
CASEVision™/ClearCase
Concepts Guide

Document Number 007-1612-020

CASEVision™/ClearCase Concepts Guide
Document Number 007-1612-020

CONTRIBUTORS

Written by John Posner and Jeffery Block
Illustrated by John Posner
Production by Gloria Ackley
Engineering contributions by Atria Software, Inc.
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1992, 1994, Silicon Graphics, Inc.— All Rights Reserved
© Copyright 1992, 1994, Atria Software, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. ClearCase and Atria are registered trademarks of Atria
Software, Inc. OPEN LOOK is a trademark of AT&T. UNIX is a trademark of AT&T
Bell Laboratories. Sun, SunOS, Solaris, SunSoft, SunPro, SPARCworks, NFS, and
ToolTalk are trademarks or registered trademarks of Sun Microsystems, Inc. OSF and
Motif are trademarks of the The Open Software Foundation, Inc.FrameMaker is a
registered trademark of Frame Technology Corporation. Hewlett-Packard, HP,
Apollo, Domain/OS, DSEE, and HP-UX are trademarks or registered trademarks of
Hewlett-Packard Company. PostScript is a trademark of Adobe Systems, Inc. X
Window System is a trademark of the Massachusetts Institute of Technology.

iii

Contents

Preface xi
Typographical Conventions xi

1. Introduction to ClearCase 1
ClearCase Data Structures 2

Views and Transparent Access 4
Version Control 5

Versioned Object Bases (VOBs) 5
Parallel Development 7

Merging Branches 9
Extended Namespace 9

Environment Management 10
Views and Transparent Access 10
The View as Isolated Workspace 12

The ‘Virtual Workspace’ 12
Example: Editing Source Files in a View 13

The View as Shared Resource 14
View-Extended Naming 14

Build Management 15
Build Auditing 15
Build Avoidance 17

Automatic Dependency Detection 18
Build Script Checking 19

Building on Remote Hosts 19

iv

Contents

Process Control 19
Information Capture and Retrieval 20

Meta-Data Annotations 20
Notification Procedures 21
Policy Enforcement 21
Access Control 22

ClearCase Client-Server Architecture 22
ClearCase Interfaces 25
ClearCase Documentation 27

Documentation 27

2. Version Control - ClearCase VOBs 29
Versioned Object Bases (VOBs) 29

Using VOBs: Clients, Servers, and Views 29
VOB Data Structures 32

VOB Storage Pools 32
VOB Database 33

Elements, Branches, and Versions 33
Version-IDs 35
Letting the View Select Versions 35
Accessing Any Version with a Version-Extended Pathname 36

More Extended Pathnames 37
How New Versions Are Created 38

The Checkout-Edit-Checkin Model 38
Reserved and Unreserved Checkouts 38

Creating Versions in a Parallel Development Environment 39
Merging Versions of an Element 40

The Version as Compound Object 42
Special Cases 43

Element Types and Type Managers 44
Cleartext Storage Pools 44
User-Defined Element Types 45
Type Managers 45

v

Version Control of Links 46
Version Control of Directories 47
Directory Elements 47

Accessing Files through Directory Versions 48

3. ClearCase Meta-Data 51
Meta-Data: Records and Annotations 51

Storage in the VOB Database 52
User-Defined Meta-Data 53

Version Labels / Label Types 54
Attributes / Attribute Types 55
Hyperlinks / Hyperlink Types 57

Hyperlinks as Objects 59
Triggers and Trigger Types 61
Elements, Branches, and Their Types 62

ClearCase-Generated Meta-Data 62
Event Records 62
Configuration Records 64

The ClearCase Query Language 65

4. ClearCase Views 67
Requirements for a Development Workspace 67
ClearCase Development Workspaces: Views 68

View Implementation and Usage 69
Processes and View Contexts 69

Transparency and Its Alternatives 70
Overriding Automatic Version-Selection 71

View-Extended Pathnames 71
Mechanics of Version-Selection 72

The Config Spec and the View Server Process 73
Flexibility of Rule-Based Version Selection 75
Open-Endedness of a View 75
Storage Efficiency of a View 76

vi

Contents

View-Private Storage / The Virtual Workspace 76
View Usage Scenarios 78

Revising a Source File / Checkout-Edit-Checkin 78
Setting a View 78
Changing to the VOB Directory 78
Before the Checkout 79
Checking Out the File 80
Working With the File 80
Checking In the File 81

Parallel Development / Working on a Branch 81
Different Views for Different Branches 82

5. Building Software with ClearCase 85
Overview 86
Dependency Tracking - MVFS and Non-MVFS Files 88

Automatic Detection of MVFS Dependencies 88
Tracking of Non-MVFS Files 89

Derived Objects and Configuration Records 89
Derived Objects (DOs) 89

Sibling Derived Objects 89
Derived Object Identifiers (DO-IDs) 89

Configuration Records (CRs) 91
Operations Involving DOs and CRs 92

Build Avoidance 94
Configuration Lookup and Wink-In 94

Hierarchical Builds 96
Build Auditing with clearaudit 96
Storage of DOs and CRs 96
clearmake Compatibility with Other make Programs 98

Using Another make Instead of clearmake 99
Parallel and Distributed Building 99

The Parallel Build Procedure 100

vii

Building on a Non-ClearCase Host 101
Limitations of Non-ClearCase Access 102

Derived Objects as Versions of Elements 102
Product Releases 103

6. ClearCase Process Control 105
Information Capture and Retrieval 105

Automatic Information Capture 107
User-Controlled Information Capture 108
Information Retrieval 110

Access Control 110
Access Permissions 111

Access to Physical VOB Storage 112
Locks on VOB Objects 112
Obsolete Objects 112

Triggers 113
Pre-Operation and Post-Operation Triggers 113

Policy Enforcement - An Example 114
Scenario 115
Implementation 115

Index 153

ix

Figures

Figure 1-1 ClearCase Development Environment 3
Figure 1-2 VOBs Appear in Views as Ordinary Directory Trees 6
Figure 1-3 Version Tree of an Individual Element 7
Figure 1-4 Parallel Development 8
Figure 1-5 Version-Extended Pathnames 9
Figure 1-6 Version Selection by a View 11
Figure 1-7 View Development Environment 13
Figure 1-8 Checkout/Checkin and View-Private Storage 14
Figure 1-9 View-Extended Pathname 15
Figure 1-10 Build Auditing and Configuration Records 16
Figure 1-11 Derived Object Sharing 18
Figure 1-12 ClearCase Distributed Client-Server Architecture 24
Figure 1-13 ClearCase Graphical User Interface 26
Figure 2-1 How ClearCase Users Access a VOB 31
Figure 2-2 VOB Storage Directory 32
Figure 2-3 Version Trees of ClearCase Elements 34
Figure 2-4 Version-ID of a Version 35
Figure 2-5 Version-Extended Pathname 36
Figure 2-6 Parallel Development 40
Figure 2-7 Graphical Merge Utility: ‘xcleardiff’ 41
Figure 2-8 The Version as Compound Object 43
Figure 2-9 Directory Element 47
Figure 2-10 File Element vs. Directory Element 49
Figure 3-1 Meta-Data: ClearCase-Generated Records 52
Figure 3-2 Attaching Meta-Data to a VOB Object 54
Figure 3-3 Configuration of Versions Selected by Version Label 55
Figure 3-4 Attribute and Attribute Type 57

x

Figures

Figure 3-5 Hyperlink for Requirements Tracing 58
Figure 3-6 Hyperlink, Hyperlink Type, and Hyperlink-ID 60
Figure 4-1 Requirements for a Development Workspace 68
Figure 4-2 View Transparency: Resolving a Pathname 70
Figure 4-3 Viewroot Directory as a Super-Root 71
Figure 4-4 View-Extended Pathname 72
Figure 4-5 Dynamic Version Selection by a View 73
Figure 4-6 Using a Config Spec to Select a Version of an Element 74
Figure 4-7 Virtual Workspace: View-Private Objects in

 VOB Directory 77
Figure 4-8 Default Config Spec 78
Figure 4-9 Before a Checkout 79
Figure 4-10 After a Checkout 80
Figure 4-11 After a Checkin 81
Figure 4-12 Config Spec for Parallel Development 82
Figure 5-1 Building Software with ClearCase: Isolation and

Sharing 87
Figure 5-2 Extended Pathname of a Derived Object — DO-ID 90
Figure 5-3 Configuration Lookup 95
Figure 5-4 Storage of Derived Objects and Configuration Records 98
Figure 5-5 Parallel and Distributed Building 100
Figure 5-6 Non-ClearCase Access 101
Figure 6-1 Information Capture and Retrieval 106
Figure 6-2 Hyperlinks / Hyperlink Inheritance 109
Figure 6-3 Access Control Schemes 111
Figure 6-4 Pre-Operation and Post-Operation Triggers 114
Figure 6-5 State Transition Model 116
Figure 6-6 Version Predecessors, Successors, and Ancestors 138
Figure 6-7 Version 0 of a Branch 146
Figure 6-8 Version Tree Structure 147

xi

Preface

CASEVision™/ClearCase is a version control and configuration
management system, designed for development teams working in a local
area network. Versions of ClearCase running on different hardware
platforms are fully compatible.

This manual is for users who are new to ClearCase. Chapter 1, “Introduction
to ClearCase” provides a broad overview, showing how ClearCase’s
components work together to provide a complete configuration
management solution. Subsequent chapters describe the components in
greater detail.

Typographical Conventions

This manual uses the following typographical conventions:

• This font is used for names of ClearCase commands, names of UNIX
commands, and glossary terms. It is also used for file names and
user-supplied names.

• This font is used for examples. Where user input needs to be
distinguished from program output, this font is used for user input.

• When full or partial command syntax appears in a paragraph, this font
is used.

• Nonprinting characters and keyboard characters are indicated with this
font, and enclosed in angle brackets: <EOF>, <Return>.

1

Chapter 1

1. Introduction to ClearCase

ClearCase is a comprehensive software configuration management system. It
manages multiple variants of evolving software systems, tracks which
versions were used in software builds, performs builds of individual
programs or entire releases according to user-defined version specifications,
and enforces site-specific development policies.

These capabilities enable ClearCase to address the critical requirements of
organizations that produce and release software:

• Effective development — ClearCase enables users to work efficiently,
allowing them to fine-tune the balance between sharing each other’s
work and isolating themselves from destabilizing changes. ClearCase
automatically manages the sharing of both source files and the files
produced by software builds.

• Effective management — ClearCase tracks the software build process,
so that users can determine what was built, and how it was built.
Further, ClearCase can instantly recreate the source base from which a
software system was built, allowing it to be rebuilt, debugged, and
updated — all without interfering with other programming work.

• Enforcement of development policies — ClearCase enables project
administrators to define development policies and procedures, and to
automate their enforcement.

2

Chapter 1: Introduction to ClearCase

ClearCase Data Structures

Figure 1-1 shows a development environment managed by ClearCase. At its
heart is a permanent, secure data repository. It contains data that is shared
by all users: this includes current and historical versions of source files,
along with derived objects built from the sources by compilers, linkers, and so
on. In addition, the repository stores detailed “accounting” data on the
development process itself: who created a particular version (and when, and
why), what versions of sources went into a particular build, and other
relevant information.

ClearCase Data Structures

3

Figure 1-1 ClearCase Development Environment

Only ClearCase commands can modify the permanent data repository. This
ensures orderly evolution of the repository and minimizes the likelihood of
accidental damage or malicious destruction.

one or more
“versioned object

bases”
(VOBs)

versions for new

user’s
“view”

versions for fixing

versions for port

user’s
“view”shared

data repository

user’s
“view”

4

Chapter 1: Introduction to ClearCase

Conceptually, the data repository is a globally accessible, central resource.
The implementation, however, is modular: each source (sub)tree can be a
separate versioned object base (VOB). VOBs can be distributed throughout a
local area network, accessed independently or linked into a single logical
tree. To system administrators, modularity means flexibility; it facilitates
load-balancing in the short term, and enables easy expansion of the data
repository over the long term.

Note: The repository can even be distributed over a wide-area network, or
to sites that have no live data connection at all. This capability is
implemented by Atria’s MultiSite product, available separately.

Views and Transparent Access

As Figure 1-1 illustrates, users access the ClearCase data repository through
views. A view is a software development work environment that is similar to
— but greatly improves on — a traditional “development sandbox”. Each
view can easily be configured to access just the right source data from the
central repository:

• the up-to-date versions for development of the next major release

• the versions that went into the port of Release X.Y to hardware
architecture Z

• the versions being used to fix bug #ABC in Release D.E

A view is an isolated “virtual workspace”, which provides dynamic access
to the entire data repository. The changes being made to a source file in a
particular view are invisible to other views; software builds performed in a
view do not disturb the work taking place in other views.

Working in views, ClearCase users access version-controlled data using
standard pathnames and their accustomed commands and programs. The
view accesses the appropriate data automatically and transparently.

Version Control

5

A view’s isolation does not render it inaccessible; a view can be accessed
from any host in the local area network. For example, a distributed build
involves execution of build scripts on several hosts at once, all in the same
view. Similarly, a view can be shared by several users, working on a single
host or on multiple hosts. One user might “peek” into another’s view, just to
see what changes are being made to a particular file.

Version Control

The most basic requirement for a software configuration management system
is version control — maintaining multiple versions of software development
objects. Traditional version-control systems handle text files only; ClearCase
manages all software development objects: any kind of file, and directories
and links, as well.

Versions of text files are stored efficiently as deltas, much like SCCS or RCS
versions. Versions of non-text files are also stored efficiently, using data
compression. Version control of directories enables the tracking of changes
to the organization of the source code base, which are just as important as
changes to the contents of individual files. Such changes include creation of
new files, renaming of files, and even major source tree “cleanups”.

Versioned Object Bases (VOBs)

ClearCase development data is organized into any number of versioned object
bases (VOBs). Each VOB provides permanent storage for all the historical
versions of all the source objects in a particular directory tree. As seen
through a ClearCase view, a VOB seems to be a standard directory tree — the
“right” versions of the development objects appear, and all other versions
are hidden (Figure 1-2). How this works is described in section
“Environment Management” on page 10.

6

Chapter 1: Introduction to ClearCase

Figure 1-2 VOBs Appear in Views as Ordinary Directory Trees

A version-controlled object in a VOB is called an element; its versions are
organized into a version tree structure, with branches and subbranches
(Figure 1-3. As this figure shows, branches have user-defined names,
typically chosen to indicate their role in the development process. All
versions have integer ID numbers; important versions can be assigned
version labels, to indicate development milestones — for example, a product
release.

all versions of all source
objects in a directory subtree

View 1
View 2

selected versions of
source files and

directories

selected versions of
source files and

directories

VOB

Version Control

7

Figure 1-3 Version Tree of an Individual Element

Parallel Development

Each (sub)branch in an element’s version tree represents an independent
“line of development”. This enables parallel development — creating and
maintaining multiple variants of a software system concurrently. Creation of
a variant might be a major project (porting an application to a new platform),
or a minor detour (fixing a bug; creating a “special release” for an important
customer).

The overall ClearCase parallel development strategy is as follows:

• Establish a baselevel — Development work on a new variant begins
with a consistent set of source versions, identified (for example) by a
common version label.

• Use dedicated branches — All changes for a particular variant are
made on newly-created branches with a common name.

1

5

2

3

4

0

1

2

0

1

0

1

2

0

1

0

3

merge

main branch

bug404

bug412

r1_bugs

alpha_port

REL1

file element: util.c

6REL2

8

Chapter 1: Introduction to ClearCase

• Isolate changes in views — Development work for a particular variant
takes place in one or more views that are configured to “see” the
versions on the dedicated branches.

For example, changes to several source files might be required to fix bug
#819, which was reported in Release 2.6. For each file element, the changes
are made on a new branch (named fix819), created at the “baseline” version
(labeled RLS2.6). The view in which a user works to fix the bug sees the
fix819 branch versions, or else “falls back” to the baseline RLS2.6 version
(“View 1” in Figure 1-4). For contrast, this figure also illustrates another
view, configured to select different versions of the same file elements.

Figure 1-4 Parallel Development

RLS2.6

file2.c:

RLS2.6
fix819

file1.c:

1.
selects the most recent version

on the main branch of
each element

View 2: new development1.
selects the most recent version
on the fix819 branch, or “falls
back” to the RLS2.6 version

View 1: bugfix

file2.c

View 1

file1.c file2.c

View 2

file1.c

Version Control

9

This strategy enables any number of views — and thus any number of
development projects — to be active concurrently. All the views access the
required source versions from the shared data repository.

Merging Branches

There is an additional important aspect of the ClearCase parallel
development strategy. Work performed on subbranches should periodically
be reintegrated (merged) into the main branch, the principal line of
development. ClearCase includes tools that automate this process.

Extended Namespace

Most of the time, a user needs just the one version of an element that appears
in his view. In some situations, however, he needs convenient access to other
versions. Examples include merging the changes made on a subbranch into
the main branch, and searching all the versions of an element for an old
phrasing of an error message.

ClearCase makes access to historical versions easy, by extending the
standard file/directory namespace. In essence, the entire version tree of
every element is embedded under its standard pathname. Most of the time,
the version tree remains hidden; but special version-extended pathnames allow
any program to access any (or all) of an element’s versions (Figure 1-5).

Figure 1-5 Version-Extended Pathnames

1

2

3

0

1

0

1

2

0

1

0

3

main

r1_bugs

bug404

util.c@@/main/r1_bugs/bug404/1

version-extended pathname

10

Chapter 1: Introduction to ClearCase

Environment Management

A software configuration management system must provide a flexible, efficient
collection of “development environments”, or “workspaces”, in which users
can do their work. ClearCase views fulfill this role, providing these services:

• access to the appropriate versions of development sources

• private data storage for use in day-to-day development tasks

• isolation from activity taking place in other views

• automatic and user-requested facilities for sharing data with other
views, when appropriate

Views and Transparent Access

As described in “ClearCase Data Structures” on page 2, a view directly
accesses the version-controlled elements in the permanent, shared data
repository. There is no need to copy the versions required for a particular
project to a view; instead, the correct versions are accessed dynamically. A
particular version of each element is selected according to user-specified
rules in the view’s config spec (“configuration specification”): a file element
appears to be an ordinary file; a directory element appears to be an ordinary
directory.

The overall effect of automatic version selection is transparency: the
version-control system becomes invisible, so that a VOB appears to be a
standard directory tree (Figure 1-6). This key feature enables ClearCase to
work smoothly with standard system software, third-party commercial
applications, and a development team’s “home-grown” software tools.
Users do not have to discard their accustomed ways of working, or their
existing tools. For example, such standard programs as grep, more, ls, and cc
will work the same way on ClearCase data as on non-ClearCase data.

Environment Management

11

Figure 1-6 Version Selection by a View

Views are dynamic — config spec rules are continually reevaluated. This
means that a view is open-ended; as new data is added to the central
repository, it is immediately accessible to all views. It also means that a
view’s configuration can be instantly modified — for example, to “shut out”
a recent destabilizing change to the repository.

acts as a filter, selecting
one version of an element,

rejecting all others

VOB

view

can use a view to access the
version-controlled data in any VOB,
as if it were a standard directory tree

any user process

config spec

12

Chapter 1: Introduction to ClearCase

The View as Isolated Workspace

In addition to providing automatic version selection, a view provides an
isolated workspace in which users perform such tasks as editing source files,
compiling and linking object modules, and testing executables. Any number
of users can work in the same source directory, building the same programs;
they will never interfere with each other, as long as they work in different
views. Conversely, two or more users working together closely can share a
single view.

A view’s isolation is achieved, in part, by its having a private storage area. This
area is principally used to store:

• source files that are being edited by the user(s) working in the view

• derived objects produced by software builds—object modules,
executables, and so on

This area is also used for incidentals, such as text-editor backup files and
cut-and-paste temporary files.

The ‘Virtual Workspace’

All the files in view-private storage appear to be in the appropriate VOB
directory, even though they are (typically) stored on the user’s workstation,
rather than in the central data repository. That is, the view combines objects
in view-private storage with objects in the shared repository to form an
isolated “virtual workspace”.

Figure 1-7 shows a listing of a VOB directory, as it appears in the “virtual
workspace” created by a view.

Environment Management

13

Figure 1-7 View Development Environment

Example: Editing Source Files in a View

A user, working in a view, enters a checkout command to make a source file
editable (Figure 1-8). This seems to change a file element in the data
repository from read-only to read-write. In reality, ClearCase copies the
read-only repository version to a writable file in the view’s private storage
area. This writable file, the checked-out version, appears in the view at the
same pathname as the file element; the view accesses this editable,
checked-out version until the user enters a checkin command, which updates
the repository and deletes the view-private file.

% cleartool ls -long
version Makefile@@/main/3
derived object hello@@04-Jun.14:42.379
version hello.c@@/main/4
version hello.h@@/main/2
derived object hello.o@@03-Jun.13:49.356
version msg.c@@/main/CHECKEDOUT from /main/1
view private object msg.c~
derived object msg.o@@04-Jun.14:42.377
version util.c@@/main/3
derived object util.o@@03-Jun.13:49.358
view private object zmail.4jun.1%

• versions of elements, selected by the
view’s config spec

• derived objects shared by two or more
views

VOB storageview storage

• checked-out versions of file elements
• derived objects built in view
• view-private files

(editor backup files, personal files)

14

Chapter 1: Introduction to ClearCase

Figure 1-8 Checkout/Checkin and View-Private Storage

The View as Shared Resource

Subject to access permissions, a view is a shared resource, available on all
hosts in the local area network. Each view is globally accessible through a
simple name, its view-tag. An individual user uses the same view on several
hosts during a distributed software build. During an integration period,
several users might share a single view, each using his or her own
workstation.

View-Extended Naming

A user sometimes needs to compare (or otherwise manipulate) the data seen
through two or more views. Access to multiple views in a single command
is made possible through view-extended naming. “Extended Namespace” on
page 9 describes how ClearCase extends the file system “downward” by
embedding an element’s entire version tree under its pathname. Similarly,
ClearCase extends the file system “upward” by creating a virtual super-root
directory (the viewroot) which conceptually contains all active views. A

checked-out

checkout
makes copy

checkin
makes copy

VOB storage
(read-only,

except to
ClearCase

commands)

view selects some
version in the VOB

before checkout
view selects checked-out

version in the view

while checked-out
view selects newly-created

version in the VOB

after checkin

view’s private
storage area

(writable)

Build Management

15

view-extended pathname accesses the version of a particular element that is
seen by a particular view (Figure 1-9).

Figure 1-9 View-Extended Pathname

Build Management

ClearCase supports makefile-based building of software systems. This means
users can continue to build systems using their accustomed procedures.
They can even use the same tools — for example, a host’s system-supplied
make program or a third-party build utility. ClearCase’s own build program,
clearmake, provides compatibility with other make variants, along with
powerful enhancements.

Build Auditing

clearmake’s fundamental enhancement is build auditing: monitoring of file
system activity during a software build, at the system-call level. clearmake
implements this capability by working with ClearCase’s virtual file system
extension, the multiversion file system (MVFS).

Build auditing enables complete and automatic documentation of software
builds. A build’s “bill-of-materials” and “assembly instructions” are
preserved in configuration records (Figure 1-10)

/view/akp/usr/hw/util.c

1.
super-root directory,
which conceptually
includes all views

viewroot directory

1.
name for

a particular view

view-tag 1.
standard pathname to

version-controlled element

pathname within VOB

16

Chapter 1: Introduction to ClearCase

Figure 1-10 Build Auditing and Configuration Records

The files produced by a build (object modules, executables, libraries, and so
on) are cataloged in the central repository as derived objects.

