0 device register DEV_CTL_INTR. When
the control even occurs, setup data from host is stored in the USB 2.0 device registers DEV_SETUPDAT0 and
DEV_SETUPDAT1.

Once the function obtains the setup data from the host, it parses the command class and type and executes the command
accordingly.

/* Parses the USB setup command received. */
static void
CyU3PUsbSetupCommand (
 void)
{
 uint32_t setupdat0;
 uint32_t setupdat1;
 uint32_t status = 0;
 CyBool_t isHandled = CyFalse;

 uint8_t bRequest, bReqType;
 uint8_t bType, bTarget;
 uint16_t wValue, wIndex, wLength;

 /* For super speed handling. */
 if (glUibDeviceInfo.usbSpeed == CY_U3P_SUPER_SPEED)
 {
 setupdat0 = USB3PROT->prot_setupdat0;
 setupdat1 = USB3PROT->prot_setupdat1;

 glUibDeviceInfo.ssCmdSeen = CyTrue;
 glUibStatusSendErdy = CyFalse;
 CyU3PTimerStop (&glUibStatusTimer);

 /* Clear the status stage interrupt. We later check for this. */
 USB3PROT->prot_intr = CY_U3P_UIB_STATUS_STAGE;

 /* If the LTSSM is currently in U1/U2, set an event to trigger a wakeup. */
 status = USB3LNK->lnk_ltssm_state & CY_U3P_UIB_LTSSM_STATE_MASK;
 if ((status == CY_U3P_UIB_LNK_STATE_U1) || (status == CY_U3P_UIB_LNK_STATE_U2))
 CyU3PEventSet (&glUibEvent, CY_U3P_UIB_EVT_TRY_UX_EXIT, CYU3P_EVENT_OR);
 status = 0;
 }
 else
 {
 /* If USB-SS is enabled, set a flag indicating that the 3.0 PHY should
 * be turned on at the next bus reset. */

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 103

 if ((glUibDeviceInfo.enableSS) && (glUibDeviceInfo.tDisabledCount < 3))
 {
 glUibDeviceInfo.enableUsb3 = CyTrue;
 }

 setupdat0 = UIB->dev_setupdat0;
 setupdat1 = UIB->dev_setupdat1;
 }

 status = CyU3PDmaChannelWaitForCompletion (&glUibChHandleOut, 100);
 if ((status != CY_U3P_SUCCESS) && (status != CY_U3P_ERROR_NOT_STARTED))
 {
 /* The endpoint needs to be NAKed before the channel is reset. */
 CyU3PUsbSetEpNak (0x00, CyTrue);
 CyU3PBusyWait (100);
 CyU3PDmaChannelReset (&glUibChHandleOut);
 CyU3PUsbSetEpNak (0x00, CyFalse);
 }

 status = CyU3PDmaChannelWaitForCompletion (&glUibChHandle, 100);
 if ((status != CY_U3P_SUCCESS) && (status != CY_U3P_ERROR_NOT_STARTED))
 {
 /* The endpoint needs to be NAKed before the channel is reset. */
 CyU3PUsbSetEpNak (0x80, CyTrue);
 CyU3PBusyWait (100);
 CyU3PDmaChannelReset (&glUibChHandle);
 CyU3PUsbFlushEp (0x80);
 CyU3PUsbSetEpNak (0x80, CyFalse);
 }
 status = 0;

 /* Decode the fields from the setup request. */
 bReqType = ((setupdat0 & CY_U3P_UIB_SETUP_REQUEST_TYPE_MASK) >>
CY_U3P_UIB_SETUP_REQUEST_TYPE_POS);
 bType = (bReqType & CY_U3P_USB_TYPE_MASK);
 bTarget = (bReqType & CY_U3P_USB_TARGET_MASK);
 bRequest = ((setupdat0 & CY_U3P_UIB_SETUP_REQUEST_MASK) >>
CY_U3P_UIB_SETUP_REQUEST_POS);
 wValue = ((setupdat0 & CY_U3P_UIB_SETUP_VALUE_MASK) >> CY_U3P_UIB_SETUP_VALUE_POS);
 wIndex = ((setupdat1 & CY_U3P_UIB_SETUP_INDEX_MASK) >> CY_U3P_UIB_SETUP_INDEX_POS);
 wLength = ((setupdat1 & CY_U3P_UIB_SETUP_LENGTH_MASK) >> CY_U3P_UIB_SETUP_LENGTH_POS);

 if((setupdat0 & CY_U3P_UIB_SETUP_REQUEST_TYPE_MASK) & 0x80)
 {
 UIB->dev_epi_xfer_cnt[0] = wLength;
 }
 else
 {
 UIB->dev_epo_xfer_cnt[0] = wLength;
 }

 /* Default setting: Don't send status event notifications. */
 glUibDeviceInfo.sendStatusEvent = CyFalse;

 /* Clear the inReset flag. */
 UIB->dev_ctl_intr_mask &= ~CY_U3P_UIB_URESET;
 glUibDeviceInfo.inReset = 0;
 glUibDeviceInfo.newCtrlRqt = CyFalse;

104 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 UIB->dev_ctl_intr_mask |= CY_U3P_UIB_URESET;

 /* Forward handling to the callback function iff it is not fast enumeration,
 or if it is not a standard request.
 */
 if ((glUibDeviceInfo.enumMethod == CY_U3P_USBENUM_PPORT) || (bType !=
CY_U3P_USB_STANDARD_RQT))
 {
 if ((bType == CY_U3P_USB_STANDARD_RQT) && (bRequest ==
CY_U3P_USB_SC_SET_CONFIGURATION))
 {
 if (wValue == 1)
 {
 /* Make sure that all EPs are cleared from stall condition and sequence num-
bers are cleared
 at this stage. */
 CyU3PUsbEpPrepare ((CyU3PUSBSpeed_t)glUibDeviceInfo.usbSpeed);
 glUibDeviceInfo.usbState = CY_U3P_USB_ESTABLISHED;
 glUibDeviceInfo.usbActiveConfig = (uint8_t)wValue;
 glUibDeviceInfo.usbDeviceStat &= CY_U3P_USB_DEVSTAT_SELFPOWER;
 }
 else
 {
 glUibDeviceInfo.usbState = CY_U3P_USB_CONNECTED;
 }
 }

 if (glUsbSetupCb != NULL)
 {
 isHandled = glUsbSetupCb (setupdat0, setupdat1);
 }

 if (isHandled == CyTrue)
 {
 /* If the request is already handled, then return from this function. */
 glUibDeviceInfo.sendStatusEvent = CyTrue;
 return;
 }
 }

 /* Handle the standard requests iff: fast enumeration or if the callback
 * failed to handle the request. */
 if (bType == CY_U3P_USB_STANDARD_RQT)
 {
 /* Identify and handle setup request. */
 switch (bRequest)
 {
 case CY_U3P_USB_SC_GET_STATUS:
 {
 /* Let the setup callback handle GET_STATUS requests addressed to the inter-
face. */
 if (bTarget == CY_U3P_USB_TARGET_INTF)
 {
 if (glUsbSetupCb)
 {
 isHandled = glUsbSetupCb (setupdat0, setupdat1);
 if (isHandled)
 break;

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 105

 }

 /* If the callback did not handle the request, fall back to the default
handler. */
 }

 isHandled = CyU3PUsbHandleGetStatus (bTarget, wIndex);
 }
 break;

 case CY_U3P_USB_SC_CLEAR_FEATURE:
 {
 /* Handle device level feature requests implicitly. */
 if (bTarget == CY_U3P_USB_TARGET_DEVICE)
 {
 CyU3PUsbHandleClearFeature ((uint8_t)wValue);
 return;
 }

 isHandled = CyFalse;

 /* Clear feature request is forwarded to the application regardless of the
enumeration mode.
 If the application returns false, then the request is handled here. */
 if ((glUibDeviceInfo.enumMethod == CY_U3P_USBENUM_WB) && (glUsbSetupCb !=
NULL))
 {
 isHandled = glUsbSetupCb (setupdat0, setupdat1);
 if (isHandled)
 glUibDeviceInfo.sendStatusEvent = CyTrue;
 }

 /* If the application has not handled this request and this is a clear feature
(EP HALT),
 handle it here. */
 if ((!isHandled) && (bTarget == CY_U3P_USB_TARGET_ENDPT) && (wValue ==
CY_U3P_USBX_FS_EP_HALT))
 {
 if (CyU3PUsbStall (wIndex, CyFalse, CyTrue) == CY_U3P_SUCCESS)
 {
 /* Reset the endpoint as well */
 CyU3PUsbResetEp (wIndex);
 CyU3PUsbAckSetup ();
 isHandled = CyTrue;
 break;
 }
 }
 }
 break;

 case CY_U3P_USB_SC_SET_FEATURE:
 {
 /* Handle all Device specific SET Feature commands automatically. */
 if (bTarget == CY_U3P_USB_TARGET_DEVICE)
 {
 /* All device level SET_FEATURE requests except for OTG requests are han-
dled in firmware. */

106 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 if ((wValue != CY_U3P_USB2_OTG_B_HNP_ENABLE) && (wValue !=
CY_U3P_USB2_OTG_A_HNP_SUPPORT))
 {
 CyU3PUsbHandleSetFeature ((uint8_t)wValue);
 return;
 }
 else
 {
 /* Send the request to the application. */
 if ((glUibDeviceInfo.enumMethod == CY_U3P_USBENUM_WB) && (glUsbSetupCb
!= NULL))
 {
 isHandled = glUsbSetupCb (setupdat0, setupdat1);
 if (isHandled)
 {
 glUibDeviceInfo.sendStatusEvent = CyTrue;
 return;
 }
 }
 }
 break;
 }

 isHandled = CyFalse;

 /* Set feature requests are forwarded to the application regardless of the
enumeration mode.
 If the application returns false, then the request is handled here. */
 if ((glUibDeviceInfo.enumMethod == CY_U3P_USBENUM_WB) && (glUsbSetupCb !=
NULL))
 {
 isHandled = glUsbSetupCb (setupdat0, setupdat1);
 if (isHandled)
 glUibDeviceInfo.sendStatusEvent = CyTrue;
 }

 /* If the application has not handled this request and this is a set feature
(EP HALT),
 handle it here. */
 if ((!isHandled) && (bTarget == CY_U3P_USB_TARGET_ENDPT) && (wValue ==
CY_U3P_USBX_FS_EP_HALT))
 {
 if ((CyU3PUsbStall (wIndex, CyTrue, CyFalse)) == CY_U3P_SUCCESS)
 {
 CyU3PUsbAckSetup ();
 isHandled = CyTrue;
 }
 }
 }
 break;

 case CY_U3P_USB_SC_GET_DESCRIPTOR:
 {
 isHandled = CyU3PUibSendDescr (setupdat0, setupdat1);
 }
 break;

 case CY_U3P_USB_SC_GET_CONFIGURATION:

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 107

 {
 isHandled = CyTrue;
 status = CyU3PUsbSendEP0Data (1, (uint8_t *)&glUibDeviceInfo.usbActiveCon-
fig);
 }
 break;

 case CY_U3P_USB_SC_SET_CONFIGURATION:
 {
 {
 isHandled = CyTrue;

 switch (wValue)
 {
 case 1:
 /* Make sure that all EPs are cleared from stall condition and sequence
numbers are cleared
 at this stage. */
 CyU3PUsbEpPrepare ((CyU3PUSBSpeed_t)glUibDeviceInfo.usbSpeed);

 case 0:
 glUibDeviceInfo.usbState = (wValue == 0) ? CY_U3P_USB_CONNECTED
: CY_U3P_USB_ESTABLISHED;
 glUibDeviceInfo.usbActiveConfig = (uint8_t)wValue;
 glUibDeviceInfo.usbDeviceStat &= CY_U3P_USB_DEVSTAT_SELFPOWER;

 if (glUsbEvtCb != NULL)
 {
 glUsbEvtCb (CY_U3P_USB_EVENT_SETCONF, wValue);
 }

 CyU3PUsbAckSetup ();
 break;

 default:
 status = CY_U3P_ERROR_BAD_ARGUMENT;
 break;
 }
 }
 }
 break;

 case CY_U3P_USB_SC_GET_INTERFACE:
 {
 if (glUsbSetupCb)
 {
 isHandled = glUsbSetupCb (setupdat0, setupdat1);
 if (isHandled)
 break;
 }

 isHandled = CyTrue;
 status = CyU3PUsbSendEP0Data (1, (uint8_t *)&glUibDeviceInfo.usbAltSet-
ting);
 }
 break;

 case CY_U3P_USB_SC_SET_INTERFACE:

108 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 {
 /* First send the command to the Setup callback. Accept the request if not
handled by the callback. */
 if (glUsbSetupCb)
 {
 isHandled = glUsbSetupCb (setupdat0, setupdat1);
 if (isHandled)
 break;
 }

 glUibDeviceInfo.usbAltSetting = wValue;

 if (glUsbEvtCb != NULL)
 {
 glUsbEvtCb (CY_U3P_USB_EVENT_SETINTF, CY_U3P_MAKEWORD ((uint8_t)wIndex,
(uint8_t)wValue));
 }

 isHandled = CyTrue;
 CyU3PUsbAckSetup ();
 }
 break;

 case CY_U3P_USB_SC_SYNC_FRAME:
 {
 isHandled = CyTrue;
 CyU3PUsbAckSetup ();
 }
 break;

 case CY_U3P_USB_SC_SET_SEL:
 {
 if ((CyU3PUsbGetSpeed () == CY_U3P_SUPER_SPEED) && (wValue == 0) && (wIndex
== 0) && (wLength == 6))
 {
 isHandled = CyTrue;
 status = CyU3PUsbGetEP0Data (32, glUibSelBuffer, 0);
 if ((glUsbEvtCb != NULL) && (status == CY_U3P_SUCCESS))
 {
 glUsbEvtCb (CY_U3P_USB_EVENT_SET_SEL, 0x00);
 }
 }
 else
 {
 isHandled = CyFalse;
 }
 }
 break;

 case CY_U3P_USB_SC_SET_ISOC_DELAY:
 {
 if ((CyU3PUsbGetSpeed () == CY_U3P_SUPER_SPEED) && (wIndex == 0) && (wLength
== 0))
 {
 isHandled = CyTrue;
 CyU3PUsbAckSetup ();
 }
 }

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 109

 break;

 default:
 break;
 }
 }

 /* If there has been an error, stall EP0 to fail the transaction. */
 if ((isHandled != CyTrue) || (status != CY_U3P_SUCCESS))
 {
 /* This is an unhandled setup command. Stall the EP. */
 CyU3PUsbStall (0, CyTrue, CyFalse);
 }
}

6.9.8 USB Embedded Host

The FX3 embedded host works in the same way as a standard USB 2.0 host. The FX3 firmware prepares a scheduler table
with USB transfer entries that are similar to the Transfer Descriptor (TD) tables maintained by PC hosts. The actual transfer
scheduling is done by hardware to eliminate the overheads caused by the firmware managed scheduling.

6.9.8.1 Clocking

There are five independent clock domains in the UIB block supporting the USB 2.0 host functions, as listed in Table 6-4.

Table 6-4. USB 2.0 Embedded Host Clocks

In addition, the endpoint memory uses a clock, uib_epm_clk_i, that is 100 MHz when the USB 2.0 host is active. The
uib_epm_clk_i configuration source is from GCTL_UIB_CORE_CLK.EPMCLK_SRC and enabled by
GCTL_UIB_CORE_CLK.CLK_EN.

6.9.9 Interrupt Requests

The USB 2.0 host interrupts are part of the main USB core interrupt.

USB 2.0 OHCI interrupts are located in UIB_OHCI_INTERRUPT_STATUS. UIB_INTR.HOST_INT is the logical OR of the
interrupt sources in UIB_OHCI_INTERRUPT_STATUS.

USB 2.0 EHCI interrupts are located in UIB_EHCI_USBINTR. UIB_INTR.HOST_INT is the logical OR of the interrupt sources
in UIB_EHCI_USBINTR.

USB 2.0 host endpoint interrupts are located in UIB_HOST_EP_INTR. UIB_INTR.HOST_EP_INT is the logical OR of the
interrupt sources in UIB_HOST_EP_INTR.

USB charger detect interrupts are located in UIB_CHGDET_INTR. UIB_INTR.CHGDET_INT is the logical OR of the interrupt
sources in UIB_CHGDET_INTR.

Domain Typ Freq Configuration Source Description

dma_bus_clk_i 100 MHz GCTL_CPU_CLK_CFG.DMA_DIV DMA access clock

mmio_bus_clk_i 100 MHz GCTL_CPU_CLK_CFG.MMIO_DIV MMIO register access clock

uib_sieclock_i 30 MHz Driven from USB 2.0 OTG PHY USB 2.0 serial interface engine clock

standby_clk_i 32 kHz Always-on Always-on clock for low-power modes

uib_ref_clk_i 19.2/26/38.4/52 MHz External input clock USB2.0 PHY reference clock

110 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

6.9.10 Functional Description

6.9.10.1 Embedded Host

The FX3 USB 2.0 embedded host operates like an EHCI host when in high-speed mode and like an OHCI host when in low-
or full-speed mode, but the implementation does not follow the fields of the data structures specified in the EHCI/OHCI spec.

At the lowest level, incoming and outgoing data are managed by the DMA block. All USB transfer types, namely control, bulk,
isochronous and interrupt; are handled in a similar way by the DMA block. Refer to the FX3 DMA Subsystem chapter on
page 61 to learn how the DMA descriptor and socket data structures are organized and used.

As a USB host, data traffic is initiated by configuring the appropriate entries in the scheduler memory areas inside the USB
2.0 host controller. The USB 2.0 host controller hardware scans the scheduler memory for valid entries that contain the active
endpoint configurations and schedules data on the bus accordingly.

6.9.10.2 Scheduler Memory

Figure 6-3 shows the bit field of a scheduler entry data structure positioned in the scheduler memory. Definitions of the bit
fields are provided in the register definition section. Each scheduler entry requires three 32-bit words, 12 bytes of memory.
There are 32 entries for EP, which sums the total available memory of 384 bytes.

Figure 6-3. Scheduler Memory Entry

6.9.10.2.1 Scheduler Memory Organization

A host controller driver has the option to add or remove entries in the list. Two copies of the scheduler memory table are
provided so that firmware can first update the table and then make it active.

Active scheduler entries in the scheduler memory form the execution list for the host controller hardware. The execution list is
broken into the periodic list which services periodic (isochronous and interrupt) endpoints and the asynchronous list which
services bulk and control endpoints.

Each scheduler memory area contains a periodic list and an asynchronous/non-periodic list. Figure 6-4 shows how the list is
organized in high-speed mode, and low- or full-speed mode. The periodic list pointer points to the first entry in the periodic list.
It always starts from the lowest address of each scheduler memory.

Memory bits Addr

31:24 23 22:19 18:17 16 15:14 13:10 9 8 7 6:5 4:0
I

S_mask PING RL MULT
ISO_EP
M

CERR NakCnt Halt T
ZLPE
N

EPT EPND

31:30 29 28:27 26:19 18:11 10:0
I+1

EP0_code
Bypass_e
rr

MMULT Resp_rate Polling_rate Max_Packet_size

31:25 24:17 16 15:0 I+2

Reserved ioc_rate trns_mode Total Byte Count

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 111

Figure 6-4. Scheduler Memory Entry List Data Structure Organization

The asynchronous/non-periodic list pointer points to the location of the first entry in the asynchronous/non-periodic list. It is
programmed via HOST_SHDL_CS.BULK_CNTRL_PTR0 and HOST_SHDL_CS.BULK_CNTRL_PTR1 for the two areas of
scheduler memory respectively.

When the firmware needs to update to the current execution list, it first finds the active area on which the host is currently
running by reading HOST_SHDL_CS.PERI_SHDL_STATUS or HOST_SHDL_CS.ASYNC_SHDL_STATUS, updates the list
in the nonactive area, and then issues a schedule change operation by writing a '1' to HOST_SHDL_CS.PERI_SHDL_CHNG
or HOST_SHDL_CS.ASYNC_SHDL_CHNG.

The FX3 USB embedded host registers can be accessed directly from the UIB top-level register interface. Following is a list of
these registers.

/* FX3 USB 2.0 Embedded Host Register Interface */
/* These definitions extracted from the Top Level UIB register interface */

/* Common host registers */
 uvint32_t host_cs; /* 0xe0032000 */
 uvint32_t host_ep_intr; /* 0xe0032004 */
 uvint32_t host_ep_intr_mask; /* 0xe0032008 */
 uvint32_t host_toggle; /* 0xe003200c */
 uvint32_t host_shdl_cs; /* 0xe0032010 */
 uvint32_t host_shdl_sleep; /* 0xe0032014 */
 uvint32_t host_resp_base; /* 0xe0032018 */
 uvint32_t host_resp_cs; /* 0xe003201c */
 uvint32_t host_active_ep; /* 0xe0032020 */

/* OHCI registers */
 uvint32_t ohci_revision; /* 0xe0032024 */
 uvint32_t ohci_control; /* 0xe0032028 */
 uvint32_t ohci_command_status; /* 0xe003202c */
 uvint32_t ohci_interrupt_status; /* 0xe0032030 */
 uvint32_t ohci_interrupt_enable; /* 0xe0032034 */
 uvint32_t ohci_interrupt_disable; /* 0xe0032038 */
 uvint32_t ohci_fm_interval; /* 0xe003203c */
 uvint32_t ohci_fm_remaining; /* 0xe0032040 */
 uvint32_t ohci_fm_number; /* 0xe0032044 */
 uvint32_t ohci_periodic_start; /* 0xe0032048 */
 uvint32_t ohci_ls_threshold; /* 0xe003204c */

112 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 uvint32_t ohci_rh_port_status; /* 0xe0032054 */
 uvint32_t ohci_eof; /* 0xe0032058 */

/* EHCI registers */
 uvint32_t ehci_hccparams; /* 0xe003205c */
 uvint32_t ehci_usbcmd; /* 0xe0032060 */
 uvint32_t ehci_usbsts; /* 0xe0032064 */
 uvint32_t ehci_usbintr; /* 0xe0032068 */
 uvint32_t ehci_frindex; /* 0xe003206c */
 uvint32_t ehci_configflag; /* 0xe0032070 */
 uvint32_t ehci_portsc; /* 0xe0032074 */
 uvint32_t ehci_eof; /* 0xe0032078 */
 uvint32_t shdl_chng_type; /* 0xe003207c */
 uvint32_t shdl_state_machine; /* 0xe0032080 */
 uvint32_t shdl_internal_status; /* 0xe0032084 */

/* OHCI scheduler entry */
 struct
 {
 uvint32_t shdl_ohci0; /* 0xe0032400 */
 uvint32_t shdl_ohci1; /* 0xe0032404 */
 uvint32_t shdl_ohci2; /* 0xe0032408 */
 } ohci_shdl[64];

/* EHCI scheduler entry */
 struct
 {
 uvint32_t shdl_ehci0; /* 0xe0032800 */
 uvint32_t shdl_ehci1; /* 0xe0032804 */
 uvint32_t shdl_ehci2; /* 0xe0032808 */
 } ehci_shdl[64];

6.9.11 Embedded Host Programming Model

6.9.11.1 Host Connect

These steps are followed when FX3 detects the attachment of a device.

1. The firmware enables the USB bus power through the external power management IC (PMIC) controller.

2. The device connect is detected by the host TP, which signals the EHCI interface.
UIB_HOST_EHCI_PORTSC:PORT_CONNECT is set, which sets the UIB_HOST_EHCI_PORTSC:PORT_CONNECT_C
field and the UIB_HOST_EHCI_USBSTS:PORT_CHNG_DET field and generates an interrupt request.

3. The firmware receives the interrupt, clears the interrupt, and checks whether a low-speed device has connected. If so,
then the device is accessed through the OHCI register interface.

4. As high and full speed devices can only be distinguished after the port reset and chirp sequence is completed, the initial
detect sequence for both are performed by the EHCI controller. This is started by issuing a USB bus reset by setting the
UIB_HOST_EHCI_PORTSC:PORT_RESET bit. This bit should be cleared after 20 ms.

5. After 2 ms, the firmware checks the UIB_HOST_EHCI_PORTSC:PORT_ENABLE bit to see whether or not the port is
enabled. If so, then the device is high speed and the EHCI interface is used. If not, then the device is full speed.

6. If a Full Speed device is detected,, the OHCI Interface is enabled by setting the UIB_HOST_EHCI_PORTSC:POR-
TOWNER bit to 1. At this point, the connect signal to the EHCI interface is cleared, and the EHCI interface sees a discon-
nect and generates another interrupt request.

6.9.11.2 Host Disconnect

These steps are followed when the device is disconnected from the host:

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 113

1. The device disconnect is detected by the host TP, which signals the EHCI interface. The
UIB_HOST_EHCI_PORTSC:PORT_CONNECT_C field (and through that the
UIB_HOST_EHCI_USBSTS:PORT_CHNG_DET field) generates an interrupt request.

2. At the same time, the UIB_HOST_EHCI_PORTSC:PORTOWNER field is cleared, transferring port ownership to the EHCI
interface.

3. After disconnect, the EHCI interface resumes its role as the default port owner.

6.9.11.3 Managing Transfers

The USB 2.0 host hardware scheduler reads elements from the scheduler memory and based on its fields along with the EPM
status, it decides to schedule the element for SIE. The result of the executed transaction is recorded in the status fields. The
status of all the transactions for that scheduler entry are recorded as "sticky" in the status field until the scheduler entry is
complete.

Every entry in the scheduler memory represents one queue head (QH) in EHCI terminology or endpoint descriptor (ED) in
OHCI terminology. From this point on, this document calls it "QH" for convenience. In the fetch QH, one entry of the scheduler
memory is read. If that entry cannot be scheduled for the SIE due to halt bit set or entry not active, then the scheduler skips
and next QH. The software updates the active bit in the scheduler memory only during the scheduler memory update. The
active bit is set to zero when the host controller successfully executes the total_byte_cnt of transactions. The USB 2.0 host
controller reports the active/nonactive condition through the status bits. The bus scheduler does not execute a QH when its
active bit is zero.

The status of the USB transactions is written directly into system memory based on the response rate written in scheduler
memory per endpoint. The base address where scheduler responses are written is programmed via
HOST_RESP_BASE.BASE_ADDRESS. The response condition is programmed via the HOST_RESP_CS register. The
response rate indicates after how many either successful transactions or not NAKed transactions the status should be written
into system memory for the software to process. The firmware can use the UIB_HOST_RESP_CS.WR_RESP_COND
register bit to decide on the successful or not NAKed transactions. Table 6-5 provides a description of the status.

Table 6-5. USB 2.0 Host Response

6.9.11.3.1 Control Transfer Specific

An EP0 control transfer falls into three categories:

Setup transaction: N number of OUT data transactions followed by 1 IN token (ZLP)

Setup transaction: N number of IN data transactions followed by 1 OUT token (ZLP)

Setup transaction: 1 IN token (ZLP)

Bit Name Description

3:0 EP_NUM Endpoint number

4 Direction 0: IN 1: Out

5 Active 0: EP got deactivated. 1: EP is still active.

6 Halt 1: EP is not halted. 2: EP is halted.

7 Overrun/ Underrun 0: No overrun/underrun condition 1: There was an overrun/underrun when accessing the EPM.

8 Babble 0: No babble is detected. 1: Babble was detected.

9 XactErr

PhyErr or CRC16 error, or device times out, or PID error or IN-ISO XactError IN-ISO XactErr:

The first transaction for the IN ISO has a data toggle equal, or

More than the MULT field is specified in the scheduler memory, or

There is a data toggle mismatch in the transaction excluding the first transaction, or

A short IN-ISO with a data toggle greater than one was received.

10 Ping 0: No ping token has been issued. 1: Ping token has been issued when enabled.

15:11 - Reserved

31:16 Byte Count Total byte count left

114 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Every EP0 transaction consists of at least two transactions, but the asynchronous list in the scheduler memory has only one
entry for every endpoint. One mechanism to initiate multiple transactions by the USB2.0 host controller is to setup EP0_code
through the scheduler memory entry.

The ep0_code is defined as:

00: Reserved

01: Setup Phase + Data Phase(OUT) + Status Phase(IN)

10: Setup Phase + Data Phase(IN) + Status Phase(OUT)

11: Setup Phase + Status Phase(IN)

6.9.11.3.1.1 Setup Phase

This EP0 category starts once the scheduler encounters the EP0 in the scheduler memory list for the first time, and the
ep0_code is "01". It loads its total byte counter from the schedule memory entry. This category indicates that after the SETUP
gets ACKed, the next scheduled EP0 is an OUT transaction. The scheduler informs the TP to issue a SETUP token. If the
SETUP token is successful, then the next time the scheduler encounters the EP0 in the list, it will inform the TP for an EP0-
OUT transaction. If the SETUP token is not successful, then the EP0 transaction is terminated and it will retry it the next time
it encounters the EP0 in the scheduler memory, as long as the EP0 is still active and not halted.

6.9.11.3.1.2 Data Phase(OUT)

The EP0 OUT transaction starts once the scheduler encounters the EP0 in the list, and EP0 state is the OUT state. The
internal total byte counter is decremented by the actual OUT DATA size sent to device. Once the byte counter reaches zero
and if the ZLPEN is "0" in the scheduler memory, the then next time the scheduler will request the TP to issue an EP0 IN to
the device.

If the ZLPEN is "1", then the next time the scheduler will request the TP to issue an EP0 OUT zero-length packet (ZLP) to the
device. After that, the scheduler will request the TP to issue an EP0 IN to the device.

6.9.11.3.1.3 Status Phase (IN)

Once a valid EP0 IN ZLP has been received, the scheduler deactivates the EP0 entry if the trns_mode of the scheduler entry
is "0".

6.9.11.3.1.4 Setup Phase

This EP0 category starts once the scheduler encounters the EP0 in the scheduler memory list for the first time, and the
ep0_code is "10". It loads its total byte counter from the schedule memory entry. This category indicates that after the SETUP
gets ACKed, the next scheduled EP0 is an IN transaction. The scheduler informs the TP to issue a SETUP token. If the
SETUP token is successful, then the next time the scheduler encounters the EP0 in the list, it will inform the TP for an EP0 IN
transaction. If the SETUP token is not successful, then the EP0 transaction is terminated and it will retry it the next time it
encounters the EP0 in the scheduler memory, as long as the EP0 is still active and not halted.

6.9.11.3.1.5 Data Phase (IN)

The EP0 IN transaction starts once the scheduler encounters the EP0 in the list, and the EP0 state is IN state. Processing an
IN EP0 is the same as processing any other IN EP. The internal total byte counter is decremented by the actual IN DATA size
received from device. Once the byte counter reaches or a short packet is received, and the ZLPEN is "0" in the scheduler
memory, then next time the scheduler will request the TP to issue an EP0 OUT ZLP to the device. If the ZLPEN is "1", then
the next time the scheduler will request the TP to issue another EP0 IN to the device, which should be a ZLP. After that, the
scheduler will request the TP to issue an EP0 OUT ZLP to the device.

6.9.11.3.1.6 Status Phase (OUT)

Once an EP0 OUT ZLP has been successfully received by the device, the scheduler deactivates the EP0 entry if the
trns_mode of the scheduler entry is "0".

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 115

6.9.11.3.1.7 Setup Phase

This EP0 category starts once the scheduler encounters the EP0 in the scheduler memory list for the first time, and the
ep0_code is "11". This category indicates that after the SETUP gets ACKed, the next scheduled EP0 is an IN transaction. The
scheduler informs the TP to issue a SETUP token. If the SETUP token is successful, then the next time the scheduler
encounters the EP0 in the list, it will inform the TP for an EP0-IN transaction. If the SETUP token is not successful, then the
EP0 transaction is terminated and it will retry it the next time it encounters the EP0 in the scheduler memory, as long as the
EP0 is still active and not halted.

6.9.11.3.1.8 Status Phase (IN)

Once a valid EP0 IN ZLP has been received, the scheduler deactivates the EP0 entry if the trns_mode of the scheduler entry
is "0".

6.10 USB OTG Controller

The FX3 USB OTG controller implements the hardware interface between the processor and the USB PHY to allow the
firmware to implement the OTG features. The OTG function requires the firmware implementation to handle the protocol. The
controller hardware generates interrupts on the events, and the firmware handles the event and responds to it as needed.

The FX3 USB OTG controller is compatible with USB OTG 2.0 specifications.

USB OTG defines two protocols: SRP and HNP. SRP is a method for a peripheral to request that the host enable the VBus
bus power. Some hosts may wish to disable the VBus bus power to conserve system power, and this protocol allows
peripherals to connect to the host under such conditions.

The HNP protocol is a method of allowing a peripheral and host to switch roles, with the peripheral serving as the host and the
host receiving commands from the peripheral. For hosts and peripherals, it is necessary to have the D- pull-down resistor
enabled at all times. When a device is acting as a host, it must also enable the D+ pull-down resistor.

6.10.1 Interrupt Requests

USB OTG interrupts are located in UIB_OTG_INTR. UIB_INTR.OTG_INT is the logical OR of the interrupt sources in
UIB_OTG_INTR.

6.10.2 USB OTG Programming Model

FX3 USB OTG controller registers can be accessed directly from the UIB top-level register interface. Following is the list of
these registers.

/* FX3 USB OTG Register Interface */
/* These definitions extracted from the Top Level UIB register interface */

 uvint32_t otg_ctrl; /* 0xe003180c */
 uvint32_t otg_intr; /* 0xe0031810 */
 uvint32_t otg_intr_mask; /* 0xe0031814 */
 uvint32_t otg_timer; /* 0xe0031818 */

6.10.2.1 USB OTG Start and Stop

The FX3 OTG controller needs to be initialized before it can handle OTG events. The following code example implements the
OTG controller start and stop sequence.

CyU3PReturnStatus_t
CyU3POtgStart (
 CyU3POtgConfig_t *cfg)
{

116 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 /* Verify that the part in use supports the USB OTG functionality. */
 if (!CyFx3DevIsOtgSupported ())
 return CY_U3P_ERROR_NOT_SUPPORTED;

 if (glIsOtgEnable)
 {
 return CY_U3P_ERROR_ALREADY_STARTED;
 }

 /* This call is not allowed if the device mode is already active. */
 if ((CyU3PUsbIsStarted ()) || (glSdk_UsbIsOn))
 {
 return CY_U3P_ERROR_INVALID_SEQUENCE;
 }

 /* Check for parameter validity. */
 if (cfg == NULL)
 {
 return CY_U3P_ERROR_NULL_POINTER;
 }
 if (cfg->otgMode >= CY_U3P_OTG_NUM_MODES)
 {
 return CY_U3P_ERROR_BAD_ARGUMENT;
 }
 if ((cfg->cb == NULL) && (cfg->otgMode != CY_U3P_OTG_MODE_CARKIT_PPORT) &&
 (cfg->otgMode != CY_U3P_OTG_MODE_CARKIT_UART))
 {
 return CY_U3P_ERROR_NULL_POINTER;
 }
 if (cfg->chargerMode >= CY_U3P_OTG_CHARGER_DETECT_NUM_MODES)
 {
 return CY_U3P_ERROR_BAD_ARGUMENT;
 }

 /* Register the handlers for OTG interrupt events. */
 CyU3PUsbSetOTGIntHandler (CyU3PUsbOtgIntHandler);
 CyU3PUsbSetChgDetIntHandler (CyU3PUsbChgdetIntHandler);

 /* Reset the connected peripheral to invalid entry. */
 glPeripheralType = CY_U3P_OTG_TYPE_DISABLED;
 /* Reset the state machine variables. */
 glIsHnpEnable = CyFalse;

 if (cfg->otgMode == CY_U3P_OTG_MODE_OTG)
 {
 /* Enable the USB PHY connections. */
 GCTLAON->control &= ~CY_U3P_GCTL_ANALOG_SWITCH;

 /* Enable and set the EPM clock to bus clock (100MHz). */
 GCTL->uib_core_clk = (CY_U3P_GCTL_UIBCLK_CLK_EN | CY_U3P_GCTL_UIB_CORE_CLK_DEFAULT);
 GCTLAON->control |= CY_U3P_GCTL_USB_POWER_EN;
 CyU3PBusyWait (100);

 CyU3PUsbPowerOn ();

 /* Enable OTG and charger detection interrupts. */
 UIB->otg_intr = ~CY_U3P_UIB_OTG_INTR_DEFAULT;
 UIB->otg_intr_mask = CY_U3P_UIB_OTG_TIMER_TIMEOUT;

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 117

 UIB->chgdet_intr = ~CY_U3P_UIB_CHGDET_INTR_DEFAULT;
 UIB->chgdet_intr_mask = CY_U3P_UIB_OTG_ID_CHANGE;

 /* Enable OTG mode and charger detection. */
 UIB->otg_ctrl = (CY_U3P_UIB_OTG_ENABLE);

 /* Enable ID pin detection. */
UIB->chgdet_ctrl = CY_U3P_UIB_ACA_ENABLE;

 /* Enable the UIB interrupts. */
 UIB->intr = ~CY_U3P_UIB_INTR_DEFAULT;
 UIB->intr_mask = (CY_U3P_UIB_OTG_INT | CY_U3P_UIB_CHGDET_INT);
 CyU3PVicEnableInt (CY_U3P_VIC_UIB_CORE_VECTOR);

 /* Enable the VBUS interrupts. */
 GCTL->iopwr_intr = ~CY_U3P_GCTL_IOPWR_INTR_DEFAULT;
 GCTL->iopwr_intr_mask = CY_U3P_VBUS;
 glUibDeviceInfo.vbusDetectMode = CY_U3P_VBUS;
 CyU3PVicEnableInt (CY_U3P_VIC_GCTL_PWR_VECTOR);
 }
 else if (cfg->otgMode == CY_U3P_OTG_MODE_CARKIT_PPORT)
 {
 /* Enable the USB PHY connections. */
 GCTLAON->control &= ~CY_U3P_GCTL_ANALOG_SWITCH;

 /* Enable and set the EPM clock to bus clock (100MHz). */
 GCTL->uib_core_clk = (CY_U3P_GCTL_UIBCLK_CLK_EN | CY_U3P_GCTL_UIB_CORE_CLK_DEFAULT);
 GCTLAON->control |= CY_U3P_GCTL_USB_POWER_EN;
 CyU3PBusyWait (100);

 CyU3PUsbPowerOn ();

 UIB->otg_ctrl = CY_U3P_UIB_OTG_CTRL_DEFAULT;
 GCTL->iomatrix |= CY_U3P_CARKIT;
 UIB->chgdet_ctrl = CY_U3P_UIB_CARKIT;
 }
 else if (cfg->otgMode == CY_U3P_OTG_MODE_CARKIT_UART)
 {
 /* Verify if the configuration is possible. */
 if ((CyFx3DevIOIsSib8BitWide (1)) || (CyFx3DevIOIsUartConfigured ()))
 {
 return CY_U3P_ERROR_BAD_ARGUMENT;
 }

 /* Enable the USB PHY connections. */
 GCTLAON->control &= ~CY_U3P_GCTL_ANALOG_SWITCH;

 /* Enable and set the EPM clock to bus clock (100MHz). */
 GCTL->uib_core_clk = (CY_U3P_GCTL_UIBCLK_CLK_EN | CY_U3P_GCTL_UIB_CORE_CLK_DEFAULT);
 GCTLAON->control |= CY_U3P_GCTL_USB_POWER_EN;
 CyU3PBusyWait (100);

 CyU3PUsbPowerOn ();

 UIB->otg_ctrl = CY_U3P_UIB_OTG_CTRL_DEFAULT;
 GCTL->iomatrix &= ~CY_U3P_CARKIT;
 UIB->chgdet_ctrl = CY_U3P_UIB_CARKIT;
 }

118 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 else
 {
 /* Do nothing. */
 }

 /* Save the current OTG configuration. */
 glOtgInfo = *cfg;
 glIsOtgEnable = CyTrue;

 return CY_U3P_SUCCESS;
}

CyU3PReturnStatus_t
CyU3POtgStop (void)
{
 if (!glIsOtgEnable)
 {
 return CY_U3P_ERROR_NOT_STARTED;
 }

 /* Do not disable the block if any of the modes are running. */
 if ((CyU3PUsbIsStarted ()) || (CyU3PUsbHostIsStarted ()))
 {
 return CY_U3P_ERROR_INVALID_SEQUENCE;
 }

 /* Disable all interrupts. */
 UIB->intr_mask = 0;
 CyU3PVicDisableInt (CY_U3P_VIC_UIB_CORE_VECTOR);
 CyU3PVicDisableInt (CY_U3P_VIC_UIB_DMA_VECTOR);

 /* Reset all state machine variables to default. */
 glOtgInfo.otgMode = CY_U3P_OTG_MODE_DEVICE_ONLY;
 glOtgInfo.chargerMode = CY_U3P_OTG_CHARGER_DETECT_ACA_MODE;
 glOtgInfo.cb = NULL;
 glPeripheralType = CY_U3P_OTG_TYPE_DISABLED;
 glIsHnpEnable = CyFalse;
 UIB->chgdet_ctrl = CY_U3P_UIB_CHGDET_CTRL_DEFAULT;
 UIB->otg_ctrl = CY_U3P_UIB_OTG_CTRL_DEFAULT;

 /* Disable the UIB block. */
 UIB->power &= ~CY_U3P_UIB_RESETN;
 CyU3PBusyWait (10);

 /* Disable the UIB clock. */
 GCTL->uib_core_clk &= ~CY_U3P_GCTL_UIBCLK_CLK_EN;
 GCTLAON->control &= ~CY_U3P_GCTL_USB_POWER_EN;

 /* Update the state variable. */
 glIsOtgEnable = CyFalse;

 return CY_U3P_SUCCESS;
}

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 119

6.10.2.2 Session Request Protocol

Upon attachment to the USB bus, if the USB bus power VBUS is not on, the B device can request the host to drive VBUS and
begin to communicate with the peripheral. This process is called "Session Request Protocol" (SRP).

In OTG 2.0, a SRP request is started with D+ pulsing. When FX3 is connected as a B-device, the SRP follows this sequence
of steps:

1. The firmware checks that no current session is ongoing by checking that the SESS_END bit in the OTG control register is
set and also that the DP and DM bits are cleared.

2. The firmware sets the DP_PU_EN bit in the OTG control register to pulse the USB D+ line and loads the OTG timer regis-
ter to generate an interrupt between 5 ms and 10 ms later.

3. After receiving the OTG timer timeout interrupt, the processor clears the DP_PU_EN bit to stop pulsing the USB D+ sig-
nal.

4. The firmware enables the VBUS_VALID_INT interrupt and waits for VBUS to be powered.

5. After receiving the VBUS_VALID_INT interrupt, the firmware enables the D+ pull-up by enabling the USB 2.0 function
controller, which allows it to connect to the USB host.

6. If the host is capable, it drives VBUS and allows FX3 to connect as a peripheral.

7. Optionally, the firmware may enable DSCHG_VBUS to discharge the VBUS line below the levels specified for
SESS_END to begin the SRP process sooner.

As an A-device, the SRP enables the SRP interrupt to allow SRP signaling detection and waits for the SRP interrupt. Upon
receiving the interrupt, the firmware enables the VBUS power, allowing the B-device to connect. Once enabled, the firmware
should also enable the VBUS_VALID_INT interrupt to ensure that the peripheral is not drawing more current than the system
can provide. The firmware sequence is as follows:

1. After checking that DP = 0 and DM = 0 and B_SESS_END is asserted, enable the SRP interrupt.

2. Upon receiving the SRP Interrupt, enable the VBUS bus power as well as the USB host logic and its connect interrupt.

3. Upon receiving the connect interrupt, begin normal USB traffic to the B-device, starting with USB bus reset and enumera-
tion.

The following code example implements the function to issue an SRP request.

static CyU3PReturnStatus_t
CyU3POtgIssueSrp (void)
{
 uint32_t regVal;

 if (!glIsOtgEnable)
 {
 return CY_U3P_ERROR_NOT_STARTED;
 }

 /* Check if device mode is enabled. */
 if ((!CyU3POtgIsDeviceMode ()) || (CyU3PUsbIsStarted ()) || (CyU3PUsbHostIsStarted ()))
 {
 return CY_U3P_ERROR_INVALID_SEQUENCE;
 }

 /* Check if there is any valid session. */
 if (GCTL->iopower & glUibDeviceInfo.vbusDetectMode)
 {
 return CY_U3P_ERROR_INVALID_SEQUENCE;
 }

 /* This is a hack as there is no way to send a pulse on the VBUS.
 * Here we are first configuring the PHY as a device and doing a DP
 * pull-up to send a high. To send a low, the PHY is configured as host

120 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 * and then DP is pulled down. This seems to work without the VBUS. */

 /* Enable CHG_VBUS. */
 UIB->otg_ctrl |= CY_U3P_UIB_CHG_VBUS;
 CyU3PThreadSleep (10);

 /* Pullup DP */
 regVal = UIB->otg_ctrl & (CY_U3P_UIB_OTG_ENABLE | CY_U3P_UIB_CHG_VBUS);
 UIB->otg_ctrl = (regVal | CY_U3P_UIB_DEV_ENABLE | CY_U3P_UIB_DP_PU_EN);
 CyU3PThreadSleep (10);
 /* Pull down DP */
 UIB->otg_ctrl = (regVal | CY_U3P_UIB_HOST_ENABLE | CY_U3P_UIB_DP_PD_EN);
 CyU3PThreadSleep (10);
 /* Set the PHY to be disconnected. */
 UIB->otg_ctrl = regVal;

 /* Disable CHG_VBUS. */
 UIB->otg_ctrl &= ~CY_U3P_UIB_CHG_VBUS;
 CyU3PThreadSleep (10);

 return CY_U3P_SUCCESS;
}

The following code example implements the function that accepts the SRP request from the A-device.
static void
CyU3POtgSetupPhy (void)
{
 if (CyU3POtgIsHostMode ())
 {
 /* Enable and set the EPM clock to bus clock (100MHz). */
 GCTL->uib_core_clk = (CY_U3P_GCTL_UIBCLK_CLK_EN | CY_U3P_GCTL_UIB_CORE_CLK_DEFAULT);

 /* Enable host mode. */
 UIB->otg_ctrl &= CY_U3P_UIB_OTG_ENABLE;
 UIB->otg_ctrl |= CY_U3P_UIB_HOST_ENABLE;
 /* Reset and enable the PHY. */
 UIB->phy_clk_and_test = (CY_U3P_UIB_DATABUS16_8 | CY_U3P_UIB_VLOAD |
 CY_U3P_UIB_RESET | CY_U3P_UIB_EN_SWITCH);
 CyU3PBusyWait (10);
 UIB->phy_clk_and_test &= ~CY_U3P_UIB_RESET;
 UIB->phy_clk_and_test |= CY_U3P_UIB_SUSPEND_N;
 CyU3PBusyWait (100);
 /* Switch EPM clock to 120MHz. */
 GCTL->uib_core_clk &= ~CY_U3P_GCTL_UIBCLK_EPMCLK_SRC_MASK;

 /* Make sure EHCI is the owner of the port. */
 UIB->ehci_configflag = CY_U3P_UIB_CF;
 CyU3PBusyWait (10);
 }
 if (CyU3POtgIsDeviceMode ())
 {
 UIB->otg_ctrl &= CY_U3P_UIB_OTG_ENABLE;
 UIB->otg_ctrl |= CY_U3P_UIB_DEV_ENABLE;

 /* Enable and set the EPM clock to bus clock (100MHz). */
 GCTL->uib_core_clk = (CY_U3P_GCTL_UIBCLK_CLK_EN |
 CY_U3P_GCTL_UIB_CORE_CLK_DEFAULT);

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 121

 CyU3PBusyWait (100);

 /* Reset and enable the PHY. */
 UIB->phy_clk_and_test = (CY_U3P_UIB_DATABUS16_8 | CY_U3P_UIB_VLOAD |
 CY_U3P_UIB_RESET | CY_U3P_UIB_EN_SWITCH);
 CyU3PBusyWait (10);
 UIB->phy_clk_and_test &= ~CY_U3P_UIB_RESET;
 UIB->phy_clk_and_test |= CY_U3P_UIB_SUSPEND_N;
 CyU3PBusyWait (100);

 /* Switch EPM clock to 120MHz. */
 GCTL->uib_core_clk &= ~CY_U3P_GCTL_UIBCLK_EPMCLK_SRC_MASK;
 CyU3PBusyWait (10);
 UIB->otg_ctrl &= ~CY_U3P_UIB_DEV_ENABLE;
 }
}

CyU3PReturnStatus_t
CyU3POtgSrpStart (uint32_t repeatInterval)
{
 if (!glIsOtgEnable)
 {
 return CY_U3P_ERROR_NOT_STARTED;
 }
 if ((repeatInterval > CY_U3P_OTG_SRP_MAX_REPEAT_INTERVAL) ||
 (repeatInterval == 0))
 {
 return CY_U3P_ERROR_BAD_ARGUMENT;
 }

 /* Check if device mode is enabled. */
 if ((!CyU3POtgIsDeviceMode ()) || (CyU3PUsbIsStarted ()) || (CyU3PUsbHostIsStarted ()))
 {
 return CY_U3P_ERROR_INVALID_SEQUENCE;
 }

 /* Check if there is any valid session. */
 if (GCTL->iopower & glUibDeviceInfo.vbusDetectMode)
 {
 return CY_U3P_ERROR_INVALID_SEQUENCE;
 }

 CyU3POtgSetupPhy ();

 /* Update the required timer period value. */
 glOtgTimerPeriod = (uint32_t)(repeatInterval * 32);

 /* Initialize the OTG timer with the corresponding repeat period. */
 UIB->otg_timer = glOtgTimerPeriod;

 return CY_U3P_SUCCESS;
}

6.10.2.3 Host Negotiation Protocol

An OTG A-device acts as the host initially in a USB session. In order to allow a peripheral to assume the role of a host, the
initial host must first configure the peripheral to enable HNP support through USB commands (SetFeature(b_hnp_enable)).

122 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

To start the role change, the initial host suspends the USB bus, watches for the B-device to disconnect, and then connects
itself as a peripheral. At this point, normal USB communication occurs, only now the peripheral acts as the host, and vice
versa. When the B-device is finished serving as the host, it returns control to the A-device in the same manner.

At the beginning, the B-device is the peripheral and thus has its D+ pull-up resistor enabled. The A-device stops bus traffic,
suspending the bus. The B-device USB device logic recognizes the suspend as the first step of transferring control of the bus,
disables its D+ pull-up resistor, and enables its USB host logic. After the D+ line falls (is pulled down by the D+ pull-down
resistor) to 0, the A-device recognizes the disconnect request and enables its D+ pull-up to connect as a peripheral. The B-
device host logic detects the connect request and generates an interrupt to the processor, which then generates traffic to the
A-device through the USB host logic.

After the B-device is finished serving as the host, it repeats the transfer process that the A-device performed, suspending the
USB bus, waiting for the disconnect interrupt, disabling its USB host logic and enabling its USB device logic, and connecting
to the USB bus.

The sequence of events and operations for a device (A or B) to give control of the USB bus to the other device follows:

1. Suspend the USB bus.

2. Wait for the disconnect interrupt.

3. Disable the USB host logic, and enable the USB device logic.

4. Connect to the USB bus through the USB device logic.

The A-device must first send a SetFeature(b_hnp_enable) command to the B-device to enable it to become the host.

The sequence for a device (either A or B) to become the USB host follows:

1. Wait for the suspend interrupt from the USB device logic.

2. Disconnect from the USB bus by disabling the D+ pull-up.

3. Disable the USB device logic and enable the USB host logic.

4. Wait for a connect interrupt from the USB host logic.

5. Generate a USB bus reset and begin enumerating the peripheral.

6.11 USB Charger Detect Controller

The FX3 charger detect controller implements the hardware for the system to interface to the external battery charger. The
controller is responsible for battery charger detection and USB ID signal detection and monitoring. This is useful in cases
where the FX3 is used in a battery powered device which can detect a charger and initiate charging action by talking to a
Power Management IC (PMIC).

6.11.1 USB Charger Detect Register Interface

The FX3 USB charger detect controller registers can be accessed directly from the UIB top-level register interface. Following
is the list of these registers.

/* FX3 USB Charger Detect Register Interface */
/* These definitions extracted from the Top Level UIB register interface */

 uvint32_t chgdet_ctrl; /* 0xe0031800 */
 uvint32_t chgdet_intr; /* 0xe0031804 */
 uvint32_t chgdet_intr_mask; /* 0xe0031808 */

6.11.2 Battery Charger Detection

When enabled by the firmware, the charger detect controller initiates a timed sequence of events to cause the USB PHY to
detect the presence of connection to a USB charger. The charger detection is polled by the hardware at a firmware-defined

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 123

rate of between 1 ms and 16 ms (charger detect control register field CHG_POLL_INTERVAL) in 1-ms increments. The
polling is enabled by the CHG_DET_EN setting, and the result is recorded in CHG_DETECTED.

The CHG_DET_CHANGE interrupt is generated when a change in the CHG_DETECTED field is seen. This interrupt is
enabled by CHG_DET_CHANGE_EN in the charger detect interrupt enable register.

6.11.3 USB ID Signal Detection

In the OTG 2.0 specification, the ID line is a simple on/off signal indicating whether the device is connected as a host (A-
device, ID = 0) or as a peripheral (B-device, ID = 1). The on state is generated by enabling a pull-up resistor and detecting
whether the ID line is floating or terminated with a pull-down resistor.

In the Battery Charging Specification revision 1.1, the functionality of the ID pin is expanded to include measuring resistance
values between the ID pin and ground. Using this method a device can detect connection to an ACA (Accessory Charger
Adapter). An ACA is a device that enables a single USB port to be attached to a charger and to another device
simultaneously. The value of the pull-down resistor also indicates to the device its role (host or peripheral) and if it is a
peripheral, whether it is allowed to connect to the USB bus (by enabling a pull-up resistor on D+) and initiate communication
with the USB host.

The Battery Charging Specification revision 1.1 defines three resistor values, as shown in Table 6-6.

Table 6-6. USB ACA Device Type

When the device is a peripheral but may not connect, the embedded host conserves power by not enabling VBUS, so the
peripheral needs to attempt to activate a session by initiating the SRP, as given in the OTG 1.3 Specification.

In addition, Motorola has defined two other resistor values, as shown in Table 6-7.

Table 6-7. USB Charger Motorola-defined Device Type

A value of less than 10 is detected as an A-device without an ACA present, and a value greater than 448.8 k is detected
as a B-device without an ACA present.

The FX3 charger detect controller samples and decodes the strength of the pull-down resistor into a digital value, which is
subsequently read by the firmware when valid. This ID resistor value is sampled at periodic intervals of 1 to 16 ms, set by
OTG_ID_POLL_INTERVAL[3:0] in the charger detect control and configuration register. Setting the OTG_ID_DISABLE bit in
the same register may disable polling.

The OTG_ID_CHANGE interrupt is generated when a change in the OTG_ID_VALUE field is seen. This interrupt is enabled
by OTG_ID_CHANGE_EN in the charger detect interrupt enable register. Once a charger has been detected, firmware can
initiate charging by configuring a PMIC device through one of the available serial interfaces (UART, I2C or SPI).

Resistor Value Device Type

RID_A_CHG 102-114 k? USB embedded host (A-device)

RID_B_CHG 171-189 k? USB OTG peripheral (B-device), may not connect

RID_C_CHG 256-284 k? USB OTG peripheral (B-device), may connect

Resistor Value Device Type

200 k ±2% 196-204 k Motorola USB charger type 0

440 k ±2% 431.2-448.8 k Motorola USB charger type 1

124 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 125

7. General Programmable Interface II (GPIF II)

EZ-USB FX3 integrates a high-performance interface, GPIF II, which enables functionality similar to but more advanced than
the FX2LP GPIF and Slave FIFO interfaces. GPIF II is a programmable state machine that provides the flexibility to design a
variety of interfaces to outside entities. The GPIF II interface may function either as a master or a slave in industry-standard or
proprietary interfaces. GPIF II can implement both parallel and serial high-bandwidth interfaces. Some popular interfaces that
can be implemented with GPIF II are Slave FIFO (asynchronous or synchronous), SRAM, and multiplexed address and data
buses (ADMux).

GPIF II is part of the larger FX3 Processor Interface Block (PIB). The PIB acts as the interface to an external processor,
FPGA, FIFO, memory, or other high-bandwidth device. This block supports the features required to connect an external
processor or device to USB or one of the other FX3 interfaces (SPI, UART, I2C, I2S). For example, GPIF II enables FX3 to
connect to an external FPGA, processor, or other device. The thread controller within the PIB and DMA adapter manages the
read/write accesses performed over GPIF II to registers and sockets. To understand the data transfer in and out of FX3, it is
important to know the terminology specific to FX3; refer FX3 Terminology section in AN75705 - Getting Started with EZ-USB®
FX3™.

A GPIF II Designer tool provided with the FX3 SDK installation enables graphical development of GPIF II designs.

7.1 Features

The following is a summary of the GPIF II features:

■ Functions as master or slave

■ Provides 256 programmable states

■ Implements 8-, 16-, 24- and 32-bit parallel data bus (package-dependent)

■ Enables interface frequencies up to 100 MHz

■ Supports 14 configurable control pins (strobes, enables, GPIO) when a 32-bit data bus is used

■ Supports 16 configurable control pins when a 8-, 16-, or 24-bit data bus is used

■ All control pins can be input, output, or bidirectional

■ Resources such as counters and comparators

■ Wide range of actions and triggers to define the behavior of the state machine

http://www.cypress.com/?rID=59979
http://www.cypress.com/?rID=59979

126 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

7.2 Block Diagram

Figure 7-1. Block Diagram of FX3 PIB

7.3 Typical GPIF II interface

GPIF II allows the FX3 to connect directly to external peripherals such as FPGAs, image sensors, ADCs, or any other high-
bandwidth devices. It provides external pins that can operate as inputs/outputs (CTL[12:0]), a data bus (DQ[31:0]), an
interface clock (PCLK), and an interrupt line.

Figure 7-2 shows a block diagram of a typical interface between the FX3 and a peripheral function. Table 7-1 lists the GPIF II
interface signals.

Figure 7-2. Block Diagram of Interface Between FX3 and Peripheral

Table 7-1. GPIF II Interface Signals

The GPIF II control signals (CTL[12:0]) can be configured as outputs to control the external peripheral device, or as inputs to
read the status from an external peripheral device.

Pin IN/OUT Description

CTL[12:0] I/O Programmable control signals

DQ[31:0] I/O Bidirectional data bus

PCLK I/O Interface clock

INT# /CTL[15] I/O Interrupt or control signal

GPIF-II D
M

A
 A

d
ap

ter

G
P

IF
-II I/F

THREAD Controller
and Mux Logic

THREAD3

THREAD2

THREAD1

THREAD0

B
u

s C
o

n
fig

u
ratio

n

Interface
Pins

Read/ Write
access to PIB
sockets

PIB Register Block

P
IB

 S
o

cke
ts

PIB Block

EZ‐USB FX3
GPIF II

Peripheral

DQ[31:0]

PCLK

CTL[12:0]

INT# / CTL[15]

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 127

The GPIF II interface offers a maximum of 32 bidirectional data lines:

■ An 8-bit-wide GPIF II interface (DQ[7:0]) uses pins GPIO[7:0].

■ A 16-bit-wide GPIF II interface (DQ[15:0]) uses pins GPIO[15:0].

■ A 24-bit-wide GPIF II interface (DQ[23:0]) uses pins GPIO[40:33] and GPIO[15:0].

■ A 32-bit-wide GPIF II interface (DQ[31:0]) uses pins GPIO[49:46], GPIO[44:33], and GPIO[15:0].

GPIF II can function as a master or slave. If it is configured as a master, then the GPIOs remaining after allocating for the data
bus and control signals can be used as address lines. If GPIF II is configured as a slave, then the maximum number of
address lines is limited to eight.

The interface clock, PCLK, can be configured as either an input or an output interface clock for synchronous interfaces to
external logic. The maximum frequency supported for the GPIF II interface clock is 100 MHz.

7.4 Functional Overview

The GPIF II interface is configured by creating a GPIF II state machine, and 8 KB of memory space is allocated to store the
GPIF II state machine definition. Each state is defined by 32 bytes in (SRAM) memory. These 32 bytes define the properties
of a state and the trigger conditions that can cause state (or I/O) transitions. Each state has two transitions out of it. The
transition out of a state is determined based on transition conditions. Transitions are caused by both external and internal
triggers. Each state is programmed to perform certain actions. The transition conditions are checked on each GPIF II clock
edge or after a programmable number of clock cycles.

Figure 7-3 is a simple depiction of the basic structure of a GPIF II state.

Figure 7-3. Structure of a GPIF II State

7.4.1 Actions

Each state in a GPIF II state machine can be programmed to perform one or more actions. Actions performed in a state can
be programmed to be performed once or repeated in every clock cycle until a state change occurs. Actions can be internal,
such as reading or writing to a buffer. They can also be external, such as driving an output high or low. Table 7-2 lists the
GPIF II actions.

State 1
(Assert Actions for

State1)

If (f0*) then transition left
If (f1*) then transition right

State 2
(Assert Actions for

State2)

State 3
(Assert Actions for

State3)

Notes:
- * f0 and f1 are logical functions of triggers
- f0 is checked first. If f0 = TRUE, then GPIFII transitions from State 1 to State 2. If f0 = FALSE, then f1
is checked.
- If f1 = TRUE, then GPIFII transitions from State 1 to State 3.
- If both f0 and f1 evaluate to FALSE, then GPIFII remains in State 1. At the next clock, the conditions
are checked again.

128 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Table 7-2. GPIF II Actions

No Action Description
Incompatibility with Other

Actions

1 IN_DATA

Samples data from the data bus and moves to the destination specified. Destination can be
Registers, PPRegisters, or Sockets. The data in the register can be accessed using the
CY_U3P_PIB_GPIF_INGRESS_DATA(thread_number) macro. The PPRegisters cannot be
accessed directly from the PPRegister space. These registers are for controlling the P-port
interface in PP mode. The data in Sockets can be controlled or accessed using DMA APIs.
Words from Socket can be accessed directly using the firmware API
CyU3PGpifReadDataWords().

Cannot be combined with
DR_DATA.

Cannot be combined with
IN_ADDR when the address and
data buses are multiplexed.

2 IN_ADDR

Selects a thread or socket after sampling the address word from the bus. If there are two or
fewer address bits, the address selects one of the four threads. If the address has more than
two bits, the thread or socket can be selected depending upon the The "Address Selecting"
parameter is available only when more than two address bits are used.

The "PP Register Access Only" option is available only if the width of the address bus is more
than or equal to 8

Cannot be combined with
IN_DATA when the address and
data buses are multiplexed

3 DR_DATA

Drives data onto the bus from the source specified. The source can be Registers, PPRegis-
ters, or Sockets. The data in Register can be sourced using the
CY_U3P_PIB_GPIF_EGRESS_DATA(thread_number) macro. The PPRegisters cannot be
accessed directly from the PPRegister space. These registers are for controlling the P-port
interface in PP mode. The data in Sockets can be controlled or sourced using DMA APIs.
Words from Socket can be sourced directly using the firmware API
CyU3PGpifWriteDataWords().

DR_DATA has two internal stages: update_bus and pop_data. The update_bus updates the
data bus with the word present in the source, and it happens as soon as the state machine
enters the particular state. The hardware state machine works using the interface clock (in
Synchronous protocol) or the FX3 internal clock (in Asynchronous protocol). In every clock
cycle, the update_bus happens regardless of the "Repeat actions until next transition" option
in the state setting. Pop_data removes the data word from the source and happens once or
multiple times depending on the "Repeat actions until next transition" option in the state set-
ting.

Cannot be combined with
IN_DATA.

Cannot be combined with
DR_ADDR when the address and
data buses are multiplexed.

4 DR_ADDR

Drives the value from the specified source to address bus. The source can be Registers,
AddressCounter, or ThreadSocket. The address in Registers can be sourced using the
CY_U3P_PIB_GPIF_EGRESS_ADDRESS(thread_number) macro. The data in Sockets can
be controlled or sourced using the DMA APIs. Words from Socket can be sourced directly
using the firmware API CyU3PGpifWriteDataWords().An AddressCounter can be used to
source the address.

Cannot be combined with
DR_DATA when the address and
data buses are multiplexed.

5 COMMIT
Commit or wraps up the buffer associated with the selected ingress thread and socket. The
buffer is transferred to the consumer side of the pipe. Typically, this is used to wrap up the buf-
fer in between a transaction prematurely.

None

6 DR_GPIO

Drives the GPIO signal to HIGH/LOW or toggles the value immediately or after a delay of one
clock cycle. The interface observes output latency between the time the DR_GPIO action is
called and the change in the GPIO signal in the interface.

The "Repeat actions until next transition" in the state setting has no effect on the behavior of
the DR_GPIO action. This action is repeated for every clock cycle (the clock being the inter-
face clock or the FX3 internal clock).

None

7 LD_ADDR_COUNT

Loads the counter with initial settings. The initial settings are loaded while starting the state
machine. This value needs to be the same in all states within a given state machine diagram.
Multiple values are not allowed. These settings can be overridden using firmware APIs. When
the counter reaches the limit, the hardware sets the ADDR_CNT_HIT internal trigger signal.

This action is generally used with COUNT_ADDR and the ADDR_CNT_HIT trigger. The count
value can also be programmed by the firmware application using
CyU3PGpifInitAddrCounter(). The value programmed into the register at the time of execution
of the state machine will be used.

Cannot be combined with
COUNT_ADDR.

8 LD_DATA_COUNT

Loads the counter with initial settings. The initial settings are loaded while starting the state
machine. This value needs to be the same in all states within a given state machine diagram.
Multiple values are not allowed. These settings can be overridden using firmware APIs. When
the counter reaches the limit, the hardware sets the DATA_CNT_HIT internal trigger signal.

This action is generally used with COUNT_DATA and the DATA_CNT_HIT trigger. The count
value can also be programmed by the firmware application using
CyU3PGpifInitDataCounter(). The value programmed into the register at the time of execution
of the state machine will be used.

Cannot be combined with
COUNT_DATA.

9 LD_CTRL_COUNT

Loads the counter with initial settings. The initial settings are loaded while starting the state
machine. This value needs to be the same in all states within a given state machine diagram.
Multiple values are not allowed. These settings can be overridden using firmware APIs. When
the counter reaches the limit, the hardware sets the CTRL_CNT_HIT internal trigger signal.

This action is generally used with COUNT_CTRL and the CTRL_CNT_HIT trigger. The count
value can also be programmed by the firmware application using CyU3PGpifInitCtrlCounter().
The value programmed into the register at the time of execution of the state machine will be
used.

Cannot be combined with
COUNT_CTRL.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 129

7.4.1.1 Action - IN_DATA

The IN_DATA action samples data from the data bus and moves it to the specified destination. The destination can be the
DMA channel or the firmware application. See the firmware API CyU3PGpifReadDataWords(). Note that the option for
selecting the destination thread is available only when the destination is the DMA channel with the addressing mode selected
as Thread selected by State machine (Number of address lines =0).

It is possible to latch only the data from the data bus and not to store it in the selected destination or to store previously
latched data in the selected destination. These options are made available to satisfy certain protocols when the data on the
bus may lead a strobe signal that indicates data availability.

Figure 7-4. IN_DATA Action Settings Dialog Box

The following parameters are associated with this action:

10 COUNT_ADDR
Increments/decrements the address counter value each time the state is visited. The hard-
ware produces an ADDR_CNT_HIT event upon reaching the limit value specified during
LD_ADDR_COUNT.

Cannot be combined with
LD_ADDR_COUNT.

11 COUNT_DATA
Increments/decrements the data counter value each time the state is visited. The hardware
produces a DATA_CNT_HIT event upon reaching the limit value specified during
LD_DATA_COUNT.

Cannot be combined with
LD_DATA_COUNT.

12 COUNT_CTRL
Increments/decrements the control counter value each time the state is visited. The hardware
produces a CTRL_CNT_HIT event upon reaching the limit value specified during
LD_CTRL_COUNT.

Cannot be combined with
LD_CTRL_COUNT.

13 CMP_ADDR

Compares the sampled address with the specified comparison value or detects any change in
the address value.

"Repeat actions until next transition" in the state setting has no effect on the behavior of the
CMP_ADDR action. This action is repeated for every clock cycle (the clock being the interface
clock or the FX3 internal clock)..

Cannot be combined with
IN_DATA when the address and
data buses are multiplexed.

14 CMP_DATA

Compares the sampled address with the specified comparison value or detects any change in
the data value.

"Repeat actions until next transition" in the state setting has no effect on the behavior of the
CMP_DATA action. This action is repeated for every clock cycle (the clock being the interface
clock or the FX3 internal clock)..

Cannot be combined with
DR_DATA. Cannot be combined
with IN_ADDR when the address
and data buses are multiplexed.

15 CMP_CTRL

Compares the sampled control word with the specified comparison value or detects any
change in the control value.

"Repeat actions until next transition" in the state setting has no effect on the behavior of the
CMP_CTRL action. This action is repeated for every clock cycle (the clock being the interface
clock or the FX3 internal clock)..

None

16 INTR_CPU
Generates a CYU3P_GPIF_EVT_SM_INTERRUPT event to the FX3 CPU, which can be ser-
viced by the registered interrupt callback in the firmware.

None

17 INTR_HOST
Drives the INTR pin in the P-port interface to indicate the presence of an interrupt signal to the
external processor. The INTR pin should be connected to the external processor.

None

18 DR_DRQ
Drives the DRQ pin in the P-port interface to indicate the presence of a data request to the
external processor. The signal should be connected to the external processor on which the
DRQ is enabled.

None

No Action Description
Incompatibility with Other

Actions

130 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

■ Data Sink-Register/ Socket/ PPRegister

■ Thread Number-Thread number with which the data sink is associated. Selectable from Thread0 to 3 (This feature is
available when there is no address line to select the thread number or when master mode is enabled.)

■ Sample data from data bus-This option, when checked, samples data from the data bus, but does not push it in to the
specified data sink.

■ Write data into Data Sink-This option is selected when the user wants to push the sampled data into the specified data
sink.

7.4.1.2 Action - IN_ADDR

The IN_ADDR action causes the GPIF II hardware to sample the value from the address bus and use it to select a DMA
thread or a socket. Refer to the FX3 Terminology section in AN75705 - Getting started with EZ-USB FX3 for more details on
DMA threads and sockets.

When the address bus width is less than or equal to 2 bits, the address can select only a DMA thread. If the address is
between 3 and 5 bits wide, it can select either a DMA thread or a specific socket. The Address Selecting parameter shown in
Figure 7-4 is used to make this selection.

Figure 7-5. IN_ADDR Action Settings Dialog Box

The following parameter is associated with this action:

■ Address Selecting-Thread or Socket

7.4.1.3 Action - DR_DATA

The DR_DATA action drives data on the bus from the source specified. The source can be the DMA channel or the firmware
application. See the firmware API CyU3PGpifWriteDataWords(). Note that the option for selecting the source as the thread
number is available only when the source is the DMA channel with the addressing mode selected as Thread selected by State
machine (Number of address lines =0).

http://www.cypress.com/?rID=59979

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 131

Figure 7-6. DR_DATA Action Settings Dialog Box

The following parameters are associated with this action:

■ Update new value from data source-This option updates the data bus with the data word present in the source and
removes the word from the specified source.

■ Data Source-This option selects between data counter and register/Socket/PPRegister.

■ Thread Number-Thread number with which the data source is associated. Selectable from Thread0 to 3. (This feature is
available when there is no address line to select the thread number.)

■ Remove data from data source-When this option is disabled, the data source continues to point to the same data.

Note: The Update new value from data source flag overrides the Repeat actions until next transition flag in the State Settings
dialog box. This means if the Update new value from data source option is selected, data will be updated on the bus in every
clock cycle when FX3 is in that state, even if the Repeat actions until next transition flag is not selected.

7.4.1.4 Action - DR_ADDR

The DR_ADDR action drives the value from the specified source to the address bus. The source can be the DMA channel or
the firmware application.

Figure 7-7. DR_ADDR Action Settings Dialog Box

The following parameters are associated with this action:

■ Address Source-Register/AddressCounter/ThreadSocket.

■ Thread Number-Thread0 to 3 (available only when number of address bits is set to 0).

132 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

7.4.1.5 Action - COMMIT

The COMMIT action commits the data packet/buffer on the selected DMA channel.

Let say in your application, the data is transferred from GPIF II to USB and a DMA channel is created by allocating a DMA
buffer. When you use COMMIT action in the GPIF II state machine, the control of DMA buffer will be given to USB block. That
means the data in the DMA buffer is ready to be transmitted to USB host.

This action is typically used to force "buffer/packet end" using the state machine. For committing short buffers, this action
should be used along with the IN_DATA action. If the buffer is partially filled and the COMMIT action is performed without the
IN_DATA action, a zero-length buffer will be committed in addition to the partially filled buffer.

Figure 7-8. COMMIT Action Settings Dialog Box

The following parameters are associated with this action:

■ Thread Number-Thread 0 to 3 (available only when the number of address bits is configured to 0 or master mode is
enabled).

7.4.1.6 Action - DR_GPIO

The DR_GPIO action drives a GPIO signal to HIGH/LOW or toggles the value after "Assertion Delay" cycles. In synchronous
mode, the delay can be between two and three cycles, and in an asynchronous (no clock) system the delay can be 25 ns or
30 ns. The GPIO driven using the action is deasserted during the transition to the next state.

Figure 7-9. DR_GPIO Action Settings Dialog Box

The following parameters are associated with this action:

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 133

■ Signal Name-A user-defined alphanumeric string to indicate the signal can be entered here. This name will appear on the
state machine canvas.

■ Output type: Early or Delayed-This parameter controls the delay of the output signal being driven. The delay will be 25 ns
in asynchronous mode or two clock cycles in synchronous mode when the Early option is not selected. The delay will be
30 ns in asynchronous mode or three clock cycles in synchronous mode when the Delayed option is selected.

■ Signal mode-In toggle mode, the signal value complements; in assert mode, the signal value is driven per the polarity of
the signal. The polarity of the signal is configured in the Interface Definition window.

Notes

1. The delayed output and signal mode settings are global for each signal and cannot be changed every time the action is
used in a different state. The tool will generate a configuration file that corresponds to the last settings that were made for
each output signal.

2. "Repeat actions until next transition" in the state setting has no effect on the behavior of the DR_GPIO action. This action
is repeated for every clock cycle (the clock being the interface clock or the FX3 internal clock).

7.4.1.7 Action - LD_ADDR_COUNT

This action loads the counter settings. Settings are loaded when the state machine starts. This value needs to be the same in
all states within a given state machine diagram.

Figure 7-10. LD_ADDR_COUNT Action Settings Dialog Box

The following parameters are associated with this action:

■ Counter type: Up counter/Down counter-The counter can be configured to count in ascending/descending order.

■ Counter load value-Initial count loaded when this action is performed.

■ Counter limit value-The count value at which the event should be generated.

■ Reload counter on reaching limit-The count load value can be reloaded when the counter limit value is hit by selecting this
parameter.

■ Counter mask event-If this option is not selected, a firmware event is generated when the counter limit is reached.

■ Counter step value-The counter step value that should be added/subtracted each time the COUNT_ADDR action is used.

7.4.1.8 Action - LD_DATA_COUNT

This action loads the counter with initial settings. The initial settings are loaded when the state machine starts. This value
needs to be the same in all states within a given state machine diagram.

134 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 7-11. LD_DATA_COUNT Action Settings Dialog Box

The following parameters are associated with this action:

■ Counter type: Up counter/Down counter-The counter can be configured to count in ascending/descending order.

■ Counter load value-The initial count loaded when this action is performed.

■ Counter limit value-The count value at which the event should be generated.

■ Reload counter on reaching limit-The count load value can be reloaded when the count limit value is hit by selecting this
parameter.

■ Counter mask event-If this option is not selected, a firmware event is generated when the counter limit is reached.

■ Counter step value-The counter step value that should be added/subtracted each time the COUNT_DATA action is used.

7.4.1.9 Action - LD_CTRL_COUNT

This action loads the counter with initial settings. The initial settings are loaded when the state machine starts. This value
needs to be same in all states within a given state machine diagram. Multiple values are not allowed.

Figure 7-12. LD_CTRL_COUNT Action Settings Dialog Box

The following parameters are associated with this action:

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 135

■ Counter type: Up counter/Down counter-The counter can be configured to count in ascending/descending order.

■ Counter load value-The initial count loaded when this action is performed.

■ Counter limit value-The count value at which the event should be generated.

■ Reload counter on reaching limit-The count load value can be reloaded when the count limit value is hit by selecting this
parameter.

■ Counter mask event-If this option is not selected, a firmware event is generated when the counter limit is reached.

■ Counter step value-The counter step value that should be added/subtracted each time the COUNT_CTRL action is used.

7.4.1.10 Action - COUNT_ADDR

This action updates the address counter value with the step value configured through the LD_ADDR_COUNT action. The
ADDR_CNT_HIT trigger will become true if this update results in the count reaching the specified limit.

Note that there are no parameters associated with this action.

7.4.1.11 Action - COUNT_DATA

This action updates the data counter value with the step value configured through the LD_DATA_COUNT action. The
DATA_CNT_HIT trigger will become true if this update results in the count reaching the specified limit.

Note that there are no parameters associated with this action.

7.4.1.12 Action - COUNT_CTRL

This action updates the control counter value with the step value configured through the LD_CTRL_COUNT action. The
CTRL_CNT_HIT trigger will become true if this update results in the count reaching the specified limit.

Note that there are no parameters associated with this action.

7.4.1.13 Action - CMP_ADDR

This action compares the address sampled with the specified comparison value.

Figure 7-13. CMP_ADDR Action Settings Dialog Box

The following parameters are associated with this action:

■ Comparator mode-In Value match mode, compares the current address value with the comparator value. In Change
detection mode, any change in the address value will cause a comparator match.

■ Unmask value-Use this value to unmask the bits to be compared.

■ Comparison value-Value against which to compare the address.

■ Comparator mask event-When you deselect this parameter, it will cause an event to be generated to the firmware applica-
tion on a comparator match.

136 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Note The "Repeat actions until next transition" in the state setting has no effect on the behavior of the CMP_ADDR action.
This action is repeated for every clock cycle (the clock being the interface clock or the FX3 internal clock).

7.4.1.14 Action - CMP_DATA

This action compares the data sampled with the specified comparison value.

Figure 7-14. CMP_DATA Action Settings Dialog Box

The following parameters are associated with this action:

■ Comparator mode-In Value match mode, compares the current data value with the comparator value. In Change detection
mode, any change in the data value will cause a comparator match.

■ Unmask value-Use this value to unmask the bits to be compared.

■ Comparator value-Value to compare the data against.

■ Comparator mask event-When you deselect this parameter, it will cause an event to be generated to the firmware applica-
tion on a comparator match.

Note: The "Repeat actions until next transition" in the state setting has no effect on the behavior of the CMP_DATA action.
This action is repeated for every clock cycle (the clock being the interface clock or the FX3 internal clock).

7.4.1.15 Action - CMP_CTRL

This action compares the control bits with the specified comparison value.

Figure 7-15. CMP_CTRL Action Settings Dialog Box

The following parameters are associated with this action:

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 137

■ Comparator mode-In Value match mode, compares the current control signal values with the comparator value. In
Change detection mode, any change in the unmasked control signals will cause a comparator match.

■ Unmask value-Use this value to unmask the bits to be compared.

■ Comparison value-Value against which to compare the control signals.

■ Comparator mask event-When you deselect this parameter, it will cause an event to be generated to the firmware applica-
tion on a comparator match.

Note: "Repeat actions until next transition" in the state setting has no effect on the behavior of the CMP_CTRL action. This
action is repeated for every clock cycle (the clock being the interface clock or the FX3 internal clock).

7.4.1.16 Action - INTR_CPU

This action interrupts the on-chip CPU to generate a CYU3P_GPIF_EVT_SM_INTERRUPT event, which is to be handled by
the firmware application.

No parameters associated with this action.

7.4.1.17 Action - INTR_HOST

This action interrupts the external processor by driving the INTR pin on the P-port.

No parameters associated with this action.

7.4.1.18 Action - DR_DRQ

This action drives the DRQ pin in the P-port interface to indicate the presence of a data request to the external processor.

Figure 7-16. DR_DRQ Action Settings Dialog Box

The following parameters are associated with this action:

DRQ value-Asserted or deasserted

■ Assert DRQ on-The DRQ signal can be asserted using any of these options:

■ From the DMA engine

■ On assertion from the external processor on the DACK pin of FX3

■ On deassertion of DACK from the external processor on the DACK pin of FX3

■ From the state machine using the DR_DRQ action

■ De-assert DRQ on-The DRQ can be deasserted using any of these options:

■ On assertion from the external processor on the DACK pin of FX3

■ On deassertion from the external processor on the DACK pin of FX3

■ From the state machine using the DR_DRQ action

138 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

7.4.2 Triggers

Triggers are signals that cause state transitions to occur. They can be:

External: Control signals driven by the external device

Internal: Internal signals asserted due to hardware or firmware events

Table 7-3 captures events generated as a result of the GPIF II actions.

Table 7-3. Event Generated by GPIF II Actions

7.4.3 Transition Conditions

Transition conditions determine the transition out of a state and into another. The transition conditions are Boolean logic
functions of the trigger signals. A simple example of actions, triggers, and transition conditions is shown in Figure 7-17, where
the three GPIF II states are IDLE, READ, and WRITE. No actions are asserted in the IDLE state. The CE, RE, and WE
signals are the trigger signals. They are the control input signals to GPIF II and are driven by an external device. The
transition conditions are formed with these signals. The left transition condition is (!CE&&!RE) (a read operation), and the right

No. Event Action Causing the Event Description

1 Input signal name None; this is an external event
The name associated with any GPIO configured as an input can be used as a trigger in a
transition equation.

2 FW_TRG Firmware application
This trigger can be generated from the firmware using the firmware API
CyU3PGpifControlSWInput().

3 INTR_PENDING Interrupt to CPU This is true only when the CPU/host has yet to read the previously raised interrupt.

4 CTRL_CNT_HIT COUNT_CTRL
This trigger is true when the count specified is reached. It is generated as a result of the
COUNT_CTRL action.

5 ADDR_CNT_HIT COUNT_ADDR
This trigger is true when the count specified is reached. It is generated as a result of
COUNT_ADDR action.

7 DATA_CNT_HIT COUNT_DATA
This trigger is true when the count specified is reached. It is generated as a result of
COUNT_DATA action

8 CTRL_CMP_MATCH CMP_CTRL
This trigger is true when the control pattern and mask match the current GPIO. It is gener-
ated only when the CMP_CTRL action is specified in the parent state.

9 DATA_CMP_MATCH CMP_DATA
This trigger is true when the data pattern and mask match the current data. It is generated
only when the CMP_DATA action is specified in the parent state.

10 ADDR_CMP_MATCH CMP_ADDR
This trigger is true when the address pattern and mask match the current address read. It is
generated only when the CMP_ADDR action is specified in the parent state.

11

DMA_RDY_CT,

DMA_RDY_TH0,

DMA_RDY_TH1,

DMA_RDY_TH2,

DMA_RDY_TH3

IN_DATA

DR_DATA
This trigger is true when the DMA is ready to send or receive data.

12

DMA_WM_CT,

DMA_WM_TH0,

DMA_WM_TH1,

DMA_WM_TH2,

DMA_WM_TH3

IN_DATA
This trigger is true when the active DMA thread crosses the transferred data above the
watermark.

13 DMA_RDY_ADDR DR_ADDR This trigger is true when the DMA is ready to send or receive an address.

14

IN_REG_CR_VALID,

IN_REG0_VALID,
IN_REG1_VALID,
IN_REG2_VALID,
IN_REG3_VALID

IN_DATA

This trigger is true when the data in the input register (INGRESS_DATA_REGISTER) is
valid. It is set when GPIF II writes data into the INGRESS_DATA_REGISTER using the
IN_DATA action. It is cleared by the firmware by setting the IN_DATA_VALID field in the
GPIF_DATA_CTRL register.

15

OUT_REG_CT_VALID,

OUT_REG0_VALID,
OUT_REG1_VALID,
OUT_REG2_VALID,
OUT_REG3_VALID

DR_DATA

This trigger is true when the data in the output register (EGRESS_DATA_REGISTER) is
valid. The firmware needs to enable this trigger by setting the EG_DATA_VALID bit in the
GPIF_DATA_CTRL register. This trigger will be cleared when the data in the register has
been transmitted by the GPIF II as a result of the DR_DATA action.

16 OUT_ADDR_VALID DR_ADDR
This trigger is true when the address in the output register
(EGRESS_ADDRESS_REGISTER) is valid. It is done when the firmware sets the
EG_ADDR_VALID bit in the GPIF_DATA_CTRL register.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 139

transition condition is (!CE&&!WE) (a write operation). If the left transition condition evaluates to TRUE, then GPIF II
transitions from the IDLE state to the READ state. If the left transition condition evaluates to FALSE, then the right transition
condition is checked. If the right transition condition evaluates to TRUE, then GPIF II transitions from the IDLE state to the
WRITE state. If neither left nor right conditions evaluate to TRUE, then GPIF II remains in IDLE. Note that the first test
resolves the contention if both f0 and f1 are true.

Figure 7-17. Example State Transitions with Actions

7.4.4 GPIF II Designer Tool

An essential part of working with FX3 GPIF II is the GPIF II Designer tool. The GPIF II Designer tool provides a convenient
graphical user interface (GUI) that allows you to define GPIF II state machines in graphical form. The various GPIF II triggers
and actions are available in an easy-to-use manner, allowing simple addition to the states in the diagram. The tool converts
the user graphical design into a C header file that can be integrated with the firmware application code using the firmware API
framework. The tool also generates warnings and error messages during the graphical entry process. You can create your
own GPIF II designs, but the GPIF II Designer tool also provides a set of "canned" designs for popular interfaces.
Documentation of these interfaces, describing the protocol along with timing diagrams, is available when you open an
example project in GPIF II Designer. As part of its initialization, FX3 firmware copies the settings in the .h file into the
appropriate GPIFII registers.

You can also make minor customizations to these designs to suit the target environment. A detailed description of the tool and
its use is provided in the GPIF II Designer User Guide, which is available when you install the tool with the EZ-USB FX3
Software Development Kit.

7.4.5 GPIF II Hardware Resources

7.4.5.1 Comparators

GPIF II includes an address comparator, a data comparator, and a control comparator. You can set the value of the
comparator and a mask that does a bit-by-bit enable. A trigger is available for these comparators that asserts when the
comparator meets the set limit.

IDLE

If (!CE&&!RE)

READ
(Actions: DR_DATA)

WRITE
(Actions: IN_DATA)

* f0 and f1 are logical functions of trigger signals

If (!CE&&!WE)

140 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

7.4.5.2 Counters

GPIF II has three counters for control, address, and data. The reset value and count limit value can be programmed for each
counter. The counter value is incremented by using the actions provided in the GPIF II Designer tool. A counter reaching its
programmed limit provides one of the available GPIF II trigger signals.

7.4.5.3 GPIF II Interrupt

Any GPIF II state can interrupt the CPU by asserting the INTR_CPU action provided in the GPIF II Designer tool. GPIF II state
machine execution continues after interrupting the CPU.

7.4.6 Threads and Sockets

A thread in the GPIF II context is a physical, hardware, data channel. There are four physical threads, each with an
independent controller. A socket, on the other hand, is very similar to an endpoint in the USB context. Each socket has buffers
assigned to it during initialization. A particular thread is mapped to a particular socket during initialization. This mapping can
be changed later during execution. A GPIF II thread is basically a pipe through which the data on the GPIF II interface is
connected to the socket (and hence buffer), where it is required to be written to or read from. Though there are four
independent threads, GPIF II can access only one of them at a time. Which thread is to be accessed can be specified using
the address bus on the GPIF II interface (two address bits select one of the four threads).

7.4.6.1 Difference Between PP_MODE=0 and PP_MODE=1

PP_MODE is a bit field of GPIF II Configuration register (GPIF_CONFIG). This decides the two modes of GPIF II. One mode,
PP_MODE=0, is designed for peripherals that use hardware signaling to switch end points or sockets. In this mode, the 32
sockets are mapped to 4 threads in a modulo-4 fashion. The other mode, called PP_MODE=1, is designed for interfacing with
chips that have DMA engines that transfer large data and switch end points through the accessing processor port (PP)
registers. In this mode, all the sockets are connected to a single thread inside the GPIF II.

PP_MODE=0 enables all four threads described in the previous section, as shown in Figure 7-18.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 141

Figure 7-18. GPIF II - PP_MODE=0

The second mode is PP_MODE=1. In this mode, while the four independent threads still exist, only one thread (Thread0) is
used, through which all sockets are accessed. In this mode, the external processor must first write to a few FX3 registers over
the GPIF II interface. These registers have 8-bit addresses; hence, in PP_MODE=1, having at least an 8-bit-wide address
bus on the interface is a requirement. By writing certain FX3 registers (PP_DMA_XFER and PP_DMA_SIZE), the socket
number and amount of data to be transferred are specified. Then when data access begins, the data is automatically routed
through thread 0, to and from whichever socket number was specified earlier in the register, as shown in Figure 7-19.

GPIFII

 up to 8 sockets can be mapped to each thread
Thread 0

Socket with
associated

buffers
allocated

 up to 8 sockets can be mapped to each thread
Thread 1

Socket with
associated

buffers
allocated

 up to 8 sockets can be mapped to each thread
Thread 3

Socket with
associated

buffers
allocated

 up to 8 sockets can be mapped to each thread
Thread 2

Socket with
associated

buffers
allocated

Address bus

PP_MODE = 0

142 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 7-19. GPIF II - PP_MODE=1

7.4.7 Addressing

7.4.7.1 Number of Address Lines

The number of address lines is an important factor in determining the addressing scheme. When the number is eight or more,
the GPIF II Designer tool automatically sets a field, "PP_MODE," which enables an external processor to access some PIB
registers. An example of an interface with eight address lines is the SRAM interface. In this case, the external processor can
directly program the socket and access direction and byte count through the PP_DMA_XFER and PP_DMA_SIZE registers.
When the interface has fewer than eight address lines, access to P-port registers is not possible, and the GPIF II Designer
tool clears the PP_MODE field to 0. For example, this is the case for the Slave FIFO interface, in which, the mapping of
sockets to threads is important, as explained in the following section.

7.4.7.2 Assigning Sockets to Threads

FX3 provides up to four physical threads for data transfer over GPIF II. At a time, any one socket may be mapped to a thread.
For example, in the Slave FIFO implementation, the address signals A0:A1 on the interface indicate the thread to be
accessed. The FX3 DMA fabric will then route the data to the socket mapped to that thread. So if socket 2 is mapped to
thread 2, when A0:A1 = 2, thread 2 is accessed, and any data that is transferred over thread 2 will be routed to socket 2.

Note: In PP_MODE=1, only thread 0 is used. The socket number programmed in the DMA_XFER register gets mapped to
thread 0. In PP_MODE=0, all four threads are accessible. Even though only four physical threads are available, an address
mapping mechanism can be used to access more than four socket addresses. Refer to application note AN68829 - Slave
FIFO Interface for EZ-USB FX3: 5-Bit Address Mode.

7.4.7.3 Addressing Methods

A socket may be addressed directly in PP_MODE =1 by the external processor programming the PP_DMA_XFER register.
Note that when PP_MODE =1, the GPIF II hardware decodes the address based on address bit A7. If A7=1, GPIF II
interprets the access as a register access and performs a read or write to the register address specified by A[7:0]. If A7=0,
then GPIF II interprets the access to be a socket access and performs a read or write operation to the socket number
specified in the PP_DMA_XFER register.

In PP_MODE =0, when the external processor/device does not have access to the PP registers, the thread to be accessed
may be addressed in the following ways. Note that in this case, the corresponding GPIF_THREAD_CONFIG(x) register must
be programmed using the API with the active socket to be accessed.

■ Thread_in_state: Thread address from GPIF II state

GPIFII

 up to 32 sockets
 accessed through Thread0

Thread 0

Socket with
associated

buffers
allocated

If A7=1, GPIFII routes access
to register block

If A7=0, GPIFII routes access
to socket. The socket number

is specified in the
PP_DMA_XFER register

(number of address lines >=8)

Address bus

Address
Comparator

Register Block

 PP_MODE = 1

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 143

■ A0, A1: Thread address specified by A0:A1

■ Data_thread: Thread address specified by the data_thread field of the GPIF_AD_CONFIG register

7.4.8 Async/Sync

GPIF II supports both asynchronous and synchronous interfaces, configured by programming the "sync" field of the
GPIF_CONFIG register. For synchronous interfaces, the interface clock may be provided by an external source or the FX3
internal clock.

7.4.9 Configuration of Flags

To enable flow control on the interface, flags may be configured as empty, full, partially empty, or partially full signals. These
are not controlled by GPIF II states; rather, they are controlled directly by the DMA hardware engine internal to FX3. Flags are
associated with specific threads and hence indicate the status of the socket currently mapped to that thread. Flags indicate
empty or full, based on the direction of the socket (configured during socket initialization). So, the flag indicates an empty or
not empty status if data is being read out of the socket. It indicates a full or not full status if data is being written into the
socket. The GPIF II Designer tool allows for the configuration of flags, which are typically used in Slave FIFO mode. For a
partial flag, the watermark level must be programmed in the corresponding GPIF_THREAD_CONFIG register. For
information about the Slave FIFO interface and flag usage, refer to the application note AN65974 - Designing with the EZ-
USB FX3 Slave FIFO Interface.

7.4.10 Developing the GPIF II State Machine

This section describes the steps involved in developing the GPIF II state machine.

7.5 Designing a GPIF II Interface

The first step is to configure the GPIF II outside-world interface by filling out the entries in the Interface Settings section of the
Interface Definition tab (Figure 7-20). As you select and deselect options, the center panel changes to reflect a "living
schematic" of the interface. This saves you the trouble of figuring out the FX3 pin mapping because the FX3 signals are
labeled in the FX3 block.

144 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 7-20. GPIF II Interface Definition Tab

Before starting a GPIF II design, consider the following questions:

1. Which FX3 serial peripherals will be used by your overall application?

In addition to the programmable GPIF II interface, the FX3 device implements a set of serial communication blocks to con-
nect to external peripheral devices. The serial communication protocols supported are I2C (master only), I2S (transmitter
only), SPI (master only), and UART. Enabling a specific peripheral block on the FX3 affects the number of pins available
for use as part of the GPIF II interface.

2. Will FX3 act as a master or a slave of the interface?

A GPIF II interface allows the FX3 to interface with an external processor acting as a master or a slave. If the interface
transactions with the external system are initiated by FX3, then FX3 is the master. FX3 is a slave if the interface transac-
tions are initiated by the external processor (connected on the GPIF II port), and the FX3 is only expected to respond to
the actions initiated by the external processor. A given GPIF II configuration uses the FX3 as a master or a slave device.
It is not possible to implement both modes in a single configuration.

If an address bus is part of the electrical interface, this will serve as an input for slave mode designs and as an output for
master mode designs.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 145

When you select Master or Slave, the Action List (right panel) automatically updates to show the available choices for the
selection.

3. Does this interface use a clock?

A GPIF II-based interface can be synchronous or asynchronous in nature. In the case of a synchronous project, the GPIF
II state machine operates using the same clock that is used on the interface. A given GPIF II configuration is asynchro-
nous or synchronous; it is not possible to have both coexisting in a given configuration.

An example of an asynchronous interface is a static RAM that has an address and data bus, read and write strobes, but
no clock. A read operation, for example, occurs by asserting the address, and then asserting chip enable and read
strobes. The data comes out a propagation time after the read strobe, with no reference to a clock.

4. Do you want FX3 GPIF II to drive the interface clock?

If yes, then select Internal; otherwise, select External. This section is dimmed out if you do not select Synchronous in
question 3.

This interface clock can be generated and driven out by the FX3 device or provided as input to the FX3 device. The max-
imum frequency supported for the GPIF II interface clock is 100 MHz.

5. When do you want GPIF II to sample interface signals? On the positive edge or the negative edge?

This section is dimmed out if you do not select Synchronous in question 3.

6. Endian-ness of your device: Little endian or big endian?.

"Endian-ness" refers to byte ordering in multibyte integers-most significant (big) or least significant (little) byte first.

7. Data bus width of the external device connected to FX3: 8-bit, 16-bit, 24-bit or 32-bit?

A GPIF II interface offers a maximum of 32 bidirectional data lines, which can be split into, or time multiplexed with,
address lines. In multiplexed operation, the address bus has the same width as the data bus. One of the control pins can
be used to implement the ADV or ALE signal required to control the functionality of the address/data multiplexed bus. If
the address bus is not time multiplexed with the data bus, the number of address lines available will depend on the width
of the data bus.

8. Does the external device require address lines?

This would be true if the device needs to select between FX3 resources, such as threads, sockets (configured as Slave in
GPIF II) or to select the particular memory region on the external device (configured as Master in GPIF II).

9. Do you want to enable special functions?

Some of the general-purpose I/O signals of FX3 can be associated with special functions that are commonly used in stan-
dard protocols. These special functions are only available on specific pins, and control signals that use them cannot be
moved to other pins. The enables are:

OE: Output Enable. Provides direct control of output drivers. The OE signal directly controls whether the data bus is
driven or tristated by the FX3, so that the latencies associated with doing this through the GPIF II state machine are
removed.

WE: Write Enable. Provides direct control to disable output drivers on the data bus. The data bus will not be driven by FX3
if the WE special function is selected and the WE input is asserted.

DLE: Data Latch Enable. Enables the input stage on the FX3 data bus to latch data. This special function is normally com-
bined with the WE function.

ALE: Address Latch Enable. Enables the input address stage on the FX3 to latch address values.

DRQ: DMA Request. Provides a DMA request output that is controlled through the GPIF II state machine and that
responds to the DACK input signal.

DACK: DMA Acknowledge. This is not a separate special function, but an input that is used to control the behavior of the
DRQ signal.

146 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Table 7-4. GPIO mapping for Special Function signals

10. How many signals need to be monitored by GPIF II, and how many need to be driven by GPIF II? Also, how many
DMA flags do you need in your application?

Control pins can be configured as input signals that drive the GPIF II state machine, output signals that are driven by the
state machine, or flags that reflect the transfer readiness of various buffers on the FX3 device. You can configure any pins
that are unused by the GPIF II block as GPIOs that are controlled by the firmware application. As you add inputs or out-
puts, the state machine designer automatically adds them as choices to be tested (inputs) or asserted (outputs) in any
state.

7.6 GPIF II State Machine Implementation

The state machine canvas provides graphical controls to draw a GPIF II state machine diagram. A GPIF II state machine
consists of actions performed in each state and triggers that cause transitions from one state to another. The Action List
window displays the list of actions that can be added to states.

Click the State Machine tab to open the canvas. An unedited canvas has two states: START and STATE0. An unconditional
transition (LOGIC_ONE) connects the states as shown in the figure below.

Figure 7-21. GPIF II Designer Interface

The state machine canvas supports the following operations.

7.6.1 Add a State

A right-click anywhere on the canvas displays the State Machine menu. Select Add State to add a state to the canvas as
shown in the figure below.

Special Function GPIO

DLE/WE GPIO_18

OE GPIO_19

ALE GPIO_27

DACK GPIO_20

DRQ GPIO_21

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 147

Figure 7-22. GPIF II Designer (Adding a State)

7.6.2 Add Actions to a State

To add an action to a state, select the state by clicking the mouse inside the state graphic. Right-click the action that you want
to add from the Action List window. Select Add to Selected State from the menu. You can also open the Action List window by
choosing View > Action List. The list of actions is shown in the figure below.

Figure 7-23. GPIF II Designer (Adding Actions to a State)

7.6.3 Draw Transitions Between Actions

Position the mouse cursor inside the source state, from which the transition will originate. The cursor changes its shape to “+.”
Press the left mouse button, drag the mouse cursor to the destination state, and release it. The result of this step is shown in
the figure below.

148 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 7-24. GPIF II Designer (Transitions Between Actions)

7.6.4 Add a Transition Equation

Bring the cursor to point to the transition line. Double-click on the line to open the Transition Equation Entry dialog box. All
available triggers to form a transition equation are displayed as a selectable list. Select the trigger and add to the Equation
Entry using the Add button. Use the necessary Boolean expression notations from the buttons on the left of the dialog box.
Alternatively, you can type the equation directly in the Equation Entry box to enter the Boolean expression. Click OK after
entering the equation. The window that pops up to enter the transition equation is shown in the figure below.

Figure 7-25. GPIF II Designer (Adding a Transition Equation)

7.6.5 Set State Properties

Position the mouse cursor inside a state graphic. Right-click to display the State menu. Select Settings from the menu to open
the State Settings dialog box. Every state can be associated with a name using an alphanumeric string. Macros that map the
state names to the state IDs generated by the tool are generated by the tool as part of the header generation.

The Repeat Count property indicates the number of clock cycles to continue inside the state before evaluating any outgoing
transition equation.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 149

You can opt to have the actions associated with the state repeated until the transition to the next state by selecting the Repeat
actions until next transition option as shown in the figure below.

Figure 7-26. GPIF II Designer (Set State Properties)

7.6.6 Analyzing the Signal Timing of the GPIF II Interface

After entering the state machine corresponding to the P-port interface, you can use the Timing window to simulate the relative
timing of the input and output signals. The GPIF II project should be built without any errors before using the timing window
for simulation.

To perform the timing simulation, select a specific state machine path in the state machine. Save the selected path for further
viewing in a file. You can load a saved timing scenario from the menu provided on the top strip of the Timing window.

You can create a new timing scenario using the Create Scenario dialog box. A toolbar icon to create a scenario appears on
the top strip of the Timing window. You can enter a unique name to identify the scenario being created in the Scenario Name.
Use the Scenario Entry dialog box to select for the simulation a path consisting of a set of states that you can traverse
sequentially.

The Timing window provides the following features:

7.6.6.1 Selection of Time Frame

The display frame of the timing diagram can be selected by specifying the start and end of the time frame. The start and end
of time frame can be specified on the left and right bottom corner of the timing display respectively.

7.6.6.2 Automatic Timing Scale Selection

The timing window will be adjusted to the optimum scale according to the screen resolution and viewable area.

Note The timing simulation is performed based on a model of the GPIF II hardware. The GPIF II hardware execution is
synchronous even if the interface is operating asynchronously. A typical operating (internal) clock frequency of 200 MHz (5-ns
cycle time) is used in the simulation of asynchronous protocols.

7.6.7 Scenario Entry

You can simulate the state machine to view the relative timing and value of the signals in the form of a timing diagram. Select
the state machine path whose behavior is to be simulated.

150 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

To select the path (state sequence) to be simulated, go to Timing Simulation > New Scenario or use the toolbar icon. The
Create Scenario dialog box is displayed.

Figure 7-27. Create Scenario Dialog Box

Enter a name for the scenario being created. The name can also be used to view the timing scenario later. Select the start
state of the sequence for states to be traversed. The tool then continuously provides a drop-down menu showing all the
possible next states for the currently selected state, and you can define the path by repeatedly selecting the desired states.
The current state is available as the next state option, unless a compulsory transition is specified in the state machine.

A timing scenario entered is saved with the name specified by the user during creation. All saved timing scenarios will be
available in a drop-down menu on the top strip of the window. A saved scenario can be selected from this menu and modified
or deleted. The Timing Simulation menu allows you to delete or modify the scenario.

Figure 7-28. Modify Scenario Dialog Box

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 151

7.6.8 Macro

A macro is a reusable scenario corresponding to a circular timing path with repeat count. A macro is created and saved
similar to a Scenario, except that the macro always has the same end state as the start state and has a repeat count.

Typically a macro is used to analyze repeating circular state paths. Consider a burst operation. The state paths of a burst read
or burst write are repeated a number of times. An analysis of such an operation can be simplified by specifying it as a macro.

Figure 7-29. Create Macro Dialog Box

7.7 GPIF II Constraints

The GPIF II hardware imposes some limitations on the state machines that can it can create, as follows:

■ Native support is limited to state machines that are limited to two (or fewer) outgoing transitions from each state. Such
state machines are called "binary state machines" in the rest of this document.

■ Each transition equation is limited to the use of four or fewer trigger variables.

Note that many GPIF II protocols involve simple decisions, such as sampling ready signals or other inputs. The following
discussion applies to situations where the decision logic is less simple.

Two techniques are available to surmount these limitations:

■ Mirror States

■ Intermediate States

The GPIF II Designer tool applies the first technique automatically on state machines that exceed two exit triggers. However,
it is possible that the tool may be unable to identify a set of transformations that allow the state machine to be mapped to the
GPIF II hardware. In such a case, the tool outputs the error message "Unable to synthesize state machine." The user can
follow Guidelines for Transition Equation Entry on page 154 to try and resolve these errors. If the error persists despite
making these changes, contact Cypress Support for assistance.

7.7.1 Mirror States

The mirror state machine technique uses a GPIF II feature that facilitates state machine designs that do not conform to the
previously described rules.

152 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

The GPIF II hardware supports working with multiple copies of a binary state machine, where the active state machine copy is
determined using the current value of a trigger variable. For example, consider the state machine fragment shown in
Figure 7-30. This state machine has a state, S0, which has four outgoing transitions based on the transition equations !ABC,
!AD, ABC, and AD.

