
ONC3/NFS™

Administrator’s Guide

Document Number 007-0850-080

ONC3/NFS™ Administrator’s Guide
Document Number 007-0850-080

CONTRIBUTORS

Written by Kim Simmons, Pam Sogard, Susan Ellis, and Susan Thomas
Illustrated by Dan Young
Production by Derrald Vogt
Engineering contributions by Andrew Cherenson, Dana Treadwell, James

Yarbrough, John Spiller, John Becker, and Jon Livesey

© 1993, 1994, 1995, 1996 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX, Indigo Magic are
trademarks of Silicon Graphics, Inc. Apollo is a registered trademark of Apollo
Computer, Inc. FrameMaker is a registered trademark of Frame technology, Inc.
Hewlett-Packard is a registered trademark of Hewlett-Packard Company. IBM is a
registered trademark of International Business Machines Corporation. Macintosh is
a registered trademark of Apple Computer, Inc. ONC+ and NFS are trademarks of
Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
Summary of Contents xiv
What You Should Know xv
Supplementary Documentation xvi
Typographical Conventions xvi
Product Support xvii

1. Understanding ONC3/NFS 1
What Is NFS? 2
NFS and Diskless Workstations 3
NFS and the Network Information Service 3
The AutoFS File System 4

Simplified autofs Operation 4
How Autofs Navigates Through the Network (Maps) 5

The CacheFS File System 5
Client-Server Fundamentals 5

Exporting 6
Mounting 6

Mount Points 7
Mount Restrictions 8

Automatic Mounting 8
Stateless Protocol 9
Input/Output Management 9

iv

Contents

NFS File Locking Service 10
Locking and Crash Recovery 10
Locking and the Network Status Monitor 11

2. Planning ONC3/NFS Service 13
The Export Process 13

exportfs Command Options 14
/etc/exports and Other Export Files 14

/etc/exports Options 15
Sample /etc/exports File 16

Recommendations for Exporting 16
The /etc/fstab Mount Process 17

mount and umount Command Options 17
/etc/fstab and Other Mount Files 18

/etc/fstab Options 19
Sample /etc/fstab File 20

Recommendations for /etc/fstab Mounting 20
The Automatic Mounters 21

automount Command Options 21
autofsd and autofs Command Options 22
Automatic Mounter Files and Maps 22

automount Files and Maps 23
automount Mount Points 23
autofs Files and Maps 24
autofs Mount Points 24

Automatic Mount Map Types 25
Master Maps 25
Direct Maps 27
Indirect Maps 27

Recommendations for Automatic Mounting 29

Contents

v

The CacheFS File System 30
Command and File Options for CacheFS 30

mount and umount 30
/etc/fstab 31
Consistency Checking mount Options for fstab 32
cfsadmin Command 33
Cache Resource Parameters 34
cfsstat Command 36

CacheFS Tunable Parameters 36

3. Using Automatic Mounter Map Options 39
Including Group Mounts in Maps 39
Using Hierarchical Formats in Group Mounts 41
Specifying Alternative Servers 42
Using Metacharacters 43

The Ampersand (&) 43
The Asterisk (*) 44
The Backslash (\) 45
Double Quotation Marks (") 45

Using Environment Variables 46
Including Supplementary Maps 47

4. Setting Up and Testing ONC3/NFS 49
Setting Up the NFS Server 49
Setting Up an NFS Client 52
Setting Up the Automatic Mounters 54

Setting Up a Default Automatic Mounter Environment 54
Setting Up a Custom Automatic Mounter Environment 56

Step 1: Creating the Maps 56
Step 2: Starting the Automatic Mounter Program 57
Step 3: Verifying the Automatic Mounter Process 59
Step 4: Testing the Automatic Mounter 60

Setting Up the Lock Manager 61

vi

Contents

Setting Up the CacheFS File System 62
Front File System Requirements 63
Setting Up a Cached File System 63
Creating a Cache 64
Setting Cache Parameters 64

Mounting a Cached File System 65
Using mount to Mount a Cached File System 65

Mounting a Cached File System That Is Already Mounted 65
Mounting a CD-ROM as a Cached File System 66

5. Maintaining ONC3/NFS 67
Changing the Number of NFS Server Daemons 67
Temporary NFS Mounting 68
Modifying the Automatic Mounter Maps 69

Modifying the Master Map 69
Modifying Indirect Maps 69
Modifying Direct Maps 69

Mount Point Conflicts 70
Modifying CacheFS File System Parameters 71

Displaying Information About Cached File Systems 71
Deleting a CacheFS File System 73

6. Troubleshooting ONC3/NFS 75
General Recommendations 75
Understanding the Mount Process 76
Identifying the Point of Failure 77

Checking Out a Server 77
Checking Out a Client 78
Checking Out the Network 78

Contents

vii

Troubleshooting NFS Common Failures 79
Remote Mount Failed 79
Programs Do Not Respond 79
Hangs Partway Through Boot 80
Everything Works Slowly 80
Cannot Access Remote Devices 81

Understanding the automount Process 81
System Startup 82
Mounting 82
The Effect of Map Types 82

Understanding the autofs Process 83
Troubleshooting CacheFS 83

A. ONC3/NFS Error Messages 85
mount Error Messages 85
Verbose automount and autofs Error Messages 88
General automount and autofs Error Messages 90

automount Only Error Messages 90
automount and autofs Error Messages 90

General CacheFS Errors 93
cfsadmin Error Messages 93
mount_cachefs Error Messages 95
umount_cachefs Error Messages 96

Index 97

ix

List of Figures

Figure 1-1 NFS Software Implementation 3
Figure 1-2 Sample Mounted Directory 7

xi

List of Tables

Table 1 ONC3/NFS Administrator’s Guide Chapter Summaries xiv
Table 2-1 Consistency Checking Arguments for the -o mount Option 33
Table 2-2 CacheFS Parameters 35
Table 2-3 Default Values of Cache Parameters 35
Table 2-4 CacheFS Tunable Parameters 37
Table 2-5 CacheFS Tunable Parameter Values 37

xiii

About This Guide

The ONC3/NFS Administrator’s Guide documents the Silicon Graphics® Open Network
Computing/Network File System (ONC3/NFS). ONC3/NFS™ is adapted from Sun
Microsystems, Inc.’s ONC+™ version 1.2, and was previously referred to as the Network
File System (NFS). The purpose of this guide is to provide the information needed to set
up and maintain the ONC3/NFS services. It explains ONC3/NFS software
fundamentals and provides procedures to help you install, test, and troubleshoot
ONC3/NFS on your network. It also contains planning information and
recommendations for administering the service.

ONC+ has been optimized for use on Silicon Graphics systems, and has been integrated
with the IRIS Indigo Magic™ environment and system toolchest. The Silicon Graphics
implementation of ONC+ can run only on a Silicon Graphics system.

ONC3/NFS is made up of distributed services that allow users to access file systems and
directories on remote systems and treat them as if they were local. Networks with
heterogeneous architectures and operating systems can participate in the same
ONC3/NFS service. The service can also include systems connected to different types of
networks.

The components of ONC3/NFS are described below. Further information is provided in
the following chapters.

NFS The Network File System (NFS) is the distributed file system in
ONC3/NFS. Silicon Graphics supports the NFS version 2 (NFS2) and
NFS version 3 (NFS3).

NIS The Network Information Service (NIS) is a collection of databases of
network entity location information that can be used by applications,
including NFS.

CacheFS The Cache File System (CacheFS), introduced in IRIX 5.3, provides
client-side caching for NFS and other file system types.

AutoFS The AutoFS file system, introduced in IRIX 6.2, provides automatic,
in-place mounting of specified file systems when they are accessed.

xiv

About This Guide

Summary of Contents

Table 1 contains a summary of each chapter in this guide and suggests how to use the
chapter.

Table 1 ONC3/NFS Administrator’s Guide Chapter Summaries

Chapter Summary When to Read

Chapter 1,
“Understanding
ONC3/NFS”

Introduces the vocabulary of
ONC3/NFS, and the
fundamentals of ONC3/NFS
operation.

Read this chapter if you are
new to ONC3/NFS. If you
already have ONC3/NFS
experience, you can skip
Chapter 1.

Chapter 2,
“Planning
ONC3/NFS
Service”

Explains ONC3/NFS
processes and their options in
detail.

You should be thoroughly
familiar with the information
in this chapter before
continuing with Chapter 4,
“Setting Up and Testing
ONC3/NFS.”

Chapter 3, “Using
Automatic
Mounter Map
Options”

Describes special features of
the automatic mounters.

Read this chapter if you plan
to customize your automatic
mounter environment.

Chapter 4,
“Setting Up and
Testing
ONC3/NFS”

Contains procedures for
implementing ONC3/NFS on
server and client systems and
verifying their operation.

Use this chapter as a guide to
implementing the ONC3/NFS
service on your network.

Chapter 5,
“Maintaining
ONC3/NFS”

Contains procedures for
changing the parameters in
ONC3/NFS after it is in
service.

Use these procedures for
routine upkeep of
ONC3/NFS.

What You Should Know

xv

What You Should Know

To use the setup and maintenance information in this guide, you should have experience
in the following areas:

• Setting up network services

• Assessing the needs of network users

• Maintaining hosts databases

• Understanding the UNIX® file system structure

• Using UNIX editors

To troubleshoot ONC3/NFS, you should be familiar with these concepts:

• Theory of network services

• Silicon Graphic’s network implementation

Chapter 6,
“Troubleshooting
ONC3/NFS”

Provides general
problem-solving information
and check-out procedures.
Also describes specific
problems that can occur with
ONC3/NFS and suggests
what you can do to correct
them.

Use this chapter to diagnose
and correct ONC3/NFS
problems. Some of the
suggestions in this chapter
require an understanding of
other network software, such
as NIS.

Appendix A,
“ONC3/NFS
Error Messages”

Explains error messages that
may result from incorrect use
of ONC3/NFS.

Read this appendix if you
need help resolving an error
message that displays.

Table 1 (continued) ONC3/NFS Administrator’s Guide Chapter Summaries

Chapter Summary When to Read

xvi

About This Guide

Supplementary Documentation

You can find supplementary information in these documents:

• IRIX Admin: Networking and Mail (Silicon Graphics publication) explains the
fundamentals of system and network administration for Silicon Graphics systems
on a local area network.

• NIS Administration Guide (Silicon Graphics publication) explains how to set up and
maintain Silicon Graphic’s implementation of the network information service.

• IRIX Network Programming Guide (Silicon Graphics publication) explains the
programmatic interfaces to ONC3/NFS.

• Diskless Workstation Administration Guide (Silicon Graphics publication) describes
the setup and maintenance of diskless workstations.

• Defense Data Network Protocol Handbook, available from the Network Information
Center, 14200 Park Meadow Dr., Suite 200, Chantilly, VA 22021. This three-volume
set contains information on TCP/IP and UDP/IP.

• Stern, Hal Managing NFS and NIS O’Reilly & Associates, Inc. 1991. This book
contains detailed, but not Silicon Graphics-specific, information about NFS and
how to administer and use it.

Typographical Conventions

These type conventions and symbols are used in this guide:

Italics Filenames, variables, IRIX command arguments, map names, the first
use of new terms, titles of publications

bold Command line options

Screen type Code examples, file excerpts, and screen displays (including error
messages)

Bold Screen type

User input

() (Parentheses) Following IRIX commands, they surround the reference
page (man page) section where the command is described

[] (Brackets) Surround optional syntax statement arguments

Product Support

xvii

Product Support

Silicon Graphics offers a comprehensive product support and maintenance program for
its products. For information about using support services for this product, refer to the
Release Notes that accompany it.

1

Chapter 1

1.Understanding ONC3/NFS

This chapter introduces the Silicon Graphics implementation of the Sun Microsystems
Open Network Computing Plus (ONC+) distributed services, which was previously
referred to as Network File System (NFS). In this guide, NFS refers to the distributed
network file system in ONC3/NFS.

The information in this chapter is prerequisite to successful ONC3/NFS administration.
It defines ONC3/NFS and its relationship to other network software, introduces the
ONC3/NFS vocabulary, and identifies the software elements that support ONC3/NFS
operation. It also explains special utilities and implementation features of ONC3/NFS.
You should be familiar with the information in this chapter before setting up or
modifying the ONC3/NFS environment.

The components of ONC3/NFS are described below.

NFS The distributed network file system in ONC3/NFS. It contains the
automatic mounters and lock manager. ONC3/NFS includes the NFS2
and NFS3 versions of the NFS protocol. NFS is multi-threaded to take
advantage of multiprocessor performance.

NIS The network information service (NIS) is a database of network entity
location information that can be used by NFS. Information about NIS is
published in a separate volume called the NIS Administration Guide.

AutoFS The AutoFS file system (AutoFS), introduced in IRIX 6.2, is a new
implementation of the automatic mounter that uses the autofs command
instead of automount. Like automount, autofs provides automatic and
transparent NFS mounts upon access of specified AutoFS file systems.
Autofs mainly differs from automount by providing multi-threaded
service, by using the autofsd daemon to perform autofs mounts and
unmounts, by providing in-place mounts (links between /tmp_mnt and
/hosts are no longer necessary), and by using the LoFS (loopback file
system) to access local file systems. autofs and automount cannot co-exist
on the same system.

2

Chapter 1: Understanding ONC3/NFS

CacheFS The Cache File System (CacheFS), introduced in IRIX 5.3, provides
client-side caching for NFS and other file system types. Using CacheFS
on NFS clients with local disk space can significantly increase the
number of clients a server can support and reduce the data access time
for clients using read-only file systems.

This chapter contains these sections:

• “What Is NFS?” on page 2

• “NFS and Diskless Workstations” on page 3

• “NFS and the Network Information Service” on page 3

• “The AutoFS File System” on page 4

• “The CacheFS File System” on page 5

• “Client-Server Fundamentals” on page 5

• “Automatic Mounting” on page 8

• “Stateless Protocol” on page 9

• “Input/Output Management” on page 9

• “NFS File Locking Service” on page 10

What Is NFS?

NFS is a network service that allows users to access file hierarchies across a network and
treat them as if they were local. File hierarchies can be entire file systems or individual
directories. Systems participating in the NFS service can be heterogeneous. They may be
manufactured by different vendors, use different operating systems, and be connected to
networks with different architectures. These differences are transparent to the NFS
application.

NFS is an application layer service that can be used on a network running the User
Datagram Protocol (UDP). It relies on remote procedure calls (RPC) for session layer
services and external data representation (XDR) for presentation layer services.

XDR is a library of routines that translate data formats between processes.

NFS and Diskless Workstations

3

Figure 1-1 illustrates the NFS software implementation in the context of the Open
Systems Interconnect (OSI) model.

Figure 1-1 NFS Software Implementation

NFS and Diskless Workstations

It is possible to set up a system so that all the required software, including the operating
system, is supplied from remote systems by means of the NFS service. Workstations
operating in this manner are considered diskless workstations, even though they may be
equipped with a local disk.

Instructions for implementing diskless workstations are given in the Diskless Workstation
Administration Guide. However, it is important to acquire a working knowledge of NFS
before setting up a diskless system.

NFS and the Network Information Service

The Network Information Service (NIS) is a database service that provides location
information about network entities to other network servers and applications, such as
NFS. NFS and NIS are independent services that may or may not be operating together
on a given network. On networks running NIS, NFS may use the NIS databases to locate
systems when NIS queries are specified.

application

presentation

session

transport

network

data link

physical

NFS

XDR

RPC

UDP/TCP

IP

network interface

4

Chapter 1: Understanding ONC3/NFS

The AutoFS File System

AutoFS is a new kernel virtual file system that supports automatic mounting of file
systems. Together with the implementation of autofsd (the autofs daemon), AutoFS fixes
several fundamental problems with the earlier implementation of automount daemon:
the symbolic links and the /tmp_mnt prepended to paths are replaced by in-place
mounting; AutoFS is file system independent; and AutoFS is multi-threaded, it accepts
dynamic configuration updates.

Unlike automount, AutoFS access cannot be blocked by a server that is down or
responding slowly. One thread may block, but this does not prevent other references
through AutoFS from completing.

Without symbolic links, indirection to mount points is now performed entirely within
the kernel, improving performance. Autofsd is now a stateless daemon, responsible for
performing automatic mounts and unmounts. It allows mount points to be added or
deleted without rebooting. The daemon is not required to access a filesystem once it is
mounted.

In addition, autofsd can mount file systems besides NFS such as removable-media file
systems. These improvements are compatible with previously existing maps and
administrative procedures.

Simplified autofs Operation

The automount daemon, autofsd, starts at boot time from the /etc/init.d/network script if
autofs and nfs are chkconfig’d on. The /etc/init.d/network script also runs the autofs
command, which reads a master map and installs AutoFS mount points.

Unlike mount, autofs does not read the file /etc/fstab, which is specific to each workstation,
for a list of file systems to mount. Rather, autofs is controlled within a domain (and on
particular workstations) through the maps, saving a great deal of administrator time.

The CacheFS File System

5

How Autofs Navigates Through the Network (Maps)

Autofs searches a series of maps to navigate its way through the network. Maps are files
that contain information mapping local directories or mount points to remote server file
systems. A special map, -hosts, is supported by AutoFS to provide a convenient way of
accessing all host machines on the network. Maps are available locally or through a
network name service like NIS or NIS+. You create maps to meet the needs of your users’
environment. See “Automatic Mounting” on page 8, and Chapter 3, “Using Automatic
Mounter Map Options” for detailed information on automatic mounting and its maps.

The CacheFS File System

A cache is a temporary storage area for data. The cache file system (CacheFS) enables
users to use local disk drives on workstations to store frequently used data from a remote
file system or CD-ROM. The data stored on the local disk is the cache.

When a file system is cached, the data is read from the original file system and stored on
the local disk. The reduction in network traffic improves performance. If the remote file
system is on a storage medium with slower response time than the local disk (such as a
CD-ROM), caching provides an additional performance gain.

CacheFS can use all or part of a local disk to store data from one or more remote file
systems. A user accessing a file does not need to know whether the file is stored in a cache
or is being read from the original file system. The user opens, reads, and writes files as
usual.

A cache with default parameters can be created with the mount command. Default
parameters can be changed with the cfsadmin command. See “cfsadmin Command” on
page 33 and “Cache Resource Parameters” on page 34.

Client-Server Fundamentals

In an NFS transaction, the workstation requesting access to remote directories is known
as the client. The workstation providing access to its local directories is known as the
server. A workstation can function as a client and a server simultaneously. It can allow
remote access to its local file systems while accessing remote directories with NFS. The
client-server relationship is established by two complementary processes, exporting and
mounting.