Users can compare different builds of the same program — different derived
objects built at the same pathname — through their configuration records.
Moreover, clearmake automatically uses configuration records during
subsequent builds, to implement additional build enhancements.

clearmake build utility

VOBsuser’s view

ClearCase monitors file
system usage during build

build-time auditing

complete build information is
preserved as configuration record(s)

permanent bill-of-materials

ClearCase multiversion file system (MVFS)

Build Management

17

Build Avoidance

Standard make programs support incremental building of software systems
through build avoidance. A “make” of an entire system actually rebuilds only
those components that need to be rebuilt, because they are out-of-date with
respect to the corresponding source files.

clearmake’s build-avoidance scheme is more sophisticated, and specifically
designed for use in parallel development situations. Typically, each user
modifies only a few source files at a time to produce a variant of a software
system. If the same version of a particular source file is used by several
programmers, it would be compiled to exactly the same object module in
each of their views. clearmake uses configuration records to detect such
situations; instead of performing redundant builds, it causes a single
derived object to be shared among the views (Figure 1-11). This facility,
termed wink-in, saves both disk storage and build time.

18

Chapter 1: Introduction to ClearCase

Figure 1-11 Derived Object Sharing

Automatic Dependency Detection

Configuration records enable automatic checking of source dependencies as
part of build avoidance. All such dependencies (for example, on C-language
header files) are logged in a build’s configuration record, whether or not
they are explicitly declared in a makefile.

VOB

user’s
view

another
view

another
view

target built by clearmake becomes a
globally-accessible derived object

original build

subsequent builds in other
views can share the existing

derived object

subsequent sharing

clearmake

clearmake

clearmake

derived
object

Process Control

19

Build Script Checking

Configuration records also enable the build-avoidance algorithm to include
checking of a target’s build script. If the build script has changed, clearmake
rebuilds the target. Many make variants ignore build-script changes, and
thus fail to perform a rebuild when it is actually required.

Building on Remote Hosts

clearmake supports efficient building of large software systems through its
ability to execute multiple build scripts in parallel, and to distribute build
script execution to a group of hosts in the local area network. A tunable
load-balancing scheme optimizes uses of network resources during a
distributed build.

A build can even take place on a host where ClearCase itself has not been
installed. This feature is particularly valuable for organizations that support
multiple hardware/software architectures, including some not supported
by ClearCase.

Process Control

ClearCase provides mechanisms for monitoring and controlling the
development process itself. ClearCase does not attempt to impose its own
particular policies or procedures — instead, it includes a flexible, powerful
toolset, which administrators can use to implement an organization’s
existing policies.

Process management comprises several functional areas, which ClearCase
addresses both with static mechanisms (control structures) and dynamic
mechanisms (procedures). Some of the mechanisms are completely
automatic; others are created and/or controlled by users and administrators.

20

Chapter 1: Introduction to ClearCase

Information Capture and Retrieval

ClearCase automatically logs each change to the data repository in the form
of an event record, providing an audit trail of development activities.
ClearCase includes commands for creating reports based on these records,
with many selection and filtering options. Such reports can include the event
records for a single version-controlled object, for any user-specified set of
objects, or for entire VOBs. Event records can be retained indefinitely, or can
be “scrubbed” selectively on a periodic basis, in order to conserve disk
space.

When a user merges the changes made on one branch of an element into
another branch, ClearCase automatically writes an event record, and also
connects the merged versions with a merge arrow (see Figure 1-3). This makes
it easy to track (and often, to fully automate) the process of integrating work
performed on subbranches back into the main line of development.

Merge arrows are a special case of a more general mechanism for indicating
a relationship between two objects. Any two objects in the central repository
can be connected with a logical arrow called a hyperlink. This capability
addresses such process-control needs as requirements tracing.

Meta-Data Annotations

To supplement the information automatically captured by ClearCase, users
can explicitly annotate file system objects. Such annotations are termed
meta-data. The hyperlinks and merge arrows discussed just above are one
form of meta-data; so are the version labels first discussed on “Version
Control” on page 5. Attributes provide yet another annotation facility, in the
form of name/value pairs. For example, an attribute named CommentDensity
might be attached to each version of a source file, to indicate how well the
code is commented. Each such attribute might have the value
"unacceptable", "low", "medium", or "high".

Process Control

21

Notification Procedures

Virtually any operation that modifies the data repository can trigger the
execution of a user-defined procedure. A typical use for this capability is to
notify one or more users that the operation took place. For example, a trigger
on the checkin operation might send mail to the QA department, explaining
that a particular user modified a particular file. Special environment
variables make the relevant information available to the script or program
that implements the user-defined procedure.

In addition to performing notification tasks, triggers can automate a wide
variety of process management functions — for example:

• adding meta-data annotations to the objects that were just modified

• logging information that is not included in the event records that
ClearCase creates automatically

• initiating a build procedure and/or source-code-analysis procedure
whenever certain objects are modified

Policy Enforcement

Every organization has its own “rules of the road”, which provide guidance
(gentle or otherwise) as to where, when, and how development activities are
to take place. ClearCase’s trigger mechanism, introduced in the preceding
section, provides a flexible tool for implementing development policies. In
particular, a trigger can impose any user-defined requirement or
prerequisite on any operation that modifies the data repository.

For example, a trigger might fire whenever a user attempts to checkin a new
version of a critical file. The trigger procedure can subject the user and/or
the file to any kind of test — and if the test fails, the procedure can cancel the
checkin.

22

Chapter 1: Introduction to ClearCase

Access Control

Various objects in the data repository can be locked, which prevents them
from being modified or used. Locks can be fine-grained (for example,
locking a particular branch of a particular element) or general (for example,
locking an entire VOB). A typical application is locking just the main branch
of all elements during a software integration period, except to those few
users who will be performing the integration work.

Access modes, or permissions, apply to all elements. Permissions control
reading, writing, and executing of objects at the traditional levels of
granularity: user (owner), group, and other. They also apply to the physical
storage in the underlying file system. Protections effectively thwart attempts
to circumvent ClearCase and tamper with the raw data storage.

ClearCase Client-Server Architecture

ClearCase is a “groupware” product, with a distributed client-server
architecture. Both the programs that implement ClearCase functions and the
development group’s data can be distributed throughout a local area
network. This makes ClearCase scalable — as workstations are added to the
network to accommodate additional users, ClearCase’s data-storage and
data-processing resources increase, as well.

Note: Using the MultiSite extension to ClearCase to wide-area networks, as
well — even networks whose only data communications channel is
magnetic tape transfer.

Figure 1-12 shows a typical distribution of ClearCase programs and
development data in a network. The data storage is organized as follows:

• The permanent, shared data repository is implemented as a collection
of versioned object bases (VOBs). Several VOBs can be located on the
same host; the practical limit is a function both of disk space and of
processing resources.

ClearCase Client-Server Architecture

23

• Users have individual (or shared) work areas, views, each of which has
a private data storage area. A view’s storage area is typically located on
a user’s individual workstation. Central server hosts can also be used
— for example, for a shared view or a view in which an entire
application will be rebuilt “from scratch”.

• For increased flexibility, the data storage for an individual VOB or view
can be distributed across two or more hosts.

Users access this data with ClearCase client programs (for example, the
clearmake build utility), along with standard operating system facilities (text
editors, compilers, debuggers) and third-party applications. Access to the
data stored in VOBs and views is mediated by ClearCase server programs.
Client and server processes communicate with each other using remote
procedure call (RPC) facilities. This makes ClearCase network-transparent
— users need not be concerned with the physical location of data storage;
ClearCase servers make the data available globally.

24

Chapter 1: Introduction to ClearCase

Figure 1-12 ClearCase Distributed Client-Server Architecture

user’s workstation
with local storage

user’s workstation
without local storage

server hosts for shared storage

individual’s view

shared views

ClearCase
server programs

VOB

ClearCase
server programs

ClearCase
server programs

ClearCase
server programs

ClearCase
client programs

ClearCase
client programs

VOB

VOB

ClearCase Interfaces

25

ClearCase Interfaces

ClearCase has both a command-line interface (CLI) and a graphical user
interface (GUI). The CLI is implemented as a set of executables, stored in
/usr/atria/bin. (Each user should add this directory to his or her search path.)

The “first among equals” of the CLI utilities is cleartool; through a set of
subcommands, it provides the functions performed most often by users:
checkout, checkin, list history, display version with annotations, and so on.
cleartool uses multicharacter mnemonic options:

% cleartool checkin -identical -nc util.c hello.h
“Checkin files util.c and hello.h, without any comments; do
the work even if the new version is identical to its
predecessor.”

% cleartool lshistory -since yesterday.17:00 -recurse /vobs/proj/src
“List all events that occurred since 5 pm yesterday,
pertaining to objects within the directory tree at
/vobs/proj/src.”

% cleartool merge -to msg.c -version /main/alpha_port/LATEST

“Merge the most recent version on the alpha_port branch of file msg.c into the
version I’m editing.”

The ClearCase GUI includes several point-and-click programs:

• xclearcase provides a “master control panel” that is both easy to use and
thoroughly customizable. Users can examine and select both their file
system data and ClearCase meta-data, with a variety of browsers.

• xlsvtree displays the version tree of an element, making it easy both to
determine how an element has evolved, and to select particular
versions for comparison or merging.

• xcleardiff is a flexible tool for comparing and/or merging the contents of
multiple versions of an element, or any other files.

26

Chapter 1: Introduction to ClearCase

Figure 1-13 illustrates some of the features of the ClearCase GUI.

Figure 1-13 ClearCase Graphical User Interface

ClearCase Documentation

27

ClearCase Documentation

In addition to this manual, the CASEVision™/ClearCase Concepts Guide, the
ClearCase printed documentation set includes:

CASEVision™/ClearCase Tutorial
Important information on setting up a user’s environment,
along with a step-by-step tour through ClearCase’s most
important features.

CASEVision™/ClearCase User’s Guide
Background information and step-by-step procedures for
use by individual users.

CASEVision™/ClearCase Administration Guide
Background information and step-by-step procedures for
use by ClearCase system administrators.

CASEVision™/ClearCase Reference Pages
All the ClearCase manual pages, for programs, data
structures, and administrative utilities.

Documentation

All CLI utilities can display usage syntax summaries. The cleartool utility’s
help subcommand can display a usage message for individual
subcommands:

% cleartool help checkout
Usage: checkout | co [-reserved | -unreserved]

[-branch branch-pname]
[[-data] [-out dest-pname] | -ndata]
[-c comment | -cq | -cqe | -nc] pname ...

28

Chapter 1: Introduction to ClearCase

The ClearCase manual pages reside within the ClearCase installation area.
Users can access these manual pages with the cleartool man subcommand, or
with the standard UNIX man(1) facility.

Each of the ClearCase GUI programs has its own context-sensitive help
facility. Installation instructions, release notes, and supplementary technical
notes are also provided in the ClearCase software.

29

Chapter 2

2. Version Control - ClearCase VOBs

ClearCase supports a well-organized, controlled development environment
by maintaining two kinds of data storage:

• Permanent data repository — a globally-accessible, shared data
resource that can be modified only by ClearCase commands. The
repository contains both historical and current development data.

• Working data storage — any number of distinct areas which provide
“scratchpad storage” for day-to-day development activities. A typical
area belongs to an individual user, or to a small group working on the
same task.

This chapter and the next describe the contents of versioned object bases,
which implement the permanent data repository. Working data storage,
implemented by views, is discussed briefly in this chapter and more fully in
Chapter 4, “ClearCase Views.”

Versioned Object Bases (VOBs)

A versioned object base, or VOB, is the permanent data repository for a
development tree or subtree. A VOB stores file system objects: directories,
files, symbolic links, and hard links. (It also stores non-file-system
information, meta-data, which we discuss in Chapter 3, “ClearCase
Meta-Data.”

Using VOBs: Clients, Servers, and Views

Many version-control systems require users to perform their day-to-day
work on copies of data, only occasionally accessing the permanent data
repository. ClearCase allows users to work directly with the repository —
that is, directly with VOBs. Direct access is implemented coherently and

30

Chapter 2: Version Control - ClearCase VOBs

securely in the multiple-user, multiple-host environment by combining
several mechanisms (Figure 2-1):

• View context — Any program, not just a ClearCase program, can read
a VOB’s data. But a program must use a ClearCase view to access a
VOB; otherwise, the VOB appears to be empty. Through the view, the
VOB appears to be a standard directory tree.

• Client programs — A VOB can be modified only by special ClearCase
client programs. Most version-control operations are implemented by
cleartool (command-line interface), and by (graphical user interface).
Audited builds are performed with clearmake and clearaudit.

• VOB activation — Typically, a VOB is located on a remote host, rather
than on the user’s own host. A VOB is made available on the user’s
host by activating it there, through operating system networking
facilities. For example, on a UNIX system, a VOB is activated by
mounting it as a file system of type MVFS — ClearCase’s multiversion
file system type.

• Server programs — Only ClearCase server programs, running on the
host where the VOB physically resides, perform the “real” work:
retrieving data from the VOB and updating it. Client programs
communicate with server programs using operating system
remote-procedure-call (RPC) facilities.

Typically, a user works on his or her own client host, accessing VOBs that are
physically located on one or more remote VOB server hosts.

Versioned Object Bases (VOBs)

31

Figure 2-1 How ClearCase Users Access a VOB

VOB

1.
mediate access to

actual VOB storage

ClearCase server programs

on client host uses OS networking
(e.g. UNIX mount)

VOB activation

Any process can access a VOB,
through a view

Only a ClearCase client program
can modify a VOB

user and client programs

view

VOB-tag
(mount point)

local area network

users’
file system

data

ClearCase
meta-data

32

Chapter 2: Version Control - ClearCase VOBs

VOB Data Structures

A VOB is implemented as a VOB storage directory, a directory tree whose
principal contents are a set of storage pools and an embedded database
(Figure 2-2).

Figure 2-2 VOB Storage Directory

VOB Storage Pools

A VOB storage pool is a subdirectory that stores users’ file system data. Some
storage pools provide a repository for historical and currently-used versions
of source files. Other storage pools provide a repository for object modules,
executables, and other derived objects created during the development
process.

VOB storage directory

VOB storage pools

VOB database

remote VOB storage pool

version tree structures,
version labels, attributes,

hyperlinks, triggers
event records

derived objects
configuration records

Elements, Branches, and Versions

33

Each VOB is created with an initial set of pools, located within the VOB
storage directory. These can be supplemented (or replaced) with pools
located on the same disk, on another local disk, or on a remote host. This
affords administrators great flexibility, enabling data storage to be placed on
hosts where ClearCase itself is not installed (for example, a very fast file
server machine).

ClearCase can store individual versions of files in several ways, using such
techniques as data compression and line-by-line deltas. The data
storage/retrieval facility is extensible — users can supply their own type
managers, implementing customized methods for storing and retrieving
development data. (See “Element Types and Type Managers” on page 44.)

VOB Database

Each VOB has a VOB database, a subdirectory containing information
managed by the database management system embedded in ClearCase. The
VOB database stores version-control information, along with a wealth of
other information, including:

• user-defined annotations on source file versions

• complete “bill-of-materials” records of software builds

• event records that chronicle the changes that users have made to the
VOB: creation of new versions, adding of annotations, renaming of
source files, and so on

This information is termed meta-data, to distinguish it from file system data.
We describe it in more detail in Chapter 3, “ClearCase Meta-Data.”.

Elements, Branches, and Versions

Each ClearCase VOB stores version-controlled file system objects, termed
elements. An element is a file or directory for which ClearCase maintains
multiple versions. The versions of an element are logically organized into a
hierarchical version tree, which can include multiple branches and subbranches
(Figure 2-3).

34

Chapter 2: Version Control - ClearCase VOBs

Figure 2-3 Version Trees of ClearCase Elements

Some elements may have version trees with a single branch — the versions
form a simple linear sequence. But typically, users define additional
branches in some of the elements, in order to isolate work on such tasks as
bug fixing, code reorganization, experimentation, and platform-specific
development.

Figure 2-3 illustrates several features of ClearCase version trees:

• Each element is created with a single branch, named main, which has an
empty version, numbered 0.

• ClearCase automatically assigns integer version numbers to versions.
Each version can also have one or more user-defined version labels (for
example, REL1, REL2_BETA, REL2).

• One or more branches can be created at any version, each with a
user-defined name. (Branches are not numbered in any way.)

• ClearCase supports multiple branching levels.

• Version 0 on a branch is identical to the version at the branch point.

1

2

3

4

0

1

2

bugs

motif
0

1bug417

0

1

2

0

1

bug404

0

REL2_BETA
REL2

REL1

main

version
labels

1

5

2

3

4

0

main

simple version tree complex version tree

REL1

REL2

3

5

version
numbers

branch
names

Elements, Branches, and Versions

35

Version-IDs

Each version of an element has a unique version-ID, which indicates its
location in the version tree. A version-ID takes the form of a branch-pathname
followed by a version-number (Figure 2-4).

Figure 2-4 Version-ID of a Version

For example, the shaded versions at the end of the branches in Figure 2-3
have these version-IDs:

/main/5
/main/motif/2
/main/bugs/3
/main/bugs/bug404/1
/main/bugs/bug417/1

Version-IDs look like pathnames because an element’s version tree has the
same hierarchical structure as a directory tree. Version-IDs work like
pathnames, too, as described below.

Letting the View Select Versions

Typically, users wish to access only one version of an element at a time. A
ClearCase view provides a work environment in which at most one version
(or perhaps no version at all) of each version-controlled object appears.
Thus, a particular view might resolve a simple file name or a full pathname:

util.c
... or ...

/vobs/vega/src/util.c

... to version /main/5 of file element util.c. Another view might resolve the
same pathname to version /main/motif/2.1

branch-pathname version-number

/main/bugs/bug404/1

36

Chapter 2: Version Control - ClearCase VOBs

The ability to reference any version with a standard operating system
pathname is a very important ClearCase feature, termed transparency. This is
what makes a VOB appear to be a standard directory tree, as illustrated in
Figure 2-1. Standard operating system utilities and third-party development
tools “just work” with VOB data, without requiring any modification,
conversion, or wrapper routines. For more on transparency, see Chapter 4,
“ClearCase Views.”.

Accessing Any Version with a Version-Extended
Pathname

Any version of an element can be uniquely specified by appending its
version-ID to its standard pathname, forming a version-extended pathname.
Figure 2-5 shows an example.

Figure 2-5 Version-Extended Pathname

A version-extended pathname can also use a version label; this enables users
to reference versions mnemonically:1

% cat util.c@@/REL2
% diff messages.c messages.c@@/REL3_BSLVL2
% /usr/local/bin/validate bgrs.h@@/NEW_STRUCT_TEST

1 Note that with ClearCase, a full pathname is not an absolute identifier. The same full pathname can indicate
different objects, depending on the view context.

1 In most cases, this syntax is valid even if the labeled version is not on the element’s main branch.

standard pathname extended naming version-ID
symbolof element

/vobs/vega/src/util.c@@/main/bugs/bug404/1

Elements, Branches, and Versions

37

Version-extended pathnames can be used in standard commands, either
alone or in conjunction with standard pathnames. For example, this
command searches for a character string in the “current” version and in two
“historical” versions:

% grep "InLine" monet.c monet.c@@/main/13 monet.c@@/RLS2.5

More Extended Pathnames

The extended naming symbol (by default, @@) suppresses ClearCase’s
automatic version-selection mechanism. It causes the MVFS to interpret the
pathname as a reference to the element itself, or to some location in its
version tree:

util.c (the version selected by the view)
util.c@@ (the element itself)
util.c@@/main (one of the element’s branches)
util.c@@/main/2 (a specific version of the element)

The entire version tree of an element is embedded under its standard
pathname. This enables users to access any (or all) historical versions
through pathnames, using any program. The following variant of the above
grep command shows the power of this file system extension:

% grep "InLine" monet.c@@/main/*

In this command, a standard shell wildcard character (*) specifies all the
versions on an element’s main branch.

38

Chapter 2: Version Control - ClearCase VOBs

How New Versions Are Created

This section describes ClearCase facilities for managing the creation of new
versions and branches in version-controlled elements.

The Checkout-Edit-Checkin Model

Like many version-control systems, ClearCase uses a checkout-edit-checkin
model to manage the growth of elements’ version trees:

1. In the “steady-state”, an element is read-only — users can neither
modify it or remove it.

2. To modify an element, a user establishes a view context, then enters a
checkout command. This seems simply to change the element from
read-only to read-write; in actuality, it makes an editable copy — a
checked-out version. (For details, see “Revising a Source File /
Checkout-Edit-Checkin” on page 78.)

3. The user revises the checked-out version using any available
system-supplied or third-party tools.

4. The user enters a checkin command. This creates a new, permanent
version of the element, which then reverts to the “steady-state” of being
read-only.

Reserved and Unreserved Checkouts

When entering a checkout command, the user implicitly expresses an
intention to create a new version of the element at some future time.
ClearCase supports either a “first-come-first-served” approach or an
“exclusive privilege” approach to managing the creation of new versions.

A reserved checkout grants the exclusive privilege to create the next version
on the branch; a branch can have only one reserved checkout at a time. But
a branch can have any number of unreserved checkouts. If several users, in
different views, have unreserved checkouts of a branch, the first one to
perform a checkin “wins”; the others must combine the changes in the
newly-created version into their own work before they can perform a
checkin. (See “Merging Versions of an Element” on page 40.)

How New Versions Are Created

39

Creating Versions in a Parallel Development Environment

In a parallel development environment, the same element can be modified
by several projects concurrently; each project creates versions on its own
branch, isolated from the changes being made by other projects on other
branches.

Figure 2-6 shows an element with two subbranches: the r2_fix branch is for
maintenance work; the gopher_port branch is for porting the application to a
new architecture. This figure also shows how the checkout command
supports parallel development, by localizing its effects:

• The checkout command operates on a particular branch of an element,
not on the entire element. Several different branches might be checked
out at the same time, each for a different programming task. (checkout
always checks out the last version on a branch; revising an intermediate
version requires creation of a subbranch at that version.)

• An element’s branch is checked out to one particular view. The
checked-out version is visible only in that view; the checkout command
leaves all other views unaffected. Each view can checkout only one
branch at a time of any given element, because the view can see only
one object at the element’s pathname.

40

Chapter 2: Version Control - ClearCase VOBs

Figure 2-6 Parallel Development

Merging Versions of an Element

In a parallel development environment, different branches of an element can
remain active for arbitrarily long periods. The contents of the branches
inevitably diverge more and more as time passes. In some cases, this may be
acceptable; but most organizations wish to keep an element’s main branch
up-to-date — with bugfixes, with architecture-dependent constructs, and so
on. This means that changes made on subbranches must periodically be
merged back into the main branch. It is also typical for data to be merged onto
other branches — for example, a branch used to develop a port of an
application.

checked-out
version view of user

working on

r2_fixgopher_port

R2

checked-out
version

view of user
working on porting

How New Versions Are Created

41

ClearCase includes flexible and powerful merge tools. Often, the process of
merging all the work performed for a particular development project is
completely automatic. When conflicting changes to the same section of code
prevent a merge from being completely automatic, users can invoke the
xcleardiff graphical merge utility to resolve the conflicts and perform any
necessary cleanup (Figure 2-7).

Figure 2-7 Graphical Merge Utility: ‘xcleardiff’

42

Chapter 2: Version Control - ClearCase VOBs

ClearCase supports many variants of the basic merge scenario. For example:

• Any version of an element can be merged into any other version; the
target need not be on the main branch.

• A selective merge can incorporate some, but not all, of the changes made
on one branch into another branch.

• A subtractive merge can remove the changes made in a set of versions.

The Version as Compound Object

A version is actually a two-part compound object:

• Object in the VOB database — There is a version object in the VOB
database. Pointers to branch and element objects establish the location
of the version object in some element’s version tree. The version object
can have user annotations (for example, version labels); it is referenced
by various ClearCase-generated event records and build configuration
records.

• File in a VOB storage pool — There is a data container file in one of the
VOB’s source storage pools. This file contains the version’s file system
data.

Figure 2-8 illustrates the relationship between the two components of a
version. In general, ClearCase commands operate directly on the database
object; standard programs operate on the associated data container.

The Version as Compound Object

43

Figure 2-8 The Version as Compound Object

Special Cases

In general, users need not be concerned with the dual nature of a version.
Some ClearCase features, however, are best understood by keeping the
duality in mind. For example:

• Users can create versions that consist only of a VOB database object
(along with its user annotations and ClearCase-generated records).
Similarly, the data container of an existing version can be discarded,
leaving only the database object.