Figure 7-30. GPIF II State Machine Example Requiring Mirror States

The "A" can be removed from these transition equations to obtain the two modified state machines shown in Figure 7-31.

Figure 7-31. A GPIF II State Machine Split as Mirror States

In this case, S0' is inserted as a mirror state of S0. S0 has valid transitions pointing to S1 and S2, and S0' has valid transitions
pointing to S3 and S4. The state machine {S0, S1, S2} is applicable when the trigger variable A has a value of 0, and the state
machine {S0', S3, S4} is applicable when the trigger variable A has a value of 1. The GPIF II hardware automatically selects
the correct state between S1 and S3 or between S2 and S4 by looking at the current value of A.

GPIF II Designer tries to apply this feature to implement state machines that have more than two out transitions from a state
as well as state machines that use transition equations with excessive triggers. The derived state machines using this
procedure need to follow a set of GPIF II mirroring rules (described in the next section) in order to be implemented without
side effects.

A real example of this method is provided in 7.7.3 Mirror State Example on page 153.

7.7.2 Mirror State Rules

The GPIF hardware allows up to eight mirror state machines to be created, so that the active mirror is selected based on the
current value of up to three input signals. The input signals that are used to select the active mirror state machine are called
"global triggers."

S0

S1 S2 S3 S4

!A
 &
 B
 &
 C

!A
 &
 D

A
 &
 B
 &
 C

A &
 D

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 153

A set of rules needs to be satisfied by all the mirror state machines. GPIF II Designer tries to identify a set of global triggers
that reduce the state machine to one that satisfies the following rules.

■ The transitions can be split into groups of two each, such that each group applies to a specific combination of trigger val-
ues.

■ The transitions in each group have the same transition equations after the global trigger terms have been removed.

■ The target states that share the same transition equation do not use conflicting actions. See Table 7-2 for details on
incompatible actions.

The tool first attempts to find a solution with one global trigger, then with two, and finally three global triggers. If the tool is
unable to find a state machine reduction that satisfies the previous conditions with any of these levels, it will issue an error
message saying that the state machine input cannot be synthesized.

In many cases, such state machine mapping errors are a consequence of an incompletely specified input. See 7.7.4
Guidelines for Transition Equation Entry on page 154 for state machine definition guidelines to aid the tool in finding a
solution.

7.7.3 Mirror State Example

Figure 7-32 shows a part of the synchronous Slave FIFO protocol implementation that is included with GPIF II Designer as a
Cypress supplied interface project.

Figure 7-32. Slave FIFO Interface Example State Machine Requiring Mirror States

The IDLE state is where the state machine waits for control signals to start performing a data transfer. Depending on the input
signals, it may transition to one of four states:

The RD state, where a read operation is handled. Transition to the RD state is triggered by the RD input signal asserting while
the WR and the END input signals are deasserted. The IN_ADDR and DR_DATA actions are performed in the RD state.

The WR state, where a general write operation (not end of packet) is handled. Transition to the WR state is triggered by the
WR input asserting while the RD and END signals are deasserted. The IN_DATA action is associated performed with this
state.

The SLP state, where a single word write operation is handled (data along with end-of-packet signaling). Transition to the SLP
state is triggered by the WR and END inputs asserting while RD is deasserted. The IN_DATA and COMMIT actions are
associated with this state.

The ZLP state, where a zero-length write operation is handled (no data, only end-of-packet signaling). This transition is
triggered by END asserting while RD and WR are both deasserted. The COMMIT action is associated with this state.

IDLE

RD WR SLP ZLP

RD
 &
 !W

R
&
 !E
N
D

!R
D
 &
 W

R
 &
 !
EN

D !R
D
 &
 W

R
 &
 EN

D
!RD

 &
 !W

R &
 EN

D

IN_ADDR
DR_DATA

IN_DATA IN_DATA
COMMIT

COMMIT

154 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

The GPIF II Designer tool converts this state machine fragment into the implementation shown in Figure 7-33, which has four
mirror state machines. The conditions under which each of the four mirrors is active are listed on top. All the transitions that
are shown going to the right share the same transition equation, and the actions specified in these states are nonconflicting.

Figure 7-33. Slave FIFO Interface Example Implementation with Mirror States

7.7.4 Guidelines for Transition Equation Entry

In some cases, GPIF II Designer is unable to reduce the input state machines to an implementable form because of
insufficient input information.

For example, consider another form of the state machine fragment shown in Mirror State Example on page 153. This version
of the state machine cannot be converted into multiple mirrored state machines that satisfy the mirroring rules using any
global trigger combination.

Figure 7-34. State Machine Example with Mirror States

The problem is that the transition equations are not fully defined. For example, the tool needs to assume that the IDLE RD
transition can happen independent of the values of the WR and END signals. If all the transition equations are made
completely defined by adding the expected values for the other input signals, the state machine is transformed into the
version shown in the example, and the tool can reduce the state machine to an implementable form.

IDLE_0

RD ZLP WR SLP

RD !R
D

!R
D

IN_ADDR
DR_DATA

COMMIT IN_DATA
COMMIT

IN_DATA
COMMIT

IDLE_1 IDLE_2 IDLE_3

!R
D

WR = 0
END = 0

WR = 0
END = 1

WR = 1
END = 0

WR = 1
END = 1

IDLE

RD WR SLP ZLP

RD

W
R
 &
 !
EN

D W
R
 &
 EN

D

!W
R &

 EN
D

IN_ADDR
DR_DATA

IN_DATA IN_DATA
COMMIT

COMMIT

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 155

In general, specifying each transition equation (particularly for transitions originating from a state that has more than two
output transitions) fully by listing the expected value of all trigger inputs helps the tool find a mapping of the state machine to
the GPIF II hardware. In the absence of such data, the tool treats the unspecified triggers as don't cares for a particular
transition and may fail to find an implementable mapping.

It is also recommended to avoid transition equations that involve multiple OR clauses in states that have more than two output
transitions. This is because transition equations that have OR clauses typically cannot be refactored to remove global
triggers.

7.7.5 Intermediate States

If the design allows adding one or more clocks to a transition, intermediate states can be inserted into the state machine to
reduce the number of state transitions originating at a state.

Consider the state machine fragment shown in Figure 7-35. There are four transitions originating at state S0, with the
transition equations F1, F2, F3, and F4 respectively.

Figure 7-35. Example State Machine with Multiple Transitions

This state machine can be transformed into the version shown in Figure 7-36. Here Sx and Sy are dummy states that have
been inserted to meet the constraint that each state can have only two outgoing transitions.

Figure 7-36. GPIF II Implementation for Multiple Transitions Avoiding Mirror States

S0

S1 S2 S3 S4

F1

F2

F3

F4

S0

S1 S2 S3 S4

F1 F2 F3

F4

Sx Sy

F1
 |
 F
2 F3 | F4

156 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

This kind of transformation has an impact on the overall latency between states. For example, the actions specified in the
state S1 will now be performed with an additional delay of one cycle. Similarly, the input values that trigger the S0 --> S1
transition now need to stay valid for one additional cycle. Since these system-level timing changes cannot be assumed safely,
such transformations are not automatically performed by the GPIF II Designer tool. This technique can be used as necessary
to reduce state machines to an implementable form.

7.8 Initialization and Configuration of GPIF II Block

The GPIF II block is configured by writing to a set of device registers and configuration memories. The GPIF II Designer utility
generates the configuration data corresponding to the communication protocol to be implemented based on the graphical
state machine. This tool generates the GPIF II configuration information in the form of a C header file that defines a set of
data structures. The FX3 SDK and the GPIF II Designer installation also include a set of header files that have the
configuration data for a number of commonly used protocols.

The CyU3PGpifLoad() API is used by the firmware application to load the configuration generated by the GPIF II Designer
tool. This API, in turn, internally uses the CyU3PGpifWaveformLoad(), CyU3PGpifInitTransFunctions(), and
CyU3PGpifConfigure() APIs to complete the configuration. These APIs can be used directly as a replacement for the
CyU3PGpifLoad() call with the constraint that the CyU3PGpifConfigure() call should be made after the
CyU3PGpifWaveformLoad() and CyU3PGpifInitTransFunctions() calls.

7.8.1 GPIF II State Machine Control

The firmware application may require the GPIF II state machine to be started and stopped multiple times during run time. In
most cases where the FX3 device is functioning as a slave device, there will be a single GPIF II state machine, and the
application needs to start it as soon as the configuration has been loaded. The CyU3PGpifSMStart() API can be used to start
the state machine operation in this case.

If the application uses FX3 as a GPIF II master, there may be multiple disjointed state machines that implement different parts
of the communication protocol. The CyU3PGpifSMSwitch() API can be used to switch between different state machines in
this case.

If the GPIF II state machine operation is to be suspended and later resumed, the CyU3PGpifSMControl() API can be used to
pause or resume state machine operation.

If the state machine operation is to be stopped at some point and restarted from the reset state later, the CyU3PGpifDisable()
API can be used with the forceReload parameter set to CyFalse(0). The CyU3PGpifSMStart() API can then be used to restart
the state machine.

If the active GPIF II configuration is to be changed, the CyU3PGpifDisable() API can be used with the forceReload parameter
set to CyTrue(1). The CyU3PGpifLoad() API can then be used to load a fresh configuration.

7.9 Performing Read and Write Operations Using GPIF II

This section shows you the steps to program the GPIF II block with the help of a simple example that can be implemented
using the FX3 SDK. There is no need to connect any external peripheral to the FX3 GPIF II. In this example, GPIF II performs
a read operation when a DMA buffer is available in FX3, or it performs a write operation when data is available in the FX3
DMA buffers.

To design an interface using GPIF II Designer, start by creating a GPIF II Design project. A new project can be created using
the New Project command from the File menu, or by using the links provided on the start page. The New Project command
pops up the New Project dialog box shown in Figure 7-37. Here the user can enter the project name and choose the location
where the project files will be stored.

An existing project can be opened by choosing the File menu item Open Project. The start page also provides links to open
the most recently used projects.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 157

Once a project is opened, the Interface Definition window appears, where the user can enter the electrical interface details.
See Designing a GPIF II Interface for details on the Interface Definition window.

Selections applicable for the interface are the following:

■ Interface Type: Slave

■ Communication type: Synchronous

■ Clock settings: Internal

■ Active clock edge: Positive

■ Endianness: Little endian

■ Data bus width: 8 Bit, 16 Bit, 24 Bit, or 32 Bit, as required

■ Address/data bus multiplexed: Deselected (nonmultiplexed)

■ Number of address pins used: 0

■ No special function signals are needed for this example design. No input, output, and flags are used.

Figure 7-37 shows a screen shot of the Interface Definition window with the previous settings.

Figure 7-37. Interface Definition Window for Example Project

158 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

7.10 DMA Channel Creation in FX3 Firmware to Perform GPIF II to USB
Data Transfers

The code to create a DMA channel in FX3 firmware to perform GPIF II to USB data transfers follows.
 dmaCfg.size = 16384;
 dmaCfg.count = 4;
 dmaCfg.prodSckId = CY_U3P_PIB_SOCKET_0;
 dmaCfg.consSckId = CY_U3P_UIB_SOCKET_CONS_1;
 dmaCfg.dmaMode = CY_U3P_DMA_MODE_BYTE;
 dmaCfg.notification = 0;
 dmaCfg.cb = 0;
 dmaCfg.prodHeader = 0;
 dmaCfg.prodFooter = 0;
 dmaCfg.consHeader = 0;
 dmaCfg.prodAvailCount = 0;

 apiRetStatus = CyU3PDmaChannelCreate (&glDmaChHandle, CY_U3P_DMA_TYPE_AUTO, &dmaCfg);
 if (apiRetStatus != CY_U3P_SUCCESS) {
 CyU3PDebugPrint (4, "CyU3PDmaChannelCreate failed, Error code = %d\n", apiRetStatus);
 CyFxAppErrorHandler(apiRetStatus);
 }

This code creates a DMA channel between socket 0 of the PIB and socket 1 of the UIB. In this example, GPIF II reads the
data and sends it to the USB host. So you need to use the producer socket of the PIB and the consumer socket of the UIB.

This project allocates four buffers for this data path, and each buffer is 16384 bytes.

7.11 GPIF II State Machine to Read Data into a Socket

Figure 7-38 shows the GPIF II state machine to read data from the data bus. The GPIF II state machine stays in the
DMAWAIT state until DMA_RDY_TH0 becomes HIGH. DMA_RDY_TH0 indicates the readiness of the DMA buffer of GPIF II
thread 0. It asserts HIGH when there is at least one empty buffer available for producer socket 0. By default, socket 0 is
mapped to thread 0.

Figure 7-38. GPIF II State Machine to Read Data

When the DMA_RDY_TH0 flag asserts, the GPIF II state machine moves to the READDATA state. It performs an IN_DATA
action in this state. The IN_DATA action reads the data available on the data bus and places it in the DMA buffer of socket 0.
The IN_DATA action settings are shown in Figure 7-39. As long as the state machine is in the READDATA state, a new byte

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 159

is read from the data bus and sent to the DMA buffer on every clock.

Figure 7-39. IN_DATA Action Setting

The GPIF II state machine returns to the DMAWAIT state when the DMA_RDY_TH0 flag goes low. This happens when DMA
buffer switching occurs for the created DMA channel or when all the allocated DMA buffers are filled with data and waiting to
get cleared from the USB side.

When GPIF II tries to push data to the DMA buffer after it is full, then a PIB overrun error is flagged for the corresponding
thread. The bit fields of the PIB error indicator register let you know if a PIB error is flagged.

7.12 DMA Channel Creation in FX3 Firmware to Perform USB to GPIF II
Data Transfers

The code to create a DMA channel in FX3 firmware to perform USB to GPIF II data transfers follows.
 dmaCfg.size = 16384;
 dmaCfg.count = 4;
 dmaCfg.prodSckId = CY_U3P_UIB_SOCKET_PROD_1;
 dmaCfg.consSckId = CY_U3P_PIB_SOCKET_1;
 dmaCfg.dmaMode = CY_U3P_DMA_MODE_BYTE;
 dmaCfg.notification = 0;
 dmaCfg.cb = 0;
 dmaCfg.prodHeader = 0;
 dmaCfg.prodFooter = 0;
 dmaCfg.consHeader = 0;
 dmaCfg.prodAvailCount = 0;
 apiRetStatus = CyU3PDmaChannelCreate (&glDmaChHandle, CY_U3P_DMA_TYPE_AUTO, &dmaCfg);
 if (apiRetStatus != CY_U3P_SUCCESS) {
 CyU3PDebugPrint (4, "CyU3PDmaChannelCreate failed, Error code = %d\n", apiRetStatus);
 CyFxAppErrorHandler(apiRetStatus);
 }

This code creates a DMA channel between socket 1 of the PIB and socket 1 of the UIB. In this example, GPIF II is driving
data onto the data bus that is coming from the USB host. So you need to use the consumer socket of the PIB and the
producer socket of the UIB.

This project allocates four buffers for this data path, and each buffer is 16384 bytes.

7.13 GPIF II State Machine to Drive Data from Socket as Data Source

The GPIF II state machine to drive data onto the data bus is shown in Figure 7-40. The GPIF II state machine stays in the
DMAWAIT state until DMA_RDY_TH1 becomes HIGH. DMA_RDY_TH1 indicates the readiness of the DMA buffer of GPIF II

160 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

thread 1. It asserts HIGH when at least one DMA buffer of consumer socket 1 is available with data. By default, socket 1 is
mapped to thread 1.

Figure 7-40. GPIF II State Machine to Drive Data on the Data Bus

The GPIF II state machine moves to the WRITEDATA state when the DMA_RDY_TH1 flag goes HIGH. It performs the
DR_DATA action in this state. The DR_DATA action drives the data available in the DMA buffer of socket 1 onto the data bus,
one word per clock. The DR_DATA action settings are shown in Figure 7-41.

Figure 7-41. DR_DATA Action Setting

The GPIF II state machine returns to the DMAWAIT state when the DMA_RDY_TH1 flag goes low. This happens when DMA
buffer switching occurs for the created DMA channel or when all the allocated DMA buffers are empty and waiting to get data
from the USB side.

When GPIF II tries to read data from the DMA buffer after it is emptied, then a PIB underrun error is flagged for the
corresponding thread. The bit fields of the PIB error indicator register let you know if a PIB error is flagged.

7.13.1 Alpha Values

Control outputs from the GPIF II state machine can be classified into early outputs and delayed/normal outputs. The early
outputs have a shorter output latency than the delayed outputs. This is achieved by making their values available to the GPIF
II hardware one cycle earlier than all the other state information. The early output signals from GPIF II are called "Alphas,"
and their total number is limited to eight signals.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 161

As the values for the Alpha class outputs are specified and interpreted differently by the GPIF II hardware, the initial values for
these signals also need to be specified outside the state machine description. The initial Alpha values that a GPIF II design
needs to have are generated in the form of a <PROJECT_NAME>_ALPHA_START macro in the GPIF II configuration header
file. This value is expected to be passed as the initial Alpha parameter to the CyU3PGpifSMStart() API after the
CyU3PGpifLoad() API has been called.

7.14 GPIF II Read and Write over Registers

IN_DATAx_VALID and OUT_DATAx_VALID (where "x" varies from 0 to 3) are the bit fields of the GPIF_DATA_CTRL register.
IN_DATAx_VALID is set high by the GPIF II hardware when data is written to the GPIF_INGRESS_DATA register
corresponding to socket x using the IN_DATA action in the GPIF II state machine. This will be cleared by the FX3 firmware
when the data in the GPIF_INGRESS_DATA register is read using the CyU3PGpifReadDataWords function. Figure 7-42
shows the GPIF II state machine that reads data from the data bus into the FX3 over the GPIF II register. It will read all ones
if no device is connected to the FX3 GPIF II.

Figure 7-42. GPIF II State Machine to Read Data from the Data Bus

The IN_DATA action reads the data available on the data bus and places it in the GPIF INGRESS register corresponding to
socket 0. IN_DATA action settings are shown in Figure 7-43.

Figure 7-43. IN_DATA Action Settings

FX3 firmware writes '1' to the OUT_DATAx_VALID field to indicate a valid word is present in the GPIF_EGRESS_DATA
register corresponding to socket x. The FX3 SDK provides the CyU3PGpifWriteDataWords function for doing so. The GPIF II
hardware writes' 0' to indicate that the data is used and a new word can be written when the DR_DATA action executes in a

162 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

GPIF II state. The GPIF II state machine that drives data from the register is shown in Figure 7-44.

Figure 7-44. GPIF II State Machine Driving Data from the Register

The DR_DATA action drives the data available in the GPIF EGRESS register that corresponds to thread 1 onto the GPIF II
data bus. The OUT_DATA action settings are shown in Figure 7-45.

Figure 7-45. OUT_DATA Action Settings

Selecting the option Remove data from data source will clear the OUT_REGx_VALID field of the GPIF_DATA_CTRL register.

7.15 Implementing Synchronous Slave FIFO Interface

This section explains the steps involved in designing a Slave FIFO interface using the FX3 GPIF II block.

The first step is to configure the GPIF II outside-world interface by filling out the entries in the Interface Settings tab.
Selections applicable to the synchronous Slave FIFO interface are as follows.

■ Interface type: Slave

■ Communication type: Synchronous

■ Clock settings: External

■ Active clock edge: Positive

■ Endianness: Little endian

■ Data bus width: 8 Bit, 16 Bit, 24 Bit, or 32 Bit, as required

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 163

■ Address/data bus multiplexed: Deselected (nonmultiplexed)

■ Number of address pins used: 2 for selecting among the four threads available

■ Special functions: OE: This feature is available only with GPIO_19. With this function, the assertion of GPIO_19 can
directly change the data bus direction for the egress path (out of the FX3 device).

■ There are five input signals: SLCS#, SLWR#, SLRD#, SLOE#, and PKTEND#. All are active low signals.

Table 7-5. Slave FIFO Interface signal description

Four DMA flags (FLAGA, FLAGB, FLAGC, and FLAGD) are provided to the external peripheral to manage the data flow.

Figure 7-46 shows the FLAGA settings.

Figure 7-46. FLAGA Settings

Figure 7-47 shows the FLAGB settings.

Signal Name Signal Description

SLCS# The chip select signal for the Slave FIFO interface. It must be asserted to perform any access to the Slave FIFO interface.

SLWR# The write strobe for the Slave FIFO interface. It must be asserted to perform write transfers to the Slave FIFO.

SLRD# The read strobe for the Slave FIFO interface. It must be asserted to perform read transfers from the Slave FIFO.

SLOE#
The output enable signal. It causes the data bus of the Slave FIFO interface to be driven by FX3. It must be asserted to perform read
transfers from the Slave FIFO.

PKTEND# The packet end signal. It must be asserted to send a short packet to the USB host.

164 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 7-47. FLAGB Settings

The WaterMark value needs to be set using the CyU3PGpifSocketConfigure API. With this API, the active socket for each
thread and its properties can be selected by the user at run time.

Figure 7-48 shows the FLAGC settings.

Figure 7-48. FLAGC Settings

Figure 7-49 shows the FLAGD settings.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 165

Figure 7-49. FLAGD Settings

A screen shot of the Interface Definition window with the previous settings is shown in Figure 7-50.

166 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 7-50. Interface Definition Window

7.16 Synchronous Slave FIFO Access Sequence and Interface Timing

This section describes the access sequence and timing of the synchronous Slave FIFO interface.

An external processor or device (functioning as interface master) may perform single-cycle or burst data accesses to the FX3
internal FIFO buffers. The external master drives the 2-bit address on the ADDR lines and asserts the read or write strobes.
FX3 asserts the FLAG signals to indicate the empty or full condition of the buffer.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 167

Figure 7-51. Synchronous Slave FIFO Read Sequence

7.16.1 Synchronous Slave FIFO Read Sequence Description

The sequence for performing reads from the synchronous Slave FIFO interface is as follows.

1. The FIFO address is stable and SLCS# is asserted.

2. SLOE# is asserted. SLOE# is an output enable that signals FX3 to drive the data bus.

3. SLRD# is asserted.

The FX3 FIFO pointer is updated on the rising edge of the PCLK, while SLRD# is asserted. This action starts the propagation
of data from the newly addressed FIFO to the data bus. After a propagation delay of tCO (measured from the rising edge of
PCLK), the new data value is present. N is the first data value read from the FX3 FIFO. To drive the data bus, SLOE# must
also be asserted.

The same sequence of events applies to a burst read.

Note: For burst mode, SLRD# and SLOE# are left asserted during the entire duration of the read. When SLOE# is asserted,
the data bus is driven with data from the previously addressed FIFO. For each subsequent rising edge of PCLK, while SLRD#
is asserted, the FIFO pointer is incremented, and the next data value is placed on the data bus.

FLAG Usage: FLAG signals are monitored by the external processor for flow control. FLAG signals are FX3 outputs that may
be configured to show empty/full/partial status for a dedicated thread or the current thread being addressed.

PCLK

FIFO ADDR

tCYC

tCH tCL

tAS

SLCS

SLRD

tRDS tRDH

SLOE

FLAGA
(dedicated thread Flag for An)
(1 = Not Empty 0= Empty)

tOELZ

DQ (Data Out) High‐Z Data
driven:DN(An)

tCDHtOEZ tOEZ

3 cycle latency
from addr to data

tCOtOELZ

An Am

DN+1(An) DN(Am) DN+1(Am) DN+2(Am)

SLWR (HIGH)

tAH

FLAGB
(dedicated thread Flag for Am)
(1 = Not Empty 0= Empty)

2 cycle latency from
SLRD to data

tCFLG

tCFLG

2 cycle latency from SLRD
to FLAG

168 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 7-52. Synchronous Slave FIFO Write Sequence

PCLK

FIFO ADDR

tCYC

tCH tCL

tAS

SLCS

SLWR

Data IN High-Z DN(An)

tDHtDS tDH tDS tDH

tWRS tWRH

tPEH

PKTEND

DN(Am) DN+1(Am) DN+2(Am)

SLOE
(HIGH)

An Am

tAH

tPES

 FLAGA
dedicated thread FLAG for An
(1 = Not Full 0= Full)

tCFLG

FLAGB
dedicated thread FLAG for Am
(1 = Not Full 0= Full)

tCFLG

3 cycle latency from SLWR# to FLAG

3 cycle latency from SLWR# to FLAG

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 169

Figure 7-53. Synchronous ZLP Write Cycle Timing

7.16.2 Synchronous Slave FIFO Write Sequence Description

The sequence for performing writes to the synchronous Slave FIFO interface is as follows.

1. The FIFO address is stable, and the signal SLCS# is asserted.

2. The external master/peripheral outputs the data onto the data bus.

3. SLWR# is asserted.

4. While SLWR# is asserted, data is written to the FIFO, and on the rising edge of PCLK, the FIFO pointer is incremented.

5. The FIFO flag is updated after a delay of tCFLG from the rising edge of the clock.

The same sequence of events applies to a burst write.

Note: In the burst mode, SLWR# and SLCS# are left asserted for the entire duration of the burst write. In the burst write
mode, after SLWR# is asserted, the value on the data bus is written into the FIFO on every rising edge of PCLK. The FIFO
pointer is updated on each rising edge of PCLK.

Short Packet: A short packet can be committed to the USB host by using the PKTEND# signal. The external device/processor
should be designed to assert the PKTEND# along with the last word of data and the SLWR# pulse corresponding to the last
word. The FIFOADDR lines must be held constant during the PKTEND# assertion. On assertion of PKTEND# with SLWR#,
the GPIF II state machine interprets the packet to be a short packet and commits it to the USB interface. If the protocol does
not require any short packets to be transferred, the PKTEND# signal may be pulled high.

Note that in the read direction, there is no specific signal to indicate that a short packet has been sourced from USB. The
empty FLAG must be monitored by the external master to determine when all the data has been read.

Zero-Length Packet: The external device/processor can signal a ZLP by asserting PKTEND#, without asserting SLWR#.
SLCS# and the address must be driven as shown in Figure 7-53.

FLAG Usage: FLAG signals are monitored by the external processor for flow control. FLAG signals are FX3 outputs that may
be configured to show empty/full/partial status for a dedicated thread or the current thread being addressed.

PCLK

FIFO ADDR

tCYC

tCH tCL

tAS

SLCS

SLWR
(HIGH)

Data IN High-Z

PKTEND

SLOE
(HIGH)

An

tAH

 FLAGA
dedicated thread FLAG for An
(1 = Not Full 0= Full)

 FLAGB
dedicated thread FLAG for Am
(1 = Not Full 0= Full)

tPEHtPES

tCFLG

170 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

7.16.3 Slave FIFO Interface Logical Diagram

Figure 7-54 illustrates the logical flow chart of the Slave FIFO interface. For more information about the synchronous Slave
FIFO interface, refer to the application note AN65974 - Designing with the EZ-USB FX3 Slave FIFO Interface.

Figure 7-54. Slave FIFO Interface Flowchart

7.16.4 GPIF II State Machine of Slave FIFO Interface

Figure 7-55 shows the GPIF II state machine of the Slave FIFO interface.

http://www.cypress.com/?rID=51581

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 171

Figure 7-55. GPIF II State Machine of the Slave FIFO Interface

172 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 173

8. Low Performance Peripherals (LPP)

The FX3 serial peripherals (I2C, SPI, I2S and UART) including GPIO form the Low Performance Peripherals (LPP). LPP
blocks are accessed using registers and the I2C, SPI, I2S, and UART peripheral blocks are DMA capable. The GPIOs cannot
be grouped into a parallel bus and cannot use DMA.

The bandwidth requirement of all the low-performance peripherals is minimal compared to DMA bandwidth. All LPP
peripherals interface to the DMA fabric as one entity, which connects to the DMA fabric through a single adapter and multiple
threads, as shown in Figure 8-1. Eight DMA sockets are available for four LPP blocks. Any LPP block can use any number of
available sockets from the eight DMA sockets, but only two sockets can be active or enabled at a time for a block. All eight
DMA sockets can be active together.

174 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 8-1. LLP's Interfaces and DMA Fabric

Upon reset, all the LPP blocks are disabled. All the LPP blocks become operational only after an enable bit in a configuration
register is set. Each block has its own block-level soft reset; LPP soft reset and the global reset are synchronized to the core
clock. All the resets need to be deasserted for the block to be operational.

8.1 I2C Interface

8.1.1 I2C Block Features

The I2C block offers the following features:

■ Operates in master mode

UART Egress Socket

UART Ingress Socket

UART
8 4
UART
DMA
Thread

I2S Right Egress
Socket

I2S Left Egress
Socket

I2S transmitter

8
4

I2S Right
DMA
Thread

SPI Egress Socket

SPI Ingress Socket

SPI Master
Transciever

8 4

SPI DMA
Thread

I2C Egress Socket

I2C Ingress Socket

I2C
Multi-Master

Trasciever

8 2

I2C DMA
Thread

MMIO Registers

8

I2S Left DMA
Thread

UART Egress Socket

UART Ingress Socket

UART
8 4
UUART
DMA
Thread

I2S Right Egress
Socket

I2S Left Egress
Socket

I2S transmitter

8
4

I2S Right
DMA
T88hhread

SPI Egress Socket

SPI Ingress Socket

SPI Master
Transciever

8 4

SPI DMA
Thread

I2C Egress Socket

I2C Ingress Socket

I2C
Multi-Master

Trasciever

8 2

I2C DMA
Thread

MMIO Registers

8

I2S Leftff DMMAA
Thread

IO Mux

D
M
A
Fa
br
ic

M
M
IO
Fa
br
ic

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 175

■ Capable of multimaster negotiations

■ Supports 100-kHz, 400-kHz, and 1-MHz clock

■ Supports 7-bit and 10-bit addressing modes

■ Supports clock stretching

■ Supports register-based and DMA-based transfers

■ FX3 can boot from I2C EEPROM

Refer to the application note AN76405 - EZ - USB FX3 Boot Options for more information.

8.1.2 I2C Interface Overview

The I²C protocol, created by Philips Semiconductor, allows data to be communicated between I2C devices over two wires. It
sends information serially using one line for data (SDA) and one for clock (SCL), as shown in Figure 8-2.

Figure 8-2. I2C Bus

An I2C master device controls the bus, controlling the clock and generating START/STOP signals that are required for the
communication. I2C slave devices simply listen to the bus and act based on the data sent on the I2C bus. The I2C master can
send data to a slave or receive data from a slave. Slave devices cannot transfer data among themselves. In a single master
system, the master device drives the clock, but slave devices can hold it low to synchronize slow slave devices (clock
stretching). The two signals (SCL and SDA) must be pulled high using external resistors, as they are open collector/drain
outputs and doing so implements a wired AND function. Any device pulling the signal low causes all the devices to see a low
logic value, and for logic high, all devices must stop driving the signal. A slow slave device may need to stop the bus while it
gathers data or services an interrupt. It can do so while holding the clock line (SCL) low, forcing the master into the wait state.
The master must then wait until SCL is released before proceeding. Multimaster mode is used when there is more than one
master on the I2C bus. This mode involves arbitration of the bus and clock synchronization.

FX3 is capable of functioning as a master transceiver and supports 100-kHz, 400-kHz, and 1-MHz operation. The I2C block
operates in big endian mode (most significant bit first) and supports both 7-bit and 10-bit slave addressing. It supports single
and burst (DMA) data transfers. Slow devices on its I2C bus can work with the FX3 I2C master by using clock stretching-
based flow control.

FX3 can function in multimaster I2C bus environments, as it is capable of carrying out negotiations with other masters on the
bus using SDA-based arbitration. Additionally, FX3 supports the repeated START feature to communicate with multiple slave

I2C Master
Microcontroller

I2C Slave
(EEPROM)

I2C Slave
(RTC)

SDA

SCL

V

R1 R2

www.cypress.com/?rID=63358

176 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

devices on the bus without losing ownership of the bus in between. Also, combined format communication is supported,
which allows you to load multiple bytes of data (including slave chip address phases) into special registers called
PREAMBLE. You can choose to place START, Repeated START, or STOP bits in between the data and also define the
master's behavior on receiving either a NAK or ACK for the data in the preamble. In applications such as EEPROM reads, this
greatly reduces the firmware complexity and execution time by packing the initial communication data into a transaction
header with the ability to abort the header transaction on receiving the NAK indications in the middle of the transactions. In
addition, the FX3 preamble repeat feature simplifies the firmware and saves time in situations that require time-consuming
polling. For example, after programming (writing) an I2C EEPROM, the device must be polled to check for completion of the
write operation. In this situation, the FX3 I2C block can be programmed automatically to repeat a single-byte preamble
containing the EEPROM's I2C address until the device responds with an ACK.

By programming a burst read count value for this block, burst reads from the slave (EEPROM, for example) can be performed
without byte-by-byte firmware intervention. In this case, the FX3 master receiver sends ACK response for all bytes received
as long as the burst read counter does not expire. When the last byte of the burst is received, the FX3 I2C block automatically
signals a NAK followed by a STOP bit, forcing the device to stop sending data.

8.2 FX3 I2C Operations Overview

The FX3 architecture supports register-based I2C operations for small transfers and offers DMA-based I2C operations for
larger transfers. This section explains the I2C operations in detail:

8.2.1 Reset and Initialization

■ On reset, all the blocks of the I2C core are placed in a disabled state. The core becomes operational only after the
ENABLE bit in the configuration registers of this block (I2C_CONFIG) is set by the firmware.

■ I2C clock speed is set in the GCTL block, as is the case for all FX3 blocks. GCTL_I2C_CORE_CLK is used to set the I2C
clock speed. The I2C core clock must run at 10 times the bit rate on the external I2C interface (for example, for 100-kHz
I2C, the I2C core clock must be set to 1 MHz). This requirement is necessary to generate the external clock with the
proper setup and hold with respect to SDA. At 100 kHz, a 50 percent duty cycle is required, and at 400 kHz and 1 MHz, a
40/60 (high/low) duty cycle is required to meet the timing parameters of the I2C specification.

■ The I2C clock must be enabled from GCTL before resetting the I2C block from the I2C_POWER register. Once the block
is reset, the ACTIVE bit of the I2C_POWER register is monitored by the firmware before accessing any of the I2C block
registers. Also, the block ENABLE bit of I2C_CONFIG can be set only after the block is in the active state.

8.2.2 Preamble

At the beginning of an operation (DMA or register mode), the master generates the start condition and transmits a 7-bit or 10-
bit slave address, requiring 1 or 2 bytes. The last bit in these bytes indicates R/W#. The host can begin writing to and reading
from the default address in the slave at this point. However, slave selection is typically followed by address specification in the
slave's internal address space, which can comprise multiple bytes. After sending the address, the FX3 controller resends the
start condition and slave address if the operation requires reading from the host, this time setting the R/W# bit high to indicate
a read operation. This part of the transaction is called the “preamble” in FX3. The preamble is typically followed by data
transfer, which can be one or several bytes..

8.2.3 Data Transfer

At the end of the preamble, the master transfers data that is derived from the connected DMA sockets or registers. The
DMA_MODE bit of the I2C_CONFIG register determines whether the I2C core is configured for DMA mode or register mode
transfers.

8.2.3.1 Programming Model

The FX3 I2C controller divides I2C transactions into two phases.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 177

1. Control Phase: This phase consists of the addresses being transmitted before the actual read or write data starts. It is
mainly handled by the I2C_PREAMBLE_CTRL and I2C_PREAMBLE_DATA registers. The I2C_PREAMBLE_DATA regis-
ter is 8 bytes long. Start and stop conditions after each byte (0: before first byte) are specified in the 16-bit
I2C_PREAMBLE_CTRL register.

2. Data Phase: This phase is handled by the I2C_COMMAND and I2C_BYTE_COUNT registers. The data phase can be
connected to either DMA- or register-based data paths. DMA programming is the same as for other blocks and is not
explained here.

8.2.3.2 Register-Based I2C Transfers

The FX3 firmware uses the I2C_PREAMBLE_CTRL, I2C_PREAMBLE_DATA, and I2C_COMMAND registers to initiate an
operation. It then performs writes or reads from the TX and RX registers. ARM registers that transmit data from the ARM core
to an external interface (in this case, I2C) are called EGRESS_DATA registers. For the receive function, that is, when READ
is set in the I2C_COMMAND register, the data is received from the external interface (in this case, I2C) and pushed into the
registers, called INGRESS_DATA registers. The firmware can be notified of completion by interrupt or by polling through the
status register. A register I2C_BYTE_COUNT is used to specify the number of bytes to be written out and the same register is
also used to determine the number of bytes received.

4-byte-deep FIFOs hold egress and ingress data in its register space. Based on the status of these FIFOs, the TX_SPACE,
TX_HALF, TX_DONE and RX_DATA, RX_HALF flags are set in the I2C_STATUS and I2C_INTR registers.

The firmware can clear the FIFOs by asserting TX_CLEAR and RX_CLEAR from the I2C_CONFIG register. Table 8-1 shows
the conditions for the assertion of flags:

Table 8-1. Conditions for Assertion of Flags

8.2.3.3 DMA-Based I2C Transfers

DMA-based transfers use the I2C sockets. The DMA interface supports sockets that are used for moving the data between
the peripheral and the USB 3.0 interconnect. DMA sockets that transmit I2C data are called egress sockets, and DMA
sockets that receive I2C data are called ingress sockets. I2C data is pushed into the DMA socket, when I2C interface is
configured for READ in I2C_COMMAND register. The FX3 firmware uses the I2C_PREAMBLE_CTRL,
I2C_PREAMBLE_DATA, and I2C_COMMAND registers to initiate an operation. The I2C transceiver reads the preamble and
command and then initiates the operation after consulting the availability of ingress or egress sockets. Ingress and egress
sockets can be programmed to interrupt the CPU upon transaction completion. The I2C controller always raises interrupts in
error conditions.

Once the expected number of data bytes has been received (indicated by BYTE_COUNT), then an end of transfer is
indicated to the DMA adapter by setting the flag RX_DONE (of I2C_STATUS and I2C_INTR) in both the register- and DMA-
based transfers.

At any point, the status of the I2C block can be read from I2C_COMMAND.I2C_STAT bits to indicate the status of the block
and I2C lines.

8.2.3.4 Starting a Transaction

1. Select the DMA mode and enable the block through the I2C_CONFIG register. This step needs to be done only once after
booting, unless you want to change the data-path used in the data phase.

2. Program the I2C Byte count register to indicate the number of bytes to be transferred in the data phase. If you want the
data phase to continue without any limit on the number of bytes, then program 0xFFFFFFFF. In this case, the data phase

Flag Asserted Egress FIFO State Ingress FIFO State

TX_SPACE Not full -

TX_HALF At least half empty -

TX_DONE Full -

RX_DATA - Not empty

RX_HALF - At least half full

178 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

can be terminated only by the FX3 firmware. The operation of the I2C_BYTE_COUNT register is identical in DMA and
register mode data paths. The SCK_SIZE register of the chosen socket can be set to zero to indicate an indefinite transfer
size in DMA.

3. Program the preamble and I2C_COMMAD registers. This step is explained in the next section through examples.

4. The transaction starts when I2C controller hardware detects the I2C_COMMAND.PREAMBLE_VALID bit.

8.2.3.5 Terminating Transactions: Software and Hardware Aborts

1. Transactions with a finite I2C_BYTE_COUNT are usually terminated by the hardware after the required number of bytes
is exchanged. The end of transfer is indicated through the TX_DONE and RX_DONE interrupts.

2. The firmware can disable the block using the I2C_CONFIG register to abort a transfer in progress at the end of the current
byte. In this case, the firmware must reset the I2C block before initiating a new transfer, and the new transfer should start
with a START condition. It is advisable to read the I2C_INGRESS_DATA register during read transactions before aborting
a transfer to avoid loss of data. The hardware may not generate a STOP in such cases depending upon when the abort
happened. The firmware must ensure that the bus is freed by issuing a transaction with a STOP condition, such as a slave
address or a general call address with a STOP condition, so that the bus is not deemed busy by other masters.

3. The hardware can terminate a transfer upon detecting a NACK from a slave or upon long periods of inactivity (SCK held
low by the slave) as defined in the I2C_TIMEOUT register. In this case, I2C_BYTES_TRANSFERRED in the data phase
indicates when the abort happened. For example, if a data NACK error happens at the end of the 5th byte, the value in
this register will be 5. If a timeout occurs while transmitting the 1st bit of the 11th byte, then this value will be 11 and so on.
If the hardware abort conditions occur during the preamble, the error codes indicate where in the preamble abort hap-
pened. NACK hardware aborts are indicated by an ERROR interrupt and the associated error codes.

8.2.3.6 Multimaster Arbitration

When multiple I2C master devices are present on the I2C bus, including FX3, then if FX3 sends a START condition and the
competing master sends a STOP condition, the SDA line will be low. In this situation, FX3 will consider itself to have won
arbitration since there is no way for it to detect a STOP sent by the competing master. On the other hand, if FX3 sent a STOP
and the other master sends a START, then FX3 will detect the START condition and FX3 loses control of the I2C bus, since
the SDA status does not match the expected value. Whenever FX3 loses control of the bus, a Lost Arbitration interrupt will be
raised. Upon receiving this interrupt, the FX3 firmware must reset the block, which will clear any data in the core pipeline.

8.2.3.7 Error Conditions

Error conditions are indicated in the I2C_STATUS register. All errors marked as nonsticky do not require firmware
intervention, while the errors marked sticky require the firmware to reset the I2C DMA sockets and reissue the command.

Note: If an ERROR bit is set in I2C_Status, it is recommended to disable and re-enable the I2C block.

8.2.4 Examples

This section shows you the example codes to write and read to an I2C slave device (EEPROM) using register-based and
DMA-based transfers from FX3. APIs to perform read and write accesses to an I2C device are provided with the FX3 SDK.
Refer to the Cyu3i2c.c file, which is located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\firmware\lpp_source
(after FX3 SDK installation) for the source code of I2C-related APIs. Refer to FX3APIGuide.pdf located at C:\Program Files
(x86)\Cypress\EZ-USB FX3 SDK\1.3\doc for more details on FX3 APIs.

8.2.4.1 Initialize I2C Block

The CyU3PI2cInit API initializes the FX3 I2C block. The I2C block is initialized to operate at the default frequency of 100 kHz.
The CyU3PI2cInit function definition follows.

CyU3PI2cInit (void)
{
 /* Set the clock frequency. This should precede the I2C power up */
 CyU3PI2cSetClock (100000);

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 179

 /* Initialize the LPP block if not already started. */
 CyU3PLppInit (CY_U3P_LPP_I2C, CyU3PI2cInt_ThreadHandler);
 CyU3PMutexCreate (&glI2cLock, CYU3P_NO_INHERIT);

 /* Power on the I2C module */
 I2C->lpp_i2c_power = 0;
 CyU3PBusyWait (10);
 I2C->lpp_i2c_power |= 1 << 31;
 while (!(I2C->lpp_i2c_power & CY_U3P_LPP_I2C_ACTIVE));

 /* Clear the error status */
 glI2cStatus = 0;

 /* Mark the module as active. */
 glIsI2cActive = CyTrue;
}

8.2.4.2 Configure I2C Block

The CyU3PI2cSetConfig API configures the FX3 I2C block. Following is the code for setting the I2C bus frequency to 400
kHz. DMA transfers are not enabled in the following code. i2cConfig.isDma would need to be set CyTrue(1) to enable DMA
transfers.
/* Start the I2C master block. The bit rate is set at 100 kHz. */
 CyU3PMemSet ((uint8_t *)&i2cConfig, 0, sizeof(i2cConfig));
 i2cConfig.bitRate = 400000;
 i2cConfig.busTimeout = 0xFFFFFFFF;
 i2cConfig.dmaTimeout = 0xFFFF;
 i2cConfig.isDma = CyFalse;

 CyU3PI2cSetConfig (&i2cConfig, NULL);

8.2.4.3 Reads and Writes Using Register Transfers

The CyU3PI2cReceiveBytes API reads data from the I2C slave in register mode, and the CyU3PI2cTransmitBytes API writes
data to an I2C slave in register mode. The following code performs reads and writes to an I2C slave using register transfers.

CyFxUsbI2cTransfer (uint16_t byteAddress, uint8_t devAddr, uint16_t byteCount, uint8_t
*buffer, CyBool_t isRead)
{
 CyU3PI2cPreamble_t preamble;
 uint16_t pageCount = (byteCount / glI2cPageSize);
 uint16_t resCount = glI2cPageSize;
 CyU3PReturnStatus_t status = CY_U3P_SUCCESS;
 if ((byteCount % glI2cPageSize) != 0)
 {
 pageCount ++;
 resCount = byteCount % glI2cPageSize;
 }

 while (pageCount != 0)
 {
 if (isRead) /* Read */
 {
 /* Update the preamble information. */
 preamble.length = 4;
 preamble.buffer[0] = devAddr;

180 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 preamble.buffer[1] = (uint8_t)(byteAddress >> 8);
 preamble.buffer[2] = (uint8_t)(byteAddress & 0xFF);
 preamble.buffer[3] = (devAddr | 0x01);
 preamble.ctrlMask = 0x0004;

 status = CyU3PI2cReceiveBytes (&preamble, buffer, (pageCount == 1) ? resCount :
glI2cPageSize, 0);

 }
 else /* Write */
 {
 /* Update the preamble information. */
 preamble.length = 3;
 preamble.buffer[0] = devAddr;
 preamble.buffer[1] = (uint8_t)(byteAddress >> 8);
 preamble.buffer[2] = (uint8_t)(byteAddress & 0xFF);
 preamble.ctrlMask = 0x0000;

 status = CyU3PI2cTransmitBytes (&preamble, buffer, (pageCount == 1) ? resCount :
glI2cPageSize, 0);

 /* Wait for the write to complete. */
 preamble.length = 1;
 status = CyU3PI2cWaitForAck(&preamble, 200);
 }

 /* An additional delay seems to be required after receiving an ACK. */
 CyU3PThreadSleep (1);

 /* Update the parameters */
 byteAddress += glI2cPageSize;
 buffer += glI2cPageSize;
 pageCount --;
 }
}

8.2.4.4 Reads and Writes Using DMA Transfers

A DMA channel (glI2cTxHandle) is created to transfer data to an I2C slave device, and another DMA channel
(glI2cRxHandle) is created to read data from the I2C slave device. The following code reads and writes to an I2C slave using
DMA transfers.

CyFxUsbI2cTransfer (uint16_t byteAddress, uint8_t devAddr, uint16_t byteCount, uint8_t
*buffer, CyBool_t isRead)
{
 CyU3PDmaBuffer_t buf_p;
 CyU3PI2cPreamble_t preamble;
 uint16_t pageCount = (byteCount / glI2cPageSize);
 CyU3PReturnStatus_t status = CY_U3P_SUCCESS;
 if ((byteCount % glI2cPageSize) != 0)
 {
 pageCount ++;
 }
 /* Update the buffer address. */
 buf_p.buffer = buffer;
 buf_p.status = 0;

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 181

 while (pageCount != 0)
 {
 if (isRead) /* Read */
 {
 /* Update the preamble information. */
 preamble.length = 4;
 preamble.buffer[0] = devAddr;
 preamble.buffer[1] = (uint8_t)(byteAddress >> 8);
 preamble.buffer[2] = (uint8_t)(byteAddress & 0xFF);
 preamble.buffer[3] = (devAddr | 0x01);
 preamble.ctrlMask = 0x0004;

 buf_p.size = glI2cPageSize;
 buf_p.count = glI2cPageSize;

 status = CyU3PI2cSendCommand (&preamble, glI2cPageSize, isRead);
 status = CyU3PDmaChannelSetupRecvBuffer (&glI2cRxHandle, &buf_p);
 status = CyU3PDmaChannelWaitForCompletion(&glI2cRxHandle, 0x7FFF);
 }
 else /* Write */
 {
 /* Update the preamble information. */
 preamble.length = 3;
 preamble.buffer[0] = devAddr;
 preamble.buffer[1] = (uint8_t)(byteAddress >> 8);
 preamble.buffer[2] = (uint8_t)(byteAddress & 0xFF);
 preamble.ctrlMask = 0x0000;

 buf_p.size = glI2cPageSize;
 buf_p.count = glI2cPageSize;

 status = CyU3PDmaChannelSetupSendBuffer (&glI2cTxHandle, &buf_p);
 status = CyU3PI2cSendCommand (&preamble, glI2cPageSize, isRead);
 status = CyU3PDmaChannelWaitForCompletion(&glI2cTxHandle, 0x7FFF);
 }

 /* Update the parameters */
 byteAddress += glI2cPageSize;
 buf_p.buffer += glI2cPageSize;
 pageCount --;

 /* Need a delay between write operations. */
 CyU3PThreadSleep (10);
 }
}

8.3 Serial Peripheral Interface

8.3.1 SPI Block Features

■ Supports master mode only

■ Supports all four SPI transfer modes (programmable SPI clock polarity and phase)

■ Comlies with the Motorola SPI specification in chapter 8 of the MC68HC11 reference manual

■ Supports register-based and DMA-based transfers

■ Supports programmable data unit length of 4 bit, 8 bit,16 bit, and 32 bit, MSB or LSB first

182 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

■ Provides the Chip Select (CS#) signal

■ Provides SPI clock up to 33 MHz

■ FX3 can boot from SPI flash/ EEPROM (refer to AN76405 - EZ-USB FX3 Boot Options for more information)

8.3.2 SPI Interface Overview

The SPI bus is a synchronous serial data link interface, named by Motorola, which operates in full duplex mode. Devices
communicate in master/slave mode where the master device initiates the data frame and provides the clock. Multiple slave
devices are allowed with individual slave select (chip select) lines. Sometimes SPI is called a four-wire serial bus, in contrast
to three-, two-, and one-wire serial buses.

During an SPI transmission, data is transmitted (shifted out serially) and received (shifted in serially) simultaneously. The
serial clock (SCK) synchronizes the shifting and sampling of information on the two serial data lines. A slave select line allows
an individual slave SPI device to be selected. Slave devices that are not selected do not interfere with SPI bus activities.

Figure 8-3. SPI Bus

The FX3 SPI block operates in master mode and facilitates standard full-duplex synchronous transfers using the master out,
slave in (MOSI), master in, slave out (MISO), serial interface clock (SCK), and slave select (SSN) pins. The roles of the four
SPI interface pins are as follows:

■ SCK: As the SPI master, FX3 provides this clock. The FX3 SPI interface clock can run up to 33 MHz. This clock is gated
so that start and stop of transaction can be signaled in conjunction with the SS line. Eight clock cycles are generated on
this line per transfer.

■ SSN: As the SPI master, FX3 drives the slave select line in a mode-dependent fashion along with SCK to signal the start
of the transaction. Depending upon mode, a slave can remain selected for multiple 8-bit transactions (based on Clock
Phase (CPHA) configuration), has to toggle between transactions, or can be firmware controlled. FX3 also supports firm-
ware control operation of the SSN line. It has a provision to drive SSN signal with a programmable lead and lag with
respect to SCK at the start and end of transmission.

■ MOSI: FX3 drives serial data on the MOSI line. Data can be driven on the positive or negative edge of SCK selected by a
configuration bit. The selected slave samples the data on the negative or positive edges respectively.

■ MISO: FX3 samples serial data on the MISO line. Data can be driven by the selected slave on the positive or negative
edge of SCK governed by a configuration bit. FX3 samples the data on the negative or positive edge respectively.

The SPI block supports single and burst (DMA) data transfers. The SPI transmit and SPI receive blocks can be enabled
independently using the TX_ENABLE/RX_ENABLE register settings. Independent shift registers are used for the transmit
and receive paths. The shift register length can be set to values between 4 and 32 bits. By default, the TX and RX registers
shift data to the left. This can be reversed, if necessary.

TX SHIFT REGISTER

RX SHIFT REGISTER
SHIFT REGISTER

MOSI

MISO

SCK

SSNControls

Master SPI Slave SPI

Shift register can be single or two
(as shown in Master)

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 183

The FX3 SPI block can share its MOSI, MISO, and SCLK pins with more than one slave connected to the SPI bus. In this
case, the SSN signal of the block cannot be used, and the multiple slave select signals need to be managed using GPIOs.

8.3.3 FX3 SPI Operations Overview

This section explains SPI operations.

8.3.3.1 Reset and Initialization

■ On reset, the SPI core is placed in a disabled state. The core becomes operational only after the firmware sets the
ENABLE bit in the configuration register of this block (SPI_CONFIG).

■ SPI clock speed is set in the GCTL block as is the case for all FX3 blocks. GCTL_SPI_CORE_CLK is used for setting the
SPI clock speed.

■ Once the block is reset, the firmware monitors the ACTIVE bit of the SPI_POWER register before accessing any of the
SPI block registers. The block ENABLE bit of SPI_CONFIG can be set only after the block is in the active state.

8.3.3.2 Modes Governing Transfers

The CPHA bit in the configuration register determines how a transfer starts.

1. CPHA=0: When CPHA=0, the slave starts monitoring the SCK line. The master first drives the data on the bus and then
toggles the clock to the active state.. The slave samples the data as soon as it detects the idle-to-active clock edge. The
master drives new data on the active-to-idle clock edge. Transfer ends when 8 bytes are transferred or aborts early by
deassertion of SSN signal from the master. When the SSN toggle mode is CPHA controlled as indicated by the SSNC-
TRL[1:0] bits, SSN returns to idle at the end of the transfer and asserts to begin a transfer.

2. CPHA=1: When CPHA=1, the master drives data on the idle-to-active clock edge, and the slave samples data on the
active-to-idle clock edge. Transfer ends when the word is transferred or aborts early by deassertion of SSN signal from
the master. When the SSN toggle mode is CPHA controlled as indicated by the SSNCTRL[1:0] bits, SSN can remain
asserted for multiple transfers when CPHA=1.

The CPOL bit defines the clock polarity. CPOL=0 means that the SCK is idle low. So the idle-to-active edge in this case is
the positive edge. The CPOL and CHPA bits need to be identical in all the devices connected to the SPI bus to ensure that
the data is sampled half a clock cycle after it is driven on the SPI bus.

8.3.4 SSN Control Configurations

At the beginning of a transfer, SCK is in idle and SSN is deasserted. SSN needs to be asserted (SSN=0) for the slave to begin
monitoring the SCK signal. SCK is driven by the SPI master only when data is being transferred. Conversely, when SCK
toggles, the status of the MISO line is interpreted as data when the RX mode is enabled. Once the TX mode is enabled, it is
the responsibility of the DMA producer to have data available, or SCK will go to idle. If the SPI block is configured to operate
in register mode, the SPI block expects to receive data if there is space in the RX register and transmits data if it exists in the
TX register. If any of these conditions are met, the SCK will not go to idle. If both are not met, then the SCK will go to idle.

The FX3 SPI supports a firmware-controlled SSN bit. When this mode is enabled, the value will be transmitted as is, except
when the DESELECT bit is set high, forcing slave deselecting. The firmware is entirely responsible for managing the polarity
and timing of this bit. When SSN is firmware controlled, there is no restriction on the DMA size. The firmware asserts the
SSN_BIT of SPI_CONFIG, and the SSN_BIT value will hold for the entire duration of the DMA transfer (as is the case with the
SPI EEPROM, where SSN remains asserted throughout). Upon completion of the transfer, the firmware can choose to
deassert SSN_BIT or leave it asserted. SSN is asserted for the entire multiword transaction.

The SPI block supports various lead and lag times between SSN and SCK as specified in the SPI_CONFIG register. the lead
of 0 is not supported. When the block is disabled, it must finish RX/TX of the current word.

When multiple slaves are connected to the SPI block, the SPI block handles SSN assertion for the default slave, and GPIO
lines handle SSN assertion for the other slaves under firmware control (The “default slave” is the one whose chip select is
connected to the FX3 SS# output pin). The DESELCT bit in SPI_CONFIG has to be set while accessing nondefault slaves,
logically disconnecting the default slave. The firmware can assert and deassert the GPIO line to select alternate slaves.

184 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

8.3.5 Data Transfers

The FX3 architecture supports register-based SPI operations for small transfers and DMA-based SPI operations for larger
transfers.

The data from the core side can be received either through the DMA interface or the register interface for transmitting it over
the SPI bus. The registers used on the ARM side to read the data from the core and convey it to the bus are called
EGRESS_DATA registers. The registers used to get the data from the external bus are called INGRESS_DATA registers. The
DMA interface supports sockets that are used for moving the data between the peripheral and the USB 3.0 interconnect. The
sockets used for transmitting the data to the bus are called EGRESS sockets. The DMA sockets that are used for receiving
the data from the bus are called INGRESS sockets.

Apart from the SCK and SSN configurations, SPI endianness also needs to be configured; this can be done by the ENDIAN
bit of the SPI_ CONFIG register.

8.4 Programming Model

SPI is a simple block that does not interpret data. The SPI programming model is similar to I2C except for the control phase.
No control phase is required in SPI, so only the data phase exists.

8.4.1 Register-Based Transfers

4-byte-deep FIFOs hold egress and ingress data in its register space. Based on the status of FIFOs TX_SPACE, TX_HALF,
TX_DONE, and RX_DATA, the RX_HALF flags are asserted in the SPI_STATUS and SPI_INTR registers to indicate to the
firmware.

The firmware can clear the FIFOs by asserting TX_CLEAR and RX_CLEAR from the SPI_CONFIG register. Table 8-2 shows
the conditions for the assertion of flags.

Table 8-2. Conditions for Assertion of Flags

8.4.2 DMA-Based Transfers

Ingress and egress sockets can be programmed to interrupt the CPU upon transaction completion. The transceiver always
raises interrupts in error conditions.

There are two separate BYTE_COUNT registers for RX and TX paths. These two registers can be used only for DMA mode
and cannot be used for register mode transfers. The SPI_TX_BYTE_COUNT register specifies the number of bytes to be
written out during DMA transfer. The SPI_RX_BYTE_COUNT register indicates the number of bytes received. Register mode
transfers are always treated as infinite-length transfers.

Once the expected number of data bytes has been received or transmitted (indicated by SPI_TX_BYTE_COUNT or
SPI_RX_BYTE_COUNT), then an end of transfer is indicated to the DMA adapter by setting the RX_DONE or TX_DONE flag
to 1 respectively (of SPI_STATUS and SPI_INTR) in DMA-based transfers.

As SPI protocol is very simple, no special error handling is required apart from handling FIFO overflow and underflow.

FLAG Asserted Egress FIFO State Ingress FIFO State

TX_SPACE Not full -

TX_HALF At least half empty -

TX_DONE Full -

RX_DATA - Not empty

RX_HALF - At least half full

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 185

8.5 Examples

This section shows example codes to write and read to an SPI slave device (flash memory) using register-based and DMA-
based transfers from FX3. APIs to perform read and write accesses to an SPI device are provided with the FX3 SDK. Refer to
the Cyu3spi.c file located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\firmware\lpp_source (after FX3 SDK
installation) for the source code of SPI-related APIs. Refer to FX3APIGuide.pdf located at C:\Program Files
(x86)\Cypress\EZ-USB FX3 SDK\1.3\doc for more details on FX3 APIs.

8.5.1 Initialize SPI Block

The CyU3PSpiInit API initializes the FX3 SPI block. The SPI block is initialized to operate at the default frequency of 1 MHz.
Following is the CyU3PSPIInit function definition.

CyU3PSpiInit (void)
{
 /* Set the clock freqency. This should precede the SPI power up */
 CyU3PSpiSetClock (1000000);

 CyU3PMutexCreate (&glSpiLock, CYU3P_NO_INHERIT);
 /* Identify if the LPP block has been initialized. */
 CyU3PLppInit (CY_U3P_LPP_SPI, CyU3PSpiInt_ThreadHandler);

 /* Power on the SPI module */
 SPI->lpp_spi_power &= ~(1 << 31);
 CyU3PBusyWait (10);
 SPI->lpp_spi_power |= 1 << 31;
 /* Wait till the active bit is set */
 while (!(SPI->lpp_spi_power & CY_U3P_LPP_SPI_ACTIVE));

 /* Mark the module active. */
 glIsSpiActive = CyTrue;
}

8.5.2 Configure SPI Block

The CyU3PSpiSetConfig API configures the FX3 SPI block. Following is the code for setting the SPI bus frequency to 8 MHz.
The word length is configured to 8 bits, and slave select (SSN) is configured to be controlled by the FX3 firmware.

CyU3PMemSet ((uint8_t *)&spiConfig, 0, sizeof(spiConfig));
 spiConfig.isLsbFirst = CyFalse;
 spiConfig.cpol = CyTrue;
 spiConfig.ssnPol = CyFalse;
 spiConfig.cpha = CyTrue;
 spiConfig.leadTime = CY_U3P_SPI_SSN_LAG_LEAD_HALF_CLK;
 spiConfig.lagTime = CY_U3P_SPI_SSN_LAG_LEAD_HALF_CLK;
 spiConfig.ssnCtrl = CY_U3P_SPI_SSN_CTRL_FW;
 spiConfig.clock = 8000000;
 spiConfig.wordLen = 8;

 CyU3PSpiSetConfig (&spiConfig, NULL);

186 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

8.5.3 Reads and Writes Using Register Transfers

The CyU3PSpiReceiveWords API reads data from the SPI slave device in register mode, and the CyU3PSpiTransmitBytes
API writes data to an SPI slave device in register mode. Following is the code for performing reads and writes to an SPI slave
using register transfers.
CyFxSpiTransfer (uint16_t pageAddress, uint16_t byteCount, uint8_t *buffer, CyBool_t
isRead)
{
 uint8_t location[4];
 uint32_t byteAddress = 0;
 uint16_t pageCount = (byteCount / glSpiPageSize);

 if ((byteCount % glSpiPageSize) != 0)
 {
 pageCount ++;
 }

 byteAddress = pageAddress * glSpiPageSize;
 while (pageCount != 0)
 {
 location[1] = (byteAddress >> 16) & 0xFF; /* MS byte */
 location[2] = (byteAddress >> 8) & 0xFF;
 location[3] = byteAddress & 0xFF; /* LS byte */

 if (isRead) /*Read*/
 {
 location[0] = 0x03; /* Read command. */

 status = CyFxSpiWaitForStatus ();
 CyU3PSpiSetSsnLine (CyFalse);
 status = CyU3PSpiTransmitWords (location, 4);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (2, "SPI READ command failed\r\n");
 CyU3PSpiSetSsnLine (CyTrue);
 }

 status = CyU3PSpiReceiveWords (buffer, glSpiPageSize);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PSpiSetSsnLine (CyTrue);
 }

 CyU3PSpiSetSsnLine (CyTrue);
 }
 else /* Write */
 {
 location[0] = 0x02; /* Write command */

 status = CyFxSpiWaitForStatus ();
 CyU3PSpiSetSsnLine (CyFalse);
 status = CyU3PSpiTransmitWords (location, 4);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (2, "SPI WRITE command failed\r\n");
 CyU3PSpiSetSsnLine (CyTrue);
 }

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 187

 status = CyU3PSpiTransmitWords (buffer, glSpiPageSize);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PSpiSetSsnLine (CyTrue);
 }

 CyU3PSpiSetSsnLine (CyTrue);
 }

 /* Update the parameters */
 byteAddress += glSpiPageSize;
 buffer += glSpiPageSize;
 pageCount --;

 CyU3PThreadSleep (10);
 }
}

8.5.4 Reads and Writes Using DMA Transfers

A DMA channel (glSpiTxHandle) is created to transfer data to an SPI slave device, and another DMA channel
(glSpiRxHandle) is created to read data from the SPI slave device. Following is the code for performing reads and writes to an
SPI slave using DMA transfers.
CyFxSpiTransfer (uint16_t pageAddress, uint16_t byteCount, uint8_t *buffer, CyBool_t
isRead)
{
 CyU3PDmaBuffer_t buf_p;
 uint8_t location[4];
 uint32_t byteAddress = 0;
 uint16_t pageCount = (byteCount / glSpiPageSize);
 if ((byteCount % glSpiPageSize) != 0)
 {
 pageCount ++;
 }

 buf_p.buffer = buffer;
 buf_p.status = 0;

 byteAddress = pageAddress * glSpiPageSize;
 while (pageCount != 0)
 {
 location[1] = (byteAddress >> 16) & 0xFF; /* MS byte */
 location[2] = (byteAddress >> 8) & 0xFF;
 location[3] = byteAddress & 0xFF; /* LS byte */

 if (isRead) /* Read */
 {
 location[0] = 0x03; /* Read command. */

 buf_p.size = glSpiPageSize;
 buf_p.count = glSpiPageSize;

 status = CyFxSpiWaitForStatus ();
 CyU3PSpiSetSsnLine (CyFalse);
 status = CyU3PSpiTransmitWords (location, 4);
 if (status != CY_U3P_SUCCESS)
 {

188 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 CyU3PDebugPrint (2, "SPI READ command failed\r\n");
 CyU3PSpiSetSsnLine (CyTrue);
 }

 CyU3PSpiSetBlockXfer (0, glSpiPageSize);

 status = CyU3PDmaChannelSetupRecvBuffer (&glSpiRxHandle, &buf_p);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PSpiSetSsnLine (CyTrue);
 }
 status = CyU3PDmaChannelWaitForCompletion (&glSpiRxHandle, 5000);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PSpiSetSsnLine (CyTrue);
 }

 CyU3PSpiSetSsnLine (CyTrue);
 CyU3PSpiDisableBlockXfer (CyFalse, CyTrue);
 }
 else /* Write */
 {
 location[0] = 0x02; /* Write command */

 buf_p.size = glSpiPageSize;
 buf_p.count = glSpiPageSize;

 status = CyFxSpiWaitForStatus ();
 CyU3PSpiSetSsnLine (CyFalse);
 status = CyU3PSpiTransmitWords (location, 4);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (2, "SPI WRITE command failed\r\n");
 CyU3PSpiSetSsnLine (CyTrue);
 }

 CyU3PSpiSetBlockXfer (glSpiPageSize, 0);

 status = CyU3PDmaChannelSetupSendBuffer (&glSpiTxHandle, &buf_p);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PSpiSetSsnLine (CyTrue);
 }
 status = CyU3PDmaChannelWaitForCompletion(&glSpiTxHandle, 5000);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PSpiSetSsnLine (CyTrue);
 }

 CyU3PSpiSetSsnLine (CyTrue);
 CyU3PSpiDisableBlockXfer (CyTrue, CyFalse);
 }

 /* Update the parameters */
 byteAddress += glSpiPageSize;
 buf_p.buffer += glSpiPageSize;
 pageCount --;

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 189

 CyU3PThreadSleep (10);
 }
}

8.6 Universal Asynchronous Receiver Transmitter

8.6.1 UART block features

■ Programmable baud rate up to 4096 kbps

■ Supports 10-bit and 11-bit modes.

■ Supports asynchronous serial mode of communication

■ Uses 16 times oversampling and uses RX bit polling to improve the error rate in transmit and receive operations

■ Supports flow control by adding two hardware pins (RTS and CTS) to the UART

8.6.2 UART Overview

The UART allows asynchronous full-duplex transfer using the UART_TX and UART_RX pins. These pins are held high in the
absence of transmission. Transmission starts when a 0-level start bit is transmitted and ends when a 1-level stop bit is
transmitted. This represents the default 10-bit transmission mode. A 9th parity bit can be appended to data in the 11-bit
transmission mode.

Figure 8-4. UART

The FX3 UART block can operate at numerous baud rates, ranging from 300 bps to 4608 Kbps and supports both one and
two stop bits. Flow control pins, RTS (Request To Send) and CTS (Clear To Send) are supported in hardware. This block
supports both single and burst (DMA) data transfers.

The transmitter and receiver components of the UART block can be individually enabled. Both hardware and software flow
control are supported and they can be set individually on the transmitter and receiver components.

External interface devices must be used to convert the logic level signals of the UART to and from the external voltage
signaling standards, such as RS-232, RS-422, and RS-485.

UART UART

UART TX

UART RX

UART RTS

UART CTS

190 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

8.7 FX3 UART Operations Overview

The FX3 architecture supports register-based UART operations for small transfers and DMA-based UART operations for
larger transfers. This section explains the UART operations.

8.7.1 Reset and Initialization

■ Upon reset, the UART block is placed in a disabled state. The UART block becomes operational when firmware sets the
ENABLE bit in the configuration register (UART_CONFIG).

■ UART clock speed is set in the GCTL block as is the case for all FX3 blocks. GCTL_UART_CORE_CLK is used to set the
UART clock speed. The UART core clock must be running at 16 times the frequency at the external interface (for exam-
ple, for a 100-kHz UART clock, the UART core clock is set to 1.6 MHz). This is required to generate the external clock with
the proper setup and hold with respect to the data.

■ Once the block is reset, firmware monitors the ACTIVE bit in the UART_POWER register before accessing any of the
UART block registers. Also, the block ENABLE bit of the UART_CONFIG register can be set only after the block is in the
active state.

8.7.2 Programming Model

The UART programming model is similar to I2C except for the control phase. No control phase is required in a UART, so only
the data phase exists. Data transfers can be either register based or DMA based.

8.7.3 Register-Based Transfers

ARM registers that convey core data to the data from the core and transmit it onto the bus are called EGRESS_DATA
registers. The set of registers used for receiving the data from the bus are called INGRESS_DATA registers. The firmware
can be notified of completion by interrupt or by polling through the status register.

4-byte-deep FIFOs hold egress and ingress data in their register spaces. Based on the status of FIFOs TX_SPACE,
TX_HALF, TX_DONE and RX_DATA, RX_HALF flags are asserted in the UART_STATUS and UART_INTR registers.
Firmware monitors these flags to perform data transfers.

The firmware can clear the FIFOs by asserting TX_CLEAR and RX_CLEAR bits in the UART_CONFIG register. Table 8-3
shows the conditions for the assertion of flags:

Table 8-3. Conditions for Assertion of Flags

8.7.3.1 DMA-Based Transfers

DMA based transfers use the UART sockets. The DMA interface supports sockets that are used to move the data between
the peripheral and the USB 3.0 interconnect. The sockets used for transmitting the data to the bus are called egress sockets.
The DMA sockets that are used for receiving the data from the bus (over the RX line) are called ingress sockets. Ingress and
egress sockets can be programmed to interrupt the CPU upon transaction completion. The transceiver always raises
interrupts in error conditions.

There are two separate BYTE_COUNT registers for the RX and TX paths. These two registers can be used only for DMA
mode and not for register mode transfers. The UART_TX_BYTE_COUNT register specifies the number of bytes to be written
out during DMA transfer. The UART_RX_BYTE_COUNT register is used to read the number of bytes received. Register
mode transfers are always treated as infinite-length transfers.

FLAG Asserted Egress FIFO State Ingress FIFO State

TX_SPACE Not full -

TX_HALF At least half empty -

TX_DONE Full -

RX_DATA - Not empty

RX_HALF - At least half full

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 191

Once the expected number of data bytes has been received or transmitted (indicated by UART_TX_BYTE_COUNT or
UART_RX_BYTE_COUNT), an end of transfer is indicated to the DMA adapter by setting the flag RX_DONE or TX_DONE to
1 respectively (of UART_STATUS and UART_INTR) in DMA-based transfers.

8.7.3.2 Error Conditions

Error conditions are indicated in the UART_STATUS register. All errors marked as nonsticky do not require firmware
intervention while the errors marked as sticky require the firmware to reset the UART DMA sockets and reissue the
command.

8.7.4 Examples

This section shows the example codes to receive and transfer data from the FX3 UART block APIs to access the UART block
are provided with the FX3 SDK. Refer to the Cyu3uart.c file located at C:\Program Files (x86)\Cypress\EZ-USB FX3
SDK\1.3\firmware\lpp_source (after FX3 SDK installation) for the source code of UART-related APIs. Refer to
FX3APIGuide.pdf located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\doc for more details on FX3 APIs.

8.7.4.1 Initialize UART Block

The CyU3PUartInit API initializes the FX3 UART block. The UART block is initialized to operate at the default baud rate of
9600. The CyU3PUARTInit function definition follows.

CyU3PUartInit (void)
{

 CyU3PMutexCreate (&glUartLock, CYU3P_NO_INHERIT);

 /* Set the clock to a default value.
 * This should prcede the UART power up*/
 CyU3PUartSetClock (9600);
 /* Identify if the LPP block has been initialized. */
 CyU3PLppInit (CY_U3P_LPP_UART,CyU3PUartInt_ThreadHandler);
 /* Hold the UART block in reset. */
 UART->lpp_uart_power &= ~(1 << 31);
 CyU3PBusyWait (10);
 UART->lpp_uart_power |= (1 << 31);

 /* Wait for the active bit to be asserted by the hardware */
 while (!(UART->lpp_uart_power & CY_U3P_LPP_UART_ACTIVE));

 /* Mark the module as active. */
 glIsUartActive = CyTrue;
}

8.7.4.2 FX3 Firmware to Send UART Messages and to Receive Fixed Bytes of Text

The following code prints messages on a user interface like HyperTerminal or TeraTerm and receives a fixed number of bytes
of text from the same user interface.

■ UART block of FX3 is configured for the following settings: Baud rate: 115200, one stop bit, no parity, no flow control, both
TX and RX paths enabled, and DMA transfers enabled.

■ uartIntrCb callback function to receive UART events is registered using the CyU3PUartSetConfig API.

■ Value 0xFFFFFFFFU is passed for the TX path to specify infinite or indefinite data transmission.

■ Value 4 is passed for the RX path to specify that only 4 bytes of data transfer is allowed. This means FX3 firmware can
process the input UART messages only after 4 characters are entered in TeraTerm. For example, if you enter 3 then the

192 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

FX3 firmware waits for you to enter another character. If you enter 5 then the FX3 firmware can read the first 4 characters
and wait for 3 more characters to be entered on TeraTerm.

 CyU3PUartConfig_t uartConfig;
 CyU3PReturnStatus_t apiRetStatus = CY_U3P_SUCCESS;

 /* Initialize the UART for printing debug messages */
 apiRetStatus = CyU3PUartInit();

 /* Set UART configuration */
 CyU3PMemSet ((uint8_t *)&uartConfig, 0, sizeof (uartConfig));
 uartConfig.baudRate = CY_U3P_UART_BAUDRATE_115200;
 uartConfig.stopBit = CY_U3P_UART_ONE_STOP_BIT;
 uartConfig.parity = CY_U3P_UART_NO_PARITY;
 uartConfig.txEnable = CyTrue;
 uartConfig.rxEnable = CyTrue;
 uartConfig.flowCtrl = CyFalse;
 uartConfig.isDma = CyTrue;

 apiRetStatus = CyU3PUartSetConfig (&uartConfig, uartIntrCb);

 /* Set the UART transfer to a really large value. */
 apiRetStatus = CyU3PUartTxSetBlockXfer (0xFFFFFFFF);

 /* Set the UART transfer to 4 */
 apiRetStatus = CyU3PUartRxSetBlockXfer (4);

 /* Initialize the debug module. */
 apiRetStatus = CyU3PDebugInit (CY_U3P_LPP_SOCKET_UART_CONS, 8);
}

Now you can use the CyU3PDebugPrint API to print debug messages on TeraTerm.

A DMA manual channel needs to be created between the UART producer socket and the CPU consumer socket to get data
into the FX3 from a user interface like TeraTerm. A minimum-size DMA buffer (16 bytes) is allocated for this data path.

 dmaCfg.size = 16;
 dmaCfg.count = 1;
 dmaCfg.prodSckId = CY_U3P_LPP_SOCKET_UART_PROD;
 dmaCfg.consSckId = CY_U3P_CPU_SOCKET_CONS;
 dmaCfg.dmaMode = CY_U3P_DMA_MODE_BYTE;
 /* Enabling the callback for produce event. */
 dmaCfg.notification = CY_U3P_DMA_CB_PROD_EVENT;
 dmaCfg.cb = 0;
 CyU3PDmaChannelCreate (&glChHandleUARTtoCPU, CY_U3P_DMA_TYPE_MANUAL_IN, &dmaCfg);
 CyU3PDmaChannelSetXfer (&glChHandleUARTtoCPU, 0);

The UART callback function definition follows. The firmware needs to check for the RX_DONE event to learn whether the
required number of bytes was received. The DMA channel created for the RX path is wrapped up after receiving the
RX_DONE event. The received data is printed back on the HyperTerminal and the DMA buffer is cleared for receiving the
next set of data from the HyperTerminal.

void uartIntrCb(CyU3PUartEvt_t evt, CyU3PUartError_t error)
{

 if (evt == CY_U3P_UART_EVENT_RX_DONE)

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 193

 {
 CyU3PDmaChannelSetWrapUp (&glChHandleUARTtoCPU);
 CyU3PDmaChannelGetBuffer (&glChHandleUARTtoCPU, &inBuf_p, CYU3P_NO_WAIT);
 CyU3PDebugPrint (4, "%d %d %d %d\n\r",inBuf_p.buffer[0],inBuf_p.buf-
fer[1],inBuf_p.buffer[2],
 inBuf_p.buffer[3]);
 CyU3PDmaChannelDiscardBuffer (&glChHandleUARTtoCPU);
 CyU3PUartRxSetBlockXfer (4);
 }
}

8.8 Integrated Interchip Sound Interface

8.8.1 I2S Block Features

■ Supports I2S transmitter function as master

■ Transmits data at 8, 16, 32, 44.1, 48, 96, 192 kHz

■ Supplies SCK at 64*WS (Word Select) frequencies

■ Transmits 8-, 16-, 24-, 32-bit data values

■ Default behavior is:

❐ WS = 0 means left channel

❐ Data values should be zero padded at LSB to 32 bits

❐ MSB is transmitted first

■ Nondefault behavior is controlled by bits in the configuration register.

■ FX3 is capable of supplying MCLK derived from the PLL when configured as output; however, this clock is not expected to
be of high-fidelity quality.

8.8.2 I2S Overview

I2S is a serial bus standard used to connect digital audio devices. It is used to communicate PCM audio data between
integrated circuits in an electronic device. The I2S bus separates the clock and serial data signals, resulting in a lower jitter
than a normal communications system that recovers the clock from the data stream.

FX3 supports left-justified and right-justified variants of the I2S protocol as defined in the TLV320AIC31 datasheet by Texas
Instruments.

The I2S bus handles only audio data, while the other signals such as subcoding and control are transferred separately. To
minimize the number of pins required and to keep the interface simple, a 3-line serial bus is used. As shown in Figure 8-5, it
consists of a signal for two time-multiplexed data channels (I2S SD), a word select line (I2S WS), and a clock line (I2S SCK).
The roles of the three I2S interface pins and MCLK are as follows:

Figure 8-5. I2S Interface

1. WS: The word select line indicates the channel being transmitted:

WS = 0; channel 1 (left)

WS = 1; channel 2 (right)

Transmitter Receiver

I2S SCK

I2S WS

I2S SD

194 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Typical frequencies for WS are 44.1 kHz and 48 kHz, which represent sampling rates for audio data. The I2S master is
expected to supply this clock.

2. SCK: Provides the clock for exchanging the one-bit serial data. Audio data can be an 8-, 16-, 24-, or 32-bit value. The I2S
standard specifies that the SCK should be a fixed multiple of WS (64X), and if fewer than 32 bits are transmitted, the LSBs
should be padded with zeroes. However, some implementations are known to stop SCK, which is controlled by a configu-
ration bit. The I2S master is expected to supply this clock.

3. SD: This line carries the serial data clocked using SCK. Most Significant Bit (MSB) is transmitted first. The standard spec-
ifies that the LSBs should be zero padded to transmit a word (32-bit value). Either the master or a slave can drive this line.

4. MCLK: Many codecs expect the master to supply them with a 256X WS master clock. This clock is carried over the MCLK
pin. For high-quality audio, MCLK is configured as an input driven by a crystal.

The I2S block can be configured to support different audio word widths, endianness, number of channels, and data rate.
By default, the standard protocol is most significant bit first, but this can be reversed. FX3 also supports the left-justified
and right-justified variants of the protocol. When the block is enabled in left-justified mode, the left channel audio sample
is sent first on the I2S SD line.

In mono mode, the "left data" is sent to both channels on the receiver (WordSelect = Left and WordSelect = Right). In the
variable SCK mode, WS (WordSelect) toggles every Nth edge of SCK, where N is the word width chosen. In fixed SCK
mode, however, WS toggles every 32nd SCK edge. In this mode, the audio sample is zero padded to 32 bits.

8.8.3 FX3 I2S Operations Overview

FX3 supports two types of I2S operations; one word at a time (SGL_LEFT_DATA, SGL_RIGHT_DATA) for small transfers and
DMA-based I2S operations for larger transfers. Two special modes of operation, Mute and Pause, are supported. When Mute
is held asserted, the DMA data is ignored, and zeros are transmitted instead. When paused, the DMA data flow into the block
is stopped, and zeros are transmitted over the interface.

■ I2S DMA sockets: I2S exchanges data with the system memory through two 32-bit DMA sockets. The left and right chan-
nels have separate sockets as most of the audio algorithms generate data in that manner. The sockets are configured to
be a word stream, which means that their readiness signals the availability of a word of data or memory availability for
receiving a word of data. However, they are typically configured to have larger buffers, and the producer is expected to
generate a larger quantity of data at a time to minimize the latency while switching the DMA sockets. The sockets supply
byte-packed data; 8-, 16-, 24-, and 32 bit words are supported.

■ I2S transceiver: The I2S transceiver will not begin transmission until both the left and right egress socket have data. It
then pulls data in the order determined by the MODE_WS bit, serializes it, and clocks it out using SCK. The block has a
clock generation mechanism to generate WS and SCK at the specified rates.

8.8.4 Programming Model

This section explains the I2S operations.

8.8.4.1 Start Transmission

1. The firmware creates a DMA channel between a producer socket and the I2S consumer socket.

2. The firmware enables the I2S block.

3. As soon as the I2S bock is enabled and the socket is ready, the I2S clock starts toggling and data transmission occurs.

8.8.4.2 Mute Condition

1. When Mute is asserted, discard the DMA data, andtransmit zeros instead.

2. When Mute is deasserted, do not discard the DMA data, and transmit it.

8.8.4.3 Pause Condition

1. When Pause is asserted, transmit the current word pair, and then stop the data flow into the I2S block and transmit zeros.
However, receive the data and buffer it for the previous request(s). Pause has priority over Mute if both are asserted.

2. Assert the PAUSED bit in the I2S_STATUS register.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 195

8.8.4.4 Buffer Underflow

1. When the DMA buffer runs out of data but end of transfer is not high, treat this as a Mute condition. That is, transmit zeros
until both channels have data in stereo mode and the left channel has data in mono mode.

2. Assert the NO_DATA bit in the I2S_STATUS register.

3. Raise an interrupt if interrupts are enabled in the firmware.

4. The clock continues to run when interrupted.

5. Deassert the NO_DATA bit in the I2S_STATUS register upon receiving the socket active signal from the DMA.

6. When only one channel is underflowing, treat it is as an underflow for both the channels to maintain synchronization. This
means mute both channels (discard DMA data and transmit zeros from the channel with data) until data for both channels
is available.

8.8.4.5 Stop Event

1. The firmware can signal a stop event by disabling the block anytime.

2. Upon receiving this event, finish transmitting the current word pair and shift-in/parallel load zeros in the serializer.

3. Discard any untransmitted data in the pipelines.

4. After aborting or completing an existing transaction, a stop event must be generated before starting a new transaction.

8.8.4.6 Fixed Clock Mode

In fixed clock (FIXED_SCK) mode, SCK is always 64xWS, and left and right data is padded to 32 bits. When FIXED_SCK=0
(called continuous transmission mode),

SCK=2 x (number of bits in sample) x WS.

The I2S master is expected to supply this clock. FX3 derives the clock by dividing MCLK and gating it when transmission
ends. FIXED_SCK=0 is not supported when the number of bits per sample is set to 18 and 24, since MCLK is 256xWS and
256 is not divisible by 36 or 48. The main difference in the FIXED and non-FIXED SCK mode is the frequency of the SCK and
the padding behavior.

8.8.4.7 Data Shift Mode

The I2S protocol is specified to be MSB first, but the FX3 I2S block supports programmable bit order so that it can interface
with different devices.

8.8.4.8 Padding

Padding refers to adding extra zero bits to a sample received from the DMA to make a 32-bit value. This value is then
transmitted from left to right. No padding is necessary when FIXED_CLOCK=0, since the exact number of bit clock transitions
is available.

8.8.4.9 Error Conditions

Error conditions are indicated in the I2S_STATUS register. Errors denoted as nonsticky do not require firmware intervention.
Errors marked sticky require the firmware to reset the I2S DMA sockets and reissue the command.

8.8.4.10 Examples

This section shows an example code to transfer data from the FX3 I2S block. APIs to access the I2S block are provided with
the FX3 SDK. Refer to the Cyu3i2s.c file located at C:\Program Files (x86)\Cypress\EZ-USB FX3
SDK\1.3\firmware\lpp_source (after FX3 SDK installation) for the source code of the UART=related APIs. Refer to
FX3APIGuide.pdf located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\doc for more details about the FX3 APIs.

196 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

8.8.4.11 Initialize I2S Block

The CyU3PI2sInit API initializes the FX3 I2S block. The I2S block is initialized to operate at the default sampling rate of 8 kHz.
The CyU3PI2sInit function definition follows.

CyU3PI2sInit (void)
{
 CyU3PMutexCreate (&glI2sLock, CYU3P_NO_INHERIT);

 /* Set the clock frequency. This should precede the I2S power up. Setting it to stereo
fixed mode. */
 status = CyU3PI2sSetClock (CY_U3P_I2S_DEFAULT_SAMPLE_RATE * 64);
 /* Identify if the LPP block has been initialized. */
 status = CyU3PLppInit (CY_U3P_LPP_I2S,CyU3PI2sInt_ThreadHandler);

 /* Power on the I2S module */
 I2S->lpp_i2s_power &= ~(1 << 31);
 CyU3PBusyWait (10);
 I2S->lpp_i2s_power |= 1 << 31;
 while (!(I2S->lpp_i2s_power & CY_U3P_LPP_I2S_ACTIVE));

 /* Mark the module active. */
 glIsI2sActive = CyTrue;
}

8.8.4.12 Configure I2S Interface

The CyU3PI2sSetConfig API configures the FX3 I2S block. Following is the code for setting the I2S interface sampling
frequency of 44.1 kHz. A sample word is configured to 16 bits, and DMA transfers are enabled.

/* Configure the I2S interface. */
 CyU3PMemSet ((uint8_t *)&i2sCfg, 0, sizeof (i2sCfg));
 i2sCfg.isMono = CyFalse;
 i2sCfg.isLsbFirst = CyFalse;
 i2sCfg.isDma = CyTrue;
 i2sCfg.padMode = CY_U3P_I2S_PAD_MODE_NORMAL;
 i2sCfg.sampleRate = CY_U3P_I2S_SAMPLE_RATE_44_1KHz;
 i2sCfg.sampleWidth = CY_U3P_I2S_WIDTH_16_BIT;
 status = CyU3PI2sSetConfig (&i2sCfg, NULL);

8.8.4.13 Transferring Data from USB Interface to I2S Interface Using DMA Transfers

The FX3 firmware source code to transfer the data from EP1 OUT to the left channel and data received on EP2 OUT to the
right channel of an I2S amplifier/speaker follows. The DMA buffer size is defined based on the USB speed: 64 for Full Speed,
512 for High Speed, and 1024 for SuperSpeed. Auto DMA channels are created between two sockets of the USB and the left
and right I2S sockets.
 /* Identify the usb speed. Once that is identified, create a DMA channel and start the
transfer on this. Based on the Bus Speed configure the endpoint packet size */
 switch (usbSpeed)
 {
 case CY_U3P_FULL_SPEED:
 size = 64;
 break;

 case CY_U3P_HIGH_SPEED:
 size = 512;

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 197

 break;

 case CY_U3P_SUPER_SPEED:
 size = 1024;
 break;

 default:
 break;
 }

 CyU3PMemSet ((uint8_t *)&epCfg, 0, sizeof (epCfg));
 epCfg.enable = CyTrue;
 epCfg.epType = CY_U3P_USB_EP_BULK;
 epCfg.burstLen = 1;
 epCfg.streams = 0;
 epCfg.pcktSize = size;

 /* Producer 1 endpoint configuration */
 status = CyU3PSetEpConfig(CY_FX_EP_PRODUCER_1, &epCfg);

 /* Producer 2 endpoint configuration */
 status = CyU3PSetEpConfig(CY_FX_EP_PRODUCER_2, &epCfg);

 /* Create a DMA Auto channel between two sockets of the U port and the L and R I2S sock-
ets. DMA size is set based on the USB speed. */
 dmaCfg.size = size;
 dmaCfg.count = 8;
 dmaCfg.prodSckId = CY_FX_EP_PRODUCER_1_SOCKET;
 dmaCfg.consSckId = CY_U3P_LPP_SOCKET_I2S_LEFT;
 dmaCfg.dmaMode = CY_U3P_DMA_MODE_BYTE;
 dmaCfg.notification = 0;
 dmaCfg.cb = NULL;
 dmaCfg.prodHeader = 0;
 dmaCfg.prodFooter = 0;
 dmaCfg.consHeader = 0;
 dmaCfg.prodAvailCount = 0;
 CyU3PDmaChannelCreate (&glI2sLeftCh, CY_U3P_DMA_TYPE_AUTO, &dmaCfg);

 dmaCfg.prodSckId = CY_FX_EP_PRODUCER_2_SOCKET;
 dmaCfg.consSckId = CY_U3P_LPP_SOCKET_I2S_RIGHT;
 CyU3PDmaChannelCreate (&glI2sRightCh, CY_U3P_DMA_TYPE_AUTO, &dmaCfg);

 /* Flush the Endpoint memory */
 CyU3PUsbFlushEp(CY_FX_EP_PRODUCER_1);
 CyU3PUsbFlushEp(CY_FX_EP_PRODUCER_2);

 /* Set DMA Channel transfer size to infinite. */
 status = CyU3PDmaChannelSetXfer (&glI2sLeftCh, 0);
 status = CyU3PDmaChannelSetXfer (&glI2sRightCh, 0);

198 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

8.9 GPIO

8.9.1 GPIO Features

■ All 61 pins can be configured as simple GPIOs.

■ Up to 8 pins can be configured as complex GPIOs.

■ Programmable drive strength for output I/Os.

■ Supports internal weak pull-up or pull-down.

8.9.2 GPIO Overview

General-purpose I/O pins are a special (simple) case of low-performance peripherals that do not need a DMA capability.
Several FX3 pins can function as GPIOs. All GPIOs together are considered a single low-performance peripheral. Each pin is
multiplexed to support other blocks (such as UART, SPI, and so on). By default, pins are allocated in groups to either one
block or the other (Blk I/O) depending on the interface mode in their respective power domain. In a typical application, not all
FX3 blocks are used. Also, not all the pins of blocks being used are utilized. Unused pins in each block may be overridden as
a simple or complex GPIO pin on a pin-by-pin basis.

Simple GPIOs provide software-controlled and observable input and output capability. They also can raise interrupts.
Complex GPIOs support a variety of time-based functions. They work off either a slow or a fast clock. Complex GPIOs can
also be used as general-purpose timers by the firmware. Only eight pins can be configured as complex GPIOs at a time.

8.9.3 Programming Model

This section explains the GPIO operations.

8.9.3.1 Reset and Initialization

On reset, all the blocks of the GPIO core are placed in a disabled state. The core becomes operational only after one of the
ENABLE bits in the configuration registers of this block (GPIO_SIMPLE or PIN_STATUS) is set by the firmware.

The GPIO core’s clock speed is set in the GCTL block as is the case for all FX3 blocks. Three major clock settings are
required for GPIOs:

GCTL_ FAST _CORE_CLK: Master GPIO clock derived out of PLL system clock. It can be set to a maximum of 200 MHz.

GCTL_ SLOW _CORE_CLK: Slow clock derived out of GCTL_ FAST _CORE_CLK. It can be set to a maximum of 1 MHz.

GCTL_SIMPLE_CLK: Derived out of GCTL_ FAST _CORE_CLK. Applicable to simple GPIOs only. GCTL_ FAST
_CORE_CLK can be divided by 2, 4, 16, and 64 only.

Once the block is reset, the ACTIVE bit of the GPIO_POWER register is monitored by the firmware before accessing any of
the GPIO block registers. Also, the block ENABLE bit of GPIO_CONFIG can be set only after the block is in the active state.

Table 8-4 shows the various modes supported by a complex GPIO. It uses the values from three registers. TIMER is the
value of the PIN_TIMER register, THRESHOLD is the value of the PIN_THRESHOLD register, and MODE is from the
PIN_STATUS register.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 199

Table 8-4. Modes Supported by Complex GPIO

8.9.4 Examples

This section shows an example code to configure and use FX3 GPIOs.. APIs to access the GPIO block are provided with the
FX3 SDK. Refer to the Cyu3gpio.c file located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\firmware\lpp_source
(after FX3 SDK installation) for the source code of GPIO-related APIs. Refer to FX3APIGuide.pdf located at C:\Program Files
(x86)\Cypress\EZ-USB FX3 SDK\1.3\doc for more details on the FX3 APIs.

8.9.4.1 Initialize GPIO Block

The CyU3PGpioInit API initializes the FX3 GPIO block, and its definition follows.

CyU3PGpioInit (CyU3PGpioClock_t *clk_p, CyU3PGpioIntrCb_t irq)

Mode Name Description of Functionality Achieved

0 STATIC Use as simple GPIO, drive output to static value and/or observe input value.

1 TOGGLE When TIMER=THRESHOLD, change value of output.

2 SAMPLENOW
Set THRESHOLD=TIMER now. This is a method to observe a current value of the running TIMER register, which is not
readable.

3 PULSENOW

■ Toggle the pin value immediately.
■ Set TIMER=0.
■ When TIMER=THRESHOLD, toggle output back.
■ Set MODE=STATIC.

4 PULSE
■ Toggle value when TIMER=0.
■ When TIMER=THRESHOLD, toggle output back.
■ Set MODE=STATIC.

5 PWM
Toggle value when TIMER=0.

When TIMER=THRESHOLD, toggle output back.

6 MEASURE_LOW

Measure the time a signal is low and continue doing so.

Set TIMER=0 on negative edge (negedge) of input.

Set THRESHOLD=TIMER on positive edge (posedge) of input.

7 MEASURE_HIGH

Measure the time a signal is high and continue doing so.

Set TIMER=0 on posedge of input.

Set THRESHOLD=TIMER on negedge of input.

8 MEASURE_LOW_ONCE

Measure the time a signal is low once and then stop.

Set TIMER=0 on negedge of input.

Set THRESHOLD=TIMER on posedge of input.

Set MODE=STATIC.

9 MEASURE_HIGH_ONCE

Measure the time a signal is high once and then stop.

Set TIMER=0 on posedge of input.

Set THRESHOLD=TIMER on negedge of input.

Set MODE=STATIC.

10 MEASURE_NEG
Measure when a signal goes low and continue doing so.

Set THRESHOLD=TIMER on negedge.

11 MEASURE_POS
Measure when a signal goes high and continue doing so.

Set THRESHOLD=TIMER on posedge.

12 MEASURE_ANY
Measure when a signal changes and continue doing so.

Set THRESHOLD=TIMER on posedge or negedge.

13 MEASURE_NEG_ONCE

Measure when a signal goes low once and then stop.

Set THRESHOLD=TIMER on negedge.

Set MODE=STATIC.

14 MEASURE_POS_ONCE

Measure when a signal goes high once and then stop.

Set THRESHOLD=TIMER on posedge.

Set MODE=STATIC.

15 MEASURE_ANY_ONCE

Measure when a signal changes and then stop.

Set THRESHOLD=TIMER on negedge or posedge.

Set MODE=STATIC.

200 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

{

 /* Store the interrupt handler function pointer. */
 CyU3PRegisterGpioCallBack(irq);

 /* If the boot firmware has left the GPIO block ON, do not reset it. */
 if ((CyU3PLppGpioBlockIsOn () == CyFalse) || ((GPIO->lpp_gpio_power &

CY_U3P_LPP_GPIO_ACTIVE) == 0))
 {
 status = CyU3PGpioSetClock (clk_p);

 /* Register the fact that GPIO has been started with the FX3 API library. */
 status = CyU3PLppInit (CY_U3P_LPP_GPIO, CyU3PGpioInt_Handler);

 /* Power the GPIO block ON, and wait for it to be active. */
 GPIO->lpp_gpio_power &= ~(1 << 31);
 CyU3PBusyWait (10);
 GPIO->lpp_gpio_power |= (1 << 31);
 while (!(GPIO->lpp_gpio_power & CY_U3P_LPP_GPIO_ACTIVE));
 }
 else
 {
 /* GPIO block is already ON. Just register the block with the FX3 API library. */
 status = CyU3PLppInit (CY_U3P_LPP_GPIO, CyU3PGpioInt_Handler);
 }

 /* Update the status flag. */
 glIsGpioActive = CyTrue;
}

8.9.4.2 Configure GPIO[45] as Input Pin and GPIO[21] as Output Pin

The I/O matrix needs to be configured to use simple and complex GPIOs. I/Os that are not configured for peripheral
interfaces can be used as GPIOs. This selection must be explicitly made. Otherwise, these lines will be configured per their
default function. This selection is made via four 32-bit bit masks, where each I/O is represented in C by (1 << IO number). In
this case, GPIO[45] is used as an input pin and is selected during the I/O matrix configuration. GPIO[21] is also used but
cannot be selected here, as it is part of the GPIF II I/Os (CTL4). If this I/O is not used with the GPIF II interface, it can be
overridden to become a GPIO by invoking the CyU3PDeviceGpioOverride call.

 io_cfg.gpioSimpleEn[0] = 0; // bit positions 31:0
 io_cfg.gpioSimpleEn[1] = 0x00002000; /* GPIO 45 */(bit positions 63:32)
 io_cfg.gpioComplexEn[0] = 0;
 io_cfg.gpioComplexEn[1] = 0;
 CyU3PDeviceConfigureIOMatrix (&io_cfg);

The clock parameters for the GPIO block are defined using the CyU3PGpioInit API. Three clocks are associated with the FX3
GPIO core clock. The FAST clock is derived from the FX3 system clock, and its frequency is determined by the clkSrc and
fastClkDiv parameters. The SLOW clock is derived from the FAST clock, and its frequency is determined by the slowClkDiv
value. The operating clock for various complex GPIO timers can be selected from among the FAST clock, the SLOW clock,
and a fixed 32-kHz frequency. All simple GPIOs function (are updated or sampled) based on a separate clock, which is also
derived from the FAST clock. The frequency of this clock is determined by the simpleDiv value. The FAST clock is configured
as half of the system clock, and the SLOW clock is disabled (set to zero). Interrupt callback can be registered using
CyU3PGpioInit, but this example does not use it.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 201

/* Init the GPIO module */
 gpioClock.fastClkDiv = 2;
 gpioClock.slowClkDiv = 0;
 gpioClock.simpleDiv = CY_U3P_GPIO_SIMPLE_DIV_BY_2;
 gpioClock.clkSrc = CY_U3P_SYS_CLK;
 gpioClock.halfDiv = 0;

 apiRetStatus = CyU3PGpioInit(&gpioClock, NULL);

The CyU3PGpioSetSimpleConfig API configures a simple GPIO. The code for configuring GPIO[45] is as follows. GPIO[45] is
configured as input, and interrupt is enabled for both edges of GPIO[45].
/* Configure GPIO 45 as input with interrupt enabled for both edges */
 gpioConfig.outValue = CyTrue;
 gpioConfig.inputEn = CyTrue;
 gpioConfig.driveLowEn = CyFalse;
 gpioConfig.driveHighEn = CyFalse;
 gpioConfig.intrMode = CY_U3P_GPIO_INTR_BOTH_EDGE;
 CyU3PGpioSetSimpleConfig(45, &gpioConfig);

GPIO[21] needs to be overridden, as this pin is associated with the GPIF II control signal. The
CyU3PDeviceConfigureIOMatrix call cannot select the I/O as a GPIO, as it is part of the GPIF II I/Os. An override API call
must be made with caution, as this will change the functionality of the pin. If the I/O line is used as part of GPIF II and is
connected to an external device, then the line will no longer behave as a GPIF II I/O. Here the CTL4 line is not used by the
GPIF II block, so it is safe to override.

 CyU3PDeviceGpioOverride (21, CyTrue);

GPIO[21] can be configured as an output using the following code. No interrupt is enabled
corresponding to this I/O change.
 gpioConfig.outValue = CyFalse;
 gpioConfig.driveLowEn = CyTrue;
 gpioConfig.driveHighEn = CyTrue;
 gpioConfig.inputEn = CyFalse;
 gpioConfig.intrMode = CY_U3P_GPIO_NO_INTR;
 CyU3PGpioSetSimpleConfig(21, &gpioConfig);

Use the followingcode to get the status of GPIO[45].

/* Get the status of the pin */
CyU3PGpioGetValue (45, &gpioValue);

Use the following code to set the value of GPIO[21].

/* Set the GPIO 21 to high */
CyU3PGpioSetValue (21, CyTrue);

GPIO[21] can be driven low by changing the second parameter of the CyU3PGpioSetValue API.

 /* Set the GPIO 21 to low */
CyU3PGpioSetValue (21, CyFalse);

202 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

8.9.4.3 Configure GPIO[50] to Generate PWM Output

The I/O matrix needs to be configured to use simple and complex GPIOs. I/Os that are not configured for peripheral
interfaces can be used as GPIOs. This selection must be explicitly made. Otherwise, these lines will be configured per their
default function. This selection is made via four 32-bit bit masks, where each I/O is represented by (1 << IO number). In this
case, GPIO[50] is used as an input pin and is selected during the I/O matrix configuration.

 io_cfg.gpioSimpleEn[0] = 0;
 io_cfg.gpioSimpleEn[1] = 0;
 /* GPIO[50] is used as complex GPIO. */
 io_cfg.gpioComplexEn[0] = 0;
 io_cfg.gpioComplexEn[1] = 0x00040000;
 CyU3PDeviceConfigureIOMatrix (&io_cfg);

Initialize the GPIO module. The GPIO block runs with a fast clock at SYS_CLK / 2, and a slow clock is not used. In this case,
the SYS_CLK runs at 403 MHz

 gpioClock.fastClkDiv = 2;
 gpioClock.slowClkDiv = 0;
 gpioClock.simpleDiv = CY_U3P_GPIO_SIMPLE_DIV_BY_2;
 gpioClock.clkSrc = CY_U3P_SYS_CLK;
 gpioClock.halfDiv = 0;
 CyU3PGpioInit(&gpioClock, NULL);

CyU3PGpioSetComplexConfig configures a complex GPIO. The code for configuring GPIO[50] as a PWM output with a 25
percnet duty cycle is as follows.

 /* Configure GPIO 50 as PWM output */
 gpioConfig.outValue = CyFalse;
 gpioConfig.inputEn = CyFalse;
 gpioConfig.driveLowEn = CyTrue;
 gpioConfig.driveHighEn = CyTrue;
 gpioConfig.pinMode = CY_U3P_GPIO_MODE_PWM;
 gpioConfig.intrMode = CY_U3P_GPIO_NO_INTR;
 gpioConfig.timerMode = CY_U3P_GPIO_TIMER_HIGH_FREQ;
 gpioConfig.timer = 0;
 gpioConfig.period = CY_FX_PWM_PERIOD; /* (201600 - 1) */
 gpioConfig.threshold = CY_FX_PWM_25P_THRESHOLD; /* (50400 - 1) */
 apiRetStatus = CyU3PGpioSetComplexConfig(50, &gpioConfig);

The following code changes the PWM duty cycle to 75 percent.

/* Change the PWM duty cycle to 75%. */
CyU3PGpioComplexUpdate (50, CY_FX_PWM_75P_THRESHOLD, CY_FX_PWM_PERIOD); /*
CY_FX_PWM_75P_THRESHOLD = (151200 - 1) */

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 203

9. Storage Ports

FX3S features an integrated storage controller that supports up to two independent SD/ MMC/SDIO devices on its two
storage ports (S0 and S1). Both storage ports support the following specifications:

■ MMC system specification, MMCA Technical Committee, version 4.41

■ SD specification, version 3.0

■ SDIO host controller compliant with SDIO specification version 3.00

9.1 Storage Interface Block Features

The Storage Interface Block (SIB) contains the interface logic for the storage port. The SIB offers the following features:

■ Supports SD3.0/eMMC4.41/SDIO 3.0.

■ Supports two independent ports.

■ 8 bidirectional sockets.

■ 1-, 4-, and 8-bit bus width on the card interface

■ Card insertion and removal detection

■ Write protection

■ SD3.0 voltage switch sequence from 3.3 V to 1.8 V

■ SD3.0 host tuning feature

■ Normal and alternate eMMC boot as defined in eMMC specification, version 4.41

■ Dynamic clock stop to avoid overrun and underrun and power saving

■ SDR and DDR mode of operation

■ Max operating frequency

❐ 104-MHz SDR

❐ 52-MHz DDR

❐ Throughput of 180 MBps including both ports

❐ SDIO interrupt feature as specified in the SDIO specification version 2.00 (January 30, 2007)

❐ SDIO read-wait and suspend-resume features as defined in the SDIO specification version 2.00 (January 30, 2007)

9.2 Block Diagram

The SIB is the host controller for external storage devices. It connects storage devices to the ARM processor, USB and low-
bandwidth peripherals such as SPI, UART, I2C, I2S, and GPIO. The SIB generates commands and accepts responses at the
SD/MMC interface based on the configuration provided by the firmware. SIB contains two storage port controllers (S0 and S1)
that can be independently configured to support different protocols.