6

Chapter 1: Understanding ONC3/NFS

Exporting

Exporting is the process by which an NFS server provides access to its file resources to
remote clients. Individual directories, as well as file systems, can be exported, but
exported entities are usually referred to as file systems. Exporting is done either during
the server’s boot sequence or from a command line as superuser while the server is
running.

Once a file system is exported, any authorized client can use it. A list of exported file
systems, client authorizations, and other export options are specified in the /etc/exports
file (see “/etc/exports and Other Export Files” in Chapter 2 for details). Exported file
systems are removed from NFS service by a process known as unexporting.

A server can export any file system or directory that is local. However, it cannot export
both a parent and child directory within the same file system; to do so is redundant.

For example, assume that the file system /usr contains the directory /usr/demos. As the
child of /usr, /usr/demos is automatically exported with /usr. For this reason, attempting to
export both /usr and /usr/demos generates an error message that the parent directory is
already exported. If /usr and /usr/demos were separate file systems, this example would
be valid.

When exporting hierarchically related file systems such as /usr and /usr/demos in the
previous example, we recommend the use of the -nohide option to reduce the number of
mounts required by clients (see exports(4)).

Mounting

Mounting is the process by which file systems, including NFS file systems, are made
available to the IRIX operating system and consequently, the user. When NFS file systems
or directories are mounted, they are made available to the client over the network by a
series of remote procedure calls that enable the client to access the file system
transparently from the server’s disk. Mounted NFS directories or file systems are not
physically present on the client system, but the mount looks like a local mount and users
enter commands as if the file systems were local.

Client-Server Fundamentals

7

NFS clients can have directories mounted from several servers simultaneously.
Mounting can be done as part of the client’s boot sequence, automatically, at file system
access, with the help of a user-level daemon, or with a superuser command after the
client is running. When mounted directories are no longer needed, they can be
relinquished in a process known as unmounting.

Like locally mounted file systems, NFS mounted file systems and directories can be
specified in the /etc/fstab file (see “/etc/fstab and Other Mount Files” in Chapter 2 for
details). Since NFS file systems are located on remote systems, specifications for NFS
mounted resources must include the name of the system where they reside.

Mount Points

The access point in the client file system where an NFS directory is attached is known as
a mount point. A mount point is specified by a conventional IRIX pathname.

Figure 1-2 illustrates the effect of mounting directories onto mount points on an NFS
client.

Figure 1-2 Sample Mounted Directory

The pathname of a file system on a server can be different from its mount point on the
client. For example, in Figure 1-2 the file system /usr/demos is mounted in the client’s file
system at mount point /n/demos. Users on the client gain access to the mounted directory
with a conventional cd command to /n/demos, as if the directory were local.

ClientServer

/home /usr

/usr/demos

/ /

 /n /usr

/n/demos
/usr/demos on server
NFS mounted to
/n/demos on client

8

Chapter 1: Understanding ONC3/NFS

Mount Restrictions

NFS does not permit multihopping, mounting a directory that is itself NFS mounted on
the server. For example, if host1 mounts /usr/demos from host2, host3 cannot mount
/usr/demos from host1. This would constitute a multihop.

NFS also does not permit loopback mounting, mounting a directory that is local to the
client via NFS. For example, the local file system /usr on host1 cannot be NFS mounted to
host1, this would constitute a loopback mount.

Automatic Mounting

As an alternative to standard mounting via /etc/fstab or the mount command, NFS
provides two automatic mounting utilities. The original automatic mounter, called
automount and a newer implementation introduced in IRIX 6.2, called autofs. Both
automatic mounters dynamically mount file systems when they are referenced by any
user on the client system, then unmount them after a specified time interval. Unlike
standard mounting, automount and autofs, once set up, do not require superuser
privileges to mount a remote directory. They also create the mount points needed to
access the mounted resource. NFS servers cannot distinguish between directories
mounted by the automatic mounters and those mounted by conventional mount
procedures. autofs and automount cannot co-exist on the same system.

Unlike the standard mount process, automount and autofs do not read the /etc/fstab file for
mount specifications. Instead, they read alternative files (either local or through NIS)
known as maps for mounting information (see “Automatic Mounter Files and Maps” on
page 22 for details). They also provide special maps for accessing remote systems and
automatically reflecting changes in the /etc/hosts file and any changes to the remote
server’s /etc/exports file.

Default configuration information for automatic mounting is contained in the files
/etc/config/automount.options (for automount) and /etc/config/autofs.options (for autofs).
These files can be modified to use different options and more sophisticated maps.

Stateless Protocol

9

Stateless Protocol

NFS implements a stateless protocol in which the server maintains almost no information
on NFS processes. This stateless protocol insulates clients and servers from the effects of
failures. If a server fails, the only effect to clients is that NFS data on the server is
unavailable to clients. If a client fails, server performance is not affected.

Clients are independently responsible for completing NFS transactions if the server or
network fails. By default, when a failure occurs, NFS clients continue attempting to
complete the NFS operation until the server or network recovers. To the client, the failure
can appear to be slow performance on the part of the server. Client applications continue
retransmitting until service is restored and their NFS operations can be completed. If a
client fails, no action is needed by the server or its administrator in order for the server
to continue operation.

The major advantage of a stateless server is robustness in the face of client, server, or
network failures. This robustness is especially important in a complex network of
heterogeneous systems, many of which are not under the control of a centralized
operations staff, and some of which are systems that are often rebooted without warning.

Input/Output Management

In NFS2 transactions, data input and output is asynchronous read-ahead and
write-behind, unless otherwise specified. As the server receives data, it notifies the client
that the data was successfully written. The client responds by freeing the blocks of NFS
data successfully transmitted to the server. In reality, however, the server might not write
the data to disk before notifying the client, a technique called delayed writes. Writes are
done when they are convenient for the server, but at least every 30 seconds.

Although delayed write is the default method of operation for NFS2, synchronous writes
are supported in NFS3 and as an option in NFS2 (see “/etc/exports Options” in
Chapter 2 for more details about NFS options). With synchronous writes, the server
writes the data to disk before notifying the client that it has been written. Synchronous
writes may slow NFS performance due to the time required for disk access, but increase
data integrity in the event of system or network failure.

10

Chapter 1: Understanding ONC3/NFS

NFS File Locking Service

To help manage file access conflicts and protect NFS sessions during failures, NFS offers
a file and record locking service called the network lock manager. The network lock
manager is not an integral part of NFS. It is a separate service NFS makes available to
user applications with the facility to use it. To use the locking service, applications must
make calls to standard IRIX lock routines (see the reference pages fcntl(2), flock(3B), and
lockf(3C)). For NFS files, these calls are sent to the network lock manager process (see
lockd(1M)) on the server.

The network lock manager processes must run on both the client and server to function
properly. Communication between the two processes is by means of RPC. Calls for
service issued to the client process are handed to the server process, which uses its local
IRIX locking utilities to handle the call. If the file is in use, the lock manager issues an
advisory to the calling application, but it does not prevent the application from accessing
a busy file. The application must determine how to respond to the advisory, using its own
facilities.

Despite the fact that the network lock manager adheres to lockf/fcntl semantics, its
operating characteristics are influenced by the nature of the network, particularly during
crashes.

Locking and Crash Recovery

As part of the file locking service, the network lock manager assists with crash recovery
by maintaining state information on locked files. It uses this information to reconstruct
locks in the event of a server or client failure.

When an NFS client goes down, the lock managers on all of its servers are notified by
their status monitors, and they simply release their locks, on the assumption that the
client will request them again when it wants them. When a server crashes, however,
matters are different. When the server comes back up, its lock manager gives the client
lock managers a grace period to submit lock reclaim requests. During this period, the
lock manager accepts only reclaim requests. The client status monitors notify their
respective lock managers when the server recovers. The default grace period is 45
seconds.

NFS File Locking Service

11

After a server crash, a client may not be able to recover a lock that it had on a file on that
server, because another process may have beaten the recovering application process to
the lock. In this case the SIGLOST signal is sent to the process (the default action for this
signal is to kill the application).

Locking and the Network Status Monitor

To handle crash recoveries, the network lock manager relies on information provided by
the network status monitor. The network status monitor is a general service that provides
information about network systems to network services and applications. The network
status monitor notifies the network lock manager when a network system recovers from
a failure, and by implication, that the system failed. This notification alerts the network
lock manager to retransmit lock recovery information to the server.

To use the network status monitor, the network lock manager registers with the status
monitor process (see statd(1M)) the names of clients and servers for which it needs
information. The network status monitor then tracks the status of those systems and
notifies the network lock manager when one of them recovers from a failure.

13

Chapter 2

2.Planning ONC3/NFS Service

To plan the ONC3/NFS service for your environment, it is important to understand how
ONC3/NFS processes work and how they can be configured. This chapter provides
prerequisite information on ONC3/NFS processes and their configuration options. It
also explains the conditions under which certain options are recommended.

This chapter contains these sections:

• “The Export Process” on page 13

• “The /etc/fstab Mount Process” on page 17

• “The Automatic Mounters” on page 21

• “The CacheFS File System” on page 30

The Export Process

Access to files on an NFS server is provided by means of the exportfs command (see the
exportfs(1M) reference page). The exportfs command reads the file /etc/exports for a list of
file systems and directories to be exported from the server. Normally, exportfs is executed
at system startup by the /etc/init.d/network script. It can also be executed by the superuser
from a command line while the server is running. Exported file systems must be local to
the server. A file system that is NFS-mounted from another server cannot be exported
(see “Mount Restrictions” in Chapter 1 regarding multihop).

14

Chapter 2: Planning ONC3/NFS Service

exportfs Command Options

The exportfs command has several options used to configure its operation. Four of these
options are briefly described below. For more complete information on exportfs options,
see the exportfs(1M) reference page.

–a (all) Export all resources listed in /etc/exports.

–i (ignore) Do not use the options set in the /etc/exports file.

–u (unexport) Terminate exporting designated resources.

–v (verbose) Display any output messages during execution.

Invoking exportfs without options reports the file systems that are currently exported.

/etc/exports and Other Export Files

Exporting starts when exportfs reads the file /etc/exports for a list of file systems and
directories to be exported from the server. As it executes, exportfs writes a list of file
systems it successfully exported, and information on how they were exported, in the
/etc/xtab file. Anytime the /etc/exports file is changed, exportfs must be executed to update
the /etc/xtab file. If an entry is not listed in /etc/xtab, it has not been exported, even if it is
listed in /etc/exports.

In addition to the /etc/xtab file, the server maintains a record of the exported resources
that are currently mounted and the names of clients that have mounted them. The record
is maintained in a file called /etc/rmtab. Each time a client mounts a directory, an entry is
added to the server’s /etc/rmtab file. The entry is removed when the directory is
unmounted. The information contained in the /etc/rmtab file can be viewed using the
showmount command.

Note: The information in /etc/rmtab may not be current, since clients can unmount file
systems without informing the server.

The Export Process

15

/etc/exports Options

There are a number of export options for managing the export process. Some commonly
used export options are briefly described below. For a complete explanation of options,
see the exports(4) manual page.

ro (read only) Export this file system with read-only privileges.

rw (read, write) Export this file system with read and write privileges. rw is
the default.

rw= (read mostly) Export this file system read-only to all clients except those
listed.

Note: Directories are exported either ro or rw, not both ways. The option
specified first is used.

anon= (anonymous UID) If a request comes from the user root (UID = 0), use
the specified UID as the effective UID instead. By default, the effective
UID is nobody (UID = –2). Specifying a UID of –1 disables access by
unknown users or by root on a host not specified by the root option. Use
the root option to permit accesses by the user root.

root= Give superuser privileges to root users of NFS-mounted directories on
systems specified in root access list. By default, root is set to none.

access= Grant mount privileges to a specified list of clients only. Clients can be
listed individually or as an NIS netgroup (see netgroup(4)).

nohide (IRIX enhancement) By default, the contents of a child file system are
hidden when only the parent file system is mounted. Allow access to this
file system without performing a separate mount if its parent file system
is mounted.

wsync (IRIX enhancement for NFS2 only) Perform all write operations to disk
before sending an acknowledgment to the client. Overrides delayed
writes. (See “Input/Output Management” in Chapter 1 for details.)

32bitclients Causes the server to mask off the high-order 32 bits of directory cookies
in NFS3 directory operations. This option may be required when clients
run 32-bit operating systems such as IRIX 5.3.

When a file system or directory is exported without specifying options, the default
options are rw and anon=nobody.

16

Chapter 2: Planning ONC3/NFS Service

Sample /etc/exports File

A default version of the /etc/exports file is shipped with NFS software and stored in
/etc/exports when NFS is installed. You must add your own entries to the default version
as part of the NFS setup procedure (given in “Setting Up the NFS Server” in Chapter 4).
This sample /etc/exports illustrates entries and how to structure them with various
options:

/ -ro
/reports -access=finance,rw=susan,nohide
/usr -nohide
/usr/demos -nohide,ro,access=client1:client2:client3
/usr/catman -nohide

In this sample /etc/exports, the first entry exports the root directory (/) with read-only
privileges. The second entry exports a separate file system, /reports, read-only to the
netgroup finance, with write permission specified for susan. Users who mount / can
access the /reports, /usr, and /usr/demo file systems (if they are in finance) because nohide
is specified.

The fourth entry uses the access list option. It specifies that client1, client2, and client3 are
authorized to access /usr/demos with read-only privileges. To avoid possible problems,
client1, client2, and client3 should be fully qualified domain names.

Note: If you are using an access list to export to a client with multiple network interfaces,
the /etc/exports file must contain all names associated with the client’s interfaces. For
example, a client named octopus with two interfaces needs two entries in the /etc/exports
file, typically octopus and gate-octopus.

The fifth entry is an example of an open file system. It exports /usr/catman to the entire
world with read-write access (the default when neither ro or rw is specified) to its
contents.

Recommendations for Exporting

Consider these suggestions for setting up exports on your NFS service:

1. Use the ro option unless clients must write to files. This reduces accidental removal
or changes to data.

2. In secure installations, set anon to –1 to disable root on any client (except those
specified in the root option) from accessing the designated directory as root.

The /etc/fstab Mount Process

17

3. Be cautious with your use of the root option.

4. If you are using NIS, consider using netgroups for long access lists.

5. Use nohide to export related but separate file systems to minimize the number of
mounts clients must perform.

6. Use wsync when minimizing risk to data is more important than optimizing
performance (NFS2 only).

7. If you are serving NFS3 to Solaris, IRIX 5.3, or other clients with 32-bit operating
systems, you may need the 32bitclients option.

The /etc/fstab Mount Process

An NFS client mounts directories at startup via /etc/fstab entries, or by executing the
mount command. The mount command can be executed during the client’s boot
sequence, from a command line entry, or graphically, using the System Manager tool. The
mount command supports the NFS3 protocol if that protocol is also running on the server.

Mounts must reference directories that are exported by a network server and mount
points that exist on the client. Directories that serve as mount points may or may not be
empty. If using the System Manager for NFS mounting, the mount points must be empty.
If the directory is not empty, the original contents are hidden and inaccessible while the
NFS resources remain mounted.

mount and umount Command Options

The mount and umount commands have many options for customizing mounting and
unmounting that can apply to either EFS or NFS file systems. Several commonly-used
options are briefly described below in their NFS context (see mount(1M) for full details).

–t type (type) Set the type of directories to be mounted or unmounted. type can
be nfs2 for NFS2 mounting, nfs3 for the NFS3 protocol, and nfs and
nfs3pref for mounts that attempt the NFS3 protocol, but fall back to nfs2
if the attempt fails. The mount command, by default, uses nfs3pref. To
mount NFS3, the server must support NFS3.

–a (all) Attempt to mount all directories listed in /etc/fstab, or unmount all
directories listed in /etc/mtab.

18

Chapter 2: Planning ONC3/NFS Service

–h hostname (host) Attempt to mount all directories listed in /etc/fstab that are
remote-mounted from the server hostname, or unmount directories listed
in /etc/mtab that are remote-mounted from server hostname.

-b list (all but) Attempt to mount or unmount all file systems listed in /etc/fstab
except those associated with the directories in list. list contains one or
more comma-seperated directory names.

–o options (options) Use these options, instead of the options in /etc/fstab.

/etc/fstab and Other Mount Files

Mounting typically occurs when the mount command reads the /etc/fstab file. Each NFS
entry in /etc/fstab contains up to six fields. An NFS entry has this format:

file_system directory type options frequency pass

where:

file_system is the remote server directory to be mounted.

directory is the mount point on the client where the directory is attached.

type is the file system type. This can be nfs2 for NFS2 mounting, nfs3 for the
NFS3 protocol, and nfs and nfs3pref for mounts that attempt the NFS3
protocol, but fall back to nfs2 if the attempt fails.

options is mount options (see “/etc/fstab Options” in this chapter).

frequency is always set to zero (0) for NFS and CacheFS entries.

pass is always set to zero (0) for NFS and CacheFS entries.

The mount command maintains a list of successfully mounted directories in the file
/etc/mtab. When mount successfully completes a task, it automatically updates the
/etc/mtab file. It removes the /etc/mtab entry when the directory is unmounted. The
contents of the /etc/mtab file can be viewed using the mount command without any
options. See the mount(1M) reference page for more details.

The /etc/fstab Mount Process

19

/etc/fstab Options

There are several options for configuring mounts. When you use these options, it is
important to understand that export options (specified on a server) override mount
options. NFS /etc/fstab options are briefly described below (see the fstab(4) reference page
for complete information):

ro Read-only permissions are set for files in this directory.

rw Read write permissions are set for files in this directory (default).

hard Specifies how the client should handle access attempts if the server fails.
If the NFS server fails while a directory is hard-mounted, the client
keeps trying to complete the current NFS operation until the server
responds (default).

soft Alternative to hard mounting. If the NFS server fails while a directory is
soft-mounted, the client attempts a limited number of tries to complete
the current NFS operation before returning an error.

nointr (non-interruptible) Disallows NFS operations to be interrupted by users.
The default setting is off (that is, interruptible).

bg (background) Mounting is performed as a background task if the first
attempt fails. The default setting is off.

fg (foreground) Mounting is performed as a foreground task. The default
setting is on.

private (IRIX enhancement) Uses local file and record locking instead of a
remote lock manager and minimizes delayed write flushing. Diskless
clients are the primary users of this option.

rsize (read size) Changes the read buffer to the size specified (default is 8K).

wsize (write size) Changes the write buffer to the size specified (default is 8K).

timeo (NFS timeout) Sets a new timeout limit (default is .11 seconds.)

retrans (retransmit) Specifies an alternative to the number of times NFS
operations are retried (default is 5).

port Specifies an alternative UDP port number for NFS on the server (default
port number is 2049).

noauto Tells mount –a to ignore this /etc/fstab entry.