• Administrators can move the data containers of existing versions to
different storage pools.

• A view can be configured so that the file system data of some versions
disappear, but the corresponding database objects remain accessible to
ClearCase client programs.

cleartool lshistory foo.c

ClearCase command accesses version
object in VOB database

VOB database source storage pools

cat foo.c

standard command accesses
version’s data container

in VOB storage pool

VOB

44

Chapter 2: Version Control - ClearCase VOBs

Element Types and Type Managers

Each element has an element type, which can be used for either or both of
these purposes:

• to provide a logical or functional classification for the element

• to determine how the element’s versions are to be stored and retrieved

ClearCase has several predefined element types, each of which represents a
different physical file format for data container file(s) in a source storage
pool. Each element type has its own data-access method, which optimizes
either performance or storage requirements:

file arbitrary sequence of bytes; each version is stored in
whole-copy format (“as-is”) in a separate data container file

text_file sequence of non-NULL bytes, separated into “text lines” by
<NL> characters; all versions are stored efficiently as deltas
(incremental differences) in a single structured data
container file

compressed_file and compressed_text_file
variants of file and text_file that use standard UNIX
data-compression techniques; compression typically
reduces the disk storage requirement by 25%–50%

The element types file and compressed_file can be used to version-control any
file, including executables, programming libraries, databases, bitmap
images, and non-ASCII desktop-publishing documents.

Cleartext Storage Pools

ClearCase implements a performance optimization for all file elements
whose versions are not stored in whole-copy format. This includes text files
(stored in delta format) and compressed files. ClearCase attempts to
amortize the cost of “extracting” a particular version (by applying deltas, or
by uncompressing) over multiple accesses to the version:

Element Types and Type Managers

45

• The first time an existing version is extracted from its data container,
the “clear text” of the version is stored in a data container in a cleartext
storage pool.

• On subsequent accesses to the same version, the cleartext data
container is used again, eliminating the need for another “extraction”.

Thus, a cleartext storage pool acts as a cache of the file system data for
recently-accessed versions.

User-Defined Element Types

Users can define their own element types to classify elements functionally,
enabling such operations as:

• easily identifying and defining operations on all of a project’s header
files

• using a particular icon to represent header files in the ClearCase GUI

• using different version-selection criteria for different element types

• requiring that C-language source files (but not header files) be
subjected to a lint(1) check when they are modified

ClearCase includes an automatic file typing mechanism, which enables
element types to be applied efficiently and consistently. For example, new
file elements whose names end with .c might automatically be assigned the
user-defined element type c_source.

Type Managers

Another reason for ClearCase sites to define their own element types is to
handle different physical or logical file formats. Each element type has an
associated suite of programs, its type manager, which handles the task of
accessing the element’s versions in a VOB storage pool. For example, the
type manager text_file_delta implements the efficient storage of
version-to-version changes as deltas in a single, structured data container file.

A user-defined element type can have its own, user-supplied type manager
suite. For example:

46

Chapter 2: Version Control - ClearCase VOBs

• A type manager for elements of type bitmap might compute incremental
differences between versions of a bitmap file, and store all the versions
in a single, structured data container file.

• A type manager for elements of type frame_file might use special
routines to compare two versions of a FrameMaker® document.

• A type manager for elements of type manual_page might compare two
versions of a manual page source file by first formatting them with the
standard nroff program.

Version Control of Links

Most implementations of UNIX support two kinds of links:

• A hard link is a directory entry that provides an alternative name for an
existing file. The file’s “original” name and all its additional hard links
are completely equivalent.

• A symbolic link is a directory entry whose contents is a character string
that specifies a full or relative pathname. The link acts as a pointer to a
file or directory (or another symbolic link). Many UNIX functions and
commands “chase” this pointer: a reference to a symbolic link becomes
a reference to the object at the full or partial pathname specified by the
link.

As counterparts to standard UNIX links, ClearCase supports VOB hard links
and VOB symbolic links:

• A VOB hard link is a directory entry that provides an additional name
for an existing element in the same VOB.

• A VOB symbolic link is an object whose contents is a character string that
specifies a pathname. The pathname can specify a location in the same
VOB, in a different VOB, or a non-VOB location.

An essential difference between these kinds of objects is that VOB symbolic
links do not have version trees (since they do not name elements).
Version-control of VOB symbolic links is accomplished through directory
versioning, as described in the next section.

Version Control of Directories

47

Version Control of Directories

Some version-control systems are good at tracking the changes to the
contents of files, but have little or no ability to handle changes to the names of
files. Name changes are a fact of life in long-lived projects. So are such
changes as creating new files, deleting obsolete files, moving a file to a
different directory, merging source files together, and completely
reorganizing a multiple-level directory structure. ClearCase addresses these
needs by providing version-control of directories.

Directory Elements

Each version of a ClearCase directory element is analogous to a standard
UNIX directory:

• A UNIX directory is a list of names, each of which points (through an
inode number) to a file system object — file, directory, and so on.

• A version of a ClearCase directory element is a list of names, each of
which points (through a ClearCase-internal object-ID, or OID) to a file
element, a directory element, or a VOB symbolic link (Figure 2-9).

Figure 2-9 Directory Element

In many respects, a directory element resembles a file element:

xtr.h

product.h

prd.h

vega

a_slink

file element

directory element

VOB symbolic link

version of directory
element src

file element

48

Chapter 2: Version Control - ClearCase VOBs

• It has a version tree.

• Any directory version can be accessed with a version-extended
pathname. For example, /vobs/vega/src@@/main/3 references a particular
version of directory element src.

• A ClearCase view selects a particular version of each directory element.
The selected versions of all directory elements in a VOB constitute a
namespace; different views can instantiate different namespaces.

Figure 2-10 shows the critical difference: each version of a file element is a
regular file; each version of a directory element is a list of element and VOB
symbolic link names.

Accessing Files through Directory Versions

A version of a file element is accessed by first traversing a hierarchy of
directory versions. Accessing a particular version of element
/vobs/vega/src/util.c involves:

• accessing some version of /vobs/vega (the VOB’s top-level or root
directory)

• accessing a version of directory element src

• accessing the desired version of util.c

Although directory versions are essential for managing long-lived projects,
users need not think about them on a day-to-day basis. ClearCase’s
transparency feature, discussed for file elements in “Letting the View Select
Versions” on page 35, works for directory elements, also. Thus, a view
would resolve the standard pathname /vobs/vega/src/util.c automatically by
selecting a version of directory vega, a version of directory src, and a version
of file util.c. (For more, see “Transparency and Its Alternatives” on page 70.)

Directory Elements

49

Figure 2-10 File Element vs. Directory Element

1

2

0

main() {
 printf("Hello there, world!\n");
}

int main() {
 printf("Hello, world!\n");
 return 0;
}

cat hello.c@@/main/1

cat hello.c@@/main/2

1

2

0
Makefile
hello.c

Makefile
hello.c
hello.h

ls src@@/main/1

ls src.c@@/main/2

hello.c

src

directory element: versions are directories, and can be processed with
standard directory-manipulation commands

each version of a
directory element
catalogs names of
elements and VOB
symbolic links

file element: versions contain text, and can be processed with
standard text-manipulation commands

51

Chapter 3

3. ClearCase Meta-Data

Each ClearCase VOB stores a variety of information related to, but distinct
from, the contents of file system objects. This information is termed
meta-data.

Operating systems also support certain kinds of meta-data. For example, a
file’s time-modified stamp is information pertaining to the file that is not
actually in the file.

Meta-Data: Records and Annotations

As users enter ClearCase commands, meta-data records are created
automatically. These records include “who, what, when, where, and why”
information regarding such operations as:

• creation of new elements, and new versions of existing elements

• creation of user-defined annotations

• software builds

In particular, the record of a software build — a configuration record —
includes a “bill of materials”, listing (along with other information) exactly
which versions of source elements were used. This provides both complete
build auditing and guaranteed rebuildability.

52

Chapter 3: ClearCase Meta-Data

Users can also create meta-data annotations explicitly, attaching them to file
system objects. A user-defined annotation might indicate:

• ... that a particular version of an element was used in Release 4.31

• ... that the benchmark score on a particular executable was 19.3

• ... that two elements in different directories need to be kept
synchronized

Storage in the VOB Database

A VOB’s meta-data is stored in its VOB database, within the VOB storage
directory. ClearCase includes commands for listing (and in some cases
comparing) the contents of previously created meta-data records
(Figure 3-1).

Figure 3-1 Meta-Data: ClearCase-Generated Records

VOB
database

VOBs

create meta-data records
checkin, checkout, clearmake, ...

list, compare meta-data records
lshistory, lscheckout, catcr, ...

VOB
database

User-Defined Meta-Data

53

Users can access file system objects through their meta-data. This makes it
possible (and easy) to define, reproduce, and maintain configurations of file
system objects. For example, “all the versions labeled REL4.31” might
constitute the configuration of files that was used to build a particular
product release.

Meta-data also plays a fundamental role in ClearCase’s tools for
implementing development policies and procedures. For example, a
project’s source files might be partitioned into several classes using
meta-data annotations. Then, different development policies might be
applied to each class of source file.

User-Defined Meta-Data

ClearCase supports numerous kinds of user-defined meta-data, all of which
share the same implementation scheme:

1. Some user (typically, an administrator or project leader) defines a
meta-data item for use within a particular VOB, by creating a type object
in that VOB.

2. Thereafter, users can create instances of the type object. This is typically
described as “attaching”, “assigning”, or “instancing” the meta-data; it
creates a pointer in some VOB object, referencing the type object.1

For example, Figure 3-2 illustrates the mechanism by which a version label
is attached to a version object.

1 In some cases, instancing a type object does more than just annotate an existing object — it creates an entirely
new object, to which additional meta-data annotations can be attached.

54

Chapter 3: ClearCase Meta-Data

Figure 3-2 Attaching Meta-Data to a VOB Object

The following sections briefly describe the several kinds of user-defined
meta-data. Included are cross-references to discussions, in other chapters, of
how users and administrators employ these mechanisms.

Version Labels / Label Types

A mnemonic identifier called a version label can be attached to any version of
an element. A version label (for example, REL3.1.5) can often be used instead
of the system-assigned version-ID (for example, /main/12) to specify a
particular version of an element.

As Figure 3-3 indicates, the same version label can be used in many
elements. It is also true that multiple labels can be assigned to the same
version; for example, the same version of a rarely-modified element might
“accumulate” many labels: REL3.0, REL3.1, REL3.1.5, and so on.

version object

/main/7

label type object

version label

create label type object
Step 1

create instance of label type:
“attach version label REL3

 to version /main/7 ”

Step 2

REL3

User-Defined Meta-Data

55

Like branches, version labels play a pivotal role in organizing and describing
the development environment. A release engineer might assign version
label REL3.1.5 to the set of source versions used in the build of a particular
release. At any subsequent point, this configuration of versions can be
referenced in a variety of contexts as “all the versions labeled REL3.1.5” (the
shaded versions in Figure 3-3).

Figure 3-3 Configuration of Versions Selected by Version Label

As illustrated in Figure 3-2, a version label is an instance of a label type object.

Attributes / Attribute Types

An attribute is a user-defined annotation in the form of a name/value pair.
Attributes can be attached to many kinds of objects (whereas version labels
can be attached only to versions). Following are some examples of attributes:

REL3.1.5

REL3.1.5

REL3.1.5

REL3.1.5

REL3.1.5

56

Chapter 3: ClearCase Meta-Data

Attributes have a multitude of applications, including:

• Bug tracking — Each version involved in the fix for Bug #8987 might be
assigned the attribute BugNumber/8987.

• Quality control — Every version of a module might be assigned a
CodeQuality attribute, with values between 1 (worst) and 10 (best).
Every element might be assigned a TestProc attribute, whose value
names a corresponding test procedure.

• Requirements tracing — Attributes can be attached to the hyperlinks
that implement requirements tracing, to provide additional information
about the relationship. (See “Hyperlinks / Hyperlink Types” on
page 57.)

An attribute is an instance of an attribute type object (Figure 3-4).

Name Kind of Value Example

QAed string “Yes”

CodeQuality integer 3

QAedBy string "george"

ECOnum integer 8987

Benchmark real (floating point) 34.1

LastQAed time 4-Apr.08:45

User-Defined Meta-Data

57

Figure 3-4 Attribute and Attribute Type

Hyperlinks / Hyperlink Types

A hyperlink is a user-defined logical arrow that connects two elements,
branches, versions, or VOB symbolic links. The objects can be in the same
VOB, or in different VOBs. Either end of a hyperlink can be annotated with
a text string. Figure 3-5 illustrates a common application of hyperlinks,
requirements tracing.

attribute type object

object to which attribute
is attached (element,
branch, version, ...)

attribute

create attribute type object
Step 1

create instance of attribute type:
‘attach attribute QAedBy with

value "george" to object’

Step 2

QAedBy

"george"

58

Chapter 3: ClearCase Meta-Data

Figure 3-5 Hyperlink for Requirements Tracing

In this example, the version of a source module that implements a new
algorithm is logically connected by a DesignFor hyperlink to the version of a
design document that describes the algorithm. Subsequent versions of both
elements implicitly inherit the connection between the versions that are
linked explicitly.

Some additional examples:

• Informal dependencies — A set of hyperlinks defines a “network” of
elements that must be modified as a group, even though there are no
source-code dependencies among them. A hyperlink connects a source
file element that defines run-time error messages to a document file
element that contains a user manual’s “Error Messages Appendix”.

• Merge arrows — ClearCase itself uses a hyperlink to indicate that two
versions of an element have had their contents merged.

DesignFor

source module design document

hyperlink

User-Defined Meta-Data

59

Hyperlinks as Objects

A hyperlink is an instance of a hyperlink type object (Figure 3-6). Each
hyperlink is also a VOB object in its own right, with a unique hyperlink-ID;
certain ClearCase commands accept names of hyperlinks in much the same
way as they accept file system pathnames:

% cleartool describe util.c (describe file system object)
version "util.c@@/main/4"

created 10-Dec-93.18:29:11 by (jjp.users@phobos)
element type: text_file

predecessor version: /main/3
Labels:
REL3

% cleartool describe Merge@277 (describe hyperlink object)
hyperlink "Merge@277@/usr/hw"

created 10-Dec-93.17:50:54 by akp.dvt@neptune
Merge@277@/usr/hw

/usr/hw/src/util.c@@/main/rel2_bugfix/1
-> /usr/hw/src/util.c@@/main/3

60

Chapter 3: ClearCase Meta-Data

Figure 3-6 Hyperlink, Hyperlink Type, and Hyperlink-ID

type:

hyperlink type object

DesignFor

“from” object:

“to” object:

“from” and “to” objects
can be in same VOB or

in different VOBs

hyperlink object

DesignFor@277@/vobs/monet

name of
hyperlink type

separator character

numeric
suffix

VOB in which
hyperlink object resides

create hyperlink type object
Step 1

create hyperlink as instance
of hyperlink type, referencing

“from” and “to” objects

Step 2

Hyperlink-ID

User-Defined Meta-Data

61

Triggers and Trigger Types

A trigger is a “monitor” that tracks development work. When a
user-specified ClearCase operation is performed, the trigger fires
automatically, executing one or more user-specified trigger actions. Triggers
can help document the development process, improve communications
within the development group, and implement process-management
policies. For example, a trigger might:

• send mail to a development manager and/or technical writer when a
new version of file element cmd_parser.c is created

• send mail to all users when any header (.h) file is modified

• send mail to a project manager when a new branch is created in any
element within directory tree /vobs/vega

• attach an attribute to a new version of any source file, indicating the
ECO number of the project for which the change was made

• perform a lint(1) check (and require that it succeed) before allowing
checkin of a file of type c_source

• require that any new branch type created by a user include the user’s
login name

A trigger is an instance of a trigger type object. Triggers can be placed on
several kinds of objects:

• Individual elements — A trigger attached to an element fires each time
a ClearCase command operates on the element.

• All elements — A global trigger type is implicitly attached to all the
elements in a VOB, both current and future.

• Individual type objects — A trigger attached to a type object fires
whenever the object is used or modified. For example, attaching a
version label to any version of any element would fire a trigger that is
attached to the corresponding label type.

A trigger can be fine-tuned, so that it fires only on certain ClearCase
operations, or when certain kinds of meta-data are involved. For more on the
design and use of triggers, see Chapter 6, “ClearCase Process Control.”

62

Chapter 3: ClearCase Meta-Data

Elements, Branches, and Their Types

Elements and branches were introduced in the discussion of ClearCase
version-control, in Chapter 3, “ClearCase Meta-Data.” There, we stated that
“each element has an element type”. Now, we can refine that statement:

“each element is an instance of an element type”

That is, a (predefined or user-defined) element type object must first exist;
then, users can create one or more element objects as instances of the type.
Similarly, each branch is a VOB object, created as an instance of an existing
branch type object.

Thus, elements and branches are implemented in the VOB database as
instances of type objects, in exactly the same way as version labels, attributes,
hyperlinks, and triggers.

ClearCase-Generated Meta-Data

Many ClearCase commands automatically chronicle their work by writing
records to one or more VOB databases. Users can examine these records to
determine what development work has taken place. clearmake, the ClearCase
build utility, implements a build-avoidance scheme that uses records created
by previous builds.

Event Records

Each ClearCase command that makes a change in a VOB creates an event
record that describes the change, including “who, what, when, and where”
information. The event record is permanently1 stored in the VOB database,
and is logically associated with the particular VOB object that was changed
by the command.

1 An event record is deleted when its associated object is deleted. ClearCase includes a vob_scrubber utility that
deletes unwanted event records, enabling administrators to inhibit unwarranted VOB database growth.

ClearCase-Generated Meta-Data

63

For example, when the checkin command creates a new version, it also writes
a create version event record to the VOB-fmt database:

27-Jul.15:11 akp create version "tb004.doc@@/main/45" "gordon’s corrections"

ClearCase includes a simple report-writing facility, which can be used to
extract certain information from a selected set of event records. For example,
the following report interleaves information drawn from the event records
of a set of elements specified with a wildcard (cmd_*.c), using a custom
format (-fmt option):

% cleartool lshistory -fmt "%Sd %e %n\n" cmd_*.c
24-Mar-94 checkout version cmd_protect.c
24-Mar-94 create version cmd_utl.c@@/main/multisite_v1/5
24-Mar-94 checkout version cmd_list.c
24-Mar-94 create version cmd_list.c@@/main/ibm_port/0
24-Mar-94 create branch cmd_list.c@@/main/ibm_port
23-Mar-94 destroy sub-branch "david_work" of branch cmd_pool.c@@/main
22-Mar-94 create version cmd_registry.c@@/main/16
22-Mar-94 create version cmd_view.c@@/main/138
22-Mar-94 create version cmd_utl.c@@/main/multisite_v1/4
22-Mar-94 create version cmd_utl.c@@/main/112
22-Mar-94 checkout version cmd_utl.c
21-Mar-94 create version cmd_pool.c@@/main/30
21-Mar-94 create version cmd_annotate.c@@/main/17
18-Mar-94 create version cmd_utl.c@@/main/multisite_v1/3
18-Mar-94 create version cmd_utl.c@@/main/111
17-Mar-94 create version cmd_pool.c@@/main/29
16-Mar-94 create version cmd_view.c@@/main/137
16-Mar-94 create version cmd_findmerge.c@@/main/23
16-Mar-94 create version cmd_findmerge.c@@/main/22
16-Mar-94 create version cmd_find.c@@/main/38
14-Mar-94 create version cmd_registry.c@@/main/15
14-Mar-94 create version cmd_findmerge.c@@/main/21
14-Mar-94 destroy sub-branch "akp_tmp" of branch cmd_view.c@@/main
14-Mar-94 create version cmd_registry.c@@/main/akp_tmp/1
11-Mar-94 create version cmd_findmerge.c@@/main/20

64

Chapter 3: ClearCase Meta-Data

Configuration Records

When the ClearCase build utility clearmake executes a build script, it creates
a configuration record (CR) — the “bill of materials” for that particular
execution of the build script. Like an event record, a CR contains “who,
what, when, and where” information. It also shows how the file was built,
by listing versions of source elements used, build options, makefile macros,
the build script, and more. The CR is logically associated with the file(s)
created by the build script, which are termed derived objects (DOs).

ClearCase includes tools for displaying and comparing CRs, through their
associated DOs:

% cleartool catcr hello.o
Target hello.o built on host "neptune" by akp.user
Reference Time 19-Nov-93.19:30:12,
this audit started 19-Nov-93.19:30:13
View was neptune:/home/akp/akp.vws
Initial working directory was neptune:/usr/src

MFS objects:

/usr/src/hello.c@@/main/4 <19-Nov-93.19:30:05>
/usr/src/hello.h@@/main/2 <19-Nov-93.19:30:07>
/usr/src/hello.o@@19-Mov.19:30.364

Build Script:

 cc -c hello.c

For a full description of configuration records and derived objects, see
Chapter 5, “Building Software with ClearCase.”

The ClearCase Query Language

65

The ClearCase Query Language

Chapter 2, “Version Control - ClearCase VOBs” introduced extended naming,
a method for accessing version-controlled data. ClearCase also has a more
general query facility, which locates objects using their associated meta-data.
Queries can be used in many different contexts to locate one or more
elements, branches, or versions. For example:

• A view is typically configured in terms of particular branch names and
version labels.

• A quality-assurance engineer might use queries to track source versions
that have achieved a particular level of coding excellence, as indicated
by the value of their CodeQuality attribute.

• A user might use a query on CoordinateWith hyperlinks to determine
which elements in the current source tree must be kept synchronized
with elements in another tree.

Following are some examples of ClearCase queries. Note that queries can
involve both ClearCase-generated and user-defined meta-data:

created_by(akp)

locates versions that were created by user akp

created_by(drp) && created_since(yesterday)

locates versions that were created recently by user drp

lbtype(REL1) || lbtype(REL1.01)

locates versions that have been labeled either REL1 or REL1.01

merge(REL3, /main/rel2_bugfix)

locates elements for which a merge has been performed, incorporating data
from the version labeled REL3 into a version on the rel2_bugfix branch. This
operation is recorded in the VOB database by a hyperlink of type Merge.

BenchMk<45 && (! trtype(bench_trigger))

locates versions to which the BenchMk attribute has been attached with a
value less than 45, and to which a trigger named bench_trigger has not been
attached.

67

Chapter 4

4. ClearCase Views

This chapter describes ClearCase’s view facility, which implements
independent, user-configurable workspaces for software development.

Requirements for a Development Workspace

Long-lived development projects typically involve many users, each
working with tens, hundreds, or thousands of source files. The users work
at different rates, and on different tasks: new coding for the next release;
fixing bugs in one or more old releases; porting to new platforms; and so on.

Each user needs a certain set of sources with which to work. Different tasks
(for example, bugfixing vs. new development) require different versions of
the sources — that is, different configurations of the source tree(s).

Moreover, the user’s workspace needs to be isolated, for purposes of editing,
compiling, testing, and debugging. Ideally, the isolation should be relative,
not absolute:

• Others should be able to track the user’s work, and selectively integrate
it into their own work.

• Conversely, others should be able to shut out (until a subsequent
integration period) those changes that prove destabilizing to their own
work.

Figure 4-1 illustrates such a development workspace.

68

Chapter 4: ClearCase Views

Figure 4-1 Requirements for a Development Workspace

ClearCase Development Workspaces: Views

ClearCase supports the creation of any number of independent views. Each
view is a flexible, resource-conservative workspace that combines these
services:

source-file changes
made by other users

reusable files
created by
software

builds

local scratch files,
which other users

should not see

user’s
workspace

selected set of source
versions define a

“configuration” of the
user’s workspace

source configuration

selective use of source data
controls which changes made by

other users are visible

managing input data
selective exporting of data from

private workspace ensures that work
performed here can only help, never

hinder, other users’ work

managing output data

repository of
source versions

ClearCase Development Workspaces: Views

69

• Access to permanent, shared storage — A view accesses the correct set
of source versions for the task at hand (bugfix, port to a new
architecture, new development, and so on). It automatically selects a
particular version of each ClearCase element, according to
user-specified rules. Together, a “matched set” of versions constitutes a
particular configuration of the central data repository.