204 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 9-1. SIB Block Diagram

SIB consists of three major subblocks.

■ S0 core

■ S1 core

■ DMA adapter

The S0 and S1 core are functionally independent, thus can be configured independently. This also allows to clock gate one of
the cores based on the active port. All protocol-related translation and error handling is done by the respective cores. The
cores provide a simple request/data interface to the DMA backbone.

The S0/S1 core contains a CLOCK CONTROL sub-block. The clock control block accepts the core clock as the input and
generates the clocks required for the SIB. This block instantiates the Delay-Locked Loop (DLL) and performs the following
functions:

■ Gating of clock when sockets cannot accept data

■ Gating of clock when sockets do not have data

■ Gating of clock when data transfer of all blocks has been completed

■ Gating of DLL master clock when the block is IDLE

■ Gating of clock only on block boundaries

■ Generating pin sample clocks and core clocks used by the core

■ Keeping track of when DLL locks and loses lock

Each DLL is used to:

■ Internally generate 16 equally spaced phases of input signal. This allows clock control in 22.5º increments. A phase picker
circuit at the DLL output stage picks up to a maximum of 4 of these 16 output phases to guarantee no setup and hold time
issues on-chip. The input reference frequency range of the signal input clock is 25-208 MHz. This is utilized for SD3.0
Host Tuning Feature, discussed in SD3.0 Host Tuning Feature on page 229.

The DMA adapter is used to interface to the DMA interconnect of the FX3S device. All DMA data through the interface is
assembled at the core and then forwarded to the DMA adapter to transfer over the system interconnect. The channel to
access the DMA adapter is the thread. A thread controller converts the simple request-data interface from the core to the
required transactions on the DMA adapter. The DMA data enters the DMA adapter through two distinct pipes, named Thread
0 and Thread 1 in Figure 9-1. These two pipes are required to allow two simultaneous data streams from/to the two storage

 S0 Core D
M
A
 A
d
ap

ter

THREAD_0

In
te
rf
ac
e
 P
in
s

Read/ Write access
to SIB sockets

S0 Registers

SIB
 So

cke
ts [0

 – 7
]

SIB Block

 S1 Core

S0_DAT[7:0]

S0_CMD

S0_CLK

S1_DAT[7:0]

S1_CMD

S1_CLK

S1 Registers

 SIB CLOCK
 CONTROL

GCTL

THREAD_1

 SIB CLOCK
 CONTROL

GCTL

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 205

devices. The cores talk to the external world through a 1-, 4-, or 8-bit data bus.

The SIB has eight sockets (sockets 0-7) associated with it. The storage port driver in the FX3 SDK reserves two of these
sockets (socket 6 and 7) for internal operations like card initialization. The remaining sockets can be used for data transfers
with the storage devices.

9.3 Storage Interface (S-Port)

The two ports (S0 and S1) comprising the FX3S storage interface are configured as follows.

Storage port 0 (S0 port) can be configured as:

■ MMC-only interface

■ SD/SDIO and GPIO interface

■ GPIO-only interface

Storage port 1 (S1 port) can be configured as:

■ MMC-only interface

■ SD/SDIO and GPIO interface

■ SD/SDIO and UART interface

■ SD/SDIO and SPI interface

■ SD/SDIO and I2S interface

■ GPIO-only interface

■ GPIO + UART + I2S interface

■ UART + SPI + I2S interface.

Figure 9-2 shows the dual-SD/MMC/SDIO configuration, and Table 9-1 shows the S-port mapping in all configurations.

Figure 9-2. Dual-SD/SDIO/MMC Configuration

FX3S
SD MM

C SDIO

SDI
O

MM
C

SD

S0_DAT[7:0]
S0_CMD
S0_CLK

S1_CLK
S1_CMD

S1_DAT[7:0]

OR OR

OR OR

206 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Table 9-1. S-Port Mapping in All Configurations

The S-port interface includes three power domains: VIO2, VIO3, and VIO4. For the system design, the power domain
connection depends on the S-port configuration. You must connect the power domains of all signals of a particular interface to
the same power source. For example, if the S-port 1 is configured to "8-bit MMC configuration," then VIO2, VIO3, and VIO4
must connect to the same voltage level (for example, 3.3 V).

The storage interface signals can be driven at 3.3 V or 1.8 V (low-voltage operation for UHS mode of operation) based on the
voltage provided on the VIO2 or VIO3 (VIO4) input.

The storage ports can be configured with an 8-bit-wide or 4-bit-wide data bus and will support interface clock frequencies up
to 104-MHz SDR or 52-MHz DDR.

The storage ports do not support functioning in the legacy SPI mode.

The storage controller block on the FX3S device supports sending any command with custom parameters and receiving
arbitrary lengths of device response. The data interface is connected to the DMA fabric, and all data transfers are performed
through DMA sockets. Refer to chapter 5 for details on DMA and DMA sockets.

The storage controller can be configured to transfer one or more blocks of data with arbitrary block lengths. However, it is
expected that the data block length will be a multiple of 8 bytes and greater than or equal to 16 bytes. The FAST_IO (CMD39)
command should be used to transfer small amounts data from/to SDIO devices.

FX3S Pin Description

 Name
 Power
Domain

 S0-Port

 8b MMC SD+GPIO GPIO

 GPIO[33] VIO2 S0_SD0 S0_SD0 GPIO

 GPIO[34] VIO2 S0_SD1 S0_SD1 GPIO

 GPIO[35] VIO2 S0_SD2 S0_SD2 GPIO

 GPIO[36] VIO2 S0_SD3 S0_SD3 GPIO

 GPIO[37] VIO2 S0_SD4 GPIO GPIO

 GPIO[38] VIO2 S0_SD5 GPIO GPIO

 GPIO[39] VIO2 S0_SD6 GPIO GPIO

 GPIO[40] VIO2 S0_SD7 GPIO GPIO

 GPIO[41] VIO2 S0_CMD S0_CMD GPIO

 GPIO[42] VIO2 S0_CLK S0_CLK GPIO

 GPIO[43] VIO2 S0_WP S0_WP GPIO

 GPIO[44] VIO2 S0S1_INS S0S1_INS GPIO

 GPIO[45] VIO2 MMC0_RST_OUT GPIO GPIO

 S1-Port

 8b MMC SD+UART SD+SPI SD+GPIO GPIO
 GPIO+UART+

I2S
 SD+I2S

 UART+SPI+
I2S

 GPIO[46] VIO3 S1_SD0 S1_SD0 S1_SD0 S1_SD0 GPIO GPIO S1_SD0 UART_RTS

 GPIO[47] VIO3 S1_SD1 S1_SD1 S1_SD1 S1_SD1 GPIO GPIO S1_SD1 UART_CTS

 GPIO[48] VIO3 S1_SD2 S1_SD2 S1_SD2 S1_SD2 GPIO GPIO S1_SD2 UART_TX

 GPIO[49] VIO3 S1_SD3 S1_SD3 S1_SD3 S1_SD3 GPIO GPIO S1_SD3 UART_RX

 GPIO[50] VIO3 S1_CMD S1_CMD S1_CMD S1_CMD GPIO I2S_CLK S1_CMD I2S_CLK

 GPIO[51] VIO3 S1_CLK S1_CLK S1_CLK S1_CLK GPIO I2S_SD S1_CLK I2S_SD

 GPIO[52] VIO3 S1_WP S1_WP S1_WP S1_WP GPIO I2S_WS S1_WP I2S_WS

 GPIO[53] VIO4 S1_SD4 UART_RTS SPI_SCK GPIO GPIO UART_RTS GPIO SPI_SCK

 GPIO[54] VIO4 S1_SD5 UART_CTS SPI_SSN GPIO GPIO UART_CTS I2S_CLK SPI_SSN

 GPIO[55] VIO4 S1_SD6 UART_TX SPI_MISO GPIO GPIO UART_TX I2S_SD SPI_MISO

 GPIO[56] VIO4 S1_SD7 UART_RX SPI_MOSI GPIO GPIO UART_RX I2S_WS SPI_MOSI

 GPIO[57] VIO4
MMC1_RS
T_OUT

 GPIO GPIO GPIO GPIO I2S_MCLK I2S_MCLK I2S_MCLK

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 207

The interface clock frequency is divided down from the master system clock (384 MHz or 416 MHz) through a set of dividers.
The block supports clock frequencies ranging from 400-kHz to 104-MHz SDR (or 52-MHz DDR).

The storage controller supports stopping the interface clock to reduce power consumption when the interface is not in use. An
auto stop clock feature is supported to prevent data overflow during read operations. The clock automatically stops when the
internal buffer is full and restarts when a buffer is made available.

The storage controller supports card insertion and removal detection through one of two mechanisms:

■ Voltage change on the DAT[3] pin

■ Voltage change on a dedicated GPIO pin connected to a microswitch on the card socket

GPIO pins are used for resetting the eMMC devices and for checking the write protect status of the storage devices. These
pins operate under firmware control and do not directly affect the storage port operation.

The storage controller supports SDIO-specific features such as SDIO interrupt detection and the SDIO read-wait and
suspend-resume features, as specified in the SDIO specification version 2.00.

9.4 SD/ MMC/ SDIO Interface

9.4.1 SD/MMC Interface Overview

The SD bus includes the following signals:

■ CLK: Host to card clock signal

■ CMD: Bidirectional command/response signal

■ DAT0-DAT3: Four bidirectional data signals

■ VDD, VSS1, VSS2: Power and ground signals

The MMC bus includes these signals:

■ CLK: Host to card clock signal

■ CMD: Bidirectional command/response signal

■ DAT0-DAT7: Eight bidirectional data signals

■ VDD, VSS1, VSS2: Power and ground signals

The SD/MMC protocol is based on command and data bit streams that are initiated by a start bit and terminated by a stop bit.
Additionally, the SD/MMC controller provides a reference clock. Each message/operation is represented by one of the
following tokens:

■ Command: A token transmitted serially on the CMD pin that starts an operation. A command is sent from the host to a
card

■ Response: A token from the card transmitted serially on the CMD pin in response to certain commands, from the card to
the host.

■ Data: Data can be transferred via the data lines from the card to the host or vice versa. The number of data lines used for
the data transfer can be one (DAT0) or four (DAT0-DAT3) with the SD protocol and one (DAT0), four (DAT0-DAT3), or
eight (DAT0-DAT7) with the MMC protocol.

Figure 9-3, Figure 9-4, and Figure 9-5 show the possible bus operations in a normal working case. Please note that the
figures are for illustrative purposes and use read operations in the MMC card as an example. Similar operations apply to the
SD protocol as well, with a change in data bus width.

208 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 9-3. Sequential Read Operation (Using 1-bit Data Bus)*

* Source: eMMC Specification 4.3

Figure 9-4. (Multiple) Block Read Operation (Using 8-bit MMC Data Bus)*

* Source: eMMC Specification 4.3

*Note: Bus width for the block read operation in the SD card would be 4 bits using the DAT0-3 lines.

Figure 9-5. "No Response" and "No Data" Operations*

* Source: eMMC Specification 4.3

For more details, refer to the SD/MMC specification.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 209

9.4.2 SDIO Interface Overview

A Secure Digital Input and Output (SDIO) card is an extension of the SD specification to cover I/O functions. The SD standard
offers great flexibility, including the ability to use the SD slot for more than memory cards. The SDIO card is an interface that
extends the functionality of devices by using a standard SD card slot to give devices that use these new capabilities. A partial
list of new capabilities includes the following:

■ GPS

■ Camera

■ Wi-Fi

■ FM radio

■ Ethernet

■ Barcode readers

■ Bluetooth®

The SDIO and SD interfaces are mechanically and electrically identical. Thus, the SDIO bus includes the following signals:

■ CLK: Host to card clock signal

■ CMD: Bidirectional command/response signal

■ DAT0-DAT3: Four bidirectional data signals

■ VDD, VSS1, VSS2: Power and ground signals

Figure 9-6. Signal Connection to Two 4-Bit SDIO Cards*

* Source: SDIO Specification, version 2.0

The command/response protocol for SDIO is the same as that for the SD protocol described in 9.4.1 SD/MMC Interface
Overview on page 207. For more details, refer to the SDIO specification.

9.5 FX3S S-Port Operations Overview

Most of the S-port operations including initialization and other housekeeping tasks are performed by the storage driver, which
is provided with the FX3 SDK. The FX3 SDK provides the following:

1. Storage driver that identifies and initializes the storage peripherals connected to FX3S, as well as interrupt services asso-
ciated with the storage interface

2. A set of APIs (storage API library) that allows users to query peripheral properties and perform data transfers to/from
these peripherals

210 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

The storage driver uses a dedicated RTOS thread and handles all events arising due to the SIB controller interrupts. The
storage driver identifies the type of storage device connected on each of the enabled storage ports and initializes it with the
appropriate command sequence.

The storage API provides functions to query the storage device properties like device type, memory capacity, number of SDIO
functions, and so on. APIs are provided to perform read/write transfers to SD/MMC memory devices as well as to SDIO cards.

The storage API also provides functions to send individual commands to the storage device and obtain the corresponding
responses. The device initialization will be performed by the storage driver in this case as well, and the command mode can
be used only after device initialization. The storage APIs are intended only for applications running on the FX3S device.

9.5.1 S-port Initialization and Configuration

9.5.1.1 Configuring the FX3S I/O Matrix

The GCTL_IOMATRIX register must be configured to enable the appropriate mode for the S0 and S1 ports. This is done
using the API CyU3PDeviceConfigureIOMatrix. When using eMMC devices, the s0Mode/s1Mode should be set to
CY_U3P_SPORT_8BIT to obtain the optimal performance. GPIOs (unused pins that are not configured for any other
peripheral interfaces) to be used as voltage switching GPIOs or reset GPIOs also need to be configured for use as simple
GPIOs. Refer to 4.1.1 I/O Matrix Configuration on page 53 for details on IO matrix configuration.

/* Configure the IO matrix for the device.
 * S0 port is enabled in 8 bit mode.
 * S1 port is enabled in 4 bit mode.
 * UART is enabled on remaining pins of the S1 port.
 */
 io_cfg.isDQ32Bit = CyFalse;
 io_cfg.s0Mode = CY_U3P_SPORT_8BIT;
 io_cfg.s1Mode = CY_U3P_SPORT_4BIT;
 io_cfg.gpioSimpleEn[0] = 0;
 io_cfg.gpioSimpleEn[1] = 0x02002000; /*IOs 45 and 57 are chosen as GPIO
 for voltage switching GPIOs */
 io_cfg.gpioComplexEn[0] = 0;
 io_cfg.gpioComplexEn[1] = 0;
 io_cfg.useUart = CyTrue;
 io_cfg.useI2C = CyFalse;
 io_cfg.useI2S = CyFalse;
 io_cfg.useSpi = CyFalse;
 io_cfg.lppMode = CY_U3P_IO_MATRIX_LPP_UART_ONLY;
 status = CyU3PDeviceConfigureIOMatrix (&io_cfg);
 if (status != CY_U3P_SUCCESS)
 {
 goto handle_fatal_error;
 }

9.5.1.2 Setting S-Port Interface Parameters

Interface parameters such as low-voltage operation, DDR clocking support, card detection and write protection support need
to be set independently for both the storage ports using the API CyU3PSibSetIntfParams.

intfParams.resetGpio = 0xFF; /* No GPIO control on SD/MMC power. */
 intfParams.rstActHigh = CyTrue; /* Don't care as no GPIO is selected. */
 intfParams.cardDetType = CY_U3P_SIB_DETECT_DAT_3; /* Card detect based

 on SD_DAT[3]. */
 intfParams.writeProtEnable = CyTrue; /* Write protect handling enabled.*/
 intfParams.lowVoltage = CyTrue; /* Low voltage operation enabled. */
 intfParams.voltageSwGpio = 45; /* Use GPIO_45 for voltage switch on

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 211

S0 port. */
 intfParams.lvGpioState = CyFalse; /* Driving GPIO low selects 1.8 V on

SxVDDQ. */
 intfParams.useDdr = CyTrue; /* DDR clocking enabled. */
 intfParams.maxFreq = CY_U3P_SIB_FREQ_104MHZ; /* No S port clock

 limitation. */
 intfParams.cardInitDelay = 0; /* No delay required between SD card insertion before
initialization. */

 status = CyU3PSibSetIntfParams (0, &intfParams);
 if (status == CY_U3P_SUCCESS)
 {
 intfParams.voltageSwGpio = 57;
 /* Use GPIO_57 for voltage switch on S1 port. */
 status = CyU3PSibSetIntfParams (1, &intfParams);
 }

 if (status != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (4, "Set SIB interface parameters failed,
code=%d\r\n", status);
 CyFxAppErrorHandler (status);
 }
 status = CyU3PSibStart ();
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (4, "SIB start failed, code=%d\r\n", status);
 CyFxAppErrorHandler (status);
 }

The structure passed as a parameter to CyU3PSibSetIntfParams defines the configuration parameters for the storage ports.
These parameter values are used internally by the storage driver to configure the GPIOs (like resetGPIO, voltageswGPIO,
and so on, if enabled) appropriately. All parameter values, except for the "cardDetType," are used internally by the storage
driver only and do not have a register-level impact. cardDetType enables the appropriate interrupt for card detection. Refer to
Card Insertion and Removal Detection Mechanism on page 226 for more details on card detection.

9.5.1.3 Starting the Storage Driver

The CyU3PSibStart API is called to start the storage driver and initialize any storage devices that are connected on the two
storage ports. Depending on the type of device (SD/MMC/SDIO), the device is initialized appropriately by the driver. The
storage device types supported by FX3S are as follows.

/** \brief List the Storage Device types supported by FX3S.

 Description\n
 This enumeration lists the various storage device types supported by the
 storage module in FX3S firmware.
*/
typedef enum CyU3PSibDevType
{
 CY_U3P_SIB_DEV_NONE = 0, /**< No device */
 CY_U3P_SIB_DEV_MMC, /**< MMC/eMMC device */
 CY_U3P_SIB_DEV_SD, /**< SD Memory card */
 CY_U3P_SIB_DEV_SDIO, /**< SDIO IO only Device.*/
 CY_U3P_SIB_DEV_SDIO_COMBO /**< SDIO Combo Device. Data transfers to the combo
card are not supported. */
} CyU3PSibDevType;

212 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

9.5.1.4 Setting the S-Port Clock

The S0/S1 interface clock is enabled or disabled by the bit SDMMC_CLK_DIS in the register SDMMC_CS (SD/MMC/SDIO
card command and status register). For bit definitions, refer to SDMMC_CS register on page 656.

The clock values are set using the register GCTL_SIB0_CORE_CLK and GCTL_SIB1_CORE_CLK (SIB Port 0/1 core clock
configuration register). GCTL_SIBx_CORE_CLK.DIV determines the clock divider value for dividing the PLL system clock.
GCTL_SIBx_CORE_CLK.SRC selects the clock source, and GCTL_SIBx_CORE_CLK.EN enables it.

The clock choice for the divisor is user-configurable. For example, the following frequencies can be configured through these
registers:

■ 400 kHz: For the SD/MMC card initialization

■ 20 MHz: For a card with 0- to 20-MHz frequency

■ 24 MHz: For a card with 0- to 26-MHz frequency

■ 48 MHz: For a card with 0- to 52-MHz frequency (48-MHz frequency on SD_CLK is supported when the clock input to
FX3S is 19.2 MHz or 38.4 MHz.)

■ 52 MHz: For a card with 0- to 52-MHz frequency (52-MHz frequency on SD_CLK is supported when the clock input to
FX3S is 26 MHz or 52 MHz)

■ 100 MHz: For a card with 0- to 100-MHz frequency

If the DDR mode is selected, data is clocked on both the rising and falling edge of the SD clock. DDR clocks run up to
52 MHz.

9.5.1.4.1 Powering On the SIB

The SIB block is power cycled using the SIB_POWER.RESETN bit and then polled for the SIB_POWER.ACTIVE bit, which
remains deasserted until initialization is complete. SIB_POWER.ACTIVE = 1 indicates block is initialized and ready for
operation. For bit definitions, refer to SIB_POWER register on page 640.

9.5.1.4.2 Initializing SIB Sockets

Initially, all sockets are disabled, and socket interrupts are cleared using the registers SCK_STATUS, SCK_INTR and
SCK_INTR_MASK. Refer to 5.5.5 Sockets on page 68 for more details on sockets.

Later, the active SIB socket number for read/write is set using SDMMC_CS.SOCKET before initiating reads/writes from/to the
SD/MMC/SDIO device.

9.5.1.4.3 S-Port I/O Drive Strength

The S-port I/O drive strength is programmable like any other I/O pin as discussed in 4.1.2 I/O Drive Strength on page 55.

9.5.1.5 Sending SD/MMC/SDIO Commands

The SD/SDIO/MMC command to be sent on the command bus is specified through the register SDMMC_CMD_IDX. The cmd
field specifies the command index that is to be included in the command sent. When the command is sent, the hardware
sends out start and transmission bits followed by (SDMMC_CMD_RESP_FMT.CMDFRMT+1 bits) a 7-bit CRC code and an
end bit. The (SDMMC_CMD_RESP_FMT.CMDFRMT+1) bits include as many bits as necessary in the following order:
command index (6 bits), argument (starting from bit 31 of SDMMC_CMD_ARG0), SDMMC_CMD_ARG1. The
SDMMC_CMD_ARG0 register holds the 32-bit SD/MMC/SDIO command argument. Any additional argument bits for the
expanded command may be placed in the SDMMC_CMD_ARG1 register. There is no need for the software to specify start,
transmission and end bits-they are to be generated by the hardware.

For bit definitions, refer to SDMMC_CMD_IDX register on page 641, SDMMC_CMD_RESP_FMT register on page 650,
SDMMC_CMD_ARG0 register on page 642 and SDMMC_CMD_ARG1 register on page 643.

After writing to these registers, the command transmission is initiated by setting the SDMMC_CS. SNDCMD bit and then
polled for the SDMMC_INTR.CMDSENT bit that indicates command send completion. Refer to 9.5.1.6 Handling SIB
Events on page 214 for the SDMMC_INTR register field descriptions.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 213

The SDMMC_INTR.RCVDRES bit is polled to get the response from the card. The first 8 bits of response are captured in the
RESP_IDX register. These eight bits include the start, transmission, and command index fields. The response data received
from the card on the response bus, including crc7 and end bits, is placed in registers SDMMC_RESP_REG.

For bit definitions, refer to SDMMC_RESP_IDX register on page 644 and SDMMC_RESP_REG0 register on page 645.

Command/response timing is specified through the registers, SDMMC_NCC_NWR, SDMMC_NAC, and SDMMC_NCR.

For bit definitions, refer to SDMMC_NCC_NWR register on page 665, SDMMC_NAC register on page 666, SDMMC_NCR
register on page 664.

A block size of 512 (0x0200) is set as the default using the register SDMMC_BLOCKLEN.

Following successful initialization, the SIB mode (SD/ MMC/ SDIO) is set and SIB is configured for the data bus width and
clock speed using the SDMMC_MODE_CFG register. For bit definitions, refer to SDMMC_MODE_CFG register on page 653.

The devices detected on the storage ports can be queried using the API CyU3PSibQueryDevice. If the device on the storage
port has more than one partition, then the API CyU3PSibQueryUnit can be used to access the storage partition (LUN)
information for the specified port and unit number. This applies only to SD and eMMC devices.

 for (i = 0; i < CY_FX_SIB_PORTS; i++)
 {
 unitsFound = 0;

 /* Initialize LUN data structures with default values. */
 for (j = 0; j < CY_FX_SIB_PARTITIONS; j++)
 {
 glLunState[i * CY_FX_SIB_PARTITIONS + j] = CyFalse;
 glLunUnit[i * CY_FX_SIB_PARTITIONS + j] = 10; /* Invalid value. */
 glLunWriteable[i * CY_FX_SIB_PARTITIONS + j] = CyTrue;
 glLunBlkSize[i * CY_FX_SIB_PARTITIONS + j] = 0;
 glLunNumBlks[i * CY_FX_SIB_PARTITIONS + j] = 0;
 }

 /* Query each of the storage ports to identify whether a device has been
 detected. */
 status = CyU3PSibQueryDevice (i, &glDevInfo[i]);
 if (status == CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (8, "Found a device on port %d\r\n", i);
 CyU3PDebugPrint (6, "\tType=%d, numBlks=%d, eraseSize=%d, clkRate=%d\r\n",
 glDevInfo[i].cardType, glDevInfo[i].numBlks, glDevInfo[i].eraseSize,
 glDevInfo[i].clkRate);
 CyU3PDebugPrint (6, "\tblkLen=%d removable=%d, writeable=%d, locked=%d\r\n",
 glDevInfo[i].blkLen, glDevInfo[i].removable, glDevInfo[i].writeable,
 glDevInfo[i].locked);
 CyU3PDebugPrint (6, "\tddrMode=%d, opVoltage=%d, busWidth=%d,
 numUnits=%d\r\n", glDevInfo[i].ddrMode,
 glDevInfo[i].opVoltage, glDevInfo[i].busWidth,
 glDevInfo[i].numUnits);
 CyU3PDebugPrint (6, "\tcardCmdClass=%d\r\n", glDevInfo[i].ccc);

 /* Run through each of the units present and check how many data partitions
 are present. We skip all boot partitions in this application.
 */
 for (j = 0; j < glDevInfo[i].numUnits; j++)
 {
 status = CyU3PSibQueryUnit (i, j, &unitInfo);
 if (status != CY_U3P_SUCCESS)

214 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 {
 CyU3PDebugPrint (2, "Error: Failed to query partition %d on port
 %d\r\n", j, i);
 break;
 }

 CyU3PDebugPrint (6, "Dev %d, Unit %d: location=%d numBlocks=%d\r\n",
 i, j, unitInfo.location, unitInfo.numBlocks);
 if (unitInfo.location == CY_U3P_SIB_LOCATION_USER)
 {
 CyU3PDebugPrint (4, "Dev %d: Found user partition\r\n", i);
 unitsFound++;
 }
 }

 }

If an existing partition needs to be removed for the specified storage port, this can be done using the API
CyU3PSibRemovePartitions. This reunifies the complete storage available on a device as a single data partition (volume).
CyU3PSibPartitionStorage can be used to partition the storage device into multiple logical units that can be separately
accessed.

 if ((unitsFound < CY_FX_SIB_PARTITIONS) && (glDevInfo[i].writeable))
 {
 /* Make sure any existing partitioning is removed. */
 CyU3PSibRemovePartitions (i);

 /* Makes sure that each storage device is partitioned into the
 required number of units. */
 for (j = 0; j < CY_FX_SIB_PARTITIONS; j++)
 {
 partsize[j] = (glDevInfo[i].numBlks / CY_FX_SIB_PARTITIONS);
 parttype[j] = CY_U3P_SIB_LUN_DATA;
 }

 CyU3PDebugPrint (4, "Port %d: Creating partitions as required\r\n",i);
 status = CyU3PSibPartitionStorage (i, CY_FX_SIB_PARTITIONS, partsize,
 parttype);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (2, "Error: Failed to partition storage device %d,
 status=%d\r\n", i, status);
 continue;
 }
 }

Note: APIs CyU3PSibPartitionStorage and CyU3PSibRemovePartitions are used to manage virtual partitions created by the
firmware.

9.5.1.6 Handling SIB Events

The SIB events are based on the bits of the SD/MMC/SDIO interrupt request register (SDMMC_INTR). These bits are set to 1
whenever a bit in SDMMC_STATUS changes from 0 to 1.

For bit definitions, refer to SDMMC_STATUS register on page 658, SDMMC_INTR register on page 660, and
SDMMC_INTR_MASK register on page 662.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 215

CyU3PSibRegisterCbk can be used to register a callback function that will be called to provide a notification for storage-
related events such as card insertion/removal and data transfer completion; as well as for the status of the storage read/write
operations.

/* Register a callback for SIB events. */
CyU3PSibRegisterCbk (CyFxMscApplnSibCB);

void
CyFxMscApplnSibCB (
 uint8_t portId,
 CyU3PSibEventType evt,
 CyU3PReturnStatus_t status)
{
 CyU3PDmaSocketConfig_t sockConf;

 if (evt == CY_U3P_SIB_EVENT_XFER_CPLT)
 {
 if (status != CY_U3P_SUCCESS)
 {
 glMscCmdStatus = 1;
 glSensePtr[portId] = CY_FX_MSC_SENSE_CRC_ERROR;

 /* Transfer has failed. Reset the DMA channel. */
 if (glCmdDirection)
 {
 CyU3PDmaSocketGetConfig ((uint16_t)(CY_U3P_UIB_SOCKET_CONS_0 |
CY_FX_MSC_EP_BULK_IN_SOCKET),
 &sockConf);
 glMscResidue -= sockConf.xferCount;
 CyU3PDmaChannelReset (&glChHandleMscIn);
 }
 else
 {
 CyU3PDmaSocketGetConfig ((uint16_t)(CY_U3P_UIB_SOCKET_PROD_0 +
CY_FX_MSC_EP_BULK_OUT_SOCKET),
 &sockConf);
 glMscResidue -= sockConf.xferCount;
 CyU3PDmaChannelReset (&glChHandleMscOut);
 }
 }
 else
 {
 glMscCmdStatus = 0;
 glMscResidue = 0;
 glSensePtr[portId] = CY_FX_MSC_SENSE_OK;
 }

 CyU3PEventSet (&glMscAppEvent, CY_FX_MSC_SIBCB_EVENT_FLAG, CYU3P_EVENT_OR);
 }

 if (evt == CY_U3P_SIB_EVENT_INSERT)
 {
 uint8_t i = 0;

 CyU3PDebugPrint (2, "Insert event on port %d\r\n", portId);
 CyFxMscApplnQueryDevStatus ();
 for (i = 0; i < CY_FX_SIB_PARTITIONS; i++)
 {

216 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

 glSensePtr[portId * CY_FX_SIB_PARTITIONS + i] = CY_FX_MSC_SENSE_MEDIA_CHANGED;
 }
 }

 if (evt == CY_U3P_SIB_EVENT_REMOVE)
 {
 uint8_t i = 0, lun = 0;

 CyU3PDebugPrint (2, "Remove event on port %d\r\n", portId);
 for (i = 0; i < CY_FX_SIB_PARTITIONS; i++)
 {
 lun = portId * CY_FX_SIB_PARTITIONS + i;

 glLunState[lun] = CyFalse;
 glLunUnit[lun] = 10;
 glLunBlkSize[lun] = 0;
 glLunNumBlks[lun] = 0;
 glLunWriteable[lun] = CyTrue;
 glSensePtr[lun] = CY_FX_MSC_SENSE_MEDIA_CHANGED;
 }
 }

 if ((evt == CY_U3P_SIB_EVENT_DATA_ERROR) || (evt == CY_U3P_SIB_EVENT_ABORT))
 {
 /* Transfer has failed. Reset the DMA channel. */
 if (glCmdDirection)
 {
 CyU3PDmaChannelReset ((CyU3PDmaChannel *) &glChHandleMscOut);
 }
 else
 {
 CyU3PDmaChannelReset ((CyU3PDmaChannel *) &glChHandleMscIn);
 }

 /* Make sure the request is aborted and that the controller is reset. */
 CyU3PSibAbortRequest (portId);
 }
}

9.5.2 Reads and Writes to SD/ MMC Using DMA Transfers

A DMA channel (out) is created to transfer data to the SD/ MMC device connected to any of the S-ports, and another DMA
channel (in) is created to read data from the SD/MMC device. Refer to FX3 DMA Subsystem chapter on page 61 for more
details on the DMA channels and sockets. Any of the six available S-port sockets can be used for these channels. The socket
is defined as follows inside the FX3 SDK library:

 CY_U3P_SIB_SOCKET_0 = 0x0200, /**< S-port socket number 0. */
 CY_U3P_SIB_SOCKET_1, /**< S-port socket number 1. */
 CY_U3P_SIB_SOCKET_2, /**< S-port socket number 2. */
 CY_U3P_SIB_SOCKET_3, /**< S-port socket number 3. */
 CY_U3P_SIB_SOCKET_4, /**< S-port socket number 4. */
 CY_U3P_SIB_SOCKET_5, /**< S-port socket number 5. */

The following is the code for performing reads and writes to/from the SD/MMC device.

 /* Initiating Write to SD/ MMC card */

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 217

 status = CyU3PDmaChannelSetXfer (&glChHandleMscOut, (numBlks *
 CY_FX_SIB_MAX_BLOCK_SIZE));
 if (status == CY_U3P_SUCCESS)
 {
 status = CyU3PSibReadWriteRequest (CY_FX_SIB_WRITE, ((lun >= CY_FX_SIB_PARTITIONS)
 ? 1 : 0), glLunUnit[lun], numBlks, startAddr, 0);
 if (status != CY_U3P_SUCCESS)
 {
 /* Abort the DMA Channel */
 CyU3PDmaChannelReset (&glChHandleMscIn);
 }
 }

 /* Initiating Read from SD/ MMC card */
 status = CyU3PDmaChannelSetXfer (&glChHandleMscIn, (numBlks *
 CY_FX_SIB_MAX_BLOCK_SIZE));
 if (status == CY_U3P_SUCCESS)
 {
 status = CyU3PSibReadWriteRequest (CY_FX_SIB_READ, ((lun >= CY_FX_SIB_PARTITIONS) ?
 1 : 0), glLunUnit[lun], numBlks, startAddr, 1);
 if (status != CY_U3P_SUCCESS)
 {
 /* Abort the DMA Channel */
 CyU3PDmaChannelReset (&glChHandleMscIn);
 }
 }

CyU3PSibReadWriteRequest initiates a read/write data request. This function is used to initiate a read/write request to a
storage device. The open-ended read/write commands (CMD18 and CMD25) are used in all cases.

Inside this API, the block length and number of blocks, calculated from the parameters passed to it, are set in the appropriate
registers: SDMMC_BLOCKLEN and SDMMC_BLOCK_COUNT.

For bit definitions, refer to SDMMC_BLOCK_COUNT register on page 651.

The active SIB socket number for read/write is set using SDMMC_CS.SOCKET before initiating reads/writes from/to the SD/
MMC device. The DAT0 pin state can be monitored to learn the storage device busy state by polling for the bit
SDMMC_SATUS.DAT0_STAT. Before starting the command transmission involving the data phase, the
SDMMC_STATUS.DATA_SM_BUSY bit is polled to learn if the data state machine is busy. If so, the SIB is reset by setting the
SDMMC_CS.RSTCONT bit and then polled for it to become 0. Hardware writes 0 when reset is complete.

Before initiating any command transmission involving data through DAT[0:3] for SD or DAT[0:7] for MMC, the
DAT3_CHANGE interrupt is disabled by setting the SDMMC_INTR_MASK.DAT3_CHANGE bit. The interrupt is enabled
again after command completion. Then command transmission is initiated and completed in the same manner as described
in 9.5.1.5 Sending SD/MMC/SDIO Commands on page 212.

In a read operation (MULTI BLOCK read command CMD18), the command transmission is initiated by setting the bits
SDMMC_CS. SNDCMD and SDMMC_CS. RDDCARD.

The CY_U3P_SIB_EVENT_XFER_CPLT event is sent to the caller through the register storage callback function when the
specified amount of data has been completely transferred. This event is triggered based on the bits
SDMMC_INTR.BLOCK_COMP and SDMMC_INTR.BLOCKS_RECEIVED.

The socket number to be passed as a parameter to the function CyU3PSibReadWriteRequest is the offset with respect to
CY_U3P_SIB_SOCKET_0. For example, if CY_U3P_SIB_SOCKET_1 is used to create the DMA channel, then the socket
number to be passed in CyU3PSibReadWriteRequest is "1". This function internally initiates the DMA channel for transferring
the specified amount of data. It is therefore expected that the DMA channel be left in the idle state
(CY_U3P_DMA_CONFIGURED) when calling this API.

218 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

CyU3PDmaChannelSetXfer sets up a one-to-one DMA channel for data transfer. The sockets corresponding to a DMA
channel are left disabled when the channel is created, so that transfers are started only when desired by the user. This
function enables a DMA channel to transfer a specified amount of data before suspending again. An infinite transfer can be
started by specifying a transfer size of 0. This function should be called only when the channel is in the
CY_U3P_DMA_CONFIGURED state. Refer to chapter 5 for more details on DMA.

9.5.2.1 Sending Vendor Commands to SD/ MMC

The CyU3PSibVendorAccess function is used to send general SD/MMC commands to storage device/cards attached to the
FX3S device and receive the corresponding response. Custom commands can be implemented using this function.
Command transmission is initiated and completed in the same manner as described in 9.5.1.5 Sending SD/MMC/SDIO
Commands on page 212.

9.5.2.2 Setting the Granularity of Write Operations

CyU3PSibSetWriteCommitSize sets the sector granularity at which write operations are committed to the SD/MMC storage.
Committing write data to SD/MMC storage in small chunks can lead to poor write transfer performance. The write
performance to these devices can be improved by combining write operations with sequential addresses and performing a
single commit (STOP_TRANSMISSION) operation.

 /* Commit data in 8MB chunks: 16k sectors */
 CyU3PSibSetWriteCommitSize (i, 16384);

By default, this value is set to 1, meaning that a write of one sector or more is immediately committed to the storage device.

9.5.2.3 Checking Card Status

The CyU3PSibGetCardStatus function sends the CMD13 (SEND_STATUS) command to the SD/MMC device connected on
the specified storage port and provides the card status response that is received. This API can be used to check whether the
storage device is accessible and is in the TRAN state, where it can receive new commands.

9.5.2.4 Aborting Ongoing Transaction to S-Port

The SIB is reset by writing to the bit SDMMC_CS. RSTCONT and then polled for it to become 0. Software writes '1' to bring
the SIB FSMs to a known state. Hardware writes '0' when reset is complete. The values of the CFG registers are not affected
by RSTCONT. Internal queues are flushed by RSTCONT. Then the SDMMC_CS.WRDCARD and SDMMC_CS.RDDCARD
bits are selectively set, and the SIB is reset again by setting SDMMC_CS.RSTCONT.

The CyU3PSibAbortRequest API is used to abort any ongoing transactions on the specified port. Prior to calling this function,
the corresponding DMA channel should be reset.

Void CyFxMscApplnSibCB (
 uint8_t portId,
 CyU3PSibEventType evt,
 CyU3PReturnStatus_t status)
{
 if ((evt == CY_U3P_SIB_EVENT_DATA_ERROR) || (evt == CY_U3P_SIB_EVENT_ABORT))
 {
 /* Transfer has failed. Reset the DMA channel. */
 if (glCmdDirection)
 {
 CyU3PDmaChannelReset ((CyU3PDmaChannel *) &glChHandleMscOut);
 }
 else
 {
 CyU3PDmaChannelReset ((CyU3PDmaChannel *) &glChHandleMscIn);
 }

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 219

 /* Make sure the request is aborted and that the controller is reset. */
 CyU3PSibAbortRequest (portId);
 }
}

9.5.3 Working with SDIO Cards

9.5.3.1 Configuration and Initialization

The configuration of the S-port and the initialization are very similar to that of the SD card, as explained in 9.5.1 S-port
Initialization and Configuration on page 210.

The IOMatrix configuration is done similarly to that for SD cards and interface parameters are set independently for the
appropriate S-port. The CyU3PSibStart API calls for starting the storage driver also identify and initialize the SDIO device
connected on the two storage ports. The device type, "SDIO IO only" or "combo card," can be learned by calling
CyU3PSibQueryDevice.

Note: The storage driver and library APIs in FX3 SDK 1.3.1 have been tested for SDIO I/O only cards. For combo cards,
please contact Cypress Support.

CyU3PSdioQueryCard can be used to fetch SDIO card information and card common register information. This function
returns a CYU3PSdioCardRegs object that contains card common register information from an initialized SDIO card on the
port specified by portId.

9.5.3.2 Reads and Writes from SDIO Card Registers

9.5.3.3 IO_RW_DIRECT Command (CMD52)

The IO_RW_DIRECT command (CMD52) is the simplest means to access a single register within the total register space in
any I/O function, including the common I/O area (CIA). This command reads or writes 1 byte using only 1 command/response
pair. A common use is to initialize registers or monitor status values for I/O functions. This command is the fastest means to
read or write single I/O registers, as it requires only a single command/response pair.

Figure 9-7. IO_RW_DIRECT Command *

* Source: SDIO Specification, version 2.0

The IO_RW_DIRECT command contains the following fields:

■ S: Start bit. Always 0.

■ D: Direction. Always1; indicates transfer host to card.

■ Command Index: Identifies the IO_RW_DIRECT command with a value of 110100b.

■ R/W flag: This bit determines the direction of the I/O operation. If this bit is 0, this command will read data from the SDIO
card at the address specified by the Function Number and the Register Address to the host. The data byte is returned in
the response, R5. If this bit is set to 1, the command will write the bytes in the Write Data field to the I/O location
addressed by the Function Number and Register Address. If the RAW flag is 0, then the data in the register that was
written will be read and that value returned in the response.

S D
Command

Index
110100b

R/W
Flag

Function
Number

RAW
Flag

Stuff
Register
Address

Stuff
Write Data or

Stuff Bits
CRC7 E

1 1 6 1 3 1 1 17 1 8 7 1

220 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

■ RAW flag: The Read after Write flag. If this bit is set to 1 and the R/W flag is set to 1, then the command will read the value
of the register after the write. This is useful to allow writing to a control register and reading the status at the same
address. If this bit is cleared, the value returned in the R5 response will be the same as the write data in the command. If
this bit is set, the data field of the R5 response will contain the value read from the addressed register after the write
operation.

■ Function Number: The number of the function within the I/O card you wish to read or write. Note that function 0 selects the
CIA.

■ Register Address: This is the address of the byte of data inside the selected function to read or write. There are 17 bits of
address available, so the register is located within the first 128K (131,072) addresses of that function.

■ Write Data or Stuff Bits: For a direct write command (R/W=1), this is the byte that is written to the selected address. For a
direct read command (R/W=0), this field is not used and is be set to 0.

■ CRC7: Seven bits of CRC data.

■ E: End bit, always 1.

9.5.3.3.1 CMD52 R5 Response (SD Mode)

If the communication between the card and host is in the 1-bit or 4-bit SD mode, the response will be in a 48-bit response
(R5) as shown in Figure 9-8.

Figure 9-8. R5 IO_RW_DIRECT Response (SD Modes) *

* Source: SDIO Specification, version 2.0

■ S: Start bit. Always 0.

■ D: Direction. 0 indicates transfer card to host (response).

■ Command Index: Identifies the IO_RW_DIRECT command with a value of 110100b.

■ Stuff: Not used. Will be set to 0.

■ Response Flags Bit: Eight bits of flag data indicating the status of the SDIO card.

■ Read or Write Data: For an I/O write (R/W=1) with the RAW flag set (RAW=1), this field will contain the value read from
the addressed register after the write of the data contained in the command. Note that in this case, the read-back data
may not be the same as the data written to the register, depending on the design of the hardware. For an I/O write with the
RAW bit=0, the SDIO function will not do a read after the write operation, and the data in this field will be identical to the
data byte in the write command. For an I/O read (R/W=0), the actual value read from that I/O location is returned in this
field.

■ CRC7: Seven bits of CRC data.

■ E: End bit, always 1.

For more details on the command response format and bit descriptions, refer to the SDIO specification.

9.5.3.3.2 CyU3PSdioByteReadWrite API

CMD52 command transmission is initiated in the same manner as explained in 9.5.1.5 Sending SD/MMC/SDIO
Commands on page 212. The 1-byte response data of the CMD52 read register command is contained in the lower 8 bits of
the SDMMC_RESP_REG register.

CyU3PSdioByteReadWrite performs a direct I/O operation (single byte) to an SDIO card using CMD52. This function is used
to read or write a single byte of data from/to a register on the SDIO card.

S D
Command

Index
110100b

Stuff
Response Flag

Bits
7-----------0

Read or Write
Data

CRC7 E

1 1 6 16 8 8 7 1

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 221

When the readAfterWrite flag is set, the data from the register is read back after the write has been completed. The following
code snippet demonstrates the use of this API.

/* Initialize the Function */
bitFnNo = (1 << funcNo);
data |= bitFnNo;

status = CyU3PSdioByteReadWrite (portId, CY_U3P_SDIO_CIA_FUNCTION, CY_U3P_SDIO_WRITE, 0,
CY_U3P_SDIO_REG_IO_ENABLE, &data);

if (status != CY_U3P_SUCCESS)
{

ERROR_PRINT (2, "CMD52: write to IO ENABLE error status = %d\r\n", status);
return status;

}

/* Wait till IO Ready is set or 100 attempts */
trials = 100;
data = 0;
while ((!(data & bitFnNo)) && (trials > 0))
{

status = CyU3PSdioByteReadWrite (portId, CY_U3P_SDIO_CIA_FUNCTION, CY_U3P_SDIO_READ, 0,
CY_U3P_SDIO_REG_IO_READY, &data);

if (status != CY_U3P_SUCCESS)
{

ERROR_PRINT (6, "CMD52: IO RDY error status = %d\r\n", status);
return status;

}

trials--;
}

if (!(data & bitFnNo))
{

ERROR_PRINT (6, "IO READY ERROR TIMEOUT \r\n");
return CY_U3P_ERROR_TIMEOUT;

}

9.5.3.3.3 IO_RW_EXTENDED Command (CMD53)

In order to read and write multiple I/O registers with a single command, a new command, IO_RW_EXTENDED, is defined.
This command allows reading or writing a large number of I/O registers with a single command. Since this is a data transfer
command, it provides the highest possible transfer rate. For this operation, the address of the register is set into the Register
Address field. Data is transferred on the DAT[0] or DAT[3:0] lines as defined for SD memory cards.

Figure 9-9. IO_RW_EXTENDED Command *

* Source: SDIO Specification, version 2.0

The IO_RW_EXTENDED command contains the following fields:

S D
Command

Index
110101b

R/W
Flag

Function
Number

Block
Mode

OP
Code

Register
Address

Byte/ Block
Count

CRC7 E

1 1 6 1 3 1 1 17 9 7 1

222 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

■ S: Start bit. Always 0.

■ D: Direction. Always1 indicates transfer host to card.

■ Command Index: Identifies the IO_RW_EXTENDED command with a value of 110101b.

■ R/W flag: This bit determines the direction of the I/O operation. If this bit is 0, this command reads data from the SDIO
card at the address specified by the Function Number and the Register Address to the host; otherwise, it writes the bytes
from the DAT[x] lines to the I/O location addressed by the Function Number and Register Address.

■ Function Number: The number of the function within the I/O card you wish to read or write. Note that function 0x00 selects
the CIA.

■ Block Mode (optional): If set to 1, this bit indicates that the read or write operation will be performed on a block basis,
rather than the normal byte basis. If this bit is set, the Byte/Block Count value contains the number of bytes/blocks to be
read/written. The block size for functions 1-7 is set by writing the block size to the I/O block size register in the FBR. The
block size for function 0 is set by writing to the FN0 block size register in the CCCR. Card and host support for the block I/
O mode is optional. The block size used when Block Mode = 1 and the maximum byte count per command used when
Block Mode = 0 can be read from the CIS in the tuple TPLFE_MAX_BLK_SIZE on a per-function basis (refer to the SDIO
specification for more details). Table 9-3 shows the relationship between the value in the command and the actual number
of bytes/blocks transferred.

■ OP code: Defines the read/write operation as described in Table 9-2.

Table 9-2. OpCode Field Description

■ Register Address: Start Address of the I/O register to read or write. Range is [0x1FFFF:0].

■ Byte/ Block Count: If the command is operating on bytes (Block Mode = 0), this field contains the number of bytes to read
or write. A value of 0x000 shall cause 512 bytes to be read or written. If the command is in block mode (Block Mode=1),
the Block Count field specifies the number of Data Blocks to be transferred following this command. A value of 0x000
indicates that the count set to infinite.

Table 9-3. Byte Count Values

■ CRC7: Seven bits of CRC data.

■ E: End bit, always 1.

9.5.3.3.4 CyU3PSdioExtendedReadWrite API

The CyU3PSdioExtendedReadWrite API performs extended I/O operations (multibyte/multiblock) to/from the SDIO card
using CMD53. Arguments needed for CMD53 described in 9.5.3.3.3 IO_RW_EXTENDED Command (CMD53) are passed as
parameters.

Inside this API, the block length and number of blocks, calculated from the parameters passed to it, are set in the appropriate
registers: SDMMC_BLOCKLEN and SDMMC_BLOCK_COUNT. The logic for the same is as follows.

if (blockmode == CY_U3P_SDIO_RW_BLOCK_MODE)
{
 noOfBlocks = transferCount;
 blockSize = glCardCtxt[portId].fnBlkSize[functionNumber];

Op Code Command Operation Description

0 Multibyte R/W to fixed address
Used to read or write multiple bytes of data to/from a single I/O register address. This command is useful
when I/O data is transferred using a FIFO inside the I/O card.

1 Multibyte R/W to incremental address
Used to read or write multiple bytes of data to/from an I/O register address that increments by 1 after each
operation. This command is used when large amounts of I/O data exist within the I/O card in a RAM-like
data buffer.

Count Value 0x000 0x001 0x002 ----- 0x1FF
Bytes Transferred 512 1 2 ----- 511
Blocks Transferred ∞ 1 2 ----- 511

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 223

}
else if (blockmode == CY_U3P_SDIO_RW_BYTE_MODE)
{
 noOfBlocks = 1;
 blockSize = (transferCount != 0) ? transferCount : 512;
}

Note: "blockmode" and "transferCount" are parameters passed to CyU3PSdioExtendedReadWrite. Whereas the variable
values "noOfBlocks" and "blockSize" are used to set the values of the registers-SDMMC_BLOCKLEN and
SDMMC_BLOCK_COUNT-the active SIB socket number for read/write is set using SDMMC_CS.SOCKET before initiating
reads/writes from/ to the SDIO device. The DAT0 pin state can be monitored to learn the storage device busy state by polling
for the bit SDMMC_SATUS.DAT0_STAT.

In a read opertion, the BLOCKS_RECEIVED and RD_DATA_TIMEOUT interrupts are cleared in the SDMCC_INTR register
by writing '1' to the bits. In a write operation, the BLOCK_COMP interrupt in the SDMMC_INTR register is cleared in the same
way.

Since CMD53 involves data phase, through DAT[0:3] lines, the DAT3_CHANGE interrupt is disabled by setting
SDMMC_INTR_MASK.DAT3_CHANGE. The interrupt is enabled again after command completion. Then command
transmission is initiated and completed in the same manner as described in Sending SD/MMC/SDIO Commands on
page 212.

In a CMD53 read operation, the command transmission is initiated by setting the bits SDMMC_CS. SNDCMD and
SDMMC_CS. RDDCARD, whereas in a CMD53 write operation, the command transmission is initiated by setting the bits
SDMMC_CS. SNDCMD and SDMC_CS. WRDCARD.

The data associated with the CMD53 data phase is read/written to/from the DMA channel associated with the socket ID
passed in for the operation. This operation should use one of the SIB sockets as a producer (for read) or consumer (for write).
Before calling this function, the necessary DMA channels need to be created. A DMA channel (out) is created to transfer data
to the SDIO device connected to any of the S-ports, and another DMA channel (in) is created to read data from the SDIO
device. Any of the six available S-port sockets can be used for these channels. Sockets are defined as follows inside the FX3
SDK library.

Transferring infinite blocks of data (by setting transferCount to 0 in block mode) is not supported on the FX3S devices. If
transferCount is set to 0, FX3S will transfer 512 bytes of data in multibyte transfer mode, but will throw an error in multiblock
mode. Table 9-4 shows the number of bytes and blocks transferred based on transferCount values.

Table 9-4. Byte/ Block Count Values

The following code snippet demonstrates the use of this API.

CyU3PDmaChannelReset (&glChHandleSdiotoCpu);

size = ((length+511)/512)*512; /* make sure that size is 512 aligned */
dmaBuffer.size = size;
dmaBuffer.buffer = buff;
dmaBuffer.count = 0;
dmaBuffer.status = 0;

status = CyU3PDmaChannelSetupRecvBuffer (&glChHandleSdiotoCpu, &dmaBuffer);
if (status != CY_U3P_SUCCESS)
{

ERROR_PRINT (6, "CyU3PDmaChannelSetupSendBuffer error status = %d\r\n", status);
CyU3PDmaChannelReset (&glChHandleSdiotoCpu);

Transfer Count Value 0x000 0x001 0x002 ----- 0x1FF
Bytes Transferred 512 1 2 ----- 511
Blocks Transferred illegal 1 2 ----- 511

224 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

return status;
}

 status = CyU3PSdioExtendedReadWrite (0, 1 /*functionNumber*/, 0 /*isWrite*/,
 1 /*blockMode*/, 0 /* opCode */, 00 /*registerAddr*/, (size/512)
 /*transferCount*/, glChHandleSdiotoCpu.prodSckId /*sckId*/);

if (status != CY_U3P_SUCCESS)
{

ERROR_PRINT (6, "CyU3PSdioExtendedReadWrite error status = %d\r\n", status);
CyU3PSibAbortRequest(0);
return status;

}

9.5.3.4 Setting Function Block Size

The function CyU3PSdioSetBlockSize sets the block size for a function. The block size set should be lower than the
maximum block size value read from the CISTPL_FUNCE CIS tuple for the function. The value set to the card using this API
is saved in the driver and is used as the transfer block size in case of extended transfers.

DEBUG_PRINT (8, "setting Func %d block size to 512 \r\n", funcNo);
status = CyU3PSdioSetBlockSize (portId, funcNo, 0x200);
if (status != CY_U3P_SUCCESS)
{

ERROR_PRINT (8, "failed to set block size %d \r\n", status);
return status;

}

9.5.3.5 Initialization and Operation of SDIO Functions

The SDIO function initialization and application specific functionality or I/O-only card-specific functionalities can be
implemented using the CyU3PSdioByteReadWrite and CyU3PSdioExtendedReadWrite APIs in the application firmware.

9.5.3.6 SDIO Interrupts

To allow the SDIO card to interrupt the host, an interrupt function is added to a pin on the SD interface. Pin number 8, which
is used as DAT[1], is used to signal the card's interrupt to the host. The use of the interrupt is optional for each card or function
within a card. The SDIO interrupt is "level sensitive," that is, the interrupt line is held active (low) until it is either recognized
and acted upon by the host or deasserted due to the end of the interrupt period. Once the host has serviced the interrupt, it is
cleared via some function-unique I/O operation.

The 1-bit SD mode, pin 8 is dedicated to the interrupt function. Thus, in the SPI and SD 1-bit modes, there are no timing
constraints on interrupts. A card in the SPI or 1-bit SD mode signals an interrupt to the host at any time by asserting pin 8 low.

Since pin 8 is shared between the IRQ and DAT[1] in the 4-bit SD mode, an interrupt is sent by the card and recognized by
the host only during a specific time. The time that a low on pin 8 is recognized as an interrupt is defined as the interrupt
period. An SDIO host samples the level on pin 8 (DAT[1]/IRQ) into the interrupt detector only during the interrupt period. At all
other times, the host interrupt controller ignores the level on pin 8.

The interrupt period begins after a function is initialized (IOEx), the card is placed into 4-bit SD mode, and interrupts are
enabled (IENM and IENx). A card, depending on design, may require a longer time until it is able to issue interrupts.

The interrupt period ends at the next clock from the end bit of a command that transfers data block(s) using DAT[x] lines. It
resumes two clocks after the completion of the last data block transfer in a transaction.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 225

Figure 9-10. Read Interrupt Cycle Timing *

* Source: SDIO Specification, version 2.0

This interrupt period is intended to prevent interaction between the DAT[1] data and the interrupt signals on a common pin.
Figure 9-10 shows the timing of the interrupt period for single data transaction read cycles. For more details, refer to the SDIO
specification.

9.5.3.7 Enabling and Disabling SDIO Interrupts

SDIO interrupts can be enabled or disabled by setting or clearing the bit SDMMC_INTR_MASK.SDIO_INTR_MASK. The
CyU3PSdioInterruptControl API can be used to enable or disable interrupts on the SDIO card. A request to enable interrupts
for an SDIO function (1-7) automatically enables the card's interrupt master.

9.5.3.8 Handling SDIO Interrupts

An SDIO interrupt is notified via the SDMMC_INTR.SDIO_INTR bit. The SDIO interrupt is notified to the application firmware
in the form of an event registered through the SIB callback (explained in 9.5.1.6 Handling SIB Events on page 214).

/* Register a callback for SIB events. */
status = CyU3PSibRegisterCbk (CyFxSDIOUARTApplnSibCB);

/* SIB Callback for handling SIB events */
void
CyFxSDIOUARTApplnSibCB (

uint8_t portId,
CyU3PSibEventType evt,
CyU3PReturnStatus_t status)

{

 if (evt == CY_U3P_SIB_EVENT_SDIO_INTR)
{

 /* Handle SDIO interrupt event */

 }

}

226 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

9.6 FX3S-Specific Features

9.6.1 Card Insertion and Removal Detection Mechanism

FX3S supports the two-card insertion and removal detection mechanisms.

■ Use of SD_D[3] data: This signal must have an external 470-k pull-down resistor connected to SD_D[3]. SD cards have
an internal 10-k pull-up resistor. When the card is inserted or removed from the SD/MMC connector, the voltage level at
the SD_D[3] pin changes and triggers an interrupt to the CPU.

■ Use of the S0/S1_INS pin: Some SD/MMC connectors include a microswitch for card insertion/removal detection. This
microswitch can be connected to S0/S1_INS. When the card is inserted or removed from the SD/MMC connector, it turns
the microswitch on and off. This changes the voltage level at the pin that triggers the interrupt to the CPU. S0/ S1_INS
stays high or floating when card is not inserted and goes low when card is inserted. The card-detect microswitch polarity
is assumed to be the same as the write-protect microswitch polarity. A low indicates that the card is inserted. This S0/
S1_INS pin is shared between the two S-ports. Register configuration determines which port gets to use the pin. This pin
is mapped to the VIO2 power domain (see Table 9-1); if S0 and S1 are at different voltage levels, the pin cannot be used
as S1_INS. Figure 9-11 depicts this mechanism.

Figure 9-11. Card Detection Using GPIO

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 227

9.6.2 Handling Card Detection in Software

The card detection method can be chosen in the firmware according to its support on the card as well as on the hardware.
The card detection method is chosen using the field cardDetType through API CyU3PSibSetIntfParams. Accordingly, the
interrupt will be enabled in the SDMMC_INTR_MASK register. The CARD_DETECT interrupt is enabled in the card detection
method based on GPIO, or the DAT3_STAT interrupt is enabled in the card detection method based on the DAT3 line.

intfParams.resetGpio = 0xFF; /* No GPIO control on SD/MMC power. */
 intfParams.rstActHigh = CyTrue; /* Don't care as no GPIO is selected. */
 intfParams.cardDetType = CY_U3P_SIB_DETECT_DAT_3; /* Card detect based

 on SD_DAT[3]. */
 intfParams.writeProtEnable = CyTrue; /* Write protect handling enabled.*/
 intfParams.lowVoltage = CyTrue; /* Low voltage operation enabled. */
 intfParams.voltageSwGpio = 45; /* Use GPIO_45 for voltage switch on

S0 port. */
 intfParams.lvGpioState = CyFalse; /* Driving GPIO low selects 1.8 V on

SxVDDQ. */
 intfParams.useDdr = CyTrue; /* DDR clocking enabled. */
 intfParams.maxFreq = CY_U3P_SIB_FREQ_104MHZ; /* No S port clock

 limitation. */
 intfParams.cardInitDelay = 0; /* No delay required between SD card insertion before
initialization. */

 status = CyU3PSibSetIntfParams (0, &intfParams);

The card detection mechanism supported is provided through the enumerated list CyU3PSibCardDetect, as follows. The card
detection can be disabled by selecting CY_U3P_SIB_DETECT_NONE.

/** \brief List of card detection methods.

 Description\n
 The card insertion and removal detection can be based on either GPIO card detect
 or based on signal changes on the DAT3 line. */
typedef enum CyU3PSibCardDetect
{
 CY_U3P_SIB_DETECT_NONE = 0, /**< Don't use any card detection mechanism */
 CY_U3P_SIB_DETECT_GPIO, /**< Use a GPIO connected to a micro-switch on the
socket. This is
 only supported for the S0 storage port. */
 CY_U3P_SIB_DETECT_DAT_3 /**< Use voltage changes on the DAT[3] pin for card
detection. */
} CyU3PSibCardDetect;

If the card detect mechanism is chosen as GPIO based, then the GPIO44 is chosen as a default by the FX3S software driver
and library. The FX3S library and driver configure the GPIO in such a case by default, and the card detect interrupt will be
notified to the application firmware via the SIB callback registered (explained in 9.5.1.6 Handling SIB Events on page 214), as
shown in the following example. This is the case even with DAT3-based card detection.

Note: Any unused GPIO can be used for card detection, which can be configured like any simple GPIO in the application
firmware. Refer to 4.1 GPIO Pins on page 53 for more details.

/* Register a callback for SIB events. */
status = CyU3PSibRegisterCbk (CyFxSDIOUARTApplnSibCB);

/* SIB Callback for handling SIB events */
void

228 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

CyFxSDIOUARTApplnSibCB (
uint8_t portId,
CyU3PSibEventType evt,
CyU3PReturnStatus_t status)

{

if (evt == CY_U3P_SIB_EVENT_INSERT)
{

/* Handle card insert event */
}
if (evt == CY_U3P_SIB_EVENT_REMOVE)
{

/* Handle card remove event */
}

}

9.6.3 Write Protection

The S0_WP/ S1_WP (SD write protection) on the S-port is used to connect to the WP microswitch of the SD/MMC card
connector. This pin internally connects to a CPU-accessible GPIO for firmware to detect the SD card write protection. Write
protection can be enabled using the writeProtEnable field of the structure passed to CyU3PSibSetIntfParams. If enabled.
GPIO 43 acts as S0_WP and GPIO52 acts as S1_WP.

9.6.4 SD/MMC CLOCK STOP

FX3S supports the stop clock feature, which can save power if the internal buffer is full when receiving data from the SD/
MMC/SDIO.

SDMMC_MODE_CFG. RD_STOP_CLK_EN enables the SIB to detect overflow and stop the clock to the SD/SDIO/MMC card
during data transfer.

SDMMC_MODE_CFG. WR_STOP_CLK_EN enables SIB to detect underflow and stop the clock to the SD/SDIO/MMC card
during data transfer.

Refer to 9.5.1.5 Sending SD/MMC/SDIO Commands on page 212 for the SDMMC_MODE_CFG register description.

9.6.5 SD_CLK Output Clock Stop

During the data transfer, the SD_CLK clock can be enabled (on) or disabled (stopped) at any time by the internal flow control
mechanism. The SD_CLK output frequency is dynamically configurable using a clock divisor from a system clock. Refer to
Setting the S-Port Clock on page 212.

9.6.6 SDIO Read-Wait/ Suspend-Resume Feature

FX3S supports the optional read-wait and suspend-resume features as defined in the SDIO specification version 2.00
(January 30, 2007).

9.6.6.1 Read-Wait

Host devices built to the SD physical specification control the SDCLK to stop the read data block output from a card executing
a multiple read command whenever the host cannot accept more data. During the time that the host has stopped the SDCLK,
a CMD52 cannot be issued. This limitation creates the problem that a host device built to the SD physical specification cannot
perform the I/O command during a multiple read cycle.

To eliminate this limitation, the SDIO specification adds the read-wait control to enable the host to issue CMD52 during a
multiple read cycle. Read-wait uses the DAT[2] line to allow the host to signal the card to temporarily halt the sending of read

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 229

data by a card. This feature is optional for an SDIO or combo card. However, if an SDIO or combo supports read-wait, all
functions and any memory will support read-wait. For more details, refer to the SDIO specification. Any card that supports
suspend-resume will also support read-wait.

The CyU3PSdioReadWaitEnable API is used to enable read-wait on the SDIO bus. This function triggers read-wait on a card
that supports the feature using the DAT[2] of the SDIO data bus. It is enabled by setting the bit SDMMC_CS.
SDIO_READ_WAIT_EN.

9.6.6.2 Suspend-Resume Feature

Within a multifunction SDIO or a combo card, there are multiple devices (I/O and memory) that share access to the SD bus.
In order to allow sharing of access to the host among multiple devices, SDIO and combo cards can implement the optional
concept of suspend-resume. If a card supports suspend-resume, the host may temporarily halt a data transfer operation to
one function or memory (suspend) in order to free the bus for a higher priority transfer to a different function or memory. Once
this higher priority transfer is complete, the original transfer is restarted where it left off (resume). Support of suspend-resume
is optional on a per-card basis. If suspend-resume is implemented, it will be supported by the memory (if any) of a combo card
and all I/O functions except function 0. Note that the host can suspend multiple transactions and resume them in any order
desired. I/O function 0 does not support suspend-resume.

The CyU3PSdioSuspendResumeFunction API is used to suspend or resume the specified SDIO function. Suspend-resume
needs to be supported by the card to which these calls are being addressed. Support for suspend-resume can be ascertained
by looking at the SBS bit of the card's card capability register. When the function is resumed, it also checks if any data is
available.

9.6.6.3 SD3.0 Host Tuning Feature

SD3.0 supports the tuning feature to find the optimal sampling point in the host during the SDR50, SDR104, and DDR104
modes of operation. CMD19 is the special command that is used in SD3.0 for starting the tuning operation. SDR104 and
DDR104 are not supported in FX3S. The host generally supports two types of sampling:

■ Fixed sampling: SDR-FD-SDR signaling, fixed delay (can't use tuning). This method is available up to only 100-MHz
frequency.

■ Variable sampling: SDR-VD-SDR signaling, variable delay (uses tuning block). The CMD19 is used by the host to read the
tuning block.

The arguments of the CMD19 are zero, and response R1 is defined for this command. The card sends a 64-byte block of data
on the DAT[3:0] lines with predefined CRC bits. This data is used by the host to compare with a predefined tuning block
pattern and to increment the sampling control block by one step. Per the specification, there can be 40 executions of CMD19
in no more than 150 ms. CMD19 always returns a 64-byte tuning pattern sent by the card. After the CPU sets up the SIB
sockets, command transmission is initiated and completed in the same manner as described in 9.5.1.5 Sending SD/MMC/
SDIO Commands on page 212. Receipt of the 64-byte tuning pattern is indicated by the block received interrupt
(SDMMC_INTR.BLOCKS_RECEIVED). The host verifies the data integrity of the tuning block and adjusts its sampling point
accordingly. For register descriptions, refer to SDMMC_DLL_CTRL register on page 668.

The tuning can be implemented as follows. The SIB has registers for selecting the CMD and data phase values in the
SDMMC DLL control register. Increment these values from 0 until a point where the tuning data reception does not lead to a
CRC16 error. When the phase values exceed the maximum possible value (15), all 16 phase values possible have returned
CRC16 errors and hence a fatal error is reported.

230 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 9-12. SD 3.0 Host Tuning Feature

More details on the SD3.0 host tuning methodology are documented in the SD3.0 specification.

9.6.6.4 Normal and Alternate eMMC4.4 Boot

The eMMC 4.4 boot mode is supported in FX3S. Two types of boot operations are defined in eMMC 4.4: normal boot and
alternate boot. FX3S supports both modes of operation.

In normal boot, the host (FX3S S-port) pulls the CMD line low for at least 74 clock cycles after power up or reset. SW writes '1'
to the bit SDMMCU_CS.BOOTCMD to initiate a CMD_LINE_LOW boot (or alternate boot) command. With the alternate boot
command, the CPU must send the command. The card recognizes that a boot is initiated and sends the boot acknowledge
followed by the boot data. Once all boot data is read, the host pulls the CMD line HIGH, as illustrated in Figure 9-13.

Figure 9-13. Normal Boot*

* Source: eMMC Specification, version 4.3

Card switched to SDR50 mode

Make cmd and data
phase sel values 0

Send CMD19

Wait for block received
interrupt

CRC16 error in
rcvd data?

Increment cmd and
data phase sel values

Is phase value =
16?

Exit

Yes

No

Yes

No

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 231

The boot's acknowledge can be disabled by setting the EXT_CSD register in the card. The boot operation can be terminated
by the host by pulling the CMD line HIGH. The termination can occur during data transfer or between consecutive data
blocks. The host does not interpret between them. Writing 1 to SDMMCU_CS.CLR_BOOTCMD causes the CPU to terminate
the boot and return to IDLE. Figure 9-14 depicts the flow chart for normal boot.

Figure 9-14. Flowchart for Normal Boot

The CPU may terminate a boot due to a CRC error or boot ack timeout. In a boot termination during data transfer, the CPU
has to bring the SIB FSMs to a known state by setting the RSTCONT bit in the SDMMCU_CS register and also ensure that
the associated sockets are brought back to a known state. More details on normal boot operation can be found in the SD 3.0
specification.

In alternate boot operation mode, If CMD0 is issued with argument 0XFFFFFFFA, 74 clock cycles after power up or reset, the
card sends the boot acknowledgement status followed by the boot data. The boot acknowledgment can be disabled as in the
case of normal boot. The termination of boot operation is triggered by issuing a reset command (CMD0 with argument
0XF0F0F0F0). As in the case of normal boot, the termination can occur during block boundary or data transfer. The condition
for termination described previously for normal boot is the same for alternate boot.

232 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Figure 9-15. Alternate Boot

* Source: eMMC Specification, version 4.3

The flow chart shown in Figure 9-16 depicts the alternate boot operation flow.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 233

Figure 9-16. Flow Chart for Alternate Boot Operation *

234 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 235

10. Registers

10.1 Introduction

This chapter describes the EZ-USB FX3 registers.

Table 10-1 provides an overview of the FX3 memory map:

Table 10-2 provides an overview of the MMIO register space starting at 0xE0000000 (as shown in Table 10-1):

Detailed descriptions of all the registers in each IP block are provided in the following sections.

Table 10-1. FX3 Memory Map

Offset Size Name Description

0x00000000 0x4000 ITCM_MEMORY 16-KB Instruction Tightly Coupled Memory (visible to ARM only)

0x10000000 0x2000 DTCM_MEMORY 8-KB Data Tightly Coupled Memory (visible to ARM only)

0x40000000 0x80000 SYSMEM 512-KB Main System RAM

0xE0000000 0x10000000 MMIO Main MMIO Space

0xFFFF0000 0x8000 BOOTROM 32-KB Boot ROM Memory

0xFFFFF000 0x1000 VIC ARM PL192 VIC Vectored Interrupt Controller

Table 10-2. MMIO Register Space

Offset
(from address
0xE0000000)

Size Name Description

0x00000 0x10000 LPP Low Performance Peripherals register map

0x10000 0x10000 PIB Processor Port register map

0x30000 0x10000 UIB USB Port register map

0x40000 0x10000 UIBIN USB SuperSpeed Ingress Adapter

0x50000 0xFC00 GCTL Global Controller register map

0x5FC00 0x0400 CPU ARM CPU register map (BIST only)

236 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.2 Register Conventions

The register table above illustrates the register description format used in this chapter.

■ The top line shows the register name, functional description, and address in the memory.

■ The second line shows the bit position in the register.

■ The third line shows the field name of the corresponding bit(s) in the register.

■ The fourth line shows SW CPU accessibility: R(ead), W(rite), W0C (write 0 to clear), W1S (write 1 to set), or R/W.

■ The fifth line shows HW CPU accessibility: R(ead), W(rite), W0C (write 0 to clear), W1S (write 1 to set), or R/W.

■ The sixth line shows the default value. These values apply after a hard reset (refer to 4.3.3 Reset on page 59). When a
default value extends across bytes, the borders between the bytes is a lighter line.

■ Gray, empty cells indicate reserved bits. Do not read from or write to these bits.

Register Name Register Function Address

b7 b6 b5 b4 b3 b2 b1 b0

bitname bitname bitname bitname bitname bitname bitname bitname

SW R, W access SW R, W access SW R, W access SW R, W access SW R, W access SW R, W access SW R, W access SW R, W access

HW R, W access HW R, W access HW R, W access HW R, W access HW R, W access HW R, W access HW R, W access HW R, W access

Default val Default val Default val Default val Default val Default val Default val Default val

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 237

10.3 Vectored Interrupt Controller (VIC) Registers

10.3.1 VIC_IRQ_STATUS

IRQ Status Register

31:0 IRQ_STATUS[31:0] 1 IRQ interrupt is raised by the following source:

VIC_IRQ_STATUS IRQ Status after Masking 0xFFFFF000

b31 b30 b29 b28 b27 b26 b25 b24

IRQ_STATUS[31:24]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_IRQ_STATUS IRQ Status after Masking

b23 b22 b21 b20 b19 b18 b17 b16

IRQ_STATUS[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_IRQ_STATUS IRQ Status after Masking

b15 b14 b13 b12 b11 b10 b9 b8

IRQ_STATUS[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_IRQ_STATUS IRQ Status after Masking

b7 b6 b5 b4 b3 b2 b1 b0

IRQ_STATUS[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

238 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.3.2 VIC_FIQ_STATUS

FIQ Status Register

31:0 FIQ_STATUS[31:0] 1 FIQ interrupt is raised at the line corresponding to the bit position.

VIC_FIQ_STATUS FIQ Status after Masking 0xFFFFF004

b31 b30 b29 b28 b27 b26 b25 b24

FIQ_STATUS[31:24]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_FIQ_STATUS FIQ Status after Masking

b23 b22 b21 b20 b19 b18 b17 b16

FIQ_STATUS[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_FIQ_STATUS FIQ Status after Masking

b15 b14 b13 b12 b11 b10 b9 b8

FIQ_STATUS[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_FIQ_STATUS FIQ Status after Masking

b7 b6 b5 b4 b3 b2 b1 b0

FIQ_STATUS[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 239

10.3.3 VIC_RAW_STATUS

Raw Status Register

31:0 RAW_STATUS[31:0] 1 FIQ/IRQ interrupt is raised at the line corresponding to the bit position regardless of its
masked (disable) state.

VIC_RAW_STATUS IRQ Status before Masking 0xFFFFF008

b31 b30 b29 b28 b27 b26 b25 b24

RAW_STATUS[31:24]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_RAW_STATUS IRQ Status before Masking

b23 b22 b21 b20 b19 b18 b17 b16

RAW_STATUS[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_RAW_STATUS IRQ Status before Masking

b15 b14 b13 b12 b11 b10 b9 b8

RAW_STATUS[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_RAW_STATUS IRQ Status before Masking

b7 b6 b5 b4 b3 b2 b1 b0

RAW_STATUS[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

240 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.3.4 VIC_INT_SELECT

IRQ/FIQ Designation Register

31:0 FIQ_nIRQ[31:0] 1 Designate the line corresponding to the bit position as FIQ. The software ensures that this
register is a power of 2 (one FIQ only). It writes to this register only after disabling the inter-
rupts it intends to change.

VIC_INT_SELECT IRQ/FIQ Designation Register 0xFFFFF00C

b31 b30 b29 b28 b27 b26 b25 b24

FIQ_nIRQ[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

VIC_INT_SELECT IRQ/FIQ Designation Register

b23 b22 b21 b20 b19 b18 b17 b16

FIQ_nIRQ[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

VIC_INT_SELECT IRQ/FIQ Designation Register

b15 b14 b13 b12 b11 b10 b9 b8

FIQ_nIRQ[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

VIC_INT_SELECT IRQ/FIQ Designation Register

b7 b6 b5 b4 b3 b2 b1 b0

FIQ_nIRQ[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 241

10.3.5 VIC_INT_ENABLE

Interrupt Enable Register

31:0 INT_ENABLE[31:0] 1 Enable the interrupt at this bit position. All interrupts are disabled at reset. Software cannot
write 0 here to disable interrupts. Use the VIC_INT_CLEAR register for this purpose.

VIC_INT_ENABLE Interrupt Enable Register 0xFFFFF010

b31 b30 b29 b28 b27 b26 b25 b24

INT_ENABLE[31:24]

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

R R R R R R R R

0 0 0 0 0 0 0 0

VIC_INT_ENABLE Interrupt Enable Register

b23 b22 b21 b20 b19 b18 b17 b16

INT_ENABLE[23:16]

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

R R R R R R R R

0 0 0 0 0 0 0 0

VIC_INT_ENABLE Interrupt Enable Register

b15 b14 b13 b12 b11 b10 b9 b8

INT_ENABLE[15:8]

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

R R R R R R R R

0 0 0 0 0 0 0 0

VIC_INT_ENABLE Interrupt Enable Register

b7 b6 b5 b4 b3 b2 b1 b0

INT_ENABLE[7:0]

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

242 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.3.6 VIC_INT_CLEAR

Interrupt Clear Register

This register disables the interrupt line and masks it if it was designated IRQ.

31:0 INT_CLEAR[31:0] 1 Disable the interrupt at this bit position. Mask it if it is designated IRQ.

VIC_INT_CLEAR Interrupt Clear Register 0xFFFFF014

b31 b30 b29 b28 b27 b26 b25 b24

INT_CLEAR[31:24]

W1C W1C W1C W1C W1C W1C W1C W1C

R R R R R R R R

NA NA NA NA NA NA NA NA

VIC_INT_CLEAR Interrupt Clear Register

b23 b22 b21 b20 b19 b18 b17 b16

INT_CLEAR[23:16]

W1C W1C W1C W1C W1C W1C W1C W1C

R R R R R R R R

NA NA NA NA NA NA NA NA

VIC_INT_CLEAR Interrupt Clear Register

b15 b14 b13 b12 b11 b10 b9 b8

INT_CLEAR[15:8]

W1C W1C W1C W1C W1C W1C W1C W1C

R R R R R R R R

NA NA NA NA NA NA NA NA

VIC_INT_CLEAR Interrupt Clear Register

b7 b6 b5 b4 b3 b2 b1 b0

INT_CLEAR[7:0]

W1C W1C W1C W1C W1C W1C W1C W1C

R R R R R R R R

NA NA NA NA NA NA NA NA

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 243

10.3.7 VIC_PRIORITY_MASK

Per-Priority Interrupt Mask Register

This register allows you to mask interrupts on a per-priority basis.

15:0 PRIO_MASK[15:0] 1 Unmasked
0 Interrupt at the priority level = bit position is masked.

VIC_PRIORITY_MASK Per-Priority Interrupt Mask Register 0xFFFFF024

b31 b30 b29 b28 b27 b26 b25 b24

VIC_PRIORITY_MASK Per-Priority Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

VIC_PRIORITY_MASK Per-Priority Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

PRIO_MASK[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

VIC_PRIORITY_MASK Per-Priority Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

PRIO_MASK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFF

Bit Name Description

244 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.3.8 VIC_VEC_ADDRESS

Interrupt Vector Register

There are 32 VIC_VEC_ADDRESS registers. The address of each is calculated as VIC_VEC_ADDRESS(x) = 0xFFFFF100 +
(x*0x4). So, VIC_VEC_ADDRESS(0) is at address 0xFFFFF100, VIC_VEC_ADDRESS(1) is at address 0xFFFFF100 + 0x4
and so on. The definition of each of these is the same.

This registers holds the address of ISR for interrupts. 32 registers for 32 lines. There are 32 of these registers, which are con-
tiguous. Note the offset for this register bank.

31:0 ISR_ADD[31:0] The firmware accesses this register only after disabling the corresponding interrupt. Holds the
address to the ISR for interrupt number = the position of this register in the bank of 32 registers.

VIC_VEC_ADDRESS Interrupt Vector Register 0xFFFFF100

b31 b30 b29 b28 b27 b26 b25 b24

ISR_ADD[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

VIC_VEC_ADDRESS Interrupt Vector Register

b23 b22 b21 b20 b19 b18 b17 b16

ISR_ADD[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

VIC_VEC_ADDRESS Interrupt Vector Register

b15 b14 b13 b12 b11 b10 b9 b8

ISR_ADD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

VIC_VEC_ADDRESS Interrupt Vector Register

b7 b6 b5 b4 b3 b2 b1 b0

ISR_ADD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 245

10.3.9 VIC_VECT_PRIORITY

Interrupt Priority Register

There are 32 VIC_VECT_PRIORITY registers. The address of each is calculated as VIC_VECT_PRIORITY(x) =
0xFFFFF200 + (x*0x4). So, VIC_VECT_PRIORITY(0) is at address 0xFFFFF200, VIC_VECT_PRIORITY(1) is at address
FFFFF200 + 0x4,and so on. The definition of each of these is the same.

This register holds the priority designation of the interrupts. There are 32 registers for 32 lines. The 32 registers are contigu-
ous. Note the offset for this register bank.

3:0 VIC_INTR_PRI The firmware accesses this register only after disabling the corresponding interrupt. It assigns one of
the 16 priorities to the interrupt number. This equals the position of this register in the bank of 32 reg-
isters. When any two interrupts with the same priority arrive at the VIC, the one connected to the
lower numbered line wins.

.

VIC_VECT_PRIORITY Interrupt Priority Register 0xFFFFF200

b31 b30 b29 b28 b27 b26 b25 b24

VIC_VECT_PRIORITY Interrupt Priority Register

b23 b22 b21 b20 b19 b18 b17 b16

VIC_VECT_PRIORITY Interrupt Priority Register

b15 b14 b13 b12 b11 b10 b9 b8

VIC_VECT_PRIORITY Interrupt Priority Register

b7 b6 b5 b4 b3 b2 b1 b0

VIC_INTR_PRI[3:0]

R/W R/W R/W R/W

R R R R

0xF

Bit Name Description

246 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.3.10 VIC_ADDRESS

Active ISR Address Register

This register returns the ISR address of the interrupt deemed active after masking and priority resolution. This is what the
CPU reads when interrupted.

31:0 ACTIVE_ISR[31:0] Upon interruption, software reads this register. This marks the active interrupt as being serviced,
which prevents interrupts of equal or lower priority from raising interrupt. Upon completion, the soft-
ware writes any value to this register, which clears the active interrupt. software does not access this
register at any other time.

VIC_ADDRESS Active ISR Address Register 0xFFFFFF00

b31 b30 b29 b28 b27 b26 b25 b24

ACTIVE_ISR[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_ADDRESS Active ISR Address Register

b23 b22 b21 b20 b19 b18 b17 b16

ACTIVE_ISR[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_ADDRESS Active ISR Address Register

b15 b14 b13 b12 b11 b10 b9 b8

ACTIVE_ISR[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

VIC_ADDRESS Active ISR Address Register

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE_ISR[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 247

10.4 Global Controller Registers

10.4.1 GCTL_IOMATRIX

I/O Matrix Configuration Register

This register defines port usage and implementation for the GPIO port.

10:8 S1CFG[2:0] GPIO[57:46] is configured with the following encoding:
0 Connected to GPIO
1 Connected to GPIO + UART
2 Connected to GPIO + SPI
3 Connected to GPIO + I2S
4 Connected to UART+SPI+I2S
5 Connected to PIB_DQ+UART+I2S

4 S0CFG GPIO[45:33] is configured with the following encoding:
0 Connected to GPIO
1 Connected to PIB_DQ[16]..PIB_DQ[27] (GPIF-II mode)

1 CARKIT Carkit UART configuration:
0 Use LPP_UART (LPP_UART not available to S1)
1 Use PIB_CTL11/PIB_CTL12 pins for carkit UART
(enabling the USB2 PHY for Carkit UART operation must be done separately in UIB_PHY*).

GCTL_IOMATRIX I/O Matrix Configuration Register 0xE0051008

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_IOMATRIX I/O Matrix Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_IOMATRIX I/O Matrix Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

S1CFG[2:0]

R/W R/W R/W

R R R

0 0 0

GCTL_IOMATRIX I/O Matrix Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

S0CFG CARKIT

R/W R/W

R R

0 0

Bit Name Description

248 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.2 GCTL_GPIO_SIMPLE

GPIO Override Configuration Register

continued on next page

GCTL_GPIO_SIMPLE GPIO Override Configuration Register 0xE005100C

b63 b62 b61 b60 b59 b58 b57 b56

OVERRIDE[60:56]

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 0

GCTL_GPIO_SIMPLE GPIO Override Configuration Register

b55 b54 b53 b52 b51 b50 b49 b48

OVERRIDE[55:48]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_GPIO_SIMPLE GPIO Override Configuration Register

b47 b46 b45 b44 b43 b42 b41 b40

OVERRIDE[47:40]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_GPIO_SIMPLE GPIO Override Configuration Register

b39 b38 b37 b36 b35 b34 b33 b32

OVERRIDE[39:32]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_GPIO_SIMPLE GPIO Override Configuration Register

b31 b30 b29 b28 b27 b26 b25 b24

OVERRIDE[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 0 0 0 0 0 0 0

GCTL_GPIO_SIMPLE GPIO Override Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

OVERRIDE[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_GPIO_SIMPLE GPIO Override Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

OVERRIDE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 249

10.4.2 GCTL_GPIO_SIMPLE (continued)

This register is used to determine if the simple GPIO function should override the (GCTL_IOMATRIX specified) function of
each pin on a per-pin basis. GCTL_GPIO_COMPLEX takes precedence over GCTL_GPIO_SIMPLE.

60:0 OVERRIDE[60:0 When bit <n> is set, the corresponding pin maps to simple GPIO <n>.

GCTL_GPIO_SIMPLE GPIO Override Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

OVERRIDE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

250 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.3 GCTL_GPIO_COMPLEX

GPIO Override Configuration Register

continued on next page

GCTL_GPIO_COMPLEX GPIO Override Configuration Register 0xE0051014

b63 b62 b61 b60 b59 b58 b57 b56

OVERRIDE[60:56]

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 0

GCTL_GPIO_COMPLEX GPIO Override Configuration Register

b55 b54 b53 b52 b51 b50 b49 b48

OVERRIDE[55:48]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_GPIO_COMPLEX GPIO Override Configuration Register

b47 b46 b45 b44 b43 b42 b41 b40

OVERRIDE[47:40]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_GPIO_COMPLEX GPIO Override Configuration Register

b39 b38 b37 b36 b35 b34 b33 b32

OVERRIDE[39:32]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_GPIO_COMPLEX GPIO Override Configuration Register

b31 b30 b29 b28 b27 b26 b25 b24

OVERRIDE[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 0 0 0 0 0 0 0

GCTL_GPIO_SIMPLE GPIO Override Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

OVERRIDE[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_GPIO_COMPLEX GPIO Override Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

OVERRIDE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 251

10.4.3 GCTL_GPIO_COMPLEX (continued)

This register is used to determine if the complex GPIO function should override the (GCTL_IOMATRIX specified) function of
each pin on a per-pin basis. GCTL_GPIO_COMPLEX takes precedence over GCTL_GPIO_SIMPLE.

60:0 OVERRIDE[60:0] When bit <n> is set, the corresponding pin maps to complex GPIO_PIN <n> Mod 8. If multiple pins
are mapped onto the same GPIO_PIN the behavior of the hardware is undefined.

GCTL_GPIO_COMPLEX GPIO Override Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

OVERRIDE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

252 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.4 GCTL_DS

I/O Drive Strength Configuration Register

This register defines pull-up and pull-down drive strength capability for I/O pins. Pins that are configured as GPIO use a differ-
ent drive strength value from pins that have their 'normal' function.

19:18 I2CDS_G[1:0] Drive strength for CHGDET pin, VIO5 power domain

17:16 S1LDS_G[1:0] Drive strength for GPIOs, VIO4 power domain

15:14 S1DS_G[1:0] Drive strength for GPIOs, VIO3 power domain

13:12 S0DS_G[1:0] Drive strength for GPIOs, VIO2 power domain

11:10 PDS_G[1:0] Drive strength for P-Port GPIOs, VIO1 power domain

9:8 I2CDS[1:0] Drive strength for I2C pins, VIO5 power domain
00 Slow speed 1-MHz gpio (push-pull) driver

01 I2C fast-mode 1.5 to 3.6 V (open-drain only)

10 I2C fast-mode 1.2 to 1.5 V, standard-mode 1.2 to 3.6 V (open-drain only)

11 I2C fast-mode plus (open-drain only)

7:6 S1LDS[1:0] Drive strength for I2C pins, VIO5 power domain

continued on next page

GCTL_DS I/O Drive Strength Configuration Register 0xE005101C

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_DS I/O Drive Strength Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

I2CDS_G[1:0] S1LDS_G[1:0]

R/W R/W R/W R/W

R R R R

2 2 2 2

GCTL_DS I/O Drive Strength Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

S1DS_G[1:0] S0DS_G[1:0] PDS_G[1:0] I2CDS[1:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

2 2 2 2 2 2 2 2

GCTL_DS I/O Drive Strength Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

S1LDS[1:0] S1DS[1:0] S0DS[1:0] PDS[1:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

2 2 2 2 2 2 2 2

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 253

10.4.4 GCTL_DS (continued)

5:4 S1DS[1:0] Drive strength for GPIOs, VIO3 power domain

3:2 S0DS[1:0] Drive strength for GPIOs, VIO2 power domain

1:0 PDS[1:0] Drive strength for P-Port, VIO1 power domain
0 Quarter strength
1 Half strength
2 Three quarter strength
3 Full strength

254 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.5 GCTL_WPU_CFG

I/O Pull-Up Configuration Register

continued on next page

GCTL_WPU_CFG I/O Pull-Up Configuration Register 0xE0051020

b63 b62 b61 b60 b59 b58 b57 b56

WPU[59:56]

R/W R/W R/W R/W

R R R R

0 0 0 0

GCTL_WPU_CFG I/O Pull-Up Configuration Register

b55 b54 b53 b52 b51 b50 b49 b48

WPU[55:48]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_WPU_CFG I/O Pull-Up Configuration Register

b47 b46 b45 b44 b43 b42 b41 b40

WPU[47:40]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_WPU_CFG I/O Pull-Up Configuration Register

b39 b38 b37 b36 b35 b34 b33 b32

WPU[39:32]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_WPU_CFG I/O Pull-Up Configuration Register

b31 b30 b29 b28 b27 b26 b25 b24

WPU[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 0 0 0 0 0 0 0

GCTL_WPU_CFG I/O Pull-Up Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

WPU[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_WPU_CFG I/O Pull-Up Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

WPU[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 255

10.4.5 GCTL_WPU_CFG (continued)

In conjunction with the GCTL_DS register, this register determines whether a weak pull-up on each I/O pin should be
engaged. Firmware should not enable WPU and WPD simultaneously on a given I/O. A weak pull-up or weak pull-down takes
about 5 µs to be effective at the pads.

59:0 WPU[59:0] When set, a weak pull-up is connected for the pin associated with the corresponding GPIO #.

GCTL_WPU_CFG I/O Pull-Up Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

WPU[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

256 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.6 GCTL_WPD_CFG

I/O Pull-Down Configuration Register

continued on next page

GCTL_WPD_CFG I/O Pull-Down Configuration Register 0xE0051028

b63 b62 b61 b60 b59 b58 b57 b56

WPD[59:56]

R/W R/W R/W R/W

R R R R

0 0 0 0

GCTL_WPD_CFG I/O Pull-Down Configuration Register

b55 b54 b53 b52 b51 b50 b49 b48

WPD[55:48]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_WPD_CFG I/O Pull-Down Configuration Register

b47 b46 b45 b44 b43 b42 b41 b40

WPD[47:40]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_WPD_CFG I/O Pull-Down Configuration Register

b39 b38 b37 b36 b35 b34 b33 b32

WPD[39:32]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_WPD_CFG I/O Pull-Down Configuration Register

b31 b30 b29 b28 b27 b26 b25 b24

WPD[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 0 0 0 0 0 0 0

GCTL_WPD_CFG I/O Pull-Down Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

WPD[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_WPD_CFG I/O Pull-Down Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

WPD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 257

10.4.6 GCTL_WPD_CFG (continued)

In conjunction with the GCTL_DS register, this register determines whether a weak pull-down on each I/O pin should be
engaged. Firmware should not enable WPU and WPD simultaneously on a given I/O. A weak pull-up or weak pull-down takes
about 5 µs to be effective at the pads.

59:0 WPD[59:0] When set, a weak pull-down is connected for the pin associated with the corresponding GPIO #.

GCTL_WPD_CFG I/O Pull-Down Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

WPD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

258 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.7 GCTL_IOPOWER

I/O Power Observability Register

This register can be used to detect I/O Power status on various I/O domains

21 REG_BYPASS_EN Controls the 3.3-V active regulator's bypass mode. This mode enables an external voltage
to be applied to the internal 3.3-V node by bypassing the 3.3-V regulator. It allows the 2.5-V
regulator to be tested and characterized across a different range of input supply voltages
rather than from a single regulated 3.3-V supply. This bit has no function when the regulator
is in standby mode.
0 3.3-V active regulator is not in bypass mode
1 3.3-V active regulator is in bypass mode

20 REG_CARKIT_EN Enables the regulator to provide different output voltage from the 3.3-V regulator. Output
value is selected by the reg_carkit_sel[1:0] bits.
1 Enables regulator to output different voltages for the carkit mode. NOT ALLOWED

for chip-level carkit UART mode because the regulator 2.5-V supply output is dis-
abled, which is not supported by the USB2.0 PHY.

0 Regulator operates normally.

continued on next page

GCTL_IOPOWER I/O Power Observability Register 0xE0051030

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_IOPOWER I/O Power Observability Register

b23 b22 b21 b20 b19 b18 b17 b16

REG_BYPASS_
EN

REG_CARKIT_EN REG_CARKIT_SEL[1:0] USB_REGULATOR_TRIM[1:0]

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

GCTL_IOPOWER I/O Power Observability Register

b15 b14 b13 b12 b11 b10 b9 b8

0 0
USB_POWER_

GOOD
VBUS_TH PDS_G[1:0] VBUS USB25REG USB33REG

R R R R R R R R

R R R/W R/W R/W R/W R/W R/W

0 0 X X X X X X

GCTL_IOPOWER I/O Power Observability Register

b7 b6 b5 b4 b3 b2 b1 b0

VIO5 CVDDQ EFVDDQ VIO4 VIO3 VIO2 0 VIO1

R R R R R R R R

R/W R/W R/W R/W R/W R/W R R/W

X X X X X X 0 X

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 259

10.4.7 GCTL_IOPOWER (continued)

19:18 REG_CARKIT_SEL[1:0] Defines the output value of the 3.3-V regulator output. All values other than the default are
for characterization and future use. This must not be used by software/firmware.
00 Default output of the 3.3-V regulator
01 Regulator output is nominal 3.0 V (experimental)
10 Regulator output is nominal 2.7 V (experimental)
11 Not allowed

17:16 USB_REGULATOR_TRIM[1:0] Trim value for USB Main Regulator output voltage. See USB I/O Subsystem for more
details.

13 USB_POWER_GOOD Indicates that internal supplies of the regulator are stable. For debug purposes:
0 Internal power is not stable
1 Internal power is stable

12 VBUS_TH Vbus level detected by regulator. The interrupt associated with this can be used to detect
the over current condition when using an A-device.
0 Vbus not detected to be < 4.1 V
1 Vbus detected to be > 4.4 V

11 VBAT Indicates VBAT voltage is present and within operating range. Internal regulator voltages
may not yet be stable when this pin asserts.

10 VBUS Indicates VBUS voltage is present and within operating range. Internal regulator voltages
may not yet be stable when this pin asserts.

9 USB25REG Indicates internal 2.5-V regulated voltage to USB2 PHY is present and stable.

8 USB33REG Indicates internal 3.3-V regulator is present and stable.

7 VIO5 Indicates all I/O power domains for this block are powered and active. Any time needed for
internal voltages to stabilize cells to become active has passed before this bit asserts.

6 CVDDQ Indicates all I/O power domains for this block are powered and active. Any time needed for
internal voltages to stabilize cells to become active has passed before this bit asserts.
Note CVDDQ is required for chip operation (clock and reset). This bit will always be 1 when
it can be accessed.

5 EFVDDQ Indicates the eFuse programming voltage pin is supplied with either 1.2 V or 2.5 V. The
presence of programming voltage at 2.5 V is not detectable. Programming will fail but read-
ing succeeds when supplying this pin with 1.2 V.

4 VIO4 Indicates all I/O power domains for this block are powered and active. Any time needed for
internal voltages to stabilize cells to become active has passed before this bit asserts.

3 VIO3 Indicates all I/O power domains for this block are powered and active. Any time needed for
internal voltages to stabilize cells to become active has passed before this bit asserts.

2 VIO2 Indicates all I/O power domains for this block are powered and active. Any time needed for
internal voltages to stabilize cells to become active has passed before this bit asserts.

0 VIO1 Indicates all I/O power domains for this block are powered and active. Any time needed for
internal voltages to stabilize cells to become active has passed before this bit asserts.

260 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.8 GCTL_IOPOWER_INTR

I/O Power Change Interrupt Register

This register generates an interrupt when an interface power domain is powered up or down. Note that a power domain that
is already up when the device resets (including wakeup from standby) also causes an interrupt in this register (which is not
seen by the CPU until the corresponding mask bit is set).

13 USB_POWER_GOOD Interrupt request. Must be cleared by firmware.

12 VBUS_TH Interrupt request. Must be cleared by firmware.

11 VBAT Interrupt request. Must be cleared by firmware.

10 VBUS Interrupt request. Must be cleared by firmware.

9 USB25REG Interrupt request. Must be cleared by firmware.

8 USB33REG Interrupt request. Must be cleared by firmware.

7 VIO5 Interrupt request. Must be cleared by firmware.

continued on next page

GCTL_IOPOWER_INTR I/O Power Change Interrupt Register 0xE0051034

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_IOPOWER_INTR I/O Power Change Interrupt Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_IOPOWER_INTR I/O Power Change Interrupt Register

b15 b14 b13 b12 b11 b10 b9 b8

USB_POWER_
GOOD

VBUS_TH VBAT VBUS USB25REG USB33REG

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

W1S W1S W1S W1S W1S W1S

0 0 0 0 0 0

GCTL_IOPOWER_INTR I/O Power Change Interrupt Register

b7 b6 b5 b4 b3 b2 b1 b0

VIO5 CVDDQ EFVDDQ VIO4 VIO3 VIO2 VIO1

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

W1S W1S W1S W1S W1S W1S W1S

0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 261

10.4.8 GCTL_IOPOWER_INTR (continued)

6 CVDDQ Interrupt request. Must be cleared by firmware.
Note CVDDQ is required for chip operation (clock and reset). This interrupt will never trigger when it
is observable.

5 EFVDDQ Interrupt request. Must be cleared by firmware.

4 VIO4 Interrupt request. Must be cleared by firmware.

3 VIO3 Interrupt request. Must be cleared by firmware.

2 VIO2 Interrupt request. Must be cleared by firmware.

0 VIO1 Interrupt request. Must be cleared by firmware.

262 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.9 GCTL_IOPOWER_INTR_MASK

I/O Power Change Interrupt Mask Register

Set to 1 to activate interrupt. Affects reporting of interrupts only, not logging.

13 USB_POWER_GOOD Set to 1 to report interrupt to CPU

12 VBUS_TH Set to 1 to report interrupt to CPU

11 VBAT Set to 1 to report interrupt to CPU

10 VBUS Set to 1 to report interrupt to CPU

9 USB25REG Set to 1 to report interrupt to CPU

8 USB33REG Set to 1 to report interrupt to CPU

7 VIO5 Set to 1 to report interrupt to CPU

6 CVDDQ Set to 1 to report interrupt to CPU.
Note CVDDQ is required for chip operation (clock and reset). This interrupt will never trigger when it
is observable.

continued on next page

GCTL_IOPOWER_INTR_MASK I/O Power Change Interrupt Mask Register 0xE0051038

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_IOPOWER_INTR_MASK I/O Power Change Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_IOPOWER_INTR_MASK I/O Power Change Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

USB_POWER_
GOOD

VBUS_TH VBAT VBUS USB25REG USB33REG

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

W1S W1S W1S W1S W1S W1S

0 0 0 0 0 0

GCTL_IOPOWER_INTR_MASK I/O Power Change Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

VIO5 CVDDQ EFVDDQ VIO4 VIO3 VIO2 VIO1

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

W1S W1S W1S W1S W1S W1S W1S

0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 263

10.4.9 GCTL_IOPOWER_INTR_MASK (continued)

5 EFVDDQ Set to 1 to report interrupt to CPU

4 VIO4 Set to 1 to report interrupt to CPU

3 VIO3 Set to 1 to report interrupt to CPU

2 VIO2 Set to 1 to report interrupt to CPU

0 VIO1 Set to 1 to report interrupt to CPU

264 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.10 GCTL_SW_INT

Software Interrupt Register

This register is a software interrupt register with 31b argument.

31 SWINT Software interrupt request. Must be set by issuer and cleared by ISR.

30:0 ARGUMENT[30:0] 31-bit argument that can be set by issuer, read by ISR.

GCTL_SW_INT Software Interrupt Register 0xE005104C

b31 b30 b29 b28 b27 b26 b25 b24

SWINT ARGUMENT[30:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_SW_INT Software Interrupt Register

b23 b22 b21 b20 b19 b18 b17 b16

ARGUMENT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_SW_INT Software Interrupt Register

b15 b14 b13 b12 b11 b10 b9 b8

ARGUMENT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GCTL_SW_INT Software Interrupt Register

b7 b6 b5 b4 b3 b2 b1 b0

ARGUMENT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 265

10.4.11 GCTL_PLL_CFG

PLL Configuration Register

On power up, this value is initialized depending on the FSLC[1:0] pin values as follows:

0: 19.2-MHz input clock, FBDIV = 20, REFDIV0 = 0, OUTDIV(1:0) = 00, oscclk = 384 MHz
FX3 supports only 19.2 MHz.

19 PLL_LOCK Asserted when PLL locks

18:16 FSLC Value presented on FSLC[2:0] pins on the device that identify reference clock frequency/crystal pro-
vided. FSLC[2] selects between reference clock or crystal, FSLC[1:0] select reference clock fre-
quency when FSLC[2] = 0.

13:12 CP_CFG PLL charge pump configuration
0 2.5 µA
1 5 µA
2 7.5 µA
3 10 µA
The charge pump bit setting varies depending on both the refclk frequency and the configuration
divider bits.

continued on next page

GCTL_PLL_CFG PLL Configuration Register 0xE0052000

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_PLL_CFG PLL Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

PLL_LOCK FSLC[2:0]

R R R R

R/W R/W R/W R/W

0 X X X

GCTL_PLL_CFG PLL Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

CP_CFG[1:0] REFDIV

R/W R/W R/W

R R R/W

0 0 H

GCTL_PLL_CFG PLL Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

OUTDIV[1:0] FBDIV[5:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R/W R/W R/W R/W R/W R/W

0 0 H H H H H H

Bit Name Description

266 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.11 GCTL_PLL_CFG (continued)

8 REFDIV PLL input reference divider configuration. This field must be 0.

7:6 OUTDIV PLL output divider configuration. This field must be 0.

5:0 FBDIV PLL feedback divider configuration. This field must be 0x14.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 267

10.4.12 GCTL_CPU_CLK_CFG

CPU and Bus Clock Configuration Register

15:12 MMIO_DIV[3:0] MMIO bus clock divider value. This determines how much to divide the CPU clock. The actual divider
is DIV + 1. Zero (divide by 1) is illegal and results in undefined behavior. In other words, the range of
divider values is 2 to16. The following must be true: (MMIO_DIV + 1) = N × (DMA_DIV +1).

11:8 DMA_DIV[3:0] DMA bus clock divider value. This determines how much to divide the CPU clock. The actual divider
is DIV + 1. Zero (divide by 1) is illegal and results in undefined behavior. In other words, the range of
divider values is 2 to 16.

5:4 SRC[1:0] Clock source select. This field selects between one of the following four prestage system clocks
00 sys16_clk (sys_clk_pll divided by 16)
01 sys4_clk (sys_clk_pll divided by 4)
10 sys2_clk (sys_clk_pll divided by 2)
11 sys_clk_pll
On power up, the CPU clock will be PLL clock divided by 2, which is around 100 MHz. The expecta-
tion is that Boot ROM/Firmware changes this value to get to final CPU frequency.

3:0 CPU_DIV CPU clock divider value. This determines how much to divide the source clock selected by the SRC
field of this register. The actual divider is DIV + 1. Zero (divide by 1) is illegal and results in undefined
behavior. In other words, the range of divider values is 2 to 16.

GCTL_CPU_CLK_CFG CPU and Bus Clock Configuration Register 0xE0052004

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_CPU_CLK_CFG CPU and Bus Clock Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_CPU_CLK_CFG CPU and Bus Clock Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

MMID_DIV[3:0] DMA_DIV[11:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 1

GCTL_CPU_CLK_CFG CPU and Bus Clock Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

0 0 SRC[1:0] CPU_DIV[3:0]

R R R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 2 1

Bit Name Description

268 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.13 GCTL_UIB_CORE_CLK

UIB Clock Configuration Register

31 CLK_EN Enable clock multiplexer

3:2 PCLK_SRC[1:0] Clock source for SuperSpeed section of UIB block:
0 Not defined
1 USB3 PHY 125 MHz (spread spectrum clock)
2 Bus clock (typ 100 MHz)
3 Standby clock (typ 32 kHz)
This field drives a simple clock mux; the actual presence and configuration of the clock inputs used is
defined in the appropriate registers.

1:0 EPMCLK_SRC[1:0] Clock source for EPM section of UIB block:
0 USB2 PHY 480 MHz divided by 4 (120 MHz)
1 USB3 PHY 125 MHz (spread spectrum clock)
2 Bus clock (typ 100 MHz)
3 Standby clock (typ 32 kHz)
This field drives a simple clock mux; the actual presence and configuration of the clock inputs used is
defined in the appropriate registers.
Note In GTM test mode, make sure the USB2 PHY clock is running for at least 40 µs before selecting
EPMCLK_SRC = 0.