20

Chapter 2: Planning ONC3/NFS Service

grpid Allows files created in a file system to have the parent directory’s group
ID, not the process’ group ID.

nosuid Turns setuid execution off for nonsuperusers (default is off).

nodev Disallows access to character and block special files (default is off).

vers=n Use NFS protocol version n (accepted values are 2, 3). For example use
vers=2 to specify NFS2. By default, NFS3 is tried; if the mount is
unsuccessful, NFS2 is then tried.

In addition to these options, /etc/fstab also offers several options dedicated to attribute
caching. Using these options, you can direct NFS to cache file attributes, such as size and
ownership, to avoid unnecessary network activity. See the fstab(4) reference page for
more details.

Sample /etc/fstab File

NFS entries in /etc/fstab are designated by the nfs identifier, while EFS (local file systems)
entries are designated by efs. This sample /etc/fstab file includes a typical NFS entry:

/dev/root / efs rw,raw=/dev/rroot 0 0
/dev/usr /usr efs rw,raw=/dev/rusr 0 0
redwood:/usr/demos /n/demos nfs ro,bg 0 0

In this example, the NFS directory /usr/demos on server redwood is mounted at mount
point /n/demos on the client system with read-only (ro) permissions (see Figure 1-2).
Mounting executes as a background task (bg) if it didn’t succeed the first time. By
default, if the server fails after the mount has taken place, the client attempts to complete
any NFS transactions indefinitely (hard) or until it receives an interrupt.

Recommendations for /etc/fstab Mounting

Some recommendations for /etc/fstab mounting are:

1. Use conventional mounting for clients that are inoperable without NFS directories
(such as diskless workstations) and for directories that need to be mounted most of
the time.

2. The intr option is no longer needed. Specify nointr if NFS operations are not to be
interrupted.

The Automatic Mounters

21

3. The bg option should always be specified to expedite the boot process if a server is
unavailable when the client is booting. In other words, a client hangs until the
server comes back up unless you specify bg.

4. If you use nohide when exporting file systems on the server, the client can mount
the top-most directory in the exported file system hierarchy. This gives access to all
related file systems while reducing individual mount calls and the complexity of the
/etc/fstab file.

5. Use private when the NFS directory on the server is not shared among multiple
NFS clients.

6. Do not put NFS mount points in the root (/) directory of a client. Mount points in the
root directory can slow the performance of the client and can cause the client to be
unusable when the server is unavailable.

The Automatic Mounters

The automatic mounters (automount and autofs) dynamically mount NFS directories on a
client when a user references the directory. They can be set up to execute when a client is
booted, or can be executed by the superuser from a command line while the client is
running.

To start an automatic mounter at boot time, either the automount or autofs flag must be set
to on (see the chkconfig(1M) reference page for details). If the flag is on, the automatic
mounter is invoked by the /etc/init.d/network script and started with any automount or
autofs options specified in the /etc/config/automount.options or /etc/config/autofs.options file,
respectively.

Note: autofs and automount cannot co-exist on the same system. If both are chkconfig’d on,
autofs is configured.

automount Command Options

The automount command offers many options that allow you to configure its operation
(for a complete description, see the automount(1M) reference page). Some commonly
used options are:

–D Assign a value to an environment variable.

–f Read the specified local master file before the NIS master map.

22

Chapter 2: Planning ONC3/NFS Service

–m Do not read the NIS master map.

–M Use the specified directory as the automount mount point.

–n Disable dynamic mounts.

–T Trace and display each NFS call.

–tl n Maintain the mount for a specified duration of client inactivity (default
duration is 5 minutes).

–tm n Wait a specified interval between mount attempts (default interval is 30
seconds).

–tp n Hold information about server availability in a cache for a specified time
(default interval is 5 seconds).

–tw n Wait a specified interval between attempts to unmount file systems that
have exceeded cache time (default interval is 60 seconds).

–v Display any output messages during execution.

autofsd and autofs Command Options

The autofs command uses all automount options except -f and -tl, and offers the following
option. For a complete description, see the autofs(1M) reference page).

-t duration Specify a duration, in seconds, that the file system should remain
mounted when not in use. The default is 5 minutes.

autofsd and autofs share the configuration file /etc/config/autofs.options.

Automatic Mounter Files and Maps

Just as the conventional mount process reads /etc/fstab and writes to /etc/mtab, automount
and autofs can be set up to read input files for mounting information. automount and
autofs also record their mounts in the /etc/mtab file and remove /etc/mtab entries when they
unmount directories.

The Automatic Mounters

23

automount Files and Maps

By default, when automount executes at boot time, it reads the
/etc/config/automount.options file for initial operating parameters. The information
contained in the /etc/config/automount.options file can contain the complete information
needed by the automounter or the information can direct automount to a set of files that
contain customized automounting instructions. /etc/config/automount.options cannot have
comments in it.

The default version of /etc/config/automount.options is:

-v /hosts -hosts -nosuid,nodev

This /etc/config/automount.options directs automount to execute with the verbose (–v)
option. It also specifies that automount should use /hosts as its daemon mount point.
When a user accesses a file or directory under /hosts, the –hosts argument directs
automount to use the pathname component that follows /hosts as the name of the NFS
server. All accessible file systems exported by the server are mounted to the default
mount point /tmp_mnt/hosts with the nosuid and nodev options.

 For example, if the system redwood has the following entry in /etc/exports:

/usr/share/catman -ro,nohide

And a client system is using the default /etc/config/automount.options file, as above, then
executing the following command on the client lists the contents of the directory
/usr/share/catman on redwood:

ls -l /hosts/redwood/usr/share/catman/*

automount Mount Points

Mount points for automount serve the same function as mount points in conventional
NFS mounting. They are the access point in the client’s file system where a remote NFS
directory is attached. There are two major differences between automount mount points
and conventional NFS mount points.

With automount, mount points are automatically created and removed as needed by the
automount program. When the automount program is started, it reads configuration
information from /etc/config/automount.options, additional automount maps, or both, and
creates all mount points needed to support the specified configuration.

24

Chapter 2: Planning ONC3/NFS Service

By default, automount mounts everything in the directory /tmp_mnt and creates a link
between the mounted directory in /tmp_mnt and the accessed directory. For example, in
the default configuration, mounts take place under /tmp_mnt/hosts/hostname. The
automounter creates a link from the access point /hosts/hostname to the actual mount
point under /tmp_mnt/hosts/hostname. This command ls /hosts/redwood/tmp displays the
contents of server redwood's /tmp directory. You can change the default root mount point
with the automount –M option.

autofs Files and Maps

By default, when autofs executes at boot time, it reads the /etc/config/autofs.options and
/etc/auto_master files for initial operating parameters. /etc/config/autofs.options cannot have
comments in it.

The default version of /etc/config/autofs.options is:

-v

This /etc/config/autofs.options directs autofs to execute with the verbose (–v) option.

The default /etc/auto_master file specifies that autofs should use /hosts as its daemon mount
point. When a user accesses a file or directory under /hosts, the –hosts argument directs
automount to use the pathname component that follows /hosts as the name of the NFS
server. All accessible file systems exported by the server are mounted to the default
mount point /hosts with the nosuid option.

 For example, if the system redwood has the following entry in /etc/exports:

/usr/share/catman -ro,nohide

And a client system is using the default /etc/auto_master file, as above, then executing the
following command on the client lists the contents of the directory /usr/share/catman on
redwood:

ls -l /hosts/redwood/usr/share/catman/*

autofs Mount Points

Mount points for autofs serve the same function as mount points in conventional NFS
mounting. They are the access point in the client’s file system where a remote NFS
directory is attached. Noticeably different from automount, autofs performs mounts in
place; it does not link /hosts with /tmp_mnt.

The Automatic Mounters

25

With AutoFS, mount points are automatically created and removed as needed by the
autofs program. When the autofs program is started, it reads configuration information
from /etc/config/autofs.options, additional autofs maps, or both, and creates all mount
points needed to support the specified configuration.

The autofs command installs AutoFS mount points and associates an AutoFS map with
each mount point. The AutoFS file system monitors attempts to access directories within
it and notifies the autofsd daemon. The daemon uses the map to locate a file system, and
then mount it at the point of reference within the AutoFS file system. Maps can be
assigned to an AutoFS mount using an entry in the /etc/auto_master map or a direct map.

Automatic Mount Map Types

The automount and autofs features use these kinds of maps:

• “Master Maps”

• “Direct Maps”

• “Indirect Maps”

Master Maps

The master map is the first file read by the automount or autofs program. There is only one
master map on a client. It specifies the types of supported maps, the name of each map
to be used, and options that apply to the entire map (if any). By convention, the master
map is called /etc/auto.master with automount (but the name can be changed) and
/etc/auto_master with autofs (this name cannot be changed).

With automount, for complex automatic mounter configurations, a master map can be
specified in the /etc/config/automount file.

26

Chapter 2: Planning ONC3/NFS Service

The automount master map can be a local file or an NIS database file. For autofs, it must
be a local file named /etc/auto_master. The master map contains three fields: mount point,
map name, and map options. A crosshatch (#) at the beginning of a line indicates a comment
line. A sample of master map entries is:

#Mount Point Map Name Map Options
/hosts -hosts -nosuid,nodev
/net /etc/auto.irix.misc -nosuid
/home /etc/auto.home -timeo=10
/- /etc/auto.direct -ro
/net3 /etc/indirect3 -ro,vers=3

The mount point field serves two purposes. It determines whether a map is a direct or
indirect map, and it provides mount point information. A slash followed by a dash (/–)
in the mount point field designates a direct map. It signals the automatic mounter to use
the mount points specified in the direct map for mounting this map. For example, to
mount the fourth entry in the sample above, the automatic mounter gets a mount point
specification from the direct map /etc/auto.direct. In the fifth entry, an entire indirect map,
which includes all its entries, is declared to use the NFS version 3 protocol. If NFS version
3 is not available on the server, the mount fails.

A directory name in the mount point field designates an indirect map. It specifies the
mount point the automatic mounter should use when mounting this map. For example,
the second entry in the sample above tells the automatic mounter to mount the indirect
map /etc/auto.irix.misc at mount point /net. A mount point for direct and indirect maps can
be several directory levels deep.

The map name field in a master map specifies the full name and location of the map.
Notice that –hosts is considered an indirect map whose mount point is /hosts. The –hosts
map mounts all the exported file systems from a server. If frequent access to just a single
file system is required for a server with many exports, it is more efficient to access that
file system with a map entry that mounts just that file system.

The map options field can be used to specify any options that should apply to the entire
map. Options set in a master map can be overridden by options set for a particular entry
within a map.

The Automatic Mounters

27

Direct Maps

Direct maps allow mounted directories to be distributed throughout a client’s local file
system. They contain the information that the automatic mounter needs to determine
when, what, and how to mount a remote NFS directory. You can have as many direct
maps as needed.

A direct map is typically called /etc/auto.mapname, where mapname is some logical name
that reflects the map’s contents. Direct maps can also be grouped based on logical
characteristics. For instance, in the above master map example, the direct map
/etc/auto.direct, indicated by the /– mount point, can also include mounting information
for software to be mounted as read-only.

All direct maps contain three fields: directory, options, and location. An example of an
/etc/auto.direct direct map is:

#Directory Options Location
/usr/local/tools -nodev ivy:/usr/cooltools
/usr/frame redwood:/usr/frame
/usr/games -nosuid peach:/usr/games

In a direct map, users access the NFS directory with the pathname that is identical to the
directory field value in the direct map. For example, a user gives the command cd

/usr/local/tools to mount /usr/cooltools from server ivy as specified in the direct map
/etc/auto.direct. Notice that the directory field in a direct map can include several
subdirectory levels.

The options field can be used to set options for an entry in the direct map. Options set
within a map for an individual entry override the general option set for the entire map
in the master map. The location field contains the NFS server’s name and the remote
directory to mount.

Note: When direct map mount points are mounted into routinely accessed directories,
unexpected mount activity can occur.

Indirect Maps

Indirect maps allow remotely mounted directories to be housed under a specified shared
top-level location on the client’s file system. They contain the specific information the
automatic mounter program needs to determine when, what, and how to NFS mount a
remote directory. You can have as many indirect maps as needed.

28

Chapter 2: Planning ONC3/NFS Service

An indirect map is typically called /etc/auto.mapname (for automount) and
/etc/auto_mapname (for autofs), where mapname is some logical name that reflects the
map’s contents. Indirect maps can be grouped according to logical characteristics. For
example, in the master map above, the indirect map /etc/auto_home, indicated by the
mount point /home, can include mounting information for all home directories on various
servers.

Indirect maps contain three fields: directory, options, and location. Entries might look
something like this for the /etc/auto_home indirect map:

#Directory Options Location
willow willow:/usr/people
pine -nosuid pine:/usr/people
ivy -ro,nointr ivy:/usr/people
jinx -ro,vers=3 jinx:/usr

With an indirect map, user access to an NFS directory is always relative to the mount
point specified in the master map entry for the indirect map. That is, the directory is the
concatenation of the mount-point field in the master map and the directory field in the
indirect map. For example, given our sample /etc/auto_master and indirect map
/etc/auto_home, a user gives the command cd /home/willow to access the NFS directory
willow:/usr/people.

If a user changes the current working directory to the /home directory and tries to list its
contents, the directory appears empty unless a subdirectory of /home, such as
/home/willow, was previously accessed, thereby mounting /home subdirectories. Access to
the mount point of an indirect map only shows information for mounts currently in
effect; it does not trigger mounts, as with direct maps. Users must access a subdirectory
to trigger a mount.

The directory field in an indirect map is limited to one subdirectory level. Additional
subdirectory levels for indirect maps must be indicated in the mount point field in the
master map or on the command line.

The options field can be used to set options for an entry in the indirect map. For example,
the fourth entry attempts to mount using the NFS3 protocol, all other entries are
unaffected. Options set within a map for an entry override the general options set for the
entire map in the master map. The location field contains the NFS server’s name and the
remote directory to mount.

The Automatic Mounters

29

Recommendations for Automatic Mounting

Some recommendations for automatic mounting are:

1. Use the automatic mounter when the overhead of a mount operation is not
important, when a file system is used more often than the automatic mounter time
limit (5 minutes by default), or when file systems are used infrequently. Although
directories that are used infrequently do not consume local or remote resources,
they can slow down applications that report on file systems, such as df.

2. The default configuration in /etc/config/automount.options or /etc/auto_master is
usually sufficient because it allows access to all systems. It performs the minimal
number of mounts necessary when it is used in conjunction with the nohide export
option on the server.

3. Use indirect maps whenever possible. Direct maps create more /etc/mtab entries,
which means more mounts are performed, so system overhead is increased. With
indirect maps, mounts occur when a process references a subdirectory of the
daemon or map mount point. With direct maps, when a process reads a directory
containing one or more direct mount points, all of the file systems are mounted at
the mount points. This can result in a flurry of unintended mounting activity when
direct mount points are used in well-traveled directories.

4. Try not to mount direct map mount points into routinely accessed directories. This
can cause unexpected mount activity and slow down system performance.

5. Use a direct rather than an indirect map when directories cannot be grouped, but
must be distributed throughout the local file system.

6. Plan and test maps on a small group of clients before using them for a larger group.
Some changes to the automount environment require that systems be rebooted (see
Chapter 5, “Maintaining ONC3/NFS” for details on changing the map
environment).

30

Chapter 2: Planning ONC3/NFS Service

The CacheFS File System

CacheFS is a file system layered above other standard IRIX file systems. CacheFS
performs automatic local caching of data from one file system (called the back file
system) on another file system (called the front file system). Either the xfs or efs file
system types can be used for the front file system. The back file system can be of the types
nfs2, nfs, nfs3, iso9660, cdfs, hfs, kfs, and dos. Once the data has been cached, file read
and read-only directory operations are as fast as those on a local disk (EFS or XFS file
systems). Write performance, however, is closer to an NFS write operation. For more
information on CacheFS, refer to the cachefs(4) reference page.

The original (or source) file system is called the back file system and files in it are back
files. The cached file system resides on the local disk and files in it are cached files. The
cache directory is a directory on the local disk where the data for the cached file system
is stored. Multiple file systems can reside in the cache directory. The file system in which
the cache directory resides is called the front file system and its files are front files.

Planning and setting up a CacheFS configuration is similar to that of an NFS client-server
configuration.

Command and File Options for CacheFS

CacheFS-specific options have been added to the conventional mount command and
/etc/fstab file and are described in this section. For the complete description of these
commands and files, refer to “The /etc/fstab Mount Process” on page 17. The cfsadmin
and cfsstat commands are new with CacheFS (see cfsadmin(1M) and cfsstat(1M)).

mount and umount

When mounting and unmounting a CacheFS file system, the following option is used for
CacheFS. For descriptions of the other options, see “mount and umount Command
Options” on page 17.

–t type (type) Set the type of directories to be mounted or unmounted. type is
cachefs for all CacheFS mounting.

The CacheFS File System

31

/etc/fstab

The /etc/fstab file has several new options that are used with CacheFS for mounting and
unmounting.

Any mount options not recognized by CacheFS are passed to the back file system mount
if one is performed.

The options that are new for CacheFS are:

backfstype=file_system_type
Specifies the back file system type (nfs2, nfs, nfs3, iso9660, cdfs, hfs, kfs,
and dos). If this option is not specified, the back file system type is
determined from the file system name. File system names of the form
hostname:path are assumed to be of the type nfs.

backpath=path Specifies the path where the back file system is already mounted. If this
argument is not specified, CacheFS determines a mount point for the
back file system.

cachedir=directory
Specifies the name of the cache directory.

cacheid=ID Allows you to assign a string to identify each separate cached file
system. If you do not specify the cacheid value, CacheFS generates one.
You need the cache ID when you delete a cached file system with
cfsadmin -d. A cache ID you choose is easier to remember than one
automatically generated. The cfsadmin command with the -l option
includes the cacheid value in its display.

write-around | non-shared
Determines the write modes for CacheFS. In the default write-around
mode, as writes are made to the back file system, the affected file is
purged from the cache. File and record locking is performed through the
back file system.