• Private storage — A view provides an isolated workspace with private
storage, enabling individual users or small groups to work
independently of each other.

A view can be completely private to an individual user, or shared among
users. A view can be accessed on a single host, or from any host in a local
area network. Views are compatible with all software development tools, not
just ClearCase’s own programs. Users working in views can use
system-supplied programs, home-grown scripts, and third-party tools to
process ClearCase data.

View Implementation and Usage

In its implementation, a view is somewhat similar to a VOB (see “VOB Data
Structures” on page 32). Each view has a view storage directory, which
contains a view database and a private storage area. Access to the physical
storage is mediated by a ClearCase server process, the view_server.

But in its usage, a view differs greatly from a VOB. As part of the central data
repository, a VOB is intended to be seen by (some or) all users. By contrast,
a view is not principally a repository; rather, it is a tool for seeing the
repository. Moreover, a view is much more likely to be private (intended for
one user) than public.

Processes and View Contexts

A process that works with ClearCase data must use a view. That is, any
reference to a location within a VOB must be interpreted in the context of
some view. Typically, a user enters a command to “set a view”, which
establishes a view context both for the current process and for any child
(subsidiary) processes created subsequently. All those processes will see a
particular configuration of the data repository.

70

Chapter 4: ClearCase Views

A user might set different views in different windows, in order to work with
two or more configurations at once. It is even possible to use multiple views
in a single command — see “View-Extended Pathnames” on page 71.

Transparency and Its Alternatives

After setting a particular view, a user can use standard pathnames to access
all ClearCase data; the view takes care of resolving the pathnames,
component by component (Figure 4-2).

Figure 4-2 View Transparency: Resolving a Pathname

The net effect is to make all VOBs appear to be standard directory trees; an
element with a complex version tree appears to be a simple file or directory.
That is, automatic version-selection by a view makes the ClearCase
versioning mechanism transparent.

/vobs/vega/src/util.c

pathname component outside all
VOBs does not involve view at all

(in this example, /vobs/vega is
VOB mount point)

1.
view selects a version of
directory element vega;

selected version catalogs
subdirectory src

1 1.
view selects a version of

directory element src;
selected version catalogs

file element util.c

2

1.
view selects version of file

element util.c

3

Transparency and Its Alternatives

71

Overriding Automatic Version-Selection

Automatic version selection by a view does not prevent users from explicitly
accessing other versions. A ClearCase extended pathname can specify any
version of any element, or the version of an element selected by some other
view.

Version-extended pathnames, introduced in “Accessing Any Version with a
Version-Extended Pathname” on page 36, specify versions by their
version-tree locations. For example:

% cat util.c@@/main/bug404/1

View-Extended Pathnames

Users can also use view-extended pathnames, which reference the particular
versions of elements selected by other views. All views are embedded in
ClearCase’s extended file name space, under a “super-root” directory, the
viewroot. In this directory, each view appears as a separate subdirectory,
named by its unique view-tag (Figure 4-3).

Figure 4-3 Viewroot Directory as a Super-Root

Through a view-extended pathname, any view can be used to access any
available VOB. Figure 4-4 shows the components of a view-extended
pathname.

view-tag-1

/view

view-tag-2 view-tag-3

viewroot directory
(super-root)

view-tags appear in
extended namespace

as subdirectories
of the viewroot

entire file system
appears under each

72

Chapter 4: ClearCase Views

Figure 4-4 View-Extended Pathname

All of the following pathnames might be used in a single command (for
example, to compare the specified versions):

util.c (version seen in current view)
/view/gamma/vobs/vega/src/util.c (version seen in view ’gamma’)
/view/akp/vobs/vega/src/util.c (version seen in view ’akp’)

Mechanics of Version-Selection

Each ClearCase VOB contains all the versions of the file system objects in a
particular source tree. Version-selection by a view is a dynamic filtering of the
contents of all available VOBs (not a static copying or linking operation). The
actual contents of a selected version remain in VOB storage; the version is
merely mapped into the view’s file name space (Figure 4-5).

/view/gamma/vobs/vega/src/util.c

viewroot
directory

view-tag of
some view

any full pathname

Mechanics of Version-Selection

73

Figure 4-5 Dynamic Version Selection by a View

The Config Spec and the View Server Process

Each view has a user-defined config spec (short for “configuration
specification”), a set of rules for selecting versions of elements. Following are
typical config spec rules, along with English translations:

element * .../maintenance/LATEST

For all file and directory elements, use the most recent version on the branch
named maintenance.

element -eltype c_file *.[ch] BETA_TEST

For all elements of element type c_file whose file name suffix is .c or .h, use
the version labeled beta_test.

file system, as
seen by any

process using
this view

the config spec
acts as a filter, selecting one version of an

element, rejecting all others

the view_server process
uses the config spec to dynamically select

(at most) one version of each element

checked- view-private file
view-private

storage

view

VOB

74

Chapter 4: ClearCase Views

Each view also has an associated server process, its view_server. Using the
config spec rules, the view_server automatically resolves (converts) each
reference to an element (foo.c) into a reference to a particular version of the
element (foo.c@@/main/4). The following steps summarize the
view_server’s procedure for resolving element names to versions
(Figure 4-6):

1. User-level software (for example, an invocation of the C compiler)
references a pathname. The ClearCase MVFS,1 which processes all
pathnames within VOBs, passes the pathname on to the appropriate
view_server process.

2. The view_server attempts to locate a version of the element that matches
the first rule in the config spec. If this fails, it proceeds to the next rule
and, if necessary, to succeeding rules until it locates a matching version.

3. When it finds a matching version, the view_server “selects” it and has
the MVFS pass a handle to that version back to the user-level software.

Figure 4-6 Using a Config Spec to Select a Version of an Element

The view_server and the MVFS use caching techniques to reduce the
computational requirements of this scheme.

1 The multiversion file system on a ClearCase client host is linked (statically or dynamically) with the operating
system kernel.

config spec rules element name

no match

no match

no match

match!
version of element

(foo.c)

(foo.c@@/main/4)

Mechanics of Version-Selection

75

Flexibility of Rule-Based Version Selection

This rule-based scheme for defining source configurations provides power
and flexibility, supporting both “broad-brush” and “fine-tuned”
approaches. The entire source environment can be configured with just a few
rules, applied to all file and directory elements. When required, fine tuning
can be implemented at the individual file or directory level.

For example, a user might discover that someone has created a new version
of a critical header file (say, base.h@@/main/17) — a change that causes the
user’s compilations to fail. A config spec rule can “roll back” the critical file
(in that user’s view) to a known “good” version:

element base.h /main/16
... or ...

element base.h /main/LATEST -time 11:30

The second alternative above illustrates use of a time rule, which can “roll
back” one, many, or all source files to a known “good” state. This is very
useful when an application compiles correctly before lunch break, but not
after.

If no version of an element matches any of the config spec’s rules, the
element is suppressed from the view. This feature can be used to configure
views that are restricted to accessing a particular subset of sources.

Open-Endedness of a View

Since the rules in a config spec typically involve pathname patterns
(wildcards) that apply to many files and/or directories, a view is
open-ended — new directories or even entire newly-mounted VOBs are
automatically incorporated into a view. There is no need to “add files to a
view” explicitly.

76

Chapter 4: ClearCase Views

Storage Efficiency of a View

Since access to shared versions is accomplished by mapping, rather than by
copying, a view is storage-efficient. For example, all views might share
version /main/3 of a rarely-changed source file. The total storage cost to the
views for accessing this version is zero — the single version they all share is
accessed from a VOB storage pool. In addition, the views can share access to
the object module built from the shared source file, through ClearCase’s
derived object sharing feature.

View-Private Storage / The Virtual Workspace

In addition to providing access to source versions, a view provides private
(isolated) storage for the files generated during software development:

• working (“checked-out”) versions of source files

• object modules and executables built with ClearCase tools

• other view-private objects — files, directories, and links created with
standard commands and tools. Examples of view-private objects
include text-editor backup files, source code excerpts, test
subdirectories, and test data files.

A view’s private storage area is typically located within a user’s home
directory on a workstation. (A view shared by a group of users might have
its private storage area located on a central file server host.) But the actual
location of the private storage area is largely irrelevant — from the user’s
standpoint, the view’s private storage is fully integrated with the selected
versions of elements, forming a virtual workspace, in which all the files appear
to be co-located in the VOB’s directories (Figure 4-7).

View-Private Storage / The Virtual Workspace

77

Figure 4-7 Virtual Workspace: View-Private Objects in VOB Directory

By extension (and as suggested by “View-Extended Pathnames” on
page 71), a set of views is a set of “parallel” virtual workspaces — each view
instantiates a variant of the complete development environment:

• Users working in different views can create files with different names
or with the same names (for example, by building the same software
system), without interfering with each other.

• Users can monitor the work taking place in other views, and can easily
examine or copy it (subject to standard security mechanisms).

• A software build in one view can reuse the object modules and
executables previously built in another view. ClearCase performs this
linking operation (termed wink-in) automatically, but only if reusing the
existing object is equivalent to rebuilding it in the current view. For
more on this topic, see Chapter 5, “Building Software with ClearCase.”

view’s config spec

view’s private storage

shared storage (VOBs)

shared VOB objects are projected
into view’s namespace:
versions of elements,

VOB symbolic and hard links

view-private objects (files,
directories, links) are overlaid onto

view’s namespace

1. Select versions 2. Add view-private objects

78

Chapter 4: ClearCase Views

View Usage Scenarios

The following sections present typical scenarios of using a view for software
development. These scenarios illustrate how views and VOBs interrelate,
and provide opportunities to see config specs “in action”, performing
version-selection.

Revising a Source File / Checkout-Edit-Checkin

The simplest ClearCase development scenario involves revising a source file
element on its main branch. (The element might also have subbranches,
being used concurrently for other development tasks.) ClearCase uses a
checkout-edit-checkin scheme to control the creation of new versions of
elements. This scheme is similar to that used by many other version-control
systems, including sccs and rcs. We track the use of this scheme to create a
new version of element util.c.

Setting a View

“Mainline” development work requires a view configured with the default
ClearCase config spec (Figure 4-8).

Figure 4-8 Default Config Spec

Accordingly, the user creates a shell process that is set to such a view (or
starts the xclearcase GUI application with the view set).

Changing to the VOB Directory

Once a view context is established, the user can work directly with any VOB,
for example, by cd’ing to the directory in which element util.c resides.

element * CHECKEDOUT (1)
element * /main/LATEST (2)

View Usage Scenarios

79

Before the Checkout

The user’s view selects a version of util.c as follows:

1. The view_server process for the view attempts to find a version of
element util.c that matches the first config spec rule. The pattern “*”
matches the file name, but the element is not checked-out. Thus, the
first rule fails to select any version.

2. The view_server attempts to find a version of util.c that matches the
second rule. Once again, the pattern “*” matches; and this time, the
version selector /main/LATEST matches, too; the most recent version
on a branch is always matched by the special version label latest. Thus,
this version of element util.c is selected to appear in the view. Any
command that processes the contents of util.c will access the version’s
read-only data container in a VOB storage pool (Figure 4-9).

Figure 4-9 Before a Checkout

% cleartool ls util.c
util.c@@/main/8 Rule: /main/LATEST

view selects /main/LATEST
version from VOB

before checkout

80

Chapter 4: ClearCase Views

Checking Out the File

The user enters a checkout command on file util.c. This creates an editable
view-private file that is a copy of the /main/LATEST version. It also creates a
checkedout “placeholder” object in the VOB database. (Figure 4-10). With this
change, element util.c now matches the first config spec rule, both the pattern
“*” and the keyword checkedout. Thus, the editable, checked-out version
appears in the view.

Figure 4-10 After a Checkout

Working With the File

The user works with the checked-out version of util.c using any available
commands, programs, and scripts. All incidental files (text-editor backup
files, cut-and-paste excerpts, and so on) are view-private files; such files
automatically appear in the view, without needing to be selected through the
config spec mechanism.

checked-out
version

% cleartool checkout -nc util.c
Checked out "util.c" from version "/main/8".
% cleartool ls util.c
util.c@@/main/CHECKEDOUT from main/8 Rule: CHECKEDOUT

(copy VOB data to create

view selects view-private file
that corresponds to

checkedout placeholder
version

after checkout

makes copy of /main/LATEST
version, and creates

checkedout placeholder version
in VOB

checkout

placeholder version

View Usage Scenarios

81

Checking In the File

The user enters a checkin command on file util.c. This creates a new, read-only
version in the VOB by copying the contents of the editable, view-private file
(and then deleting it). Now, the view reverts to using the /main/LATEST
rule to select a version of util.c (Figure 4-11); it selects the newly-created
version in the same way that it selected the predecessor version in “Before
the Checkout” on page 79.

Figure 4-11 After a Checkin

Parallel Development / Working on a Branch

ClearCase views play a pivotal role in ClearCase’s support for parallel
development. This topic was approached from a version-tree perspective in
“Requirements for a Development Workspace” on page 67. Now, we can
concentrate on how the view mechanisms work to support a
baselevel-plus-changes model.

% cleartool checkin -nc util.c
Checked in "util.c" version "/main/9".
% cleartool ls util.c
util.c@@/main/9 Rule: /main/LATEST

view selects new
/main/LATEST version

from VOB storage

after checkin

copies view-private file to VOB
storage pool, then converts

checkedout placeholder version
to new “official” version in VOB

database

checkin

82

Chapter 4: ClearCase Views

Different Views for Different Branches

Any number of branches can be created in an element’s version tree. In
general, development projects maintain their mutual independence by
creating versions on different branches. Thus, a user’s view must be
configured to see the branches for his own project. A user working on a new
port of an application might use a view that selects versions on branches
named gopher_port; a user fixing bugs might use a view that selects versions
on branches named r2_fix.

Figure 4-12 shows the config spec for a view used by a user working on the
“gopher” port, which is based on the “R2” release of the application.

Figure 4-12 Config Spec for Parallel Development

As the following analyses show, this config spec both imposes and follows
the required branching structure:

• Elements not modified for the port — Many elements will not need to
be modified at all to port the application. For such elements, Rules 1
and 2 fail to match, so the version-selection mechanism “falls through”
to Rule 3. This rule establishes the view’s baselevel set of versions: the
versions that are labeled R2.

• Beginning porting work on an element — Prior to the first time an
element is modified for the porting project, the user’s view uses Rule 3
to select the version labeled R2, as described in the preceding
paragraph. When the user enters a checkout command to modify the
element, the -mkbranch clause is invoked, creating the required
gopher_port branch at the version labeled R2, and checking out the new
branch.

element * CHECKEDOUT (1)

element * .../gopher_port/LATEST (2)

element * R2 -mkbranch gopher_port (3)

View Usage Scenarios

83

Now, Rule 1 applies, enabling the user to edit the checked-out version. When
the user enters a checkin command, version 1 is created on the new branch.

• Continuing porting work on an element — During the porting project,
the user can modify an element any number of times. All new versions
go onto the element’s gopher_port branch:

– Before checkout, Rule 2 selects the most recent version on the
branch.

– After checkout, Rule 1 selects the checked-out, editable version.

– After checkin, Rule 2 applies once again, selecting the newly-created
version on the branch.

Users can checkout two or more branches at the same time, as long as they are
working in different views.

85

Chapter 5

5. Building Software with ClearCase

ClearCase provides a software build environment closely resembling that of
the “traditional” make(1) program. make was originally developed for UNIX
systems, and has since been ported to other operating systems. When
building software systems with ClearCase-controlled data, developers can
use their hosts’ native make programs, their organization’s home-grown
shell scripts, or third-party build utilities.

ClearCase includes its own build utility, clearmake, with many features not
supported by other build programs:

• build auditing, with automatic detection of source dependencies,
including header file dependencies

• automatic creation of permanent “bill-of-materials” documentation of
the build process and its results

• sophisticated build-avoidance algorithms, guaranteeing correct results
when building in a parallel development environment

• sharing of binaries among users’ views, saving both time and disk
storage

• parallel and distributed building, applying the resources of multiple
processors and/or multiple hosts to builds of large software systems

86

Chapter 5: Building Software with ClearCase

Overview

Users perform builds (along with all other ClearCase-related work) in views.
Typically, users work in separate, private views; sometimes, a group shares
a single view — for example, during a software integration period.

As described in Chapter 4, “ClearCase Views,” each view provides a
complete environment for building software, including:

• a particular configuration of source versions

• a private workspace in which the user(s) can modify source files, and
can use build tools to create object modules, executables, and so on

As a build environment, each view is “semi-isolated” from other views.
Building software in one view can never disturb the work in another view —
even another build of the same program taking place at the same time. But a
user can examine and benefit from work previously performed in another
view. A new build automatically shares files created by past builds, when
appropriate. This saves the time and disk space involved in building new
objects that duplicate existing ones.

The user can (but need not) determine what other builds have taken place in
a directory, across all views. ClearCase includes tools for listing and
comparing past builds.

The key to this scheme is the fact that the development team’s VOBs
constitute a globally-accessible repository for files created by builds — the
same role they play for the source files that go into builds. A sharable file
produced by a software build is termed a derived object (DO). Associated with
each derived object is a configuration record (CR), which clearmake can use
during subsequent builds to decide whether or not the DO can be reused or
shared.

Figure 5-1 illustrates the ClearCase software build scheme.

Overview

87

Figure 5-1 Building Software with ClearCase: Isolation and Sharing

The next section describes the way in which ClearCase keeps track of the
objects produced by software builds. Later, in “Build Avoidance” on
page 94, we describe the mechanism that enables such objects to be shared
among views.

central repository (shared)

users’ work environments (private)

derived
object

configuration
record

derived
objectderived

object

derived
object

configuration
record VOBs

DO CRDO

View 1 View 2 View 3

1.
When originally built, derived

objects appear only in one view,
Isolated from all other views

Isolation 1.
If two (or more) views would build

identical objects, they instead
share the same object

 Sharing

88

Chapter 5: Building Software with ClearCase

Dependency Tracking - MVFS and Non-MVFS Files

During build script execution, a host’s MVFS1 (multiversion file system)
automatically audits low-level system calls performed on ClearCase data:
create, open, read, and so on. Calls involving these objects are monitored:

• versions of elements used as build input

• view-private files used as build input — for example, the checked-out
version of a file element

• files created within VOB directories during the build

Note that some of these objects are actually located in VOB storage, and
others in view storage. The view combines them into a virtual workspace,
where they all appear to be located in VOB directories. They are termed
MVFS files and MVFS directories, because they are accessed through the
MVFS.

Automatic Detection of MVFS Dependencies

Since auditing of MVFS files is completely automatic, users need not keep
track of exactly which files are being used in builds — that’s ClearCase’s job.
For example, ClearCase determines exactly which C-language source files
referenced with #include directives are used in a build. This eliminates the
need to declare such files in the makefile, and eliminates the need for
dependency-detection tools, such as makedepend.

1 Code that implements ClearCase’s multiversion file system is linked with the operating system kernel, either
statically (kernel is rebuilt when ClearCase is installed) or dynamically (at system startup time).

Derived Objects and Configuration Records

89

Tracking of Non-MVFS Files

A build can also involve files that are not accessed through VOB directories.
Such non-MVFS files are not audited automatically, but are tracked “on
request” (by being declared as dependencies in a makefile). This enables
auditing of build tools that are not stored as ClearCase elements (for
example, a C-language compiler), flag files in the user’s home directory, and
so on. Tracking information on a non-MVFS file includes its time-modified
stamp, size, and checksum.

Derived Objects and Configuration Records

When it finishes executing a build script, ClearCase records the results,
including build audit information, in the form of derived objects and
configuration records.

Derived Objects (DOs)

For each new MVFS file (pathname within a VOB) created during a build,
ClearCase creates a corresponding object in the VOB database. Together, the
file and the database object constitute a derived object, or DO.

Sibling Derived Objects

All the derived objects created by execution of a build script have equal
status, even though some of them might be explicit build targets, and others
might be created as “side effects” (for example, compiler listing files). The
term siblings describes a group of DOs created by the same script. Siblings
“travel together” — whenever a DO becomes shared among views, all its
siblings become shared, too.

Derived Object Identifiers (DO-IDs)

A derived object is automatically assigned a unique identifier, its DO-ID; this
enables users to access any derived object with an extended pathname
(Figure 5-2).

90

Chapter 5: Building Software with ClearCase

Figure 5-2 Extended Pathname of a Derived Object — DO-ID

A derived object’s DO-ID is analogous to a version’s version-ID: it is unique,
globally accessible, and view-independent; it distinguishes a particular
object in the VOB database from others that share the same file system
pathname.

As development progresses, many DOs will be created at the same
pathname, by builds performed in different views, and by rebuilds within a
given view. But no name collisions occur, because each derived object has its
own DO-ID.

For the most part, users need not be concerned with DO-IDs; they can use a
derived object’s standard pathname when working in the view where it was
built (or any other view that shares it):

• To standard software — for example, linkers and debuggers — the
standard pathname of a derived object (util.o) references the data file.

• To ClearCase commands, the same standard pathname references the
VOB database object — for example, to access the contents of the
associated configuration record.1

This is another instance of ClearCase’s transparency feature (see
“Transparency and Its Alternatives” on page 70): a standard pathname
accesses one of many different variants of a file system object. Note this
distinction, however:

1 Unlike an element’s version-ID, a derived object’s DO-ID cannot be used to access file system data.

pathname at which
object was built

extended
naming
symbol

time
stamp

hex
suffix

/usr/project/util.o@@07-May.16:09.6f8

DO-ID

Derived Objects and Configuration Records

91

• A version of an element appears in a view by virtue of having been
selected by a config spec rule.

• A particular derived object appears in a view as the result of a
ClearCase build.

Configuration Records (CRs)

For each build script it executes, clearmake creates a configuration record, or
CR, that is permanently associated with the newly-built derived objects.
Each CR documents both the “bill of materials” and the “assembly
procedure” for a set of sibling DOs.

Users can examine CRs to see a wealth of information:

• Input files — Identifiers for objects used as build input: version-IDs (for
versions of elements); DO-IDs (for derived objects created as
subtargets); timestamps (for view-private files and for each non-MVFS
file explicitly declared as a dependency in the makefile)

• Output files — The pathname and DO-ID of each derived object
created during the build (all the siblings)

• Build procedure — The text of the makefile’s build script, including
expansions of all make macros

• General data — The user who performed the build; the host used to
execute the build script; the view in which the build took place; the date
and time at which build script execution started

92

Chapter 5: Building Software with ClearCase

Operations Involving DOs and CRs

ClearCase includes commands for working with derived objects and
configuration records:

• DO listing — A user can list all the DOs created at a particular
pathname, across all views:

% cleartool lsdo -long util.o
14-Mar-94.17:50:49 Allison K. Pak (akp.users@neptune)

create derived object "util.o@@14-Mar.17:50.331"
references: 1 => neptune:/usr/akp/tut/tut.vws

14-Mar-94.17:48:40 Allison K. Pak (akp.users@neptune)
create derived object "util.o@@14-Mar.17:48.260"
references: 1 => neptune:/usr/akp/tut/fix.vws

14-Mar-94.17:45:42 Allison K. Pak (akp.users@neptune)
create derived object "util.o@@14-Mar.17:45.215"
references: 1 => neptune:/usr/akp/tut/old.vws

• CR display — A user can display the contents of an individual CR:

% cleartool catcr util.o@@14-Mar.17:48.260
Target util.o built by akp.users
Host "neptune" running HP-UX A.09.01 (9000/715)
Reference Time 14-Mar-94.17:48:35, this audit started
14-Mar-94.17:48:37
View was neptune:/usr/akp/tut/fix.vws
Initial working directory was /tmp/akp_neptune_hw/src

MVFS objects:

/tmp/akp_neptune_hw/src/hello.h@@/main/1
<20-May-93.14:46:00>
/tmp/akp_neptune_hw/src/util.c@@/main/rel2_bugfix/1
<14-Mar-94.17:48:32>
/tmp/akp_neptune_hw/src/util.o@@14-Mar.17:48.260

Variables and Options:

MKTUT_CC=cc

Build Script:

c -c util.c

Derived Objects and Configuration Records

93

ClearCase can also display an entire CR hierarchy, which mirrors the
multiple-level structure of a makefile-based build (building a top-level target
requires building of several second-level targets, which requires building of
some third-level targets, and so on).

