
Selected IRIX™ Site Administration
Reference Pages

Document Number 007-2159-004

© Copyright 1993, 1994, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third parties, copied, or
duplicated in any form, in whole or in part, without the prior written permission of
Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication, or disclosure of the technical data contained in this document by the
Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights
in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United States.
Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain
View, CA 94039-7311.

Selected IRIX Site Administration Reference Pages
Document Number 007-2159-004

Silicon Graphics, Inc.
Mountain View, California

IRIX is a trademark of Silicon Graphics, Inc.
UNIX is a trademark of AT&T, Inc.

iii

Introduction

This volume contains selected IRIX Site Administration Man Pages. The table
below lists the Man Pages and summarizes their functions.

Man Page Function

Add_disk(1) add an optional disk to the system

autoconfig(1m) configure kernel

Backup(1) backup the specified file or directory

bootp(1m) server for Internet Bootstrap Protocol

brc(1m) system initialization procedures

chkconfig(1m) configuration state checker

chroot(1m) change root directory for a command

core(4) format of core image file

cshrc(4) system-wide csh initialization command file

devnm(1m) device name

distcp(1m) copy or compare software distributions

dvhtool(1m) modify and obtain disk volume header information

ecc(1) dump memory ecc log

ed(1) text editor

find(1) find files

Selected IRIX Site Administration Reference Pages

iv

fs(4) layout of the Extent file system

fsck, dfsck(1m) check and repair file systems

fsdb(1m) file system debugger

fsstat(1m) report file system status

fstab(4) static information about filesystems

ftp(1c) Internet file transfer program

fx(1m) disk utility

gettydefs(4) speed and terminal settings used by getty

growfs(1m) expand a filesystem

hinv(1m) hardware inventory command

hosts(4) host name-address database

init(1m) process control initialization

inittab(4) script for the init process

inode(4) format of an Extent File System inode

inst(1m) software installation tool

killall(1m) kill named processes

lboot(1m) configure bootable kernel

login(1) sign on

lvck(1m) check and restore consistency of logical volumes

lvinfo(1m) print information about active logical volumes

lvinit(1m) initialize logical volume devices

lvtab(4) information about logical volumes

MAKEDEV(1m) Create device special files

master(4) master configuration database

mkboottape(1m) make a boot tape

Man Page Function

Selected IRIX Site Administration Reference Pages (continued)

v

mkfs(1m) construct a file system

mklv(1m) construct or extend a logical volume

mload(4) dynamically loadable kernel modules

mount, umount(1m) mount and dismount file systems

mtune(4) default system tunable parameters

nvram(1m) get or set non-volatile RAM variable(s)

passwd(4) password file

profile(4) setting up an environment at login time

prom(1m) PROM monitor

prtvtoc(1m) print disk volume header information.

ps(1) report process status

pwck(1m) password file checker

pwconv(1m) install and update /etc/shadow with information from
/etc/passwd

rcp(1c) remote file copy

Restore(1) restore the specified file or directory from tape

restore(1m) incremental file system restore

rlogin(1c) remote login

savecore(1m) save a crash vmcore dump of the operating system

setmnt(1m) establish mount table

sh(1) shell, the standard command programming language

shadow(4) shadow password file

statd(1m) network status monitor daemon

stune(4) local settings for system tunable parameters

su(1m) become super-user or another user

Man Page Function

Selected IRIX Site Administration Reference Pages (continued)

vi

symmon(1m) kernel symbolic debugger

syslogd(1m) log systems messages

system(4) system configuration information directory

systune(1m) display and set tunable parameters

sys_id(4) system identification (hostname) file

telnet(1c) User interface to the TELNET protocol

ttytype(4) data base of terminal types by port

versions(1m) software versions tool

Man Page Function

Selected IRIX Site Administration Reference Pages (continued)

ADD_DISK(1) ADD_DISK(1)hh

NAME
Add_disk − add an optional disk to the system

SYNOPSIS
Add_disk [controller number] [disk number]

DESCRIPTION
The Add_disk command allows the user to add an extra SCSI disk to the system on integral SCSI controll-
ers only (i.e., it many not be used for disks attached to the VME SCSI controllers).

The disk number option must be specified if not adding the default ID of 2; similarly the controller must be
specified if other than 0.