GCTL_UIB_CORE_CLK UIB Clock Configuration Register 0xE0052008

b31 b30 b29 b28 b27 b26 b25 b24

CLK_EN

R/W

R

0

GCTL_UIB_CORE_CLK UIB Clock Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_UIB_CORE_CLK UIB Clock Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

GCTL_UIB_CORE_CLK UIB Clock Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

PCLK_SRC[1:0] EPMCLK_SRC[1:0]

R/W R/W R/W R/W

R R R R

2 2

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 269

10.4.14 GCTL_PIB_CORE_CLK

PIB Clock Configuration Register

31 CLK_EN Enable clock divider. Both the divider itself and its output are gated.

12:11 SRC[1:0] Clock source select. This field selects between one of the following four prestage system clocks:
00 sys16_clk (sys_clk_pll divided by 16)
01 sys4_clk (sys_clk_pll divided by 4)
10 sys2_clk (sys_clk_pll divided by 2)
11 sys_clk_pll

10 HALFDIV Nonintegral divider select. This field adds 0.5 to the divider value selected by the DIV field. This yields
divider values from 2.5 to 256.5.

9:0 DIV[9:0] Clock divider value. This determines how much to divide the PLL system clock. The actual divider is
DIV + 1. Zero (divide by 1) is illegal and results in undefined behavior. In other words, the range of
divider values is 2 to 1024.

GCTL_PIB_CORE_CLK PIB Clock Configuration Register 0xE005200C

b31 b30 b29 b28 b27 b26 b25 b24

CLK_EN

R/W

R

0

GCTL_PIB_CORE_CLK PIB Clock Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_PIB_CORE_CLK PIB Clock Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

SRC[1:0] HALFDIV DIV;9:8]

R/W R/W R/W R/W R/W

R R R R R

0 0 0

GCTL_PIB_CORE_CLK PIB Clock Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DIV[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

Bit Name Description

270 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.15 GCTL_GPIO_FAST_CLK

GPIO Fast Clock Configuration Register

31 CLK_EN Enable clock divider. Both the divider itself and its output are gated.

8:7 SIMPLE[1:0] Divider value for simple GPIOs relative to fast GPIO clock
0 Divide by 2
1 Divide by 4
2 Divide by 16
3 Divide by 64

6:5 SRC[1:0] Clock source select. This field selects between one of the following four prestage system clocks:
00 sys16_clk (sys_clk_pll divided by 16)
01 sys4_clk (sys_clk_pll divided by 4)
10 sys2_clk (sys_clk_pll divided by 2)
11 sys_clk_pll

4 HALFDIV Nonintegral divider select. This field adds 0.5 to the divider value selected by the DIV field. This yields
divider values from 2.5 to 16.5.
Note Do not use HALFDIV for FAST_CLK unless neither GPIO_SLOW_CLK or GPIO_SIMPLE_CLK
is used. They will not function with HALFDIV = 1.
Note Do not change HALFDIV after CLK_EN is set to 1 at least once, without first applying a hard-
ware reset. It can be set together with CLK_EN in a single register write.

continued on next page

GCTL_GPIO_FAST_CLK GPIO Fast Clock Configuration Register 0xE0052018

b31 b30 b29 b28 b27 b26 b25 b24

CLK_EN

R/W

R

0

GCTL_GPIO_FAST_CLK GPIO Fast Clock Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_GPIO_FAST_CLK GPIO Fast Clock Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

SIMPLE1

R/W

R

GCTL_GPIO_FAST_CLK GPIO Fast Clock Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

SIMPLE0 SRC[1:0] HALFDIV DIV[3:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

2 0 0 0 1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 271

10.4.15 GCTL_GPIO_FAST_CLK (continued)

3:0 DIV[3:0] Clock divider value. This determines how much to divide the PLL system clock. The actual divider is
DIV + 1. Zero (divide by 1) is illegal and results in undefined behavior. In other words, the range of
divider values is 2 to 16.

Note Any two writes to GCTL_GPIO_FAST_CLK and GPIO_SLOW_CLK must be spaced at least 35cy @ busclk apart. This
holds for back-to-back writes to the same register as well as writes to both of these registers in either order.

272 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.16 GCTL_GPIO_SLOW_CLK

GPIO Slow Clock Configuration Register

31 CLK_EN Enable clock divider. Both the divider itself and its output are gated.

5:0 DIV[5:0] Clock divider value. This determines how much to divide the GPIO_FAST_CLK system clock. The
actual divider is DIV + 1. Zero (divide by 1) is illegal and results in undefined behavior. In other words,
the range of divider values is 2 to 64.

Note Any two writes to GCTL_GPIO_FAST_CLK and GPIO_SLOW_CLK must be spaced at least 35cy @ busclk apart. This
holds for back-to-back writes to the same register as well as writes to both of these registers in either order.

GCTL_GPIO_SLOW_CLK GPIO Slow Clock Configuration Register 0xE005201C

b31 b30 b29 b28 b27 b26 b25 b24

CLK_EN

R/W

R

0

GCTL_GPIO_SLOW_CLK GPIO Slow Clock Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_GPIO_SLOW_CLK GPIO Slow Clock Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

GCTL_GPIO_SLOW_CLK GPIO Slow Clock Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DIV[5:0]

R/W R/W R/W R/W R/W R/W

R R R R R R

1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 273

10.4.17 GCTL_I2C_CORE_CLK

I2C Core Clock Configuration Register

This register contains the divider for the I2C clock block. It must be set to a frequency that is 10x the bit rate on the interface
(so 1 MHz, 4 MHz, 10 MHz, and so on).

31 CLK_EN Enable clock divider. Both the divider itself and its output are gated.

14:13 SRC[1:0] Clock source select. This field selects between one of the following four prestage system clocks:
00 sys16_clk (sys_clk_pll divided by 16)
01 sys4_clk (sys_clk_pll divided by 4)
10 sys2_clk (sys_clk_pll divided by 2)
11 sys_clk_pll

12 HALFDIV Nonintegral divider select. This field adds 0.5 to the divider value selected by the DIV field. This yields
divider values from 2.5 to 4096.5.

11:0 DIV[11:0] Clock divider value. This determines how much to divide the PLL system clock. The actual divider is
DIV + 1. Zero (divide by 1) is illegal and results in undefined behavior. In other words, the range of
divider values is 2 to 4096.

GCTL_I2C_CORE_CLK I2C Core Clock Configuration Register 0xE0052020

b31 b30 b29 b28 b27 b26 b25 b24

CLK_EN

R/W

R

0

GCTL_I2C_CORE_CLK I2C Core Clock Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_I2C_CORE_CLK I2C Core Clock Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

SRC[1:0] HALFDIV DIV[11:8]

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0

GCTL_I2C_CORE_CLK I2C Core Clock Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DIV[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

Bit Name Description

274 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.18 GCTL_UART_CORE_CLK

UART Core Clock Configuration Register

This is the core clock provided to the UART peripheral. The UART uses 8x oversampling, so the resulting baud rate is 1/8th
the frequency provided by this clock.

31 CLK_EN Enable clock divider. Both the divider itself and its output are gated.

18:17 SRC[1:0] Clock source select. This field selects between one of the following four prestage system clocks:
00 sys16_clk (sys_clk_pll divided by 16)
01 sys4_clk (sys_clk_pll divided by 4)
10 sys2_clk (sys_clk_pll divided by 2)
11 sys_clk_pll

16 HALFDIV Nonintegral divider select. This field adds 0.5 to the divider value selected by the DIV field. This yields
divider values from 2.5 to 65536.5.

15:0 DIV[15:0] Clock divider value. This determines how much to divide the PLL system clock. The actual divider is
DIV + 1. Zero (divide by 1) is illegal and results in undefined behavior. In other words, the range of
divider values is 2 to 65536.

GCTL_UART_CORE_CLK UART Core Clock Configuration Register 0xE0052024

b31 b30 b29 b28 b27 b26 b25 b24

CLK_EN

R/W

R

0

GCTL_UART_CORE_CLK UART Core Clock Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

SRC[1:0] HALFDIV

R/W R/W R/W

R R R

0 0 0

GCTL_UART_CORE_CLK UART Core Clock Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

DIV[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GCTL_UART_CORE_CLK UART Core Clock Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DIV[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 275

10.4.19 GCTL_SPI_CORE_CLK

SPI Core Clock Configuration Register

31 CLK_EN Enable clock divider. Both the divider itself and its output are gated.

18:17 SRC[1:0] Clock source select. This field selects between one of the following four prestage system clocks:
00 sys16_clk (sys_clk_pll divided by 16)
01 sys4_clk (sys_clk_pll divided by 4)
10 sys2_clk (sys_clk_pll divided by 2)
11 sys_clk_pll

16 HALFDIV Nonintegral divider select. This field adds 0.5 to the divider value selected by the DIV field. This yields
divider values from 2.5 to 65536.5.

15:0 DIV[15:0] Clock divider value. This determines how much to divide the PLL system clock. The actual divider is
DIV + 1. Zero (divide by 1) is illegal and results in undefined behavior. In other words, the range of
divider values is 2 to 65536.

GCTL_SPI_CORE_CLK SPI Core Clock Configuration Register 0xE005202C

b31 b30 b29 b28 b27 b26 b25 b24

CLK_EN

R/W

R

0

GCTL_SPI_CORE_CLK SPI Core Clock Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

SRC[1:0] HALFDIV

R/W R/W R/W

R R R

0 0 0

GCTL_SPI_CORE_CLK SPI Core Clock Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

DIV[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GCTL_SPI_CORE_CLK SPI Core Clock Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DIV[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

Bit Name Description

276 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.4.20 GCTL_I2S_CORE_CLK

I2S Core Clock Configuration Register

31 CLK_EN Enable clock divider. Both the divider itself and its output are gated.

30 MCLK_IN 0 I2S_MCLK is an output, generated from this divider
1 I2S_MCLK is taken as the input to this divider instead of the PLL clock
Note Never change this value after CLK_EN is set without first issuing a reset to the device.

17:16 SRC[1:0] Clock source select. This field selects between one of the following four prestage system clocks:
00 sys16_clk (sys_clk_pll divided by 16)
01 sys4_clk (sys_clk_pll divided by 4)
10 sys2_clk (sys_clk_pll divided by 2)
11 sys_clk_pll

15 HALFDIV Nonintegral divider select. This field adds 0.5 to the divider value selected by the DIV field. This yields
divider values from 2.5 to 32768.5.

14:0 DIV[15:0] Clock divider value. This determines how much to divide the PLL system clock. The actual divider is
DIV + 1. Zero (divide by 1) is illegal and results in undefined behavior. In other words, the range of
divider values is 2 to 32768.

GCTL_I2S_CORE_CLK I2S Core Clock Configuration Register 0xE0052034

b31 b30 b29 b28 b27 b26 b25 b24

CLK_EN MCLK_IN

R/W R/W

R R

0 0

GCTL_I2S_CORE_CLK I2S Core Clock Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

SRC[1:0]

R/W R/W

R R

0 0

GCTL_I2S_CORE_CLK I2S Core Clock Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

HALFDIV DIV[14:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0

GCTL_I2S_CORE_CLK I2S Core Clock Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DIV[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 277

10.5 Global Controller Always On Registers

10.5.1 GCTL_WAKEUP_EN

Wakeup Enable Register

This register indicates which wakeup sources are enabled to wake up the system from suspend/standby modes. It is in the
always-on power domain. Unless otherwise noted, wakeup sources work from both standby and suspend modes. The
wakeup detectors are active across all power modes and can also be used as interrupt sources in active/idle mode. If wakeup
pins are defined as outputs (in GPIO or PIB), wakeup functionality is not guaranteed to work.
GCTL_CONTROL.WAKEUP_CPU_INT must be set before entering suspend/standby to enable wakeup.

13 EN_WATCHDOG2 Enables wakeup when WatchDog #2 generates an interrupt.

12 EN_WATCHDOG1 Enables wakeup when WatchDog #1 generates an interrupt.

11 EN_UIB_VBUS Enables wakeup when VBUS is asserted. Works in either standby or suspend modes.

10 EN_UIB_SSRX Enables wakeup when an LFPS signal appears on the USB3 SSRX pins.
This wakeup source does not work from standby mode.

9 EN_UIB_OTGID Enables wakeup when an impedance change is detected on the USB2 OTGID pin (USB ATTACH
event). This wakeup source does not work from standby mode. This wakeup source works from sus-
pend only when an external 32-kHz clock source is present.
continued on next page

GCTL_WAKEUP_EN Wakeup Enable Register 0xE0050004

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_WAKEUP_EN Wakeup Enable Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_WAKEUP_EN Wakeup Enable Register

b15 b14 b13 b12 b11 b10 b9 b8

EN_WATCHDOG2 EN_WATCHDOG1 EN_UIB_VBUS EN_UIB_SSRX EN_UIB_OTGID EN_UIB_DM

R/W R/W R/W R/W R R/W

R R R R R/RW R

0 0 0 0 0 0

GCTL_WAKEUP_EN Wakeup Enable Register

b7 b6 b5 b4 b3 b2 b1 b0

EN_UIB_DP EN_UART_CTS EN_GPIO[44] EN_GPIO[47] EN_GPIO[34] EN_PIB_CLK EN_PIB_CMD EN_PIB_CTRL0

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

278 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.5.1 GCTL_WAKEUP_EN (continued)

8 EN_UIB_DM Enables wakeup when the USB2 D+ line transitions to from 0 to 1 or from 1 to 0 (CONNECT in host
mode).
This wakeup source does not work from standby mode.

7 EN_UIB_DP Enables wakeup when the USB2 D+ line transitions to from 1 to 0 (USB RESUME) or from 0 to 1
(CONNECT in host mode).
This wakeup source does not work from standby mode.

6 EN_UART_CTS Enables wakeup from the UART_CTS pin. Wakeup occurs when the level set in POL_UART_CTS is
detected.

5 EN_GPIO[44] Enables wakeup from the GPIO[44] pin (card insertion). Wakeup occurs when the level set in
POL_GPIO[44] is detected.

4 EN_GPIO[47] Enables wakeup from the GPIO[47] pin (SD1). Wakeup occurs when the level set in POL_GPIO[47]
is detected.

3 EN_GPIO[34] Enables wakeup from the GPIO[34] pin (SD0). Wakeup occurs when the level set in POL_GPIO[34]
is detected.

2 EN_PIB_CLK Enables wakeup from the PIB_CLK pin. Wakeup occurs on any change on this pin after wakeup.

1 EN_PIB_CMD Enable wakeup from a CMD5 on the PIB_CMD pin. This wakeup source does not work from standby
mode. This wakeup source works from suspend only when an external 32-kHz clock source is
present.

0 EN_PIB_CTRL0 Enables wakeup from the PIB CTL0 pin (CE# typically). Wakeup occurs on any change on this pin
after wakeup.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 279

10.5.2 GCTL_WAKEUP_POLARITY

Wakeup Signal Polarity Register

This register indicates polarity for wakeup detect signals. It is in the always on power domain.

11 POL_UIB_VBUS Polarity of the VBUS signal:
0 Wakeup when LOW
1 Wakeup when HIGH

8 POL_UIB_DM Polarity of the USB D– signal:
0 Wakeup when LOW
1 Wakeup when HIGH

7 POL_UIB_DP Polarity of the USB D+ signal:
0 Wakeup when LOW
1 Wakeup when HIGH

6 POL_UART_CTS Polarity of the UART_CTS signal:
0 Wakeup when LOW
1 Wakeup when HIGH

5 POL_GPIO[44] Polarity of the GPIO[44] signal:
0 Wakeup when LOW
1 Wakeup when HIGH

continued on next page

GCTL_WAKEUP_POLARITY Wakeup Signal Polarity Register 0xE0050008

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_WAKEUP_POLARITY Wakeup Signal Polarity Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_WAKEUP_POLARITY Wakeup Signal Polarity Register

b15 b14 b13 b12 b11 b10 b9 b8

POL_UIB_VBUS POL_UIB_DM

R/W R/W

R R

1 0

GCTL_WAKEUP_POLARITY Wakeup Signal Polarity Register

b7 b6 b5 b4 b3 b2 b1 b0

POL_UIB_DP POL_UART_CTS POL_GPIO[44] POL_GPIO[47] POL_GPIO[34]

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 0

Bit Name Description

280 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.5.2 GCTL_WAKEUP_POLARITY (continued)

4 POL_GPIO[47] Polarity of the GPIO[47] signal:
0 Wakeup when LOW (Applicable for SDIO interrupt wakeup)
1 Wakeup when HIGH (Not required for SDIO interrupt wakeup)

3 POL_GPIO[34] Polarity of the GPIO[34] signal:
0 Wakeup when LOW (Applicable for SDIO interrupt wakeup)
1 Wakeup when HIGH (Not required for SDIO interrupt wakeup)

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 281

10.5.3 GCTL_WAKEUP_EVENT

Wakeup Event Register

This register indicates which wakeup source caused the system wakeup. Multiple bits may be set (although this is unlikely).
After power-on or reset, these bits are zero. This register is in the always-on power domain. The wakeup detectors are active
across all power modes and can also be used as interrupt sources in active/idle mode.

13 EV_WATCHDOG2 Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

12 EV_WATCHDOG1 Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

11 EV_UIB_VBUS Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

10 EV_UIB_SSRX Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

9 EV_UIB_OTGID Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

8 EV_UIB_DM Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

continued on next page

GCTL_WAKEUP_EVENT Wakeup Event Register 0xE005000C

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_WAKEUP_EVENT Wakeup Event Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_WAKEUP_EVENT Wakeup Event Register

b15 b14 b13 b12 b11 b10 b9 b8

EV_WATCHDOG2 EV_WATCHDOG1 EV_UIB_VBUS EV_UIB_SSRX EV_UIB_OTGID EV_UIB_DM

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0

GCTL_WAKEUP_EVENT Wakeup Event Register

b7 b6 b5 b4 b3 b2 b1 b0

EV_UIB_DP EV_UART_CTS EV_GPIO[44] EV_GPIO[47] EV_GPIO[34] EV_PIB_CLK EV_PIB_CMD EV_PIB_CTRL0

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

282 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.5.3 GCTL_WAKEUP_EVENT (continued)

7 EV_UIB_DP Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

6 EV_UART_CTS Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

5 EV_GPIO[44] Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

4 EV_GPIO[47] Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

3 EV_GPIO[34] Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

2 EV_PIB_CLK Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

1 EV_PIB_CMD Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

0 EV_PIB_CTRL0 Indicates that this wakeup source was the reason for system wakeup from standby/suspend mode.
See GCTL_WAKEUP_EN for more information.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 283

10.5.4 GCTL_FREEZE

I/O Freeze Control Register

This register indicates the state of the I/Os in each power domain when GCTL_CONTROL.FREEZE_IO is asserted. It is in
the always-on power domain.

7:6 VIO4IO_FRZ[1:0] Frozen state of I/Os in the VIO4 domain.

5:4 VIO3IO_FRZ[1:0] Frozen state of I/Os in the VIO3 domain.

3:2 VIO2IO_FRZ[1:0] Frozen state of I/Os in the VIO2 domain.

1:0 VIO1IO_FRZ[1:0] Frozen state of I/Os in the VIO1 domain
0 Sample and hold state
1 High impedance
2 Drive 0 at full strength (outputs only)
3 Drive 1 at full strength (outputs only)
Note that states 2 and 3 only override the output value driven to a fixed value, but do not change the
drive mode of a pin from off to on. In other words, pins that are currently inputs remain inputs and are
not forced to drive.

GCTL_FREEZE I/O Freeze Control Register 0xE0050010

b31 b30 b29 b28 b27 b26 b25 b24

GCTL_FREEZE I/O Freeze Control Register

b23 b22 b21 b20 b19 b18 b17 b16

GCTL_FREEZE I/O Freeze Control Register

b15 b14 b13 b12 b11 b10 b9 b8

GCTL_FREEZE I/O Freeze Control Register

b7 b6 b5 b4 b3 b2 b1 b0

VIO4IO_FRZ[1:0] VIO3IO_FRZ[1:0] VIO2IO_FRZ[1:0] VIO1IO_FRZ[1:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

284 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.5.5 GCTL_WATCHDOG_CS

Watchdog Timers Command and Control Register

This register controls two watchdog timers. Each timer can be used in free-running, interrupt, or reset mode and has a select-
able number of significant bits. The frequency is fixed at 32768 Hz, and counters count down only. Firmware can protect this
register against unwanted writes (see GCTL_WAKEUP_EN).

31 BACKUP_CLK Switches the watchdog clocks from the 32-kHz clock input to a 'backup' 32-kHz clock derived from
the main reference clock using BACKUP_DIVIDER. This field is sticky and cannot change after it is
set to 1. This bit can only be cleared with the RESET# pin or POR.

30:16 BACKUP_DIVIDER[14:0] Divider used to generate a 'backup' 32-kHz clock. This is relevant for systems where no 32-kHz clock
is present as an input signal. The external reference clock (OSCCLK) is divided by
(BACKUP_DIVIDER + 1). In other words, a value of 1 means divided by 2. The behavior of the
divider is undefined when this value is 0. This field must not change after the BACKUP_CLK bit is set.

15:11 BITS1[4:0] Number of least significant bits to be used when checking for counter limit (useful only for
MODE = 1, 2).

10 INTR1 Interrupt signal (Mode 1 only). This bit indicates when the WDOG timer has issued an Interrupt to the
CPU while the system is powered-up. Refer to the GCTL_WAKEUP_EVENT register when the
WDOG timer is used to wake up the system from a power-down state.

continued on next page

GCTL_WATCHDOG_CS Watchdog Timers Command and Control Register 0xE0050014

b31 b30 b29 b28 b27 b26 b25 b24

BACKUP_CLK BACKUP_DIVIDER[14:8]

R/W1S R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0

GCTL_WATCHDOG_CS Watchdog Timers Command and Control Register

b23 b22 b21 b20 b19 b18 b17 b16

BACKUP_DIVIDER[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

GCTL_WATCHDOG_CS Watchdog Timers Command and Control Register

b15 b14 b13 b12 b11 b10 b9 b8

BITS1[4:0] INTR1 MODE1[1:0]

R/W R/W R/W R/W R/W R/W1C R/W R/W

R R R R R R/W1S R R

0 0 0 0 0 0 3

GCTL_WATCHDOG_CS Watchdog Timers Command and Control Register

b7 b6 b5 b4 b3 b2 b1 b0

BITS0[4:0] INTR0 MODE0[1:0]

R/W R/W R/W R/W R/W R/W1C R/W R/W

R R R R R R/W1S R R

0 0 0 0 0 0 3

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 285

10.5.5 GCTL_WATCHDOG_CS (continued)

9:8 MODE1[1:0] Counter mode:
0 Free-running mode, counter wraps around after 32 bits.
1 Interrupt mode, interrupt when COUNTER & ~((~0)<<BITS) = 0.
2 Reset mode, full chip RESET when COUNTER & ~((~0)<<BITS) = 0.
3 Disable - counter does not run

7:3 BITS0[4:0] Number of least significant bits to be used when checking for counter limit (useful only for
MODE = 1, 2)

2 INTR0 Interrupt signal (Mode 1 only). This bit indicates when the WDOG timer has issued an interrupt to the
CPU while the system is powered up. Refer to the GCTL_WAKEUP_EVENT register when the
WDOG timer is used to wake up the system from a power-down state.

1:0 MODE0 Counter mode:
0 Free-running mode, counter wraps around after 32 bits.
1 Interrupt mode, interrupt when COUNTER & ~((~0)<<BITS) = 0.
2 Reset mode, full chip RESET when COUNTER & ~((~0)<<BITS) = 0.
3 Disable - counter does not run

286 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.5.6 GCTL_WATCHDOG_TIMER0

Watchdog Timer Value 0 Register

This register holds the watchdog timer/counter. It counts down and generates an interrupt or reset when reaching low-limit
(see GCTL_WATCHDOG_CS). The counter is free running and wraps around after 32 bits. In watchdog mode this value must
be reloaded periodically to avoid full chip reset. Firmware can protect this register against unwanted writes (see
GCTL_WAKEUP_EN).

31:0 COUNTER[31:0] Current counter value. Note that, because of synchronization, it may take up to 100 µs before a value
written to this register can be read back. Earlier reads will return the previous value.

The CPU should wait 100 µs between successive writes to this register.
The CPU should not write the same value to this register successively; instead, it should alter the
value. If the CPU wants to write value x, every interval, it must write x, x – 1, x, x – 1, … in successive
intervals.

GCTL_WATCHDOG_TIMER0 Watchdog Timer Value 0 Register 0xE0050018

b31 b30 b29 b28 b27 b26 b25 b24

COUNTER[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GCTL_WATCHDOG_TIMER0 Watchdog Timer Value 0 Register

b23 b22 b21 b20 b19 b18 b17 b16

COUNTER[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GCTL_WATCHDOG_TIMER0 Watchdog Timer Value 0 Register

b15 b14 b13 b12 b11 b10 b9 b8

COUNTER[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GCTL_WATCHDOG_TIMER0 Watchdog Timer Value 0 Register

b7 b6 b5 b4 b3 b2 b1 b0

COUNTER[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFFFFFF

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 287

10.5.7 GCTL_WATCHDOG_TIMER1

Watchdog Timer Value 1 Register

This register holds the watchdog timer/counter. It counts down and generates an interrupt or reset when reaching low-limit
(see GCTL_WATCHDOG_CS). The counter is free running and wraps around after 32 bits. In watchdog mode this value must
be reloaded periodically to avoid full chip reset. Firmware can protect this register against unwanted writes (see
GCTL_WAKEUP_EN).

31:0 COUNTER[31:0] Current counter value. Note that, because of synchronization, it may take up to 100 µs before a value
written to this register can be read back. Earlier reads will return the previous value.

The CPU should wait 100 µs between successive writes to this register.

The CPU should not write the same value to this register successively; instead, it should alter the
value. If the CPU wants to write value x, every interval, it must write x, x – 1, x, x – 1, … in successive
intervals.

GCTL_WATCHDOG_TIMER1 Watchdog Timer Value 1 Register 0xE005001C

b31 b30 b29 b28 b27 b26 b25 b24

COUNTER[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GCTL_WATCHDOG_TIMER1 Watchdog Timer Value 1 Register

b23 b22 b21 b20 b19 b18 b17 b16

COUNTER[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GCTL_WATCHDOG_TIMER1 Watchdog Timer Value 1 Register

b15 b14 b13 b12 b11 b10 b9 b8

COUNTER[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GCTL_WATCHDOG_TIMER1 Watchdog Timer Value 1 Register

b7 b6 b5 b4 b3 b2 b1 b0

COUNTER[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFFFFFF

Bit Name Description

288 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6 PIB Registers

10.6.1 PIB_CONFIG

PIB Configuration Register

This register contains general configuration parameters. Default values upon reset for these fields depend on the extern con-
figuration pins and on the contents on the eFuses, as described in the boot chapter.

31 ENABLE Enables the entire P-Port IP.

30 MMIO_ENABLE Enables the PP_MMIO protocol for accessing individual MMIO registers externally over P-Port. After
it is disabled, this function cannot be re-enabled.
0 Disabled
1 Enabled

29 PP_CFGMODE Variable indicating initialization mode to Application processor (PP_CONFIG.CFGMODE). Cleared
by firmware after P-Port is properly initialized and ready to transact.

continued on next page

PIB_CONFIG PIB Configuration Register 0xE0010000

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE MMIO_ENABLE PP_CFGMODE PCFG

R/W R/W0C R/W R/W

R R R/W R

1 1 1 0

PIB_CONFIG PIB Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

PIB_CONFIG PIB Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

DEVICE_ID[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_CONFIG PIB Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DEVICE_ID[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 289

10.6.1 PIB_CONFIG (continued)

28 PCFG P-Port configuration
0 GPIF-II mode
1 Reserved
The Boot ROM interprets the PMODE pins through GPIO and chooses the appropriate
GPIF and P-Port configuration.

15:8 DEVICE_ID[7:0] Provides a device ID. This field is visible in PP_INIT registers. This must be provided by
Boot ROM. To prevent spoofing, this register is not writable when
GCTL_CONTROL.BOOTROM_EN = 0.

290 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6.2 PIB_INTR

PIB Interrupt Request Register

The PIB_INTR and PIB_INTR_MASK registers control the interrupt behavior of the P-Port to the FX3 CPU. PIB_INTR indi-
cates interrupt cause, and PIB_INTR_MASK masks the causes that may assert INTR. These interrupts represent the P-Port
specific interrupts. The DMA adapter for P-Port has a number of socket-related interrupt causes that are outlined in the DMA
chapter.

31 GPIF_ERR An error occurred in the GPIF. Firmware clears this bit after handling the error. The error code is indi-
cated in PIB_ERROR.GPIF_ERR_CODE.

29 PIB_ERR The socket-based link controller encountered an error and needs attention. Firmware clears this bit
after handling the error. The error code is indicated in PIB_ERROR.PIB_ERR_CODE.

10 RD_THRESHOLD Indicates that AP has written to PP_RD_THRESHOLD register.

9 WR_THRESHOLD Indicates that AP has written to PP_WR_THRESHOLD register.

8 CONFIG_CHANGE AP has written a new value into PP_CONFIG.

7 CLOCK_LOST PIB_CLK is no longer present. See PIB_CLOCK_DETECT for more details.

continued on next page

PIB_INTR PIB Interrupt Request Register 0xE0010004

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_ERR PIB_ERR

R/W1C R/W1C

W1S W1S

0 0

PIB_INTR PIB Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

PIB_INTR PIB Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

RD_THRESHOLD WR_THRESHOLD CONFIG_CHANGE

R/W1C R/W1C R/W1C

W1S W1S W1S

0 0 0

PIB_INTR PIB Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

CLOCK_LOST DLL_LOST_LOCK DLL_LOCKED GPIF_INTERRUPT WR_MB_FULL RD_MB_EMPTY

R/W1C R/W1C R/W1C R R/W1C R/W1C

W1S W1S W1S W R/W1S R/W1S

0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 291

10.6.2 PIB_INTR (continued)

6 DLL_LOST_LOCK DLL has lost phase lock. Interrupt clears after writing 1.

5 DLL_LOCKED DLL has achieved phase lock. Interrupt clears after writing 1.

4 GPIF_INTERRUPT Indicates that the interrupt is from the GPIF II block. Consult the GPIF_STATUS register.

1 WR_MB_FULL Indicates that a message is present in the WR_MAILBOX and must be read. This bit sets when AP
writes a message in the WR_MAILBOX. It must be cleared by firmware, which causes
PP_EVENT.WR_MB_EMPTY to assert.

0 RD_MB_EMPTY Indicates that the RD_MAILBOX is empty and a new message can be written. This bit sets when AP
writes PP_EVENT.RD_MB_FULL = 0. It must be cleared by firmware.

292 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6.3 PIB_INTR_MASK

PIB Interrupt Mask Register

The PIB_INTR and PIB_INTR_MASK registers control the interrupt behavior of the P-Port to the FX3 CPU. PIB_INTR indi-
cates interrupt cause, and PIB_INTR_MASK masks the causes that may assert INTR. These interrupts represent the P-Port
specific interrupts. The DMA adapter for P-Port has a number of socket-related interrupt causes that are outlined in the DMA
chapter.

31 GPIF_ERR Mask for corresponding interrupt in PIB_INTR

29 PIB_ERR Mask for corresponding interrupt in PIB_INTR

10 RD_THRESHOLD Mask for corresponding interrupt in PIB_INTR

9 WR_THRESHOLD Mask for corresponding interrupt in PIB_INTR

8 CONFIG_CHANGE Mask for corresponding interrupt in PIB_INTR

7 CLOCK_LOST Mask for corresponding interrupt in PIB_INTR

6 DLL_LOST_LOCK Mask for corresponding interrupt in PIB_INTR

continued on next page

PIB_INTR_MASK PIB Interrupt Mask Register 0xE0010008

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_ERR PIB_ERR

R/W R/W

R R

0 0

PIB_INTR_MASK PIB Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

PIB_INTR_MASK PIB Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

RD_THRESHOLD WR_THRESHOLD CONFIG_CHANGE

R/W R/W R/W

R R R

0 0 0

PIB_INTR_MASK PIB Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

CLOCK_LOST DLL_LOST_LOCK DLL_LOCKED GPIF_INTERRUPT WR_MB_FULL RD_MB_EMPTY

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 293

10.6.3 PIB_INTR_MASK (continued)

5 DLL_LOCKED Mask for corresponding interrupt in PIB_INTR

4 GPIF_INTERRUPT Mask for corresponding interrupt in PIB_INTR

1 WR_MB_FULL Mask for corresponding interrupt in PIB_INTR

0 RD_MB_EMPTY Mask for corresponding interrupt in PIB_INTR

294 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6.4 PIB_CLOCK_DETECT

PIB Clock Detector Configuration Register

This register enables and configures the clock input presence detector for PIB. This detector is independent from the wakeup
source detector that triggers on any edge. This detector can establish whether a valid clock is present in active mode and is
coupled to the PIB_INTR.CLOCK_LOST interrupt.

31 ENABLE Enables detector

30 CLOCK_PRESENT Indicates latest clock presence measurement

19:16 INTF_CYCLES[3:0] Minimum number of positive edges required on PIBCLK pin to declare clock presence during each
measurement period.

15:0 BUS_CYCLES[15:0] Number of busclk cycles for each measurement period.

PIB_CLOCK_DETECT PIB Clock Detector Configuration Register 0xE001000C

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE CLOCK_PRESENT

R/W R

R R/W

0 0

PIB_CLOCK_DETECT PIB Clock Detector Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

INTF_CYCLES[3:0]

R/W R/W R/W R/W

R R R R

0 0 0 0

PIB_CLOCK_DETECT PIB Clock Detector Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

BUS_CYCLES[15:8]

R R R R R R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_CLOCK_DETECT PIB Clock Detector Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

BUS_CYCLES[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 295

10.6.5 PIB_RD_MAILBOX

Read (Egress) Mailbox Register

continued on next page

PIB_RD_MAILBOX Read (Egress) Mailbox Register 0xE0010010

b63 b62 b61 b60 b59 b58 b57 b56

PP_RD_MAILBOX[63:56]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_RD_MAILBOX Read (Egress) Mailbox Register

b55 b54 b53 b52 b51 b50 b49 b48

PP_RD_MAILBOX[55:48]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_RD_MAILBOX Read (Egress) Mailbox Register

b47 b46 b45 b44 b43 b42 b41 b40

PP_RD_MAILBOX[47:40]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_RD_MAILBOX Read (Egress) Mailbox Register

b39 b38 b37 b36 b35 b34 b33 b32

PP_RD_MAILBOX[39:32]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_RD_MAILBOX Read (Egress) Mailbox Register

b31 b30 b29 b28 b27 b26 b25 b24

PP_RD_MAILBOX[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_RD_MAILBOX Read (Egress) Mailbox Register

b23 b22 b21 b20 b19 b18 b17 b16

PP_RD_MAILBOX[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_RD_MAILBOX Read (Egress) Mailbox Register

b15 b14 b13 b12 b11 b10 b9 b8

PP_RD_MAILBOX[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

296 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6.5 PIB_RD_MAILBOX (continued)

This register mirrors the P-Port RD mailbox register and is used to send short messages to the AP using MMIO and interrupt
behavior. Writing to the high word of this register sets the PP_EVENT.RD_MB_FULL flag. The procedure to use is described
as part of the socket-based link controller section.

63:0 PP_RD_MAILBOX[63:0] Mailbox message from FX3 to the application processor

PIB_RD_MAILBOX Read (Egress) Mailbox Register

b7 b6 b5 b4 b3 b2 b1 b0

PP_RD_MAILBOX[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 297

10.6.6 PIB_WR_MAILBOX

Write (Ingress) Mailbox Register

continued on next page

PIB_WR_MAILBOX Write (Ingress) Mailbox Register 0xE0010018

b63 b62 b61 b60 b59 b58 b57 b56

PP_WR_MAILBOX[63:56]

R R R R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_WR_MAILBOX Write (Ingress) Mailbox Register

b55 b54 b53 b52 b51 b50 b49 b48

PP_WR_MAILBOX[55:48]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_WR_MAILBOX Write (Ingress) Mailbox Register

b47 b46 b45 b44 b43 b42 b41 b40

PP_WR_MAILBOX[47:40]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_WR_MAILBOX Write (Ingress) Mailbox Register

b39 b38 b37 b36 b35 b34 b33 b32

PP_WR_MAILBOX[39:32]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_WR_MAILBOX Write (Ingress) Mailbox Register

b31 b30 b29 b28 b27 b26 b25 b24

PP_WR_MAILBOX[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 0 0 0 0 0 0 0

PIB_WR_MAILBOX Write (Ingress) Mailbox Register

b23 b22 b21 b20 b19 b18 b17 b16

PP_WR_MAILBOX[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PIB_WR_MAILBOX Write (Ingress) Mailbox Register

b15 b14 b13 b12 b11 b10 b9 b8

PP_WR_MAILBOX[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

298 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6.6 PIB_RD_MAILBOX (continued)

This register mirrors the P-Port WR mailbox register and is used to receive short messages from the AP using MMIO and
interrupt behavior. Reading from these registers has no side effect. The procedure to use is described as part of the socket-
based link controller section.

63:0 PP_WR_MAILBOX[63:0] Mailbox message from the application processor to FX3

PIB_WR_MAILBOX Write (Ingress) Mailbox Register

b7 b6 b5 b4 b3 b2 b1 b0

PP_WR_MAILBOX[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 299

10.6.7 PIB_ERROR

PIB Error Indicator Register

This register indicates the error codes associated with PIB_INTR.PIB_ERR, MMC_ERR, and GPIF_ERR. The different val-
ues for these error codes are documented in the P-Port BROS document. This register is also visible to the AP as
PP_ERROR.

14:10 GPIF_ERR_CODE[4:0] Error code for the first error code after ERROR = 1
Error codes are specified in detail the USB30PIB BROS.

continued on next page

PIB_ERROR PIB Error Indicator Register 0xE0010020

b31 b30 b29 b28 b27 b26 b25 b24

PIB_ERROR PIB Error Indicator Register

b23 b22 b21 b20 b19 b18 b17 b16

PIB_ERROR PIB Error Indicator Register

b15 b14 b13 b12 b11 b10 b9 b8

0 GPIF_ERR_CODE[4:0]

R R R R R R

R R/W R/W R/W R/W R/W

0 0 0 0 0 0

PIB_ERROR PIB Error Indicator Register

b7 b6 b5 b4 b3 b2 b1 b0

PIB_ERR_CODE[5:0]

R R R R R R

R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0

Bit Name Description

Error Code Default Description

IIN_ADDR_OVER_WRITE 1 Attempt to push to the active address thread which is not dma_ready

EG_ADDR_NOT_VALID 2 Attempt to push to the active address thread which is not dma_ready

DMA_DATA_RD_ERROR 3 Attempt to push to the active address thread which is not dma_ready

DMA_DATA_WR_ERROR 4 Attempt to push to the active address thread which is not dma_ready

DMA_ADDR_RD_ERROR 5 Attempt to push to the active address thread which is not dma_ready

DMA_ADDR_WR_ERROR 6 Attempt to push to the active address thread which is not dma_ready

SERIAL_PARITY_ERROR 7 Received data in serial mode has parity error

INVALID_STATE_ERROR 8 State machine has transitioned to an invalid state

300 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6.7 PIB_ERROR (continued)

5:0 PIB_ERR_CODE[5:0] The socket-based link controller encountered an error and needs attention. Error codes are further
described in the BROS. Corresponds to interrupt bit PIB_ERROR.

Error Code Default Description

TH0_DIR_ERROR 1 Write being done to a read socket or read being done to a write socket

TH1_DIR_ERROR 2 Write being done to a read socket or read being done to a write socket

TH2_DIR_ERROR 3 Write being done to a read socket or read being done to a write socket

TH3_DIR_ERROR 4 Write being done to a read socket or read being done to a write socket

TH0_WR_OVERFLOW 5 Write exceeds the space available in the buffer

TH1_WR_OVERFLOW 6 Write exceeds the space available in the buffer

TH2_WR_OVERFLOW 7 Write exceeds the space available in the buffer

TH3_WR_OVERFLOW 8 Write exceeds the space available in the buffer

TH0_RD_UNDERRUN 9 Reads exceeds the byte count of the buffer

TH1_RD_UNDERRUN 10 Reads exceeds the byte count of the buffer

TH2_RD_UNDERRUN 11 Reads exceeds the byte count of the buffer

TH3_RD_UNDERRUN 12 Reads exceeds the byte count of the buffer

TH0_SCK_ACTIVE 0x12 Socket has gone inactive within a DMA transfer

TH0_ADAP_OVERFLOW 0x13 Adapter unable to service write request though buffer is available

TH0_ADAP_UNDERFLOW 0x14 Adapter unable to service read request though buffer is available

TH0_READ_FORCE_END 0x15 A read socket is wrapped up

TH0_READ_BURST_ERR 0x16 A read socket with burstsize > 0 is switched before the 8-byte boundary

TH1_SCK_ACTIVE 0x1A A socket has gone inactive within a DMA Transfer

TH1_ADAP_OVERFLOW 0x1B Adapter unable to service write request though buffer is available

TH1_ADAP_UNDERFLOW 0x1C Adapter unable to service read request though buffer is available

TH1_READ_FORCE_END 0x1D A read socket is wrapped up

TH1_READ_BURST_ERR 0x1E A read socket with burstsize > 0 is switched before the 8-byte boundary

TH2_ADAP_OVERFLOW 0x22 A socket has gone inactive within a DMA transfer

TH2_ADAP_UNDERFLOW 0x23 Adapter unable to service write request though buffer is available

TH2_ADAP_UNDERFLOW 0x24 Adapter unable to service read request though buffer is available

TH2_READ_FORCE_END 0x25 A read socket is wrapped up

TH2_READ_BURST_ERR 0x26 A read socket with burstsize > 0 is switched before 8-byte boundary

TH3_SCK_ACTIVE 0x2A A socket has gone inactive within a DMA transfer

TH3_ADAP_OVERFLOW 0x2B Adapter unable to service write request though buffer is available

TH3_ADAP_UNDERFLOW 0x2C Adapter unable to service read request though buffer is available

TH3_READ_FORCE_END 0x2D A read socket is wrapped up

TH3_READ_BURST_ERR 0x2E A read socket with burstsize > 0 is switched before the 8-byte boundary

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 301

10.6.8 PIB_EOP_EOT

PIB EOP/EOT Configuration Register

This register specifies how EOP is set in descriptors of ingress P-port sockets and how EOP is interpreted for egress P-port
sockets.

31:0 PIB_EOP_EOT_CFG[31:0] This register specifies how EOP bits are set or interpreted for ingress and egress sockets, respec-
tively.
0 Stream mode behavior
1 Packet mode behavior

PIB EOP/EOT Configuration Register 0xE0010024

b31 b30 b29 b28 b27 b26 b25 b24

PIB_EOP_EOT_CFG[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 1 1 1 1 1 1 1

PIB EOP/EOT Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

PIB_EOP_EOT_CFG[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 1 1 1 1 1 1 1

PIB EOP/EOT Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

PIB_EOP_EOT_CFG[15:18]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 1 1 1 1 1 1 1

PIB EOP/EOT Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

PIB_EOP_EOT_CFG[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 1 1 1 1 1 1 1

Bit Name Description

302 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6.9 PIB_DLL_CTRL

DLL Configuration Register

This register configures the DLL phases and enables the DLL.

31 ENABLE_RESET_ON_ERR 0 Hardware does not reset the DLL when DLL code overrun/underrun occurs
1 Hardware resets the DLL when DLL code overrun/underrun occurs

30 DLL_RESET_N Resets the DLL
0 DLL is reset
1 DLL is not reset

continued on next page

PIB_DLL_CTRL DLL Configuration Register 0xE0010028

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE_RESET
_ON_ERR

DLL_RESET_N

R/W R/W

R R

0 0

PIB_DLL_CTRL DLL Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

PIB_DLL_CTRL DLL Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

PIB_DLL_CTRL DLL Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DLL_STAT HIGH_FREQ ENABLE

R R/W R/W

W R R

0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 303

10.6.9 PIB_DLL_CTRL (continued)

011 Phase Comparator DFT #1. The used dll_out signals are available for monitoring on
TDO pin in clock_observation_mode

100 Scan test: monitor test_so. This mode is not cannot be selected through register
control.

101 Phase Comparator DFT #2: The used dll_out signals are available for monitoring on
TDO pin in clock_observation_mode

110 Error code reset: The error_code[1:0] output of the dll is available for monitoring on
the designated GPIO in clock_observation_mode

111 This setting is used either for fault grading or monotonicity testing, based on the set-
tings of the “mode” input.

 DLL_MODE =0: Fault grading. The DLL's phase comparator drives dllrdy, which is
available for monitoring on the designated GPIO in clock_observation_mode
DLL_MODE =1: Monotonicity test. The used dll_out signals are available for moni-
toring on TDO pin in clock_observation_mode

2 DLL_STAT 0 DLL is not in phase lock
1 DLL has achieved phase lock

1 HIGH_FREQ 0 23 to 80 MHz
1 70 to 230 MHz

0 ENABLE Drives the DLLEN input
0 DLL is disabled (internally power gated)
1 DLL is enabled

304 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6.10 PIB_WR_THRESHOLD

Write Threshold Register

This register specifies the write buffer free event threshold; the CPU writes a 16-bit value that is visible using the
PP_WR_THRESHOLD register. When AP writes the PP_WR_THRESHOLD register, the PIB_WR_THRESHOLD register is
updated with the WR_THRESHOLD interrupt.

15:0 VALUE16[15:0] The CPU writes to this field during initialization. The value written to this register is made available by
hardware in PP_WR_THRESHOLD register. When AP writes to the PP_WR_THRESHOLD register
this register is updated with the new value and WR_THRESHOLD interrupt is provided.

PIB_WR_THRESHOLD Write Threshold Register 0xE001002C

b31 b30 b29 b28 b27 b26 b25 b24

PIB_WR_THRESHOLD Write Threshold Register

b23 b22 b21 b20 b19 b18 b17 b16

PIB_WR_THRESHOLD Write Threshold Register

b15 b14 b13 b12 b11 b10 b9 b8

VALUE16[15:18]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PIB_WR_THRESHOLD Write Threshold Register

b7 b6 b5 b4 b3 b2 b1 b0

VALUE16[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 305

10.6.11 PIB_RD_THRESHOLD

Read Threshold Register

Read buffer data available to the event threshold as a number of bytes available. The device side must have the intelligence
to activate the interrupt either when this threshold is exceeded or when it sees it useful (end of packet).

15:0 VALUE16[15:0] The CPU writes to this field during initialization. The value written to this register is made available by
hardware in the PP_RD_THRESHOLD register. When AP writes to the PP_RD_THRESHOLD regis-
ter, this register is updated with the new value and the RD_THRESHOLD interrupt is provided.

PIB_RD_THRESHOLD Read Threshold Register 0xE0010030

b31 b30 b29 b28 b27 b26 b25 b24

PIB_RD_THRESHOLD Read Threshold Register

b23 b22 b21 b20 b19 b18 b17 b16

PIB_RD_THRESHOLD Read Threshold Register

b15 b14 b13 b12 b11 b10 b9 b8

VALUE16[15:18]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PIB_RD_THRESHOLD Read Threshold Register

b7 b6 b5 b4 b3 b2 b1 b0

VALUE16[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

306 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.6.12 PIB_ID

Block Identification and Version Number Register

Every IP block implements a few MMIO registers at offset 0 in its MMIO space that identify the block and control its power/
clock/reset state. These registers are located in the CPU/Interconnect power and clock domains and are accessible even
when power/clock of the block is switched off.

31:16 BLOCK_VERSION[15:0] Version number for the IP

15:0 BLOCK_ID[15:0] A unique number identifying the IP in the memory space

PIB_ID Block Identification and Version Number Register 0xE0017F00

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:18]

R R R R R R R R

R R R R R R R R

PIB_ID Block Identification and Version Number Register

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

R R R R R R R R

0x0001

PIB_ID Block Identification and Version Number Register

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:18]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

PIB_ID Block Identification and Version Number Register

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0x0001

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 307

10.6.13 PIB_POWER

Power, Clock, and Reset Control Register

Every IP block implements a few MMIO registers at offset 0 in its MMIO to space that identify the block and control its power/
clock/reset state. These registers are located in the CPU/Interconnect power and clock domains and are accessible even
when power/clock of the block is switched off.

31 RESETN Active low reset signal for all logic in the block. Note that reset is active on all flops in the block when
either system reset is asserted (RESET# pin or SYSTEM_POWER.RESETN is asserted) or this sig-
nal is active.

After setting this bit to 1, firmware polls and waits for the ‘active’ bit to assert. Reading ‘1’ from ‘resetn’
does not indicate the block is out of reset. This may take some time depending on initialization tasks
and clock frequencies.

0 ACTIVE For blocks that must perform initialization after reset before becoming operational, this signal will
remain deasserted until initialization is complete. In other words, reading ACTIVE = 1 indicates that
the block is initialized and ready for operation.

PIB_POWER Power, Clock, and Reset Control Register 0xE0017F04

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R/W

R

0

PIB_RD_THRESHOLD Read Threshold Register

b23 b22 b21 b20 b19 b18 b17 b16

PIB_RD_THRESHOLD Read Threshold Register

b15 b14 b13 b12 b11 b10 b9 b8

PIB_RD_THRESHOLD Read Threshold Register

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

R

W

0

Bit Name Description

308 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7 GPIF Registers

10.7.1 GPIF_CONFIG

GPIF Configuration Register

This register provides static configuration information for GPIF.

31 ENABLE Enables entire GPIF block.

30 PP_MODE Main operating mode of PP registers
0 Master mode or simple slave mode - PP* registers are not honored
1 P-Port mode - PP* registers are used to setup transfers

19 A7OVERRIDE Overrides the use of AIN[7] to enable selection of register versus DMA access on different pins in
PP_MODE = 1. If A7OVERRIDE = 1, register accesses are determined by beta (pp_access) instead.

15 THREAD_IN_STATE 0 Normal operation
1 The thread number for an operation comes from the state description rather than the

THREAD_CONFIG register (see GPIF_Modes for more information)

continued on next page

GPIF_CONFIG GPIF Configuration Register 0xE0014000

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE PP_MODE

R/W R/W

R R

0 0

GPIF_CONFIG GPIF Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

A7OVERRIDE

R/W

R

0

GPIF_CONFIG GPIF Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

THREAD_IN_
STATE

DATA_COMP_
TOGGLE

CTRL_COMP_
TOGGLE

ADDR_COMP_
TOGGLE

ENDIAN SYNC

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

GPIF_CONFIG GPIF Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DOUT_POP_EN DDR_MODE CLK_OUT CLK_SOURCE CLK_INVERT
DATA_COMP_

ENABLE
ADDR_COMP_

ENABLE
CTRL_COMP_

ENABLE

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 1 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 309

10.7.1 GPIF_CONFIG (continued)

13 DATA_COMP_TOGGLE 0 Comparator outputs true when bits match a target value.
1 Comparator outputs true when any of the unmasked bits change value.

12 CTRL_COMP_TOGGLE 0 Comparator outputs true when bits match a target value.
1 Comparator outputs true when any of the unmasked bits change value.

11 ADDR_COMP_TOGGLE 0 Comparator outputs true when bits match a target value.
1 Comparator outputs true when any of the unmasked bits change value.

10 ENDIAN Endianness of interface when PP_MODE==0
0 Little Endian
1 Big Endian

8 SYNC 0 Operate in asynchronous mode.
1 Operate in synchronous mode.
These mode have different clocking structures.
GPIF_CONFIG.SYNC should be set to indicate synchronous or Asynchronous MODE before pro-
gramming GPIF_BUS_CONFIG.DLE* and GPIF_BUS_CONFIG.ALE*

7 DOUT_POP_EN 0 rq_pop is a separate beta
1 Use update_dout (alpha) to also trigger rq_pop (which is normally beta)

6 DDR_MODE 0 Select 1X clock as the core clock
1 Select 2X clock as the core clock

5 CLK_OUT Indicates whether to drive CLK pin with GPIF clock. No effect when CLK_SOURCE = 0 or PMMC
mode.
0 Do not output clock on CLK pin (typical of async mode)
1 Output clock on CLK pin (typical of sync master mode)

4 CLK_SOURCE Indicates whether clock is sourced from GCTL or pin. Has no effect in PMMC mode.
0 External clock input on CLK pin
1 Internal clock generated from GCTL

3 CLK_INVERT 0 Normal clock polarity (clock on positive edge)
1 Inverted clock polarity (clock on negative edge)

2 DATA_COMP_ENABLE 0 Disable the data comparator
1 Enable the data comparator

1 ADDR_COMP_ENABLE 0 Disable the address comparator
1 Enable the address comparator

0 CTRL_COMP_ENABLE 0 Disable the control comparator
1 Enable the control comparator

310 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.2 GPIF_BUS_CONFIG

Bus Configuration Register

This register specifies how the pins on the GPIF interface are distributed over data, address and control buses and which
special (hard-wired) functions are present on the control bus.

31:28 FIO1_CONF[3:0] Designates control to be used to enable output drivers of FIO1 (CTRL[8])
0 to 3 Use the alpha 4-7 to switch FIO1 direction.
8 to 11 Use beta 0-3.

27:24 FIO0_CONF[3:0] Designates control to be used to enable output drivers of FIO0 (CTRL[7])
0 to 3 Use the alpha 4 to 7 to switch FIO0 direction.
8 to 11 Use beta 0-3.

23 CE_CLKSTOP 0 Normal operation
1 CTRL[0] is CE; it should be used to clock gate most of GPIF when deasserted

22 INT_CTRL 0 Normal operation of INT pin
1 Override INT pin and connect to CTRL[15]

20 DRQ_ASSERT_MODE 0 Do nothing
1 Assert DRQ on rising edge of DMA_READY. Typical case, DRQ_MODE = 2, this bit 1.

continued on next page

GPIF_BUS_CONFIG Bus Configuration Register 0xE0014004

b31 b30 b29 b28 b27 b26 b25 b24

FIO1_CONF[3:0] FIO0_CONF[3:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_BUS_CONFIG Bus Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

CE_CLKSTOP INT_CTRL
DRQ_ASSERT_

MODE
DRQ_MODE[1:0] ALE_PRESENT CNTR_PRESENT

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 0 0 0 0

GPIF_BUS_CONFIG Bus Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

FIO1_PRESENT FIO0_PRESENT DRQ_PRESENT OE_PRESENT DLE_PRESENT WE_PRESENT CE_PRESENT ADR_CTRL[3]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_BUS_CONFIG Bus Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

ADR_CTRL[2:0] MUX_MODE BUS_WIDTH[1:0] PIN_COUNT[1:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 311

10.7.2 GPIF_BUS_CONFIG (continued)

19:18 DRQ_MODE[1:0] 0 Assert DRQ on deassertion of DACK
1 Assert DRQ on assertion of DACK
2 Deassert DRQ on deassertion of DACK
3 Deassert DRQ on assertion of DACK

17 ALE_PRESENT CTRL[10] is ALE used to latch address from the DQ lines.

16 CNTR_PRESENT CTRL[9] is connected to the selected control counter bit instead of a control signal

15 FIO1_PRESENT CTRL[8] is to be treated as I/O that is driven out when the alpha specified in FIO1_CONF is asserted
(ignore CTRL_BUS_DIRECTION)

14 FIO0_PRESENT CTRL[7] is to be treated as I/O that is driven out when the alpha specified in FIO0_CONF is asserted
(ignore CTRL_BUS_DIRECTION)

13 DRQ_PRESENT CTRL[4] is directly influenced by CTRL[3]/DACK as defined by DRQ_MODE
This setting also overrides the CTRL_BUS_SELECT selection for this pin, in favor of betas 'assert
drq' and 'deassert_drq'

12 OE_PRESENT CTRL[2] is OE and should be used to tristate DQ lines.
If WE_PRESENT = 1 also, then OE will take precedence over WE. In other words, when WE is
asserted, then output drivers are off, regardless of value of OE input.

11 DLE_PRESENT CTRL[1] is DLE and should be used to latch data from DQ lines
Can be used together with WE_PRESENT

10 WE_PRESENT CTRL[1] is WE and should be used to disable DQ drivers
Can be used together with DLE_PRESENT

9 CE_PRESENT CTRL[0] is CE and should be used to disable DQ drivers

8:5 ADR_CTRL[3:0] Number of control lines overridden by address lines. Control signals CTRL[15] to CTRL[16-
ADR_CTRL] are not connected to pins. Instead those pins are designated as address signals. Which
address signals depends on the other mode fields above. In other words: if ADR_CTRL = 0 all CTRL
lines are connected to pins, if ADR_CTRL = 1, CTRL[15] is not connected and so on.

4 MUX_MODE 0 Address and data are separate lines.
1 Address is sampled from DQ, time multiplexed with data.

3:2 BUS_WIDTH[1:0] 0 DQ is 8b wide
1 DQ is 16b wide
2 DQ is 24b wide
3 DQ is 32b wide

1:0 PIN_COUNT[1:0] Number of pins allocated to GPIF interface. Needs to be consistent with GCTL_IOMATRIX:
0 47-pin interface
1 43-pin interface
2 35-pin interface
3 31-pin interface

312 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.3 GPIF_BUS_CONFIG2

Bus Configuration Register #2

This register configures state number overrides directly using control signals CTRL[i] in the state number.

28:24 STATE7[4:0] Lambda number to be used for state number bit 7

20:16 STATE6[4:0] Lambda number to be used for state number bit 6

12:8 STATE5[4:0] Lambda number to be used for state number bit 5

2:0 STATE_FROM_CTRL[1:0] 0 Normal operation
1,2,3 STATE7 indicates Lambda number to be used for state number bit 7
2,3 STATE6 indicates Lambda number to be used for state number bit 6
3 STATE5 indicates Lambda number to be used for state number bit 5

GPIF_BUS_CONFIG2 Bus Configuration Register #2 0xE0014008

b31 b30 b29 b28 b27 b26 b25 b24

STATE7[4:0]

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 0

GPIF_BUS_CONFIG2 Bus Configuration Register #2

b23 b22 b21 b20 b19 b18 b17 b16

STATE6[4:0]

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 0

GPIF_BUS_CONFIG2 Bus Configuration Register #2

b15 b14 b13 b12 b11 b10 b9 b8

STATE5[4:0]

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 0

GPIF_BUS_CONFIG2 Bus Configuration Register #2

b7 b6 b5 b4 b3 b2 b1 b0

STATE_FROM_CTRL[2:0]

R/W R/W R/W

R R R

0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 313

10.7.4 GPIF_AD_CONFIG

Address/Data Configuration Register

Configuration for DQ lines into DQ, Address, control buses and serial modes.

19:18 DATA_THREAD[1:0] Thread number to be used for data; only relevant when AIN_DATA = 1
When this register is used to select the thread it must have been initialized by firmware. When both
are used, ADDRESS_THREAD must be different from DATA_THREAD.

17:16 ADDRESS_THREAD[1:0] Thread number to be used for addresses; only relevant when AIN_SELECT! = 0
When this register is used to select the thread it must have been initialized by firmware. When both
are used, ADDRESS_THREAD must be different from DATA_THREAD.

9 AIN_DATA This field determines which thread number to use for data accesses:
0 Specified by A1:A0.
1 Specified by DATA_THREAD
If AIN_SELECT=0 this field also determines the thread number for which to change the active socket
on awq_push:
0 The active socket of thread A1:A0 is changed (3 bits only)
1 The active socket of thread DATA_THREAD is changed (full 5 bits)

8 DOUT_SELECT 0 Connect DOUT to the socket pointed to by AIN_DATA or EGRESS_DATA register (as
determined by beta 'register_access')

1 Connect DOUT to DATA_COUNTER
continued on next page

GPIF_AD_CONFIG Address/Data Configuration Register 0xE001400C

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_AD_CONFIG Address/Data Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

DATA_THREAD[1:0] ADDRESS_THREAD[1:0]

R/W R/W R/W R/W

R R R R

0 0 0 0

GPIF_AD_CONFIG Address/Data Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

AIN_DATA DOUT_SELECT

R/W R/W

R R

0 0

GPIF_AD_CONFIG Address/Data Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

AOUT_SELECT[1:0] AIN_SELECT[1:0] A_OEN_CFG[1:0] DQ_OEN_CFG[1:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

314 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.4 GPIF_AD_CONFIG (continued)

7:6 AOUT_SELECT[1:0] 0 Connect AOUT to ADDR_COUNTER
1 Connect AOUT to EGRESS_ADDRESS register
2 Connect AOUT to the socket pointed to by ADDRESS_THREAD register

5:4 AIN_SELECT[1:0] 0 Connect AIN to the active socket number of thread specified by AIN_DATA
1 Connect AIN to INGRESS_ADDRESS register
2 Connect AIN to the socket pointed to by ADDRESS_THREAD register

3:2 A_OEN_CFG[1:0] Address lines (if there are any) are
0 Always outputs
1 Always inputs
2 Controlled by the beta: “a_oen”
3 Reserved

1:0 DQ_OEN_CFG[1:0] Data lines are
0 Always outputs
1 Always inputs
2 Direction controlled by the alpha: “dq_oen”
3 Reserved
Note that CTRL[2] can be OE, controlling the data output drivers directly, overriding what's specified
here (this field should be set to 0 if that is used)

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 315

10.7.5 GPIF_STATUS

GPIF Status Register

Live status bits. Most of these bits can trigger an interrupt on their rising edge (see GPIF_INTR).

31:24 INTERRUPT_STATE[7:0] State that raised the interrupt through GPIF_INTR. Note that these bits do not have individual inter-
rupt and mask bits in GPIF_INTR and GPIF_MASK.

23:20 IN_DATA_VALID[3:0] Indicates corresponding INGRESS_DATA register is full.

19:16 EG_DATA_EMPTY[3:0] Indicates corresponding EGRESS_DATA register is empty

10 WAVEFORM_BUSY CPU tried to access waveform memory without clearing WAVEFORM_VALID

9 CTRL_COMP_HIT Control comparator hits

8 DATA_COMP_HIT Data comparator hits

7 ADDR_COMP_HIT Address comparator hits

6 CTRL_COUNT_HIT Control counter is at limit

continued on next page

GPIF_STATUS GPIF Status Register 0xE0014010

b31 b30 b29 b28 b27 b26 b25 b24

INTERRUPT_STATE[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_STATUS GPIF Status Register

b23 b22 b21 b20 b19 b18 b17 b16

IN_DATA_VALID[3:0] EG_DATA_EMPTY[3:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0xF

GPIF_STATUS GPIF Status Register

b15 b14 b13 b12 b11 b10 b9 b8

WAVEFORM_BUSY CTRL_COMP_HIT DATA_COMP_HIT

R R R

R/W R/W R/W

0 0 0

GPIF_STATUS GPIF Status Register

b7 b6 b5 b4 b3 b2 b1 b0

ADDR_COMP_
HIT

CTRL_COUNT_
HIT

DATA_COUNT_
HIT

ADDR_COUNT_
HIT

CRC_ERROR SWITCH_TIMEOUT GPIF_INTR GPIF_DONE

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

316 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.5 GPIF_STATUS (continued)

5 DATA_COUNT_HIT Data counter is at limit

4 ADDR_COUNT_HIT Address counter is at limit

3 CRC_ERROR Indicates that an incorrect CRC was received

2 SWITCH_TIMEOUT Indicates that the SWITCH_TIMEOUT was reached (see WAVEFORM_SWITCH).
This bit clears when a new WAVEFORM_SWTICH is initiated.

1 GPIF_INTR Indicates that GPIF state machine has raised an interrupt.

0 GPIF_DONE 1 GPIF has reached the DONE state. Nonsticky.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 317

10.7.6 GPIF_INTR

GPIF Interrupt Request Register

Interrupt request bits. Bits assert when corresponding bit in GPIF_STATUS asserts and must be cleared by software.

23:20 IN_DATA_VALID[3:0] Interrupt request corresponding to same bit in GPIF_STATUS

19:16 EG_DATA_EMPTY[3:0] Interrupt request corresponding to same bit in GPIF_STATUS

10 WAVEFORM_BUSY Interrupt request corresponding to same bit in GPIF_STATUS

9 CTRL_COMP_HIT Interrupt request corresponding to same bit in GPIF_STATUS

8 DATA_COMP_HIT Interrupt request corresponding to same bit in GPIF_STATUS

7 ADDR_COMP_HIT Interrupt request corresponding to same bit in GPIF_STATUS

6 CTRL_COUNT_HIT Interrupt request corresponding to same bit in GPIF_STATUS

5 DATA_COUNT_HIT Interrupt request corresponding to same bit in GPIF_STATUS

4 ADDR_COUNT_HIT Interrupt request corresponding to same bit in GPIF_STATUS

continued on next page

GPIF_INTR GPIF Interrupt Request Register 0xE0014014

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_INTR GPIF Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

IN_DATA_VALID[3:0] EG_DATA_EMPTY[3:0]

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

GPIF_INTR GPIF Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

WAVEFORM_BUSY CTRL_COMP_HIT DATA_COMP_HIT

R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S

0 0 0

GPIF_INTR GPIF Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

ADDR_COMP_
HIT

CTRL_COUNT_
HIT

DATA_COUNT_
HIT

ADDR_COUNT_
HIT

CRC_ERROR SWITCH_TIMEOUT GPIF_INTR GPIF_DONE

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

318 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.6 GPIF_INTR (continued)

3 CRC_ERROR Interrupt request corresponding to same bit in GPIF_STATUS

2 SWITCH_TIMEOUT Interrupt request corresponding to same bit in GPIF_STATUS

1 GPIF_INTR Interrupt request corresponding to same bit in GPIF_STATUS

0 GPIF_DONE Interrupt request corresponding to same bit in GPIF_STATUS

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 319

10.7.7 GPIF_INTR_MASK

GPIF Interrupt Mask Register

Interrupt mask. Report interrupt to firmware only when corresponding bit in this register is set.

23:20 IN_DATA_VALID[3:0] Mask bit that controls reporting of corresponding bit in GPIF_INTR

19:16 EG_DATA_EMPTY[3:0] Mask bit that controls reporting of corresponding bit in GPIF_INTR

10 WAVEFORM_BUSY Mask bit that controls reporting of corresponding bit in GPIF_INTR

9 CTRL_COMP_HIT Mask bit that controls reporting of corresponding bit in GPIF_INTR

8 DATA_COMP_HIT Mask bit that controls reporting of corresponding bit in GPIF_INTR

7 ADDR_COMP_HIT Mask bit that controls reporting of corresponding bit in GPIF_INTR

6 CTRL_COUNT_HIT Mask bit that controls reporting of corresponding bit in GPIF_INTR

5 DATA_COUNT_HIT Mask bit that controls reporting of corresponding bit in GPIF_INTR

4 ADDR_COUNT_HIT Mask bit that controls reporting of corresponding bit in GPIF_INTR

continued on next page

GPIF_INTR_MASK GPIF Interrupt Mask Register 0xE0014018

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_INTR_MASK GPIF Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

IN_DATA_VALID[3:0] EG_DATA_EMPTY[3:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_INTR_MASK GPIF Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

WAVEFORM_BUSY CTRL_COMP_HIT DATA_COMP_HIT

R/W R/W R/W

R R R

0 0 0

GPIF_INTR_MASK GPIF Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

ADDR_COMP_
HIT

CTRL_COUNT_
HIT

DATA_COUNT_
HIT

ADDR_COUNT_
HIT

CRC_ERROR SWITCH_TIMEOUT GPIF_INTR GPIF_DONE

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

320 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.7 GPIF_INTR (continued)

3 CRC_ERROR Mask bit that controls reporting of corresponding bit in GPIF_INTR

2 SWITCH_TIMEOUT Mask bit that controls reporting of corresponding bit in GPIF_INTR

1 GPIF_INTR Mask bit that controls reporting of corresponding bit in GPIF_INTR

0 GPIF_DONE Mask bit that controls reporting of corresponding bit in GPIF_INTR

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 321

10.7.8 GPIF_CTRL_BUS_DIRECTION

Control Bus In/Out Direction Register

Two bits specify type of each bit in the 16-bit CTRL/ADDR Bus. Settings specified here may be overridden by
GPIF_BUS_CONFIG bits.

31:0 DIRECTION[31:0] Bit at (bit_number/2) has following direction:
00 Input
01 Output
10 Bidirectional I/O
11 Open drain I/O

GPIF_CTRL_BUS_DIRECTION Control Bus In/Out Direction Register 0xE0014024

b31 b30 b29 b28 b27 b26 b25 b24

DIRECTION[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CTRL_BUS_DIRECTION Control Bus In/Out Direction Register

b23 b22 b21 b20 b19 b18 b17 b16

DIRECTION[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CTRL_BUS_DIRECTION Control Bus In/Out Direction Register

b15 b14 b13 b12 b11 b10 b9 b8

DIRECTION[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CTRL_BUS_DIRECTION Control Bus In/Out Direction Register

b7 b6 b5 b4 b3 b2 b1 b0

DIRECTION[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

322 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.9 GPIF_CTRL_BUS_DEFAULT

Control Bus Default Values Register

Reset/initialization value for the CTRL[15:0] signals.

15:0 DEFAULT[15:0] One bit for each CTRL signal indicating default value
0 Asserted (see POLARITY)
1 Deasserted (see POLARITY)

GPIF_CTRL_BUS_DEFAULT Control Bus Default Values Register 0xE0014028

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CTRL_BUS_DEFAULT Control Bus Default Values Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CTRL_BUS_DEFAULT Control Bus Default Values Register

b15 b14 b13 b12 b11 b10 b9 b8

DEFAULT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CTRL_BUS_DEFAULT Control Bus Default Values Register

b7 b6 b5 b4 b3 b2 b1 b0

DEFAULT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 323

10.7.10 GPIF_CTRL_BUS_POLARITY

Control Bus SIgnal Polarity Register

Polarity of each of the CTRL[15:0] signals.

15:0 POLARITY[15:0] One bit for each CTRL signal indicating polarity
0 Asserted when 1
1 Asserted when 0

GPIF_CTRL_BUS_POLARITY Control Bus SIgnal Polarity Register 0xE001402C

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CTRL_BUS_POLARITY Control Bus SIgnal Polarity Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CTRL_BUS_POLARITY Control Bus SIgnal Polarity Register

b15 b14 b13 b12 b11 b10 b9 b8

POLARITY[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CTRL_BUS_POLARITY Control Bus SIgnal Polarity Register

b7 b6 b5 b4 b3 b2 b1 b0

POLARITY[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

324 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.11 GPIF_CTRL_BUS_TOGGLE

Control Bus Output Toggle Mode Register

Polarity of each of the CTRL[15:0] signals.

15:0 TOGGLE[15:0] One bit for each CTRL signal indicating toggle mode
0 Normal mode, set value from alpha/beta
1 Toggle mode, toggle value when alpha/beta is 1, do nothing when 0

GPIF_CTRL_BUS_TOGGLE Control Bus Output Toggle Mode Register 0xE0014030

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CTRL_BUS_TOGGLE Control Bus Output Toggle Mode Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CTRL_BUS_TOGGLE Control Bus Output Toggle Mode Register

b15 b14 b13 b12 b11 b10 b9 b8

TOGGLE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CTRL_BUS_TOGGLE Control Bus Output Toggle Mode Register

b7 b6 b5 b4 b3 b2 b1 b0

TOGGLE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 325

10.7.12 GPIF_CTRL_BUS_SELECT

Control Bus Connection Matrix Register

There are 16 GPIF_CTRL_BUS_SELECT registers. The address of each is calculated as GPIF_CTRL_BUS_SELECT(x) =
0xE0014034 + (x*0x4). Hence GPIF_CTRL_BUS_SELECT(0) is at address 0xE0014034, GPIF_CTRL_BUS_SELECT(1) is
at address 0xE0014034 + 0x4 and so on. The definition of each of these is the same.

These registers specify which of the alphas, betas or flags are to appear on each of CTRL[15:0]. They are only honored if the
CTRL line is declared as an output.

4:0 OMEGA_INDEX[4:0] For each omega, 5-bits specify what is driven at to the output:
0–3 Connect to alpha 0–3
8–11 Connect to beta 0–3
16–19 Empty/Full flags for thread 0–3
20–23 Partial flag for thread 0–3
24 Empty/Full flag for current thread
25 Partial flag for current thread
26 PP_DRQR5 signal (see PP_DRQR5_MASK)
27–31 Connected to logic 0 (cannot be used together with CTRL_BUS_TOGGLE)

GPIF_CTRL_BUS_SELECT Control Bus Connection Matrix Register 0xE0014034

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CTRL_BUS_SELECT Control Bus Connection Matrix Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CTRL_BUS_SELECT Control Bus Connection Matrix Register

b15 b14 b13 b12 b11 b10 b9 b8

GPIF_CTRL_BUS_SELECT Control Bus Connection Matrix Register

b7 b6 b5 b4 b3 b2 b1 b0

OMEGA_INDEX[4:0]

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 0

Bit Name Description

326 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.13 GPIF_CTRL_COUNT_CONFIG

Control Counter Configuration Register

Configures the 16-bit control counter

7:4 CONNECT[3:0] Connect the specified bit of this counter to CTRL[9]

3 SW_RESET 0 Hardware write 0 to signal that counter has reset
1 Software writes one to reset/load the counter

2 RELOAD 0 Saturate on reaching the limit
1 Reload on reaching the limit

1 DOWN_UP 0 Down count
1 Up count

0 ENABLE 0 This counter is not used.
1 This counter is used.

GPIF_CTRL_COUNT_CONFIG Control Counter Configuration Register 0xE0014074

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CTRL_COUNT_CONFIG Control Counter Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CTRL_COUNT_CONFIG Control Counter Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

GPIF_CTRL_COUNT_CONFIG Control Counter Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

CONNECT[3:0 SW_RESET RELOAD DOWN_UP ENABLE

R/W R/W R/W R/W R/W1S R/W R/W R/W

R R R R R/W0C R R R

0 0 0 0 0 1 1 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 327

10.7.14 GPIF_CTRL_COUNT_RESET

Control Counter Reset Register

Configures the reset/load value of the control counter.

15:0 RESET_LOAD[15:0] Reset counter to this value. Reload to this value when limit is reached if specified.

GPIF_CTRL_COUNT_RESET Control Counter Reset Register 0xE0014078

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CTRL_COUNT_RESET Control Counter Reset Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CTRL_COUNT_RESET Control Counter Reset Register

b15 b14 b13 b12 b11 b10 b9 b8

RESET_LOAD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CTRL_COUNT_RESET Control Counter Reset Register

b7 b6 b5 b4 b3 b2 b1 b0

RESET_LOAD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

328 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.15 GPIF_CTRL_COUNT_LIMIT

Control Counter Limit Register

Configures the limit value of the control counter.

15:0 LIMIT[15:0] Stop counting when counter reaches this value

GPIF_CTRL_COUNT_LIMIT Control Counter Reset Register 0xE001407C

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CTRL_COUNT_LIMIT Control Counter Reset Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CTRL_COUNT_LIMIT Control Counter Reset Register

b15 b14 b13 b12 b11 b10 b9 b8

LIMIT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_CTRL_COUNT_LIMIT Control Counter Reset Register

b7 b6 b5 b4 b3 b2 b1 b0

LIMIT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFF

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 329

10.7.16 GPIF_ADDR_COUNT_CONFIG

Address Counter Configuration Register

Configures the 16-bit address counter.

7:0 INCREMENT[7:0] 8-bit quantity to be added/subtracted to the counter on each clock

3 DOWN_UP 0 Down count
1 Up count

2 SW_RESET 0 Hardware write 0 to signal that counter has reset
1 Software writes one to reset/load the counter

1 RELOAD 0 Saturate on reaching the limit
1 Reload on reaching the limit

0 ENABLE 0 This counter is not used.
1 This counter is used.

GPIF_ADDR_COUNT_CONFIG Address Counter Configuration Register 0xE0014080

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_ADDR_COUNT_CONFIG Address Counter Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_ADDR_COUNT_CONFIG Address Counter Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

INCREMENT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

GPIF_ADDR_COUNT_CONFIG Address Counter Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DOWN_UP SW_RESET RELOAD ENABLE

R/W R/W1S R/W R/W

R R/W0C R R

1 0 1 0

Bit Name Description

330 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.17 GPIF_ADDR_COUNT_RESET

Address Counter Reset Register

Sets the reset/reload value of the data counter.

31:0 RESET_LOAD[31:0] Reset counter to this value. Reload to this value when limit is reached if specified.

GPIF_ADDR_COUNT_RESET Address Counter Reset Register 0xE0014084

b31 b30 b29 b28 b27 b26 b25 b24

RESET_LOAD[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_ADDR_COUNT_RESET Address Counter Reset Register

b23 b22 b21 b20 b19 b18 b17 b16

RESET_LOAD[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_ADDR_COUNT_RESET Address Counter Reset Register

b15 b14 b13 b12 b11 b10 b9 b8

RESET_LOAD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_ADDR_COUNT_RESET Address Counter Reset Register

b7 b6 b5 b4 b3 b2 b1 b0

RESET_LOAD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 331

10.7.18 GPIF_ADDR_COUNT_LIMIT

Address Counter Limit Register

Configures the limit value of the address counter

31:0 LIMIT[31:0] Stop counting when counter reaches this value.

GPIF_ADDR_COUNT_LIMIT Address Counter Limit Register 0xE0014088

b31 b30 b29 b28 b27 b26 b25 b24

LIMIT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_ADDR_COUNT_LIMIT Address Counter Limit Register

b23 b22 b21 b20 b19 b18 b17 b16

LIMIT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_ADDR_COUNT_LIMIT Address Counter Limit Register

b15 b14 b13 b12 b11 b10 b9 b8

LIMIT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_ADDR_COUNT_LIMIT Address Counter Limit Register

b7 b6 b5 b4 b3 b2 b1 b0

LIMIT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFF

Bit Name Description

332 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.19 GPIF_STATE_COUNT_CONFIG

State Counter Configuration Register

Configures the first 16-bit state counter.

1 SW_RESET 0 Hardware write 0 to signal that counter has reset
1 Software writes one to reset/load the counter

0 ENABLE 0 This counter is not used.
1 This counter is used.

GPIF_STATE_COUNT_CONFIG State Counter Configuration Register 0xE001408C

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_STATE_COUNT_CONFIG State Counter Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_STATE_COUNT_CONFIG State Counter Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

GPIF_STATE_COUNT_CONFIG State Counter Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

SW_RESET ENABLE

R/W1S R/W

R/W0C R

0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 333

10.7.20 GPIF_STATE_COUNT_LIMIT

State Counter Limit Register

Configures the reset/load and limit values of counters.

15:0 LIMIT[15:0] Generate an output tick, reset and start counting again if enabled when this limit is reached.

GPIF_STATE_COUNT_LIMIT State Counter Limit Register 0xE0014090

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_STATE_COUNT_LIMIT State Counter Limit Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_STATE_COUNT_LIMIT State Counter Limit Register

b15 b14 b13 b12 b11 b10 b9 b8

LIMIT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_STATE_COUNT_LIMIT State Counter Limit Register

b7 b6 b5 b4 b3 b2 b1 b0

LIMIT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFF

Bit Name Description

334 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.21 GPIF_DATA_COUNT_CONFIG

Data Counter Configuration Register

Configures the 32-bit data counter.

7:0 INCREMENT[7:0] 8-bit quantity to be added/subtracted to the counter on each clock

3 DOWN_UP 0 Down count
1 Up count

2 SW_RESET 0 Hardware write 0 to signal that counter has reset
1 Software writes one to reset/load the counter

1 RELOAD 0 Saturate on reaching the limit
1 Reload on reaching the limit

0 ENABLE 0 This counter is not used.
1 This counter is used.

GPIF_DATA_COUNT_CONFIG Data Counter Configuration Register 0xE0014094

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_DATA_COUNT_CONFIG Data Counter Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_DATA_COUNT_CONFIG Data Counter Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

INCREMENT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

GPIF_DATA_COUNT_CONFIG Data Counter Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DOWN_UP SW_RESET RELOAD ENABLE

R/W R/W1S R/W R/W

R R/W0C R R

1 0 1 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 335

10.7.22 GPIF_DATA_COUNT_RESET

Data Counter Reset Register

Sets the reset/reload value of the data counter.

31:0 RESET_LOAD[31:0] Reset counter to this value. Reload to this value when limit is reached if specified.

GPIF_DATA_COUNT_RESET Data Counter Reset Register 0xE0014098

b31 b30 b29 b28 b27 b26 b25 b24

RESET_LOAD[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_COUNT_RESET Data Counter Reset Register

b23 b22 b21 b20 b19 b18 b17 b16

RESET_LOAD[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_COUNT_RESET Data Counter Reset Register

b15 b14 b13 b12 b11 b10 b9 b8

RESET_LOAD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_COUNT_RESET Data Counter Reset Register

b7 b6 b5 b4 b3 b2 b1 b0

RESET_LOAD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

336 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.23 GPIF_DATA_COUNT_LIMIT

Data Counter Limit Register

Sets the limit value of the data counter.

31:0 LIMIT[31:0] Reload data counter if this limit is reached and reload is enabled.

GPIF_DATA_COUNT_LIMIT Data Counter Limit Register 0xE001409C

b31 b30 b29 b28 b27 b26 b25 b24

LIMIT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_DATA_COUNT_LIMIT Data Counter Limit Register

b23 b22 b21 b20 b19 b18 b17 b16

LIMIT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_DATA_COUNT_LIMIT Data Counter Limit Register

b15 b14 b13 b12 b11 b10 b9 b8

LIMIT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_DATA_COUNT_LIMIT Data Counter Limit Register

b7 b6 b5 b4 b3 b2 b1 b0

LIMIT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFF

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 337

10.7.24 GPIF_CTRL_COMP_VALUE

Control Comparator Value Register

Sets the target value for the 16-bit control-bus comparator.

15:0 VALUE[15:0] Output true when CTRL bus matches this value

GPIF_CTRL_COMP_VALUE Control Comparator Value Register 0xE00140A0

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CTRL_COMP_VALUE Control Comparator Value Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CTRL_COMP_VALUE Control Comparator Value Register

b15 b14 b13 b12 b11 b10 b9 b8

VALUE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CTRL_COMP_VALUE Control Comparator Value Register

b7 b6 b5 b4 b3 b2 b1 b0

VALUE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

338 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.25 GPIF_CTRL_COMP_MASK

Control Comparator Mask Register

Sets the comparison mask for the 16-bit control-bus comparator.

15:0 MASK[15:0] 0 Bit at this bit position is a don't-care for comparison
1 Bit at this bit position in the CTRL bus is to be used in comparison

GPIF_CTRL_COMP_MASK Control Comparator Mask Register 0xE00140A4

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CTRL_COMP_MASK Control Comparator Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CTRL_COMP_MASK Control Comparator Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

MASK[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CTRL_COMP_MASK Control Comparator Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

MASK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 339

10.7.26 GPIF_DATA_COMP_VALUE

Data Comparator Value Register

Sets the target value for the 32-bit data comparator.

31:0 VALUE[31:0] Output true when Data bus matches this value.

GPIF_DATA_COMP_VALUE Data Comparator Value Register 0xE00140A8

b31 b30 b29 b28 b27 b26 b25 b24

VALUE[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_COUNT_LIMIT Data Counter Limit Register

b23 b22 b21 b20 b19 b18 b17 b16

VALUE[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_COUNT_LIMIT Data Counter Limit Register

b15 b14 b13 b12 b11 b10 b9 b8

VALUE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_COUNT_LIMIT Data Counter Limit Register

b7 b6 b5 b4 b3 b2 b1 b0

VALUE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

340 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.27 GPIF_DATA_COMP_MASK

Data Comparator Mask Register

Sets the comparison mask for the 32-bit data comparator.

31:0 MASK[31:0] 0 Bit at this bit position is a don't-care for comparison
1 Bit at this bit position in the Data bus is to be used in comparison

GPIF_DATA_COMP_MASK Data Comparator Mask Register 0xE00140AC

b31 b30 b29 b28 b27 b26 b25 b24

MASK[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_COMP_MASK Data Comparator Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

MASK[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_COMP_MASK Data Comparator Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

MASK[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_COMP_MASK Data Comparator Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

MASK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 341

10.7.28 GPIF_ADDR_COMP_VALUE

Address Comparator Value Register

Sets the target value for the 32-bit address comparator.

31:0 VALUE[31:0] Output true when Data bus matches this value.

GPIF_ADDR_COMP_VALUE Address Comparator Value Register 0xE00140B0

b31 b30 b29 b28 b27 b26 b25 b24

VALUE[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_ADDR_COMP_VALUE Address Comparator Value Register

b23 b22 b21 b20 b19 b18 b17 b16

VALUE[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_ADDR_COMP_VALUE Address Comparator Value Register

b15 b14 b13 b12 b11 b10 b9 b8

VALUE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_ADDR_COMP_VALUE Address Comparator Value Register

b7 b6 b5 b4 b3 b2 b1 b0

VALUE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

342 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.29 GPIF_ADDR_COMP_MASK

Address Comparator Mask Register

Sets the comparison mask for the 32-bit data comparator.

31:0 MASK[31:0] 0 Bit at this bit position is a don't-care for comparison
1 Bit at this bit position in the CTRL bus is to be used in comparison

GPIF_ADDR_COMP_MASK Address Comparator Mask Register 0xE00140B4

b31 b30 b29 b28 b27 b26 b25 b24

MASK[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_ADDR_COMP_MASK Address Comparator Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

MASK[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_ADDR_COMP_MASK Address Comparator Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

MASK[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_ADDR_COMP_MASK Address Comparator Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

MASK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 343

10.7.30 GPIF_DATA_CTRL

Data Control Register

Configures and controls flow of data through GPIF_INGRESS_DATA/EGRESS_DATA registers. Provides valid flags for the
data registers associated with the four threads.

15:12 EG_ADDR_VALID[3:0] Software writes 1 to indicate a valid word is present in the address register. Hardware writes 0 to indi-
cate that the data is used and new word can be written.

11:8 IN_ADDR_VALID[3:0] Indicates address available in INGRESS_ADDRESS. Cleared by software when address processed.

7:4 EG_DATA_VALID[3:0] Software writes 1 to indicate a valid word is present in the address register. Hardware writes 0 to indi-
cate that the data is used and new word can be written.

3:0 IN_DATA_VALID[3:0] Indicates data available in INGRESS_DATA. Cleared by software when data processed.

GPIF_DATA_CTRL Data Control Register 0xE00140B8

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_DATA_CTRL Data Control Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_DATA_CTRL Data Control Register

b15 b14 b13 b12 b11 b10 b9 b8

EG_ADDR_VALID[3:0] IN_ADDR_VALID[3:0]

R/W1S R/W1S R/W1S R/W1S R/W1C R/W1C R/W1C R/W1C

R/W0C R/W0C R/W0C R/W0C R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

GPIF_DATA_CTRL Data Control Register

b7 b6 b5 b4 b3 b2 b1 b0

EG_DATA_VALID[3:0] IN_DATA_VALID[3:0]

R/W1S R/W1S R/W1S R/W1S R/W1C R/W1C R/W1C R/W1C

R/W0C R/W0C R/W0C R/W0C R/W1S R/W1S R/W1S R/W1S

0 0 0 0 1 0 1 0

Bit Name Description

344 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.31 GPIF_INGRESS_DATA

Socket Ingress Data Register

There are four GPIF_INGRESS_DATA registers. The address of each is calculated as GPIF_INGRESS_DATA(x) =
0xE00140BC + (x*0x4). Hence GPIF_INGRESS_DATA(0) is at address 0xE00140BC, GPIF_INGRESS_DATA(1) is at
address 0xE00140BC + 0x4 and so on. The definition of each of these is the same.

Holds ingress data for the active socket in a thread.

31:0 DATA[31:0] Ingress Data. This register will hold only one word of GPIF_BUS_CONFIG.BUS_WIDTH. No packing/
unpacking is done. MSBs will be 0.

GPIF_INGRESS_DATA Socket Ingress Data Register 0xE00140BC

b31 b30 b29 b28 b27 b26 b25 b24

DATA[31:24]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_INGRESS_DATA Socket Ingress Data Register

b23 b22 b21 b20 b19 b18 b17 b16

DATA[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_INGRESS_DATA Socket Ingress Data Register

b15 b14 b13 b12 b11 b10 b9 b8

DATA[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_INGRESS_DATA Socket Ingress Data Register

b7 b6 b5 b4 b3 b2 b1 b0

DATA[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 345

10.7.32 GPIF_EGRESS_DATA

Socket Egress Data Register

There are four GPIF_EGRESS_DATA registers. The address of each is calculated as GPIF_EGRESS_DATA(x) =
0xE00140CC + (x*0x4). Hence GPIF_EGRESS_DATA(0) is at address 0xE00140CC, GPIF_EGRESS_DATA(1) is at
address 0xE00140CC + 0x4 and so on. The definition of each of these is the same.

Holds egress data for the active socket in a thread.

31:0 DATA[31:0] Egress data. This register will hold only one word of GPIF_BUS_CONFIG.BUS_WIDTH. No packing/
unpacking is done. MSBs are ignored.

GPIF_EGRESS_DATA Socket Egress Data Register 0xE00140CC

b31 b30 b29 b28 b27 b26 b25 b24

DATA[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_EGRESS_DATA Socket Egress Data Register

b23 b22 b21 b20 b19 b18 b17 b16

DATA[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_EGRESS_DATA Socket Egress Data Register

b15 b14 b13 b12 b11 b10 b9 b8

DATA[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_EGRESS_DATA Socket Egress Data Register

b7 b6 b5 b4 b3 b2 b1 b0

DATA[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

346 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.33 GPIF_INGRESS_ADDRESS

Thread Ingress Address Register

There are four GPIF_INGRESS_ADDRESS registers. The address of each is calculated as GPIF_INGRESS_ADDRESS(x) =
0xE00140DC + (x*0x4). Hence GPIF_INGRESS_ADDRESS(0) is at address 0xE00140DC, GPIF_INGRESS_ADDRESS(1)
is at address 0xE00140DC + 0x4 and so on. The definition of each of these is the same.

Holds ingress address for the active socket in a thread.

31:0 ADDRESS[31:0] Ingress address

GPIF_INGRESS_ADDRESS Thread Ingress Address Register 0xE00140DC

b31 b30 b29 b28 b27 b26 b25 b24

ADDRESS[31:24]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_INGRESS_ADDRESS Thread Ingress Address Register

b23 b22 b21 b20 b19 b18 b17 b16

ADDRESS[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_INGRESS_ADDRESS Thread Ingress Address Register

b15 b14 b13 b12 b11 b10 b9 b8

ADDRESS[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_INGRESS_ADDRESS Thread Ingress Address Register

b7 b6 b5 b4 b3 b2 b1 b0

ADDRESS[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 347

10.7.34 GPIF_EGRESS_ADDRESS

Thread Egress Address Register

There are four GPIF_EGRESS_ADDRESS registers. The address of each is calculated as GPIF_EGRESS_ADDRESS(x) =
0xE00140EC + (x*0x4). Hence GPIF_EGRESS_ADDRESS(0) is at address 0xE00140EC, GPIF_EGRESS_ADDRESS(1) is
at address 0xE00140EC + 0x4 and so on. The definition of each of these is the same.

Holds egress address for the active socket in a thread.

31:0 ADDRESS[31:0] Egress address

GPIF_EGRESS_ADDRESS Thread Egress Address Register 0xE00140EC

b31 b30 b29 b28 b27 b26 b25 b24

ADDRESS[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_EGRESS_ADDRESS Thread Egress Address Register

b23 b22 b21 b20 b19 b18 b17 b16

ADDRESS[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_EGRESS_ADDRESS Thread Egress Address Register

b15 b14 b13 b12 b11 b10 b9 b8

ADDRESS[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_EGRESS_ADDRESS Thread Egress Address Register

b7 b6 b5 b4 b3 b2 b1 b0

ADDRESS[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

348 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.35 GPIF_THREAD_CONFIG

Thread Configuration Register

There are four GPIF_THREAD_CONFIG registers. The address of each is calculated as GPIF_THREAD_CONFIG(x) =
0xE00140FC + (x*0x4). Hence GPIF_THREAD_CONFIG(0) is at address 0xE00140FC, GPIF_THREAD_CONFIG(1) is at
address 0xE00140FC + 0x4 and so on. The definition of each of these is the same.

Configures the active socket and thread watermark. (All sockets behind the thread share the watermark). The hardware gets
the status and direction of the sockets from the adapter.The watermark signal is the limit hit indicator of a counter that counts
read/write accesses that happen on the interface. The limit of this counter is programmed by the hardware to “end of usable
space” and is reset to 0 by PIB hardware as dma_ready (available flag) goes from 0->1.

31 ENABLE Enables the thread controller for operation. Can be set by firmware after initializing THREAD_SOCK
and other fields. Will be set by hardware when THREAD_SOCK is written to by hardware.

29:16 WATERMARK[13:0] Watermark position. Indicates number words that would be subtracted from the end of usable space/
data. Watermark needs to be programmed to a value greater than the round trip flag latency of the
system.

This latency is a sum of three quantities namely (1) FX3 latency between seeing the end of the last
burst that completely fills the buffer to the time the full/empty flag updates (can be calculated from
generic gpif params), (2). Expected time of arrival of a flow control signal that would prevent the AP
from issuing the next burst (as measured from the end of the burst) (3). Any additional group latency
between the APs dma controller logic and the interface pins in both directions.

continued on next page

GPIF_THREAD_CONFIG Thread Configuration Register 0xE00140FC

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE WATERMARK[13:8]

R/W R/W R/W R/W R/W R/W R/W

R/W R R R R R R

0

GPIF_THREAD_CONFIG Thread Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

WATERMARK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

GPIF_THREAD_CONFIG Thread Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

BURST_SIZE[3:0]

R/W R/W R/W R/W

R R R R

4

GPIF_THREAD_CONFIG Thread Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

WM_CFG THREAD_SOCK[4:0]

R/W R/W R/W R/W R/W R/W

R R/W R/W R/W R/W R/W

0 0 1 0 1 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 349

10.7.35 GPIF_THREAD_CONFIG (continued)

 “end of usable space/data” is calculated using one of the equations depending on the context. (1) For
normal write transfers in either PP modes, this is the size of the buffer to be produced into. (2) For
normal read transfers in either PP modes, this is the byte count of the buffer to be consumed. (3) For
partial buffer read or write transfers in PP mode 1, this is the value of written by AP into the
PP_DMA_SIZE register rounded up to an integral number of BURSTSIZE quanta.

11:8 BURST_SIZE[3:0] Log2 of burst size (1: 2 words, 2: 4 words, etc). Programmed to support systems that work with fixed
burst sizes. A burst is defined as a portion of transfer that unconditionally completes after it is initi-
ated. The system must always transfer an entire burst before responding to a change in a partial flag.
In transfers that involve short packet, the PIB hardware will automatically append zeros/truncate data
to do its part in preserving the above mentioned definition of burst. Burst size is a power of 2 and
must be programmed to a value greater than watermark when partial flag is used.Buffer sizes used
should be integral multiple of the burst size. Maximum value is 14. When value is >0, any socket
switching must occur on 8 byte boundaries.Besides, this field needs to be programmed to a non-zero
value to support bandwidth>200MBps on P-Port.

7 WM_CFG 0 Assert partial flag when number of samples (remaining available for reading/writing) is less
than or equal to the watermark.

1 Assert when samples are more than the watermark.

4:0 THREAD_SOCK[4:0] Active Socket Number for this thread.
Can be written by software for fixed socket assignment.(all threads)
Can be modified by hardware as result of PP_DMA_XFER accesses (only for thread 0)
Can be modified by hardware as result of alpha 'sample AIN' (all threads. Hardware can only modify
bits [4:2] of this field)

350 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.36 GPIF_LAMBDA_STAT

Lambda Status Register

Provides the current state of the 32 Lambdas (inputs).

31:0 LAMBDA[31:0] Current value of the Lambda inputs

GPIF_LAMBDA_STAT Lambda Status Register 0xE001410C

b31 b30 b29 b28 b27 b26 b25 b24

LAMBDA[31:24]

R R R R R R R R

R/w R/w R/w R/w R/w R/w R/w R/w

GPIF_LAMBDA_STAT Lambda Status Register

b23 b22 b21 b20 b19 b18 b17 b16

LAMBDA[23:16]

R R R R R R R R

R/w R/w R/w R/w R/w R/w R/w R/w

GPIF_LAMBDA_STAT Lambda Status Register

b15 b14 b13 b12 b11 b10 b9 b8

LAMBDA[15:8]

R R R R R R R R

R/w R/w R/w R/w R/w R/w R/w R/w

GPIF_LAMBDA_STAT Lambda Status Register

b7 b6 b5 b4 b3 b2 b1 b0

LAMBDA[7:0]

R R R R R R R R

R/w R/w R/w R/w R/w R/w R/w R/w

0x10000000

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 351

10.7.37 GPIF_ALPHA_STAT

Alpha Status Register

Provides the current state of the 8 Alphas (state machine early outputs).

7:0 ALPHA[7:0] Current value of the Alpha signals

GPIF_ALPHA_STAT Alpha Status Register 0xE0014110

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_ALPHA_STAT Alpha Status Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_ALPHA_STAT Alpha Status Register

b15 b14 b13 b12 b11 b10 b9 b8

GPIF_ALPHA_STAT Alpha Status Register

b7 b6 b5 b4 b3 b2 b1 b0

ALPHA[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 1 0 1 0

Bit Name Description

352 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.38 GPIF_BETA_STAT

Beta Status Register

Provides the current state of the 32 Betas (state machine late outputs).

31:0 BETA[31:0] Current value of the Beta signals

GPIF_BETA_STAT Beta Status Register 0xE0014114

b31 b30 b29 b28 b27 b26 b25 b24

BETA[31:24]

R R R R R R R R

R/w R/w R/w R/w R/w R/w R/w R/w

0 0 0 0 0 0 0 0

GPIF_BETA_STAT Beta Status Register

b23 b22 b21 b20 b19 b18 b17 b16

BETA[23:16]

R R R R R R R R

R/w R/w R/w R/w R/w R/w R/w R/w

0 0 0 0 0 0 0 0

GPIF_BETA_STAT Beta Status Register

b15 b14 b13 b12 b11 b10 b9 b8

BETA[15:8]

R R R R R R R R

R/w R/w R/w R/w R/w R/w R/w R/w

0 0 0 0 0 0 0 0

GPIF_BETA_STAT Beta Status Register

b7 b6 b5 b4 b3 b2 b1 b0

BETA[7:0]

R R R R R R R R

R/w R/w R/w R/w R/w R/w R/w R/w

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 353

10.7.39 GPIF_WAVEFORM_CTRL_STAT

Waveform Program Control Register

Offers the facility to program new waveforms to GPIF. Provides current status of GPIF.

31:24 CURRENT_STATE[7:0] Current state of GPIF. Always updated.

23:16 ALPHA_INIT[7:0] Initial values for alpha outputs. These are loaded into the alpha registers when GPIF execution starts
(first WAVEFORM_SWITCH) is set.

11 CPU_LAMBDA Visible to the state machine as lambda 30.

10:8 GPIF_STAT[2:0] 0 Waveform is not valid (Initial state or WAVEFORM_VALID is cleared)
1 <unused>
2 GPIF is armed (WAVEFORM_VALID is set)
3 GPIF is running (using WAVEFORM_SWITCH)
4 GPIF is done (encountered DONE_STATE)
5 GPIF is paused (PAUSE = 0)
6 GPIF is switching (waiting for timeout/terminal state)
7 An error occurred

1 PAUSE Write 1 here to pause GPIF. 0 to resume where left off.

0 WAVEFORM_VALID 0 Waveforms are no longer valid, stop operation and return outputs to default state

GPIF_WAVEFORM_CTRL_STAT Waveform Program Control Register 0xE0014118

b31 b30 b29 b28 b27 b26 b25 b24

CURRENT_STATE[7:0]

R R R R R R R R

R/w R/w R/w R/w R/w R/w R/w R/w

0 0 0 0 0 0 0 0

GPIF_DATA_CTRL Data Control Register

b23 b22 b21 b20 b19 b18 b17 b16

ALPHA_INIT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_DATA_CTRL Data Control Register

b15 b14 b13 b12 b11 b10 b9 b8

CPU_LAMBDA GPIF_STAT[2:0]

R/W R R R

R R/w R/w R/w

0 0 0 0

GPIF_DATA_CTRL Data Control Register

b7 b6 b5 b4 b3 b2 b1 b0

PAUSE
WAVEFORM_VALI

D

R/W R/W

R R

0 0

Bit Name Description

354 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

1 The waveform memory is consistent and valid.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 355

10.7.40 GPIF_WAVEFORM_SWITCH

Waveform Switch Control Register

Offers the facility to program new waveforms to GPIF. Provides current status of GPIF.

31:24 DONE_STATE[7:0] Signal GPIF_DONE upon reaching this state.

23:16 DESTINATION_STATE[7:0] State to jump to, may be the initial state of the new waveform.

15:8 TERMINAL_STATE[7:0] State from which to initiate the switch. Corresponds to idle states of waveforms.

7 TERMINATED Indicates that the TERMINAL_STATE was reached since last WAVEFORM_SWITCH

6 TIMEOUT_REACHED Indicates that timeout was reached since last WAVEFORM_SWITCH

5:3 TIMEOUT_MODE[2:0] 0 Timeout disable
1 Timeout for reaching TERMINAL_STATE. Interrupt on timeout
2 Timeout for reaching DONE_STATE. Interrupt on timeout
3 Timeout for reaching TERMINAL STATE. Force switch on timeout.
4 Timeout for hanging in current state. Timer resets on each transition.

2 SWITCH_NOW 1 Do not wait for TERMINAL_STATE, switch right away

continued on next page

GPIF_WAVEFORM_SWITCH Waveform Switch Control Register 0xE001411C

b31 b30 b29 b28 b27 b26 b25 b24

DONE_STATE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_WAVEFORM_SWITCH Waveform Switch Control Register

b23 b22 b21 b20 b19 b18 b17 b16

DESTINATION_STATE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_WAVEFORM_SWITCH Waveform Switch Control Register

b15 b14 b13 b12 b11 b10 b9 b8

TERMINAL_STATE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_WAVEFORM_SWITCH Waveform Switch Control Register

b7 b6 b5 b4 b3 b2 b1 b0

TERMINATED
TIMEOUT_
REACHED

TIMEOUT_MODE[2:0] SWITCH_NOW DONE_ENABLE
WAVEFORM_

SWITCH

R R R/W R/W R/W R/W R/W R/W1S

R/W R/W R R R R R R/W0C

0 0 0 0 0 0 0 0

Bit Name Description

356 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.40 GPIF_WAVEFORM_SWITCH (continued)

1 DONE_ENABLE 1 Enable checking for DONE_STATE and generation of GPIF_DONE.

0 WAVEFORM_SWITCH Software sets this bit after programming the switch register. Hardware clears it after the switch is
complete.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 357

10.7.41 GPIF_WAVEFORM_SWITCH_TIMEOUT

Waveform Timeout Register

Defines the timeout counter (in the number of state machine clock) for waveform switching. Effective only when
TIMEOUT_ENABLE is set.

31:0 RESET_LOAD[31:0] Timeout value

GPIF_WAVEFORM_SWITCH_TIMEOUT Waveform Timeout Register 0xE0014120

b31 b30 b29 b28 b27 b26 b25 b24

RESET_LOAD[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_WAVEFORM_SWITCH_TIMEOUT Waveform Timeout Register

b23 b22 b21 b20 b19 b18 b17 b16

RESET_LOAD[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_WAVEFORM_SWITCH_TIMEOUT Waveform Timeout Register

b15 b14 b13 b12 b11 b10 b9 b8

RESET_LOAD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_WAVEFORM_SWITCH_TIMEOUT Waveform Timeout Register

b7 b6 b5 b4 b3 b2 b1 b0

RESET_LOAD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

358 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.42 GPIF_CRC_CONFIG

CRC Configuration Register

Configuration of CRC computation for data stream.

31 ENABLE Enables CRC calculation

22 CRC_ERROR A CRC was loaded into CRC_RECEIVED that is different from CRC_VALUE

21 BYTE_ENDIAN Indicates the order in which bytes in a 32-bit word are brought through the CRC shift register. This is
independent from the endianness of the interface.
0 LSB first
1 MSB first

20 BIT_ENDIAN Indicates the order in which the bits in each byte are brought through the CRC shift register.
0 LSb first
1 MSb first

15:0 CRC_RECEIVED[15:0] A CRC value received on the data inputs by the state machine

GPIF_CRC_CONFIG CRC Configuration Register 0xE0014124

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE

R/W

R

0

GPIF_CRC_CONFIG CRC Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

CRC_ERROR BYTE_ENDIAN BIT_ENDIAN

R R/W R/W

R/W R R

0 0 0

GPIF_CRC_CONFIG CRC Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

CRC_RECEIVED[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_CRC_CONFIG CRC Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

CRC_RECEIVED[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 359

10.7.43 GPIF_CRC_DATA

CRC Data Register

CRC initial values and results.

31:16 CRC_VALUE[15:0] Current result of CRC calculation

15:8 INITIAL_VALUE[15:0] Initial CRC value

GPIF_CRC_DATA CRC Data Register 0xE0014128

b31 b30 b29 b28 b27 b26 b25 b24

CRC_VALUE[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_CRC_DATA CRC Data Register

b23 b22 b21 b20 b19 b18 b17 b16

CRC_VALUE[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIF_CRC_DATA CRC Data Register

b15 b14 b13 b12 b11 b10 b9 b8

INITIAL_VALUE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CRC_DATA CRC Data Register

b7 b6 b5 b4 b3 b2 b1 b0

INITIAL_VALUE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

360 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.44 GPIF_BETA_DEASSERT

Beta Deassert Register

Controls the applicability of BETA_DEASSERT descriptor field to individual betas.