• CR comparison — ClearCase can use CRs to compare different builds
of the same target, showing differences in how the objects were built:

% cleartool diffcr util.o@@14-Mar.17:48.260
util.o@@14-Mar.17:45.215
< Target util.o built by akp.users
> Target util.o built by akp.users
< Reference Time 14-Mar-94.17:48:35, this audit started
14-Mar-94.17:48:37
> Reference Time 14-Mar-94.17:45:33, this audit started
14-Mar-94.17:45:40
< View was neptune:/usr/akp/tut/fix.vws
[uuid 7033a691.3f8011cd.ae42.08:00:09:41:e6:03]
> View was neptune:/usr/akp/tut/old.vws
[uuid d4a3a27f.3f7f11cd.adce.08:00:09:41:e6:03]

MVFS objects:

< /tmp/akp_neptune_hw/src/util.c@@/main/rel2_bugfix/1

<14-Mar-94.17:48:32>
> /tmp/akp_neptune_hw/src/util.c@@/main/1
<20-May-93.17:05:00>

< /tmp/akp_neptune_hw/src/util.o@@14-Mar.17:48.260
> /tmp/akp_neptune_hw/src/util.o@@14-Mar.17:45.215

• Version annotation — A user can annotate some or all the versions
listed in a CR (or an entire CR hierarchy) with a particular version label
or attribute.

• View configuration — A user can configure a view to select exactly the
versions that were used to build a particular DO, or set of DOs.

• Build management — ClearCase uses DOs and CRs to implement its
build-avoidance and derived-object-sharing capabilities.

94

Chapter 5: Building Software with ClearCase

Build Avoidance

An essential aspect of makefile-based software building is avoiding
unnecessary builds. clearmake’s build-avoidance algorithm, based on the
CRs produced by build audits, is more sophisticated than that of other make
variants. The standard make timestamp-based algorithm cannot guarantee
correct results in a parallel-development environment. An object module’s
being newer than a particular version of its source file does not guarantee
that it was built using that version. In fact, reusing recently-built object
modules and executables is likely to be incorrect when a previous release of
an application is to be rebuilt from “old” sources.

clearmake’s build-avoidance algorithm does guarantee correct results.
Moreover, clearmake can avoid building a new derived object by reusing an
existing one built in any view, not just the user’s own view. Thus, a derived
object can be shared by any number of views.

Configuration Lookup and Wink-In

When requested to update a build target, clearmake first determines whether
an existing derived object in the current view qualifies for reuse. If not,
clearmake evaluates other existing derived objects that were built at the same
pathname.

The process of “qualifying” a candidate DO is termed configuration lookup. It
involves matching the DO’s configuration record against the user’s current
build configuration (Figure 5-3):

• Files — The version of an element listed in the CR must match the
version selected by the user’s view; any view-private files or non-MVFS
files listed in the CR must also match.

• Build procedure — The build script listed in the CR must match the
script that will be executed if the target is rebuilt. The scripts are
compared with all make macros expanded; thus, a match occurs only if
the same build options apply (for example, “compile for debugging”).

Build Avoidance

95

Figure 5-3 Configuration Lookup

The search ends as soon as clearmake finds a DO whose configuration exactly
matches the user’s current build configuration. In general, a configuration
lookup can have these outcomes:

• Reuse — If the DO (and its siblings) already in the user’s view match
the build configuration, clearmake simply keeps them.

• Wink-in — If another, previously-built DO matches the build
configuration, clearmake causes the DO and its siblings to appear in this
view. This operation is termed wink-in.

• Rebuild — If configuration lookup fails to find any DO that matches
the build configuration, clearmake executes the target’s build script. This
creates one or more new DOs, and a new CR.

user’s

VOB
derived
object

configuration
record

CR

DO

CR

DO
CR

DO

view’s build configuration

To qualify for reuse or wink-in,
the CR of an existing DO must match

view’s current build configuration exactly

configuration records of existing DOs

• build script in makefile
• run-time build options
• view’s configuration of

source versions

clearmake

96

Chapter 5: Building Software with ClearCase

Reuse and wink-in take place only if clearmake determines that a newly-built
derived object would be identical to the existing derived object. In general,
wink-in takes place when two or more views select some or all of the same
versions of source elements. For example, a user might create a “clone” view,
with exactly the same configuration as an existing view. Initially, the new
view sees all the sources, but contains no derived objects. Executing
clearmake causes a wink-in of many derived objects from the existing view.

Hierarchical Builds

In a hierarchical build, some objects are built and then used to build others.
clearmake performs configuration lookup separately for each target. To
ensure a consistent result, it also applies this principle: if a new object is
created, then all targets that depend on it must be rebuilt.

Build Auditing with clearaudit

Some organizations, or some individual users, may want to use ClearCase
build auditing without using the clearmake program. Others may want to
audit development activities that do not involve makefiles at all. These users
can do their work in an audited shell, a standard shell with build auditing
enabled.

For example, a technical writer might produce formatted manual page files
by running a shell script that invokes nroff(1). When the script is executed in
a shell created by clearaudit, ClearCase creates a single configuration record,
recording all the source versions used. All MVFS files read during execution
of the audited shell are listed as inputs to the “build”. All MVFS files created
become derived objects, associated with the single configuration record.

Storage of DOs and CRs

This section discusses the physical storage of derived objects (DOs) and
configuration records (CRs). As first discussed in “Derived Objects and
Configuration Records” on page 89:

Storage of DOs and CRs

97

• A derived object is a compound entity, consisting of both a data file (its
data container) and a corresponding VOB database object (which has a
unique DO-ID).

• Each derived object has an associated configuration record.

When a DO is first built, its data container and CR are placed in the private
storage area of the user’s view (Figure 5-4). When the DO becomes shared,
through wink-in, its data container and CR migrate to VOB storage. This
implements a “localize the cost” disk-space allocation scheme: the cost of a
derived object used by just one view is borne by that view; the cost of a
shared derived object is borne by the VOB, which is a shared resource.

98

Chapter 5: Building Software with ClearCase

Figure 5-4 Storage of Derived Objects and Configuration Records

clearmake Compatibility with Other make Programs

Many make utilities are available in the multiple-architecture,
multiple-vendor world of open systems. ClearCase’s clearmake utility shares
features with many of them, and has some unique features of its own.

Users can adjust clearmake’s level of compatibility with other make programs:

database
entry

VOB database

A new derived object’s
data container and CR

are both placed in a
view’s private storage

data C

CR
data

VOB database derived object

data C

database
entry CR

Unshared Derived Object

Shared Derived Object

When a derived object becomes
shared, its data container and CR

migrate to VOB storage

view

view

data
container

Parallel and Distributed Building

99

• Suppressing clearmake’s special features — Command options can
selectively turn off such features as wink-in, comparison of build
scripts, comparison of automatically-detected dependencies, and
creation of DOs and CRs. Configuration lookup can be turned off
altogether, so that the standard timestamp-based algorithm is used for
build avoidance.

• Enabling features of other make programs — clearmake has several
compatibility modes, which provide for partial emulations of popular
make programs, such as Gnu Make and Sun Make.

Using Another make Instead of clearmake

Users can achieve absolute compatibility with other make programs by
actually using those programs to perform builds. But in a build with a
“standard” make, there is no build auditing, no configuration lookup, and no
sharing of DOs. The MVFS files created by the build are simply view-private
files, not derived objects (unless the make program is executed in a clearaudit
shell).

Parallel and Distributed Building

clearmake includes support for parallel building (concurrent execution of a set
of build scripts), and for distributed building (use of other hosts to execute
build scripts). A command option specifies the number of hosts to use;
hostnames to use are read from a build hosts file (Figure 5-5).

100

Chapter 5: Building Software with ClearCase

Figure 5-5 Parallel and Distributed Building

For example, a user might perform a three-way build, all of whose processes
execute on a single multiprocessor compute server; an overnight build
might be distributed across all the workstations in the local network.

The Parallel Build Procedure

Before starting a parallel build, clearmake considers each target, determining
whether an existing DO can be reused, or an actual build is required. Then,
it organizes all the actual build work into a hierarchical master schedule.

clearmake then dispatches the build scripts to some or all the hosts listed in
the build hosts file. It uses a dynamic load-balancing algorithm that makes
best use of the available hosts, preferring lightly-loaded hosts to ones that
are relatively busy. Access to a “build server” host can be restricted to
particular times, to particular users working on particular remote hosts, and
so on.

build hosts file

clearmake

abe

abe
abe

clearmake program on user’s host dispatches build scripts
to audited build executor (abe) on build server hosts

user’s host

build server hosts

Building on a Non-ClearCase Host

101

Execution of build scripts is managed on each remote host by the ClearCase
audited build executor (abe), which is invoked through standard remote-shell
facilities.

Building on a Non-ClearCase Host

Many organizations develop multiple variants of their products, targeted at
different platforms. But ClearCase may not currently be available for some
of the platforms. How, then, can users build all the required product
variants?

One solution is cross-development — for example, perform a build on a SunOS
host that produces executables for the unsupported host. ClearCase
provides another solution — hosts on which ClearCase is not installed can
still access ClearCase data, using standard network file-sharing services
(such as NFS). This capability is termed non-ClearCase access.

Non-ClearCase access takes advantage of view transparency. Through
automatic version-selection, a view makes any VOB appear to be a standard
directory tree. Any such “VOB image” can be “exported” to a non-ClearCase
host (Figure 5-6).

Figure 5-6 Non-ClearCase Access

VOB-tag

/view

view-tag

ClearCase host non-ClearCase host

ClearCase host exports
VOB through

view-extended pathname

Step 1

Non-ClearCase host mounts
“VOB image”, as seen

through view

Step 2

102

Chapter 5: Building Software with ClearCase

Users on the non-ClearCase host can perform builds within these “VOB
image” directory trees, using native make utilities or other local build tools.
The object modules and executables produced by such builds are stored in
the view that instantiates the VOB image(s).

Limitations of Non-ClearCase Access

Since ClearCase software is not running on a non-ClearCase host,
non-ClearCase access has some limitations. In many cases, there are simple
workarounds to the limitations.

• ClearCase build auditing, configuration lookup, and wink-in are not
performed during builds on such hosts.

• Files produced by such builds are not derived objects, and have no
configuration records. (Users can employ remote-shell techniques to
overcome this limitation, so that the files built on a non-ClearCase host
do become derived objects.)

• Users cannot execute ClearCase development commands, such as
checkout and checkin, on non-ClearCase hosts. (But they can probably
remote-login to a ClearCase host for such purposes.)

• Users cannot change the VOB image, by reconfiguring the view, from
non-ClearCase hosts. (Again, a remote-login capability addresses this
issue.)

Derived Objects as Versions of Elements

A typical software system is constructed hierarchically. For example,
executables are built only after programming libraries have been built. With
ClearCase, stable versions of libraries and other subtargets can be stored as
versions of elements. At build time, the subtarget can be used essentially as
a source file, instead of (potentially) being rebuilt. Derived objects that have
become versions of elements are termed DO versions.

A development group can use DO versions to make its “product” (for
example, a library) available to other groups. Typically, the group establishes
a “release area” in a separate VOB. For example:

Derived Objects as Versions of Elements

103

• A library is built by its development group in one location — perhaps
/vobs/monet/lib/libmonet.a.

• The group periodically “releases” the library by creating a new version
of a publicly-accessible element — perhaps /vobs/publib/libmonet.a.

Product Releases

It is easy to generalize the idea of maintaining a development release area to
maintaining a product release area. For example, a Release Engineering
group might maintain one or more “release tree” VOBs. The directory
structure of the tree(s) mirrors the hierarchy of files to be created on the
release medium. (Since a release tree involves directory elements, it is easy
to change its structure from release to release.) A release tree might be used
to organize “Release 2.4.3” as follows:

• When an executable or other file is ready to be released, a release
engineer checks it in as a version of an element in the release tree.

• An appropriate version label (for example, REL2.4.3) is attached to that
version, either manually by the engineer or automatically with a
trigger.

• When all files to be shipped have been released in this way, a release
engineer configures a view to select only versions with that version
label. As seen through this view, the release tree contains exactly the set
of files to be released.

• To cut a release tape, the engineer issues a command to copy the
appropriately configured release tree.

105

Chapter 6

6. ClearCase Process Control

Software development policies and procedures differ widely from
organization to organization, but share a common goal: improving the
quality and time-to-market of the software under development. This chapter
discusses ClearCase’s process and policy control mechanisms, which are
useful in activities that parallel the development process, such as quality
assurance and ECO (“engineering change order”) administration.

ClearCase process control tools enable:

• monitoring of the entire development process

• enforcement of development policies — controlling who can make
changes; controlling how and where changes can be made

• automated communications, targeted as required at individual users,
development groups, and managers

• organization and cross-referencing of all development data: source
code, memos, design proposals, technical manuals, and so on

Information Capture and Retrieval

Reliable logging of information concerning development activities plays a
fundamental role in any process-control scheme. ClearCase provides both
automatic and user-controlled facilities for capturing such information. It
also provides simple commands for retrieving the information, along with
extensions for creating sophisticated reports (Figure 6-1).

106

Chapter 6: ClearCase Process Control

Figure 6-1 Information Capture and Retrieval

Information Retrieval

VOB database

automatic user-controlled

• attributes
• hyperlinks
• triggers

• event records
• configuration

records
• merge arrows

• “list history” command
• “show/compare

configuration record”
commands

• “find objects” command
• report-writing extensions

Information Capture

Information Capture and Retrieval

107

Automatic Information Capture

When ClearCase client programs make changes to the development
environment, they automatically store records in VOB databases. For
example:

• When a user checks out a file element in order to edit it (and ultimately,
create a new version of it), cleartool automatically stores a checkout
version event record in the element’s VOB. This event record is
accessible to all users (and managers), through the “list checkouts” or
“list history” command.

• When a release engineer revises a source configuration by moving the
version label R1.3_FINAL from one version of an element to another,
two event records are automatically stored, and can be viewed with the
“list history” command:

27-Oct.11:30 drp remove label "R1.3_FINAL" from version "f2@@/main/1"
"Moved label "R1.3_FINAL" to version "/main/34"."

27-Oct.11:30 drp make label "R1.3_FINAL" on version "f2@@/main/2"
"Moved label "R1.3_FINAL" from version "/main/33"."

• The ClearCase build utility, clearmake, automatically creates
configuration records (CRs) that document software builds, as described
in Chapter 5, “Building Software with ClearCase.” The “show
configuration record” command retrieves and lists a CR; it has many
filtering and selection options to enable precise information retrieval.
For example, a command can list the versions of all header files used in
the compilation of object module util.o in a particular build of
executable hello.

• Management of parallel development environments is made possible
by the automatic recording of merges. Whenever a user integrates the
work stored on a subbranch of an element back into the main branch (or
performs a merge from the main branch “outward”), a merge arrow is
created in the element’s VOB database, logically connecting the merged
versions. The presence (or absence) of merge arrows enables a project
leader to determine exactly what work is required to integrate all of a
project’s branch-resident work back into the main line of development.

108

Chapter 6: ClearCase Process Control

User-Controlled Information Capture

The meta-data annotations introduced in Chapter 3, “ClearCase Meta-Data”
can be used to record process-control information in VOB databases.
Annotations can be attached to objects manually, with commands such as
“make attribute”. Alternatively, scripts that include such commands can be
invoked automatically when certain ClearCase operations take place. For
more on automatically-invoked procedures, see “Triggers” on page 113.

Meta-data annotations include:

• Version labels — Version labels record development milestones:
baselevels, major releases, and so on. In addition to playing a pivotal
role in organizing development activities, version labels make it easy to
answer fundamental process-control questions, such as “What version
of that file went into the last release?”.

• Attributes — Attributes (name/value pairs) can be applied to elements,
branches, and versions. Attributes can record process-control metrics
commonly applied to source code modules, such as code quality and
comment density.

Attributes can also be used to define groups of versions involved in the same
task. For example, ClearCase’s integrations with third-party bug-tracking
systems place attributes on versions created to fix bugs; the attribute’s value
indicates the associated bug report.

• Hyperlinks — Objects can be connected with hyperlinks to implement
requirements tracing. For a relatively loose implementation, an element
containing source code might be hyperlinked to the element containing
its functional specification document (Figure 6-2).

For a tighter implementation, individual versions of the source module
might be hyperlinked to the corresponding versions of the functional
specification, as they both evolve. Hyperlink inheritance makes this a practical
alternative to establishing links at the element level: as one or both elements
evolve, the newly-created versions effectively “inherit” the closest hyperlink
involving their direct ancestors (Figure 6-2).

Information Capture and Retrieval

109

Figure 6-2 Hyperlinks / Hyperlink Inheritance

(Merge arrows, discussed in “Automatic Information Capture” on page 107,
are implemented as version-to-version hyperlinks.)

implementation.c design.doc

implemented with
element-to-element

hyperlinks

“loose” hyperlinking

implemented with
version-to-version

hyperlinks

“tight” hyperlinking

version-to-version hyperlink
connecting ancestors effectively

connects descendants, also

hyperlink inheritance

110

Chapter 6: ClearCase Process Control

Information Retrieval

The preceding sections have mentioned ClearCase commands that retrieve
event records and configuration records information from VOB databases.
There is also a describe command, which lists the version labels, attributes,
and/or hyperlinks attached to a particular object. For example, this
command reveals inherited hyperlinks of a particular version:

% cleartool describe -ihlink DesignDoc hello.c@@/main/2
hello.c@@/main/2
Inherited hyperlinks: DesignDoc@366@/usr/hw
/usr/hw/src/hello.c@@/main/1 ->
/usr/hw/src/hello_dsn.doc@@/main/1

ClearCase also includes a query language, which locates objects using their
meta-data. Following are some applications of the query facility to process
control:

• A quality-assurance engineer uses a query on the CodeQuality attribute
to determine which source versions fail to achieve a desired level.

• A development project leader determines which elements have already
had their gopher_port version merged into the rel2_bugfix branch.

• A group leader generates a list of all versions created by user akp, or
perhaps all versions created by akp in the last month.

The query_language manual page provides a complete description of this
facility.

Access Control

Any process-control scheme requires an access control component: limiting
the use of individual data objects to particular users or groups, and
restricting the use of specific commands to authorized individuals. This
section discusses ClearCase mechanisms for controlling users’ access to file
system data and to configuration-management data structures (Figure 6-3).
See “Triggers” on page 113 for a discussion of the mechanisms that restrict
command usage.

Access Control

111

Figure 6-3 Access Control Schemes

Access Permissions

Access to file system objects is governed by a scheme that closely resembles
the standard UNIX user/group/others permissions model. Administrators can
design development environments that are both secure and flexible. For
example, a VOB can be “opened up” to users in several groups, without
having to grant access rights to the “entire world” (others).

All file system objects managed by ClearCase have access permissions,
which can be listed with a standard operating system command:

% ls -l util.c
-r--r--r-- 1 drp dvt 511 Feb 28 12:28 util.c

The standard UNIX meanings of these permissions apply: the object is
owned by a particular user, and belongs to a particular group; three kinds of
access (“read”, “write”, and “execute”) are either granted or denied to the
user/owner, to members of the object’s group; and to all others. An element,
its branches, and all its versions have the same access permissions.

ClearCase uses an object’s permissions to control certain operations at the
configuration management level — for example, to determine who can
checkout an element.

VOB
database

shared file
system data

ClearCase commands

VOB view

forbid operations on certain
VOB objects, except to
specified set of users

locks on CM data structures

standard programs/applications

allow access to user data,
using standard user/group/other scheme

access permissions on file system data

private file
system data

112

Chapter 6: ClearCase Process Control

Access to Physical VOB Storage

Given a VOB’s role as a component of the permanent data repository, access
to physical VOB data storage is strictly controlled:

• Standard commands and programs cannot modify VOB storage. Users
must enter ClearCase commands to modify VOBs.

• Physical storage for a VOB is protected against “back-door” access. For
example, all files in a VOB’s storage pools belong to a privileged user,
the VOB owner, and are maintained in a read-only state.

Locks on VOB Objects

Configuration management data structures are implemented by various
objects stored in VOB databases. Whereas access permissions work primarily
at the file-system level, locks protect all kinds of objects at the VOB-database
level — elements, branches, branch types, even entire VOBs. A lock on an
individual VOB objects renders that object unchangeable by any user (except
those included on an optional exception list).

The effect of a lock can be small or large. For example, one lock might
prevent any new development on a particular branch of a particular
element; another lock might apply throughout a VOB, preventing creation of
any new element of type compressed_file, or usage of the version label RLS_1.3.

Locks are useful for implementing temporary restrictions. For example,
during an integration period, a lock on a single object — the main branch
type — prevents all users who are not on the integration team from making
any changes.

Obsolete Objects

Locks can also be used to “retire” old names and data structures that are no
longer used. For this purpose, the locked objects can be tagged as obsolete,
effectively making them invisible to most commands.

Triggers

113

Triggers

Automated user-defined procedures play an important role in process
control. Such procedures can increase the degree to which development
activities are guided, monitored, and/or controlled. For example,
automated procedures can:

• disallow an operation, in order to enforce an organization’s
development policies (“all checkins must have a comment of at least 50
characters”)

• notify users and/or managers of significant changes in the
development environment

• supplement the information automatically captured by ClearCase
commands with additional data, storing it as attributes

Automated procedures are implemented by triggers, which monitor
ClearCase operations. (Access permissions and locks “guard” objects;
triggers “guard” operations.) Performing a certain ClearCase-level
operation on a certain object causes a trigger to fire, executing one or more
user-defined procedures. The context in which a trigger fires can be defined
either broadly or narrowly, in terms of certain elements, meta-data, and
ClearCase operations. For example, the following are very broad and very
narrow contexts, respectively:

• ... whenever any element in a VOB is modified in any way

• ... when a particular attribute is used on a particular branch of a particular
element

The trigger procedure is typically a script. It can perform any analysis or test,
based on file system data, on meta-data, on other factors (such as the user’s
identity), or on any combination thereof.

Pre-Operation and Post-Operation Triggers

Perhaps the most important aspect of a trigger definition is whether it is to
fire before the ClearCase operation takes place, or after. Pre-operation triggers
control ClearCase processing; post-operation triggers supplement it
(Figure 6-4).

114

Chapter 6: ClearCase Process Control

Figure 6-4 Pre-Operation and Post-Operation Triggers

Policy Enforcement - An Example

The mechanisms described in the preceding sections constitute a powerful
“toolset”, which administrators and project leaders can use to implement
their organization’s policies. To illustrate how the mechanisms work
together, we present an example of implementing a “state transition”
process model.

user enters
a ClearCase

command

trigger defined
on this operation?

no

check exit status of
trigger procedure

failure

yes

success

 trigger fires:
procedure
executes

 trigger does not fire,
ClearCase

command proceeds

ClearCase
 operation
disallowed

user enters
a ClearCase

command

trigger definition
matches current

context?

no

yes

 trigger fires:
procedure
executes

 trigger does

ClearCase
operation
completes

pre-operation trigger post-operation trigger

ClearCase
operation
proceeds

Policy Enforcement - An Example

115

Scenario

A “final integration” task for a product release is to progress from the active
state to the frozen state to the released state:

• During the initial active state, all users will be able to modify elements,
but only on branches named rls2_integ.

• After an element enters the frozen state, only “priority 1” bugfixes will
be permitted, and only users david and sakai will be permitted to make
the fixes.

• When the task is finished, it will enter the released state. To record the
final source configuration, the version label RLS2 will be applied to the
entire source tree. To prevent possible confusion, all further work on
rls2_integ branches will be forbidden, as will further activity involving
the RLS2 label.

Implementation

ClearCase triggers, attributes, and locks all play a role in defining the state
transition model (Figure 6-5). The three states are modeled as the permitted
values of a string-valued attribute, IntegStatus, which is applied to each
rls2_integ branch created during the final integration task.