The non-shared mode can be used when only one source is writing to
the cached file system. In this mode, all writes are made to both the
front and back file systems, and the file remains in the cache.

32

Chapter 2: Planning ONC3/NFS Service

noconst Disables consistency checking between the front and back file systems.
Use noconst when the back file system and cache file system are
read-only. Otherwise, always allow consistency checking. The default
is to enable consistency checking.

If none of the files in the back file system are to be modified, you can
use the noconst option to mount when mounting the cached file
system. Changes to the back file system may not be reflected in the
cached file system.

private Causes file and record locking to be performed locally. Additionally, files
remain cached when file and record locking are performed. By default,
files are not cached when file and record locking are performed and all
file and record locking is handled by the back file system.

local-access Causes the front file system to interpret the access mode bits used for
access checking (see chmod(1M)). By default, the back file system
interprets the access mode bits used for access checking to ensure data
integrity.

purge Remove any cached information for the specified file system.

suid | nosuid Allow set-uid (default) or do not allow set-uid.

bg Causes mount to run in the background if the back file system mount
times out.

disconnect Causes the cache file system to operate in disconnected mode when the
back file system fails to respond. This allows read accesses to files
already cached to be performed from the front file system even when the
back files system does not respond.

Consistency Checking mount Options for fstab

To ensure that the cached directories and files are kept up to date, CacheFS periodically
checks consistency of files stored in the cache. To check consistency, CacheFS compares
the current modification time to the previous modification time; if the modification times
are different, all data and attributes for the directory or file are purged from the cache and
new data and attributes are retrieved from the back file system.

When an operation on a directory or file is requested, CacheFS checks to see if it is time
to verify consistency. If so, CacheFS obtains the modification time from the back file
system and performs the comparison. If the write mode is write-around, CacheFS checks
on every operation.

The CacheFS File System

33

Table 2-1 provides more information on mount consistency checking parameters.

cfsadmin Command

The cfsadmin command is used to administer the cached file system on the local system.
It can be used to:

• Create a cached file system.

• List the contents and statistics about the cache.

• Delete the cached file system.

• Modify the resource parameters when the file system is unmounted.

The cfsadmin command works on a cache directory, which is the directory where the
cache is actually stored. A pathname in the front file system identifies the cache directory.
See cfsadmin(1M) for more details.

Table 2-1 Consistency Checking Arguments for the -o mount Option

Parameter Description

acdirmin=n Specifies that cached attributes are held for at least n seconds after a
directory update. After n seconds, if the directory modification time on the
back file system has changed, all information about the directory is purged
and new data is retrieved from the back file system. The default for n is 30
seconds.

acdirmax=n Specifies that cached attributes are held for no more than n seconds after a
directory update. After n seconds, the directory is purged from the cache
and new data is retrieved from the back file system. The default for n is 30
seconds.

acregmin=n Specifies that cached attributes are held for at least n seconds after file
modification. After n seconds, if the file modification time on the back file
system has changed, all information about the file is purged and new data
is retrieved from the back file system. The default for n is 30 seconds.

acregmax=n Specifies that cached attributes are held for no more than n seconds after a
file modification. After n seconds, all file information is purged from the
cache. The default for n is 30 seconds.

actimeo=n Sets acregmin, acregmax, acdirmin, and acdirmax to n.

34

Chapter 2: Planning ONC3/NFS Service

Note: If the default resource parameters are acceptable (see “Cache Resource
Parameters”), it is not necessary to run cfsadmin to create the cache. The cache is created
with default parameters when the first mount is performed.

The syntax for the cfsadmin command is:

cfsadmin -c [-o cachefs_parameters] cache_directory
cfsadmin -l cache_directory
cfsadmin -d [cache_ID | all] cache_directory
cfsadmin -u [-o cachefs_parameters] cache_directory

The options and their parameters are:

-c Create a cache under the directory specified by cache_directory. This
directory must not exist prior to cache creation.

-l List the file systems that are stored in the specified cache directory. A
listing provides the cache_ID and statistics about resource utilization and
cache resource parameters.

-d Delete the file system and remove the resources of the cache_ID that you
specify or all file systems in the cache if you specify all.

-u Update the resource parameters of the specified cache directory. The
parameter values (specified with the -o option) can only be increased; to
decrease the values, you must remove the cache, then re-create it. All file
systems in the cache must be unmounted when you use this option.
Changes take effect the next time you mount the file system in the cache
directory.

Using the -u option without the -o option resets all parameters to their
default values.

cache_ID Specifies an identifying name for the file system that is cached. If you do
not specify a cache_ID, CacheFS assigns a unique identifier.

-o options Specifies the CacheFS resource parameters. Multiple resource
parameters must be separated by commas. The following section
describes the cache resource parameters.

Cache Resource Parameters

The default values for the cache parameters are for a cache that uses the entire front file
system for caching. To limit the cache to only a portion of the front file system, you
should change the parameter values.

The CacheFS File System

35

Any parameter may be changed at any time. The change does not take effect however,
until all file systems for the affected cache have been unmounted and remounted.

Table 2-2 shows the parameters for space and file allocation.

Table 2-3 shows the default values for the cache parameters. The default values for
parameters devote the full resources of the front file system to caching.

The maxblocks parameter sets the maximum number of blocks, expressed as a
percentage, that CacheFS is allowed to claim within the front file system. The maxblocks
percentage is relative to the total number of blocks on the front file system, not what has
been allocated by CacheFS. The maxfiles parameter sets the maximum percentage of
available inodes (number of files) CacheFS can claim.

Note: The maxblocks and maxfiles parameters do not guarantee the resources will be
available for CacheFS—they set maximums. If you allow the front file system to be used
for purposes other than CacheFS, there may be fewer blocks or files available to CacheFS
than you intend.

The maxblocks, maxfiles, threshfiles, and threshblocks values apply to the entire front
file system, not file systems you have cached under the front file system.

Table 2-2 CacheFS Parameters

Parameters for Space Allocation Parameters for File Allocation

maxblocks maxfiles

threshblocks threshfiles

Table 2-3 Default Values of Cache Parameters

Cache Parameters Default Value

maxblocks 90%

threshblocks 85%

maxfiles 90%

threshfiles 85%

36

Chapter 2: Planning ONC3/NFS Service

Note: Using the whole front file system solely for caching eliminates the need to change
the maxblocks, maxfiles, threshblocks, or threshfiles parameter.

CacheFS allows the cache to grow to the maximum size specified—if you have not
reduced available resources by using part of the front file system for other storage
purposes.

cfsstat Command

The cfsstat command displays and reinitializes statistics about CacheFS. It must be used
as the superuser. For more information, refer to the cfsstat(1M) reference page.

CacheFS Tunable Parameters

The CacheFS tunable parameters are used to fine tune the performance of CacheFS file
opens and reads. The CacheFS tunable parameters are contained in the file
/var/sysgen/mtune/cachefs. They can be modified with the systune command (see
systune(1M)).

The CacheFS File System

37

The two tunable parameters for CacheFS, along with their descriptions, are listed in
Table 2-4.

The parameter’s maximum, minimum, and default values are listed in Table 2-5.

Table 2-4 CacheFS Tunable Parameters

Parameter Description

cachefs_readahead Controls the number of blocks to read ahead of the current
block being read. The readaheads are read asynchronously.
The size of the block is the preferred I/O size of the front file
system.

cachefs_max_threads Controls the maximum number of asynchronous I/O
daemons allowed to run for each CacheFS file system.

Table 2-5 CacheFS Tunable Parameter Values

Parameter Default Value Minimum Value Maximum Value

cachefs_readahead 1 0 10

cachefs_max_threads 5 1 10

39

Chapter 3

3.Using Automatic Mounter Map Options

Automatic mounter (automount and autofs) maps offer a number of options that increase
mounting efficiency and make map building easier. This chapter explains each option
and provides examples of how to include them in maps. Except as noted, the options
described in this chapter can be used in either direct or indirect maps. Direct maps are
not supported in autofs.

This chapter contains these sections:

• “Including Group Mounts in Maps” on page 39

• “Using Hierarchical Formats in Group Mounts” on page 41

• “Specifying Alternative Servers” on page 42

• “Using Metacharacters” on page 43

• “Using Environment Variables” on page 46

• “Including Supplementary Maps” on page 47

Including Group Mounts in Maps

Group mounts are a means of organizing entries in a direct map so that a single mount
provides several directories that users are likely to need simultaneously. Group mounts
work only with direct maps. The map entry for a group mount specifies the parent
directory to be mounted. Subentries specify the individual child directories the mount
makes available and any mount options that apply to them. The directories in a group
mount need not be on the same server.

40

Chapter 3: Using Automatic Mounter Map Options

A sample group mount entry is:

/usr/local \
/bin –ro ivy:/export/local/iris_bin \
/share –rw willow:/usr/local/share \
/src –ro oak:/home/jones/src

This example shows that, when /usr/local is mounted, users have access to three
directories: /export/local/iris_bin, a read-only directory on server ivy; /usr/local/share, a
read-write directory on server willow; and /home/jones/src, a read-only directory on
server oak. The backslash (\) at the end of a line indicates that a continuation line follows.
Continuation lines are indented with blank spaces or tabs.

Without the group mount feature, the single entry shown in the previous example would
require three separate mounts and three individual map entries, as shown in this
example:

/usr/local/bin –ro ivy:/export/local/iris–bin
/usr/local/share –rw willow:/usr/local/share
/usr/local/src –ro oak:/home/jones/src

Group mounts and separate entries differ in that group mounts guarantee that all
directories in the group are mounted whenever any one of them is referenced. This is not
the case for separate entries. For example, notice the error message that occurs in this
sequence when the user specifies a relative pathname to change directories:

% cd /usr/local/bin
% cd ../src
UX:csh:ERROR: ../src - No such file or directory

The error occurs because the directory /usr/local/src is not mounted with /usr/local/bin. A
separate cd command is required to mount /usr/local/src.

Using Hierarchical Formats in Group Mounts

41

Using Hierarchical Formats in Group Mounts

When the root of a file hierarchy must be mounted before any other mounts can occur, it
must be specified in the map. A hierarchical mount is a special case of group mounts in
which directories in the group must be mounted in a particular order. For hierarchical
mounts, the automatic mounter must have a separate mount point for each mount within
the hierarchy.

The sample group mount entry shown in the previous section illustrates nonhierarchical
mounts under /usr/local when /usr/local is already mounted, or when it is a subdirectory
of another mounted system. The concept of root here is very important. The symbolic link
returned by automount to the kernel request is a path to the mount root, the root of the
hierarchy mounted under /tmp_mnt.

An example of a hierarchical mount is:

/usr/local \
/ –rw peach:/export/local \
/bin –ro ivy:/export/local/iris–bin \
/share –rw willow:/usr/local/share \
/src –ro oak:/home/jones/src

The mount points used here for the hierarchy are /, /bin, /share, and /src. These mount
point paths are relative to the mount root, not to the system’s file system root. The first
entry in this example has / as its mount point. It is mounted at the mount root. The first
mount of a hierarchy is not required to be at the mount root. Automount creates
directories to build a path to the first mount point if the mount point is not at the mount
root.

A true hierarchical mount can be a disadvantage if the server of the root hierarchy
becomes unavailable. When this happens, any attempt to unmount the lower branches
fail, since unmounting must proceed through the mount root, and the mount root cannot
be unmounted while its server is unavailable.

42

Chapter 3: Using Automatic Mounter Map Options

Specifying Alternative Servers

In an automatic mounter map, you can specify alternative servers to be used in the event
the specified server is unavailable when mounting is attempted. This example illustrates
an indirect map in which alternative servers are used:

man –ro oak:/usr/man \
rose:/usr/man \
willow:/usr/man

frame –ro redwood:/usr/frame2.0 \
balsa:/export/frame

The mount point man lists three server locations, and frame lists two. Mounting can be
done from any listed server, as long as it is available.

Alternative locations are recommended for mounting read-only hierarchies. However,
they are not advised for read-write files, since alternating versions of writable files causes
problems with version control.

In the example above, multiple mount locations are expressed as a list of mount locations
in the map entry. They can also be expressed as a comma-separated list of servers,
followed by a colon and the pathname, if the pathname is the same for all alternate
servers:

man –ro oak,rose,willow:/usr/man

In this example, manual pages are mounted from either oak, rose, or willow, but this list
of servers does not imply order. However, the automatic mounter does try to connect to
servers on the local network first before soliciting servers on a remote network. The first
server to respond to the automatic mounter’s RPC requests is selected, and automount or
autofs attempts to mount the server.

Although this redundancy is very useful in an environment where individual servers
may or may not be exporting their file systems, it is beneficial at mount time only. If a
server goes down while a mount is in effect, the directory becomes unavailable. An
option here is to wait 5 minutes until the auto-unmount takes place and try again. At the
next attempt, the automatic mounter chooses one of the available servers. It is also
possible, with automount, for you to use the umount command to unmount the directory,
and inform automount of the change in the mount table with the command
/etc/killall -HUP automount. Then retry the mount. See the automount(1M),
killall(1M), and umount(1M) reference pages for more details. This procedure is not
necessary with autofs, since updates are performed automatically.

Using Metacharacters

43

Using Metacharacters

The automatic mounter recognizes some characters, metacharacters, as having a special
meaning. Metacharacters are used to do substitutions and to disable the effects of special
characters. Metacharacters recognized by the automatic mounter are described below.

The Ampersand (&)

The automatic mounter recognizes an ampersand as a string substitution character. It
replaces ampersands in the location field with the directory field character string
specification wherever the ampersand occurs in the location specification. For example,
assume you have a map containing many subdirectory specifications, like this:

#Directory Mount Options Location
john -nodev willow:/home/willow:john
mary -nosuid willow:/home/willow:mary
joe -ro willow:/home/willow:joe
able pine:/export/home:able
baker peach:/export/home:baker

Using the ampersand, the map above looks like this:

#Directory Mount Options Location
john -nodev willow:/home/willow:&
mary -nosuid willow:/home/willow:&
joe -ro willow:/home/willow:&
able pine:/export/home:&
baker peach:/export/home:&

Let’s say the server name and directory name are the same, as in this example:

#Directory Mount Options Location
willow willow:/home/willow
peach –ro peach:/home/peach
pine pine:/home/pine
oak –nosuid oak:/home/oak
poplar –nosuid poplar:/home/poplar

44

Chapter 3: Using Automatic Mounter Map Options

Using the ampersand results in entries that look like this:

#Directory Mount Options Location
willow &:/home/&
peach –ro &:/home/&
pine &:/home/&
oak –nosuid &:/home/&
poplar –nosuid &:/home/&

You can also use directory substitutions in a direct map. For example, assume a direct
map contains this entry:

/usr/man willow,cedar,poplar:/usr/man

Using an ampersand, this entry can be shortened to this:

/usr/man willow,cedar,poplar:&

Notice that the ampersand substitution uses the whole directory string. Since directory
specifications in a direct map begin with a slash (/), it is important to remember that the
slash is carried over when you use the ampersand. For example, if a direct map contains
this entry,

/progs &1,&2,&3:/export/src/progs

the automatic mounter interprets the map entry in this way:

/progs /progs1,/progs2,/progs3:/export/src/progs

The Asterisk (*)

The automatic mounter recognizes an asterisk as a wildcard substitution for a directory
specification given in a command line. Asterisks must always be the last entry in a map,
since the automatic mounter does not read beyond an asterisk entry.

Consider the map in this example:

#Directory Mount Options Location
oak –nosuid &:/export/&
poplar –nosuid &:/export/&
* &:/home/&

Using Metacharacters

45

In this example, a command line entry with the directory argument redwood is
equivalent to this map entry:

redwood redwood:/home/redwood

In the next map, the last two entries are always ignored:

#Directory Mount Options Location
* &:/home/&
oak –nosuid &:/export/&
poplar –nosuid &:/export/&

The Backslash (\)

The automatic mounter recognizes the backslash as a signal to disable the effects of the
special character that follows it. It interprets the special character literally. For example,
under certain circumstances, you might need to mount directories whose names could
confuse the automatic mounter’s map parser. An example might be a directory called
rc0:dk1. This name could result in an entry like:

/junk –ro vmsserver:rc0:dk1

The presence of the two colons in the location field confuses the automatic mounter’s
parser. To avoid this confusion, use a backslash to escape the second colon and remove
its special meaning of separator:

/junk –ro vmsserver:rc0\:dk1

Double Quotation Marks (")

The automatic mounter recognizes double quotation marks (") as string delimiters. Blank
spaces within double quotation marks are not interpreted as the start of a new field. This
example illustrates double quotation marks used to hide the blank space in a two-word
name:

/smile dentist:/"front teeth"/smile

46

Chapter 3: Using Automatic Mounter Map Options

Using Environment Variables

You can use the value of an environment variable by prefixing a dollar sign to its name.
You can also use braces to delimit the name of the variable from appended letters or
digits. Environment variables can appear anywhere in an entry line, except as a directory.

The environment variables can be inherited from the environment or can be defined
explicitly with the –D command line option. For instance, if you want each client to
mount client–specific files in the network in a replicated format, you could create a
specific map for each client according to its name, so that the relevant line for the system
oak looks like this:

/mystuff acorn,ivy,balsa:/export/hostfiles/oak

For willow, the entry looks like this:

/mystuff acorn,ivy,balsa:/export/hostfiles/willow

This scheme is viable within small networks, but maintaining system-specific maps
across a large network is burdensome. An alternative for large networks is to start the
automatic mounter with either of these commands:

/usr/etc/automount –D HOST=‘hostname‘ ...
or
/usr/etc/autofs –D HOST=‘hostname‘ ...

The entry in the direct map looks like this:

/mystuff acorn,ivy,balsa:/export/hostfiles/$HOST

Now each system finds its own files in the mystuff directory, and centralized
administration and distribution of maps is easier.

Including Supplementary Maps

47

Including Supplementary Maps

A line of the form +mapname causes the automatic mounter to consult the mentioned map
as if it were included in the current map. If mapname is a relative pathname (no slashes),
the automatic mounter assumes it is an NIS map. If the pathname is an absolute
pathname the automatic mounter looks for a local map of that name. If the map name
starts with a dash (–), the automatic mounter consults the appropriate built-in map.

