
Graphics Library Programming Guide
Volume I

Document Number 007-1210-060

Contributors

Written by Patricia McLendon
Illustrated by Dan Young, Howard Look, and Patricia McLendon
Edited by Steven W. Hiatt
Production by Derrald Vogt
Engineering contributions by John Airey, Kurt Akeley, Dan Baum, Rosemary Chang,
Howard Cheng, Tom Davis, Bob Drebin, Ben Garlick, Mark Grossman, Michael Jones,
Seth Katz, Phil Karlton, George Kong, Erik Lindholm, Howard Look, Rob Mace, Martin
McDonald, Jackie Neider, Mark Segal, Dave Spalding, Gary Tarolli, Vince Uttley, and
Rolf Van Widenfelt.

© Copyright 1992, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third parties, copied, or
duplicated in any form, in whole or in part, without the prior written permission of
Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication, or disclosure of the technical data contained in this document by the
Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights
in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United States.
Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain
View, CA 94039-7311.

Graphics Library Programming Guide
Document Number 007-1210-060

Silicon Graphics, Inc.
Mountain View, California

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and IRIS
Graphics Library, Geometry Engine, Geometry Pipeline, IRIX, 4D, MicroPixel,
Personal IRIS, IRIS Indigo, XS, XS24, Elan, RealityEngine, and SkyWriter are
trademarks of Silicon Graphics, Inc.
Ada is a registered trademark of the Ada Joint Program of the United States of America
Ethernet is a registered trademark of Xerox Corporation
OSF/Motif is a trademark of the Open Software Foundation
Spaceball is a trademark of Spatial Systems, Inc.
UNIX is a registered trademark of AT&T Bell Labs
X Window System and Athena Widgets are trademarks of the Massachusetts Institute
of Technology.

iii

Contents

Introduction...xxi
How to Use This Guide .. xxii

How to Use the Sample Programs.......................... xxii
Typographical Conventions xxiii
What this Guide Contains....................................... xxiii

How to Use the On-line Manual Pages.....................................xxv
Using Man Pages from the Toolchest......................xxv
Using Man Pages from an IRIX Shellxxv

Suggestions for Further Reading ... xxvi

1. Graphics Development Environment ...1-1
1.1 Using the Graphics Library and System Libraries1-1

1.1.1 System Libraries ..1-2
1.1.2 Include Files ...1-2

1.2 Using the X Window System...1-2
1.3 Programming in C...1-4

1.3.1 Using the ANSI C Standard.......................................1-4
1.3.2 Compiling C Programs...1-4

1.4 GL Program Structure ..1-5
1.4.1 Initializing the System ..1-6
1.4.2 Getting Graphics Information1-7
1.4.3 Global State Attributes ...1-10
1.4.4 Exiting the Graphics Environment1-10

iv

2. Drawing ..2-1
2.1 Drawing with the GL..2-1

2.1.1 Vertex Subroutines..2-2
2.1.2 Points...2-7
2.1.3 Lines ..2-8
2.1.4 Polygons ...2-12
2.1.5 Point-Sampled Polygons ..2-17
2.1.6 Meshes ..2-21
2.1.7 Controlling Polygon Rendering..............................2-29

2.2 Old-Style Drawing ..2-30
2.2.1 Basic Shapes ...2-31
2.2.2 Nonrecommended Old-Style Subroutines2-37

3. Characters and Fonts ...3-1
3.1 Drawing Characters ..3-2

3.1.1 Determining the Current Character Position..........3-2
3.1.2 Drawing Character Strings ..3-3
3.1.3 Clipping Character Strings ..3-3
3.1.4 Getting Character Information..................................3-4

3.2 Creating a Font ..3-7
3.2.1 Defining the Font...3-9
3.2.2 Selecting the Font ..3-12
3.2.3 Querying the System for Font Information3-14

4. Display and Color Modes ..4-1
4.1 Color Display ...4-2

4.1.1 Bitplanes ...4-3
4.1.2 Dithering...4-4

4.2 RGB Mode ..4-5
4.2.1 Setting and Getting the Current Color

in RGB Mode..4-7
4.3 Gouraud Shading ..4-8

v

4.4 Color Map Mode ...4-15
4.4.1 Setting the Current Color

in Color Map Mode...4-17
4.4.2 Getting Color Information

in Color Map Mode...4-18
4.4.3 Gouraud Shading in Color Map Mode4-19
4.4.4 Blinking...4-21

4.5 Onemap and Multimap Modes...4-22
4.6 Gamma Correction..4-23

5. User Input ..5-1
5.1 Event Handling ...5-1

5.1.1 Queueing ..5-3
5.1.2 Polling ...5-7

5.2 Input Devices ...5-10
5.2.1 Buttons ..5-11
5.2.2 Valuators ..5-12
5.2.3 Keyboard Devices ...5-13
5.2.4 Window Manager Tokens..5-14
5.2.5 Spaceball Devices ...5-15
5.2.6 Controlling Devices ..5-16

5.3 Video Control...5-17

6. Animation...6-1
6.1 Understanding How Animation Works6-1

6.1.1 Single Buffer Mode ...6-2
6.1.2 Double Buffer Mode ...6-2

6.2 Creating an Animation...6-2
6.2.1 Setting Modes for Animation6-3
6.2.2 Swapping Buffers ..6-3
6.2.3 Swapping Multiple Buffers..6-3
6.2.4 Maximizing Animation Performance.......................6-6

vi

7. Coordinate Transformations ..7-1
7.1 Coordinate Systems ..7-2
7.2 Projection Transformations..7-4

7.2.1 Perspective Projection...7-4
7.2.2 Window Projection ...7-9
7.2.3 Orthographic Projections ...7-10

7.3 Viewing Transformations ..7-12
7.3.1 Viewpoint in Polar Coordinates..............................7-13
7.3.2 Viewpoint along a Line of Sight..............................7-14

7.4 Modeling Transformations ..7-16
7.4.1 Rotation...7-17
7.4.2 Translation..7-17
7.4.3 Scaling...7-18

7.5 Controlling the Order of Transformations7-19
7.5.1 Current Matrix Mode (mmode)7-19

7.6 Hierarchical Drawing with the Matrix Stack7-20
7.7 Viewports, Screenmasks, and Scrboxes7-26
7.8 User-Defined Transformations..7-29
7.9 Additional Clipping Planes ...7-30

8. Hidden-Surface Removal...8-1
8.1 z-buffering ..8-2

8.1.1 Controlling z Values ...8-7
8.1.2 Clearing the z-buffer and the Bitplanes

Simultaneously ..8-8
8.2 Using z-buffer Features for Special Applications...................8-10

8.2.1 Drawing into the z-buffer...8-10
8.2.2 Alternative Comparisons

and z-buffer Writemasks..8-14
8.3 Stenciling ..8-16
8.4 Eliminating Backfacing Polygons ...8-21
8.5 Alpha Comparison..8-22

vii

9. Lighting ..9-1
9.1 Introduction to GL Lighting ..9-2

9.1.1 Color..9-2
9.1.2 Reflectance..9-3

9.2 Setting Up GL Lighting ..9-4
9.2.1 Defining Surface Normals..9-5
9.2.2 Defining Lighting Components9-6

9.3 Binding Lighting Definitions...9-11
9.4 Changing Lighting Settings ...9-12
9.5 Default Settings ...9-13
9.6 Advanced Lighting Features ...9-14

9.6.1 Attenuation ..9-14
9.6.2 Spotlights..9-16
9.6.3 Two-Sided Lighting ..9-17
9.6.4 Fast Updates to Material Properties9-18
9.6.5 Transparency ...9-21
9.6.6 Lighting Multiple GL Windows..............................9-21

9.7 Lighting Performance ...9-22
9.7.1 Restrictions on ModelView, Projection, and

User-Defined Matrices..9-22
9.7.2 Computational Considerations9-23

9.8 Color Map Lighting ..9-24
9.9 Sample Lighting Program..9-25

10. Framebuffers and Drawing Modes..10-1
10.1 Framebuffers ..10-1

10.1.1 Normal Framebuffer...10-2
10.1.2 Overlay Framebuffer ..10-3
10.1.3 Underlay Framebuffer..10-3
10.1.4 Pop-up Framebuffer..10-3
10.1.5 Left and Right Stereo Framebuffers........................10-4

10.2 Drawing Modes ...10-5

viii

10.3 Writemasks...10-7
10.3.1 How Writemasks Work..10-8
10.3.2 Writemask Subroutines ..10-9
10.3.3 Sample Writemask Programs................................10-10

10.4 Configuring Overlay and Underlay Bitplanes......................10-15
10.5 Cursor Techniques ..10-17

10.5.1 Types of Cursors..10-17
10.5.2 Creating and Using Cursors10-19
10.5.3 Cursor Subroutines ...10-20
10.5.4 Sample Cursor Program...10-21

11. Pixels...11-1
11.1 Pixel Formats ...11-2
11.2 Reading and Writing Pixels Efficiently....................................11-3

11.2.1 Pixel Addressing ...11-4
11.2.2 Reading Pixels..11-5
11.2.3 Writing Pixels...11-7

11.3 Using pixmode ..11-10
11.3.1 Shifting Pixels ..11-10
11.3.2 Expanding Pixels...11-11
11.3.3 Adding Pixels...11-11
11.3.4 Pixels Destined for the z-Buffer11-12
11.3.5 Changing Pixel Fill Directions...............................11-12

11.4 Subimages within Images ..11-13
11.5 Packing and Unpacking Pixel Data ..11-14
11.6 Order of Pixel Operations ..11-16
11.7 Old-Style Pixel Access ..11-16

11.7.1 Reading Pixels..11-17
11.7.2 Writing Pixels...11-18

ix

12. Picking and Selecting...12-1
12.1 Picking ..12-1

12.1.1 Defining the Picking Region....................................12-3
12.1.2 Using the Name Stack ..12-4

12.2 Selecting..12-8

13. Depth-Cueing and Atmospheric Effects..13-1
13.1 Depth-Cueing ..13-1

13.1.1 Setting Up Depth–Cueing..13-2
13.1.2 Depth-Cueing in Colormap Mode..........................13-4
13.1.3 Depth-Cueing in RGBmode.....................................13-6
13.1.4 Sample Depth-Cueing Program..............................13-7

13.2 Atmospheric Effects ..13-10
13.2.1 Fog ...13-11
13.2.2 Fog Characteristics ..13-12
13.2.3 Fog Calculations ..13-12
13.2.4 Fog Parameters ..13-14

14. Curves and Surfaces ..14-1
14.1 Introduction to Curves ...14-2

14.1.1 Parametric Curves...14-2
14.1.2 Polynomial Curves..14-5
14.1.3 Parametric Spline Curves...14-5

14.2 B-Splines ...14-6
14.2.1 Control Points ..14-6
14.2.2 Basis Functions ..14-7
14.2.3 Knots ...14-8
14.2.4 Weights ...14-10

14.3 GL NURBS Curves..14-11
14.4 NURBS Surfaces ..14-13

14.4.1 Geometric Surfaces ...14-16
14.4.2 Color Surfaces ..14-17
14.4.3 Texture Surfaces ..14-17

14.5 Trimming NURBS Surfaces ...14-18

x

14.6 NURBS Properties...14-21
14.7 Sample NURBS Program ...14-22
14.8 Old-Style Curves and Surfaces..14-28

14.8.1 Old-Style Curves ...14-28
14.8.2 Drawing Old-Style Curves14-29
14.8.3 Drawing Old-Style Surfaces14-33

15. Antialiasing ...15-1
15.1 Sampling Accuracy ...15-1

15.1.1 Subpixel Positioning ...15-4
15.1.2 How Subpixel Positioning Affects Lines15-4

15.2 Blending..15-5
15.3 One-Pass Antialiasing—the Smooth Primitives15-10

15.3.1 High-Performance Antialiased
Points—pntsmooth ...15-10

15.3.2 High-Performance Antialiased
Lines—linesmooth ..15-15

15.3.3 High-Performance Antialiased
Polygons—polysmooth ..15-22

15.4 Multipass Antialiasing with the Accumulation Buffer........15-30
15.4.1 Configuring the Accumulation Buffer15-30
15.4.2 Using the Accumulation Buffer15-31

15.5 Antialiasing on RealityEngine Systems15-36
15.5.1 Multisample Antialiasing.......................................15-37
15.5.2 Configuring Your System for Multisampling.....15-37
15.5.3 How Multisampling Affects Rendering15-42
15.5.4 Using Advanced Multisample Options15-44

xi

16. Graphical Objects ..16-1
16.1 Creating an Object...16-1
16.2 Working with Objects...16-4

16.2.1 Drawing an Object ..16-4
16.2.2 Bounding Boxes...16-7
16.2.3 Editing Objects...16-8
16.2.4 Using Tags..16-9
16.2.5 Inserting, Deleting, and Replacing

within Objects ..16-10
16.2.6 Managing Object Memory16-12
16.2.7 Mapping Screen Coordinates

to World Coordinates ...16-13

17. Feedback..17-1
17.1 Feedback on IRIS-4D/GT/GTX Systems.................................17-4
17.2 Feedback on the Personal IRIS and IRIS Indigo17-6
17.3 Feedback on IRIS-4D/VGX, SkyWriter,

and RealityEngine Systems..17-7
17.4 Feedback Example ..17-8
17.5 Additional Notes on Feedback..17-10

18. Textures ...18-1
18.1 Texture Basics ..18-2

18.1.1 2-D Textures ...18-3
18.1.2 3-D Textures ...18-4
18.1.3 How to Set Up Texturing ...18-6

18.2 Defining a Texture...18-6
18.2.1 Using Texture Components.....................................18-7
18.2.2 Loading a Texture Array..18-9
18.2.3 Defining and Binding a Texture............................18-11
18.2.4 Selecting the Texel SIze ..18-13

18.3 Using Texture Filters ..18-16
18.3.1 Minification Filters ..18-17
18.3.2 Using Magnification Filters18-21

xii

18.4 Using the Sharpen and DetailTexture Features....................18-23
18.4.1 Using the Sharpen Feature.....................................18-23
18.4.2 Using DetailTextures ..18-27

18.5 Texture Coordinates ...18-32
18.5.1 Assigning Texture Coordinates Explicitly...........18-32
18.5.2 Generating Texture Coordinates
Automatically ..18-33
18.5.3 Texture Lookup Tables...18-35
18.5.4 Improving Interpolation Results

on VGX Systems ..18-37
18.6 Texture Environments ..18-39
18.7 Texture Programming Hints ...18-42
18.8 Sample Texture Programs..18-45

19. Using the GL in a Networked Environment19-1
19.1 Introduction ...19-1

19.1.1 Protocol ...19-2
19.1.2 Writing GL Programs to Use

Network Transparent Features19-2
19.1.3 Establishing a Connection..19-4
19.1.4 Using rlogin..19-4

19.2 Limitations and Incompatibilities...19-5
19.2.1 The callfunc Routine ...19-5
19.2.2 Pop-up Menu Functions...19-5
19.2.3 Interrupts and Jumps..19-5

19.3 Using Multiple Server Connections ...19-6
19.3.1 Establishing and Closing Multiple Network

Connections..19-6
19.3.2 Graphics Input...19-9
19.3.3 Local Graphics Data..19-9
19.3.4 Sample Program - Multiple Connections

on a Local Host ..19-9
19.4 Configuration of the Network Transparent Interface..........19-12

19.4.1 inetd...19-12
19.4.2 dgld ...19-13

xiii

19.5 Error Messages ..19-13
19.5.1 Connection Errors ...19-14
19.5.2 Client Errors ...19-14
19.5.3 Server Errors ..19-15
19.5.4 Exit Status...19-16

A. Scope of GL Subroutines .. A-1

B. Global State Attributes.. B-1

C. Transformation Matrices ..C-1
C.1 Translation...C-1
C.2 Scaling and Mirroring..C-1
C.3 Rotation..C-2
C.4 Viewing Transformations ...C-3
C.5 Perspective Transformations ..C-4
C.6 Orthographic Transformations ..C-5

D. GL Error Messages ... D-1

E. Using Graphics and Share Groups.. E-1

Index... Index-1

xiv

xv

Figures

Figure 2-1 Simple Convex Polygon ...2-12
Figure 2-2 Simple Concave Polygon ...2-13
Figure 2-3 Another Simple Concave Polygon..2-13
Figure 2-4 Nonsimple Polygon ..2-14
Figure 2-5 Another Nonsimple Polygon...2-14
Figure 2-6 Bowtie Polygon..2-14
Figure 2-7 Non–Point-Sampled Polygons ..2-17
Figure 2-8 Point-Sampled Polygons ..2-19
Figure 2-9 Point-Sampled Polygon with Edges

Exactly on Pixel Centers ...2-19
Figure 2-10 Point Sampling Anomaly...2-20
Figure 2-11 Simple Triangle Mesh...2-21
Figure 2-12 Example of swaptmesh() Construction.................................2-23
Figure 2-13 Another swaptmesh() Example..2-24
Figure 2-14 Mesh of Quadrilateral Strips ...2-28
Figure 2-15 Equivalent T-mesh ..2-28
Figure 2-16 Clipping Behavior of PYM_LINE ..2-29
Figure 3-1 How Character Strings are Clipped ...3-4
Figure 3-2 Bitmask for the Character A ..3-7
Figure 3-3 Character Bitmap Created with defrasterfont()3-8
Figure 4-1 Gouraud Shaded Triangle..4-10
Figure 7-1 Coordinate Systems ..7-2
Figure 7-2 Frustum...7-6
Figure 7-3 Clipping Planes ...7-8
Figure 7-4 The window() Projection Transformation7-9

xvi

Figure 7-5 The ortho() Projection Transformation7-10
Figure 7-6 The polarview() Viewing Transformation..........................7-13
Figure 7-7 The lookat() Viewing Transformation7-14
Figure 7-8 Modeling Transformations ..7-16
Figure 7-9 Effects of Sequence of Translations and Rotations...............7-18
Figure 8-1 Overlapping Polygons..8-2
Figure 10-1 Writemask ..10-8
Figure 10-2 Example Cursors ...10-18
Figure 13-1 Depth-Cued Cube ...13-1
Figure 13-2 Viewing Volume Showing Clipping Planes

and a Depth-Cued Line ..13-3
Figure 13-3 Color Ramp ..13-4
Figure 14-1 Parametric Curve as a Mapping ...14-3
Figure 14-2 Cross-plot ...14-4
Figure 14-3 Spline...14-5
Figure 14-4 Influence of Control Points on a Curve14-6
Figure 14-5 A B-Spline with Its Control Polygon......................................14-6
Figure 14-6 Moving a Control Point to Change

the Shape of a B-Spline ...14-7
Figure 14-7 Basis Functions for an Example Cubic B-Spline14-8
Figure 14-8 Basis Functions for a Cubic B-Spline

with a Multiple Interior Knot ..14-8
Figure 14-9 B-Spline Relationships..14-9
Figure 14-10 Increasing the Weight of a Control Point

Increases Its Influence...14-10
Figure 14-11 Representing a Circle with NURBS14-12
Figure 14-12 Parametric NURBS Surface..14-13
Figure 14-13 Trimmed Surface ...14-18
Figure 14-14 Trimming Curves ..14-19
Figure 15-1 Antialiased Line...15-3
Figure 15-2 Example Multisample Patterns ...15-37
Figure 15-3 Flexible Framebuffer Configuration.....................................15-39
Figure 16-1 Sphere Defined as an Object ..16-3
Figure 16-2 Drawing a Hierarchical Object ..16-6
Figure 16-3 Bounding Boxes...16-7

xvii

Figure 17-1 Effects of Clipping on Feedback ...17-3
Figure 18-1 Textures for Wood and Water...18-2
Figure 18-2 Fully Textured Scene ..18-3
Figure 18-3 Mapping from 2-D Texture Space

to 3-D Object Space ...18-4
Figure 18-4 3-D Texture...18-4
Figure 18-5 Extracting an Arbitrary Planar Texture

from a 3-D Texture Volume...18-5
Figure 18-6 Example of a Tree Created with a 2-component Texture....18-8
Figure 18-7 Structure of a Texture Array..18-9
Figure 18-8 Texture Minification ...18-16
Figure 18-9 Texture Magnification ..18-16
Figure 18-10 Texture Minification ...18-17
Figure 18-11 MIPmap ..18-17
Figure 18-12 Texture Magnification ..18-21
Figure 18-13 LOD Extrapolation Curves ..18-25
Figure 18-14 Clamping the LOD Extrapolation...18-26
Figure 18-15 LOD Interpolation Curves ...18-29

xviii

xix

Tables

Table 1-1 System Types and Graphics Library Versions..........................1-8
Table 1-2 Tokens for Graphics Resource Inquiries....................................1-9
Table 2-1 Vertex Subroutines..2-3
Table 2-2 Sequence of Vertices in a Mesh ...2-22
Table 2-3 Rectangle Subroutines ..2-32
Table 2-4 Screen Box Subroutines ..2-34
Table 2-5 Circle Subroutines ...2-34
Table 2-6 Arc Subroutines ...2-36
Table 2-7 Old-Style Point Subroutines ..2-38
Table 2-8 Old-Style Move and Draw Subroutines...................................2-39
Table 2-9 Old-Style Filled Polygon Move and Draw Subroutines........2-40
Table 2-10 Old-Style Polygon and Filled Polygon Subroutines2-41
Table 3-1 cmov() Subroutines ..3-3
Table 4-1 Bitplane Configurations

of Silicon Graphics Workstations..4-3
Table 4-2 The Color (c) Family of Subroutines ..4-7
Table 4-3 Default Color Map ..4-16
Table 5-1 Class Ranges in the Device Domain ...5-10
Table 5-2 Input Buttons ...5-11
Table 5-3 Input Valuators..5-12
Table 5-4 Window Manager Event Tokens ..5-14
Table 5-5 Spaceball Input Buttons ...5-15
Table 5-6 Monitor Types ...5-19
Table 5-7 Video Register Values...5-20
Table 5-8 Live Video Digitizer Commands ..5-21

xx

Table 8-1 Maximum and Minimum z-buffer Values.................................8-8
Table 8-2 Values of zfunction() for Personal IRIS czclear()8-9
Table 10-1 Overlay and Underlay Bitplane Configurations10-16
Table 11-1 Hints for readdisplay()...11-5
Table 15-1 Blending Factors ..15-6
Table 15-2 Tokens for Selecting Accumulation

Multisample Patterns..15-45
Table 17-1 IRIS-4D/G/GT/GTX Feedback Data.......................................17-4
Table 18-1 Texture Components ..18-7
Table 18-2 Texture Image Array Format...18-10
Table 18-3 Texture Component Configuration

for Different Texel Sizes ...18-14
Table 18-4 Formulas for Computing DetailTexture Filters18-30
Table 18-5 The t() Subroutine...18-33
Table 18-6 Texture Look-up Table Actions...18-36
Table 18-7 TV_MODULATE Equations ...18-40
Table 18-8 TV_BLEND Equations..18-40
Table 18-9 TV_DECAL Equations..18-41
Table 19-1 Error Values ...19-14
Table 19-2 DGL Client Exit Values ..19-15
Table 19-3 DGL Server Exit Value ...19-16
Table A-1 GL State Types... A-1
Table A-2 Scope of GL Subroutines .. A-2
Table B-1 Default Color Map Values .. B-1
Table B-2 Keys to Information in Table B-3 ... B-2
Table B-3 Global State Attribute Defaults .. B-2
Table D-1 GL Error Messages and Probable Causes................................ D-1

xxi

Introduction

The Graphics Library Programming Guide introduces the Silicon Graphics®
IRIS® Graphics Library™ (GL) to graphics programmers and application
developers. The IRIS GL is a library of subroutines for creating 2-D and 3-D
color graphics and animation.

This guide covers the IRIS GL as it is implemented on Silicon Graphics
workstations. Where it is necessary to differentiate among the various
workstation models, the applicable product is identified by its model name.

This guide is written for C programmers. It assumes:

• You are comfortable writing programs in the C programming
language.

Programmers who use one of the other languages supported by the
GL (C++, Ada®, Fortran, Pascal, or BASIC) can follow the context of
the information presented in this guide and look at the on-line GL
manual (man) pages to obtain the proper syntax for that language.

• You are familiar with the Silicon Graphics IRIX™ operating system and
can create and edit files.

This guide does not assume that you have a knowledge of computer graphics.
However, if you are already familiar with the basic concepts of computer
graphics, you will find it easy to learn this particular implementation. For an
introduction to computer graphics concepts, see the “Suggestions for Further
Reading” at the end of this introduction.

xxii

How to Use This Guide

This guide is organized so that programmers new to the GL can read through
it, skipping over the more complex topics until later. All sections dealing with
advanced topics begin with a paragraph that first alerts you to the specialized
nature of the material, and then guides you to the next appropriate section
where you can continue reading.

Sample programs are provided throughout this guide, and as C language
source code in the /usr/people/4Dgifts directory on your workstation, to
demonstrate GL programming concepts.

Once you understand the sample programs, you can experiment with the GL
functions to get the effects you want to use in your own programs. The sample
programs are general enough that you should be able to adapt them for your
own needs. In many cases, you may be able to change parameter values to
achieve the effects you want. In other cases, you need to work the GL functions
into the structure of your own programs.

All the sample programs in 4Dgifts are complete programs, but much of the
sample code in the text is only fragments of complete programs. In these cases,
you need to construct the remaining framework to have the program compile
and execute.

How to Use the Sample Programs

All the sample programs in this guide are available on-line in the directory:

/usr/people/4Dgifts/examples/glpg

Follow the instructions in the README file to set up your environment so you
can compile and run these programs.

Sample programs are in the directory under /usr/people/4Dgifts/examples/glpg
that corresponds to the chapter number that contains the program. All the
directories begin with the letters ch, followed by a two digit number:

ch<nn>

where nn represents the chapter number. Sample programs for advanced
topics and certain workstation models are located separately.

xxiii

Typographical Conventions

In this guide, special typefaces designate:

• New words, ideas, or important information

• References to “Section Titles” in this guide and in other documents.

• Directory, file, and program names

• IRIX commands and system() calls

• Subroutine arguments

• Information that you enter from the keyboard

• <key> that you press on the keyboard

• GL subroutines()

• GL TOKENS, also called SYMBOLS

• Sample code

What this Guide Contains

In Volume I of the Graphics Library Programming Guide:

• Chapter 1, “Graphics Development Environment,” describes the tools
and the facilities available for developing graphics applications.

• Chapter 2, “Drawing,” introduces graphics fundamentals that you use
throughout the graphics development process.

• Chapter 3, “Characters and Fonts,” describes how to create fonts and
work with character strings.

• Chapter 4, “Display and Color Modes,” explains the operation of the
color monitor and tells you how to use different methods for describing
and working with color.

• Chapter 5, “User Input,” describes the GL facilities for programming a
user interface for your application.

• Chapter 6, “Animation,” describes how to set graphics scenes in motion.

• Chapter 7, “Coordinate Systems,” describes the coordinate systems used
in creating and displaying geometry.

xxiv

• Chapter 8, “Hidden-Surface Removal,” describes techniques you can use
to reduce drawing time by drawing only the items that are visible.

• Chapter 9, “Lighting,” tells you how to use lights and lighting effects.

• Chapter 10, “Frame Buffers and Drawing Modes,” explains the different
“layers” of graphics memory and of the display screen.

• Chapter 11, “Pixels,” describes the methods used to access screen pixels.

• Chapter 12, “Picking and Selecting,” describes how to program your
applications to let users select items on the screen.

In Volume II of the Graphics Library Programming Guide:

• Chapter 13, “Depth-Cueing and Atmospheric Effects,” describes how you
can add realism to your scene by adding depth perception cues.

• Chapter 14, “Curves and Surfaces,” tells you how to use NURBS to draw
curves and surfaces.

• Chapter 15, “Antialiasing,” describes how to compensate for the inherent
limitations in the way graphics are displayed on a monitor.

• Chapter 16, “Graphical Objects,” tells you how to work with hierarchies
and use display lists.

• Chapter 17, “Feedback,” tells you how to access hardware operational
information during the drawing process.

• Chapter 18, “Textures,” tells you how to use texture to promote realism.

• Chapter 19, “Using the GL in a Networked Environment,” describes how
to run GL programs over the network on a remote host and describes
how non-graphics servers can access graphics tools.

• Appendix A, “Scope of GL Subroutines,” describes the operational modes
of the subroutines and the resources they act upon.

• Appendix B, “Global State Attributes,” describes attributes of the
graphics development environment and the GL subroutines.

• Appendix C, “Transformation Matrices,” lists the matrices used to
calculate graphics operations.

• Appendix D, “Error Messages,” lists the GL error messages and suggests
debugging procedures.

• Appendix E, “Using Graphics and Share Groups,” tells you how to use
shared processes with graphics.

xxv

How to Use the On-line Manual Pages

GL man pages are located in Section 3G of the on-line manual pages. Read the
on-line GL man pages for detailed information about syntax, machine
capabilities and special features. In most cases, the man pages provide more
in-depth descriptions of the individual subroutines than is presented in this
guide.

Using Man Pages from the Toolchest

An easy way to access man pages is to select “Manual Pages” from the Tools
section of the Toolchest on your workstation. This launches the X Window
System™ utility xman, a browsing tool for locating and reading man pages. To
learn how to use xman, use the left mouse button to pull down the Options
menu, select “Help”, and read the on-line instructions.

You can leave xman running while you use other workstation utilities and
windows. Click on the small square in the upper right-hand corner to iconify
the browser when you aren’t using it. See the IRIS Utilities Guide for more
information about the Toolchest, system utilities, and other workstation basics.

Using Man Pages from an IRIX Shell

To read a man page from an IRIX shell, use the man command followed by the
name of the command you are interested in. For example, to read the man page
on man itself, enter:

% man man

To get a keyword list of man pages, enter apropos or man -k followed by the
topic name. For example, to get a list of man pages that have the word
“printer” in them, enter:

% man -k printer

or enter:

% apropos printer

xxvi

This returns a list of man pages that contain the keyword, along with the
subject line of each man page. Look at the subjects to decide which man page
to view.

Note: If you have never used apropos or man -k before, you (or your system
administrator) may have to make the whatis database on your system.
See the makewhatis man page for information on how to use that
command.

Suggestions for Further Reading

For a general introduction to computer graphics, see:

Foley, J.D., A. van Dam, S. Feiner, and J.D. Hughes, Computer Graphics
Principles and Practice, Second Edition, Addison Wesley Publishing Company
Inc., Menlo Park, 1990.

Newman, W., and R. Sproull, Principles of Interactive Computer Graphics, 2nd
ed., McGraw-Hill, New York, 1979.

In the manual set shipped with your system, see:

Graphics Library Programming Tools and Techniques, Silicon Graphics P/N
007-1489-010, for information about tools and techniques that can assist you in
developing and debugging your IRIS GL applications.

Graphics Library Programming Guide 1-1

Chapter 1

1. Graphics Development Environment

This chapter provides a brief overview of the graphics development
environment. The graphics development environment contains the tools and
systems that you work with when you write GL programs.

The tools available in the graphics development environment include your
workstation, the IRIX operating system, the IRIS Graphics Library, system
libraries, include files, the X Window System™, and a programming language
that provides the interface to the GL. This guide describes the ANSI C interface
to the GL.

The IRIS workstation processes graphics operations through the Geometry
Pipeline™. The Geometry Pipeline is like an assembly line that performs the
specialized graphics tasks that create and display graphics.

The IRIX operating system provides commands for setting up and
maintaining your system, creating and editing files, and using IRIX system
calls in your GL applications.

1.1 Using the Graphics Library and System Libraries

The GL is a library of subroutines that you call from a program, written in C,
or another language, to draw and animate 2-D and 3-D color graphics scenes.
You build your application using GL commands within the framework of the
programming language. The programming language provides the logical
structure for your program, and GL commands provide the interface to the
graphics software and hardware.

1-2 Graphics Development Environment

The GL is network-transparent, so you can send graphics information over the
network to a remote host, send graphics information to multiple display
screens, or share processing tasks with other systems. To use
network-transparent features, you must link with the shared libraries, as
described in Section 1.3.2, “Compiling C Programs.” See Chapter 19, “Using
the GL in a Networked Environment,” for more information about network
transparency. The X Window System, described in Section 1.2, “Using the X
Window System,” manages operations over the network.

1.1.1 System Libraries

System libraries allow you to use capabilities such as graphics, fonts, and math
routines. Shared libraries provide the optimum use of system resources and
the best portability and compatibility between IRIS platforms. Libraries such
as the shared graphics library (libgl_s.a), the math library (libm.a), and the font
library (libfm.a) are invoked when you link to them when compiling your
program.

1.1.2 Include Files

Include files provide standard definitions that your program uses. The include
file gl/gl.h provides the standard definitions for graphics. Include files such as
math.h, device.h, and stdio.h provide definitions for system facilities that your
program uses.

1.2 Using the X Window System

Your workstation uses the X Window System. The X Window System provides
resource management and communication through a client/server system,
known as the X client and X server, that you can read about in your X Window
System documentation. A few of the facilities that it includes are a terminal
emulator (xterm), a window manager (4Dwm), a manual page browser (xman),
mail managing utilities, user customizing options, font utilities, demos, and
toolkits for creating graphical user interfaces.

The client/server model allows for remote display of graphics output. The
DISPLAY environment variable determines where output is to be displayed.

Graphics Library Programming Guide 1-3

Most of the time you display graphics on the default display, which is the
screen attached to your workstation.

The X Window System designates displays by:

hostname:server.screen

where:

hostname is the name of the server on which the display resides.

server is the number of the X server. Some setups have more than one
server, so they are numbered starting with 0; the default is 0.

screen is the screen to display on. Some systems have more than one
screen; the default is 0.

A typical display is:

mysystem.mydomain:0.0

If you are displaying on the system in front of you, it is called a local host. When
displaying on a local host, you do not have to specify the hostname, so your
DISPLAY is :0.0 if you have only one screen on your system. Because this is
the default, your system already knows that DISPLAY is :0.0, and you do not
have to set it explicitly. You can learn more about X servers and displays in
your X Window System documentation. See Chapter 19, “Using the GL in a
Networked Environment,” for information about how to share graphics across
a network.

The 4Dwm window manager supplied with your system provides a default
appearance for windows and manages window operations. You can create X
windows, GL windows, and mixed-model applications, which are either X
windows that accept GL input, or GL windows that intermix X and GL
subroutines. Creating, manipulating, and displaying windows are activities
central to your task as a GL programmer. Working with GL windows is
covered in depth in the Graphics Library Windowing and Font Library
Programming Guide.

1-4 Graphics Development Environment

1.3 Programming in C

The C programming language provides the framework for developing GL
programs. This guide assumes that you are comfortable writing C programs.

1.3.1 Using the ANSI C Standard

Ideally, GL programs are independent of the particular IRIS platform and the
installed graphics hardware that is running the application. The best way to
develop machine-independent code is to follow the ANSI C standard and to
query the system about available hardware to establish its graphics
performance capabilities. You can learn about the ANSI C standard in your C
programming language documentation. To compile non-ANSI compliant
code, use the -cckr flag to invoke the standard C compiler, as described in
Section 1.3.2.

1.3.2 Compiling C Programs

To compile C programs, use the cc (C compiler) command:

% cc myprogram.c -lc_s -lgl_s -lm -o myprogram

The first two options in this list allow the same binary to run on all IRIS-4D
Series systems:

-lc_s links with the shared C library.

-lgl_s links with the shared Graphics library.

-lm links with the math library.

-o defines the name of the output file.

Some other compile options that you might want to use are:

-cckr invokes the standard C compiler rather than ANSI C.

-lfm_s links with the IRIS shared Font Manager library.

-lsun links with the Network Information Service (NIS) to supply a
hostname list for network-transparent GL applications.

Graphics Library Programming Guide 1-5

1.4 GL Program Structure

Steps that you perform in a GL program include:

1. Querying the system for the availability of graphics resources.

2. Initializing the Graphics Library.

3. Calling GL subroutines to set and get global state attributes and to create
and render graphics.

4. Exiting the Graphics Library.

The best way to learn about what a GL program contains is to look at a sample
program. The sample program for this chapter is in the ch01 directory of
/usr/people/4Dgifts/examples/glpg. Change directories (cd) to that directory now
so you can follow along with the discussion.

This program is named green.c:

#include <gl/gl.h>

main()
{
 prefsize(400, 400);
 winopen("green");
 color(GREEN);
 clear();
 sleep(10);
 gexit();
 return 0;
}

Compile the program using the compile line:

% cc green.c -lgl_s -lc_s -o green

Run the sample program by typing:

% green

Move the mouse cursor to the location where you want the window to appear
and click the left mouse button. A solid green window opens, remains visible
for 10 seconds, and then disappears.

1-6 Graphics Development Environment

Look at the program in detail. The first line

#include <gl/gl.h>

includes all the standard definitions for graphics. It must be included in every
graphics program. You must include gl/gl.h in green.c to get the definition of
“GREEN” in the call to color().

The subroutine

prefsize(400,400);

tells the window system that when a window is opened, it should be 400 pixels
on a side. It doesn’t create a window—it just establishes the initial size of the
next window to be opened.

The call to winopen() actually creates the window and initializes the GL.
Calling color() with an argument of GREEN sets the drawing color for
subsequent operations to the value of the constant GREEN, defined in gl/gl.h.
The call to clear() fills the window with the current drawing color. You set
the drawing color for other operations in the same manner—that is, by calling
color() with the color specification you wish to use. See Chapter 4, “Display
and Color Modes,” for more information. The call to gexit() closes the
window and tells the system that the process is finished using graphics.

As you work through the rest of the chapters, run the sample programs, copy
them, and modify their parameters to see what effects are possible. The next
sections examine the basic elements of a GL program that are in the sample
program.

1.4.1 Initializing the System

Initializing the Graphics Library means telling the system to set up the
graphics software and hardware environment in which a program will run.
Use winopen() to initialize the GL and open a graphics window to tell the
system where to display the graphics output of your program.

winopen() initializes the hardware, allocates memory for symbol tables and
display list objects, and sets up default values for global state attributes.
winopen() must be called before you call most GL routines.

Graphics Library Programming Guide 1-7

You can call these GL subroutines before you call winopen(), ginit(), or
gbegin:

fudge
foreground
imakebackground
iconsize
keepaspect
maxsize
minsize
noborder
noport
prefposition
prefsize
stepunit
getgdesc
gversion
ismex
scrnselect

1.4.2 Getting Graphics Information

You can make your application more portable by including code that queries
the system for its graphics capabilities before commencing with the program.

Querying the System for Graphics Resources

getgdesc() allows you to inquire about characteristics of the graphics system,
such as screen size, number of bitplanes, and the existence of optional
hardware such as z-buffer. getgdesc() returns a number that describes the
hardware configuration specified by its parameter, inquiry. See the getgdesc(3G)
man page for a complete list of parameters. getgdesc() returns a value of -1
if the inquiry is invalid, or if the specified hardware is not installed. You can call
getgdesc() at any time, including before the first winopen().

The values that getgdesc() returns are not affected by changes to software
modes or software configuration.

Querying the System for Graphics Hardware and Software Versions

gversion(v) returns information about the current graphics hardware and
the Graphics Library version.

1-8 Graphics Development Environment

The argument v is a pointer to a location into which gversion() copies a
null-terminated string. Reserve at least 12 characters at this location.
gversion() fills the buffer pointed to by v with a null-terminated string that
specifies the graphics hardware type and the version number of the Graphics
Library.

You can call gversion() before the first winopen().

Caution: Using gversion() makes programs machine-specific. In almost
all cases, getgdesc() is preferable to gversion().

Table 1-1 lists the descriptors returned by gversion(). In the table, m and n
represent the major and minor release numbers, respectively, of the IRIX
software release to which the current Graphics Library belongs.

Note: Personal IRIS units with early serial numbers do not support the
complete Personal IRIS graphics functionality.

Graphics Type String Returned

B or G GL4D-m.n

GT or GTB GL4DGT-m.n

GTX or GTXB GL4DGTX-m.n

VGX GL4DVGX-m.n

VGXT, Skywriter GL4DVGXT-m.n

RealityEngine GL4DRE-m.n

Personal IRIS GL4DPI2-m.n

Personal IRIS with Turbo Graphics GL4DPIT-m.n

Personal IRIS (early serial numbers) GL4DPI-m.n

IRIS Indigo Entry GLDLG-m.n

XS GL4DXG-m.n

XS24 GL4DXG-m.n

Elan GL4DXG-m.n

Table 1-1 System Types and Graphics Library Versions

Graphics Library Programming Guide 1-9

Setting Compatibility Modes

glcompat() gives control over details of the compatibility among systems.
glcompat() controls two compatibility modes. The first, GLC_OLDPOLYGON,
offers compatibility with old-style polygons, described in Chapter 2,
“Drawing.” The second, GLC_ZRANGEMAP, controls the state of z-range mapping
mode, described in Chapter 8, “Hidden-Surface Removal.”

Setting and Getting the Graphics Resource Configuration

The GL is a modal system—it maintains settings, or modes, that determine how
graphics resources are set up. When you change certain modes, you need to
call gconfig() to configure them. Table A-2 in Appendix A, “Scope of GL
Subroutines,” contains a notation in its third column that indicates which
commands require a gconfig() in order to take effect. Call gconfig()
following the group of all calls that require a gconfig().

The current configuration can be read back with getgconfig().

Table 1-2 lists the getgconfig() tokens and the resource they describe.

Token Resource

GC_BITS_CMODE Color index size

GC_BITS_RED Red component size

GC_BITS_GREEN Green component size

GC_BITS_BLUE Blue component size

GC_BITS_ALPHA Alpha component size

GC_BITS_ZBUFFER z-buffer size

GC_ZMIN Minimum depth value that can be stored in the z-buffer

GC_ZMAX Maximum depth value that can be stored in the z-buffer

GC_BITS_STENCIL Stencil size

GC_BITS_ACBUF Accumulation buffer size

GC_MS_SAMPLES Number of samples in multisample buffer

Table 1-2 Tokens for Graphics Resource Inquiries

1-10 Graphics Development Environment

Requests for GGC_ZSIZE, GGC_ACSIZE, and GGC_MSZSIZE return a negative size
if the buffer is signed.

1.4.3 Global State Attributes

The global state attributes are options that specify information that the GL uses.
Many of the GL subroutines allow you to change the values of these attributes.
Unless you specify otherwise, the global state attributes use their default
values. See Appendix B for the default values of the global state attributes.

1.4.4 Exiting the Graphics Environment

gexit() performs housekeeping functions associated with the termination of
graphics programming, such as freeing memory used for GL data structures.
Call gexit() as the last step in a GL program.

GC_BITS_MS_ZBUFFER Multisample zbuffer size

GC_MS_ZMIN Minimum depth value that can be stored in the
multisample z-buffer

GC_MS_ZMAX Maximum depth value that can be stored in the
multisample z-buffer

GC_BITS_MS_STENCIL Multisample stencil size

GC_STEREO Stereoscopic buffer state

GC_DOUBLE Display double buffer state

Token Resource

Table 1-2 (continued) Tokens for Graphics Resource Inquiries

Graphics Library Programming Guide 2-1

Chapter 2

2. Drawing

This chapter describes how to draw graphics primitives. Primitives are basic
geometric elements such as points, lines, and polygons. You can draw primitives
with different colors and techniques. You can draw points with different sizes,
lines with different widths and styles, and polygons with different patterns
and filling methods.

• Section 2.1, “Drawing with the GL,” describes how to draw
geometric figures with GL subroutines.

• Section 2.2, “Old-Style Drawing,” describes GL subroutines that were
used for drawing in early releases of the GL, and is included for
compatibility only.

2.1 Drawing with the GL

When you provide the specifications of a geometric figure, also called a
geometry, the GL draws it on the screen right away. This is called immediate
mode—the GL is drawing things as the drawing subroutines are called.

You describe a geometry in GL terms by specifying its edges and corners. Each
corner is a vertex (a point in space). You specify the coordinates (position in
space) of the vertices and the order in which the vertices are connected to form
edges. Edges then connect to form the geometry. Edges connected as lines make
a wireframe geometry; edges connected as polygons make a geometry with
solid faces.

2-2 Drawing

When you draw a geometry, you use one of the GL primitives to draw and
connect the vertices. You mark the beginning and end of the vertex list with
special bgn* and end* subroutines, which signify not only the beginning and
end of the list of vertices, but also the type of primitive, as indicated by the
asterisk (*). Which bgn* and end* subroutines you use depends on what kind
of geometry you are drawing. You will see the bgn*/end* programming
structure throughout the GL. It is analogous to the begin-end paradigm of
modular programming languages.

Note: You need to call gflush() after the end* statement to complete the
drawing process. If you have used the GL before, you may remember
that this step was previously necessary only when you were using the
DGL. Because the GL is network-transparent, all programs need to call
gflush() after the last drawing command.

You tell the GL to begin drawing with a bgngeometry statement, where
geometry denotes the primitive to use. You then specify a list of vertices,
whose coordinates are of the appropriate type of vertex data, to connect in
order to form the edges. Finally, you tell the GL to close the figure with an
endgeometry statement.

2.1.1 Vertex Subroutines

Specify a vertex list by calling the vertex() subroutine for each vertex
between the bgn* and end* statements.

The content of the bgn*/end* modules have the format illustrated by this
pseudocode:

bgngeometry();
vtype(vertex 1);
vtype(vertex 2);
vtype(vertex .);
vtype(vertex .);
vtype(vertex n);

endgeometry();
gflush();

Note: No drawing is guaranteed to happen until gflush() is called.

Graphics Library Programming Guide 2-3

The GL contains 12 forms of the vertex() subroutine—one for each possible
data type of a vertex coordinate. This group of subroutines is known
collectively as the v(), for vertex, subroutine.

You can specify vertex coordinates as short integers (16 bits), long integers (32
bits), single-precision–floating-point values (32 bits), and double-precision–
floating-point values (64 bits). For each of these types, there is a v() subroutine
for defining vertices in 2-D, 3-D, and 4-D, also called homogeneous coordinates.

Homogeneous coordinates are referred to as 4D because they use a fourth
parameter in addition to the 3-D coordinates. Homogeneous coordinates are
useful for matrix manipulations and other operations common to graphics.

All forms of the vertex subroutine begin with the letter v. The second character
is 2, 3, or 4, indicating the number of dimensions, and the final character
indicates the data type: s for short integer (16 bits), i for long integer (32 bits),
f for single-precision floating point (32 bits), d for double-precision floating
point (64 bits).

Table 2-1 lists the vertex subroutines.

Argument Type 2-D 3-D 4-D

16-bit integer v2s() v3s() v4s()

32-bit integer v2i() v3i() v4i()

32-bit floating point v2f() v3f() v4f()

64-bit floating point v2d() v3d() v4d()

Table 2-1 Vertex Subroutines

2-4 Drawing

This sample program, greensquare2.c, demonstrates the use of some of the
different vertex subroutines. This program draws a square with green lines.

#include <gl/gl.h>

short vert1[3] = {200, 200, 0}; /* lower left corner */
long vert2[2] = {200, 400}; /* upper left corner */
float vert3[2] = {400.0, 400.0}; /* upper right corner */
double vert4[3] = {400.0, 200.0, 0.0}; /* lower right corner */

main()
{

prefsize(400, 400);
winopen("greensquare2");
ortho2(100.5, 500.5, 100.5, 500.5);
color(WHITE);
clear();
color(GREEN);
bgnline();

v3s(vert1);
v2i(vert2);
v2f(vert3);
v3d(vert4);
v3s(vert1);

endline();
sleep(10);
gexit();
return 0;

}

You have seen the prefsize() and winopen() commands before. The
ortho2() command sets up a coordinate system inside your window to allow
you to see the output of the program at a reasonable size and perspective. See
Chapter 7, “Coordinate Transformations,” for more information on ortho2().
The values have .5 added to them so that pixels are centered on whole
numbers. This eliminates the potential problem of roundoff error from
non-integer pixel locations causing the display to be shifted by one or more
pixel.

Graphics Library Programming Guide 2-5

Although it is unlikely that you would write a program like the one above, it
does illustrate two things:

• Within one geometric figure, you can mix different types of vertices. In a
typical application, all the vertices tend to have the same dimension and
the same form.

• In the GL, all geometric figures are 3-D and the hardware treats them as
such. 2-D versions of the vertex subroutines are actually shorthand for an
equivalent 3-D subroutine with the z coordinate set to zero.

This sample program, crisscross.c, clears a window to white, and then draws a
pair of intersecting red lines connecting its opposite corners.

#include <gl/gl.h>

long vert1[2] = {101, 101}; /* lower left corner */
long vert2[2] = {101, 500}; /* upper left corner */
long vert3[2] = {500, 500}; /* upper right corner */
long vert4[2] = {500, 101}; /* lower right corner */

main()
{

prefsize(400, 400);
winopen("crisscross");
ortho2(100.5, 500.5, 100.5, 500.5);
color(WHITE);
clear();
color(RED);
bgnline();

v2i(vert1);
v2i(vert3);

endline();
bgnline();

v2i(vert2);
v2i(vert4);

endline();
sleep(10);
gexit();
return 0;

}

This example declares four long arrays (vert1, vert2, vert3, and vert4) and
assigns values to all the elements of each array. The size of the next window to
be opened is established by prefsize() as 400 pixels by 400 pixels. Next,
winopen() opens a window with the title crisscross.

2-6 Drawing

The ortho2() call sets up the coordinate system so that a point with
coordinates (x, y) maps exactly to the point on the screen that has the same
coordinates. The ortho2() command is discussed in Chapter 7. The color()
call sets the current color to white and paints the window with the current
color, which is white.

The next four lines of code draw a line from (101, 101) to (500, 500)—the
lower-left corner to the upper-right corner. bgnline() tells the system to
prepare to draw a line using the list of vertices immediately following it. v2i()
takes an array of coordinates as its argument and creates vertices at the
specified coordinates.

The first v2i() subroutine call creates the first endpoint of the line segment.
The second v2i() subroutine call creates the other endpoint of the line
segment and the system draws a line.

The endline() subroutine call tells the system that it has all the vertices for the
line. The next four lines draw a line from (101, 500) to (500, 101)—the
lower-right corner to the upper-left corner. The IRIX call sleep(10) delays the
program from exiting until 10 seconds have elapsed.

You can use any of the five primitives described in the next five
sections—points, lines, closed lines, polygons, and meshes—with the vertex
subroutines.

Graphics Library Programming Guide 2-7

2.1.2 Points

Use bgnpoint() and endpoint() to specify a vertex list that is drawn as a
group of disconnected points.

This sample program, pointpatch.c, draws a set of points arranged in a square
pattern. The square is 20 pixels wide by 20 pixels high, and the points are
spaced 10 pixels apart.

#include <gl/gl.h>

main()
{

long vert[2];
int i, j;

prefsize(400, 400);
winopen("pointpatch");
color(BLACK);
clear();
color(WHITE);
for (i = 0; i < 20; i++) {

vert[0] = 100 + 10 * i; /* load the x coordinate */
bgnpoint();
for (j = 0; j < 20; j++) {

vert[1] = 100 + 10 * j; /* load the y coordinate */
v2i(vert); /* draw the point */

}
endpoint();

}
sleep(10);
gexit();
return 0;

}

Mathematical points have no size, but a point must be assigned a size to be
displayed. The system draws a point as a 1-pixel point on the screen. On some
systems, you can define the size of the points that are drawn using the
pntsize() or pntsizef() subroutines. Specify the size of the point in pixels
as a short for pntsize() and as a float for pntsizef(). See the pntsize(3G) and
pntsizef(3G) man pages for information about point size limits and the
capabilities of different systems.

2-8 Drawing

2.1.3 Lines

The GL has two types of line primitives: polylines and closed lines. A polyline is
a series of connected line segments. A closed line automatically connects the
last vertex in a polyline to the first vertex in the polyline.