116

Chapter 6: ClearCase Process Control

Figure 6-5 State Transition Model

rls2_integ

rls2_integ

ECOnum=4611

ECOnum=4509

IntegStatus="active"

“Active” State

on checkout, view’s config spec
automatically creates new
branch for bugfixing work

1. create branch for this task

rls2_integ

trigger automatically attaches
attribute to set new branch’s

2. initialize status of branch

“Frozen” State

attributes provide interface to
bugtracking or ECO
management system

3. perform integration work

IntegStatus="frozen" administrator changes value of
attribute to "frozen"

4. change state of branch

pre-operation triggers control
who can create new bugfix

version, and for which bugs:

“is #4649 a priority-1 bug?”
“is user ‘david’ or ‘sakai’?”

5. restrict work on branch

ECOnum=4649

“Released” State

version label: RLS2.1 attach version label RLS2.1 to
final versions

7. label source base for release

administrator changes value of
attribute to "released"

6. change state of branch

prevent changes by locking
branch type rls2_integ
and label type RLS2.1

8. lock branch, label types

IntegStatus="released"

117

Glossary

abe

See audited build executor.

active

A VOB becomes active on a host when it is mounted as a file system of type
MVFS. A view becomes active on a host when it is started, which establishes
a connection between the host’s MVFS file system and the view’s
view_server process.

annotation box

Part of the xcleardiff display, showing how lines of one file differ from lines
of other files, with which it is being compared or merged.

argument

A word or quoted set of words processed by a command.

attached list

See trigger inheritance.

attribute

A meta-data annotation attached to an object, in the form of a name/value
pair. Names of attributes are specified by user-defined attribute types; values
of these attributes can be set by users.
Example: a project administrator creates an attribute type whose name is
QAed. A user then attaches the attribute QAed with the value "Yes" to
versions of several file elements.

attribute name

See attribute, attribute type.

118

Glossary

attribute type

An object that defines an attribute name for use within a VOB. It constrains the
attribute values that can be paired with the attribute name (for example,
integer in the range 1–10).

attribute value

See attribute type.

audited build executor

A process invoked through the UNIX remote-shell facility, in order to
execute one or more build scripts on behalf of a remote clearmake.

audit, audited shell

See build audit.

auto-make-branch

ClearCase’s facility, specified in a config spec rule, for automatically creating
one or more branches when a checkout is performed.

base contributor

See contributor.

bidirectional

See hyperlink.

bitmap files

Files that store bitmaps for the icons displayed by ClearCase GUI programs.

BOS file

See build options specification.

branch

An object that specifies a linear sequence of versions of an element. The entire
set of versions of an element is called a version tree; it always has a single main
branch, and may also have subbranches. Each branch is an instance of a branch
type object.

119

branch name

See branch type.

branch pathname

A sequence of branch names, starting with /main (the name of an element’s
starting branch). Example: /main/motif, /main/maintenance/bug459.

branch type

An object that defines a branch name for use within a VOB.

Broadcast Message Server

An H-P SoftBench program that passes messages among SoftBench
applications.

build

The process of invoking clearmake or clearaudit to produce one or more derived
objects. This may or may not involve actual translation of source files and
construction of binary files by compilers, linkers, text formatters, and so on.
A system build consists of a combination of actual target rebuilds and build
avoidance (reuse of existing derived objects)
In a target rebuild, clearmake executes the build script associated with a
particular target in a makefile. Each target rebuild produces derived objects
along with a configuration record, which includes an audit of the files involved
in the actual target rebuild.
In build avoidance, clearmake “produces” a derived object either by reusing the
one currently in the view, or by winking-in one that exists in another view.
The process by which clearmake decides how to produce a derived object is
called configuration lookup.

build audit

The process of recording which files and directories (and which versions of
them) are accessed (read or written) by the operating system during the
execution of one or more programs. A client host’s MVFS file system
performs an audit during execution of a ClearCase build program: clearmake,
clearaudit, or abe. When the build audit ends, the build program creates one
or more configuration records (CRs).
An audited shell is a UNIX shell process in which all file system accesses are
audited. Such a shell is created by clearaudit.

120

Glossary

build avoidance

See build.

build configuration

See configuration lookup.

build dependency

See dependency.

build host

A host used to execute build scripts during a distributed build.

build hosts file

A file that lists hosts to be used in a distributed build. The file is selected at
build time by macro or environment variable clearcase_bld_host_type.

build avoidance

The ability of clearmake to fulfill a build request by using an existing derived
object, instead of creating a new derived object by executing a build script.

build options specification

A file containing rules that specify settings of make macros, which affect the
way in which a target rebuild proceeds.

build reference time

The moment at which a top-level build session (invocation of clearmake)
begins. Versions created after this moment may be “frozen out” of the build.

build script

The set of shell commands that clearmake (or standard UNIX make) reads
from a makefile when building a particular target.

build server

A host used in a clearmake distributed build.

build server control file

A file on a build host that controls its availability as a build server.

121

build session

A top-level invocation of clearmake; during the session, recursive invocations
of clearmake or clearaudit may start subsessions.

build target

A word, typically the name of an object module or program, that can be used
as an argument in a clearmake command. The target must appear in a makefile,
where it is associated with one or more build scripts.

built-in rules

Build rules defined in a system-supplied (or ClearCase-supplied) file, which
supplement the explicit build rules in a user’s makefile (s).

bump

The taking away of a ClearCase license from a lower-priority user by a
higher-priority user.

candidate

A derived object that is being considered for wink-in or reuse during
configuration lookup.

cataloged

Names of elements and VOB symbolic links that appear in a version of a
directory element are said to be cataloged in the directory version. A derived
object is said to be cataloged (and, hence, available for reuse and wink-in) in a
particular VOB.

checked-out version

A “placeholder” object in a VOB database, created by the checkout command.
This object corresponds to the view-private file that the user edits after
checking out the element. The checked-out version of a directory element
exists only in the VOB database — there is no view-private component.

122

Glossary

checkout/checkin

The two-part process that extends a branch of an element’s version tree with a
new version. The first part of the process, checkout, expresses the user’s intent
to create a new version at the current end of a particular branch. (This is
sometimes called “checking out a branch”.) The second part, checkin,
completes the process by creating the new version.
For file elements, the checkout process creates an editable version of the file in
the view, with the same contents as the version at the end of the branch.
Typically, a user edits this file, then checks it back in.
For directory elements, the checkout process allows file elements,
(sub)directory elements, and VOB symbolic links to be created, renamed,
moved, and deleted.
Performing a checkout of a branch does not necessarily guarantee the user
the right to perform a subsequent checkin. Many users can checkout the
same branch, as long as the users are in different views. At most one of these
can be a reserved checkout, which guarantees the user’s right to checkin a new
version. An unreserved checkout affords no such guarantee. If several users
have unreserved checkouts on the same branch in different views, the first
user to perform a checkin “wins” — another user must perform a merge if he
wishes to save his checked-out version.

checkout record

The event record created by the checkout command.

cleartext file

An ASCII text file that contains a whole copy of some version of an element,
having been extracted from a data container that is in compressed format or
delta format. A ClearCase type manager creates a cleartext container the first
time it accesses the version. Subsequent reads of that version access the
cleartext file, for faster access.

cleartext pool

A VOB storage pool, used for data containers that contain cleartext.

CLI

ClearCase’s command-line interface.

123

client

The programs invoked by users: cleartool, xclearcase, clearmake, cleardiff, and
other programs located in the ClearCase bin directory.

clock skew

The discrepancies among the system clocks of several hosts.

command option

In the command-line interface (CLI), a word beginning with a hyphen (–)
that affects the meaning of a command; in the graphical user interface (GUI),
a setting in the “Options” part of a panel.

comment default

The action taken by a cleartool command when the user does not specify a
comment-related option.

compatibility mode

A clearmake execution mode, in which it emulates another make variant.

compressed_file

The ClearCase element type that uses data compression on individual
versions.

compressed_text_file

The ClearCase element type that uses both delta management and data
compression on individual versions.

configuration (of a derived object)

The information recorded in a derived object’s CR: versions of source files
used to build the object, build script, build options, and so on.

124

Glossary

config spec

A set of rules, specifying which versions of elements are to be selected by a
view. Each config spec rule selects a particular version of one or more
elements.
The default ClearCase config spec is:
element * CHECKEDOUT
element * /main/LATEST
See scope, pattern, version-selector.

configuration (of a view)

The set of versions (one version of each element) selected by a view’s config
spec.

configuration lookup

The process by which clearmake determines whether to produce a derived
object by performing a target rebuild (executing a build script) or by reusing an
existing instance of the derived object. This involves comparing the
configuration records of existing derived objects with the build configuration of
the current view: its set of source versions, the current build script that
would be executed, and the current build options.

configuration management

The discipline of tracking the individual objects and collections of objects
(and the versions thereof) that are used to build systems.

configuration record (CR)

A listing produced by a target rebuild, logically included in each derived object
created during the rebuild. A configuration record indicates exactly which
file system objects (and which specific versions of those objects) were used
by the rebuild as input data or as executable programs, and which files were
created as output. It also contains other aspects of the build configuration.
Each target rebuild typically involves the execution of a single build script,
and creates a single configuration record. If a target has subtargets that must
be rebuilt, also, a separate configuration record is created for each subtarget
rebuild.

125

configuration record hierarchy

A tree structure of configuration records, which mirrors the hierarchical
structure of targets in the makefile.

configuration rule

See config spec.

configuration specification.

See config spec.

container

See data container.

context

See view context.

contributor

One of the files or versions that supplies input to a merge. One of them is the
base contributor — the merge algorithm compares each other contributor with
the base contributor.

conversion script

A shell script by one of the ClearCase file-conversion programs — for
example, clearcvt_rcs.

CR

See configuration record.

cross-VOB hyperlink

A hyperlink that connects two objects in different VOBs. The hyperlink
always appears in a describe listing of the “from” object. It also appears in a
listing of the “to” object, unless it was created as a unidirectional hyperlink
(mkhlink -unidir). See same-VOB hyperlink.

current working directory

The context in which relative pathnames are resolved by the operating system.
This can be a location in ClearCase’s extended namespace.

126

Glossary

data container

A file (or directory) that contains the data produced by a build script. A data
container and a configuration record are the essential constituents of a
derived object.

default config spec

See config spec.

degenerate derived object

A derived object that cannot be successfully processed, because it data
container and/or associated configuration record are not available.

delta

The incremental difference (or set of differences) between two versions of a
file element. Certain type managers (for example, text_file_delta), store all
versions of an element in a single data container, as a series of deltas.

dependency

(same as for standard UNIX make) In a makefile, a word listed after the colon
(:) on the same line as a target. A source dependency of a target is a file whose
version-ID is taken into account in a configuration lookup of the target. A
build dependency is a derived object that must be built before the target is
built.

derived object (DO)

A file produced by a clearmake build or a clearaudit session. Each derived
object is associated with a configuration record produced by clearmake during
the build.

derived object storage pool

A storage pool for the data containers of a VOB’s derived objects. Only those
derived objects that are shared by two or more views are stored in these pools
— data containers of unshared derived objects are stored in view-private
storage.
The first time a derived object is winked-in to a view, the promote_server
program copies the data from the original view, creating a data container in
a derived object pool. Different pools for the same VOB can be located on
different disks, or on different machines in the local area network.

127

derived object scrubbing

The removal of data containers from derived object pools, and of derived
objects themselves from a VOB database. Periodically, ClearCase
automatically scrubs derived objects that are not referenced in any view.

derived object sharing

The ClearCase feature wherein several views can simultaneously use the
same derived object, through a mechanism resembling a UNIX hard link. See
wink-in.

derived object version

See DO version.

difference pane

A subwindow in an xcleardiff window that shows the contents of one of the
files being compared or merged.

difference section

A set of lines in a difference pane, or in cleardiff output, that differs among
the files being compared or merged.

directory element

An element whose versions are like UNIX directories — they catalog the
names of file elements, other directory elements, and VOB symbolic links.

directory version

A version of a a directory element.

distributed build

See parallel build.

DO

See derived object.

DO version

A derived object that has been checked in as a version of an element.

128

Glossary

DO-ID

A unique identifier for a derived object, including a time stamp and a
numeric suffix to guarantee uniqueness. Example: the characters beginning
with “@@” in hello.o@@12-May.19:15.232.

DSEE

The Domain Software Engineering Environment.

eclipsed

Invisible, because another object with the same name is currently selected by
the current view.

element

An object that encompasses a set of versions, organized into a version tree.

element type

A class of versioned objects. ClearCase supports predefined element types
(for example, file, text_file). Users can define additional types (for example,
c_source_file) that are refinements of the predefined types. When an element
is created, it is assigned one of the currently-defined element types.
Each user-defined element type is implemented as a separate VOB object,
created by a user command.

ellipsis

The wildcard symbol “...”. In a version-selector, it indicates zero or more
directory levels.

encapsulator

A program that packages the functionality of an external software system.

event

A ClearCase operation that is recorded by an event record in a VOB’s event
history.

event record

An item in a VOB database that contains information about an operation that
modified that VOB.

129

export view

A view used to export a VOB to a non-ClearCase acess host.

extended namespace

ClearCase’s extension of the standard UNIX pathname hierarchy. Each host
has a view-extended namespace, allowing a pathname to access VOB data
using any view that is active on that host. Each VOB has a VOB-extended
namespace, allowing a pathname to access any version of any element,
independently of (and overriding) version-selection by views. Derived objects
also have extended pathnames, which include DO-IDs. See namespace.

extended naming symbol

A symbol (by default, @@) appended to an element name or derived object
name, signaling the MVFS file system to bypass automatic version-selection
by a view.

extended pathname

A VOB-extended pathname specifies a particular location in an element’s
version tree, or a particular derived object cataloged in that VOB. If the
pathname specifies a particular version, is termed a version-extended
pathname. Examples:
foo.c@@/main/17
/usr/myproduct/bin/xtract@@/RELEASE_1
/usr/myproduct@@/main/bug403/5
A view-extended pathname accesses a file system object in the context of a
specified view. For an element, such a pathname specifies the version of the
element selected by that view’s config spec; for a view-private file or derived
object, such a pathname accesses an object in the view’s private storage area.
Examples:
/view/akp/usr/project/foo.c
/view/archive/usr/project/foo
/view/bugfix/usr/project/to_do.list

file type

The identifier returned by ClearCase file typing subsystem, through a
lookup in ClearCase-supplied and/or user-supplied magic files. File types
are used to select an element type for a new element; they are also used by
ClearCase GUI programs to select display icons.

130

Glossary

file contents

See file system data.

file element

See element.

filename pattern

See pattern.

file system configuration

The set of element versions selected by a view.

file system data

The bytes stored in a version of a file element. A file’s contents are
distinguished from its meta-data (attributes, hyperlinks, and so on).

fire a trigger

The process by which ClearCase verifies that the conditions defined in a
trigger are satisfied, and causes the associated trigger action(s) to be
performed.

flat

A non-hierarchical listing, combining information from a collection of
configuration records.

from-object

See hyperlink.

from text

A string-valued attribute attached to a hyperlink object, conceptually at its
“from” end.

full pathname

A standard operating system pathname beginning with “/”. For example,
/usr/project/foo.c is a full pathname, but /view/akp/usr/project/foo.c is a
view-extended pathname.

131

g-file

A file produced by the SCCS get command.

global element trigger type

A trigger type that is automatically associated with all elements in a VOB.

global pathname

A network-wide pathname for a ClearCase view storage directory or VOB
storage directory. Some “global” pathnames are valid only within a
particular network region.

Gnu make

A make variant distributed by the Free Software Foundation.

hard link

An additional name for a file system object, cataloged in the same directory
or in a different directory. UNIX hard links are cataloged in standard UNIX
directories; VOB hard links are cataloged in versions of directory elements.

header file

A source file whose contents are included in a program with an #include
statement.

history

Meta-data in a VOB, consisting of event records involving that VOB’s objects.
The history of a file element includes the creation event of the element itself,
the creation event of each
version of the file, the creation event of each branch, the assignment of
attributes to the element and/or its versions, the attaching of hyperlinks to
the element and/or its versions, and so on.

history mode

The state of a process whose current working directory is in the ClearCase
VOB-extended namespace (for example, hello.c@@/main).

hyperlink

A logical pointer between two objects. A hyperlink is implemented as a VOB
object; it derives its name by referencing another VOB object, a hyperlink type.

132

Glossary

A hyperlink can have a from-string and/or to-string, which are implemented
as string-valued attributes on the hyperlink object.

hyperlink browser

An xclearcase panel that enables a user to traverse hyperlinks.

hyperlink-ID

A system-generated identifier that, in conjunction with the name of the
hyperlink type, uniquely identifies a hyperlink object. Example: @391@/usr/hw.

hyperlink type

An object that defines a hyperlink name for use within a VOB.

hyperlink selector

A string that specifies a particular hyperlink. It consists of the name of a
hyperlink type object, followed by a (possibly abbreviated) hyperlink-ID.
Examples:
DesignFor@391@/usr/hw

icon

A small picture used by ClearCase GUI programs.

icon file

A file containing rules that map ClearCase file types to names of bitmap files.

inclusion list

A list of type objects, defining the scope of a trigger type.

inherit, inheritance list

See trigger inheritance.

installation host

A host of which ClearCase has been (or is about to be) installed.

133

interactive mode

The mode of cleartool usage in which the program prompts you (with
cleartool>) to enter a command, executes the command, then prompts you to
enter another one. See single-command mode.

label type

A type object that defines a version label for use within a VOB.

leaf name

The simple file name at the end of a multiple-component pathname.

license

Permission for one user to run ClearCase programs and/or use ClearCase
data, using any number of hosts in the local area network.

license database file

A file that defines a set of ClearCase licenses.

license priority

A “slot” in the scheme by which some ClearCase users can bump others,
taking their licenses.

license server

A host whose albd_server process controls access to the licenses defined in its
license database file.

link text

The text string that is the contents of a UNIX-level symbolic link or a VOB
symbolic link.

load balancing

The ClearCase facility for intelligently managing a distributed build, so as
not to overload individual hosts.

lock

A mechanism that prevents a VOB object from being modified (for file
system objects) or unreferenceable (for type objects). See obsolete.

134

Glossary

logical operator

A symbol that specifies a Boolean arithmetic operation.

lost+found

A subdirectory of a VOB’s top-level directory, to which elements are moved
if they are no longer cataloged in any version of any directory element. See
orphaned element. There is also a lost+found directory at the top level of a view
storage directory.

magic file

A file used by the ClearCase file typing subsystem to determine the type of
an existing file, or for the name of a new file.

main branch

The starting branch of an element’s version tree. The default name for this
branch is main.

make macro

A parameter in a makefile, which can be assigned a string value within the
makefile itself, in a build options spec, on the clearmake command line, or by
assuming the value of an environment variable.

makefile

A text file, read by clearmake, that associates build scripts, consisting of shell
commands (“executable commands”), with targets. Typically, executing a
build script produces one or more derived objects.
Makefiles constructed for clearmake need not include source-level
dependencies (for example, header file dependencies), but they must
include build-order dependencies (for example, that executable program
hello is built using object module hello.o.

makefile dependency

See dependency.

master conversion script

The script, created by one of the ClearCase conversion utilities, that is
explicitly executed by the user to perform the data conversion.

135

merge

The combining of the contents of two or more files into a single new file.
Typically, all the files involved are versions of a single file element. This
process may be completely automated or may require the user to resolve
conflicting changes. The merge can be recorded with a merge arrow, which is
implemented as a hyperlink of type Merge.

meta-data

Data associated with an object, supplementing the object’s file system data.
Example: The contents of a file version is a series of text characters.
User-specified meta-data annotations attached to the file version includes
version labels, attributes, and hyperlinks. ClearCase automatically maintains
other meta-data for some objects, in the form of event records and
configuration records.

method

A program that implements one of the functions of a type manager.

minor event

An event whose event record is, by default, not listed by the lshistory
command.

multiversion file system (MVFS).

A directory tree which, when activated (mounted as a file system of type
MVFS) implements a ClearCase VOB. To standard UNIX commands, a VOB
appears to contain a directory hierarchy; ClearCase commands can also
access the VOB’s meta-data.
MVFS file system also refers to the multiversion file system, a virtual file system
extension that is linked with the UNIX kernel, providing access to VOB data.

MVFS object

A file or directory whose pathname is within a VOB (that is, whose
pathname is within the directory tree beneath the top-level VOB-tag. A
non-MVFS object has a pathname that is not within a VOB.

namespace

A file/directory name hierarchy. Different views can “see” different
namespaces, because they can select different versions of directory elements.
See extended namespace.

136

Glossary

network region

A logical subset of a local area network, within which all hosts refer to VOB
storage directories and view storage directories with the same network
pathnames.

nobody

The username sometimes assigned to a remote process owned by the root
user on the local host.

non-ClearCase access

Access to ClearCase data from a host on which ClearCase has not been
installed.

non-MVFS object

See MVFS object.

notice forwarder

One of the message-passing programs in an H-P SoftBench environment.

null-ended

A hyperlink that is connected to only one object, not two.

object

An item stored in a versioned object base (VOB). This includes elements,
versions of elements, branches, derived objects, hyperlinks, locks, pools, and types.

object-ID (OID)

A ClearCase-internal identifier for an object. See UUID.

obsolete object

An object that has been locked with the lock –obsolete. By default, such objects
are not listed by commands such as lstype and lslock.

orphaned element

An element that is no longer cataloged in any version of any directory. Such
elements are moved to the lost+found directory.

137

owner

The user who owns a VOB, a view, or an individual file system object. The
user who creates an item becomes its initial owner.

parallel build

A build process in which multiple build scripts are executed concurrently. In
a distributed build, execution takes place on multiple hosts in a local area
network.

parallel development

The concurrent creation of versions on two or more branches of an element.

pathname

A sequence of directory names, perhaps ending with a simple filename. A
pathname that begins with “/”, indicating the root directory, is termed a full
pathname. Any other pathname is termed a relative pathname. See extended
pathname, namespace.

pattern

A character string that specifies one or more file and/or directory names.
Examples:
/usr/project/.../include
*.c
lib/*.[ch]
See scope, version selector, config spec.

permission

Ability to perform an operation that modifies a VOB or a file system object.

pool inheritance

The feature by which a newly-created element is assigned to the same VOB
storage pools as its parent directory element.

post-operation trigger

A trigger that fires after the associated operation.

138

Glossary

predecessor version

A version of an element that immediately precedes another version in the
element’s version tree. If version X is the predecessor of version Y, then Y is
the successor of X. If there is a chain of predecessors linking two versions, one
is called an ancestor of the other.

Figure 6-6 Version Predecessors, Successors, and Ancestors

pre-operation trigger

A trigger that fires before the associated operation, possibly cancelling the
operation itself.

principal group

The group to which a user belongs, by virtue of being listed in the password
database. A user can belong to additional groups, as well.

private storage area

The directory tree (.s) in which view-private files, directories, and links are
stored. By default, this is a subtree of the view storage directory, but
ClearCase supports creation of remote private storage areas.

private VOB-tag

See public VOB-tag.

1

5

2

3

4

0

1

2

bugs

OSF
0

1bug417

0

1

2

0

1

bug404

0

3

main

successor to
shaded version

predecessor of
shaded version

ancestor of
shaded version

139

promotion

Migration of a derived object from view storage (private) to VOB storage
(shared).

public VOB-tag

If a VOB’s VOB-tag is public, it is mounted automatically at system startup,
and it can be mounted or unmounted by any user. If a VOB’s VOB-tag is
private, only the VOB’s owner can mount the VOB. See VOB-tag password file.

query language

A collection of predicates and logical operators that allows selection of
elements, branches, and versions based on their associated meta-data. This
language can be used in config specs, in the ClearCase find command, and in
the –version option to many commands.

RCS

The Revision Control System.

record

See event record, configuration record.

reference count

The number of references to a derived object, in multiple views and,
perhaps, several times in the same view (through UNIX hard links).

reference time

See build reference time.

refinement

See supertype.

relative pathname

A pathname that does not begin with “/”.

release host

The host on which the ClearCase software is unloaded from the distribution
medium.