The Add_disk command creates the required directory, makes the appropriate device file links, makes a
new filesystem, does the required mount operation, and adds the appropriate entry to /etc/fstab.

Appropriate checks are made for filesystems already existing on the common partitions (0, 6, and 7), and
if they are present, the user is asked if they want to proceed, before a filesystem is made. If the answer is
no, Add_disk exits.

NOTE
Older versions of this script worked only with controller 0, and used a default mount point of /disk#,
where # was the SCSI ID. This version uses /disk##, where the first # is the controller, and the second is
the SCSI ID.

Add_disk is a shell script, and can be used as a template to determine what is necessary. The volume
header on the disk must already have been initialized with the fx(1m) program.

SEE ALSO
mkfs(1m), fx(1m), fstab(4)

1

AUTOCONFIG(1M) AUTOCONFIG(1M)hh

NAME
autoconfig − configure kernel

SYNOPSIS
/etc/autoconfig [−−vf] [−−p toolroot] [−−d /var/sysgen]

[−−o lbootopts] [start||stop]

DESCRIPTION
The autoconfig command is used invoke lboot and other commands to generate a UNIX kernel.

The autoconfig command is also a start-up script in /etc/init.d.

The options are as follows:

−−v Requests verbose output from lboot and other commands.

−−f Generates a new kernel even if it appears that no hardware or software changes have been made.

−−p toolroot
Specifies the directory tree containing the compiler and other tools needed to generate the kernel.

−−d /var/sysgen
Specifies the directory tree containing the system configuration modules and binaries.

−−n Performs a dry run of lboot and reports whether a new kernel would be created or not.

start Used by rc2 when the system is starting.

stop Used by rc0 when the system is stopping.

The autoconfig command also uses the /var/config/autoconfig.options file to tell lboot to configure a new ker-
nel automatically or to prompt for permission before configuring a new kernel. The
/var/config/autoconfig.options file contains a -T by default which indicates to lboot to configure the kernel
automatically if necessary. This option can be changed to a -t to force lboot to prompt for permission
before configuring a new kernel.

SEE ALSO
lboot(1m), setsym(1m), rc0(1m), rc2(1m)

1

BACKUP(1) BACKUP(1)hh

NAME
Backup − backup the specified file or directory

SYNOPSIS
Backup [−h hostname] [−t tapedevice] [−i] [directory name | file name]

DESCRIPTION
The Backup command archives the named file or directory ("." if none specified) to the local or remote
tape device. It can be used to make a full system backup by specifying the directory name as /.

In case of a full backup this command makes a list of the files in the disk volume header and saves this
information in a file which is then stored on tape. This file is used during crash recovery to restore a dam-
aged volume header. The current date is saved in the file /etc/lastbackup.

If a tape drive attached to a remote host is used for backup, the name of the remote host needs to be
specified with the −−h hostname option on the command line. For remote backup to successfully work,
the user should have a TCP/IP network connection to the remote host and also have "guest" login
privileges on that host.

If the local or remote tape device is pointed to by a device file other than /dev/tape, the device should be
specified by the −−t tapedevice option.

If a backup of all files modified since the date specified in the /etc/lastbackup file is desired, the −−i option
should be specified. This option is only valid when doing a complete backup.

The Backup command uses bru to perform the backup function.

FILES
/tmp/volhdrlist − contains the list of the root volume header files

/etc/lastbackup − contains the date of last full backup

SEE ALSO
Restore(1), List_tape(1), bru(1).

1

BOOTP(1M) BOOTP(1M)hh

NAME
bootp − server for Internet Bootstrap Protocol

SYNOPSIS
/usr/etc/bootp [−d] [−f]

DESCRIPTION
Bootp is a server that supports the Internet Bootstrap Protocol (BOOTP). This protocol is designed to
allow a (possibly diskless) client machine to determine its own Internet address, the address of a boot
server and the name of an appropriate boot file to be loaded and executed. BOOTP does not provide the
actual transfer of the boot file, which is typically done with a simple file transfer protocol such as TFTP.
A detailed protocol specification for BOOTP is contained in RFC 951, which is available from the Network
Information Center.

The BOOTP protocol uses UDP/IP as its transport mechanism. The BOOTP server receives service
requests at the UDP port indicated in the ‘‘bootp’’ service description contained in the file /etc/services (see
services(4)). The BOOTP server is started by inetd(1M), as configured in the inetd.conf file.