Polylines

Use bgnline() and endline() to specify a vertex list that is drawn as a
polyline. Line segments can cross each other, and vertices can be reused. If the
vertices are specified with 3-D or 4D coordinates, you can place them
anywhere in 3-D space; they need not all lie in the same plane.

This sample program, greensquare.c, draws lines that form a green square. The
bgnline()/endline() pair is used to select the polyline primitive for
drawing. The first vertex, v2i(vert1), is repeated at the end of the vertex list
to connect the first and last line segments. It is better to draw such a sequence
using the closedline() primitive, as described next in “Closed Lines”.

#include <gl/gl.h>

long vert1[2] = {200, 200};
long vert2[2] = {200, 400};
long vert3[2] = {400, 400};
long vert4[2] = {400, 200};

main()
{

prefsize(400, 400);
winopen("greensquare");
ortho2(100.5, 500.5, 100.5, 500.5);
color(WHITE);
clear();
color(GREEN);
bgnline();

v2i(vert1);
v2i(vert2);
v2i(vert3);
v2i(vert4);
v2i(vert1);

endline();
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 2-9

Closed Lines

Use bgnclosedline() and endclosedline() to specify a vertex list that is
drawn as a series of line segments, in which the last vertex in the sequence is
automatically connected to the first vertex.

This sample program, n-gon.c, draws a regular n-gon, an n-sided polygon with
sides of equal length:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gl/gl.h>
#define X 0
#define Y 1
#define XY 2

main(argc, argv)
int argc;
char *argv[];
{

int n, i;
float vert[XY];

/* Tell user to enter number of sides if no number is typed */
if (argc != 2) {

fprintf(stderr, "Usage: n-gon <number of sides>\n");
return 1;

}
n = atoi(argv[1]); /* Convert character entered to integer */
prefsize(400, 400);
winopen("n-gon");
color(WHITE);
clear();
color(RED);
bgnclosedline();
for (i = 0; i < n; i++) {

vert[X] = 200.0 + 100.0 * fcos(i * 2.0 * M_PI / n);
vert[Y] = 200.0 + 100.0 * fsin(i * 2.0 * M_PI / n);
v2f(vert);

}
endclosedline();
sleep(10);
gexit();
return 0;

}

2-10 Drawing

Run the program by typing ngon n, where n is the number of sides you want
in the n-gon. If you do not specify a number, the program exits and displays a
usage message telling you how to run it.

This example draws the n-gon only once, so there is no real penalty for
computing the coordinates of the vertices. If it were necessary to draw the
polygon over and over again, the calculated vertices should probably be saved
in an array. In applications that draw the same geometry repeatedly with
different viewing parameters, it is usually more efficient to save the
coordinates in arrays. The sample program does not save the coordinates
because the n-gon is drawn only once.

Linestyles

A linestyle describes the way the system draws lines on the screen. The
linestyle represents a 16-bit pattern on the screen. The least significant bit of the
pattern is the mask for the first pixel of the line and every sixteenth pixel
thereafter.

The mask determines which pixels are turned on and which pixels are left off.
Pixels corresponding to 1 in the linestyle are drawn; those corresponding to 0
are not drawn. For example, the linestyle 0xFFFF draws a solid line; 0xF0F0
draws a dashed line; and 0x8888 draws a dotted line. The system runs this
pattern repeatedly to determine which pixels in a 16-pixel line segment to
color. There is no concept of an opaque linestyle in the GL.

Defining a Linestyle

Use the deflinestyle() subroutine to define a line style to save in an indexed
table. When you want that style to be used, you retrieve it by its index. There
are 216 possible linestyle patterns. By default, index 0 contains linestyle 0xFFFF,
which draws solid lines. You cannot redefine linestyle 0.

To replace a linestyle in the table, specify the index of the new linestyle in place
of the old one. Use getlstyle() to query the index of the current linestyle.

The system uses the current linestyle to draw lines and to outline rectangles,
polygons, circles, and arcs. Linestyle 0 (solid line) is the default linestyle. Use
setlinestyle() to select another linestyle. Its argument is an index into the
linestyle table built by calls to deflinestyle().

Graphics Library Programming Guide 2-11

Modifying the Linestyle Pattern

Two routines modify the application of the linestyle pattern: lsrepeat() and
linewidth(). You can get the current values for these attributes using
getstyle(), getlsrepeat(), and getlwidth().

Use lsrepeat() to create linestyles that are longer than 16 bits. lsrepeat()
multiplies each bit in the pattern by factor. Consequently, each 0 in the linestyle
pattern becomes a series of factor×0, and each 1 becomes a series of factor×1.
For example, if the pattern is 0xFE00 and factor=1, the linestyle is 9 bits off
followed by 7 bits on. If factor=3, the linestyle is 27 bits off followed by 21 bits
on.

Use getlsrepeat() to query the factor (integer) by which the linestyle is
multiplied for patterns that are longer than 16 bits.

Use linewidth() or linewidthf() to specify the width of a line. Specify the
width of the line in pixels as a short for linewidth(), and as a float for
linewidthf(). The system measures the width in pixels along the x axis or
along the y axis. It defines the width of a line as the number of pixels along the
axis having the smallest difference between the endpoints of the line.

Use getlwidth() to query the current linewidth in pixels.

The ANSI C specifications for the line style and line width subroutines are:

void deflinestyle(short n, Linestyle ls);

long getlsrepeat(void);

long getlstyle(void);

long getlwidth(void);

void linewidth(short n);

void linewidthf(float n);

2-12 Drawing

2.1.4 Polygons

A polygon is specified by a connected sequence of vertices that all lie in a plane.
You define the boundary of the polygon by connecting the vertices in order: v1
to v2, v2 to v3, and so on, finally connecting vn back to v1. These connecting
segments are called edges. The interior of a polygon is the area inside its edges.
The GL lets you specify up to 255 vertices per polygon.

Note: Even though the GL supports polygons with up to 255 vertices,
performance is usually optimized only for polygons of 3 or 4 vertices.
Polygons with more than 4 vertices are typically better represented as
meshes. See Section 2.1.6, “Meshes,” for the definition of meshes and
for information about how they are used.

Figure 2-1 through Figure 2-6 contain some examples of polygons. The heavy
black dots represent vertices and the lines represent edges.

A polygon is simple if its edges intersect only at their common vertices. In other
words, the edges cannot cross or touch each other. A polygon is convex if a line
segment joining any two points in its interior is completely contained within
the polygon.

Figure 2-1 is a convex and simple polygon.

Figure 2-1 Simple Convex Polygon

Graphics Library Programming Guide 2-13

Figure 2-2 and Figure 2-3 are both simple, but not convex, polygons. They are
not convex because you can draw a line connecting two interior points (shown
as a dashed line) that appears outside of the polygon.

Figure 2-2 Simple Concave Polygon

Figure 2-3 Another Simple Concave Polygon

Non-convex polygons are also called concave. Algorithms that render only
convex polygons are much simpler than those that can render both convex and
concave polygons.

Some versions of the hardware automatically check for and draw concave
polygons correctly, but others do not. The function concave() guarantees that
the system renders concave polygons correctly. On some hardware there is a
performance penalty when you use concave().

Note: If you intend to draw concave polygons, use concave(), even if your
code is running on a machine that automatically does the correct
thing. There is a minor performance penalty for setting the concave
flag, but it makes the code portable to other Silicon Graphics
machines. If you do not want to pay the performance penalty of using
concave() on any machine, break up the concave polygons into
smaller, convex polygons yourself.

2-14 Drawing

The GL and the Silicon Graphics hardware can correctly render any polygon if
it is simple, or if it consists of exactly four points.

Figure 2-4, Figure 2-5, and Figure 2-6 are not simple polygons.

Figure 2-4 Nonsimple Polygon

Figure 2-5 Another Nonsimple Polygon

Figure 2-6 shows a special type of polygon called a bowtie, a 4-vertex
nonsimple polygon.

Figure 2-6 Bowtie Polygon

Graphics Library Programming Guide 2-15

The GL can render the simple polygons in Figure 2-1, Figure 2-2, Figure 2-3,
and the bowtie polygon in Figure 2-6. Bowtie polygons are handled in a
hardware-specific manner. The polygon appears either as a bowtie, or as a
quadrilateral with a segment missing from one edge. The results of rendering
the type of non-simple polygons shown in Figure 2-4 and Figure 2-5 are
unpredictable.

Draw polygons using the same basic syntax as the other primitives, that is,
specify a list of vertex subroutines between a bgnpolygon()/endpolygon()
pair. The system draws a polygon as a filled area on the screen. As it does with
closed lines, the GL automatically connects the first and the last point. You do
not need to repeat the first point at the end of the sequence.

This sample program, bluehex.c, draws a filled blue hexagon on the screen:

#include <gl/gl.h>

float hexdata[6][2] ={
{20.0, 10.0},
{10.0, 30.0},
{20.0, 50.0},
{40.0, 50.0},
{50.0, 30.0},
{40.0, 10.0}

};

main()
{

int i;

prefsize(400, 400);
winopen("bluehex");
ortho2(0.0, 60.0, 0.0, 60.0);
color(BLACK);
clear();
color(BLUE);
bgnpolygon();
for (i = 0; i < 6; i++)

v2f(hexdata[i]);
endpolygon();
sleep(10);
gexit();
return 0;

}

2-16 Drawing

If you approximate a surface with 4-sided polygons, some of them may not lie
in a plane. If the vertices of a polygon do not lie in a plane, it is likely that in
certain orientations the polygon on the screen may look like its edges cross.
This is especially true at the silhouette edges of a mesh, where the mesh wraps
around to the back of the shape. However, with 4 vertices, these distorted
polygons will all be interpreted as bowtie polygons that are correctly rendered
by the GL.

The GL can render the bowties that arise from surface-approximating meshes.
In most other circumstances, however, the GL routines generate only true
(planar) polygons.

If a polygon lies in a plane, the only way distortion can occur is from floating
point inaccuracies.

IRIS-4D Series systems convert all arguments to 32-bit floating point for
hardware calculations. Consequently, only long integers in the range of -223

and 223-1 retain full precision after conversion. Integers outside this range
retain 24 bits of precision after conversion.

Patterns

You can fill polygons (as well as rectangles and arcs) with patterns. A pattern is
an array of short integers that defines a rectangular pixel array. The pattern
controls which pixels the system colors when it draws filled polygons. The
system aligns the pattern to the lower-left corner of the screen, rather than to
the filled shape, so that the pattern appears continuous over large areas.

Use defpattern() to define a pattern to be saved in an indexed table. Specify
an index into a table of patterns (n), the length of the array (size), and an array
of short integers (mask). The size argument selects either a 16×16 (size=32) or a
32×32 (size=64) pattern.

The origin of the pattern is the lower-left corner of the screen. Define the
bottom row of the pattern first. Specify each row of a 16×16 pattern with a
single short. Specify each row of a 32×32 pattern with two shorts—first the left
16 bits, then the right 16 bits. Bit 0 of each short is the right-most bit of its
respective position in the row. There is no concept of an opaque pattern in the
GL.

Pattern 0 is the default pattern, which is solid. You cannot redefine the pattern
at index 0.

Graphics Library Programming Guide 2-17

Use setpattern() to select which defined pattern the system uses. The
argument for setpattern() is the index you defined with defpattern(). Use
getpattern() to query the index of the current pattern.

The ANSI C specifications for the pattern subroutines are:

void defpattern(short n, short size, unsigned short mask[]);

long getpattern(void);

void setpattern(short index);

2.1.5 Point-Sampled Polygons

This section tells you exactly which pixels are turned on when the system
displays a polygon. It is important to know which pixels are turned on for
display accuracy and drawing performance reasons, but you may want to skip
this section on your first reading, because it contains advanced concepts.

To represent a polygon on the screen, the system must turn on a group of
pixels. Given a set of coordinates for the vertices of a polygon, there is more
than one way to decide which pixels ought to be turned on.

To illustrate the problem, consider drawing the two rectangles shown in
Figure 2-7. The numbered grid represents pixels and the black dots represent
pixels that are on.

The rectangle on the left has sides of (2 ≤ x ≤ 5 and 1 ≤ y ≤ 4).
The rectangle on the right has sides of (2 ≤ x ≤ 5 and 4 ≤ y ≤ 6).

Figure 2-7 Non–Point-Sampled Polygons

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

2-18 Drawing

What pixels should the system turn on in both cases? The most obvious answer
is shown in Figure 2-7. If you draw a figure consisting of the two polygons in
Figure 2-7, you would expect them to fit together. Unfortunately, if you draw
both rectangles the way Figure 2-7 shows, the pixels on the line y = 4 are
drawn twice—once for each polygon.

Drawing every overlapping edge twice is not a very efficient way to draw a
large number of polygons. Drawing the polygons in this manner also gives the
effect of outlining the polygon, which may not be the way you want the
polygons to look. For example, if the polygons represent a transparent surface,
the duplicated edge is twice as dense as the interior of the polygon, giving the
entire surface an outlined appearance.

Even if the surface is not transparent, filling the polygons in this way can still
create undesirable visual effects. If you draw a checkerboard pattern with
edges that overlap by exactly one pixel, then redraw it in single buffer mode,
the redrawing is visible because the edges of the squares flicker from one color
to the other, even though both images are identical. See Chapter 6,
“Animation,” for more information about single buffer mode.

The GL resolves these problems by using point-sampled polygons.
Point-sampled polygons assume that ideal mathematical lines (lines with no
thickness) connect the vertices. The system draws any pixel whose center lies
inside the mathematically precise polygon. Pixels whose centers lie outside the
polygon do not get drawn. Pixels whose centers lie exactly on a mathematical
line segment or vertex are filled in a hardware-dependent manner that
attempts to avoid both multiple fills and gaps at the boundaries of adjacent
polygons. All that is guaranteed about this algorithm is that pixels on the left
and bottom of a screen-aligned rectangle that is drawn on the exact pixel
centers are filled, whereas the pixels on the right and top of such a rectangle
are not filled.

Graphics Library Programming Guide 2-19

Figure 2-8 shows point-sampled versions of the two rectangles in Figure 2-7.
Point-sampling effectively eliminates the duplication of pixels from the right
and top edges of the polygon, but adjacent polygons can fill those pixels.

Figure 2-8 Point-Sampled Polygons

Another advantage of a point-sampled polygon without an outline is that the
drawn area of the polygon is much closer to the actual mathematical area of
the polygon. In the examples above, the drawn areas correspond exactly to the
true areas of the polygons. In non-rectangular polygons, the drawn area of the
polygon cannot be exact, but the drawn area of the point-sampled polygon is
closer to the true area of the polygon than is the area of an outlined polygon.
Outlined polygons that have increased area are sometimes called fat polygons.

Figure 2-9 illustrates the pixels that are turned on in a point-sampled
representation of the polygon that connects the vertices (1,1) (1,4) (5,6) and
(5,1). The pixels at (1, 4), (3, 5), (5,6), (5,5), (5,4), (5,3), (5,2), and (5,1) all lie
mathematically on the boundary of the polygon but are not drawn because
they are on the upper or right edge.

Figure 2-9 Point-Sampled Polygon with Edges Exactly on Pixel Centers

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

2-20 Drawing

As mathematical entities, lines have no thickness. However, to represent a line
on the screen, the system assumes a thickness of exactly one pixel (or whatever
line width you have assigned). When you scale an object composed of lines,
the lines behave differently from polygons. No matter how much a
transformation magnifies or reduces an object composed of lines, the
representation of the line remains one pixel thick. If you draw a line around a
point-sampled polygon, it fills in the pixels at the upper and right-hand edges.

The default for the older subroutines such as polf(), rect(), circle(), is to
draw a line around the point-sampled polygon. However, if you use the
old-style subroutines, it is recommended that you use glcompat() as
described in Section 2.2.2, “Nonrecommended Old-Style Subroutines,” to
specify point-sampled polygons. You don’t have to do this for the vertex
subroutines because they draw point-sampled polygons by default.

Anomalies can occur in the display of very thin filled polygons. Figure 2-10
shows a thin point-sampled triangle connecting the points (1,1), (2,3), and
(12,7). The polygon looks like it has holes, but if you draw adjacent polygons
that share the same vertices, all the pixels are eventually filled.

Figure 2-10 Point Sampling Anomaly

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12

Graphics Library Programming Guide 2-21

2.1.6 Meshes

This section covers an advanced topic. You may want to skip it on the first
reading, because it mentions topics that are not fully covered until later in this
guide.

This section describes how to draw geometric figures that are constructed
entirely of adjacent 3-sided (triangular) or 4-sided (quadrilateral) polygons.
When you draw connecting polygons, a mesh is formed. A mesh made of
triangles is called a triangular mesh (t-mesh), and a mesh made of quadrilaterals
is called a quadrilateral strip (q-strip).

Figure 2-11 shows an example of a simple t-mesh.

Figure 2-11 Simple Triangle Mesh

In this example, the seven vertices form five triangles (123, 324, 345, 546, 567).
Vertex 1 and vertex 7 appear in one triangle, vertices 2 and 6 appear in two
triangles, and all the rest of the vertices each appear in three different triangles.
In a larger mesh, a higher percentage of the points would be used three times.
Drawing the geometry in Figure 2-11 as a t-mesh is more efficient than
drawing it as five separate triangles, because the t-mesh draws the shared
vertices only once.

To draw a t-mesh, you specify a sequence of vertices between a
bgntmesh()/endtmesh() pair.

The bgntmesh() call signifies that the vertices following it are connected as
triangles until an endtmesh() call is received. The system uses two memory
locations to remember the last two vertices and a pointer to keep track of what
it is doing. The pointer alternates from one retained vertex to the other while
it is drawing the mesh.

6 4 2

7 5 3 1

2-22 Drawing

Refer to Table 2-2 and the discussion following it to see the sequence of events
that happens internally when a t-mesh is drawn.

Let P→ represent the pointer and let R1 and R2 represent the two vertices that
are retained:

1. The bgntmesh() call initializes the pointer to R1.

2. The first vertex (v1) is stored in the location pointed to by P, which is R1.
The pointer is now changed to point to R2.

3. The next vertex (v2) is stored in the location pointed to by P, which is R2.
The pointer is changed to point to R1.

4. The next vertex (v3) is the third vertex, so a triangle is drawn. Triangles
are drawn R1, R2, next vertex, so triangle 123 is drawn. v3 is stored in the
location pointed to by P, which is R1. The pointer is changed to point to
R2.

5. The next vertex (v4) is now connected to R1 and R2. R1 has v3 stored in it,
and R2 has v2 stored in it, so the triangle drawn (R1,R2,new) is triangle
324. v4 stored in the location pointed to by P, which is R2. The pointer is
changed to point to R1.

6. This process continues until the endtmesh() call is encountered.

This process draws the triangles 123, 324, 345, 546, and 567 for the mesh in
Figure 2-11.

Sequence Vertex P→ R1 R2 Next Vertex

1 bgntmesh() R1 ~~~ ~~~ v1

2 v1 R2 v1 ~~~ v2

3 v2 R1 v1 v2 v3

4 v3 R2 v3 v2 v4

5 v4 R1 v3 v4 v5

6 v5 R2 v5 v4 v6

7 v6 R1 v5 v6 v7

Table 2-2 Sequence of Vertices in a Mesh

Graphics Library Programming Guide 2-23

Figure 2-12 illustrates a more complex situation. The first six triangles (123,
324, 345, 546, 567, 768) could be drawn as before, but if nothing is done, the
arrival of point 9 would cause triangle 789 to be drawn, not triangle 689 as
desired.

Figure 2-12 Example of swaptmesh() Construction

To draw meshes like the one in Figure 2-12, you must exchange the order of the
two stored vertices. Use the swaptmesh() subroutine to exchange the pointer
to the other retained vertex, as shown in the following code fragment:

bgntmesh();
v3f(vert1);
v3f(vert2);
v3f(vert3);
v3f(vert4);
v3f(vert5);
v3f(vert6);
v3f(vert7);

swaptmesh();
v3f(vert8);

swaptmesh();
v3f(vert9);

swaptmesh();
v3f(vert10);
v3f(vert4);
v3f(vert11);

endtmesh();

9 10 11

8 4 2

7 5 3 1

6

2-24 Drawing

Figure 2-13 shows another example of how to use swaptmesh().

Figure 2-13 Another swaptmesh() Example

This sequence draws the mesh in Figure 2-13:

bgntmesh();
v3f(vert1);
v3f(vert2);
v3f(vert3);
v3f(vert4);
v3f(vert5);

swaptmesh();
v3f(vert6);
v3f(vert7);

swaptmesh();
v3f(vert8);
v3f(vert9);

endtmesh();

The arrows show that all the faces in this t-mesh specify their vertices in
counter-clockwise order. This is important if you want to do hidden-surface
removal, described in Chapter 8, or two-sided lighting, described in Chapter 9,
later. Because the faces are counter-clockwise, they specify front-facing
polygons, which display when backface removal is turned on. For lighting, the
counter-clockwise faces specify normals that follow the right-hand rule—that
is, point out of the paper toward you. If you take your right hand and curl your
fingers in the direction pointed to by the arrows, with your thumb sticking out,
your thumb points straight out, away from the paper. Your thumb represents
the vertex normals for the counter-clockwise faces.

5 3 1

6

8 7

9

4 2

Graphics Library Programming Guide 2-25

This sample program, octahedron.c, draws a three-dimensional octahedron
(8-sided regular polyhedron) using the t-mesh primitive. Because meshes in
two dimensions are of little use, the example is three-dimensional. Knowing
how to create a three-dimensional mesh is quite useful. This program also uses
a number of routines that are covered in later chapters, including
three-dimensional rotations, hidden surface removal, smooth
(double-buffered) motion, and cpack(), so ignore the subroutines that do not
apply to the specification of the geometry if you are studying the program to
understand the logic of mesh drawing. The calculations of rotation angles
simply cause the octahedron to tumble in an interesting way.

#include <stdio.h>
#include <gl/gl.h>

float octdata[6][3] = {
{ 1.0, 0.0, 0.0},
{ 0.0, 1.0, 0.0},
{ 0.0, 0.0, 1.0},
{-1.0, 0.0, 0.0},
{ 0.0, -1.0, 0.0},
{ 0.0, 0.0, -1.0}

};
unsigned long octcolor[6] = {

0xff0000, /* [0] = blue */
0x00ff00, /* [1] = green */
0x0000ff, /* [2] = red */
0xff00ff, /* [3] = magenta */
0xffff00, /* [4] = cyan */
0xffffff, /* [5] = white */

};

void vertex(i)
int i;
{

cpack(octcolor[i]);
v3f(octdata[i]);

}

void drawoctahedron()
{

bgntmesh();
shademodel(GOURAUD);
vertex(0);
vertex(1);

swaptmesh();
vertex(2);

2-26 Drawing

swaptmesh();
vertex(4);

swaptmesh();
vertex(5);

swaptmesh();
vertex(1);
vertex(3);

shademodel(FLAT);
vertex(2);

swaptmesh();
vertex(4);

swaptmesh();
vertex(5);

swaptmesh();
vertex(1);

endtmesh();
}
main()
{

Angle xang, yang, zang;
long zval;
int cnt;
if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {

fprintf(stderr, "Double buffered RGB not available\n");
return 1;

}
if (getgdesc(GD_BITS_NORM_ZBUFFER) == 0) {

fprintf(stderr, "Z-buffer not available\n");
return 1;

}
prefsize(400, 400);
winopen("octahedron");
doublebuffer();
RGBmode();
gconfig();
ortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
zbuffer(TRUE); /* hidden surfaces removed with z-buffer */
zval = getgdesc(GD_ZMAX);
xang = yang = zang = 0;
for (cnt = 0; cnt < 1000; cnt++) {

czclear(0x000000, zval);
pushmatrix();/* save viewing transformation */

 rotate(xang, 'x'); /* rotate by xang about x axis */
 rotate(yang, 'y'); /* rotate by yang about y axis */
 rotate(zang, 'z'); /* rotate by zang about z axis */
 drawoctahedron();

Graphics Library Programming Guide 2-27

popmatrix(); /* restore viewing transformation */
swapbuffers(); /* show completed drawing */

xang += 10;
yang += 13;
if (xang + yang > 3000)

zang += 17;
if (xang > 3600)

xang -= 3600;
if (yang > 3600)

yang -= 3600;
if (zang > 3600)

zang -= 3600;
}
gexit();
return 0;

}

Quadrilateral Strips

In addition to the t-mesh, the GL supports quadrilateral strips (q-strips).
Q-strips are similar in many ways to t-meshes, but might be better suited for
the representation of shapes that are fundamentally quadrilateral rather than
triangular in nature.

Use bgnqstrip() and endqstrip() to specify vertex list that forms
quadrilateral strips.

The bgnqstrip() and endqstrip() commands must surround an even
number of vertex commands that is four or greater, and is unbounded. Filling
results are undefined if these conditions are not met. There is no maximum to
the number of vertices that can be specified between bgnqstrip() and
endqstrip(). If the number is odd, however, the result is undefined.

Vertices specified after bgnqstrip() and before endqstrip() form a sequence
of quadrilaterals. You cannot alter the replacement algorithm, because there is
no quadrilateral equivalent to the swaptmesh() command.

2-28 Drawing

For example, this sequence draws the three quadrilaterals: (1,2,4,3), (3,4,6,5),
and (5,6,8,7) in Figure 2-14:

bgnqstrip();
v3f(vert1);
v3f(vert2);
v3f(vert3);
v3f(vert4);
v3f(vert5);
v3f(vert6);
v3f(vert7);
v3f(vert8);

endqstrip();

8--6--4--2
| | | |
| | | |
7--5--3--1

Figure 2-14 Mesh of Quadrilateral Strips

Note: The quadrilaterals are drawn as though each quadrilateral were an
independent polygon with vertex order (n, n+1, n+3, n+2).

Note that the vertex order required by q-strips matches the order required for
“equivalent” triangle meshes. The example vertex sequence that produces the
mesh in Figure 2-14 produces triangles (123, 324, 345, 546, 567, 768), as shown
in Figure 2-15 when bounded by bgntmesh() and endtmesh() calls.

8--6--4--2
| /| /| /|
|/ |/ |/ |
7--5--3--1

Figure 2-15 Equivalent T-mesh

In general, quadrilateral data looks better when drawn with q-strips than with
a t-mesh. This is because Gouraud shading calculations operate on the original
quadrilateral data, rather than on the decomposed triangles.

Note: IRIS-4D VGX, VGXT, SkyWriter, and RealityEngine graphics use
vertex normals to determine how to decompose quadrilaterals into
triangles during scan conversion. If you do not specify vertex normals,
or, equivalently, if the four vertices share the same normal, the selected
decomposition matches that of the equivalent triangle mesh.

Graphics Library Programming Guide 2-29

2.1.7 Controlling Polygon Rendering

Use the polymode() subroutine to specify how the system renders polygons.
This statement controls polygons created with triangular mesh or
quadrilateral strips as well as explicit polygons (that is, polygons created
inside a bgn*/end* loop).

The ANSI C specification for polymode() is:

void polymode(long mode);

where mode is defined by one of the following symbols:

PYM_POINT draw only points at each vertex.

PYM_LINE draw lines from vertex to vertex.

PYM_FILL fill the polygon interior.

PYM_HOLLOW fill only interior pixels at the boundaries.

PYM_POINT and PYM_LINE draw points and lines consistent with all applicable
point and line modes. Therefore the antialiasing mode, pntsmooth(), or
linesmooth() as well as linewidth and linestipple are significant. PYM_FILL is
the standard fill operation that was previously the only option. See Chapter 15,
“Antialiasing,” for information on antialiasing.

Figure 2-16 shows how PYM_LINE affects clipping. Polygons drawn in
PYM_LINE mode clip differently from closed lines. The PYM_LINE polygon
always clips to a closed line, with line segments generated along the edges of
the clipping planes, which are usually the borders of the viewport.

Figure 2-16 Clipping Behavior of PYM_LINE

PYMLINEClosed line polygon

2-30 Drawing

PYM_HOLLOW supports a special kind of polygon fill with the following
properties:

• Only pixels on the polygon edge are filled. These pixels form a
single-width line (regardless of the current linewidth) around the
inner perimeter of the polygon.

• Only pixels that would have been filled (PYM_FILL) are changed (that is,
the outline does not extend beyond the exact polygon boundaries).

• Changed pixels take the exact color and depth values they would have,
had the polygon been filled.

Because their pixel depth values are exact, hollow polygons can be accurately
composed of filled polygons. Both hidden-line and scribed-surface renderings
can be done taking advantage of this fact. See Chapter 8, “Hidden-Surface
Removal,” for more information on hidden surfaces.

Note: Not all systems support polymode(). Use getgdesc() with the
GD_POLYMODE argument to determine whether polymode is
supported. The IRIS-4D VGX requires special setup to support
PYM_HOLLOW. See the polymode(3G) man page for details.

2.2 Old-Style Drawing

This section describes drawing methods that were used in previous releases of
the GL. Skip this section if you are developing new GL applications.

The vertex drawing subroutines described in the last section are the preferred
way to draw any geometry except curves and surfaces, which are covered in
Chapter 14, “Curves and Surfaces.” All new development should use the
vertex method. It is OK to use the subroutines described under Section 2.2.1,
“Basic Shapes,” but the subroutines described in Section 2.2.2,
“Nonrecommended Old-Style Subroutines,” are not recommended.

The architecture of earlier Silicon Graphics systems was tuned to a different set
of subroutines for drawing points, lines, and polygons. For compatibility, all of
the earlier subroutines are still in the GL.

In most cases, the internals of these earlier subroutines have been rewritten to
use the vertex subroutines. However, to guarantee that you get the optimal

Graphics Library Programming Guide 2-31

performance of the new programs, use the vertex subroutines described at the
beginning of this chapter.

Except for polygons, the figures drawn by the old-style subroutines are the
same as those drawn by the vertex subroutines. For example, points are drawn
as a single pixel. However, the earlier subroutines did not draw point-sampled
polygons. They effectively drew point-sampled polygons with lines
connecting the vertices. For compatibility, the old polygon subroutines draw
point-sampled polygons with an outline, so they appear exactly the way they
did before. For many polygons, the drawing time is increased when both the
polygon and its outline are drawn.

In most cases, absolute compatibility with the old polygon filling style is not
required, so there is a subroutine, glcompat(), that you can use to turn off
outlining for the old-style subroutines. You can significantly increase polygon
drawing performance for old code by turning off the compatibility mode.
glcompat() takes two arguments. The first is the compatibility mode, and the
second is the value to which it is set.

The default GLC_OLDPOLYGON value is 1, in which outlining is turned on. To
turn off polygon outlining, use:

glcompat(GLC_OLDPOLYGON, 0);

Performance for the basic shapes subroutines can also be improved
significantly by calling glcompat(GLC_OLDPOLYGON, 0) to draw
point-sampled polygons and defeat polygon outlining.

2.2.1 Basic Shapes

In this section and the next, the subroutine names follow a pattern. The root
name of the subroutine indicates the shape that is drawn. Letters appended to
the root name indicate whether the shape is filled or drawn as an outline and
also indicate its data type. The default data type is floating point (32 bits):

f indicates that the figure is filled rather than drawn as an
outline (32 bits).

s indicates that the data type is a short integer (16 bits).

i indicates that the data type is a long integer (32 bits).

2-32 Drawing

Rectangles

The GL provides two types of rectangle subroutines—filled and unfilled.
Filled rectangles are rectangular polygons, and unfilled rectangles are
rectangular outlines. rect() draws a rectangular outline, while rectf()
draws a filled (solid) rectangle. Only the x and y coordinates of the corners of
the rectangle are given, and the z coordinate is forced to zero. The rectangle is
aligned with the x and y axes.

Table 2-3 lists the six different forms of the rectangle subroutine.

The arguments to the rectangle subroutines are the coordinates of the corners
(x1, y1, x2, y2). The point (x1, y1) is one corner of the rectangle, and (x2, y2) is
the opposite corner. Because the rectangle is aligned with the axes, the
coordinates of the other corners would be (x1, y2) and (y1, x2).

Rectangles can undergo transformations as described in Chapter 7,
“Coordinate Transformations,” and the resulting figure need not appear to be
a rectangle. For example, imagine rotating the rectangle about the x axis so that
one end is farther from you, then viewing it in perspective. On the screen, the
rotated rectangle appears to be a trapezoid.

It is important to understand that although rectangles created with rectf() or
its variants can be transformed by the statements described in Chapter 7,
primitives such as rectangles, circles, arcs, and character strings are planar, and
the apparent rotation or translation takes place because of manipulations to
the underlying transformation matrix.

If you wish to build a composite of different rectangular shapes (for instance,
a 3-D cube) that is to be part of a 3-D model, the correct way to proceed is to
use the 3-D drawing functions bgnpolygon() and endpolygon().

Argument Type Filled Unfilled

16-bit integer rectfs() rects()

32-bit integer rectfi() recti()

32-bit float rectf() rect()

Table 2-3 Rectangle Subroutines

Graphics Library Programming Guide 2-33

The following sample program, chessboard.c draws a chess board with black
and white squares and red outlines on a green background.

#include <gl/gl.h>

#define ODD(n) ((n) % 2)

main()
{

int i, j;

prefsize(400, 400);
winopen("chessboard");
color(GREEN);
clear();
for (i = 0; i < 8; i++) {

for (j = 0; j < 8; j++) {
if (ODD(i + j))

color(WHITE);
else

color(BLACK);
sboxfi(100 + i*25, 100 + j*25, 124 + i*25, 124 + j*25);

}
}
color(RED);
recti(97, 97, 302, 302);
sleep(10);
gexit();
return 0;

}

Screen Boxes

Screen boxes are a subclass of rectangles. They are always 2-D and are always
aligned with the screen coordinates. Draw screen boxes with sbox() and
sboxf(). As with rect() and rectf(), the f signifies that the screen box is
filled with the current color and pattern.

All screen box commands use four arguments:

x1 x coordinate of one corner of the box

y1 y coordinate of one corner of the box

x2 x coordinate of the opposite corner of the box

y2 y coordinate of the opposite corner of the box

2-34 Drawing

The screen box drawing commands fill in the rectangle given these diagonal
corner coordinates. The sbox() statements draw 2-D, screen-aligned
rectangles using the current color, writemask, and linestyle. The sboxf()
statements draw filled 2-D, screen-aligned rectangles using the current color,
writemask, and pattern.

Table 2-4 lists the screen box subroutines.

You cannot use lighting, backfacing, depth-cueing, z-buffering, Gouraud
shading, or alpha blending with the sbox() or sboxf() command.

Circles

Like rectangles, circles are 2-D figures that lie in the x-y plane, with z
coordinates equal to zero. All six circle subroutines have the same parameters:
x, y, and radius. Like rectangles, circles are either filled or unfilled, and the
center coordinates and radius are specified in integers, short integers, or floats.

Table 2-5 lists the circle subroutines.

Circles are drawn with 80 equally spaced vertices, either as a closed line
(unfilled circles) or as a polygon (filled circles). If your program draws many
circles, you can write a circle primitive that uses fewer line segments to speed
up the drawing. Circles drawn with 80 segments look reasonably good over a

Argument Type Filled Unfilled

16-bit integer sboxfs() sboxs()

32-bit integer sboxfi() sboxi()

32-bit floating point sboxf() sbox()

Table 2-4 Screen Box Subroutines

Argument Type Filled Unfilled

16-bit integer circfs() circs()

32-bit integer circfi() circi()

32-bit floating point circf() circ()

Table 2-5 Circle Subroutines

Graphics Library Programming Guide 2-35

wide range of sizes, but on large circles, you can easily see the straight line
segments. You can also draw circles with NURBS, as explained in Chapter 14.

This sample program, bullseye.c, draws an archery target using filled circles:

#include <gl/gl.h>
main()
{

prefsize(400, 400);
winopen("bullseye");
ortho2(-1.0, 1.0, -1.0, 1.0);
color(BLACK);
clear();
color(GREEN);
circf(0.0, 0.0, 0.9);
color(YELLOW);
circf(0.0, 0.0, 0.7);
color(BLUE);
circf(0.0, 0.0, 0.5);
color(CYAN);
circf(0.0, 0.0, 0.3);
color(RED);
circf(0.0, 0.0, 0.1);
sleep(10);
gexit();
return 0;

}

Arcs

Arcs are also 2-D figures, and like circles and rectangles, they lie in the plane
z=0. Arcs can be either unfilled (segments of circles) or filled (pie wedges). Arcs
have a center (x, y), a radius, a starting angle, and an ending angle. Angles are
measured counterclockwise from the positive x axis; negative angles are
clockwise. Angles are in tenths of degrees, so a 90-degree angle is written as
900.

An arc is drawn from the starting angle to the ending angle, so if startang is 0
and endang is 100, a 10 degree arc is drawn. Arcs are approximated by straight
lines, and a full 360 degree arc consists of 80 segments. You can speed up arc
drawing by making an arc primitive that uses fewer line segments.

2-36 Drawing

Table 2-6 lists the arc() subroutines.

The following sample program draws a pie chart using filled arcs:

#include <gl/gl.h>

main()
{

prefsize(400, 400);
winopen("piechart");
ortho2(-1.0, 1.0, -1.0, 1.0);
color(BLACK);
clear();
color(RED);
arcf(0.0, 0.0, 0.9, 0, 800);
color(GREEN);
arcf(0.0, 0.0, 0.9, 800, 1200);
color(YELLOW);
arcf(0.0, 0.0, 0.9, 1200, 2200);
color(MAGENTA);
arcf(0.0, 0.0, 0.9, 2200, 3400);
color(BLUE);
arcf(0.0, 0.0, 0.9, 3400, 0);
sleep(10);
gexit();
return 0;

}

 Argument Type Filled Unfilled

16-bit integer arcfs() arcs()

32–bit integer arcfi() arci()

32-bit float arcf() arc()

Table 2-6 Arc Subroutines

Graphics Library Programming Guide 2-37

2.2.2 Nonrecommended Old-Style Subroutines

This section describes nonrecommended subroutines from previous releases of
the GL. Skip this section if you are developing new GL applications.

The naming conventions for the rest of the subroutines in this chapter are
similar to those used by the arc(), circle(), and rectangle() subroutines.
However, because the remaining subroutines are usually three-dimensional,
they come in 2-D and 3-D versions. As with arc(), circle(), and
rectangle(), the two-dimensional versions are assumed to lie in the plane
z = 0, but those figures can be transformed out of that plane by the various
transformation and viewing subroutines discussed in Chapter 7.

The naming convention assumes that most subroutines are three-dimensional,
so, for example, the point subroutine pnt() is the three-dimensional version,
and pnt2() requires no z component to its arguments.

Current Graphics Position

In the new architecture, graphical figures are sent together—a set of points, a
polyline, and a polygon are sent bracketed by a bgngeometry and an
endgeometry subroutine. The drawing of the figure might not start until the
endgeometry arrives.

In older systems, points were sent as individual subroutines, lines as a series
of move and draw subroutines, and polygons as a polygon move, followed by
a polygon draw subroutines, and finally a polygon close subroutine.

Between the old-style subroutines drawing polylines or polygons, the system
maintains a current graphics position. Each draw subroutine draws from the
current graphics position to the point specified by draw(). The current
graphics position is then set to the new point. The current graphics position as
used by the old-style polygon subroutines is discussed in the next sections.

getgpos

Because the system automatically maintains the current graphics position, few
applications need to access it directly. Those that do use getgpos() to return
the current graphics position. Its arguments include four pointers to floating
point numbers in which the homogeneous coordinates of the current
transformed point are returned. The returned values are in clip coordinates.

2-38 Drawing

For compatibility, the current graphics position is maintained in exactly the
same way for all the graphics subroutines listed in the rest of this chapter.

Old-Style Points

Table 2-7 shows the old-style point subroutines.

The arguments are (x, y) for the 2-D subroutines, (x, y, z) for the 3-D
subroutines. In addition to drawing a point, pnt() updates the current
graphics position to its location.

This sample program, pointsquare.c, draws 100 points in a square area of the
window:

#include <gl/gl.h>

main()
{

int i, j;

prefsize(400, 400);
winopen("pointsquare");
color(BLACK);
clear();
color(GREEN);

for (i = 0; i < 100; i++) {
for (j = 0; j < 100; j++)

pnt2i(i*4 + 1, j*4 + 1);
}
sleep(10);
gexit();
return 0;

}

Argument Type 2-D 3-D

16-bit integer pnt2s() pnts()

32-bit integer pnt2i() pnti()

32-bit float pnt2() pnt()

Table 2-7 Old-Style Point Subroutines

Graphics Library Programming Guide 2-39

Old-Style Lines

Old-style lines are drawn using two subroutines: move() and draw(). The
arguments and types of the move() and draw() subroutines are the same as for
the point() subroutines. The move() subroutine sets the current graphics
position to the specified vertex and draw() draws from the current graphics
position to the specified point, then updates the current graphics position to
that vertex.

Table 2-8 lists the move() and draw() subroutines.

This sample program, bluebox.c, draws the outline of a blue box on the screen
using the move() and draw() subroutines:

#include <gl/gl.h>
main()
{

prefsize(400, 400);
winopen("bluebox");
color(BLACK);
clear();
color(BLUE);
move2i(200, 200);
draw2i(200, 300);
draw2i(300, 300);
draw2i(300, 200);
draw2i(200, 200);
sleep(10);
gexit();
return 0;

}

Argument Type 2–D 3-D

16-bit integer move2s() moves()

32-bit integer move2i() movei()

32-bit float move2() move()

16-bit integer draw2s() draws()

32-bit integer draw2i() drawi()

32-bit float draw2() draw()

Table 2-8 Old-Style Move and Draw Subroutines

2-40 Drawing

Old-Style Polygons

The old-style subroutines that draw filled polygons corresponding to the
move() and draw() subroutines are pmv() and pdr().

Table 2-9 lists the filled polygon subroutines.

A polygon is specified by a pmv() to locate the first point on the boundary, then
a sequence of pdr() subroutines for each additional vertex, and finally a
pclos() to close and fill the polygon. The pclos() subroutine has no
arguments; all the other subroutines take either two or three arguments of the
appropriate type.

Caution: Be sure not to spell the pclos() command pclose, because pclose is
the IRIX command to close a pipe.

Argument Type 2-D 3-D

16-bit integer pmv2s() pmvs()

32-bit integer pmv2i() pmvi()

32-bit float pmv2() pmv()

16-bit integer pdr2s() pdrs()

32-bit integer pdr2i() pdri()

32-bit float pdr2() pdr()

Table 2-9 Old-Style Filled Polygon Move and Draw Subroutines

Graphics Library Programming Guide 2-41

The following sample program, bluebox3.c, draws a filled blue polygon:

#include <gl/gl.h>

main()
{

prefsize(400, 400);
winopen("bluebox3");
color(BLACK);
clear();
color(BLUE);
pmv2i(200, 200);
pdr2i(200, 300);
pdr2i(300, 300);
pdr2i(300, 200);
pclos();
sleep(10);
gexit();
return 0;

}

The GL has two sets of subroutines that take arrays of vertex coordinates and
draw filled and unfilled polygons. Filled polygons are drawn by polf(), and
polygon outlines are drawn by poly().

Both the polf() and the poly() subroutines take two arguments. The first
argument, n, is the number of vertices in the polygon, and the second is a
two-dimensional array containing the coordinates.

Table 2-10 lists the polygon and filled polygon subroutines.

Argument Type 2-D 3-D

16-bit integer poly2s() polys()

32-bit integer poly2i() polyi()

32-bit float poly2() poly()

16-bit integer polf2s() polfs()

32-bit integer polf2i() polfi()

32-bit float polf2() polf()

Table 2-10 Old-Style Polygon and Filled Polygon Subroutines

2-42 Drawing

This sample program, hexagon.c, draws a filled hexagon using polf():

#include <gl/gl.h>

long parray[6][2] = {
{100, 0},
{ 0, 200},
{100, 400},
{300, 400},
{400, 200},
{300, 0}

};

main()
{

prefsize(400, 400);
winopen("hexagon");
color(BLACK);
clear();
color(GREEN);
polf2i(6, parray);
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 3-1

Chapter 3

3. Characters and Fonts

This chapter describes the subroutines that position and draw characters,
define fonts, and determine information about the currently defined font.

• Section 3.1, “Drawing Characters,” describes how to draw characters.

• Section 3.2, “Creating a Font,” tells you how to create and enable your
own font and how to query the system for font information.

The GL font interface supports the rapid display of raster characters in
user-selectable fonts. You can design and use your own fonts, or make use of
the default fonts supplied with the system. Typefaces exist or can be created
with a variety of point sizes and with a fixed or variable pitch.

The IRIS Font Manager™, described in the Graphics Library Windowing and Font
Library Programming Guide, offers a more flexible way to display text in a
program than the method presented in this chapter. You can use the IRIS Font
Manager to access externally created fonts, such as bitmap fonts, screen fonts,
and X Window System fonts like Portable Compiler Format (PCF) fonts. See the
Graphics Library Windowing and Font Library Programming Guide for information
about loading and using externally created fonts and other facilities available
through the IRIS Font Manager.

The font information in this chapter is provided mainly for performance
reasons. By using the techniques presented in this chapter, you are using
methods close to the hardware level of the system. Performance is as much as
four times faster than is possible using the IRIS Font Manager. To get your
application to display characters as rapidly as possible, use the techniques
presented in this chapter.

There are two versions of the font definition and character drawing routines.
The older version uses shorts as parameters and is thus limited to a character

3-2 Characters and Fonts

set that can only store 256 bitmap definitions and can handle only single-byte
character data. Newer subroutines that use long integers, signified by the letter
l in the subroutine name, can accommodate multibyte data and a more
extensive index space.

Because the long integer subroutines offer a more flexible interface, their use is
encouraged.

3.1 Drawing Characters

Use cmov() to position text and charstr()/lcharstr() to draw text. cmov()
determines where the system draws text on the screen, charstr() draws a
string of single-byte characters, and lcharstr() draws a string of multibyte
characters.

The character string is drawn in the current color and in the current font.
Scaling, rotating, or translating characters, operations that are described in
Chapter 7, “Coordinate Transformations,” has no effect on them. For example,
when a geometry that has text labels associated with it shrinks as it moves
away from the viewer, its labels remain the same size. Similarly, no matter
what rotation is in effect, the character string maintains the same orientation,
which is horizontal for any standard font.

3.1.1 Determining the Current Character Position

The current character position determines where the system draws text on the
screen. cmov() moves the current character position to a specified point (x, y, z)
in world coordinates. cmov() turns the world coordinates into window
coordinates for the new character position. cmov() does not draw anything—it
simply sets the character position where drawing is to occur when charstr()

is issued. cmov() does not affect the current graphics position.

The current character position is transformed (see Chapter 7) in exactly the
same way as a vertex to position a character string where it belongs.

Graphics Library Programming Guide 3-3

Table 3-1 lists the cmov() subroutines.

Note: Character position includes z values as well as x and y values. Because
of this, you can associate string origins with 3-D locations and you can
use z-buffering, described in Chapter 8, and depth-cueing, described
in Chapter 13, with characters.

3.1.2 Drawing Character Strings

Use charstr() to draw a string of raster characters. Use lcharstr() to draw
a character string using a long integer raster font—that is, characters that have
been defined with deflfont().

The text string is drawn in the current font using the current color. The origin
of the first character in the string is the current character position. After the
system draws the string, it updates the current character position to the pixel
to the right of the last character in the string. Character strings are
null-terminated in ANSI C.

3.1.3 Clipping Character Strings

If the origin of a character string lies outside the viewport (see Chapter 7), no
characters in the string are drawn.

If the origin of a character string is inside the viewport, the characters are
individually clipped to the screenmask. A screenmask establishes a rectangular
boundary on the screen. Clipping means that characters inside the boundary
are displayed and characters outside of the boundary are not displayed.

Argument Type 2-D 3-D

Short integer cmov2s() cmovs()

Long integer cmov2i() cmovi()

Float cmov2() cmov()

Table 3-1 cmov() Subroutines

3-4 Characters and Fonts

Figure 3-1 shows how characters are clipped to the viewport and screenmask.

Figure 3-1 How Character Strings are Clipped

In gross clipping, character strings that appear outside the viewport are clipped
out (not displayed).

There is a “gray area” between the screenmask and the viewport when the
viewport is larger than the screenmask. In fine clipping, character strings that
begin inside the viewport are clipped to the screenmask.

3.1.4 Getting Character Information

Use getcpos() to return the screen coordinates of the current character
position into the locations pointed to by ix and iy:

void getcpos(short *ix, short *iy)

Lorogr ipsum do lor s i t amet , consecte tur ad ipsctmer e l i t '
i sb a e iusmod tempor inc idunt u t labore e t do lon mag

Ut en imin omin imim ven iami q ius nodmuid

before clipping viewport

screenmask

i sb a e iusmod tempor inc idunt u t labore e t do lo
Ut en imin omin imim ven iami q ius nod

after gross clipping viewport

screenmask

i sb a e iusmod tempor inc idunt u t labore e t do l
Ut en imin omin imim ven iami q ius nod

after fine clipping viewport

screenmask

Graphics Library Programming Guide 3-5

Use strwidth()/lstrwidth() to return the width of a text string in pixels:

long strwidth(String str)

long lstrwidth(long type, void *str)

The string can be any null-terminated ASCII string of characters. The value
returned does not necessarily represent the width of a character times the
number of characters in the string, because in some fonts, the character width
varies from one character to another. The default font has a fixed width of nine
pixels, so for that font, strwidth() does return nine times the string’s length.

The rasterchars.c sample program draws two lines of text.

#include <gl/gl.h>

main()
{

prefsize(400, 400);
winopen("rasterchars");
color(BLACK);
clear();
color(RED);
cmov2i(50, 80);
charstr("The first line is drawn ");
charstr("in two parts. ");
cmov2i(50, 80 - 14);
charstr("This line is 14 pixels lower. ");
sleep(10);
gexit();
return 0;

}

The first line of text in rasterchars.c is drawn in two parts. The first cmov2i()
sets the current character position to 50 pixels to the right and 80 pixels up
from the lower-left corner of the window. After the first string is drawn, the
current character position is automatically advanced to follow the space
character at the end of the line. When the character string "in two parts." is
drawn, it continues from the current character position. Next, the character
position is set to start 14 pixels below the beginning of the top line, and the
second line is drawn.

The characters are drawn in the current color (RED). Because nothing was
mentioned in the program about fonts, all the strings are drawn in the default
font (font 0), which is defined when winopen() is called.

3-6 Characters and Fonts

The next sample program, rasterchars2.c, shows that character strings are
drawn in the same orientation no matter where they move, and that the
current character position is transformed like any other geometry.

#include <gl/gl.h>

float p[3][2] = {
{0.0, 0.0},
{0.6, 0.0},
{0.0, 0.6}

};

main()
{

int i;

prefsize(400, 400);
winopen("rasterchars2");
ortho2(-1.0, 1.0, -1.0, 1.0);
for (i = 0; i < 40; i++) {

color(BLACK);
clear();
rotate(50, ‘z’);
color(RED);
bgnpolygon();

v2f(p[0]);
v2f(p[1]);
v2f(p[2]);

endpolygon();
color(GREEN);
cmov2(p[0][0], p[0][1]);
charstr("vert0");
cmov2(p[1][0], p[1][1]);
charstr("vert1");
cmov2(p[2][0], p[2][1]);
charstr("vert2");
sleep(1);

}
gexit();
return 0;

}

The output of rasterchars2.c shows a red triangle with its three vertices labeled
vert1, vert2, and vert3. As the triangle rotates about vert1, the labels vert2 and
vert3 move along with the triangle is if they were pinned to their respective
vertices. The labels are drawn horizontally, no matter what position the
triangle is in.

Graphics Library Programming Guide 3-7

The rotate() subroutine rotates the scene about the z axis (coming directly
out of the screen) by 5 degrees each time. The rotation is about the origin, so
vertex p1 remains fixed. See Chapter 7 for a description of rotate().