140

Glossary

reserve state

For a checked-out version, either “reserved” or “unreserved”. The reserve
and unreserve commands change the reserve state of a checked-out file.

reserved checkout

See checkout.

restriction list

A specification of which kinds of objects are to be associated with a trigger
type.

reuse

clearmake is said to reuse a derived object if the object already exists in a view
and a build leaves it alone.

root

The privileged “superuser” on a host.

same-VOB hyperlink

A hyperlink that connects two objects in the same VOB.

schema

The format of a database.

scheme file

A file that contains a collection of X Window System resources, which
control various aspects of GUI applications.

scope

The part of a config spec rule that restricts it to a particular kind of file system
objects. See config spec, pattern, version selector.

scrubbing

Discarding of data container files from cleartext pools and derived object
pools, performed by scrubber(1MA).

selection operator

See selection expression.

141

selection expression

An expression used by ClearCase’s file typing mechanism to match a file
system object (or just the name of one). The expression consists of selection
operators and logical operators.

set view

(noun) The view context of a process, established by using the setview
command. “Setting a view” creates a process in which all standard
pathnames are resolved in the context of a particular view. See working
directory view.

s-file

A file in which SCCS stores all versions of a versioned file.

shared derived object

A derived object that is referenced by multiple views, and whose data
container has migrated to a VOB’s derived object storage pool.

sibling

A derived object created by the same build script as another derived object.
When clearmake reuses (or winks in) a derived object, it always reuses (or
winks in) all of its siblings, too.

single-command mode

The mode of cleartool usage in which you specify the (sub)command,
options, and arguments on the shell command line, along with “cleartool”.
After executing that one (sub)command, cleartool exits and control returns
to the shell.

SoftBench

An interprocess messaging system.

source control

See version control.

source dependency

See dependency.

142

Glossary

source pool

A storage pool for the data containers that store versions of file elements.

storage pool

A source pool, derived object pool, or cleartext pool.

storage registry

A network-wide database, which records the actual storage locations of all
VOB storage directories and all view storage directories.

stranded derived object

A derived object that cannot be accessed, because the VOB directory (or the
entire VOB) in which it was created is not currently accessible, or has been
deleted.

subsession

A build session that was started while a higher-level build session was active.

subtarget

In a hierarchical build, a makefile target upon which a higher level target
depends. Subtargets must be built (or reused, or winked-in) before
higher-level targets.

subbranch

A branch of an element’s version tree other than the main branch.

successor version

See predecessor version.

supertype

An element type that is used as the basis for defining another element type
(said to be a refinement of the supertype).

tags registry

A network-wide database, which records the globally-valid access paths to
all VOB storage directories (or all view storage directories), along with the
VOB-tags (or view-tags) with which users access these data structures.

143

target, target rebuild

See build.

text_file

The ClearCase element type that uses delta management to combine all
versions of an element into a single data container. The associated type
manager is named text_file_delta.

text-only

A hyperlink for which there is no “to” object, only a text annotation on the
“from” object.

time rule

A separate config spec rule that specifies a time to which the special version
label LATEST should evaluate in all subsequent rules; or, a clause that sets
the LATEST time within an individual rule,

to-object

See hyperlink.

from text

A string-valued attribute attached to a hyperlink object, conceptually at its
“from” end.

ToolTalk

An interprocess messaging system.

transcript pad

A scrollable subwindow in which a ClearCase GUI program displays
output.

transparency, transparent access

The ClearCase feature that enables standard programs to access versioned
files and directories using standard pathnames.

trigger

A “monitor” that specifies one or more standard programs or built-in actions
to be executed automatically whenever a certain ClearCase operation is

144

Glossary

performed.
See pre-operation trigger, post-operation trigger, trigger type.

trigger inheritance

The process by which triggers in the inheritance list of a directory element are
automatically attached to new elements created within the directory.

trigger type

An object through which triggers are defined. Instances of a “element”
trigger type can be attach to one or more individual elements (“attached
trigger”). A “global element” trigger type is implicitly attached to all
elements in a VOB. A “type” trigger type is attached to a specified collection
of type objects.

type

A type object defines a ClearCase data structure. Users can create instances of
these structures: meta-data annotations are placed on objects by creating
instances of label types, attribute types, and hyperlink types. The structure
of the version tree of a file or directory is defined by creating an instance of an
element type, along with instances of branch types. Triggers are defined as
instances of trigger types.

type manager

A set of routines (methods) that stores and retrieves versions of file elements
from disk storage. Some type managers include methods for other
operations, such as comparison, merging, and annotation,

type trigger type

A trigger type that is associated with (and thus, monitors changes to) one or
more type objects.

uncheckout

The act of cancelling a checkout operation.

unidirectional

See hyperlink.

universal unique identifier

See UUID.

145

unregister

See storage registry.

unreserved checkout

See checkout.

unshared derived object

A derived object that has never been winked-in to another view.

user profile

A file that stores a user’s individual specifications for cleartool comment
handling.

UUID

A universal unique identifier, which ClearCase uses to track VOBs, vies, and
the objects they contain.

version

An object that implements a particular revision of an element. The versions of
an element are organized into a version tree structure. Also: the view-private
file that corresponds to the checked-out version object created in a VOB
database by the checkout command.

version 0

The original version on a branch. It is automatically created when the branch
is created, and has the same contents as the version at the branch point.
Version 0 on the main branch is defined to be empty.

146

Glossary

.

Figure 6-7 Version 0 of a Branch

version control

The discipline of tracking the version evolution of a file or directory.

version-extended namespace

See extended namespace.

version-extended pathname

A pathname that explicitly specifies a version of an element (or versions of
several elements), rather than allowing the version-selection to be
performed automatically by a view.

version-ID

A branch pathname and version number, indicating a version’s exact location in
its version tree:
/main/4

/main/rel2_bugfix/2

/main/bugs/bug405/9

version label

An instance of a label type object, supplying a user-defined name for a
version.

1

2

30

1

bugs

OSF
0

1bug417

0

1

2

0

1

bug404

0

main version 0 on a branch has the
same contents as version at

branch point

4

147

version-number

The ClearCase-assigned integer that identifies the position of a version on its
branch.

version selection

The process of choosing one version from an element’s entire version tree. A
ClearCase view performs automatic version selection, using its config spec.
Users can select versions with version-extended pathnames and with the
ClearCase query language.

version selector

A command-line option, a part of a config spec rule, or a portion of a
version-extended pathname, specifying the version of one or more elements to
be used. See scope, pattern, and configuration specification.

version tree

The hierarchical structure in which all the versions of an element are
(logically) organized. When displaying a version tree, ClearCase also shows
merge operations (indicated by gray arrows in the illustration)

Figure 6-8 Version Tree Structure

version-extended namespace

See VOB-extended namespace.

1

2

30

1

bugs

motif
0

1bug417

0

1

2

0

1

bug404

0

main

4

each version tree
has a main branch users can create any

number of
subbranches

148

Glossary

versioned object base (VOB)

A repository that stores versions of file elements, directory elements, derived
objects, and meta-data associated with these objects. A view makes a VOB
appear to be a standard directory tree.

view

A ClearCase data structure which provides a virtual workspace for one or
more users — to edit source versions, compile them into object modules,
format them into documents, and so on. Users in different views can work
with the same files without interfering with each other. For each element in a
VOB, a view uses its config spec to select just one version from its version tree.
Each view can also store view-private objects, which are do not appear in
other views.

view context

The view (if any) which will be used to resolve a pathname to a particular
version of an element.

view database

The database within a view storage directory, which the associated
view_server process uses to track objects in the view’s private storage area.

view-extended namespace

See extended namespace.

view-extended pathname

A pathname that begins with a view prefix (for example, /view/alpha),
specifying a particular view to be used for resolving element names to
particular versions.

view object

An object stored in a view: a checked-out version of a file, an unshared derived
object, or a view-private file, directory, or link. No historical information is
retained for view-objects. See VOB object.

view prefix

One or more components at the beginning of a pathname that specify a
particular view. For example, /view/gamma and ../epsilon.

149

view-private directory

A directory that exists only in a particular view, having been created with the
standard UNIX mkdir command. A view-private directory is not
version-controlled, except insofar as it is separate from private directories in
other views.

view-private file

A file that exists only in a particular view. A private file is not
version-controlled, except insofar as it is separate from private files in other
views.

view-tag

The name with which users reference a view. This name appears as a
subdirectory of a client host’s viewroot directory (/view).

view storage directory

The directory tree in which a view’s data is stored: checked-out version,
view-private objects, and unshared derived objects.

view storage registry

A file on the network’s registry server host that records that actual storage
locations of all the views in the network.

viewroot directory, view-tag

A main-memory-only data structure, maintained by the MVFS file system,
that behaves like a directory. Each view is accessed through a view-tag entry
in this directory. By default, the viewroot directory is named /view. A view
whose tag is alpha is accessible as /view/alpha.

view storage area, view storage directory

The directory tree in which a view’s private data is stored: config spec,
checked-out versions of file elements, view-private files and directories. The
top-level directory of this tree is called the view storage directory.

viewroot directory

The directory (default name: /view) in which view-tag entries appear,
allowing views to be accessed through the UNIX file system.

150

Glossary

view_server

The daemon process that continually interprets a view’s config spec, mapping
element names into versions.

virtual file system

An extension to the UNIX kernel, allowing alternative file systems to be
implemented without revision to the kernel itself.

VOB

See versioned object base.

VOB database

The part of a VOB storage area in which ClearCase meta-data and VOB objects
(elements, branches, versions, and so on) are stored. This area is managed
automatically by ClearCase’s embedded database management software.
The actual file system data, by contrast, is stored in the VOB’s storage pools.
For data integrity, ClearCase maintains a copy of this “live” VOB database,
the shadow database.

VOB-extended namespace

An extension to the operating system’s file naming scheme, which allows
any historical version of an element to be accessed directly by any program.
The extension also provides access to the meta-data (but not the file system
data) of all of a VOB’s existing derived objects.

VOB hard link

A name, cataloged in a (version of a) directory element, for an element.
Typically, the first such link is called the element’s “name”; the term VOB
hard link is used to refer to any additional names for the element.

VOB host

A host on which one or more VOB storage directories reside.

VOB link

A VOB symbolic link or VOB hard link.

VOB mount point

The directory on which a VOB storage area is mounted. All UNIX commands,
and most ClearCase commands, access a VOB through its mount point.

151

VOB object

An object stored in a VOB: element, version of element, type, hyperlink, derived
object, and so on. See view object.

VOB owner

Initially, the user who created a VOB with the mkvob command. The
ownership of a VOB can be changed subsequently, with the chown_vob
command.

VOB host

A machine on whose disk a VOB is physically stored.

VOB storage directory

The directory tree in which a VOB’s data is stored: elements, versions,
derived objects, CRs, event history, hyperlinks, attributes, and other
meta-data. The top-level directory of this tree is called the VOB storage
directory.

VOB storage registry

A file on the network’s registry server host that records that actual storage
locations of all the VOBs in the network.

VOB symbolic link

An object, cataloged in a (version of a) directory element, whose contents is
a pathname. ClearCase does not maintain a version history for a VOB
symbolic link.

VOB-tag

The full pathname at which users access a VOB. The VOB storage directory
is activated by mounting it as a file system of type MVFS at the location
specified by its VOB-tag.

VOB-tag password file

A file used to validate the password entered by a user when creating a public
VOB-tag.

VPATH

A make macro that specifies directories that will be searched during a build
for data.

152

Glossary

wildcard

See pattern.

wink-in

Causing a derived object to appear in a view, even though its file system data
is actually located in a VOB’s derived object storage pool.

working directory view

The view context of a process, established by using the cd command to change
the current working directory to a view-extended pathname. See set view.

153

Index

A

abe
See

audit, audited build executor (abe)
access control

characteristics, 110
overview, 22
permissions

characteristics and ClearCase extensions, 111
protecting file system data with, 111

See Also
process management
views

accessing
CRs

with show configuration record command, 107
event records

with list checkouts and list history commands,
107

files
through directory versions, 48

non-ClearCase hosts, 101
objects

using associated meta-data for, 65, 110
See Also

information, retrieval
views

versions
config spec rule for the latest in VOB, 79
with views, 35

accounting data
See

meta-data
active

glossary definition, 117
aliases

See
VOB (versioned object base), links, hard

annotations (meta-data)
annotation box

glossary definition, 117
characteristics, 20

and use, 51
development policy and procedure

implementation with, 53
See Also

documentation
meta-data
organizing

version labels
documenting and organizing the development

environment with, 108
argument

glossary definition, 117
at-sign (@@) extended naming symbol

See Also
namespace

version-extended pathname use of, 36
Atria

Multi-Site, 22

154

Index

attached list
glossary definition, 117

attributes (meta-data)
accessing

objects through querying their, 65
with describe command, 110

annotations
See Also

annotations
applying to elements, branches, and versions, 108
as meta-data, 20
attaching to elements

with triggers, 113
bug tracking

using, 108
glossary definition, 117
integration with triggers and locks in defining the

state transition model, 115
name

glossary definition, 117
organizing the development environment with,

108
recording process-management information

with, 108
See Also

data, structures
meta-data
object(s)
types

term definition, 20
characteristics, and sample uses, 55

types
glossary definition, 118
implemented with VOB objects, 112
term definition, 55

value
glossary definition, 118

audit
audited build executor (abe)

glossary definition, 118
remote host build management by, 101

audited shell
as alternative to makefile-based auditing, 96
glossary definition, 118

build, 15
ClearCase facilities for documenting, 20
CR use for, 51

See Also
build management

automated user-defined procedure
See

triggers
automatic version selection, 10

See Also
views

B

base contributor
glossary definition, 118

baselevels
documenting with version labels, 108
See Also

build management
bidirectional

glossary definition, 118
"bill-of-materials"

See Also
build management

bill-of-materials
as documentation

ClearCase software build feature, 85
build script execution

CR as a, 64
CR documentation of, 15
sibling DOs

documented by configuration record, 91
bitmap

file
glossary definition, 118

155

images
version controlling, with file and

compressed_file elements types, 44
BOS (build options specification) file

glossary definition, 118
branches

attribute application, 108
auto-make-branch

glossary definition, 118
characteristics, 34
glossary definition, 118
locating

with query language, 65
merging

parallel development strategy requirement for, 9
name

glossary definition, 119
pathname

glossary definition, 119
term definition, 35

See Also
VOB (versioned object base)

subbranch
glossary definition, 142

term definition, 6
term definition and characteristics, 33
types

branches as instances of, 62
glossary definition, 119

working on a
with views, 82

Broadcast Message Server
glossary definition, 119

build management
assembly procedure

sibling DOs documented by configuration
record, 91

audit
as ClearCase feature, 85
glossary definition, 119

information, 89
not available on non-ClearCase hosts, 102
term definition, 15
with clearaudit program, 96

avoidance
algorithms, 85
characteristics, 94
glossary definition, 120
implementation through DOs and CRs, 93
term definition, 17

building
on a non-ClearCase host, 101
software with ClearCase (chapter), 85

checkin-edit-checkout model
See

checkout-edit-checkin model
ClearCase build environment compared with

UNIX make program, 85
configuration

glossary definition, 120
matching a DO's CR against, 94

dependency
See

dependency
distributed, 14, 85, 99

glossary definition, 127
support for, 19
term definition, 5

documenting with CRs, 107
glossary definition, 119
hierarchical

characteristics, 96
construction, 102

hosts
configuration records documentation of, 91
file, distributed and parallel builds supported

through, 99
file, glossary definition, 120
glossary definition, 120

input files

156

Index

configuration records documentation of
identifiers for, 91

listing and comparing, 86
makefile's script

configuration records documentation of, 91
makefile-based

ClearCase support of, 15
management, 93

ClearCase facilities, 15
options specification (BOS)

glossary definition, 120
parallel, 85, 99

glossary definition, 137
procedure, 100

procedure
characteristics, 94
configuration records documentation of, 91

reference time, glossary definition, 120
restricting VOB access during

with locking mechanism, 112
scripts, 100

comparison, as clearmake special feature, 99
execution, calls monitored during, 88
execution, configuration record creation, 64
glossary definition, 120

See Also
meta-data
process management
version control
views
VOB (versioned object base)

server
control file, glossary definition, 120
glossary definition, 120

session
glossary definition, 121

software
CR use for documenting, 51

target
glossary definition, 121

timestamp-based algorithm

limitations, 94
user who performed the

configuration records documentation of, 91
view in which the build took place

configuration records documentation of, 91
bump

glossary definition, 121

C

cache
recently-accessed versions

storage pool use as, 45
version-selection algorithm use, 74

candidate
DO

qualifying with configuration lookup, 94
glossary definition, 121

catalog
glossary definition, 121

cataloged
glossary definition, 121

checkout-edit-checkin model
characteristics and use, 38

revising a source file scenario, 78
CHECKEDOUT placeholder object

creation in the VOB database when an element is
checked out, 80

checkin, 83
actions taken by, 13
characteristics, 38
files, 81
trigger use for monitoring, 21

checkout
actions taken by, 13
characteristics, 38
checked-out version, term definition, 13, 38
command, 80, 82
file version, working with, 80

157

files, 80
monitoring with checkout version event record,

107
record, glossary definition, 122
reserved, glossary definition, 140
reserved, term definition, 38
unreserved, term definition, 38

cleartool command characteristics, 25
glossary definition, 122
revising a source file

scenario, 78
See Also

build management
unreserved checkout

glossary definition, 145
ClearCase

introduction
(chapter), 1

meta-data generated by, 62
Multi-Site

wide-area network data repository access
available through (footnote), 4

clearmake program
build

auditing capabilities, 15
avoidance scheme, 17

compatibility with other make programs, 98
CR creation by, 91, 107

cleartext
file

glossary definition, 122
storage pools

glossary definition, 122
performance optimization use of, 44

cleartool command
characteristics, 25
event record generation by, 107

CLI
See

command-line interface (CLI)

client-server architecture
ClearCase characteristics, 22
clients, 23

glossary definition, 123
view use, to access VOB, 69
VOB developer access through, 30

See Also
development, parallel

server
programs, 23
view_server process algorithm, 73
VOB administrator access through, 30

clock skew
glossary definition, 123

code quality
identifying with attributes, 108
See Also

quality assurance
command option

glossary definition, 123
command-line interface (CLI)

glossary definition, 122
location and characteristics, 25
See Also

graphical user interface (GUI)
version-control operations implemented by the

cleartool program, 29
comment

default
glossary definition, 123

density
identifying with attributes, 108

See Also
meta-data

compatibility modes
clearmake

ClearCase features not supported by, 99
glossary definition, 123

compound object
version as a, 42

158

Index

compressed_file element type
characteristics, 44
glossary definition, 123
See Also

elements
compressed_text_file element type

characteristics, 44
glossary definition, 123
See Also

elements
condition mechanism

See
triggers

config specs
branch selection, 82
default, 78
glossary definition, 124
scenarios, 78

port development, 82
See Also

views
term definition and characteristics, 73
version selection handled through, 10

configuration
DO

glossary definition, 123
lookup

as clearmake special feature, 99
characteristics, 94
glossary definition, 124
not available on non-ClearCase hosts, 102

management
ClearCase characteristics, (chapter), 1
glossary definition, 124

record (CR)
See

CR (configuration record)
rule

glossary definition, 125
See Also

config specs
views

source tree
management requirements, 67

specification
See

config specs
view

glossary definition, 124
conflicts

resolving among versions during a merge, 40
See Also

build management
container

glossary definition, 125
context

glossary definition, 125
See Also

views, context
contributor

glossary definition, 125
conversion script

glossary definition, 125
count

reference
glossary definition, 139

CR (configuration record)
associated with each DO

build creation and use of, 86
automatic dependency detection with, 18
characteristics, 64
comparing, 93
creation

as clearmake special feature, 99
display, 92
glossary definition, 124
hierarchy

glossary definition, 125
not available on non-ClearCase hosts, 102
See Also

159

build management
config specs
DO (derived objects)
meta-data

show configuration record command, 107
software build documented by, 51
storage of, 96
term definition, 15
term definition and characteristics, 91

cross-development
term definition, 101

D

data
compression

element types that support, 44
use for file version storage, 33

container
DO, storage of, 96
file, as version component, 42
glossary definition, 126
See Also

DO (derived objects)
structured, deltas stored in, 45

element types
access methods, 44

repository
permanent shared, See

VOB (versioned object base)
working, See

views
See Also

VOB (versioned object base)
storage

access control schemes, 110
organization, 22

structures
See

file systems

meta-data
storage
types
version control
VOB (versioned object base), objects

databases
query facility

locating objects using their meta-data, 110
version controlling with file and compressed_file

element types, 44
view

term definition and characteristics, 69
VOB

term definition and characteristics, 33
debugging

bug reports
linking code modules to, with attributes, 108

bug tracking
attribute use in, 56

definition, 127
degenerate

glossary definition, 126
deltas

glossary definition, 126
line-by-line

use for file version storage, 33
performance optimization use of, 44

dependency
automatic detection

characteristics, 18
comparison, 99
of MVFS dependencies, 88

build
glossary definition, 120

glossary definition, 126
informal

hyperlinks use for, 58
hyperlinks use for defining, 58

makefile
glossary definition, 134

160

Index

See Also
build management

source
configuration record use to check, 18
detection of, as ClearCase feature, 85
glossary definition, 141

tracking, 88
describe command

accessing object structure information with, 110
development

activities
ClearCase process control and policy control

mechanisms for managing, 105
auditing activities that do not involve makefiles,

96
environment

ClearCase management services provided by
views, 10

milestones
documenting with version labels, 108

model
ClearCase, overview, 2

parallel
clearmake's build avoidance scheme support of,

17
controlling with write lock mechanism, 112
environments, creating versions in, 39
environments, management of, 107
glossary definition, 137
strategy, ClearCase, 7
views importance for, 81
virtual workspaces, set of views as, 77

policies and procedures
meta-data role in implementing, 53
triggers as mechanisms for enforcing, 21

process
ClearCase facilities for documenting, 20
ClearCase mechanisms for managing, 19

product release area
as release management tool, 103

See Also

build management
views

workspaces
requirements for, 67

difference pane
glossary definition, 127

difference section
glossary definition, 127

directory(s)
as file system objects stored in a VOB, 29
current working

glossary definition, 125
elements

accessing, 48
glossary, 127
term definition, 47

See Also
file(s)
version control
VOB (versioned object base)

standard tree
VOB's caused to appear as, by view, 70

storage
VOB, meta-data stored in VOB database within

the, 52
VOB, term definition, 32

structure
version control of, 47

super-root, 71
versions

accessing files through, 48
glossary definition, 127
version control advantages, 5

view storage
characteristics, 69

viewroot, 71
glossary definition, 149
term definition, 14

VOB
changing to, 78

161

disk-space allocation
localization cost scheme, 97

DO (derived objects)
as versions of elements, 102
audit information maintained for, 89
candidate

qualifying with configuration lookup, 94
creation

as clearmake special feature, 99
DO-ID

configuration records documentation of, 91
file system data cannot be accessed by (footnote),