31:0 APPLY_DEASSERT[31:0] 0 BETA_DEASSERT does not apply. Betas remain asserted throughout the state.
1 BETA_DEASSERT from the waveform descriptor applies to this beta. This is not honored

for external betas, which always behave as if apply_deassert = 0.

GPIF_BETA_DEASSERT Beta Deassert Register 0xE001412C

b31 b30 b29 b28 b27 b26 b25 b24

APPLY_DEASSERT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_BETA_DEASSERT Beta Deassert Register

b23 b22 b21 b20 b19 b18 b17 b16

APPLY_DEASSERT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_BETA_DEASSERT Beta Deassert Register

b15 b14 b13 b12 b11 b10 b9 b8

APPLY_DEASSERT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

GPIF_BETA_DEASSERT Beta Deassert Register

b7 b6 b5 b4 b3 b2 b1 b0

APPLY_DEASSERT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 361

10.7.45 GPIF_FUNCTION

Transition Function Registers

There are 32 GPIF_FUNCTION registers. The address of each is calculated as GPIF_FUNCTION(x) = 0xE0014130 +
(x*0x4). Hence GPIF_FUNCTION(0) is at address 0xE0014130, GPIF_FUNCTION(1) is at address 0xE0014130 + 0x4 and
so on. The definition of each of these is the same.

Contains the truth tables for user-defined transition functions.

15:0 FUNCTION[15:0] Truth table for transition function. Bit position X contains output when the 4 inputs constitute the value
X in binary. For example, bit 2 = 1 means in3 = 0, in2 = 0, in1 = 1 and in0 = 0 will evaluate true for this
function.

GPIF_FUNCTION Transition Function Registers 0xE0014130

b31 b30 b29 b28 b27 b26 b25 b24

GPIF_CRC_CONFIG CRC Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

GPIF_CRC_CONFIG CRC Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

FUNCTION[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_CRC_CONFIG CRC Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

FUNCTION[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

362 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.46 GPIF_LEFT_WAVEFORM

Left Edge Waveform Memory Register

There are 256 GPIF_LEFT_WAVEFORM registers. The address of each is calculated as GPIF_LEFT_WAVEFORM(x) =
0xE0015000 + (x*0x10). Hence GPIF_LEFT_WAVEFORM(0) is at address 0xE0015000, GPIF_LEFT_WAVEFORM(1) is at
address 0xE0015000 + 0x10, and so on. The definition of each of these is the same.

continued on next page

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register 0xE0015000

b127 b126 b125 b124 b123 b122 b121 b120

UNUSED

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b119 b118 b117 b116 b115 b114 b113 b112

UNUSED

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b111 b110 b109 b108 b107 b106 b105 b104

UNUSED

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b103 b102 b101 b100 b99 b98 b97 b96

UNUSED

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b95 b94 b93 b92 b91 b90 b89 b88

VALID BETA_DEASSERT REPEAT_COUNT[7:2]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b87 b86 b85 b84 b83 b82 b81 b80

REPEAT_COUNT[1:0] Beta[31:26]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b79 b78 b77 b76 b75 b74 b73 b72

Beta[25:18]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 363

10.7.46 GPIF_LEFT_WAVEFORM (continued)

continued on next page

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b71 b70 b69 b68 b67 b66 b65 b64

Beta[17:10]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b63 b62 b61 b60 b59 b58 b57 b56

Beta[9:2]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b55 b54 b53 b52 b51 b50 b49 b48

Beta[1:0] Alpha_Right[7:2]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b47 b46 b45 b44 b43 b42 b41 b40

Alpha_Right[1:0] Alpha_Left[7:2]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b39 b38 b37 b36 b35 b34 b33 b32

Alpha_Left[1:0] f1[4:0] f0[4]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b31 b30 b29 b28 b27 b26 b25 b24

f0[3:0] Fd[4:1]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b23 b22 b21 b20 b19 b18 b17 b16

Fd[0] Fc[4:0] Fb[4:3]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

364 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.46 GPIF_LEFT_WAVEFORM (continued)

This area stores the so-called left edge state transitions from a given state. Location 17 stores the left state transition from
state 17, and so on. This is a logical register implemented in 256x96b SRAM aligned on 128b boundaries. In other words the
left state transition for state 17 is stored in three 32-bit words at offset+4*17, offset+4*17+1, offset+4*17+2.

127:96 UNUSED This entry is unused and does not map to RAM in the current implementation.
Writes are ignored and reads will return 0 in all cases.

95 VALID 0 Entry not valid. (Not programmed or edge does not exist)
1 This entry is valid.

94 BETA_DEASSERT 0 Keep betas asserted throughout the state
1 Deassert after asserting for exactly one clock cycle, irrespective of how many cycles the

state is active.
The normal (deassert) state of user defined betas is defined in GPIF_CTRL_BUS_DEFAULT. The
normal state of internal betas is fixed by hardware. This function is applied only to betas selected in
GPIF_BETA_DEASSERT.

93:86 REPEAT_COUNT[7:0] Number of times to stay in this state – 1

85:54 Beta[31:0] 32 secondary outputs

53:46 Alpha_Right[7:0] For the right edge

45:38 Alpha_Left{7:0] Primary outputs for the left edge of the next state.

37:33 f1[4:0] Index to select the second transition function from a choice of 32 functions. Truth-tables for the 32 4-
bit functions are defined using the GPIF_FUNCTION registers.

32:28 f0[4:0] Index to select the first transition function from a choice of 32 functions. Truth-tables for the 32 4-bit
functions are defined using the GPIF_FUNCTION registers.

27:23 Fd[4:0] Fourth input index

22:18 Fc[4:0] Third input index.

17:13 Fb[4:0] Second input index.

12:8 Fa[4:0] Index to select the first input for transition functions out of 32 choices.

7:0 NEXT_STATE[7:0] Next state on left transition

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b15 b14 b13 b12 b11 b10 b9 b8

Fb[2:0] Fa[4:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_LEFT_WAVEFORM Left Edge Waveform Memory Register

b7 b6 b5 b4 b3 b2 b1 b0

NEXT_STATE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 365

10.7.47 GPIF_RIGHT_WAVEFORM

Right Edge Waveform Memory Register

There are 256 GPIF_RIGHT_WAVEFORM registers. The address of each is calculated as GPIF_RIGHT_WAVEFORM(x) =
0xE0016000 + (x*0x10). Hence GPIF_RIGHT_WAVEFORM(0) is at address 0xE0016000, GPIF_RIGHT_WAVEFORM(1) is
at address 0xE0016000 + 0x10, and so on. The definition of each of these is the same.

continued on next page

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register 0xE0016000

b127 b126 b125 b124 b123 b122 b121 b120

UNUSED

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b119 b118 b117 b116 b115 b114 b113 b112

UNUSED

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b111 b110 b109 b108 b107 b106 b105 b104

UNUSED

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b103 b102 b101 b100 b99 b98 b97 b96

UNUSED

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b95 b94 b93 b92 b91 b90 b89 b88

VALID BETA_DEASSERT REPEAT_COUNT[7:2]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b87 b86 b85 b84 b83 b82 b81 b80

REPEAT_COUNT[1:0] Beta[31:26]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b79 b78 b77 b76 b75 b74 b73 b72

Beta[25:18]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

366 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.7.47 GPIF_LEFT_WAVEFORM (continued)

continued on next page

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b71 b70 b69 b68 b67 b66 b65 b64

Beta[17:10]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b63 b62 b61 b60 b59 b58 b57 b56

Beta[9:2]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b55 b54 b53 b52 b51 b50 b49 b48

Beta[1:0] Alpha_Right[7:2]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b47 b46 b45 b44 b43 b42 b41 b40

Alpha_Right[1:0] Alpha_Left[7:2]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b39 b38 b37 b36 b35 b34 b33 b32

Alpha_Left[1:0] f1[4:0] f0[4]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b31 b30 b29 b28 b27 b26 b25 b24

f0[3:0] Fd[4:1]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b23 b22 b21 b20 b19 b18 b17 b16

Fd[0] Fc[4:0] Fb[4:3]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 367

10.7.47 GPIF_LEFT_WAVEFORM (continued)

This area stores the so-called right edge state transitions from a given state. Location 17 stores the right state transition from
state 17, and so on. This is a logical register implemented in 256x96b SRAM aligned on 128b boundaries. In other words the
right state transition for state 17 is stored in three 32-bit words at offset+4*17, offset+4*17+1, offset+4*17+2.

127:96 UNUSED This entry is unused and does not map to RAM in the current implementation.
Writes are ignored and reads will return 0 in all cases.

95 VALID 0 Entry not valid. (Not programmed or edge does not exist)
1 This entry is valid.

94 BETA_DEASSERT 0 Keep betas asserted throughout the state
1 Deassert after asserting for exactly one clock cycle, irrespective of how many cycles the

state is active.
The normal (deassert) state of user defined betas is defined in GPIF_CTRL_BUS_DEFAULT. The
normal state of internal betas is fixed by hardware. This function is applied only to betas selected in
GPIF_BETA_DEASSERT.

93:86 REPEAT_COUNT[7:0] Number of times to stay in this state – 1

85:54 Beta[31:0] 32 secondary outputs

53:46 Alpha_Right[7:0] For the right edge

45:38 Alpha_Left{7:0] Primary outputs for the left edge of the next state.

37:33 f1[4:0] Index to select the second transition function from a choice of 32 functions. Truth-tables for the 32 4-
bit functions are defined using the GPIF_FUNCTION registers.

32:28 f0[4:0] Index to select the first transition function from a choice of 32 functions. Truth-tables for the 32 4-bit
functions are defined using the GPIF_FUNCTION registers.

27:23 Fd[4:0] Fourth input index

22:18 Fc[4:0] Third input index.

17:13 Fb[4:0] Second input index.

12:8 Fa[4:0] Index to select the first input for transition functions out of 32 choices.

7:0 NEXT_STATE[7:0] Next state on left transition

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b15 b14 b13 b12 b11 b10 b9 b8

Fb[2:0] Fa[4:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

GPIF_RIGHT_WAVEFORM Right Edge Waveform Memory Register

b7 b6 b5 b4 b3 b2 b1 b0

NEXT_STATE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

368 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8 P-Port Registers

10.8.1 PP_ID

P-Port Device ID Register

Provides device ID information. This must be provided by boot ROM. This register is not writable when
GCTL_CONTROL.BOOTROM_EN = 0 to prevent spoofing.

15:0 DEVICE_ID[15:0] Provides a device ID.

PP_ID P-Port Device ID Register 0xE0017E00

b15 b14 b13 b12 b11 b10 b9 b8

DEVICE_ID[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_ID P-Port Device ID Register

b7 b6 b5 b4 b3 b2 b1 b0

DEVICE_ID[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 369

10.8.2 PP_INIT

P-Port Reset and Power Control Register

This register is used for reset and power control and determines endian orientation of the P-port.

15 BIG_ENDIAN 0 P-Port is Little Endian
1 P-Port is Big Endian

11 HARD_RESET_N Software clears this bit to effect a global hard reset (all blocks, all flops). This is equivalent to toggling
the RESET pin on the device. This function is also available to internal firmware in GCTL_CONTROL.

10 CPU_RESET_N Software clears this bit to effect a CPU reset (aka reboot). No other blocks or registers are affected.
The CPU will enter the boot ROM, that will use the WARM_BOOT flag to determine whether to reload
firmware.
Unlike the same bit in GCTL_CONTROL, the software needs to explicitly clear and then set this bit to
bring the internal CPU out of reset. It is permissible to keep the ARM CPU in reset for an extended
period of time (although not advisable).

4 WAKEUP_CLK Indicates system woke up from suspend state. If firmware does not clear this bit it will stay 1 even
through standby sequences. This bit is a shadow bit of GCTL_CONTROL.

3 WAKEUP_PWR Indicates system woke up from standby mode. If firmware does not clear this bit it will stay 1 even
through suspend sequences. This bit is a shadow bit of GCTL_CONTROL.

2 WDT_RESET Indicates system woke up from a watchdog timer induced hard reset (see GCTL_WATCHDOG_CS).
If firmware does not clear this bit it will stay 1 even through standby and suspend sequences. This bit
is a shadow bit of GCTL_CONTROL.

1 SW_RESET Indicates system woke up from a software induced hard reset sequence (from
GCTL_CONTROL.HARD_RESET_N or PP_INIT.HARD_RESET_N). If firmware does not clear this
bit it will stay 1 even through standby and suspend sequences. This bit is a shadow bit of
GCTL_CONTROL.

0 POR Indicates system woke up through a power-on-reset or RESET# pin reset sequence. If firmware does
not clear this bit it will stay 1 even through software reset, standby and suspend sequences. This bit
is a shadow bit of GCTL_CONTROL.

PP_INIT P-Port Reset and Power Control Register 0xE0017E04

b15 b14 b13 b12 b11 b10 b9 b8

BIG_ENDIAN HARD_RESET_N CPU_RESET_N

R/W R/W0C R/W

R R R

0 1 1

PP_INIT P-Port Reset and Power Control Register

b7 b6 b5 b4 b3 b2 b1 b0

WAKEUP_CLK WAKEUP_PWR WDT_RESET SW_RESET POR

R R R R/W R/W

R/W R/W R/W R R

0 0 0 0 1

Bit Name Description

370 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.3 PP_CONFIG

P-Port Configuration Register

This register holds bits required to control PMMC interface.

15 DACK_POLARITY 0 DACK is active low
1 DACK is active high

14 DRQ_POLARITY 0 DRQ is active low
1 DRQ is active high

13 DRQ_VALUE 0 DRQ is deasserted when DRQ_OVERRIDE = 1
1 DRQ is asserted when DRQ_OVERRIDE = 1

12 DRQ_OVERRIDE 0 No override
1 DRQ signal is forced to DRQ_VALUE

11 INTR_POLARITY 0 INTR is deasserted when INTR_OVERRIDE = 1
1 INTR is asserted on override when INTR_OVERRIDE=1
This bit is used directly in hardware to generate INT signal.

10 INTR_VALUE 0 INTR is deasserted when INTR_OVERRIDE = 1
1 INTR is asserted on override when INTR_OVERRIDE = 1
This bit is used directly in hardware to generate INT signal.

9 INTR_OVERRIDE 0 No override
1 INTR signal is forced to INTR_VALUE
This bit is used directly in hardware to generate INT signal.

7 DRQMODE DMA signaling mode. See DMA section for more information.
0 Pulse mode, DRQ will deassert when DACK deasserts and will remain d-asserted for a

specified time. After that DRQ may reassert depending on other settings.
1 Burst mode, DRQ will deassert when BURSTSIZE words are transferred and will not reas-

sert until DACK is deasserted.

continued on next page

PP_CONFIG P-Port Configuration Register 0xE0017E08

b15 b14 b13 b12 b11 b10 b9 b8

DACK_POLARITY DRQ_POLARITY DRQ_VALUE DRQ_OVERRIDE INTR_POLARITY INTR_VALUE INTR_OVERRIDE

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 0 0 0 0

PP_CONFIG P-Port Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

DRQMODE CFGMODE BURSTSIZE[3:0]

R/W R/W R/W R/W R/W R/W

R R/W R R R R

0 1 15

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 371

10.8.3 PP_CONFIG (continued)

6 CFGMODE Initialization Mode
0 Normal operation mode.
1 Initialization mode.
This bit is cleared to “0” by firmware, by writing 0 to PIB_CONFIG.PP_CFGMODE, after completing
the initialization process. Specific usage of this bit is described in the software architecture. This bit is
mirrored directly by hardware in PIB_CONFIG.

3:0 BURSTSIZE Size of DMA bursts; only relevant when DRQMODE=1.
0–14 DMA burst size is 2BURSTSIZE words
15 DMA burst size is infinite (DRQ deasserts on last cycle of transfer)

372 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.4 PP_INTR_MASK

P-Port Interrupt Mask Register

This register holds bits required to control PMMC interface.

15 WAKEUP 1 Forward EVENT onto INT line

14 WR_MB_EMPTY 1 Forward EVENT onto INT line

13 RD_MB_FULL 1 Forward EVENT onto INT line

12 DMA_READY_EV 1 Forward EVENT onto INT line

11 DMA_WMARK_EV 1 Forward EVENT onto INT line

7 GPIF_ERR 1 Forward EVENT onto INT line

5 PIB_ERR 1 Forward EVENT onto INT line

4 GPIF_INT 1 Forward EVENT onto INT line

3 SOCK_AGG_BH 1 Forward EVENT onto INT line

2 SOCK_AGG_BL 1 Forward EVENT onto INT line

1 SOCK_AGG_AH 1 Forward EVENT onto INT line

0 SOCK_AGG_AL 1 Forward EVENT onto INT line

PP_INTR_MASK P-Port Interrupt Mask Register 0xE0017E1C

b15 b14 b13 b12 b11 b10 b9 b8

WAKEUP WR_MB_EMPTY RD_MB_FULL DMA_READY_EV
DMA_WMARK_

EV

R/W R/W R/W R/W R/W

R R R R R

0 0 1 0 0

PP_INTR_MASK P-Port Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

GPIF_ERR PIB_ERR GPIF_INT SOCK_AGG_BH SOCK_AGG_BL SOCK_AGG_AH SOCK_AGG_AL

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 373

10.8.5 PP_DRQR5_MASK

P-Port DRQ/R5 Mask Register

These registers have the same layout as PP_EVENT and mask which events lead to assertion of INTR or DRQ/R5 respec-
tively. DRQR5 is a signal that can be put on any GPIF CTRL[x] line (see GPIF_BUS_SELECT) and R5 is an MMC event noti-
fication protocol relevant only in PMMC mode.

15 WAKEUP 1 Forward EVENT onto DRQ line

14 WR_MB_EMPTY 1 Forward EVENT onto DRQ line

13 RD_MB_FULL 1 Forward EVENT onto DRQ line

12 DMA_READY_EV 1 Forward EVENT onto DRQ line

11 DMA_WMARK_EV 1 Forward EVENT onto DRQ line

7 GPIF_ERR 1 Forward EVENT onto DRQ line

5 PIB_ERR 1 Forward EVENT onto DRQ line

4 GPIF_INT 1 Forward EVENT onto DRQ line

3 SOCK_AGG_BH 1 Forward EVENT onto DRQ line

2 SOCK_AGG_BL 1 Forward EVENT onto DRQ line

1 SOCK_AGG_AH 1 Forward EVENT onto DRQ line

0 SOCK_AGG_AL 1 Forward EVENT onto DRQ line

PP_DRQR5_MASK P-Port DRQ/R5 Mask Register 0xE0017E20

b15 b14 b13 b12 b11 b10 b9 b8

WAKEUP WR_MB_EMPTY RD_MB_FULL DMA_READY_EV
DMA_WMARK_

EV

R/W R/W R/W R/W R/W

R R R R R

0 0 1 0 0

PP_DRQR5_MASK P-Port DRQ/R5 Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

GPIF_ERR PIB_ERR GPIF_INT SOCK_AGG_BH SOCK_AGG_BL SOCK_AGG_AH SOCK_AGG_AL

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 0 0 0 0

Bit Name Description

374 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.6 PP_SOCK_MASK

P-Port Socket Mask Register

These registers contain a mask that indicates which sockets affect the SOCK_AGG_A and SOCK_AGG_B values, respec-
tively.

31:0 SOCK_MASK[31:0] For socket <x>, bit <x> indicates:
0 Socket does not affect SOCK_AGG_A/B
1 Socket does affect SOCK_AGG_A/B

PP_SOCK_MASK P-Port Socket Mask Register 0xE0017E24

b31 b30 b29 b28 b27 b26 b25 b24

SOCK_MASK[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_SOCK_MASK P-Port Socket Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

SOCK_MASK[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_SOCK_MASK P-Port Socket Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

SOCK_MASK[15:18]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_SOCK_MASK P-Port Socket Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

SOCK_MASK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 375

10.8.7 PP_ERROR

P-Port Error Indicator Register

This register indicates the error codes associated with PIB_INTR.PIB_ERR, MMC_ERR and GPIF_ERR. The different values
for these error codes will be documented in the P-Port BROS document. This register is also visible to firmware as
PIB_ERROR.

14:10 GPIF_ERR_CODE[4:0] Mirror of corresponding field in PIB_ERROR

5:0 PIB_ERR_CODE[5:0] Mirror of corresponding field in PIB_ERROR

PP_ERROR P-Port Error Indicator Register 0xE0017E28

b15 b14 b13 b12 b11 b10 b9 b8

GPIF_ERR_CODE[4:0]

R R R R R

R/W R/W R/W R/W R/W

0 0 0 0 0

PP_ERROR P-Port Error Indicator Register

b7 b6 b5 b4 b3 b2 b1 b0

PIB_ERR_CODE[5:0]

R R R R R R

R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0

Bit Name Description

376 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.8 PP_DMA_XFER

P-Port DMA Transfer Register

This register is used to set up and control a DMA transfer.

15 DMA_READY Indicates that the link controller is ready to exchange data.
0 Socket not ready for transfer
1 Socket ready for transfer; SIZE_VALID is also guaranteed 1

14 DMA_ERROR 0 No errors
1 DMA transfer error
This bit is set when a DMA error occurs and cleared when the next transfer is started using
DMA_ENABLE = 1.

13 DMA_BUSY Indicates that link controller is busy processing a transfer. A zero length transfer would cause
DMA_READY to never assert.
0 No DMA is in progress
1 DMA is busy

12 SIZE_VALID Indicates that DMA_SIZE value is valid and corresponds to the socket selected in PP_DMA_XFER.
SIZE_VALID will be 0 for a short period after PP_DMA_XFER is written into. AP will poll SIZE_VALID
or DMA_READY before reading DMA_SIZE.

10 LONG_TRANSFER 0 Short transfer (DMA_ENABLE clears at end of buffer
1 Long Transfer (DMA_ENABLE must be cleared by AP at end of transfer)

9 DMA_DIRECTION 0 Read (Transfer from FX3 – Egress direction)
1 Write (Transfer to FX3 – Ingress direction)

8 DMA_ENABLE 0 Disable ongoing transfer. If no transfer is ongoing ignore disable
1 Enable data transfer

7:0 DMA_SOCK[7:0] Processor specified socket number for data transfer

PP_DMA_XFER P-Port DMA Transfer Register 0xE0017E2C

b15 b14 b13 b12 b11 b10 b9 b8

DMA_READY DMA_ERROR DMA_BUSY SIZE_VALID LONG_TRANSFER DMA_DIRECTION DMA_ENABLE

R R R R R/W R/W R/W

W W W R/W R R R/W

0 0 0 0 0 0 0

PP_DMA_XFER P-Port DMA Transfer Register

b7 b6 b5 b4 b3 b2 b1 b0

DMA_SOCK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 377

10.8.9 PP_DMA_SIZE

P-Port DMA Transfer Size Register

This register indicates the (remaining) size of the transfer. It is initialized to the number of bytes available in the buffer for
egress transfers and the size of the buffer for ingress transfers. This register can be modified by the AP for shorter ingress
transfers. The value read from this register is not valid unless DMA_XFER.SIZE_VALID is true.

15:0 DMA_SIZE[15:0] Size of DMA transfer. Number of bytes available for read/write when read, number of bytes to be
read/written when written.

PP_DMA_SIZE P-Port DMA Transfer Size Register 0xE0017E30

b15 b14 b13 b12 b11 b10 b9 b8

DMA_SIZE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_DMA_SIZE P-Port DMA Transfer Size Register

b7 b6 b5 b4 b3 b2 b1 b0

DMA_SIZE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

378 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.10 PP_WR_MAILBOX

P-Port Write (Ingress) Mailbox Registers

continued on next page

PP_WR_MAILBOX P-Port Write (Ingress) Mailbox Registers 0xE0017E34

b63 b62 b61 b60 b59 b58 b57 b56

WR_MAILBOX[63:56]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_WR_MAILBOX P-Port Write (Ingress) Mailbox Registers

b55 b54 b53 b52 b51 b50 b49 b48

WR_MAILBOX[55:48]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_WR_MAILBOX P-Port Write (Ingress) Mailbox Registers

b47 b46 b45 b44 b43 b42 b41 b40

WR_MAILBOX[47:40]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_WR_MAILBOX P-Port Write (Ingress) Mailbox Registers

b39 b38 b37 b36 b35 b34 b33 b32

WR_MAILBOX[39:32]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_WR_MAILBOX P-Port Write (Ingress) Mailbox Registers

b31 b30 b29 b28 b27 b26 b25 b24

WR_MAILBOX[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_WR_MAILBOX P-Port Write (Ingress) Mailbox Registers

b23 b22 b21 b20 b19 b18 b17 b16

WR_MAILBOX[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_WR_MAILBOX P-Port Write (Ingress) Mailbox Registers

b15 b14 b13 b12 b11 b10 b9 b8

WR_MAILBOX[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 379

10.8.10 PP_WR_MAILBOX (continued)

These registers contain a message of up to 8 bytes from the Application Processor to firmware. The semantics of the possible
messages is defined as part of the software specification. These registers also appear in the P-Port MMIO space as
PIB_WR_MAILBOX. When the Application Processor writes data into the high word of PP_WR_MAILBOX the interrupt
PIB_INTR.WR_MB_FULL is set. The expected action is that firmware reads the message and then clears
PIB_INTR.WR_MB_FULL, which will set PP_EVENT.WR_MB_EMPTY to signal AP for the next message (if needed).

63:0 WR_MAILBOX[63:0] Write mailbox message from AP

PP_WR_MAILBOX P-Port Write (Ingress) Mailbox Registers

b7 b6 b5 b4 b3 b2 b1 b0

WR_MAILBOX[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

380 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.11 PP_MMIO_ADDR

P-Port MMIO Address Registers

These registers together form a 32-bit address for accessing the FX3 internal MMIO space. The address can point to any
internal FX3 register. The bits PP_MMIO.MMIO_RD, PP_MMIO.MMIO_WR, PP_MMIO.MMIO_DONE are used to control the
operation.

31:0 MMIO_ADDR[31:0] Address in MMIO register space to be used for access.

PP_MMIO_ADDR P-Port MMIO Address Registers 0xE0017E3C

b31 b30 b29 b28 b27 b26 b25 b24

MMIO_ADDR[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_MMIO_ADDR P-Port MMIO Address Registers

b23 b22 b21 b20 b19 b18 b17 b16

MMIO_ADDR[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_MMIO_ADDR P-Port MMIO Address Registers

b15 b14 b13 b12 b11 b10 b9 b8

MMIO_ADDR[15:18]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PP_MMIO_ADDR P-Port MMIO Address Registers

b7 b6 b5 b4 b3 b2 b1 b0

MMIO_ADDR[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 381

10.8.12 PP_MMIO_DATA

P-Port MMIO Data Registers

These registers together form a 32-bit data word for accessing the FX3 internal MMIO space. Only full 32-bit accesses are
supported to FX3 registers. The bits PP_MMIO.MMIO_RD, PP_MMIO.MMIO_WR, PP_MMIO.MMIO_DONE are used to con-
trol the operation.

Reading from these registers will return the data from the last MMIO_RD operation or the data written by Application Proces-
sor, whichever is more recent.

31:0 MMIO_DATA[31:0] 32-bit data word for read or write transaction

PP_MMIO_DATA P-Port MMIO Data Registers 0xE0017E40

b31 b30 b29 b28 b27 b26 b25 b24

MMIO_DATA[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_MMIO_ADDR P-Port MMIO Address Registers

b23 b22 b21 b20 b19 b18 b17 b16

MMIO_DATA[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_MMIO_ADDR P-Port MMIO Address Registers

b15 b14 b13 b12 b11 b10 b9 b8

MMIO_DATA[15:18]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_MMIO_ADDR P-Port MMIO Address Registers

b7 b6 b5 b4 b3 b2 b1 b0

MMIO_DATA[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

382 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.13 PP_MMIO

P-Port MMIO Control Registers

This register controls the access to FX3’s MMIO space. The process for using the PP_MMIOxxx registers is described later in
a separate section.

3 MMIO_FAIL 0 Normal
1 MMIO operation was not executed because of security constraints

(PIB_CONFIG.MMIO_ENABLE = 0)

2 MMIO_BUSY 0 No MMIO operation is pending
1 MMIO operation is being executed

1 MMIO_WR 0 No action
1 Initiate write of MMIO_DATA to MMIO_ADDR

0 MMIO_RD 0 No action
1 Initiate read from MMIO_ADDR, place data in MMIO_DATA

PP_MMIO P-Port MMIO Control Registers 0xE0017E44

b15 b14 b13 b12 b11 b10 b9 b8

PP_MMIO P-Port MMIO Control Registers

b7 b6 b5 b4 b3 b2 b1 b0

MMIO_FAIL MMIO_BUSY MMIO_WR MMIO_RD

R R R/W1S R/W1S

R/W R/W R/W0C R/W0C

0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 383

10.8.14 PP_EVENT

P-Port Event Register

This register indicates all types of events that can cause INTR or DRQ to assert.

15 WAKEUP Reserved.
AP should read PP_INIT register's WAKEUP_PWR or WAKEUP_CLK to detect if there was a wake
up from standby or suspend.

14 WR_MB_EMPTY 1 WR Mailbox is empty - message can be written
This field is cleared by PIB when message is written to MBX, but can also be cleared by AP when
used as interrupt. This field is set by PIB only once when MBX is emptied by firmware.

13 RD_MB_FULL 1 RD Mailbox is full - message must be read

12 DMA_READY_EV 0 P-port not ready for data transfer
1 P-port ready for data transfer

11 DMA_WMARK_EV 0 P-Port has fewer than <watermark> words left (can be 0)
1 P-Port is ready for transfer and at least <watermark> words remain

7 GPIF_ERR An error occurred in the GPIF. Firmware clears this bit after handling the error. The error code is indi-
cated in PP_ERROR.GPIF_ERR_CODE

5 PIB_ERR The socket based link controller encountered an error and needs attention. Firmware clears this bit
after handling the error. The error code is indicated in PP_ERROR.PIB_ERR_CODE

4 GPIF_INT 1 State machine raised host interrupt

3 SOCK_AGG_BH 0 SOCK_STAT_B[15:8] is all zeroes
1 At least one bit set in SOCK_STAT_B[15:8]

continued on next page

PP_EVENT P-Port Event Register 0xE0017E48

b15 b14 b13 b12 b11 b10 b9 b8

WAKEUP WR_MB_EMPTY RD_MB_FULL DMA_READY_EV
DMA_WMARK_

EV

R/W1C R/W R/W1C R R

W1S R/W1C W1S R/W R/W

0 1 0 0 0

PP_EVENT P-Port Event Register

b7 b6 b5 b4 b3 b2 b1 b0

GPIF_ERR PIB_ERR GPIF_INT SOCK_AGG_BH SOCK_AGG_BL SOCK_AGG_AH SOCK_AGG_AL

R/W1C R/W1C R/W1C R R R R

W1S W1S W1S R/W R/W R/W R/W

0 0 0 0 0 0 0

Bit Name Description

384 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.14 PP_EVENT (continued)

2 SOCK_AGG_BL 0 SOCK_STAT_B[7:0] is all zeroes
1 At least one bit set in SOCK_STAT_B[7:0]

1 SOCK_AGG_AH 0 SOCK_STAT_A[15:8] is all zeroes
1 At least one bit set in SOCK_STAT_A[15:8]

0 SOCK_AGG_AL 0 SOCK_STAT_A[7:0] is all zeroes
1 At least one bit set in SOCK_STAT_A[7:0]

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 385

10.8.15 PP_RD_MAILBOX

P-Port Read (Egress) Mailbox Registers

continued on next page

PP_RD_MAILBOX P-Port Read (Egress) Mailbox Registers 0xE0017E4C

b63 b62 b61 b60 b59 b58 b57 b56

RD_MAILBOX[63:56]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_RD_MAILBOX P-Port Read (Egress) Mailbox Registers

b55 b54 b53 b52 b51 b50 b49 b48

RD_MAILBOX[55:48]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_RD_MAILBOX P-Port Read (Egress) Mailbox Registers

b47 b46 b45 b44 b43 b42 b41 b40

RD_MAILBOX[47:40]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_RD_MAILBOX P-Port Read (Egress) Mailbox Registers

b39 b38 b37 b36 b35 b34 b33 b32

RD_MAILBOX[39:32]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_RD_MAILBOX P-Port Read (Egress) Mailbox Registers

b31 b30 b29 b28 b27 b26 b25 b24

RD_MAILBOX[31:24]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_RD_MAILBOX P-Port Read (Egress) Mailbox Registers

b23 b22 b21 b20 b19 b18 b17 b16

RD_MAILBOX[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_RD_MAILBOX P-Port Read (Egress) Mailbox Registers

b15 b14 b13 b12 b11 b10 b9 b8

RD_MAILBOX[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

386 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.15 PP_RD_MAILBOX (continued)

These registers contain a message of up to 8 bytes from firmware to the Application Processor. The semantics of the possible
messages will be defined as part of the software specification. These registers also appear in the P-Port MMIO space as
PIB_RD_MAILBOX*. When firmware writes data into the high word of PIB_RD_MAILBOX the event
PP_EVENT.RD_MB_FULL is set. The expected action is that the Application Processor reads the message and interprets it
and then clears PP_EVENT.RD_MB_FULL, which sets PIB_INTR.RD_MB_EMPTY to signal firmware for the next message
(if needed).

63:0 RD_MAILBOX[63:0] Read mailbox message to AP

PP_RD_MAILBOX P-Port Read (Egress) Mailbox Registers

b7 b6 b5 b4 b3 b2 b1 b0

RD_MAILBOX[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 387

10.8.16 PP_SOCK_STAT

P-Port Socket Status Register

These registers contain one bit for each of the 32 sockets in the P-port, indicating the buffer availability of each socket.

31:0 SOCK_STAT[31:0] For socket <x>, bit <x> indicates:
0 Socket has no active descriptor or descriptor is not available (empty for write, occupied for

read)
1 Socket is available for reading or writing

PP_SOCK_STAT P-Port Socket Status Register 0xE0017E54

b31 b30 b29 b28 b27 b26 b25 b24

SOCK_STAT[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

PP_SOCK_STAT P-Port Socket Status Register

b23 b22 b21 b20 b19 b18 b17 b16

SOCK_STAT[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

PP_SOCK_STAT P-Port Socket Status Register

b15 b14 b13 b12 b11 b10 b9 b8

SOCK_STAT[15:18]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

PP_SOCK_STAT P-Port Socket Status Register

b7 b6 b5 b4 b3 b2 b1 b0

SOCK_STAT[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

388 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.8.17 PP_BUF_SIZE_CNT

P-Port Socket Buffer Size or Count Register

These registers contain the buffer size or count, depending on direction, of the corresponding socket (0..31). This is equal to
buffer_size/buffer_count in the corresponding DSCR_SIZE/DSCR_COUNT register. These registers are present in the
PMMC P-Port space only! No registers exist in the PP space, only the socket registers are read for this from the adapter. The
value of PP_BUF_SIZE_CNT is valid only if the PP_SOCK_STAT indicates ready for the corresponding socket.

15:0 SIZE_CNT[15:0] Buffer size of the corresponding write socket (0..31)

PP_BUF_SIZE_CNT P-Port Socket Buffer Size or Count Register 0xE0017E??

b15 b14 b13 b12 b11 b10 b9 b8

SIZE_CNT[15:8]

R R/W R/W R/W R/W R/W R/W R/W

W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PP_DMA_SIZE P-Port DMA Transfer Size Register

b7 b6 b5 b4 b3 b2 b1 b0

SIZE_CNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 389

10.9 USB Port Registers

10.9.1 UIB_INTR

USB Interrupt Register

Master interrupt vector. UIB uses hierarchical interrupt structure due to the large number of interrupt causes. This register can
only be read from and not updated. Interrupts are cleared by clearing the leaf interrupt source.

12 EPM_URUN_TIMEOUT SuperSpeed Egress EPM Interrupt

11 EPM_URUN SuperSpeed Egress EPM Interrupt

10 PROT_EP_INT SuperSpeed Device Endpoint Interrupt

9 PROT_INT SuperSpeed Protocol Layer Interrupt

8 LNK_INT SuperSpeed Link Controller Interrupt

7 CHGDET_INT USB Charger Detect Interrupt

6 OTG_INT USB OTG Interrupt

continued on next page

UIB_INTR USB Interrupt Register 0xE0030000

b31 b30 b29 b28 b27 b26 b25 b24

UIB_INTR USB Interrupt Register

b23 b22 b21 b20 b19 b18 b17 b16

UIB_INTR USB Interrupt Register

b15 b14 b13 b12 b11 b10 b9 b8

EPM_URUN_
TIMEOUT

EPM_URUN PROT_EP_INT PROT_INT LNK_INT

R/W1C R/W1C R R R

R/W1S R/W1S R/W R/W R/W

X X X X X

UIB_INTR USB Interrupt Register

b7 b6 b5 b4 b3 b2 b1 b0

CHGDET_INT OTG_INT DEV_CTL_INT DEV_EP_INT OHCI_INT EHCI_INT HOST_EP_INT HOST_INT

R R R R R R R R

W W W W W W W W

X X X X X X X X

Bit Name Description

390 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.9.1 UIB_INTR (continued)

5 DEV_CTL_INT Device USB Control Interrupt

4 DEV_EP_INT Device EP Interrupt

3 OHCI_INT OHCI Interrupt

2 EHCI_INT EHCI Interrupt

1 HOST_EP_INT Host EP Interrupt

0 HOST_INT Host INT Status Register Interrupt

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 391

10.9.2 UIB_INTR_MASK

USB Interrupt Mask Register

Mask for UIB_INTR. Does not affect error logging, only reporting to VIC.

12 EPM_URUN_TIMEOUT SuperSpeed Egress EPM Interrupt

11 EPM_URUN SuperSpeed Egress EPM Interrupt

10 PROT_EP_INT SuperSpeed Device Endpoint Interrupt

9 PROT_INT SuperSpeed Protocol Layer Interrupt

8 LNK_INT SuperSpeed Link Controller Interrupt

7 CHGDET_INT USB Charger Detect Interrupt

6 OTG_INT USB OTG Interrupt

5 DEV_CTL_INT Device USB Control Interrupt

4 DEV_EP_INT Device EP Interrupt

continued on next page

UIB_INTR_MASK USB Interrupt Mask Register 0xE0030004

b31 b30 b29 b28 b27 b26 b25 b24

UIB_INTR_MASK USB Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

UIB_INTR_MASK USB Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

EPM_URUN_
TIMEOUT

EPM_URUN PROT_EP_INT PROT_INT LNK_INT

R/W1C R/W1C R R R

R/W1S R/W1S R/W R/W R/W

X X X X X

UIB_INTR_MASK USB Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

CHGDET_INT OTG_INT DEV_CTL_INT DEV_EP_INT OHCI_INT EHCI_INT HOST_EP_INT HOST_INT

R R R R R R R R

W W W W W W W W

X X X X X X X X

Bit Name Description

392 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.9.2 UIB_INTR_MASK (continued)

3 OHCI_INT OHCI Interrupt

2 EHCI_INT EHCI Interrupt

1 HOST_EP_INT Host EP Interrupt

0 HOST_INT Host INT Status Register Interrupt

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 393

10.9.3 UIB_ID

Block Identification and Version Number Register

Every IP block will implement a few MMIO registers at offset 0 in its MMIO to space that identify the block and control its
power/clock/reset state. These registers are located in the CPU/Interconnect power and clock domains and are accessible
even when power/clock of the block is switched off.

31:16 BLOCK_VERSION[15:0] Version number for the IP

15:8 BLOCK_ID[15:0] A unique number identifying the IP in the memory space

UIB_ID Block Identification and Version Number Register 0xE0037F00

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:8]

R R R R R R R R

R R R R R R R R

UIB_ID Block Identification and Version Number Register

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

R R R R R R R R

0x0001

UIB_ID Block Identification and Version Number Register

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:8]

R R R R R R R R

R R R R R R R R

UIB_ID Block Identification and Version Number Register

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R R R R R R R R

R R R R R R R R

0x0003

Bit Name Description

394 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.9.4 UIB_POWER

Power, Clock, and Reset Control Registers

Every IP block will implement a few MMIO registers at offset 0x7F00 in its MMIO to space that identify the block and control
its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock domains and are accessible
even when power/clock of the block is switched off.

31 RESETN Active LOW reset signal for all logic in the block. Note that reset is active on all flops in the block
when either system reset is asserted (RESET# pin or SYSTEM_POWER.RESETN is asserted) or
this signal is active.
After setting this bit to 1, firmware will poll and wait for the ‘active’ bit to assert. Reading ‘1’ from
‘resetn’ does not indicate the block is out of reset – this may take some time depending on initializa-
tion tasks and clock frequencies.

0 ACTIVE For blocks that must perform initialization after reset before becoming operational, this signal will
remain deasserted until initialization is complete. In other words, reading active = 1 indicates block is
initialized and ready for operation.

UIB_POWER Power, Clock, and Reset Control Registers 0xE0037F04

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R

W

0

UIB_POWER Power, Clock, and Reset Control Registers

b23 b22 b21 b20 b19 b18 b17 b16

UIB_POWER Power, Clock, and Reset Control Registers

b15 b14 b13 b12 b11 b10 b9 b8

UIB_POWER Power, Clock, and Reset Control Registers

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

R/W

R

0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 395

10.10 USB2 HS/FS/LS PHY Registers

10.10.1 PHY_CLK_AND_TEST

USB PHY Clocks and Testability Configuration Register
H

30 ON_DCD MIPS PHY Enable Data Contact Detect Circuitry

29 SUSPEND_N Suspend value applied to USB2 PHY (active low)

27 RESET Reset value applied to USB2 PHY

25 VDATSRCEEN Vdat source enable for charger detect

24 CHGRDET MIPS PHY Charger Detector Output (0 = host detected, 1 = charger detected)

23 CHGRMODE MIPS PHY Charger Detector Mode

continued on next page

PHY_CLK_AND_TEST USB PHY Clocks and Testability Configuration Register 0xE0031008

b31 b30 b29 b28 b27 b26 b25 b24

ON_DCD SUSPEND_N RESET VDATSRCEEN CHGRDET

R/W R/W R/W R/W R

R R R R R/W

0 0 1 0 0

PHY_CLK_AND_TEST USB PHY Clocks and Testability Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

CHGRMODE CHGRDETEN CHGRDETON IDDIG IDPULLUP

R/W R/W R/W R R/W

R R R R/W R

1 0 0 N 0

PHY_CLK_AND_TEST USB PHY Clocks and Testability Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

PHY_CLK_AND_TEST USB PHY Clocks and Testability Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

VLOAD ONCLOCK DATABUS16_8

R/W R/W R/W

R R R

1 0 1

Bit Name Description

396 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.10.1 PHY_CLK_AND_TEST (continued)

22 CHGRDETEN MIPS PHY Charger Detector Enable
(not tested, used charger detection in CHGDET_CTRL instead)

21 CHGRDETON MIPS PHY Charger Detector Power On Control
(not tested)

20 IDDIG MIPS PHY Digital Value of ID line

19 IDPULLUP MIPS PHY Enable Sampling of ID line by PHY

4 VLOAD Vendor Control Register Load
Active Low

1 ONCLOCK Enable 480-MHz Clock Output in Suspend

0 DATABUS16_8 Data Bus Size
0 RSVD
1 16-bit
(only 16-bit mode is tested)

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 397

10.10.2 PHY_CONF

USB PHY Programmability and Serial Interface Register
H

23 PREEMDEPTH HS Driver Pre-emphasis Depth

22 ENPRE HS Driver Pre-emphasis Enable

21:20 FSRFTSEL[1:0] FS Driver Rise/Fall Time Control

19:18 LSRFTSEL[1:0] LS Driver Rise/Fall Time Control

17:16 ICPCTRL[1:0] PLL Charge Pump Current Control

15:14 HSTEDVSEL[1:0] Reference Voltage for High Speed Transmission

continued on next page

PHY_CONF USB PHY Programmability and Serial Interface Register 0xE003100C

b31 b30 b29 b28 b27 b26 b25 b24

PHY_CONF USB PHY Programmability and Serial Interface Register

b23 b22 b21 b20 b19 b18 b17 b16

PREEMDEPTH ENPRE FSRFTSEL[1:0] LSRFTSEL[1:0] ICPCTRL[1:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 1 1 0 0

PHY_CONF USB PHY Programmability and Serial Interface Register

b15 b14 b13 b12 b11 b10 b9 b8

HSTEDVSEL[1:0] FSTUNEVSEL[2:0] HSDEDVSEL[1:0] HSDRVSLOPE[3]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

2 4 2 0

PHY_CONF USB PHY Programmability and Serial Interface Register

b7 b6 b5 b4 b3 b2 b1 b0

HSDRVSLOPE[2:0] HSDRVAMPLITUDE[1:0] HSDRVTIMINGN[1:0] HSDRVTIMINGP

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

398 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.10.2 PHY_CONF (continued)

13:11 FSTUNEVSEL[2:0] Reference Voltage Control for Calibration Circuit

10:9 HSDEDVSEL[1:0] Reference Voltage for High Speed Disconnect

8:5 HSDRVSLOPE[3:0] HS Driver Slope Control

4:3 HSDRVAMPLITUDE[1:0] HS Driver Amplitude Control

2:1 HSDRVTIMINGN[1:0] HS NMOS Driver Timing Control

0 HSDRVTIMINGP HS PMOS Driver Timing Control

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 399

10.10.3 PHY_CHIRP

USB PHY Chirp Control Register

30 OVERRIDE_FSM Override chirp state machine

4:0 CHIRP_STATE[4:0] Set chirp state machine state (if OVERRIDE_FSM == 1)
5'h00 FULL_SPEED
5'h01 FULL_SPEED_SUSPEND
5'h02 SWITCH_XCVR_TO_HSPD
5'h03 CHIRP
5'h04 LOOK_FOR_K1
5'h05 LOOK_FOR_J1
5'h06 LOOK_FOR_K2
5'h07 LOOK_FOR_J2
5'h08 LOOK_FOR_K3
5'h09 LOOK_FOR_J3
5'h0A SWITCH_XCVR_TO_FSPD
5'h0B WAIT_END_RESET_FSPD
5'h0D HIGH_SPEED
5'h0E SWITCH_XCVR_TO_FSPD_CHK_RESET
5'h0F CHECK_RESET
5'h10 HIGH_SPEED_SUSPEND
5'h11 WAIT_END_OF_RESUME
5'h12 WAIT_PP_AFTER_RESUME

PHY_CHIRP USB PHY Chirp Control Register 0xE0031014

b31 b30 b29 b28 b27 b26 b25 b24

OVERRIDE_FSM

R/W

R

0

PHY_CHIRP USB PHY Chirp Control Register

b23 b22 b21 b20 b19 b18 b17 b16

PHY_CHIRP USB PHY Chirp Control Register

b15 b14 b13 b12 b11 b10 b9 b8

PHY_CHIRP USB PHY Chirp Control Register

b7 b6 b5 b4 b3 b2 b1 b0

CHIRP_STATE[4:0]

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 0

Bit Name Description

400 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.11 USB2 Device Controller Registers

10.11.1 DEV_CS

Device Controller Master Control and Status Register

The hardware automatically retries the USB packet transfer; error recovery is transparent to the firmware. However
(ERR_LIMIT,COUNT) count can be used to check for the USB bus errors—CRC, bit stuff, etc., and it can trigger an interrupt
when the programmed limit is reached.

NAKALL can be used to temporarily NAK all transactions on the bus while modifying the EP configuration registers.

31 NAKALL Set this bit to ‘1’, the hardware will NAK all transfers from the host in all endpoint1-31.

26 SETUP_CLR_BUSY Allow device to ACK SETUP data/status phase packets

25:23 TEST_MODE[2:0] USB Test Mode
000 Normal operation
001 Test_J
010 Test_K
011 Test_SE0_NAK
100 Test_Packet
[USB 2.0, §7.1.20, p 169; §9.4.9, Table 9−7, p 259]

continued on next page

DEV_CS Device Controller Master Control and Status Register 0xE0031400

b31 b30 b29 b28 b27 b26 b25 b24

NAKALL
SETUP_CLR_

BUSY
TEST_MODE[2:1]

R/W R/W1C R/W R/W

R R/W1S R R

0 0 0 0

DEV_CS Device Controller Master Control and Status Register

b23 b22 b21 b20 b19 b18 b17 b16

TEST_MODE[0] DEVICEADDR[6:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_CS Device Controller Master Control and Status Register

b15 b14 b13 b12 b11 b10 b9 b8

COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_CS Device Controller Master Control and Status Register

b7 b6 b5 b4 b3 b2 b1 b0

ERR_LIMIT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

4

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 401

10.11.1 DEV_CS (continued)

22:16 DEVICEADDR[6:0] During the USB enumeration process, the host sends a device a unique 7-bit address, which the USB
core copies into this register. The USB Core will automatically respond only to its assigned address.
During the USB RESET, this register will be cleared to zero.

15:8 COUNT[7:0] Number of errors detected
To clear the error count write 0 to these bits.

7:0 ERR_LIMIT[7:0] Error interrupt limit (COUNT ERR_LIMIT will cause UIB_ERR_INTR.ERRLIMIT interrupt)

402 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.11.2 DEV_FRAMECNT

FRAMECNT Register

USB SOF and uSOF frame counts USB.

13:3 FRAMECNT[10:0] Every millisecond the host sends a SOF token indicating “Start Of Frame,” along with an 11-bit incre-
menting frame count. FX3 copies the frame count into these registers at every SOF. One use of the
frame count is to respond to the USB SYNC_FRAME Request. If the USB core detects a missing or
garbled SOF, it generates an internal SOF and increments USBFRAMEL-USBRAMEH.

2:0 MICROFRAME[2:0] MICROFRAME contains a count 0-7 which indicates which of the eight 125-microsecond micro-
frames last occurred. This register is active only when FX3 is operating at High Speed (480 Mbps).

DEV_FRAMECNT FRAMECNT Register 0xE0031404

b31 b30 b29 b28 b27 b26 b25 b24

DEV_FRAMECNT FRAMECNT Register

b23 b22 b21 b20 b19 b18 b17 b16

DEV_FRAMECNT FRAMECNT Register

b15 b14 b13 b12 b11 b10 b9 b8

FRAMECNT[10:5]

R R R R R R

R/W R/W R/W R/W R/W R/W

N/A N/A N/A N/A N/A N/A

DEV_FRAMECNT FRAMECNT Register

b7 b6 b5 b4 b3 b2 b1 b0

FRAMECNT[4:0] MICROFRAME[2:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

N/A N/A N/A N/A N/A N/A N/A N/A

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 403

10.11.3 DEV_PWR_CS

Power Management Control and Status Register

7 HSM If HSM=1, the SIE is operating in High Speed Mode
0-1 transition of this bit causes a HSGRANT interrupt request.

6 FORCE_FS Forces the device controller to enumerate as Full Speed device.

4 DEV_SUSPEND Puts the USB device controller and PHY into suspend mode (pull up connected, drivers, PLLs etc
turned off).

3 DISCON Setting this bit to “1” will disconnect hardware from the USB bus by removing the internal 1.5 K pull-
up resistor from the D+

2 NOSYNSOF If set to 1, disable synthesizing missing SOFs.

0 SIGRSUME Set SIGRSUME = 1 to drive the “K” state onto the USB bus. This should be done only by a device
that is capable of remote wakeup, and then only during the SUSPEND state. To signal RESUME, set
SIGRSUME = 1, waits 10-15 ms, then set SIGRSUME = 0.

DEV_PWR_CS Power Management Control and Status Register 0xE0031408

b31 b30 b29 b28 b27 b26 b25 b24

DEV_PWR_CS Power Management Control and Status Register

b23 b22 b21 b20 b19 b18 b17 b16

DEV_PWR_CS Power Management Control and Status Register

b15 b14 b13 b12 b11 b10 b9 b8

DEV_PWR_CS Power Management Control and Status Register

b7 b6 b5 b4 b3 b2 b1 b0

HSM FORCE_FS DEV_SUSPEND DISCON NOSYNSOF SIGRSUME

R R/W R/W R/W R/W R/W

R/W R R R R R

0 0 0 1 0 0

Bit Name Description

404 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.11.4 DEV_SETUPDAT

SETUPDAT0/1 Registers

continued on next page

DEV_SETUPDAT SETUPDAT0/1 Registers 0xE003140C

b63 b62 b61 b60 b59 b58 b57 b56

SETUP_LENGTH[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_SETUPDAT SETUPDAT0/1 Registers

b55 b54 b53 b52 b51 b50 b49 b48

SETUP_LENGTH[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_SETUPDAT SETUPDAT0/1 Registers

b47 b46 b45 b44 b43 b42 b41 b40

SETUP_INDEX[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_SETUPDAT SETUPDAT0/1 Registers

b39 b38 b37 b36 b35 b34 b33 b32

SETUP_INDEX[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_SETUPDAT SETUPDAT0/1 Registers

b31 b30 b29 b28 b27 b26 b25 b24

SETUP_VALUE[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_SETUPDAT SETUPDAT0/1 Registers

b23 b22 b21 b20 b19 b18 b17 b16

SETUP_VALUE[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_SETUPDAT SETUPDAT0/1 Registers

b15 b14 b13 b12 b11 b10 b9 b8

SETUP_REQUEST[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 405

10.11.4 DEV_SETUPDAT (continued)

8-byte (2-long word) Storage for USB SETUP data on endpoint0.

63:48 SETUP_LENGTH[15:0] Setup data field

47:32 SETUP_INDEX[15:0] Setup data field

31:16 SETUP_VALUE[15:0] Setup data field

15:8 SETUP_REQUEST[7:0] Setup data field

7:0 SETUP_REQUEST_TYPE[7:0] Setup data field

DEV_SETUPDAT SETUPDAT0/1 Registers

b7 b6 b5 b4 b3 b2 b1 b0

SETUP_REQUEST_TYPE[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

406 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.11.5 DEV_TOGGLE

Data Toggle for Endpoints Register

Data toggles when all endpoints reset to ‘0’, on power-up, or on USB reset. In general, hardware maintains all the data toggle
bits, which are toggled between data packet transfers. The firmware might need to reset or set data toggle bit only following
conditions:

■ After a configuration changes (i.e., after the host issues a Set Configuration request).

■ After an interface’s alternate setting changes (i.e., after the host issues a Set Interface request).

■ After the host sends a Clear Feature - Endpoint Stall request to an endpoint.

To change the value of the toggle bit, software must first write ENDPOINT and IO, then poll for TOGGLE_VALID=1, then
write to R/S, then poll again for TOGGLE_VALID=1.

8 TOGGLE_VALID Indicates Q is valid for selected endpoint, may be polled in software.
After writing to R/S, indicates write completion.
This bit must be cleared by software to initiate an operation.

7 Q Current value of toggle bit for EP selected in IO/ENDPOINT

6 S Write ‘1’ to set data toggle to ‘1’. When both R and S are set, behavior is undefined.

5 R Write ‘1’ to reset data toggle to ‘0’. When both R and S are set, behavior is undefined.

continued on next page

DEV_TOGGLE Data Toggle for Endpoints Register 0xE0031414

b31 b30 b29 b28 b27 b26 b25 b24

DEV_TOGGLE Data Toggle for Endpoints Register

b23 b22 b21 b20 b19 b18 b17 b16

DEV_TOGGLE Data Toggle for Endpoints Register

b15 b14 b13 b12 b11 b10 b9 b8

TOGGLE_VALID

R/W0C

R/W1S

1

DEV_TOGGLE Data Toggle for Endpoints Register

b7 b6 b5 b4 b3 b2 b1 b0

Q S R IO ENDPOINT[3:0]

R R/W R/W R/W R/W R/W R/W R/W

R/W R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 407

10.11.5 DEV_TOGGLE (continued)

4 IO 0 OUT
1 IN

3:0 ENDPOINT[3:0] Endpoint

408 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.11.6 DEV_EPI_CS

IN Endpoint Control and Status Register

There are 16 DEV_EPI_CS registers corresponding to each of the possible IN endpoints. The address of each is calculated
as DEV_EPI_CS(x) = 0xE0031418 + (x*0x4). Hence DEV_EPI_CS(0) is at address 0xE0031418, DEV_EPI_CS(1) is at
address 0xE0031418 + 0x4 and so on. The definition of each of these is the same.

Endpoint IN Control and Status:

■ Set up USB Package buffering, ISO/BULK/INT, IN/OUT and enable/disable endpoint

■ Power up default the payload is 64-byte (Max payload count for Full Speed). In High Speed, the payload can be up to 512
for BULK and 1024 for ISO.

31 ISOERR_MASK Interrupt mask for ISOERR bit

30 SHORT_MASK Interrupt mask for SHORT bit

29 ZERO_MASK Interrupt mask for ZERO bit

28 DONE_MASK Interrupt mask for DONE bit

27 BNAK_MASK Interrupt mask for BNAK bit

26 COMMIT_MASK Interrupt mask for COMMIT bit

continued on next page

DEV_EPI_CS IN Endpoint Control and Status Register 0xE0031418

b31 b30 b29 b28 b27 b26 b25 b24

ISOERR_MASK SHORT_MASK ZERO_MASK DONE_MASK BNAK_MASK COMMIT_MASK

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

DEV_EPI_CS IN Endpoint Control and Status Register

b23 b22 b21 b20 b19 b18 b17 b16

ISOERR SHORT ZERO DONE BNAK COMMIT STALL

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R

0 0 0 0 0 0 0

DEV_EPI_CS IN Endpoint Control and Status Register

b15 b14 b13 b12 b11 b10 b9 b8

NAK VALID ISOINPKS[1:0] TYPE[1:0] PAYLOAD[9:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 1 0 0 0 0

DEV_EPI_CS IN Endpoint Control and Status Register

b7 b6 b5 b4 b3 b2 b1 b0

PAYLOAD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x40

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 409

10.11.6 DEV_EPI_CS (continued)

23 ISOERR The ISOERR is set when ISO data PIDs arrive out of sequence (applies to high speed only), or when
an ISO packet was dropped because no data was available (FS or HS).

22 SHORT Indicates a shorter-than-maxsize packet was received, but UIB_EPI_XFER_CNT did not reach 0.

21 ZERO Indicates a zero-length packet was returned to the host in an IN transaction. Must be cleared by soft-
ware.

20 DONE Indicates transfer is done (UIB_EPI_XFER_CNT = 0). This bit must be cleared by software.

19 BNAK When the host sends an IN token to any Bulk IN endpoint which does not have data to send, the FX3
automatically NAKs the IN token and asserts this interrupt.
Note that this bit will not be set if either the Endpoint NAK or global NAK_ALL bits are set when the
NAK is transmitted

18 COMMIT Set whenever an IN token was ACKed by the host.

16 STALL Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

15 NAK Setting this bit causes NAK on IN transactions.

14 VALID Set VALID = 1 to activate an endpoint, and VALID = 0 to deactivate it. All USB endpoints default to
valid. An endpoint whose VALID bit is 0 does not respond to any USB traffic.

13:12 ISOINPKS[1:0] Number of packets to be sent per microframe (aka high-bandwidth mode ISO). For this implementa-
tion only EP3 and EP7 support values other than 1. EP3 and EP7 support values 1..3. This field must
be 0 for non-ISO endpoints.

11:10 TYPE[1:0] The End Point Type (Control on EP0 only)
00 Control
01 Isochronous
10 Bulk
11 Interrupt

9:0 PAYLOAD[9:0] Max number of bytes transferred for each token
0 Value 0 means 1024. Power up default value is 64.

410 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.11.7 DEV_EPI_XFER_CNT

IN Endpoint Remaining Transfer Length Register

There are 16 DEV_EPI_XFER_CNT registers. The address of each is calculated as DEV_EPI_XFER_CNT(x) = 0xE0031458
+ (x*0x4). Hence DEV_EPI_XFER_CNT(0) is at address 0xE0031458, DEV_EPI_XFER_CNT(1) is at address 0xE0031458 +
0x4 and so on. The definition of each of these is the same.

This register counts down the remaining bytes left in the transfer.

23:0 BYTES_REMAINING[23:0] Number of bytes remaining in the transfer. This value will never go negative (if more bytes are trans-
ferred than remaining in counter, counter value stays at 0). The value in this register is used only for
generating the DONE interrupt for the endpoint, and does not affect the actual data transfers.

DEV_EPI_XFER_CNT IN Endpoint Remaining Transfer Length Register 0xE0031458

b31 b30 b29 b28 b27 b26 b25 b24

DEV_EPI_XFER_CNT IN Endpoint Remaining Transfer Length Register

b23 b22 b21 b20 b19 b18 b17 b16

BYTES_REMAINING[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_EPI_XFER_CNT IN Endpoint Remaining Transfer Length Register

b15 b14 b13 b12 b11 b10 b9 b8

BYTES_REMAINING[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 1

DEV_EPI_XFER_CNT IN Endpoint Remaining Transfer Length Register

b7 b6 b5 b4 b3 b2 b1 b0

BYTES_REMAINING[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 411

10.11.8 DEV_EPO_CS

OUT Endpoint Control and Status Register

There are 16 DEV_EPO_CS registers. The address of each is calculated as DEV_EPO_CS(x) = 0xE0031498 + (x*0x4).
Hence DEV_EPO_CS(0) is at address 0xE0031498, DEV_EPO_CS(1) is at address 0xE0031498 + 0x4 and so on. The defi-
nition of each of these is the same.

Endpoint OUT Control and Status:

■ Set up USB Package buffering, ISO/BULK/INT, IN/OUT and enable/disable endpoint

■ Power up default the payload is 64-byte (Max payload count for Full Speed). In High Speed, the payload can be up to 512
for BULK and 1024 for ISO.

31 ISOERR_MASK Interrupt mask for ISOERR bit

30 SHORT_MASK Interrupt mask for SHORT bit

29 ZERO_MASK Interrupt mask for ZERO bit

28 DONE_MASK Interrupt mask for DONE bit

27 BNAK_MASK Interrupt mask for BNAK bit

26 COMMIT_MASK Interrupt mask for COMMIT bit

continued on next page

DEV_EPO_CS OUT Endpoint Control and Status Register 0xE0031498

b31 b30 b29 b28 b27 b26 b25 b24

ISOERR_MASK SHORT_MASK ZERO_MASK DONE_MASK BNAK_MASK COMMIT_MASK OVF_MASK

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 0 0 0 0

DEV_EPO_CS OUT Endpoint Control and Status Register

b23 b22 b21 b20 b19 b18 b17 b16

ISOERR SHORT ZERO DONE BNAK COMMIT OVF STALL

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R

0 0 0 0 0 0 0 0

DEV_EPO_CS OUT Endpoint Control and Status Register

b15 b14 b13 b12 b11 b10 b9 b8

NAK VALID ISOINPKS[1:0] TYPE[1:0] PAYLOAD[9:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 1 0 0 0 0

DEV_EPO_CS OUT Endpoint Control and Status Register

b7 b6 b5 b4 b3 b2 b1 b0

PAYLOAD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x40

Bit Name Description

412 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.11.8 DEV_EPO_CS (continued)

25 OVF_MASK Interrupt mask for OVF bit

23 ISOERR The ISO_ERR is set when ISO data PIDs arrive out of sequence (applies to high speed only), or
when an ISO packet was dropped because no data was available (FS or HS).

22 SHORT Indicates a shorter-than-maxsize packet was received, but UIB_EPI_XFER_CNT did not reach 0).

21 ZERO Indicates a zero-length packet was returned to the host in an IN transaction. Must be cleared by soft-
ware.

20 DONE Indicates transfer is done (UIB_EPI_XFER_CNT = 0). This bit must be cleared by software.

19 BNAK When the host sends a PING/OUT token to any Bulk OUT endpoint, which does not have an empty
buffer, the FX3 automatically NAKs the token and asserts this interrupt.
Note that this bit will be set if there is no empty buffer at the receipt of the OUT Packet and if neither
the Endpoint NAK or global NAK_ALL bits are set when the NAK is transmitted.

18 COMMIT Set whenever device controller ACKs an OUT token.

17 OVF Indicates a packet was received in an OUT token with more bytes than PAYLOAD.

16 STALL Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

15 NAK Setting this bit causes NAK on OUT and PING transactions.

14 VALID Set VALID = 1 to activate an endpoint, and VALID = 0 to deactivate it. All USB endpoints default to
valid. An endpoint whose VALID bit is 0 does not respond to any USB traffic.

13:12 ISOINPKS[1:0] Number of packets to be sent per microframe (aka high-bandwidth mode ISO). For this implementa-
tion only EP3 and EP7 support values other than 1. EP3 and EP7 support values 1..3. This field must
be 0 for non-ISO endpoints.

11:10 TYPE[1:0] The End Point Type (Control on EP0 only)
00 Control
01 Isochronous
10 Bulk
11 Interrupt

9:0 PAYLOAD[9:0] Max number of bytes transferred for each token
0 Value 0 means 1024. Power up default value is 64.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 413

10.11.9 DEV_EPO_XFER_CNT

OUT Endpoint Remaining Transfer Length Register

There are 16 DEV_EPO_XFER_CNT registers. The address of each is calculated as DEV_EPO_XFER_CNT(x) =
0xE00314D8 + (x*0x4). Hence DEV_EPO_XFER_CNT(0) is at address 0xE00314D8, DEV_EPO_XFER_CNT(1) is at
address 0xE00314D8 + 0x4 and so on. The definition of each of these is the same.

This register counts down the remaining bytes left in the transfer.

23:0 BYTES_REMAINING[23:0] Number of bytes remaining in the transfer. This value will never go negative (if more bytes are trans-
ferred than remaining in counter, counter value stays at 0).

DEV_EPO_XFER_CNT OUT Endpoint Remaining Transfer Length Register 0xE00314D8

b31 b30 b29 b28 b27 b26 b25 b24

DEV_EPO_XFER_CNT OUT Endpoint Remaining Transfer Length Register

b23 b22 b21 b20 b19 b18 b17 b16

BYTES_REMAINING[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_EPO_XFER_CNT OUT Endpoint Remaining Transfer Length Register

b15 b14 b13 b12 b11 b10 b9 b8

BYTES_REMAINING[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_EPO_XFER_CNT OUT Endpoint Remaining Transfer Length Register

b7 b6 b5 b4 b3 b2 b1 b0

BYTES_REMAINING[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

414 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.11.10 DEV_CTRL_INTR_MASK

CONTROL Interrupt Mask Register

This register is used to mask/unmask the interrupt sources from the DEV_CTRL_INTR register. Setting any of the bits
enables the corresponding interrupt source.

11 STATUS_STAGE Set when host completes Status Stage of a Control Transfer

8 URESUME Set when the host has initiated USB RESUME (>2.5 µs K state on bus)

7 ERRLIMIT USB Error limit detect from UIB_DEV_CS (COUNT ERR_LIMIT)

6 SUDAV Set when a valid SETUP token and data is received. SETUP data is available from
UIB_DEV_SETUPDAT.

5 SUTOK Set whenever a (valid of invalid) SETUP token is received

4 HSGRANT Set when the host grants high speed communications.

3 URESET Set when the host has initiated USB RESET (2.5 µs single ended 0 on bus)

2 SUSP Set when the host suspends the USB bus (USB SUSPEND)

1 SOF Set whenever a SOF occurs

DEV_CTRL_INTR_MASK CONTROL Interrupt Mask Register 0xE0031518

b31 b30 b29 b28 b27 b26 b25 b24

DEV_CTRL_INTR_MASK CONTROL Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

DEV_CTRL_INTR_MASK CONTROL Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

STATUS_STAGE URESUME

R/W R/W

R R

0 0

DEV_CTRL_INTR_MASK CONTROL Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

ERRLIMIT SUDAV SUTOK HSGRANT URESET SUSP SOF

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 415

10.11.11 DEV_CTRL_INTR

CONTROL Interrupt Request Register

This register provides the interrupt status for various USB 2.0 related interrupt sources.

11 STATUS_STAGE Set when host completes Status Stage of a Control Transfer

8 URESUME Set when the host has initiated USB RESUME (>2.5 µs K state on bus)

7 ERRLIMIT USB Error limit detect from UIB_DEV_CS (COUNT ERR_LIMIT)

6 SUDAV Set when a valid SETUP token and data is received. SETUP data is available from
UIB_DEV_SETUPDAT.

5 SUTOK Set whenever a (valid of invalid) SETUP token is received

4 HSGRANT Set when the host grants high speed communications.

3 URESET Set when the host has initiated USB RESET (2.5 µs single ended 0 on bus)

2 SUSP Set when the host suspends the USB (USB SUSPEND)

1 SOF Set whenever a SOF occurs

DEV_CTRL_INTR_MASK CONTROL Interrupt Request Register 0xE003151C

b31 b30 b29 b28 b27 b26 b25 b24

DEV_CTRL_INTR_MASK CONTROL Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

DEV_CTRL_INTR_MASK CONTROL Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

STATUS_STAGE URESUME

R/W1C R/W1C

R/W1S R/W1S

0 0

DEV_CTRL_INTR_MASK CONTROL Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

ERRLIMIT SUDAV SUTOK HSGRANT URESET SUSP SOF

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0

Bit Name Description

416 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.11.12 DEV_EP_INTR_MASK

USB EP Interrupt Mask Register

USB Endpoint 0-31 interrupt masks.

31:16 EP_OUT[15:0] Bit <16+x> masks any interrupt from EPO_CS[x].
1 Enable Interrupt
0 Mask (disable) Interrupt

15:8 EP_IN[15:0] Bit <x> masks any interrupt from EPI_CS[x]
1 Enable Interrupt
0 Mask (disable) Interrupt

DEV_EP_INTR_MASK USB EP Interrupt Mask Register 0xE0031520

b31 b30 b29 b28 b27 b26 b25 b24

EP_OUT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

DEV_EP_INTR_MASK USB EP Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

EP_OUT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

DEV_EP_INTR_MASK USB EP Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

EP_IN[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

DEV_EP_INTR_MASK USB EP Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

EP_IN[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 417

10.11.13 DEV_EP_INTR

USB EP Interrupt Request Register

USB Endpoint 0-31 interrupt status. The status bit indicates that at least one of the interrupts enabled by the DEV_EPI_CS/
DEV_EPO_CS register is active. The specific interrupt source should be identified by reading the DEV_EPI_CS/
DEV_EPO_CS register.

31:16 EP_OUT[15:0] Bit <16+x> is set if any interrupts in EPO_CS[x] are active

15:8 EP_IN[15:0] Bit <x> is set if any interrupt in EPI_CS[x] are active

DEV_EP_INTR USB EP Interrupt Request Register 0xE0031524

b31 b30 b29 b28 b27 b26 b25 b24

EP_OUT[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_EP_INTR USB EP Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

EP_OUT[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_EP_INTR USB EP Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

EP_IN[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DEV_EP_INTR USB EP Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

EP_IN[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

418 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.12 USB Controller Miscellaneous Registers

10.12.1 CHGDET_CTRL

Charger Detect Control and Configuration Register

31 PHY_CHARGER_DETECT_EN PHY Charger Detection Enable

26:24 ACA_RTRIM[2:0] ACA Comparison Resistor Trim

23:16 ACA_ADC_OUT[7:0] ACA ADC Output

continued on next page

CHGDET_CTRL Charger Detect Control and Configuration Register 0xE0031800

b31 b30 b29 b28 b27 b26 b25 b24

PHY_CHARGER_
DETECT_EN

ACA_RTRIM[2:0]

R/W R/W R/W R/W

W R R R

0 0 0 0

CHGDET_CTRL Charger Detect Control and Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

ACA_ADC_OUT[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

N/A

CHGDET_CTRL Charger Detect Control and Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

CARKIT
ACA_CONN_

MODE
ACA_ENABLE ACA_OTG_ID_VALUE[2:0]

R/W R/W R/W R R R

R R R R/W R/W R/W

0 0 0 N/A

CHGDET_CTRL Charger Detect Control and Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

ACA_RTRIM_
OVERRIDE

ACA_POLL_INTERVAL[3:0]
PHY_CHG_
DETECTED

R/W R/W R/W R/W R/W R

R R R R R R/W

0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 419

10.12.1 CHGDET_CTRL (continued)

14 CARKIT Carkit Adaptor Enable
0 USB Mode (normal USB operation)
1 USB PHY UART mode
In UART mode D+/D- are routed (digitally) to carkit UART signals (P-Port pads or LPP
UART pads as selected by GCTL_IOMATRIX).

13 ACA_CONN_MODE Charger Connection Mode
0 Standard ACA/Charger
1 Motorola Enhanced Mini-USB (EMU) Requirements

12 ACA_ENABLE Enable ACA OTG ID Detection
 0 Disabled

1 Enabled

11:9 ACA_OTG_ID_VALUE[2:0] Decoded OTG ID Value
If ACA_CONN_MODE == 0 --> Standard ACA/Charger Mode
000 OTG 1.3 B-Device (RID_GND: 0...1kΩ)

 001 OTG 1.3 A-Device (RID_FLOAT_CHG: >220 kΩ)
010 ACA A-Device (RID_A_CHG: 119...13 2 kΩ)
011 ACA B-Device (RID_B_CHG: 65...72 kΩ)
100 ACA C-Device (RID_C_CHG: 35...39 kΩ)
If ACA_CONN_MODE == 1 --> Motorola EMU Mode
000 OTG 1.3 B-Device (RID_GND: 0...1 kΩ)
001 OTG 1.3 A-Device (RID_FLOAT_CHG: >1000 kΩ)
010 MPX.200 VPA (RPROP_ID1: <10.1 kΩ)
011 Non-Intelligent Charging Device (RPROP_ID2: 101...103 kΩ)
100 Mid-Rate Charger (RPROP_ID3: 198...202 kΩ)
101 Fast Charger (RPROP_ID4: 435.6...444.4 kΩ)
[Battery Charging Specification: Table 5-3, p 29]
[Motorola Enhanced Mini-USB (EMU) Requirements: §4.1.2, Table 1, p 9; §4.2.3, Table 4, p
12; §4.2.6, p 15...16; Appendix A, p 24...25]
[ll65aca25 BROS 001-47035*D: Tables 5 & 6, p 32]]

5 ACA_RTRIM_OVERRIDE ACA Comparison Resistor Trim Override

4:1 ACA_POLL_INTERVAL[3:0] ACA OTG ID Polling Interval in 16ms increments, 0000 = 16ms

0 PHY_CHG_DETECTED PHY USB Charger Present

420 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.12.2 CHGDET_INTR

Charger Detect Interrupt Register

1 CHG_DET_CHANGE USB Charger Detect Change Interrupt

0 OTG_ID_CHANGE OTG ID Change Interrupt
Indicates that the decoded value of the USB OTG ID signal has changed.

CHGDET_INTR Charger Detect Interrupt Register 0xE0031804

b31 b30 b29 b28 b27 b26 b25 b24

CHGDET_INTR Charger Detect Interrupt Register

b23 b22 b21 b20 b19 b18 b17 b16

CHGDET_INTR Charger Detect Interrupt Register

b15 b14 b13 b12 b11 b10 b9 b8

CHGDET_INTR Charger Detect Interrupt Register

b7 b6 b5 b4 b3 b2 b1 b0

CHG_DET_
CHANGE

OTG_ID_CHANGE

R/W1C R/W1C

W1S W1S

0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 421

10.12.3 CHGDET_INTR_MASK

Charger Detect Interrupt Mask Register

1 CHG_DET_CHANGE 0 Mask interrupt
1 Report interrupt to higher level

0 OTG_ID_CHANGE 0 Mask interrupt
1 Report interrupt to higher level

CHGDET_INTR_MASK Charger Detect Interrupt Mask Register 0xE0031808

b31 b30 b29 b28 b27 b26 b25 b24

CHGDET_INTR_MASK Charger Detect Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

CHGDET_INTR_MASK Charger Detect Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

CHGDET_INTR_MASK Charger Detect Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

CHG_DET_
CHANGE

OTG_ID_CHANGE

R/W R/W

R R

0 0

Bit Name Description

422 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.12.4 OTG_CTRL

OTG Control Register

15 SSEPM_ENABLE EPM role select
0 EPM connected to high-speed host/device
1 EPM connected to superspeed device
This bit is required because SSDEVE_ENABLE and DEV_ENABLE can be used concurrently.

14 SSDEV_ENABLE Enables the Super Speed device function.
Behavior depends on settings of HOST_ENABLE, and DEV_ENABLE fields and is defined in the
HOST_ENABLE field.

13 DEV_ENABLE Enables the USB 1.1/2.0 device function.
Behavior depends on settings of HOST_ENABLE, and SSDEV_ENABLE fields and is defined in the
HOST_ENABLE field.

continued on next page

OTG_CTRL OTG Control Register 0xE003180C

b31 b30 b29 b28 b27 b26 b25 b24

OTG_CTRL OTG Control Register

b23 b22 b21 b20 b19 b18 b17 b16

OTG_CTRL OTG Control Register

b15 b14 b13 b12 b11 b10 b9 b8

SSEPM_ENABLE SSDEV_ENABLE DEV_ENABLE HOST_ENABLE B_END_SESS B_SESS_VALID A_SESS_VALID DSCHG_VBUS

R/W R/W R/W R/W R R R R/W

R R R R R/W R/W R/W R

0 0 0 0 0 0 0 0

OTG_CTRL OTG Control Register

b7 b6 b5 b4 b3 b2 b1 b0

CHG_VBUS VBUS_VALID DM DP DP_PD_EN DM_PD_EN DP_PU_EN OTG_ENABLE

R/W R R R R/W R/W R/W R/W

R R/W R/W R/W R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 423

10.12.4 OTG_CTRL (continued)

12 HOST_ENABLE Host/Peripheral Role Select, Enables the host function.
Complete description depends on fields: DEV_ENABLE, and SSDEV_ENABLE. Combined Behavior
is as follows for the following combination of fields:
DEV_ENABLE: HOST_ENABLE: SSDEV_ENABLE
0: 0: 0: No USB Functionality Enabled
0: 0: 1: USB 3.0 SS Device only is enabled.
0: 1: 0: OTG Host function only is enabled. Both SS and USB

1.1/2.0 device functions are disabled
0: 1: 1: ****ILLEGAL******
1: 0: 0: USB 1.1/2.0 Device function enabled. SS Device and

OTG Host function disabled.
1: 0: 1: USB 1.1/2.0 Device with USB 3.0 SS Device along

with Rx Detect functions are allowed. OTG Host
Function not allowed

1: 1: 0: ***** ILLEGAL except as intermediate value during
switching between 010 and 100 *****

1: 1: 1: ****ILLEGAL******

11 B_SESS_VALID Vbus B Session End
0 Vbus > 0.8V

 1 Vbus < 0.2V

10 B_SESS_VALID Vbus Valid for B Session
0 Vbus < 0.8V
1 Vbus > 4.0V

9 A_SESS_VALID bus Valid for A Session
0 Vbus < 0.8V
1 Vbus > 2.0V

8 DSCHG_VBUS Discharge Vbus

7 CHG_VBUS Charge Vbus

6 VBUS_VALID Vbus Valid
 0 Vbus < 4.4V

1 Vbus > 4.7V

5 DM D– line state

4 DP D+ line state

3 DP_PD_EN D+ line state

2 DM_PD_EN D– Pull-down Enable

1 DP_PU_EN D+ Pull-up Enable

0 OTG_ENABLE OTG Enable

424 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.12.5 OTG_INTR

OTG Interrupt Register

5 OTG_TIMER_TIMEOUT OTG Timer Timeout Interrupt
The OTG Timer has reached its terminal count of 0.

4 SRP_VBUS_INT VBUS SRP Interrupt
A B-Device initiated SRP by pulsing the VBUS line.

3 SRP_DP_INT D+ SRP Interrupt
A B-Device initiated SRP by pulsing the D+ signal.

2 B_END_SESS_INT B_END_SESS Interrupt
Set when B_END_SESS goes active

1 B_SESS_VALID_INT B_SESS_VALID Change Interrupt
Set when B_SESS_VALID changes.

0 A_SESS_VALID_INT A_SESS_VALID Change Interrupt
Set when A_SESS_VALID changes.

OTG_INTR OTG Interrupt Register 0xE0031810

b31 b30 b29 b28 b27 b26 b25 b24

OTG_INTR OTG Interrupt Register

b23 b22 b21 b20 b19 b18 b17 b16

OTG_INTR OTG Interrupt Register

b15 b14 b13 b12 b11 b10 b9 b8

OTG_INTR OTG Interrupt Register

b7 b6 b5 b4 b3 b2 b1 b0

OTG_TIMER_
TIMEOUT

SRP_VBUS_INT SRP_DP_INT
B_END_SESS_

INT
B_SESS_VALID_I

NT
A_SESS_VALID_

INT

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 425

10.12.6 OTG_INTR_MASK

OTG Interrupt Mask Register

5 OTG_TIMER_TIMEOUT 1 Report OTG Timer Timeout to higher level
0 Mask OTG Timer Timeout event

4 SRP_VBUS_INT 1 Report VBUS SRP event to higher level
0 Mask VBUS SRP event

3 SRP_DP_INT 1 Report D+ SRP Interrupt to higher level
0 Mask D+ SRP event

2 B_END_SESS_INT 1 Report B_END_SESS Interrupt to higher level
0 Mask B_END_SESS event

1 B_SESS_VALID_INT 1 Report B_SESS_VALID changes to higher level
0 Mask B_SESS_VALID change event

0 A_SESS_VALID_INT 1 Report A_SESS_VALID changes to higher level
0 Mask A_SESS_VALID change event

OTG_INTR_MASK OTG Interrupt Mask Register 0xE0031814

b31 b30 b29 b28 b27 b26 b25 b24

OTG_INTR_MASK OTG Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

OTG_INTR_MASK OTG Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

OTG_INTR_MASK OTG Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

OTG_TIMER_
TIMEOUT

SRP_VBUS_INT SRP_DP_INT
B_END_SESS_

INT
B_SESS_VALID_I

NT
A_SESS_VALID_

INT

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

Bit Name Description

426 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.12.7 OTG_TIMER

OTG Timer Register

General timer register to create OTG timeouts. This counter decrements down at 32-kHz standby clock.

31:0 OTG_TIMER_LOAD_VAL[31:0] Initial counter value. After OTG_TIMER_LOAD_VAL clocks, OTG_TIMER_TIMEOUT will
trigger. Disable counter by writing 0 to this register.

OTG_TIMER OTG Timer Register 0xE0031818

b31 b30 b29 b28 b27 b26 b25 b24

OTG_TIMER_LOAD_VAL[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

OTG_TIMER OTG Timer Register

b23 b22 b21 b20 b19 b18 b17 b16

OTG_TIMER_LOAD_VAL[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

OTG_TIMER OTG Timer Register

b15 b14 b13 b12 b11 b10 b9 b8

OTG_TIMER_LOAD_VAL[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

OTG_TIMER OTG Timer Register

b7 b6 b5 b4 b3 b2 b1 b0

OTG_TIMER_LOAD_VAL[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 427

10.13 USB End Point Manager Registers

10.13.1 EEPM_CS

Egress EPM Retry Buffer Status Register

This register provides the status of the retry buffer in the Egress EPM for debug purposes only. In SuperSpeed mode, the
retry buffer is a circular buffer of 16x1KB holding the last packets bursted out. Software is expected to 'unroll' the correspond-
ing socket when a retry buffer is flushed by the protocol layer (based on Protocol Layer error interrupts). In High-Speed mode,
there is a single 1-KB retry buffer for each endpoint. The data contained can remain in the buffer indefinitely; there is no need
for a software rollback in this case.

31:28 EG_EPNUM[3:0] Active Endpoint Number

21:18 URUN_EP_NUM[3:0] The Endpoint that the underrun occurred.

17 URUN_REPAIR_TIMEOUT_EN If an under run occurs and the URUN_REPAIR_EN is set and this register bit is set, then
EPM will start a timer (16-bit counter). If the repair is not complete after 65535*epm clock,
EPM will raise the UIB_INTR.EPM_URUN_TIMEOUT interrupt.

continued on next page

EEPM_CS Egress EPM Retry Buffer Status 0xE0031C00

b31 b30 b29 b28 b27 b26 b25 b24

EG_EPNUM[3:0]

R R R R

R/W R/W R/W R/W

0 0 0 0

EEPM_CS Egress EPM Retry Buffer Status

b23 b22 b21 b20 b19 b18 b17 b16

URUN_EP_NUM[3:1]
URUN_REPAIR_

TIMEOUT_EN
URUN_REPAIR_

EN

R R R R R/W R/W

R/W R/W R/W R/W R R

0 0 0 0 1 1

EEPM_CS Egress EPM Retry Buffer Status

b15 b14 b13 b12 b11 b10 b9 b8

VALID_PACKETS[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

EEPM_CS Egress EPM Retry Buffer Status

b7 b6 b5 b4 b3 b2 b1 b0

VALID_PACKETS[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

428 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.13.1 EEPM_CS (continued)

16 URUN_REPAIR_EN This bit will repair the EPM whenever there is under run due to SYSTEM EPM will keep on reading
the packet from SYSMEM whenever data is ready from SYSMEM. If an underrun occurs, EPM will
raise the UIB_INTR.EPM_URUN interrupt.

15:0 VALID_PACKETS Bit vector indicating which of the 16 retry buffer contain a valid packet.
In SuperSpeed mode, this buffer functions as a circular buffer trailing packets that can be retried
behind the WRITE_PTR. In High-Speed mode, each End Point has 1 retry buffer that may indepen-
dently valid or invalid.
These bits are cleared when the Protocol Layer 'activates' an End Point (as opposed to 'reactivating'
it). In SuperSpeed mode all bits are cleared at once, in High-Speed mode only the bit for the Endpoint
being activated is cleared.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 429

10.13.2 IEPM_CS

Ingress EPM Control and Status Register

This register contains the read/write pointers for the ingress buffer and allows popping of entries from the FIFO. It is for
debugging purposes only.

29 EPM_MUX_RESET This will reset the EPM Mux.

28 EPM_FLUSH This will flush both the Egress and Ingress EPM.

27:16 WRITE_PTR[11:0] Write pointer of the ingress buffer.

11:0 READ_PTR[11:0] Read pointer of the ingress buffer.

IEPM_CS Ingress EPM Control and Status 0xE0031C04

b31 b30 b29 b28 b27 b26 b25 b24

EPM_MUX_RESET EPM_FLUSH WRITE_PTR[11:8]

R/w R/w R R R R

R R R/W R/W R/W R/W

0 0 0 0 0 0

IEPM_CS Ingress EPM Control and Status

b23 b22 b21 b20 b19 b18 b17 b16

WRITE_PTR[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

IEPM_CS Ingress EPM Control and Status

b15 b14 b13 b12 b11 b10 b9 b8

READ_PTR[11:8]

R R R R

R/W R/W R/W R/W

0 0 0 0

IEPM_CS Ingress EPM Control and Status

b7 b6 b5 b4 b3 b2 b1 b0

READ_PTR[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

430 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.13.3 IEPM_MULT

Ingress EPM MULT Function Control Register

This register contains the MULT enables and threshold value used by all the ingress EP except EP0.

25:15 MULT_THRSHOLD[10:0] This field is used to when evaluate the mult signal from ingress adapter.
If number of packet space available in the buffer goes down by this field, then mult signal from
adapter will be evaluated and if it is set the original buffer space (number of packets) is added to
NUM_PACKETS in the IEPM_ENDPOINT register.

14:0 MULT_EN[14:0] Mult Enable for EP1-15.

IEPM_MULT Ingress EPM MULT Function Control Register 0xE0031C08

b31 b30 b29 b28 b27 b26 b25 b24

MULT_THRSHOLD[10:9]

R/W R/W

R R

IEPM_MULT Ingress EPM MULT Function Control Register

b23 b22 b21 b20 b19 b18 b17 b16

MULT_THRSHOLD[8:1]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

IEPM_MULT Ingress EPM MULT Function Control Register

b15 b14 b13 b12 b11 b10 b9 b8

MULT_
THRSHOLD[0]

MULT_EN[14:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 0 0 0 0 0 0 0

IEPM_MULT Ingress EPM MULT Function Control Register

b7 b6 b5 b4 b3 b2 b1 b0

MULT_EN[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 431

10.13.4 EEPM_ENDPOINT

Egress EPM Retry Buffer Status

There are 16 EEPM_ENDPOINT registers. The address of each is calculated as EEPM_ENDPOINT(x) = 0xE0031C40 +
(x*0x4). Hence EEPM_ENDPOINT(0) is at address 0xE0031C40, EEPM_ENDPOINT(1) is at address 0xE0031C40 + 0x4
and so on. The definition of each of these is the same.

These registers contain the status fields for each end point (or mapped stream in SuperSpeed Streams mode). The number
of packets available on each end point is computed from the SIZE and BYTE_COUNT of the currently loaded descriptor and
the availability of a next descriptor (using the credit counters in the DMA Adapter). If the current buffer is completely full
(BYTE_COUNT==SIZE) and the next buffer is already available, the available packet count is (BYTE_COUNT/
PACKET_SIZE)+1, otherwise it is round-up integral value of (BYTE_COUNT/PACKET).

31 SOCKET_FLUSH This bit will flush the corresponding socket.

30 EEPM_EP_READY The EPM condition used by USB block

27 ZLP ZLP present in the current buffer

26:11 EEPM_BYTE_COUNT[15:0] Number of bytes in the current buffer

10:0 PACKET_SIZE[10:0] Maximum packet size for this end-point. Typically this value is 1024, 512, 64, 1023 (last 2
for USB2 only).

EEPM_ENDPOINT Egress EPM Retry Buffer Status 0xE0031C40

b31 b30 b29 b28 b27 b26 b25 b24

SOCKET_FLUSH EEPM_EP_READY ZLP EEPM_BYTE_COUNT[15:13]

R/W R R R R R

R R/W R/W R/W R/W R/W

0 0 0 0 0 0

EEPM_ENDPOINT Egress EPM Retry Buffer Status

b23 b22 b21 b20 b19 b18 b17 b16

EEPM_BYTE_COUNT[12:5]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

EEPM_ENDPOINT Egress EPM Retry Buffer Status

b15 b14 b13 b12 b11 b10 b9 b8

EEPM_BYTE_COUNT[4:0] PACKET_SIZE[10:8]

R R R R R R/W R/W R/W

R/W R/W R/W R/W R/W R R R

0 0 0 0 0 0 0 0

EEPM_ENDPOINT Egress EPM Retry Buffer Status

b7 b6 b5 b4 b3 b2 b1 b0

PACKET_SIZE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

432 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.13.5 IEPM_ENDPOINT

Ingress EPM Per Endpoint Control and Status Register

These register contain the status fields for each end-point (or mapped stream in SuperSpeed Streams mode). The number of
packets for which space is available on each end point is computed from the SIZE and BYTE_COUNT of the currently loaded
descriptor and the availability of a next descriptor (using the credit counter in the DMA Adapter). If the next descriptor is avail-
able, available packet count is Round-down integral value of ((2*SIZE-BYTE_COUNT)/PACKET_SIZE), otherwise it is
Round-down integral value of ((SIZE-BYTE_COUNT)/PACKET_SIZE)).

31 SOCKET_FLUSH This bit will flush the corresponding socket.

30 EOT_EOP Configure end-of-packet signalling to DMA adapter.
0 Send EOP at the end of a full packet and EOT for short/zlp packets
1 Send EOT at the end of every packet
Setting this bit to 1 is useful for variable size packet endpoints only.

22 EP_READY The EPM condition used by USB block.

21:11 NUM_IN_PACKETS[10:0 Number of packets that are guaranteed to fit in the remaining buffer space of the current and next
buffers. If the computed number of packets available is larger than 16, this number will be assumed to
be 16 in the protocol block.

10:0 PACKET_SIZE[10:0] Maximum packet size for this end-point. Typically this value is 1024, 512, 64, 1023 (last 2 for USB2
only).

IEPM_ENDPOINT Ingress EPM Per Endpoint Control and Status Register 0xE0031C80

b31 b30 b29 b28 b27 b26 b25 b24

SOCKET_FLUSH EOT_EOP

R/W R/W

R R

0 0

IEPM_ENDPOINT Ingress EPM Per Endpoint Control and Status Register

b23 b22 b21 b20 b19 b18 b17 b16

EP_READY NUM_IN_PACKETS[10:5]

R R R R R R R

R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0

IEPM_ENDPOINT Ingress EPM Per Endpoint Control and Status Register

b15 b14 b13 b12 b11 b10 b9 b8

NUM_IN_PACKETS[4:0] PACKET_SIZE[10:8]

R R R R R R/W R/W R/W

R/W R/W R/W R/W R/W R R R

0 0 0 0 0

IEPM_ENDPOINT Ingress EPM Per Endpoint Control and Status Register

b7 b6 b5 b4 b3 b2 b1 b0

PACKET_SIZE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1024

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 433

10.13.6 IEPM_FIFO

Ingress EPM FIFO Entry Register

This register provides the status of the EP that is on the top of the queue in the Ingress EPM.

16 EP_VALID Entry is valid

15:12 IN_EPNUM[3:0] Endpoint number for this packet

11 EOT End of Transfer. Set for by the protocol layer short and zero length packets; forwarded to DMA
Adapter.

10:0 BYTES[10:0] Number of bytes in the packet

IEPM_FIFO Ingress EPM FIFO Entry Register 0xE0031CC0

b31 b30 b29 b28 b27 b26 b25 b24

IEPM_FIFO Ingress EPM FIFO Entry Register

b23 b22 b21 b20 b19 b18 b17 b16

EP_VALID

R

R/W

0

IEPM_FIFO Ingress EPM FIFO Entry Register

b15 b14 b13 b12 b11 b10 b9 b8

IN_EPNUM[3:0] EOT BYTES[10:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

IEPM_FIFO Ingress EPM FIFO Entry Register

b7 b6 b5 b4 b3 b2 b1 b0

BYTES[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

434 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14 USB2 Host Controller Registers

10.14.1 HOST_CS

Host Controller Command and Status Bits Register

24 DEACTIVATE_ON_IN_EP_SHORT_PKT 0 In a case where Device is sending a short packet and the total byte count
does NOT reach zero, host does not deactivate that EP.

1 In a case where Device is sending a short packet and the total byte count
does NOT reach zero, host deactivates that EP.

23 DISABLE_EHCI_HOSTERR 0 EHCI_INTR.HOST_SYS_ERR_IE works as documented (normal)
1 HOST_SYS_ERR functionality is disabled

22:8 FRAME_FIT_OFFSET[14:0] This register is used for frame fit calculation in the host controller. The recom-
mended values are listed in below:
EHCI Mode: 212
OHCI (Full Speed) 190
OHCI (Low Speed) 20

6:0 DEV_ADDR[6:0] This register contains device address to which host wishes to communicate. Host
sends this address to device using set_address command. This address also used
by SIE to append this address with different tokens.

HOST_CS Host Controller Command and Status Bits Register 0xE0032000

b31 b30 b29 b28 b27 b26 b25 b24

DEACTIVATE_ON
_IN_EP_SHORT_

PKT

R/W

R

1

HOST_CS Host Controller Command and Status Bits Register

b23 b22 b21 b20 b19 b18 b17 b16

DISABLE_EHCI_
HOSTERR

FRAME_FIT_OFFSET[14:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_CS Host Controller Command and Status Bits Register

b15 b14 b13 b12 b11 b10 b9 b8

FRAME_FIT_OFFSET[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_CS Host Controller Command and Status Bits Register

b7 b6 b5 b4 b3 b2 b1 b0

0 DEV_ADDR[6:0]

R R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 435

10.14.2 HOST_EP_INTR

Host End Point Interrupt Register

This register contains interrupt status bit for 32 EPs. CPU reads this register to determine, which EP has triggered interrupt.

31:16 EPI_IRQ_TOP[15:0] Interrupt Requests for IN endpoints 0..15 when the EP is deactivated by Host Controller.

15:8 EPO_IRQ_TOP[15:0] Interrupt Requests for OUT endpoints 0..15 when the EP is deactivated by Host Controller.

HOST_EP_INTR Host End Point Interrupt Register 0xE0032004

b31 b30 b29 b28 b27 b26 b25 b24

EPI_IRQ_TOP[15:8]

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

HOST_EP_INTR Host End Point Interrupt Register

b23 b22 b21 b20 b19 b18 b17 b16

EPI_IRQ_TOP[7:0]

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

HOST_EP_INTR Host End Point Interrupt Register

b15 b14 b13 b12 b11 b10 b9 b8

EPO_IRQ_TOP[15:8]

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

HOST_EP_INTR Host End Point Interrupt Register

b7 b6 b5 b4 b3 b2 b1 b0

EPO_IRQ_TOP[7:0]

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

436 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.3 HOST_EP_INTR_MASK

Host End Point Interrupt Mask Register

This register contains interrupt status bit for 32 EPs. CPU reads this register to determine, which EP has triggered interrupt.

31:16 EPI_IRQ_MASK[15:0] 1 Report IN endpoint interrupt to CPU

15:8 EPO_IRQ_MASK[15:0] 1 Report OUT endpoint interrupt to CPU

HOST_EP_INTR_MASK Host End Point Interrupt Mask Register 0xE0032008

b31 b30 b29 b28 b27 b26 b25 b24

EPI_IRQ_MASK[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_EP_INTR_MASK Host End Point Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

EPI_IRQ_MASK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_EP_INTR_MASK Host End Point Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

EPO_IRQ_MASK[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_EP_INTR_MASK Host End Point Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

EPO_IRQ_MASK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 437

10.14.4 HOST_TOGGLE

Data Toggle for Endpoints Register

Power-up and USB Reset all the endpoints data toggle will reset to ‘0’. In general, hardware maintains all the data toggle bits,
which are toggled between data packet transfers. The firmware might need to reset or set data toggle bit only following condi-
tions:

■ After a configuration changes (that is, after the host issues a Set Configuration request).

■ After an interface’s alternate setting changes (that is, after the host issues a Set Interface request).

■ After the host sends a Clear Feature - Endpoint Stall request to an endpoint.

To change the value of the toggle bit, software must first write ENDPOINT and IO, then poll for VALID=1, then write to R or S,
then poll again for VALID=1.

8 VALID Indicates Q is valid for selected endpoint, may be polled in software.
After writing to R/S, indicates write completion.
This bit must be cleared by software to initiate an operation.

7 Q Current value of toggle bit for EP selected in IO/ENDPOINT

6 S Write ‘1’ to set data toggle to ‘1’ When both R and S are set, behavior is undefined.

5 R Write ‘1’ to reset data toggle to ‘0’. When both R and S are set, behavior is undefined.

continued on next page

HOST_TOGGLE Data Toggle for Endpoints Register 0xE003200C

b31 b30 b29 b28 b27 b26 b25 b24

HOST_TOGGLE Data Toggle for Endpoints Register

b23 b22 b21 b20 b19 b18 b17 b16

HOST_TOGGLE Data Toggle for Endpoints Register

b15 b14 b13 b12 b11 b10 b9 b8

VALID

R/W0C

R/W1S

0

HOST_TOGGLE Data Toggle for Endpoints Register

b7 b6 b5 b4 b3 b2 b1 b0

Q S R IO ENDPOINT[3:0]

R R/W R/W R/W R/W R/W R/W R/W

R/W R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

438 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.4 DEV_TOGGLE (continued)

4 IO 0 OUT
1 IN

3:0 ENDPOINT[3:0] Endpoint

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 439

10.14.5 HOST_SHDL_CS

Scheduler Memory Pointer Register

19 ASYNC_SHDL_STATUS This bit will inform the software about which portion of the memory should be used for Async/nonperi-
odic list update both for EHCI and OHCI.
0 Indicates that the scheduler is currently using the lower portion of the scheduler memory for

processing the Async/Non-periodic list with the starting location of ASYNC_PTR0 register.
1 Indicates that the scheduler is currently using the upper portion of the scheduler memory for

processing the Async/Non-periodic list with the starting location of AYSNC_PTR1 register.

18 PERI_SHDL_STATUS This bit will inform the software about which portion of the memory should be used for periodic list
update both for EHCI and OHCI.
0 Indicates that the scheduler is currently using the lower portion of the scheduler memory for

processing the periodic list with the starting location at base address of lower portion of the
scheduler memory.

1 Indicates that the scheduler is currently using the upper portion of the scheduler memory for
processing the periodic list with the starting location at base address of upper portion of the
scheduler memory.

17 PERI_SHDL_CHNG This bit is set by software to indicate that periodic schedule is changed, and the scheduler may flip to
the alternate schedule at the next frame boundary. This bit is cleared by hardware upon switching to
new schedule.

continued on next page

HOST_SHDL_CS Scheduler Memory Pointer Register 0xE0032010

b31 b30 b29 b28 b27 b26 b25 b24

HOST_SHDL_CS Scheduler Memory Pointer Register

b23 b22 b21 b20 b19 b18 b17 b16

ASYNC_SHDL_
STATUS

PERI_SHDL_
STATUS

PERI_SHDL_
CHNG

ASYNC_SHDL_
CHNG

R R R/W1S R/W1S

R/W R/W R/W0C R/W0C

0 0 0 0

HOST_SHDL_CS Scheduler Memory Pointer Register

b15 b14 b13 b12 b11 b10 b9 b8

BULK_CNTRL_PTR1[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_SHDL_CS Scheduler Memory Pointer Register

b7 b6 b5 b4 b3 b2 b1 b0

BULK_CNTRL_PTR0[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

440 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.5 HOST_SHDL_CS (continued)

16 ASYNC_SHDL_CHNG This bit is set by software to indicate that only the Async schedule is changed, and the scheduler may
flip to the alternate schedule at the next microframe boundary. This bit is cleared by hardware upon
switching to new schedule.

15:8 BULK_CNTRL_PTR1[7:0] Asynchronous list pointer 1. Indicates the first Async schedule entry number in schedule 1. This
pointer is used for the upper portion of the scheduler memory (schedule entry location 96-191).

7:0 BULK_CNTRL_PTR0[7:0] Asynchronous list pointer 0. Indicates the first Async schedule entry number in schedule 0. This
pointer is used for the lower portion of the scheduler memory (schedule entry location 0-95).

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 441

10.14.6 HOST_SHDL_SLEEP

Scheduler Sleep Register

9:1 ASYNC_SLEEP_TIMMER[8:0] When the Async list is empty and the ASYNC_SLEEP_EN is set then the scheduler will
stop traversing the async list for the amount of ASYNC_SLEEP_TIMMER*sie clock.
Per EHCI spec the sleep time should be 10 µs.

0 ASYNC_SLEEP_EN This bit will enable the sleep feature for the EHCI.

HOST_SHDL_SLEEP Scheduler Sleep Register 0xE0032014

b31 b30 b29 b28 b27 b26 b25 b24

HOST_SHDL_SLEEP Scheduler Sleep Register

b23 b22 b21 b20 b19 b18 b17 b16

HOST_SHDL_SLEEP Scheduler Sleep Register

b15 b14 b13 b12 b11 b10 b9 b8

ASYNC_SLEEP_TIMMER[8:7]

R/W R/W

R R

HOST_SHDL_SLEEP Scheduler Sleep Register

b7 b6 b5 b4 b3 b2 b1 b0

ASYNC_SLEEP_TIMMER[6:0]
ASYNC_SLEEP_

EN

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x12C

Bit Name Description

442 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.7 HOST_RESP_BASE

Response Base Address Register

31:0 BASE_ADDRESS[31:0] Base address where scheduler responses are written into memory. Responses are written in order of
completion, wrapping at end of buffer (see UIB_HOST_RESP_CS)

HOST_RESP_BASE Response Base Address Register 0xE0032018

b31 b30 b29 b28 b27 b26 b25 b24

BASE_ADDRESS[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_RESP_BASE Response Base Address Register

b23 b22 b21 b20 b19 b18 b17 b16

BASE_ADDRESS[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_RESP_BASE Response Base Address Register

b15 b14 b13 b12 b11 b10 b9 b8

BASE_ADDRESS[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_RESP_BASE Response Base Address Register

b7 b6 b5 b4 b3 b2 b1 b0

BASE_ADDRESS[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 443

10.14.8 HOST_RESP_CS

Scheduler Response Command and Control Register

31 LIM_ERROR Hardware will set this bit as a scheduler response is written with WR_PTR = LIMIT (this indicates and
overflow in response memory). Software must clear this bit by writing 0 to it.

24 WR_RESP_COND This is a condition used counting the packet on USB bus. The packet counter is used for the
RESP_RATE specified in the scheduler memory.
0 The packet counter increments when the device does not NAK. The response from device

could be: ACK, STALL, NYET, PID_ERROR, Data toggle mismatch, CRC16_ERROR,
Time-Out.

1 The packet counter increments when the transaction is successful. The successful transac-
tion definition is:
IN-Token: No CRC16/PID/PHY Error, No toggle mismatch, No Babble,

No STALL, No NYET, No NAK, No Timeout
OUT-TOKEN: No CRC16/PID/PHY Error, No STALL, No NAK,

No NYET for PING token

23:16 WR_PTR Position at which next schedule response entry will be written (not itself a valid entry).

15:8 LIMIT Response entry which, when written, would constitute an overflow error.