For instance, you can have a few entries in your local auto.home map for the most
commonly accessed home directories and follow them with the included NIS map, as
shown in this example:

ivy –rw &:/home/&
oak –rw &:/export/home
+auto.home

If the automatic mounter finds no match in the included map, it continues scanning the
current map. This allows you to use additional entries after the included map, as shown
in this example:

ivy –rw &:/home/&
oak –rw &:/export/home
+auto.home
* –rw &:/home/&

Finally, the included map can be a local file, or even a built-in map:

+auto.home.finance # NIS map
+auto.home.sales # NIS map
+auto.home.engineering # NIS map
+/etc/auto.mystuff # local map
+auto.home # NIS map
+–hosts # built–in hosts map
* &:/export/& # wildcard

Notice that in all cases the wildcard should be the last entry, since the automatic mounter
does not continue consulting the map after it reads the asterisk. It assumes the wildcard
has found a match.

49

Chapter 4

4.Setting Up and Testing ONC3/NFS

This chapter explains how to set up ONC3/NFS services and verify that they work. It
provides procedures for enabling exporting on NFS servers, for setting up mounting and
automatic mounting on NFS clients, and for setting up the network lock manager. It also
explains how to create a CacheFS file system. Before you begin these procedures, you
should be thoroughly familiar with the information provided in Chapter 2, “Planning
ONC3/NFS Service.”

This chapter contains these sections:

• “Setting Up the NFS Server” on page 49

• “Setting Up an NFS Client” on page 52

• “Setting Up the Automatic Mounters” on page 54

• “Setting Up the Lock Manager” on page 61

• “Setting Up the CacheFS File System” on page 62

• “Mounting a Cached File System” on page 65

Note: To do the procedures in this chapter, you should have already installed
ONC3/NFS software on the server and client systems that will participate in the
ONC3/NFS services. The ONC3/NFS Release Notes explain where to find instructions for
installing ONC3/NFS software.

Setting Up the NFS Server

Setting up an NFS server requires verifying that the required software is running on the
server, editing the server’s /etc/exports file, adding the file systems to be exported,
exporting the file systems, and verifying that they have been exported. The instructions
below explain the setup procedure. They assume that NFS software is already installed
on the server. Do this procedure as the superuser on the server.

50

Chapter 4: Setting Up and Testing ONC3/NFS

1. Check the NFS configuration flag on the server.

When the /etc/init.d/network script executes at system startup, it starts NFS running
if the chkconfig flag nfs is on. To verify that nfs is on, type the chkconfig command and
check its output, for example:

/etc/chkconfig
 Flag State
 ==== =====
 ...
 nfs on
 ...

This example shows that the nfs flag is set to on.

2. If your output shows that nfs is off, type this command and reboot your system:

/etc/chkconfig nfs on

3. Verify that NFS daemons are running.

Four nfsd and four biod daemons should be running (the default number specified in
/etc/config/nfsd.options and /etc/config/biod.options). Verify that the appropriate NFS
daemons are running using the ps command, shown below. The output of your
entries looks similar to the output in these examples:

ps -ef | grep nfsd
root 102 1 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 104 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 105 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 106 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 2289 2287 0 14:04:50 ttyq4 0:00 grep nfsd
ps -ef | grep biod
root 107 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 108 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 109 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 110 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 2291 2287 4 14:04:58 ttyq4 0:00 grep biod

Setting Up the NFS Server

51

If no NFS daemons appear in your output, they were not included in the IRIX
kernel during NFS installation. To check the kernel, type this command:

strings /unix | grep nfs

If there is no output, rebuild the kernel with this command, then reboot the system:

/etc/autoconfig -f

4. Verify that mount daemons are registered with the portmapper.

Mount daemons must be registered with the server’s portmapper so the
portmapper can provide port numbers to incoming NFS requests. Verify that the
mount daemons are registered with the portmapper by typing this command:

/usr/etc/rpcinfo –p | grep mountd

After your entry, you should see output similar to this:

100005 1 tcp 1230 mountd
100005 1 udp 1097 mountd
391004 1 tcp 1231 sgi_mountd
391004 1 udp 1098 sgi_mountd

The sgi_mountd in this example is an enhanced mount daemon that reports on
SGI-specific export options.

5. Edit the /etc/exports file.

Edit the /etc/exports file to include the file systems you want to export and their
export options (/etc/exports and export options are explained in “/etc/exports and
Other Export Files” in Chapter 2). This example shows one possible entry for the
/etc/exports file:

/usr/demos -ro,access=client1:client2:client3

In this example, the file system /usr/demos are exported with read-only access to
three clients: client1, client2, and client3. Domain information can be included in the
client names, for example client1.eng.sgi.com.

6. Run the exportfs command.

Once the /etc/exports file is complete, you must run the exportfs command to make
the file systems accessible to clients. You should run exportfs anytime you change the
/etc/exports file. Type this command:

/usr/etc/exportfs -av

In this example, the –a option exports all file systems listed in the /etc/exports file,
and the –v option causes exportfs to report its progress. Error messages reported by
exportfs usually indicate a problem with the /etc/exports file.

52

Chapter 4: Setting Up and Testing ONC3/NFS

7. Use exportfs to verify your exports.

Type the exportfs command with no parameters to display a list of the exported file
system(s) and their export options, as shown in this example:

/usr/etc/exportfs
/usr/demos -ro,access=client1:client2:client3

In this example, /usr/demos is accessible as a read-only file system to systems client1,
client2, and client3. This matches what is listed in the /etc/exports file for this server
(see instruction 5 of this procedure). If you see a mismatch between the /etc/exports
file and the output of the exportfs command, check the /etc/exports file for syntax
errors.

The NFS software for this server is now running and its resources are available for
mounting by clients. Repeat these instructions to set up additional NFS
servers.

Setting Up an NFS Client

Setting up an NFS client for conventional mounting requires verifying that NFS software
is running on the client, editing the /etc/fstab file, adding the names of directories to be
mounted, and mounting the directories in /etc/fstab by giving the mount command or by
rebooting your system. These directories remain mounted until you explicitly unmount
them.

Note: For instructions on mounting directories not listed in /etc/fstab, see “Temporary
NFS Mounting” in Chapter 5.

The procedure below explains how to set up NFS software on a client and mount its NFS
resources using the mount command. You must do this procedure as the superuser.

1. Use chkconfig to check the client’s NFS configuration flag.

To verify that nfs is on, give the chkconfig command and check its output (see
“Setting Up the NFS Server” in this chapter for details on chkconfig).

2. If your output shows that nfs is off, type this command and reboot your system:

/etc/chkconfig nfs on

3. Verify that NFS daemons are running.

Setting Up an NFS Client

53

Four nfsd and four biod daemons should be running (the default number specified in
/etc/config/nfsd.options and /etc/config/biod.options). Verify that the appropriate NFS
daemons are running using the ps command, shown below. The output of your
entries looks similar to the output in these examples:

ps -ef | grep nfsd
root 102 1 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 104 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 105 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 106 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 2289 2287 0 14:04:50 ttyq4 0:00 grep nfsd
ps -ef | grep biod
root 107 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 108 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 109 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 110 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 2291 2287 4 14:04:58 ttyq4 0:00 grep biod

If no NFS daemons appear in your output, they were not included in the IRIX
kernel during NFS installation. To check the kernel, type this command:

strings /unix | grep nfs

If there is no output, rebuild the kernel with this command, then reboot the system:

/etc/autoconfig -f

4. Edit the /etc/fstab file.

Add an entry to the /etc/fstab file for each NFS directory you want mounted when
the client is booted. The example below illustrates an /etc/fstab with an NFS entry to
mount /usr/demos from the server redwood at mount point /n/demos:

/dev/root / efs rw,raw=/dev/rroot 0 0
/dev/usr /usr efs rw,raw=/dev/rusr 0 0
redwood:/usr/demos /n/demos nfs ro,bg 0 0

Note: The background (bg) option in this example allows the client to proceed with
the boot sequence without waiting for the mount to complete. If the bg option is not
used, the client hangs if the server is unavailable.

5. Create the mount points for each NFS directory.

After you edit the /etc/fstab file, create a directory to serve as the mount point for
each NFS entry in /etc/fstab file. If you specified an existing directory as a mount
point for any of your /etc/fstab entries, remember that the contents of the directory
are inaccessible while the NFS mount is in effect.

54

Chapter 4: Setting Up and Testing ONC3/NFS

For example, to create the mount point /n/demos for mounting the directory
/usr/demos from server redwood, give this command:

mkdir -p /n/demos

6. Mount each NFS resource.

You can use the mount command in several ways to mount the entries in this client’s
/etc/fstab. See the mount(1M) reference page for a description of the options. The
examples below show two methods: mounting each entry individually and
mounting all fstab entries that specify a particular server. The first example is:

mount /n/demos

In this example, only the mount point is specified. All other information needed to
perform the mount, the server name redwood and its resource /usr/demos, is
provided by the /etc/fstab file.

The second example is:

mount -h redwood

In this example, all NFS entries in /etc/fstab that specify server redwood are
mounted.

Note: If you reboot the client instead of using the mount command, all NFS entries
in /etc/fstab are mounted.

The NFS software for this client is now ready to support user requests for NFS
directories. Repeat these instructions to set up additional NFS clients.

Setting Up the Automatic Mounters

Since the automatic mounters run only on NFS clients, all setup for the automatic
mounters is done on the client system. This section provides two procedures for setting
up the automatic mounters: one for setting up a default automount or autofs environment
and one for setting up a more complex environment.

Setting Up a Default Automatic Mounter Environment

If you set up a default automatic mounter environment on a client, at system startup
automount (or autofs) reads the /etc/config/automount.options file (or /etc/config/autofs.options
file) for mount information. By default, the options file contains an entry for a special

Setting Up the Automatic Mounters

55

map called –hosts. The –hosts map tells the automatic mounter to read the hosts
database (/etc/hosts, NIS and/or DNS (BIND); see the resolver(4) reference page) and use
the server specified if the hosts database has a valid entry for that server. When using the
–hosts map, when a client accesses a server, the automatic mounter gets the exports list
from the server and mounts all directories exported by that server. automount uses
/tmp_mnt/hosts as the mount point, and autofs uses /hosts.

A sample –hosts entry in /etc/config/automount.options is:

-v /hosts -hosts -nosuid,nodev

Use this procedure to set up the default automatic mounter environment on an NFS
client. You must do this procedure as the superuser.

1. Verify that NFS flags are on.

By default, the nfs and autofs flags are set to on. To verify that they are on, give the
chkconfig command and check its output (see instruction 1 of “Setting Up an NFS
Client” in this chapter for sample chkconfig output). If either flag is set to off, or you
wish to use automount, use one of these sets of commands to reset it, then reboot:

/etc/chkconfig nfs on
/etc/chkconfig automount on
or

/etc/chkconfig nfs on
/etc/chkconfig autofs on

2. Verify that the default configuration is working:

cd /hosts/servername

In place of servername, substitute the hostname of any system whose name can be
resolved by the hostname resolution method you are using (see the resolver(4)
reference page). If the system specified is running NFS and has file systems that can
be accessed by this client, automount mounts all available file systems to
/tmp_mnt/hosts/servername (autofs uses /hosts/servername). If the system is not running
NFS or has nothing exported that you have access to, you get an error message
when you try to access its file systems.

56

Chapter 4: Setting Up and Testing ONC3/NFS

3. Verify that directories have been mounted, for example:

mount
servername:/ on /tmp_mnt/hosts/servername type nfs (rw,dev=c0005)(for
automount)
or
servername:/ on /hosts/servername type nfs (rw,dev=c0005)(for autofs)

The automatic mounter has serviced this request. It dynamically mounted
/hosts/servername using the default automatic mounter environment.

Setting Up a Custom Automatic Mounter Environment

A customized automatic mounter environment allows you to select the NFS directories
that are dynamically mounted on a particular client, and allows you to customize the
options in effect for particular mounts. You must complete four general steps to set up a
customized automount environment:

1. Creating the maps.

2. Starting the automatic mounter program.

3. Verifying the automatic mounter process.

4. Testing the automatic mounter.

Step 1: Creating the Maps

A customized automatic mounter environment contains a master map and any
combination of direct and indirect maps. Although a master map is required, the
automatic mounter does not require both direct and indirect maps. You can use either
direct or indirect maps exclusively. AutoFS comes with a default /etc/auto_master file that
can be modified.

Instructions for creating each type of map are given below. Notice from these instructions
that a crosshatch (#) at the beginning of a line indicates a comment line in all types of
maps. Include comment lines in your maps to illustrate map formats until you become
familiar with each map type.

Setting Up the Automatic Mounters

57

1. Create or modify the master map on the client.

The master map points the automatic mounter to other files that have more detailed
information needed to complete NFS mounts. To create the master map, become
superuser and create a file called /etc/auto.master (for automount) with any text editor.
With AutoFS, modify the default /etc/auto_master file.

Specify the mount point, map name, and any options that apply to the direct and
indirect maps in your entries, for example:

#Mount Point Map Name Map Options
/food/dinner /etc/auto.food -ro
/- /etc/auto.exercise -ro,soft
/hosts -hosts -nosuid,nodev

2. Create the indirect map.

Create your indirect map and insert the entries it needs. This example is the indirect
map /etc/auto.food, listed in /etc/auto.master (or /etc/auto_master) in instruction 1:

#Directory Options Location
ravioli venice:/food/pasta
crepe -rw paris:/food/desserts
chowmein hongkong:/food/noodles

3. Create the direct map.

Create your direct map and insert the entries it needs. This example is the direct
map /etc/auto.exercise, listed in /etc/auto.master (or /etc/auto_master) in instruction 1:

#Directory Options Location
/leisure/swim spitz:/sports/water/swim
/leisure/tennis becker:/sports/racquet/tennis
/leisure/golf palmer:/sports/golf

Step 2: Starting the Automatic Mounter Program

You can set up the software on a client so that the automatic mounter starts when the
client is booted, and you can also start the automatic mounter from the command line.
The procedures in this section explain how to set up the automatic mounter to start
during the boot sequence.

58

Chapter 4: Setting Up and Testing ONC3/NFS

If the automatic mounter is configured on at system startup, the /etc/init.d/network script
reads the contents of the /etc/config/automount.options file (or /etc/config/autofs.options and
/etc/ auto_master files for autofs) to determine how to start the automatic mounter
program, what to mount, and how to mount it. Depending on the site configuration
specified in the options file, the automatic mounter either finds all necessary information
in the options file, or it is directed to local or NIS maps (or both) for additional mounting
information.

Note: If you plan to use NIS database maps other than the –hosts built-in map, you need
to create the NIS maps. See the NIS Administration Guide for information on building
custom NIS maps.

Follow this procedure to set the automatic mounter to start automatically at system
startup:

1. Configure the automatic mounter on with the chkconfig command (if needed):
/etc/chkconfig automount on
or
/etc/chkconfig autofs on

2. Modify the /etc/config/automount.options file (or /etc/auto_master file).

Using any standard editor, modify /etc/config/automount.options (or /etc/auto_master)
file to reflect the automatic mounter site environment. (See automount(1M) or
autofs(1M) for details on the options file). Based on the previous examples, the
/etc/config/automount.options file contains this entry:

-v -m -f /etc/auto.master

The /etc/config/autofs.options file contains this entry:

-v

The –v option directs error messages to the screen during startup and into the
/var/adm/SYSLOG file once the automatic mounter is up and running. The –m
option tells automount not to check the NIS database for a master map. Use this
option to isolate map problems to the local system by inhibiting automount from
reading the NIS database maps, if any exist. The –f option tells automount that the
argument that follows it is the full pathname of the master file.

Note: In general, it is recommended that you start the automatic mounter with the
verbose option (–v), since this option provides messages that can help with problem
solving.

3. Reboot the system.

Setting Up the Automatic Mounters

59

Step 3: Verifying the Automatic Mounter Process

Verify that the automatic mounter process is functioning by performing the following
two steps.

1.Validate that the automatic mounter daemon is running with the ps command:

ps -ef | grep automount
or
ps -ef | grep autofs

You should see output similar to this for automount:

root 455 1 0 Jan 30 ? 0:02 automount -v -m -f /etc/auto.master
root 4675 4673 0 12:45:05 ttyq5 0:00 grep automount

You should see output similar to this for autofs:

root 555 1 0 Jan 30 ? 0:02 autofs -v - /etc/auto_master
root 4775 4773 0 12:45:05 ttyq5 0:00 grep autofs

2. Check the /etc/mtab entries.

When the automatic mounter program starts, it creates entries in the client’s
/etc/mtab for each of the automatic mounter’s mount points. Entries in /etc/mtab
include the process number and port number assigned to the automatic mounter,
the mount point for each direct map entry, and each indirect map. The /etc/mtab
entries also include the map name, map type (direct or indirect), and any mount
options.

Look at the /etc/mtab file. A typical /etc/mtab table with automount running looks
similar to this example (wrapped lines end with the \ character):

/dev/root / efs rw,raw=/dev/rroot 0 0
/dev/usr /usr efs rw,raw=/dev/rusr 0 0
/debug /debug dbg rw 0 0
/dev/diskless /diskless efs rw,raw=/dev/rdiskless 0 0
/dev/d /d efs rw,raw=/dev/rd 0 0
flight:(pid12155) /src/sgi ignore \
 ro,port=885,map=/etc/auto.source,direct 0 0
flight:(pid12155) /pam/framedocs/nfs ignore \
 ro,port=885,map=/etc/auto.source,direct 0 0
flight:(pid12155) /hosts ignore ro,port=885,\
 map=-hosts,indirect,dev=1203 0 0

60

Chapter 4: Setting Up and Testing ONC3/NFS

A typical /etc/mtab table with autofs running looks similar to this example:

-hosts on /hosts type autofs (ignore,indirect,nosuid,dev=1000010)
-hosts on /hosts2 type autofs \
(ignore,indirect,nosuid,vers=2,dev=100002)
-hosts on /hosts3 type autofs \
(ignore,indirect,fstype=cachefs,backfstype=nfs,dev=100003)
/etc/auto_test on /text type autofs\
(ignore,indirect,ro,nointr,dev=100004)
neteng:/ on /hosts2/neteng type nfs \
(nosuid,vers=2,dev=180004)

The entries corresponding to automount mount points have the file system type
ignore to direct programs to ignore this /etc/mtab entry. For instance, df and mount
do not report on file systems with the type ignore. When a directory is NFS
mounted by the automount program, the /etc/mtab entry for the directory has nfs as
the file system type. df and mount report on file systems with the type nfs.

Step 4: Testing the Automatic Mounter

When the automatic mounter program is set up and running on a client, any regular
account can use it to mount remote directories transparently. You can test your automatic
mounter setup by changing to a directory specified in your map configuration.

The instructions below explain how to verify that the automatic mounter is working.