3.2 Creating a Font

A font is a collection of rectangular arrays of masks. Masks determine whether
or not a pixel is turned on. If a 1 appears in a mask, the corresponding pixel is
turned on to the current color; if a 0 appears, the pixel is left as it is. For
example, the following bitmask might be used to draw the character A:

Binary Hexadecimal
0000011000000000 = 0x0600
0000011000000000 = 0x0600
0000111100000000 = 0x0F00
0000111100000000 = 0x0F00
0001100110000000 = 0x1980
0001100110000000 = 0x1980
0011000011000000 = 0x30C0
0011111111000000 = 0x3FC0
0110000001100000 = 0x6060
0110000001100000 = 0x6060
1100000000110000 = 0xC030
1100000000110000 = 0xC030

Figure 3-2 Bitmask for the Character A

A font made up of single-byte characters can have definitions for any character
value between 1 and 255. Typically, the bitmask entry for each ASCII character
is a mask that draws that character. For example, the ASCII value of A is 65
(decimal), so entry 65 in the font is associated with the bitmask for A shown in
Figure 3-2. If this font were defined, the string “AAA” would draw three copies
of the character whose bitmask appears in Figure 3-2.

In addition to the bitmask information for each character, you need to know
the width and height of the character in pixels. The width cannot be inferred
from the bitmask, because all bitmask data comes in 16-bit words. In the letter
A example in Figure 3-2, the width is 12 and the height is also 12.

Normally, a character’s origin is at the lower-left corner of the bitmask, as is
the case for the A. The character is drawn by placing its bitmask so that the
bitmask’s origin is at the current character position.

3-8 Characters and Fonts

Figure 3-3 shows a sample character definition for the letter g.

Figure 3-3 Character Bitmap Created with defrasterfont()

To define a single character like the one in Figure 3-3, you need the bitmask
itself, width, height, xoffset, yoffset, and xincrement. The defrasterfont() and
deflfont() subroutines allow you to define a collection of such characters.

For a character with a descender, such as g, j, or y, the two bottom lines of the
bitmask should lie below the current character position, so the origin should
not be at the lower-left corner. Two values, the xoffset and the yoffset, tell how
far the character’s origin must be moved to bring it to the lower-left corner. For
characters with descenders, yoffset is typically negative (see Figure 3-3).

Finally, another number for each character indicates how far to the right the
current character position must be advanced after drawing the character. This
is usually different from the width, and is labeled the x increment. In the A
example above, the character position would probably be advanced by 14
pixels to leave a little space between it and the next character.

To simplify matters, the character bitmasks are packed together in one array of
16-bit values, so the bitmask is determined by the offset into the bitmask array.

For example, if a single-byte font contains the letter A from Figure 3-2 as its first
character, and a bitmask for B as its second, the offset for B is 12 shorts (the
length of the bitmask definition of A). The length and width together
determine the number of shorts in a character’s definition.

w

h

baseline

yoffset -2

xinc 9

Graphics Library Programming Guide 3-9

3.2.1 Defining the Font

There are two different subroutines for defining a font: defrasterfont() and
deflfont().

The defrasterfont() command is limited to 256 bitmap definitions within
the raster array and uses charstr() to operate on the input string as a stream
of single-byte character data.

Extended character sets require the use of multibyte character data, which is
supported by deflfont(). The interface for using multibyte character sets is
analogous to the single-byte interface, but is capable of containing more font
information. This interface was designed primarily to support international
fonts; however, you may find it useful for other purposes as well.

Using Single Byte Character Data

Use defrasterfont() to define a single-byte raster font. Font 0 is the default
raster font, which you cannot redefine. It is a Helvetica-like font with
fixed-pitch characters. If the viewport is set to the whole screen, approximately
142 of the default characters fit on a line (1 character occupies 9 pixels). If
baselines are 16 pixels apart, 64 lines of the default characters fit on the screen.

The ANSI C specification for defrasterfont() is:

void defrasterfont(short n, short ht, short nc,
Fontchar [chars],short nr,unsigned short raster[])

where:

n is an index into a font table. Font 0 is the default font; it cannot
be redefined.

ht is the maximum height of the font characters in pixels.

nc is the number of elements in the chars array. The first 32 entries
of chars are usually undefined because they correspond to the
ASCII control characters.

chars is an array of character descriptions of type Fontchar, which is
defined in the header file gl.h. The description includes the
height and width of the character in pixels, the offsets from the

3-10 Characters and Fonts

character origin to the lower-left corner of the bounding box,
an offset into the array of rasters, and the amount to add to x of
the current character position after drawing the character.

nr is the number of 16-bit integers in raster.

raster is a one-dimensional array of nr bitmask bytes, ordered from
left to right, then bottom to top. Mask bits are left-justified in
the character’s bounding box.

The following code fragment contains the defining parameters for the
character in Figure 3-3 and shows the data in location 724 of the chars array:

defrasterfont(n, ht, nc, chars, nr, rasters);
chars ['g'] = {724, 8, 9, 0, -2, 9 }
short rasterarry [] = {...

...
0x7E00, 0xC300, 0x0300, 0x0300,
0x7F00, 0xC300, 0xC300, 0xC300,
0x7E00,
...
}

Using Multiple Byte Character Data

Extensive character sets such as Asian ideograms require more raster data and
a larger index space than is provided by defrasterfont(). Use deflfont()
for multibyte character sets. The deflfont() subroutine is similar to
defrasterfont(), except that:

• Larger amounts of raster data are supported because the number of raster
elements is a long integer instead of a short integer.

• Character movement in the y-direction can be specified, allowing vertical
displacement of characters.

• Very large bitmaps of characters can be supported, because height and
width are short integers, instead of single-byte unsigned chars.

• Characters can be defined with an index beyond the single-byte,
256-character limit.

• Additional characters can be registered with an existing raster font after
its initial definition. That is, if a character is currently defined at a specific
offset within the raster array, it can be replaced with a new/different
character. The same set of operations applied with defrasterfont()

Graphics Library Programming Guide 3-11

results in the removal of the entire font set; thus, a single character can be
modified with far less overhead using deflfont().

The ANSI C specification for deflfont() is:

void deflfont(short n,long nc,Lfontchar chars, long nr, unsigned short raster[])

where:

n is the value to use as the identifier for this raster font. The
default font is a fixed-pitch ASCII font with a height of 15,
width of 9, character values 0 through 127 defined, and is
specified by a font identifier of 0. Font 0 cannot be redefined.

nc is the number of elements in the chars array.

chars is an array of character description structures of type
Lfontchar. One structure is required for each character in the
font.

The Lfontchar structure is defined in <gl/gl.h> as:

typedef struct {
unsigned long value;
unsigned long offset;
short w, h;
short xoff, yoff;
short xmove, ymove;

} Lfontchar;

value is the integer value corresponding to this character. When
value is encountered by charstr() or lcharstr() this
character is drawn.

offset is the element number of the raster at which the bitmap data
for this character begins. Element numbers start at zero.

w is the number of columns in the bitmap that contain set bits
(character width).

h is the number of rows in the bitmap of the character
(including ascender and descender).

xoff is the offset in bitmap columns between the start of the
character’s bitmap and the start of the character.

3-12 Characters and Fonts

yoff is the number rows between the character’s baseline and the
bottom of the bitmap. For characters with descenders this
value is a negative number. For characters that rest entirely on
the baseline, this value is zero.

xmove is the pixel spacing for the character. This signed value is
added to the x-coordinate of the current raster position after
the character is drawn.

ymove is the pixel spacing for the character. This signed value is
added to the y-coordinate of the current raster position after
the character is drawn.

nr is the number of 16-bit integers in raster.

raster is a one-dimensional array containing all the bitmap data for
the characters in the font. The bitmap data for each character
is a set of consecutive, 16-bit integers, comprising the bit mask
for the character from left to right, bottom to top. For
characters of width greater than 16, the rows of a bitmap span
more than one array element; however, each new row in the
character bitmap must start with its own array element.

The number of 16-bit integers per row in a character’s bitmap
is (w+15)/16. The total number of 16-bit integers in a
character’s raster definition is h∗ ((w+15)/16).

Bit 15 of each element is left-most when displayed. Bits that
are 1 are drawn; bits that are 0 are masked.

Examples of how to use this interface are included in 4Dgifts/examples/intl.

3.2.2 Selecting the Font

Use font() to select the font that the system uses for drawing a text string. Its
argument is the font number assigned to the font built by defrasterfont() or
deflfont(). This font remains the current font until you call font() to select
another font.

The next sample program, font.c, defines a font with three characters: a
lowercase j, an arrow, and the Greek letter sigma. The j is assigned to the ASCII
value of j, and the arrow and sigma are assigned to ASCII values 1 and 2
(written \001 and \002 in the C code). Two sample strings are then written out,
the first of which contains only characters that are defined, while the second

Graphics Library Programming Guide 3-13

contains undefined characters. When characters are not defined, no error
occurs, but nothing is drawn for them.

/*
 * Define a font with three characters -- a lower-case j,
 * an arrow, and a Greek sigma. Use ASCII values 1 and 2
 * (‘\001’ and ‘\002’) for the arrow and sigma. Use the
 * ASCII value of j (= ‘\152’) for the j character.
 */
#include <gl/gl.h>

#define EXAMPLEFONT 1
#define efont_ht 16
#define efont_nc 127
#define efont_nr((sizeof efont_bits)/sizeof(unsigned short))

#define ASSIGN(fontch, of, wi, he, xof, yof, wid) \
fontch.offset = of; \
fontch.w = wi; \
fontch.h = he; \
fontch.xoff = xof; \
fontch.yoff = yof; \
fontch.width = wid

Fontchar efont_chars[efont_nc];
unsigned short efont_bits[] = {

/* lower-case j */
0x7000, 0xd800, 0x8c00, 0x0c00, 0x0c00, 0x0c00, 0x0c00,
0x0c00, 0x0c00, 0x1c00, 0x0000, 0x0000, 0x0c00, 0x0c00,

/* arrow */
0x0200, 0x0300, 0x0380, 0xafc0, 0xafe0, 0xaff0, 0xafe0,
0xafc0, 0x0380, 0x0300, 0x0200,

/* sigma */
0xffc0, 0xc0c0, 0x6000, 0x3000, 0x1800, 0x0c00, 0x0600,
0x0c00, 0x1800, 0x3000, 0x6000, 0xc180, 0xff80,

};

main()
{

ASSIGN(efont_chars[‘j’], 0, 6, 14, 0, -2, 8);
ASSIGN(efont_chars[‘\001’], 14, 12, 11, 0, 0, 14);
ASSIGN(efont_chars[‘\002’], 25, 10, 13, 0, 0, 12);

prefsize(400, 400);
winopen("font");

3-14 Characters and Fonts

color(BLACK);
clear();
defrasterfont(EXAMPLEFONT, efont_ht, efont_nc,

efont_chars, efont_nr, efont_bits);
font(EXAMPLEFONT);
color(RED);
cmov2i(100, 100);
charstr("j\001\002\001jj\002");
cmov2i(100, 84);
charstr("ajb\001c\002d");
sleep(10);
gexit();
return 0;

}

3.2.3 Querying the System for Font Information

The following subroutines return information about the current font: its index,
the height of its characters, and the maximum descender for its characters.

Use getfont() to query for the index of the current raster font:

long getfont(void)

Use getheight() to query for the maximum height, in pixels, of a character in
the current raster font, including ascenders (present in tall characters, such as
the letters t and h) and descenders (present in such characters as the letters y
and p, which descend below the baseline):

long getheight(void)

Use getdescender() to query for the longest descender in the current font. It
returns the number of pixels that the longest descender extends below the
baseline:

long getdescender(void)

Graphics Library Programming Guide 4-1

Chapter 4

4. Display and Color Modes

This chapter describes how colors are displayed, from a hardware and
software perspective. It tells you how to use the color modes to control the way
color is handled and how to set the current color for drawing.

• Section 4.1, “Color Display,” describes how monitors display color,
then focuses on some details of the color display implementation.

• Section 4.2, “RGB Mode,” tells you how to use RGBmode, a color mode
that lets you work with the red, green, and blue components of color.

• Section 4.3, “Gouraud Shading,”tells you how to use Gouraud shading,
which allows you to draw smoothly shaded figures.

• Section 4.4, “Color Map Mode,” tells you how to use color maps.

• Section 4.5, “Onemap and Multimap Modes,” tells you how to use
alternate mapping modes.

• Section 4.6, “Gamma Correction,” tells you how to alter the colors your
monitor displays and how to correct for display variations among
different monitors.

4-2 Display and Color Modes

4.1 Color Display

If you have a standard monitor, it has three color guns that sweep out the entire
screen area 60 to 76 times per second. During this sweep, each gun points
directly at each of the pixels for a very short time. The color guns shoot out
electrons that strike the screen and cause it to glow.

Each pixel on the screen is composed of three different phosphors that glow red,
green, or blue. One color gun activates only the red phosphors, one only the
green, and the third only the blue. As each color gun sweeps across the pixels,
the number of electrons shot out (the intensity) is modified on a pixel-by-pixel
basis.

If no electrons are fired at a pixel, its phosphors do not glow at all, and it
appears black. For example, consider the red color gun. If the gun is turned on
to its highest intensity, the phosphor glows bright red. At intermediate
intensities, the colors vary between the two—from black to bright red. The
same is true for the other guns, except that the colors vary from black to bright
green, or from black to bright blue.

The color your eye perceives at a pixel is the combination of all three colors.
Different combinations of intensity settings of the guns generate a wide variety
of colors.

Each color gun can be set to 256 different intensity levels, ranging from
completely off to completely on. Setting 0 is completely off, and setting 255 is
completely on. The intensities of the red, green, and blue guns at the pixel
determine its color. This is expressed as an RGB triple: three numbers between
0 and 255 indicating the red, green, and blue intensity, in that order.

Black is represented by (0,0,0), bright red by (255,0,0), bright green by (0,255,0),
and so on. A few other examples include: (255,255,0) = yellow, (0,255,255) =
cyan, (255,0,255) = magenta, (255,255,255) = white. The colors represented by
(0,0,0), (1,1,1), (2,2,2),..., (255,255,255) are different shades of gray ranging from
black to white. Because each gun has 256 different settings, there are
256x256x256 = 16777216 different colors available.

Note: For a more detailed discussion of color, see J.D. Foley and V. Van Dam,
Computer Graphics: Principles and Practice, Addison-Wesley, 1990. Also,
the first example in Section 4.2 allows you to experiment with the
correspondence between RGB triples and perceived colors.

Graphics Library Programming Guide 4-3

4.1.1 Bitplanes

The framebuffer is organized as a set of bitplanes. Each bitplane contains
exactly one bit of information for each pixel on the screen. The number of
bitplanes varies from system to system.

Table 4-1 shows the bitplane configurations possible for different systems. C
stands for color map mode; X means that the configuration is not supported.

These bits store color information, depth information, described in Chapter 8,
overlays and underlays, described in Chapter 11, and, on systems with alpha
planes, an alpha channel, described in Chapter 15.

The number of bits per pixel also depends on the color mode, RGB, colormap,
or multimap, described later in this chapter; and on the drawing mode,
normal, underlay, overlay, described in Chapter 11.

RealityEngine systems feature a flexible framebuffer configuration that gives
you different pixel depths in different situations. See Chapter 15 for more
information about the RealityEngine framebuffers.

Use getgdesc() with the GD_BITS group of inquiry parameters to determine
exact bit availability. See the getgdesc(3G) man page for details on the inquiry
parameters.

Color Mode
IRIS
Indigo Personal IRIS/G

GTB
GTXB
VGXB
XS24
Elan

GT/GTX
VGX/VGXT
SkyWriter

Reality
Engine

RGB 8 8 12 24 24 32 32/48

RGB doublebuffer 4 X X 12 24 32 32/48

Colormap 8 8 12 12 12 12 12

Colormap doublebuffer 4 4 8 12 12 12 12

Colormap multimap 8 8 8 8 8 8 8

C-multimap-double 4 4 8 8 8 8 8

Table 4-1 Bitplane Configurations of Silicon Graphics Workstations

4-4 Display and Color Modes

The creation of graphics includes two basic steps. First, the drawing
subroutines write data into the bitplanes. Second, the display hardware
interprets that data as colors on the screen. GL subroutines control both the
patterns of zeros and ones that are written into the bitplanes of each pixel and
the interpretation of those patterns as colors on the screen.

4.1.2 Dithering

The Personal IRIS and IRIS Indigo have less bitplanes per R, G, and B
component than other IRIS systems, yet can still display a wide range of colors.

These systems use dithering to expand the range of displayed colors. Dithering
is a pixel operation that attempts to convey the color of an image as accurately
as possible when the framebuffer stores fewer bits of a color than the system
calculates. Dithering creates a dot pattern of different colors from the colors
available that looks like an accurately shaded image when viewed from a
distance.

Dithering works on all drawing primitives: points, lines, text, polygons, and
pixel write and copy operations. Dithering is enabled by default and works in
both RGB mode and color map mode. In RGB mode, dithering is performed
independently for each red, green, blue (and alpha) component.

Turn dithering on, which is the default on systems that support dithering, by
calling dither(DT_ON). Call dither(DT_OFF) to turn dithering off.

It is probably best to turn dithering off when drawing pre-dithered images, or
when drawing single-width RGB lines on an eight or four bit framebuffer.

You can enable dithering on the Personal IRIS only when drawing in one of
these modes: shademodel(GOURAUD) or depthcue(TRUE).

Note: Some systems do not support dithering. Use getgdesc(GD_DITHER)
to determine whether or not dithering is supported. If
getgdesc(GD_CIFRACT) is FALSE, then dithering is only supported in
RGB mode; it is not supported in color map mode.

Graphics Library Programming Guide 4-5

4.2 RGB Mode

RGB mode specifies colors in terms of their components: red, green, blue, and
alpha. The number of bits per component depends upon the system type.

Note: Regardless of the actual number of bits-per-pixel stored in the
framebuffer, the GL allows you to treat the hardware as though it
stores 24 bits per pixel. It does this by storing the most significant bits
(MSBs) of the color components presented to it. This R, G, and B data
can be treated as 8-bit values (0-255) by GL programs.

Some precision is lost in the RGB value by not having the other bits,
but 2 bits of red data is still red, just not as precise as a shade of red
described by 8 bits.

RealityEngine systems may compute and store 12 bits per color
component and dither them into 10 bits when displaying.

The sample programs you have seen in the previous chapters take only a
single color argument, for example, BLACK or GREEN. This is the default,
color map mode, which is discussed later in this chapter.

Set the color mode to RGB mode with RGBmode() before you call any
subroutines that require RGBmode. Call gconfig() to enable the mode
change before you call any subroutines that use RGB data. You only need to
call RGBmode() once, because the mode remains the same until you change it.

The following sample program, draws 64 squares in RGB mode and shows
some of the colors possible. Each square is labeled with its RGB triple below it.

#include <stdio.h>
#include <gl/gl.h>

#define R 0
#define G 1
#define B 2
#define RGB 3
#define XSPACING120 /* strwidth(" 255 255 255 ") */
#define SIZE 50
#define SEP 30
#define YSPACING(SIZE + SEP)

short whitevec[RGB] = {255, 255, 255};
short blackvec[RGB] = {0, 0, 0};
main()

4-6 Display and Color Modes

{
int i, j, k;
Icoord majorx, majory;
long xoff, yoff;
char str[20];
short rgbvec[RGB];
if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available on this machine\n");
return 1;
}
prefsize(8*XSPACING + SEP, 8*YSPACING + SEP);
winopen("rgbdemo");
RGBmode();
gconfig();
c3s(blackvec);
clear();
yoff = getheight();
for (i = 0; i < 4; i++) {

rgbvec[R] = i*255/3;
if (i < 2)

majory = SEP;
else

majory = SEP + YSPACING*4;
if (i == 0 || i == 2)

majorx = SEP;
else

majorx = SEP + XSPACING*4;
for (j = 0; j < 4; j++) {

rgbvec[G] = j*255/3;
for (k = 0; k < 4; k++) {

rgbvec[B] = k*255/3;
c3s(rgbvec);
sboxfi(majorx + XSPACING*j, majory + YSPACING*k,
majorx + XSPACING*j + SIZE, majory + YSPACING*k + SIZE);
c3s(whitevec);
sprintf(str, "%d %d %d", rgbvec[R], rgbvec[G], rgbvec[B]);
xoff = (strwidth(str) - SIZE)/2;
cmov2i(majorx + XSPACING*j - xoff,

majory + YSPACING*k - yoff);
charstr(str);

}
}

}
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 4-7

The c3s() subroutine sets the color to the RGB triple specified by blackvec,
which is initialized to contain zeros for the red, green, and blue components.
The first location is the red component, the second is the green, and the third
is the blue component. In the four-component case, the fourth component is
called the alpha value, which is described in Chapter 15. For this example, set
the fourth component to 255 (1.0 for floating point data).

Each color is then built up to contain the requisite red, green, and blue
components, then filled rectangles are drawn in that color.

The sprintf command is a standard C library routine that is used here to create
an ASCII string representation of the three values of red, green, and blue.

4.2.1 Setting and Getting the Current Color in RGB Mode

Like the vertex subroutines described in Chapter 2, the c() subroutines that
set the current color in RGB mode have different forms depending on their
data type.

Table 4-2 lists the subroutines that set the RGB color.

The floating point range from 0.0 to 1.0 is mapped linearly to the range from 0
to 255, with values larger than 1.0 mapped to 255.

Note: On RealityEngine systems, colors are mapped to the range 0 to 4095.

You can also specify RGB component with cpack(). cpack() takes a single
32-bit argument that contains the packed 8-bit values of the red, green, blue,
and alpha components. The red component is the low order 8 bits, green is
next, then blue, and alpha is the high order bits. For example,
cpack(0x01020304) sets the red, green, blue, and alpha components to 4, 3, 2,
and 1, respectively.

Argument Type RGB RGBA

16-bit integer c3s() c4s()

32-bit integer c3i() c4i()

32-bit floating point c3f() c4f()

Table 4-2 The Color (c) Family of Subroutines

4-8 Display and Color Modes

Use gRGBcolor() to get the current RGB values while in RGB mode.

The old-style subroutine RGBcolor() was used to set the RGB color in early
versions of the software. RGBcolor() is supported for compatibility only; it is
recommended that you use the c3i(), c3s(), c3f(), or cpack() subroutines.

This sample program, RGBcolor.c, demonstrates how to use RGBcolor():

#include <stdio.h>
#include <gl/gl.h>

main()
{

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available on this machine\n");
return 1;
}
prefsize(400, 400);
winopen("RGBcolor");
RGBmode();
gconfig();
RGBcolor(0, 100, 200);
clear();
sleep(10);
gexit();
return 0;

}

4.3 Gouraud Shading

In the examples presented thus far, all lines and polygons are drawn in a
uniform color—every pixel in the line or polygon has the same color.
Uniformly colored polygons are called flat-shaded polygons. If the geometry
you are drawing has only flat (polygonal) faces, this might be the way it should
look; however, in many cases, polygonal faces are used to approximate a
smooth curved surface. If the true surface is curved, colors tend to vary in a
continuous way across the surface. A flat-shaded polygonal approximation to
the surface has a tiled look.

One way to improve the appearance of an approximated polygonal surface is
to use a large number of smaller polygons in the approximation. An easier way
is to shade or vary the color across the polygons. This is called Gouraud shading.

Graphics Library Programming Guide 4-9

It is possible to calculate the correct color for the true surface at each vertex of
the approximating polygon, and the graphics hardware shades the polygon
based on those values. (You can also shade polygons using lighting models,
positions and colors of lights, and surface properties, as described in Chapter
9.) Lighting models calculate the colors only at polygon vertices, and the
resulting shading is the same whether you or the lighting model hardware
calculate the vertex colors.

Note: The graphics hardware on every IRIS model, except the G series and
Personal IRIS, performs rapid Gouraud shading of polygons. On these
machines, you can use the shademodel() subroutine to improve
performance when Gouraud shading is not required. Flat shading
provides the fastest possible shading on these systems. Gouraud
shading is the default, so you must use shademodel(FLAT) to disable
Gouraud shading of polygons. Calling shademodel(GOURAUD)

restores Gouraud shading. Use getsm() to return the current value of
shademodel.

For Gouraud-shaded polygons, the system linearly interpolates—that is, it
averages the color values for each edge, assuming a constant variation
between the RGB colors at the two vertices that delimit that edge. Next, it
interpolates these colors from edge to edge across the interior of the polygon.
The result is a smooth color variation across the entire polygon.

For Gouraud-shaded lines, the system uses the same process, except that only
the first step—interpolating the color between the endpoints—is required.

The interpolation is linear in all three components.

4-10 Display and Color Modes

Figure 4-1 shows the result of Gouraud shading a triangle whose vertices have
colors (0,20,100), (75,60,50), and (0,0,0).

Figure 4-1 Gouraud Shaded Triangle

Look at the left edge of the triangle, where the color goes from (0,20,100) at one
end to (75,60,50) at the other. The six pixels are colored (0,20,100), (15,28,90),
(30,36,80), (45,44,70), (60,52,60), and (75,60,50). Each of the color components
changes smoothly from one pixel to the next. The red component increases by
15 each time, the green component increases by 8, and the blue component
decreases by 10 for each pixel. In this case, the pixel color differences happen
to work out nicely to whole numbers. Usually this is not the case, but the
approximation is done as accurately as possible.

After the colors of the pixels on the edges of the polygon are determined, the
same process is used to interpolate the colors of the pixels on the interior.

(0,20,100)

(15,28,90)

(30,36,80)

(45,44,70)

(60,52,60)

(75,60,50)

(0,16,80)

(15,24,70)

(30,32,60)

(45,40,50)

(60,48,40)

(0,12,60)

(15,20,50)

(30,28,40)

(45,36,30)

(0,8,40)

(15,16,30)

(30,24,20)

(0,4,20)

(15,12,10) (0,0,0)

Graphics Library Programming Guide 4-11

The following sample program, shadedtri.c, draws a large Gouraud shaded
triangle whose vertices are bright red, bright green, and bright blue.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

float blackvect[3] = {0.0, 0.0, 0.0};
float redvect[3] = {1.0, 0.0, 0.0};
float greenvect[3] = {0.0, 1.0, 0.0};
float bluevect[3] = {0.0, 0.0, 1.0};

long triangle[3][2] = {
{ 20, 20},
{ 20, 380},
{380, 20}

};

main()
{

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available\n");
return 1;
}
prefsize(400, 400);
winopen("shadedtri");
RGBmode();
gconfig();

c3f(blackvect);
clear();
bgnpolygon();

c3f(redvect);
v2i(triangle[0]);
c3f(greenvect);
v2i(triangle[1]);
c3f(bluevect);
v2i(triangle[2]);

endpolygon();
sleep(10);
gexit();
return 0;

}

When you run this program, notice how the colors change smoothly along
each edge, and across the interior of the triangle. You can modify the colors at

4-12 Display and Color Modes

the triangle’s vertices to see how they affect the picture. Typically, polygons do
not have wildly different colors at their vertices as the example does.

To shade a polygon with Gouraud shading, you set the color before each
vertex. To shade a polyline, do the same thing—set the color before each vertex
between bgnline() and endline().

Note: You cannot change the color of a polyline on IRIS G series systems.

The next sample program, cylinder.c, implements a simple lighting model in
user code and uses it to draw a cylinder. You normally would not program
your own lighting calculations, you would take advantage of the built-in
lighting facility of the IRIS GL.

#include <stdio.h>
#include <math.h>
#include <gl/gl.h>

#define X 0
#define Y 1
#define Z 2
#define XYZ 3
#define R 0
#define G 1
#define B 2
#define RGB 3

#define RADIUS .9
#define MAX(x,y) (((x) > (y)) ? (x) : (y))

float blackvec[RGB] = {0.0, 0.0, 0.0};
float lightpos[XYZ] = {3.0, 0.0, 1.2};
float dot(), dist2();

main()
{

int i, nperside;
float p[4][XYZ];
float n[4][XYZ];
float c[4][RGB];
float x, dx;
float theta, dtheta;
float comp;

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available on this machine\n");

Graphics Library Programming Guide 4-13

return 1;
}
prefsize(400, 400);
winopen("cylinder");
RGBmode();
gconfig();
ortho2(-1.5, 1.5, -1.5, 1.5);
c3f(blackvec);
clear();

for (nperside = 1; nperside < 10; nperside++) {
dx = 3.0 / nperside;
dtheta = M_PI / nperside;
for (x = -1.5; x < 1.5; x = x + dx) {

for (theta = 0.0; theta < M_PI; theta += dtheta) {
p[0][X] = p[1][X] = x;
p[0][Y] = p[3][Y] = RADIUS * fcos(theta);
p[0][Z] = p[3][Z] = RADIUS * fsin(theta);
p[2][X] = p[3][X] = x + dx;
p[1][Y] = p[2][Y] = RADIUS * fcos(theta + dtheta);
p[1][Z] = p[2][Z] = RADIUS * fsin(theta + dtheta);
for (i = 0; i < 4; i++) {

n[i][X] = 0.0;
n[i][Y] = p[i][Y] / RADIUS;
n[i][Z] = p[i][Z] / RADIUS;

}

for (i = 0; i < 4; i++) {
comp = dot(lightpos, n[i])/(0.5 + dist2(lightpos, p[i]));
c[i][R] = c[i][G] = c[i][B] = MAX(comp, 0.0);

}

bgnpolygon();
for (i = 0; i < 4; i++) {

c3f(c[i]);
v3f(p[i]);

}
endpolygon();

}
}
sleep(5);

}
sleep(10);
gexit();
return 0;

}

4-14 Display and Color Modes

/* dot: find the dot product of two vectors */
float dot(v1, v2)
float v1[XYZ], v2[XYZ];
{

return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

/* dist2: find the square of the distance between two points */
float dist2(v1, v2)
float v1[XYZ], v2[XYZ];
{

return (v1[0] - v2[0])*(v1[0] - v2[0]) +
(v1[1] - v2[1])*(v1[1] - v2[1]) +
(v1[2] - v2[2])*(v1[2] - v2[2]);

}

Although this program looks complicated, it is simple for a program that does
its own lighting calculations. The program approximates a half cylinder by a
set of n×n rectangles whose vertices lie on the surface of the cylinder.

The equation for the cylinder is y2 + z2 = R 2, where y and z are parameterized
by θ: y = cos(θ), z = sin(θ), 0€≤ θ€≤ π , and -1.5€≤ x€≤ 1.5. Because you fix your
eye above the middle of the cylinder, there is no need to draw the bottom half.
Given x and θ, you can define a point on the surface as: (x, Rcos(q), Rsin(q)). At
that point, the normal vector is (0, cos(q), sin(q)).

Assume that the cylinder is in a completely black room whose walls reflect no
light, and there is a single point light source at (3.0, 0.0, 1.2), near the right end
and above the center of the cylinder. Your eye is directly above the center of the
cylinder and is looking straight down on it. This position is set by ortho2() in
the example.

The cylinder is uniformly white, so you see only the colors between white and
black, that is, only shades of gray where the red, green, and blue components
of the light are equal. This model assumes that the amount of light reaching
your eyes from a point on the cylinder depends on the distance of the light
source to the point on the cylinder, and on the angle it makes with the
cylinder’s surface. The larger the angle, the less light is reflected. If the angle is
more than 90 degrees, assume the color is black. The angular dependence is
given by the dot product of the light direction with the cylinder’s normal
vector, and that is attenuated by a factor of 1.0/(.5 + dist2). This is not a realistic
model, but it serves for this example. See Chapter 9 to learn how to use the
built-in lighting models.

Graphics Library Programming Guide 4-15

As written, the program loops on n, approximating the cylinder half first with
one polygon, then 4, 9, 16, 25,... 100 polygons. Each view is presented for five
seconds before the next one is drawn. The first view is completely black,
because the normal vectors are all perpendicular to the light vector, so each
corner is colored black. As the number of approximating polygons increases,
the representation gets better, and the last two or three images are similar.

The points p0, p1, p2, and p3 are the vertices of each of the approximating
rectangles, n0...n3 are the corresponding normal vectors, and c0... c4 are the
colors calculated at the points.

You can modify the program above to use different light vector positions or
different lighting models. You can also modify it to draw flat shaded polygons,
perhaps based on the normal vector at the center, to compare with the
Gouraud shaded version. To get comparable pictures, many more polygons
would have to be drawn.

4.4 Color Map Mode

In RGB mode, the values in the bitplanes correspond exactly to the color to be
presented. Another way to write and interpret the data in the bitplanes is by
using color map mode, also called color index mode. Many applications are better
suited to color map mode than to RGB mode, and many of the principles of
color maps are used in the overlay, underlay, and pop-up drawing modes.

Color map mode provides a level of indirection between the values stored in
the bitplanes and the RGB values displayed on the screen. This mode is useful
on systems that do not have enough bitplanes for RGB mode, and for blinking
and other applications where you want quick color map changes.

In color map mode, the zeros and ones stored in the standard bitplanes (up to
12 bits) are interpreted as a binary number and used as an index into a color
map. Each entry in the color map consists of a full 8 bits each of red, green, and
blue intensity. To figure out what color to present at a pixel on the screen, take
the 12 bits out of the bitplanes, interpret them as a binary number between 0
and 4095, and look up the color map values for red, green, and blue for that
number. That red, green, and blue triple is the pixel color.

4-16 Display and Color Modes

By default, the system is in color map mode, and the lowest eight values in the
color map are loaded as shown in Table 4-3:

For example, the call

color(GREEN);

actually sets the current color to 2, so every drawing subroutine (lines, points,
polygons, or characters) puts the value 2 in the affected bitplanes. Because the
display is in color map mode, pixel values of 2 are looked up in the color map,
and the RGB triple (0,255,0) = bright green is presented.

These color map entries or any other color map entries can be changed.
Because there is only one color map used by all GL polygons, whenever you
modify the map, it is modified for all the other GL applications running in
different windows. However, applications running in RGB mode, and non-GL
applications such as X applications, are not affected.

To enter color map mode, call cmode() followed by gconfig(). The system is
in color map mode by default, so you need only call cmode() if the system is
currently in RGB mode.

To change color map entries, use mapcolor(). mapcolor() takes four
arguments: an index into the color map, and the red, green, and blue
components to load into the map for that index. The index is between 0 and the

 Location Red Green Blue Color

0 0 0 0 BLACK

1 255 0 0 RED

2 0 255 0 GREEN

3 255 255 0 YELLOW

4 0 0 255 BLUE

5 255 0 255 MAGENTA

6 0 255 255 CYAN

7 255 255 255 WHITE

Table 4-3 Default Color Map

Graphics Library Programming Guide 4-17

system’s limit, and the red, green, and blue components are integers between
0 and 255.

The calling sequence is:

mapcolor(index, red, green, blue);

Multimap mode has only 256 map entries. See Section 4.5, “Onemap and
Multimap Modes.”

4.4.1 Setting the Current Color in Color Map Mode

The color() and colorf() statements set the color index in the current draw
mode of the active framebuffer. The framebuffer must be in color map mode
for color() to work. Because most drawing commands copy the current color
index into the color bitplanes of the current framebuffer, the system retains the
value of color() for each framebuffer when you exit and reenter a particular
draw mode.

color() takes a single argument, c, which represents a color index. c can have
a value between 1 and 2n−1, where n is the number of bitplanes available in the
current draw mode. Color indices larger than 2n−1 are clamped to 2n−1; color
indices smaller than 0 yield undefined results.

colorf() is identical to color, except that it uses a floating point value. Before
the value is written into memory, however, it is rounded to the nearest integer
value. The results of color() and colorf() are indistinguishable when using
shademodel(FLAT).

If you are using Gouraud shading, systems that iterate color indices with
fractional precision yield more precise shading results with colorf() than
with color(). Not all systems iterate with fractional precision. To determine
whether your system supports fractional iteration, use
getgdesc(GD_CIFRACT).

Note: Do not call color() or colorf() when the framebuffer is in RGB
mode.

4-18 Display and Color Modes

This sample program, pink-n-gray.c, draws a gray rectangle around a pink
circle. Here GRAY and PINK are indices into the color map. They are chosen
to be larger than 63 so as not to conflict with the color map entries used by the
window system. Note that the predefined color BLACK is used to clear the
window.

#include <gl/gl.h>

#define GRAY 64
#define PINK 65

main()
{
 prefsize(400, 400);
 winopen("pink-n-gray");
 mapcolor(GRAY, 150, 150, 150);
 mapcolor(PINK, 255, 80, 80);
 color(BLACK);
 clear();
 color(GRAY);
 sboxi(150, 150, 250, 250);
 color(PINK);
 circi(200, 200, 50);
 sleep(10);
 gexit();
 return 0;
}

4.4.2 Getting Color Information in Color Map Mode

The GL provides two subroutines to get color information in color map mode:
getcolor(), and getmcolor(). In most cases, getcolor() simply returns the
most recently set color o; however, when using the fast update facility of the
automatic lighting models, the system can change the current color as a result
of lighting calculations (see the lmcolor() command, described in Chapter 9).

getcolor() returns the current color for the current drawing mode. It returns
the index into the color map set by color. The result of getcolor() is
undefined in RGB mode. Use getcolor() only in color map mode.

getmcolor() returns the setting of the color map for a given index.
getmcolor() returns the red, green, and blue components of a color map entry
for a given index into the color map.

Graphics Library Programming Guide 4-19

4.4.3 Gouraud Shading in Color Map Mode

Gouraud shading works in color map mode, but it is more difficult to use than
in RGB mode. The colors at the vertices of lines or polygons are interpolated to
the interior points, but only the color map index is interpolated, not the red,
green, and blue components. Thus, a shaded 6-pixel line whose endpoints are
colored 1 (red) and 6 (cyan) has its six pixels colored 1, 2, 3, 4, 5, 6 (red, green,
yellow, blue, magenta, cyan, respectively), assuming that the default color
map is used. To shade in color map mode, you must first load a portion of the
color map with a color ramp to use as gradient between the end colors.

The following sample program, rampshade.c, draws a Gouraud shaded
polygon in color map mode.

#include <gl/gl.h>

#define RAMPBASE 64 /* avoid the first 64 colors */
#define RAMPSIZE 128
#define RAMPSTEP (255 / (RAMPSIZE-1))
#define RAMPCOLOR(fract) \

((Colorindex)((fract)*(RAMPSIZE-1) + 0.5) + RAMPBASE)

float v[4][3] = {
{50.0, 50.0, 0.0},
{200.0, 50.0, 0.0},
{250.0, 250.0, 0.0},
{50.0, 200.0, 0.0}

};

main()
{
 int i;

prefsize(400, 400);
winopen("rampshade");
color(BLACK);
clear();

/* create a red ramp */
for (i = 0; i < RAMPSIZE; i++)

mapcolor(i + RAMPBASE, i * RAMPSTEP, 0, 0);
bgnpolygon();

color(RAMPCOLOR(0.0));
v3f(v[0]);
color(RAMPCOLOR(0.25));
v3f(v[1]);

4-20 Display and Color Modes

color(RAMPCOLOR(1.0));
v3f(v[2]);
color(RAMPCOLOR(0.5));
v3f(v[3]);

endpolygon();
sleep(10);
gexit();
return 0;

}

The next sample program, dithershade.c, is the same as the previous program,
but it uses dithering to interpolate the color shades between BLACK and RED.

#include <stdio.h>#include <gl/gl.h>

float v[4][3] = {
{50.0, 50.0, 0.0},
{200.0, 50.0, 0.0},
{250.0, 250.0, 0.0},
{50.0, 200.0, 0.0}

};

main()
{

if (getgdesc(GD_CIFRACT) == 0) {
fprintf(stderr, "Dithering not available "

"on this machine\n");
return 1;
}
prefsize(400, 400);
winopen("dithershade");
color(BLACK);
clear();
bgnpolygon();

colorf(BLACK + 0.0);
v3f(v[0]);
colorf(BLACK + 0.25);
v3f(v[1]);
colorf(BLACK + 1.0); /* = RED */
v3f(v[2]);
colorf(BLACK + 0.5);
v3f(v[3]);

endpolygon();
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 4-21

4.4.4 Blinking

Blinking is an advanced topic that can be skipped on the first reading.

The blink() subroutine changes a color map entry at a specified rate. It
specifies a blink rate (rate), a color map index (i), and red, green, and blue values.
The rate parameter indicates the number of vertical retraces (one sweep of the
screen) at which the system updates the color located at i in the current color
map. For every rate retrace, the color map entry i is remapped so that it
alternates between the new red, green, blue value and the original values.

The following sample program, blinker.c, demonstrates blinking.

#include <gl/gl.h>

#define MAXBLINKS 20 /* maximum number of blinking entries */
#define FIRSTBLINKCI 64 /* avoid the first 64 colors */

main()
{

int i;

prefsize(400, 400);
winopen("blinker");
ortho2(-0.5, 20.0*MAXBLINKS + 9.5, -0.5, 500.5);
color(BLACK);
clear();
for (i = MAXBLINKS - 1; i >= 0 ; i--) {

mapcolor(i + FIRSTBLINKCI, 255, 255, 255);
color(i + FIRSTBLINKCI);
sboxfi(i*20 + 10, 10, i*20 + 20, 490);
blink(i + 1, i + FIRSTBLINKCI, 255, 0, 0);

}
sleep(10);
blink(-1, 0, 0, 0, 0);/* stop all blinking */
gexit();
return 0;

}

You can set up to 20 colors blinking simultaneously, each at a different rate; the
20-color limit is for each system, not for each window. You can change the
blink rate by calling blink() a second time with the same i but a different rate.

To terminate blinking and restore the original color, call blink() with rate = 0
where i specifies a blinking color map entry. To terminate blinking of all colors,

4-22 Display and Color Modes

call blink() with rate = -1. When you set rate to -1, the other parameters are
ignored.

Note: Program termination does not stop the color map blinking; you must
explicitly terminate blinking when you exit the program.

4.5 Onemap and Multimap Modes

Onemap and multimap modes are an advanced topic that you can skip on the
first reading.

The default mode is onemap(); it organizes the color map as a single map with
4096 entries (256 on some systems). When you are in color map mode and in
the default onemap mode, the value of the color bitplanes is used as an index
into the color map to determine the color displayed on the screen.

An alternative mode, multimap mode, uses only 8 bits from the bitplanes
(using 256 entries in the color map), but allows up to 16 completely
independent 256-entry color maps.

multimap() organizes the color map as 16 small maps, each with a maximum
of 256 RGB entries. Multimap mode is useful on systems with only 8 bitplanes
(or 16 in double buffer mode; see Chapter 6), but it can be used on other
systems for techniques such as color map animation.

In multimap mode, setmap() makes one of the 16 small color maps current.
All display is done using the current small map, and mapcolor() affects that
map.

You must call gconfig() to activate the onemap() or multimap() settings.

Use getcmmode() to return the current color map mode. FALSE indicates
multimap mode; TRUE indicates onemap mode.

Use getmap() to return the number (from 0 to 15) of the current color map. In
onemap mode, getmap() always returns 0.

Use cyclemap() to cycle through color maps at a specified rate. It defines a
duration (in vertical retraces), the current map, and the next map that follows
when the duration lapses.

Graphics Library Programming Guide 4-23

For example, the following routines cycle between two maps in multimap
mode, leaving map 1 on for ten vertical retraces and map 3 on for five retraces.

void cyclemap(duration, map, nextmap)
short duration, map, nextmap;
multimap();
gconfig();
cyclemap(10, 1, 3);
cyclemap(5, 3, 1);

Note: When you kill a window or attach to a new one, the maps stop cycling.

4.6 Gamma Correction

Gamma correction is an advanced topic that you can skip on the first reading.

The light output of any video display is controlled by the input voltage to the
monitor. The relationship between input voltage and the brightness of the
display is exponential rather than linear. For instance, assume that 100 percent
of a monitor’s input voltage produces 100 percent brightness. If you reduce the
voltage to 50 percent of its initial value, the monitor displays only 19 percent
of its initial brightness.

To achieve a linear response from the monitor, the system must vary the input
voltage by an exponent. The exponent is called the monitor’s gamma. Linear
response is achieved on standard IRIS-4D monitors with a gamma of 2.4. The
system uses a hardware look-up table to compensate for non-linear response.

Use gammaramp() to provide gamma correction, to equalize monitors with
different color characteristics, or to modify the color warmth of the monitor.
gammaramp() supplies another level of indirection for all color map and RGB
values. Usually, the gamma ramp map is loaded with gamma corrections, but
it can be loaded with any values. The default setting assigns a gamma
exponent of 1.7.

gammaramp() affects the entire screen and all running processes. It affects only
the display of color, not the values that are written in the bitplanes. The gamma
correction stays in effect until another call to gammaramp() is made, or until the
graphics hardware is reset.

4-24 Display and Color Modes

Note: On IRIS-4D/G systems, the gamma ramp is stored in the top 256
entries of the color map.

The following sample program, setgamma.c, takes a floating point gamma
value, calculates a standard gamma ramp, and installs it using gammaramp().

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gl/gl.h>

main(argc, argv)
int argc;
char *argv[];
{

int i;
double val;
short tab[256];

if (argc != 2) {
fprintf(stderr, "Usage: setgamma <value>\n");
return 0;

}
val = atof(argv[1]);

noport();
winopen("setgamma");
for (i = 0; i < 256; i++)

tab[i] = 255.0 * pow(i / 255.0, 1.0 / val) + 0.5;
gammaramp(tab, tab, tab);
gexit();
return 0;

}

This program sets the same gamma ramp for red, green, and blue, although a
more general mapping is possible. In addition, this program uses the
noport() hint to the window manager in the same way that prefsize() does.
It tells the graphics that no physical screen space is required, but that the
graphics hardware will be accessed.

As a final example of the gamma ramp, this stepgamma.c program sets the
gamma ramp to a set of discrete values. For example, if the number is 3, the
highest third of the ramp is mapped to full intensity; the middle third to
middle intensity, and the lowest third to lowest intensity. It basically provides
simultaneous thresholding in red, green, and blue. If a picture is drawn

Graphics Library Programming Guide 4-25

entirely with shades of gray, this loading of the gamma ramp displays the
picture as if it were drawn with a small set of discrete gray values.

#include <stdio.h>
#include <stdlib.h>
#include <gl/gl.h>

main(argc, argv)
int argc;
char *argv[];
{

int i, nsteps;
short val;
short ramp[256];

if (argc != 2) {
fprintf(stderr, "Usage: stepgamma <numsteps>\n");
return 1;

}
nsteps = atoi(argv[1]);
if (nsteps < 2) {

fprintf(stderr, "stepgamma: <numsteps> cannot be < 2\n");
return 1;
}

noport();
winopen("stepgamma");
for (i = 0; i < 256; i++) {

val = ((nsteps * i) / 256) * 255 / (nsteps - 1);
if (val > 255)

val = 255;
ramp[i] = val;

}
gammaramp(ramp, ramp, ramp);
gexit();
return 0;

}

It is interesting to look at some shaded RGB polygons with a small number of
steps.

4-26 Display and Color Modes

Graphics Library Programming Guide 5-1

Chapter 5

5. User Input

This chapter tells you how to program your application to respond to input
from a user. User input can occur thorough a variety of devices, including the
keyboard, mouse and peripheral devices.

• Section 5.1, “Event Handling,” describes event handling mechanisms
and discusses input models.

• Section 5.2, “Input Devices,” describes the types of input devices
available and lists the values they report.

• Section 5.3, “Video Control,” tells you how to query and control video
parameters.

5.1 Event Handling

In the previous chapters, the emphasis has been on drawing graphics. You
probably want to do more than just watch graphics on the screen; the next step
is to add user input capability. A user interface provides a mechanism for
detecting user input, acting on the input received, and determining when user
input has ceased.

An input event is generated when you click a mouse button or press a key on
the keyboard. Input events and the system responses associated with them are
the dialogue used to communicate with the computer through the user
interface. Event handling is the process that manages this communication:
including rules that govern what constitutes an input event, how event
priorities are established, and how events are communicated back and forth
between the user and the computer.

5-2 User Input

User input events on the IRIS are handled by the X server (see the X Window
System documentation). You can set up user input using X facilities, using the
GL, or using a combination of X and GL known as mixed-mode, or mixed-model,
programming.

Working with X gives you the advantage of using X-based toolkits and widgets
to create your user interfaces. The X Window System provides facilities for
event management through the Xt routines for timed events and X event
routines for queued events. The X input model provides more information
than the GL for each event and allows for multiple server, screen and window
communication. If you want to use Motif™, Athena widgets, Xt, or multiple
server I/O, you must use the X input model. See the X Window System
documentation for more information about structuring X input environments.

For mixed-model programming, see the glresources() man page, and the
GLX group of man pages, all of which begin with the upper-case letters GLX.

A GL program can detect input events in two ways: queueing or polling.
Queueing saves input events and places them in an event queue, a section of
memory where the events are stored in the order received; the first event in the
queue is the first event to get processed. It is just like waiting in line to buy
movie tickets—the first person in line gets the first tickets.

Polling continually samples (checks) the device(s) for input. Polling is not very
efficient because the system spends a lot of time listening for input that could
be used for doing other tasks. It is possible for the system to miss an input
event that happens when it isn’t listening.

Queueing is the recommended way to manage user input. Queueing allows
you to process rapid up-and-down button transitions and capture all
momentary device state changes.

Another difference between queuing and polling is the effect that the window
system has on them. When you queue buttons and valuators, an event is
generated only for the process controlling the window that currently has input
focus.

Input is enabled for the window that has the cursor in it; that window
currently has the input focus. In a multiple window system input occurs in the
window that has input focus; it does not occur in any other windows that are
open concurrently.

Graphics Library Programming Guide 5-3

5.1.1 Queueing

You decide which devices to queue, and establish rules about what constitutes
a state change, or event, for those devices.

Any change in the state of a device for which queueing is enabled generates an
entry in the event queue. Each queue entry consists of the device number and
the current value of the device. If the input device is a button, the value is
either 1 (pressed) or 0 (released). If the device is a valuator, such as the x
position of the mouse, its value is an integer that indicates the position of the
device.

To use queueing:

1. Enable queueing for the selected device with qdevice().

2. Check the queue for an event, using qread(), qtest() or blkqread().

3. Perform the appropriate action for that event.

4. Return to the event loop

5. Disable event queueing when the event loop is exited.

For maximum efficiency, you should not put complicated redraw operations
inside the event loop and you should provide some mechanism for emptying
the queue when it gets full.

The input queue can contain up to 101 events at a time. To check for overflow,
you can queue the device QFULL. This inserts a QFULL event in the graphics
input queue of a GL program at the point where queue overflow occurred.
This event is returned by qread() at the point in the input queue at which data
was lost. Use qreset() to empty the queue when it gets full.

By default, only the pseudo-devices INPUTCHANGE and REDRAW are queued.

An INPUTCHANGE event appears when you direct the input focus to a new
window or to the background. When an INPUTCHANGE event occurs, the
identifier of the window that has input focus is placed on the queue; a 0 is
placed on the queue when input focus is removed.

A REDRAW event appears in the queue when you move or reshape a window,
when part of a window is uncovered or when the display mode changes.

5-4 User Input

GL subroutines for processing user input are listed next, with a brief
description of what the command does, followed by its ANSI C specification.

qdevice

qdevice() enables queueing for the specified device (dev) (for example, a
keyboard, button, or valuator). The argument of qdevice() is a device
number. Each time the device changes state, an entry is made in the event
queue.

void qdevice(Device dev);

unqdevice

unqdevice() disables the queueing of events from the specified device. If the
device has recorded events in the queue that have not been read, those events
remain in the queue. (You can use qreset() to flush the event queue.)

void unqdevice(Device dev);

isqueued

isqueued() finds out whether or not a specific device is queued. isqueued()
returns a Boolean value. TRUE indicates that the device is enabled for queuing;
FALSE indicates that the device is not queued.

boolean isqueued(short dev);

qenter

qenter() creates event queue entries. It places entries directly into the
program’s own event queue. qenter() takes two 16-bit integers, qtype and val,
and enters them into the event queue.

void qenter(short qtype, short val);

You can use any one of the next three subroutines—qtest(), qread(),
blkqread()—to check the event queue for an entry.