90
glossary definition, 128

files
designation of, not available on non-ClearCase

hosts, 102
storage of, 97

glossary definition, 126, 127
listing, 92
object modules

storage pool use as container for, 32
private

storage of, 97
scrubbing

glossary definition, 127
See Also

meta-data
version control

shared
glossary definition, 141

sharing
glossary definition, 127
implementation through DOs and CRs, 93
storage of, 97

storage
in view-private storage area, 12
of, 96
pool use as container for, 32
pool, glossary definition, 126
structure and components, 96

stranded
glossary definition, 142

term definition, 2, 15, 64, 86
unshared

glossary definition, 145
documentation

auditing the generation of
with clearaudit, 96

functional specification implementation
using hyperlinks, 108

merges
with merge arrows, 107

non-ASCII
version controlling with file and compressed_file

elements types, 44
of development process

triggers use for, 61
online

ClearCase, characteristics, 27
paper

bibliography of ClearCase manuals, 27
software builds

with configuration records, 107
Domain Software Engineering Environment (DSEE)

glossary definition, 128
DSEE (Domain Software Engineering Environment)

glossary definition, 128
dynamic

load-balancing
parallel build use of, 100

views
static copying and linking contrasted with, 11,

72

E

eclipsed
glossary definition, 128

ECO (engineering change order) administration

162

Index

ClearCase process control and policy control
mechanisms for managing, 105

elements
access

transparency effect on, 70
directory

accessing, 48
glossary definition, 127
term definition, 47

file
accessing a version of, 48
directory element compared with, 47
system data organization with, 112
type, characteristics, 44

glossary definition, 128
mapping references

to versions, 74
merging versions of, 40
meta-data attachment, 108

with triggers, 113
names

resolving to versions, view_server procedure for,
74

orphaned
glossary definition, 136

See Also
meta-data
types
version control
VOB (versioned object base)

suppressing from views
config spec rules that enable, 75

term definition, 6
and characteristics, 33

trigger actions when placed on, 61
types

elements as instances of, 62
glossary definition, 128
predefined, characteristics, 44
See Also

file(s), type

term definition, 44
user-defined, type manager characteristics, 45

versions
DOs as, 102
glossary definition, 145
merging, 40

ellipsis
glossary definition, 128

encapsulator
glossary definition, 128

environment variables
trigger mechanism use of, 21

events
event_scrubber utility

(footnote), 62
glossary definition, 128
mechanism

See
triggers

minor
glossary definition, 135

records
automatic generation by cleartool program, 107
deleting (footnote), 62
glossary definition, 128
term definition, 20, 62

See Also
meta-data
process management

exception list
lock management using, 112

executables
storage pool use as container for, 32
version controlling with file and compressed_file

elements types, 44
extensibility

data storage and retrieval facility
user-defined type managers as tool for, 33, 45

views
config spec support of, 10, 75

163

F

file systems
access permission

operate at the level of, 112
restricting access to, 112
scheme, 111

component of version
stored in VOB storage pools, 42

configuration
glossary definition, 130

glossary definition, 130
list of those stored in the VOB, 29
meta-data

accessing with, 53
attaching annotations to, 51

MVFS
activating VOBs by remote host mounting of, 30
as ClearCase virtual file system extension, 15
build auditing of, 96
caching techniques used by view server and, 74
characteristics and dependency tracking of, 88
extended pathname interpretation by, 37, 74
files and dependencies, 88
glossary definition, 135
status of those created by non-ClearCase make

programs, 99
non-MVFS

tracking of, 89
objects

stored in a VOB, 29
See Also

directories
hard links
meta-data
VOB (versioned object base)

shared data, 86
virtual

glossary definition, 150
file(s)

bitmap, 45

glossary definition, 118
BOS

glossary definition, 118
build hosts

file, distributed and parallel builds supported
through, 99

cleartext
glossary definition, 122

data container
See

data, containers
DO (derived objects)

storage of, 97
elements

accessing through directory versions, 48
directory element compared with, 47
type, characteristics, 44

header
glossary definition, 131

icons
glossary definition, 132

input
configuration records documentation of

identifiers for, 91
magic

glossary definition, 134
man page

auditing the generation of, with clearaudit, 96
output

configuration records documentation of, 91
See Also

data
DO (derived objects)
meta-data
version control
views
VOB (versioned object base)

source
editing in a view (example), 13
revising, scenarios, 78
storage pool use as container for, 32

164

Index

types
glossary definition, 129
See Also

elements, types
typing mechanism use by user-defined element

types, 45
writable

creating through checkout, 80
filter

See
config specs
views

fire
a trigger

glossary definition, 130
term definition, 61, 113

flat
glossary definition, 130

from text
glossary definition, 130, 143

from-object
glossary definition, 130

G

g-file
glossary definition, 131

Gnu make
glossary definition, 131

graphical user interface (GUI)
characteristics, 25
See Also

command-line interface (CLI)
groups

principal
glossary definition, 138

groupware
ClearCase as, 22

See Also
development, parallel
sharing
views
VOB

H

hard links
See

VOB (versioned object base), links
help

ClearCase online documentation
characteristics, 27

ClearCase paper documentation
bibliography, 27

history
glossary definition, 131
mode

glossary definition, 131
host

installation
glossary definition, 132

non-ClearCase
building on, 101

release
glossary definition, 139

hosts
remote

building software systems on, 19
hyperlinks (meta-data)

accessing with describe command, 110
as meta-data, 20
attaching attributes to, 56
browser

glossary definition, 132
characteristics, 108
cross-VOB

glossary definition, 125

165

glossary definition, 131
hyperlink-ID

glossary definition, 132
term definition, 59

requirements tracing use of, 108
same-VOB

glossary definition, 140
See Also

meta-data
VOB (versioned object base), links

selector
glossary definition, 132

term definition, 20
characteristics, and sample uses, 57

types
glossary definition, 132
implemented with VOB objects, 112

I

icons
file

glossary definition, 132
glossary definition, 132

inclusion list
glossary definition, 132

information
capture

automatic generation of event records by
cleartool program, 107

ClearCase facilities, 20
ClearCase process control and policy control

mechanisms for managing, 105
type managers, as extensible mechanism for, 33
user-controlled, 108

retrieval
ClearCase facilities, 20
ClearCase process control and policy control

mechanisms for managing, 105
element type system use for, 44

of configuration records with show
configuration record command, 107

type managers, as extensible mechanism for, 33
with describe command, 110
with query language, 110

inheritance
glossary definition, 132
list

glossary definition, 132
inode number

OID (object-ID) compared with
glossary definition, 47

input files
build

configuration records documentation of
identifiers for, 91

installation host
glossary definition, 132

interactive mode
glossary definition, 133

interfaces
CLI

location and characteristics, 25
graphical user interface (GUI)

characteristics, 25
invisible

rendering objects as, 112

L

labels
See

version control, labels
LAN (local area network)

VOB accessible over, 4
leaf name

glossary definition, 133
licenses

166

Index

database file
glossary definition, 133

glossary definition, 133
priority

glossary definition, 133
server

glossary definition, 133
link text

glossary definition, 133
links

development system component connecting with
hyperlinks, 108

See Also
data, structures
documentation
hyperlinks
management
VOB (versioned object base), links

version control of, 46
load balancing

glossary definition, 133
See Also

build management
tunable

remote host builds supported by, 19
VOB facilitation of, 4

locks
as effective mechanism for implementing

temporary restrictions, 112
glossary definition, 133
integration with triggers and attributes in defining

the state transition model, 115
VOB access control, 22
VOB objects, 112

logical operator
glossary definition, 134

lost+found
glossary definition, 134

M

macro
definition

glossary definition, 134
expansions

configuration records documentation of, 91
magic files

glossary definition, 134
See Also

file(s), types
main

branch, 34
glossary definition, 134

make programs
build avoidance limitations of the standard

algorithm, 94
clearmake compatibility feature comparisons, 98
macro

glossary definition, 134
makefile

dependency
glossary definition, 134

glossary definition, 134
management

build procedures, 15
development process

ClearCase facilities, 19
See Also

organizing
mapping

versions into views
version-selection mechanism characteristics, 72

merging
automatic merge recording, 107
branches

parallel development strategy requirement for, 9
merge arrows

as meta-data, 20

167

creation, 107
hyperlink use for, 109
term definition, 20

merge glossary definition, 135
merge subcommand (cleartool), 25
See Also

build management
version control

subtractive
term definition, 42

versions of an element, 40
meta-data

annotations
characteristics, 51
recording process-management information

with, 108
attaching

to a VOB object (figure), 54
to elements, with triggers, 113

characteristics, (chapter), 51
ClearCase-generated

See
branches
CR (configuration record)
elements
event records

glossary definition, 135
locating

elements by queries involving, 65
objects by querying their, 110

records
characteristics, 51

See Also
file systems
types
VOB

term definition, 20
characteristics, and list of examples, 33

user-defined
See

attributes (meta-data)

hyperlinks
triggers
version control, labels

methods
glossary definition, 135
See

triggers
monitoring

development environment changes
with automatic generations of event records, 107
with triggers, 61, 113

mount
See

VOB, activation
MultiSite (ClearCase extension)

client-server architecture characteristics of, 22
MVFS (multiversion file system)

activating VOBs by remote host mounting of, 30
as ClearCase virtual file system extension, 15
caching techniques used by view server and, 74
extended pathname interpretation by, 37, 74
files

build auditing of, 96
characteristics and dependency tracking of, 88
DO creation triggered by the creation of new, 89
status of those created by non-ClearCase make

programs, 99
glossary definition, 135
object

glossary definition, 135
See Also

file systems
version control

N

namespace
collision avoidance

by DO-ID, 89

168

Index

extended, 9
glossary definition, 129

glossary definition, 135
See Also

access control
transparency

term definition, 48
version-extended

accessing any version with version-extended
pathnames, 9

view-extended
glossary definition, 148
term definition and characteristics, 14

naming symbol (@@)
extended

glossary definition, 129
version-extended pathname use of, 36

network region
glossary definition, 136

nobody username
glossary definition, 136

non-ClearCase
access, 101

glossary definition, 136
limitations, 102

host
building on, 101

non-MVFS
files

tracking of, 89
object

glossary definition, 136
notice forwarder

glossary definition, 136
notifications

events
using triggers for, 113

procedures
triggers use for, 21

null-ended
glossary definition, 136

O

object(s)
glossary definition, 136
obsolete

glossary definition, 136
locks use for tagging, 112

OID (object-ID)
glossary definition, 136
inode number compared with, 47

See Also
data
DO (derived objects)
file systems
meta-data
types
VOB (versioned object base)

trigger use with, 61
on conditions

See
triggers

open-ended
See

extensibility
organizing

development activities
with attributes, 108
with version labels, 54, 108

file system data
with VOB objects, 112

See Also
management

owner
glossary definition, 137

169

P

parallel
See

build management, parallel
development, parallel

pathnames
compared with

hyperlink-IDs, 59
version-IDs, 35

glossary definition, 137
glossary definitions

extended, 129
full, 130
global, 131
relative, 139
view-extended, 148

patterns
config spec use to increase flexibility, 75

See Also
access control
config specs
views

version-extended
accessing any version with, 9
characteristics, 71
syntax and use, 36

view-extended
accessing multiple views with, 70
characteristics, 71

pattern
glossary definition, 137
See Also

config specs
query definition

performance optimization
cleartext storage pool used for, 44

permissions
access

ClearCase extensions, 111

element access control with, 22
glossary definition, 137
hierarchy

file system data access controlled through, 111
protecting file system data with, 111
See Also

access control
platforms

multiple
ClearCase support of builds on, 19

policies
enforcement

ClearCase mechanisms, (chapter), 105
state transition example, 114
triggers use for, 21

meta-data role in implementing, 53
See Also

process management
pool

See
storage, pools

private storage area (view)
location and characteristics, 76
See Also

sharing
term definition, 69
uses, 12, 23

privileges
See

access control
procedure

automated user-defined
See

triggers
process control

attribute use to implement process-control metrics,
108

ClearCase mechanisms
(chapter), 105

development

170

Index

ClearCase facilities for documenting, 20
ClearCase mechanisms for managing, 19

documenting with meta-data annotations, 108
triggers use for, 113
views as context for VOB access by client, 69

process management
See Also

access control
information
meta-data
version control

product releases
managing, 103

programming libraries
version controlling with file and compressed_file

elements types, 44
promotion

glossary definition, 139
protections

access control mechanisms, 110
element access control with, 22
See Also

access control
process management

Q

quality assurance
attribute use

in, 56
to encode code quality information, 110

ClearCase process control and policy control
mechanisms for managing, 105

See Also
meta-data
release engineering

query language
characteristics, 65
glossary definition, 139

locating objects
using their meta-data, 110

See Also
information

R

RCS (Revision Control System)
ClearCase checkout-edit-checkin model compared

with, 78
glossary definition, 139

rebuild
as configuration lookup outcome, 95

records
glossary definition, 139
See Also

events
meta-data

reference
count

glossary definition, 139
time

glossary definition, 139
refinement

glossary definition, 139
release engineering

automatic change recording
configuration records, 107
merge arrows, 107

documenting major releases with version labels,
108

managing, 103
See Also

quality assurance
tracking code quality with attributes, 108

remote
hosts

building software systems on, 19

171

procedure call (RPC)
client-server architecture use of, 23

See Also
build management

shell facilities, 101
creating DOs with, 102

reports
report-writing facility

extracting information from event records with,
63

requirements tracing
attribute use in, 56
hyperlink use in, 20, 57, 108

restriction list
glossary definition, 140

reuse
as configuration lookup outcome, 95
glossary definition, 140
See Also

build management
views

wink-in facilitation of, 77
root

glossary definition, 140
RPC (remote-procedure-call)

client-server communication implemented
through, 30

rules
built-in

glossary definition, 121
for selecting versions of elements

See
config specs

time
config spec use of, 75
glossary definition, 143

S

s-file
glossary definition, 141

SCCS (Source Code Control System)
ClearCase checkout-edit-checkin model compared

with, 78
schema

glossary definition, 140
scheme

file
glossary definition, 140

scope
glossary definition, 140

scratchpad storage
See

private storage area
views

scripts
executing multiple build

in parallel, 19
master conversion

glossary definition, 134
trigger procedures implementation as, 113

scrubbing
glossary definition, 140

security
access control mechanisms, 110

selection
expression

glossary definition, 141
operator

glossary definition, 140
sharing

DOs
(figure), 18

172

Index

during a build, 94
glossary definition, 127, 141
storage of, 97

file system data
DO characteristics, 89
DOs, 86

See Also
VOB

storage
views as access mechanism, 14, 68

siblings
glossary definition, 141
term definition, 89

single-command mode
glossary definition, 141

SoftBench
glossary definition, 141

software
configuration management

ClearCase characteristics, (chapter), 1
integration

locking use during, 22
interrupts

See
triggers

reuse
See

build management
reuse
views
wink-in

Some, 47
source

control
glossary definition, 141

dependencies
configuration record use to check, 18
detection of, as ClearCase feature, 85

dependency
glossary definition, 141

files
editing in a view (example), 13
revising, scenarios, 78
storage pool use as container for, 32

modules
linking to functional specifications, using

hyperlinks, 108
pool

glossary definition, 142
tree configuration

management requirements, 67
standard

files
See

data, containers
pathname

DO use of, 90
software

transparency support of, 10
state

active
characteristics, 115

frozen
characteristics, 115

released
characteristics, 115

reserve
glossary definition, 140

steady-state
read-only elements described as, 38

transition process model
implementing with ClearCase tools, 114

storage
area

private, glossary definition, 138
shared, accessing through views, 68
view location in ClearCase client-server

architecture, 23
view, characteristics, 69
view-private, characteristics, 12, 76

173

directory
VOB, meta-data stored in VOB database within

the, 52
VOB, term definition, 32

efficiency
view management features that enhance, 76

file system data
restricting access through access permission

mechanims, 111
of DOs and CRs, 96
pools

cleartext, performance optimization use of, 44
data container file in, as version component, 42
glossary definition, 142
inheritance, glossary definition, 137
organizing file system data with, 112
term definition, 32
VOB, term definition and characteristics, 32

registry
glossary definition, 142

See Also
data
views
VOB (versioned object base)

subsession
glossary definition, 142

subtarget
glossary definition, 142

supertype
glossary definition, 142

symbolic links
as file system objects stored in a VOB, 29
See

VOB (versioned object base), links
system calls

monitoring during system build, 88
system-calls

clearmake monitoring granularity, 15

T

tags registry
glossary definition, 142

targets
build

updating, with configuration lookup, 94
glossary definition, 143
rebuild

glossary definition, 143
See Also

build management
configuration, lookup
DO (derived objects)

text-only
glossary definition, 143

text_file element type
characteristics, 44
glossary definition, 143
See Also

elements
text_file_delta element type

See Also
elements

type manager, 45
time

reference
glossary definition, 139

rules
config spec use of, 75
glossary definition, 143

timestamps
build algorithm

limitations, 94
CRs documentation of, 91

to-object
glossary definition, 143

ToolTalk
glossary definition, 143

174

Index

transcript pad
glossary definition, 143

transparency
access

glossary definition, 143
characteristics and alternatives to, 70
directory elements

accessing, 48
glossary definition, 143
See Also

views
standard pathname use in DO generation, 90
term definition, 10, 36
views, 4

non-ClearCase build use of, 101
tree

See
version control, trees

triggers
actions

term definition, 61
characteristics, 113
global element trigger type

glossary definition, 131
glossary definition, 143
inheritance

glossary definition, 144
integration with attributes and locks in defining

the state transition model, 115
invoking attribute creation with, 113
post-operation

characteristics, 113
glossary definition, 137

pre-operation
characteristics, 113
glossary definition, 138

See Also
meta-data
process management

term definition, 61

term definition and use, 21
types

glossary definition, 144
types

attributes
implemented with VOB objects, 112
term definition, 55

branches
elements as instances of, 62

elements
elements as instances of, 62

glossary definition, 144
hyperlinks

implemented with VOB objects, 112
term definition, 59

labels
term definition, 54

objects
instancing, 53
term definition, 53
trigger actions when placed on, 61

See Also
data
version control
VOB (versioned object base)

triggers
glossary definition, 144
term definition, 61

type managers
characteristics and use, 44
glossary definition, 144
storage pool management extensibility provided

through user-defined, 33

U

unidirectional
glossary definition, 144

universal unique identifier
glossary definition, 144

175

unregister
glossary definition, 145

user profile
glossary definition, 145

user/group/others permissions model
file system data access controlled through, 111

UUID
glossary definition, 145

V

version control
access

recently-accessed, storage pool use as a cache
of, 45

through views, 68
version-extended pathname, glossary

definition, 146
version-extended pathname, syntax and use, 36
version-extended pathname, use for, 9

annotating versions, 93
attribute application, 108
automatic version-selection, 10

transparency effects of, 70
ClearCase capabilities, 5
directories, 47
directory

accessing files through, 48
glossary definition, 127

DO (derived objects), 102
glossary definition, 127

elements
mapping references, 74
merging, 40

extended
namespace, glossary definition, 146
pathnames, characteristics, 71

glossary definition, 146
labels

accessing with describe command, 110
as meta-data, 20
glossary definition, 146
recording process-management information

with, 108
See Also

annotations
term definition, 6, 34, 54
types, glossary definition, 133
version-extended pathname use of, 36

links, 46
locating

with query language, 65
numbers

term definition, 34
object

characteristics, 42
organizing file system data with, 112
predecessor

glossary definition, 138
rule-based version selection

flexibility characteristics, 75
See Also

build management
file systems
meta-data
process management
views
VOB (versioned object base)

selection
automatic, overriding with extended pathnames,

71
glossary definition, 147
mechanics of, 72

selector
glossary definition, 147

successor
glossary definition, 142

term definition and characteristics, 33
trees

(figure), 7

176

Index

accessing all branches, with extended
pathnames, 37

characteristics, 34
glossary definition, 147
term definition, 6, 33

version-controlled data
accessing through extended naming, 65

version-IDs
configuration records documentation of, 91
derived-object ID compared with, 89
DO-ID differences (footnote), 90
glossary definition, 146
term definition and characteristics, 35

version-number
glossary definition, 147

versioning
mechanism, transparency, 70
VOB symbolic links, See

directories, versioning
versions

as compound object, 42
checked-out, glossary definition, 121
checkout-edit-checkin model, characteristics, 38
checkout-edit-checkin model, use for control, 78
in a parallel development environment, 39
version 0 glossary definition, 145
version 0 term definition, 34

views
access, 35
views as selectors of, 10

version labels, 6
views

(chapter), 67
accessing versions with, 35

impact of parallel development strategy on, 8
as private workspaces, 12
as shared resource, 14
as tool for seeing the VOB, 69
builds performed in, 86
checked-out version relationship to, 38
config specs

See
config specs

configuration of, 93
contexts

glossary definition, 148
impact on interpretation of full pathname

(footnote), 36
modifying elements from within a, 38
process access to VOB in terms of, 69
term definition, 30
term definition and characteristics, 69
working with a VOB through, 78

database
glossary definition, 148
term definition, 69

DO-ID independent of, 89
environment management services provided by,

10
export

glossary definition, 129
extended

namespace, glossary definition, 148
namespace, term definition, 14
pathnames, characteristics, 71
pathnames, glossary definition, 148

glossary definition, 148
multiple

accessing, through view-extended naming, 14
accessing, with view-extended pathnames, 70

object
glossary definition, 148

parallel development importance of, 81
prefix

glossary definition, 148
See Also

access control
build management
checkout-edit-checkin model
development
version control
VOB (versioned object base)

177

setting, 78
glossary definition, 141
required to access VOB, 69

specification
See

config specs
storage

area, glossary definition, 149
directory, glossary definition, 149
directory, term definition, 69
efficiency of, 76
private area, term definition, 69
registry, glossary definition, 149

suppressing elements from, 75
term definition, 23, 35

and characteristics, 68
and components, 4

transparency, 4, 101
usage scenarios, 78
view-private

directory, glossary definition, 149
files, creating through checkout, 80
files, glossary definition, 149
storage, 12, 76

view-tags, 71
glossary definition, 149
term definition, 14

view_server process
algorithm, 73
algorithm for finding latest version of a file, 79
glossary definition, 150
term definition and algorithms, 74
view storage access provided through, 69

viewroot directory, 71
glossary definition, 149
term definition, 14

VOB
mapping, version-selection mechanism

characteristics, 72
usage contrasted with, 69

virtual

file system
glossary definition, 150

workspace, 88
See

views
view as a, 4
view storage as, 76
views creation of, 12

VOB (versioned object base)
(chapter), 29
access control schemes, 111
accessing

mechanism characteristics, 29
mechanism characteristics, (figure), 31
through views, 68
with version- and view-extended pathnames, 71
with view-extended pathnames, 71

activation
remote system VOB access provided through, 30

ClearCase access mechanism (figure), 31
contents description and characteristics, 4
creating a merge element in, 107
data structures, 32
database

controlling the size through event record
deletion (footnote), 62

glossary definition, 150
locks operate at level of, 112
meta-data stored in, 52
term definition and characteristics, 33

directory
changing to, 78

distributed
ClearCase support for, 23

elements
organizing file system data with, 112

glossary definition, 148
host

glossary definition, 150
image, 102
links

178

Index

glossary definition, 150
hard, as file system objects stored in a VOB, 29
hard, glossary definition, 131, 150
hard, term definition and version control

characteristics, 46
symbolic, 48
symbolic, glossary definition, 151
symbolic, term definition and version control

characteristics, 46
locking mechanism, 112
mount point

glossary definition, 150
objects

access control schemes, 112
establishing the location of, 42
file system data organization managed through,

112
glossary definition and list, 151
hyperlinks, 59
meta-data implemented through, 112
See

branches
checkout-edit-checkin model
DO (derived objects)
elements
hard links
hyperlinks
locks
placeholder objects
pools
types
version control
VOB (versioned object base), links, symbolic

owner
glossary definition, 151

See Also
meta-data

shared
DO's stored in, 97

storage
directory, glossary definition, 151

directory, term definition, 32
pools, See

storage, pools
registry, glossary definition, 151

storing information in
with automatic information capture

mechanisms, 107
term definition

and characteristics, 5
and characteristics, (chapter), 29

trigger actions
when placed on, 61

versions
organizing file system data with, 112

views
described as tools for seeing, 69
impact on appearance of, 70
interaction with, scenarios, 78
usage contrasted with, 69

VOB-tags
glossary definition, 151

VPATH
glossary definition, 151

W

WAN (wide-area network)
VOB accessible over (footnote), 4

wildcards
config spec use in pathnames to increase flexibility,

75
glossary definition, 152
See Also

config specs
query language

wink-in
as clearmake special feature, 99
configuration lookup use of, 95
glossary definition, 152

179

not available on non-ClearCase hosts, 102
See Also

build management
sharing

term definition, 17, 77, 95
working data storage

See
views

workspaces
requirements for, 67
view characteristics as user-configurable

(chapter), 67
views as private, 12
virtual

view storage as, 76

X

xclearcase program
characteristics and features, 25

xcleardiff graphical merge utility
characteristics and features, 25
version conflict resolution use of, 41

xlsvtree program
characteristics and features, 25

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1612-020.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