1. As a regular user, cd to an automounted directory.

For example, test whether the automatic mounter mounts /food/pasta:

cd /food/dinner/ravioli

This command causes the automatic mounter to look in the indirect map
/etc/auto.food to execute a mount request to server venice and apply any specified
options to the mount. automount then mounts the directory /food/pasta to the default
mount point /tmp_mnt/food/dinner/ravioli. The directory /food/dinner/ravioli is a
symbolic link to /tmp_mnt/food/dinner/ravioli. autofs mounts the directory /food/pasta
to the default mount point /food/dinner/ravioli.

Note: The /food/dinner directory appears empty unless one of its subdirectories has
been accessed (and therefore mounted).

Setting Up the Lock Manager

61

2. Verify that the individual mount has taken place.

Use the pwd command to verify that the mount has taken place, as shown in this
example:

% pwd
/food/pasta

3. Verify that both directories have been mounted with the automounter.

You can also verify automounted directories by checking the output of a mount
command:

% mount

mount reads the current contents of the /etc/mtab file and includes conventional and
automount mounted directories in its output.

The custom configuration of automount is set up and ready to work for users on this
client.

Setting Up the Lock Manager

The NFS lock manager provides file and record locking between a client and server for
NFS-mounted directories. As an NFS utility, the lock manager is in effect when NFS
software is installed and operating properly on both the server and client systems. It is
implemented by two daemons, lockd and statd (see lockd(1M) and statd(1M)). These
daemons must be running on an NFS server and its clients for the lock manager to
function.

The NFS lock manager program must be running on both the NFS client and the NFS
server to function properly. Use this procedure to check the lock manager setup:

1. Use chkconfig on the client to check the lock manager flag.

To verify that the lockd flag is on, give the chkconfig command and check its output
(see instruction 1 of “Setting Up an NFS Client” in this chapter for sample chkconfig
output). If your output shows that lockd is off, give this command and reboot your
system:

/etc/chkconfig lockd on

62

Chapter 4: Setting Up and Testing ONC3/NFS

2. Verify that rpc.statd and either rpc.lockd or nfsd are running.

Give these ps commands and check their output to verify that the lock manager
daemons, rpc.statd and either rpc.lockd or nfsd are running:

ps -ef | grep statd
root 131 1 0 Aug 6 ? 0:51 /usr/etc/rpc.statd
root 2044 427 2 16:13:24 ttyq1 0:00 grep statd
ps -ef | grep lockd
root 129 1 0 Aug 6 ? 0:51 /usr/etc/rpc.lockd
root 2045 427 2 16:13:24 ttyq1 0:00 grep lockd
ps -ef | grep nfsd
root 102 1 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 104 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4

If rpc.statd is not running, start it manually by giving the following command:

/usr/etc/rpc.statd

If neither rpc.lockd or nfsd is running, start rpc.lockd manually by giving the
following command:

/usr/etc/rpc.lockd

3. Repeat instructions 1 and 2, above, on the NFS server, using rpc.lockd instead of nfsd.

Setting Up the CacheFS File System

When you set up a cache, you can use all or part of an existing file system. You can also
set up a new slice to be used by CacheFS. In addition, when you create a cache, you can
specify the percentage of resources, such as number of files or blocks, that CacheFS can
use in the front file system. The configurable cache parameters are discussed in the
section “Cache Resource Parameters” on page 34.

Before starting to set up CacheFS, check that it is configured to start on the client.

1. Check the CacheFS configuration flag.

When the /etc/init.d/network script executes at system startup, it starts CacheFS
running if the chkconfig flag cachefs is on.

Setting Up the CacheFS File System

63

To verify that cachefs is on, type the chkconfig command and check its output, for
example:

/etc/chkconfig
Flag State
==== =====
...
cachefs on
...

This example shows that the cachefs flag is set to on.

2. If your output shows that cachefs is off, type this command and reboot your
system:

/etc/chkconfig cachefs on

Front File System Requirements

CacheFS uses a local EFS or XFS file system for the front file system.You can use an
existing EFS or XFS file system for the front file system or you can create a new one. Using
an existing file system is the quickest way to set up a cache. Dedicating a file system
exclusively to CacheFS gives you the greatest control over the file system space available
for caching.

Caution: Do not make the front file system read-only and do not set quotas on it. A
read-only front file system prevents caching, and file system quotas interfere with control
mechanisms built into CacheFS.

Setting Up a Cached File System

There are two steps to setting up a cached file system:

1. You can create the cache with the cfsadmin command. See “Creating a Cache” on
page 64. This procedure should be used when you do not want the default
parameters that are used when the cache directory is created with the mount
command.

2. You must mount the file system you want cached using the -t cachefs option to the
mount command. See “Mounting a Cached File System” on page 65.

64

Chapter 4: Setting Up and Testing ONC3/NFS

Creating a Cache

The following example is the command to create a cache using the cfsadmin command:

cfsadmin -c directory_name

The following example creates a cache and creates the cache directory /local/mycache.
Make sure the cache directory does not already exist.

cfsadmin -c /local/mycache

This example uses the default cache parameter values. The CacheFS parameters are
described in the section “Cache Resource Parameters” on page 34. See the cfsadmin(1M)
reference page and “cfsadmin Command” on page 33 for more information on cfsadmin
options.

Setting Cache Parameters

The following example shows how to set parameters for a cache.

cfsadmin -c -o parameter_list cache_directory

The parameter_list has the following form:

parameter_name1=value,parameter_name2=value,...

The parameter names are listed in Table 2-2 on page 35. You must separate multiple
arguments to the -o option with commas.

Note: The maximum size of the cache is by default 90% of the front file system resources.
Performance deteriorates significantly if an EFS file system exceeds 90% capacity.

The following example creates a cache named /local/cache1 that can use up to 80% of the
disk blocks in the front file system and can grow to use the front file system blocks
without restriction unless 60% (or more) of the front file system blocks are already in use.

cfsadmin -c -o maxblocks=80,threshblocks=60 /local/cache1

The following example creates a cache named /local/cache2 that can use up to 75% of the
files available in the front file system.

cfsadmin -c -o maxfiles=75 /local/cache2

Mounting a Cached File System

65

The following example creates a cache named /local/cache3 that can use 75% of the blocks
in the front file system, that can use the files in the front file system without restriction
unless total file usage already exceeds 60%, and that has 70% of the files in the front file
system as an absolute limit.

cfsadmin -c -o \ maxblocks=75,threshfiles=60,maxfiles=70 /local/cache3

Mounting a Cached File System

There are two ways to mount a file system in a cache:

• Using the mount command

• Creating an entry for the file system in the /etc/fstab file

Using mount to Mount a Cached File System

The following command mounts a file system in a cache.

mount -t cachefs back_file_system mount_point

The cache directory is automatically created when mounting a cached file system.

For example, the following command makes the file system merlin:/docs available as a
cached file system named /docs:

mount -t cachefs -merlin:/docs /docs

Mounting a Cached File System That Is Already Mounted

Use the backpath argument when the file system you want to cache has already been
mounted. Backpath specifies the mount point of the mounted file system. When the
backpath argument is used, the back file system must be already mounted as read-only.
If you want to write to the back file system, you must unmount it before mounting it as
a cached file system.

66

Chapter 4: Setting Up and Testing ONC3/NFS

For example, if the file system merlin:/doc is already NFS-mounted on /nfsdocs, you can
cache that file system by giving that pathname as the argument to backpath, as shown in
the following example:

mount -t cachefs -o \
backfstype=nfs,cachedir=/local/cache1,backpath=/nfsdocs \ merlin:/doc
/doc

Note: There is no performance gain in caching a local EFS disk file system.

Mounting a CD-ROM as a Cached File System

So far, examples have illustrated back file systems that are NFS-mounted, and the device
argument to the mount command has taken the form server:file_system. If the back file
system is an ISO9660 file system, the device argument is the CD-ROM device in the
/CDROM directory. The file system type is iso9660.

The following example illustrates caching an ISO9660 back file system on the device
/CDROM as /doc in the cache /local/cache1:

mount -t cachefs -o backfstype=iso9660,cachedir=/local/cache1,\
ro,backpath=/CDROM /CDROM /doc

Because you cannot write to the CD-ROM, the ro argument is specified to make the
cached file system read-only. The arguments to the -o option are explained in “/etc/fstab
and Other Mount Files” on page 18.

You must specify the backpath argument because the CD-ROM is automatically
mounted when it is inserted. The mount point is in the /CDROM directory and is
determined by the name of the CD-ROM. The special device to mount is the same as the
value for the backpath argument.

Note: When a CD-ROM is changed, the CacheFS file system must be unmounted and
remounted.

67

Chapter 5

5.Maintaining ONC3/NFS

This chapter provides information about maintaining ONC3/NFS. It explains how to
change the default number of NFS daemons and modify automatic mounter maps. It also
gives suggestions for using alternative mounting techniques and avoiding mount point
conflicts. It also describes how to modify and delete CacheFS file systems.

This chapter contains these sections:

• “Changing the Number of NFS Server Daemons” on page 67

• “Temporary NFS Mounting” on page 68

• “Modifying the Automatic Mounter Maps” on page 69

• “Mount Point Conflicts” on page 70

• “Modifying CacheFS File System Parameters” on page 71

• “Deleting a CacheFS File System” on page 73

Changing the Number of NFS Server Daemons

Systems set up for NFS normally run four nfsd daemons. nfsd daemons, called NFS server
daemons, accept RPC calls from clients. Four NFS server daemons might be inadequate
for the amount of NFS traffic on your server. Degraded NFS performance on clients is
usually an indication that their server is overloaded.

To change the number of NFS server daemons, create the file /etc/config/nfsd.options on the
server if it doesn’t already exist and specify the number of daemons to start at system
startup. For example, to have the /etc/init.d/network script start eight nfsd daemons, the
/etc/config/nfsd.options file needs to look like this:

cat /etc/config/nfsd.options
8

68

Chapter 5: Maintaining ONC3/NFS

Modify this number only if a server is overloaded with NFS traffic. In addition to
increasing NFS daemons, consider adding another server to your NFS setup. The
maximum recommended number of NFS daemons is 24 on a large server. If you increase
the number of NFS server daemons, confirm your choice by giving this command:

/usr/etc/nfsstat -s

Server RPC:

calls badcalls nullrecv badlen xdrcall duphits dupage
21669881 0 118760787 0 0 12246 7.56

If the output shows many null receives, such as in this example, you should consider
lowering the number of NFS server daemons. There is no exact formula for choosing the
number of NFS daemons, but here are several rules of thumb you can consider:

• One nfsd for each CPU plus one to three nfsds as a general resource

• One nfsd for each disk controller plus one to three nfsds as a general resource (a
logical volume counts as one controller, no matter how many real controllers it is
spread over)

• One nfsd for each CPU, one nfsd for each controller, and one to three nfsds as a
general resource

Temporary NFS Mounting

In cases where an NFS client requires directories not listed in its /etc/fstab file, you can use
manual mounting to temporarily make the NFS resource available. With temporary
mounting, you need to supply all the necessary information to the mount program
through the command line. As with any mount, a temporarily mounted directory
requires that a mount point be created before mounting can occur.

For example, to mount /usr/demos from the server redwood to a local mount point
/n/demos with read-only, hard, interrupt, and background options, as superuser, give
these commands:

mkdir -p /n/demos
mount –o ro,bg redwood:/usr/demos /n/demos

A temporarily mounted directory remains in effect until the system is rebooted or until
the superuser manually unmounts it. Use this method for one-time mounts.

Modifying the Automatic Mounter Maps

69

Modifying the Automatic Mounter Maps

You can modify the automatic mounter maps at any time. AutoFS accepts map
modifications at any time, without having to restart the daemon. Simply make the
change and run the command /usr/etc/autofs -v. This command reconciles any
differences between /etc/mtab and the current map information.

With automount, some of your modifications take effect the next time the automatic
mounter accesses the map, and others take effect when the system is rebooted. Whether
or not booting is required depends on the type of map you modify and the kind of
modification you introduce.

Rebooting is generally the most effective way to restart automount. You can also kill and
restart the automatic mounter using automount at the command line. Use this method
sparingly, however. (See the automount(1M).)

Modifying the Master Map

automount consults the master map only at startup time. A modification to the master
map (/etc/auto.master) takes effect only after the system has been rebooted or automount is
restarted (see “Modifying Direct Maps”). With AutofS, the change takes effect after the
autofs command is run.

Modifying Indirect Maps

You can modify, delete, or add to indirect maps (the files listed in /etc/auto.master or
/etc/auto_master) at any time. Any change takes effect the next time the map is used, which
is the next time a mount is requested.

Modifying Direct Maps

Each entry in a direct map is an automount or autofs mount point, and the daemon mounts
itself at these mount points at startup, and with AutoFS, when autofs is run. With autofs,
the changes are noted immediately, since it stays in sync with /etc/mtab.

With automount, adding or deleting an entry in a direct map takes effect only after you
have gracefully killed and restarted the automountd daemon or rebooted. However,

70

Chapter 5: Maintaining ONC3/NFS

except for the name of the mount point, you can modify direct map entries while
automount is running. The modifications take effect when the entry is next mounted,
because automount consults the direct maps whenever a mount must be done.

For instance, with automount, suppose you modify the file /etc/auto.indirect so that the
directory /usr/src is mounted from a different server. The new entry takes effect
immediately (if /usr/src is not mounted at this time) when you try to access it. If it is
mounted now, you can wait until automatic unmounting takes place to access it. If this
is not satisfactory, unmount the directory with the umount command, notify automount
with the command /etc/killall -HUP automount that the mount table has changed,
and then access the directory. The mounting should be done from the new server.
However, if you want to delete the entry, you must gracefully kill and restart the
automount daemon. The automount process must be killed with the SIGTERM signal:

/etc/killall -TERM automount

You can then manually restart automount or reboot the system.

Note: If gracefully killing and manually restarting automount does not work, rebooting
the system should always work.

Mount Point Conflicts

You can cause a mount conflict by mounting one directory on top of another. For
example, say you have a local partition mounted on /home, and you want automount to
mount other home directories. If the automount maps specify /home as a mount point,
automount hides the local home partition whenever it mounts.

The solution is to mount the server’s /home partition somewhere else, such as
/export/home, for example. You need an entry in /etc/fstab like this:

/net/home /export/home efs rw,raw=/dev/rhome 0 0

This example assumes that the master file contains a line similar to this:

/home /etc/auto.home

It also assumes an entry in /etc/auto.home like this:

terra terra:/export/home

where terra is the name of the system.

Modifying CacheFS File System Parameters

71

Modifying CacheFS File System Parameters

Note: Before changing parameters for a cache, you must unmount all file systems in the
cache directory with the umount command.

The following command changes the value of one or more parameters:

cfsadmin -u -o parameter_list cache_directory

Note: You can only increase the size of a cache, either by number of blocks or number of
inodes. If you want to make a cache smaller, you must remove it and re-create it with new
values.

The following commands unmount /local/cache3 and change the threshfiles parameter to
65%:

umount /local/cache3
cfsadmin -u -o threshfiles=65 /local/cache3

Displaying Information About Cached File Systems

The following command returns information about all file systems cached under the
specified cache directory.

cfsadmin -l cache_directory

Note: The block size reported by cfsadmin is in 8 Kbyte blocks.

The following command shows information about the cache directory named
/usr/cache/lolita:

cfsadmin -l /usr/cache/lolita
cfsadmin: list cache FS information
 maxblocks 90% (122628 blocks)
 threshblocks 85% (115815 blocks)
 hiblocks 85% (104234 blocks)
 lowblocks 75% (91971 blocks)
 maxfiles 90% (206480 files)
 threshfiles 85% (195009 files)
 hifiles 85% (175508 files)
 lowfiles 75% (154860 files)
 maxfilesize 3MB
 lolita:_usr_people_jmy_work:_usr_people_jmy_work

72

Chapter 5: Maintaining ONC3/NFS

 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256

Current Usage:
 blksused 757
 filesused 124
 flags

If there are multiple mount points for a single cache, cfsadmin returns information similar
to the following:

cfsadmin -l /usr/cache/bonnie
cfsadmin: list cache FS information
 maxblocks 90% (122628 blocks)
 threshblocks 85% (115815 blocks)
 hiblocks 85% (104234 blocks)
 lowblocks 75% (91971 blocks)
 maxfiles 90% (206480 files)
 threshfiles 85% (195009 files)
 hifiles 85% (175508 files)
 lowfiles 75% (154860 files)
 maxfilesize 3MB
 bonnie:_jake:_hosts_bonnie_jake
 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256
 bonnie:_depot:_hosts_bonnie_depot
 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256
 bonnie:_proj_sherwood_isms:_hosts_bonnie_proj_sherwood_isms
 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256
 bonnie:_proj_irix5.3_isms:_hosts_bonnie_proj_irix5.3_isms
 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256

Current Usage:
 blksused 759
 filesused 279
 flags

Deleting a CacheFS File System

73

Deleting a CacheFS File System

The following command deletes a file system in a cache:

cfsadmin -d cache_id cache_directory

Note: Before deleting a cached file system, you must unmount all the cached files
systems for that cache directory.

The cache ID is part of the information returned by cfsadmin -l.

The following commands unmount a cached file system and delete it from the cache:

umount /usr/work
cfsadmin -d _dev_dsk_c0t1d0s7 /local/cache1

You can delete all file systems in a particular cache by using all as an argument to the -d
option. The following command deletes all file systems cached under /local/cache1:

cfsadmin -d all /local/cache1

The all argument to -d also deletes the specified cache directory.

75

Chapter 6

6.Troubleshooting ONC3/NFS

This chapter suggests strategies for troubleshooting the ONC3/NFS environment,
including automatic mounting. This chapter contains these sections:

• “General Recommendations” on page 75

• “Understanding the Mount Process” on page 76

• “Identifying the Point of Failure” on page 77

• “Troubleshooting NFS Common Failures” on page 79

• “Understanding the automount Process” on page 81

• “Understanding the autofs Process” on page 83

• “Troubleshooting CacheFS” on page 83

General Recommendations

If you experience difficulties with ONC3/NFS, review the ONC3/NFS documentation
before trying to debug the problem. In addition to this guide, the ONC3/NFS Release
Notes and the reference pages for mount(1M), nfsd(1M), showmount(1M), exportfs(1M),
rpcinfo(1M), mountd(1M), inetd(1M), fstab(4), mtab(4), lockd(1M), statd(1M),
automount(1M), autofs(1M), and exports(4) contain information you should review. You
do not have to understand them fully, but be familiar with the names and functions of
relevant daemons and database files.