Graphics Library Programming Guide 5-5

qtest

qtest() returns the device number of the first entry in the event queue; if the
queue is empty, it returns zero. qtest() always returns immediately to the
caller and makes no changes to the queue.

long qtest();

qread

qread(), like qtest(), returns the device number of the first entry in the event
queue. However, if the queue is empty, it waits until an event is added to the
queue. qread() returns the device number, writes the data part of the entry
into the short pointed to by data, and removes the entry from the queue.

long qread(short *data);

blkqread

blkqread() returns multiple queue entries. Its first argument, data, is an array
of short integers, and its second argument, n, is the size of the array data.
blkqread() returns the number of shorts returned in the array data, which is
filled alternately with device numbers and device values. Note that the
number of entries read is twice the number of queue entries, hence it can be at
most n/2.

You can also use blkqread() when only the last entry in the event queue is of
interest (for example, when a user-defined cursor is being dragged across the
screen and only its final position is of interest).

long blkqread(short *data, n);

qreset

qreset() removes all entries from the queue and discards them.

void qreset(void);

qgetfd

qgetfd() allows a GL program to use the IRIX system call select to determine
when there are events waiting to be read in the graphics input queue. A call to

5-6 User Input

qgetfd() returns a file descriptor that may be used as part of the readfds
parameter of the select system call. When select indicates that the file descriptor
associated with the graphics input queue is ready for reading, a call to qread()
or blkqread() does not cause the program to block.

long qgetfd(void);

tie

You can tie() a queued button to one or two valuators so that whenever the
button changes state, the system records the button change and the current
valuator position in the event queue. tie() takes three arguments: a button b
and two valuators v1 and v2. You tie() one valuator to a button by making v2
equal to 0. Whenever the button changes state, three entries are made in the
queue that record the current state of the button and the current position of
each valuator. You can untie a button from valuators by making both v1 and v2
equal to 0.

void tie(Device b, Device v1, Device v2);

attachcursor

attachcursor() attaches the cursor to the movement of two valuators. Both
of its arguments, vx and vy, are valuator device numbers that correspond to the
device that controls the horizontal and vertical location of the cursor,
respectively. By default, vx is MOUSEX and vy is MOUSEY. The valuators at vx
and vy determine the cursor position in screen coordinates. Every time the
values at vx or vy change, the system redraws the cursor at the new
coordinates.

void attachcursor(Device vx, Device vy);

To control cursor position from within a program, attach the cursor to GHOSTX

and GHOSTY. The program can then use setvaluator() on GHOSTX and GHOSTY

to move the cursor. attachcursor(), like blink(), is not reset to the default
when the program exits.

curson and cursoff

curson() and cursoff() determine the visibility of the cursor in the current
window. Use them to control the state of the cursor while drawing in the
selected window.

Graphics Library Programming Guide 5-7

curson() makes the cursor visible in the current window; cursoff() makes
it invisible.

void curson();
void cursoff();

By default, the cursor is on when a window is created.Use getcursor() to find
out whether the cursor is visible. See Chapter 11, “Frame Buffers and Drawing
Modes,” for more information on getcursor().

noise

Some valuators are noisy; that is, they report small fluctuations, indicating
movement when no event has occurred. noise() allows you to set a lower
limit on what constitutes an event. The value of a noisy valuator v must change
by at least delta before the motion is recognized. noise() determines how
queued valuators make entries in the event queue. For example, noise(v,5)
means that valuator v must move at least five units before a new queue entry
is made.

void noise(Device v, short delta);

5.1.2 Polling

Polling immediately returns the value of a device that is a button or valuator,
regardless of which window has focus. For example, the statement
getbutton(LEFTMOUSE) returns 1 if the left button of the mouse is down and
0 if it is up. Programs that use polling should watch for changes to input focus
and adjust their behavior accordingly.

getvaluator

getvaluator() polls the status of a valuator. The argument to getvaluator()
is a valuator device number (val) that reflects the current state of the device.

long getvaluator(Device val);

5-8 User Input

getbutton

getbutton() polls the status of a button, whether the button is queued or not.
The argument to getbutton() is the number of the device you want to poll
(num). getbutton() returns TRUE if the button is down, FALSE if it is up.

Boolean getbutton(Device num);

getdev

getdev() polls up to 128 valuators and buttons concurrently. Specify the
number of devices you want to poll (n) and an array of device numbers (devs).
(See Tables 5-1, 5-2, and 5-3 for listings of device numbers.) The vals array
returns the state of each device in its corresponding array location.

void getdev(long n, Device devs[], short vals[]);

The following sample program, input.c, uses queueing to control a simple
drawing program, that lets you sketch in the window with the left mouse
button.

#include <gl/gl.h>
#include <gl/device.h>

#define X 0
#define Y 1

main()
{

short val, mval[2], lastval[2];
long org[2], size[2];
Device dev, mdev[2];
Boolean run;
int leftmouse_down = 0;
lastval[X] = -1;
prefsize(400, 400);
winopen("input");
color(BLACK);
clear();
getorigin(&org[X], &org[Y]);
getsize(&size[X], &size[Y]);
mdev[X] = MOUSEX;
mdev[Y] = MOUSEY;
getdev(2, mdev, lastval); /* initialize lastval[] */
lastval[X] -= org[X];
lastval[Y] -= org[Y];

Graphics Library Programming Guide 5-9

qdevice(LEFTMOUSE);
qdevice(ESCKEY);
qdevice(MOUSEX);
qdevice(MOUSEY);
color(WHITE); /* prepare to draw white lines */

 while (1) {
switch (dev = qread(&val)) {

case LEFTMOUSE:
leftmouse_down = val;
break;

case MOUSEX:
val[X] = val - org[X];
break;

case MOUSEY:
mval[Y] = val - org[Y];
if (leftmouse_down) {

bgnline();
v2s(lastval);
v2s(mval);

endline();
}
lastval[X] = mval[X];
lastval[Y] = mval[Y];
break;

case ESCKEY:
exit(0);

}
 }
}

5-10 User Input

5.2 Input Devices

Input devices accept user input and translate that input into data that a
program can use. The GL supports three classes of input devices:

Buttons Return a Boolean value: FALSE when they are not pressed
(open) and TRUE when they are pressed (closed).

Valuators Return an integer value that represents their current status.
For example, a mouse is a pair of valuators: one reports
horizontal position and the other reports vertical position.

Pseudo-devices Return information about other system events. For example,
the keyboard returns ASCII characters. Most of these
pseudo-devices register events. The keyboard device reports
character values when keys (or combinations of keys) are
pressed. If you press the a key, an ASCII a is reported; if you
press the <Shift> key, nothing is reported, but if you hold
down the <Shift> key and then press the a key, an ASCII A
is reported.

Devices are named by a unique integer within the domain 1 to 32767, inclusive.
Table 5-1 shows how the device domain is organized.

Facilities exist to let you define your own input devices. Additional
information is available in the GL man pages.

Type Range Device Class

0x001 — 0x0FF Buttons

0x100 — 0x1FF Valuators

Reserved 0x200 — 0x2FF Pseudo-devices

Devices 0x300 — 0xEFF Reserved

0xF00 — 0xFFF Additional Buttons

0x1000 — 0x2FFF Buttons

User-definable 0x3000 — 0x3FFF Valuators

Devices 0x4000 — 0x7FFF Pseudo-devices

Table 5-1 Class Ranges in the Device Domain

Graphics Library Programming Guide 5-11

5.2.1 Buttons

User input buttons include the mouse buttons, keyboard keys, buttons on a
dial and button box, digitizer tablet buttons, and a menu button. Table 5-2 lists
the names of the buttons and their descriptions.

Devices Description

MOUSE1 Right mouse button

MOUSE2 Middle mouse button

MOUSE3 Left mouse button

RIGHTMOUSE Right mouse button

MIDDLEMOUSE Middle mouse button

LEFTMOUSE Left mouse button

SW0...SW31 32 buttons on dial and button box

AKEY...PADENTER All the keys on the keyboard

BPAD0 Pen stylus or button for digitizer tablet

BPAD1 Button for digitizer tablet

BPAD2 Button for digitizer tablet

BPAD3 Button for digitizer tablet

MENUBUTTON Menu button

Table 5-2 Input Buttons

5-12 User Input

5.2.2 Valuators

Valuators are single-value input devices. Valuators report a 16-bit integer
value, such as the horizontal and vertical position of the mouse, or the current
setting of a dial. Table 5-3 shows the valuator names and descriptions.

The following devices are valuators that return specific information about the
system.

Timer Devices

The GL timer devices are used to get input events at regular intervals. The
timers use an internal clock that approximates the screen refresh interval. The
clock rate is approximately 67 Hz. The event “time” returned by the timers is
the frame count recorded during the elapsed event. You should not use GL
timers to measure chronological time, nor should you use them to synchronize
your graphics programs. To record events less frequently, use noise().

For example, if you call noise (TIMER0, 30), only every 30th event is
recorded, generating one event approximately every half second.

Devices Description

MOUSEX x valuator on mouse

MOUSEY y valuator on mouse

DIAL0...DIAL7 Position of dials on dial and button box

BPADX x valuator on digitizer tablet

BPADY y valuator on digitizer tablet

CURSORX x valuator attached to cursor (usually MOUSEX)

CURSORY y valuator attached to cursor (usually MOUSEY)

GHOSTX x ghost valuator

GHOSTY y ghost valuator

TIMER0...TIMER3 Timer devices

Table 5-3 Input Valuators

Graphics Library Programming Guide 5-13

Cursor Devices

The cursor devices are pseudo-devices equivalent to the valuators currently
attached to the cursor. (See the attachcursor() man page for more
information.)

Ghost Devices

Ghost devices, GHOSTX and GHOSTY, do not correspond to physical devices,
although they can be used to change a device under program control. For
example, to drive the cursor from software, use
attachcursor(GHOSTX,GHOSTY) to make the cursor position depend on the
ghost devices. Then use setvaluator() on GHOSTX and GHOSTY to move the
cursor.

5.2.3 Keyboard Devices

The keyboard device returns ASCII values that correspond to the keys typed
on the keyboard. The device interprets keyboard movements in the standard
manner; for instance, it reports an event only on a downstroke, taking into
account the <Ctrl> and <Shift> keys.

Note: There is a hardware mechanism in the keyboard that reads multiple
key-down events if the key is held down and begins to auto-repeat.

Be careful to understand the difference between the device and the values it
returns when you queue the keyboard.

If your program contains the instruction: qdevice(KEYBD),the statement
dev = qread(&val) returns the following:

dev = KEYBD
val = the ASCII integer index of the character pressed.

To test for individual keystrokes, you can use instructions of the format:

qdevice(AKEY);

This returns the device AKEY when the A key is pressed and the value 1 when
the key is pressed; 0 when it is released.

5-14 User Input

5.2.4 Window Manager Tokens

The tokens listed in Table 5-4 can be queued as pseudodevices to monitor GL
window manager events, which are generated when windows are activated or
moved. In all cases, the system returns the window identification number (id)
of the window experiencing the event.

Token Description

DEPTHCHANGE Indicates an open window has been pushed or popped. This token
is not supported.

DRAWOVERLAY Indicates damage to the overlay planes. Queue this token if you use
overlay planes.

INPUTCHANGE Indicates a change in the input focus. If the value is 0, input focus
has been removed from the process. If the value is non-0, it indicates
the window id of the window that has just gained input focus.

REDRAW The window manager inserts a REDRAW token each time the
window needs to be redrawn. The REDRAW token is queued
automatically.

REDRAWICONIC Queues automatically when iconsize() is called. The window
manager sends this token when a window needs to be redrawn as
an icon by the program itself.

WINSHUT When queued, the window manager sends this token when Close
is selected from a program’s Window (frame) menu, or when
the close fixture is selected from the title bar of a program’s window.
If WINSHUT is not queued, the Close item on the program’s
Window menu appears grayed out and has no effect if selected.

WINQUIT When queued, the window manager sends this token rather than
killing a process when Quit is selected from a program’s
Window (frame) menu.

WINFREEZE
WINTHAW

If queued, the window manager sends these tokens when windows
are stowed to icons and later unstowed, rather than blocking the
processes of the stowed windows. These devices should be queued
if the program plans to draw its own icon (see iconsize()) or is
a multiwindow application.

Table 5-4 Window Manager Event Tokens

Graphics Library Programming Guide 5-15

5.2.5 Spaceball Devices

Table 5-5 lists the devices returned by qread() when the optional Spaceball
input device sends an event onto the queue.

For more information about the optional Spaceball input device, see the
documentation that is packaged with the Spaceball option.

Devices Description

SBPERIOD Number of periods of 0.25 ms since sending the last non-0 set of
Spaceball data

SBTX Right/left push

SBTY Up/down push

SBTZ Away/towards push

SBRX Twist about right/left axis

SBRY Twist about up/down axis

SBRZ Twist about away/towards axis

SBBUT1 Button 1

SBBUT2 Button 2

SBBUT3 Button 3

SBBUT4 Button 4

SBBUT5 Button 5

SBBUT6 Button 6

SBBUT7 Button 7

SBBUT8 Button 8

SBPICK Pick button

Table 5-5 Spaceball Input Buttons

5-16 User Input

5.2.6 Controlling Devices

The GL provides subroutines that initialize device values and control the
characteristics and behavior of the system’s peripheral input/output devices.
For example, some of these routines turn the keyboard click on, clkon(), and
off, clkoff(), or set the keyboard bell. You set these controls to your
preference or needs.

setvaluator

setvaluator() assigns an initial value (init) to a valuator. The arguments min
and max are the minimum and maximum values the device can assume.

void setvaluator(Device val, short init, short min, short max);

clkon

If clkon() is called, the keyboard makes an audible click whenever a key is
pressed.

void clkon(void);

clkoff

clkoff() turns off the keyboard click.

void clkoff(void);

lampon

lampon() and lampoff() control the four lamps on old-style keyboards
labeled L1, L2, L3, and L4 on the keyboard. Each 1 in the four lower-order bits
of the lamps argument to lampon() turns on the corresponding keyboard lamp.

void lampon(Byte lamps);

lampoff

Each 1 in the four lower-order bits of the lamps argument to lampoff() turns
off the corresponding keyboard lamp.

void lampoff(Byte lamps);

Graphics Library Programming Guide 5-17

ringbell

ringbell() rings the keyboard bell.

void ringbell(void);

setbell

setbell() sets the duration of the keyboard bell: 0 is off, 1 is a short beep, and
2 is a long beep.

void setbell(Byte mode);

dbtext

dbtext() writes text to the LED display in a dial and button box. The string
str must be eight or fewer uppercase characters.

void dbtext(char str[8]);

setdblights

setdblights() controls the 32 lighted switches on a dial and switch box. For
example, to turn on switches 3 and 7, the third and seventh bits to the right of
mask must be set to 1; that is, (1<<3)|(1<<7).

void setdblights(unsigned long mask);

5.3 Video Control

You can query the status and control the behavior of certain video parameters.
You can also determine information about the video monitor used on your
system and specify its operating parameters with the following subroutines.

Note: RealityEngine systems use a graphical user interface to set the video
format. See the RealityEngine Owner’s Guide for information about
this interface and the video formats available.

5-18 User Input

blankscreen

blankscreen() turns the screen display on and off. b=TRUE stops display;
b=FALSE restarts display.

void blankscreen(Boolean bool);

blanktime

blanktime() sets the screen blanking time-out. By default, the screen blanks
(turns black) after the system receives no input for about 15 minutes. This
protects the color display. blanktime() changes the amount of time the
system waits before blanking the screen. It can also disable the screen blanking
feature.

void blanktime(long nframes);

nframes specifies the screen blanking time-out in frame times based on the
standard 60 Hz monitor. For software compatibility, the factor of 60 is used,
regardless of the monitor type. To calculate the value of nframes, multiply the
desired blanking latency period (in seconds) by 60. For example, when nframes
is 1800, the blanking latency period is 5 minutes. There are 60 frames per
second; nframes is 60 times the number of seconds that the system waits before
blanking the screen. When nframes is 0, screen blanking is disabled.

setmonitor

setmonitor() sets the monitor to one of the video formats listed in Table 5-6.

void setmonitor(short type);

Not all formats are supported by all systems. If a format is not supported, it is
ignored. Some formats may require the use of optional products.

Note: IRIS Indigo systems do not support setmonitor(). Elan supports
NTSC, PAL, HZ60, HZ72, STR_RECT, and RS-343 monitors.

getmonitor

getmonitor() queries the type of the current display monitor, as listed in
Table 5-6.

Graphics Library Programming Guide 5-19

Table 5-6 lists monitor type tokens and the video formats they represent.

getothermonitor

getothermonitor() returns the other monitor types supported by the
hardware. Most systems are not limited to one optional video mode. The
display hardware can support all the video modes. getothermonitor()
normally returns MON_ALL showing that all monitor types are supported.
getothermonitor() returns MON_GEN_ALL if the optional genlock board is
installed in the system.

setvideo

setvideo() sets the specified video hardware register, reg, to the indicated
value. setvideo() and getvideo() support several video boards. The DE_R1
is physically present on IRIS-4D/B/G/GT/GTX systems, and is emulated on
other systems.

Type Video Format

STR_RECT 120Hz stereo format, if supported by hardware

HZ90_STEREO 90Hz stereo format, if supported by hardware

HZ76 76Hz, noninterlaced

HZ72 72Hz, noninterlaced

HZ60 60Hz noninterlaced

HZ30 30Hz interlaced

HZ30_SG 30Hz noninterlaced with sync on green

A343 RS-343 component RGB (1280×960), if supported by hardware

HDTV HDTV format, if supported by hardware

PAL PAL- 625 line component RGB (768×575) or SECAM

NTSC NTSC - RS1070A 525 line component RGB (768×575)

VGA VGA component RGB (640×497)

PR60 Pixel replication of one-quarter resolution 60Hz format

Table 5-6 Monitor Types

5-20 User Input

getvideo

getvideo() returns the value of the specified video hardware register. The
returned value of getvideo() is the one read from register reg, or -1, which
indicates that reg is not a valid register, or that you queried a video register on
a system without that particular board installed

Table 5-7 lists the video register values for setvideo() and getvideo().

Video Option Board Register

Display Engine Board DE_R1

CG2/CG3 Composite Video and Genlock Board CG_CONTROL

CG_CPHASE

CG_HPHASE

CG_MODE

VP1 Live Video Digitizer Board VP_ALPHA

VP_BRITE

VP_CMD

VP_CONT

VP_DIGVAL

VP_FBXORG

VP_FBYORG

VP_FGMODE

VP_GBXORG

VP_GBYORG

VP_HBLANK

VP_HEIGHT

VP_HUE

VP_MAPADD

Table 5-7 Video Register Values

Graphics Library Programming Guide 5-21

videocmd

videocmd() initializes the Live Video Digitizer option. If you don’t have a Live
Video Digitizer, you might want to skip this section.You can initialize the Live
Video Digitizer in either RGB or composite video mode, for both NTSC and
PAL video sources. The cmd parameter initiates the specified command.
Table 5-8 lists the values for cmd, which are defined in the file gl/vp1.h.

VP_MAPBLUE

VP_MAPGREEN

VP_MAPRED

VP_MAPSRC

VP_MAPSTROBE

VP_PIXCNT

VP_SAT

VP_STATUS0

VP_STATUS1

VP_VBLANK

VP_WIDTH

Token Description

VP_INITNTSC_COMP Initialize the optional Live Video Digitizer
for a composite NTSC video source

VP_INITNTSC_RGB Initialize the Live Video Digitizer for an
RGB NTSC video source

VP_INITPAL_COMP Initialize the Live Video Digitizer for a
composite PAL video source

Table 5-8 Live Video Digitizer Commands

Video Option Board Register

Table 5-7 (continued) Video Register Values

5-22 User Input

VP_INITPAL_RGB Initialize the Live Video Digitizer for an
RGB PAL video source

Token Description

Table 5-8 Live Video Digitizer Commands

Graphics Library Programming Guide 6-1

Chapter 6

6. Animation

This chapter describes the subroutines that you use to create continuous
motion in graphics scenes. This chapter introduces a technique called double
buffering, which allows you to create graphics that are animated in the kind of
smooth motion that looks like a movie.

• Section 6.1, “Understanding How Animation Works,” presents an
overview on how animation is done on the IRIS.

• Section 6.2, “Creating an Animation,” tells you how to set up your system
to do animation, and maximize animation performance.

6.1 Understanding How Animation Works

You can address frame buffer memory in either of two modes:

• Single buffer mode - a program addresses frame buffer memory as a
single buffer whose pixels are always visible.

• Double buffer mode - a program addresses frame buffer memory as if it
were two buffers, only one of which is displayed at a time.

The currently visible buffer is called the front buffer and the invisible, drawing
buffer is the back buffer. The display hardware in the system constantly reads
the contents of the visible buffer (the front buffer in double buffer mode), and
displays those results on the screen. On a standard monitor, the electron guns
sweep from the top of the screen to the bottom, refreshing all pixels, 60 to 76
times each second. If the graphics hardware changes the contents of the visible
frame buffer, the next time the refresh hardware reads a changed pixel, the
system draws the new value instead of the old one.

6-2 Animation

6.1.1 Single Buffer Mode

By default, the system is in single buffer mode. Whatever you draw into the
bitplanes is immediately visible on the screen. For static drawings, this is
acceptable, but it does not provide smooth animated motion. If you try to
animate a drawing in single buffer mode, you can see a visible flicker in all but
the simplest drawing operations.

In single buffer mode, the system simultaneously updates and displays the
image data in the active bitplanes; consequently, incomplete or changing
pictures can appear on the screen. singlebuffer() does not take effect until
gconfig() is called.

6.1.2 Double Buffer Mode

For smooth motion, it is preferable to display a completely drawn image for a
certain time (for instance, a few 60ths of a second), then present the next frame,
also completely drawn, during the next time period. Scene frames are
interleaved in this manner so that the changes from one frame to the next
cannot be detected by your eye. If the frames are not swapped quickly enough,
your eye can detect this motion and perceive it as flicker.

In double buffer mode, the bitplanes are partitioned into two groups, the front
bitplanes and the back bitplanes. Double buffering works in either RGB mode
or color map mode. Use doublebuffer() to set the display mode to double
buffer mode. The mode change does not take effect until you call gconfig().
In double buffer mode, only the front bitplanes are displayed, and drawing
routines normally update only the back bitplanes; frontbuffer() and
backbuffer() can override this default. gconfig() sets frontbuffer() to
FALSE and backbuffer() to TRUE in double buffer mode.

6.2 Creating an Animation

Before drawing anything, you must set the frame buffers into the correct
configuration, such as color map mode or RGB mode.

Graphics Library Programming Guide 6-3

6.2.1 Setting Modes for Animation

Configuring the frame buffer is a two-step process:

1. Indicate how to configure the frame buffer.

2. Call gconfig() to set the system into that particular configuration.

After a gconfig() call, the current writemask and color are no longer defined.

6.2.2 Swapping Buffers

After the entire frame is rendered into the back buffer, swapbuffers() is called
to make it the visible buffer. The swapbuffers() call is ignored in single buffer
mode. The swapbuffers() subroutine waits for the next screen refresh before
exchanging the front and back buffers. If it did not wait, a frame would be
drawn partly in one buffer, and partly in the other, causing a serious visual
disturbance.

Because screen refresh occurs approximately every 60th of a second on the
standard monitor, swapbuffers() can block the running process for up to that
long. The default monitor is refreshed 60 to 76 times per second. Other monitor
options can have other retrace periods. See setmonitor() and getmonitor()

in Chapter 5.

Because swapbuffers() blocks the user program until the next screen refresh
(1/60 second), every frame takes n screen refreshes to render and display,
where n is the ceiling function of the actual rendering time. For example, if a
scene takes 1.9 refreshes to render, then every frame takes 2 refreshes to render
and display. Therefore, the application performs at 60/2 or 30 frames per
second. If you add another polygon to the scene, and it now takes 2.1 refreshes
to render, or 3 refreshes to render and display, the frame rate drops from 30 to
60/3 or 20 frames per second. There is no smooth degradation. While the
geometry is moving about, the time it takes to render each frame varies.

6.2.3 Swapping Multiple Buffers

On IRIS-4D/VGX Series, SkyWriter, and RealityEngine systems, both overlay
and underlay planes can also be double buffered. The mswapbuffers()
subroutine lets you swap any combination of the available frame buffers at the

6-4 Animation

same time. Just like swapbuffers(), mswapbuffers() blocks until the next
vertical retrace period. It is ignored by frame buffers that are not in double
buffer mode.

The constants you use to indicate the buffers to be swapped are

NORMALDRAW Swap the front and back buffers of the normal color bitplanes.

OVERDRAW Swap the front and back buffers of the overlay bitplanes.

UNDERDRAW Swap the front and back buffers of the underlay bitplanes.

These constants can be bitwise-ORed together to swap multiple buffers
simultaneously. For example, to swap front and back for the normal frame
buffer and for the underlay planes, include this line in your program:

mswapbuffers(NORMALDRAW | UNDERDRAW);

This sample program, bounce.c, demonstrates animation.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gl/gl.h>
#include <gl/device.h>
#define RGB_BLACK 0x000000
#define RGB_WHITE 0xffffff
#define X 0
#define Y 1
#define XY 2
#define SIZE 0.05
#define BOUNDS (1.0 + SIZE)
#define EDGE (1.1 * BOUNDS)

float boundary[4][XY] = {
{-BOUNDS, -BOUNDS},
{-BOUNDS, BOUNDS},
{ BOUNDS, BOUNDS},
{ BOUNDS, -BOUNDS}

};

struct ball_s {
float pos[XY];
float delta[XY];
unsigned long col;

};

Graphics Library Programming Guide 6-5

void main(int argc, char *argv[])
{

int i, j;
int nballs;
struct ball_s *balls;
short val;
if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {

fprintf(stderr, "Double buffered RGB not available on this machine\n”);
return 1;

}
if (argc != 2) {

fprintf(stderr, "Usage: bounce <ball count>\n");
return 1;

}
nballs = atoi(argv[1]);
if (!(balls = (struct ball_s *)malloc(nballs * sizeof(struct ball_s)))) {

fprintf(stderr, “bounce: malloc failed\n”);
return 1;

}
for (i = 0; i < nballs; i++) {

for (j = 0; j < XY; j++) {
balls[i].pos[j] = 2.0 * (drand48() - 0.5);
balls[i].delta[j] = 2.0 * (drand48() - 0.5) / 50.0;

}
balls[i].col = drand48() * 0xffffff;

}
prefsize(400, 400);
winopen("bounce");
doublebuffer();
RGBmode();
gconfig();
shademodel(FLAT);
qdevice(ESCKEY);
ortho2(-EDGE, EDGE, -EDGE, EDGE);
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {

for (i = 0; i < nballs; i++) {
 for (j = 0; j < XY; j++) {

balls[i].pos[j] += balls[i].delta[j];
if ((balls[i].pos[j] >= 1.0) || (balls[i].pos[j] <= -1.0))

balls[i].delta[j] = -balls[i].delta[j];
}

}
cpack(RGB_BLACK);
clear();
cpack(RGB_WHITE);
bgnclosedline();

6-6 Animation

for (i = 0; i < 4; i++)
v2f(boundary[i]);

endclosedline();
for (i = 0; i < nballs; i++) {

cpack(balls[i].col);
sboxf(balls[i].pos[X]-SIZE, balls[i].pos[Y]-SIZE,

balls[i].pos[X]+SIZE, balls[i].pos[Y]+SIZE);
}
swapbuffers();

}
gexit();
return 0;

}

6.2.4 Maximizing Animation Performance

The subroutine calls contained in the remainder of this chapter might be
considered advanced topics. You do not need to use these calls unless you are
tuning your program for maximum performance.

Sometimes in double buffer mode, it is useful to be able to write the same thing
into both buffers at once. For example, suppose an animated image has both a
fixed part and a changing part. The fixed part needs to be drawn only once, but
into both buffers. It is most easily done by enabling the front buffer (as well as
the back buffer) for writing, drawing the image, and then disabling the front
buffer. The animation then proceeds by drawing the changing part of the
image using the usual double buffering techniques.

When the value of the argument b is FALSE (the default value), the front buffer
is not enabled for writing. When the value of b is TRUE, the front buffer is
enabled for writing. This routine is useful only in double buffer mode.
frontbuffer(TRUE) in double buffer mode enables simultaneous updating of
(or writing into) both the front and the rear buffers. gconfig() sets
frontbuffer() to FALSE.

backbuffer

It is sometimes convenient to update both the front and the back buffers, or to
update the front buffer instead of the back. backbuffer() enables updating in
the back buffer. Its argument, b, is a Boolean value. When the value of b is TRUE,

Graphics Library Programming Guide 6-7

the default, the back buffer is enabled for writing. When the value of b is FALSE,
the back buffer is not enabled for writing.

getbuffer

getbuffer() indicates which buffer(s) are enabled for writing in double
buffer mode. The returned values operate as a bitmask (that is, the number
returned represents the numeric value of all the bits currently set). The default,
1, means the back buffer is enabled (as does any odd value); 2 means that the
front buffer is enabled (or any value in which the 2 bit is set); and 3 (or value
in which the 3 bit is set) means that both are enabled. getbuffer() returns
zero if neither buffer is enabled or if the system is not in double buffer mode.
If the z-buffer (see Chapter 8) is enabled for drawing, getbuffer() can return
4, 5, 6, or 7.

Each of the possible values also has an associated symbolic value that you can
use in the call to getbuffer(). See the getbuffer() man page for a list of
these symbols.

swapinterval

swapinterval() defines a minimum time between buffer swaps. For
example, a swap interval of 5 refreshes the screen at least five times between
execution of successive calls to swapbuffers(). swapinterval() is typically
used when you want to show frames at a constant rate, but the images vary in
complexity. To achieve a constant rate, set the swap interval long enough that
even the most complex frame can be drawn in that time. For drawing a simple
frame, the user’s process simply blocks and waits until the swap interval is
used up. The default interval is 1.

Note: swapinterval() is valid only in double buffer mode.

getdisplaymode

getdisplaymode() returns the current display mode: 0 indicates RGB single
buffer mode; 1 indicates single buffer mode; 2 indicates double buffer mode; 5
indicates RGB double buffer mode. Modes 3 and 4 are unused.

6-8 Animation

gsync

gsync() pauses execution until a vertical retrace occurs. It was intended as a
method to synchronize drawing with the vertical retrace to achieve animation
in single buffer mode, but it is not precise since the retrace rate varies among
systems. You might think of calling gsync() a number of times to get short
time delays (because each call waits until the next 60th of a second), but this is
not the recommended procedure for setting up a delay. Use the system call
sginap() instead.

gsync() is also used for rubber-banding in single buffer mode.

gsync() is included primarily for compatibility with systems that might not
have enough bitplanes to use double buffer mode. gsync() waits for the next
vertical retrace period. Due to pipeline and operating system delays, smooth
motion in single buffer mode is often impossible. gsync() should be used only
as a last resort, and it might not work.

Graphics Library Programming Guide 7-1

Chapter 7

7. Coordinate Transformations

This chapter describes the subroutines that you use to set up a graphics scene,
for example, how much of the screen to use, where to locate the viewing point,
where shapes in the scene are located in space, how much of the scene is
visible, and what type of view you are looking at.

• Section 7.1 describes the coordinate systems that the GL uses and
explains how they are derived.

• Section 7.2, “Projection Transformations,” describes how coordinates are
mapped to the screen and tells you how to set up your scene projection.

• Section 7.3, “Viewing Transformations,” tells you how to set up the view
of your scene.

• Section 7.4, “Modeling Transformations,” tells you how to locate a
geometry in space and how to change its size and orientation.

• Section 7.5, “Controlling the Order of Transformations,” explains how to
put the items in your scene where you want them to go and how to save a
scene setup for later use.

• Section 7.6, “Hierarchical Drawing with the Matrix Stack,” tells you how
to draw items that are grouped into hierarchies.

• Section 7.7, “Viewports, Screenmasks, and Scrboxes,” tell you how to
define the visible limits of your scene.

• Section 7.8, “User-Defined Transformations,” tells you how to define your
own way of looking at the scene and manipulating items in it.

• Section 7.9, “Additional Clipping Planes,” tells you how to define the
visible limits of your scene using boundaries that you create.

7-2 Coordinate Transformations

Changing how your graphics scene is viewed and changing where items are
placed in it are called transformations. Three-dimensional transformations are
difficult to describe, and even harder to visualize. You may need to read the
chapter more than once, study the illustrations, experiment with the sample
code, and write your own programs in order to gain an understanding of these
topics.

7.1 Coordinate Systems

You use many different coordinate systems in the process of drawing a
graphics scene. Figure 7-1 illustrates the coordinate systems used at different
stages of the drawing process.

Figure 7-1 Coordinate Systems

The coordinate systems on the IRIS begin with a 3-D system defined in
right-handed cartesian floating point coordinates, called the object coordinate
system. Geometry vertices that you specify in (x, y, z) triplets are in this

Coordinate System Operation

Object coordinates

Eye coordinates

Clip coordinates

Normalized coordinates

Window coordinates

Screen coordinates

ModelView matrix

Projection matrix

Divide by

Viewport transform

Window offset

Pixel values

w

Graphics Library Programming Guide 7-3

coordinate system. There are no limits to the size of coordinates in this system
(other than the largest legal floating point value).

The eye coordinate system is the result of transforming (through matrix
multiplication) the geometry coordinates by the contents of the modeling and
viewing (ModelView) matrix. The eye coordinate system is the system in which
lighting calculations are performed internally.

When the IRIS transforms points expressed in eye coordinates by the Projection
matrix, the output is expressed in clip coordinates. Values returned by a call to
getgpos() are expressed in this coordinate system.

The next system is called the normalized coordinate system. Clip coordinates are
converted to normalized coordinates by first limiting x, y, and z to the range
-w ≤ x,y,z ≤ w (clipping), then dividing x, y, and z by w. The result is
normalized coordinates in the range -1 ≤ x,y,z ≤ 1. The space of normalized
coordinates is called the 3-D unit cube.

The x and y coordinates of this 3D unit cube are scaled directly into the next
coordinate system, usually called the window coordinate system. The pixel at the
lower-left corner of a window has window coordinates (0,0).

Window coordinates, modified by a window offset that represents the
window’s location on the screen, represent the screen coordinate system, which
corresponds to pixel values. Screen coordinates are typically thought of as 2-D,
but in fact all three dimensions of the normalized coordinates are scaled, and
there is a screen z coordinate that can be used for hidden surface removal,
described in Chapter 8, or depth cueing, described in Chapter 11.

Note: If the ModelView matrix were separated into a Model matrix and a
View matrix, the coordinate system between these matrices would be
correctly referred to as the world coordinate system. Because the GL
concatenates modeling and viewing transformations into a single
matrix (ModelView), there are no world coordinates in the GL.

To get from geometry vertices to a scene displayed on your screen, you have
to specify a projection transformation, to define how images in your scene are
projected to the screen and a viewing transformation, to define what type of view
you have and where you are viewing the scene from. This is sort of like setting
up a camera to look through at the scene. You can move the camera around and
change lenses to get different views with these transformations.

7-4 Coordinate Transformations

7.2 Projection Transformations

You can project an image onto the screen in one of three ways:

• Perspective - Items far away are smaller than items close to you, and
parallel lines appear to recede into the distance toward a vanishing point.

This is how you see the real world through your eye’s ability to
perceive depth. Consequently, scenes with a perspective projection
will look and feel more natural to you, unless you have exaggerated
some parameter that causes distortion.

• Window - Items are seen in perspective, but it is possible to create an
asymmetric view of the scene.

• Orthographic - Items are projected through a rectangular viewing
volume, but are not seen in perspective.

All the projection transformations work basically the same way. A viewing
volume is mapped into the unit cube, the geometry outside the cube is clipped
out, and the remaining data is linearly scaled to fill the window (actually the
viewport, which is discussed in Section 7.7, “Viewports, Screenmasks, and
Scrboxes”). The viewpoint is where your eye is with respect to the viewing
volume. This is called the eye position, or simply the eye.

Projection transformations are either perspective or orthographic in nature.
The difference between the three projection transformations is the definitions
of their viewing volumes. Perspective projections create a volume that has the
shape of a pyramid with the top cut off. Orthographic projections create a
viewing volume that has parallel sides.

7.2.1 Perspective Projection

Viewing items in perspective on the computer screen is like looking through a
rectangular piece of perfectly transparent glass. Imagine drawing a line from
your eye through the glass until it hits the item, coloring a dot on the glass
where the line passes through the same color on the item. If this were done for
all possible lines through the glass, if the coloring were perfect, and if the eye
not allowed to move, the picture painted on the glass would be
indistinguishable from the true scene.

The collection of all the lines leaving your eye and passing through the glass
would form an infinite four-sided pyramid with its apex at your eye. Anything

Graphics Library Programming Guide 7-5

outside the pyramid would not appear on the glass, so the four planes passing
through your eye and the edges of the glass would block your view of the
portions of the items outside the glass. These are called the left, right, bottom,
and top clipping planes.

The geometry hardware also provides two other clipping planes that eliminate
anything too far or too near to be seen clearly with the eye, just like your eye
cannot focus on objects that are very far away or very close to you. These are
called the near and far clipping planes. Near and far clipping is always turned
on, but it is possible to set the near plane very close to the eye and/or the far
plane very far from the eye so that all the geometries of interest are visible.

Because floating point calculations are not exact, it is a good idea to move the
near plane as far as possible from the eye, and to bring in the far plane as close
as possible. This gives optimal resolution for distance-based operations such
as hidden surface removal and depth-cueing, as discussed in Chapters 8 and
11.

For a perspective view, the visible region of the world (your graphics scene)
looks like a pyramid with the top sliced off. The technical name for this is a
frustum, or rectangular viewing frustum.

In a perspective projection, the Projection matrix maps a frustum of eye
coordinates so that it exactly fills the unit cube (after x, y, and z are each divided
by w). This frustum is part of a pyramid whose apex is at the origin (0.0, 0.0,
0.0). The base of the pyramid is parallel to the x-y plane, and it extends along
the negative z axis.

In other words, it is the view obtained with the eye at the origin looking down
the negative z axis, and the plate of glass perpendicular to the line of sight.

Use perspective() to define a perspective projection:

void perspective(Angle fovy, float aspect, Coord znear, Coord zfar)

perspective() has four arguments: the field of view in the y direction, the
aspect ratio, and the distances to the near and far clipping planes.

The field of view (fovy) is an angle made by the top and bottom clipping planes
that is measured in tenths of degrees, so a 90 degree angle is specified as 900.

The aspect ratio is the ratio of the x dimension of the glass to its y dimension. It
is a floating point number. For example, if the aspect ratio is 2.0, the glass is

7-6 Coordinate Transformations

twice as wide as it is high. Typically, you choose the aspect ratio so that it is the
same as the aspect ratio of the window on the screen, but it need not be. The
distances to the near and far clipping planes are floating point values.

The keepaspect() subroutine tells the window manager to maintain the
window’s x and y dimensions in a 1 to 1 ratio, that is, a square. An equally
accurate picture could be made by setting a 2 to 1 ratio, but then the aspect
ratio in perspective() would have to be changed to 2.0. You might want to
try this to see how it looks. Also try varying other parameters of
perspective—change the field of view and the near and far clipping planes to
see the effects.

In a real application, you probably want to match the aspect ratio of
perspective() to the aspect ratio of the window when you sweep out a
window of arbitrary shape and size. Use getsize(x,y) to return the height
and width in pixels of a GL window.

Figure 7-2 shows a frustum that demonstrates eyepoint, FOV angles, clipping
planes, and aspect ratio.

Figure 7-2 Frustum

Far

Right

Left

Eyepoint
Line of Sight

Horizontal FOV

Aspect Ratio =
y
x

Near

Vertical FOV

Bottom

Top

y

x

Graphics Library Programming Guide 7-7

This sample program, perspective.c, draws a single rectangle whose shade
varies from bright red at z=0.0 to bright green at z=-4.0.

#include <stdio.h>
#include <gl/gl.h>
#define RGB_BLACK 0x000000
#define RGB_RED 0x0000ff
#define RGB_GREEN 0x00ff00

float v[4][3] = {
{-3.0, 3.0, 0.0},
{-3.0, -3.0, 0.0},
{ 2.0, -3.0, -4.0},
{ 2.0, 3.0, -4.0}

};

main()
{

long xsize, ysize;
float aspect;

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, “Single buffered RGB not available\n”);

return 1;
}
prefsize(400, 400);
winopen("perspective");
mmode(MVIEWING);
getsize(&xsize, &ysize);
aspect = (float)xsize / (float)ysize;
perspective(900, aspect, 2.0, 5.0);
RGBmode();
gconfig();
cpack(RGB_BLACK);
clear();
bgnpolygon();

cpack(RGB_RED);
v3f(v[0]);
v3f(v[1]);
cpack(RGB_GREEN);
v3f(v[2]);
v3f(v[3]);

endpolygon();
sleep(10);
gexit();
return 0;

}

7-8 Coordinate Transformations

Figure 7-3 shows a top view of the scene drawn in the sample program
perspective.c. This view is not the view you see on your screen when you run
the program; this view lets you see outside of the viewing volume.

Figure 7-3 Clipping Planes

The heavy line shows the rectangle that the program draws. The eye is at (0.0,
0.0, 0.0), so the rectangle recedes into the distance, and because the field of
view is 90 degrees and the near clipping plane is at 2.0, the rectangle is clipped
by the top, bottom, and near clipping planes.

The visible part of the polygon nearest the eye is not bright red, but already
looks yellowish because the rectangle is clipped by the near clipping plane. If
you bring in the near clipping plane toward you, the near end of the polygon
looks more and more red.

right

x

near

far left

z

Graphics Library Programming Guide 7-9

7.2.2 Window Projection

A window() projection transformation shows the world in perspective view. It
is similar to perspective(), but its viewing frustum is defined in terms of
distances to the left, right, bottom, top, and near and far clipping planes:

void window(Coord left,Coord right,Coord bottom,Coord top,Coord near,Coord far)

Figure 7-4 illustrates the window projection transformation.

Figure 7-4 The window() Projection Transformation

Because window() allows separate specifications at all six surfaces of the
viewing frustum, it can be used to specify asymmetric volumes. These are
useful in special circumstances, such as multiple view simulations, and for
special operations, such as antialiasing using the accumulation buffer,
described in Chapter 15.

window() specifies the position and size of the rectangular viewing frustum
closest to the eye, the location of the near and far clipping planes. window()
projects a perspective view of the image onto the screen.

(left, top, near)

y

x

z

window (-5., 5., -3., 3., 1., 3.);
translate (0., 0., -2.)

(right, bottom, near)

(0, 0, far)

z

y

7-10 Coordinate Transformations

7.2.3 Orthographic Projections

The remaining two projection subroutines are the orthographic
transformations, ortho() and ortho2(). Their viewing volumes are
rectangular parallelepipeds (rectangular boxes). They correspond to the
limiting case of a perspective frustum as the eye moves infinitely far away and
the field of view decreases appropriately.

Another way to think of the ortho() subroutines is that the geometry outside
the box is clipped out, then the geometry inside is projected parallel to the z
axis onto a face parallel to the x-y plane.

Figure 7-5 shows an example of a 3D orthographic projection.

Figure 7-5 The ortho() Projection Transformation

ortho() allows you to specify the entire box—the x, y, and z limits. ortho2()
requires a specification of only the x and y limits. The z limits are -1 and 1.

near

y

x

z
far

ortho (-5., 5., -3., 3., 1., 3.);
translate (0., 0., -2.);

Graphics Library Programming Guide 7-11

ortho2() is usually used for 2-D drawing, where all the z coordinates are zero.
It is really a 3D transformation; if you use ortho2() and try to draw objects
with z coordinates outside the range –1.0 ≤ z ≤ 1.0, they are clipped out.

ortho

ortho() defines a box-shaped enclosure in the eye coordinate system:

void ortho(Coord left,Coord right,Coord bottom,Coord top,Coord znear,Coord zfar)

The arguments left, right, bottom, and top define the x and y clipping planes.
znear and zfar are distances along the line of sight and are negative. In other
words, the z clipping planes are located at z = −znear and z = −zfar.

Note: Because ortho() allows separate specification of the left, right,
bottom, and top clipping planes rather than just the width and height
of the viewing volume, it can move the effective viewpoint off the
positive z axis. Thus, although ortho() is a projection transformation,
it exhibits some aspects of a viewing transformation. Be careful when
using ortho() with asymmetric volume boundaries so that you do
not duplicate this viewpoint offset in your viewing transformation.

ortho2

ortho2() defines a 2-D clipping rectangle:

void ortho(Coord left,Coord right,Coord bottom,Coord top,Coord near,Coord far)

The arguments left, right, bottom, and top define the sides of the rectangle.
Choose the values for ortho2() carefully, because of the transformation of
floating point values to integers as the coordinate systems are modified to use
screen coordinates, and because of the need to align lines on pixel centers
rather than on pixel boundaries. You need to add a .5 to each value in the
ortho2() call, so that pixels are centered on whole numbers. If you do not do
this, you might find that accumulated round-off errors in the arithmetic of
pixel operations cause your pixel specifications to be off by a pixel or more.

The ortho2() statement in the following code fragment defines the correct
clipping rectangle for the window created with the corresponding
prefposition() statement:

prefposition(101, 500, 101, 500);
ortho2(100.5, 500.5, 100.5, 500.5);

7-12 Coordinate Transformations

This causes the clipping rectangle to clip only items that are completely within
the window defined by the prefposition() statement. These two statements
ensure that the ortho2() statement clips on (and point-samples within)
boundaries that are completely visible within the window defined by the
prefposition() statement.

7.3 Viewing Transformations

All the projection transformations discussed so far have assumed that the eye
is at least looking toward the negative z axis, and the two perspective
subroutines actually assume that the eye is at the origin. For the orthogonal
transformations, it does not make sense to talk about the exact position of the
eye, only about the direction it is looking.

The viewing transformations allow you to specify the position of the eye and
the direction toward which it is looking. polarview() and lookat() provide
convenient ways to do this.

polarview() assumes that the object you are viewing is near the origin. The
eye position is specified by a radius (distance from the origin) and by angles
measuring the azimuth and elevation. The specification is similar to a polar
coordinates. There is still one degree of freedom, because these values tell only
where the eye is relative to the object.

lookat() allows you to specify both the viewpoint and the reference point
toward which the eye is looking, and a twist angle to specify which way is up.

Both viewing subroutines work with a projection subroutine. If you want to
view a point (for example: 1, 2, 3) from another point (4, 5, 6) in a perspective
view, use both perspective() and lookat().

When the orthographic projections are used, the exact position of the eye used
in the viewing subroutines does not make a difference; all that matters is the
viewing line of sight.

The viewing transformations work mathematically by transforming, with
rotations and translations, the position of the eye to the origin and the viewing
direction so that it lies along the negative z axis.

Graphics Library Programming Guide 7-13

7.3.1 Viewpoint in Polar Coordinates

polarview() defines the viewer’s position in polar coordinates. The first three
arguments, dist, azim, and inc, define a viewpoint. dist is the distance from the
viewpoint to the origin in world coordinates. azim is the azimuthal angle in the
x-y plane, measured from the y axis. inc is the incidence angle in the y-z plane,
measured from the z axis. The line of sight is the line between the viewpoint
and the origin (0,0,0).

The twist rotates the viewpoint around the line of sight using the right-hand rule
(as you look down the positive rotation axis to the origin, positive rotation is
counterclockwise). All angles are specified in tenths of degrees and are
integers.

Figure 7-6 shows examples of polarview().You don’t see anything in the top
picture because the eye is positioned on the origin, looking at the origin.

Figure 7-6 The polarview() Viewing Transformation

polarview (0., 0, 0, 0);

polarview (10., 0, 0, 0);

z

x y

dist

7-14 Coordinate Transformations

7.3.2 Viewpoint along a Line of Sight

lookat() defines a viewpoint and a reference point on the line of sight in
world coordinates. The viewpoint is at (vx, vy, vz) and the reference point is at
(px, py, pz). These two points define the line of sight. The twist measures
right-hand rotation about the z axis in the eye coordinate system.

Figure 7-7 shows examples of lookat().

Figure 7-7 The lookat() Viewing Transformation

The lookat.c sample program draws a wireframe cube centered at the origin. Its
window has an aspect ratio of 3:2, or 1.5:1, so the aspect ratio of perspective()
is 1.5 to match. lookat() looks from the point (5.0, 4.0, 6.0) at the corner (1.0,
1.0, 1.0) of the cube, so that corner appears centered in the window.

The near and far clipping planes are at 0.1 and 10.0. Nothing is clipped out on
the near end, but the far corner of the cube is about 10.49 away from the eye,
so the far clipping plane clips a bit of the corner.

lookat (V , V , V , 0., 0., 0., 0);x y z

lookat (V , V , V , 0., 0., 0., 300);x y z

line of sight

y

x

zobj

obj

obj

y

x

zobj

obj

obj

twist

Graphics Library Programming Guide 7-15

This program, lookat.c, illustrates how to use a viewing transformation with a
projection transformation:

#include <gl/gl.h>

long v[8][3] = {
{-1, -1, -1},
{-1, -1, 1},
{-1, 1, 1},
{-1, 1, -1},
{ 1, -1, -1},
{ 1, -1, 1},
{ 1, 1, 1},
{ 1, 1, -1},

};
int path[16] = {

0, 1, 2, 3,
0, 4, 5, 6,
7, 4, 5, 1,
2, 6, 7, 3

};

void drawcube()
{

int i;
bgnline();
for (i = 0; i < 16; i++)

v3i(v[path[i]]);
endline();

}

main()
{

prefsize(600, 400);
winopen("lookat");
mmode(MVIEWING);
perspective(300, 1.5, 0.1, 10.0);
lookat(5.0, 4.0, 6.0, 1.0, 1.0, 1.0, 0);
color(BLACK);
clear();
color(WHITE);
drawcube();
sleep(10);
gexit();
return 0;

}

7-16 Coordinate Transformations

7.4 Modeling Transformations

When you create a geometry, the GL creates it with respect to its own
coordinate system. You can manipulate the entire object using the modeling
transformation subroutines: rotate(), rot(), translate(), and scale().
Each time you specify a transformation such as rotate() or translate(), the
software automatically generates a transformation matrix that premultiplies the
current matrix by the factors by which the coordinate system is to be rotated
or translated. See Appendix C for the transformation matrices used by the GL.

Figure 7-8 shows some examples of modeling transformations.

Figure 7-8 Modeling Transformations

y

x

(a) original object at (0, 0, 0)

y

x

(b) rotate (300, "Z");

y

x

(c) translate (1., 1., 0.);

y

x

(d) scale (-.5, .5, 1.);

y

(e) scale (2., 1., 1.);

x

Graphics Library Programming Guide 7-17

7.4.1 Rotation

Use rotate() to rotate a geometry by specifying an angle and an axis of
rotation:

void rotate(Angle a, char axis)

The angle is given in tenths of degrees according to the right-hand rule. A
character (either upper- or lowercase x, y, or z), defines the axis of rotation. The
angle and axis are used to compute a 4x4 rotation matrix R (see Appendix C),
that premultiplies the current matrix T to give RT.

rot() is the same as rotate; it specifies an angle and an axis of rotation in
floating point values, but the angle is measured in degrees:

void rot(Angle a, char axis)

You need to pay close attention to the order in which you specify
transformation operations, or your program might provide you with
surprising results. See Section 7.5, “Controlling the Order of Transformations,”
and Figure 7-9 for more information about the importance of the order of
modeling transformations and how to preserve untransformed coordinates.