7:0 MAX_ENTRY Maximum number of entries scheduler responses are written into memory. Responses are written in
order of completion, wrapping at end of buffer (see UIB_HOST_RESP_CS)

HOST_RESP_CS Scheduler Response Command and Control Register 0xE003201C

b31 b30 b29 b28 b27 b26 b25 b24

LIM_ERROR WR_RESP_COND

R/W0C R/W

R/W1S R

0 0

HOST_RESP_CS Scheduler Response Command and Control Register

b23 b22 b21 b20 b19 b18 b17 b16

WR_PTR[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

HOST_RESP_CS Scheduler Response Command and Control Register

b15 b14 b13 b12 b11 b10 b9 b8

LIMIT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_RESP_CS Scheduler Response Command and Control Register

b7 b6 b5 b4 b3 b2 b1 b0

MAX_ENTRY[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

444 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.9 HOST_ACTIVE_EP

Active Endpoint Register

31:16 IN_EP_ACTIVE[15:0] This indicates if the IN-EP is active or not. If there is a new schedule entry, this register needs to be
Updated after the ASYNC_SHDL_CHNG or PERI_SHDL_CHNG is being set. Software should first
clear the corresponding active bit upon HOST_EP_INTR interrupt and then read
HOST_EP_DEACTIVATE to clear it.

15:8 OUT_EP_ACTIVE[15:0] This indicates if the OUT-EP is active or not. If there is a new schedule entry, this register needs to be
Updated after the ASYNC_SHDL_CHNG or PERI_SHDL_CHNG is being set. Software should first
clear the corresponding active bit upon HOST_EP_INTR interrupt and then read
HOST_EP_DEACTIVATE to clear it.

HOST_ACTIVE_EP Active Endpoint Register 0xE0032020

b31 b30 b29 b28 b27 b26 b25 b24

IN_EP_ACTIVE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_ACTIVE_EP Active Endpoint Register

b23 b22 b21 b20 b19 b18 b17 b16

IN_EP_ACTIVE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_ACTIVE_EP Active Endpoint Register

b15 b14 b13 b12 b11 b10 b9 b8

OUT_EP_ACTIVE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

HOST_ACTIVE_EP Active Endpoint Register

b7 b6 b5 b4 b3 b2 b1 b0

OUT_EP_ACTIVE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 445

10.14.10 OHCI_REVISION

OHCI Host Controller Revision Number Register

7:0 REV[7:0] Revision

OHCI_REVISION OHCI Host Controller Revision Number Register 0xE0032010

b31 b30 b29 b28 b27 b26 b25 b24

OHCI_REVISION OHCI Host Controller Revision Number Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_REVISION OHCI Host Controller Revision Number Register

b15 b14 b13 b12 b11 b10 b9 b8

OHCI_REVISION OHCI Host Controller Revision Number Register

b7 b6 b5 b4 b3 b2 b1 b0

REV[7:0]

R R R R R R R R

R R R R R R R R

0x10

Bit Name Description

446 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.11 OHCI_CONTROL

Host Controller Operating Mode Control Register

7:6 HCFS[1:0] HostControllerFunctionalState

5 BLE BulkListEnable

4 CLE ControlListEnable

3 IE IsochronousEnable
Note PLE and IE must both be set to 1 for the periodic list to be enabled. There is no difference in
behavior between these two bits.

2 PLE PeriodicListEnable

OHCI_CONTROL Host Controller Operating Mode Control Register 0xE0032028

b31 b30 b29 b28 b27 b26 b25 b24

OHCI_CONTROL Host Controller Operating Mode Control Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_CONTROL Host Controller Operating Mode Control Register

b15 b14 b13 b12 b11 b10 b9 b8

OHCI_CONTROL Host Controller Operating Mode Control Register

b7 b6 b5 b4 b3 b2 b1 b0

HCFS[1:0] BLE CLE IE PLE

R/W R/W R/W R/W R/W R/W

R/W R/W R R R R

0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 447

10.14.12 OHCI_COMMAND_STATUS

Command and Status Register

19 HC_HALTED This bit is a zero whenever the Run/Stop bit is a one.
The HC sets this bit to one after it has stopped executing as a result of the Run/Stop bit being set to 0
by software.

18 RS Run/Stop (Replacing the OwnerShipChangeRequest)
0 Stop
1 Run

17:16 SOC SchedulingOverrunCount

OHCI_COMMAND_STATUS Command and Status Register 0xE003202C

b31 b30 b29 b28 b27 b26 b25 b24

OHCI_COMMAND_STATUS Command and Status Register

b23 b22 b21 b20 b19 b18 b17 b16

HC_HALTED RS SOC[1:0]

R R/W R R

R/W R R/W R/W

1 0 0 0

OHCI_COMMAND_STATUS Command and Status Register

b15 b14 b13 b12 b11 b10 b9 b8

OHCI_COMMAND_STATUS Command and Status Register

b7 b6 b5 b4 b3 b2 b1 b0

Bit Name Description

448 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.13 OHCI_INTERRUPT_STATUS

OHCI Host Controller Interrupt Status Register

6 RHSC RootHubStatusChange

5 FNO FrameNumberOverflow

3 RD ResumeDetected

2 SF StartofFrame

0 SO SchedulingOverrun

OHCI_INTERRUPT_STATUS OHCI Host Controller Interrupt Status Register 0xE0032030

b31 b30 b29 b28 b27 b26 b25 b24

OHCI_INTERRUPT_STATUS OHCI Host Controller Interrupt Status Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_INTERRUPT_STATUS OHCI Host Controller Interrupt Status Register

b15 b14 b13 b12 b11 b10 b9 b8

OHCI_INTERRUPT_STATUS OHCI Host Controller Interrupt Status Register

b7 b6 b5 b4 b3 b2 b1 b0

RHSC FNO SF SF SO

R R/W1C R/W1C R/W1C R/W1C

R R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 449

10.14.14 OHCI_INTERRUPT_ENABLE

OHCI Interrupt Enable Register

This register can be used to enable any of the OHCI interrupts. To clear an interrupt enable bit, write to
UIB_OHCI_INTERRUPT_DISABLE.

31 MIE Master Interrupt Enable

6 RHSC RootHubStatusChange

5 FNO FrameNumberOverflow

3 RD ResumeDetected

2 SF StartofFrame

0 SO SchedulingOverrun

OHCI_INTERRUPT_ENABLE OHCI Interrupt Enable Register 0xE0032034

b31 b30 b29 b28 b27 b26 b25 b24

MIE

R/W1S

R

0

OHCI_INTERRUPT_ENABLE OHCI Interrupt Enable Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_INTERRUPT_ENABLE OHCI Interrupt Enable Register

b15 b14 b13 b12 b11 b10 b9 b8

OHCI_INTERRUPT_ENABLE OHCI Interrupt Enable Register

b7 b6 b5 b4 b3 b2 b1 b0

RHSC FNO SF SF SO

R/W1S R/W1S R/W1S R/W1S R/W1S

R R R R r

0 0 0 0 0

Bit Name Description

450 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.15 OHCI_INTERRUPT_DISABLE

OHCI Interrupt Disable Register

This register can be used to disable any of the OHCI interrupts. To clear an interrupt enable bit, write to
UIB_OHCI_INTERRUPT_ENABLE.

31 MIE Master Interrupt Enable

6 RHSC RootHubStatusChange

5 FNO FrameNumberOverflow

3 RD ResumeDetected

2 SF StartofFrame

0 SO SchedulingOverrun

OHCI_INTERRUPT_DISABLE OHCI Interrupt Disable Register 0xE0032038

b31 b30 b29 b28 b27 b26 b25 b24

MIE

R/W1C

R

0

OHCI_INTERRUPT_DISABLE OHCI Interrupt Disable Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_INTERRUPT_DISABLE OHCI Interrupt Disable Register

b15 b14 b13 b12 b11 b10 b9 b8

OHCI_INTERRUPT_DISABLE OHCI Interrupt Disable Register

b7 b6 b5 b4 b3 b2 b1 b0

RHSC FNO SF SF SO

R/W1C R/W1C R/W1C R/W1C R/W1C

R R R R R

0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 451

10.14.16 OHCI_FM_INTERVAL

OHCI Frame Control Information Register

31 FIT FrameIntervalToggle

30:16 FSMPS[14:0] FSLargestDataPacket

14:0 FI[14:0] FrameInterval

OHCI_FM_INTERVAL OHCI Frame Control Information Register 0xE003203C

b31 b30 b29 b28 b27 b26 b25 b24

FIT FSMPS[14:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0

OHCI_FM_INTERVAL OHCI Frame Control Information Register

b23 b22 b21 b20 b19 b18 b17 b16

FSMPS[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x27F0

OHCI_FM_INTERVAL OHCI Frame Control Information Register

b15 b14 b13 b12 b11 b10 b9 b8

FI[14:8]

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

OHCI_FM_INTERVAL OHCI Frame Control Information Register

b7 b6 b5 b4 b3 b2 b1 b0

FI[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x752F

Bit Name Description

452 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.17 OHCI_FM_REMAINING

Current Value of Remaining Frame Count Register

31 FRT FrameRemainingToggle

14:0 FR[14:0] FrameRemaining

OHCI_FM_REMAINING Current Value of Remaining Frame Count Register 0xE0032040

b31 b30 b29 b28 b27 b26 b25 b24

FRT

R

R/W

0

OHCI_FM_INTERVAL OHCI Frame Control Information Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_FM_INTERVAL OHCI Frame Control Information Register

b15 b14 b13 b12 b11 b10 b9 b8

FR[14:8]

R R R R R R R

R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0

OHCI_FM_INTERVAL OHCI Frame Control Information Register

b7 b6 b5 b4 b3 b2 b1 b0

FR[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 453

10.14.18 OHCI_FM_NUMBER

Full Speed Frame Number Register

15:0 FN[15:0] FrameNumber

OHCI_FM_NUMBER Full Speed Frame Number Register 0xE0032044

b31 b30 b29 b28 b27 b26 b25 b24

OHCI_FM_NUMBER Full Speed Frame Number Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_FM_NUMBER Full Speed Frame Number Register

b15 b14 b13 b12 b11 b10 b9 b8

FN[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OHCI_FM_NUMBER Full Speed Frame Number Register

b7 b6 b5 b4 b3 b2 b1 b0

FN[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

454 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.19 OHCI_PERIODIC_START

Periodic Schedule Start Register

Value indicating time where HC should start executing periodic schedule.

15:0 PS[15:0] PeriodicStart
The Default is: 90% * FI = 90% * 0x752F = 0x6977

OHCI_PERIODIC_START Periodic Schedule Start Register 0xE0032048

b31 b30 b29 b28 b27 b26 b25 b24

OHCI_PERIODIC_START Periodic Schedule Start Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_PERIODIC_START Periodic Schedule Start Register

b15 b14 b13 b12 b11 b10 b9 b8

PS[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

OHCI_PERIODIC_START Periodic Schedule Start Register

b7 b6 b5 b4 b3 b2 b1 b0

PS[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x6977

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 455

10.14.20 OHCI_LS_THRESHOLD

LSTHRESHOLD Register

Value which is compared to the FrameRemaining field prior to initiating a Low Speed.

11:0 LST[11:0] LSThreshold

OHCI_LS_THRESHOLD LSTHRESHOLD Register 0xE003204C

b31 b30 b29 b28 b27 b26 b25 b24

OHCI_LS_THRESHOLD LSTHRESHOLD Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_LS_THRESHOLD LSTHRESHOLD Register

b15 b14 b13 b12 b11 b10 b9 b8

LST[11:8]

R/W R/W R/W R/W

R R R R

OHCI_LS_THRESHOLD LSTHRESHOLD Register

b7 b6 b5 b4 b3 b2 b1 b0

LST[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x628

Bit Name Description

456 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.21 OHCI_RH_PORT_STATUS

Root Hub Port Status Register

31 PORT_RESUME_FW Port Resume (virtual register of PSS from firmware).
For an OHCI resume initiated by the host, firmware clears the PSS bit. However, this bit is not sup-
posed to go low until the resume is complete. The PORT_RESUME_FW bit will give us a way to sig-
nal to the Host Logic that it should do a resume and then go clear the PSS bit. There is no real
functionality being added, this is only trying to emulate the OHCI interface better.

20 PRSC PortResetStatusChange

18 PSSC PortSuspendStatusChange

17 PESC PortEnableStatusChange

16 CSC ConnectStatusChange

continued on next page

OHCI_RH_PORT_STATUS Root Hub Port Status Register 0xE0032054

b31 b30 b29 b28 b27 b26 b25 b24

PORT_RESUME_
FW

OC

R/W R

R/W R

0 0

OHCI_RH_PORT_STATUS Root Hub Port Status Register

b23 b22 b21 b20 b19 b18 b17 b16

PRSC PSSC PESC CSC

R/W1C R/W1C R/W1C R/1C

R/W1S R/W1S R/W1S R/W

0 0 0 0

OHCI_RH_PORT_STATUS Root Hub Port Status Register

b15 b14 b13 b12 b11 b10 b9 b8

OHCI_RH_PORT_STATUS Root Hub Port Status Register

b7 b6 b5 b4 b3 b2 b1 b0

PRS PSS PES CCS

R/W1S R/W1S R/W1S R

R/W0C R/W0C R/W R/W

0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 457

10.14.21 OHCI_RH_PORT_STATUS (continued)

4 PRS (read) PortResetStatus
(write) SetPortReset

2 PSS (read) PortSuspendStatus
(write) SetPortSuspend

1 PES (read) PortEnableStatus
(write) SetPortEnable

0 CCS (read) CurrentConnectStatus
(write) ClearPortEnable

458 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.22 OHCI_EOF

OHCI End of Frame Times Register

31:16 EOF2[15:0] EOF2 Time (default: 10 bit times * 2.5 clocks/bit => 25)

15:0 EOF1[15:0] EOF1 Time (default: 32 bit times * 2.5 clocks/bit => 80)

OHCI_EOF OHCI End of Frame Times Register 0xE0032058

b31 b30 b29 b28 b27 b26 b25 b24

EOF2[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

OHCI_EOF OHCI End of Frame Times Register

b23 b22 b21 b20 b19 b18 b17 b16

EPF2[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x0019

OHCI_EOF OHCI End of Frame Times Register

b15 b14 b13 b12 b11 b10 b9 b8

EOF1[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

OHCI_EOF OHCI End of Frame Times Register

b7 b6 b5 b4 b3 b2 b1 b0

EOF1[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x0050

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 459

10.14.23 EHCI_HCCPARAMS

Multiple Mode Control Register

Multiple mode control (time-base bit functionality), addressing capability.

7:4 ISO_SHDL_THR[3:0] Isochronous Scheduling Threshold (In this implementation the scheduler will cache 1 micro-frame
worth of data. Appropriate value will be programmed to ensure correct functionality).

2 ASYNC_PARK_CAP Asynchronous Schedule Park Capability

0 ADDR_64_BIT_CAP 64-bit Addressing Capability

OHCI_RH_PORT_STATUS Root Hub Port Status Register 0xE003205C

b31 b30 b29 b28 b27 b26 b25 b24

OHCI_RH_PORT_STATUS Root Hub Port Status Register

b23 b22 b21 b20 b19 b18 b17 b16

OHCI_RH_PORT_STATUS Root Hub Port Status Register

b15 b14 b13 b12 b11 b10 b9 b8

OHCI_RH_PORT_STATUS Root Hub Port Status Register

b7 b6 b5 b4 b3 b2 b1 b0

ISO_SHDL_THR[3:0]
ASYNC_PARK_

CAP
ADDR_64_BIT_

CAP

R R R R R/W R

R R R R R R

0 0 0 0 0 0

Bit Name Description

460 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.24 EHCI_USBCMD

EHCI Command Register

23:16 INT_THRESHOLD_CTRL[7:0] Interrupt Threshold Control

11 ASYNC_SHDL_PRK_EN Asynchronous Schedule Park Mode Enable

9:8 ASYNC_SHDL_PRK_CNT[1:0] Asynchronous Schedule Park Mode Count

5 ASYNC_SHDL_EN Asynchronous Schedule Enable

4 PER_SHDL_EN Periodic Schedule Enable

0 RS Run/Stop

OHCI_RH_PORT_STATUS Root Hub Port Status Register 0xE0032060

b31 b30 b29 b28 b27 b26 b25 b24

OHCI_RH_PORT_STATUS Root Hub Port Status Register

b23 b22 b21 b20 b19 b18 b17 b16

INT_THRESHOLD_CTRL[7:0]

R/w R/w R/w R/w R/w R/w R/w R/w

R R R R R R R R

8

OHCI_RH_PORT_STATUS Root Hub Port Status Register

b15 b14 b13 b12 b11 b10 b9 b8

ASYNC_SHDL_
PRK_EN

ASYNC_SHDL_PRK_CNT[1:0]

R/w R/w R/w

R R R

0 0 0

OHCI_RH_PORT_STATUS Root Hub Port Status Register

b7 b6 b5 b4 b3 b2 b1 b0

ASYNC_SHDL_
EN

PER_SHDL_EN RS

R/w R/w R/W

R R R/W

0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 461

10.14.25 EHCI_USBSTS

Host Controller States and Pending Interrupts Register

Pending interrupts and various states of the Host Controller

15 ASYNC_SHDL_ST Asynchronous Schedule Status

14 PER_SHDL_ST Periodic Schedule Status

13 RECLAMATION Reclamation

12 HC_HALTED This bit is a zero whenever the Run/Stop bit is a one. The HC sets this bit to one after it has stopped
executing as a result of the Run/Stop bit being set to 0 by software.

4 HOST_SYS_ERR Host System Error. EHCI over scheduling Status

2 PORT_CHNG_DET Port Change Detect

1 USBERRINT USB Error Interrupt

0 USBINT USB Interrupt.
Note This field does not assert for SETUP+IN(STATUS) qTDs with no data phase. The workaround
is to use the HOST_EP_INTR[0] along with the transaction response that gets written into SRAM for
HCD.

EHCI_USBSTS Host Controller States and Pending Interrupts Register 0xE0032064

b31 b30 b29 b28 b27 b26 b25 b24

EHCI_USBSTS Host Controller States and Pending Interrupts Register

b23 b22 b21 b20 b19 b18 b17 b16

EHCI_USBSTS Host Controller States and Pending Interrupts Register

b15 b14 b13 b12 b11 b10 b9 b8

ASYNC_SHDL_ST PER_SHDL_ST RECLAMATION HC_HALTED

R R R R

R/w R/W R/W R/W

0 0 0 1

EHCI_USBSTS Host Controller States and Pending Interrupts Register

b7 b6 b5 b4 b3 b2 b1 b0

HOST_SYS_ERR
PORT_CHNG_

DET
USBERRINT USBINT

R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S

0 0 0 0

Bit Name Description

462 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.26 EHCI_USBINTR

EHCI Interrupt Register

4 HOST_SYS_ERR_IE Host System Error Interrupt Enable

2 PORT_CHANGE_DET_IE Port Change Interrupt Enable

1 USBERRINT_IE USB Error Interrupt Enable

0 USBINT_IE USB Interrupt Enable

EHCI_USBINTR EHCI Interrupt Register 0xE0032068

b31 b30 b29 b28 b27 b26 b25 b24

EHCI_USBINTR EHCI Interrupt Register

b23 b22 b21 b20 b19 b18 b17 b16

EHCI_USBINTR EHCI Interrupt Register

b15 b14 b13 b12 b11 b10 b9 b8

EHCI_USBINTR EHCI Interrupt Register

b7 b6 b5 b4 b3 b2 b1 b0

HOST_SYS_ERR
_IE

PORT_CHANGE_
DET_IE

USBERRINT_IE USBINT_IE

R/W R/W R/W R/W

R R R R

0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 463

10.14.27 EHCI_FRINDEX

Frame Index Register

13:0 FRINDEX[13:0] The value indicates the Frame on which the scheduler is operating. This value is also used to achieve
interrupt endpoint polling duration.

EHCI_FRINDEX Frame Index Register 0xE003206C

b31 b30 b29 b28 b27 b26 b25 b24

EHCI_FRINDEX Frame Index Register

b23 b22 b21 b20 b19 b18 b17 b16

EHCI_FRINDEX Frame Index Register

b15 b14 b13 b12 b11 b10 b9 b8

FRINDEX[13:8]

R R R R R R

R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0

EHCI_FRINDEX Frame Index Register

b7 b6 b5 b4 b3 b2 b1 b0

FRINDEX[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

464 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.28 EHCI_CONFIGFLAG

Configure Flag Register

0 CF Configure Flag

EHCI_CONFIGFLAG Configure Flag Register 0xE0032070

b31 b30 b29 b28 b27 b26 b25 b24

EHCI_CONFIGFLAG Configure Flag Register

b23 b22 b21 b20 b19 b18 b17 b16

EHCI_CONFIGFLAG Configure Flag Register

b15 b14 b13 b12 b11 b10 b9 b8

EHCI_CONFIGFLAG Configure Flag Register

b7 b6 b5 b4 b3 b2 b1 b0

CF

R/W

R

0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 465

10.14.29 EHCI_PORTSC

Port Status and Control Register

31 PORT_RESET_FW Port Reset (virtual register of PORT_RESET from firmware)

30 PORT_RESUME_HW Hardware Initiated Resume Active

13 PORT_OWNER Port Owner

continued on next page

EHCI_PORTSC Port Status and Control Register 0xE0032074

b31 b30 b29 b28 b27 b26 b25 b24

PORT_RESET_
FW

PORT_RESUME_
HW

R/q R

R R/W

0 0

EHCI_PORTSC Port Status and Control Register

b23 b22 b21 b20 b19 b18 b17 b16

EHCI_PORTSC Port Status and Control Register

b15 b14 b13 b12 b11 b10 b9 b8

PORT_OWNER EHCI_LINE_STATE[1:0] PORT_RESET

R/W R R R/W1S

R/W R/W R/W R/W

1 0 0 0

EHCI_PORTSC Port Status and Control Register

b7 b6 b5 b4 b3 b2 b1 b0

PORT_SUSPEND
F_PORT_
RESUME

PORT_EN_C PORT_EN
PORT_CONNECT

_C
PORT_CONNECT

R/W R/W R/W1C R/W0C R/W1C R

R/W R/W R/W1S R/W R/W1S R/W

0 0 0 0 0 0

Bit Name Description

466 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.29 EHCI_PORTSC (continued)

11:10 EHCI_LINE_STATE[1:0] Line Status

8 PORT_RESET Port Reset
Firmware sets this bit to initiate Port Reset and subsequently writes a 0 to it to initiate the end of Port
Reset. When the Host has completed Port Reset, it will clear this bit. Firmware must poll this bit to
determine the end of the Port Reset, and also whether the attached device is High-Speed (PORT_EN
== 1).

7 PORT_SUSPEND Suspend

6 F_PORT_RESUME Force Port Resume

3 PORT_EN_C Port Enable/Disable Change

2 PORT_EN Port Enabled/Disabled

1 PORT_CONNECT_C Connect Status Change

0 PORT_CONNECT Current Connect Status

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 467

10.14.30 EHCI_EOF

EHCI End of Frame Times Register

31:16 EOF2[15:0] EOF2 Time (default: 64 bit times / 16 bits/clock -> 4)

15:0 EOF1[15:0] EOF1 Time (default: 560 bit times / 16 bits/clock -> 35)

EHCI_EOF EHCI End of Frame Times Register 0xE0032078

b31 b30 b29 b28 b27 b26 b25 b24

EOF2[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

EHCI_EOF EHCI End of Frame Times Register

b23 b22 b21 b20 b19 b18 b17 b16

EPF2[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x0004

EHCI_EOF EHCI End of Frame Times Register

b15 b14 b13 b12 b11 b10 b9 b8

EOF1[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

EHCI_EOF EHCI End of Frame Times Register

b7 b6 b5 b4 b3 b2 b1 b0

EOF1[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x0023

Bit Name Description

468 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.31 SHDL_CHNG_TYPE

Scheduler Change Type Register

This register is used along with the HOST_SHDL_CS ASYNC_SHDL_CHNG/PERI_SHDL_CHNG requests.

This register defines when the Scheduler should update its internal active bits with the HOST_ACTIVE_EP register per each
EP.

31:16 EOF2[15:0] 0 Update at Micro-frame boundary
1 Update at Frame boundary

15:0 EOF1[15:0] 0 Update at Micro-frame boundary
1 Update at Frame boundary

SHDL_CHNG_TYPE Scheduler Change Type Register 0xE003207C

b31 b30 b29 b28 b27 b26 b25 b24

EPI_CHNG_TYPE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_CHNG_TYPE Scheduler Change Type Register

b23 b22 b21 b20 b19 b18 b17 b16

EPI_CHNG_TYPE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_CHNG_TYPE Scheduler Change Type Register

b15 b14 b13 b12 b11 b10 b9 b8

EP0_CHNG_TYPE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_CHNG_TYPE Scheduler Change Type Register

b7 b6 b5 b4 b3 b2 b1 b0

EP0_CHNG_TYPE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 469

10.14.32 SHDL_STATE_MACHINE

Scheduler State Machine Register

18 WAIT_EOF Wait for EOF state

17 WAIT_SHDL_EN Wait for scheduler enable state

16 SCRATCH_WRITE2 Scratch Write state2

15 SCRATCH_WRITE1 Scratch Write state1

14 SHDL_WRITE Scheduler write state

13 LAST_EVAL Last Eval State

12 WAIT_TP_STUPD Wait for TP status state

11 EXECUTE Execute State

10 ASYNC_SLEEP Async Sleep state

continued on next page

SHDL_STATE_MACHINE Scheduler State Machine Register 0xE0032080

b31 b30 b29 b28 b27 b26 b25 b24

SHDL_STATE_MACHINE Scheduler State Machine Register

b23 b22 b21 b20 b19 b18 b17 b16

WAIT_EOF WAIT_SHDL_EN
SCRATCH_WRITE

2

R R R

R/W R/W R/W

0 0 0

SHDL_STATE_MACHINE Scheduler State Machine Register

b15 b14 b13 b12 b11 b10 b9 b8

SCRATCH_WRITE
1

SHDL_WRITE LAST_EVAL WAIT_TP_STUPD EXECUTE ASYNC_SLEEP FIRST_EVAL0 READ_EP0_1

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

SHDL_STATE_MACHINE Scheduler State Machine Register

b7 b6 b5 b4 b3 b2 b1 b0

READ_EP0_0
LOAD_SHDL_

MEM
SCRATCH_READ

2
SCRATCH_READ

1
SCRATCH_READ

0
FETCH LOAD_PTR IDLE

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 1

Bit Name Description

470 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.32 SHDL_STATE_MACHINE (continued)

9 FIRST_EVAL First Eval State

8 READ_EP0_1 Read EP0 state1

7 READ_EP0_0 Read EP0 state0

6 LOAD_SHDL_MEM Load scheduler memory state

5 SCRATCH_READ2 Scratch Read state2

4 SCRATCH_READ1 Scratch Read state1

3 SCRATCH_READ0 Scratch Read state0

2 FETCH Fetch State

1 LOAD_PTR Load Pointer State

0 IDLE Idle

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 471

10.14.33 SHDL_INTERNAL_STATUS

Scheduler Internal Status Register

17 TP_EPM_OVERRUN TP EPM over-run

16 TP_EPM_UNDERRUN TP EPM under-run

15 TP_TIMEOUT TP timeout

14 TP_PID_ERROR TP PID error

13 TP_BABBLE TP Babble

12 TP_PORT_ERROR TP Port error

11 TP_PHY_ERROR TP PHY rxerror

10 TP_CRC16_ERROR TP CRC16 Error

9 TP_DT_MISMATCH TP DT mismatch

continued on next page

SHDL_INTERNAL_STATUS Scheduler Internal Status Register 0xE0032084

b31 b30 b29 b28 b27 b26 b25 b24

SHDL_INTERNAL_STATUS Scheduler Internal Status Register

b23 b22 b21 b20 b19 b18 b17 b16

TP_EPM_
OVERRUN

TP_EPM_
UNDERRUN

R R

R/W R/W

0 0

SHDL_INTERNAL_STATUS Scheduler Internal Status Register

b15 b14 b13 b12 b11 b10 b9 b8

TP_TIMEOUT TP_PID_ERROR TP_BABBLE TP_PORT_ERROR TP_PHY_ERROR
TP_CRC16_

ERROR
TP_DT_

MISMATCH
TP_STALL

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

SHDL_INTERNAL_STATUS Scheduler Internal Status Register

b7 b6 b5 b4 b3 b2 b1 b0

TP_NYET TP_NAK TP_ACK EP0_IN EP0_OUT EP0_SETUP FRAME_FIT EP_DONE

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 1

Bit Name Description

472 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.33 SHDL_INTERNAL_STATUS (continued)

8 TP_STALL TP STALL

7 TP_NYET TP NYET

6 TP_NAK TP NAK

5 TP_ACK TP ACK

4 EP0_IN EP0 IN state

3 EP0_OUT EP0 OUT state

2 EP0_SETUP EP0 SETUP state

1 FRAME_FIT Frame Fit

0 EP_DONE EP Done

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 473

10.14.34 SHDL_OHCI

Scheduler Memory Register, OHCI Format

There are 64 SHDL_OHCI registers. The address of each is calculated as SHDL_OHCI(x) = 0xE0032400 + (x*0x4). Hence
SHDL_OHCI(0) is at address 0xE0032400, SHDL_OHCI(1) is at address 0xE0032400 + 0x4 and so on. The definition of
each of these is the same.

continued on next page

SHDL_OHCI Scheduler Memory Register, OHCI Format 0xE0032400

b95 b94 b93 b92 b91 b90 b89 b88

IOC_RATE[7]

R/W

R

0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b87 b86 b85 b84 b83 b82 b81 b80

IOC_RATE[6:0] TRNS_MODE

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b79 b78 b77 b76 b75 b74 b73 b72

TOTAL_BYTE_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b71 b70 b69 b68 b67 b66 b65 b64

TOTAL_BYTE_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b63 b62 b61 b60 b59 b58 b57 b56

EP0_CODE[1:0] BYPASS_ERROR MMULT[1:0] RESP_RATE[7:5]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b55 b54 b53 b52 b51 b50 b49 b48

RESP_RATE[4:0] POLLING_RATE[7:5]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b47 b46 b45 b44 b43 b42 b41 b40

POLLING_RATE[4:0] MAX_PKT_SIZE[10:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

474 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.34 SHDL_OHCI (continued)

This area exposes the scheduler memory in OHCI format. Please note that the EHCI and OHCI scheduler memories are
using the same physical memory, so overwriting one will also overwrite the other. Scheduler memory consists of three sec-
tions:

1. Lower Section:

2. Upper Section:

3. Scratch Section:

This register exposes only the Lower and Upper section. The Scratch section is only used by Hardware and it is not accessi-
ble by Software. The Lower and Upper sections each consist of 32 End Points and each End Point requires 3 32-bit scheduler
memory locations. In result, the MMIO address for lower section would be x400-x57C and for upper portion would be x580-
x6FC. Software can update the appropriate portion of the memory based on the PERI_SHDL_STATUS/
ASYNC_SHDL_STATUS bits in the UIB_HOST_SHDL_CS register.

continued on next page

SHDL_OHCI Scheduler Memory Register, OHCI Format

b39 b38 b37 b36 b35 b34 b33 b32

MAX_PKT_SIZE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b31 b30 b29 b28 b27 b26 b25 b24

UFRAME_SMASK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b23 b22 b21 b20 b19 b18 b17 b16

PING RL[3:0] MULT[1:0] ISO_EPM

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b15 b14 b13 b12 b11 b10 b9 b8

CERR[1:0] NAK_CNT[3:0] HALT T

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_OHCI Scheduler Memory Register, OHCI Format

b7 b6 b5 b4 b3 b2 b1 b0

ZPLEN EPT[1:0] EPND[4:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 475

10.14.34 SHDL_OHCI (continued)

127:96 SHDL_NOT_USED[31:0] Not used and not mapped to RAM, only present for alignment reasons

88:81 IOC_RATE[7:0] Should be programmed to zero for OHCI.
After IOC_rate*resp_rate the scheduler will issue interrupt at the next interrupt threshold
(UIB_EHCI_USBCMD.INT_THRESHOLD_CTRL)

80 TRNS_MODE 0 Packet mode
1 Stream mode

79:64 TOTAL_BYTE_COUNT[15:0] Total number of byte count for the transaction.

63:62 EP0_CODE[1:0] This field represents the EP0 type of transaction:
00 Reserved
01 Setup + Data Phase(OUT) + Status Phase(IN)
10 Setup + Data Phase(IN) + Status Phase(OUT)
11 Setup + Status Phase(IN)

61 BYPASS_ERROR This bit will disable any error that would cause an EP to be de-activated. This bit should be used only
for Isochronous Endpoint.

60:59 MMULT[1:0] This field is used to expand the MULT field to support the OHCI ControlBulkServiceRatio bandwidth
allocation.

58:51 RESP_RATE[7:0] After how many packet the response should be written into SRAM.
The packet counter increments based on the condition specified in the
UIB_HOST_RESP_CS.WR_RESP_COND.

50:43 POLLING_RATE[7:0] 00h Reserved
01h 1 ms (Every frame)
02h 2 ms (Every 2 frames)
04h 4 ms (Every 4 frames)
08h 8 ms (Every 8 frames)
10h 16 ms (Every 16 frames)
20h 32 ms (Every 32 frames)
This will be on top of the Interrupt Schedule Mask in EHCI case.

42:32 MAX_PKT_SIZE[10:0] This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize).
The maximum value this field may contain is 0x400 (1024).

31:24 UFRAME_SMASK[7:0] Should be programmed to zero for OHCI.
The host controller uses the value of the three low-order bits of the FRINDEX register as an index into
a bit position in this bit vector. If the μFrame S-mask field has a one at the indexed bit position then
this queue head is a candidate for transaction execution.

23 PING Should be programmed to zero for OHCI.
This field enables the host to issue Ping token when Direction is OUT and it is high-speed.
0 Do not issue ping token for high-speed OUT
1 Do issue ping token for high-speed OUT

22:19 RL[3:0] Should be programmed to zero for OHCI.
Nak Count Reload (RL). This field contains a value, which is used by the host controller to reload the
Nak Counter field.

continued on next page

Bit Name Description

476 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.34 SHDL_OHCI (continued)

18:17 MULT[1:0] High-Bandwidth Pipe Multiplier. This field is a multiplier used to key the host controller as the number
of successive packets the host controller may submit to the endpoint in the current execution. This
field should be programmed according to the EPM configuration for that EP. This field will get decre-
mented only if the transfer is successful. If not successful, the original value will be reloaded.
00 Reserved. A zero in this field yields undefined results.
01 One transaction to be issued for this endpoint per micro-frame
10 Two transactions to be issued for this endpoint per micro-frame
11 Three transactions to be issued for this endpoint per micro-frame

16 ISO_EPM 0 For ISO-OUT when EPM is empty for that EP then a ZLP will be issued by TP.
For ISO-IN when EPM is full for that EP then and ISO-IN will be issued.

1 For ISO-OUT when EPM is empty for that EP then that entry will be skipped.
For ISO-IN when EPM is full for that EP then that entry will be skipped.

15:14 CERR[1:0] This field is a 2-bit down counter that keeps track of the number of consecutive Errors detected while
executing this qTD.
If this field is programmed with a nonzero value during setup, the Host Controller decrements the
count and writes it back to the qTD if the transaction fails. If the counter counts from one to zero, the
Host Controller marks the qTD inactive, sets the Halted bit to a one and error status bit for the error
that caused CERR to decrement to zero. An interrupt will be generated if the USB Error Interrupt
Enable bit in the USBINTR register is set to a one. If HCD programs this field to zero during setup, the
Host Controller will not count errors for this qTD and there will be no limit on the retries of this qTD.

13:10 NAK_CNT[1:0] Should be programmed to zero for OHCI.
This field is a counter the host controller decrements whenever a transaction for the endpoint associ-
ated with this queue head results in a Nak or Nyet response.

9 HALT This will indicate that the EP is halted.
Skip this qTD and move to next qTD.

8 T 0 Not End of the Period/Asynchronous list
1 End of the Period/Asynchronous list
This bit indicates that there are no more valid entries in the current list.

7 ZPLEN This field is used only for non-ISO endpoints.
0 Scheduler will set the active bit to zero when the total byte count reaches zero.
1 Scheduler will set the active bit to zero when the total byte count is zero and a ZLP is sent/

received.

6:5 EPT[1:0] The End Point Type.
00 Control
01 Isochronous
10 Bulk
11 Interrupt

4:0 EPND[4:0] [3:0]: EP number, Values: 0-15
 [4]: EP Direction, 1: OUT, 0: IN

The direction bit is not used for EP0. Scheduler uses the EP0_code to determine the direction of the
EP0 transaction.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 477

10.14.35 SHDL_EHCI

Scheduler Memory Register, EHCI Format

There are 64 SHDL_EHCI registers. The address of each is calculated as SHDL_EHCI(x) = 0xE0032800 + (x*0x4). Hence
SHDL_EHCI(0) is at address 0xE0032800, SHDL_EHCI(1) is at address 0xE0032800 + 0x4 and so on. The definition of each
of these is the same.

continued on next page

SHDL_EHCI Scheduler Memory Register, EHCI Format 0xE0032800

b95 b94 b93 b92 b91 b90 b89 b88

IOC_RATE[7]

R/W

R

0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b87 b86 b85 b84 b83 b82 b81 b80

IOC_RATE[6:0] TRNS_MODE

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b79 b78 b77 b76 b75 b74 b73 b72

TOTAL_BYTE_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b71 b70 b69 b68 b67 b66 b65 b64

TOTAL_BYTE_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b63 b62 b61 b60 b59 b58 b57 b56

EP0_CODE[1:0] BYPASS_ERROR MMULT[1:0] RESP_RATE[7:5]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b55 b54 b53 b52 b51 b50 b49 b48

RESP_RATE[4:0] POLLING_RATE[7:5]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b47 b46 b45 b44 b43 b42 b41 b40

POLLING_RATE[4:0] MAX_PKT_SIZE[10:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

478 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.35 SHDL_OHCI (continued)

This area exposes the scheduler memory in EHCI format. Please note that the EHCI and OHCI scheduler memories are
using the same physical memory, so overwriting one will also overwrite the other. Scheduler memory consists of three sec-
tions:

1. Lower Section:

2. Upper Section:

3. Scratch Section:

This register exposes only the Lower and Upper section. The Scratch section is only used by Hardware and it is not accessi-
ble by Software. The Lower and Upper sections each consist of 32 End Points and each End Point requires 3 scheduler
memory locations. In result, the MMIO address for lower section would be x800-x97C and for upper portion would be x980-
xAFC. Software can update the appropriate portion of the memory based on the PERI_SHDL_STATUS/
ASYNC_SHDL_STATUS bits in the UIB_HOST_SHDL_CS register.

continued on next page

SHDL_EHCI Scheduler Memory Register, EHCI Format

b39 b38 b37 b36 b35 b34 b33 b32

MAX_PKT_SIZE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b31 b30 b29 b28 b27 b26 b25 b24

UFRAME_SMASK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b23 b22 b21 b20 b19 b18 b17 b16

PING RL[3:0] MULT[1:0] ISO_EPM

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b15 b14 b13 b12 b11 b10 b9 b8

CERR[1:0] NAK_CNT[3:0] HALT T

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SHDL_EHCI Scheduler Memory Register, EHCI Format

b7 b6 b5 b4 b3 b2 b1 b0

ZPLEN EPT[1:0] EPND[4:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 479

10.14.35 SHDL_OHCI (continued)

127:96 SHDL_NOT_USED[31:0] Not used and not mapped to RAM, only present for alignment reasons

88:81 IOC_RATE[7:0] After IOC_rate*resp_rate the scheduler will issue interrupt at the next interrupt threshold
(UIB_EHCI_USBCMD.INT_THRESHOLD_CTRL)

80 TRNS_MODE 0 Packet mode
1 Stream mode

79:64 TOTAL_BYTE_COUNT[15:0] Total number of byte count for the transaction.

63:62 EP0_CODE[1:0] This field represents the EP0 type of transaction:
00 Reserved
01 Setup + Data Phase(OUT) + Status Phase(IN)
10 Setup + Data Phase(IN) + Status Phase(OUT)
11 Setup + Status Phase(IN)

61 BYPASS_ERROR This bit will disable any error that would cause an EP to be de-activated. This bit should be used only
for Isochronous Endpoint.

60:59 MMULT[1:0] Should be programmed to zero for EHCI.
This field is used to expand the MULT field to support the OHCI ControlBulkServiceRatio bandwidth
allocation.

58:51 RESP_RATE[7:0] After how many packet the response should be written into SRAM.
The packet counter increments based on the condition specified in the
UIB_HOST_RESP_CS.WR_RESP_COND.

50:43 POLLING_RATE[7:0] 00h Reserved
01h 1 ms (Every frame)
02h 2 ms (Every 2 frames)
04h 4 ms (Every 4 frames)
08h 8 ms (Every 8 frames)
10h 16 ms (Every 16 frames)
20h 32 ms (Every 32 frames)
This will be on top of the Interrupt Schedule Mask in EHCI case.

42:32 MAX_PKT_SIZE[10:0] This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize).
The maximum value this field may contain is 0x400 (1024).

31:24 UFRAME_SMASK[7:0] The host controller uses the value of the three low-order bits of the FRINDEX register as an index into
a bit position in this bit vector. If the μFrame S-mask field has a one at the indexed bit position then
this queue head is a candidate for transaction execution.

23 PING Should be programmed to zero for OHCI.
This field enables the host to issue Ping token when Direction is OUT and it is high-speed.
0 Do not issue ping token for high-speed OUT
1 Do issue ping token for high-speed OUT

22:19 RL[3:0] Nak Count Reload (RL). This field contains a value, which is used by the host controller to reload the
Nak Counter field.

continued on next page

Bit Name Description

480 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.14.35 SHDL_OHCI (continued)

18:17 MULT[1:0] High-Bandwidth Pipe Multiplier. This field is a multiplier used to key the host controller as the number
of successive packets the host controller may submit to the endpoint in the current execution. This
field should be programmed according to the EPM configuration for that EP. This field will get decre-
mented only if the transfer is successful. If not successful, the original value will be reloaded.
00 Reserved. A zero in this field yields undefined results.
01 One transaction to be issued for this endpoint per micro-frame
10 Two transactions to be issued for this endpoint per micro-frame
11 Three transactions to be issued for this endpoint per micro-frame

16 ISO_EPM 0 For ISO-OUT when EPM is empty for that EP then a ZLP will be issued by TP.
For ISO-IN when EPM is full for that EP then and ISO-IN will be issued.

1 For ISO-OUT when EPM is empty for that EP then that entry will be skipped.
For ISO-IN when EPM is full for that EP then that entry will be skipped.

15:14 CERR[1:0] This field is a 2-bit down counter that keeps track of the number of consecutive Errors detected while
executing this qTD.
If this field is programmed with a nonzero value during setup, the Host Controller decrements the
count and writes it back to the qTD if the transaction fails. If the counter counts from one to zero, the
Host Controller marks the qTD inactive, sets the Halted bit to a one and error status bit for the error
that caused CERR to decrement to zero. An interrupt will be generated if the USB Error Interrupt
Enable bit in the USBINTR register is set to a one. If HCD programs this field to zero during setup, the
Host Controller will not count errors for this qTD and there will be no limit on the retries of this qTD.

13:10 NAK_CNT[1:0] This field is a counter the host controller decrements whenever a transaction for the endpoint associ-
ated with this queue head results in a Nak or Nyet response.

9 HALT This will indicate that the EP is halted.
Skip this qTD and move to next qTD.

8 T 0 Not End of the Period/Asynchronous list
1 End of the Period/Asynchronous list
This bit indicates that there are no more valid entries in the current list.

7 ZPLEN This field is used only for non-ISO endpoints.
0 Scheduler will set the active bit to zero when the total byte count reaches zero.
1 Scheduler will set the active bit to zero when the total byte count is zero and a ZLP is sent/

received.

6:5 EPT[1:0] The End Point Type.
00 Control
01 Isochronous
10 Bulk
11 Interrupt

4:0 EPND[4:0] [3:0]: EP number, Values: 0-15
 [4]: EP Direction, 1: OUT, 0: IN

The direction bit is not used for EP0. Scheduler uses the EP0_code to determine the direction of the
EP0 transaction.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 481

10.15 USB3 Link Controller Registers

10.15.1 LNK_CONF

Link Configuration Register

Configuration Settings for Link Layer Block. (for debug and compatibility testing)

15:12 EPM_FIRST_DELAY[3:0] Delay sending of first Header in a egress burst in PCLK cycles (125 MHz). This is to give
the DMA network time to warm up the data pipeline.

10 CREDIT_ADV_HOLDOFF Hold-off Credit Advertisement until Sequence Number Advertisement Received

9 LDN_DETECTION Enable host LDN detection (see USB ECN#001)

8 FORCE_POWER_PRESENT Force PowerPresent from PHY On

6 LCW_IGNORE_RSVD 0 Check reserved bits in Link Control Word are 0 (LCW)
1 Ignore reserved bits in Link Control Word (LCW)

LNK_CONF Link Configuration Register 0xE0033000

b31 b30 b29 b28 b27 b26 b25 b24

LNK_CONF Link Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_CONF Link Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

EPM_FIRST_DELAY[3:0]
CREDIT_ADV_

HOLDOFF
LDN_DETECTION

FORCE_POWER_
PRESENT

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

5 0 0 0

LNK_CONF Link Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

LCW_IGNORE_
RSVD

R/W

R

1

Bit Name Description

482 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.2 LNK_INTR

Link Interrupt Register

[USB 3.0, §7.2.2.2, p 7−11…7−14]

17 LTSSM_RESET LTSSM Reset Received (Hot or Warm)

16 LTSSM_DISCONNECT LTSSM Transitions to SS.Disabled

15 LTSSM_CONNECT LTSSM Transition to Polling — indicating successful SuperSpeed far-end receiver termination detec-
tion

14 U2_INACTIVITY_TIMEOUT U2 Inactivity Timeout Interrupt

13 PHY_ERROR PHY Error Count Threshold Reached

12 LINK_ERROR Link Error Count Threshold Reached

11 BAD_LCW Illegal LCW received (see LNK_CONTROL_WORD for details)

continued on next page

LNK_INTR Link Interrupt Register 0xE0033004

b31 b30 b29 b28 b27 b26 b25 b24

LNK_INTR Link Interrupt Register

b23 b22 b21 b20 b19 b18 b17 b16

LTSSM_RESET
LTSSM_

DISCONNECT

R/W1C R/W1C

R/W1S R/W1S

0 0

LNK_INTR Link Interrupt Register

b15 b14 b13 b12 b11 b10 b9 b8

LTSSM_
CONNECT

U2_INACTIVITY_
TIMEOUT

PHY_ERROR LINK_ERROR BAD_LCW LPMA LXU LAU

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

LNK_INTR Link Interrupt Register

b7 b6 b5 b4 b3 b2 b1 b0

LGO_U3 LGO_U2 LGO_U1 LCRD LBAD LRTY LGOOD
LTSSM_STATE_

CHG

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 483

10.15.2 LNK_INTR (continued)

10 LPMA LPMA Received Interrupt

9 LXU LXU Received Interrupt

8 LAU LAU Received Interrupt

7 LGO_U3 LGO_U3 Received Interrupt

6 LGO_U2 LGO_U2 Received Interrupt

5 LGO_U1 LGO_U1 Received Interrupt

4 LCRD LCRD Received Interrupt

3 LBAD LBAD Received Interrupt

2 LRTY LRTY Received Interrupt

1 LGOOD LGOOD Received Interrupt

0 LTSSM_STATE_CHG LTSSM State Change Interrupt

484 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.3 LNK_INTR_MASK

Link Interrupt Mask Register

Mask bits for each of the interrupt causes in the LNK_INTR register. Setting one of these bits to ‘1’, enables reporting of the
corresponding interrupt to the higher level.

17 LTSSM_RESET LTSSM Reset Received (Hot or Warm)

16 LTSSM_DISCONNECT LTSSM Transitions to SS.Disabled

15 LTSSM_CONNECT LTSSM Transition to Polling — indicating successful SuperSpeed far-end receiver termination detec-
tion

14 U2_INACTIVITY_TIMEOUT U2 Inactivity Timeout Interrupt

13 PHY_ERROR PHY Error Count Threshold Reached

12 LINK_ERROR Link Error Count Threshold Reached

11 BAD_LCW Illegal LCW received (see LNK_CONTROL_WORD for details)

continued on next page

LNK_INTR_MASK Link Interrupt Mask Register 0xE0033008

b31 b30 b29 b28 b27 b26 b25 b24

LNK_INTR_MASK Link Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

LTSSM_RESET
LTSSM_

DISCONNECT

R/W R/W

R R

0 0

LNK_INTR_MASK Link Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

LTSSM_
CONNECT

U2_INACTIVITY_
TIMEOUT

PHY_ERROR LINK_ERROR BAD_LCW LPMA LXU LAU

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

LNK_INTR_MASK Link Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

LGO_U3 LGO_U2 LGO_U1 LCRD LBAD LRTY LGOOD
LTSSM_STATE_

CHG

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 485

10.15.3 LNK_INTR (continued)

10 LPMA LPMA Received Interrupt

9 LXU LXU Received Interrupt

8 LAU LAU Received Interrupt

7 LGO_U3 LGO_U3 Received Interrupt

6 LGO_U2 LGO_U2 Received Interrupt

5 LGO_U1 LGO_U1 Received Interrupt

4 LCRD LCRD Received Interrupt

3 LBAD LBAD Received Interrupt

2 LRTY LRTY Received Interrupt

1 LGOOD LGOOD Received Interrupt

0 LTSSM_STATE_CHG LTSSM State Change Interrupt

486 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.4 LNK_ERROR_CONF

Link Error Counter Configuration Register

Link Error Count [USB 3.0: §7.3, p 7−26…7−33, esp Table 7−11, p 7−32]

The Link Error Count keeps track of the number of errors for which the Link Layer Block had to transition to the Recovery
State before resuming normal operation. Each error class can be enabled (default on) for debugging purposes.

14 CREDIT_ADV_LGO_EN Rx Header Buffer Credit Advertisement LGO_Ux Received Error Count Enable
LGO_Ux Link Command received during Rx Header Buffer Credit Advertisement.
[USB 3.0: §7.3.7, p 7−30…7−31]

13 CREDIT_ADV_HP_EN Rx Header Buffer Credit Advertisement HP Received Error Count Enable
Header Packet received during Rx Header Buffer Credit Advertisement.
[USB 3.0: §7.3.7, p 7−30…7−31]

12 CREDIT_ADV_TIMEOUT_EN Rx Header Buffer Credit Advertisement CREDIT_HP_TIMER Timeout Count Enable
CREDIT_HP_TIMER timeout before receipt of LCRD_x Link Command during Rx Header
Buffer Credit Advertisement
[USB 3.0: §7.3.7, p 7−30…7−31]

continued on next page

LNK_ERROR_CONF Link Error Counter Configuration Register 0xE003300C

b31 b30 b29 b28 b27 b26 b25 b24

LNK_ERROR_CONF Link Error Counter Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_ERROR_CONF Link Error Counter Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

CREDIT_ADV_
LGO_EN

CREDIT_ADV_
HP_EN

CREDIT_ADV_
TIMEOUT_EN

HDR_ADV_LGO_
EN

HDR_ADV_LCRD
_EN

HDR_ADV_HP_
EN

HDR_ADV_
TIMEOUT_EN

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

1 1 1 1 1 1 1

LNK_ERROR_CONF Link Error Counter Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

TX_SEQ_NUM_
ERR_EN

PM_LC_TIMEOUT
_EN

CREDIT_HP_
TIMEOUT_EN

MISSING_LCRD_
EN

MISSING_LGOOD
_EN

RX_HP_FAIL_EN
RX_SEQ_NUM_

ERR_EN
HP_TIMEOUT_EN

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 1 1 1 1 1 1 1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 487

10.15.4 LNK_ERROR_CONF (continued)

11 HDR_ADV_LGO_EN Header Sequence Number Advertisement LGO_Ux Received Error Count Enable
LGO_Ux Link Command received during Header Sequence Number Advertisement
[USB 3.0: §7.3.6, p 7−30]

10 HDR_ADV_LCRD_EN Header Sequence Number Advertisement LCRD_x Received Error Count Enable
LCRD_x Link Command received during Header Sequence Number Advertisement
[USB 3.0: §7.3.6, p 7−30]

9 HDR_ADV_HP_EN Header Sequence Number Advertisement HP Received Error Count Enable
Header Packet received during Header Sequence Number Advertisement
[USB 3.0: §7.3.6, p 7−30]

8 HDR_ADV_TIMEOUT_EN Header Sequence Number Advertisement PENDING_HP_TIMER Timeout Count Enable
PENDING_HP_TIMER timeout before receipt of Header Sequence Number LGOOD_n Link
Command
[USB 3.0: §7.3.6, p 7−30]

7 TX_SEQ_NUM_ERR_EN ACK Tx Header Sequence Number Error Count Enable
Received LGOOD_n does not match ACK Tx Header Sequence Number.
[USB 3.0: §7.3.5, p 7−30]

6 PM_LC_TIMEOUT_EN PM_LC_TIMER Timeout Count Enable
This indicates that an LGO_Ux, LAU, or LXU Link Command is missed.
[USB 3.0: §7.3.4, p 7−29]

5 CREDIT_HP_TIMEOUT_EN CREDIT_HP_TIMER Timeout Count Enable
Remote Rx Header Buffer Credit has not been received by CREDIT_HP_TIMEOUT.
[USB 3.0: §7.2.4.1.10, p 7−21…7−22]

4 MISSING_LCRD_EN Missing LCRD_x Detection Count Enable
LCRD_x Sequence does not match what is expected.
[USB 3.0: §7.3.4, p 7−29]

3 MISSING_LGOOD_EN Missing LGOOD_n Detection Count Enable
LGOOD_n Sequence Number does not match what is expected.
[USB 3.0: §7.3.4, p 7−29]

2 RX_HP_FAIL_EN Receive Header Packet Fail Count Enable
Link Layer Block has failed to receive a Header Packet for three consecutive times. Failures
are CRC errors or spurious K-symbols.
[USB 3.0: §7.3.3.2, p 7−28]

1 RX_SEQ_NUM_ERR_EN Rx Header Sequence Number Error Count Enable
Received Rx Header Sequence Number does not match what is expected.
[USB 3.0: §7.3.3.3, p 7−28]

0 HP_TIMEOUT_EN PENDING_HP_TIMER Timeout Count Enable
Header Packet acknowledgement has not been received by PENDING_HP_TIMEOUT.
[USB 3.0: §7.2.4.1.10, p 7−21]

488 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.5 LNK_ERROR_STATUS

Link Error Status Register

The LNK_ERROR_STATUS register indicates whether any of the USB 3.0 link error conditions is detected by the FX3 device
since the corresponding status was previously cleared.

14 CREDIT_ADV_LGO_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

13 CREDIT_ADV_HP_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

12 CREDIT_ADV_TIMEOUT_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

11 HDR_ADV_LGO_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

10 HDR_ADV_LCRD_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

continued on next page

LNK_ERROR_STATUS Link Error Status Register 0xE0033010

b31 b30 b29 b28 b27 b26 b25 b24

LNK_ERROR_STATUS Link Error Status Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_ERROR_STATUS Link Error Status Register

b15 b14 b13 b12 b11 b10 b9 b8

CREDIT_ADV_
LGO_EV

CREDIT_ADV_
HP_EV

CREDIT_ADV_
TIMEOUT_EV

HDR_ADV_LGO_
EV

HDR_ADV_LCRD
_EV

HDR_ADV_HP_
EV

HDR_ADV_
TIMEOUT_EV

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0

LNK_ERROR_STATUS Link Error Status Register

b7 b6 b5 b4 b3 b2 b1 b0

TX_SEQ_NUM_
ERR_EV

PM_LC_TIMEOUT
_EV

CREDIT_HP_
TIMEOUT_EV

MISSING_LCRD_
EV

MISSING_LGOOD
_EV

RX_HP_FAIL_EV
RX_SEQ_NUM_

ERR_EV
HP_TIMEOUT_EV

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 489

10.15.5 LNK_ERROR_STATUS (continued)

9 HDR_ADV_HP_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

8 HDR_ADV_TIMEOUT_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

7 TX_SEQ_NUM_ERR_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

6 PM_LC_TIMEOUT_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

5 CREDIT_HP_TIMEOUT_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

4 MISSING_LCRD_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

3 MISSING_LGOOD_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

2 RX_HP_FAIL_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

1 RX_SEQ_NUM_ERR_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

0 HP_TIMEOUT_EV Indicates this error (see LNK_ERROR_CONF for description) occurred since this bit was
last cleared by firmware.

490 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.6 LNK_ERROR_COUNT

Error Counter Register

Error counter register keeps track of errors from PHY and Link Controller. Only errors enabled in LNK_PHY_ERROR_CONF
and LNK_LINK_ERROR_CONF are counted.

31:16 PHY_ERROR_COUNT[15:0] Count of receive errors from the USB 3.0 PHY. This is for debug purposes.

15:0 LINK_ERROR_COUNT[15:0] The Link Error Count keeps track of the number of errors for which the Link Layer Block had
to transition to the Recovery State before resuming normal operation. Counting of errors in
each class can be enabled through the LINK_ERROR_CONF register.

LNK_ERROR_COUNT Error Counter Register 0xE0033014

b31 b30 b29 b28 b27 b26 b25 b24

PHY_ERROR_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

LNK_ERROR_COUNT Error Counter Register

b23 b22 b21 b20 b19 b18 b17 b16

PHY_ERROR_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

LNK_ERROR_COUNT Error Counter Register

b15 b14 b13 b12 b11 b10 b9 b8

LINK_ERROR_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

LNK_ERROR_COUNT Error Counter Register

b7 b6 b5 b4 b3 b2 b1 b0

LINK_ERROR_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 491

10.15.7 LNK_ERROR_COUNT_THRESHOLD

Error Count Threshold Register

Threshold values for asserting Error Count Interrupts. These values are the error count limits after which the respective inter-
rupts are generated.

31:16 PHY_ERROR_THRESHOLD[15:0] PHY Error Count Threshold for Interrupt Generation

15:0 LINK_ERROR_THRESHOLD[15:0] Link Error Count Threshold for Interrupt Generation

LNK_ERROR_COUNT_THRESHOLD Error Count Threshold Register 0xE0033018

b31 b30 b29 b28 b27 b26 b25 b24

PHY_ERROR_THRESHOLD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

LNK_ERROR_COUNT_THRESHOLD Error Count Threshold Register

b23 b22 b21 b20 b19 b18 b17 b16

PHY_ERROR_THRESHOLD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

LNK_ERROR_COUNT_THRESHOLD Error Count Threshold Register

b15 b14 b13 b12 b11 b10 b9 b8

LINK_ERROR_THRESHOLD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

LNK_ERROR_COUNT_THRESHOLD Error Count Threshold Register

b7 b6 b5 b4 b3 b2 b1 b0

LINK_ERROR_THRESHOLD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

492 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.8 LNK_PHY_CONF

USB 3.0 PHY Configuration Register

[PIPE 3.0]

31 RX_TERMINATION_ENABLE PHY Receiver Termination Enable

30 RX_TERMINATION_OVR_VAL PHY Receiver Termination Override Value
0 Removed
1 Present

29 RX_TERMINATION_OVR PHY Receiver Termination Override

1:0 PHY_MODE[1:0] PHY Operation Mode
01 USB Super Speed

LNK_PHY_CONF USB 3.0 PHY Configuration Register 0xE003301C

b31 b30 b29 b28 b27 b26 b25 b24

RX_TERMINATIO
N_ENABLE

RX_TERMINATIO
N_OVR_VAL

RX_TERMINATIO
N_OVR

R/W R/W R/w

R R R

0 0 0

LNK_PHY_CONF USB 3.0 PHY Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_PHY_CONF USB 3.0 PHY Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

LNK_PHY_CONF USB 3.0 PHY Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

PHY_MODE[1:0]

R R

R R

1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 493

10.15.9 LNK_PHY_MPLL_STATUS

USB 3.0 PHY MPLL Status Register

23 REF_CLKREQ_N PHY output signal ref_clkreq_n

22 REF_CLKDIV2 USB 3.0 PHY Input Reference Clock Divider Control

21 REF_SSP_EN USB 3.0 PHY Reference Clock Enable for SSP PHY
Enables the reference clock to the PHY prescaler. This signal must remain deasserted until the refer-
ence clock is stable.

20:13 SSC_REF_CLK_SEL[7:0] Spread Spectrum Reference Clock Shifting

12:11 SSC_RANGE[1:0] Spread Spectrum Clock Range

10 SSC_EN Spread Spectrum Enable

9:3 MPLL_MULTIPLIER[6:0] MPLL Frequency Multiplier Control
Default values (based on clock crystal frequency):
19.2 MHz 0x02
26 MHz 0x60
38.4 MHz 0x41
52 MHz 0x30

LNK_PHY_MPLL_STATUS USB 3.0 PHY MPLL Status Register 0xE003302C

b31 b30 b29 b28 b27 b26 b25 b24

LNK_PHY_MPLL_STATUS USB 3.0 PHY MPLL Status Register

b23 b22 b21 b20 b19 b18 b17 b16

REF_CLKREQ_N REF_CLKDIV2 REF_SSP_EN SSC_REF_CLK_SEL[7:3]

R R R/W R R R R R

R/W R/W R R/W R/W R/W R/W R/W

1 0 0

LNK_PHY_MPLL_STATUS USB 3.0 PHY MPLL Status Register

b15 b14 b13 b12 b11 b10 b9 b8

SSC_REF_CLK_SEL[2:0] SSC_RANGE[1:0] SSC_EN MPLL_MULTIPLIER[6:5]

R R R R/W R/W R/W R R

R/W R/W R/W R R R R/W R/W

0x88 0 0 1 H H

LNK_PHY_MPLL_STATUS USB 3.0 PHY MPLL Status Register

b7 b6 b5 b4 b3 b2 b1 b0

MPLL_MULTIPLIER[4:0]

R R R R R

R/W R/W R/W R/W R/W

H H H H H

Bit Name Description

494 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.10 LNK_PHY_TX_TRIM

USB 3.0 PHY Transmitter Config Register

See Synopsys USB3 SSP PHY Databook

27:21 PCS_TX_SWING_LOW[6:0] TX Amplitude (Low Swing Mode) in 10 mv units

20:14 PCS_TX_SWING_FULL[6:0] TX Amplitude (Full Swing Mode) in 10 mv units

12:7 PCS_TX_DEEMPH_6DB[5:0] TX de-emphasis at 6dB

5:0 PCS_TX_DEEMPH_3P5DB[5:0] TX de-emphasis at 3.5dB

LNK_PHY_TX_TRIM USB 3.0 PHY Transmitter, Config Register 0xE003303C

b31 b30 b29 b28 b27 b26 b25 b24

PCS_TX_SWING_LOW[6:3]

R/w R/w R/w R/w

R R R R

LNK_PHY_TX_TRIM USB 3.0 PHY Transmitter, Config Register

b23 b22 b21 b20 b19 b18 b17 b16

PCS_TX_SWING_LOW[2:0] PCS_TX_SWING_FULL[6:2]

R/w R/w R/w R/w R/w R/w R/w R/w

R R R R R R R R

105

LNK_PHY_TX_TRIM USB 3.0 PHY Transmitter, Config Register

b15 b14 b13 b12 b11 b10 b9 b8

PCS_TX_SWING_FULL[1:0] PCS_TX_DEEMPH_6DB[5:1]

R/w R/w R/W R/W R/W R/W R/W

R R R R R R R

105

LNK_PHY_TX_TRIM USB 3.0 PHY Transmitter, Config Register

b7 b6 b5 b4 b3 b2 b1 b0

PCS_TX_DEEMP
H_6DB[0]

PCS_TX_DEEMPH_3P5DB[5:0]

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

32 21

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 495

10.15.11 LNK_PHY_ERROR_CONF

PHY Error Counter Configuration Register

From RxStatus[2:0] [PIPE, p 22]

Configuration of receive error counter for the USB 3.0 PHY errors. This is for debug purposes.

8 PHY_LOCK_EN Enable Counting of PHY Lock Loss. Lock Indicator To Be Determined

7 TRAINING_ERROR_EN Enable Counting of Training Sequence Error

6 RX_ERROR_CRC32_EN Enable Counting of Receive CRC-32 Error

5 RX_ERROR_CRC16_EN Enable Counting of Receive CRC-16 Error

4 RX_ERROR_CRC5_EN Enable Counting of Receive CRC-5 Error

3 PHY_ERROR_DISPARITY_EN Enable Counting of Receive Disparity Error (RxStatus == 3'b111)

2 PHY_ERROR_EB_UND_EN Enable Counting of Elastic Buffer Underflow (RxStatus == 3'b110)

1 PHY_ERROR_EB_OVR_EN Enable Counting of Elastic Buffer Overflow (RxStatus == 3'b101)

0 PHY_ERROR_DECODE_EN Enable Counting of 8b/10b Decode Errors (RxStatus == 3'b100)

LNK_PHY_ERROR_CONF PHY Error Counter Configuration Register 0xE0033040

b31 b30 b29 b28 b27 b26 b25 b24

LNK_PHY_ERROR_CONF PHY Error Counter Configuration Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_PHY_ERROR_CONF PHY Error Counter Configuration Register

b15 b14 b13 b12 b11 b10 b9 b8

PHY_LOCK_EN

R/W

R

1

LNK_PHY_ERROR_CONF PHY Error Counter Configuration Register

b7 b6 b5 b4 b3 b2 b1 b0

TRAINING_
ERROR_EN

RX_ERROR_
CRC32_EN

RX_ERROR_
CRC16_EN

RX_ERROR_
CRC5_EN

PHY_ERROR_DIS
PARITY_EN

PHY_ERROR_EB
_UND_EN

PHY_ERROR_EB
_OVR_EN

PHY_ERROR_DE
CODE_EN

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 1 1 1 1 1 1 1

Bit Name Description

496 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.12 LNK_PHY_ERROR_STATUS

PHY Error Status Register

Indicates the occurrence of each PHY error type since it was last cleared by firmware.

8 PHY_LOCK_EV Indicates this error (see LNK_PHY_ERROR_CONF for description) occurred since this bit was last
cleared by firmware.

7 TRAINING_ERROR_EV Indicates this error (see LNK_PHY_ERROR_CONF for description) occurred since this bit was last
cleared by firmware.

6 RX_ERROR_CRC32_EV Indicates this error (see LNK_PHY_ERROR_CONF for description) occurred since this bit was last
cleared by firmware.

5 RX_ERROR_CRC16_EV Indicates this error (see LNK_PHY_ERROR_CONF for description) occurred since this bit was last
cleared by firmware.

4 RX_ERROR_CRC5_EV Indicates this error (see LNK_PHY_ERROR_CONF for description) occurred since this bit was last
cleared by firmware.

continued on next page

LNK_PHY_ERROR_STATUS PHY Error Status Register 0xE0033044

b31 b30 b29 b28 b27 b26 b25 b24

LNK_PHY_ERROR_STATUS PHY Error Status Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_PHY_ERROR_STATUS PHY Error Status Register

b15 b14 b13 b12 b11 b10 b9 b8

PHY_LOCK_EV

R/W1C

R/W1S

0

LNK_PHY_ERROR_STATUS PHY Error Status Register

b7 b6 b5 b4 b3 b2 b1 b0

TRAINING_
ERROR_EV

RX_ERROR_
CRC32_EV

RX_ERROR_
CRC16_EV

RX_ERROR_
CRC5_EV

PHY_ERROR_DIS
PARITY_EV

PHY_ERROR_EB
_UND_EV

PHY_ERROR_EB
_OVR_EV

PHY_ERROR_DE
CODE_EV

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 497

10.15.12 LNK_PHY_TEST (continued)

3 PHY_ERROR_DISPARITY_EV Indicates this error (see LNK_PHY_ERROR_CONF for description) occurred since this bit
was last cleared by firmware.

2 PHY_ERROR_EB_UND_EV Indicates this error (see LNK_PHY_ERROR_CONF for description) occurred since this bit
was last cleared by firmware.

1 PHY_ERROR_EB_OVR_EV Indicates this error (see LNK_PHY_ERROR_CONF for description) occurred since this bit
was last cleared by firmware.

0 PHY_ERROR_DECODE_EV Indicates this error (see LNK_PHY_ERROR_CONF for description) occurred since this bit
was last cleared by firmware.

498 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.13 LNK_DEVICE_POWER_CONTROL

USB 3.0 Device Power State Control Register

This register controls the power state change request LCW protocol

31 YES_U2 When host requests transition to U2, automatically accept (send LAU). The interrupt RX_U2 is still
raised for firmware to monitor, take additional power saving actions.

30 YES_U1 When host requests transition to U1, automatically accept (send LAU). The interrupt RX_U1 is still
raised for firmware to monitor, take additional power saving actions.

29 NO_U2 When host requests transition to U2, automatically reject (send LXU). The interrupt RX_U2 is still
raised for firmware to monitor, take additional actions. This bit must be cleared by firmware when
FORCE_PM_ACCEPT is received from host.

28 NO_U1 When host requests transition to U1, automatically reject (send LXU). The interrupt RX_U1 is still
raised for firmware to monitor, take additional actions. This bit must be cleared by firmware when
FORCE_PM_ACCEPT is received from host.

27 AUTO_U2 When host requests transition to U2, automatically accept (send LAU) or rejects (send LXU) depend-
ing on pending activity. The interrupt RX_U2 is still raised for firmware to monitor, take additional
power saving actions.

continued on next page

LNK_DEVICE_POWER_CONTROL USB 3.0 Device Power State Control Register 0xE0033050

b31 b30 b29 b28 b27 b26 b25 b24

YES_U2 YES_U1 NO_U2 NO_U1 AUTO_U2 AUTO_U1

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

LNK_DEVICE_POWER_CONTROL USB 3.0 Device Power State Control Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_DEVICE_POWER_CONTROL USB 3.0 Device Power State Control Register

b15 b14 b13 b12 b11 b10 b9 b8

EXIT_LP TX_LXU

R/W1S R/W1S

R/W0C R/W0C

0 0

LNK_DEVICE_POWER_CONTROL USB 3.0 Device Power State Control Register

b7 b6 b5 b4 b3 b2 b1 b0

TX_LAU RX_U3 RX_U2 RX_U1 TX_U3 TX_U2 TX_U1

R/W1S R R R R/W1S R/W1S R/W1S

R/W0C R/W R/W R/W R/W0C R/W0C R/W0C

0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 499

10.15.13 LNK_DEVICE_POWER_CONTROL (continued)

26 AUTO_U1 When host requests transition to U1, automatically accept (send LAU) or rejects (send LXU) depend-
ing on pending activity. The interrupt RX_U1 is still raised for firmware to monitor, take additional
power saving actions.

9 EXIT_LP Exit Low Power State
This bit is cleared by hardware when the Link Layer has exited U1/U2/U3.

8 TX_LXU Transmit LXU (NAK) in response to RX_U1/RX_U2/RX_U3. Do not transition to requested power
state (LTSSM). This bit is cleared when the acknowledgement is sent.

7 TX_LAU Transmit LAU (ACK) in response to RX_U1/RX_U2/RX_U3. Transition to requested power state
(LTSSM). This bit is cleared when the acknowledgement is sent.

6 RX_U3 LGO_U3 Received - Request to go to U3 Power State, clear to NAK (send LXU). This bit is cleared
by hardware concurrent with TX_LAU/TX_LXU being cleared.
Note that an upstream port is not allowed to reject entry to U3.
[USB 3.0: §7.2.4.2.4, p 7−25]

5 RX_U2 LGO_U2 Received - Request to go to U2 Power State, clear to NAK (send LXU). This bit is cleared
by hardware concurrent with TX_LAU/TX_LXU being cleared.

4 RX_U1 LGO_U1 Received - Request to go to U1 Power State. This bit is cleared by hardware concurrent
with TX_LAU/TX_LXU being cleared.

2 TX_U3 Transmit LGO_U3 - Request to go to U3 Power State (send LGO_U3). This bit is cleared by hard-
ware when the LCW is transmitted.
Note that an upstream port is not allowed to initiate entry to U3, so this should not be used for device
mode.
[USB 3.0: §7.2.4.2.4, p 7−25]

1 TX_U2 Transmit LGO_U2 - Request to go to U2 Power State (send LGO_U2). This bit is cleared by hard-
ware when the LCW is transmitted.

0 TX_U1 Transmit LGO_U1 - Request to go to U1 Power State (send LGO_U1). This bit is cleared by hard-
ware when the LCW is transmitted.

500 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.14 LNK_LTSSM_STATE

Link Training Status State Machine (LTSSM) State Register

USB 3.0 interface link layer state control and status

5:0 LTSSM_STATE[5:0] LTSSM State. See USBLNK_LTSSM Tab in USB-RegMap.xls for more details.

LNK_LTSSM_STATE Link Training Status State Machine (LTSSM) State Register 0xE0033054

b31 b30 b29 b28 b27 b26 b25 b24

LNK_LTSSM_STATE Link Training Status State Machine (LTSSM) State Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_LTSSM_STATE Link Training Status State Machine (LTSSM) State Register

b15 b14 b13 b12 b11 b10 b9 b8

LNK_LTSSM_STATE Link Training Status State Machine (LTSSM) State Register

b7 b6 b5 b4 b3 b2 b1 b0

LTSSM_STATE[5:0]

R R R R R R

R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 501

10.15.15 LNK_LFPS_OBSERVE

LFPS Receiver Observability Register

Debug register for observability of detected LFPS sequences.

23:20 POLLING_LFPS_SENT[3:0] Number of LFPS Polling Bursts Sent since last Polling.LFPS entry

19:16 POLLING_LFPS_RCVD[3:0] Number of LFPS Polling Bursts Received since last Polling.LFPS entry

6 LOOPBACK_DET LFPS Sequence detected since last cleared by CPU

5 U3_EXIT_DET LFPS Sequence detected since last cleared by CPU

4 U2_EXIT_DET LFPS Sequence detected since last cleared by CPU

3 U1_EXIT_DET LFPS Sequence detected since last cleared by CPU

2 RESET_DET LFPS Sequence detected since last cleared by CPU

1 PING_DET LFPS Sequence detected since last cleared by CPU

0 POLLING_DET LFPS Sequence detected since last cleared by CPU

LNK_LFPS_OBSERVE LFPS Receiver Observability Register 0xE0033064

b31 b30 b29 b28 b27 b26 b25 b24

LNK_LFPS_OBSERVE LFPS Receiver Observability Register

b23 b22 b21 b20 b19 b18 b17 b16

POLLING_LFPS_SENT[3:0] POLLING_LFPS_RCVD[3:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

LNK_LFPS_OBSERVE LFPS Receiver Observability Register

b15 b14 b13 b12 b11 b10 b9 b8

LNK_LFPS_OBSERVE LFPS Receiver Observability Register

b7 b6 b5 b4 b3 b2 b1 b0

LOOPBACK_DET U3_EXIT_DET U2_EXIT_DET U1_EXIT_DET RESET_DET PING_DET POLLING_DET

R/W0C R/W0C R/W0C R/W0C R/W0C R/W0C R/W0C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0

Bit Name Description

502 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.16 LNK_COMPLIANCE_PATTERN_0

Compliance Pattern CP0 Register

This register determines the behavior of the FX3 device when sending any of the USB 3.0 compliance patterns. The default
value of this register corresponds to compliance pattern 0.

12 TXONESZEROS Enable TXONESZEROS (PIPE PHY Transmit Signal)

11 LFPS LFPS On/Off

10 DEEMPHASIS De-emphasis On/Off

9 SCRAMBLED Scramble On/Off

8 K_D Symbol Type
0 Data (D)
1 Symbol (K)

7:0 CP[7:0] Compliance Pattern

LNK_COMPLIANCE_PATTERN_0 Compliance Pattern CP0 Register 0xE0033138

b31 b30 b29 b28 b27 b26 b25 b24

LNK_COMPLIANCE_PATTERN_0 Compliance Pattern CP0 Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_COMPLIANCE_PATTERN_0 Compliance Pattern CP0 Register

b15 b14 b13 b12 b11 b10 b9 b8

TXONESZEROS LFPS DEEMPHASIS SCRAMBLED K_D

R/W R/W R/W R/W R/W

R R R R R

0 0 1 1 0

LNK_COMPLIANCE_PATTERN_0 Compliance Pattern CP0 Register

b7 b6 b5 b4 b3 b2 b1 b0

CP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x00

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 503

10.15.17 LNK_COMPLIANCE_PATTERN_1

Compliance Pattern CP1 Register

USB 3.0 PHY configuration values for compliance pattern 1.

12 TXONESZEROS Enable TXONESZEROS (PIPE PHY Transmit Signal)

11 LFPS LFPS On/Off

10 DEEMPHASIS De-emphasis On/Off

9 SCRAMBLED Scramble On/Off

8 K_D Symbol Type
0 Data (D)
1 Symbol (K)

7:0 CP[7:0] Compliance Pattern

LNK_COMPLIANCE_PATTERN_1 Compliance Pattern CP1 Register 0xE003313C

b31 b30 b29 b28 b27 b26 b25 b24

LNK_COMPLIANCE_PATTERN_1 Compliance Pattern CP1 Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_COMPLIANCE_PATTERN_1 Compliance Pattern CP1 Register

b15 b14 b13 b12 b11 b10 b9 b8

TXONESZEROS LFPS DEEMPHASIS SCRAMBLED K_D

R/W R/W R/W R/W R/W

R R R R R

0 0 1 0 0

LNK_COMPLIANCE_PATTERN_1 Compliance Pattern CP1 Register

b7 b6 b5 b4 b3 b2 b1 b0

CP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x4A

Bit Name Description

504 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.18 LNK_COMPLIANCE_PATTERN_2

Compliance Pattern CP2 Register

USB 3.0 PHY configuration values for compliance pattern 2.

12 TXONESZEROS Enable TXONESZEROS (PIPE PHY Transmit Signal)

11 LFPS LFPS On/Off

10 DEEMPHASIS De-emphasis On/Off

9 SCRAMBLED Scramble On/Off

8 K_D Symbol Type
0 Data (D)
1 Symbol (K)

7:0 CP[7:0] Compliance Pattern

LNK_COMPLIANCE_PATTERN_2 Compliance Pattern CP2 Register 0xE0033140

b31 b30 b29 b28 b27 b26 b25 b24

LNK_COMPLIANCE_PATTERN_2 Compliance Pattern CP2 Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_COMPLIANCE_PATTERN_2 Compliance Pattern CP2 Register

b15 b14 b13 b12 b11 b10 b9 b8

TXONESZEROS LFPS DEEMPHASIS SCRAMBLED K_D

R/W R/W R/W R/W R/W

R R R R R

0 0 1 0 0

LNK_COMPLIANCE_PATTERN_2 Compliance Pattern CP2 Register

b7 b6 b5 b4 b3 b2 b1 b0

CP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x78

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 505

10.15.19 LNK_COMPLIANCE_PATTERN_3

Compliance Pattern CP3 Register

USB 3.0 PHY configuration values for compliance pattern 3.

12 TXONESZEROS Enable TXONESZEROS (PIPE PHY Transmit Signal)

11 LFPS LFPS On/Off

10 DEEMPHASIS De-emphasis On/Off

9 SCRAMBLED Scramble On/Off

8 K_D Symbol Type
0 Data (D)
1 Symbol (K)

7:0 CP[7:0] Compliance Pattern

LNK_COMPLIANCE_PATTERN_3 Compliance Pattern CP3 Register 0xE0033144

b31 b30 b29 b28 b27 b26 b25 b24

LNK_COMPLIANCE_PATTERN_3 Compliance Pattern CP3 Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_COMPLIANCE_PATTERN_3 Compliance Pattern CP3 Register

b15 b14 b13 b12 b11 b10 b9 b8

TXONESZEROS LFPS DEEMPHASIS SCRAMBLED K_D

R/W R/W R/W R/W R/W

R R R R R

0 0 1 0 1

LNK_COMPLIANCE_PATTERN_3 Compliance Pattern CP3 Register

b7 b6 b5 b4 b3 b2 b1 b0

CP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xBC

Bit Name Description

506 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.20 LNK_COMPLIANCE_PATTERN_4

Compliance Pattern CP4 Register

USB 3.0 PHY configuration values for compliance pattern 4.

12 TXONESZEROS Enable TXONESZEROS (PIPE PHY Transmit Signal)

11 LFPS LFPS On/Off

10 DEEMPHASIS De-emphasis On/Off

9 SCRAMBLED Scramble On/Off

8 K_D Symbol Type
0 Data (D)
1 Symbol (K)

7:0 CP[7:0] Compliance Pattern

LNK_COMPLIANCE_PATTERN_4 Compliance Pattern CP4 Register 0xE0033148

b31 b30 b29 b28 b27 b26 b25 b24

LNK_COMPLIANCE_PATTERN_4 Compliance Pattern CP4 Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_COMPLIANCE_PATTERN_4 Compliance Pattern CP4 Register

b15 b14 b13 b12 b11 b10 b9 b8

TXONESZEROS LFPS DEEMPHASIS SCRAMBLED K_D

R/W R/W R/W R/W R/W

R R R R R

0 1 1 0 0

LNK_COMPLIANCE_PATTERN_4 Compliance Pattern CP4 Register

b7 b6 b5 b4 b3 b2 b1 b0

CP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x00

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 507

10.15.21 LNK_COMPLIANCE_PATTERN_5

Compliance Pattern CP5 Register

USB 3.0 PHY configuration values for compliance pattern 5.

12 TXONESZEROS Enable TXONESZEROS (PIPE PHY Transmit Signal)

11 LFPS LFPS On/Off

10 DEEMPHASIS De-emphasis On/Off

9 SCRAMBLED Scramble On/Off

8 K_D Symbol Type
0 Data (D)
1 Symbol (K)

7:0 CP[7:0] Compliance Pattern

LNK_COMPLIANCE_PATTERN_5 Compliance Pattern CP5 Register 0xE003314C

b31 b30 b29 b28 b27 b26 b25 b24

LNK_COMPLIANCE_PATTERN_5 Compliance Pattern CP5 Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_COMPLIANCE_PATTERN_5 Compliance Pattern CP5 Register

b15 b14 b13 b12 b11 b10 b9 b8

TXONESZEROS LFPS DEEMPHASIS SCRAMBLED K_D

R/W R/W R/W R/W R/W

R R R R R

0 0 1 0 1

LNK_COMPLIANCE_PATTERN_5 Compliance Pattern CP5 Register

b7 b6 b5 b4 b3 b2 b1 b0

CP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFC

Bit Name Description

508 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.22 LNK_COMPLIANCE_PATTERN_6

Compliance Pattern CP6 Register

USB 3.0 PHY configuration values for compliance pattern 6.

12 TXONESZEROS Enable TXONESZEROS (PIPE PHY Transmit Signal)

11 LFPS LFPS On/Off

10 DEEMPHASIS De-emphasis On/Off

9 SCRAMBLED Scramble On/Off

8 K_D Symbol Type
0 Data (D)
1 Symbol (K)

7:0 CP[7:0] Compliance Pattern

LNK_COMPLIANCE_PATTERN_6 Compliance Pattern CP6 Register 0xE0033150

b31 b30 b29 b28 b27 b26 b25 b24

LNK_COMPLIANCE_PATTERN_6 Compliance Pattern CP6 Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_COMPLIANCE_PATTERN_6 Compliance Pattern CP6 Register

b15 b14 b13 b12 b11 b10 b9 b8

TXONESZEROS LFPS DEEMPHASIS SCRAMBLED K_D

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 1

LNK_COMPLIANCE_PATTERN_6 Compliance Pattern CP6 Register

b7 b6 b5 b4 b3 b2 b1 b0

CP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFC

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 509

10.15.23 LNK_COMPLIANCE_PATTERN_7

Compliance Pattern CP7 Register

USB 3.0 PHY configuration values for compliance pattern 7.

12 TXONESZEROS Enable TXONESZEROS (PIPE PHY Transmit Signal)

11 LFPS LFPS On/Off

10 DEEMPHASIS De-emphasis On/Off

9 SCRAMBLED Scramble On/Off

8 K_D Symbol Type
0 Data (D)
1 Symbol (K)

7:0 CP[7:0] Compliance Pattern

LNK_COMPLIANCE_PATTERN_7 Compliance Pattern CP7 Register 0xE0033154

b31 b30 b29 b28 b27 b26 b25 b24

LNK_COMPLIANCE_PATTERN_7 Compliance Pattern CP7 Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_COMPLIANCE_PATTERN_7 Compliance Pattern CP7 Register

b15 b14 b13 b12 b11 b10 b9 b8

TXONESZEROS LFPS DEEMPHASIS SCRAMBLED K_D

R/W R/W R/W R/W R/W

R R R R R

1 0 1 0 0

LNK_COMPLIANCE_PATTERN_7 Compliance Pattern CP7 Register

b7 b6 b5 b4 b3 b2 b1 b0

CP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x00

Bit Name Description

510 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.15.24 LNK_COMPLIANCE_PATTERN_8

Compliance Pattern CP8 Register

USB 3.0 PHY configuration values for compliance pattern 8.

12 TXONESZEROS Enable TXONESZEROS (PIPE PHY Transmit Signal)

11 LFPS LFPS On/Off

10 DEEMPHASIS De-emphasis On/Off

9 SCRAMBLED Scramble On/Off

8 K_D Symbol Type
0 Data (D)
1 Symbol (K)

7:0 CP[7:0] Compliance Pattern

LNK_COMPLIANCE_PATTERN_8 Compliance Pattern CP8 Register 0xE0033158

b31 b30 b29 b28 b27 b26 b25 b24

LNK_COMPLIANCE_PATTERN_8 Compliance Pattern CP8 Register

b23 b22 b21 b20 b19 b18 b17 b16

LNK_COMPLIANCE_PATTERN_8 Compliance Pattern CP8 Register

b15 b14 b13 b12 b11 b10 b9 b8

TXONESZEROS LFPS DEEMPHASIS SCRAMBLED K_D

R/W R/W R/W R/W R/W

R R R R R

1 0 0 0 0

LNK_COMPLIANCE_PATTERN_8 Compliance Pattern CP8 Register

b7 b6 b5 b4 b3 b2 b1 b0

CP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x00

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 511

10.16 USB3 Protocol Layer Registers

10.16.1 PROT_CS

Protocol Layer Control and Status Register

NRDYALL can be used to temporarily NRDY all transactions on the bus while modifying the EP configuration registers.

SETUP_CLR_BUSY Is used by firmware to process the setup token/data.

31:27 MULT_TIMER[4:0] This timer indicates how long protocol should wait for data (MULT is enabled) to be available by EPM
before terminating a burst.
Protocol will multiply the value programmed by 4.

26 DISABLE_IDLE_DET This bit will control the idle detection logic in the protocol.
0 Logic is not disabled.
1 Logic is disabled.

25 SEQ_NUM_CONFIG This bit indicates if the seq numbers are EP based or Stream ID (Socket) based
0 EP based
1 Stream ID (Socket) based

continued on next page

PROT_CS Protocol Layer Control and Status Register 0xE0033400

b31 b30 b29 b28 b27 b26 b25 b24

MULT_TIMER[4:0]
DISABLE_IDLE_

DET
SEQ_NUM_

CONFIG
PROT_HOST_RE

SET_RESP

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0x18 0 0 0

PROT_CS Protocol Layer Control and Status Register

b23 b22 b21 b20 b19 b18 b17 b16

TP_THRESHOLD[5:0] NRDY_ALL
SETUP_CLR_

BUSY

R/W R/W R/W R/W R/W R/W R/W R/W1C

R R R R R R R R/W1S

58 0 0

PROT_CS Protocol Layer Control and Status Register

b15 b14 b13 b12 b11 b10 b9 b8

PROT_CS Protocol Layer Control and Status Register

b7 b6 b5 b4 b3 b2 b1 b0

DEVICEADDR[6:0]

R R R R R R R

R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0

Bit Name Description

512 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.1 PROT_CS (continued)

24 PROT_HOST_RESET_RESP This bit is used to inform the protocol of what the response to incoming TP/DPH should be after
warm/host reset. This register will be used by Protocol until the LINK_INTR.LTSSM_RESET is
cleared by CPU.
0 Issue NRDY
1 Ignore TP

23:18 TP_THRESHOLD[5:0] Ingress TP response transmit buffer threshold for almost full flag. When buffer contains
TP_THRESHOLD items or more, controller will stop issuing credits to host. This field must be larger
than 0. The transmit buffer can hold up to 64 responses.

17 NRDY_ALL Set this bit to ‘1’, the hardware will send NRDY all transfers from the host in all endpoint1-31.

16 SETUP_CLR_BUSY Allow device to ACK SETUP status phase packets

6:0 DEVICEADDR[6:0] During the USB enumeration process, the host sends a device a unique 7-bit address, which the USB
core copies into this register. The USB Core will automatically respond only to its assigned address.
During the USB RESET, this register will be cleared to zero.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 513

10.16.2 PROT_INTR

Protocol Layer Interrupt Register

Contains the miscellaneous (not endpoint related) interrupts causes from the Protocol Layer.

15 SET_ADDR0_EV Device sets this interrupt when it receives a set address 0 command.

14 EP0_STALLED_EV Device sets this interrupt based on the following conditions:
1: When Host sends more data than it is suppose to in ingress.
2: When Device sends more data that it suppose to in egress.
3: During STATUS Stage, host sends/asks to/for data from device.
Device will come out of stall condition when it receives a valid SETUP(SUTOK_EV interrupt
will be generated).

13 LMP_INVALID_PORT_CFG_EV Set whenever a LMP port configuration is received but the Link Speed is not ‘1’.

12 LMP_INVALID_PORT_CAP_EV Set whenever a LMP port capability is received but the Link Speed is not ‘1’ or Num HP buf-
fer is not ‘4’ or bit zero of the Direction is not ‘1’.

11 STATUS_STAGE Set when host completes Status Stage of a Control Transfer

continued on next page

PROT_INTR Protocol Layer Interrupt Register 0xE0033404

b31 b30 b29 b28 b27 b26 b25 b24

PROT_INTR Protocol Layer Interrupt Register

b23 b22 b21 b20 b19 b18 b17 b16

PROT_INTR Protocol Layer Interrupt Register

b15 b14 b13 b12 b11 b10 b9 b8

SET_ADDR0_EV
EP0_STALLED_

EV
LMP_INVALID_
PORT_CFG_EV

LMP_INVALID_
PORT_CAP_EV

STATUS_STAGE HOST_ERR_EV SUTOK_EV ITP_EV

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

PROT_INTR Protocol Layer Interrupt Register

b7 b6 b5 b4 b3 b2 b1 b0

TIMEOUT_HOST_
ACK_EV

TIMEOUT_PING_
EV

TIMEOUT_PORT_
CFG_EV

TIMEOUT_PORT_
CAP_EV

LMP_PORT_CFG
_EV

LMP_PORT_CAP
_EV

LMP_UNKNOWN_
EV

LMP_RCV_EV

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

514 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.2 PROT_INTR (continued)

10 HOST_ERR_EV Set whenever an ACK TP is received with HE=1
[USB 3.0: section 8.5.1, Table 8-12, p 8-13]

9 SUTOK_EV Set whenever a (valid of invalid) SETUP DPP is received that is not a set_address. The
set_address DPP is handled entirely in hardware and does not require any firmware inter-
vention.

8 ITP_EV Set whenever an ITP(SOF) occurs

7 TIMEOUT_HOST_ACK_EV The Host Ack Response Timer expired

6 TIMEOUT_PING_EV The Ping Timer expired

5 TIMEOUT_PORT_CFG_EV The Port ConfiguratIon LMP Timer expired

4 TIMEOUT_PORT_CAP_EV The Port Capabilities LMP Timer expired

3 LMP_PORT_CFG_EV A Port Configuration LMP was received. A response may have been sent automatically
depending on settings for PROT_LMP_PORT_CONFIGURATION_TIMER.

2 LMP_PORT_CAP_EV A Port Capabilities LMP was received. A response may have been sent automatically
depending on settings for PROT_LMP_PORT_CAPABILITIES_TIMER.

1 LMP_UNKNOWN_EV An unkNown LMP was received and placed in PROT_LMP_PACKET_RX. The LMP was
not recognized and no response LMP was sent back.

0 LMP_RCV_EV A LMP was received and placed in PROT_LMP_PACKET_RX. The LMP may have been
recognized and processed as well (leading to other interrupts in this register).

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 515

10.16.3 PROT_INTR_MASK

Protocol Interrupts Mask Register

Controls whether protocol layer interrupts are reported to the CPU.

15 SET_ADDR0_EN 1 Report interrupt to CPU

14 EP0_STALLED_EN 1 Report interrupt to CPU

13 LMP_INVALID_PORT_CFG_EN 1 Report interrupt to CPU

12 LMP_INVALID_PORT_CAP_EN 1 Report interrupt to CPU

11 STATUS_STAGE 1 Report interrupt to CPU

10 HOST_ERR_EN 1 Report interrupt to CPU

9 SUTOK_EN 1 Report interrupt to CPU

8 ITP_EN 1 Report interrupt to CPU

continued on next page

PROT_INTR_MASK Protocol Interrupts Mask Register 0xE0033408

b31 b30 b29 b28 b27 b26 b25 b24

PROT_INTR_MASK Protocol Interrupts Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

PROT_INTR_MASK Protocol Interrupts Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

SET_ADDR0_EN
EP0_STALLED_

EN
LMP_INVALID_
PORT_CFG_EN

LMP_INVALID_
PORT_CAP_EN

STATUS_STAGE HOST_ERR_EN SUTOK_EN ITP_EN

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PROT_INTR_MASK Protocol Interrupts Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

TIMEOUT_HOST_
ACK_EN

TIMEOUT_PING_
EN

TIMEOUT_PORT_
CFG_EN

TIMEOUT_PORT_
CAP_EN

LMP_PORT_CFG
_EN

LMP_PORT_CAP
_EN

LMP_UNKNOWN_
EN

LMP_RCV_EN

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

516 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.3 PROT_INTR (continued)

7 TIMEOUT_HOST_ACK_EN 1 Report interrupt to CPU

6 TIMEOUT_PING_EN 1 Report interrupt to CPU

5 TIMEOUT_PORT_CFG_EN 1 Report interrupt to CPU

4 TIMEOUT_PORT_CAP_EN 1 Report interrupt to CPU

3 LMP_PORT_CFG_EN 1 Report interrupt to CPU

2 LMP_PORT_CAP_EN 1 Report interrupt to CPU

1 LMP_UNKNOWN_EN 1 Report interrupt to CPU

0 LMP_RCV_EN 1 Report interrupt to CPU

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 517

10.16.4 PROT_FRAMECNT

Frame Counter Register

Provides micro-frame number received from host in ITP packets.

26:14 DELTA[12:0] The delta value in the last ITP received

13:0 SS_MICROFRAME[13:0] MICROFRAME counter which indicates which of the 8 125-microsecond micro-frames last occurred.
This is based on ITPs received from Host

PROT_FRAMECNT Frame Counter Register 0xE0033428

b31 b30 b29 b28 b27 b26 b25 b24

DELTA[12:10]

R R R

R/W R/W R/W

0 0 0

PROT_FRAMECNT Frame Counter Register

b23 b22 b21 b20 b19 b18 b17 b16

DELTA[9:2]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_FRAMECNT Frame Counter Register

b15 b14 b13 b12 b11 b10 b9 b8

DELTA[1:0] SS_MICROFRAME[13:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_FRAMECNT Frame Counter Register

b7 b6 b5 b4 b3 b2 b1 b0

SS_MICROFRAME[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

518 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.5 PROT_ITP_TIME

ITP Time Free Running Counter Register

This register contains a free running counter running at 125MHz (spread clock) and is used for the PROT_ITP_TIMESTAMP
time stamps.

23:0 COUNTER24[23:0] Current counter value.

PROT_ITP_TIME ITP Time Free Running Counter 0xE0033430

b31 b30 b29 b28 b27 b26 b25 b24

PROT_ITP_TIME ITP Time Free Running Counter

b23 b22 b21 b20 b19 b18 b17 b16

COUNTER24[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

H H H H H H H H

PROT_ITP_TIME ITP Time Free Running Counter

b15 b14 b13 b12 b11 b10 b9 b8

COUNTER24[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

H H H H H H H H

PROT_ITP_TIME ITP Time Free Running Counter

b7 b6 b5 b4 b3 b2 b1 b0

COUNTER24[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

H H H H H H H H

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 519

10.16.6 PROT_ITP_TIMESTAMP

ITP Time Stamp Register

This register contains a time-stamp of the last ITP received that can be used to calculate BIA messages when needed.

31:24 MICROFRAME_LSB[7:0] LSBs of MICROFRAME field of ITP when timestamp was taken.

23:0 TIMESTAMP[23:0] Timestamp from a free running counter at 125MHz of the last ITP reception.

PROT_ITP_TIMESTAMP ITP Time Stamp Register 0xE0033434

b31 b30 b29 b28 b27 b26 b25 b24

MICROFRAME_LSB[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_ITP_TIMESTAMP ITP Time Stamp Register

b23 b22 b21 b20 b19 b18 b17 b16

TIMESTAMP[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_ITP_TIMESTAMP ITP Time Stamp Register

b15 b14 b13 b12 b11 b10 b9 b8

TIMESTAMP[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_ITP_TIMESTAMP ITP Time Stamp Register

b7 b6 b5 b4 b3 b2 b1 b0

TIMESTAMP[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

520 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.7 PROT_SETUP_DAT

Received SETUP Packet Data Register

continued on next page

PROT_SETUP_DAT Received SETUP Packet Data Register 0xE0033438

b63 b62 b61 b60 b59 b58 b57 b56

SETUP_LENGTH[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_SETUP_DAT Received SETUP Packet Data Register

b55 b54 b53 b52 b51 b50 b49 b48

SETUP_LENGTH[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_SETUP_DAT Received SETUP Packet Data Register

b47 b46 b45 b44 b43 b42 b41 b40

SETUP_INDEX[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_SETUP_DAT Received SETUP Packet Data Register

b39 b38 b37 b36 b35 b34 b33 b32

SETUP_INDEX[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PROT_SETUP_DAT Received SETUP Packet Data Register

b31 b30 b29 b28 b27 b26 b25 b24

SETUP_VALUE[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_SETUP_DAT Received SETUP Packet Data Register

b23 b22 b21 b20 b19 b18 b17 b16

SETUP_VALUE[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_SETUP_DAT Received SETUP Packet Data Register

b15 b14 b13 b12 b11 b10 b9 b8

SETUP_REQUEST[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 521

10.16.7 PROT_SETUP_DAT (continued)

8-byte (2-long word) Storage for USB SETUP data received on EP0

63:48 SETUP_LENGTH[15:0] Setup data field

47:32 SETUP_INDEX[15:0] Setup data field

31:16 SETUP_VALUE[15:0] Setup data field

15:8 SETUP_REQUEST[7:0] Setup data field

7:0 SETUP_REQUEST_TYPE[7:0] Setup data field

PROT_SETUP_DAT Received SETUP Packet Data Register

b7 b6 b5 b4 b3 b2 b1 b0

SETUP_REQUEST_TYPE[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

522 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.8 PROT_SEQ_NUM

Sequence Number Register

At power-up and USB Reset all the endpoints data toggle will reset to ‘0’. In general, hardware maintains all the data toggle
bits, which are toggled between data packet transfers. The firmware might need to reset or set data toggle bit only following
conditions:

■ After a configuration changes (i.e., after the host issues a Set Configuration request).

■ After an interface’s alternate setting changes (i.e., after the host issues a Set Interface request).

■ After the host sends a Clear Feature - Endpoint Stall request to an endpoint.

Warm Reset

Hot Reset

Set Address 0

Disconnect

To read the sequence number field:

1. Software should poll for SEQ_VALID to be 1

2. Software must first write ENDPOINT and DIR field, and then set the COMMAND to 0 and write 0 to SEQ_VALID to initiate
the read operation.

3. Then software should poll for SEQ_VALID to go 1 to and that will return the End-point’s sequence numbers.

To write the sequence number field:

1. Software should poll for SEQ_VALID to be 1

PROT_SEQ_NUM Sequence Number 0xE0033440

b31 b30 b29 b28 b27 b26 b25 b24

SEQ_VALID COMMAND

R/W0C R/W

R/W1S R

1 0

PROT_SEQ_NUM Sequence Number

b23 b22 b21 b20 b19 b18 b17 b16

LAST_COMMITTED[4:0]

R R R R R

R/W R/W R/W R/W R/W

0 0 0 0 0

PROT_SEQ_NUM Sequence Number

b15 b14 b13 b12 b11 b10 b9 b8

SEQUENCE_NUMBER[4:0]

R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W

0 0 0 0 0

PROT_SEQ_NUM Sequence Number

b7 b6 b5 b4 b3 b2 b1 b0

DIR ENDPOINT[3:0]

R/W R/W R/W R/W R/W

R R R R R

0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 523

2. Software must first write ENDPOINT and DIR field, write the SEQ_NUMBER, set the COMMAND to 1 and write 0 to
SEQ_VALID to initiate the write operation.

3. Then software should poll for SEQ_VALID to go 1 to confirm that write has taken place.

31 SEQ_VALID Set by hardware when read/write operation has completed. Must be cleared by software to initiate a
read/write operation.

30 COMMAND 0 Read
1 Write

20:16 LAST_COMMITTED[4:0] Sequence number of last packet that was transmitted (can be higher than SEQUENCE NUMBER).
Returned as part of a read operation.

12:8 SEQUENCE_NUMBER[4:0] Packet sequence number of next packet to receive/transmit. Set by hardware if COMMAND=0, set by
software when COMMAND=1.

4 DIR 0 OUT
1 IN

3:0 ENDPOINT[3:0] Endpoint Number

Bit Name Description

524 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.9 PROT_EP_INTR

Endpoint Interrupt Register

USB Endpoint 0-31 interrupt request register. This is a intermediate register in the UIB interrupt hierarchy. Interrupts are
cleared by clearing the respective cause bits in EPI_CS/EPO_CS registers.

31:16 EP_OUT[15:0] Bit <16+x> indicates an interrupt from EPO_CS[x]

15:0 EP_IN[15:0] Bit <x> indicates an interrupt from EPI_CS[x]

PROT_EP_INTR Endpoint Interrupts 0xE0033474

b31 b30 b29 b28 b27 b26 b25 b24

EP_OUT[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_EP_INTR Endpoint Interrupts

b23 b22 b21 b20 b19 b18 b17 b16

EP_OUT[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_EP_INTR Endpoint Interrupts

b15 b14 b13 b12 b11 b10 b9 b8

EP_IN[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_EP_INTR Endpoint Interrupts

b7 b6 b5 b4 b3 b2 b1 b0

EP_IN[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 525

10.16.10 PROT_EP_INTR_MASK

Endpoint Interrupt Mask Register

Per endpoint masking of interrupt reporting.

31:16 EP_OUT[15:0] Bit <16+x> masks any interrupt from EPO_CS[x]

15:0 EP_IN[15:0] Bit <x> masks any interrupt from EPI_CS[x]

PROT_EP_INTR_MASK Endpoint Interrupt Mask 0xE0033478

b31 b30 b29 b28 b27 b26 b25 b24

EP_OUT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PROT_EP_INTR_MASK Endpoint Interrupt Mask

b23 b22 b21 b20 b19 b18 b17 b16

EP_OUT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PROT_EP_INTR_MASK Endpoint Interrupt Mask

b15 b14 b13 b12 b11 b10 b9 b8

EP_IN[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PROT_EP_INTR_MASK Endpoint Interrupt Mask

b7 b6 b5 b4 b3 b2 b1 b0

EP_IN[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

526 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.11 PROT_EPI_CS1

SuperSpeed IN Endpoint Control and Status Register

There are 16 PROT_EPI_CS1 registers. The address of each is calculated as PROT_EPI_CS1(x) = 0xE0033500 + (x*0x4).
Hence PROT_EPI_CS1(0) is at address 0xE0033500, PROT_EPI_CS1(1) is at address 0xE0033500 + 0x4 and so on. The
definition of each of these is the same.