Be sure to check the console and /var/adm/SYSLOG for messages about ONC3/NFS or
other activity that affects ONC3/NFS performance. Logged messages frequently provide
information that helps explain problems and assists with troubleshooting.

76

Chapter 6: Troubleshooting ONC3/NFS

Understanding the Mount Process

This section explains the interaction of the various players in the mount request. If you
understand this interaction, the problem descriptions in this chapter will make more
sense. Here is an sample mount request:

mount krypton:/usr/src /n/krypton.src

These are the steps mount goes through to mount a remote filesystem:

1. mount parses /etc/fstab.

2. mount checks to see if the caller is the superuser and if /n/krypton.src is a directory.

3. mount opens /etc/mtab and checks that this mount has not already been done.

4. mount parses the first argument into the system krypton and remote directory
/usr/src.

5. mount calls library routines to translate the host name (krypton) to its Internet
Protocol (IP) address. Depending on the host resolution order in /etc/resolv.conf,
mount uses the NIS databases, the DNS databases, or /etc/hosts (local) to determine
the NFS server. See resolver(4).

6. mount calls krypton’s portmap daemon to get the port number of mountd. See
portmap(1M).

7. mount calls krypton’s mountd and passes it /usr/src.

8. krypton’s mountd reads /etc/exports and looks for the exported filesystem that
contains /usr/src.

9. krypton’s mountd calls library routines to expand the hostnames and network groups
in the export list for /usr/src.

10. krypton’s mountd performs a system call on /usr/src to get the file handle.

11. krypton’s mountd returns the file handle.

12. mount does a mount system call with the file handle and /n/krypton.src.

13. mount does a statfs call to krypton’s NFS server (nfsd).

14. mount opens /etc/mtab and adds an entry to the end.

Any of these steps can fail, some of them in more than one way.

Identifying the Point of Failure

77

Identifying the Point of Failure

When analyzing an NFS problem, keep in mind that NFS, like all network services, has
three main points of failure: the server, the client, and the network itself. The debugging
strategy outlined below isolates each individual component to find the one that is not
working.

Checking Out a Server

If a client is having NFS trouble, check first to make sure the server is up and running.
From a client, give this command:

/usr/etc/rpcinfo –p server_name | grep mountd

This checks whether the server is running. If the server is running, this command
displays a list of programs, versions, protocols, and port numbers similar to this:

100005 1 tcp 1035 mountd
100005 1 udp 1033 mountd
391004 1 tcp 1037 sgi_mountd
391004 1 udp 1034 sgi_mountd

If the mountd server is running, use rpcinfo to check if the mountd server is ready and
waiting for mount requests by using the program number and version for sgi_mountd
returned above. Give this command:

/usr/etc/rpcinfo –u server_name 391004 1

The system responds:

program 391004 version 1 ready and waiting

If these fail, log in to the server and check its /var/adm/SYSLOG for messages.

78

Chapter 6: Troubleshooting ONC3/NFS

Checking Out a Client

If the server and the network are working, give the command ps –de to check your client
daemons. inetd, routed, portmap, and four biod and nfsd daemons should be running. For
example, the command ps –de produces output similar to this:

 PID TTY TIME COMD
 103 ? 0:46 routed
 108 ? 0:01 portmap
 136 ? 0:00 nfsd
 137 ? 0:00 nfsd
 138 ? 0:00 nfsd
 139 ? 0:00 nfsd
 142 ? 0:00 biod
 143 ? 0:00 biod
 144 ? 0:00 biod
 145 ? 0:00 biod
 159 ? 0:03 inetd

If the daemons are not running on the client, check /var/adm/SYSLOG, and ensure that
network and nfs chkconfig flags are on. Rebooting the client almost always clears the
problem.

Checking Out the Network

If the server is operative but your system cannot reach it, check the network connections
between your system and the server and check /var/adm/SYSLOG. Visually inspect your
network connection. You can also test the logical network connection with various
network tools like ping. You can also check other systems on your network to see if they
can reach the server.

Troubleshooting NFS Common Failures

79

Troubleshooting NFS Common Failures

The sections below describe the most common types of NFS failures. They suggest what
to do if your remote mount fails, and what to do when servers do not respond to valid
mount requests.

Remote Mount Failed

When network or server problems occur, programs that access hard-mounted remote
files fail differently from those that access soft-mounted remote files. Hard-mounted
remote filesystems cause programs to continue to try until the server responds again.
Soft-mounted remote filesystems return an error message after trying for a specified
number of intervals. See fstab(4) for more information.

Programs that access hard-mounted filesystems do not respond until the server
responds. In this case, NFS displays this message both to the console window and to the
system log file /var/adm/SYSLOG:

server not responding

On a soft-mounted filesystem, programs that access a file whose server is inactive get the
message:

Connection timed out

Unfortunately, many IRIX programs do not check return conditions on filesystem
operations, so this error message may not be displayed when accessing soft-mounted
files. Nevertheless, an NFS error message is displayed on the console.

Programs Do Not Respond

If programs stop responding while doing file-related work, your NFS server may be
inactive. You may see the message:

NFS server host_name not responding, still trying

The message includes the host name of the NFS server that is down. This is probably a
problem either with one of your NFS servers or with the network hardware. Attempt to
ping and rlogin to the server to determine whether the server is down. If you can
successfully rlogin to the server, its NFS server function is probably disabled.

80

Chapter 6: Troubleshooting ONC3/NFS

Programs can also hang if an NIS server becomes inactive.

If your system hangs completely, check the servers from which you have file systems
mounted. If one or more of them is down, it is not cause for concern. If you are using hard
mounts, your programs will continue automatically when the server comes back up, as
if the server had not become inactive. No files are destroyed in such an event.

If a soft-mounted server is inactive, other work should not be affected. Programs that
timeout trying to access soft-mounted remote files fail, but you should still be able to use
your other filesystems.

If all of the servers are running, ask some other users of the same NFS server or servers
if they are having trouble. If more than one client is having difficulty getting service, then
the problem is likely with the server’s NFS daemon nfsd. Log in to the server and give the
command ps –de to see if nfsd is running and accumulating CPU time. If not, you may
be able to kill and then restart nfsd. If this does not work, reboot the server.

If other people seem to be able to use the server, check your network connection and the
connection of the server.

Hangs Partway Through Boot

If your workstation mounts local file systems after a boot but hangs when it normally
would be doing remote mounts, one or more servers may be down or your network
connection may be bad. This problem can be avoided entirely by using the
background(bg) option to mount in /etc/fstab (see fstab(4)).

Everything Works Slowly

If access to remote files seems unusually slow, give this command on the server:

ps –de

Check whether the server is being slowed by a runaway daemon. If the server seems to
be working and other people are getting good response, make sure your block I/O
daemons are running.

Note: The following text describes NFS version 2 on clients. NFS version 3 uses bio3d.

Understanding the automount Process

81

To check block I/O daemons, give this command on the client:

ps –de | grep biod

This command helps you determine whether processes are hung. Note the current
accumulated CPU time, then copy a large remote file and again give this command:

ps –de | grep biod

If there are no biods running, restart the processes by giving this command:

/usr/etc/biod 4

If biod is running, check your network connection. The netstat command netstat -i

reports errors and conditions that may help you determine why packets are being
dropped. A packet is a unit of transmission sent across the network. Also, you can use
nfsstat -c to tell if the client or server is retransmitting a lot. A retransmission rate of
5% is considered high. Excessive retransmission usually indicates a bad network
controller board, a bad network transceiver, a mismatch between board and transceiver,
a mismatch between your network controller board and the server’s board, or any
problem or congestion on the network that causes packet loss.

Cannot Access Remote Devices

You can not use NFS to mount a remote character or block device (that is, a remote tape
drive or similar peripheral).

Understanding the automount Process

This section presents a detailed explanation of how automount works that can help you
with troubleshooting automount operation.

There are two distinct stages in automount’s actions: the initial stage, system startup,
when /etc/init.d/network starts automount; and the mounting stage, when a user tries to
access a file or directory on a remote system. These two stages, and the effect of map type
(direct or indirect) on automounting behavior are described below.

82

Chapter 6: Troubleshooting ONC3/NFS

System Startup

At the initial stage, when /etc/init.d/network invokes automount, it opens a user datagram
protocol (UDP) socket and registers it with the portmapper service as an NFS server port.
It then starts a server daemon that listens for NFS requests on the socket. The parent
process proceeds to mount the daemon at its mount points within the filesystem (as
specified by the maps). Through the mount system call, it passes the server daemon’s port
number and an NFS file handle that is unique to each mount point. The arguments to the
mount system call vary according to the kind of file system. For NFS file systems, the call
is:

mount ("nfs", "/usr", &nfs_args);

where nfs_args contains the network address for the NFS server. By having the network
address in nfs_args refer to the local process (the automountd daemon), automount causes
the kernel to treat it as if it were an NFS server. Once the parent process completes its calls
to mount, it exits, leaving the automount daemon to serve its mount points.

Mounting

In the second stage, when the user actually requests access to a remote file hierarchy, the
daemon intercepts the kernel NFS request and looks up the name in the map associated
with the directory.

Taking the location (server:pathname) of the remote filesystem from the map, the daemon
then mounts the remote filesystem under the directory /tmp_mnt. It answers the kernel,
saying it is a symbolic link. The kernel sends an NFS READLINK request, and the
automounter returns a symbolic link to the real mount point under /tmp_mnt.

The Effect of Map Types

The behavior of the automounter is affected by whether the name is found in a direct or
an indirect map. If the name is found in a direct map, the automounter emulates a
symbolic link, as stated above. It responds as if a symbolic link exists at its mount point.
In response to a GETATTR, it describes itself as a symbolic link. When the kernel follows
up with a READLINK, it returns a path to the real mount point for the remote hierarchy
in /tmp_mnt.

Understanding the autofs Process

83

If, on the other hand, the name is found in an indirect map, the automounter emulates a
directory of symbolic links. It describes itself as a directory. In response to a READLINK,
it returns a path to the mount point in /tmp_mnt, and a readdir of the automounter’s
mount point returns a list of the entries that are currently mounted.

Whether the map is direct or indirect, if the file hierarchy is already mounted and the
symbolic link has been read recently, the cached symbolic link is returned immediately.
Since the automounter is on the same system, the response is much faster than a
READLINK to a remote NFS server. On the other hand, if the file hierarchy is not
mounted, a small delay occurs while the mounting takes place.

Understanding the autofs Process

The autofs process is similar to the automount process, described in “Understanding the
automount Process” with the following exceptions:

• autofs uses the autofsd daemon for mounting and unmounting

• In-place mounting is used instead of symbolic links (the /tmp_mnt links with /hosts
are not used)

• autofs accepts dynamic configuration changes; there is no need to restart autofsd

• autofs requires an /etc/auto_master file

• autofs uses the LoFS (loopback file system) to access local files

Troubleshooting CacheFS

A common error message that can occur during a mount is No space left on device.
The most likely cause of this error is inappropriate allocation parameters for the cache.
The following example shows this error for a CacheFS client machine named sluggo,
caching data from a server neteng. One mount has been performed successfully for the
cache /cache. A second mount was attempted and returned the error message No space
left on device. The cfsadmin -l command returned the following:

cfsadmin: list cache FS information
 maxblocks 90% (109109 blocks)
 threshblocks 85% (103047 blocks)
 hiblocks 85% (92743 blocks)
 lowblocks 75% (81832 blocks)

84

Chapter 6: Troubleshooting ONC3/NFS

 maxfiles 90% (188570 files)
 threshfiles 85% (178094 files)
 hifiles 85% (160285 files)
 lowfiles 75% (141428 files)
 maxfilesize 3MB
 neteng:_home:_home
 flags CFS_DUAL_WRITE
 popsize 65536
 fgsize 256

Current Usage:
 blksused 406
 filesused 30
 flags CUSAGE_ACTIVE

The df command reported the usage statistics for /cache on sluggo. The following shows
the df command and its returned information:

df -i /cache
Filesystem Type blocks use avail %use iuse ifree %iuse Mounted
/dev/root efs 1939714 1651288 288426 85% 18120 191402 9% /

If any files or blocks are allocated, CacheFS uses threshfiles and threshblocks to
determine whether to perform an allocation or fail with the error ENOSPC. CacheFS fails
an allocation if the usage on the front file system is higher than threshblocks or
threshfiles, whichever is appropriate for the allocation being done. In this example, the
threshfiles value is 178094, but only 18120 files are in use. The threshblocks value is
103047 (8K blocks) or 1648752 512-byte blocks. The df output shows the total usage on the
front file system is 1651288 512-byte blocks. This is larger than the threshold, so further
block allocations fail.

The possible resolutions for the error are:

• Use cfsadmin to increase threshblocks. Increasing threshblocks should be effective
since /dev/root is already 85% allocated.

• Remove unnecessary files from /dev/root. At least 2536 512-byte blocks of data need
to be removed; removing more makes the cache more useful. At the current level of
utilization, CacheFS needs to throw away many files to allow room for the new
ones.

• Use a separate disk partition for /cache.

85

Appendix A

A.ONC3/NFS Error Messages

This chapter explains error messages generated by the components of ONC3/NFS. It
contains these sections:

• “mount Error Messages” on page 85

• “Verbose automount and autofs Error Messages” on page 88

• “General automount and autofs Error Messages” on page 90

• “General CacheFS Errors” on page 93

mount Error Messages

This section gives detailed descriptions of the NFS mounting failures that generate error
messages.

/etc/mtab: No such file or directory

The mounted file system table is kept in the file /etc/mtab. This file must
exist before mount(1M) can succeed.

mount: ... already mounted

The file system that you are trying to mount is already mounted or there
is an incorrect entry for it in /etc/mtab.

mount: ... Block device required

You probably left off the host name (krypton:) portion of your entry:

mount krypton:/usr/src /krypton.src

The mount command assumes you are doing a local mount unless it
sees a colon in the file system name or the file system type is nfs in
/etc/fstab. See fstab(4).

86

Appendix A: ONC3/NFS Error Messages

mount: ... not found in /etc/fstab

If you use mount with only a directory or file system name, but not both,
it looks in /etc/fstab for an entry with file system or directory field
matching the argument. For example,

mount /krypton.src

searches /etc/fstab for a line that has a directory name field of
/krypton.src. If it finds an entry, such as this,

krypton:/usr/src /krypton.src nfs rw,hard 0 0

it mounts as if you had given this command:

mount krypton:/usr/src /krypton.src

If you see this message, it means the argument you gave mount is not in
any of the entries in /etc/fstab.

/etc/fstab: No such file or directory

mount tried to look up the name in /etc/fstab but there was no /etc/fstab.

mount: ... not in hosts database

The host name you gave is not in the /etc/hosts database. Check the
spelling and the placement of the colon in your mount call. Try to rlogin
or rcp to the other system.

mount: directory path must begin with a slash (/).

The second argument to mount is the path of the directory to be
mounted. This must be an absolute path starting at /.

mount: ... server not responding: RPC: Port mapper failure

Either the server from which you are trying to mount is inactive, or its
portmap daemon is inactive or hung. Try logging in to that system. If you
can log in, give this command:

/usr/etc/rpcinfo –p hostname

This should produce a list of registered program numbers. If it does
not, start the portmap daemon again. Note that starting the portmap
daemon again requires that you kill and restart inetd, ypbind, and ypserv.
ypbind is active only if you are using the NIS service. The ypserv daemon
only runs on NIS servers. See network(1M) for information about how
to stop and restart daemons.

For dealing with a server that is inactive or whose portmap daemon is
not responding, you should reboot the server.

mount Error Messages

87

If you cannot rlogin to the server, but the server is operational, check
your network connection by trying rlogin to some other system. Also
check the server’s network connection.

mount: ... server not responding: RPC: Program not registered

This means mount reached the portmap daemon but the NFS mount
daemon (see mountd(1M)) was not registered.

Go to the server and be sure that /usr/etc/rpc.mountd exists and that an
entry appears in /etc/inetd.conf exactly like this (shown wrapped):

mountd/1 dgram rpc/udp wait root
/usr/etc/rpc.mountd mountd

Give the command ps –de to be sure that the internet daemon (inetd) is
running. If you had to change /etc/inetd.conf, give this command:

/etc/killall 1 inetd

This command informs inetd that you have changed /etc/inetd.conf.

mount: ... No such file or directory

Either the remote directory or the local directory does not exist. Check
your spelling. Use the ls command for the local and remote directories.
For Silicon Graphics systems, check to see if you are attempting to access
a hidden file or directory:

showmount -x servername

and check for file systems exported without the nohide option.

mount: not in export list for ...

Your host name is not in the export list for the file system you want to
mount from the server. You can get a list of the server’s exported file
systems with this command:

showmount –e servername

If the file system you want is not in the list, or your host name or
network group name is not in the user list for the file system, log in to
the server and check the /etc/exports file for the correct file system entry.
A file system name that appears in the /etc/exports file but not in the
output from showmount indicates that you need to run exportfs.

mount: ... Permission denied

This message is a generic indication that some authentication failed on
the server. It could simply be that you are not in the export list (see
previous message), the server could not figure out who you are, or the

88

Appendix A: ONC3/NFS Error Messages

server does not recognize that you are who you say you are. Check the
server’s /etc/exports. In the last case, check the consistency of the NIS and
local host name and user ID information.

mount: ... Not a directory

Either the remote path or the local path is not a directory. Check your
spelling and use the ls command for both the local and remote
directories.

mount: ... You must be root to use mount

You must do the mount as root on your system because it affects the file
system for the whole system, not just your directories.

Verbose automount and autofs Error Messages

The following error messages are likely to be displayed if automount or autofs fails and the
verbose option is on (–v option). Below each error message is a description of the
probable cause of the problem.

no mount maps specified

The automatic mounter was invoked with no maps to serve (or no
auto_master file for autofs), and it cannot find the NIS auto.master map.
Recheck the command, and check for the existence of an NIS auto.master
map:

ypwhich -m | grep auto.master

mapname: Not found
The required map cannot be located. This message is produced only
when the –v option is given. Check the spelling and pathname of the
map name.

leading space in map entry entry text in mapname
The automatic mounter has discovered an entry in an automatic
mounter map that contains leading spaces. This is usually an indication
of an improperly continued map entry. For example:

foo
bar geez:/usr/geez

In this example, the warning is generated when the automatic mounter
encounters the second line, because the first line should be terminated
with a backslash (\).