The geometry in Figure 7-8 (a) is rotated 30 degrees with respect to the y axis
in Figure 7-8 (b). All geometries drawn after you call rotate() or rot() are
rotated. Use pushmatrix() and popmatrix() to preserve and restore the
unrotated coordinate system.

7.4.2 Translation

Use translate() to move the coordinate system origin to a point (x,y,z)
specified in the current coordinate system:

void translate(Coord x, Coord y, Coord z)

The x,y, and z coordinates are used to compute a 4×4 translation matrix X (see
Appendix C), that premultiplies the current matrix T, to give XT.

The geometry in Figure 7-8 (a) is translated by (1,1,0) in Figure 7-8 (c).

All geometries drawn after you call translate() are translated. Use
pushmatrix() and popmatrix() to preserve and restore the untranslated
coordinate system.

7-18 Coordinate Transformations

7.4.3 Scaling

Use scale() to shrink, expand, or mirror a geometry:

void scale(float x, float y, float z)

The x, y, and z scale factors are used to compute a 4×4 scale matrix S (see
Appendix C) that premultiplies the current matrix T to give ST. Values with
magnitudes of more than 1 cause expansion; values with magnitudes of less
than 1 cause shrinkage. Negative values cause mirroring.

Note: There may be a performance penalty for using non-uniform scaling if
you are using lighting calculations.

The geometry in Figure 7-8 (a) is shrunk to one-quarter of its original size and
is mirrored about the y axis in Figure 7-8 (d). It is scaled only in the x direction
in Figure 7-8 (e). All geometries drawn after you call scale() are scaled. Use
pushmatrix() and popmatrix() to preserve and restore the unscaled
coordinate system.

You can combine rotate(), rot(), translate(), and scale() to produce
more complicated transformations. The order in which you apply these
transformations is important. Figure 7-9 shows two sequences oftranslate()
and rotate(). Each sequence has different results.

Figure 7-9 Effects of Sequence of Translations and Rotations

y

x

y

x

y

x

rot (600, 'Z'); trans (4., 0., 0);(a)

y

x

y

x

rot (600, 'Z');trans (4., 0., 0);(b)

y

x

Graphics Library Programming Guide 7-19

7.5 Controlling the Order of Transformations

Each time you specify a transformation such as rotate() or translate(), the
software automatically generates a transformation matrix that specifies the
amount by which the coordinate system is to be rotated or translated. The
current transformation matrix is then premultiplied by the generated matrix,
effecting the desired transformation. The actual transformations are done in an
order opposite to that specified. In other words, you specify the viewing
matrix first, followed by the modeling transformations, so that vertices are first
positioned correctly in world coordinates, then the eye point moves to the
origin looking down the negative z axis.

The reason for the reverse order is that the transformations are accomplished
in the hardware by matrix multiplication, and historically, the matrix
multiplication hardware allows only left multiplications. Thus, a vector v,
transformed by a modeling transformation M and a viewing transformation V
(in that order), undergoes the following multiplications:

v → vM → (vM)V = vMV

The hardware concatenates modeling and viewing transformations onto one
matrix to save time, but because it performs multiplication only on the left, it
must start with V, then generate MV. Because the Projection matrix is stored
separately from the ModelView matrix, it does not matter whether projection
is specified before or after the modeling and viewing transformations.

7.5.1 Current Matrix Mode (mmode)

The graphics system maintains three transformation matrices—the
ModelView matrix, the Projection matrix, and the Texture matrix. As described
at the beginning of this chapter, the ModelView matrix transforms coordinates
from object coordinates to eye coordinates. The Projection matrix transforms
coordinates from eye coordinates to clip coordinates. The Texture matrix
transforms texture coordinates directly from object coordinates to clip
coordinates. Its transformation is typically unrelated to that specified by the
ModelView and Projection matrices.

All programs should set matrix mode to MVIEWING, MPROJECTION, or
MTEXTURE, depending on which operation is to be done, before any matrix
operations are performed. A fourth matrix mode, MSINGLE, reconfigures the
graphics system to have only a single matrix that transforms vertices directly

7-20 Coordinate Transformations

from object coordinates to clip coordinates. This mode is obsolete and should
not be used. For historical reasons, however, MSINGLE is the default.

Use mmode() to specify which of three matrices is the current matrix:
ModelView (MVIEWING), Projection (MPROJECTION), or Texture (MTEXTURE):

void mmode(short m)

The current matrix is on the top of the matrix stack.

When you are not doing lighting calculations, you should use MVIEWING for
the modeling, viewing, and projection transformations. See Chapter 9 for
information about the transformation matrices when lighting is used.

Note: Even in mmode(MVIEWING), any calls to projection transformations
(perspective, window, ortho or ortho2) will affect the
Projection matrix.

7.6 Hierarchical Drawing with the Matrix Stack

A drawing can be composed of many copies of simpler drawings, each of
which can be composed of still simpler drawings, and so on. For example, if
you were writing a program to draw a picture of a bicycle, you might want to
have one subroutine that draws a wheel, and to call that subroutine twice to
draw two wheels, appropriately translated. The wheel itself might be drawn
by calling the spoke drawing subroutine 36 times, appropriately rotated. In a
still more complicated drawing of many bicycles, you might like to call the
bicycle drawing routine many times.

Suppose the bicycle is described in a coordinate system where the bottom
bracket (the hole through which the pedal crank’s axle runs) is the origin. You
would draw the frame relative to this origin, but translate forward a few inches
before drawing the front wheel (defined, say, relative to its axis). Then you
would like to remove the forward translation to get back to the bicycle’s frame
of reference, and translate back to draw another instance of the wheel.

The modeling transformation that describes the bicycle’s frame of reference is
M, and that S and T are transformations (relative to M) to move forward for
drawing the front wheel, and back for the back wheel, respectively. You would
like to draw the wheel using transformation SM for the front wheel and TM for
the back wheel.

Graphics Library Programming Guide 7-21

This is easily accomplished using the ModelView matrix stack. At any point in
a drawing, the current ModelView matrix sits at the top of the matrix stack; it
contains all the modeling and viewing transformations called thus far. In the
bicycle example, this lumped-together transformation is called M. Any vertex
is transformed by the top matrix, which is what you want to do for drawing
the frame.

Two subroutines, pushmatrix() and popmatrix(), push and pop the
ModelView matrix stack. pushmatrix() pushes the matrix stack down and
copies the current matrix to the new top. Thus, after a pushmatrix(), there are
two copies of M on top. Translating by a translation matrix T leaves the stack
with TM on top and M underneath. The wheel is then drawn once using the
SM transformation. popmatrix() eliminates the TM on top, leaving M, and
another pushmatrix() makes two copies of M.

 ... /* code to get M on top of the stack */
 pushmatrix();
 translate(-dist_to_back_wheel, 0.0, 0.0);
 drawwheel();
 popmatrix();
 pushmatrix();
 translate(dist_to_front_wheel, 0.0, 0.0);
 drawwheel();
 popmatrix();
 drawframe();

pushmatrix

Use pushmatrix() to push down the transformation stack, duplicating the
current matrix:

void pushmatrix(void)

If the transformation stack originally contains one matrix, M, it will contain
two copies of M (after a pushmatrix()). You can modify only the top copy.
Because only the ModelView matrix is stacked, you should call pushmatrix()
only while mmode() is MVIEWING.

popmatrix

Use popmatrix() to pop the top matrix off the transformation stack:

void popmatrix(void)

7-22 Coordinate Transformations

Call popmatrix() only while mmode() is MVIEWING.

Note: It is important to have the same number of matrix pushes and matrix
pops, so you don’t try to pop a matrix off an empty stack.

This sample program, hierarchy.c, uses a hierarchical description of a simple
car. It is so simple that the car body is a rectangle, the wheels are square, and
everything is 2D. Note that the positions and orientations of the nine cars are
independent, and each wheel has a different rotation.

#include <math.h>
#include <gl/gl.h>

#define X 0
#define Y 1
#define XY 2

float carbody[4][XY] = {
{-0.1, -0.05},
{ 0.1, -0.05},
{ 0.1, 0.05},
{-0.1, 0.05}

};
float wheel[4][XY] = {

{-0.015, -0.015},
{ 0.015, -0.015},
{ 0.015, 0.015},
{-0.015, 0.015}

};

void drawwheel()
{

color(GREEN);
bgnpolygon();

v2f(wheel[0]);
v2f(wheel[1]);
v2f(wheel[2]);
v2f(wheel[3]);

endpolygon();
}

Graphics Library Programming Guide 7-23

void drawcar()
{

int i;
color(RED);
bgnpolygon();

v2f(carbody[0]);
v2f(carbody[1]);
v2f(carbody[2]);
v2f(carbody[3]);

endpolygon();
for (i = 0; i < 4; i++) {

pushmatrix();
translate(carbody[i][X], carbody[i][Y], 0.0);
rotate(200*(i+1), 'z');
drawwheel();

popmatrix();
}

}
main()
{

float xoffset, yoffset;
Angle ang;

prefsize(400, 400);
winopen("hierarchy");
mmode(MVIEWING);
ortho2(-1.0, 1.0, -1.0, 1.0);
color(BLACK);
clear();
for (xoffset = -0.5; xoffset <= 0.5; xoffset += 0.5) {

for (yoffset = -0.5; yoffset <= 0.5; yoffset += 0.5) {
ang = 3600 * drand48();
pushmatrix();

translate(xoffset, yoffset, 0.0);
rotate(ang, 'z');
drawcar();

popmatrix();
}

 }
 sleep(10);
 gexit();
 return 0;
}

7-24 Coordinate Transformations

This shorter and perhaps more interesting program illustrates hierarchy and
more complex transformations. It is a computer model of a ring and gear
drawing toy. In the toy, a plastic ring is pinned to a piece of paper, and you
place a pen through a hole in a smaller gear inside the ring and rotate the gear.
As the moving gear rolls around the fixed gear, you draw interesting patterns.

#include <gl/gl.h>

#define PEN_TO_CENTER 0.2
#define R0 0.35
#define R1 0.6

void drawdot()
{

translate(PEN_TO_CENTER, 0.0, 0.0);
pnt2i(0, 0);

}

void draw1(theta)
float theta;
{

pushmatrix();
rot(theta, 'z');
translate(R1 + R0, 0.0, 0.0);
rot(-theta * R1 / R0, ‘z’);
drawdot();

popmatrix();
}

main()
{

float theta;

prefsize(400, 400);
winopen("spirograph");
mmode(MVIEWING);
ortho2(-2.0, 2.0, -2.0, 2.0);
color(BLACK);
clear();
color(WHITE);
for (theta = 0.0; theta < 3600.0; theta += 0.25)

draw1(theta);
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 7-25

In this example, R0 and R1 are the radii of the two gears. and
PEN_TO_CENTER is the distance from the pen to the center of the moving
gear. With a slight modification of this program, you can build a sophisticated
drawing program that has three levels of gears, each moving along the next at
a uniform rate. It would be difficult to build this one out of plastic!

#include <gl/gl.h>

#define PEN_TO_CENTER0 0.2
#define R0 0.35
#define R1 0.6
#define R2 0.8

void drawdot()
{

translate(PEN_TO_CENTER, 0.0, 0.0);
pnt2i(0, 0);

}

void draw1(theta)
float theta;
{

pushmatrix();
rot(theta, ‘z’);
translate(R1 + R0, 0.0, 0.0);
rot(-theta * R1 / R0, 'z');
drawdot();

popmatrix();
}

void drawx(theta)
float theta;
{

pushmatrix();
rot(theta, ‘z’);
translate(R2 + R1, 0.0, 0.0);
rot(-theta * R2 / R1, 'z');
draw1(theta);

popmatrix();
}

7-26 Coordinate Transformations

main()
{
 float theta;
 prefsize(400, 400);
 winopen("spirograph2");
 mmode(MVIEWING);
 ortho2(-3.0, 3.0, -3.0, 3.0);
 color(BLACK);
 clear();
 color(WHITE);
 for (theta = 0.0; theta < 18000.0; theta += 0.25)

drawx(theta);
 sleep(10);
 gexit();
 return 0;
}

7.7 Viewports, Screenmasks, and Scrboxes

The viewport is the area of the window that displays an image. You specify it in
window coordinates, where the coordinates of the pixel at the lower-left corner
of the window are (0, 0). The visible screen area varies from system to system.

viewport

Use viewport() to specify, in window coordinates, the area of the window
that displays an image:

void viewport(Screencoord left,
Screencoord right,
Screencoord bottom,
Screencoord top)

Its arguments (left, right, bottom, top) define a rectangular area on the window
by specifying the left, right, bottom, and top coordinates. The portion of eye
coordinates that window(), ortho(), or perspective() describes is mapped
into the viewport. By default, when you open a window on the screen, its
viewport is set to cover the whole window.

Although window coordinates are continuous, not discrete, the parameters
passed to viewport() are integer values. Thus, the viewport is always an
integer number of pixels wide and high. Pixel x,y is included in the viewport

Graphics Library Programming Guide 7-27

if x ≥ left and x ≤ right and y ≥ bottom and y ≤ top. Because pixel centers
have integer coordinates in the continuous window coordinate space, the
window area included in a viewport is exactly:

(left-0.5) ≤ x < (right+0.5), (bottom-0.5) ≤ y < (top+0.5)

Note: To correctly map object coordinates one-to-one to window
coordinates, call:

ortho(-0.5, width -0.5, -0.5, height-0.5)
viewport(0, width-1, 0, height-1);

where width and height are the integer pixel sizes of the window.

getviewport

Use getviewport() to return the current viewport:

void getviewport(Screencoord *left,
Screencoord *right,
Screencoord *bottom,
Screencoord *top)

The arguments (left, right, bottom, top) are the addresses of four memory
locations. These are assigned the left, right, bottom, and top coordinates of the
current viewport.

scrmask

The screenmask is a specified rectangular area of the screen to which all
drawings are clipped. Use scrmask() to define the screenmask:

void scrmask(Screencoord left,
Screencoord right,
Screencoord bottom,
Screencoord top)

The viewport maps coordinates to the window, and the screenmask specifies
the portion of the window to which the geometry can be drawn. The
screenmask is a setting that regards only the physical display within the
window. The screenmask and viewport are usually set to the same area.
viewport() sets both the viewport and the screenmask to the same area;
scrmask() sets only the screenmask, which must be placed entirely within the
viewport. See Chapter 3 for one use of a screenmask—clipping characters.

7-28 Coordinate Transformations

getscrmask

Use getscrmask() to return the coordinates of the current screenmask in the
arguments left, right, bottom, and top:

void getscrmask(Screencoord *left,
Screencoord *right,
Screencoord *bottom,
Screencoord *top)

pushviewport

The system maintains a stack of viewports, and the top element in the stack is
the current viewport. Use pushviewport() to duplicate the current viewport
and screenmask and push them onto the stack:

void pushviewport(void)

popviewport

Use popviewport() to pop the stack of viewports and set the viewport and
screenmask (the viewport on top of the stack is lost):

void popviewport(void)

scrbox

scrbox() is a dual of the scrmask capability. Rather than limiting drawing
effects to a screen-aligned subregion of the viewport, it tracks the
screen-aligned subregion (screen box) that has been affected. Unlike
scrmask(), which defaults to the viewport boundary if not explicitly enabled,
scrbox() must be explicitly turned on to be effective. Call scrbox with the
desired mode:

void scrbox(long arg)

While enabled (mode SB_TRACK), scrbox() maintains left-most, right-most,
lowest, and highest window coordinates of all pixels that are scan-converted.
By default, scrbox() is reset (mode SB_RESET), forcing the left-most and
lowest screen box values to be greater than the right-most and highest screen
box values. While scrbox() is set to mode SB_HOLD, the current boundary
values are unchanged, regardless of any drawing operations.

Graphics Library Programming Guide 7-29

Because scrbox() operates on the pixels that result from the scan conversion
of points, lines, polygons, and characters, it correctly handles wide lines,
antialiased (smooth) points and lines, and characters. scrbox() results are
only guaranteed to bound the modified frame buffer region, but they might
exceed the bounds of this region due to implementation.

getscrbox

Use getscrbox() to return the current scrbox into left, right, bottom, and top:

void getscrbox(long *left, long *right, long *bottom, long *top)

7.8 User-Defined Transformations

Modeling and viewing transformation commands premultiply the current
matrix (one of ModelView, Projection, or Texture) with a 4×4 matrix that they
compute based on their parameters.

The current matrix is the ModelView matrix on the top of the ModelView stack
if mmode() is MVIEWING, the Projection matrix if mmode() is MPROJECTION, or
the Texture matrix if mmode() is MTEXTURE.

You can also premultiply, or replace, the current matrix with a 4x4 matrix of
your own.

Use multmatrix() to premultiply the current matrix by the given matrix (m):

void multmatrix (Matrix m)

That is, if T is the current matrix, multmatrix(m) replaces T with MT.

Use getmatrix() to copy the current matrix to an array:

void getmatrix(Matrix m)

Use loadmatrix() to load a 4×4 floating point matrix, m, onto the stack,
replacing the current top of the stack:

void loadmatrix(Matrix m)

7-30 Coordinate Transformations

7.9 Additional Clipping Planes

Geometry is always clipped against the boundaries of the six-plane viewing
volume defined by the current Projection matrix. clipplane() allows the
specification of additional planes, not necessarily perpendicular to the x, y, or
z axis, against which all geometry is clipped. You can specify up to six
additional planes. Because the resulting clipping region is always the
intersection of the (up to) 12 half-spaces, it is always convex.

clipplane() uses the following format:

void clipplane(long index,long mode,float params[])

where:

index integer in the range 0 through 5. Indicates which of the six
clipping planes is being modified.

mode one of three tokens:

CP_DEFINE Use the plane equation passed in params to define a clipping
plane. The clipping plane is neither enabled nor disabled.

CP_ON Enable the (previously defined) clipping plane.

CP_OFF Disable the clipping plane (default).

params array of four floats that specify a plane equation. A plane
equation is usually thought of as the column vector A,B,C,D.
In this case, A is the first component of the params array, and
D is the last. A four-component vertex array (see v4f() in
Chapter 2) can be passed as a plane equation, where vertex x
becomes A, y becomes B, and so on.

clipplane() specifies a half-space using a four-component plane equation.
When you call clipplane with mode CP_DEFINE, this object coordinate plane
equation is transformed to eye coordinates using the inverse of the current
Model View matrix. (You cannot use clipplane() when the matrix mode is
MSINGLE).

Once you have defined a clipping plane, you enable it by calling clipplane()

with the CP_ON argument, and with arbitrary values passed in params.

Graphics Library Programming Guide 7-31

While the program is drawing, after a clipping plane has been defined and
enabled, each vertex is transformed to eye coordinates, where it is dotted with
the clipping plane Peye, as shown in (EQ 7-1).

(EQ 7-1)

Eye coordinates whose dot product with Peye is positive or zero are inside the
region, and require no clipping. Those eye coordinate vertices whose dot
product is negative are clipped. Because clipplane() clipping is done in eye
coordinates, changes to the Projection matrix have no effect on its operation.

By default, all six clipping planes are undefined and disabled. The behavior of
enabled but undefined clipping plane(s) is also undefined.

It is sometimes convenient to define a clipping plane based on a point, and a
direction in object coordinates. The plane equation is obtained from the dot
product of the point and the normal:

(EQ 7-2)

Pobject

A

B

C

D

=

Peye M 1–
modelview Pobject⋅=

Nx

Ny

Nz

Px Py Pz
–

Nx

Ny

Nz

•

A

B

C

D

=

Normal

Nx

Ny

Nz

=

Point Px Py Pz
=

Plane =

7-32 Coordinate Transformations

Graphics Library Programming Guide 8-1

Chapter 8

8. Hidden-Surface Removal

When you look at a 3-D scene, you see only the surfaces that are nearest to the
eye, while other surfaces behind them are obscured (provided the items are
opaque). Drawing speed can be improved by drawing only the items that are
visible to the eye in the final scene. Hidden-surface removal is the process of
determining in advance which surfaces are not visible in the final scene, in
order to prevent them from being drawn. This chapter describes how to do
hidden-surface removal.

• Section 8.1, “z-buffering,” tells you how to remove hidden surfaces
by drawing only the surface closest to the eye.

• Section 8.2, “Using z-buffer Features for Special Applications,” tells you
how to use other techniques for determining visible surfaces.

• Section 8.3, “Stenciling,” tell you how to create stencils that allow you to
update drawings selectively.

• Section 8.4, “Eliminating Backfacing Polygons,” tells you how to remove
hidden surfaces by drawing only the polygons that face the viewer.

• Section 8.5, “Alpha Comparison,” tells you how to use special alpha
hardware to indicate transparency.

Two basic methods of hidden-surface removal are discussed in this chapter.
One method of determining surface visibility is to use a z-buffer to keep track
of which item is closest to the eye at each pixel. Another method is to disable
drawing for polygons that face away from the viewer. Backfacing polygon
removal is not as general as z-buffering, but z-buffering may be slower than
backface removal on some systems.

8-2 Hidden-Surface Removal

8.1 z-buffering

The z-buffer is a bitplane, associated with a framebuffer, that stores the distance
from the near clipping plane to each pixel in the window. In z-buffer mode, the
z coordinate (distance to the eye) of the incoming (next to be drawn) pixel is
compared to the z coordinate of the geometry already drawn at that pixel. If
the incoming z value shows that the new geometry is closer to the eye than the
existing geometry, the values of the old pixel and of the old z value, which are
stored in the color framebuffer and the z-buffer, are replaced by the new ones.

The calculation is performed on a per-pixel basis, because it is possible to have
a set consisting of as few as three polygons, each of which is overlapped by
another in the set, as shown in Figure 8-1.

Figure 8-1 Overlapping Polygons

Not all systems support z-buffering. Use getgdesc(GD_BITS_NORM_ZBUFFER)
to return the z-buffer availability. The draw mode must be set to NORMALDRAW

to use z-buffering.

On most systems, the z-buffer is a hardware option. The size of the z-buffer can
be from 24 bits to 32 bits per screen pixel, depending on the system type. The
z value is signed on all systems except IRIS-4D/GT/GTX systems.

RealityEngine systems provide software support for selecting the size of the
hardware z-buffer to be 0 or 32 bits and support for multisampled z-buffering,
which is described in Chapter 15. See zbsize(3G) for more information.

The IRIS Indigo Entry system has a software z-buffer, with 32 bit z-buffer
memory allocated on a per window basis, rather than per screen.

Graphics Library Programming Guide 8-3

A 24-bit hardware z-buffer is optional on XS and XS24 systems and is standard
on Elan systems. On Elan systems, the low bit of the 24-bit z buffer is reserved
for fast clears, so that bit should be ignored when reading data back from the
z-buffer. Elan systems also allocate bits from the z-buffer for stencil operations,
so the resolution of the z-buffer is decreased when performing stenciling.

By default, z-buffering is turned off. To set up z-buffering, you enable z-buffer
mode, then write the maximum z value to every location in the z-buffer, using
the following commands:

zbuffer(TRUE);/* Enable z-buffering */
zclear(); /* Write the maximum z value to the z-buffer */

Before the system draws anything, it compares the z value of each incoming
pixel to the z-buffer value for that pixel. If the z value of the incoming pixel is
smaller than the value in the z-buffer, the pixel is colored, and that pixel’s
z-buffer value is set to the new z value. If the incoming pixel’s z value is greater
than the corresponding z-buffer value, the pixel is not drawn. The values in the
z-buffer thus always represent the distance to the item that is currently closest
to the eye.

The color value stored in the bitplanes represents the color of that item. Use
getzbuffer() to determine whether or not z-buffering is enabled; TRUE
means z-buffering is enabled and FALSE means it is not enabled.

Another consideration when using z-buffering is that the znear and zfar values
in the call to perspective() have a profound effect on the resolution of the
z-buffer's comparison facility. The z-buffer contains a finite number of integers,
each with a limited range of values that can be used to compare against the z
value of the incoming pixel. You can enhance the resolution of the z-buffer by
setting the near and far values as close together as possible. With a smaller
range of total values, more bits of precision are available. It is particularly
important to move the near clipping plane as far from the eye as possible.

8-4 Hidden-Surface Removal

This sample program, zbuffer.c, draws three rectangular boxes that tumble
through one another while the whole scene rotates. While the left mouse
button is up, the scene is drawn without z-buffering; when you press it,
z-buffering is enabled. If you run the program with an argument—by entering
zbuffer 5, for example, there is a short delay before drawing each polygon.
The left mouse button still controls the z-buffering, but it is easier to see what
is happening because you can see each polygon drawn one at a time.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

float v[8][3] = {
{-1.0, -1.0, -1.0},
{-1.0, -1.0, 1.0},
{-1.0, 1.0, 1.0},
{-1.0, 1.0, -1.0},
{ 1.0, -1.0, -1.0},
{ 1.0, -1.0, 1.0},
{ 1.0, 1.0, 1.0},
{ 1.0, 1.0, -1.0},

};
unsigned int delaycount;

void delay()
{

if (delaycount)
sleep(delaycount);

}
void drawcube()
{

color(RED);
bgnpolygon();

v3f(v[0]);
v3f(v[1]);
v3f(v[2]);
v3f(v[3]);

endpolygon();
delay();
color(GREEN);
bgnpolygon();

v3f(v[0]);
v3f(v[4]);
v3f(v[5]);
v3f(v[1]);

endpolygon();

Graphics Library Programming Guide 8-5

delay();
color(BLUE);
bgnpolygon();

v3f(v[4]);
v3f(v[7]);
v3f(v[6]);
v3f(v[5]);

endpolygon();
delay();
color(YELLOW);
bgnpolygon();

v3f(v[3]);
v3f(v[7]);
v3f(v[6]);
v3f(v[2]);

endpolygon();
delay();
color(MAGENTA);
bgnpolygon();

v3f(v[5]);
v3f(v[1]);
v3f(v[2]);
v3f(v[6]);

endpolygon();
delay();
color(CYAN);
bgnpolygon();

v3f(v[0]);
v3f(v[4]);
v3f(v[7]);
v3f(v[3]);

endpolygon();
}

main(argc, argv)
int argc;
char *argv[];
{

Angle xrot, yrot, zrot;
short val;

xrot = yrot = zrot = 0;
if (argc == 1)

delaycount = 0;
else

delaycount = 1;

8-6 Hidden-Surface Removal

if (getgdesc(GD_BITS_NORM_ZBUFFER) == 0) {
fprintf(stderr, "Z-buffer not available on this machine\n");
return 1;

}
prefsize(400, 400);
winopen("zbuffer");
if (delaycount == 0)

doublebuffer();
gconfig();
mmode(MVIEWING);
ortho(-4.0, 4.0, -4.0, 4.0, -4.0, 4.0);
qdevice(ESCKEY);
qdevice(LEFTMOUSE); /* don’t want window manager to act on clicks */

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
pushmatrix();

rotate(xrot, ‘x’);
rotate(yrot, ‘y’);
rotate(zrot, ‘z’);
color(BLACK);
clear();
if (getbutton(LEFTMOUSE)) {

zbuffer(TRUE);
zclear();

}
else

zbuffer(FALSE);
pushmatrix();

scale(1.2, 1.2, 1.2);
translate(0.3, 0.2, 0.2);
drawcube();

popmatrix();
pushmatrix();

rotate(450 + zrot, ‘x’);
rotate(300 - xrot, ‘y’);
scale(1.8, 0.8, 0.8);
drawcube();

popmatrix();
pushmatrix();

rotate(500 + yrot, ‘z’);
rotate(-zrot, ‘x’);
translate(-0.3, -0.2, 0.6);
scale(1.4, 1.2, 0.7);
drawcube();

popmatrix();
popmatrix();

Graphics Library Programming Guide 8-7

if (delaycount == 0)
swapbuffers();

xrot += 11;
yrot += 15;
if (xrot + yrot > 3500)

zrot += 23;
if (xrot > 3600)

xrot -= 3600;
if (yrot > 3600)

yrot -= 3600;
if (zrot > 3600)

zrot -= 3600;
}
gexit();
return 0;

}

The part of the program that turns on the z-buffering is the two subroutines:

zbuffer(TRUE);
zclear();

First, zbuffer(TRUE) enables z-buffer comparisons to be made before each
write, then zclear() sets all the z values to the largest possible value for pixels
in the viewport. In this example, zbuffer(TRUE) is called for every frame;
however, this is normally not necessary because a typical program turns it on
at the beginning. The code is written as it is because the left mouse button can
come up at any time, in which case z-buffering is turned off.

8.1.1 Controlling z Values

Just as viewport() controls the scaling of x and y coordinates, there is a
subroutine, lsetdepth(), that controls the scaling of z coordinates.
lsetdepth() takes two arguments, corresponding to the near and far clipping
planes. By default, near is set to the minimum value that can be stored in the
z-buffer and far is set to the maximum value.

These values are system-dependent. Use getgdesc(GD_ZMIN) to return the
minimum z value and getgdesc(GD_ZMAX) to return the maximum z value, so
that you can set near and far to their minimum and maximum values,
regardless of what type of system is used, by calling:

lsetdepth(getgdesc(GD_ZMIN), getgdesc(GD_ZMAX));

8-8 Hidden-Surface Removal

Table 8-1 lists the minimum and maximum z values for different models.
These are signed values on all systems except IRIS-4D/GT/GTX systems.

Note: z-buffer hardware is optional on the XS, XS24, and Elan. These
systems do not provide a software z-buffer in lieu of the hardware
z-buffer.

8.1.2 Clearing the z-buffer and the Bitplanes Simultaneously

A common code sequence in programs that do z-buffering is:

color(0);
clear();
zclear();

This code clears the color bitplanes to zero, then clears the z-buffer bitplanes to
the maximum value. Unfortunately, it takes a relatively long time, because
clear() touches each pixel first, then zclear() touches each pixel again. In
recent hardware implementations, the hardware can, in certain cases,
simultaneously clear the color planes and the z-buffer planes. Use czclear()
to do simultaneous clearing of color and z-buffer:

czclear(long color, long zval)

The circumstances and results of using czclear() are different on different
systems. See the czclear(3G) man page for details. czclear() clears the
bitplanes to color and the z-buffer to zval simultaneously.

System Model Minimum Value Maximum Value

IRIS-4D/B or G 0x4000 0x3FFF

IRIS-4D/GT or GTX 0 0x7FFFFF

Personal IRIS,
IRIS-4D/VGX, VGXT,
SkyWriter, XS, XS24, Elan

0x800000 0x7FFFFF

IRIS Indigo, RealityEngine 0x80000000 0x7FFFFFFF

Table 8-1 Maximum and Minimum z-buffer Values

Graphics Library Programming Guide 8-9

Using czclear on IRIS-4D/VGX, VGXT and SkyWriter Systems

IRIS-4D/VGX, VGXT, SkyWriter, and RealityEngine always clear the banks of
color and z bitplanes sequentially, regardless of the values of cval and zval.

Using czclear on IRIS-4D/GT/GTX Systems

On IRIS-4D/GT/GTX systems, czclear() simultaneously clears the z-buffer
and bitplanes if circumstances allow it. These systems can perform a
simultaneous clear under the following conditions:

• In RGB mode, the 24 least-significant bits of color (red, green, and
blue) must be identical to the 24 least-significant bits of zval. In the
case of RGB mode, it is common to set the background color to black
(all zeros). This makes it necessary for you to reverse the orientation
of the z-buffer near/far clipping values.The following two function
calls reverse the z-buffer orientation, so that the maximum distance to
which all z values are initially cleared is 0 instead of ZMAX:

lsetdepth(getgdesc(GD_ZMAX), 0x0);
zfunction(ZF_GEQUAL);

At this point, all that has changed is that the system has positioned
the viewer so that all z compares take place with near mapped to a
large number and far mapped to 0.

• In color map mode, the 12 least-significant bits of color must be identical
to the 12 least-significant bits of zval. Because the color parameter is an
index into the color map index, only the lowest 12 bits are significant.

Using czclear on Personal IRIS, XS, XS24, and Elan Systems

On the Personal IRIS, you can speed up czclear() by as much as a factor of
four for common values of zval if you call zfunction() with it, so that one of
the conditions in Table 8-2 is met. See Section 8.2.2, “Alternative Comparisons
and z-buffer Writemasks,”for information about zfunction().

zval zfunction

getgdesc(GD_ZMIN) ZF_GREATER or ZF_GEQUAL

getgdesc(GD_ZMAX) ZF_LESS or ZF_LEQUAL

Table 8-2 Values of zfunction() for Personal IRIS czclear()

8-10 Hidden-Surface Removal

8.2 Using z-buffer Features for Special Applications

This section discusses special features associated with z-buffering. Most of
them are rarely used, so this section can be skipped on first reading. Topics
include writing directly into the z-buffer, using alternate depth comparison
functions and sources, and using writemasks for the z-buffer.

8.2.1 Drawing into the z-buffer

There are certain applications where it is useful to write values directly into the
z-buffer. zclear() is actually a special case of writing into the z-buffer, where
the values in the z-buffer are all set to a particular depth value.

In a flight simulator, for example, suppose that the view on the screen includes
an instrument panel surrounding the plane’s windshield. If the instrument
panel does not change from frame to frame, there is no reason to redraw it, so
it might be nice to clear only the portion of the screen and z-buffer
corresponding to the view out the plane’s windshield and redraw only that
portion of the window for each frame.

To do this, set the current “color” to the value returned by the call to
getgdesc(GD_ZMAX) on your system. Use zdraw() to write this value into the
z-buffer, then draw the polygon(s) representing the windshield. When the
outside view is drawn, it is always masked by the plane’s windshield frame
and instrument panel (which is closer to the eye). Thus an extremely complex
instrument panel is possible, because it needs to be drawn only once.

When zdraw() is TRUE, zbuffer() must be set to FALSE, otherwise both try
to alter the z-buffer contents simultaneously. In color map mode, the value
written to the z-buffer by zdraw() is the index of the color specified. For
example, color(2) writes 2s to the z-buffer.

zdraw() is similar to frontbuffer() and backbuffer() in that it permits
writing into the z-buffer bank. Normally, if you are writing into the z-buffer,
you do not want to write into the front buffer or back buffer at the same time.
Usually, drawing into the z-buffer should be bracketed by subroutines that
first set backbuffer(FALSE) and then backbuffer(TRUE), assuming that the
program is in double buffer mode. In single buffer mode, frontbuffer()
normally has no effect. However, if you call frontbuffer(FALSE), a flag is set
so that when zdraw() is TRUE, the front buffer (which is the only buffer in

Graphics Library Programming Guide 8-11

single buffer mode) is not written. If zdraw() is FALSE, frontbuffer(FALSE)
has no effect.

On Elan, XS, and XS24 systems, do not use zdraw() when drawing into a
clipped window, or when using read/modify/write operations such as
antialiasing or logicop().

This sample program, zdraw.c, illustrates the zdraw() masking technique. It
draws a spinning cube, seen through square cut-outs in a green wall.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>
#define RGB_BLACK 0x000000
#define RGB_GREEN 0x00ff00
#define HOLESIZE 32
#define HOLESEP (HOLESIZE/2)

float v[8][3] = {
{-1.0, -1.0, -1.0},
{-1.0, -1.0, 1.0},
{-1.0, 1.0, 1.0},
{-1.0, 1.0, -1.0},
{ 1.0, -1.0, -1.0},
{ 1.0, -1.0, 1.0},
{ 1.0, 1.0, 1.0},
{ 1.0, 1.0, -1.0},

};

int face[6][4] = {
{0, 1, 2, 3},
{3, 2, 6, 7},
{7, 6, 5, 4},
{4, 5, 1, 0},
{1, 2, 6, 5},
{0, 4, 7, 3},

};

unsigned long facecolor[6] = {
0xff0000, /* blue */
0x0000ff, /* red */
0x00ffff, /* yellow */
0xffff00, /* cyan */
0xff00ff, /* magenta */
0xffffff, /* white */

};

8-12 Hidden-Surface Removal

void drawcube()
{

int i;
for (i = 0; i < 6; i++) {

cpack(facecolor[i]);
bgnpolygon();

v3f(v[face[i][0]]);
v3f(v[face[i][1]]);
v3f(v[face[i][2]]);
v3f(v[face[i][3]]);

endpolygon();
}

}
main(argc, argv)
int argc;
char *argv[];
{

int i, j;
Angle xang, yang;
short val;
Boolean use_geom;
unsigned long holez[HOLESIZE*HOLESIZE];

if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {
fprintf(stderr, "Double buffered RGB not available on this machine\n");

return 1;
}
if (getgdesc(GD_BITS_NORM_ZBUFFER) == 0) {

fprintf(stderr, "Z-buffer not available on this machine\n");
return 1;

}
if (getgdesc(GD_ZDRAW_GEOM) == 0 && getgdesc(GD_ZDRAW_PIXELS) == 0) {

fprintf(stderr, "Z-buffer drawing not available on this machine\n");
return 1;

}
prefsize(400, 400);
winopen("zdraw");
RGBmode();
doublebuffer();
gconfig();
qdevice(ESCKEY);
mmode(MVIEWING);
ortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
zbuffer(TRUE);
zclear();
use_geom = getgdesc(GD_ZDRAW_GEOM) == 1;

Graphics Library Programming Guide 8-13

if (!use_geom) {
holez[0] = getgdesc(GD_ZMAX);
for (i = 1; i < HOLESIZE*HOLESIZE; i++)

holez[i] = holez[0];
}

/* draw the green wall once */
cpack(RGB_GREEN);
frontbuffer(TRUE);
pushmatrix();

translate(0.0, 0.0, 1.9);
rectf(-2.00, -2.00, 2.00, 2.00);

popmatrix();
frontbuffer(FALSE);
xang = yang = 0;
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
/* create the holes in the green wall */
zbuffer(FALSE);
zdraw(TRUE);
backbuffer(FALSE);
if (use_geom) {

ortho2(-0.5, 399.5, -0.5, 399.5);
cpack(getgdesc(GD_ZMAX));

}
for (i = 100; i <= 300; i += 50) {

for (j = 100; j <= 300; j += 50) {
if (use_geom)

rectf(i, j, i + HOLESIZE - 1, j + HOLESIZE - 1);
else

lrectwrite(i, j, i +HOLESIZE - 1, j + HOLESIZE - 1, holez);
}

}
if (use_geom)

ortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
zdraw(FALSE);
backbuffer(TRUE);
zbuffer(TRUE);

/* z-buffered clear to background color and depth */
cpack(RGB_BLACK);
pushmatrix();

translate(0.0, 0.0, -1.9);
rectf(-2.00, -2.00, 2.00, 2.00);

popmatrix();

8-14 Hidden-Surface Removal

/* draw the outside scene */
pushmatrix();

rotate(xang, 'x');
rotate(yang, 'y');
drawcube();

popmatrix();
swapbuffers();

/* update the rotation angles for next time through */
xang += 11;
yang += 17;
if (xang > 3600)

xang -= 3600;
if (yang > 3600)

yang -= 3600;
}
gexit();
return 0;

}

This program is written in RGB mode, because in color map mode, every color,
including the “color” drawn into the z-buffer, is masked to 12 bits.

The idea behind the program is that a green wall is drawn nearer the eye than
anything else. This sets all the z-buffer values so they record data near the eye.
In the main loop, 25 holes are drilled into the wall by setting the z-buffer values
in the squares to indicate that the surface is far away. Then a black background
is drawn farther from the eye than any part of the cube. Finally, the cube is
drawn, and it is visible only through the holes.

8.2.2 Alternative Comparisons and z-buffer Writemasks

In the default z-buffer mode, the z coordinate of the incoming pixel is
compared to the z coordinate of the geometry already drawn at that pixel. If
the incoming z value shows that the new geometry is closer to the eye than the
old one, the values of the old pixel and of the old z value are replaced by the
new ones. Thus the new value is compared to the old, and if it is less than the
old, the old quantities are replaced.

It is possible to change the comparison function from “less-than” to another
type of decision, to achieve a different effect. To change the comparison
function, use zfunction().

Graphics Library Programming Guide 8-15

The z comparison functions are:

ZF_NEVER Never overwrite the source pixel value.

ZF_LESS Overwrite the source pixel value if the z value of the source
pixel is less than the z value of the destination pixel.

ZF_EQUAL Overwrite the source pixel value if the z value of the source
pixel is equal to the z value of the destination pixel.

ZF_LEQUAL Overwrite the source pixel value if the z value of the source
pixel is less than or equal to the z value of the destination pixel
(default).

ZF_GREATER Overwrite the source pixel value if the z value of the source
pixel is greater than the z value of the destination pixel.

ZF_NOTEQUAL Overwrite the source pixel value if the z value of the source
pixel is not equal to the z value of the destination pixel.

ZF_GEQUAL Overwrite the source pixel value if the z value of the source
pixel is greater than or equal to the z value of the destination
pixel.

ZF_ALWAYS Always overwrite the source pixel value regardless of value of
the destination pixel.

You can also control writing into the z-buffer with zwritemask(). This might
be useful for using a very complicated background into which a few items are
to be drawn and moved quickly. Setting zwritemask() to zero locks the
background information in, and prevents its modification; the new items are
drawn or not depending on the depth comparison.

8-16 Hidden-Surface Removal

8.3 Stenciling

IRIS-4D/VGX, SkyWriter, and RealityEngine systems support an additional
z-buffer-like test that uses a different algorithm from the one described
previously in this chapter. This test uses the flexible frame buffer configuration
on these systems to allocate stencil planes.

Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis.
You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, like decals, outlining, and constructive solid geometry
rendering.

The stencil() statement controls testing of stencil bitplanes before the
system writes to the frame buffer:

void stencil(long enable, unsigned long ref, long func,
unsigned long mask, long fail, long pass, long zpass);

The first argument to stencil() enables or disables stenciling. To enable
stenciling, call stencil() with enable set to TRUE. If you call stencil() with
enable set to FALSE, the following parameters are ignored and stencil testing is
not performed.

When stenciling is enabled, the system tests the defined stencil bitplanes for
each pixel against a programmed reference value before writing to that pixel.
Based on the contents of the stencil bitplanes and the programmed tests
defined by the stencil() statement, the system then conditionally modifies
the pixel’s contents (both for the color bitplanes and for the z-buffer) by a
programmed value, as defined in the call to stencil().

Once you enable stenciling, the system tests the color and z-buffer bitplanes for
each pixel. The results of the tests are determined by a reference value, passed
through the argument ref, the value in the stencil bitplanes, and a stencil
function that operates on them both.

Graphics Library Programming Guide 8-17

This function, passed as the argument func, can be one of the following:

SF_NEVER Do not perform the specified stencil update (passed as the
value of fail, pass, and zpass) regardless of the results of the
comparison.

SF_LESS Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is less than the value in the stencil
planes.

SF_EQUAL Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is equal to the value in the stencil
planes.

SF_LEQUAL Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is less than or equal to the value in the
stencil planes.

SF_GREATER Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is greater than the value in the stencil
planes.

SF_NOTEQUAL Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is not equal to the value in the stencil
planes.

SF_GEQUAL Perform the specified stencil update (specified as the value of
fail, pass, and zpass) if ref is greater than or equal to the value
in the stencil planes.

SF_ALWAYS Perform the specified stencil update (specified as the value of
fail, pass, and zpass) regardless of the results of the comparison.

The mask argument to stencil defines which stencil bitplanes are significant
during the comparison operation. Use this argument to ignore individual
planes you do not want to use in the stencil test.

When stencil performs its test as defined by func, it returns one of three
possible values:

fail The stencil test (defined in the call to stencil) fails.

pass The stencil test passes, but the z-buffer test fails.

zpass The stencil test passes, and the z-buffer test passes.

These three possible values are reflected as the arguments fail, pass, and zpass
(the last three arguments passed to stencil). If the z-buffer is not enabled, only

8-18 Hidden-Surface Removal

fail and pass are considered. These arguments define the operation to be
performed based on the results of the stencil test. The system performs one of
the functions defined by the value of fail, pass, and zpass passed to stencil().

ST_KEEP Keep the value currently in the bitplanes (no change).

ST_ZERO Replace the contents of the pixel with zeros.

ST_REPLACE Replace the contents of the pixel with the value of ref.

ST_INCR Add 1 to the contents of the pixel. This is clamped to the
maximum value of the pixel at that location.

ST_DECR Subtract 1 from the contents of the pixel. This is clamped to 0.

ST_INVERT Invert all bits in that pixel.

Based on the results of the test, the system performs the function that applies
to the conditions.

A sample stencil command follows, with a description of its results.

stencil(TRUE, 220, SF_EQUAL, 0xff, ST_REPLACE, ST_KEEP, ST_KEEP);

In this example, the system compares 220 against the contents of the stencil
planes. Because mask is 0xff, all eight planes are valid in this comparison. The
test is to see whether the stencil planes are exactly equal to ref, which is 220. If
the test fails— that is, if the contents of the stencil planes do not equal ref— the
system replaces them with the value of ref (220). Both pass and zpass are set to
ST_KEEP, which means that there is no change to the pixels or to the z-buffer if
the test passes. If the z-buffer is enabled, color and depth are drawn only in the
zpass case (meaning that both color and z-buffer planes pass the test). If the
z-buffer is not enabled, zpass is ignored and only the pass function is
performed.

stensize

Use stensize() to define the bitplanes you wish to use as the stencil:

void stensize(long planes)

You can define up to 8 stencil planes. Systems without the optional alpha
bitplanes allocate the stencil bitplanes from the least-significant planes of the
z-buffer. Use getgdesc() to determine whether your system has alpha
bitplanes. Once you have allocated a number of bitplanes for use as a stencil,

Graphics Library Programming Guide 8-19

these planes can be used to store information that is later used by the
stencil() statement.

sclear

Use sclear() to set the value of every pixel in the stencil buffer:

void sclear(unsigned long sval)

Pass the desired value to sclear() as sval. The clearing operation is limited by
the current viewport() and scrmask() statements in effect, and is masked by
the current swritemask().

swritemask

Use swritemask() to specify which of the stencil bitplanes can be modified by
sclear() and normal stencil operation:

void swritemask(unsigned long mask)

The next sample program, stencil.c, uses stenciling to render the outline of an
object in an arbitrary image. Because the bitmap of an image takes a lot of
space, the code mimics drawing the image by actually drawing polygons.

The image is a basic checkerboard on black background. It “jitters” four times
and increments the stencil value each time a pixel is hit. This leaves the
outlines with stencil values of 0x1, 0x2, and 0x3, while pixels with stencil
values of 0x0 and 0x4 are completely outside and inside the object,
respectively. The last step is to render a polygon over the entire region, turning
on only those pixels that are on the outline.

#include <stdio.h>
#include <gl/gl.h>

floatrect0[4][2] = {
{-0.5, -0.5},
{ 0.5, -0.5},
{ 0.5, 0.5},
{-0.5, 0.5},
};

8-20 Hidden-Surface Removal

main()
{

if (getgdesc(GD_BITS_STENCIL) == 0) {
fprintf(stderr, "stencil not available on this machine\n");
return 1;

}

prefsize(400, 400);
winopen("stencil");
RGBmode();
stensize(3);
gconfig();
mmode(MVIEWING);
ortho2(-10.0, 10.0, -10.0, 10.0);

cpack(0);
clear();
sclear(0);
wmpack(0);
stencil(1, 0x0, SF_ALWAYS, 0x7, ST_INCR, ST_INCR, ST_INCR);
viewport(0, 398, 0, 398);
checker();
viewport(1, 399, 0, 398);
checker();
viewport(1, 399, 1, 399);
checker();
viewport(0, 398, 1, 399);
checker();

stencil(1, 0x0, SF_NOTEQUAL, 0x3, ST_KEEP, ST_KEEP, ST_KEEP);
wmpack(0xffffffff);
scale(15.0, 15.0, 0.0);
bgnpolygon();

v2f(rect0[0]);
v2f(rect0[1]);
v2f(rect0[2]);
v2f(rect0[3]);

endpolygon();

sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 8-21

checker()
{

int i,j;

cpack(0x0000ff00);
pushmatrix();
translate(-5.0, -5.0, 0.0);
for (i=0; i<9; i++) {

for (j=0; j<9; j++) {
translate(1.0, 0.0, 0.0);
if ((î j) & 0x1) {/* checker board */

bgnpolygon();
v2f(rect0[0]);
v2f(rect0[1]);
v2f(rect0[2]);
v2f(rect0[3]);

endpolygon();
}

}
translate(-9.0, 1.0, 0.0);

}
popmatrix();

}

8.4 Eliminating Backfacing Polygons

In a scene composed entirely of opaque closed surfaces, backfacing polygons
(polygons whose face is pointing away from the viewer) are never visible.
Eliminating these invisible polygons from the scene has an obvious benefit—it
speeds drawing time by not drawing some of the polygons in the scene. This
is especially useful on systems such as the IRIS Indigo that have slower
z-buffer rates.

The idea is that if the polygons making up a surface are all oriented the same
way, and if the surface is closed, after transformation, all the polygons on the
front have one orientation and those on the back have the opposite orientation.
A special mode can be turned on to check whether the transformed polygons
are oriented clockwise or counterclockwise, and only those oriented
counterclockwise are drawn. The method is not sufficient for all hidden
surface removal if the object being drawn is not convex, or if there is more than
one object.

8-22 Hidden-Surface Removal

A backfacing polygon is defined as a polygon whose vertices appear in
clockwise order in screen space. When backfacing polygon removal is turned
on, only polygons whose vertices appear in counterclockwise order are
displayed, that is, polygons that point toward you. Therefore, the vertices of
all polygons should be specified such that they are drawn in counterclockwise
order when the front face of the polygon is visible (see Chapter 2 for examples).

Use backface() to initiate or terminate backfacing polygon removal. The
backface() utility is used to improve the performance of programs that
represent solid shapes as collections of polygons. The vertices of the polygons
on the side of the solid facing away from the viewer are in clockwise order and
are not drawn. backface() takes a single argument. TRUE enables backfacing
polygon elimination, and FALSE (the default) disables it.

Use frontface() to initiate or terminate frontfacing polygon removal. The
frontface() utility is used to display hidden surfaces (backfacing polygons).
In this case, the polygons on the side of the solid facing away from the viewer
are drawn; those facing the viewer are not drawn. frontface() takes a single
argument. TRUE enables frontfacing polygon elimination, and FALSE (the
default) disables it.

getbackface() returns the state of backfacing polygon removal. If backface
removal is on, the system draws only those polygons that face the viewer. If
backfacing polygon removal is enabled, 1 is returned; otherwise 0 is returned.

8.5 Alpha Comparison

On some systems, you can also use the alpha planes to determine whether to
draw pixels by comparing incoming alpha values to a reference constant
value. Not all systems support alpha operations. Use
getgdesc(GD_BITS_NORM_SNG_ALPHA) to test for the availability of alpha
planes.

Note: RealityEngine systems feature multisampled alpha comparison,
which is described in Chapter 15.

Use afunction() to compare the alpha values of source pixels to the value of
ref:

void afunction(long ref, long func)

Graphics Library Programming Guide 8-23

Depending on the value of func, afunction() determines whether a pixel is
completely transparent and draws the pixel conditional to its transparency.
afunction() assumes that alpha values are proportional to pixel coverage,
which is the case if you are using pointsmooth(), linesmooth(), or
polysmooth().

The afunction() call makes the system draw pixels only if their alpha value
is not equal to 0. Pixels with 0 alpha are presumed to be completely
transparent—according to the conventions of pointsmooth(), linesmooth(),
or polysmooth().

The afunction() statement compares source alpha values against a reference
value that you include in the afunction() call. You also specify a comparison
function that determines the conditions under which afunction() permits
the system to draw pixels.

To make the system avoid drawing invisible pixels, call afunction() as
follows:

afunction(0, AF_NOTEQUAL);

To return the system to its default operation, call afunction() as follows:

afunction(0, AF_ALWAYS);

This call causes the alpha hardware to compare the values of all pixels in the
normal manner.