Endpoint IN Control and Status:

■ Setup USB Package buffering, ISO/BULK/INT, IN/OUT and enable/disable endpoint

■ Power up default the payload is 64-byte (Max payload count for Full Speed). In High Speed the payload can be up to 512
for BULK and 1024 for ISO

29 FIRST_ACK_NUMP_0_MASK Interrupt mask for FIRST_ACK_NUMP_0 bit

28 STREAM_ERROR_MASK Interrupt mask for STREAM_ERROR bit

27 DBTERM_MASK Interrupt mask for DBTERM bit

26 HBTERM_MASK Interrupt mask for HBTERM bit

25 OOSERR_MASK Interrupt mask for OOSERR bit

continued on next page

PROT_EPI_CS1 SuperSpeed IN Endpoint Control and Status 0xE0033500

b31 b30 b29 b28 b27 b26 b25 b24

FIRST_ACK_
NUMP_0_MASK

STREAM_ERROR
_MASK

DBTERM_MASK HBTERM_MASK OOSERR_MASK SHORT_MASK

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

PROT_EPI_CS1 SuperSpeed IN Endpoint Control and Status

b23 b22 b21 b20 b19 b18 b17 b16

ZERO_MASK
STREAMNRDY_

MASK
FLOWCONTROL_

MASK
RETRY_MASK COMMIT_MASK

FIRST_ACK_
NUMP_0

STREAM_ERROR DBTERM

R/W R/W R/W R/W R/W R/W1C R/W1C R/W1C

R R R R R R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

PROT_EPI_CS1 SuperSpeed IN Endpoint Control and Status

b15 b14 b13 b12 b11 b10 b9 b8

HBTERM OOSERR SHORT ZERO STREAMNRDY FLOWCONTROL RETRY COMMIT

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

PROT_EPI_CS1 SuperSpeed IN Endpoint Control and Status

b7 b6 b5 b4 b3 b2 b1 b0

STREAM_ERROR
_STALL_EN

EP_RESET STREAM_EN STALL NRDY VALID

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 527

10.16.11 PROT_EPI_CS1 (continued)

24 SHORT_MASK Interrupt mask for SHORT bit

23 ZERO_MASK Interrupt mask for ZERO bit

22 STREAMNRDY_MASK Interrupt mask for STREAMNRDY bit

21 FLOWCONTROL_MASK Interrupt mask for FLOWCONTROL bit

20 RETRY_MASK Interrupt mask for RETRY bit

19 COMMIT_MASK Interrupt mask for COMMIT bit

18 FIRST_ACK_NUMP_0 The NumP for the first ACK is zero.

17 STREAM_ERROR Stream Error occurred.

16 DBTERM The Burst was terminated by the device when the MULT_TIMER expires.

15 HBTERM The Burst Was terminated by the host.

14 OOSERR Out Of Sequence Error. Anytime an ACK is received with unexpected sequence number
request, the ACK will be dropped and intr will be raised

13 SHORT Indicates a shorter-than-maxsize packet was received, but UIB_EPI_XFER_CNT did not
reach 0).

12 ZERO Indicates a zero length packet was returned to the host in an IN transaction. Must be
cleared by software.

11 STREAMNRDY Nrdy was sent for a bulk stream request because of EP-stream not present in the mapper.

10 FLOWCONTROL EP in flow control due to EPM not being available.

9 RETRY Whenever the USB3.0 does a retry it will asserts this interrupt.

8 COMMIT Set whenever an IN token was ACKed by the host.

5 STREAM_ERROR_STALL_EN Issue STALL whenever Stream error occurs.

4 EP_RESET Per End Point Reset.

3 STREAM_EN Enables bulk stream protocol handling for this EP

2 STALL Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

1 NRDY Setting this bit causes NRDY on IN transactions.

0 VALID Set VALID=1 to activate an endpoint, and VALID=0 to de-activate it. All USB endpoints
default to invalid. An endpoint whose VALID bit is 0 does not respond to any USB traffic.

528 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.12 PROT_EPI_CS2

SuperSpeed IN Endpoint Control and Status Register

There are 16 PROT_EPI_CS2 registers. The address of each is calculated as PROT_EPI_CS2(x) = 0xE0033540 + (x*0x4).
Hence PROT_EPI_CS2(0) is at address 0xE0033540, PROT_EPI_CS2(1) is at address 0xE0033540 + 0x4 and so on. The
definition of each of these is the same.

Endpoint IN Control and Status:

■ Setup USB Package buffering, ISO/BULK/INT, IN/OUT and enable/disable endpoint

■ Power up default the payload is 64-byte (Max payload count for Full Speed). In High Speed the payload can be up to 512
for BULK and 1024 for ISO

16:12 BTERM_NUMP[4:0] Number of packets that need to be cleaned up by CPU whenever there is a BTERM interrupt.

11:8 MAXBURST[3:0] Maximum number of packets the endpoint can send.

7:2 ISOINPKS[5:0] Number of packets to be sent per service interval. Maximum can be 48 (Max burst size* Mult field)

1:0 TYPE[1:0] Endpoint type (EP0 supports CONTROL only)
0 ISO
1 INT
2 BULK
3 CONTROL (only valid for EP0)

PROT_EPI_CS2 SuperSpeed IN Endpoint Control and Status 0xE0033540

b31 b30 b29 b28 b27 b26 b25 b24

PROT_EPI_CS2 SuperSpeed IN Endpoint Control and Status

b23 b22 b21 b20 b19 b18 b17 b16

BTERM_NUMP[4]

R

R/W

0

PROT_EPI_CS2 SuperSpeed IN Endpoint Control and Status

b15 b14 b13 b12 b11 b10 b9 b8

BTERM_NUMP[3:0] MAXBURST[3:0]

R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R R R R

0 0 0 0 0 0 0 0

PROT_EPI_CS2 SuperSpeed IN Endpoint Control and Status

b7 b6 b5 b4 b3 b2 b1 b0

ISOINPKS[5:0] TYPE[1:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

16 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 529

10.16.13 PROT_EPI_UNMAPPED_STREAM

Unmapped Stream Request Register

There are 16 PROT_EPI_UNMAPPED_STREAM registers. The address of each is calculated as
PROT_EPI_UNMAPPED_STREAM(x) = 0xE0033580 + (x*0x4). Hence PROT_EPI_UNMAPPED_STREAM(0) is at address
0xE0033580, PROT_EPI_UNMAPPED_STREAM(1) is at address 0xE0033580 + 0x4 and so on. The definition of each of these is
the same.

A register for each Endpoint to handle a request for a StreamID that is not currently mapped to a socket.

19:16 SPSM_STATE[3:0] Stream Protocol State Machine (SPSM) State for this EndPoint:
0 Not Configured
1 Disabled
2 Prime Pipe
3 DFR Prime Pipe
4 Idle
5 Start Stream
6 Move Data
7 End
8 Error

15:0 STREAM_ID[15:0] The StreamID of the current stream activated (or requested to be activated) by the protocol layer.

PROT_EPI_UNMAPPED_STREAM Unmapped Stream Request 0xE0033580

b31 b30 b29 b28 b27 b26 b25 b24

PROT_EPI_UNMAPPED_STREAM Unmapped Stream Request

b23 b22 b21 b20 b19 b18 b17 b16

SPSM_STATE[3:0]

R R R R

R/W R/W R/W R/W

0 0 0 0

PROT_EPI_UNMAPPED_STREAM Unmapped Stream Request

b15 b14 b13 b12 b11 b10 b9 b8

STREAM_ID[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_EPI_UNMAPPED_STREAM Unmapped Stream Request

b7 b6 b5 b4 b3 b2 b1 b0

STREAM_ID[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

530 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.14 PROT_EPI_MAPPED_STREAM

Mapped Streams Registers

There are 16 PROT_EPI_MAPPED_STREAM registers. The address of each is calculated as
PROT_EPI_MAPPED_STREAM(x) = 0xE00335C0 + (x*0x4). Hence PROT_EPI_MAPPED_STREAM(0) is at address
0xE00335C0, PROT_EPI_MAPPED_STREAM(1) is at address 0xE00335C0 + 0x4 and so on. The definition of each of these
is the same.

A register for each socket indicating which EP and which StreamID is mapped to it.

31 ENABLE Set by firmware if a stream is mapped to the corresponding socket. If this bit is set, the endpoint num-
ber corresponding to this socket number can no longer be used in non-streaming mode (that would
create a conflict of two endpoints wanting to use the same socket).

30 UNMAP Request to unmap this stream. May be cleared to revert/withdraw request.

29 UNMAPPED Stream is unmapped (not in use by the corresponding EP's SPSM).

19:16 EP_NUMBER[3:0] The Endpoint number of the stream connected to the corresponding socket by firmware.

15:0 STREAM_ID[15:0] The StreamID of the stream connected to the corresponding socket by firmware.

PROT_EPI_MAPPED_STREAM Mapped Streams Register 0xE00335C0

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE UNMAP UNMAPPED

R/W R/W R

R R R/W

0 0 0

PROT_EPI_MAPPED_STREAM Mapped Streams Register

b23 b22 b21 b20 b19 b18 b17 b16

EP_NUMBER[3:0]

R/W R/W R/W R/W

R R R R

0 0 0 0

PROT_EPI_MAPPED_STREAM Mapped Streams Register

b15 b14 b13 b12 b11 b10 b9 b8

STREAM_ID[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PROT_EPI_MAPPED_STREAM Mapped Streams Register

b7 b6 b5 b4 b3 b2 b1 b0

STREAM_ID[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 531

10.16.15 PROT_EPO_CS1

SuperSpeed OUT Endpoint Control and Status Register

There are 16 PROT_EPO_CS1 registers. The address of each is calculated as PROT_EPO_CS1(x) = 0xE0033600 +
(x*0x4). Hence PROT_EPO_CS1(0) is at address 0xE0033600, PROT_EPO_CS1(1) is at address 0xE0033600 + 0x4 and
so on. The definition of each of these is the same.

Endpoint OUT Control and Status

29 FIRST_ACK_NUMP_0_MASK Interrupt mask for FIRST_ACK_NUMP_0 bit

28 STREAM_ERROR_MASK Interrupt mask for STREAM_ERROR bit

27 DBTERM_MASK Interrupt mask for DBTERM bit

26 HBTERM_MASK Interrupt mask for HBTERM bit

25 OOSERR_MASK Interrupt mask for OOSERR bit

24 SHORT_MASK Interrupt mask for SHORT bit

23 ZERO_MASK Interrupt mask for ZERO bit

continued on next page

PROT_EPO_CS1 SuperSpeed OUT Endpoint Control and Status 0xE0033600

b31 b30 b29 b28 b27 b26 b25 b24

FIRST_ACK_
NUMP_0_MASK

STREAM_ERROR
_MASK

DBTERM_MASK HBTERM_MASK OOSERR_MASK SHORT_MASK

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

PROT_EPO_CS1 SuperSpeed OUT Endpoint Control and Status

b23 b22 b21 b20 b19 b18 b17 b16

ZERO_MASK
STREAMNRDY_

MASK
FLOWCONTROL_

MASK
RETRY_MASK COMMIT_MASK

FIRST_ACK_
NUMP_0

STREAM_ERROR DBTERM

R/W R/W R/W R/W R/W R/W1C R/W1C R/W1C

R R R R R R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

PROT_EPO_CS1 SuperSpeed OUT Endpoint Control and Status

b15 b14 b13 b12 b11 b10 b9 b8

HBTERM OOSERR SHORT ZERO STREAMNRDY FLOWCONTROL RETRY COMMIT

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

PROT_EPO_CS1 SuperSpeed OUT Endpoint Control and Status

b7 b6 b5 b4 b3 b2 b1 b0

STREAM_ERROR
_STALL_EN

EP_RESET STREAM_EN STALL NRDY VALID

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 0 0

Bit Name Description

532 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.15 PROT_EPO_CS1 (continued)

22 STREAMNRDY_MASK Interrupt mask for STREAMNRDY bit

21 FLOWCONTROL_MASK Interrupt mask for FLOWCONTROL bit

20 RETRY_MASK Interrupt mask for RETRY bit

19 COMMIT_MASK Interrupt mask for COMMIT bit

18 FIRST_ACK_NUMP_0 The NumP for the first ACK is zero.

17 STREAM_ERROR Stream Error occurred.

16 DBTERM The Burst was terminated by the device when the MULT_TIMER expires.

15 HBTERM The Burst Was terminated by the host.

14 OOSERR Out Of Sequence Error. Anytime an OUT-DATA is received with unexpected sequence
number request, the data will be dropped and intr will be raised

13 SHORT Indicates a shorter-than-maxsize packet was received.

12 ZERO Indicates a zero length packet was received by the device in an OUT transaction. Must be
cleared by software.

11 STREAMNRDY Nrdy was sent for a bulk stream request because of EP-stream not present in the mapper.

10 FLOWCONTROL EP in flow control due to EPM not being available.

9 RETRY Whenever the USB3.0 does a retry it will asserts this interrupt.

8 COMMIT Set whenever an OUT DATA was committed into the EPM.

5 STREAM_ERROR_STALL_EN Issue STALL whenever Stream error occurs.

4 EP_RESET Per End Point Reset.

3 STREAM_EN Enables bulk stream protocol handling for this EP

2 STALL Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

1 NRDY Setting this bit causes NRDY on IN transactions.

0 VALID Set VALID=1 to activate an endpoint, and VALID=0 to de-activate it. All USB endpoints
default to invalid. An endpoint whose VALID bit is 0 does not respond to any USB traffic.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 533

10.16.16 PROT_EPO_CS2

SuperSpeed OUT Endpoint Control and Status Register

There are 16 PROT_EPO_CS2 registers. The address of each is calculated as PROT_EPO_CS2(x) = 0xE0033640 +
(x*0x4). Hence PROT_EPO_CS2(0) is at address 0xE0033640, PROT_EPO_CS2(1) is at address 0xE0033640 + 0x4 and
so on. The definition of each of these is the same.

Endpoint IN Control and Status:

■ Setup USB Package buffering, ISO/BULK/INT, IN/OUT and enable/disable endpoint

■ Power up default the payload is 64-byte (Max payload count for Full Speed). In High Speed the payload can be up to 512
for BULK and 1024 for ISO

11:8 MAXBURST[3:0] Maximum number of packets the endpoint can send. (truncated to 4b, 0 means 16)

7:2 ISOINPKS[5:0] Number of packets to be sent per service interval. Maximum can be 48 (Max burst size* Mult field)

1:0 TYPE[1:0] Endpoint type (EP0 supports CONTROL only)
0 ISO
1 INT
2 BULK
3 CONTROL (only valid for EP0)

PROT_EPO_CS2 SuperSpeed OUT Endpoint Control and Status 0xE0033640

b31 b30 b29 b28 b27 b26 b25 b24

PROT_EPO_CS2 SuperSpeed OUT Endpoint Control and Status

b23 b22 b21 b20 b19 b18 b17 b16

PROT_EPO_CS2 SuperSpeed OUT Endpoint Control and Status

b15 b14 b13 b12 b11 b10 b9 b8

MAXBURST[3:0]

R/W R/W R/W R/W

R R R R

0 0 0 0

PROT_EPO_CS2 SuperSpeed OUT Endpoint Control and Status

b7 b6 b5 b4 b3 b2 b1 b0

ISOINPKS[5:0] TYPE[1:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

16 0 0

Bit Name Description

534 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.16.17 PROT_EPO_UNMAPPED_STREAM

Unmapped Stream Request Register

There are 16 PROT_EPO_UNMAPPED_STREAM registers. The address of each is calculated as
PROT_EPO_UNMAPPED_STREAM(x) = 0xE0033680 + (x*0x4). Hence PROT_EPO_UNMAPPED_STREAM(0) is at
address 0xE0033680, PROT_EPO_UNMAPPED_STREAM(1) is at address 0xE0033680 + 0x4 and so on. The definition of
each of these is the same.

A register for each Endpoint to handle a request for a StreamID that is not currently mapped to a socket.

19:16 SPSM_STATE[3:0] Stream Protocol State Machine (SPSM) State for this EndPoint:
0 Not Configured
1 Disabled
2 Prime Pipe
3 DFR Prime Pipe
4 Idle
5 Start Stream
6 Move Data
7 End
8 Error

15:0 STREAM_ID[15:0] The StreamID of the current stream activated (or requested to be activated) by the protocol layer.

PROT_EPO_UNMAPPED_STREAM Unmapped Stream Request 0xE0033680

b31 b30 b29 b28 b27 b26 b25 b24

PROT_EPO_UNMAPPED_STREAM Unmapped Stream Request

b23 b22 b21 b20 b19 b18 b17 b16

SPSM_STATE[3:0]

R R R R

R/W R/W R/W R/W

0 0 0 0

PROT_EPO_UNMAPPED_STREAM Unmapped Stream Request

b15 b14 b13 b12 b11 b10 b9 b8

STREAM_ID[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PROT_EPO_UNMAPPED_STREAM Unmapped Stream Request

b7 b6 b5 b4 b3 b2 b1 b0

STREAM_ID[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 535

10.16.18 PROT_EPO_MAPPED_STREAM

Mapped Streams Registers

There are 16 PROT_EPO_MAPPED_STREAM registers. The address of each is calculated as
PROT_EPO_MAPPED_STREAM(x) = 0xE00336C0 + (x*0x4). Hence PROT_EPO_MAPPED_STREAM(0) is at address
0xE00336C0, PROT_EPO_MAPPED_STREAM(1) is at address 0xE00336C0 + 0x4 and so on. The definition of each of
these is the same.

A register for each socket indicating which EP and which StreamID is mapped to it. Before clearing ENABLE or changing
STREAM_ID/EP_NUMBER while ENABLE=1, firmware must ensure the socket is not in use by setting UNMAP and checking
UNMAPPED went high. If UNMAP=1 is not followed by UNMAPPED=1 within ~100ns, the firmware can withdraw the request
by resetting UNMAP to 0.

31 ENABLE Set by firmware if a stream is mapped to the corresponding socket. If this bit is set, the endpoint num-
ber corresponding to this socket number can no longer be used in non-streaming mode (that would
create a conflict of two endpoints wanting to use the same socket).

30 UNMAP Request to unmap this stream. May be cleared to revert/withdraw request.

29 UNMAPPED Stream is unmapped (not in use by the corresponding EP's SPSM).

19:16 EP_NUMBER[3:0] The Endpoint number of the stream connected to the corresponding socket by firmware.

15:0 STREAM_ID[15:0] The StreamID of the stream connected to the corresponding socket by firmware.

PROT_EPO_MAPPED_STREAM Mapped Streams Register 0xE00336C0

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE UNMAP UNMAPPED

R/W R/W R

R R R/W

0 0 0

PROT_EPO_MAPPED_STREAM Mapped Streams Register

b23 b22 b21 b20 b19 b18 b17 b16

EP_NUMBER[3:0]

R/W R/W R/W R/W

R R R R

0 0 0 0

PROT_EPO_MAPPED_STREAM Mapped Streams Register

b15 b14 b13 b12 b11 b10 b9 b8

STREAM_ID[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

PROT_EPO_MAPPED_STREAM Mapped Streams Register

b7 b6 b5 b4 b3 b2 b1 b0

STREAM_ID[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

536 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.17 USB Port - SuperSpeed Ingress Socket Registers

10.17.1 UIBIN_ID

Block Identification and Version Number Register

Every IP block will implement a few MMIO registers at offset 0 in its MMIO to space that identify the block and control its
power/clock/reset state. These registers are located in the CPU/Interconnect power and clock domains and are accessible
even when power/clock of the block is switched off.

31:16 BLOCK_VERSION[15:0] Version number for the IP

15:8 BLOCK_ID[15:0] A unique number identifying the IP in the memory space

UIBIN_ID Block Identification and Version Number Register 0xE0040000

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:8]

R R R R R R R R

R R R R R R R R

UIBIN_ID Block Identification and Version Number Register

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

R R R R R R R R

0x0001

UIBIN_ID Block Identification and Version Number Register

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:8]

R R R R R R R R

R R R R R R R R

UIBIN_ID Block Identification and Version Number Register

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R R R R R R R R

R R R R R R R R

0x0004

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 537

10.17.2 UIBIN_POWER

Power, Clock, and Reset Control Register

Every IP block will implement a few MMIO registers at offset 0 in its MMIO to space that identify the block and control its
power/clock/reset state. These registers are located in the CPU/Interconnect power and clock domains and are accessible
even when power/clock of the block is switched off.

31 RESETN Active low reset signal for all logic in the block. Note that reset is active on all flops in the block when
either system reset is asserted (RESET# pin or SYSTEM_POWER.RESETN is asserted) or this sig-
nal is active.
After setting this bit to 1, firmware will poll and wait for the ‘active’ bit to assert. Reading ‘1’ from
‘resetn’ does not indicate the block is out of reset – this may take some time depending on initializa-
tion tasks and clock frequencies.
This bit is nonfunctional for UIBIN and will not reset anything. Use UIB_POWER register instead.

0 ACTIVE For blocks that must perform initialization after reset before becoming operational, this signal will
remain deasserted until initialization is complete. In other words, reading active = 1 indicates block is
initialized and ready for operation.
This bit is a copy of UIB_POWER.active. Preferably use UIB_POWER register instead.

UIBIN_POWER Power, Clock, and Reset Control Registers 0xE0040004

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R/W

W

0

UIBIN_POWER Power, Clock, and Reset Control Registers

b23 b22 b21 b20 b19 b18 b17 b16

UIBIN_POWER Power, Clock, and Reset Control Registers

b15 b14 b13 b12 b11 b10 b9 b8

UIBIN_POWER Power, Clock, and Reset Control Registers

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

R

W

0

Bit Name Description

538 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.18 I2S Registers

10.18.1 I2S_CONFIG

I2S Configuration and Mode Register

31 ENABLE Enable block here, but only after all the configuration is set. Do not set this bit to 1 while changing any
other value in this register. This bit will be synchronized to the core clock.
Setting this bit to 0 will complete transmission of current sample. When DMA_MODE=1 any remain-
ing samples in the pipeline are discarded. When DMA_MODE=0 no samples are lost.

30 TX_CLEAR Use only when ENABLE=0; behavior undefined when ENABLE=1
0 Do nothing
1 Clear transmit FIFO
(After TX_CLEAR is set, software must wait for TX*_DONE before clearing it)

12:11 MODE[1:0] 0,3 I2S Mode
1 Left Justified Mode
2 Right Justified Mode.

continued on next page

I2S_CONFIG I2S Configuration and Mode Register 0xE0000000

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE TX_CLEAR

R/W R/W

R R

0 0

I2S_CONFIG I2S Configuration and Mode Register

b23 b22 b21 b20 b19 b18 b17 b16

I2S_CONFIG I2S Configuration and Mode Register

b15 b14 b13 b12 b11 b10 b9 b8

MODE[1:0] BIT_WIDTH[2:0]

R/W R/W R/W R/W R/W

R R R R R

0 0 1

I2S_CONFIG I2S Configuration and Mode Register

b7 b6 b5 b4 b3 b2 b1 b0

DMA_MODE MONO FIXED_SCK WSMODE ENDIAN MUTE PAUSE

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 0 0 1 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 539

10.18.1 I2S_CONFIG (continued)

10:8 BIT_WIDTH[2:0] 0 8-bit
1 16-bit
2 18-bit
3 24-bit
4 32-bit
5-7 Reserved

6 DMA_MODE 0 Register-based transfers
1 DMA-based transfers

5 MONO 0 Stereo
1 Mono> Read samples from the left channel and send in out on both the channels.

4 FIXED_SCK 0 SCK = 16*WS, 32*WS or 64* WS for 8-bit, 16-bit and 32-bit width, 64*WS otherwise.
1 SCK=64*WS

3 WSMODE I2S_MODE:
0 WS=0 will denote the left Channel
1 WS=0 will denote the right channel.
In left/right justified modes:
1 WS=0 will denote the left Channel
0 WS=0 will denote the right channel.

2 ENDIAN 0 MSB First
1 LSB First

1 MUTE Discard the value read from the DMA and transmit zeros instead. Continue to read input samples at
normal rate.

0 PAUSE Pause transmission, transmit 0s.
Setting this bit to 1 will not discard any samples. Later clearing this bit will resume output at exact
same spot. In paused mode the I2S clock will continue to transmit 0-value samples.
A small, integral, but undefined number of samples will be transmitted after this bit is set to 1 (to
ensure no hanging samples).
When one of the descriptors is modified in socket, no samples from the old descriptor will be output
(all FIFO's will be cleared).

540 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.18.2 I2S_STATUS

I2S Status Register

Status and error register. Most status bits are used to generate an interrupt on positive edge into INTR register.

28 BUSY Indicates the block is busy transmitting data. This field may remain asserted after the block is sus-
pended and must be polled before changing any configuration values.

27:24 ERROR_CODE[3:0] Error code, only relevant when ERROR=1. ERROR logs only the FIRST error to occur and will never
change value as long as ERROR=1.
11 Left TX FIFO/DMA socket underflow
12 Right TX FIFO/DMA socket underflow
13 Write to left TX FIFO when FIFO full
14 Write to right TX FIFO when FIFO full
15 No error

8 ERROR An internal error has occurred with cause ERROR_CODE. Must be cleared by software. Sticky

7 NO_DATA No data is currently available for output, but socket does not indicate empty. Only relevant when
DMA_MODE=1. Non sticky.

6 PAUSED Output is paused (PAUSE has taken effect). Non sticky

continued on next page

I2S_STATUS I2S Status Register 0xE0000004

b31 b30 b29 b28 b27 b26 b25 b24

BUSY ERROR_CODE[3:0]

R R R R R

W W W W W

0 0xF

I2S_STATUS I2S Status Register

b23 b22 b21 b20 b19 b18 b17 b16

I2S_STATUS I2S Status Register

b15 b14 b13 b12 b11 b10 b9 b8

ERROR

R/W1C

R/W1S

0

I2S_STATUS I2S Status Register

b7 b6 b5 b4 b3 b2 b1 b0

NO_DATA PAUSED TXR_HALF TXR_SPACE TXR_DONE TXL_HALF TXL_SPACE TXL_DONE

R R R R R R R R

W W W W W W W W

0 0 1 1 0 1 1 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 541

10.18.2 I2S_STATUS (continued)

5 TXR_HALF Indicates that the right TX FIFO is at least half empty. This bit can be used to create burst-based
interrupts. This bit is updated immediately after writes to EGRESS_DATA_RIGHT register. Only rele-
vant when DMA_MODE=0. Non sticky.

4 TXR_SPACE Indicates space is available in the right TX FIFO. This bit is updated immediately after writes to
EGRESS_DATA_RIGHT register. Only relevant when DMA_MODE=0. Non sticky.

3 TXR_DONE Indicates no more data is available for transmission on right channel. Non sticky. If DMA_MODE=0
this is defined as TX FIFO empty and shift register empty but will assert only when ENABLE=0. If
DMA_MODE=1 this is defined as socket is end of transfer (EOT) and shift register empty. Note that
this field will only assert after a transmission was started - it's power up state is 0.

2 TXL_HALF Indicates that the left TX FIFO is at least half empty. This bit can be used to create burst-based inter-
rupts. This bit is updated immediately after writes to EGRESS_DATA_LEFT register. Only relevant
when DMA_MODE=0. Non sticky.

1 TXL_SPACE Indicates space is available in the left TX FIFO. This bit is updated immediately after writes to
EGRESS_DATA_LEFT register. Only relevant when DMA_MODE=0. Non sticky.

0 TXL_DONE Indicates no more data is available for transmission on left channel. Non sticky. If DMA_MODE=0 this
is defined as TX FIFO empty and shift register empty but will assert only when ENABLE=0. If
DMA_MODE=1 this is defined as socket is EOT and shift register empty. Note that this field will only
assert after a transmission was started - it's power up state is 0.

542 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.18.3 I2S_INTR

I2S Interrupt Request Register

Interrupt requests. Derived from STATUS register. Interrupt requests must be cleared by CPU and are generated regardless
of values in INTR_MASK register.

8 ERROR Set by hardware when corresponding STATUS asserts, cleared by software.

7 NO_DATA Set by hardware when corresponding STATUS asserts, cleared by software.

6 PAUSED Set by hardware when corresponding STATUS asserts, cleared by software.

5 TXR_HALF Set by hardware when corresponding STATUS asserts, cleared by software.

4 TXR_SPACE Set by hardware when corresponding STATUS asserts, cleared by software.

3 TXR_DONE Set by hardware when corresponding STATUS asserts, cleared by software.

2 TXL_HALF Set by hardware when corresponding STATUS asserts, cleared by software.

1 TXL_SPACE Set by hardware when corresponding STATUS asserts, cleared by software.

0 TXL_DONE Set by hardware when corresponding STATUS asserts, cleared by software.

I2S_INTR I2S Interrupt Request Register 0xE0000008

b31 b30 b29 b28 b27 b26 b25 b24

I2S_INTR I2S Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

I2S_INTR I2S Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

ERROR

R/W1C

R/W1S

0

I2S_INTR I2S Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

NO_DATA PAUSED TXR_HALF TXR_SPACE TXR_DONE TXL_HALF TXL_SPACE TXL_DONE

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 543

10.18.4 I2S_INTR_MASK

I2S Interrupt Mask Register

Interrupt mask bits. Determine if INTR bits are reported to CPU. Have no effect on creation of INTR bits.

8 ERROR 1 Report interrupt to CPU

7 NO_DATA 1 Report interrupt to CPU

6 PAUSED 1 Report interrupt to CPU

5 TXR_HALF 1 Report interrupt to CPU

4 TXR_SPACE 1 Report interrupt to CPU

3 TXR_DONE 1 Report interrupt to CPU

2 TXL_HALF 1 Report interrupt to CPU

1 TXL_SPACE 1 Report interrupt to CPU

0 TXL_DONE 1 Report interrupt to CPU

I2S_INTR_MASK I2S Interrupt Mask Register 0xE000000C

b31 b30 b29 b28 b27 b26 b25 b24

I2S_INTR_MASK I2S Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

I2S_INTR_MASK I2S Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

ERROR

R/W

R

0

I2S_INTR_MASK I2S Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

NO_DATA PAUSED TXR_HALF TXR_SPACE TXR_DONE TXL_HALF TXL_SPACE TXL_DONE

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

544 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.18.5 I2S_EGRESS_DATA_LEFT

I2S Egress Data Register (Left)

Accepts egress data one sample at a time, LSB justified. Writing to this register adds one sample to the FIFO if the FIFO has
space available. It will result in ERROR if the FIFO is full. The size of the transmit FIFO is configured at design time.

31:0 DATA[31:0] Sample to be written to the peripheral in registered mode. Number of bits taken depends on sample
size (see I2S_CONFIG), other bits are ignored.

I2S_EGRESS_DATA_LEFT I2S Egress Data Register (Left) 0xE0000010

b31 b30 b29 b28 b27 b26 b25 b24

DATA[31:24]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

I2S_EGRESS_DATA_LEFT I2S Egress Data Register (Left)

b23 b22 b21 b20 b19 b18 b17 b16

DATA[23:16]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

I2S_EGRESS_DATA_LEFT I2S Egress Data Register (Left)

b15 b14 b13 b12 b11 b10 b9 b8

DATA[15:8]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

I2S_EGRESS_DATA_LEFT I2S Egress Data Register (Left)

b7 b6 b5 b4 b3 b2 b1 b0

DATA[7:0]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 545

10.18.6 I2S_EGRESS_DATA_RIGHT

I2S Egress Data Register (Right)

Accepts egress data one sample at a time, LSB justified. Writing to this register adds one sample to the FIFO if the FIFO has
space available. It will result in ERROR if the FIFO is full. The size of the transmit FIFO is configured at design time.

31:0 DATA[31:0] Sample to be written to the peripheral in registered mode. Number of bits taken depends on sample
size (see I2S_CONFIG), other bits are ignored.

I2S_EGRESS_DATA_RIGHT I2S Egress Data Register (Right) 0xE0000014

b31 b30 b29 b28 b27 b26 b25 b24

DATA[31:24]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

I2S_EGRESS_DATA_RIGHT I2S Egress Data Register (Right)

b23 b22 b21 b20 b19 b18 b17 b16

DATA[23:16]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

I2S_EGRESS_DATA_RIGHT I2S Egress Data Register (Right)

b15 b14 b13 b12 b11 b10 b9 b8

DATA[15:8]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

I2S_EGRESS_DATA_RIGHT I2S Egress Data Register (Right)

b7 b6 b5 b4 b3 b2 b1 b0

DATA[7:0]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

546 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.18.7 I2S_COUNTER

I2S Sample Counter Register

Counts number of samples written to output (L+R counts as one), can be used in software PLL to control audio decode
thread.

31:0 COUNTER[31:0] Counter increments by one for every sample written on output. Counts L+R as one sample in stereo
mode. This counter is more reliable to implement a software PLL because of more periodic behavior.
This counter will be reset to 0 when I2S_CONFIG.ENABLE=0.

I2S_COUNTER I2S Sample Counter Register 0xE0000018

b31 b30 b29 b28 b27 b26 b25 b24

COUNTER[31:24]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

I2S_COUNTER I2S Sample Counter Register

b23 b22 b21 b20 b19 b18 b17 b16

COUNTER[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

I2S_COUNTER I2S Sample Counter Register

b15 b14 b13 b12 b11 b10 b9 b8

COUNTER[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

I2S_COUNTER I2S Sample Counter Register

b7 b6 b5 b4 b3 b2 b1 b0

COUNTER[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 547

10.18.8 I2S_SOCKET

I2S Socket Register

Indicates sockets used for DMA based operation. Left and right socket must be different for stereo operation.

15:8 RIGHT_SOCKET[7:0] Socket number for right data samples
0-7 Supported
8-.. Reserved

7:0 LEFT_SOCKET[7:0] Socket number for left data samples
0-7 Supported
8-.. Reserved

I2S_SOCKET I2S Socket Register 0xE0000304

b31 b30 b29 b28 b27 b26 b25 b24

I2S_SOCKET I2S Socket Register

b23 b22 b21 b20 b19 b18 b17 b16

I2S_SOCKET I2S Socket Register

b15 b14 b13 b12 b11 b10 b9 b8

RIGHT_SOCKET[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

I2S_SOCKET I2S Socket Register

b7 b6 b5 b4 b3 b2 b1 b0

LEFT_SOCKET[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

548 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.18.9 I2S_ID

Block Identification and Version Number Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31:16 BLOCK_VERSION[15:0] Version number for the IP

15:0 BLOCK_ID[15:0] A unique number identifying the IP in the memory space

I2S_ID Block Identification and Version Number 0xE00003F0

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:8]

R R R R R R R R

I2S_ID Block Identification and Version Number

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

0x0001

I2S_ID Block Identification and Version Number

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:8]

R R R R R R R R

I2S_ID Block Identification and Version Number

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R R R R R R R R

0x0000

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 549

10.18.10 I2S_POWER

Power, Clock, and Reset Control Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31 RESETN Active LOW reset signal for all logic in the block. Note that reset is active on all flops in the block
when either system reset is asserted (RESET# pin or SYSTEM_POWER.RESETN is asserted) or
this signal is active.
After setting this bit to 1, firmware will poll and wait for the ‘active’ bit to assert. Reading ‘1’ from
‘resetn’ does not indicate the block is out of reset – this may take some time depending on initializa-
tion tasks and clock frequencies.
This bit must be asserted ('0') for at least 10 µs for effective reset.

0 ACTIVE For blocks that must perform initialization after reset before becoming operational, this signal will
remain deasserted until initialization is complete. In other words reading active=1 indicates block is
initialized and ready for operation.

I2S_POWER Power, Clock, and Reset Control 0xE00003F4

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R/W

R

0

I2S_POWER Power, Clock, and Reset Control

b23 b22 b21 b20 b19 b18 b17 b16

I2S_POWER Power, Clock, and Reset Control

b15 b14 b13 b12 b11 b10 b9 b8

I2S_POWER Power, Clock, and Reset Control

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

R

W

0

Bit Name Description

550 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19 I2C Registers

10.19.1 I2C_CONFIG

I2C Configuration and Mode Register

Various modes of the I2C block

31 ENABLE Enable block here, but only after all the configuration is set. Do not set this bit to 1 while changing any
other configuration value in this register. This bit will be synchronized to the core clock. Disabling

blocks resets all I2C controller state machine and stops all transfers at the end of current byte. When
DMA_MODE=1, data hanging in the transmit pipeline may be lost. Any unread data in the ingress
data register is lost.

30 TX_CLEAR Use only when ENABLE=0; behavior undefined when ENABLE=1
0 Do nothing
1 Clear transmit FIFO
(After TX_CLEAR is set, software must wait for TX_DONE before clearing it)

29 RX_CLEAR Use only when ENABLE=0; behavior undefined when ENABLE=1
0 Do nothing
1 Clear receive FIFO
(Software must wait for RX_DATA=0 before clearing this bit again)

continued on next page

I2C_CONFIG I2C Configuration and Mode Register 0xE0000400

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE TX_CLEAR RX_CLEAR

R/W R/W R/W

R R R

0 0 0

I2C_CONFIG I2C Configuration and Mode Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_CONFIG I2C Configuration and Mode Register

b15 b14 b13 b12 b11 b10 b9 b8

I2C_CONFIG I2C Configuration and Mode Register

b7 b6 b5 b4 b3 b2 b1 b0

I2C_100KHz
CONTINUE_ON_

NACK
DMA_MODE

R/W R/W R/W

R R R

1 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 551

10.19.1 I2C_CONFIG (continued)

2 I2C_100KHz 0 Other speeds, use 40% duty cycle while generating SCLK from 10X clock.

1 I2C is in 100KHz mode, use 50% duty cycle.

1 CONTINUE_ON_NACK 1 Continue transmission even if NAK is received. It is strongly advised to use this bit for
debugging purposes only. This bit is overridden in preamble repeat feature.

0 DMA_MODE 0 Register-based transfers
1 DMA-based transfers

552 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.2 I2C_STATUS

I2C Status Register

Status and error register. Most status bits are used to generate an interrupt on positive edge into INTR register.

31 SDA_STAT Status of the SDA line.

30 SCL_STAT Status of the SCL line.

29 BUS_BUSY Asserts when the block has detected that it cannot start an operation (TX/RX) since the bus is kept
busy by another master. Deasserts and resets when a stop condition is detected or when the block is
disabled.

28 BUSY Indicates the block is busy transmitting data. This field may remain asserted after the block is sus-
pended and must be polled before changing any configuration values.

continued on next page

I2C_STATUS I2C Status Register 0xE0000404

b31 b30 b29 b28 b27 b26 b25 b24

SDA_STAT SCL_STAT BUS_BUSY BUSY ERROR_CODE[3:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0xF

I2C_STATUS I2C Status Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_STATUS I2C Status Register

b15 b14 b13 b12 b11 b10 b9 b8

ERROR

R/W1C

R/W1S

0

I2C_STATUS I2C Status Register

b7 b6 b5 b4 b3 b2 b1 b0

LOST_
ARBITRATION

TIMEOUT TX_HALF TX_SPACE TX_DONE RX_HALF RX_DATA RX_DONE

R/W1C R/W1C R R R R R R

R/W1S R/W1S W W W W W W

0 0 1 1 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 553

10.19.2 I2C_STATUS (continued)

27:24 ERROR_CODE Error code, only relevant when ERROR=1. ERROR codes 0 through 7 are relevant for TIMEOUT as
well and are used to pin-point when timeout happened (at pre-amble byte X). ERROR logs only the
FIRST error to occur and will never change value as long as ERROR=1. Values detailed in BROS
0-7 Slave NAKed the corresponding byte in the preamble.
8 Slave NAKed in data phase.
9 Preamble Repeat exited due to NACK or ACK.
10 Preamble repeat-count reached without satisfying NACK.ACK conditions.
11 TX Underflow
12 Write to TX FIFO when FIFO full
13 Read from RX FIFO when FIFO empty
14 RX Overflow
15 No error

8 ERROR An internal error has occurred with cause ERROR_CODE. Must be cleared by software. Sticky

7 LOST_ARBITRATION Master lost arbitration during command. Software is responsible for resetting socket (in DMA_MODE)
and reissuing command. Sticky

6 TIMEOUT An I2C bus timeout occurred (see I2C_TIMEOUT register). Sticky

5 TX_HALF Indicates that the TX FIFO is at least half empty. This bit can be used to create burst-based inter-
rupts. This bit is updated immediately after writes to EGRESS_DATA register. Non sticky.

4 TX_SPACE Indicates space is available in the TX FIFO. This bit is updated immediately after writes to
EGRESS_DATA register. Non sticky.

3 TX_DONE Indicates no more data is available for transmission. Non sticky.
If DMA_MODE=0 this is defined as TX FIFO empty and shift register empty. If DMA_MODE=1 this is
defined as BYTES_TARNSFERRED=BYTE_COUNT and shift register empty. Note that this field will
only assert after a transmission was started - it's power up state is 0.

2 RX_HALF Indicates that the RX FIFO is at least half full (only relevant when DMA_MODE=0). This bit can be
used to create burst based interrupts. This bit is updated immediately after reads from
INGRESS_DATA register. Non sticky

1 RX_DATA Indicates data is available in the RX FIFO (only relevant when DMA_MODE=0). This bit is updated
immediately after reads from INGRESS_DATA register. Non sticky

0 RX_DONE Indicates receive operation completed. Non sticky, Does not need software intervention to clear it.

554 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.3 I2C_INTR

I2C Interrupt Request Register

Interrupt requests. Derived from STATUS register. Interrupt requests must be cleared by CPU and are generated regardless
of values in INTR_MASK register.

8 ERROR Set by hardware when corresponding STATUS asserts, cleared by software.

7 LOST_ARBITRATION Set by hardware when corresponding STATUS asserts, cleared by software.

6 TIMEOUT Set by hardware when corresponding STATUS asserts, cleared by software.

5 TX_HALF Set by hardware when corresponding STATUS asserts, cleared by software.

4 TX_SPACE Set by hardware when corresponding STATUS asserts, cleared by software.

3 TX_DONE Set by hardware when corresponding STATUS asserts, cleared by software.

2 RX_HALF Set by hardware when corresponding STATUS asserts, cleared by software.

1 RX_DATA Set by hardware when corresponding STATUS asserts, cleared by software.

0 RX_DONE Set by hardware when corresponding STATUS asserts, cleared by software.

I2C_INTR I2C Interrupt Request Register 0xE0000408

b31 b30 b29 b28 b27 b26 b25 b24

I2C_INTR I2C Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_INTR I2C Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

ERROR

R/W1C

R/W1S

0

I2C_INTR I2C Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

LOST_
ARBITRATION

TIMEOUT TX_HALF TX_SPACE TX_DONE RX_HALF RX_DATA RX_DONE

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 555

10.19.4 I2C_INTR_MASK

I2C Interrupt Mask Register

Interrupt mask bits. Determine if INTR bits are reported to CPU. Have no effect on creation of INTR bits.

8 ERROR 1 Report interrupt to CPU

7 LOST_ARBITRATION 1 Report interrupt to CPU

6 TIMEOUT 1 Report interrupt to CPU

5 TX_HALF 1 Report interrupt to CPU

4 TX_SPACE 1 Report interrupt to CPU

3 TX_DONE 1 Report interrupt to CPU

2 RX_HALF 1 Report interrupt to CPU

1 RX_DATA 1 Report interrupt to CPU

0 RX_DONE 1 Report interrupt to CPU

I2C_INTR_MASK I2C Interrupt Mask Register 0xE000040C

b31 b30 b29 b28 b27 b26 b25 b24

I2C_INTR_MASK I2C Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_INTR_MASK I2C Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

ERROR

R/W

R

0

I2C_INTR_MASK I2C Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

LOST_
ARBITRATION

TIMEOUT TX_HALF TX_SPACE TX_DONE RX_HALF RX_DATA RX_DONE

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

556 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.5 I2C_TIMEOUT

Timeout Register

Bus timeout interval. 0xFFFF_FFFFF means no timeout, otherwise, count the number of core clock cycles.

31:0 TIMEOUT[31:0] Number of core clocks SCK can be held low by the slave byte transmission before triggering a time-
out error.

I2C_TIMEOUT Timeout Register 0xE0000410

b31 b30 b29 b28 b27 b26 b25 b24

TIMEOUT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

I2C_TIMEOUT Timeout Register

b23 b22 b21 b20 b19 b18 b17 b16

TIMEOUT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

I2C_TIMEOUT Timeout Register

b15 b14 b13 b12 b11 b10 b9 b8

TIMEOUT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

I2C_TIMEOUT Timeout Register

b7 b6 b5 b4 b3 b2 b1 b0

TIMEOUT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFFFFFF

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 557

10.19.6 I2C_DMA_TIMEOUT

DMA Timeout Register

Bus timeout interval for DMA. 0xFFFF means no timeout, otherwise, count the number of core clock cycles of DMA not being
ready before raising error.

15:0 TIMEOUT16[15:0] Number of core clocks DMA has to be not ready before the condition is reported as error condition.

I2C_DMA_TIMEOUT DMA Timeout Register 0xE0000414

b31 b30 b29 b28 b27 b26 b25 b24

I2C_DMA_TIMEOUT DMA Timeout Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_DMA_TIMEOUT DMA Timeout Register

b15 b14 b13 b12 b11 b10 b9 b8

TIMEOUT16[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

I2C_DMA_TIMEOUT DMA Timeout Register

b7 b6 b5 b4 b3 b2 b1 b0

TIMEOUT16[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFF

Bit Name Description

558 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.7 I2C_PREAMBLE_CTRL

I2C Preamble Control Register

Indicates whether each preamble byte will be followed by a repeated start or stop/start sequence.

15:8 STOP[7:0] If bit <x> is 1, issue a stop after byte <x> of the preamble (if both START and STOP are set, STOP
will take priority).

7:0 START[7:0] If bit <x> is 1, issue a start after byte <x> of the preamble.

I2C_PREAMBLE_CTRL I2C Preamble Control Register 0xE0000418

b31 b30 b29 b28 b27 b26 b25 b24

I2C_PREAMBLE_CTRL I2C Preamble Control Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_PREAMBLE_CTRL I2C Preamble Control Register

b15 b14 b13 b12 b11 b10 b9 b8

STOP[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

I2C_PREAMBLE_CTRL I2C Preamble Control Register

b7 b6 b5 b4 b3 b2 b1 b0

START[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 559

10.19.8 I2C_PREAMBLE_DATA

I2C Preamble Data Register

continued on next page

I2C_PREAMBLE_DATA I2C Preamble Data Register 0xE000041C

b63 b62 b61 b60 b59 b58 b57 b56

DATA[63:56]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

I2C_PREAMBLE_DATA I2C Preamble Data Register

b55 b54 b53 b52 b51 b50 b49 b48

DATA[55:48]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

I2C_PREAMBLE_DATA I2C Preamble Data Register

b47 b46 b45 b44 b43 b42 b41 b40

DATA[47:40]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

I2C_PREAMBLE_DATA I2C Preamble Data Register

b39 b38 b37 b36 b35 b34 b33 b32

DATA[39:32]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

I2C_PREAMBLE_DATA I2C Preamble Data Register

b31 b30 b29 b28 b27 b26 b25 b24

DATA[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

I2C_PREAMBLE_DATA I2C Preamble Data Register

b23 b22 b21 b20 b19 b18 b17 b16

DATA[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

I2C_PREAMBLE_DATA I2C Preamble Data Register

b15 b14 b13 b12 b11 b10 b9 b8

DATA[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

560 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.8 I2C_PREAMBLE_DATA (continued)

Contains the bytes that precede the data phase of the I2C command. This includes the slave address, R/W command, possi-
ble internal address and repeated start command. The number of bytes used is indicated in I2C_COMMAND.

63:0 DATA[63:0] Command and initial data bytes.

I2C_PREAMBLE_DATA I2C Preamble Data Register

b7 b6 b5 b4 b3 b2 b1 b0

DATA[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 561

10.19.9 I2C_PREAMBLE_RPT

I2C Preamble Repeat Register

Offers the facility to reuse preamble in a programmable fashion. Useful for waiting on busy parts during time-consuming oper-
ations such as EEPROM programming. ERROR Code 9 or 10 when repeat feature exits. This register is only valid if
RPT_ENABLE is true and takes precedence over other settings when valid.

31:8 COUNT[23:0] Preamble stops after reaching the count or earlier if other conditions are satisfied. The maximum
number of times a preamble can repeat is 0xFFFFFF.

2 STOP_ON_NACK 1 Preamble will stop repeating if the NACK is received after any byte. Unless this byte is set,
continue on NACK if repeat is enabled.

1 STOP_ON_ACK 1 Preamble will stop repeating if the ACK is received after any byte.

0 RPT_ENABLE 1 Turns on preamble repeat feature. The sequence from IDLE to preamble_complete will
repeat in a programmable fashion. START_FIRST will be honored. Repeating will always
start at the first byte and end at the last byte. The only exception is if timeout is enabled and
happens during byte transmission, in which case preamble will stop at the end of the current
byte. Data phase is not entered if preamble repeat feature is enabled.

I2C_PREAMBLE_RPT I2C Preamble Repeat Register 0xE0000424

b31 b30 b29 b28 b27 b26 b25 b24

COUNT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

I2C_PREAMBLE_RPT I2C Preamble Repeat Register

b23 b22 b21 b20 b19 b18 b17 b16

COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

I2C_PREAMBLE_RPT I2C Preamble Repeat Register

b15 b14 b13 b12 b11 b10 b9 b8

COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0xFFFFFF

I2C_PREAMBLE_RPT I2C Preamble Repeat Register

b7 b6 b5 b4 b3 b2 b1 b0

STOP_ON_NACK STOP_ON_ACK RPT_ENABLE

R/W R/W R/W

R R R

0 1 0

Bit Name Description

562 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.10 I2C_COMMAND

I2C Command Register

This register initiates a read or write command on the I2C bus. If DMA_MODE=0 data is read/written one byte at a time from
I2C_INGRESS_DATA/I2C_EGRESS_DATA. After all data bytes have been transferred, the command must be explicitly ter-
minated by writing to this register, or I2C_BYTE_COUNT must be used to do so. If DMA_MODE=1 data is read/written from
the relevant DMA sockets. In this case, the size of the DMA transfer in the socket determines the number of bytes transferred.

31:30 I2C_STAT[1:0] 00 I2C is idle
01 I2C is playing the preamble
10 I2C is receiving data
11 I2C is transmitting data.

28 READ 0 Write command (data phase)
1 Read command (data phase)

 After command, the hardware will idle if no valid preamble exists, will play preamble if it does exist.
Valid preamble is indicated by preamble valid bit. Data phase is not entered if preamble repeat fea-
ture is enabled.

continued on next page

I2C_COMMAND I2C Command Register 0xE0000428

b31 b30 b29 b28 b27 b26 b25 b24

I2C_STAT[1:0] READ

R R R/W

W W R

0 0 0

I2C_COMMAND I2C Command Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_COMMAND I2C Command Register

b15 b14 b13 b12 b11 b10 b9 b8

I2C_COMMAND I2C Command Register

b7 b6 b5 b4 b3 b2 b1 b0

START_FIRST STOP_LAST NAK_LAST
PREAMBLE_VALI

D
PREAMBLE_LEN[3:0]

R/W R/W R/W R/W1S R/W R/W R/W R/W

R R R R/W0C R R R R

1 0 1 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 563

10.19.10 I2C_COMMAND (continued)

7 START_FIRST 0 Do nothing before the first byte of preamble
1 Send START before the first byte of preamble

6 STOP_LAST 0 Send (repeated) START on last byte of data phase
1 Send STOP on last byte of data phase

5 NAK_LAST 0 Send ACK on last byte of read
1 Send NAK on last byte of read

4 PREAMBLE_VALID Software sets this bit to indicate valid preamble. Hardware resets it to indicate that it has finished
transmitting the preamble so that new preamble, such as one for doing restarts, can be populated.

3:0 PREAMBLE_LEN[3:0] Number of bytes in preamble. For preamble length = 1, set this to 1 etc. From 1 through 8. 0 and val-
ues > 8 are not supported.

564 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.11 I2C_EGRESS_DATA

I2C Egress Data Register

Accepts egress data one byte at a time. Writing to this register adds one byte to the FIFO if the FIFO has space available. It
will result in ERROR if the FIFO is full. The size of the transmit FIFO is configured at design time.

7:0 DATA[7:0] Data byte to be written to the peripheral in registered mode.

I2C_EGRESS_DATA I2C Egress Data Register 0xE000042C

b31 b30 b29 b28 b27 b26 b25 b24

I2C_EGRESS_DATA I2C Egress Data Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_EGRESS_DATA I2C Egress Data Register

b15 b14 b13 b12 b11 b10 b9 b8

I2C_EGRESS_DATA I2C Egress Data Register

b7 b6 b5 b4 b3 b2 b1 b0

DATA[7:0]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 565

10.19.12 I2C_INGRESS_DATA

I2C Ingress Data Register

Presents ingress data 1 byte at a time. Reading from this register removes one byte from the FIFO if the FIFO has data avail-
able. It will result in ERROR if the FIFO is empty. The size of the receive FIFO is configured at design time.

7:0 DATA[7:0] Data byte read from the peripheral when DMA_MODE=0

I2C_INGRESS_DATA I2C Ingress Data Register 0xE0000430

b31 b30 b29 b28 b27 b26 b25 b24

I2C_INGRESS_DATA I2C Ingress Data Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_INGRESS_DATA I2C Ingress Data Register

b15 b14 b13 b12 b11 b10 b9 b8

I2C_INGRESS_DATA I2C Ingress Data Register

b7 b6 b5 b4 b3 b2 b1 b0

DATA[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

566 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.13 I2C_CLOCK_LOW_COUNT

I2C Clock Low Count Register

This register is for hardware’s internal use for clock synchronization in F/S mode. It appears here in the MMIO space for
debug purposes.

31:0 CLOCK_LOW_COUNT[31:0] Indicates the low period of the last clock pulse on the I2C bus, measured using the I2C core
clock.

I2C_CLOCK_LOW_COUNT I2C Clock Low Count Register 0xE0000434

b31 b30 b29 b28 b27 b26 b25 b24

CLOCK_LOW_COUNT[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

I2C_CLOCK_LOW_COUNT I2C Clock Low Count Register

b23 b22 b21 b20 b19 b18 b17 b16

CLOCK_LOW_COUNT[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

I2C_CLOCK_LOW_COUNT I2C Clock Low Count Register

b15 b14 b13 b12 b11 b10 b9 b8

CLOCK_LOW_COUNT[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

I2C_CLOCK_LOW_COUNT I2C Clock Low Count Register

b7 b6 b5 b4 b3 b2 b1 b0

CLOCK_LOW_COUNT[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 567

10.19.14 I2C_BYTE_COUNT

I2C Byte Count Register

Indicates number of bytes left to read/write in data phase of I2C command (excluding the preamble). Software specifies this
number which does not change during the transfer. Data phase is not entered if preamble repeat feature is enabled.

31:0 BYTE_COUNT[31:0] Number of bytes in the data phase of the transfer. Please perform transfers in terms of fixed byte
count and perform dummy transactions at the end if required to complete the byte count.

I2C_BYTE_COUNT I2C Byte Count Register 0xE0000438

b31 b30 b29 b28 b27 b26 b25 b24

BYTE_COUNT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

I2C_BYTE_COUNT I2C Byte Count Register

b23 b22 b21 b20 b19 b18 b17 b16

BYTE_COUNT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

I2C_BYTE_COUNT I2C Byte Count Register

b15 b14 b13 b12 b11 b10 b9 b8

BYTE_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

I2C_BYTE_COUNT I2C Byte Count Register

b7 b6 b5 b4 b3 b2 b1 b0

BYTE_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFFFFFF

Bit Name Description

568 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.15 I2C_BYTES_TRANSFERRED

I2C Byte Transfer Register

Indicates number of bytes left to read/write in data phase of I2C command (excluding the preamble). When this counter
reaches 0 during read, block will stop reading bytes and NAK the last byte.

31:0 BYTE_COUNT[31:0] Indicates number of bytes transferred in the data phase (with ACK or without) so far. Does not include pre-
amble bytes. Useful for determining when NACK happened in data transmission. If data NACK error hap-
pens on at the end of fifth byte, the value in this register will be 5. If timeout happens while transmitting the
1 st bit of the 11th byte, this value will be 11 and so on.

I2C_BYTES_TRANSFERRED Number of Bytes Transferred in the Data Phase 0xE000043C

b31 b30 b29 b28 b27 b26 b25 b24

BYTE_COUNT[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

I2C_BYTES_TRANSFERRED Number of Bytes Transferred in the Data Phase

b23 b22 b21 b20 b19 b18 b17 b16

BYTE_COUNT[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

I2C_BYTES_TRANSFERRED Number of Bytes Transferred in the Data Phase

b15 b14 b13 b12 b11 b10 b9 b8

BYTE_COUNT[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

I2C_BYTES_TRANSFERRED Number of Bytes Transferred in the Data Phase

b7 b6 b5 b4 b3 b2 b1 b0

BYTE_COUNT[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 569

10.19.16 I2C_SOCKET

I2C Socket Register

Indicates sockets used for DMA based operation.

15:8 INGRESS_SOCKET[7:0] Socket number for ingress data
0-7 Supported
8-.. Reserved

7:0 EGRESS_SOCKET[7:0] Socket number for egress data
0-7 Supported
8-.. Reserved

I2C_SOCKET I2C Socket Register 0xE0000440

b31 b30 b29 b28 b27 b26 b25 b24

I2C_SOCKET I2C Socket Register

b23 b22 b21 b20 b19 b18 b17 b16

I2C_SOCKET I2C Socket Register

b15 b14 b13 b12 b11 b10 b9 b8

INGRESS_SOCKET[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

I2C_SOCKET I2C Socket Register

b7 b6 b5 b4 b3 b2 b1 b0

EGRESS_SOCKET[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

570 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.19.17 I2C_ID

Block Identification and Version Number Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31:16 BLOCK_VERSION[15:0] Version number for the IP

15:0 BLOCK_ID[15:0] A unique number identifying the IP in the memory space

I2C_ID Block Identification and Version Number 0xE00007F0

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:8]

R R R R R R R R

I2C_ID Block Identification and Version Number

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

0x0001

I2C_ID Block Identification and Version Number

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:8]

R R R R R R R R

I2C_ID Block Identification and Version Number

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R R R R R R R R

0x0001

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 571

10.19.18 I2C_POWER

Power, Clock, and Reset Control Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31 RESETN Active LOW reset signal for all logic in the block. Note that reset is active on all flops in the block
when either system reset is asserted (RESET# pin or SYSTEM_POWER.RESETN is asserted) or
this signal is active.
After setting this bit to 1, firmware will poll and wait for the ‘active’ bit to assert. Reading ‘1’ from
‘resetn’ does not indicate the block is out of reset – this may take some time depending on initializa-
tion tasks and clock frequencies.
This bit must be asserted ('0') for at least 10 µs for effective reset.

0 ACTIVE For blocks that must perform initialization after reset before becoming operational, this signal will
remain deasserted until initialization is complete. In other words reading active=1 indicates block is
initialized and ready for operation.

I2C_POWER Power, Clock, and Reset Control 0xE00007F4

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R/W

R

0

I2C_POWER Power, Clock, and Reset Control

b23 b22 b21 b20 b19 b18 b17 b16

I2C_POWER Power, Clock, and Reset Control

b15 b14 b13 b12 b11 b10 b9 b8

I2C_POWER Power, Clock, and Reset Control

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

R

W

0

Bit Name Description

572 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.20 UART Registers

10.20.1 UART_CONFIG

UART Configuration and Mode Register

Various modes of the UART block.

31 ENABLE Enable block here, but only after all the configuration is set. Do not set this bit to 1 while changing any
other value in this register. This bit will be synchronized to the core clock.
Setting this bit to 0 will complete transmission of current sample. When DMA_MODE=1 any remain-
ing samples in the pipeline are discarded. When DMA_MODE=0 no samples are lost.

30 TX_CLEAR Use only when ENABLE=0; behavior undefined when ENABLE=1
0 Do nothing
1 Clear transmit FIFO
(After TX_CLEAR is set, software must wait for TX_DONE before clearing it)

29 RX_CLEAR 0 Do nothing
1 Clear receive FIFO
(Software must wait for RX_DATA=0 before clearing this bit again)

continued on next page

UART_CONFIG UART Configuration and Mode Register 0xE0000800

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE TX_CLEAR RX_CLEAR

R/W R/W R/W

R R R

0 0 0

UART_CONFIG UART Configuration and Mode Register

b23 b22 b21 b20 b19 b18 b17 b16

RX_POLL[3:0]

R/W R/W R/W R/W

R R R R

0 0 0 0

UART_CONFIG UART Configuration and Mode Register

b15 b14 b13 b12 b11 b10 b9 b8

TX_BREAK
RX_FLOW_CTRL

_ENBL
TX_FLOW_CTRL

_ENBL
RTS DMA_MODE STOP_BITS[1:0]

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 1 0 0 0

UART_CONFIG UART Configuration and Mode Register

b7 b6 b5 b4 b3 b2 b1 b0

RX_STICKY_BIT TX_STICKY_BIT PARITY_STICKY PARITY_ODD PARITY LOOP_BACK TX_ENABLE RX_ENABLE

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 1 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 573

10.20.1 UART_CONFIG (continued)

19:16 RX_POLL[3:0] Set timing when to sample for RX input:
0 Sample on bits 0,1,2
1 Sample on bits 1,2,3
2 Sample on bits 2,3,4
3 Sample on bits 3,4,5
4 Sample on bits 4,5,6
5 Sample on bits 5,6,7

15 TX_BREAK 0 Default Behavior
1 Wait for the currently transmitting byte to complete (including the stop bit) and then transmit

0's indefinitely until this bit is cleared. Do not transmit other bytes or discard any data while
BREAK is being transmitted. CDT52575.

14 RX_FLOW_CTRL_ENBL 1 Enable hardware flow control for RX data

13 TX_FLOW_CTRL_ENBL 1 Enable hardware flow control for TX data

12 RTS When RX hardware flow control is disabled, the software may use this bit to perform software flow
control. 1 would signal the transmitter that we are ready to receive data. (Request to send).
Modify only when ENABLE=0.

10 DMA_MODE 0 Register-based transfers
1 DMA-based transfers

9:8 STOP_BITS[1:0] 00 Reserved
01 1 Stop bit.
10 2 Stop bits
11 Reserved for 1.5 stop bits (not supported)
Note STOP_BITS=2 is supported only when PARITY=0. Behavior is undefined otherwise.

7 RX_STICKY_BIT If sticky parity is effective, log interrupt request if the received bit does not match this value.

6 TX_STICKY_BIT Append this value at parity bit if sticky parity is effective.

5 PARITY_STICKY Only relevant when PARITY=1
0 Computed parity
1 Sticky parity

4 PARITY_ODD Only relevant when PARITY=1 and PARITY_STICKY=0
0 Even Parity
1 Odd parity

3 PARITY 0 No parity
1 Include parity bit

2 LOOP_BACK 0 No effect
1 Connect the value being transmitted to the receive buffer. Disable external transmit and

receive.

1 TX_ENABLE 0 Transmitter disable, do not transmit data
1 Transmitter enabled

0 RX_ENABLE 0 Receiver disabled, ignore incoming data
1 Receive enabled

574 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.20.2 UART_STATUS

UART Status Register

Status and error register. Most status bits are used to generate an interrupt on positive edge into INTR register.

28 BUSY Indicates the block is busy transmitting data. This field may remain asserted after the block is sus-
pended and must be polled before changing any configuration values.

27:24 ERROR_CODE Error code, only relevant when ERROR=1. ERROR logs only the FIRST error to occur and will never
change value as long as ERROR=1.
0 Missing Stop bit
1 RX Parity error (received parity bit does not match RX_STICKY_BIT in sticky parity mode,

or the computed parity in non-sticky mode.)
12 Write to TX FIFO when FIFO full
13 Read from RX FIFO when FIFO empty
14 RX FIFO overflow or DMA Socket Overflow
15 No error

9 ERROR A protocol error has occurred with cause ERROR_CODE. Must be cleared by software. Sticky

8 BREAK Break condition is detected. Non sticky.

7 CTS_TOGGLE Set when CTS toggles.

continued on next page

UART_STATUS UART Status Register 0xE0000804

b31 b30 b29 b28 b27 b26 b25 b24

BUSY ERROR_CODE[3:0]

R R R R R

W W W W W

0 0xF

UART_STATUS UART Status Register

b23 b22 b21 b20 b19 b18 b17 b16

UART_STATUS UART Status Register

b15 b14 b13 b12 b11 b10 b9 b8

ERROR BREAK

R/W1C R

R/W1S W

0 0

UART_STATUS UART Status Register

b7 b6 b5 b4 b3 b2 b1 b0

CTS_TOGGLE CTS_STAT TX_HALF TX_SPACE TX_DONE RX_HALF RX_DATA RX_DONE

R/W1C R R R R R R R

R/W1S W W W W W W W

0 0 1 1 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 575

10.20.2 UART_STATUS (continued)

6 CTS_STAT CTS Status, polarity inverted from the pin. (CTS pin 0 = CTS_STAT 1 means FX3 can transmit) Non
sticky

5 TX_HALF Indicates that the TX FIFO is at least half empty. This bit can be used to create burst-based inter-
rupts. This bit is updated immediately after writes to EGRESS_DATA register. Non sticky.

4 TX_SPACE Indicates space is available in the TX FIFO. This bit is updated immediately after writes to
EGRESS_DATA register. Non sticky.

3 TX_DONE Indicates no more data is available for transmission. Non sticky.
If DMA_MODE=0 this is defined as TX FIFO empty and shift register empty. If DMA_MODE=1 this is
defined as BYTE_COUNT=0 and shift register empty. Note that this field will only assert after a trans-
mission was started - its power up state is 0.

2 RX_HALF Indicates that the RX FIFO is at least half full (only relevant when DMA_MODE=0). This bit can be
used to create burst based interrupts. This bit is updated immediately after reads from
INGRESS_DATA register. Non sticky

1 RX_DATA Indicates data is available in the RX FIFO (only relevant when DMA_MODE=0). This bit is updated
immediately after reads from INGRESS_DATA register. Non sticky

0 RX_DONE Indicates receive operation completed. Only relevant when DMA_MODE=1). Receive operation is
complete when transfer size bytes in socket have been received. Non sticky. Does not need software
intervention to clear it.

576 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.20.3 UART_INTR

UART Interrupt Request Register

Interrupt requests. Derived from STATUS register. Interrupt requests must be cleared by CPU and are generated regardless
of values in INTR_MASK register.

9 ERROR Set by hardware when corresponding STATUS asserts, cleared by software.

8 BREAK Set by hardware when corresponding STATUS asserts, cleared by software.

7 CTS_TOGGLE Set by hardware when corresponding STATUS asserts, cleared by software.

6 CTS_STAT Set by hardware when corresponding STATUS asserts, cleared by software.

5 TX_HALF Set by hardware when corresponding STATUS asserts, cleared by software.

4 TX_SPACE Set by hardware when corresponding STATUS asserts, cleared by software.

3 TX_DONE Set by hardware when corresponding STATUS asserts, cleared by software.

2 RX_HALF Set by hardware when corresponding STATUS asserts, cleared by software.

1 RX_DATA Set by hardware when corresponding STATUS asserts, cleared by software.

0 RX_DONE Set by hardware when corresponding STATUS asserts, cleared by software.

UART_INTR UART Interrupt Request Register 0xE0000808

b31 b30 b29 b28 b27 b26 b25 b24

UART_INTR UART Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

UART_INTR UART Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

ERROR BREAK

R/W1C R/W1C

R/W1S R/W1S

0 0

UART_INTR UART Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

CTS_TOGGLE CTS_STAT TX_HALF TX_SPACE TX_DONE RX_HALF RX_DATA RX_DONE

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 577

10.20.4 UART_INTR_MASK

UART Interrupt Mask Register

Interrupt mask bits. Determine if INTR bits are reported to CPU. Have no effect on creation of INTR bits.

9 ERROR 1 Report interrupt to CPU

8 BREAK 1 Report interrupt to CPU

7 CTS_TOGGLE 1 Report interrupt to CPU

6 CTS_STAT 1 Report interrupt to CPU

5 TX_HALF 1 Report interrupt to CPU

4 TX_SPACE 1 Report interrupt to CPU

3 TX_DONE 1 Report interrupt to CPU

2 RX_HALF 1 Report interrupt to CPU

1 RX_DATA 1 Report interrupt to CPU

0 RX_DONE 1 Report interrupt to CPU

UART_INTR_MASK UART Interrupt Mask Register 0xE000080C

b31 b30 b29 b28 b27 b26 b25 b24

UART_INTR_MASK UART Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

UART_INTR_MASK UART Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

ERROR BREAK

R/W R/W

R R

0 0

UART_INTR_MASK UART Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

CTS_TOGGLE TIMEOUT TX_HALF TX_SPACE TX_DONE RX_HALF RX_DATA RX_DONE

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

578 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.20.5 UART_EGRESS_DATA

UART Egress Data Register

Accepts egress data one byte at a time. Writing to this register adds one byte to the FIFO if the FIFO has space available. It
will result in ERROR if the FIFO is full. The size of the transmit FIFO is configured at design time.

7:0 DATA[7:0] Data byte to be written to the peripheral in registered mode.

UART_EGRESS_DATA UART Egress Data Register 0xE0000810

b31 b30 b29 b28 b27 b26 b25 b24

UART_EGRESS_DATA UART Egress Data Register

b23 b22 b21 b20 b19 b18 b17 b16

UART_EGRESS_DATA UART Egress Data Register

b15 b14 b13 b12 b11 b10 b9 b8

UART_EGRESS_DATA UART Egress Data Register

b7 b6 b5 b4 b3 b2 b1 b0

DATA[7:0]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 579

10.20.6 UART_INGRESS_DATA

UART Ingress Data Register

Presents ingress data 1 byte at a time. Reading from this register removes one byte from the FIFO if the FIFO has data avail-
able. It will result in ERROR if the FIFO is empty. The size of the receive FIFO is configured at design time.

7:0 DATA[7:0] Data byte read from the peripheral when DMA_MODE=0

UART_INGRESS_DATA UART Ingress Data Register 0xE0000814

b31 b30 b29 b28 b27 b26 b25 b24

UART_INGRESS_DATA UART Ingress Data Register

b23 b22 b21 b20 b19 b18 b17 b16

UART_INGRESS_DATA UART Ingress Data Register

b15 b14 b13 b12 b11 b10 b9 b8

UART_INGRESS_DATA UART Ingress Data Register

b7 b6 b5 b4 b3 b2 b1 b0

DATA[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

580 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.20.7 UART_SOCKET

UART Socket Register

Indicates sockets used for DMA based operation.

15:8 INGRESS_SOCKET[7:0] Socket number for ingress data
0-7 Supported
8-.. Reserved

7:0 EGRESS_SOCKET[7:0] Socket number for egress data
0-7 Supported
8-.. Reserved

UART_SOCKET UART Socket Register 0xE0000818

b31 b30 b29 b28 b27 b26 b25 b24

UART_SOCKET UART Socket Register

b23 b22 b21 b20 b19 b18 b17 b16

UART_SOCKET UART Socket Register

b15 b14 b13 b12 b11 b10 b9 b8

INGRESS_SOCKET[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

UART_SOCKET UART Socket Register

b7 b6 b5 b4 b3 b2 b1 b0

EGRESS_SOCKET[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 581

10.20.8 UART_RX_BYTE_COUNT

UART Receive Byte Count Register

Indicates the number of bytes to receive. This register is relevant only if DMA_MODE=1.

No end-of-packet (EOP) will be sent to the DMA adapter. If receive flow control is enabled it will be set to off. If flow control is
not enabled and data is received and the socket remains active, it will be forwarded to the adapter regardless of
BYTE_COUNT. BYTE_COUNT will stay 0 in this case (not decrement).

31:0 BYTE_COUNT[31:0] Number of bytes left to receive
0xFFFFFFFF indicates infinite (counter will not decrement)

UART_RX_BYTE_COUNT UART Receive Byte Count Register 0xE000081C

b31 b30 b29 b28 b27 b26 b25 b24

BYTE_COUNT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

UART_RX_BYTE_COUNT UART Receive Byte Count Register

b23 b22 b21 b20 b19 b18 b17 b16

BYTE_COUNT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

UART_RX_BYTE_COUNT UART Receive Byte Count Register

b15 b14 b13 b12 b11 b10 b9 b8

BYTE_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

UART_RX_BYTE_COUNT UART Receive Byte Count Register

b7 b6 b5 b4 b3 b2 b1 b0

BYTE_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFFFFFF

Bit Name Description

582 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.20.9 UART_TX_BYTE_COUNT

UART Transmit Byte Count Register

Indicates the number of bytes to transmit. This register is relevant only if DMA_MODE=1.

On transmit a command will complete (TX_DONE) when BYTE_COUNT=0. No more bytes will be sent until BYTE_COUNT is
modified again. Any EOP signalling from the DMA adapter will be ignored.

31:0 BYTE_COUNT[31:0] Number of bytes left to transmit
0xFFFFFFFF indicates infinite (counter will not decrement)

UART_TX_BYTE_COUNT UART Transmit Byte Count Register 0xE0000820

b31 b30 b29 b28 b27 b26 b25 b24

BYTE_COUNT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

UART_TX_BYTE_COUNT UART Transmit Byte Count Register

b23 b22 b21 b20 b19 b18 b17 b16

BYTE_COUNT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

UART_TX_BYTE_COUNT UART Transmit Byte Count Register

b15 b14 b13 b12 b11 b10 b9 b8

BYTE_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

UART_TX_BYTE_COUNT UART Transmit Byte Count Register

b7 b6 b5 b4 b3 b2 b1 b0

BYTE_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFFFFFF

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 583

10.20.10 UART_ID

Block Identification and Version Number Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31:16 BLOCK_VERSION[15:0] Version number for the IP

15:0 BLOCK_ID[15:0] A unique number identifying the IP in the memory space

I2C_ID Block Identification and Version Number 0xE0000BF0

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:8]

R R R R R R R R

I2C_ID Block Identification and Version Number

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

0x0001

I2C_ID Block Identification and Version Number

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:8]

R R R R R R R R

I2C_ID Block Identification and Version Number

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R R R R R R R R

0x0002

Bit Name Description

584 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.20.11 UART_POWER

Power, Clock, and Reset Control Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31 RESETN Active LOW reset signal for all logic in the block. Note that reset is active on all flops in the block
when either system reset is asserted (RESET# pin or SYSTEM_POWER.RESETN is asserted) or
this signal is active.
After setting this bit to 1, firmware will poll and wait for the ‘active’ bit to assert. Reading ‘1’ from
‘resetn’ does not indicate the block is out of reset – this may take some time depending on initializa-
tion tasks and clock frequencies.
This bit must be asserted ('0') for at least 10 µs for effective reset.

0 ACTIVE For blocks that must perform initialization after reset before becoming operational, this signal will
remain deasserted until initialization is complete. In other words reading active=1 indicates block is
initialized and ready for operation.

UART_POWER Power, Clock, and Reset Control 0xE0000BF4

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R/W

R

0

UART_POWER Power, Clock, and Reset Control

b23 b22 b21 b20 b19 b18 b17 b16

UART_POWER Power, Clock, and Reset Control

b15 b14 b13 b12 b11 b10 b9 b8

UART_POWER Power, Clock, and Reset Control

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

R

W

0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 585

10.21 SPI Registers

10.21.1 SPI_CONFIG

SPI Configuration and Modes Register

Various modes of the SPI block.

31 ENABLE Enable block here, but only after all the configuration is set. Do not set this bit to 1 while changing any
other value in this register. This bit will be synchronized to the core clock.
Setting this bit to 0 will complete transmission of current sample. When DMA_MODE=1 any remain-
ing samples in the pipeline are discarded. When DMA_MODE=0 no samples are lost.

30 TX_CLEAR Use only when ENABLE=0; behavior undefined when ENABLE=1
0 Do nothing
1 Clear transmit FIFO
(After TX_CLEAR is set, software must wait for TX_DONE before clearing it)

29 RX_CLEAR Use only when ENABLE=0; behavior undefined when ENABLE=1
0 Do nothing
1 Clear receive FIFO
(Software must wait for RX_DATA=0 before clearing this bit again)

continued on next page

SPI_CONFIG SPI Configuration and Modes Register 0xE0000C00

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE TX_CLEAR RX_CLEAR

R/W R/W R/W

R R R

0 0 0

SPI_CONFIG SPI Configuration and Modes Register

b23 b22 b21 b20 b19 b18 b17 b16

DESELECT WL[5:0] SSPOL

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 8 0

SPI_CONFIG SPI Configuration and Modes Register

b15 b14 b13 b12 b11 b10 b9 b8

LAG[1:0] LEAD[1:0] CHPA CPOL SSNCTRL[1:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 1 0 0 1

SPI_CONFIG SPI Configuration and Modes Register

b7 b6 b5 b4 b3 b2 b1 b0

LOOPBACK SSN_BIT ENDIAN DMA_MODE TX_ENABLE RX_ENABLE

R/W R/W R/W R/W R/W R/W

R R R R R R

0 0 0 0 1 0

Bit Name Description

586 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.21.1 SPI_CONFIG (continued)

23 DESELECT 0 Normal SSN behavior.
1 Never assert SSN. Used to direct SPI traffic to non-default slaves whose SSN are con-

nected to GPIO.

22:17 WL[5:0] SPI transaction-unit length from 4 to 32 bits. 0-3 reserved.

16 SSPOL 0 SSN is active low, else active high.

15:14 LAG[1:0] SCK-SSN lag time. Indicates the number of half-clock cycles for which SSN needs to remain
asserted after the last SCK cycle including zero.
Note that LAG must be >0 when CHPA=1.

13:12 LEAD[1:0] SSN-SCK lead time.Encodings are: 0, 0.5, 1 or 1.5 SCK cycles. Indicates the number of half-clock
cycles SSN need to assert ahead of the first SCK cycle. However zero lead is not supported.

11 CPHA Transaction start mode. See section 3.2.2.2

10 CPOL 0 SCK idles low
1 SCK idles high

9:8 SSNCTRL[1:0] 00 SSN is toggled by firmware.
01 SSN remains asserted between each 8-bit transfer.
10 SSN asserts high at the end of the transfer.
11 SSN is governed by CPHA

5 LOOPBACK 0 No effect
1 Send the value being transmitted to the receive buffer. Disable external transmit and

receive.

4 SSN_BIT This bit controls SSN behavior at the end of each received and transmitted “byte” if SSNCTRL indi-
cate firmware SSN control. This bit is transmitted over SSN line *as is* and without regards to how
many cycles it is going out. SSPOL is applied. The firmware is expected to send one word at a time in
this mode. DESELECT bit takes precedence over this bit.
Typically the firmware will keep this bit asserted for the entire transaction that can span multiple
words. If SSN needs to be de-asserted between words, only single word transfers are possible when
SSN is under firmware control.
Modify only when ENABLE=0.

3 ENDIAN 0 MSB First
1 LSB First

2 DMA_MODE 0 Register-based transfers
1 DMA-based transfers

1 TX_ENABLE 0 Transmitter disable, do not transmit data
 1 Transmitter enabled

0 RX_ENABLE 0 Receiver disabled, ignore incoming data
1 Receive enabled

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 587

10.21.2 SPI_STATUS

SPI Status Register

Status and error register. Most status bits are used to generate an interrupt on positive edge into INTR register.

28 BUSY Indicates the block is busy transmitting data. This field may remain asserted after the block is sus-
pended and must be polled before changing any configuration values.

27:24 ERROR_CODE Error code, only relevant when ERROR=1. ERROR logs only the FIRST error to occur and will never
change value as long as ERROR=1.
12 Write to TX FIFO when FIFO full
13 Read from RX FIFO when FIFO empty
15 No error

6 ERROR An internal error has occurred with cause ERROR_CODE. Must be cleared by software. Sticky

5 TX_HALF Indicates that the TX FIFO is at least half empty. This bit can be used to create burst-based inter-
rupts. This bit is updated immediately after writes to EGRESS_DATA register. Non sticky.

4 TX_SPACE Indicates space is available in the TX FIFO. This bit is updated immediately after writes to
EGRESS_DATA register. Non sticky.

continued on next page

SPI_STATUS SPI Status Register 0xE0000C04

b31 b30 b29 b28 b27 b26 b25 b24

BUSY ERROR_CODE[3:0]

R R R R R

W W W W W

0 0xF

SPI_STATUS SPI Status Register

b23 b22 b21 b20 b19 b18 b17 b16

SPI_STATUS SPI Status Register

b15 b14 b13 b12 b11 b10 b9 b8

SPI_STATUS SPI Status Register

b7 b6 b5 b4 b3 b2 b1 b0

ERROR TX_HALF TX_SPACE TX_DONE RX_HALF RX_DATA RX_DONE

R/W1C R R R R R R

R/W1S W W W W W W

0 1 1 0 0 0 0

Bit Name Description

588 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.21.2 SPI_STATUS (continued)

3 TX_DONE Indicates no more data is available for transmission. Non sticky.
If DMA_MODE=0 this is defined as TX FIFO empty and shift register empty. If DMA_MODE=1 this is
defined as BYTE_COUNT=0 and shift register empty. Note that this field will only assert after a trans-
mission was started - its power up state is 0.

2 RX_HALF Indicates that the RX FIFO is at least half full (only relevant when DMA_MODE=0). This bit can be
used to create burst based interrupts. This bit is updated immediately after reads from
INGRESS_DATA register. Non sticky

1 RX_DATA Indicates data is available in the RX FIFO (only relevant when DMA_MODE=0). This bit is updated
immediately after reads from INGRESS_DATA register. Non sticky

0 RX_DONE Indicates receive operation completed. Only relevant when DMA_MODE=1). Receive operation is
complete when transfer size bytes in socket have been received. Non sticky. Does not need software
intervention to clear it.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 589

10.21.3 SPI_INTR

SPI Interrupt Request Register

Interrupt requests. Derived from STATUS register. Interrupt requests must be cleared by CPU and are generated regardless
of values in INTR_MASK register.

6 ERROR Set by hardware when corresponding STATUS asserts, cleared by software.

5 TX_HALF Set by hardware when corresponding STATUS asserts, cleared by software.

4 TX_SPACE Set by hardware when corresponding STATUS asserts, cleared by software.

3 TX_DONE Set by hardware when corresponding STATUS asserts, cleared by software.

2 RX_HALF Set by hardware when corresponding STATUS asserts, cleared by software.

1 RX_DATA Set by hardware when corresponding STATUS asserts, cleared by software.

0 RX_DONE Set by hardware when corresponding STATUS asserts, cleared by software.

SPI_INTR SPI Interrupt Request Register 0xE0000C08

b31 b30 b29 b28 b27 b26 b25 b24

SPI_INTR SPI Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

SPI_INTR SPI Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

SPI_INTR SPI Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

ERROR TX_HALF TX_SPACE TX_DONE RX_HALF RX_DATA RX_DONE

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0 0

Bit Name Description

590 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.21.4 SPI_INTR_MASK

SPI Interrupt Mask Register

Interrupt mask bits. Determine if INTR bits are reported to CPU. Have no effect on creation of INTR bits.

6 ERROR 1 Report interrupt to CPU

5 TX_HALF 1 Report interrupt to CPU

4 TX_SPACE 1 Report interrupt to CPU

3 TX_DONE 1 Report interrupt to CPU

2 RX_HALF 1 Report interrupt to CPU

1 RX_DATA 1 Report interrupt to CPU

0 RX_DONE 1 Report interrupt to CPU

SPI_INTR_MASK SPI Interrupt Mask Register 0xE0000C0C

b31 b30 b29 b28 b27 b26 b25 b24

SPI_INTR_MASK SPI Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

SPI_INTR_MASK SPI Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

SPI_INTR_MASK SPI Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

ERROR TX_HALF TX_SPACE TX_DONE RX_HALF RX_DATA RX_DONE

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 591

10.21.5 SPI_EGRESS_DATA

SPI Egress Data Register

Accepts egress data one word at a time, LSB justified. Writing to this register adds one word to the FIFO if the FIFO has
space available. It will result in ERROR if the FIFO is full. The size of the transmit FIFO is configured at design time.

31:0 DATA32[31:0] Data word to be written to the peripheral in registered mode. Only the least significant SPI_CONF.WL bits
are used. Other bits are ignored.

SPI_EGRESS_DATA SPI Egress Data Register 0xE0000C10

b31 b30 b29 b28 b27 b26 b25 b24

DATA32[31:24]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

SPI_EGRESS_DATA SPI Egress Data Register

b23 b22 b21 b20 b19 b18 b17 b16

DATA32[23:16]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

SPI_EGRESS_DATA SPI Egress Data Register

b15 b14 b13 b12 b11 b10 b9 b8

DATA32[15:8]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

SPI_EGRESS_DATA SPI Egress Data Register

b7 b6 b5 b4 b3 b2 b1 b0

DATA32[7:0]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

592 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.21.6 SPI_INGRESS_DATA

SPI Ingress Data Register

Presents ingress data one word at a time, LSB justified. Reading from this register removes one word from the FIFO if the
FIFO has data available. It will result in ERROR if the FIFO is empty. The size of the receive FIFO is configured at design
time.

31:0 DATA32[31:0] Data word read from the peripheral when DMA_MODE=0. Only the least significant SPI_CONF.WL bits
are provided. Other bits are set to 0.

SPI_INGRESS_DATA SPI Ingress Data Register 0xE0000C14

b31 b30 b29 b28 b27 b26 b25 b24

DATA32[31:24]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

SPI_INGRESS_DATA SPI Ingress Data Register

b23 b22 b21 b20 b19 b18 b17 b16

DATA32[23:16]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

SPI_INGRESS_DATA SPI Ingress Data Register

b15 b14 b13 b12 b11 b10 b9 b8

DATA32[15:8]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

SPI_INGRESS_DATA SPI Ingress Data Register

b7 b6 b5 b4 b3 b2 b1 b0

DATA32[7:0]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 593

10.21.7 SPI_SOCKET

SPI Socket Register

Indicates sockets used for DMA based operation.

15:8 INGRESS_SOCKET[7:0] Socket number for ingress data
0-7 Supported
8-.. Reserved

7:0 EGRESS_SOCKET[7:0] Socket number for egress data
0-7 Supported
8-.. Reserved

SPI_SOCKET SPI Socket Register 0xE0000C18

b31 b30 b29 b28 b27 b26 b25 b24

SPI_SOCKET SPI Socket Register

b23 b22 b21 b20 b19 b18 b17 b16

SPI_SOCKET SPI Socket Register

b15 b14 b13 b12 b11 b10 b9 b8

INGRESS_SOCKET[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

SPI_SOCKET SPI Socket Register

b7 b6 b5 b4 b3 b2 b1 b0

EGRESS_SOCKET[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

594 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.21.8 SPI_RX_BYTE_COUNT

SPI Receive Byte Count Register

Indicates the number of bytes to receive. This register is relevant only if DMA_MODE=1.

On receive BYTE_COUNT bytes will be received and forwarded to the DMA adapter. No EOP will be sent to the DMA
adapter. If receive flow control is enabled it will be set to off. If flow control is not enabled and data is received and the socket
remains active, it will be forwarded to the adapter regardless of BYTE_COUNT. BYTE_COUNT will stay 0 in this case (not
decrement). Words can consist of 4-32 bits.

31:0 WORD_COUNT[31:0] Number of words left to read or write
0xFFFFFFFF indicates infinite (counter will not decrement)

SPI_RX_BYTE_COUNT SPI Receive Byte Count Register 0xE0000C1C

b31 b30 b29 b28 b27 b26 b25 b24

WORD_COUNT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

SPI_RX_BYTE_COUNT SPI Receive Byte Count Register

b23 b22 b21 b20 b19 b18 b17 b16

WORD_COUNT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

SPI_RX_BYTE_COUNT SPI Receive Byte Count Register

b15 b14 b13 b12 b11 b10 b9 b8

WORD_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

SPI_RX_BYTE_COUNT SPI Receive Byte Count Register

b7 b6 b5 b4 b3 b2 b1 b0

WORD_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0xFFFFFFFF

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 595

10.21.9 SPI_TX_BYTE_COUNT

SPI Transmit Byte Count Register

Indicates the number of bytes to transmit. This register is relevant only if DMA_MODE=1.

On transmit a command will complete (TX_DONE) when BYTE_COUNT=0. No more bytes will be sent until BYTE_COUNT is
modified again. Any EOP signalling from the DMA adapter will be ignored. Words can consist of 4-32 bits.

31:0 WORD_COUNT[31:0] Number of words left to read or write
0xFFFFFFFF indicates infinite (counter will not decrement)

SPI_TX_BYTE_COUNT SPI Transmit Byte Count Register 0xE0000C20

b31 b30 b29 b28 b27 b26 b25 b24

WORD_COUNT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

SPI_TX_BYTE_COUNT SPI Transmit Byte Count Register

b23 b22 b21 b20 b19 b18 b17 b16

WORD_COUNT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

SPI_TX_BYTE_COUNT SPI Transmit Byte Count Register

b15 b14 b13 b12 b11 b10 b9 b8

WORD_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

SPI_TX_BYTE_COUNT SPI Transmit Byte Count Register

b7 b6 b5 b4 b3 b2 b1 b0

WORD_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0xFFFFFFFF

Bit Name Description

596 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.21.10 SPI_ID

Block Identification and Version Number Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31:16 BLOCK_VERSION[15:0] Version number for the IP

15:0 BLOCK_ID[15:0] A unique number identifying the IP in the memory space

SPI_ID Block Identification and Version Number 0xE0000FF0

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:8]

R R R R R R R R

SPI_ID Block Identification and Version Number

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

0x0001

SPI_ID Block Identification and Version Number

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:8]

R R R R R R R R

SPI_ID Block Identification and Version Number

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R R R R R R R R

0x0003

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 597

10.21.11 SPI_POWER

Power, Clock, and Reset Control Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31 RESETN Active LOW reset signal for all logic in the block. Note that reset is active on all flops in the block
when either system reset is asserted (RESET# pin or SYSTEM_POWER.RESETN is asserted) or
this signal is active.
After setting this bit to 1, firmware will poll and wait for the ‘active’ bit to assert. Reading ‘1’ from
‘resetn’ does not indicate the block is out of reset – this may take some time depending on initializa-
tion tasks and clock frequencies.
This bit must be asserted ('0') for at least 10 µs for effective reset.

0 ACTIVE For blocks that must perform initialization after reset before becoming operational, this signal will
remain deasserted until initialization is complete. In other words reading active=1 indicates block is
initialized and ready for operation.

SPI_POWER Power, Clock, and Reset Control 0xE0000FF4

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R/W

R

0

SPI_POWER Power, Clock, and Reset Control

b23 b22 b21 b20 b19 b18 b17 b16

SPI_POWER Power, Clock, and Reset Control

b15 b14 b13 b12 b11 b10 b9 b8

SPI_POWER Power, Clock, and Reset Control

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

R

W

0

Bit Name Description

598 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.22 General Purpose IO Block Registers

10.22.1 GPIO_SIMPLE

Simple General Purpose IO Register (one pin)

There are 61 GPIO_SIMPLE registers. The address of each is calculated as GPIO_SIMPLE(x) = 0xE0001100 + (x*0x4).
Hence GPIO_SIMPLE(0) is at address 0xE0001100, GPIO_SIMPLE(1) is at address 0xE0001100 + 0x4 and so on. The defi-
nition of each of these is the same.

This register controls mode of operation and configuration for a single IO Pin. It also exposes status and read value.

31 ENABLE Enable GPIO logic for this pin.

27 INTR Registers edge triggered interrupt condition. Only relevant when INTRMODE=1,2,3,6,7. When
INTRMODE=4,5 pin status is fed directly to interrupt controller; condition can be observed through
IN_VALUE in this case.

continued on next page

GPIO_SIMPLE Simple General Purpose IO Register (one pin) 0xE0001100

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE INTR INTRMODE[2:0]

R/W R/W1C R/W R/W R/W

R R/W1S R R R

0 0 0 0 0

GPIO_SIMPLE Simple General Purpose IO Register (one pin)

b23 b22 b21 b20 b19 b18 b17 b16

GPIO_SIMPLE Simple General Purpose IO Register (one pin)

b15 b14 b13 b12 b11 b10 b9 b8

GPIO_SIMPLE Simple General Purpose IO Register (one pin)

b7 b6 b5 b4 b3 b2 b1 b0

INPUT_EN DRIVE_HI_EN DRIVE_LO_EN IN_VALUE OUT_VALUE

R/W R/W R/W R R/W

R R R W R

0 0 0 0 1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 599

10.22.1 GPIO_SIMPLE (continued)

26:24 INTRMODE[2:0] Interrupt mode
0 No interrupt
1 Interrupt on positive edge
2 Interrupt on negative edge
3 Interrupt on any edge
4 Interrupt when pin is low
5 Interrupt when pin is high
6-7 Reserved

6 INPUT_EN 0 Input stage is disabled
1 Input stage is enabled, value is readable in IN_VALUE

5 DRIVE_HI_EN Output driver enable when OUT_VALUE=1
0 Output driver is tristated
1 Output driver is active (weak/strong is determined in IO Matrix)

4 DRIVE_LO_EN Output driver enable when OUT_VALUE=0
0 Output driver is tristated
1 Output driver is active (weak/strong is determined in IO Matrix)

1 IN_VALUE Present input measurement
0 Low
1 High

0 OUT_VALUE Output value used for output drive (if DRIVE_EN=1)
0 Driven Low
1 Driven High

600 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.22.2 GPIO_INVALUE0

GPIO Input Value Vector Register

One bit for each GPIO pin indicating interrupt status

31:0 INVALUE0[31:0] If bit <x> is set, IN_VALUE is active for GPIO <x>.

GPIO_INVALUE0 GPIO Input Value Vector 0xE00013D0

b31 b30 b29 b28 b27 b26 b25 b24

INVALUE0[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INVALUE0 GPIO Input Value Vector

b23 b22 b21 b20 b19 b18 b17 b16

INVALUE0[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INVALUE0 GPIO Input Value Vector

b15 b14 b13 b12 b11 b10 b9 b8

INVALUE0[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INVALUE0 GPIO Input Value Vector

b7 b6 b5 b4 b3 b2 b1 b0

INVALUE0[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 601

10.22.3 GPIO_INVALUE1

GPIO Input Value Vector Register

One bit for each GPIO pin indicating interrupt status

28:0 INVALUE1[28:0] If bit <x> is set, IN_VALUE is active for GPIO <x+32>.

GPIO_INVALUE1 GPIO Input Value Vector 0xE00013D4

b31 b30 b29 b28 b27 b26 b25 b24

INVALUE1[28:24]

R R R R R

W W W W W

0 0 0 0 0

GPIO_INVALUE1 GPIO Input Value Vector

b23 b22 b21 b20 b19 b18 b17 b16

INVALUE1[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INVALUE1 GPIO Input Value Vector

b15 b14 b13 b12 b11 b10 b9 b8

INVALUE1[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INVALUE1 GPIO Input Value Vector

b7 b6 b5 b4 b3 b2 b1 b0

INVALUE1[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

602 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.22.4 GPIO_INTR0

GPIO Interrupt Vector Register

One bit for each GPIO pin indicating interrupt status

31:0 INTR0[31:0] If bit <x> is set, INTR is active for GPIO <x>.

GPIO_INTR0 GPIO Interrupt Vector 0xE00013E0

b31 b30 b29 b28 b27 b26 b25 b24

INTR0[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INTR0 GPIO Interrupt Vector

b23 b22 b21 b20 b19 b18 b17 b16

INTR0[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INTR0 GPIO Interrupt Vector

b15 b14 b13 b12 b11 b10 b9 b8

INTR0[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INTR0 GPIO Interrupt Vector

b7 b6 b5 b4 b3 b2 b1 b0

INTR0[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 603

10.22.5 GPIO_INTR1

GPIO Interrupt Vector Register

One bit for each GPIO pin indicating interrupt status

28:0 INTR1[28:0] If bit <x> is set, INTR is active for GPIO <x+32>.

GPIO_INTR1 GPIO Interrupt Vector 0xE00013E4

b31 b30 b29 b28 b27 b26 b25 b24

INTR1[28:24]

R R R R R

W W W W W

0 0 0 0 0

GPIO_INTR1 GPIO Interrupt Vector

b23 b22 b21 b20 b19 b18 b17 b16

INTR1[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INTR1 GPIO Interrupt Vector

b15 b14 b13 b12 b11 b10 b9 b8

INTR1[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

GPIO_INTR1 GPIO Interrupt Vector

b7 b6 b5 b4 b3 b2 b1 b0

INTR1[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

604 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.22.6 GPIO_INTR

GPIO Interrupt Vector for PINs Register

One bit for each GPIO PIN structure indicating its interrupt status. The actual pin associated with a PIN structure (if any) is set
in GCTL_GPIO_COMPLEX.

7 INTR7 Set by hardware when corresponding STATUS asserts, cleared by software.

6 INTR6 Set by hardware when corresponding STATUS asserts, cleared by software.

5 INTR5 Set by hardware when corresponding STATUS asserts, cleared by software.

4 INTR4 Set by hardware when corresponding STATUS asserts, cleared by software.

3 INTR3 Set by hardware when corresponding STATUS asserts, cleared by software.

2 INTR2 Set by hardware when corresponding STATUS asserts, cleared by software.

1 INTR1 Set by hardware when corresponding STATUS asserts, cleared by software.

0 INTR0 Set by hardware when corresponding STATUS asserts, cleared by software.

GPIO_INTR GPIO Interrupt Vector for PINs 0xE00013E8

b31 b30 b29 b28 b27 b26 b25 b24

GPIO_INTR GPIO Interrupt Vector for PINs

b23 b22 b21 b20 b19 b18 b17 b16

GPIO_INTR GPIO Interrupt Vector for PINs

b15 b14 b13 b12 b11 b10 b9 b8

GPIO_INTR GPIO Interrupt Vector for PINs

b7 b6 b5 b4 b3 b2 b1 b0

INTR7 INTR6 INTR5 INTR4 INTR3 INTR2 INTR1 INTR0

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 605

10.22.7 GPIO_ID

Block Identification and Version Number Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31:16 BLOCK_VERSION[15:0] Version number for the IP

15:0 BLOCK_ID[15:0] A unique number identifying the IP in the memory space

GPIO_ID Block Identification and Version Number 0xE00013F0

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:8]

R R R R R R R R

GPIO_ID Block Identification and Version Number

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

0x0001

GPIO_ID Block Identification and Version Number

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:8]

R R R R R R R R

GPIO_ID Block Identification and Version Number

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R R R R R R R R

0x0004

Bit Name Description

606 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.22.8 GPIO_POWER

Power, Clock, and Reset Control Register

Every low performance peripheral IP block will implement a few MMIO registers at a fixed offset in its MMIO to space that
identify the block and control its power/clock/reset state. These registers are located in the CPU/Interconnect power and clock
domains and are accessible even when power/clock of the block is switched off.

31 RESETN Active LOW reset signal for all logic in the block. Note that reset is active on all flops in the block
when either system reset is asserted (RESET# pin or SYSTEM_POWER.RESETN is asserted) or
this signal is active.
After setting this bit to 1, firmware will poll and wait for the ‘active’ bit to assert. Reading ‘1’ from
‘resetn’ does not indicate the block is out of reset – this may take some time depending on initializa-
tion tasks and clock frequencies.
This bit must be asserted ('0') for at least 10 µs for effective reset.

0 ACTIVE For blocks that must perform initialization after reset before becoming operational, this signal will
remain deasserted until initialization is complete. In other words reading active=1 indicates block is
initialized and ready for operation.

GPIO_POWER Power, Clock, and Reset Control 0xE00013F4

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R/W

R

0

GPIO_POWER Power, Clock, and Reset Control

b23 b22 b21 b20 b19 b18 b17 b16

GPIO_POWER Power, Clock, and Reset Control

b15 b14 b13 b12 b11 b10 b9 b8

GPIO_POWER Power, Clock, and Reset Control

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

R

W

0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 607

10.23 General Purpose IO Registers (one pin)

10.23.1 PIN_STATUS

IO Pin Status Register (one pin)

This register controls mode of operation and configuration for a single IO Pin. It also exposes status and read value.

31 ENABLE Enable GPIO logic for this pin.

30:28 TIMER_MODE[2:0] 0 Shutdown GPIO_TIMER
1 Use high frequency (e.g. 50MHz)
2 Use low frequency (e.g. 1MHz)
3 Use standby frequency (32KHz)
4 Use positive edge (sampled using high frequency)
5 Use negative edge (sampled using high frequency)
6 Use any edge (sampled using high frequency)
7 Reserved
Note: Changing TIMER_MODE when ENABLE=1 will result in undefined behavior.

27 INTR Registers edge triggered interrupt condition. Only relevant when INTRMODE=1,2,3,6,7. When
INTRMODE=4,5 pin status is fed directly to interrupt controller; condition can be observed through
IN_VALUE in this case.

continued on next page

PIN_STATUS Configuration, mode and status of IO Pin 0xE0001000

b31 b30 b29 b28 b27 b26 b25 b24

ENABLE TIMER_MODE[2:0] INTR INTRMODE[2:0]

R/W R/W R/W R/W R/W1C R/W R/W R/W

R R R R R/W1S R R R

0 0 0 0 0 0 0 0

PIN_STATUS Configuration, mode and status of IO Pin

b23 b22 b21 b20 b19 b18 b17 b16

PIN_STATUS Configuration, mode and status of IO Pin

b15 b14 b13 b12 b11 b10 b9 b8

MODE[3:0]

R/W R/W R/W R/W

R/W R/W R/W R/W

0 0 0 0

PIN_STATUS Configuration, mode and status of IO Pin

b7 b6 b5 b4 b3 b2 b1 b0

INPUT_EN DRIVE_HI_EN DRIVE_LO_EN IN_VALUE OUT_VALUE

R/W R/W R/W R R/W

R R R W R/W

0 0 0 0 1

Bit Name Description

608 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.23.1 GPIO_SIMPLE (continued)

26:24 INTRMODE[2:0] Interrupt mode
0 No interrupt
1 Interrupt on positive edge on IN_VALUE
2 Interrupt on negative edge on IN_VALUE
3 Interrupt on any edge on IN_VALUE
4 Interrupt when IN_VALUE is low
5 Interrupt when IN_VALUE is high
6 Interrupt on TIMER = THRESHOLD
7 Interrupt on TIMER = 0

11:8 MODE[3:0] Mode/command. Behavior is undefined when MODE>2 and TIMER_MODE=4,5,6.
0 STATIC
1 TOGGLE
2 SAMPLENOW
3 PULSENOW
4 PULSE
5 PWM
6 MEASURE_LOW
7 MEASURE_HIGH
8 MEASURE_LOW_ONCE
9 MEASURE_HIGH_ONCE
10 MEASURE_NEG
11 MEASURE_POS
12 MEASURE_ANY
13 MEASURE_NEG_ONCE
14 MEASURE_POS_ONCE
15 MEASURE_ANY_ONCE
Note that when setting TOGGLE/SAMPLENOW/PULSENOW while ENABLE=0 the behavior is unde-
fined)

6 INPUT_EN 0 Input stage is disabled
1 Input stage is enabled, value is readable in IN_VALUE

5 DRIVE_HI_EN Output driver enable when OUT_VALUE=1
0 Output driver is tristated
1 Output driver is active (weak/strong is determined in IO Matrix)

4 DRIVE_LO_EN Output driver enable when OUT_VALUE=0
0 Output driver is tristated
1 Output driver is active (weak/strong is determined in IO Matrix)

1 IN_VALUE Present input measurement
0 Low
1 High

0 OUT_VALUE Output value used for output drive (if DRIVE_EN=1)
0 Driven Low
1 Driven High

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 609

10.23.2 PIN_TIMER

IO Pin Timer/Counter Register

32-bit revolving counter, using period (GPIO_PERIOD+1).

Note that each GPIO has its own independent timer/counter

31:0 TIMER[31:0] 32-bit timer-counter value. Use MODE=SAMPLE_NOW (in PIN_STATUS register) to sample the timer
into PIN_THRESHOLD. When TIMER reaches GPIO_PERIOD it resets to 0.

PIN_TIMER Timer/counter for pulse and measurement modes 0xE0001004

b31 b30 b29 b28 b27 b26 b25 b24

TIMER[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

PIN_TIMER Timer/counter for pulse and measurement modes

b23 b22 b21 b20 b19 b18 b17 b16

TIMER[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

PIN_TIMER Timer/counter for pulse and measurement modes

b15 b14 b13 b12 b11 b10 b9 b8

TIMER[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

PIN_TIMER Timer/counter for pulse and measurement modes

b7 b6 b5 b4 b3 b2 b1 b0

TIMER[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

610 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.23.3 PIN_PERIOD

Pin Period Length Register

Period of 32-bit revolving counter (actual period is PERIOD+1)

Note that each GPIO has its own independent timer/counter.

Note: In FX3 PIN_PERIOD must be 1 or greater.

31:0 PERIOD[31:0] 32-bit period for GPIO_TIMER (counter resets to 0 when PERIOD=TIMER)

PIN_PERIOD Period length for revolving counter GPIO_TIMER 0xE0001008

b31 b30 b29 b28 b27 b26 b25 b24

PERIOD[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

PIN_PERIOD Period length for revolving counter GPIO_TIMER

b23 b22 b21 b20 b19 b18 b17 b16

PERIOD[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

PIN_PERIOD Period length for revolving counter GPIO_TIMER

b15 b14 b13 b12 b11 b10 b9 b8

PERIOD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

PIN_PERIOD Period length for revolving counter GPIO_TIMER

b7 b6 b5 b4 b3 b2 b1 b0

PERIOD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0xFFFFFFFF

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 611

10.23.4 PIN_THRESHOLD

Threshold or Measurement Register

A 32-bit threshold or measurement. Usage depends on MODE field in PIN_STATUS register.

Note that each GPIO has its own independent timer/counter.

31:0 THRESHOLD[31:0] 32-bit threshold or measurement for counter.

PIN_THRESHOLD Threshold or Measurement Register 0xE000100C

b31 b30 b29 b28 b27 b26 b25 b24

THRESHOLD[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PIN_THRESHOLD Threshold or Measurement Register

b23 b22 b21 b20 b19 b18 b17 b16

THRESHOLD[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PIN_THRESHOLD Threshold or Measurement Register

b15 b14 b13 b12 b11 b10 b9 b8

THRESHOLD[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PIN_THRESHOLD Threshold or Measurement Register

b7 b6 b5 b4 b3 b2 b1 b0

THRESHOLD[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

612 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.24 Low Performance Peripherals Registers

10.24.1 LPP_ID

Block Identification and Version Number Register

Every IP block will implement a few MMIO registers at offset 0 in its MMIO to space that identify the block and control its
power/clock/reset state. These registers are located in the CPU/Interconnect power and clock domains and are accessible
even when power/clock of the block is switched off.