Verbose automount and autofs Error Messages

89

bad directory directory in indirect map mapname
While scanning an indirect map, the automatic mounter has found an
entry directory containing a “/”. Indirect map directories must be
simple names, not pathnames.

bad directory directory in direct map mapname
While scanning a direct map, the automatic mounter has found an entry
directory without a leading “/”. Directories in direct maps must be full
pathnames.

NIS bind failed

The automatic mounter was unable to communicate with the ypbind
daemon. This is information only—the automatic mounter continues to
function correctly provided it requires no explicit NIS support. If you
need NIS, check to see if there is a ypbind daemon running.

Couldn’t create mountpoint mountpoint: reason
The automatic mounter was unable to create a mount point required for
a mount. This most frequently occurs when attempting to hierarchically
mount all of a server’s exported file systems. A required mount point
may exist only in a file system that cannot be mounted (it may not be
exported) and it cannot be created because the exported parent file
system is exported read only.

WARNING: mountpoint already mounted on
The automatic mounter is attempting to mount over an existing mount
point. This is indicative of an automatic mounter internal error (bug).

server:pathname already mounted on mountpoint
The automatic mounter is attempting to mount over a previous mount
of the same file system. This could happen if an entry appears both in
/etc/fstab and in an automatic mounter map (either by accident or
because the output of mount -p was redirected to /etc/fstab). Delete one
of the redundant entries.

can’t mount server:pathname: reason
The mount daemon on the server refuses to provide a file handle for
server:pathname. Check the server’s export list.

remount server:pathname on mountpoint: server not responding
The automatic mounter has failed to remount a file system it previously
unmounted. This message may appear at intervals until the file system
is successfully remounted.

90

Appendix A: ONC3/NFS Error Messages

WARNING: mountpoint not empty
The mount point is not an empty directory. The directory contains
entries that are hidden while the automatic mounter is mounted there.
This is advisory only.

General automount and autofs Error Messages

This section lists error messages generated by automount and autofs that can occur at any
time.

automount Only Error Messages

exiting This is an advisory message only. The automounter has received a
SIGTERM (has been killed) and is exiting.

NFS server (pid@mountpoint) not responding; still trying
An NFS request made to the automount daemon with process identifier
pid serving mountpoint has timed out. The automounter may be
temporarily overloaded or dead. Wait a few minutes. If the condition
persists, reboot the client or use fuser to find and kill all processes that
use automounted directories (or change to a non-automounted
directory in the case of a shell), kill the current automount process, and
restart it again from the command line.

automount and autofs Error Messages
WARNING: default option "option" ignored for map mapname

Where option is an unrecognized default mount option for the map
mapname.

option ignored for directory in mapname
The automatic mounter has detected an unknown mount option. This is
advisory only. Correct the entry in the appropriate map.

bad entry in map mapname "directory" map mapname, directory directory: bad
The map entry is malformed, and the automatic mounter cannot
interpret it. Recheck the entry; perhaps there are characters in it that
need a special escape sequence.

General automount and autofs Error Messages

91

Can’t get my address

The automatic mounter cannot find an entry for the local system in the
host database.

Cannot create UDP service

The automatic mounter cannot establish a UDP connection.

svc_register failed

The automatic mounter cannot register itself as an NFS server. Check the
kernel configuration file.

couldn’t create pathname: reason
Where pathname is /tmp_mnt (automount) or the argument to the –M
command line option.

Can’t mount mountpoint: reason
The automatic mounter couldn’t mount its daemon at mountpoint.

Can’t update pathname
Where pathname is /etc/mtab (automount) it means that the automounter
was not able to update the mount table. Check the permissions of the
file.

WARNING: pathname: line line_number: bad entry
Where pathname is /etc/mtab (automount) it means that the automounter
has detected a malformed entry in the /etc/mtab file.

server:pathname no longer mounted
The automatic mounter is acknowledging that server:pathname, which it
mounted earlier, has been unmounted by the umount command. The
automounter notices this within 1 minute of the unmount or
immediately, if it receives a SIGHUP (automount).

trymany: servers not responding: reason
No server in a replicated list is responding. This may indicate a network
problem.

server:pathname—linkname : dangerous symbolic link
The automatic mounter is trying to use server:pathname as a mount point
but it is a symbolic link that resolves to a pathname referencing a mount
point outside of /tmp_mnt ((automount) or the mount point set with the
–M option). The automatic mounter refuses to do this mount because it
could cause problems in the system’s file system (for example, mounting
on /usr rather than in /tmp_mnt).

92

Appendix A: ONC3/NFS Error Messages

host server not responding

The automatic mounter attempted to contact server but received no
response.

Mount of server:pathname on mountpoint: reason
The automatic mounter failed to do a mount. This may indicate a server
or network problem.

pathconf: server: server not responding

The automatic mounter is unable to contact the mount daemon on the
server that provides portable operating systems based on UNIX (POSIX)
pathconf information.

pathconf: no info for server:pathname
The automatic mounter failed to get pathconf information for pathname.

hierarchical mountpoints: pathname1 and pathname2
The automatic mounter does not allow its mount points to have a
hierarchical relationship. An automounter mount point must not be
contained within another automounted file system.

mountpoint: Not a directory
The automatic mounter cannot mount itself on mountpoint because
mountpoint is not a directory. Check the spelling and pathname of the
mount point.

dir mountpoint must start with ’/’
The automatic mounter mount point must be given as full pathname.
Check the spelling and pathname of the mount point.

mapname: yp_err
Error in looking up an entry in an NIS map. May indicate NIS problems.

hostname: exports: rpc_err
Error getting export list from hostname. This indicates a server or
network problem.

nfscast: cannot send packet: reason
The automatic mounter cannot send a query packet to a server in a list
of replicated file system locations.

nfscast: cannot receive reply: reason
The automatic mounter cannot receive replies from any of the servers in
a list of replicated file system locations.

General CacheFS Errors

93

nfscast:select: reason Cannot create socket for nfs: rpc_err
These error messages indicate problems attempting to contact servers
for a replicated file system. This may indicate a network problem.

General CacheFS Errors

This section describes the error messages that may be generated from commands used to
administer the CacheFS file system.

cfsadmin Error Messages

This section gives detailed descriptions of the CacheFS cfsadmin command failures that
generate error messages.

cfsadmin: must be run by root

You must be logged in as root to run cfsadmin.

cfsadmin: Cache name is in use and cannot be modified.
This error occurs when you attempt to remove a cache ID from the cache
name, if the cache is active (has mounted file systems).

cfsadmin: cachepath already exists.

The cache directory path cachepath specified with the cachedir option
already exists. The last component of the path cachepath must not exist
when creating a cache. All other path components must exist.

cfsadmin: creating labelpath failed.

The cache label file labelpath could not be created. This message always
appears with one of the following:

Could not remove labelpath: errmsg
Error creating labelpath: errmsg
Writing labelpath failed: errmsg
Writing labelpath failed on sync: errmsg

In each case, the system error is given in errmsg.

cfsadmin: create resource failed: errmsg
The cache resource file resource could not be created. The system error is
given in errmsg.

94

Appendix A: ONC3/NFS Error Messages

cfsadmin: Cache cachedir is in use and cannot be modified.
The cache cachedir was in use when an attempt was made to modify the
contents of the cache label. This operation may only be performed when
the cache has no mounted file systems.

cfsadmin: Cache size cannot be reduced, maxblocks current p%, requested
n%
An attempt was made to reduce the maximum file system block
allocation percentage from p% to n%. The allocation can only be
increased.

cfsadmin: Cache size cannot be reduced, maxfiles current p% requested n%
An attempt was made to reduce the maximum number of files allocated
from p% to n%. The allocation can only be increased.

cfsadmin: cacheid is not a valid cache id.

The cache identifier given by cacheid is not valid. You may have specified
an invalid cache identifier on the command line for cfsadmin. This can
occur when deleting a cache.

cfsadmin: lowblocks can’t be >= hiblocks.
The block allocation specified by minblocks is greater than or equal to that
specified by maxblocks. minblocks must be less than maxblocks.

cfsadmin: lowfiles can’t be >= hifiles.
The file allocation specified by minfiles is greater than or equal to that
specified by maxfiles. minfiles must be less than maxfiles.

cfsadmin: Could not read cache_usage, val, run fsck
The cache usage structure could not be read from the resource file. val is
the return value from read.

cfsadmin: Could not open option file optpath
The cache option file optpath could not be opened. The entire cache
should be removed and reconstructed.

cfsadmin: Could not read option file optpath
The cache option file optpath could not be read. The entire cache should
be removed and reconstructed.

cfsadmin: Reading cachelabel failed.
The cache label file cachelabel could not be read. This message appears
with one of the following messages:

Cannot stat file cachelabel: errmsg
File cachelabel does not exist.

General CacheFS Errors

95

Cache label file cachelabel corrupted
Cache label file cachelabel wrong size
Error opening cachelabel: errmsg
Reading cachelabel failed: errmsg

The above messages occur when the cache label file is not a regular file
or the label contains the incorrect cache version. The system error is
given in errmsg.

cfsadmin: Could not open resource: errmsg, run fsck
The resource file resource could not be opened in order to enlarge it or
mark it as dirty. The error is given in errmsg. Run fsck.

cfsadmin: Resource file has wrong size cursize expected, run fsck
The size of the resource file is incorrect. Its size is cursize when it should
be expected.

cfsadmin: Could not write cache_usage, val, run fsck
The cache usage structure could not be written to the resource file. val is
the return value from write.

cfsadmin: Could not write file, val, run fsck
The expanded resource file could not be initialized. val is the return
value from write.

mount_cachefs Error Messages

This section gives detailed descriptions of the CacheFS mounting failures that generate
error messages.

mount_cachefs is normally executed from mount.

mount_cachefs: must be run by root

You must be logged in as root to run mount.

mount_cachefs: mount failed, options do not match.

The mount options supplied on the mount command are not compatible
with the mount options currently set for the cache. This occurs when
there are multiple mount points for one cache. All mount points must
have the same options.

mount_cachefs: suid and nosuid are mutually exclusive

Both of the options suid and nosuid have been specified. Only one is
allowed.

96

Appendix A: ONC3/NFS Error Messages

mount_cachefs: rw and ro are mutually exclusive

Both of the options rw and ro have been specified. Only one is allowed.

mount_cachefs: acregmin cannot be greater than acregmax

The specified acregmin option has a value greater than that for
acregmax.

mount_cachefs: acdirmin cannot be greater than acdirmax

The specified acdirmin option has a value greater than that for
acdirmax.

mount_cachefs: only one of non-shared or write-around may be specified

Both of the options non-shared and write-around have been specified.
Only one is allowed.

umount_cachefs Error Messages

This section gives detailed descriptions of the CacheFS unmounting failures that
generate error messages.

umount_cachefs is normally executed from umount.

umount_cachefs: must be run by root

You must be logged in as root to run umount.

umount_cachefs: warning: dir not in mtab
The mount point directory dir has no entry in the mount table. This
means that the mount table has been corrupted. The umount command
can still be successful; however, the back file system can not be
unmounted.

umount_cachefs: could not exec /sbin/umount on back file system errmsg
An attempt was made to run umount on the back file system and failed.
The system error is given in errmsg.

97

setting up default environment, 54
starting command, 57
symbolic links, 41, 82
testing, 60
verifying process is running, 59

automatic mounters and environment variables, 46
automatic mounters metacharacter ("), 45
automount command, 21, 54, 57, 58, 69

at system startup, 82
error messages, 88-93
killing, 70

B

back files, 30
back file system, 30
bg mount option, 19, 21
biod daemon, 81

C

cached file systems
back file system, 30
creating, 64
definition, 5
deleting, 73
displaying information about, 71
front file system, 30
maxblocks parameter, 35
maxfiles parameter, 35

Symbols

in maps, 56
& automatic mounters metacharacter, 43
* automatic mounters metacharacter, 44
+ in maps, 47
\ automatic mounters metacharacter, 45
{} in maps, 46

A

access export option, 15, 17
anon export option, 15, 16
asynchronous data transfer, 9
attribute caching, 20
AutoFS, 1
autofs command, 22, 54, 57
autofsd daemon, 4
AutoFS file system, 4
automatic mounters

at system startup, 82
definition, 8
maps, 23, 24
map types, 25, 82
metacharacters, 43-45
modifying maps, 69
NIS maps, 47
process description, 21-28, 81
recommendations, 29
setting up custom environment, 56-61

Index

98

Index

modifying parameters, 71
mounting, 65
mounting a CD-ROM, 66
parameters, 34
setting parameters, 64
setting up, 63

CacheFS
troubleshooting, 83

cfsadmin command, 64, 71, 73
chkconfig command

automatic mounters flag, 21, 55, 58
cachefs flag, 63
lockd flag, 61
nfs flag, 50, 52, 55

client
definition, 5
performance, 67
setting up, 52-54

client-server model, 5
crash recovery

and lock manager, 10
and network status monitor, 11

D

delayed writes, 9
deleting

cached file systems, 73
direct maps, 26-29, 56

modifying, 69
diskless workstations, 3

E

environment variables in maps, 46
error messages

automount and autofs, 90-93

mount, 85-88
verbose autofs and automount, 88-90

/etc/auto_master file, 25, 57
/etc/auto.indirect file, 70
/etc/auto.master file, 25, 57, 69
/etc/config/auto_master file, 58
/etc/config/autofs.options file, 21, 24, 54, 58
/etc/config/automount.options file, 21, 23, 54, 58
/etc/config/nfsd.options file, 67
/etc/exports file, 14-16, 23, 24, 51
/etc/fstab file, 18-20, 52-54, 70, 76
/etc/init.d/autoconfigure script, 51, 53
/etc/init.d/network script, 13, 21, 50, 58, 62, 82
/etc/mtab file, 17, 22, 29, 59, 76
/etc/rmtab file, 14
/etc/xtab file, 14, 54
exported filesystems

different pathname, 7
exportfs command. See exportfs command.
export options, 15
local to server, 13
recommendations, 16

exportfs command, 13-17, 51
exporting

definition, 6
parent and child directories, 6
restrictions, 6

export options, 15

F

failure
of client, 9, 10, 78
of network, 9, 10, 78, 81
of remote mount, 79
of server, 9, 10, 19, 77

fg mount option, 19

99

Index

file handle, 82
file locking service. See lock manager.
front file system, 30

G

group mounts, 39-41
grpid mount option, 20

H

hanging, 79-81
hard-mounted filesystems, 19, 79
hard mount option, 19
hierarchical mounts, 41
host database, 23, 24
–hosts map, 26, 54

I

indirect maps, 26, 27, 56, 69
$ in maps, 46
– in maps, 47
input/output management, 9
IP address translation, 76

L

lockd daemon, 61
lock manager

application calls, 10
crash recovery, 10
description, 10
setting up, 61
verifying, 61

loopback mounting, definition, 8

M

maps
in maps, 56
& metacharacter, 43
* metacharacter, 44
+ in maps, 47
\ metacharacter, 45
{} for environment variables, 46
alternate servers, 42
automatic mounters, 25
definition, 23, 24
direct, 26-29, 56, 69
environment variables, 46
$ for environment variables, 46
group mounts, 39-41
hierarchical, 41
indirect, 26, 27, 56, 69
– in maps, 47
master, 56, 69
" metacharacter, 45
metacharacters, 43-45
modifying, 69
NIS databases, 26
options, 26
supplementary maps, 47
types, 25
wild card, 44

master maps, 25, 56, 69
maxblocks

cfsadmin parameter, 35
maxfiles

cfsadmin parameter, 35
metacharacters, 43-45
mount command

error messages, 85-88
how invoked, 17

100

Index

ignoring fstab entries, 19
mount process description, 17-20, 76
on client, 52-54
options, 17
temporary mounting, 68

mounting
definition, 6
exported directories, 17
hard mounts, 19, 79
illustration, 7
mount point directories, 17
options, 19
process description, 17-20, 76
recommendations, 20
remote mount failed, 79
restrictions, 8
soft mounts, 19
temporary, 68

mounting a CD-ROM as a cached file system, 66
mounting cached file systems, 65
/– mount point, 26, 27
mount points

conflicts, 70
definition, 7
empty or not?, 17
for automatic mounters, 23, 24

multihopping, 8

N

netgroups, 15, 17
network lock manager. See lock manager.
network status monitor, 11
NFS

and OSI model, 3
definition, 2

nfsd daemon, 67

NIS
and maps, 26
databases, 76
definition, 3
documentation, xiii, 1
maps, 47, 58
netgroups for access lists, 17

noauto mount option, 19
nodev mount option, 20
nohide export option, 15, 17, 21
nointr mount option, 19, 20
nosuid mount option, 20

O

ONC3/NFS
version, xiii

P

performance is slow, 80
portmapper, 51, 76, 82
port mount option, 19
private mount option, 19, 21
product support, xvii

R

release of ONC3/NFS, xiii
remote devices, 81
remote procedure call (RPC)

and lock manager, 10
and NFS, 2

retransmission rates, 81
retrans mount option, 19
ro export option, 15

101

Index

ro mount option, 19
root export option, 15, 17
rpcinfo command, 51, 77
rpc.lockd daemon, 62
rpc.statd daemon, 62
rsize mount option, 19
rw export option, 15
rw mount option, 19

S

secure installations, 16
server

daemons, 67
definition, 5
setting up, 49-52

sgi_mountd daemon, 51, 77
showmount command, 14
soft-mounted filesystems, 19, 79
soft mount option, 19
statd daemon, 11, 61
stateless protocol, 9
supplementary maps, 47
synchronous writes, 9, 15, 17

T

timeo mount option, 19
timeout limit, 19
/tmp_mnt directory, 23, 54, 82
troubleshooting CacheFS, 83
troubleshooting recommendations, 75-83
typograhical conventions, xvi

U

umount command, 42
unexporting, definition, 6
unmount command, 17
unmounting

definition, 7
/usr/etc/resolv.conf file, 76

V

/var/adm/SYSLOG file, 75
version of ONC3/NFS, xiii

W

wsize mount option, 19
wsync export option, 15, 17

Tell Us About This Manual

As a user of Silicon Graphics documentation, your comments are important to us. They
help us to better understand your needs and to improve the quality of our
documentation.

Any information that you provide will be useful. Here is a list of suggested topics to
comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Important Note

Please include the title and part number of the document you are commenting on. The
part number for this document is
007-0850-080.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your comments on
the postage-paid card for your country, then detach and mail it. If your country is not
listed, either use the international card and apply the necessary postage or use electronic
mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail message and mail
it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of pages from the manual) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