8-24 Hidden-Surface Removal

The following sample program, afunction.c, uses afunction() to define the
shape of a building and its windows. See Chapter 18 to learn how to use
texturing.

#include <stdio.h>
#include <gl/gl.h>

float mt0[3][3] = { /* mountain 0 coordinates */
{-15.0, -10.0, -15.0},
{ 10.0, -10.0, -15.0},
{ -5.0, 5.0, -15.0},

};

float mt1[3][3] = { /* mountain 1 coordinates */
{-10.0, -10.0, -17.0},
{ 15.0, -10.0, -17.0},
{ 6.0, 12.0, -17.0},

};

float bldg[4][3] = { /* building coordinates */
{-8.0, -10.0, -12.0},
{ 8.0, -10.0, -12.0},
{ 8.0, 10.0, -12.0},
{-8.0, 10.0, -12.0},

};

float tbldg[4][2] = { /* building texture coordinates */
{0.0, 1.0},
{1.0, 1.0},
{1.0, 0.0},
{0.0, 0.0},

};

/*
* Building texture and texture environment
*/

unsigned long bldgtex[8*4] = {
0xffffffff, 0xffff0000, 0x00000000, 0x00000000,
0xffffffff, 0xffff0000, 0x0000ffcf, 0xffcfffcf,
0xffff0000, 0xffff0000, 0x0000ffcf, 0x0000ffcf,
0xffffffff, 0xffffffff, 0xffffffcf, 0xffcfffcf,
0xffff0000, 0xffffffff, 0xffffffcf, 0x0000ffcf,
0xffffffff, 0xffffffff, 0xffffffcf, 0xffcfffcf,
0xffff0000, 0xffff0000, 0x0000ffcf, 0x0000ffcf,
0xffffffff, 0xffff0000, 0x0000ffcf, 0xffcfffcf,

};

Graphics Library Programming Guide 8-25

float txlist[] = {TX_MAGFILTER, TX_POINT, TX_NULL};
float tvlist[] = {TV_NULL};

main()
{

if (getgdesc(GD_BITS_NORM_ZBUFFER) == 0) {
fprintf(stderr, "Z-buffer not available on this machine\n");
return 1;

}
if (getgdesc(GD_TEXTURE) == 0) {

fprintf(stderr, "Texture mapping not available on this machine\n");
return 1;

}
if (getgdesc(GD_AFUNCTION) == 0) {

fprintf(stderr, "afunction not available on this machine\n");
return 1;

}

prefsize(400, 400);
winopen("afunction");
RGBmode();
gconfig();
mmode(MVIEWING);
ortho(-20.0, 20.0, -20.0, 20.0, 10.0, 20.0);
zbuffer(TRUE);
czclear(0, getgdesc(GD_ZMAX));

 /*
 * Draw 2 mountains
 */

cpack(0xff3f703f);
bgnpolygon();

v3f(mt0[0]);
v3f(mt0[1]);
v3f(mt0[2]);

endpolygon();

cpack(0xff234f00);
bgnpolygon();

v3f(mt1[0]);
v3f(mt1[1]);
v3f(mt1[2]);

endpolygon();

8-26 Hidden-Surface Removal

 /*
 * Draw the building
 */

texdef2d(1, 2, 8, 8, bldgtex, 0, txlist);
tevdef(1, 0, tvlist);
texbind(TX_TEXTURE_0, 1);
tevbind(TV_ENV0, 1);
afunction(0, AF_NOTEQUAL);
cpack(0xffffffff);
bgnpolygon();

t2f(tbldg[0]);
v3f(bldg[0]);
t2f(tbldg[1]);
v3f(bldg[1]);
t2f(tbldg[2]);
v3f(bldg[2]);
t2f(tbldg[3]);
v3f(bldg[3]);

endpolygon();
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 9-1

Chapter 9

9. Lighting

This chapter describes the GL lighting facility and tells you how to create
lighted scenes.

• Section 9.1, “Introduction to GL Lighting,” presents some
terminology and basic principles of lighting that you need to know to
understand GL lighting.

• Section 9.2, “Setting Up GL Lighting,” tells you how to configure lighting
parameters.

• Section 9.3, “Binding Lighting Definitions,” tells you how to activate your
lighting definitions.

• Section 9.4, “Changing Lighting Settings,” tells you how to change
lighting definitions that you have set up.

• Section 9.5, “Default Settings,” describes the default lighting settings and
tells you how to create your own default definitions.

• Section 9.6, “Advanced Lighting Features,” tells you how to use special
lighting features for more complex lighting effects.

• Section 9.7, “Lighting Performance,” gives you some programming hints
to help you get the best performance from lighting.

• Section 9.8, “Color Map Lighting,” tells you how to use lighting in color
map mode, primarily for machines with limited RGB capability.

Code fragments are used extensively to encourage a learn-by-example
approach. A complete sample program is included at the end of the chapter.

9-2 Lighting

9.1 Introduction to GL Lighting

In the real world, when light falls on an opaque object, some of this light is
absorbed by the object and the rest of the light is reflected. Our eyes use this
reflected light to interpret the shape, color, and other details about the object.
The light that strikes the object from the light source is called incident light; the
light that bounces off the object’s surface is called reflected light.

In GL lighting, as in the real world, the characteristics of the light source
determine the direction, intensity, and wavelength(color) of the incident light.
The characteristics of the object geometry and its surface material determine
the direction, intensity, and color of the reflected light. How light is reflected
depends on the interaction between the incident light and the surface material.

The interaction between light and matter is far more complicated than can be
simulated in real time. Lighting on the IRIS achieves a balance between
realistic appearance and real-time drawing speed. The GL achieves this
balance by performing lighting calculations only at geometry vertices, rather
than calculating lighting for each pixel rendered.

You control GL lighting by creating a lighting definition that allows you to
specify and manipulate the characteristics of the incident light, the surface
properties of lighted objects, and the effects of the surrounding environment.
In a lighting definition, you set up the color, intensity, and position of light
sources, the properties of surface materials, and the characteristics of the
lighting environment in your scene. Once you have your lighting definition set
up, you can turn lights on and off, use different object materials, and use
advanced lighting techniques for interesting effects.

9.1.1 Color

A lighting definition determines how the color of incident light is modified
when it reflects from surfaces. For example, an object can appear blue because:

• A white light source shines on an object which reflects only the
wavelengths that our eyes interpret as blue. Although other wavelengths
of light are present, the object absorbs them and reflects only blue.

• The object reflects blue light and possibly other wavelengths, but only
blue light is shining on it. In this case, there are no other wavelengths for
the object to reflect.

Graphics Library Programming Guide 9-3

GL lighting allows both of these methods: you can define a blue light and shine
it on a white object, or you can define a white light and shine it on a blue object.

9.1.2 Reflectance

The ratio of incident light to reflected light is called reflectance. Some of the
factors that determine reflectance are inherent in an object’s geometry; other
properties that affect reflectance are controlled by GL lighting.

There are three reflectance properties that determine how a surface reflects
light:

• diffuse, which shows up as a matte, or flat, reflection

• specular, which shows up as highlights

• ambient, which simulates indirect light

Diffuse Reflectance

Diffuse reflectance gives the appearance of a matte, or flat, reflection from a
surface. The direction of the light as it falls on the surface determines how
bright the diffuse reflection is. Diffuse reflection is brightest where the incident
light strikes the perpendicular to the surface.

For example, consider a distant light shining directly on the north pole of a
sphere representing the earth. The diffuse reflectance of the sphere causes the
sphere to appear brightest at the north pole. The brightness falls off as you look
farther down the sides of the sphere. South of the equator there is no diffuse
reflectance at all.

Because diffuse light reflects equally in all directions, the viewer’s perception
of diffuse intensity is not affected by the viewing angle.

Specular Reflectance

Specular reflectance creates highlights and is dependent on the position of the
viewpoint. For example, consider the glare in your rear view mirror from the
headlights of a car behind you. If you shift your head a few inches to the right
or left, you cannot see the glaring headlights in your mirror. The intensity of
specular reflection is typically highest along the direct angle of reflection.

9-4 Lighting

Ambient Reflectance

Diffuse and specular reflectance simulate how objects in the scene reflect light
that comes directly from a light source. Ambient reflectance simulates light
reflected from other objects in the scene, rather than directly from the light
source. For example, if you look under your desk (presuming that you have a
light on your desk that does not shine directly under it), you can still see
things, even though the area under your desk is not directly illuminated. In
reality, this ambient light is reflected from other surfaces in the room.

The ambient component is most noticeable in areas of the scene that receive no
direct illumination.

Emission

Emission is the quality of giving off light. Adding an emission component is
useful for simulating the appearance of lights in a scene. A GL object that emits
light does not also automatically act as a light source; that is, it does not add
illumination to a scene. For this object to act as a light source in the scene, you
must add a light to the lighting model and position this light at the same
location as the object that is emitting light.

9.2 Setting Up GL Lighting

This section introduces fundamental GL lighting concepts, and tells you how
to create a static lighting environment.

Points, lines, polygons, and character strings can all be lighted. As a general
rule, any GL primitive that uses the current color can also be lighted. The
lighting calculation is performed at each vertex of a primitive.

To set up GL lighting:

1. Define the properties for each material, light and lighting model that you
want in your scene.

2. Activate (bind) your definitions.

3. Draw the scene. Provide surface normals, as discussed in Section 9.2.1,
“Defining Surface Normals,” for all primitives to be lighted.

Graphics Library Programming Guide 9-5

9.2.1 Defining Surface Normals

Surface normals are unit-length vectors that are perpendicular to a given
surface at a particular vertex. They serve as input to the lighting formula, and
are required for GL lighting.

When using GL NURBS surfaces (see Chapter 14, “Curves and Surfaces”),
normals can be generated automatically from the surface descriptions.

Specify a surface normal for each vertex using the n3f() subroutine. The GL
maintains a current normal, which remains the same until you change it. The
current normal is analogous to the current color.

This example specifies a point with a normal:

static float np[3] = {0, .7071, .7071};
static float vp[3] = {0, 0, -1};

bgnpoint();
n3f(np);
v3f(vp);

endpoint();

This example specifies a triangle with normals:

static float np[3][3] =
{{-.08716, 0, .9962}, {.08716, 0, .9962}, {0, 0, 1}};

static float vp[3][3] =
{{-.08716, 0, .9962}, {.08716, 0, .9962}, {0, .1, 1}};

bgnpolygon();
n3f(np[0]);
v3f(vp[0]);
n3f(np[1]);
v3f(vp[1]);
n3f(np[2]);
v3f(vp[2]);

endpolygon();

The relationship between the order of the vertices and the direction of the
normals is significant. When the order of the vertices of the projected triangle
is counterclockwise as seen from the viewer’s perspective, the front face of the
triangle is the side toward the viewer. In this case, the normals of the triangle
also point toward the viewer. This convention obeys the right-hand rule. The
example triangle given above displays this behavior. The right-hand rule

9-6 Lighting

makes it possible to distinguish between the front and the back faces of the
triangle. Although it is not necessary for you to follow the right-hand-rule
when using lighting, doing so allows you to use backface elimination (see
Chapter 8). Two-sided lighting, described in Section 9.6.3, requires you to
follow the right-hand-rule.

Non-Unit-Length Normals

The previous section stated that normals must be unit-length, which is the
default. The GL can handle non-unit-length normals, but there may be a
performance penalty associated with their use. See Section 9.7, “Lighting
Performance,” for information about performance considerations with
non-unit-length normals.

Use the nmode() subroutine to handle non-unit-length normals. The default
mode is NAUTO, which automatically corrects for situations where normals you
would expect to be unit-length become non-unit-length. When you know your
normals are unit-length, use this mode:

nmode(NAUTO);

To configure the GL to automatically normalize (correct to unit length) all
normals (when you are intentionally using non-unit length normals), use:

nmode(NNORMALIZE);

Note: Lighting does not have to be on to set nmode().The nmode() command
is not available on all systems, see the nmode() man page for details.

9.2.2 Defining Lighting Components

You configure three lighting components to define GL lighting for your scene:

• material - determines how a surface responds to illumination

• light source - determines the characteristics of the incident light

• lighting model - determines the behavior of the lighting environment

The combination of these three components determines the appearance, or
more specifically, the color at each lighted vertex. The GL calculates the color
at each lighted vertex by summing the total ambient light (scaled by the

Graphics Library Programming Guide 9-7

material ambient reflectance), the material emitted light, and the contributions
of each light source.

The total ambient light is the sum of the ambient light associated with each
light source and the ambient light associated with the scene, as given by the
lighting model.

The contribution of each light source is the sum of:

1. Light source ambient color, scaled by material ambient reflectance.

2. Light source color, scaled by material diffuse reflection and the dot product
(see Foley and Van Dam, Computer Graphics Principles and Practice) of the
vertex normal and the vertex-to-light source vector.

3. Light source color, scaled by material specular reflectance and a function
of the angle between the vertex to viewpoint vector and the
vertex-to-light source vector.

You configure each of the three components using a two-step process. The first
step is definition, using lmdef(). The second step is activation, using lmbind().

Use the lmdef() subroutine to establish your material, light source and
lighting model definitions.

The ANSI C specification of lmdef() is:

void lmdef(short deftype, short index, short np, float props[])

where:

deftype indicates whether the properties in the array apply to a
material, a light source, or a lighting model.

index defines an index to be associated with the definition.

np provides a count of symbols and floating point values in the
props array. You can usually set np to 0, in which case it is
ignored; however, operation over network connections is
more efficient when np is correctly specified.

props array of floating point symbols that define properties.

You specify properties as an array of floats. The array elements are terminated
by the special constant LMNULL, which must always be the last float in the array.
lmdef() associates the properties in your property array with an integer index
and copies these properties at the time of the call.

9-8 Lighting

Index 0 is reserved as the null definition for material, light source and lighting
model definitions. You use index 0 to turn definitions off, as described in
Section 9.4, “Changing Lighting Settings.” You cannot assign your own
definition to index 0.

Defining a Material

To define a material, you specify its properties in an array of floats.

For example, a greenish plastic-like material is defined like this:

static float mat[] = {
AMBIENT, .1, .1, .1,
DIFFUSE, 0, .369, .165,
SPECULAR, .5, .5, .5,
SHININESS, 30,
LMNULL

};
lmdef(DEFMATERIAL, 39, 5, mat);

In this example, the lmdef() call stores the material properties in the mat array
as material number 39. This creates a material definition that will be referenced
later by its integer index, 39.

Each property in the array expects a fixed number of floats to follow it.
DIFFUSE is followed by three floats that are the red, green, and blue diffuse
reflectance coefficients. Similarly, the AMBIENT and SPECULAR properties are
each followed by three floats that represent the red, green and blue ambient
and specular reflectance coefficients, respectively. All color components
should be in the range 0.0 to 1.0. The system clamps (limits) the color
components to a maximum value of 1.0, and scales the components by 255
before loading them in the framebuffer.

Specular reflectance also depends on the viewpoint. You specify the viewpoint
in the lighting model. (See the description of the LOCALVIEWER property under
Defining a Lighting Model in this Section for more details.)

SHININESS is followed by one float that controls the size and apparent
brightness of a specular highlight. The shininess value can range from 0 to 128.
Higher values result in smaller, more focused specular highlights. A shininess
value of 0 disables specular reflection entirely.

Graphics Library Programming Guide 9-9

EMISSION is followed by three floats, in the range 0.0 to 1.0, that specify the red,
green and blue components of the emitted light. This example defines a
material that has only an emission property:

static float mat[] = {
EMISSION, 0, .369, .165,
LMNULL

};
lmdef(DEFMATERIAL, 39, 2, mat);

Defining a Light Source

There are two types of light sources that you can use: a point light source and an
infinite light source. A point light source has a position and a direction. An
infinite light source represents a light a great distance away (like the sun).
Infinite light sources provide subtle overall lighting and have a performance
advantage over point light sources.

The next example defines a slightly reddish-colored point light source:

static float lt[] = {
LCOLOR, 1, .8, .8,
POSITION, 0, 1.5, -.5, 1,
LMNULL

};
lmdef(DEFLIGHT, 27, 0, lt);

This light source definition is associated with the integer index 27, by which it
can later be referenced.

Although you use the same syntax for a light source as for a material, the
actual properties are different. In this case, the LCOLOR property is followed by
three floats that are the red, green, and blue components of the light source
color. A light source is normally omnidirectional; that is, it emits light of equal
intensity in all directions.

AMBIENT is followed by three floats, specifying the red, green and blue
components of the ambient light associated with the light source.

POSITION is followed by four floats that are the x, y, z, and w coordinates of the
light source. The x, y, and z coordinates represent the location of the light
source in object coordinates. Note that the light source direction points from
the vertex to the light source. The GL normalizes the light source direction.

9-10 Lighting

Light source position is defined in homogeneous coordinates. If the w
coordinate is zero, an infinite light source is defined; a non-zero w component
defines a point light source and the x, y, and z coordinates represent the
direction from the origin to the light source. This example defines a white light
source that is positioned infinitely far away on the positive z axis:

static float lt[] = {
LCOLOR, 1., 1., 1.,
POSITION, 0., 0., 1., 0.,
LMNULL

};
lmdef(DEFLIGHT, 27, 3, lt);

Defining a Lighting Model

The next example defines a typical lighting model:

static float lm[] = {
AMBIENT, .1, .1, .1,
LOCALVIEWER, 1,
LMNULL

};
lmdef(DEFLMODEL, 14, 0, lm);

Once again, use the same syntax for a lighting model as for a material or light
source. The AMBIENT property specifies the color of ambient light associated
with the entire scene. This ambient light is nondirectional.

Specular reflectance from a point on a surface depends on the normal, the
direction to the light source, and the direction to the viewpoint.

You can use a local viewpoint (placed at the origin) or an infinite viewpoint
(placed at an infinite distance on the positive z axis).

Use LOCALVIEWER to indicate whether the viewpoint is local or infinite.
LOCALVIEWER is followed by a single float, either 0.0 to indicate that the
viewpoint is infinite, or 1.0 to indicate that the viewpoint is local. With a local
viewpoint, the direction to the viewpoint needs to be recalculated at each
vertex, which may cause a decrease in performance.

This example defines a lighting model with an infinite viewpoint:

static float lm[] = { LOCALVIEWER, 0, LMNULL };
lmdef(DEFLIGHT, 14, 2, lm);

Graphics Library Programming Guide 9-11

When you use an infinite viewpoint with infinite lights, primitives with the
same normal and material properties produce identical colors. In practice, this
means that surfaces are lighted with constant color, which might appear
slightly unrealistic.

9.3 Binding Lighting Definitions

After defining the three components of lighting, you must bind (activate) them.
Before binding any lighting definitions, you must be in multimatrix mode:

mmode(MVIEWING);

The next example shows how to bind the previously defined material, light
source, and lighting model.

lmbind(MATERIAL, 39);
lmbind(LIGHT0, 27);
lmbind(LMODEL, 14);

Material index 39 represents the material definition from our previous
example. You activate this material definition by binding it to the target
MATERIAL. Only one material can be active at any time. Light source 27 from
the previous example is activated by binding it to the target LIGHT0.

There are at least eight light source targets available, named LIGHT0, LIGHT1,
LIGHT2, and so on. The actual number of these targets is defined in gl.h by the
constant MAXLIGHTS. Any number of the light source targets can be active at
any time. You can bind a light definition to only one light source target.

The current ModelView matrix transforms the position of the light source
when you call lmbind() (see Chapter 7, “Coordinate Transformations” for
more information on transformations). In this example, the position of the
light source has a non-zero w component. This makes it a point light source. Its
position is transformed in the same way that a point is transformed.

Lighting model index 14 represents the lighting model definition from a
previous example. You activate it by binding it to the target LMODEL. Only one
lighting model can be active at any time.

At this point, lighting is enabled. More specifically, lighting is enabled when
both a material and a lighting model are bound. The indexes 39, 27, and 14

9-12 Lighting

were chosen for this example and are arbitrary. You could use index 1 for all
three components because indexes for materials are separate from those of
lights, and lighting models. Any index between 1 and 65535 is legal. Index 0 is
used to turn lighting off, as described in Section 9.4, “Changing Lighting
Settings.”

9.4 Changing Lighting Settings

Use the lmbind() subroutine to change or deactivate (unbind) currently
bound lighting definitions. Specify index 0 with lmbind() to unbind a
material, light, or lighting model.

This example turns off the light source bound to LIGHT0:

lmbind(LIGHT0, 0);

Note: After this lmbind() call, lighting remains on because the presence of
active lights is not necessary for lighting.

Recall that lighting is enabled when both a material and a lighting model are
bound. To turn off lighting, you must unbind either the material or the lighting
model. This example turns lighting off:

lmbind(LMODEL, 0);

Suppose you have defined more than one material for geometry you are
drawing. When you bind the second material definition, it becomes the active
material, overriding the previously bound material.

You can also use lmdef() to change the properties of an existing definition
instead of creating a new definition for each variation to that definition.

Recall the point light source definition 27 from the previous example. This
example changes this light source definition to produce a greenish color:

static float lt[] = {
LCOLOR, .8, 1, .8,
LMNULL

};
lmdef(DEFLIGHT, 27, 2, lt);

Graphics Library Programming Guide 9-13

If light source definition 27 is currently bound to a light source, such as
LIGHT0, the light color change takes effect immediately. Because LCOLOR is the
only property in this array, only this property is changed. Changes made to
bound definitions are effective immediately. Only the specified properties are
changed, the other properties remain the same.

A light source position is transformed by the ModelView matrix at the time of
the lmbind() call. It can be retransformed by binding it again. This is often
used to make a light move from frame to frame. A light source that was
previously bound can only be rebound to its original light target.

9.5 Default Settings

When you create a definition with lmdef(), the properties are first set to their
default values. Properties specified in the array override these defaults. Later,
when you change this definition with lmdef(), properties not specified in
your array are left unchanged.

These definitions contain the default settings for material, light source, and
lighting model:

static float mat[] = {
ALPHA, 1.0,
AMBIENT, .2, .2, .2,
COLORINDEXES, 0, 127.5, 255,
DIFFUSE, .8, .8, .8,
EMISSION, 0.0, 0.0, 0.0,
SPECULAR, 0.0, 0.0, 0.0,
SHININESS, 0.0,
LMNULL

};

static float lt[] = {
AMBIENT, 0.0, 0.0, 0.0,
LCOLOR, 1.0, 1.0, 1.0,
POSITION, 0.0, 0.0, 1.0, 0.0,
SPOTLIGHT, 0.0, 180.0,
SPOTDIRECTION, 0.0, 0.0, -1.0,
LMNULL

};

9-14 Lighting

static float lm[] = {
AMBIENT, .2, .2, .2,
ATTENUATION, 1.0, 0.0,
ATTENUATION2, 0.0,
LOCALVIEWER, 0.0,
TWOSIDE, 0.0,
LMNULL

};

Passing NULL as the fourth parameter of an lmdef() call creates a definition of
a default set of properties. It is also equivalent to passing an array of type
float that has one element, the special constant LMNULL.

The following example sets defaults for the example lighting model:

lmdef(DEFMATERIAL, 39, 0, NULL);
lmdef(DEFLIGHT, 27, 0, NULL);
lmdef(DEFLMODEL, 14, 0, NULL);

9.6 Advanced Lighting Features

This section covers advanced lighting features. Not all lighting features are
supported on all systems. Consult the lmdef() man page to determine which
features are available on your system.

9.6.1 Attenuation

In reality, the effect of a light source on a surface diminishes as the distance
between the light source and the surface increases. You can simulate this effect
with the attenuation feature of GL lighting. Attenuation is defined in the
lighting model and applies to all point light sources. Attenuation does not
apply to infinite or ambient light sources. Attenuation is not supported on all
systems; it is ignored on systems that do not support it.

Attenuation is a function of the distance between a point light source and the
surface it illuminates. You can specify constant, linear and distance-squared
attenuation factors.

Graphics Library Programming Guide 9-15

The formula for attenuation is:

attenuation factor = 1 / (k0 + k1∗ dist + k2∗ dist∗ dist) (EQ 9-1)

where:

dist is the distance between the vertex and the point light source.
This distance is never negative.

k0 controls constant attenuation.

k1 controls linear attenuation.

k2 controls distance-squared attenuation.

The attenuation formula is calculated for each lighted vertex. The following
example specifies constant and linear attenuation factors for lighting model
14.

static float atten[] = {
ATTENUATION, .1, 1,
LMNULL

};
lmdef(DEFLMODEL, 14, 2, atten);

The ATTENUATION property is followed by two non-negative floats. These
floats specify k0 and k1 of the attenuation formula.

This example adds distance-squared attenuation to lighting model 14:

static float atten[] = {
ATTENUATION, .1, 0,
ATTENUATION2, 1,
LMNULL

};
lmdef(DEFLMODEL, 14, 3, atten);

The ATTENUATION2 property is followed by one non-negative float, specifying
k2.

The attenuation factor defaults are k0 = 1, k1 = 0, and k2 = 0. These values define
a lighting model without attenuation. You can disable attenuation by restoring
these default values.

Both of these examples use a small, but non-zero value for the constant term
k0. As dist approaches zero, a non-zero k0 bounds the maximum value of the
attenuation formula; otherwise, it would approach infinity.

9-16 Lighting

9.6.2 Spotlights

A point light source is omnidirectional by default. You can make a point light
source into a directional spotlight using the SPOTLIGHT property. Spotlights are
available only on certain systems. See the lmdef() man page to determine
whether your system supports spotlights.

A spotlight emits a cone of light that is centered along the spotlight direction.
The intensity of a spotlight is a function of the angle between the spotlight
direction and the direction to the vertex being illuminated. Typically, the
intensity falls off as this direction angle increases.

You can control the shape of a spotlight’s intensity falloff with two values: an
exponent and a spread angle. An exponent of 1 produces a gradual falloff that is
actually the cosine of the direction angle. An exponent of 128 gives the
sharpest possible falloff; an exponent of 0 gives a constant intensity. The
spread angle defines a cone outside which no light is emitted. The intensity
falloff as controlled by the exponent is cut off by this cone. The cone defined
by the spread angle is independent of the intensity falloff controlled by the
exponent.

This example defines and binds a white spotlight:

static float spot[] = {
LCOLOR, 1, 1, 1,
POSITION, 0, 2, 0, 1,
SPOTDIRECTION, 0, -1, 0,
SPOTLIGHT, 100, 45,
LMNULL

};
lmdef(DEFLIGHT, 11, 5, spot);
lmbind(LIGHT0, 11);

The SPOTLIGHT property is followed by two floats specifying the exponent and
spread angle of the light cone. The exponent can range from 0 to 128; an
exponent of 100 specifies a sharp falloff. The spread angle can range from 0 to
90 degrees; a spread angle of 45 defines a cone with a radius angle of 45
degrees. A special value of 180 degrees is also permitted, and is used in the
next example.

The SPOTDIRECTION property is followed by three floats, the x, y, and z
coordinates of the spotlight direction vector. The direction vector is
automatically normalized. This example points the spotlight in the direction of

Graphics Library Programming Guide 9-17

the negative y axis. The spotlight direction vector is transformed by the current
ModelView matrix in the same manner as a normal.

Notice that the POSITION property specifies a point light source. This is
necessary for a spotlight. The SPOTLIGHT property is ignored for an infinite
light source.

This example turns off the spotlight effect:

static float spotoff[] = { SPOTLIGHT, 0.0, 180.0, LMNULL };
lmdef(DEFLIGHT, 11, 2, spotoff);

The combination of setting the exponent to 0.0 and the spread angle to 180.0
turns off the spotlight effect. By default, a point light source is not a spotlight.
The SPOTDIRECTION property is ignored when the light source is not a
spotlight.

You can combine spotlights with attenuation to yield an effect that is
reminiscent of a real spotlight. The spotlight effect can create a highly
non-linear intensity gradient across a surface. To make the approximation of
the gradient as accurate as possible, place the vertices of the surface
illuminated by a spotlight very close to one another.

9.6.3 Two-Sided Lighting

In general, lighting calculations are correct only when you view the side of a
polygon where the normal faces toward you. If you use the right-hand rule to
define the polygons and their normals, lighting calculations are correct for the
front faces of those polygons. This is called one-sided lighting. With two-sided
lighting, the lighting for backfacing polygons is also correct. Two-sided lighting
is available only on certain systems. Use getgdesc(GD_LIGHTING_TWOSIDE)
to determine if two-sided lighting is available.

This example adds two-sided lighting to a lighting model definition:

static float two[] = { TWOSIDE, 1, LMNULL };
lmdef(DEFLMODEL, 14, 3, two);

The TWOSIDE property is followed by one float, either 1.0 or 0.0, that specifies
whether the two-sided lighting feature should be enabled or disabled,
respectively. It is disabled by default.

9-18 Lighting

Two-sided lighting applies only to primitives with facets, such as polygons or
triangle meshes. Two-sided lighting is ignored for other lighted primitives,
such as points or lines.

With two-sided lighting, the material properties of the front and back faces are
normally identical; that is, the active material is used for both the front and the
back faces. You can also specify independent front and back material
properties. Independent front and back materials can be useful to distinguish
between the inside and the outside of an object. This feature is quite effective
when combined with user-defined clipping planes. See Chapter 8,
“Hidden-Surface Removal”, for more information about two-sided polygons.

This example binds material definition 40 to the back material as follows:

lmbind(BACKMATERIAL, 40);

You unbind the back material by binding it to 0:

lmbind(BACKMATERIAL, 0);

By default, the back material is bound to 0. Whether a back material is bound
or not has no effect on whether lighting is on or off.

9.6.4 Fast Updates to Material Properties

When you change the properties of an active (currently bound) definition,
those changes take effect immediately.

Assume that material definition 39 exists and is currently bound. The
following example changes its DIFFUSE property immediately:

static float mat[] = {
DIFFUSE, .369, 0, .165,
LMNULL

};
lmdef(DEFMATERIAL, 39, 2, mat);

This mechanism provides a general method for updating the properties of a
material, a light source, or a lighting model.

It is useful to have an even more efficient method of changing material
properties. For example, it is reasonable to change a specific material property

Graphics Library Programming Guide 9-19

at each vertex of many polygons. For this reason, the GL provides a fast update
mechanism for material properties.

You use the lmcolor() subroutine to set a mode where the current color
updates a specific material property. The current color should be set explicitly
after the call to lmcolor() and before a vertex or normal is issued. The current
color can be set with c, cpack(), or RGBcolor().

Note: For higher performance, call lmcolor() only once, prior to drawing a
large number of primitives. Do not call lmcolor() within a primitive
(between bgn and end calls). If you must change more than one
material property per vertex, excluding related LMC_AD ambient or
diffuse changes, it is probably better to use lmdef() than to mix
lmcolor() and color() calls within a single primitive.

Some of the color commands specify red, green, blue, and alpha as integers in
the range of 0 to 255. This range is mapped to a 0.0 to 1.0 range when used to
update material properties.

This example illustrates using lmcolor() to update the DIFFUSE property of
the current material.

lmcolor(LMC_DIFFUSE);
RGBcolor(94, 0, 42);
lmcolor(LMC_COLOR);

The first call to lmcolor() sets LMC_DIFFUSE mode. In this mode, the
RGBcolor() call directly updates the diffuse property. The second call to
lmcolor() restores the default mode.

This example sets the diffuse property of the active material to roughly the
same values as the previous example, but there is an important difference.
When you use lmdef() to change an active material, the material definition also
changes.

When you use lmcolor() to change an active material, the change has no effect
on the material definition. Actually, any changes made to the active material
using lmcolor() are lost when you use lmbind() to bind another material.

9-20 Lighting

This example updates the ambient and diffuse properties of the current
material at each vertex of a polygon.

lmcolor(LMC_AD);
bgnpolygon();

cpack(0x800000ff);
n3f(np[0]);
v3f(vp[0]);
cpack(0x8000ff00);
n3f(np[1]);
v3f(vp[1]);
cpack(0x80ff0000);
n3f(np[2]);
v3f(vp[2]);

endpolygon();
lmcolor(LMC_COLOR);

This example uses a normal array, np, and a vertex array, vp, in the same
manner as the triangle example in Section 9.2.1, “Defining Surface Normals.”
The call to lmcolor(LMC_AD) sets a mode where the calls to cpack() directly
update the ambient and diffuse material properties simultaneously.

The modes LMC_AD, which updates both the ambient and diffuse properties,
and LMC_DIFFUSE, which updates only the diffuse property, also update the
ALPHA material property with the alpha component of the current color. See
Section 9.6.5, “Transparency,” for alpha information. Note that the alpha
component in this example is set to 0x80 (roughly 0.5) at each vertex.

The default mode, LMC_COLOR, has an interesting property. If no normals are
present for a primitive, that primitive is not lighted. More exactly, if a color
command follows the last normal before a primitive is drawn, that primitive is
not lighted.

LMC_EMISSION, LMC_AMBIENT, and LMC_SPECULAR update their corresponding
material properties. In LMC_NULL mode, color commands are ignored while
lighting is enabled.

If two-sided lighting is enabled and no BACKMATERIAL is bound, then fast
updates to material properties affect both the front and back faces. If a
BACKMATERIAL is bound, changes to material properties affect only the front
face.

Graphics Library Programming Guide 9-21

9.6.5 Transparency

Normally, materials are opaque. You can control the transparency of a material
with the alpha component. Not all systems support alpha. Alpha information
is ignored by systems that do not support it. In lighting, alpha is specified in
the material definition.

static float mat[] = {
ALPHA, .5,
LMNULL

};

The ALPHA property is followed by one float. When used in conjunction with
blendfunction(), a transparent effect can be achieved. The use of
LMC_DIFFUSE or LMC_AD mode overrides the ALPHA material property with the
alpha of the current color.

The ALPHA property works with two-sided lighting. You can achieve different
front and back transparencies by binding material definitions with different
ALPHA properties to MATERIAL and BACKMATERIAL. See Chapter 4 for more
information on transparency.

9.6.6 Lighting Multiple GL Windows

You can use lighting in more than one GL window. The definitions that
lmdef() creates and modifies are shared among all GL windows of a process.
On the other hand, the material, light sources, and lighting model that
lmbind() activates are specific to the GL window that was active at the time
of the lmbind() call.

9-22 Lighting

9.7 Lighting Performance

This section gives a general feeling for the performance implications of specific
lighting features. The performance of a given feature might vary among the
different graphics products as well as among different software releases on the
same product. Nevertheless, there are some guidelines you can follow.

9.7.1 Restrictions on ModelView, Projection, and User-Defined
Matrices

Many GL programs change the ModelView matrix using only rot(),
rotate(), scale(), and translate(). They change the Projection matrix
using only ortho2(), ortho(), perspective(), and window(). These calls all
work with lighting; however, there are certain restrictions to be aware of.

These restrictions apply to the ModelView, Projection and user-defined
transformation matrices when lighting is used:

• In some cases, normals transformed by the ModelView matrix do not
maintain their unit length. The GL detects this condition of the matrix
and automatically renormalizes the transformed normals. To avoid
this extra calculation, use uniform scale factors; scale(x,y,z) only if
x = y = z.

• Ensure that you use an orthonormal (see the lmdef() man page for a
definition of orthonormal) matrix with loadmatrix() or multmatrix().
If you use loadmatrix() or multmatrix() to specify a non-orthonormal
matrix in the ModelView matrix, you must use nmode(NNORMALIZE) to
renormalize the normals properly.

• No projection components are allowed in the ModelView matrix. More
specifically, the right-most column of the matrix must be [0 0 0 1].

• Two restrictions apply to the Projection matrix:

– No rotation is allowed.

– The top two elements of the right column must be 0.

IRIS-4D/VGX, VGXT and SkyWriter systems permit a general 4×4
Projection matrix, so the Projection matrix restrictions do not apply to
these systems.

Graphics Library Programming Guide 9-23

9.7.2 Computational Considerations

Certain lighting features and operations take longer to calculate than others.
The following are areas where there are performance tradeoffs:

• Two-sided lighting takes extra computation, but its performance
should be better than half the performance of one-sided lighting.

• Each additional light source takes extra computation. The more you use,
the longer it takes to compute the color for a vertex.

• A time-consuming calculation that can occur in lighting is the square root
operation. It is used for a local viewpoint, a point light source, and in
normalizing non-unit-length normals. Any of these features adversely
affects performance.

• GL calls other than n, v, c, cpack(), and RGBcolor() between bgn* and
end* calls might incur a performance penalty. In fact, only a limited set of
calls are allowed between a bgn* and end* call. See Appendix A for
subroutines that can be called between a bgn/end sequence.

• Calling lmcolor() with an argument other than LMC_COLOR or LMC_NULL
might incur a slight performance penalty.

Following are suggestions for getting the highest possible performance from
lighting:

• Use an infinite viewpoint by setting LOCALVIEWER to 0, the default.

• Use a single infinite light source.

• Use the default lmcolor(LMC_COLOR) or use lmcolor(LMC_NULL).

• Use the default nmode(NAUTO).

• Take advantage of drawing primitives that share vertices for lines or
polygons; for instance, use bgntmesh() or bgnqstrip for drawing
polygons.

• On IRIS-4D/VGX and SkyWriter systems, using less than one normal per
vertex (such as one normal per polygon) does not reduce the lighting
calculation specifically. However, it does reduce the amount of data
transferred to the Geometry Engines.

9-24 Lighting

9.8 Color Map Lighting

You can do lighting in color map mode, but that method is generally designed
for systems without enough bitplanes to support RGB mode. On graphics
systems with enough bitplanes, RGB mode lighting is recommended.

Color map lighting generates a pseudo-intensity, which is a function of the
direction to the light source and the direction to the viewpoint. This
pseudo-intensity is mapped to a color map value. A well-chosen range of color
map values gives a reasonable lighting effect. You can represent multiple
materials by creating a color map range for each material. Color map lighting
is enabled when both lighting and color map mode are enabled.

Color map lighting has inherent limitations, and many of the advanced
lighting features are not supported. Color map lighting recognizes only a
limited set of properties, described here.

A material definition in color map mode uses the COLORINDEXES and
SHININESS properties:

static float mat[] = {
COLORINDEXES, 512, 576, 639,
SHININESS, 5,
LMNULL

};

This property is followed by three floats, representing an ambient index, a
diffuse index, and a specular index. These indices should correspond to
appropriate values in the color map. Lighting produces values that range from
the ambient index to the specular index. Lighting generates the ambient index
when there is no diffuse or specular reflection. It generates the diffuse index
when the diffuse reflection is at a maximum, but there is no specular reflection.
It generates the specular index when the specular reflection is at a maximum.
The specular index must be greater than or equal to the diffuse index, which
must in turn be greater than or equal to the ambient index. All other material
properties are ignored.

A light source definition in color map mode uses only the POSITION property:

static float lt[] = {
POSITION, 0, 0, 1, 0,
LMNULL

};

Graphics Library Programming Guide 9-25

Each light source contributes an intensity proportional to its LCOLOR values,
so that the scene doesn’t get washed out when more that one light source is
used.

IRIS Indigo systems allow local lights in color map mode. On other systems,
only infinite light source positions are allowed. This requires that you set the
w component of POSITION to 0. All other light source properties are ignored.
You can specify zero or more light sources.

A lighting model definition in color map mode uses only the LOCALVIEWER
property:

static float lm[] = {
LOCALVIEWER, 0,
LMNULL

};

Only an infinite viewpoint is allowed. LOCALVIEWER can be set only to 0, which
is the default.

9.9 Sample Lighting Program

The following sample program, cylinder2.c, demonstrates GL lighting.

#include <math.h>
#include <gl/gl.h>
#include <gl/device.h>

Matrix Identity = { 1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1 };

float mat[] = {
AMBIENT, .1, .1, .1,
DIFFUSE, 0, .369, .165,
SPECULAR, .5, .5, .5,
SHININESS, 10,
LMNULL,

};

static float lm[] = {
AMBIENT, .1, .1, .1,
LOCALVIEWER, 1,
LMNULL

};

9-26 Lighting

static float lt[] = {
LCOLOR, 1, 1, 1,
POSITION, 0, 0, 1, 0,
LMNULL

};

main()
{
long xorigin, yorigin, xsize, ysize;
float rx, ry;
short val;

winopen("cylinder");
qdevice(ESCKEY);
getorigin(&xorigin, &yorigin);
getsize(&xsize, &ysize);
RGBmode();
doublebuffer();
gconfig();
lsetdepth(getgdesc(GD_ZMIN), getgdesc(GD_ZMAX));
zbuffer(1);
mmode(MVIEWING);
loadmatrix(Identity);
perspective(600, xsize/(float)ysize, .25, 15.0);
lmdef(DEFMATERIAL, 1, 0, mat);
lmdef(DEFLIGHT, 1, 0, lt);
lmdef(DEFLMODEL, 1, 0, lm);
lmbind(MATERIAL, 1);
lmbind(LMODEL, 1);
lmbind(LIGHT0, 1);
translate(0, 0, -4);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
ry = 300 *

(2.0*(getvaluator(MOUSEX)-xorigin)/xsize-1.0);
rx = -300 *

(2.0*(getvaluator(MOUSEY)-yorigin)/ysize-1.0);
czclear(0x404040, getgdesc(GD_ZMAX));
pushmatrix();
rot(ry, 'y');
rot(rx, 'x');
drawcyl();
popmatrix();
swapbuffers();

}
}

Graphics Library Programming Guide 9-27

drawcyl()
{
double dy = .2;
double theta, dtheta = 2*M_PI/20;
double x, y, z;
float n[3], v[3];
int i, j;

for (i = 0, y = -1; i < 10; i++, y += dy) {
bgntmesh();
for (j = 0, theta = 0; j <= 20; j++, theta += dtheta) {

if (j == 20) theta = 0;
x = cos(theta);
z = sin(theta);
n[0] = x; n[1] = 0; n[2] = z;
n3f(n);
v[0] = x; v[1] = y; v[2] = z;
v3f(v);
v[1] = y + dy;
v3f(v);

}
endtmesh();

}
}

9-28 Lighting

Graphics Library Programming Guide 10-1

Chapter 10

10. Framebuffers and Drawing Modes

This chapter describes modes used for accessing different “layers” of your
graphics scene. The subroutines described in this chapter let you draw an
image on top of the standard pixel contents (overlay) or underneath (underlay).
Personal IRIS and IRIS Indigo owners with the minimum bitplane
configuration (eight bitplanes) can skip the sections dealing with overlay and
underlay bitplanes, because these bitplanes are not present on these systems.

• Section 10.1, “Framebuffers,” describes the framebuffers on the IRIS
workstation.

• Section 10.2, “Drawing Modes,” describes the modes used for drawing.

• Section 10.3, “Writemasks,” tells you how to use masks to draw
selectively into designated layers.

• Section 10.4, “Configuring Overlay and Underlay Bitplanes,” tells you
how to designate drawing layers for multilayer drawings.

• Section 10.5, “Cursor Techniques,” tells you how to create and use
cursors.

10.1 Framebuffers

Pixel data is stored in a special memory called the framebuffer. In its default
configuration, the framebuffer on IRIS workstations is divided into four
partitions that the GL can address as if they were separate framebuffers or
layers of bits called bitplanes. These four bitplanes are called: normal, overlay,
underlay, and pop-up. Setting a drawing mode selects one of these bitplanes for
access.

10-2 Framebuffers and Drawing Modes

The exact number of bits varies from system to system and is also dependent
on the drawing mode. Use getgdesc() with the appropriate GD_BITS
parameter to query the system for the bit configuration in each mode.

RealityEngine systems have additional framebuffers, a multisample buffer for
antialiasing, and left and right buffers for stereo applications.

10.1.1 Normal Framebuffer

Usually, drawing is done in the standard (normal) color framebuffer. Data in
the framebuffer is interpreted either as RGB and, optionally, Alpha, data for
RGB mode, or as indices into a color map for color map mode. A single sample
of the color is written to the framebuffer to represent 1 pixel.

The color represented by a pixel in the framebuffer is not necessarily the color
drawn on the screen. Colors from other framebuffers can appear on top of or
underneath this pixel, or colors can be blended with the pixel to achieve
interesting effects such as transparency. For example, a cursor moving over a
pixel obscures the pixel’s color while the cursor is displayed in that location.
The original color of the pixel is displayed once again after the cursor passes.
Similarly, when a pop-up menu is drawn over a window, the underlying colors
are temporarily obscured, but they reappear when the pop-up menu
disappears. These effects are accomplished by drawing into other parts of the
framebuffer such as the overlay, underlay, or pop-up planes.

On RealityEngine systems, a multisample buffer coexists with the normal
framebuffer that provides single-pass multisample antialiasing, which is
described in Chapter 15. Multisampling can be used only when the draw mode
is NORMALDRAW, and only when you have configured the multisample buffer.

RealityEngine systems also feature a flexible framebuffer configuration that
allows you to specify how to partition the framebuffer and how to allocate bits
within the various parts of the framebuffer. You can configure the framebuffer
to choose the number of subsamples for multisample antialiasing and you can
also allocate framebuffer bits for z-buffer and stencil operations.

Graphics Library Programming Guide 10-3

10.1.2 Overlay Framebuffer

Overlay planes are useful for creating menus, construction lines,
rubber-banding lines, and so on. Overlay bitplanes supply additional bits of
information at each pixel. You can configure the system to have from 0 up to a
system-dependent maximum number of bitplanes. Whenever all the overlay
bitplanes contain 0 at a pixel, the color of the pixel from the standard color
bitplanes is presented on the screen. If the value stored in the overlay planes is
not 0, the overlay value is looked up in a separate color table, and that color is
presented instead.

10.1.3 Underlay Framebuffer

Underlay planes are useful for background grids that appear where nothing
else is drawn, such as a reference grid for a sketching application. Underlay
bitplanes are similar in concept, in that there are extra bits for each pixel, but
their values are normally ignored unless the color in the standard bitplanes is
0. In that case, the underlay color is looked up in a color map and is presented.
Thus, the underlay color shows up only if there is “nothing” (the pixel value =
0) in the standard bitplanes. With two underlay bitplanes, there are four
possible underlay colors.

Use drawmode(), described in Section 10.2, “Drawing Modes,” to enter
overlay or underlay mode and to return to normal drawing mode—drawing
into the standard bitplanes.

The system actually has several physical bitplanes that can be used for either
overlay or underlay. Two of the available bitplanes are normally reserved for
window manager use; you can allocate the others among overlay bitplanes,
underlay bitplanes, or neither. See Section 10.4, “Configuring Overlay and
Underlay Bitplanes.”

10.1.4 Pop-up Framebuffer

The two bitplanes normally reserved by the window manager for pop-up
menus are accessible (either by themselves using a special drawing mode, or
by allocating all the available overlay and underlay bitplanes). You must be
careful, however, not to conflict with the window manager’s use for them, so
using the reserved bitplanes is not recommended.

10-4 Framebuffers and Drawing Modes

10.1.5 Left and Right Stereo Framebuffers

This section describes a feature that is available only on RealityEngine
systems, so you may want to skip to Section 10.2, “Drawing Modes,” if you do
not have one of these systems.

On RealityEngine systems, the normal framebuffer can be configured for
stereoscopic viewing with the stereobuffer() command.

When stereobuffer() is used in conjunction with singlebuffer(), two
color buffers, left and right, are allocated. When stereobuffer() is used in
conjunction with doublebuffer(), four color buffers, front-left, front-right,
back-left, and back-right, are allocated.

stereobuffer() does not take effect until gconfig() is called. The default
mode is monoscopic viewing. If neither monobuffer() nor stereobuffer()
is called, gconfig() defaults to monoscopic buffer mode.

stereobuffer() configures the framebuffer to store left and right images, but
it does not position those images as required for stereo viewing. Use
setmonitor() to select a stereo video format to display the stereo images
correctly. See Chapter 5 for the setmonitor() parameters. When
setmonitor() is not configured for stereo display, only the left buffer is
displayed.

In singlebuffer mode, leftbuffer() controls whether drawing is enabled in
the left buffer, and rightbuffer() controls whether drawing is enabled in the
right buffer.

In doublebuffer mode, the front-left buffer is enabled for drawing if both
frontbuffer() and leftbuffer() are true, and the back-left buffer is
enabled for drawing if both backbuffer() and leftbuffer() are true.
Likewise, the front-right buffer is enabled for drawing if both frontbuffer()

and rightbuffer() are true, and the back-right buffer is enabled if both
backbuffer() and rightbuffer() are true.

leftbuffer() and rightbuffer() should be called only when the draw
mode is NORMALDRAW, and they are ignored when the normal buffer is not
configured for stereo buffering.

Graphics Library Programming Guide 10-5

TRUE is the default for leftbuffer() and FALSE is the default for
rightbuffer(). After gconfig() is called, the left buffer is enabled and the
right buffer is disabled.

10.2 Drawing Modes

The drawing mode specifies which of the four layers, normal, overlay, underlay,
or pop-up, is the intended destination for the bits produced by subsequent
drawing and mode commands. Calls to color(), getcolor(),
getwritemask(), writemask(), mapcolor(), and getmcolor() are affected
by the current drawing mode.

Rather than introduce a new set of subroutines for operating on the different
layers, the color map subroutines are used to affect the overlay and underlay
bitplanes if the system is in overlay or underlay mode.

For example, in overlay mode, all drawing routines draw into the overlay
bitplanes rather than into the standard bitplanes. In overlay mode, color()
sets the overlay color; getcolor() gets the current overlay color; mapcolor()
affects entries in the overlay map, and getmcolor() reads those entries. The
routines are similarly redefined for underlay mode.

Some system resources are shared among the bitplanes, while in other cases
the system maintains individual resources for each one. The pop-up, overlay,
normal, and underlay planes maintain a separate version of each of the
following modes, which are modified and read back, based on the current
drawing mode:

backbuffer
cmode
color or RGBcolor
doublebuffer
frontbuffer
mapcolor (a complete separate color map)
readsource
RGBmode
singlebuffer
writemask or RGBwritemask

10-6 Framebuffers and Drawing Modes

Other modes affect only the operation of the normal framebuffer. You can
modify these modes only while the normal framebuffer is selected:

acsize
blink
cyclemap
multimap
onemap
setmap
stencil
stensize
swritemask
zbuffer
zdraw
zfunction
zsource
zwritemask

All other modes are shared, including matrices, viewports, graphics and
character positions, lighting, and many primitive rendering options.

There is a special bitplane area reserved for cursor images. See Section 10.5,
“Cursor Techniques.” In cursor mode, only mapcolor() and getmcolor()

perform a function; color(), getcolor(), writemask(), and
getwritemask() are ignored.

drawmode

drawmode() sets the current drawing mode; mode defines the drawing mode:

void drawmode(long mode)

Drawing modes are:

UNDERDRAW Sets operations for the underlay planes.

NORMALDRAW Sets operations for the normal color index or RGB planes; also
sets z bitplanes.

OVERDRAW Sets operations for the overlay planes.

PUPDRAW Sets operations for the pop-up menu planes (this drawing
mode is maintained for compatibility only and is not
recommended).

CURSORDRAW Sets operations for the cursor planes.

Graphics Library Programming Guide 10-7

The default drawing mode is NORMALDRAW mode, which remains set unless you
change it explicitly.

getdrawmode

getdrawmode() returns the current drawing mode specified by drawmode():

long getdrawmode(void)

Each drawing mode has its own color and writemask. See Section 10.3,
“Writemasks,” for information about writemasks. By default, the writemask
enables all planes, and the color is not defined. As you switch from one
drawing mode to another, the current color and writemask are saved, and the
previously saved color and writemask for the new mode are restored. For
example, if you are in NORMALDRAW, then switch to OVERDRAW, and then switch
back to NORMALDRAW, the color and writemask that were active before you
switched to OVERDRAW are automatically restored.

You can use Gouraud shading, that is, shademodel(GOURAUD) in NORMALDRAW

mode. On the Personal IRIS, when you draw polygons in the overlay and
underlay bitplanes, or pop-up menus, the shading model is automatically set
to FLAT.