31:16 BLOCK_VERSION[15:0] Version number for the IP

15:0 BLOCK_ID[15:0] A unique number identifying the IP in the memory space

LPP_ID Block Identification and Version Number 0xE0007F00

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:8]

R R R R R R R R

R R R R R R R R

LPP_ID Block Identification and Version Number

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

R R R R R R R R

0x0001

LPP_ID Block Identification and Version Number

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:8]

R R R R R R R R

R R R R R R R R

LPP_ID Block Identification and Version Number

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R R R R R R R R

R R R R R R R R

0xFFFE

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 613

10.24.2 LPP_POWER

Power, Clock, and Reset Control Register

Every IP block will implement a few MMIO registers at offset 0 in its MMIO to space that identify the block and control its
power/clock/reset state. These registers are located in the CPU/Interconnect power and clock domains and are accessible
even when power/clock of the block is switched off.

31 RESETN Active LOW reset signal for all logic in the block. Note that reset is active on all flops in the block
when either system reset is asserted (RESET# pin or SYSTEM_POWER.RESETN is asserted) or
this signal is active.
After setting this bit to 1, firmware will poll and wait for the ‘active’ bit to assert. Reading ‘1’ from
‘resetn’ does not indicate the block is out of reset – this may take some time depending on initializa-
tion tasks and clock frequencies.
This bit must be asserted ('0') for at least 10us for effective reset.

0 ACTIVE For blocks that must perform initialization after reset before becoming operational, this signal will
remain deasserted until initialization is complete. In other words reading active=1 indicates block is
initialized and ready for operation.

LPP_POWER Power, Clock, and Reset Control 0xE0007F04

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R/W

R

0

LPP_POWER Power, Clock, and Reset Control

b23 b22 b21 b20 b19 b18 b17 b16

LPP_POWER Power, Clock, and Reset Control

b15 b14 b13 b12 b11 b10 b9 b8

LPP_POWER Power, Clock, and Reset Control

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

R

W

0

Bit Name Description

614 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.25 DMA Socket and Descriptor Registers

Each functional block (LPP, PIB, UIB, and UIBIN) has its own set of DMA socket registers that use the offset address of that
block. Table 10-3 shows the offset address for each block.

Each functional block has more than one DMA socket and each DMA socket has the same set of DMA Socket registers. The
offset of each DMA Socket register set is 0x80 (that is, the offset of DMA #0 is 0, DMA #1 is 0x80, DMA #2 is 0x100, and so
on). The address of a DMA Socket register can be calculated as:

functional block address + DMA # * 0x80 + register address

For example, the address of the DMA_STATUS register of DMA #2 in the UIB functional block can be calculated as:

0xE0038000 + 2 (DMA #2) * 80 + 0x0C = 0xE0038000 + 0x100 + 0x0C = 0xE003810C

10.25.1 SCK_DSCR

Descriptor Chain Pointer Register

Table 10-3. Offset Addresses

Functional Block Offset Address

LPP 0xE0008000

PIB 0xE0018000

UIB 0xE0038000

UIBIN 0xE0048000

SCK_DSCR Descriptor Chain Pointer 0x00

b31 b30 b29 b28 b27 b26 b25 b24

DSCR_LOW[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

X X X X X X X X

SCK_DSCR Descriptor Chain Pointer

b23 b22 b21 b20 b19 b18 b17 b16

DSCR_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

SCK_DSCR Descriptor Chain Pointer

b15 b14 b13 b12 b11 b10 b9 b8

DSCR_NUMBER[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

SCK_DSCR Descriptor Chain Pointer

b7 b6 b5 b4 b3 b2 b1 b0

DSCR_NUMBER[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 615

This register describes the current descriptor chain for this socket. Only write to this register when socket is in suspend state
or disabled state.

31:24 DSCR_LOW[31:24] The low watermark for dscr_count. When dscr_count is equal or less than dscr_low the status bit
dscr_is_low is set and an interrupt can be generated (depending on int mask).

23:16 DSCR_COUNT[7:0] Number of descriptors still left to process. This value is unrelated to actual number of descriptors in
the list. It is used only to generate an interrupt to the CPU when the value goes low or zero (or both).
When this value reaches 0 it will wrap around to 255. The socket will not suspend or be otherwise
affected unless the descriptor chains ends with 0xFFFF descriptor number.

15:0 DSCR_NUMBER[15:0] Descriptor number of currently active descriptor. A value of 0xFFFF designates no (more) active
descriptors available. When activating a socket CPU will write number of first descriptor in here. Only
modify this field when go_suspend=1 or go_enable=0

Bit Name Description

616 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.25.2 SCK_SIZE

Transfer Size Register

Only write to this register when socket is in suspend state or disabled state.

31:0 TRANS_SIZE[31:0] The number of bytes or buffers (depends on unit bit in SCK_STATUS) that are part of this transfer. A
value of 0 signals an infinite/undetermined transaction size.
Valid data bytes remaining in the last buffer beyond the transfer size will be read by socket and passed on
to the core. Firmware must ensure that no additional bytes beyond the transfer size are present in the last
buffer.

SCK_SIZE Transfer Size Register 0x04

b31 b30 b29 b28 b27 b26 b25 b24

TRANS_SIZE[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

X X X X X X X X

SCK_SIZE Transfer Size Register

b23 b22 b21 b20 b19 b18 b17 b16

TRANS_SIZE[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

X X X X X X X X

SCK_SIZE Transfer Size Register

b15 b14 b13 b12 b11 b10 b9 b8

TRANS_SIZE[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

X X X X X X X X

SCK_SIZE Transfer Size Register

b7 b6 b5 b4 b3 b2 b1 b0

TRANS_SIZE[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

X X X X X X X X

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 617

10.25.3 SCK_COUNT

Transfer Count Register

Only write to this register when socket is in suspend state or disabled state.

31:0 TRANS_COUNT[31:0] The number of bytes or buffers (depends on unit bit in SCK_STATUS) that have been transferred
through this socket so far. If trans_size is >0 and trans_count >= trans_size the ‘trans_done’ bits in
SCK_STATUS is both set. If SCK_STATUS.susp_trans=1 the socket is also suspended and the ‘sus-
pend’ bit set. This count is updated only when a descriptor is completed and the socket proceeds to
the next one.
Exception: When socket suspends with PARTIAL_BUF=1, this value is (incorrectly) incremented by 1
(UNIT=1) or DSCR_SIZE.BYTE_COUNT (UNIT=0). Firmware must correct this before resuming the
socket.

SCK_COUNT Transfer Count Register 0x08

b31 b30 b29 b28 b27 b26 b25 b24

TRANS_COUNT[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

SCK_COUNT Transfer Count Register

b23 b22 b21 b20 b19 b18 b17 b16

TRANS_COUNT[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

SCK_COUNT Transfer Count Register

b15 b14 b13 b12 b11 b10 b9 b8

TRANS_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

SCK_COUNT Transfer Count Register

b7 b6 b5 b4 b3 b2 b1 b0

TRANS_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

Bit Name Description

618 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.25.4 SCK_STATUS

Socket Status Register

This register contains the status and interrupt control bits. The interrupt request bits are independent of the interrupt mask
bits. The mask bits affect which interrupt request bits are reported to CPU only.

31 GO_ENABLE Indicates whether socket is enabled. When go_enable is cleared while socket is active, ongoing
transfers are aborted after an unspecified amount of time. No update occurs from the descriptor reg-
isters back into memory. When go_enable is changed from 0 to 1, the socket will reload the active
descriptor from memory regardless of the contents of DSCR_ registers. The socket will not wait for an
EVENT to become active if the descriptor is available and ready for transfer (has space or data).
The 'enabled' bit indicates whether the socket is actually enabled or not. This field lags go_enable by
a short but unspecified time.

30 GO_SUSPEND Directs a socket to go into suspend mode when the current descriptor completes. The main use of
this bit is to safely append descriptors to an active socket without actually suspending it (in most
cases). The process looks as follows:
1. GO_SUSPEND=1
2. Modify the chain in memory
3. Check if active descriptor is 0xFFFF or last in chain
4. If so, make corrections as necessary (complicated)
5. Clear any pending suspend interrupts (SCK_INTR[9:5])
6. GO_SUSPEND=0
Note that the socket resumes only when SCK_INTR[9:5]=0 and GO_SUSPEND=0.

continued on next page

SCK_STATUS Socket Status Register 0x0C

b31 b30 b29 b28 b27 b26 b25 b24

GO_ENABLE GO_SUSPEND UNIT WRAPUP SUSP_EOP SUSP_TRANS SUSP_LAST SUSP_PARTIAL

R/W R/W R/W R/W1S R/W R/W R/W R/W

R R R R/W0C R R R R

0 0 0 0 0 1 0 0

SCK_STATUS Socket Status Register

b23 b22 b21 b20 b19 b18 b17 b16

EN_CONS_
EVENTS

EN_PROD_
EVENTS

TRUNCATE ENABLED SUSPENDED ZLP_RCVD STATE[2:1]

R/W R/W R/W R R R R R

R R R R/W R/W R/W R/W R/W

1 1 1 0 0 0 0 0

SCK_STATUS Socket Status Register

b15 b14 b13 b12 b11 b10 b9 b8

STATE[0] AVL_ENABLE AVL_MIN[4:3]

R R/W R/W R/W

R/W R R R

0 0 0 0

SCK_STATUS Socket Status Register

b7 b6 b5 b4 b3 b2 b1 b0

AVL_MIN[2:0] AVL_COUNT[4:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 619

10.25.4 SCK_STATUS (continued)

29 UNIT Indicates whether descriptors (1) or bytes (0) are counted by trans_count and trans_size. Descriptors
are counting regardless of whether they contain any data or have eop set.

28 WRAPUP Setting this bit will forcibly wrap-up a socket, whether it is out of data or not. This option is intended
mainly for ingress sockets, but works also for egress sockets. Any remaining data in fetch buffers is
ignored, in write buffers is flushed. Transaction and buffer counts are updated normally, and suspend
behavior also happens normally (depending on various other settings in this register).G45

27 SUSP_EOP When set, the socket will suspend after wrapping up the first buffer with dscr.eop=1. Note that this
function will work the same for both ingress and egress sockets.

26 SUSP_TRANS When set, the socket will suspend when trans_count >= trans_size. This equation is checked (and
hence the socket will suspend) only at the boundary of buffers and packets (ie. buffer wrapup or EOP
assertion).

25 SUSP_LAST When set, the socket will suspend before activating a descriptor with
TRANS_COUNT+BUFFER_SIZE>=TRANS_SIZE. This is relevant for both ingress and egress sock-
ets.

24 SUSP_PARTIAL When set, the socket will suspend before activating a descriptor with
BYTE_COUNT<BUFFER_SIZE. This is relevant for egress sockets only.

23 EN_CONS_EVENTS Enable (1) or disable (0) sending of consume events from any descriptor in this socket. If 0, events
will be suppressed, and the descriptor will not be copied back into memory when completed.

22 EN_PROD_EVENTS Enable (1) or disable (0) sending of produce events from any descriptor in this socket. If 0, events will
be suppressed, and the descriptor will not be copied back into memory when completed.

21 TRUNCATE Enable (1) or disable (0) truncating of BYTE_COUNT when
TRANS_COUNT+BYTE_COUNT>=TRANS_SIZE. When enabled, ensures that an ingress transfer
never contains more bytes then allowed. This function is needed to implement burst-based protocols
that can only transmit full bursts of more than 1 byte.

20 ENABLED Indicates the socket is currently enabled when asserted. After go_enable is changed, it may take
some time for enabled to make the same change. This value can be polled to determine this fact.

19 SUSPENDED Indicates the socket is currently in suspend state. In suspend mode there is no active descriptor; any
previously active descriptor is wrapped up, copied back to memory and SCK_DSCR.dscr_number is
updated using DSCR_CHAIN as needed. If the next descriptor is known
(SCK_DSCR.dscr_number!=0xFFFF), this descriptor will be loaded after the socket resumes from
suspend state.
A socket can only be resumed by changing go_suspend from 1 to 0. If the socket is suspended while
go_suspend=0, it must first be set and then again cleared.

18 ZLP_RCVD Indicates the socket received a ZLP

continued on next page

620 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.25.4 SCK_STATUS (continued)

17:15 STATE[2:0] Internal operating state of the socket. This field is used for debugging and to safely modify active
sockets (see go_suspend).

10 AVL_ENABLE Enables the functioning of AVL_COUNT and AVL_MIN. When 0, it will disable both stalling on
AVL_MIN and generation of the sck_more_buf_avl signal described above.

9:5 AVL_MIN Minimum number of available buffers required by the adapter before activating a new one. This can
be used to guarantee a minimum number of buffers available with old data to implement rollback. If
AVL_ENABLE, the socket will remain in STALL state until AVL_COUNT>=AVL_MIN.

4:0 AVL_COUNT Number of available (free for ingress, occupied for egress) descriptors beyond the current one. This
number is incremented by the adapter whenever an event is received on this socket and decre-
mented whenever it activates a new descriptor. This value is used to create a signal to the IP Cores
that indicates at least one buffer is available beyond the current one (sck_more_buf_avl).

State Default Description

DESCR 9 Descriptor state. This is the default initial state indicating the descriptor registers are NOT valid in the
Adapter. The Adapter will start loading the descriptor from memory if the socket becomes enabled and not
suspended. Suspend has no effect on any other state.

STALL 1 Stall state. Socket is stalled waiting for data to be loaded into the Fetch Queue or waiting for an event.

ACTIVE 2 Active state. Socket is available for core data transfers.

EVENT 3 Event state. Core transfer is done. Descriptor is being written back to memory and an event is being
generated if enabled.

CHECK1 4 Check states. An active socket gets here based on the core’s EOP request to check the Transfer size and
determine whether the buffer should be wrapped up. Depending on result, socket will either go back to
Active state or move to the Event state.

SUSPENDED 5 Socket is suspended

CHECK2 6 Check states. An active socket gets here based on the core’s EOP request to check the Transfer size and
determine whether the buffer should be wrapped up. Depending on result, socket will either go back to
Active state or move to the Event state.

WAITING 7 Waiting for confirmation that event was sent.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 621

10.25.5 SCK_INTR

Socket Interrupt Request Register

This register contains the interrupt request bits. The interrupt request bits are independent of the interrupt mask bits. The
mask bits affect which interrupt request bits are reported to CPU only. If a socket is disabled, all pending interrupts are cleared
automatically.

9 LAST_BUF Indicates that the socket was suspended because of SUSP_LAST condition. Note that the socket
resumes only when SCK_INTR[9:5]=0 and GO_SUSPEND=0.

8 PARTIAL_BUF Indicates that the (egress) socket was suspended because of SUSP_PARTIAL condition. Note that
the socket resumes only when SCK_INTR[9:5]=0 and GO_SUSPEND=0.

7 TRANS_DONE Indicates that TRANS_COUNT has reached the limit TRANS_SIZE. This flag is only set when
SUSP_TRANS=1. Note that because TRANS_COUNT is updated only at the granularity of entire buf-
fers, it is possible that TRANS_COUNT exceeds TRANS_SIZE before the socket suspends. Software
must detect and deal with these situations. When asserting EOP to the adapter on ingress, the
trans_count is not updated unless the socket actually suspends (see SUSP_TRANS).
Note that the socket resumes only when SCK_INTR[9:5]=0 and GO_SUSPEND=0.

continued on next page

SCK_INTR Socket Interrupt Request Register 0x10

b31 b30 b29 b28 b27 b26 b25 b24

SCK_INTR Socket Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

SCK_INTR Socket Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

LAST_BUF PARTIAL_BUF

R/W1C R/W1C

W1S W1S

0 0

SCK_INTR Socket Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

TRANS_DONE ERROR SUSPEND STALL DSCR_NOT_AVL DSCR_IS_LOW
CONSUME_

EVENT
PRODUCE_

EVENT

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

W1S W1S W1S W1S W1S W1S W1S W1S

0 0 0 0 0 0 0 0

Bit Name Description

622 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.25.5 SCK_INTR (continued)

6 ERROR Indicates the socket is suspended because of an error condition (internal to the adapter) – if error=1
then suspend=1 as well. Possible error causes are:
- dscr_size.buffer_error bit already set in the descriptor.
- dscr_size.byte_count > dscr_size.buffer_size
- core writes into an inactive socket.
- core did not consume all the data in the buffer.
Note that the socket resumes only when SCK_INTR[9:5]=0 and GO_SUSPEND=0.

5 SUSPEND Indicates the socket has gone into suspend mode. This may be caused by any hardware initiated
condition (e.g. DSCR_NOT_AVL, any of the SUSP_*) or by setting GO_SUSPEND=1. Note that this
bit will remain asserted until cleared by software, regardless of whether the suspend condition is
resolved.
Note that the socket resumes only when SCK_INTR[9:5]=0 and GO_SUSPEND=0.

4 STALL Indicates the socket has stalled, waiting for an event signaling its descriptor has become available.
Note that this bit will remain asserted until cleared by software, regardless of whether the socket
resumes.

3 DSCR_NOT_AVL Indicates the no descriptor is available. Not available means that the current descriptor number is
0xFFFF. Note that this bit will remain asserted until cleared by software, regardless of whether a new
descriptor number is loaded.

2 DSCR_IS_LOW Indicates that dscr_count has fallen below its watermark dscr_low. If dscr_count wraps around to 255
dscr_is_low will remain asserted until cleared by software

1 CONSUME_EVENT Indicates that a consume event is received or transmitted since last cleared.

0 PRODUCE_EVENT Indicates that a produce event is received or transmitted since last cleared.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 623

10.25.6 SCK_INTR_MASK

Socket Interrupt Mask Register

The interrupt request bits in SCK_INTR function independent of the interrupt mask bits. The mask bits affect which interrupt
request bits are reported to CPU only.

9 LAST_BUF 1: Report interrupt to CPU

8 PARTIAL_BUF 1: Report interrupt to CPU

7 TRANS_DONE 1: Report interrupt to CPU

6 ERROR 1: Report interrupt to CPU

5 SUSPEND 1: Report interrupt to CPU

4 STALL 1: Report interrupt to CPU

3 DSCR_NOT_AVL 1: Report interrupt to CPU

2 DSCR_IS_LOW 1: Report interrupt to CPU

continued on next page

SCK_INTR_MASK Socket Interrupt Mask Register 0x14

b31 b30 b29 b28 b27 b26 b25 b24

SCK_INTR_MASK Socket Interrupt Mask Register

b23 b22 b21 b20 b19 b18 b17 b16

SCK_INTR_MASK Socket Interrupt Mask Register

b15 b14 b13 b12 b11 b10 b9 b8

LAST_BUF PARTIAL_BUF

R/W1C R/W1C

W1S W1S

0 0

SCK_INTR_MASK Socket Interrupt Mask Register

b7 b6 b5 b4 b3 b2 b1 b0

TRANS_DONE ERROR SUSPEND STALL DSCR_NOT_AVL DSCR_IS_LOW
CONSUME_

EVENT
PRODUCE_

EVENT

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

W1S W1S W1S W1S W1S W1S W1S W1S

0 0 0 0 0 0 0 0

Bit Name Description

624 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.25.6 SCK_INTR_MASK (continued)

1 CONSUME_EVENT 1: Report interrupt to CPU

0 PRODUCE_EVENT 1: Report interrupt to CPU

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 625

10.25.7 DSCR_BUFFER

Descriptor Buffer Base Address Register

This register is only modified by the adapter when being read from memory. This register is not intended to be modified by
software directly.

31:0 BUFFER_ADDR[31:0] The base address of the buffer where data is written. This address is not necessarily word-aligned to
allow for header/trailer/length modification.

DSCR_BUFFER Descriptor Buffer Base Address Register 0x20

b31 b30 b29 b28 b27 b26 b25 b24

BUFFER_ADDR[31:24]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

SCK_COUNT Transfer Count Register

b23 b22 b21 b20 b19 b18 b17 b16

BUFFER_ADDR[23:16]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

SCK_COUNT Transfer Count Register

b15 b14 b13 b12 b11 b10 b9 b8

BUFFER_ADDR[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

SCK_COUNT Transfer Count Register

b7 b6 b5 b4 b3 b2 b1 b0

BUFFER_ADDR[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

Bit Name Description

626 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.25.8 DSCR_SYNC

Descriptor Synchronization Pointers Register

This register is only modified by the adapter when being read from memory. This register is not intended to be modified by
software directly.

31 EN_PROD_INT Enable generation of a produce event interrupt for this descriptor only. This interrupt will only be seen
by the CPU if SCK_STATUS. int_mask has this interrupt enabled as well. Note that this flag influ-
ences the logging of the interrupt in SCK_STATUS; it has no effect on the reporting of the interrupt to
the CPU similar to the SCK_STATUS.int_mask.

30 EN_PROD_EVENT Enable sending of a produce events from this descriptor only. Events are sent only if
SCK_STATUS.en_produce_ev=1. If 0, events will be suppressed, and the descriptor will not be cop-
ied back into memory when completed.

29:24 PROD_IP[5:0] The IP number of the producing socket to which the consume event will be sent. Use 0x3F to desig-
nate ARM CPU (so software) as producer; the event will be lost in this case and an interrupt should
also be generated to observe this condition.

23:16 PROD_SCK[7:0] The socket number of the producing socket to which the consume event will be sent. If prod_ip and
prod_sck matches the socket's IP and socket number then the matching socket becomes consuming
socket.

continued on next page

DSCR_SYNC Descriptor Synchronization Pointers Register 0x24

b31 b30 b29 b28 b27 b26 b25 b24

EN_PROD_INT EN_PROD_EVENT PROD_IP[5:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

DSCR_SYNC Descriptor Synchronization Pointers Register

b23 b22 b21 b20 b19 b18 b17 b16

PROD_SCK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

DSCR_SYNC Descriptor Synchronization Pointers Register

b15 b14 b13 b12 b11 b10 b9 b8

EN_CONS_INT EN_CONS_EVENT CONS_IP[5:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

DSCR_SYNC Descriptor Synchronization Pointers Register

b7 b6 b5 b4 b3 b2 b1 b0

CONS_SCK[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 627

10.25.8 DSCR_SYNC (continued)

15 EN_CONS_INT Enable generation of a consume event interrupt for this descriptor only. This interrupt will only be
seen by the CPU if SCK_STATUS.int_mask has this interrupt enabled as well. Note that this flag
influences the logging of the interrupt in SCK_STATUS; it has no effect on the reporting of the inter-
rupt to the CPU similar to the SCK_STATUS.int_mask.

14 EN_CONS_EVENT Enable sending of consume events from this descriptor only. Events are sent only if
SCK_STATUS.en_consume_ev=1. When events are disabled, the adapter also does not update the
descriptor in memory to clear its occupied bit.

13:8 CONS_IP[5:0] The IP number of the consuming socket to which the produce event will be sent. Use 0x3F to desig-
nate ARM CPU (so software) as consumer; the event will be lost in this case and an interrupt should
also be generated to observe this condition.

7:0 CONS_SCK[7:0] The socket number of the consuming socket to which the produce event will be sent.
If cons_ip and cons_sck matches the socket's IP and socket number then the matching socket
becomes consuming socket.

628 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.25.9 DSCR_CHAIN

Descriptor Chain Pointers Register

This register is only modified by the adapter when being read from memory. Only write to this register when socket is in sus-
pend state or disabled state.

31:16 WR_NEXT_DSCR[15:0] Descriptor number of the next task for producer. A value of 0xFFFF signals end of this list.

15:0 RD_NEXT_DSCR[15:0] Descriptor number of the next task for consumer. A value of 0xFFFF signals end of this list.

DSCR_CHAIN Descriptor Chain Pointers Register 0x28

b31 b30 b29 b28 b27 b26 b25 b24

WR_NEXT_DSCR[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

DSCR_CHAIN Descriptor Chain Pointers Register

b23 b22 b21 b20 b19 b18 b17 b16

WR_NEXT_DSCR[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

DSCR_CHAIN Descriptor Chain Pointers Register

b15 b14 b13 b12 b11 b10 b9 b8

RD_NEXT_DSCR[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

DSCR_CHAIN Descriptor Chain Pointers Register

b7 b6 b5 b4 b3 b2 b1 b0

RD_NEXT_DSCR[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 629

10.25.10 DSCR_SIZE

Descriptor Size Register

The error and start/end of packet markers are provided by the IP through hardware signals when streaming data into the
socket. These signal are optional and are used only for IP that can produce packets larger than on buffer and/or IP that can
detect errors and produce meaningful packets in these cases.

Only eop,byte_count,error,buffer_occupied are modified by the adapter after the initial read from memory. This is the only reg-
ister that is written back into memory by the adapter. This register is not intended to be modified by software directly.

31:16 BYTE_COUNT[15:0] The number of data bytes present in the buffer. An occupied buffer is not always full, in particular
when variable length packets are transferred.

15:4 BUFFER_SIZE[11:0] The size of the buffer in multiples of 16 bytes

3 BUFFER_OCCUPIED Indicates the buffer is in use (1) or empty (0). A consumer will interpret this as:
0 Buffer is empty, wait until filled.
1 Buffer has data that can be consumed
A producer will interpret this as:
0 Buffer is ready to be filled
1 Buffer is occupied, wait until empty

2 BUFFER_ERROR Indicates the buffer data is valid (0) or in error (1).

continued on next page

DSCR_SIZE Descriptor Size Register 0x02C

b31 b30 b29 b28 b27 b26 b25 b24

BYTE_COUNT[15:8]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

DSCR_SIZE Descriptor Size Register

b23 b22 b21 b20 b19 b18 b17 b16

BYTE_COUNT[7:0]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

DSCR_SIZE Descriptor Size Register

b15 b14 b13 b12 b11 b10 b9 b8

BUFFER_SIZE[11:4]

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

DSCR_SIZE Descriptor Size Register

b7 b6 b5 b4 b3 b2 b1 b0

BUFFER_SIZE[3:0]
BUFFER_

OCCUPIED
BUFFER_ERROR EOP MARKER

R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

Bit Name Description

630 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.25.10 DSCR_SIZE (continued)

1 EOP A marker indicating this descriptor refers to the last buffer of a packet or transfer. Packets/transfers
may span more than one buffer. The producing IP provides this marker by providing the EOP signal
to its DMA adapter. The consuming IP observes this marker by inspecting its EOP return signal from
its own DMA adapter. For more information, refer to the section on packets, buffers and transfers in
the FX3 DMA Subsystem chapter on page 61.

0 MARKER A marker that is provided by software and can be observed by the IP. Its meaning is defined by the IP
that uses it. This bit has no effect on the other DMA mechanisms.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 631

10.25.11 EVENT

Event Communication Register

This register is located in the top of the MMIO map for each socket in each IP block. This register is write-only and cannot be
read from (it represents an action that impacts the descriptor registers, not a state). Writing to this register signals a produce/
consume event (depending on whether the socket is consuming or producing).

A read to this location will return undefined data.

16 EVENT_TYPE Type of event
0 Consume event descriptor is marked empty - BUFFER_OCCUPIED=0)
1 Produce event descriptor is marked full = BUFFER_OCCUPIED=1)

15:0 ACTIVE_DSCR[15:0] The active descriptor number for which the event is sent.

EVENT Event Communication Register 0x7C

b31 b30 b29 b28 b27 b26 b25 b24

EVENT Event Communication Register

b23 b22 b21 b20 b19 b18 b17 b16

EVENT_TYPE

W

R/W

0

EVENT Event Communication Register

b15 b14 b13 b12 b11 b10 b9 b8

ACTIVE_DSCR[15:8]

W W W W W W W W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

EVENT Event Communication Register

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE_DSCR[7:0]

W W W W W W W W

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

632 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26 DMA Adapter Global Registers

Each functional block (LPP, PIB, UIB, and UIBIN) has its own set of DMA registers that use the offset address of that block.
Table 10-4 shows the offset address for each block.

Each functional block has more than one DMA and each DMA has the same set of DMA Socket registers. The offset of each
DMA Socket register set is 0x80 (that is, the offset of DMA #0 is 0, DMA #1 is 0x80, DMA #2 is 0x100, and so on). The
address of a DMA Socket register can be calculated as:

functional block address + DMA # * 0x80 + register address

For example, the address of the ADAPTER_DEBUG register of DMA #2 in the UIB functional block can be calculated as:

0xE003FF00 + 2 (DMA #2) * 80 + 0xF4 = 0xE003FF00 + 0x100 + 0xF4 = 0xE00400F4.

10.26.1 SCK_INTR

Socket Interrupt Request Register

continued on next page

Table 10-4. Offset Addresses

Functional Block Offset Address

LPP 0xE000FF00

PIB 0xE001FF00

UIB 0xE003FF00

UIBIN 0xE00FF000

SCK_INTR Socket Interrupt Request Register 0x00

b255 b254 b253 b252 b251 b250 b249 b248

SCKINTR[255:248]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b247 b246 b245 b244 b243 b243 b241 b240

SCKINTR[247:240]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b239 b238 b237 b236 b235 b234 b233 b232

SCKINTR[239:232]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b231 b230 b229 b228 b227 b226 b225 b224

SCKINTR[231:224]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 633

10.26.1 SCK_INTR (continued)

continued on next page

SCK_INTR Socket Interrupt Request Register

b223 b222 b221 b220 b219 b218 b217 b216

SCKINTR[223:216]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b215 b214 b213 b212 b211 b210 b209 b208

SCKINTR[215:208]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b207 b206 b205 b204 b203 b202 b201 b200

SCKINTR[207:200]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b199 b198 b197 b196 b195 b194 b193 b192

SCKINTR[199:192]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b191 b190 b189 b188 b187 b186 b185 b184

SCKINTR[191:184]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b183 b182 b181 b180 b179 b178 b177 b176

SCKINTR[183:176]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b175 b174 b173 b172 b171 b170 b169 b168

SCKINTR[175:168]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

634 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.1 SCK_INTR (continued)

continued on next page

SCK_INTR Socket Interrupt Request Register

b167 b166 b165 b164 b163 b162 b161 b160

SCKINTR[167:160]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b159 b158 b157 b156 b155 b154 b153 b152

SCKINTR[159:152]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b151 b150 b149 b148 b147 b146 b145 b144

SCKINTR[151:144]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b143 b142 b141 b140 b139 b138 b137 b136

SCKINTR[143:136]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b135 b134 b133 b132 b131 b130 b129 b128

SCKINTR[135:128]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b127 b126 b125 b124 b123 b122 b121 b120

SCKINTR[127:120]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b119 b118 b117 b116 b115 b114 b113 b112

SCKINTR[119:112]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 635

10.26.1 SCK_INTR (continued)

continued on next page

SCK_INTR Socket Interrupt Request Register

b111 b110 b109 b108 b107 b106 b105 b104

SCKINTR[111:104]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b103 b102 b101 b100 b99 b98 b97 b96

SCKINTR[103:96]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b95 b94 b93 b92 b91 b90 b89 b88

SCKINTR[95:88]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b87 b86 b85 b84 b83 b82 b81 b80

SCKINTR[87:80]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b79 b78 b77 b76 b75 b74 b73 b72

SCKINTR[79:72]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b71 b70 b69 b68 b67 b66 b65 b64

SCKINTR[71:64]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b63 b62 b61 b60 b59 b58 b57 b56

SCKINTR[63:56]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

636 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.1 SCK_INTR (continued)

continued on next page

SCK_INTR Socket Interrupt Request Register

b55 b54 b53 b52 b51 b50 b49 b48

SCKINTR[55:48]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b47 b46 b45 b44 b43 b42 b41 b40

SCKINTR[47:40]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b39 b38 b37 b36 b35 b34 b33 b32

SCKINTR[39:32]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b31 b30 b29 b28 b27 b26 b25 b24

SCKINTR[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b23 b22 b21 b20 b19 b18 b17 b16

SCKINTR[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b15 b14 b13 b12 b11 b10 b9 b8

SCKINTR[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

SCK_INTR Socket Interrupt Request Register

b7 b6 b5 b4 b3 b2 b1 b0

SCKINTR[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 637

10.26.1 SCK_INTR (continued)

The SCK_INTR registers contain the interrupt request bits for each socket in the respective IP, which is the logical OR of all
interrupt request bits in each socket. This register is read-only – interrupt bits are cleared by clearing the interrupt cause or bit
in the socket itself.

255:0 SCKINTR[255:0] Socket <x> asserts interrupt when bit <x> is set in this vector. Multiple bits may be set to 1
simultaneously.
This register is only as wide as the number of sockets in the adapter; 256 is just the maximum width.
All other bits always return 0.

Bit Name Description

638 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.2 ADAPTER_STATUS

Adapter Global Status Register

23:22 WORD_SIZE[1:0] Internal word size of the prefetch queue (FQ); not the same as bus width of AHB bus or thread inter-
face to the IP.
0 32b
1 64b
2 128b
3 256b

21:16 FQ_SIZE[5:0] Number of words in a socket fetch queue (FQ). The total buffer space in the adapter is
EG_SOCKETS*FQ_SIZE words of size WORD_SIZE.

15:8 IG_ONLY[7:0] First socket number that is ingress only.
0..IG_ONLY-1: Sockets capable of both in and egress
IG_ONLY..TTL_SOCKETS-1: Ingress sockets only

7:0 TTL_SOCKETS[7:0] Total number of sockets in this adapter. This number is different for each instance of the adapter and
varies with the core IP needs.

ADAPTER_STATUS Adapter Global Status Fields 0xFC

b31 b30 b29 b28 b27 b26 b25 b24

ADAPTER_STATUS Adapter Global Status Fields

b23 b22 b21 b20 b19 b18 b17 b16

WORD_SIZE[1:0] FQ_SIZE[5:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

H H H H H H H H

ADAPTER_STATUS Adapter Global Status Fields

b15 b14 b13 b12 b11 b10 b9 b8

IG_ONLY[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

H H H H H H H H

ADAPTER_STATUS Adapter Global Status Fields

b7 b6 b5 b4 b3 b2 b1 b0

TTL_SOCKETS[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

H H H H H H H H

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 639

10.26.3 SIB_ID

Storage Interface Block ID Register

16:31 BLOCK_VERSION Version number for the SIB block IP. Set to 0x0001.

0:15 BLOCK_ID Block ID for the SIB IP. Set to 0x0002.

SIB_ID

Storage Interface Block ID register

0xE0027F00

b31 b30 b29 b28 b27 b26 b25 b24

BLOCK_VERSION[15:8]

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

BLOCK_VERSION[7:0]

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 1

b15 b14 b13 b12 b11 b10 b9 b8

BLOCK_ID[15:8]

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

BLOCK_ID[7:0]

R R R R R R R R

R R R R R R R R

0 0 0 0 0 0 1 0

Bit Name Description

640 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.4 SIB_POWER

Power Control Register for Storage Interface Block

A single block controls both storage ports (S0 and S1) on the FX3S device. The clock for at least one of the storage port
needs to be enabled before the block is powered on.

31 RESETN Active LOW reset signal for all logic in the block.
After setting this bit to 1, firmware will poll and wait for the 'active' bit to assert.

0 ACTIVE Indicates whether the block is powered up and active.

SIB_POWER

SIB Power Control

0xE0027F04

b31 b30 b29 b28 b27 b26 b25 b24

RESETN

R

R/W

0

b23 b22 b21 b20 b19 b18 b17 b16

b15 b14 b13 b12 b11 b10 b9 b8

b7 b6 b5 b4 b3 b2 b1 b0

ACTIVE

 W

 R

 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 641

10.26.5 SDMMC_CMD_IDX

SDMMC Command Index Register

The cmd field specifies the command-index that is to be included in the command sent. When the command is sent, HW send
out start and transmission-bit followed by (SDMMC_CMD_FMT.CMDFRMT + 1 bits), 7-bit CRC, and end bit. The
(SDMMC_CMD_FMT.CMDFRMT + 1) bits include as many bits as necessary in the following order: command index (6 bits),
argument (starting from bit 31 of SDMMC_CMD_ARG0), SDMMC_CMD_ARG1.

There are two copies of this register corresponding to the two storage ports. The address of each register is calculated as
0xe0020000 + (port * 0x0400).

5:0 CMD 6-bit command index.

SDMMC_CMD_IDX

SDMMC Command Index

0xE0020000

b31 b30 b29 b28 b27 b26 b25 b24

b23 b22 b21 b20 b19 b18 b17 b16

b15 b14 b13 b12 b11 b10 b9 b8

b7 b6 b5 b4 b3 b2 b1 b0

 CMD[5:0]

 R

 R/W

 0 0 0 0 0 0

Bit Name Description

642 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.6 SDMMC_CMD_ARG0

SDMMCC Command Argument Register

The SDMMC_CMD_ARG0 register holds the lower 32 bits of the SD/MMC/SDIO command argument. Any additional argu-
ment bits for expanded command may be placed in the SDMMC_CMD_ARG1 register. There are two copies of this register
corresponding to the two storage ports. The address of each register is calculated as 0xe0020004 + (port * 0x0400).

31:0 ARG Lower 32 bits of the command argument.

SDMMC_CMD_ARG0

SDMMC Command Argument 0

0xE0020004

b31 b30 b29 b28 b27 b26 b25 b24

ARG[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

ARG[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

ARG[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

ARG[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 643

10.26.7 SDMMC_CMD_ARG1

SDMMCC Command Argument Register

The SDMMC_CMD_ARG1 register holds the upper 32 bits of the SD/MMC/SDIO command argument, if the argument is lon-
ger than 32 bits. There are two copies of this register corresponding to the two storage ports. The address of each register is
calculated as 0xe0020008 + (port * 0x0400).

31:0 ARG Upper 32 bits of the command argument.

SDMMC_CMD_ARG1

SDMMC Command Argument 1

0xE0020008

b31 b30 b29 b28 b27 b26 b25 b24

ARG[63:56]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

ARG[55:48]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

ARG[47:40]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

ARG[39:32]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

644 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.8 SDMMC_RESP_IDX

SDMMC Response Index Register

The first eight bits of the response is captured in the RESP_IDX register. These eight bits include start, transmission, and
command index fields. There are two copies of this register corresponding to the two storage ports. The address of each reg-
ister is calculated as 0xe002000C + (port * 0x0400).

7 ST_BIT Start-bit: As received in response.

6 TR_BIT Transmission bit: As received in response.

5:0 CMD Command index. As received in response

SDMMC_RESP_IDX

SDMMC Response Index

0xE002000C

b31 b30 b29 b28 b27 b26 b25 b24

b23 b22 b21 b20 b19 b18 b17 b16

b15 b14 b13 b12 b11 b10 b9 b8

b7 b6 b5 b4 b3 b2 b1 b0

ST_BIT TR_BIT CMD[5:0]

W W W W W W W W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 645

10.26.9 SDMMC_RESP_REG0

SDMMC Response Register0

Response data received from the card on the response pin. The response from bit 8 is placed in this register starting at the
MSB of the register. There are two copies of this register corresponding to the two storage ports. The address of each register
is calculated as 0xe0020010 + (port * 0x0400).

31:0 RESP Bits 8 to 39 of the command response from MSB to LSB.

SDMMC_RESP_REG0

SDMMC Command Response 0

0xE0020010

b31 b30 b29 b28 b27 b26 b25 b24

RESP[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

RESP[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

RESP[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

RESP[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

646 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.10 SDMMC_RESP_REG1

SDMMC Response Register1

Response data received from the card on the response pin. The response from bit 40 is placed in this register starting at the
MSB of the register. There are two copies of this register corresponding to the two storage ports. The address of each register
is calculated as 0xe0020014 + (port * 0x0400).

31:0 RESP Bits 40 to 71 of the command response from MSB to LSB.

SDMMC_RESP_REG1

SDMMC Command Response 1

0xE0020014

b31 b30 b29 b28 b27 b26 b25 b24

RESP[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

RESP[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

RESP[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

RESP[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 647

10.26.11 SDMMC_RESP_REG2

SDMMC Response Register2

Response data received from the card on the response pin. The response from bit 72 is placed in this register starting at the
MSB of the register. There are two copies of this register corresponding to the two storage ports. The address of each register
is calculated as 0xe0020018 + (port * 0x0400).

31:0 RESP Bits 72 to 103 of the command response from MSB to LSB.

SDMMC_RESP_REG2

SDMMC Command Response 2

0xE0020018

b31 b30 b29 b28 b27 b26 b25 b24

RESP[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

RESP[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

RESP[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

RESP[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

648 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.12 SDMMC_RESP_REG3

SDMMC Response Register3

Response data received from the card on the response pin. The response from bit 104 is placed in this register starting at the
MSB of the register. There are two copies of this register corresponding to the two storage ports. The address of each register
is calculated as 0xe002001C + (port * 0x0400).

31:0 RESP Bits 104 to 135 of the command response from MSB to LSB.

SDMMC_RESP_REG3

SDMMC Command Response 3

0xE002001C

b31 b30 b29 b28 b27 b26 b25 b24

RESP[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

RESP[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

RESP[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

RESP[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 649

10.26.13 SDMMC_RESP_REG4

SDMMC Response Register4

Response data received from the card on the response pin. The response from bit 136 is placed in this register starting at the
MSB of the register. There are two copies of this register corresponding to the two storage ports. The address of each register
is calculated as 0xe0020020 + (port * 0x0400).

31:0 RESP Bits 136 to 167 of the command response from MSB to LSB.

SDMMC_RESP_REG4

SDMMC Command Response 4

0xE0020020

b31 b30 b29 b28 b27 b26 b25 b24

RESP[31:24]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

RESP[23:16]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

RESP[15:8]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

RESP[7:0]

R R R R R R R R

W W W W W W W W

0 0 0 0 0 0 0 0

Bit Name Description

650 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.14 SDMMC_CMD_RESP_FMT

SD/MMC Command Response Format

Configuration register that specifies the length and format of the command and response. There are two copies of this regis-
ter corresponding to the two storage ports. The address of each register is calculated as 0xe0020024 + (port * 0x0400).

31 RESPCRC_START 0: Compute response CRC from bit 0.
1: Compute response CRC from bit 8.
Option 1 is used for R2 response.

30 CORCRC_ODD 0: corrupt CRC16 for even bytes.
1: corrupt CRC16 for odd bytes.
This bit is effective only during DDR mode of operation.

28 R_CRC_EN 1: Enable CRC check in response.
0: Don't check CRC in response.

27 CORCRC Enable CRC error injection on outgoing data CRC16 field.

26:16 RESPCONF Response length in bits that does not include start, transmit, CRC7, and end bits.
0 indicates that no response is expected.
Non-zero values indicate the size in bits

5:0 CMDFRMT Command length minus 1, in bits, that includes command index bits and argument bits. This length
does not include start, transmit, CRC7 and end bits.

SDMMC_CMD_RESP_FMT

SDMMC Command Response Format

0xE0020024

b31 b30 b29 b28 b27 b26 b25 b24

RESPCRC_STAR
T

CORCRC_ODD R_CRC_EN CORCRC RESPCONF[10:8]

R R R R R R R

R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

RESPCONF[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 1 1 1 1 1 1 0

b15 b14 b13 b12 b11 b10 b9 b8

b7 b6 b5 b4 b3 b2 b1 b0

 CMDFRMT[5:0]

 R R R R R R

 R/W R/W R/W R/W R/W R/W

 1 0 0 1 0 1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 651

10.26.15 SDMMC_BLOCK_COUNT

SDMMC Block Count Register

This register holds the number of data blocks that should be completed during the ongoing SD/MMC command transfer.
There are two copies of this register corresponding to the two storage ports. The address of each register is calculated as
0xe0020028 + (port * 0x0400).

31:0 NOBD Number of data blocks to be transferred.

SDMMC_BLOCK_COUNT

SDMMC Block Count

0xE0020028

b31 b30 b29 b28 b27 b26 b25 b24

NOBD[31:24]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

NOBD[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

NOBD[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

NOBD[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 1

Bit Name Description

652 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.16 SDMMC_BLOCK_LEN

SDMMC Block Length Register

This register holds the block length for transfer. The CRC is computed on this block length. It is expected that the block length
used in SET_BLOCKLEN command matches this block length. There are two copies of this register corresponding to the two
storage ports. The address of each register is calculated as 0xe002002C + (port * 0x0400).

31:0 DATABLKS Data block size in bytes. LSB is ignored for DDR mode of operation, because block length needs to
be even.

SDMMC_BLOCK_LEN

SDMMC Block Length

0xE002002C

b31 b30 b29 b28 b27 b26 b25 b24

DATABLKS[31:24]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

DATABLKS[23:16]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

DATABLKS[15:8]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 1 0

b7 b6 b5 b4 b3 b2 b1 b0

DATABLKS[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 653

10.26.17 SDMMC_MODE_CFG

SD/MMC Mode Configuration Register

Configures clock, signaling, and so on for each of the storage ports. There are two copies of this register corresponding to the
two storage ports. The address of each register is calculated as 0xe0020030 + (port * 0x0400).

31 IDLE_STOP_CLK_EN 0: Do not stop clock automatically after each command.
1: Stop clock automatically IDLE_STOP_CLK_DELAY cycles after each command.
Clock is not stopped if the card indicates busy and stopped when the card gets out of busy.

30:24 IDLE_STOP_CLK_DELAY Number of clock cycles delay after the completion of the last command after which the clock will be
stopped. This value may be changed only when IDLE_STOP_CLK_EN is 0.

22 EXP_BOOT_ACK 1: Boot acknowledgement is expected when booting from eMMC.
0: Boot acknowledgement is not expected.

21 BLK_END_STOP_CLK 0: SDMMC interface clock can be stopped at any time when data overflow/underflow is detected.
1: SDMMC interface clock can be stopped only at the end of data block transfer. Clock is not stopped
in the middle of a block data transfer.
It is recommended that this bit should be set to 1.

continued on next page

SDMMC_MODE_CFG

SDMMC Mode Configuration

0xE0020030

b31 b30 b29 b28 b27 b26 b25 b24

IDLE_STOP_CLK_EN IDLE_STOP_CLK_DELAY[6:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 1 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

 EXP_BOOT_ACK
BLK_END_STOP

_CLK

RD_END_STOP_
CLK_EN

CARD_DETECT_
POLARITY

WR_STOP_CLK_

EN

 R R R R R

 R/W R/W R/W R/W R/W

 0 0 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

RD_STOP_CLK_EN EN_CMD_COMP DATABUSWIDTH[1:0] MODE[1:0] SIGNALING[3:2]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 1 0 0

b7 b6 b5 b4 b3 b2 b1 b0

SIGNALING[1:0] DLL_BYPASS_EN

R R R

R/W R/W R/W

0 0 1

Bit Name Description

654 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.17 SDMMC_MODE_CFG (Continued)

19 RD_END_STOP_CLK_EN 0: Do not Stop SD/MMC interface clock at the end of a read data transfer.
1: Stop interface clock at the end of read data transfer.

18 CARD_DETECT_POLARITY0: CardDetect GPIO is active LOW.
1: CardDetect GPIO is active HIGH.
This value is used by hardware to reflect the S0S1_INS status in the SDMMC_STATUS.card_detect
register bit.

16 WR_STOP_CLK_EN This enables SIB to perform detection of underflow and stop the clock to the SD/SDIO/MMC card dur-
ing data transfer.
1: Enable stop clock.
0: Disable stop clock.

15 RD_STOP_CLK_EN This enables SIB to perform detection of overflow and stop the clock to the SD/SDIO/MMC card dur-
ing data transfer:
1: Enable stop clock.
0: Disable stop clock.
This bit should always be set during read operations to prevent loss of data.

14 EN_CMD_COMP Enable command completion feature for CE-ATA interface.
0: Don't detect command completion event.
1: Detect command completion event.
When EN_CMD_COMP is enabled, RD_END_STOP_CLK should not be enabled because card
requires a clock edge to provide command completion signal.

13:12 DATABUSWIDTH SIB data bus width:
00: 1-bit
01: 4-bit
10: 8-bit
11: Reserved

11:10 MODE SIB interface mode:
00: Reserved
01: MMC (or CE-ATA)
10: SD
11: Reserved

9:6 SIGNALING SD/MMC data signaling parameters:
0000: DS - Default-Speed (0 - 20 MHz for MMC; 0 - 25 MHz for SD)
0001: HS - High-Speed (0 - 52 MHz for MMC; 0 - 50 MHz for SD)
0010: SDR12: SD SDR 25 MHz @1.8 V
0011: SDR25: SD SDR 50 MHz @1.8 V
0100: SDR50_FD: SD SDR 100 MHz @ 1.8 V
0101 - 0111: Reserved
1000: DDR52_V33_MMC
1001: DDR52_V18_MMC
1010: Reserved
1011: DDR50_V18_SD: As defined in SD3.0
1100 - 1111: Reserved

5 DLL_BYPASS_EN Setting this bit causes the SIB internal clock to be driven out on the pad bypassing the DLL. It is rec-
ommended that this bit should always be set to 1.

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 655

10.26.18 SDMMC_DATA_CFG

SDMMC Data Configuration Register

Holds configuration parameters that affect SD/MMC data transfers. There are two copies of this register corresponding to the
two storage ports. The address of each register is calculated as 0xe0020034 + (port * 0x0400).

3 EXPBUSY 1: Expect BUSY state after each block of write data.
0: Do not expect BUSY after each block of write data.

2 EXPCRCR 1: Expect and check CRC response status after block of write data.
0: Do not expect CRC response after a block of write data.

1 CARD_BUSY_DET 1: Enable the SIB state machine to wait for busy before sending first block of data.
0: SIB state machine pushes 1st block of data without checking busy status.

0 RD_CRC_EN 1: Check CRC16 on incoming blocks of data.
0: Ignore CRC16 checking on incoming data.

SDMMC_DATA_CFG

SDMMC Data Configuration

0xE0020034

b31 b30 b29 b28 b27 b26 b25 b24

b23 b22 b21 b20 b19 b18 b17 b16

b15 b14 b13 b12 b11 b10 b9 b8

b7 b6 b5 b4 b3 b2 b1 b0

 EXPBUSY EXPCRCR
CARD_BUSY_DE

T
RD_CRC_EN

 R R R R

 R/W R/W R/W R/W

 1 1 0 1

Bit Name Description

656 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.19 SDMMC_CS

Card Command and Status Register

This register is used to initiate SD/MMC/SDIO commands and data transfers. There are two copies of this register corre-
sponding to the two storage ports. The address of each register is calculated as 0xe0020038 + (port * 0x0400).

31 EOP_EOT Configure end-of-packet signaling to DMA adapter.
0: Set EOP in the descriptor with last byte of last block during read.
1: Set EOP in the descriptor with last byte of every block.

28:24 SOCKET SIB socket number to be used for data read/write operation. Should be in the range 0–7.

15 SDIO_READ_WAIT_EN Enable Read Wait to SDIO device on DAT[2].

14 SDMMC_CLK_DIS Manual enable/disable for the SIB interface clock to enable power saving.
1: Clock is disabled
0: Clock is enabled

11 CLR_BOOTCMD FW writes ‘1’ to clear the BOOTCMD bit and abort boot operation.
HW writes ‘0’ after the BOOTCMD bit is cleared.

10 CLR_RDDCARD FW writes ‘1’ to clear the RDDCARD bit so that the next command can be issued.
This bit is cleared by HW when RDDCARD is cleared.

continued on next page

SDMMC_CS

SDMMC Command and Status

0xE0020038

b31 b30 b29 b28 b27 b26 b25 b24

EOP_EOT SOCKET[4:0]

R R R R R R

R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

b15 b14 b13 b12 b11 b10 b9 b8

SDIO_READ_WAI
T_EN

SDMMC_CLK_DI
S

 CLR_BOOTCMD CLR_RDDCARD CLR_WRDCARD CLR_SNDCMD

R R R/W0C R/W0C R/W0C R/W0C

R/W R/W R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

CMDCOMP_DIS BOOTCMD RSTCONT RDDCARD WRDCARD SNDCMD

R/W0C R/W0C R/W0C R/W0C R/W0C R/W0C

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 657

10.26.19 SDMMC_CS

9 CLR_WRDCARD FW writes ‘1’ to clear the WRDCARD bit so that the next command can be issued.
This bit is cleared by HW when WRDCARD is cleared.

8 CLR_SNDCMD FW writes ‘1’ to clear the SNDCMD bit so that the next command can be issued.
This bit is cleared by HW when SNDCMD is cleared.

7 CMDCOMP_DIS FW writes ‘1’ to send a Command Completion Disable signal to the CE-ATA device.
HW clears this bit after signal is sent.

6 BOOTCMD FW writes ‘1’ to initiate a CMD_LINE_LOW boot or alternate boot command. For alternate boot, the
command should be sent by FW.
HW writes ‘0’ when NOBD blocks are transferred or when FW aborts the boot by writing ‘1’ to the
CLR_BOOTCMD bit.

5 RSTCONT RSTCONT is used for error recovery.
FW writes ‘1’ to bring SIB state machines to a known state.
HW writes ‘0’ when the reset is completed.
Values of CFG registers are not affected by RSTCONT and only internal queues are flushed. If a
complete reset of SIB controller is required, then SIB_POWER.RESETN should be used.

2 RDDCARD FW writes ‘1’ to initiate data read from SD/MMC/SDIO peripheral.
HW writes ‘0’ when the transfer is completed.

FW may clear this bit by writing 1 to the CLR_RDDCARD bit.
1 WRDCARD FW writes ‘1’ to initiate data write to SD/MMC/SDIO peripheral.

HW writes ‘0’ when the transfer is completed.
FW may clear this bit by writing 1 to the CLR_WRDCARD bit.

0 SNDCMD FW writes ‘1’ to initiate sending of command.
HW writes ‘0’ when command is sent and the response, if any, is received.
FW may clear this bit on response timeout by writing 1 to CLR_SNDCMD bit.

658 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.20 SDMMC_STATUS

SDMMC Status Register

Reflects the current status of the SIB state machines. There are two copies of this register corresponding to the two storage
ports. The address of each register is calculated as 0xe002003C + (port * 0x0400).

31 CRC16_EVEN_ERROR Indicates that CRC error was encountered on even bytes of data transfer. This bit may be interpreted
in DDR mode data transfer only.
This bit will be cleared when CRC16_ERROR is cleared.

30 CRC16_ODD_ERROR Indicates that CRC error was encountered on odd bytes of data transfer. This bit may be interpreted
in DDR mode data transfer only.
This bit will be cleared when CRC16_ERROR is cleared.

28 DATA_SM_BUSY 1: Data state machine is busy.
0: Data state machine is idle.

27 COMMAND_SM_BUSY 1: Command state machine is busy.
0: Command state machine is idle.

26:24 CRCFC 3-bit CRC response received from the card following a data write.

continued in next page

SDMMC_STATUS

SDMMC Status

0xE002003C

b31 b30 b29 b28 b27 b26 b25 b24

CRC16_EVEN_ER
ROR

CRC16_ODD_ER
ROR

 DATA_SM_BUSY
COMMAND_SM_

BUSY
CRCFC[2:0]

R/W R/W R/W R/W R/W R/W R/W

R R R R R R R

0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

RD_END_DATA_

ERROR
DAT0_STAT DLL_LOCKED

 R/W R/W R/W

 R R R

 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

DLL_LOST_LOC
K

BOOT_ACK CMD_COMP FIFO_U_DET FIFO_O_DET DAT3_STAT CARD_DETECT SDIO_INTR

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

1 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

CRC16_ERROR
RD_DATA_TIMEO

UT
BLOCKS_RECEIV

ED
BLOCK_COMP CRC7_ERROR RESPTIMEOUT RCVDRES CMDSENT

R/W R/W R/W R/W R/W R/W R/W R/W

R R R R R R R R

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 659

10.26.20 SDMMC_STATUS

18 RD_END_DATA_ERROR This error is flagged when command, response or NRC counting is in progress when the last byte of
the last block of read-data is read while RD_END_CLK_STOP is enabled. This condition causes data
from card to be read out of card and dropped. FW should re-issue read command to card to restart
read command.
This bit is cleared when SDMMC_CS.RDDCARD is set by FW.

17 DAT0_STAT Reflects the current status of the SD_DAT[0] pin.

16 DLL_LOCKED Reflects the current lock status of the SIB DLL.
1: DLL is locked.
0: DLL Is not locked.

15 DLL_LOST_LOCK Reflects the current lock status of the SIB DLL.
1: DLL is not locked.
0: DLL Is locked.

14 BOOT_ACK HW sets this bit to ‘1’ when a MMC boot acknowledgement is detected.
This bit is cleared when FW clears the SDMMC_MODE_CFG.EXP_BOOT_ACK bit.

13 CMD_COMP HW sets this bit to ‘1’ when Command Completion signaling from a CE-ATA peripheral is detected.
This bit is cleared when the FW writes ‘1’ to SDMMC_CS.SNDCMD again.

12 FIFO_U_DET HW sets this bit to ‘1’ if a FIFO underflow is detected during a write operation.
The bit is cleared when FW writes ‘1’ to SDMMC_CS.WRDCARD again.

11 FIFO_O_DET HW sets this bit to ‘1’ if a FIFO overflow is detected during a read operation.
The bit is cleared when FW writes ‘1’ to SDMMC_CS.RDDCARD again.

10 DAT3_STAT Reflects the state of the SD_DAT[3] pin.

9 CARD_DETECT Reflects the state of the S0S1_INS pin.
0: No card inserted (GPIO is inactive).
1: Card is inserted (GPIO is active).

8 SDIO_INTR HW sets this bit to ‘1’ when it detects an SDIO interrupt condition. This bit will represent the latest
result of the interrupt sampling.

7 CRC16_ERROR HW sets this bit to ‘1’ if a CRC error is detected during a read or write data operation.
This bit is cleared when FW writes ‘1’ to SDMMC_CS.RDDCARD or WRDCARD again.

6 RD_DATA_TIMEOUT HW sets this bit to ‘1’ if a read data operation times out.
This bit is cleared when the FW writes ‘1’ to SDMMC_CS.RDDCARD again.

5 BLOCKS_RECEIVED HW sets this bit to ‘1’ when the read of NOBD blocks of data is completed.
This bit is cleared when the FW writes ‘1’ to SDMMC_CS.RDDCARD again.

4 BLOCK_COMP HW sets this bit to ‘1’ when the write of NOBD blocks of data is completed.
This bit is cleared when the FW writes ‘1’ to SDMMC_CS.WRDCARD again.

3 CRC7_ERROR HW sets this bit to ‘1’ if a CRC error is detected in the response received.
This bit is cleared when the FW writes ‘1’ to SDMMC_CS.SNDCMD again.

2 RESPTIMEOUT HW sets this bit to ‘1’ if no response was received within the timeout period.
This bit is cleared when the FW writes ‘1’ to SDMMC_CS.SNDCMD again.

1 RCVDRES HW sets this bit to ‘1’ when the command response is received.
This bit is cleared when the FW writes ‘1’ to SDMMC_CS.SNDCMD again.

0 CMDSENT HW sets this bit to ‘1’ when a command is sent.
This bit is cleared when the FW writes ‘1’ to SDMMC_CS.SNDCMD again.

660 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.21 SDMMC_INTR

SDMMC Interrupt Status Register

These bits display interrupt requests. These bits are set to ‘1’ whenever a bit in SDMMC_STATUS changes from 0 to 1. There
are two copies of this register corresponding to the two storage ports. The address of each register is calculated as
0xe0020040 + (port * 0x0400).

18 RD_END_DATA_ERROR HW writes 1 to indicate that the RD_END_DATA error interrupt is active.
FW writes 1 to this bit to clear the interrupt.

17 DAT0_OUTOF_BUSY HW writes 1 to indicate that the DAT0 pin state has changed from 0 to 1.
FW writes 1 to clear the interrupt.

16 DLL_LOCKED HW writes 1 to indicate that the DLL lock is achieved.
FW writes 1 to clear the interrupt.

15 DLL_LOST_LOCK HW writes 1 to indicate that the DLL lock is lost.
FW writes 1 to clear the interrupt.

14 BOOT_ACK HW writes 1 to indicate that a BOOT acknowledgement is received.
FW writes 1 to clear the interrupt.

continued on next page

SDMMC_INTR

SDMMC Interrupt Status

0xE0020040

b31 b30 b29 b28 b27 b26 b25 b24

b23 b22 b21 b20 b19 b18 b17 b16

RD_END_DATA_E

RROR
DAT0_OUTOF_BU

SY
DLL_LOCKED

 R/W1S R/W1S R/W1S

 R/W1C R/W1C R/W1C

 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

DLL_LOST_LOC
K

BOOT_ACK CMD_COMP FIFO_U_DET FIFO_O_DET DAT3_CHANGE CARD_DETECT SDIO_INTR

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

CRC16_ERROR
RD_DATA_TIMEO

UT
BLOCKS_RECEIV

ED
BLOCK_COMP CRC7_ERROR RESPTIMEOUT RCVDRES CMDSENT

R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S R/W1S

R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C R/W1C

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 661

10.26.21 SDMMC_INTR

13 CMD_COMP HW writes 1 to indicate that Command Completion signaling from a CE-ATA peripheral is detected.
FW writes 1 to clear the interrupt.

12 FIFO_U_DET HW writes 1 to indicate a FIFO underflow is detected.
FW writes 1 to clear the interrupt.

11 FIFO_O_DET HW writes 1 to indicate a FIFO overflow is detected.
FW writes 1 to clear the interrupt.

10 DAT3_CHANGE HW writes 1 to indicate that the SD_DAT[3] pin state has changed.
FW writes 1 to clear the interrupt.

9 CARD_DETECT HW writes 1 to indicate that the S0S1_INS pin state has changed.
FW writes 1 to clear the interrupt.

8 SDIO_INTR HW writes 1 to indicate that an SDIO interrupt is detected.
FW writes 1 to clear the interrupt.

7 CRC16_ERROR HW writes 1 to indicate that a data CRC error is detected.
FW writes 1 to clear the interrupt.

6 RD_DATA_TIMEOUT HW writes 1 to indicate that a read operation has timed out.
FW writes 1 to clear the interrupt.

5 BLOCKS_RECEIVED HW writes 1 to indicate that a read operation is completed.
FW writes 1 to clear the interrupt.

4 BLOCK_COMP HW writes 1 to indicate that a write operation is completed.
FW writes 1 to clear the interrupt.

3 CRC7_ERROR HW writes 1 to indicate that a response CRC error is detected.
FW writes 1 to clear the interrupt.

2 RESPTIMEOUT HW writes 1 to indicate that a response timeout occurred.
FW writes 1 to clear the interrupt.

1 RCVDRES HW writes 1 to indicate that a command response is received.
FW writes 1 to clear the interrupt.

0 CMDSENT HW writes 1 to indicate that a command is sent to the target device.
FW writes 1 to clear the interrupt.

662 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.22 SDMMC_INTR_MASK

SDMMC Interrupt Mask Register

These bits correspond to the interrupt status bits in the SDMMC_INTR register and control whether the interrupt status should
trigger an interrupt to the CPU. There are two copies of this register corresponding to the two storage ports. The address of
each register is calculated as 0xe0020044 + (port * 0x0400).

18 RD_END_DATA_ERROR 1: Enable interrupt due to RD_END data error.
0: Disable interrupt due to RD_END data error.

17 DAT0_OUTOF_BUSY 1: Enable interrupt due to DAT0 state change.
0: Disable interrupt due to DAT0 state change.

16 DLL_LOCKED 1: Enable interrupt due to DLL lock completion.
0: Disable interrupt due to DLL lock completion.

15 DLL_LOST_LOCK 1: Enable interrupt due to DLL lock loss.
0: Disable interrupt due to DLL lock loss.

14 BOOT_ACK 1: Enable interrupt due to BOOT acknowledgement.
0: Disable interrupt due to BOOT acknowledgement.

continued on next page

SDMMC_INTR_MASK

SDMMC Interrupt Mask

0xE0020044

b31 b30 b29 b28 b27 b26 b25 b24

b23 b22 b21 b20 b19 b18 b17 b16

RD_END_DATA_

ERROR
DAT0_OUTOF_B

USY
DLL_LOCKED

 R R R

 R/W R/W R/W

 0 0 0

b15 b14 b13 b12 b11 b10 b9 b8

DLL_LOST_LOC
K

BOOT_ACK CMD_COMP FIFO_U_DET FIFO_O_DET DAT3_CHANGE CARD_DETECT SDIO_INTR

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

CRC16_ERROR
RD_DATA_TIMEO

UT
BLOCKS_RECEIV

ED
BLOCK_COMP CRC7_ERROR RESPTIMEOUT RCVDRES CMDSENT

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 663

10.26.22 SDMMC_INTR_MASK (continued)

13 CMD_COMP 1: Enable interrupt due to CE-ATA command completion.
0: Disable interrupt due to CE-ATA command completion.

12 FIFO_U_DET 1: Enable interrupt due to FIFO underflow.
0: Disable interrupt due to FIFO underflow.

11 FIFO_O_DET 1: Enable interrupt due to FIFO overflow.
0: Disable interrupt due to FIFO overflow.

10 DAT3_CHANGE 1: Enable interrupt due to DAT3 state change.
0: Disable interrupt due to DAT3 state change.

9 CARD_DETECT 1: Enable interrupt due to S0S1_INS change.
0: Disable interrupt due to S0S1_INS change.

8 SDIO_INTR 1: Enable interrupt due to SDIO interrupt.
0: Disable interrupt due to SDIO interrupt.

7 CRC16_ERROR 1: Enable interrupt due to data CRC error.
0: Disable interrupt due to data CRC error.

6 RD_DATA_TIMEOUT 1: Enable interrupt due to read timeout.
0: Disable interrupt due to read timeout.

5 BLOCKS_RECEIVED 1: Enable interrupt due to read completion.
0: Disable interrupt due to read completion.

4 BLOCK_COMP 1: Enable interrupt due to write completion.
0: Disable interrupt due to write completion.

3 CRC7_ERROR 1: Enable interrupt due to response CRC error.
0: Disable interrupt due to response CRC error.

2 RESPTIMEOUT 1: Enable interrupt due to response timeout.
0: Disable interrupt due to response timeout.

1 RCVDRES 1: Enable interrupt due to response reception.
0: Disable interrupt due to response reception.

0 CMDSENT 1: Enable interrupt due to command transmission.
0: Disable interrupt due to command transmission.

664 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.23 SDMMC_NCR

SDMMC Command Response Timing Register #1

This register controls timing between command and response. There are two copies of this register corresponding to the two
storage ports. The address of each register is calculated as 0xe0020048 + (port * 0x0400).

15:8 NRC_MIN Specifies the minimum separation in clock cycles between the end bit of a response and the start bit
of the next command.

6:0 NCR_MAX Specifies the timeout period for which the SIB will wait to receive a response, in terms of number of
cycles from end bit of command.

SDMMC_NCR

SDMMC Command Response Timing Register #1

0xE0020048

b31 b30 b29 b28 b27 b26 b25 b24

b23 b22 b21 b20 b19 b18 b17 b16

b15 b14 b13 b12 b11 b10 b9 b8

NRC_MIN[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 1 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

 NCR_MAX[6:0]

 R R R R R R R

 R/W R/W R/W R/W R/W R/W R/W

 1 0 0 0 1 1 1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 665

10.26.24 SDMMC_NCC_NWR

SDMMC Command Response Timing Register #2

This register controls the timing between multiple commands. There are two copies of this register corresponding to the two
storage ports. The address of each register is calculated as 0xe002004C + (port * 0x0400).

15:8 NWR_MIN Specifies the minimum number of clock cycles between end bit of response and start bit of write data.

3:0 NCC_MIN Specifies the minimum number of clock cycles between consecutive commands.

SDMMC_NCC_NWR

SDMMC Command Response Timing Register #2

0xE002004C

b31 b30 b29 b28 b27 b26 b25 b24

b23 b22 b21 b20 b19 b18 b17 b16

b15 b14 b13 b12 b11 b10 b9 b8

NWR_MIN[7:0]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 1 0

b7 b6 b5 b4 b3 b2 b1 b0

 NCC_MIN[3:0]

 R R R R

 R/W R/W R/W R/W

 1 0 0 0

Bit Name Description

666 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.25 SDMMC_NAC

SDMMC Read Timeout Register

This register controls the timeout period for data read operations. There are two copies of this register corresponding to the
two storage ports. The address of each register is calculated as 0xe0020050 + (port * 0x0400).

31:2 RDTMOUT Specifies the timeout duration in clock cycles to be applied to data read operations.

SDMMC_NAC

SDMMC Read Timeout Register

0xE0020050

b31 b30 b29 b28 b27 b26 b25 b24

RDTMOUT[29:22]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

b23 b22 b21 b20 b19 b18 b17 b16

RDTMOUT[21:14]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 1 1 1 1

b15 b14 b13 b12 b11 b10 b9 b8

RDTMOUT[13:6]

R R R R R R R R

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 1 1 1 1 1 1

b7 b6 b5 b4 b3 b2 b1 b0

RDTMOUT[5:0]

R R R R R R

R/W R/W R/W R/W R/W R/W

1 1 1 1 1 1

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 667

10.26.26 SDMMC_HW_CTRL

SDMMC Hardware Control Register

This register provides a mechanism to reset eMMC devices. There are two copies of this register corresponding to the two
storage ports. The address of each register is calculated as 0xe0020054 + (port * 0x0400).

0 HW_RESET_EMMC FW writes ‘1’ to assert the eMMC4.4 card HW reset using the SxMMCRST pin.
FW writes ‘0’ to de-assert reset after tRSTW (1 usec) and waits for tRSCA (200 usec) before issuing
commands.

SDMMC_HW_CTRL

SDMMC Hardware Control Register

0xE0020054

b31 b30 b29 b28 b27 b26 b25 b24

b23 b22 b21 b20 b19 b18 b17 b16

b15 b14 b13 b12 b11 b10 b9 b8

b7 b6 b5 b4 b3 b2 b1 b0

 HW_RESET_EMMC

 R

 R/W

 0

Bit Name Description

668 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

10.26.27 SDMMC_DLL_CTRL

SDMMC DLL Control Register

This register is used to configure the SIB DLL. Note that the use of SIB DLL is not recommended; also, the DLL should be
kept disabled. There are two copies of this register corresponding to the two storage ports. The address of each register is
calculated as 0xe0020058 + (port * 0x0400).

18 DLL_RESET_N 1: Bring DLL out of reset
0: Keep DLL in reset.

14:11 PIN_CLOCK_PHASE_SEL Select clock phase (0–15) to be driven out on the SD_CLK pin.

10:7 SAMPLE_CMD_PHASE_SEL Select clock phase (0–15) used to sample the SD_CMD pin to look for response.

6:3 SAMPLE_DATA_PHASE_SEL Select clock phase (0–15) used to sample the SD_DAT[] pins to get read data.

2 DLL_STAT Reflects DLL lock status.
1: DLL is locked.
0: DLL is not locked.

1 HIGH_FREQ Select high frequency mode of DLL operation.
0: Use when clock frequency is less than 70 MHz.
1: Use when clock frequency is greater than 70 MHz.

0 ENABLE 1: Enable the SIB DLL
0: Disable the SIB DLL

SDMMC_DLL_CTRL

SDMMC DLL Control

0xE0020058

b31 b30 b29 b28 b27 b26 b25 b24

b23 b22 b21 b20 b19 b18 b17 b16

 DLL_RESET_N

 R

 R/W

 0

b15 b14 b13 b12 b11 b10 b9 b8

 PIN_CLOCK_PHASE_SEL[3:0] SAMPLE_CMD_PHASE_SEL[3:1]

 R R R R R R R

 R/W R/W R/W R/W R/W R/W R/W

 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

SAMPLE_CMD_P
HASE_SEL[0]

SAMPLE_DATA_PHASE_SEL[3:0] DLL_STAT HIGH_FREQ ENABLE

R R R R R R/W R R

R/W R/W R/W R/W R/W R R/W R/W

0 0 0 0 0 0 0 0

Bit Name Description

EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E 669

Revision History

Revision History

Document Title: EZ-USB® FX3™ Technical Reference Manual

Document Number: 001-76074

Revision ECN# Issue Date
Origin of
Change

Description of Change

** 3819447 11/22/2012 DBIR Register descriptions - Initial release.

*A 4007727 05/22/2013 OSG Content restructure and rewrite.

*B 4515890 09/26/2014 RSKV Content restructure and rewrite.

*C 4595112 12/12/2014 GAYA Updated Figure 5-10

*D 5293633 06/02/2016 RSKV Updated the template.

*E 5757258 05/31/2017 SHEA Updated logo and copyright

670 EZ-USB FX3 Technical Reference Manual., Spec No.: 001-76074 Rev. *E

Revision History

	EZ-USB® FX3™ Technical Reference Manual
	Contents
	1. Introduction to EZ-USB FX3
	1.1 Overview of USB 3.0
	1.1.1 Physical Layer
	1.1.2 Link Layer
	1.1.3 Protocol Layer
	1.1.3.1 Unicast Transactions
	1.1.3.2 Token/ Data/Handshake Sequences
	1.1.3.3 Data Bursting
	1.1.3.4 End-to-End Flow Control
	1.1.3.5 Streams

	1.2 SuperSpeed Power Management
	1.2.1 Function Power Management

	1.3 FX3/FX3S Features
	1.3.1 FX3 Block Diagram
	1.3.2 FX3S Block Diagram

	1.4 Functional Overview
	1.4.1 CPU
	1.4.2 DMA
	1.4.3 USB Interface
	1.4.4 GPIF II
	1.4.5 UART Interface
	1.4.6 I2C Interface
	1.4.7 I2S Interface
	1.4.8 SPI Interface
	1.4.9 JTAG Interface
	1.4.10 Storage Interface
	1.4.10.1 SD/MMC Clock Stop
	1.4.10.2 SD_CLK Output Clock Stop
	1.4.10.3 Card Insertion and Removal Detection
	1.4.10.4 Write Protection (WP)
	1.4.10.5 SDIO Interrupt
	1.4.10.6 SDIO Read-Wait Feature
	1.4.10.7 Boot Options

	1.4.11 Clocking

	2. FX3 CPU Subsystem
	2.1 Features
	2.2 Block Diagram
	2.3 Functional Overview
	2.3.1 ARM926EJ-S CPU
	2.3.1.1 Processor Modes
	2.3.1.2 Processor Registers
	2.3.1.3 Exception Vectors
	2.3.1.4 MMU
	2.3.1.5 Cache Memories
	2.3.1.6 Tightly Coupled Memories
	2.3.1.7 JTAG Interface
	2.3.1.8 Vectored Interrupt Controller
	2.3.1.9 CPU Operating Frequency
	2.3.1.10 CPU Power Modes
	2.3.1.11 Timers

	3. Memory and System Interconnect
	3.1 Features
	3.2 Block Diagram
	3.3 Functional Overview
	3.3.1 Memory Regions
	3.3.2 System Interconnect
	3.3.3 Low-Power Operations
	3.3.4 Cache Operations
	3.3.4.1 Cache Coherency

	3.3.5 Memory Usage

	4. Global Controller (GCTL)
	4.1 GPIO Pins
	4.1.1 I/O Matrix Configuration
	4.1.2 I/O Drive Strength
	4.1.3 GPIO Pull-up and Pull-down
	4.1.4 Simple GPIO Override
	4.1.5 Complex GPIO Override
	4.1.6 I/O Power Observability
	4.1.6.1 GCTL_IOPOWER
	4.1.6.2 GCTL_IOPWR_INTR
	4.1.6.3 GCTL_IOPWR_INTR_MASK

	4.2 Clock Management
	4.3 Power Management
	4.3.1 Power Domains
	4.3.2 Power Modes
	4.3.3 Reset
	4.3.4 Hard Reset
	4.3.5 Soft Reset

	5. FX3 DMA Subsystem
	5.1 DMA Introduction
	5.2 DMA Features
	5.3 DMA Block Diagram
	5.4 DMA Overview
	5.5 DMA Subsystem Components
	5.5.1 Clocking
	5.5.2 Descriptors Buffers, and Sockets
	5.5.3 DMA Descriptors
	5.5.4 DMA Buffer
	5.5.4.1 Implications of Data Cache Usage
	5.5.4.2 Memory Corruption Due to Cache Line Overlap
	5.5.4.3 Safe Usage of Data Cache
	5.5.4.4 ALIGNMENT REQUIREMENT - How Not To Share Cache Lines

	5.5.5 Sockets
	5.5.5.1 Software Manipulation of Sockets
	5.5.5.2 Initializing a Socket
	5.5.5.3 Terminating a Socket
	5.5.5.4 Modifying or Suspending a Socket
	5.5.5.5 Inspecting a Socket
	5.5.5.6 Wrapping Up a Socket

	5.5.6 Illustration of Descriptor, Buffer and Socket Usage
	5.5.7 Understanding DMA Operation: Peripheral to Peripheral
	5.5.8 Interrupt Requests
	5.5.9 DMA Interrupts

	5.6 Programming Sequence
	5.6.1 Initialization
	5.6.1.1 Producer Half
	5.6.1.2 Consumer Half

	5.6.2 Peripheral to Peripheral Transfer

	5.7 CPU Intervention In Between Ingress and Egress
	5.8 Concept of DMA Channels

	6. Universal Serial Bus (USB)
	6.1 Introduction
	6.2 Features
	6.3 Block Diagram
	6.4 Overview
	6.4.1 USB Interface Block
	6.4.2 USB 3.0 Function Controller
	6.4.3 USB 2.0 Function Controller
	6.4.4 USB 2.0 Embedded Host
	6.4.5 USB OTG Controller
	6.4.6 Charger Detect Controller
	6.4.7 End-Point Memory
	6.4.8 DMA Adapters
	6.4.9 USB I/O System
	6.4.9.1 USB 2.0 OTG PHY
	6.4.9.2 USB 3.0 PHY

	6.5 UIB Top-Level Register Interface
	6.6 USB Function Controllers
	6.6.1 USB 3.0 Function
	6.6.1.1 Clocking
	6.6.1.2 Interrupt Requests
	6.6.1.3 USB 3.0 Functional Description

	6.6.2 Physical Layer
	6.6.3 Link Layer
	6.6.4 Protocol Layer

	6.7 USB 2.0 Function
	6.7.1 Clocking
	6.7.2 Interrupt Requests
	6.7.3 USB 2.0 Functional Description
	6.7.3.1 Serial Interface Engine
	6.7.3.2 Token Processor

	6.7.4 USB 2.0 Function Registers
	6.7.5 USB Reset
	6.7.6 USB Suspend
	6.7.7 USB Resume
	6.7.8 Start of Frame
	6.7.9 SETUP Packet
	6.7.10 IN Packet
	6.7.11 OUT Packet

	6.8 USB 3.0 and USB 2.0 Function Coordination
	6.9 USB Function Programming Model
	6.9.1 USB 3.0 Initialization
	6.9.2 USB 3.0 Enable
	6.9.3 USB 3.0 Fallback to USB 2.0
	6.9.4 USB Reset
	6.9.5 USB Connect
	6.9.6 USB Disconnect
	6.9.7 Control Request
	6.9.8 USB Embedded Host
	6.9.8.1 Clocking

	6.9.9 Interrupt Requests
	6.9.10 Functional Description
	6.9.10.1 Embedded Host
	6.9.10.2 Scheduler Memory

	6.9.11 Embedded Host Programming Model
	6.9.11.1 Host Connect
	6.9.11.2 Host Disconnect
	6.9.11.3 Managing Transfers

	6.10 USB OTG Controller
	6.10.1 Interrupt Requests
	6.10.2 USB OTG Programming Model
	6.10.2.1 USB OTG Start and Stop
	6.10.2.2 Session Request Protocol
	6.10.2.3 Host Negotiation Protocol

	6.11 USB Charger Detect Controller
	6.11.1 USB Charger Detect Register Interface
	6.11.2 Battery Charger Detection
	6.11.3 USB ID Signal Detection

	7. General Programmable Interface II (GPIF II)
	7.1 Features
	7.2 Block Diagram
	7.3 Typical GPIF II interface
	7.4 Functional Overview
	7.4.1 Actions
	7.4.1.1 Action - IN_DATA
	7.4.1.2 Action - IN_ADDR
	7.4.1.3 Action - DR_DATA
	7.4.1.4 Action - DR_ADDR
	7.4.1.5 Action - COMMIT
	7.4.1.6 Action - DR_GPIO
	7.4.1.7 Action - LD_ADDR_COUNT
	7.4.1.8 Action - LD_DATA_COUNT
	7.4.1.9 Action - LD_CTRL_COUNT
	7.4.1.10 Action - COUNT_ADDR
	7.4.1.11 Action - COUNT_DATA
	7.4.1.12 Action - COUNT_CTRL
	7.4.1.13 Action - CMP_ADDR
	7.4.1.14 Action - CMP_DATA
	7.4.1.15 Action - CMP_CTRL
	7.4.1.16 Action - INTR_CPU
	7.4.1.17 Action - INTR_HOST
	7.4.1.18 Action - DR_DRQ

	7.4.2 Triggers
	7.4.3 Transition Conditions
	7.4.4 GPIF II Designer Tool
	7.4.5 GPIF II Hardware Resources
	7.4.5.1 Comparators
	7.4.5.2 Counters
	7.4.5.3 GPIF II Interrupt

	7.4.6 Threads and Sockets
	7.4.6.1 Difference Between PP_MODE=0 and PP_MODE=1

	7.4.7 Addressing
	7.4.7.1 Number of Address Lines
	7.4.7.2 Assigning Sockets to Threads
	7.4.7.3 Addressing Methods

	7.4.8 Async/Sync
	7.4.9 Configuration of Flags
	7.4.10 Developing the GPIF II State Machine

	7.5 Designing a GPIF II Interface
	7.6 GPIF II State Machine Implementation
	7.6.1 Add a State
	7.6.2 Add Actions to a State
	7.6.3 Draw Transitions Between Actions
	7.6.4 Add a Transition Equation
	7.6.5 Set State Properties
	7.6.6 Analyzing the Signal Timing of the GPIF II Interface
	7.6.6.1 Selection of Time Frame
	7.6.6.2 Automatic Timing Scale Selection

	7.6.7 Scenario Entry
	7.6.8 Macro

	7.7 GPIF II Constraints
	7.7.1 Mirror States
	7.7.2 Mirror State Rules
	7.7.3 Mirror State Example
	7.7.4 Guidelines for Transition Equation Entry
	7.7.5 Intermediate States

	7.8 Initialization and Configuration of GPIF II Block
	7.8.1 GPIF II State Machine Control

	7.9 Performing Read and Write Operations Using GPIF II
	7.10 DMA Channel Creation in FX3 Firmware to Perform GPIF II to USB Data Transfers
	7.11 GPIF II State Machine to Read Data into a Socket
	7.12 DMA Channel Creation in FX3 Firmware to Perform USB to GPIF II Data Transfers
	7.13 GPIF II State Machine to Drive Data from Socket as Data Source
	7.13.1 Alpha Values

	7.14 GPIF II Read and Write over Registers
	7.15 Implementing Synchronous Slave FIFO Interface
	7.16 Synchronous Slave FIFO Access Sequence and Interface Timing
	7.16.1 Synchronous Slave FIFO Read Sequence Description
	7.16.2 Synchronous Slave FIFO Write Sequence Description
	7.16.3 Slave FIFO Interface Logical Diagram
	7.16.4 GPIF II State Machine of Slave FIFO Interface

	8. Low Performance Peripherals (LPP)
	8.1 I2C Interface
	8.1.1 I2C Block Features
	8.1.2 I2C Interface Overview

	8.2 FX3 I2C Operations Overview
	8.2.1 Reset and Initialization
	8.2.2 Preamble
	8.2.3 Data Transfer
	8.2.3.1 Programming Model
	8.2.3.2 Register-Based I2C Transfers
	8.2.3.3 DMA-Based I2C Transfers
	8.2.3.4 Starting a Transaction
	8.2.3.5 Terminating Transactions: Software and Hardware Aborts
	8.2.3.6 Multimaster Arbitration
	8.2.3.7 Error Conditions

	8.2.4 Examples
	8.2.4.1 Initialize I2C Block
	8.2.4.2 Configure I2C Block
	8.2.4.3 Reads and Writes Using Register Transfers
	8.2.4.4 Reads and Writes Using DMA Transfers

	8.3 Serial Peripheral Interface
	8.3.1 SPI Block Features
	8.3.2 SPI Interface Overview
	8.3.3 FX3 SPI Operations Overview
	8.3.3.1 Reset and Initialization
	8.3.3.2 Modes Governing Transfers

	8.3.4 SSN Control Configurations
	8.3.5 Data Transfers

	8.4 Programming Model
	8.4.1 Register-Based Transfers
	8.4.2 DMA-Based Transfers

	8.5 Examples
	8.5.1 Initialize SPI Block
	8.5.2 Configure SPI Block
	8.5.3 Reads and Writes Using Register Transfers
	8.5.4 Reads and Writes Using DMA Transfers

	8.6 Universal Asynchronous Receiver Transmitter
	8.6.1 UART block features
	8.6.2 UART Overview

	8.7 FX3 UART Operations Overview
	8.7.1 Reset and Initialization
	8.7.2 Programming Model
	8.7.3 Register-Based Transfers
	8.7.3.1 DMA-Based Transfers
	8.7.3.2 Error Conditions

	8.7.4 Examples
	8.7.4.1 Initialize UART Block
	8.7.4.2 FX3 Firmware to Send UART Messages and to Receive Fixed Bytes of Text

	8.8 Integrated Interchip Sound Interface
	8.8.1 I2S Block Features
	8.8.2 I2S Overview
	8.8.3 FX3 I2S Operations Overview
	8.8.4 Programming Model
	8.8.4.1 Start Transmission
	8.8.4.2 Mute Condition
	8.8.4.3 Pause Condition
	8.8.4.4 Buffer Underflow
	8.8.4.5 Stop Event
	8.8.4.6 Fixed Clock Mode
	8.8.4.7 Data Shift Mode
	8.8.4.8 Padding
	8.8.4.9 Error Conditions
	8.8.4.10 Examples
	8.8.4.11 Initialize I2S Block
	8.8.4.12 Configure I2S Interface
	8.8.4.13 Transferring Data from USB Interface to I2S Interface Using DMA Transfers

	8.9 GPIO
	8.9.1 GPIO Features
	8.9.2 GPIO Overview
	8.9.3 Programming Model
	8.9.3.1 Reset and Initialization

	8.9.4 Examples
	8.9.4.1 Initialize GPIO Block
	8.9.4.2 Configure GPIO[45] as Input Pin and GPIO[21] as Output Pin
	8.9.4.3 Configure GPIO[50] to Generate PWM Output

	9. Storage Ports
	9.1 Storage Interface Block Features
	9.2 Block Diagram
	9.3 Storage Interface (S-Port)
	9.4 SD/ MMC/ SDIO Interface
	9.4.1 SD/MMC Interface Overview
	9.4.2 SDIO Interface Overview

	9.5 FX3S S-Port Operations Overview
	9.5.1 S-port Initialization and Configuration
	9.5.1.1 Configuring the FX3S I/O Matrix
	9.5.1.2 Setting S-Port Interface Parameters
	9.5.1.3 Starting the Storage Driver
	9.5.1.4 Setting the S-Port Clock
	9.5.1.5 Sending SD/MMC/SDIO Commands
	9.5.1.6 Handling SIB Events

	9.5.2 Reads and Writes to SD/ MMC Using DMA Transfers
	9.5.2.1 Sending Vendor Commands to SD/ MMC
	9.5.2.2 Setting the Granularity of Write Operations
	9.5.2.3 Checking Card Status
	9.5.2.4 Aborting Ongoing Transaction to S-Port

	9.5.3 Working with SDIO Cards
	9.5.3.1 Configuration and Initialization
	9.5.3.2 Reads and Writes from SDIO Card Registers
	9.5.3.3 IO_RW_DIRECT Command (CMD52)
	9.5.3.4 Setting Function Block Size
	9.5.3.5 Initialization and Operation of SDIO Functions
	9.5.3.6 SDIO Interrupts
	9.5.3.7 Enabling and Disabling SDIO Interrupts
	9.5.3.8 Handling SDIO Interrupts

	9.6 FX3S-Specific Features
	9.6.1 Card Insertion and Removal Detection Mechanism
	9.6.2 Handling Card Detection in Software
	9.6.3 Write Protection
	9.6.4 SD/MMC CLOCK STOP
	9.6.5 SD_CLK Output Clock Stop
	9.6.6 SDIO Read-Wait/ Suspend-Resume Feature
	9.6.6.1 Read-Wait
	9.6.6.2 Suspend-Resume Feature
	9.6.6.3 SD3.0 Host Tuning Feature
	9.6.6.4 Normal and Alternate eMMC4.4 Boot

	10. Registers
	10.1 Introduction
	10.2 Register Conventions
	10.3 Vectored Interrupt Controller (VIC) Registers
	10.3.1 VIC_IRQ_STATUS
	10.3.2 VIC_FIQ_STATUS
	10.3.3 VIC_RAW_STATUS
	10.3.4 VIC_INT_SELECT
	10.3.5 VIC_INT_ENABLE
	10.3.6 VIC_INT_CLEAR
	10.3.7 VIC_PRIORITY_MASK
	10.3.8 VIC_VEC_ADDRESS
	10.3.9 VIC_VECT_PRIORITY
	10.3.10 VIC_ADDRESS

	10.4 Global Controller Registers
	10.4.1 GCTL_IOMATRIX
	10.4.2 GCTL_GPIO_SIMPLE
	10.4.3 GCTL_GPIO_COMPLEX
	10.4.4 GCTL_DS
	10.4.5 GCTL_WPU_CFG
	10.4.6 GCTL_WPD_CFG
	10.4.7 GCTL_IOPOWER
	10.4.8 GCTL_IOPOWER_INTR
	10.4.9 GCTL_IOPOWER_INTR_MASK
	10.4.10 GCTL_SW_INT
	10.4.11 GCTL_PLL_CFG
	10.4.12 GCTL_CPU_CLK_CFG
	10.4.13 GCTL_UIB_CORE_CLK
	10.4.14 GCTL_PIB_CORE_CLK
	10.4.15 GCTL_GPIO_FAST_CLK
	10.4.16 GCTL_GPIO_SLOW_CLK
	10.4.17 GCTL_I2C_CORE_CLK
	10.4.18 GCTL_UART_CORE_CLK
	10.4.19 GCTL_SPI_CORE_CLK
	10.4.20 GCTL_I2S_CORE_CLK

	10.5 Global Controller Always On Registers
	10.5.1 GCTL_WAKEUP_EN
	10.5.2 GCTL_WAKEUP_POLARITY
	10.5.3 GCTL_WAKEUP_EVENT
	10.5.4 GCTL_FREEZE
	10.5.5 GCTL_WATCHDOG_CS
	10.5.6 GCTL_WATCHDOG_TIMER0
	10.5.7 GCTL_WATCHDOG_TIMER1

	10.6 PIB Registers
	10.6.1 PIB_CONFIG
	10.6.2 PIB_INTR
	10.6.3 PIB_INTR_MASK
	10.6.4 PIB_CLOCK_DETECT
	10.6.5 PIB_RD_MAILBOX
	10.6.6 PIB_WR_MAILBOX
	10.6.7 PIB_ERROR
	10.6.8 PIB_EOP_EOT
	10.6.9 PIB_DLL_CTRL
	10.6.10 PIB_WR_THRESHOLD
	10.6.11 PIB_RD_THRESHOLD
	10.6.12 PIB_ID
	10.6.13 PIB_POWER

	10.7 GPIF Registers
	10.7.1 GPIF_CONFIG
	10.7.2 GPIF_BUS_CONFIG
	10.7.3 GPIF_BUS_CONFIG2
	10.7.4 GPIF_AD_CONFIG
	10.7.5 GPIF_STATUS
	10.7.6 GPIF_INTR
	10.7.7 GPIF_INTR_MASK
	10.7.8 GPIF_CTRL_BUS_DIRECTION
	10.7.9 GPIF_CTRL_BUS_DEFAULT
	10.7.10 GPIF_CTRL_BUS_POLARITY
	10.7.11 GPIF_CTRL_BUS_TOGGLE
	10.7.12 GPIF_CTRL_BUS_SELECT
	10.7.13 GPIF_CTRL_COUNT_CONFIG
	10.7.14 GPIF_CTRL_COUNT_RESET
	10.7.15 GPIF_CTRL_COUNT_LIMIT
	10.7.16 GPIF_ADDR_COUNT_CONFIG
	10.7.17 GPIF_ADDR_COUNT_RESET
	10.7.18 GPIF_ADDR_COUNT_LIMIT
	10.7.19 GPIF_STATE_COUNT_CONFIG
	10.7.20 GPIF_STATE_COUNT_LIMIT
	10.7.21 GPIF_DATA_COUNT_CONFIG
	10.7.22 GPIF_DATA_COUNT_RESET
	10.7.23 GPIF_DATA_COUNT_LIMIT
	10.7.24 GPIF_CTRL_COMP_VALUE
	10.7.25 GPIF_CTRL_COMP_MASK
	10.7.26 GPIF_DATA_COMP_VALUE
	10.7.27 GPIF_DATA_COMP_MASK
	10.7.28 GPIF_ADDR_COMP_VALUE
	10.7.29 GPIF_ADDR_COMP_MASK
	10.7.30 GPIF_DATA_CTRL
	10.7.31 GPIF_INGRESS_DATA
	10.7.32 GPIF_EGRESS_DATA
	10.7.33 GPIF_INGRESS_ADDRESS
	10.7.34 GPIF_EGRESS_ADDRESS
	10.7.35 GPIF_THREAD_CONFIG
	10.7.36 GPIF_LAMBDA_STAT
	10.7.37 GPIF_ALPHA_STAT
	10.7.38 GPIF_BETA_STAT
	10.7.39 GPIF_WAVEFORM_CTRL_STAT
	10.7.40 GPIF_WAVEFORM_SWITCH
	10.7.41 GPIF_WAVEFORM_SWITCH_TIMEOUT
	10.7.42 GPIF_CRC_CONFIG
	10.7.43 GPIF_CRC_DATA
	10.7.44 GPIF_BETA_DEASSERT
	10.7.45 GPIF_FUNCTION
	10.7.46 GPIF_LEFT_WAVEFORM
	10.7.47 GPIF_RIGHT_WAVEFORM

	10.8 P-Port Registers
	10.8.1 PP_ID
	10.8.2 PP_INIT
	10.8.3 PP_CONFIG
	10.8.4 PP_INTR_MASK
	10.8.5 PP_DRQR5_MASK
	10.8.6 PP_SOCK_MASK
	10.8.7 PP_ERROR
	10.8.8 PP_DMA_XFER
	10.8.9 PP_DMA_SIZE
	10.8.10 PP_WR_MAILBOX
	10.8.11 PP_MMIO_ADDR
	10.8.12 PP_MMIO_DATA
	10.8.13 PP_MMIO
	10.8.14 PP_EVENT
	10.8.15 PP_RD_MAILBOX
	10.8.16 PP_SOCK_STAT
	10.8.17 PP_BUF_SIZE_CNT

	10.9 USB Port Registers
	10.9.1 UIB_INTR
	10.9.2 UIB_INTR_MASK
	10.9.3 UIB_ID
	10.9.4 UIB_POWER

	10.10 USB2 HS/FS/LS PHY Registers
	10.10.1 PHY_CLK_AND_TEST
	10.10.2 PHY_CONF
	10.10.3 PHY_CHIRP

	10.11 USB2 Device Controller Registers
	10.11.1 DEV_CS
	10.11.2 DEV_FRAMECNT
	10.11.3 DEV_PWR_CS
	10.11.4 DEV_SETUPDAT
	10.11.5 DEV_TOGGLE
	10.11.6 DEV_EPI_CS
	10.11.7 DEV_EPI_XFER_CNT
	10.11.8 DEV_EPO_CS
	10.11.9 DEV_EPO_XFER_CNT
	10.11.10 DEV_CTRL_INTR_MASK
	10.11.11 DEV_CTRL_INTR
	10.11.12 DEV_EP_INTR_MASK
	10.11.13 DEV_EP_INTR

	10.12 USB Controller Miscellaneous Registers
	10.12.1 CHGDET_CTRL
	10.12.2 CHGDET_INTR
	10.12.3 CHGDET_INTR_MASK
	10.12.4 OTG_CTRL
	10.12.5 OTG_INTR
	10.12.6 OTG_INTR_MASK
	10.12.7 OTG_TIMER

	10.13 USB End Point Manager Registers
	10.13.1 EEPM_CS
	10.13.2 IEPM_CS
	10.13.3 IEPM_MULT
	10.13.4 EEPM_ENDPOINT
	10.13.5 IEPM_ENDPOINT
	10.13.6 IEPM_FIFO

	10.14 USB2 Host Controller Registers
	10.14.1 HOST_CS
	10.14.2 HOST_EP_INTR
	10.14.3 HOST_EP_INTR_MASK
	10.14.4 HOST_TOGGLE
	10.14.5 HOST_SHDL_CS
	10.14.6 HOST_SHDL_SLEEP
	10.14.7 HOST_RESP_BASE
	10.14.8 HOST_RESP_CS
	10.14.9 HOST_ACTIVE_EP
	10.14.10 OHCI_REVISION
	10.14.11 OHCI_CONTROL
	10.14.12 OHCI_COMMAND_STATUS
	10.14.13 OHCI_INTERRUPT_STATUS
	10.14.14 OHCI_INTERRUPT_ENABLE
	10.14.15 OHCI_INTERRUPT_DISABLE
	10.14.16 OHCI_FM_INTERVAL
	10.14.17 OHCI_FM_REMAINING
	10.14.18 OHCI_FM_NUMBER
	10.14.19 OHCI_PERIODIC_START
	10.14.20 OHCI_LS_THRESHOLD
	10.14.21 OHCI_RH_PORT_STATUS
	10.14.22 OHCI_EOF
	10.14.23 EHCI_HCCPARAMS
	10.14.24 EHCI_USBCMD
	10.14.25 EHCI_USBSTS
	10.14.26 EHCI_USBINTR
	10.14.27 EHCI_FRINDEX
	10.14.28 EHCI_CONFIGFLAG
	10.14.29 EHCI_PORTSC
	10.14.30 EHCI_EOF
	10.14.31 SHDL_CHNG_TYPE
	10.14.32 SHDL_STATE_MACHINE
	10.14.33 SHDL_INTERNAL_STATUS
	10.14.34 SHDL_OHCI
	10.14.35 SHDL_EHCI

	10.15 USB3 Link Controller Registers
	10.15.1 LNK_CONF
	10.15.2 LNK_INTR
	10.15.3 LNK_INTR_MASK
	10.15.4 LNK_ERROR_CONF
	10.15.5 LNK_ERROR_STATUS
	10.15.6 LNK_ERROR_COUNT
	10.15.7 LNK_ERROR_COUNT_THRESHOLD
	10.15.8 LNK_PHY_CONF
	10.15.9 LNK_PHY_MPLL_STATUS
	10.15.10 LNK_PHY_TX_TRIM
	10.15.11 LNK_PHY_ERROR_CONF
	10.15.12 LNK_PHY_ERROR_STATUS
	10.15.13 LNK_DEVICE_POWER_CONTROL
	10.15.14 LNK_LTSSM_STATE
	10.15.15 LNK_LFPS_OBSERVE
	10.15.16 LNK_COMPLIANCE_PATTERN_0
	10.15.17 LNK_COMPLIANCE_PATTERN_1
	10.15.18 LNK_COMPLIANCE_PATTERN_2
	10.15.19 LNK_COMPLIANCE_PATTERN_3
	10.15.20 LNK_COMPLIANCE_PATTERN_4
	10.15.21 LNK_COMPLIANCE_PATTERN_5
	10.15.22 LNK_COMPLIANCE_PATTERN_6
	10.15.23 LNK_COMPLIANCE_PATTERN_7
	10.15.24 LNK_COMPLIANCE_PATTERN_8

	10.16 USB3 Protocol Layer Registers
	10.16.1 PROT_CS
	10.16.2 PROT_INTR
	10.16.3 PROT_INTR_MASK
	10.16.4 PROT_FRAMECNT
	10.16.5 PROT_ITP_TIME
	10.16.6 PROT_ITP_TIMESTAMP
	10.16.7 PROT_SETUP_DAT
	10.16.8 PROT_SEQ_NUM
	10.16.9 PROT_EP_INTR
	10.16.10 PROT_EP_INTR_MASK
	10.16.11 PROT_EPI_CS1
	10.16.12 PROT_EPI_CS2
	10.16.13 PROT_EPI_UNMAPPED_STREAM
	10.16.14 PROT_EPI_MAPPED_STREAM
	10.16.15 PROT_EPO_CS1
	10.16.16 PROT_EPO_CS2
	10.16.17 PROT_EPO_UNMAPPED_STREAM
	10.16.18 PROT_EPO_MAPPED_STREAM

	10.17 USB Port - SuperSpeed Ingress Socket Registers
	10.17.1 UIBIN_ID
	10.17.2 UIBIN_POWER

	10.18 I2S Registers
	10.18.1 I2S_CONFIG
	10.18.2 I2S_STATUS
	10.18.3 I2S_INTR
	10.18.4 I2S_INTR_MASK
	10.18.5 I2S_EGRESS_DATA_LEFT
	10.18.6 I2S_EGRESS_DATA_RIGHT
	10.18.7 I2S_COUNTER
	10.18.8 I2S_SOCKET
	10.18.9 I2S_ID
	10.18.10 I2S_POWER

	10.19 I2C Registers
	10.19.1 I2C_CONFIG
	10.19.2 I2C_STATUS
	10.19.3 I2C_INTR
	10.19.4 I2C_INTR_MASK
	10.19.5 I2C_TIMEOUT
	10.19.6 I2C_DMA_TIMEOUT
	10.19.7 I2C_PREAMBLE_CTRL
	10.19.8 I2C_PREAMBLE_DATA
	10.19.9 I2C_PREAMBLE_RPT
	10.19.10 I2C_COMMAND
	10.19.11 I2C_EGRESS_DATA
	10.19.12 I2C_INGRESS_DATA
	10.19.13 I2C_CLOCK_LOW_COUNT
	10.19.14 I2C_BYTE_COUNT
	10.19.15 I2C_BYTES_TRANSFERRED
	10.19.16 I2C_SOCKET
	10.19.17 I2C_ID
	10.19.18 I2C_POWER

	10.20 UART Registers
	10.20.1 UART_CONFIG
	10.20.2 UART_STATUS
	10.20.3 UART_INTR
	10.20.4 UART_INTR_MASK
	10.20.5 UART_EGRESS_DATA
	10.20.6 UART_INGRESS_DATA
	10.20.7 UART_SOCKET
	10.20.8 UART_RX_BYTE_COUNT
	10.20.9 UART_TX_BYTE_COUNT
	10.20.10 UART_ID
	10.20.11 UART_POWER

	10.21 SPI Registers
	10.21.1 SPI_CONFIG
	10.21.2 SPI_STATUS
	10.21.3 SPI_INTR
	10.21.4 SPI_INTR_MASK
	10.21.5 SPI_EGRESS_DATA
	10.21.6 SPI_INGRESS_DATA
	10.21.7 SPI_SOCKET
	10.21.8 SPI_RX_BYTE_COUNT
	10.21.9 SPI_TX_BYTE_COUNT
	10.21.10 SPI_ID
	10.21.11 SPI_POWER

	10.22 General Purpose IO Block Registers
	10.22.1 GPIO_SIMPLE
	10.22.2 GPIO_INVALUE0
	10.22.3 GPIO_INVALUE1
	10.22.4 GPIO_INTR0
	10.22.5 GPIO_INTR1
	10.22.6 GPIO_INTR
	10.22.7 GPIO_ID
	10.22.8 GPIO_POWER

	10.23 General Purpose IO Registers (one pin)
	10.23.1 PIN_STATUS
	10.23.2 PIN_TIMER
	10.23.3 PIN_PERIOD
	10.23.4 PIN_THRESHOLD

	10.24 Low Performance Peripherals Registers
	10.24.1 LPP_ID
	10.24.2 LPP_POWER

	10.25 DMA Socket and Descriptor Registers
	10.25.1 SCK_DSCR
	10.25.2 SCK_SIZE
	10.25.3 SCK_COUNT
	10.25.4 SCK_STATUS
	10.25.5 SCK_INTR
	10.25.6 SCK_INTR_MASK
	10.25.7 DSCR_BUFFER
	10.25.8 DSCR_SYNC
	10.25.9 DSCR_CHAIN
	10.25.10 DSCR_SIZE
	10.25.11 EVENT

	10.26 DMA Adapter Global Registers
	10.26.1 SCK_INTR
	10.26.2 ADAPTER_STATUS
	10.26.3 SIB_ID
	10.26.4 SIB_POWER
	10.26.5 SDMMC_CMD_IDX
	10.26.6 SDMMC_CMD_ARG0
	10.26.7 SDMMC_CMD_ARG1
	10.26.8 SDMMC_RESP_IDX
	10.26.9 SDMMC_RESP_REG0
	10.26.10 SDMMC_RESP_REG1
	10.26.11 SDMMC_RESP_REG2
	10.26.12 SDMMC_RESP_REG3
	10.26.13 SDMMC_RESP_REG4
	10.26.14 SDMMC_CMD_RESP_FMT
	10.26.15 SDMMC_BLOCK_COUNT
	10.26.16 SDMMC_BLOCK_LEN
	10.26.17 SDMMC_MODE_CFG
	10.26.18 SDMMC_DATA_CFG
	10.26.19 SDMMC_CS
	10.26.20 SDMMC_STATUS
	10.26.21 SDMMC_INTR
	10.26.22 SDMMC_INTR_MASK
	10.26.23 SDMMC_NCR
	10.26.24 SDMMC_NCC_NWR
	10.26.25 SDMMC_NAC
	10.26.26 SDMMC_HW_CTRL
	10.26.27 SDMMC_DLL_CTRL

	Revision History