Many routines that affect the operation of the standard bitplanes should not be
used while in overlay or underlay drawing mode. They include
doublebuffer() (on all except VGX, SkyWriter, and RealityEngine systems),
RGBmode(), zbuffer(), and multimap(). VGX, SkyWriter, and RealityEngine
systems support double-buffered underlay and overlay.

10.3 Writemasks

In cases when the system uses color maps (the standard bitplanes in color map
mode, and the overlay and underlay bitplanes), a writemask is available that
can selectively limit drawing into the bitplanes. A writemask determines
whether or not a new value is stored in each bitplane. A one in the writemask
allows the system to store a new value in the corresponding bitplane; a zero
prevents a new value from being written, so the bitplane retains its current
color.

10-8 Framebuffers and Drawing Modes

By default, the writemask is set up so that there are no drawing restrictions,
but it is sometimes useful to limit the effects of the drawing routines. The two
most common cases are to provide the equivalent of extra overlay bitplanes
and to display a layered scene where the contents of the layers are independent
of one another. In previous systems, overlay and underlay modes were not
available; consequently, writemasks had a more significant function.

10.3.1 How Writemasks Work

Figure 10-1 shows how a writemask works. In this example, the values in the
first and second bits (b1 and b2) do not change because their corresponding
positions in the writemask are zero. All the other values change because they
have ones in their corresponding positions in the writemask.

Figure 10-1 Writemask

The writemask is described here in terms of the standard drawing bitplanes,
but it works exactly the same way if the system is in overlay or underlay mode.
This discussion assumes that only 8 of the 12 bitplanes are used, although the
discussion applies equally well to different numbers.

With 8 bitplanes, the color is a number from 0 to 255, which can be represented
by 8 binary bits. For example, color 68 is 01000100 in binary notation. Without
writemask controls, if the color is set to 68, every drawing subroutine puts
01000100 into the 8 bitplanes of the affected pixels.

A writemask restricts what is written to the bitplanes. In the example above, if
the writemask is 15 (bits= 00001111), only the bottom (right-most) 4 bits of the

New color index

Writemask

Current color index in bitplanes

a1 a2 a3 a4 a5 a6 a7 a8

a3 a4 a5 a6 a7 a8

Final color index

b1 b2 b3 b4 b5 b6 b7 b8

b1 b20 0 1 1 1 1 1 1

Graphics Library Programming Guide 10-9

color are written into the bitplanes (1 enables writing to the bitplane; 0 disables
writing to the bitplane). If the color is 68, any pixels hit by a drawing
subroutine while the writemask is enabled contain ABCD0100, where ABCD
are the 4 bits that were previously there. The zeros in the writemask prevent
those bits from writing. The default writemask is entirely ones, so there is no
restriction.

10.3.2 Writemask Subroutines

This section describes the subroutines you use to work with writemasks.

writemask

writemask() grants write permission to available bitplanes in color map
mode:

void writemask(Colorindex wtm)

The writemask prevents writing into (protects) bitplanes in the current
drawing mode that are reserved for special uses. wtm is a mask with 1 bit
available per bitplane. Wherever there are ones in the writemask, the
corresponding bits in the color index are written into the bitplanes. Zeros in the
writemask mark bitplanes as read-only. These bitplanes are unchanged,
regardless of the bits in the color.

If the drawing mode is NORMALDRAW, writemask() affects the standard
bitplanes; if it is OVERDRAW, the overlay bitplanes; if it is UNDERDRAW, the
underlay bitplanes. It is important to understand that although writemask()

allows you to protect certain bits from being overwritten, all the bits stored at
any pixel are still taken as a single integer or color index value (see the circles.c
sample program).

RGBwritemask

RGBwritemask() is the same as writemask(), except that it functions in RGB
mode:

void RGBwritemask(short red, short green, short blue)

The arguments red, green, and blue are masks for each of the three sets of
bitplanes. In the same way that writemasks affect drawing in bitplanes in

10-10 Framebuffers and Drawing Modes

NORMALDRAW color map mode, separate red, green, and blue masks can be
applied in NORMALDRAW RGB mode.

wmpack

wmpack() is the same as RGBwritemask(), except it that it accepts a single
packed argument, rather than three separate masks:

wmpack(unsigned long pack)

Bits 0 through 7 specify the red mask, 8 through 15 the green mask, 16 through
23 the blue mask, and 24 through 31 the alpha mask. For example,
wmpack(0xff804020) has the same effect as RGBwritemask(0x20,0x40,0x80).

getwritemask

In color map mode, getwritemask() returns the current writemask of the
current drawing mode:

long getwritemask(void)

The return value is an integer with up to 12 significant bits, one for each
available bitplane.

gRGBmask

gRGBmask() returns the current RGB writemask as three 8-bit masks:

void gRGBmask(short *redm, *greenm, *bluem)

gRGBmask() places masks in the low order 8-bits of the locations redm, greenm,
and bluem address. The system must be in RGB mode when this routine
executes.

10.3.3 Sample Writemask Programs

Two sample programs that use writemasks follow.

The first sample program, circles.c, draws overlapping circles. Because of the
writemask, the overlapping colors form their compound color—that is, where

Graphics Library Programming Guide 10-11

the red and green circles overlap, the shared area is yellow; where the red and
blue circles overlap, the shared area is magenta, and so on.

#include <gl/gl.h>
main()
{

prefsize(400, 400);
winopen(“circles”);
color(BLACK);
clear();
writemask(RED);
color(RED);
circfi(150, 250, 100);
writemask(GREEN);
color(GREEN);
circfi(250, 250, 100);
writemask(BLUE);
color(BLUE);
circfi(200, 150, 100);
sleep(10);
gexit();
return 0;

}

As a more involved example, suppose you want to draw two completely
independent electronic circuits on the screen: power and ground. You want the
circuit to be drawn on a white background, with the power traces in blue, the
ground traces in black, and short circuits (power touching ground) in red.

Initialize the program as follows:

#define BACKGROUND 0 /*=00*/
#define POWER 1 /*=01*/
#define GROUND 2 /*=10*/
#define SHORT 3 /*=11*/
mapcolor(0, 255, 255, 255); /*white*/
mapcolor(1, 0, 0, 255); /*blue*/
mapcolor(2, 0, 0, 0); /*black*/
mapcolor(3, 255, 0, 0); /*red*/

Draw all the power circuitry into bitplane 1 and the ground circuitry into
bitplane 2. Where both power and ground appear, there is a 1 in both bitplanes,
making color 3.

10-12 Framebuffers and Drawing Modes

To clear the window before drawing:

writemask(3);
color(BACKGROUND);
clear();

To draw power circuitry without affecting ground circuitry:

writemask(1);
color(1);
<drawing subroutines>

To draw ground circuitry without affecting power circuitry:

writemask(2);
color(2);
<drawing subroutines>
writemask(1);
color(0);
clear();

To erase all ground circuitry:

writemask(2);
color(0);
clear();

The complete circuit.c sample program follows. The user interface consists of
the keys P (draw power rectangles), G (draw ground rectangles), C (clear the
window), and Q (quit). To draw a rectangle, press the left mouse button at one
corner, hold it down, slide the mouse to the other corner, and release it.

When you use the program, be sure to exit by typing Q—this resets the four
lowest entries in the color map (which are used by all the windows) back to the
default values. If you forget, your text will be white against a white
background, and hence a bit tough to read. If this happens, type a couple of
carriage returns, followed by gclear() and another carriage return. The
program gclear() resets the color map back to the default.

#include <gl/gl.h>
#include <gl/device.h>

#define R 0
#define G 1
#define B 2
#define RGB 3
#define BACKGROUND 0x0 /* = 00 */

Graphics Library Programming Guide 10-13

#define POWER 0x1 /* = 01 */
#define GROUND 0x2 /* = 10 */
#define SHORT 0x3 /* = 11 */

void powerrect(x1, y1, x2, y2)
Icoord x1, y1, x2, y2;
{

writemask(0x1);
color(POWER);
sboxfi(x1, y1, x2, y2);

}

void groundrect(x1, y1, x2, y2)
Icoord x1, y1, x2, y2;
{

writemask(0x2);
color(GROUND);
sboxfi(x1, y1, x2, y2);

}

void clearcircuit()
{

writemask(0x3);
color(BACKGROUND);
clear();

}

main()
{

int i, drawtype;
Device dev;
short val;
short x1, y1, x2, y2;
long xorg, yorg;
Boolean run;
short saved[SHORT+1][RGB];
prefsize(400, 400);
winopen(“circuit”);
color(BLACK);
clear();
qdevice(PKEY); /* draw power rectangles */
qdevice(GKEY); /* draw ground rectangles */
qdevice(CKEY); /* clear screen */
qdevice(ESCKEY); /* quit */
qdevice(WINQUIT); /* quit from window manager */
qdevice(LEFTMOUSE); /* mark rectangle corners */

10-14 Framebuffers and Drawing Modes

tie(LEFTMOUSE, MOUSEX, MOUSEY);
getorigin(&xorg, &yorg);

/* save existing color map */
for (i = BACKGROUND; i <= SHORT; i++)

getmcolor(i, &saved[i][R], &saved[i][G], &saved[i][B]);

/* load new color map */
mapcolor(BACKGROUND, 0, 0, 0); /* black */
mapcolor(POWER, 0, 0, 255); /* blue */
mapcolor(GROUND, 255, 255, 255); /* white */
mapcolor(SHORT, 255, 0, 0); /* red */
drawtype = GROUND;
run = TRUE;
while (run) {

dev = qread(&val);
if (dev == WINQUIT)

run = FALSE;
else if (dev == LEFTMOUSE) { /* downclick */

qread(&x1);
qread(&y1);
qread(&val); /* upclick */
qread(&x2);
qread(&y2);
if (drawtype == POWER)

powerrect(x1 - xorg, y1 - yorg, x2 - xorg, y2 - yorg);
else

groundrect(x1 - xorg, y1 - yorg, x2 - xorg, y2 - yorg);
}
else if (val == 0) {/* on upstroke only */

switch (dev) {
case PKEY:

drawtype = POWER;
break;

case GKEY:
drawtype = GROUND;
break;

case CKEY:
clearcircuit();
break;

case ESCKEY:
run = FALSE;
break;

}
}

}

Graphics Library Programming Guide 10-15

/* restore default color map */
for (i = BACKGROUND; i <= SHORT; i++)

mapcolor(i, saved[i][R], saved[i][G], saved[i][B]);
gexit();
return 0;

}

10.4 Configuring Overlay and Underlay Bitplanes

To set the number of user-defined bitplanes to use for overlay color or
underlay color, call overlay() or underlay(), respectively.

Not all systems support overlay and underlay user-defined bitplanes
simultaneously. Personal IRIS and IRIS-4D/G/GT/GTX systems support only
one or the other at any one time. Call gconfig() after overlay() or
underlay() to activate their settings overlay()/underlay() takes effect only
after gconfig() is called, which is when all bitplane requests are resolved.

overlay

overlay() sets the number of user-defined bitplanes used for overlay colors:

void overlay(long planes)

underlay

underlay() sets the number of user-defined bitplanes used for underlay color:

void underlay(long planes)

underlay() is the same as overlay() except it affects the underlay() colors.
The default value is 0.

planes is the number of bitplanes to use for the overlay/underlay color, which
depends on the system type. The overlay/underlay framebuffer contains two
bitplanes in single buffer, color map mode. Use overlay()/underlay() to
change the number of bitplanes allocated for overlay/underlay mode. Use
drawmode() to specify the overlay/underlay planes as the destination for
drawing mode changes.

10-16 Framebuffers and Drawing Modes

Table 10-1 shows the system type and the number of overlay/underlay planes.

On models that cannot support simultaneous overlay and underlay, setting
underlay() to 2 forces overlay() to 0 and vice-versa. If underlay() is 2,
there are four available colors that mapcolor() can define. This is one more
than the available number of overlay colors because of the way the precedence
of the framebuffers works.

If the overlay planes contain 0 at any location, the system displays the contents
of the normal framebuffer at that location. If the underlay planes contain 0 at
a given location, the system displays the color at index 0 of the underlay
framebuffer’s color map when the normal bitplanes do not obscure them.

This loads the color map for the underlay buffers with black, red, green, blue.

underlay(2); /* two bitplanes, four colors */
gconfig();
drawmode(UNDERDRAW);
mapcolor(0, 0.0, 0.0, 0.0); /* black as color 0 */
mapcolor(1, 1.0, 0.0, 0.0); /* red as color 1 */
mapcolor(2, 0.0, 1.0, 0.0); /* green as color 2 */
mapcolor(3, 0.0, 0.0, 1.0); /* blue as color 3 */

System Overlay/Underlay Planes

Personal IRIS 0 or 2 single buffer, color-map mode overlay/underlay bitplanes.
(There are no overlay/underlay bitplanes in the minimum
configuration of the Personal IRIS.)

IRIS-4D/G
IRIS-4D/GT
IRIS-4D/GTX

0, 2, or 4 single buffer, color-map mode overlay/underlay bitplanes.
(Use of 4 is discouraged, because of interference with the window
manager pop-up bitplanes.)

IRIS-4D/VGX,
SkyWriter

0, 2, 4, or 8 single or double buffer color map mode overlay/underlay
bitplanes. The 4- and 8-bitplane configurations use the alpha
bitplanes, which are then unavailable for use in NORMALDRAW mode.
Furthermore, your system must have the alpha bitplane option
for you to use 4 or 8 overlay/underlay bitplanes with an
IRIS-4D/VGX or SkyWriter system.

RealityEngine 0,2,4, or 8 single or double buffer overlay/underlay bitplanes.
Does not steal alpha planes.

IRIS Indigo 0

Table 10-1 Overlay and Underlay Bitplane Configurations

Graphics Library Programming Guide 10-17

10.5 Cursor Techniques

The cursor is handled with special cursor hardware. When the color guns scan
the screen, they look at the cursor mask to determine what color to draw the
cursor with as they cross the square region of the screen where the cursor is to
be drawn. The cursor mask can be 1 or 2 bits deep. If the cursor mask is zero,
the normal color is presented. If the mask is nonzero, the mask value is looked
up in a color table (similar to overlay) to find out which color to draw. The
cursor color takes precedence over even the overlay color. As with overlays, if
the cursor mask is 1 bit deep, there is only one possible color; if it is 2 bits deep,
the cursor can have up to three colors.

10.5.1 Types of Cursors

The system supports five cursor types: a 16×16-bit cursor in one or three colors,
a 32×32-bit cursor in one or three colors, and a cross-hair one-color cursor. To
specify a cursor completely, you need to specify not only its type, but its shape
and color(s). In addition, every cursor has an origin, or “hot spot,” and can be
turned on or off.

Default Cursor

There is a default cursor, cursor number zero (0), which is an arrow pointing
to the upper-left corner of the cursor glyph, and whose origin is at (0, 15), the
tip of the arrow. The default cursor (number 0) cannot be redefined, and can
always be used. The position of the origin of the cursor, or the cursor’s hot
spot, is set to the current values of the valuators that are attached to the cursor.

Cross-Hair Cursor

The cross-hair cursor (CCROSS) is formed with 1-pixel wide intersecting
horizontal and vertical lines that extend completely across the screen. It is a
one-color cursor that always uses cursor color 3 as its color. Its origin is at the
intersection of the two lines; the default center is (15, 15). The hot spot is at the
center of the cross.

The cross-hair cursor is formed from a default glyph that cannot be changed.
If you assign a value to it with defcursor(), the user-defined glyph is ignored.
The color of the cross-hair cursor is set by mapping color index 3.

10-18 Framebuffers and Drawing Modes

Figure 10-2 shows some example cursors.

Figure 10-2 Example Cursors

Cursor arrow = {0xFE00, 0xFC00, 0xF800, 0xF800,
0xFC00, 0xDE00, 0x8F00, 0x0780,
0x03C0, 0x01E0, 0x00F0, 0x0078,
0x003C, 0x001E, 0x000E, 0x0004}

Cursor hourglass = {0x1FF0, 0x1FF0, 0x0820, 0x0820,
0x0820, 0x0C60, 0x06C0, 0x0100,
0x0100, 0x06C0, 0x0C60, 0x0820,
0x0820, 0x0820, 0x1FF0, 0x1FF0}

Cursor martini = {0x1FF8, 0x0180, 0x0180, 0x0180,
0x0180, 0x0180, 0x0180, 0x0180,
0x0180, 0x0240, 0x0720, 0x0B10,
0x1088, 0x3FFc, 0x4022, 0x8011}

Graphics Library Programming Guide 10-19

10.5.2 Creating and Using Cursors

To define and use a new cursor, follow these steps:

1. Set the cursor type to one of the five allowable types with curstype().

2. Define the cursor’s shape and assign it a number with defcursor().

3. If necessary, define its origin (or hot spot) with curorigin(), and its
color(s) with drawmode() and mapcolor().

4. Finally, the new cursor becomes the current cursor with a call to
setcursor().

If an application needs a number of different cursors, it typically defines all of
them on initialization, then switches from one to another using setcursor()

(and perhaps mapcolor()). Although they do not physically do so, cursors can
be thought of as occupying 1 or 2 bitplanes of their own, which behave like
overlay bitplanes as described above. A one-color cursor uses one bitplane,
and a three-color cursor occupies two. Where there are 0s in the cursor’s
bitplane(s), the contents of the standard, overlay, and underlay bitplanes
appear. In the same way that overlay colors are defined, drawmode() and
mapcolor() define the cursor’s color(s).

For a one-color cursor, first, call:

drawmode(CURSORDRAW)

followed by:

mapcolor(1, r, g, b)

For a three-color cursor, call:

mapcolor(1, r1, g1, b1)
mapcolor(2, r2, g2, b2)
mapcolor(3, r3, g3, b3)

Note: Three-color cursors might not be supported on all future versions of
hardware. To write code that is portable, use only single-color cursors.

Whenever the cursor pattern (described below) contains a 1(=01), (r1, r1, g1,
b1) is presented; when it is 2(=10), (r2, r2, g2, b2) appears, and so on. Be sure to
call drawmode(NORMALDRAW) after you have defined the cursor’s colors.

10-20 Framebuffers and Drawing Modes

10.5.3 Cursor Subroutines

This section describes the cursor subroutines.

curstype

curstype() defines the current cursor type:

void curstype(long typ)

type is one of C16X1, C16X2, C32X1, C32X2, and CCROSS. It is used by
defcursor() to determine the dimensions of the arrays that define the
cursor’s shape. C16X1 is the default value.

After you call curstype(), call defcursor() to specify the appropriately
sized array and to assign a numeric value to the cursor glyph.

defcursor

defcursor() defines a cursor glyph:

void defcursor(short n, Cursor curs)

The index n defines the cursor number, and curs is an array of bits of the correct
size, depending on the current cursor type. The format of the array of bits is
exactly the same as that for characters in a font—the 16-bit word at the
lower-left is given first, then (if the cursor is 32 bits wide) the word to its right.
Continue in this way to the top of the cursor for either 16 or 64 words. If the
cursor is three-colored, another set of 16 or 64 words follows, again beginning
at the bottom, for the second plane of the mask.

curorigin

curorigin() sets the origin of a cursor:

void curorigin (short n, short xorigin, short yorigin)

The origin is the point on the cursor that aligns with the current cursor
valuators. The lower-left corner of the cursor has coordinates (0,0). Before
calling curorigin(), you must define the cursor with defcursor(). The
number n is an index into the cursor table created by defcursor().
curorigin() does not take effect until there a a call to setcursor().

Graphics Library Programming Guide 10-21

setcursor

setcursor() sets the cursor characteristics:

void setcursor(short index, Colorindex color, Colorindex wtm)

It selects a cursor glyph from among those defined with defcursor(). index
picks a glyph from the definition table. color and wtm are ignored. They are
present for compatibility with older systems that made use of them. Set the
color for the cursor with mapcolor() and drawmode().

getcursor

getcursor() returns the cursor characteristics:

void getcursor(short *index, Colorindex *color, Colorindex *wtm, Boolean b)

It returns two values: the cursor glyph (index) and a boolean value (b), which
indicates whether the cursor is visible.

The default is the glyph index 0 in the cursor table, displayed with the color 1,
drawn in the first available bitplane, and automatically updated on each
vertical retrace.

10.5.4 Sample Cursor Program

This sample program, flag.c, defines a three-color 32×32 cursor in the shape of
a United States flag. Unfortunately, 32×32 is small, so there is room for only 12
stars. (Note that a three-color cursor is not supported on the Personal IRIS;
hence, C16X2 and C32X2 cursor types are not available on the Personal IRIS.)

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

unsigned short curs2[128] = {
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,

10-22 Framebuffers and Drawing Modes

0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,
0x0000, 0xffff, 0x6666, 0xffff,
0x6666, 0xffff, 0x0000, 0xffff,
0x0000, 0xffff, 0x6666, 0xffff,
0x6666, 0xffff, 0x0000, 0xffff,
0x0000, 0xffff, 0x6666, 0xffff,
0x6666, 0xffff, 0x0000, 0xffff,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0x0000, 0xffff, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0x0000, 0xffff, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0x0000, 0xffff, 0x0000

};

main()
{

short val;
prefsize(400, 400);
if (getgdesc(GD_BITS_CURSOR) < 2) {

fprintf(stderr, “2-plane cursor not available\n”);
return 1;

}
winopen(“flag”);
color(BLACK);
clear();
qdevice(ESCKEY);
drawmode(CURSORDRAW);
mapcolor(1, 255, 0, 0);
mapcolor(2, 0, 0, 255);
mapcolor(3, 255, 255, 255);
drawmode(NORMALDRAW);
curstype(C32X2);
defcursor(1, curs2);

Graphics Library Programming Guide 10-23

setcursor(1, 0, 0);
while (TRUE) {
Device dev;
dev = qread(&val);

if (dev == ESCKEY && val == 0);
break;

if (dev == INPUTCHANGE &&val != 0) {
drawmode(CURSORDRAW);
mapcolor(1,255,0,0);
mapcolor(2,0,0,255);
mapcolor(3,255,255,255);
drawmode(NORMALDRAW);

}
}
gexit();
return 0;

}

10-24 Framebuffers and Drawing Modes

Graphics Library Programming Guide 11-1

Chapter 11

11. Pixels

This chapter describes the subroutines that allow you to address screen pixels
directly and perform pixel operations.

• Section 11.1, “Pixel Formats,”explains the formats used for pixel data.

• Section 11.2, “Reading and Writing Pixels Efficiently,” tells you how to
access pixels.

• Section 11.3, “Using pixmode,” tells you how to customize pixel
operations.

• Section 11.4, “Subimages within Images,” tells you how to access pixels
that are part of larger structures.

• Section 11.5, “Packing and Unpacking Pixel Data,” explains how pixel
data is compressed and decompressed.

• Section 11.6, “Order of Pixel Operations,” explains the hierarchy of pixel
operations.

• Section 11.7, “Old-Style Pixel Access,” describes methods of pixel access
that were used in early releases of the GL, and that are not recommended.

Pixels, like raster fonts, are not nearly as easy to transform (rotate and scale) as
geometric figures. Reading and writing pixels on the screen often requires the
program to get information about the window dimensions and the screen
resolution.

Another problem with reading and writing pixels is that the contents of each
pixel can mean different things depending on the display mode for that pixel.
The same physical bitplanes are used to store either color map indices or RGB
values; accordingly, the mode of the pixel determines whether the contents are
interpreted as RGB triples or as indices into a color map.

11-2 Pixels

Three methods of pixel access are supported.

The first method provides a high-performance interface to a flexible set of pixel
subroutines—lrectread(), lrectwrite(), rectcopy(), rectzoom(), and
pixmode() These subroutines operate on arbitrarily sized rectangles made up
of arbitrarily sized pixels. The behavior of these subroutines can be modified
by setting parameters for offset, stride, pixel size, zoom, and other features
described later. These functions operate in either RGB or color map mode.

The second method is compatible with older versions of the GL. It provides a
high-performance interface to operate on arbitrarily sized rectangles. This set
of subroutines includes rectread(), rectwrite(), and rectzoom(). The
behavior of these subroutines can be modified only for zoom. These functions
operate in either RGB or color map mode, but because they operate with 16-bit
unsigned shorts, they are not generally useful for RGB mode.

The third method is compatible with even older versions of the GL. It provides
mode-dependent subroutines to deal with, at most, one scanline at a time,
which is positioned according to the system’s “current character position”.
These subroutines are readpixels(), readRGB(). writepixels(), and
writeRGB(). Continued use of these subroutines is not suggested because
higher-performance, more flexible subroutines are available.

11.1 Pixel Formats

The following pixel formats are standard on most IRIS-4D systems:

• RGBA (Red-Green-Blue-Alpha) data is interpreted as four 8-bit
values packed into each 32-bit word. Bits 0-7 represent red, bits 8-15
represent green, bits 16-23 represent blue, and bits 24-31 represent
alpha.

For example, 0X01020304 corresponds to a pixel whose RGBA values
are 4, 3, 2, and 1, respectively. This is exactly the same format cpack()
uses.

• CI (Color Index) data is interpreted as 12-bit (low-order) indices into a
single, 4096-entry color map. The high-order 20 bits should be zero.

• z-buffer data is interpreted as 24-bit (low-order) data. The high-order 8
bits should be zero. Signed z-buffer data is sign-extended to 32 bits.

Graphics Library Programming Guide 11-3

• Other data used in overlay, underlay, and pop-up planes is interpreted as
a type of color map data. Because different systems and different
configurations support different pixel sizes for these resources, the
number of entries contained in the auxiliary color map vary.

On the IRIS Indigo, and the 8-bitplane Personal IRIS, these formats are used:

• RGB values are in 8 bit packed format. The framebuffer stores 8 bits
of RGB data (3 bits of red, 3 bits of green, and 2 bits of blue), but RGB
pixels are written as 24 bit RGB triples. When read back, the
least-significant 5 bits of red and green are zero and the
least-significant 6 bits of blue are zero.

• CI values are in 8 bit (3 red + 3 green + 2 blue) packet format in single
buffer mode and 4 bit (1 red + 2 green + 1 blue) in double buffer mode.

• Indigo z-buffer data is 32 bits in software. The 8-bitplane Personal IRIS
does not come standard with a z-buffer; however, if you have installed it
as an option, the z-buffer data is 24 bit, sign-extended to 32 bits.

The pixel formats described above are frame buffer formats. The format of the
pixel data in host memory can be packed in a more efficient format if
pixmode() is used with lrectread() and lrectwrite(). See Section 11.3,
“Using pixmode,” for information on pixmode() features.

11.2 Reading and Writing Pixels Efficiently

This section describes subroutines that read and write pixels with the highest
possible performance. The subroutines described in this section may not be
available on your system, see the man pages to find out if your system
supports these commands.

Note: No color mode checking is done, so RGB data read/written in color
map mode, and vice-versa, can return undesired results.

11-4 Pixels

11.2.1 Pixel Addressing

Pixel coordinates on the IRIS workstation are at the center of each pixel, as
mentioned in Chapters 2 and 7. Because of this, you need to specify pixel
boundaries in half-steps, so pixels will be centered on integer values. If you do
not do this, your pixel operations can be off by a pixel or more due to round-off
errors in the floating-point calculations.

Pixel operations can occur in any of the 4 GL framebuffers (bitplanes), as
selected by drawmode(). These subroutines establish sources and destinations
for pixel operations, as well as other drawing subroutines. Sources apply to
pixel reads and copies; destinations apply to pixel writes and copies.

drawmode

drawmode() determines the drawing mode, thereby, the destination for pixel
operations. NORMALDRAW is the default, OVERDRAW, UNDERDRAW, and PUPDRAW are
options. In NORMALDRAW mode, frontbuffer(), backbuffer(), and
zbuffer() apply. If you assert more than one destination in NORMALDRAW

mode, more than one destination is written.

readsource

readsource() determines the GL framebuffer source of pixels read by
rectread(), lrectread(), rectcopy(), readpixels(), and readRGB(). The
source depends on the current drawing mode, as set by drawmode().

The default value of src is SRC_AUTO, which selects the front buffer of the
current GL framebuffer in single buffer mode and the back buffer in double
buffer mode. SRC_FRONT reads from the front buffer, and SRC_BACK reads from
the back buffer. SRC_ZBUFFER reads 24-bit data (32 bit for Indigo) from the
z-buffer. Other sources such as SRC_FRAMEGRABBER are available if special
hardware is installed. Some readsource() parameters are valid only on
certain models; see the readsource() man page for specific information about
source parameters.

Graphics Library Programming Guide 11-5

11.2.2 Reading Pixels

The following subroutines read screen pixels.

readdisplay

readdisplay() reads a rectangular screen region and returns displayed pixels
in packed RGB format. readdisplay() returns the displayed value of each
addressed pixel for all display bitplanes and modes. You specify the x and y
coordinates of the rectangular region. The pixels are read into parry
left-to-right, then bottom-to-top according to the hints provided. The hints are
modifiers, not directives; hence, they are ignored on systems that do not
support them.

Table 11-1 list the hints available and their descriptions.

rectread and lrectread

rectread() reads a rectangular array of pixels from the window where (x1,y1)
are the coordinates for the lower-left corner of the rectangle and (x2,y2) are the
coordinates for the upper-right corner. All coordinates are relative to the
lower-left corner of the window in screen coordinates. sarray is an array of
16-bit values. Only the low-order 16 bits of each pixel are read, so rectread()

Hint Description

RD_FREEZE freezes the screen by blocking all graphics calls until the
read is completed. This assures that the returned data
accurately represents the data displayed at the time of
the call.

RD_ALPHAONE returns all alpha values set to one (represented as 0xff for
this command.

RD_IGNORE_PUP ignores the contents of the popup framebuffer.

RD_IGNORE_OVERLAY ignores the contents of the overlay framebuffer.

RD_IGNORE_UNDERLAY ignores the contents of the underlay framebuffer.

RD_OFFSCREEN returns an error when attempting to read beyond the
framebuffer boundary.

Table 11-1 Hints for readdisplay()

11-6 Pixels

is useful primarily for windows drawn in color map mode. The data is loaded
into sarray left to right and bottom to top.

If the pixel data on the screen looks like this:

1 2 3 4
5 6 7 8
9 10 11 12

sarray contains {9,10,11,12,5,6,7,8,1,2,3,4}, that is, sarray[0]=9, sarray[1]=10, etc.
rectread() returns the number of pixels successfully read.

Normally, the number of pixels read is

(x2 − x1 + 1)∗ (y2 − y1 + 1)

If any part of the specified rectangle is off the screen, or if the coordinates are
mixed up, the behavior of rectread() is undefined.

Errors occur only outside the screen, not outside the window. It is possible to
read pixels outside a window, as long as they are on the physical screen. This
can be useful for certain applications that magnify data from other windows,
or perform image processing on images produced by other programs. The
main difficulty is that the data can come from areas of the screen that are in
different color modes (color map or RGB mode). Because rectread() is not
restricted to the current window, any or all of the coordinates can be negative.

lrectread() is similar to rectread() except that larray contains 32-bit
quantities and the behavior of lrectread() is affected by pixmode() settings.
Using pixmode() with lrectread() provides useful data manipulation
functions as well as data packing functions to store and transfer data more
efficiently.

Graphics Library Programming Guide 11-7

11.2.3 Writing Pixels

The following subroutines write to screen pixels:

rectwrite and lrectwrite

rectwrite() writes a rectangular array of pixels to the window, where (x1,y1)
are the coordinates for the lower-left corner of the rectangle and (x2,y2) are the
coordinates for the upper-right corner. All coordinates are relative to the
lower-left corner of the window in screen coordinates. sarray is an array of
16-bit values. Only the low-order 16 bits of each pixel are written, so
rectwrite() is useful primarily for windows in color map mode. The data is
written from sarray from left to right, then bottom to top rectwrite() obeys
the zoom factors set by rectzoom() (see rectzoom() below). writemask()
and scrmask() apply as with other drawing primitives.

lrectwrite() is similar to rectwrite() except that larray contains 32-bit
quantities and the behavior of lrectwrite() is affected by pixmode()

settings. Using pixmode() with lrectwrite() provides useful data
manipulation functions as well as data unpacking functions to store and
transfer data more efficiently.

rectcopy

rectcopy() copies the pixels from a rectangular region of the screen to a new
region. As with rectread() and lrectread(), the source rectangle must be
on the physical screen, but not necessarily constrained to the current window.
The bitplane source is determined by readsource(), and the bitplane
destination is determined by drawmode(), frontbuffer(), backbuffer(),
and zdraw().

During a rectcopy(), the source rectangle can be zoomed by parameters
established with rectzoom(). In addition, data manipulation and mirroring
can be accomplished through pixmode() settings.

rectzoom

rectzoom() sets the independent x and y zoom factors for rectwrite(),
lrectwrite(), and rectcopy(). xzoom and yzoom are positive floating point
values. Values less than 1.0 are allowed and cause rectangles to shrink. Some

11-8 Pixels

hardware platforms are not capable of providing noninteger zoom, so only the
integer portion of the zoom parameters apply in that case. See the rectzoom()
man page for system dependencies.

If the following rectangle is copied after calling rectzoom(2.0, 3.0):

1 2
3 4

the following copy is made; the pixel on the bottom left-hand corner is at (new
x, new y):

1 1 2 2
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4
3 3 4 4

The following sample program, zoom.c, is a simple magnification program. It
magnifies the rectangular area above and to the right of the cursor to fill the
window.

#include <gl/gl.h>
#include <gl/device.h>

#define X 0
#define Y 1
#define XY 2

#define ZOOM 3

main()
{

long org[XY], size[XY], readsize[XY];
Device dev;
short val;
Device mdev[XY];
short mval[XY];
Boolean run;

prefsize(400, 400);
winopen("zoom");
qdevice(ESCKEY);
qdevice(TIMER0);
noise(TIMER0, getgdesc(GD_TIMERHZ)/10);/* 10 samples/sec */
getorigin(&org[X], &org[Y]);

Graphics Library Programming Guide 11-9

getsize(&size[X], &size[Y]);
readsize[X] = size[X] / ZOOM;
readsize[Y] = size[Y] / ZOOM;
rectzoom((float)ZOOM, (float)ZOOM);
mdev[X] = MOUSEX;
mdev[Y] = MOUSEY;
run = TRUE;
while (run) {
switch (qread(&val)) {
case TIMER0:

getdev(XY, mdev, mval);
mval[X] -= org[X];
mval[Y] -= org[Y];
rectcopy(mval[X], mval[Y],

mval[X] + readsize[X], mval[Y] + readsize[Y], 0, 0);
break;
case ESCKEY:
 if (val == 0)

run = FALSE;
 break;
}

 }
 gexit();
 return 0;
}

After determining the size and shape of the window, the program simply
loops, copying an appropriately sized rectangle above and to the right of the
cursor into the window magnified by a factor of 3 in each direction. The
expressions x-xorg and y-yorg convert the cursor’s screen coordinates into
window coordinates.

To be a useful tool, the program should have a mechanism for changing to and
from RGB mode, perhaps a method to change zoom factor, and perhaps code
to avoid rectcopy() if the mouse has not moved since the last time. It might
also make a better user interface if the region around the cursor is magnified
rather than the area above and to the right of it. Using this tool as is, note that
regions of the screen drawn in RGB mode appear incorrect, and color-mapped
portions look fine. Also, notice that with double-buffered programs, the zoom
window appears to blink. This is caused by buffer swapping in the
double-buffered program, while zoom is always reading from the same buffer.
If the zoom window is magnified, a zoom recursion takes place and the effects
are interesting.

11-10 Pixels

11.3 Using pixmode

pixmode() allows you to customize pixel operations when you use
lrectwrite(), lrectread(), or rectcopy(). pixmode() is only available on
certain systems, see the pixmode() man page for It can be used to specify pixel
operations such as shifting, expansion, offsetting, and packing and unpacking.
Each function is selected by calling pixmode() with an argument indicating
the operation and a value for that operation. Any or all functions can be used
in combination. Once you select a pixmode() operation, it remains in effect
until you change it. pixmode() operations have no effect on rectread() or
rectwrite() or any of the old-style pixel access subroutines.

11.3.1 Shifting Pixels

32-bit pixel data can be shifted left or right before being written to a frame
buffer destination or before being read into memory using the pixmode()
operation PM_SHIFT.

For example, to shift all pixels written with lrectwrite() left by eight bits so
that the red byte is placed in the green byte’s position, the green byte is placed
in the blue byte’s position, the blue byte is placed in the alpha byte’s position,
and the alpha byte is lost, before calling lrectwrite() to write the pixel data,
call:

pixmode(PM_SHIFT,8);

To disable shifting after you have enabled it, use:

pixmode(PM_SHIFT,0);

You can achieve the same effect when copying pixel data using rectcopy().
The same call also affects lrectread(), but in this case a right shift is indicated
with a negative value. Thus, if you perform the sequence of operations:

pixmode(PM_SHIFT,8);
lrectwrite();

then call lrectread() to read the pixels you just wrote, the pixels you get are
exactly the same (unshifted) pixels you wrote, but with the alpha byte stripped
off. This is because the pixels were shifted left eight bits when they were
written and then shifted right eight bits when they were read back.

Graphics Library Programming Guide 11-11

The allowable values for PM_SHIFT are 0, 1, 4, 8, 12, 16, and 24. A
positive value indicates a left shift for lrectwrite() and rectcopy() and a
right shift for lrectread(); a negative value indicates a right shift for
lrectwrite() and rectcopy() and a left shift for lrectread(). The default
value is 0.

11.3.2 Expanding Pixels

You can expand a single-bit pixel into one of two 32-bit values using
PM_EXPAND with PM_C0 and PM_C1. When you set the pixmode() value
PM_EXPAND to 1, the least significant bit of a pixel’s value controls the
conversion of that bit into PM_C0 or PM_C1. If the bit is 0, PM_C0 is selected; if it
is 1, PM_C1 is selected. For example, to convert a series of single-bit pixels
(32-bit pixels whose most significant 31 bits are ignored) into blue for 0 and
green for 1 in RGB mode; before calling lrectwrite() call:

pixmode(PM_EXPAND, 1);
pixmode(PM_C0, 0x00ff0000);
pixmode(PM_C1, 0x0000ff00);

The callpixmode(PM_EXPAND,1) turns expansion on. The next two calls set the
expansion values for the single-bit values 0 and 1, respectively.

To turn expansion off, call pixmode(PM_EXPAND, 0). This is the default. You
can set PM_C0 and PM_C1 to any 32-bit value. In color map mode, the value of
the color index is replaced by either PM_C0 or PM_C1. Their default values are 0.

PM_SHIFT can be used with PM_EXPAND to cause expansion based on a bit other
than the least significant one.

11.3.3 Adding Pixels

You can add a constant signed 32-bit value to the least significant 24 bits of
each pixel transferred by calling:

pixmode(PM_ADD24, value);

where value is the signed 32-bit value. This feature is most effectively used
when transferring z data, but it also affects color data. To turn off pixel
addition, call pixmode(PM_ADD24, 0). This is the default.

11-12 Pixels

11.3.4 Pixels Destined for the z-Buffer

You can specify that pixels be sent to the z-buffer by setting:

pixmode(PM_ZDATA,1);

Unlike setting zdraw(TRUE), using pixmode(PM_ZDATA,1) treats transferred
pixels as z data rather than color data. If you have called zbuffer(TRUE), the
writing is conditional based on a comparison of the pixel’s value with the
value present in the corresponding location of the z-buffer. The current setting
of zfunction() determines the write condition.

To turn off this feature, call:

pixmode(PM_ZDATA, 0);

This is the default. PM_ZDATA has no effect on lrectread().

11.3.5 Changing Pixel Fill Directions

The default directions for reading, writing, and copying pixel rectangles are
left-to-right and bottom-to-top. For example, when writing a rectangle, the
first pixel is placed in the lower left-hand corner of the specified rectangle, the
next at the same screen y value but at a screen x value of one greater, and so on
until a line of pixels is complete. The next line is placed on top of the last until
the rectangle is complete.

You can change the default reading, writing, and copying directions. To make
the pixel transfer direction top-to-bottom, use the following command:

pixmode(PM_TTOB, 1);

Top-to-bottom mode provides faster pixel read/write performance on IRIS
Indigo Entry, XS, XS24, and Elan systems than does the default.

To make the fill direction right-to-left, use:

pixmode(PM_RTOL, 1);

For instance, you can mirror a pixel rectangle that is already in the framebuffer
about a vertical line to produce a new rectangle by calling:

pixmode(PM_RTOL, 1);
rectcopy(...);

Graphics Library Programming Guide 11-13

You can set both PM_TTOB and PM_RTOL to 1 if you choose. Reset the directions
to the defaults with:

pixmode(PM_TTOB, 0);
pixmode(PM_RTOL, 0);

These functions change the order in which pixels are filled, but do not affect
the fundamental row-major ordering of pixels. That is, a horizontal line of
pixels always occupies a set of contiguous words in memory, and a group of
words representing one line of pixels is followed in memory by a group of
words representing the next. Pixels are always arranged so that a group of
contiguous words forms a horizontal line, never a vertical line. Changing fill
directions does not allow interchanging a horizontal line of pixels for a vertical
one.

Fill direction does not affect the location of the destination rectangle for
rectcopy(). The destination rectangle is always specified by its lower-left
pixel, regardless of fill direction.

There are no restrictions on using these modes with lrectwrite() or
lrectread().

11.4 Subimages within Images

Using pixmode() allows you to read and write pixel subrectangles to and from
a larger pixel rectangle. Suppose you have a 2000×1500 pixel image and want
to work with a 100×200 subimage whose origin is at (150,500) in the larger
rectangle. You need to tell the GL the width of the larger rectangle with
pixmode():

pixmode(PM_STRIDE, 2000);

PM_STRIDE specifies the number of 32-bit words per scanline of your rectangle.
Next you need to compute the address of the starting pixel of your
subrectangle within the large rectangle. If p points to the lower-left pixel of the
large rectangle, then, assuming the default pixel fill directions, this address is

p + (2000 * 500) + 150

You can then call lrectread() or lrectwrite():

lrectread(x, y, x + 99, y + 199, p + (2000 * 500) + 150);
lrectwrite(x, y, x + 99, y + 199, p + (2000 * 500) + 150);

11-14 Pixels

to read or write the subimage from or to the location (x,y) on the screen. The
GL figures out where the appropriate subimage is located in CPU memory to
effect the desired transfer within the larger rectangle. You can use this method
to work with sub-rectangles of any size and offset as long as you tell the GL the
width of the whole rectangle using PM_STRIDE.

The default value for PM_STRIDE is 0. PM_STRIDE has no effect on rectcopy().

11.5 Packing and Unpacking Pixel Data

You can specify a number of bits-per-pixel other than 32 for pixels in CPU
memory using the pixmode() function PM_SIZE. You can use this feature to
obtain more efficient packing of pixel data in CPU memory. Setting PM_SIZE to
a value other than 32 (the default value) unpacks pixels from CPU memory
when written using lrectwrite() and packs pixels into CPU memory when
using lrectread().

If you are ignoring alpha values and are using RGB mode, you can specify a
PM_SIZE of 24 and pack four RGB values into three words. If you set PM_SIZE
to n (allowable values are 1, 4, 8, 12, 16, 24, and 32), the first pixel goes in the n
most significant bits of the first word. The next pixel is packed adjacent to the
first, so that if n is less than 32, its bits are placed in the next most significant
bits of the first word after the first n. If there is not enough room in the first
word for all the bits of this second pixel, the leftover bits fill the most
significant bits of the following word. The second word is packed tightly in the
same way, and so on for the rest of the words until the end of a line of pixels.

Note: The next line of pixels starts in the most significant bit of a new word,
even if the last pixel of the previous line did not completely fill the last
word of the previous line.

For instance, for a 3×3 rectangle with PM_SIZE set to 12, the first pixel occupies
the first 12 most significant bits of the first word, the second pixel occupies the
next most significant 12 bits of the first word, and the third pixel occupies the
last 8 bits of the first word and the first 4 most significant bits of the second
word. The next pixel begins a new line, so it occupies the 12 most significant
bits of the third word, and so on.

Graphics Library Programming Guide 11-15

The packing scheme makes 8- and 16-bit packing equivalent to char and short
arrays, respectively, for a line of pixels. Recall, however, that an address passed
to lrectwrite() or lrectread() must be long-word aligned.

If PM_SIZE is not 32, pixels might not begin on a word boundary. This might
require using the pixmode() function PM_OFFSET when accessing
subrectangles within rectangles.

Calling pixmode(PM_OFFSET, n) where n is a value between 0 and 31,
indicates that the most significant n bits of the first word of each scanline are
to be ignored. Assume you have a subrectangle of 100×200. The whole image
is 1250×1250, the origin is at (150,500), and the pixels are packed at 24 bits per
pixel instead of 32. In this case, there are 1250 pixels at 24 bits per pixel, or
30,000 bits in each scanline. Thus there are 30,000/32 (rounded up to the
nearest integer, because each scanline begins with a new word), or 938 words
per scanline. To find the address of the beginning of the sub-rectangle, you
must find the offset of the 150th pixel from the first word of a scanline in the
large rectangle. This offset is (150 ∗ 24)/32, or 111, when rounded down. But
111 words is actually (111 ∗ 32) / 24 = (exactly) 148 pixels. The 149th pixel
occupies the most significant 24 bits of the 112th word, so the 150th pixel
begins 24 bits from the beginning of the 112th word.

Therefore, to access the subimage in this example, call:

pixmode(PM_SIZE, 24);
pixmode(PM_STRIDE, 938);
pixmode(PM_OFFSET, 24);

and give the pointer:

p + (500 * 938) + 112

to lrectread() or lrectwrite() as the location of the first pixel in the
subimage. The offset of (500 ∗ 938) accounts for the first 500 lines of the large
rectangle that must be skipped, while the offset of 112 brings the pointer to the
word containing the 150th pixel in the scanline. The call to
pixmode(PM_OFFSET, 24) effects the additional required offset of 24 bits to
get to the 150th pixel itself.

Setting packing or unpacking parameters, PM_SIZE or PM_OFFSET, has no effect
on rectcopy().

11-16 Pixels

11.6 Order of Pixel Operations

Various pixmode() functions can be used together. The order of calls to
pixmode() is of no consequence. This is because pixmode() functions happen
in a predefined order. For lrectwrite(), this order is

unpack ➔ shift ➔ expand ➔ add24 ➔ zoom

For lrectread(), the order is

shift ➔ expand ➔ add24 ➔ pack

For rectcopy() the order is

shift ➔ expand ➔ add24 ➔ zoom.

As an example, one useful combination is to display a black and white image
in RGB mode from an efficiently packed 1-bit-per-pixel encoding in memory.
To do this, make the following calls:

pixmode(PM_SIZE, 1);
pixmode(PM_EXPAND, 1);
pixmode(PM_C0, 0x00000000);
pixmode(PM_C1, 0x00ffffff);

before writing the image with lrectwrite(). You might also set PM_STRIDE
and PM_OFFSET if you want to handle a subimage.

You can also read and pack a black and white image using a similar method
with lrectread(), but you would have to be certain that the black pixels had
least significant bits of 0 and the white pixels least significant bits of 1, because
the packing discards all but one bit. Also, when reading back the image, there
would be no need for expansion. In any case, the order in which you make the
pixmode() calls is unimportant.

11.7 Old-Style Pixel Access

The subroutines in this section read and write pixels. They determine the
location of the pixels on the basis of the current character position (see cmov()
and getcpos()). They attempt to read or write up to n pixel values, starting
from the current character position and moving along a single scanline
(constant y) in the direction of increasing x. The system updates that position

Graphics Library Programming Guide 11-17

to the pixel that follows the last one read or written. The current character
position becomes undefined if the next pixel position is greater than
getgdesc(GD_XMAX). The system paints pixels from left to right and clips them
to the current screenmask.

These subroutines do not automatically wrap from one line to the next, and
they ignore zoom factors set by rectzoom(). They are sensitive to color mode.
The current color mode should be set appropriately when calling the following
subroutines. The behavior of readpixels() and writepixels() is undefined
in RGB mode. The behaviors of readRGB() and writeRGB() are undefined in
color map mode.

11.7.1 Reading Pixels

This section describes the old-style pixel reading subroutines.

readpixels

readpixels(n, colors) reads up to n pixel values from the bitplanes in color
map mode, to an array of shorts, colors. it returns the number of pixels the
system actually reads. The values of pixels read outside the physical screen are
undefined.

readRGB

readRGB(n, red, green, blue) reads up to n pixel values from the bitplanes
in RGB mode. It returns the number of pixels the system actually reads in the
arrays of chars red, green, and blue. The values of pixels read outside the
physical screen are undefined.

11-18 Pixels

11.7.2 Writing Pixels

This section describes the old-style pixel writing subroutines.

writepixels

writepixels(n, colors) paints a row of pixels on the screen in color map
mode. n specifies the number of pixels to paint and colors specifies an array
containing a color for each pixel.

writeRGB

writeRGB(n, red, green, blue) paints a row of pixels on the screen in RGB
mode. n specifies the number of pixels to paint. red, green, and blue specify
arrays of colors for each pixel. writeRGB() supplies a 24-bit RGB value
(8 bits each for red, green, and blue) for each pixel and writes that value
directly into the bitplanes.

Graphics Library Programming Guide 12-1

Chapter 12

12. Picking and Selecting

This chapter discusses how to use the GL picking and selecting subroutines.
Picking and selecting are used to create a “point and click” interface, where the
user can position the mouse over an area of the screen and click the mouse
button to choose an item on the screen.

• Section 12.1, “Picking,” describes how to test for proximity to the
cursor.

• Section 12.2, “Selecting,” describes how to designate a screen region to be
used for picking.

12.1 Picking

Picking identifies items on the screen that are near the cursor. When the system
is in picking mode, it does not draw anything on the screen. Instead, drawing
subroutines that would have been drawn near the current location of the
cursor cause hits to be recorded in the picking buffer.

All the standard drawing routines cause hits, except raster operations, such as
character strings drawn with charstr(). However, because cmov() does
cause a hit, character strings can be picked because they can appear to cause
hits. The cursor must be near the lower-left corner of the string for it to be
picked. Because pixel subroutines such as readpixels() and readRGB() are
often preceded by cmov(), these routines can also appear to cause hits.

To use picking effectively, your program must be structured in such a way that
you can regenerate the picture on the screen whenever picking is required.

12-2 Picking and Selecting

To perform picking:

1. Set the system into picking mode

2. Redraw the image on the screen using pick()

3. Call endpick().

The results of the pick appear in a buffer specified by pick() and endpick().

A name stack stores the name of the items that are hit while picking is enabled.
When you call a subroutine that alters the name stack or when you exit picking
mode, the contents of the name stack are copied to the buffer if a hit occurs. See
Section 12.1.2, “Using the Name Stack,” for more details about the name stack.

pick

pick() puts the system in picking mode:

void pick(short buffer[], long numnames)

The numnames argument specifies the maximum number of values that the
picking buffer can store. The graphical items that intersect the picking region
are hits and store the contents of the name stack in buffer.

endpick

endpick() takes the system out of picking mode and returns the number of
hits that occurred in the picking session:

long endpick(short buffer[])

If endpick() returns a positive number, the buffer stored all of the name lists.
If it returns a negative number, the buffer was too small to store all the name
lists; the magnitude of the returned number is the number of name lists that
were stored.

buffer contains all of the name lists stored in picking mode, one list for each
valid hit. The first value in each name list is the length of a name list. If a name
stack is empty when a hit occurs, the first and only entry in the list for that hit
is “0.”

Graphics Library Programming Guide 12-3

12.1.1 Defining the Picking Region

Picking loads a projection matrix that makes the picking region fill the entire
viewport. This picking matrix replaces the projection transformation matrix
that is normally used when drawing routines are called. Therefore, you must
restate the original projection transformation after each pick() and after each
endpick(), to ensure that the system maps the objects to be picked to the
proper coordinates. If no projection transformation was originally issued, you
must specify the default, ortho2(). When the transformation routine is
restated, the product of the transformation matrix and the picking matrix is
placed at the top of the matrix stack.

Note: If you do not restate the projection transformation, picking does not
work properly. Instead, the system typically picks every object,
regardless of cursor position and pick size.

Specifying or defining the default ortho2() parameters brings up the issue of
creating a graphics window that has a one-to-one mapping between screen
space (viewport) and world space (in this case, ortho2()).

In the following example, assume a graphics window that is 4 pixels wide by
5 pixels high. This window runs from coordinates 1 to 4 in x and 1 to 5 in y. In
order to set up a mapping between floating point coordinates and screen space
(integer coordinates) that centers pixels at integer coordinates in the ortho2()
projection, you need to specify:

viewport(0, 3, 0, 4);
ortho2(0.5, 4.5, 0.5, 5.5);

Extrapolate from this and assume a situation where the graphics window has
been resized and you need to redefine a current ortho2() based on the new
size. To do this, use the following three statements:

getsize(&xsize, &ysize);
viewport(0, xsize - 1, 0, ysize - 1);
ortho2 (x1-0.5,(float)(xsize-0.5), y1-0.5,(float)(ysize-0.5);

In the call to viewport(), you must subtract 1 from the value of xsize and ysize
because they start at 0, not at 1. Likewise, in the call to ortho2, you need to start
at -0.5 less than the corner coordinates and subtract -0.5 from xsize and ysize to
create the straddling effect described earlier.

12-4 Picking and Selecting

picksize

The default height and width of the picking region is 10 pixels centered at the
cursor. You can change the picking region with picksize().

picksize(deltax, deltay)

deltax and deltay specify a rectangle centered at the current cursor position (the
origin of the cursor glyph; see Chapter 11, “Drawing Modes,” for a discussion
of cursors.)

12.1.2 Using the Name Stack

A name stack stores the name of the items that are hit while picking is enabled.
The name stack is a stack of 16-bit names whose contents are controlled by
loadname(), pushname(), popname(), and initname(). You can store up to
1000 names in a name stack. You can intersperse these routines with drawing
routines, or you can insert them into object definitions (see Chapter 16,
“Graphical Objects,” for a discussion of objects).

Note: Because the contents of the name stack are reported only when it
changes, one hit is reported no matter how many drawing routines
actually draw something near the cursor. If the application requires
more accuracy than this, it must modify the name stack more often.

loadname

loadname() puts name at the top of the name stack and erases what was there
before:

void loadname(short name)

pushname

pushname() puts name at the top of the stack and pushes all the other names
in the stack one level lower:

void pushname(short name)

Before the first loadname() is called, the current name is unpredictable.
Calling pushname() before loadname() can cause unpredictable results.

Graphics Library Programming Guide 12-5

popname

popname() discards the name at the top of the stack and moves all the other
names up one level:

void popname(void)

initnames

initnames() discards all the names in the stack and leaves the stack empty:

void initnames(void)

The sample program pick.c draws an object consisting of three shapes; then it
loops, until you press the right mouse button. Each time you press the middle
mouse button, the system:

1. enters picking mode

2. calls the object

3. records hits for any routines that draw into the picking region

4. prints out the contents of the picking buffer

Note: When you call an object in picking mode, the screen does not change.
Because the picking matrix is recalculated only when you call pick(),
the system exits and reenters picking mode to obtain new cursor
positions.

Position the cursor near one of the shapes on the screen and click the left
mouse button. The results of the pick are printed to the screen. Five outcomes
are possible for each picking session. The circles can be picked together
because they overlap:

• nothing is picked = “hit count: 0 hits:”

• the square is picked = “hit count: 1 hits: (1)”

• the bottom circle is picked = “hit count: 1 hits: (2 21)”

• the top circle is picked = “hit count: 1 hits: (2 22)”

• both the top and bottom circles are picked = “hit count: 2 hits: (2 21)
(2 22)”

#include <stdio.h>
#include <gl/gl.h>

12-6 Picking and Selecting

#include <gl/device.h>
#define BUFSIZE 50

void drawit()
{

loadname(1);
color(BLUE);
writemask(BLUE);
sboxfi(20, 20, 100, 100);
loadname(2);
pushname(21);

color(GREEN);
writemask(GREEN);
circfi(200, 200, 50);

popname();
pushname(22);

color(RED);
writemask(RED);
circi(200, 230, 60);

popname();
writemask(0xfff);

}
void printhits(buffer, hits)
short buffer[];
long hits;
{

int indx, items, h, i;
char str[20];
sprintf(str, “%ld hit”, hits);
charstr(str);
if (hits != 1)

charstr(“s”);
if (hits > 0)

charstr(“: “);
indx = 0;
for (h = 0; h < hits; h++) {

items = buffer[indx++];
charstr(“(“);
for (i = 0; i < items; i++) {

if (i != 0)
charstr(“ “);

sprintf(str, “%d”, buffer[indx++]);
charstr(str);

}
charstr(“) “);

}
}

Graphics Library Programming Guide 12-7

main()
{

Device dev;
short val;
long hits;
long xsize, ysize;
short buffer[BUFSIZE];
Boolean run;
prefsize(400, 400);
winopen(“pick”);
getsize(&xsize, &ysize);
mmode(MVIEWING);
ortho2(-0.5, xsize - 0.5, -0.5, ysize - 0.5);
color(BLACK);
clear();
qdevice(LEFTMOUSE);
qdevice(ESCKEY);
drawit();
run = TRUE;
while (run) {

dev = qread(&val);
if (val == 0) { /* on upstroke */

switch (dev) {
case LEFTMOUSE:

pick(buffer, BUFSIZE);
ortho2(-0.5, xsize - 0.5, -0.5, ysize - 0.5);
drawit();/* no actual drawing takes place */

hits = endpick(buffer);
ortho2(-0.5, xsize - 0.5, -0.5, ysize - 0.5);
color(BLACK);
sboxfi(150, 20-getdescender(), size -1, 20 + getheight());
color(WHITE);
cmov2i(150, 20);
printhits(buffer, hits);
break;

case ESCKEY:
run = FALSE;
break;
}

}
}
gexit();
return 0;

}

12-8 Picking and Selecting

12.2 Selecting

Selecting is a more general mechanism than picking for identifying the
routines that draw to a particular region. A selecting region is a 2-D or 3-D area
of world space. When gselect() turns on selecting mode, the region
represented by the current viewing matrix becomes the selecting region. You
can change the selecting region at any time by issuing a new viewing
transformation routine. To use selecting mode:

1. Issue a viewing transformation routine that specifies the selecting region.

2. Call gselect().

3. Call the objects or routines of interest.

4. Exit selecting mode and look to see what was selected.

gselect

gselect() turns on the selection mode:

gselect(short buffer[], long numnames)

gselect() and pick() are identical, except gselect() allows you to create a
viewing matrix in selection mode.

numnames() specifies the maximum number of values that the buffer can store.
Names are 16-bit numbers that you store on the name stack. Each drawing
routine that intersects the selecting region causes the contents of the name
stack to be stored in buffer. The name stack is used in the same way as it is in
picking.

endselect

endselect() turns off selecting mode:

long endselect(short buffer[])

buffer stores any hits the drawing routines generated between gselect() and
endselect(). Each name list represents the contents of the name stack when
a routine was called that drew into the selecting region. endselect() returns
the number of name lists in buffer. If the number is negative, more routines
drew into the selecting region than were specified by numnames.

Graphics Library Programming Guide 12-9

This sample program, select1.c, uses selecting to determine if a rocket ship is
colliding with a planet. The program calls a simplified version of the planet
and draws a box representing the ship each time you press the left mouse
button, and beeps when the ship collides with the planet.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>
#define X 0
#define Y 1
#define XY 2
#define BUFSIZE 10
#define PLANET 109
#define SHIPWIDTH 20
#define SHIPHEIGHT 10
void drawplanet()
{

color(GREEN);
circfi(200, 200, 20);

}
main()
{

float ship[XY];
long org[XY];
long size[XY];
Device dev;
short val;
Device mdev[XY];
short mval[XY];
long nhits;
short buffer[BUFSIZE];
Boolean run;
prefsize(400, 400);
winopen(“select1”);
getorigin(&org[X], &org[Y]);
getsize(&size[X], &size[Y]);
mmode(MVIEWING);
ortho2(-0.5, size[X] - 0.5, -0.5, size[Y] - 0.5);
qdevice(LEFTMOUSE);
qdevice(ESCKEY);
color(BLACK);
clear();
mdev[X] = MOUSEX;
mdev[Y] = MOUSEY;
drawplanet();
run = TRUE;

12-10 Picking and Selecting

while (run) {
dev = qread(&val);

if (val == 0) { /* on upstroke */
switch (dev) {
case LEFTMOUSE:

getdev(XY, mdev, mval);
ship[X] = mval[X] - org[X];
ship[Y] = mval[Y] - org[Y];
color(BLUE);
sbox(ship[X], ship[Y],

 ship[X] + SHIPWIDTH, ship[Y] + SHIPHEIGHT);

/* specify the selecting region to be a box surrounding the rocket ship */
ortho2(ship[X], ship[X] + SHIPWIDTH,

ship[Y], ship[Y] + SHIPHEIGHT);
initnames();
gselect(buffer, BUFSIZE);

loadname(PLANET);
/* no actual drawing takes place */
drawplanet();

nhits = endselect(buffer);

/* restore the Projection matrix. Can’t use push/popmatrix because they only
* work for the ModelView matrix stack when in MVIEWING mode */

ortho2(-0.5, size[X] - 0.5, -0.5, size[Y] - 0.5);

/* check to see if PLANET was selected, nhits is NOT the number
* of buffer elements written */

if (nhits < 0) {
fprintf(stderr, “gselect buffer overflow\n”);
run = FALSE;

}
else if (nhits >= 1 & buffer[0] == 1 && buffer[1] == PLANET)

ringbell();
break;

case ESCKEY:
run = FALSE;
break;

}
}

}
gexit();
return 0;

}

Graphics Library Programming Guide Index-1

Index

A

acbuf, 15-31
accumulation buffer, 15-30 through 15-36
acsize, 15-30
addressing

frame buffer memory, 6-1
frame buffers, 10-1
pixels, 11-4

afunction, 8-22, 18-45
algebraic representations, 14-2
aliasing, definition of, 15-1
ALPHA, 9-21
alpha

bitplanes, 15-7
blending, 8-22 through 8-26
hints for texture, 18-45
of material, 9-21

AMBIENT, 9-8, 9-9
ambient light, 9-4, 9-9
ambient property, fast update of, 9-20
animation, 6-1 through 6-8

flicker, 6-2
frame rate, 6-3
gsync not recommended, 6-8
maximizing performance, 6-6
setting swap interval for, 6-7
setting up, 6-3

anomalies, display, 2-20
ANSI C, 1-1, 1-4

-cckr non-ANSI compatibility flag, 1-4
antialiasing, 15-1 through 15-36

box filter, 15-35
definition, 15-1
Gaussian filter, 15-35
lines, 15-15
multipass, 15-30 through 15-36
onepass, 15-10 through 15-30
on RealityEngine, 15-36 through 15-47
polygons, 15-22
RGB lines caution, 15-22
RGB mode, 15-13
subpixel, 15-4 through 15-5

approximating surfaces
non-planar polygons, 2-16

apropos, xxv
arc/arcf, 2-36
arcs, 2-35
aspect ratio, 7-5

maintaining, 7-6
asymmetric viewing volume, 7-9, 7-11
Athena widgets, 5-2
atmospheric effects, 13-10 through 13-14
attachcursor, 5-6
ATTENUATION, 9-15
ATTENUATION2, 9-15

Index-2 Index

attenuation of a spotlight, 9-17
attenuation of light, 9-14
azimuth, 7-13

B

B-Spline, 14-6
interpolate control points, 14-10
old-style curve, 14-29
relationships, 14-9

back buffer, 6-1, 6-6
backbuffer, 6-2

and zdraw, 8-10
backface, 8-22
backface removal, 8-21 through 8-22
backfacing polygons, 8-21
BACKMATERIAL, 9-18, 9-20
basis functions, 14-7, 14-8
basis matrix, 14-28
bbox2, 16-7
Bezier cubic curve, 14-29
bgnclosedline/endclosedline, 2-9
bgncurve/endcurve, 14-11
bgnline/endline, 2-8
bgnpoint/endpoint, 2-7
bgnpolygon/endpolygon, 2-15
bgnqstrip/endqstrip, 2-27
bgnsurface/endsurface, 14-13
bgntmesh/endtmesh structure, 2-21
bgntrim/endtrim structure, 14-20
bicubic patch, 14-33
binary compatibility, 1-4
binding lighting, 9-11
bitmask, 3-7, 3-8
bitplane

selecting for drawing, 10-1
writemasks, 10-7

bitplanes, 4-15, 6-2, 8-3
allocating for accumulation, 15-30
color, 4-3
configuring, 10-15 through 10-16
definition, 10-1
overlay, 10-3
underlay, 10-3

bits per pixel, 4-3, 4-5
blankscreen, 5-18
blanktime, 5-18
blendfuction, 15-5
blendfunction, 15-4
blending, 15-5 through 15-9

correlated, 15-26
texture colors, 18-41

blinking, 4-21
blkqread, 5-5
blurring effect of texture MipMap, 18-21
bounding box, 16-7
bowtie polygon, 2-15

rendering, 2-16
box filter, 15-35
buffer

picking, 12-2
querying mode of, 6-7
writing to back, 6-6

buffers
swapping, 6-3
swapping multiple, 6-3

button
polling, 5-8
reading, 5-6

buttons, 5-11
byte stream, 19-2

Graphics Library Programming Guide Index-3

C

cc, 1-4
-cckr, 1-4
c3s, 4-7
caching of texture memory, 18-45
calculations, precision of, 2-16
callbacks limited for remote operation, 19-5
callfunc, 19-5
callobj, 16-4
Cardinal spline curve, 14-29
cartesian floating point coordinates, 7-2
C compiler, 1-4
changing currently bound definitions, 9-13
changing defined objects, 16-8
changing lighting settings, 9-12 through 9-13
changing pixel fill directions, 11-12
changing the color map, 4-16
character, 3-2

bitmasks, 3-8
clipping, 3-4
transformations, 3-6

charstr, 3-2
choosing items on the screen, 12-1
choosing parameters for ortho, 7-11
chunk, 16-13
chunksize, 16-12
circ/circf, 2-34
circle, representing with NURBS, 14-12
circles, 2-34
clearing stencil planes, 8-19
client/server model, 19-1
clip coordinates, 7-3
clipping

characters, 3-4
effect on feedback, 17-3
gross, 3-4

clipping planes, 7-5, 7-8, 7-9, 8-7
user-defined, 7-30

clipplane, 7-30
clkoff, 5-16
clkon, 5-16
closed line, definition, 2-8
closeobj, 16-2, 16-8
closing an object definition, 16-2
closing a window, 5-14
cmov, 3-2
coefficients, 14-5
color, 4-1 through 4-25

blending, 15-5 through 15-9
how monitors display, 4-2
how the GL calculates for lighting, 9-6
in lighted scenes, 9-2
mode, 4-3
NURBS surface, 14-13, 14-17
smooth variation, 4-9

color, 4-17, 10-5
color data, 8-bit, 4-5
color display correction, 4-23
colorf, 4-17
color guns, 4-2
color index, 4-17
color index mode, see color map mode
color map

assigning in multimap mode, 4-22
changing, 4-16
default, 4-16
getting index of in multimap mode, 4-22
getting values of, 4-18

color map mode, 4-15 through 4-20
antialiased points, 15-11
depth-cueing, 13-4
lighting, 9-24
querying, 4-22

color mode
querying, 4-8

Index-4 Index

color ramp, 13-5
compactify, 16-12
compatibility, 1-9
GLC_OLDPOLYGON, 2-31

compiling C programs, 1-4
concave, 2-13
concave polygon, 2-13
configuration, remote, 19-12
configuring overlay/underlay

bitplanes, 10-15 through 10-17
conic sections, representing

with NURBS, 14-12
connection, 19-4

default, 19-4
permission, 19-4
TCP, 19-12

contour texture, 18-35
control net, 14-13
control points, 14-5, 14-6

agree with data type, 14-15
size of array, 14-14

control polygon, 14-6
convex polygon, 2-12
coordinates

cartesian, 7-2
clip, 7-3
eye, 7-3
normalized, 7-3
object, 7-2
window, 7-3
world, 7-3

coordinate systems, 7-2 through 7-3
copying pixels, 11-7
correlated blending function, 15-26
cpack, 4-7
C programming language, xxi, 1-4
creating a cursor, 10-19
creating a font, 3-7 through 3-10
creating a glowing surface, 9-4

creating an object, 16-2
creating highlights with lighting, 9-3
creating queue entries, 5-4
cross-hair cursor, 10-17
cross-plot, 14-4
cubic polynomials, 14-5
culling

definition, 16-5
NURBS, 14-21

curorigin, 10-20
current character position, 3-2

finding, 3-4
current graphics position, 2-37
current matrix, 7-16
current normal, 9-5
current texture matrix, 18-33
cursoff, 5-6
curson, 5-6
cursor, 5-6

creating, 10-19
cross-hair, 10-17
default, 10-17
defining a glyph, 10-20
defining the type, 10-20
finding, 5-7
hardware, 10-17
mask, 10-17
mode, 10-6
origin, 10-20
turning on/off, 5-6
types, 10-17

cursor devices, 5-13
CURSORDRAW, 10-6
cursors, 10-17 through 10-23
curstype, 10-20
curves

old-style, 14-28, 14-28 through 14-33
cyclemap, 4-22
czclear, 8-8, 8-9

Graphics Library Programming Guide Index-5

D

daemon, 19-12
dgld, 19-13
inetd, 19-13

dbtext, 5-17
decal textures, 18-42
default connection for remote operation, 19-4
default cursor, 10-17
default settings for lighting, 9-13
defcursor, 10-20
defining a creen region for selecting, 12-8
defining a cursor glyph, 10-20
defining a material, 9-8
defining a viewing point, 7-13
deflinestyle, 2-10
defpattern, 2-16
defrasterfont, 3-8
degree elevation of poynomials, 14-5
deleting an object, 16-4
delobj, 16-4
deltag, 16-10
demos

NURBS Curve, 14-1
Trimmed NURBS, 14-1

density of fog, 13-12
dependent variable, 14-2
depth-cueing, 13-1 through 13-10

in color map mode, 13-4
optimizing resolution for, 7-5

depth-cueing in RGB mode, 13-6
DEPTHCHANGE, 5-14
depthcue, 13-4
depth perception, 13-1
DetailTexture, 18-27 through 18-32
determining the maximum z value, 8-7
determining the minimum z value, 8-7

device
disabling queing, 5-4
finding out if queued, 5-4
initialization, 5-16
queueing, 5-4
Spaceball, 5-15

device domain, 5-10
devices, 5-10 through 5-17

ghost, 5-13
labeling dial and button box, 5-17

DGL client, 19-2
dgld daemon, 19-13
DGL protocol, 19-2, 19-12
DGLSERVER, 19-4
DGL server, 19-2
DGLTSOCKET, 19-4
DGLTYPE, 19-4
dial and button box, 5-17
difference image, 18-28
DIFFUSE, 9-8
diffuse reflectance, 9-3
diffuse reflection, fast update, 9-20
disabling queueing for a device, 5-4
discontinuity, 14-8
DISPLAY, 1-2, 1-3, 19-4
display

getting mode, 6-7
hostname, 1-3

display anomalies, 2-20
displaying graphics over the network,

19-1 through 19-16
display lists, 16-1
distance-squared attenuation, 9-15
distortion

from non-planar polygons, 2-16
in color dispalys, 4-23

dither, 4-4
dithering, 4-4

Index-6 Index

doublebuffer, 6-2
double buffering, 6-1
double buffer mode, 6-1, 6-2
draw, 2-39
drawing, 2-1 through 2-37, 3-2

arcs, 2-35
characters, 3-2
circles, 2-34
cursors, 10-17 through 10-23
meshes, 2-21 through 2-28
mode, 10-5 through 10-7
object in display list, 16-4
old-style, 2-30 through 2-42
on top of pixels, 10-1
points, 2-7
polygons, 2-15
polylines, 2-8
rectangles, 2-32
setting bitplane destination, 10-5
underneath pixels, 10-1

drawing mode, 10-1
drawmode, 10-6

pixel access, 11-4
driving a plotter with feedback, 17-2

E

8-bit color data, 4-5
editobj, 16-8
effect of clipping on feedback, 17-3
electrons, 4-2
emission, 9-4
EMMISION, 9-9
emptying the event queue, 5-3
enabling queueing for adevice, 5-4
endclosedline, 2-9
endline, 2-8
endpick, 12-2

endpoint, 2-7
endpolygon, 2-15
endqstrip, 2-27
endselect, 12-8
ENDTAG, 16-9
endtmesh, 2-21
environment variable

DISPLAY, 1-2
environment variables

for remote operation, 19-4
equation

depth-cued color, 13-6
fog, 13-12
size of control point array for NURBS, 14-14

error
floating point, 2-16
roundoff, 2-4

error messages
remote, 19-13

establishing a remote connection, 19-4
Ethernet, 19-2
eye coordinate system, 7-3

F

4Dwm, 1-2, 1-3
fast updates to material, 9-18
fat polygons, 2-19
feedback, 17-1 through 17-10

data types, 17-2
effect of clipping, 17-3
IRIS-4D/GT/GTX, 17-4
IRIS-4D/VGX, 17-7
IRIS Indigo, 17-6
Personal IRIS, 17-6
sample program, 17-8

feedback, 17-2
field of view, 7-5

Graphics Library Programming Guide Index-7

finding out if a device is queued, 5-4
finding the cursor, 5-7
finding the monitor type, 5-18
finish, 19-3
flicker, cause of in animation, 6-2
floating point calculations, 7-5
floating point precision, 2-16
fog, 13-10 through 13-14

density, 13-12
equation, 13-13
modes, 13-14
per-pixel, 13-12

fog characteristics, 13-12
fogvertex, 13-10, 13-14
font

creating, 3-7 through 3-10
selecting, 3-12

Font Manager Library, 1-4
fonts, 3-7 through 3-14
frame buffer, 4-3, 4-17, 6-1

standard, 10-2
frame buffers, 10-1 through 10-7

RealityEngine, 10-2
frame rate, 6-3
front-facing polygons, 2-24
front buffer, 6-1
frontbuffer, 6-2
zdraw, 8-10

frontface, 8-22
frustum, 7-5, 7-9, 7-10

G

gamma correction, 4-23
gamma ramp, 4-24
gammaramp, 4-23, 4-24
Gaussian filter for antialiasing, 15-35

gconfig
doublebuffer, 6-2
multimap, 4-22
onemap, 4-22
RGBmode, 4-5
singlebuffer, 6-2

generating a numeric identifier
for an object, 16-4

genobj, 16-4
gentag, 16-10
geometric surface, 14-16

NURBS, 14-13
geometry
bgn/end structure of, 2-2
definition, 2-1

Geometry Engine, 17-2
Geometry Pipeline, 1-1

feedback, 17-1
remote operation considerations, 19-3

getbackface, 8-22
getbuffer, 6-7
getbutton, 5-8
getcmmode, 4-22
getcolor, 10-5
getcpos, 3-4
getcursor, 5-7, 10-21
getdcm, 13-4
getdev, 5-8
getdisplaymode, 6-7
getdrawmode, 10-7
getfont, 3-14
getgdesc, 1-7
GD_BITS, 4-3, 10-2
GD_BITS_NORM_SING_ALPHA, 15-7
GD_CIFRACT, 4-4
GD_DITHER, 4-4
GD_FOGVERTEX, 13-11
GD_LIGHTING_TWOSIDE, 9-17
GD_PIXPERSPECT, 18-33

Index-8 Index

GD_POLYMODE, 2-30
GD_ZMAX, 8-7
GD_ZMIN, 8-7

getgpos, 2-37, 7-3
getlstyle, 2-10
getlwidth, 2-11
getmap, 4-22
getmatrix, 7-29
getmcolor, 4-18, 10-5
getmonitor, 5-18
getnurbsproperty, 14-21
getopenobj, 16-8
getothermonitor, 5-19
getscrbox, 7-29
getscrmask, 7-28
getting color information, 4-18
getting font information, 3-14
getting the size of the viewport, 7-27
getvaluator, 5-7
getvideo, 5-20
getviewport, 7-27
getwritemask, 10-10
getzbuffer, 8-3
gflush, 2-2, 19-2
ghost devices, 5-13
GLC_OLDPOLYGON, 2-31
GLC_ZRANGEMAP, 13-3
glcompat, 13-3
GL Demos, 14-1
global state attributes, 1-10
glresources, 5-2
GL timers, 5-12
GLX group of commands, 5-2
Gouraud shading, 4-8, 4-10, 4-12, 10-7

color map mode, 4-17
performance, 4-9

graphical object
creating, 16-2
defintion, 16-1
sample, 16-3

graphical objects, 16-1
graphics development environment, 1-1
Graphics Library, xxi

network transparency, 1-2
Graphics Library,query version, 1-8
graphics primitives, 2-1
graphics server, 19-12
graphics server daemon, 19-12
gRGBcolor, 4-8
gRGBmask, 10-10
gross clipping, 3-4
gselect, 12-8
gsync, 6-8

H

hardware
cursor, 10-17
feedback, 17-1 through 17-10
query, 1-7

haze, 13-10
hidden-surface removal, 8-1 through 8-26
hierarchical drawing, 7-20
hierarchical object, 16-5
hierarchies, 16-1
hierarchy

diagram, 16-6
highlights on surfaces, 9-3
hint
noport, 4-24
scrsubdivide, 18-45
texbind, 18-45
texdef2d, 18-44
texture caching, 18-45

Graphics Library Programming Guide Index-9

texture performance, 18-43
hits, 12-1
hostname, 1-3
how a writemask works, 10-8

I

iconsize, 5-14
immediate mode, 2-1
implicit representations, 14-2
improving lighting performance, 9-22
incident light, 9-2
include files, 1-2
independent variable, 14-2
indirect light, 9-3
inetd daemon, 19-13
infinite light source, 9-9
infinite viewpoint, 9-10
initnames, 12-5
INPUTCHANGE, 5-3, 5-14
input devices, 5-10 through 5-17

classes, 5-10
cursor, 5-13
keyboard, 5-13

input event, 5-1
input focus, 5-2

testing for change, 5-14
instructions

how to create a cursor, 10-19
how to draw a NURBS surface, 14-14
how to draw old-style surface patches, 14-33
how to set up depth-cueing, 13-2
how to set up fog, 13-11
how to set up lighting, 9-4
how to set up picking, 12-2
how to set up queueing, 5-3
how to set up texture mapping, 18-6

how to use man pages, xxv
how to use sample programs, xxii

Internet, 19-12
interpolation

texture, 18-38
interrupts limited for remote operation, 19-5
IRIS-4D/GT/GTX feedback, 17-4
IRIS-4D/VGX

clearing of z-buffer, 8-9
double-buffered overlay/underlay, 10-7
feedback, 17-7
fog, 13-10
mesh handling, 2-28
stenciling, 8-16
subpixel, 15-4
swapping multiple buffers, 6-3

IRIS Font Manager, 3-1
IRIS Indigo

allows local lights in color map mode, 9-25
backface removal, 8-21
dithering, 4-4
feedback, 17-6
fog, 13-10
no overlay/underlay on starter system, 10-1
pixel formats, 11-3
querying for perspective
correction of texture, 18-33
texture perspective correction in SW, 18-32
z-buffer in software, 8-2

IRIX, 1-1
isobj, 16-4
isqueued, 5-4
istag, 16-9
izoom, 18-29

J

jumps limited for remote operation, 19-5

Index-10 Index

K

keepaspect, 7-6
kernel

filter, 18-20
keyboard

ringing the bell, 5-17
setting duration of bell, 5-17
turning on/off key click, 5-16
turning on/off lights, 5-16

keyboard device, 5-13
knot multiplicity, 14-8
knots, 14-5, 14-8
knot sequence, 14-8

L

-lc_s, 1-4
-lfm_s, 1-4
-lgl_s, 1-4
-lm_s, 1-4
-lsun, 1-4
labeling dial and button box indicators, 5-17
lampoff, 5-16
lampon, 5-16
LCOLOR, 9-9
Level-of-Detail, 18-24, 18-29
library

shared C, 1-4
shared Graphics Library, 1-4

light
ambient, 9-4, 9-9
attenuation, 9-14
emmited, 9-4
incident, 9-2
reflected, 9-2
wavelength, 9-2

lighting, 9-1 through 9-27

binding, 9-11
changing currently bound conditions, 9-13
defaults, 9-13
enabling, 9-11
how calculated, 9-6
in color map mode, 9-24
moving a light from frame to frame, 9-13
performance, 9-22
performance of updates, 9-19
two-sided, 9-18

lighting model, 9-10
light source

targets, 9-11
light sources, 9-9
limitations of lighting in color map mode, 9-24
linear interpolation of texture, 18-38
line of sight, 7-13, 7-14
lines

antialias, 15-15
old-style, 2-39
style, 2-10
width, 2-11

linestyle
definition, 2-10
specifying, 2-10

linewidth, 2-11
linewidthf, 2-11
linking, 1-4
Live Video Digitizer, 5-21
lmbind, 9-12, 9-21
LMC_AD, 9-20
LMC_AMBIENT, 9-20
LMC_COLOR, 9-20
LMC_DIFFUSE, 9-20
LMC_EMISSION, 9-20
LMC_NULL, 9-20
LMC_SPECULAR, 9-20
lmcolor, 9-19

performance, 9-19

Graphics Library Programming Guide Index-11

lmdef, 9-7, 9-8, 9-12, 9-14, 9-21
LMNULL, 9-7
loadmatrix, 7-29
loadname, 12-4
local host, 1-3
LOCALVIEWER, 9-10
LOCALVIEWER performance, 9-23
local viewpoint, 9-10
LOD, 18-24, 18-29
logicop, 15-4
lookat, 7-12, 7-14
lrectread, 11-6, 11-16, 18-10
lrectwrite, 11-7
lRGBrange, 13-4
lsetdepth, 8-7, 13-3, 13-5
lshaderange, 13-4, 13-5, 13-10
lsrepeat, 2-11

M

makeobj, 16-2
maketag, 16-9
makewhatis, xxvi
making a light move from frame to frame, 9-13
man, xxv
man pages, xxv
mapcolor, 4-16, 10-5, 13-5
mapw, 16-13
mapw2, 16-13
mask

linestyle, 2-10
pattern, 2-16

material
defining, 9-8
different front and back, 9-18
fast updates, 9-18
transparent, 9-21

matrix mode, 7-19
matrix multiplication, 7-19
maximum z value, querying for, 8-7
MAXLIGHTS light sources limit, 9-11
memory management

objects, 16-12
texture, 18-45

meshes 2-21 through 2-28
changing vertex sequence, 2-23
drawing, 2-21
vertex sequence, 2-22

minification filters, 18-17
minimum z value, querying for, 8-7
MIPmap

filter kernel, 18-20
quadlinear, 18-18
trilinear, 18-18

mixed-model programming, 5-2
mmode, 7-20

 for fog, 13-11
MTEXTURE, 18-33
pushmatrix, 7-21

mode
color map, 4-15 through 4-20
double buffer, 6-1, 6-2
fog, 13-14
for bitplanes, 10-5
for normal frame buffer, 10-6
multimap, 4-22
onemap, 4-22
querying color, 4-8
querying for display, 6-7
RGB, 4-5 through 4-15
setting up for animation, 6-2
single buffer, 6-1, 6-2

modeling transformations, 7-16 through 7-19
ModelView matrix, 7-3, 7-19, 7-29,

9-11,9-13, 9-22

Index-12 Index

monitor
color display, 4-2
other types, 5-19
querying for type, 5-18
setting type, 5-18

Motif, 5-2
move, 2-39
MPROJECTION, 7-19
msalpha, 15-47
mspattern, 15-45
mssize, 15-38
mswapbuffers, 6-3
MTEXTURE, 7-19
multimap mode, 4-22
multimatrix mode in lighting, 9-11
multiple server I/O, 5-2
multisampling, 15-37 through 15-47
multmatrix, 7-29
MVIEWING, 7-19

N

name stack, 12-2, 12-4
naming the output file, 1-4
network-transparent feature of GL, 1-2
network-transparent GL, 19-1 through 19-16

callback limit, 19-5
configuration, 19-12
connection, 19-4
DISPLAY, 1-2
error messages, 19-13
limitations, 19-5
linking, 19-2
linking for NIS, 1-4
non-IRIS hosts product, 19-2
sample application, 19-1
server, 1-3

Network Information Service, 1-4, 19-12

network transparency, 19-1
newtag, 16-9
NIS, 1-4, 19-12
noise, 5-7, 5-12
non-IRIS hosts, 19-2
non-recommended subroutines,

2-37 through 2-42
Non-uniform Rational B-splines, 14-1
non-uniform scaling, 7-18
noport, 4-24
normal, current, 9-5
NORMALDRAW, 10-6

swapping buffers in, 6-4
writemasks, 10-9

normal frame buffer modes, 10-6
normalized coordinate system, 7-3
normals, 9-5

non-unit-length, 9-6
NTSC, 5-21
NURBS, 14-1 through 14-27

circle, 14-12
color surface, 14-17
conic sections, 14-12
cross-plot, 14-4
culling, 14-21
curve as a trimming curve, 14-20
curves, 14-11 through 14-13
definition, 14-11
enabling error messages, 14-21
formula for size of control point array, 14-14
further reading, 14-27
geometric surface, 14-16
offset in control point array, 14-15
piecewise linear trim curve, 14-20
properties, 14-21 through 14-22
surfaces, 14-13 through 14-18
tessellation, 14-21
texture surface, 14-17
trimming, 14-18 through 14-21
weight, 14-10

Graphics Library Programming Guide Index-13

nurbscurve, 14-11
nurbssurface, 14-13

O

-o, 1-4
objdelete, 16-10
object

closing a definition, 16-2
creating, 16-2
deleting, 16-4
drawing, 16-4
editing, 16-8
hierarchy, 16-5
identifying by number, 16-4
memory management, 16-12
tags, 16-9
testing for existence, 16-4

object coordinate system, 7-2
objinsert, 16-10
objreplace, 16-11
offset, 14-15
old-style

curves, 14-28, 14-28 through 14-33
drawing, 2-30 through 2-42
lines, 2-39
pixels, 11-16
points, 2-38
polygons, 2-40
polygon subroutines, 2-41
surfaces, 14-28, 14-33 through 14-34

on-line man pages, xxv
onemap mode, 4-22
opening a window, 1-6
operating system, 1-1
order of pixel operations, 11-16
order of the polynomial, 14-5
order of transformations, 7-18, 7-19
order of vertices in lighting, 9-5

origin
cursor, 10-20

ortho, 7-10, 7-11
ortho2, 2-4, 7-11, 12-3
orthographic projection, 7-4, 7-10
output file

naming, 1-4
OVERDRAW, 10-6

swapping buffers in, 6-4
writemasks, 10-9

overlapping polygons, 8-2
overlay

bitplanes, 10-3
definition, 10-1
non-recommended routines, 10-7
user-defined, 10-15

overlay, 10-15

P

packing pixel data, 11-10, 11-14
PAL, 5-21
parameter, 14-2
parameterization, in textures, 18-33
parametric bicubic surface, 14-33
parametric representations, 14-2
parametric surface, 14-13
patterns, 2-16
pclos, 2-40
pclose warning, 2-40
per-pixel fog, 13-12
performance

animation, 6-6
font, 3-1
Gouraud shading, 4-9
improving lighting, 9-22
lmcolor limitations, 9-19
optimizing polygon, 2-12

Index-14 Index

polygon rendering, 2-31
texture, 18-43 through 18-46
texture alpha, 18-45
two-sided lighting, 9-23

permission for connections, 19-4
Personal IRIS

8-bit pixel formats, 11-3
dithering, 4-4
feedback, 17-6
no overlay/underlay on B-bit models, 10-1
set Gouraud or depthcue for dithering, 4-4
speeding up czclear, 8-9

perspective, 7-5
perspective projection, 7-4
phosphors, 4-2
pick, 12-2
picking, 12-1 through 12-8

size of region, 12-4
picksize, 12-4
piecewise linear trimming curve, 14-20
piecewise polynomial, 14-5
pixel, 4-2, 4-4, 8-23

centering, 15-4
pixels

accessing, 11-2
centering, 11-4
centering on integers, 7-11
changing fill directions, 11-12
copying, 11-7
customizing operations, 11-10
formats, 11-2
formats of IRIS Indigo, 11-3
high-performance reading/writing, 11-3
old-style subroutines, 11-16
order of operations, 11-16
packing/unpacking, 11-14
setting read source, 11-4
writing, 11-7

pixmode, 11-10
PM_EXPAND, 11-11

PM_OFFSET, 11-16
PM_SHIFT, 11-10
PM_SIZE, 11-14
PM_STRIDE, 11-13
pmv, 2-40
pntsize, 2-7
pntsizef, 2-7
pntsmooth, 15-15

color map mode, 15-11
point-sampled polygons, 2-17 through 2-20
point and click interface, 12-1
point light source, 9-9
points

antialiased color map, 15-11
drawing, 2-7
old-style, 2-38
size, 2-7

polarview, 7-12, 7-13
polf, 2-41
polling, 5-2, 5-7 through 5-10

button, 5-8
multiple valuators, 5-8
valuator, 5-7

poly, 2-41
polygon

antialiased, 15-22
bowtie, 2-15
concave, 2-13
convex, 2-12
definition, 2-12
display anomalies, 2-20
distortion, 2-16
drawing, 2-15
fat, 2-19
fill patterns, 2-16
front-facing, 2-24
Gouraud shaded, 4-8
non-planar, 2-16
old-style, 2-40
optimizing performance, 2-12

Graphics Library Programming Guide Index-15

outlined in old-style drawing, 2-31
overlapping, 8-2
point-sampled, 2-17 through 2-20
rendering, 2-29
simple, 2-12
true area of, 2-19

polyline
definition, 2-8
drawing, 2-8

polymode, 2-29
polynomials, 14-5
pop-up menu callbacks

limited for remote operation, 19-5
pop-up menus, 10-3
popmatrix, 7-21
popname, 12-5
popviewport, 7-28
POSITION, 9-9, 9-17
position of a light source, 9-10
precision in hardware calculations, 2-16
primitive

character, 3-2
lighted, 9-4
line, 2-8
NURBS, 14-11
overlapping, 15-13
point, 2-7
polygon, 2-12
q-strip, 2-21, 2-27 through 2-28
smooth, 15-10
t-mesh, 2-21 through 2-27

primitives, 2-1, 2-6
program relinking to run remotely, 19-2
projection

orthographic, 7-4, 7-10
perspective, 7-4

Projection matrix, 7-5, 7-19, 7-30
projection transformations, 7-4 through 7-12

for picking, 12-3
window, 7-9

properties of NURBS, 14-21
pruning, 16-5
PUPDRAW, 10-6
pushattributes/popattributes

when calling objects, 16-5
pushmatrix, 7-21
pushname, 12-4
pushviewport, 7-28
pwlcurve, 14-20
PYM_FILL, 2-29
PYM_HOLLOW, 2-30
PYM_LINE, 2-29
PYM_POINT, 2-29

Q

q-strips, 2-27 through 2-28
definition, 2-21
reducing to triangles, 2-28

qdevice, 5-4, 5-13
qenter, 5-4
QFULL, 5-3
qgetfd, 5-5
qread

reading the queue, 5-5
remote, 19-5

qreset, 5-3, 5-5
qtest, 5-5
quadlinear MIPmap, 18-18
queing, finding out if a device is queued, 5-4
query

alpha bitplanes, 15-7
current linestyle, 2-10
depth-cueing, 13-4
font information, 3-14
system version, 1-7

Index-16 Index

queue, 5-2
creating entries, 5-4
emptying, 5-3
limit, 5-3
reading, 5-5
reading multiple entries, 5-5
resetting, 5-5
testing for event, 5-5

queueing, 5-2, 5-3 through 5-7
disabling, 5-4
enabling, 5-4
how to set up, 5-3
keyboard, 5-13
maximum efficiency, 5-3
window manager events, 5-14

quitting a window, 5-14

R

Raster Manager (RM) boards, 15-37
rational, 14-11
readdisplay, 11-5
readfds, 5-6
reading pixels, 11-4
reading location of, 5-6
reading man pages, xxv
reading multiple queue entries, 5-5
reading video registers, 5-20
README for sample programs, xxii
readsource, 11-4
RealityEngine

antialiasing, 15-36 through 15-47
bitplanes, 10-16
color, 4-5
color map size, 4-7
feedback, 17-8
fog, 13-10
framebuffers, 10-2
multisample buffer, 10-2

stenciling, 8-16
stereo buffering, 10-4
swapbuffers, 6-3
z-buffer size, 8-2

recording events, 5-12
rectangle subroutines, 2-32
rectangles, drawing, 2-32
rectcopy, 11-7
rectread, 11-5
rect/rectf, 2-32
rectwrite, 11-7
rectzoom, 11-7
REDRAW, 5-3, 5-14
REDRAWICONIC, 5-14
reducing graphics jerkiness

in remote applications, 19-3
reflectance, 9-3

diffuse, 9-3
specular, 9-3

reflected light, 9-2
reflection mapping, 18-34
remote

configuration, 19-12
connection, 19-4
error messages, 19-13
interrupts, 19-5
jumps, 19-5

remote display of graphics, 19-1
REMOTEHOST, 19-4
removing backfacing polygons, 8-22
removing frontfacing polygons, 8-22
rendering

averaging with accumulation, 15-31
bowtie polygons, 2-16
concave polygons, 2-13
improving polygon performance, 2-31
into 2 buffers, 6-3
NURBS, 14-21
polygons, 2-29

Graphics Library Programming Guide Index-17

resetting the queue, 5-5
resolution of the z-buffer, 8-3
RGB mode, 4-5 through 4-15

antialiasing, 15-13
depth-cueing, 13-6
double buffering in, 6-2
writemasks, 10-9

RGBmode, 4-5
RGBsize, 15-41
RGB triple, 4-2, 4-5, 4-7
RGBwritemask, 10-9
right-hand rule, 2-24, 9-5
ringbell, 5-17
ringing the keyboard bell, 5-17
rlogin, 19-4
rot, 7-17
rotate, 7-17
round-off errors, 11-4
roundoff error, 2-4

S

sample program
aliasing, 15-2

accumulation, 15-32
color map line, 15-17
points in color map mode, 15-11
RGB mode line, 15-19
RGB mode points, 15-13
RGB polygon, 15-22
RGB polygon corrected, 15-27
RGB polygon patch, 15-24

blending, 15-9
cursors, 10-21
depth-cueing, 13-7
drawing a hexagon, 2-15
drawing a polygon, 2-9
drawing lines, 2-5, 2-8
drawing meshes, 2-25

drawing old-style rectangles, 2-33
drawing points, 2-7
drawing with writemasks, 10-12
feedback, 17-8
NURBS, 14-22
object editing, 16-11
picking, 12-5
selecting, 12-9
vertex subroutines, 2-4
writemasks, 10-10

sample programs
where located, xxii

scale, 7-18
scaling of z coordinates, 8-7
sclear, 8-19
scrbox, 7-28
screen

setting blanking time, 5-18
turning on/off, 5-18

screen boxes, 2-33
screenmask, 3-3, 7-27
scrmask, 7-27, 11-7
scrsubdivide, 18-33, 18-38 through 18-40
searching man pages by key word, xxv
select, 5-5
selecting, 12-8 through 12-10
selecting a bitplane for drawing, 10-1
selecting region, 12-8
server, 1-3
servers, 19-1
setbell, 5-17
setcursor, 10-21
setdblights, 5-17
setlinestyle, 2-10
setmap, 4-22
setmonitor, 5-18
setnurbsproperty, 14-21
setting screen blanking time, 5-18

Index-18 Index

setting the duration of keyboard bell, 5-17
setting the monitor type, 5-18
setting up lighting, 9-4
setvaluator, 5-16
setvideo, 5-19
shademodel, 4-9
shademodel(FLAT), 4-9
shademodel(GOURAUD), 4-9
shared Graphics Library, 1-4
shared library, 1-2

C, 1-4
for network-transparent GL, 1-2

Sharpen, 18-23 through 18-27
shifting pixel data, 11-10
SHININESS, 9-8
simple polygon, 2-12
simultaneous clearing

of color and z-buffer, 8-8
singlebuffer, 6-2
single buffer mode, 6-1, 6-2
sizing the viewport, 7-26
SkyWriter

clearing of z-buffer, 8-9
double-buffered

overlay/underlay, 10-7
fog, 13-10
mesh handling, 2-28
per-pixel fog, 13-12
perspective correction

of texture in hardware, 18-33
stenciling, 8-16
subpixel, 15-4
swapping multiple buffers, 6-3
texture perspective correction, 18-32
TX_MIPMAP_TRILINEAR filter, 18-19

sleep, 2-6
smoke, 13-10
Spaceball device, 5-15
SPECULAR, 9-8

specular reflectance, 9-3
defining for material, 9-8
depends on viewpoint, 9-8

spline, 14-5
SPOTDIRECTION, 9-16
SPOTLIGHT, 9-16
spotlight, 9-16

attenuation, 9-17
direction, 9-16

sprintf, 4-7
SRC_AUTO, 11-4
SRC_BACK, 11-4
SRC_FRAMEGRABBER, 11-4
SRC_ZBUFFER, 11-4
SS_DEPTH, 18-39
stack matrix, 7-20
STARTTAG, 16-9
stencil, 8-16
stenciling, 8-16 through 8-21
stencil planes, 8-18

clearing, 8-19
enabling, 8-19

stensize, 15-41
stensize, 8-18
stereo buffering, 10-4
stowed windows, 5-14
structure, using offsets to specify data in, 14-15
strwidth, 3-5
subimage, 11-13, 18-29
subpixel, 15-4, 15-10
subpixel accuracy, 15-4 through 15-5
surface, transparent, 9-21
surface normals, 9-5
surface patch, 14-33
surfaces, old-style, 14-28, 14-33 through 14-34
swapbuffers, 6-3
swapinterval, 6-7

Graphics Library Programming Guide Index-19

swapping buffers, defining interval for, 6-7
swapping multiple buffers, 6-3
swaptmesh, 2-23, 2-24
swimming effect of texture, 18-37
swritemask, 8-19

T

3-D textures, 18-4
t-mesh, 2-21 through 2-27

definition, 2-21
t2d, 18-33
t2f, 18-33
t2i, 18-33
t2s, 18-33
tags, 16-9
TCP socket connections, 19-12
tessellation

controlling the fineness of for NURBS, 14-21
definition, 14-21

testing a window
for closure, 5-14
for quitting, 5-14
for stowing, 5-14
icon needed, 5-14
redraw needed, 5-14

testing for an existing object, 16-4
testing for button input, 5-6
testing for change of input focus, 5-14
testing the queue for events, 5-5
tevdef, 18-40
texbind, 18-11
texdef2d, 18-11
texdef3d, 18-11
texels, 18-3
texel size, 18-13
texgen, 18-33

text, drawing, 3-2
texture, 18-1 through 18-50

alpha hints, 18-45
automatic generation, 18-33 through 18-34
blending, 18-41
blurring, 18-21
components, 18-7
contour, 18-35
coordinates, 18-33 through 18-35
decals, 18-42
environment, 18-40 through 18-42
filters, 18-16 through 18-21
format of image array, 18-9
image, 18-6
interpolation, 18-38
look-up tables, 18-36
magnification, 18-16
memory management, 18-45
minification, 18-16, 18-17
MipMap filter, 18-17 through 18-21
MipMap performance, 18-44
NURBS surface, 14-13, 14-17
performance, 18-43 through 18-46
perspective correction, 18-32
reflection mapping, 18-34
repeating, 18-12
scrsubdivide hints, 18-45
setting up, 18-6
swimming, 18-37through 18-39

texture mapping
definition, 18-3

TG_CONTOUR, 18-34
TG_LINEAR, 18-34
TG_SPHEREMAP, 18-34
tie, 5-6
timer devices, 5-12
tokens, 19-2

window manager, 5-14
transformation, user-defined, 7-29
transformation matrices, 7-19
transformation matrix, 7-16, 7-19

Index-20 Index

transformations, 7-2
order of, 7-18, 7-19

translate, 7-17
transparency, 8-23, 9-21

blending, 15-5
transparent surfaces, 9-21
tree, 16-6
trilinear MIPmap, 18-18
trimming a NURBS surface,

14-18 through 14-21
trimming curves, 14-18

orientation, 14-18
piecewise linear, 14-20

trimming loop, 14-18
turning on/off

cursor, 5-6
depth-cueing, 13-4
dial and button box lights, 5-17
keyboard click, 5-16
keyboard lights, 5-16
screen, 5-18

TV_BLEND, 18-40, 18-41
TV_DECAL, 18-41, 18-42
TV_MODULATE, 18-40, 18-41
twist, 7-13, 7-14
two-sided lighting, 9-17

performance, 9-23
TWOSIDE, 9-17
TX_MAGFILTER, 18-12
TX_MINFILTER, 18-12
TX_REPEAT, 18-12
TX_TILE, 18-13
TX_WRAP, 18-12

U

UNDERDRAW, 10-6
swapping buffers in, 6-4
writemasks, 10-9

underlay
bitplanes, 10-3
definition, 10-1
non-recommended routines, 10-7
user-defined, 10-15

underlay, 10-15
unpacking pixel data, 11-10, 11-14
unqdevice, 5-4
updating active materials, 9-18
user-defined transformation, 7-29
user input in a GL program, 5-1
user interface, 5-1

V

valuator
names of, 5-12
noisy, 5-7
polling, 5-7
polling multiples, 5-8

version, querying, 1-7
vertex, 2-1

normals, 2-24
order for front-facing polygons, 2-24
subroutines, 2-2, 2-3

vertex ordering, importance of in lighting, 9-5
video, 5-17 through 5-21

enabling the LVD option, 5-21
formats, 5-21
reading registers, 5-20
setting hardware registers, 5-19

videocmd, 5-21
viewing transformation, 7-3
viewing transformations, 7-12 through 7-16

Graphics Library Programming Guide Index-21

viewpoint
defining, 7-13
for lighting, 9-10

viewport, 3-3, 7-26 through 7-29
viewport, 7-26
volume rendering, 18-5

W

wavelength of light, 9-2
weight of control points, 14-10
window

opening, 1-6
quitting, 5-14
testing for closure, 5-14
testing for iconification, 5-14
testing if redraw needed, 5-14

window, 7-9
window coordinate system, 7-3
window manager

4Dwm, 1-2, 1-3
queueing events from, 5-14

window manager tokens, 5-14
WINFREEZE, 5-14
WINQUIT, 5-14
WINSHUT, 5-14
WINTHAW, 5-14
wireframe, definition, 2-1
wmpack, 10-10
world coordinate system, 7-3
writemask, 10-7

definition, 10-7
how it works, 10-8

writemask, 10-9, 11-7
writemasks, 10-7 through 10-15
writing pixels, 11-7
writing to the z-buffer, 8-10

X

X client, 1-2
X input model, 5-2
xman, 1-2
X server, 1-2, 1-3, 5-2
xterm, 1-2
Xt routines, 5-2
X Window System, 1-2, 5-2

Z

z-buffer, 8-2 through 8-15
changing comparison test, 8-14
clearing, 8-8
enhancing resolution of, 8-3
writing directly to, 8-10

zbsize, 15-41
zbuffer, 8-3
z coordinates, scaling, 8-7
zdraw, 8-10
zfar, 8-3
zfar, 13-5
znear, 8-3
znear, 13-5
z values for depth-cueing, 13-3
zwritemask, 8-15
z-buffer
zwritemask, 8-15

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1210-060.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