The basic operation of the BOOTP protocol is a single packet exchange as follows:

1) The booting client machine broadcasts a BOOTP request packet to the BOOTP server UDP port,
using a UDP broadcast or the equivalent thereof. The request packet includes the following informa-
tion:

The requester’s network hardware address
The requester’s Internet address (optional)
The desired server’s name (optional)
The boot file name (optional)

2) All the BOOTP servers on the same network as the client machine receive the client’s request. If the
client has specified a particular server, then only that server will respond.

3) The server looks up the requester in its configuration file by Internet address or network hardware
address, in that order of preference. (The BOOTP configuration file is described below.) If the Inter-
net address was not specified by the requester and a configuration record is not found, the server will
look in the /etc/ethers file (see ethers(4)) for an entry with the client’s network hardware address. If an
entry is found, the server will check the hostname of that entry against the /etc/hosts file (see hosts(4))
in order to complete the network hardware address to Internet address mapping. If the BOOTP
request does not include the client’s Internet address and the server is unable to translate the client’s
network hardware address into an Internet address by either of the two methods described, the
server will not respond to the request.

4) The server performs name translation on the boot filename requested and then checks for the pres-
ence of that file. If the file is present, then the server will send a response packet to the requester
which includes the following information:

The requester’s Internet address
The server’s Internet address
The Internet address of a gateway to the server

1

BOOTP(1M) BOOTP(1M)hh

The server’s name
Vendor specific information (not defined by the protocol)

If the boot file is missing, the server will return a response packet with a null filename, but only if the
request was specifically directed to that server. The pathname translation is: if the boot filename is
rooted, use it as is; else concatenate the root of the boot subtree, as specified by the BOOTP
configuration file, followed by the filename supplied by the requester, followed by a period and the
requester’s hostname. If that file is not present, remove the trailing period and host name and try
again. If no boot filename is requested, use the default boot file for that host from the configuration
table. If there is no default specified for that host, use the general default boot filename, first with
.hostname as a suffix and then without. Note that tftpd(1M) must be configured to allow access to the
boot file (see the tftpd manual entry for details).

Options
The −−d option causes bootp to generate debugging messages. All messages from bootp go through
syslogd(1M), the system logging daemon.

The −−f option enables the forwarding function of bootp. Refer to the following section on ‘‘Booting
Through Gateways’’ for an explanation.

Bootp Configuration File
In order to perform its name translation and address resolution functions, bootp requires configuration
information, which it gets from an ASCII file called /usr/etc/bootptab and from other system configuration
files like /etc/ethers and /etc/hosts . Here is a sample bootptab file:

/usr/etc/bootptab: database for bootp server

#

Blank lines and lines beginning with ’#’ are ignored.

#

Root of boot subtree:

/usr/local/boot

Default bootfile:

unix

%%

The remainder of this file contains one line per client

interface with the information shown by the table headings

below. The ’host’ name is also tried as a suffix for the

’bootfile’ when searching the boot directory.

(e.g., bootfile.host)

#

host htype haddr iaddr bootfile

IRIS 1 01:02:03:8a:8b:8c 192.0.2.1 unix

2

BOOTP(1M) BOOTP(1M)hh

The fields of each line may be separated by variable amounts of white space (blanks and tabs). The first
section, up to the line beginning ’%%’, defines the place where bootp looks for boot files when the client
requests a boot file using a non-rooted pathname. The second section of the file is used for mapping
client network hardware addresses into Internet addresses. Up to 512 hosts can be specified. The htype
field should always have a value of 1 for now, which indicates that the hardware address is a 48-bit Ether-
net address. The haddr field is the Ethernet address of the system in question expressed as 6 hexadecimal
bytes separated by colons. The iaddr field is the 32-bit Internet address of the system expressed in stan-
dard Internet dot notation (see inetd(3N)). Each line in the second section can also specify a default boot
file for each specific host. In the example above, if the host called unixbox makes a BOOTP request with
no boot file specified, the server will select the first of the following that it finds:

/usr/local/boot/unix.unixbox

/usr/local/boot/unix

The length of the boot file name must not exceed 127 characters.

It is not necessary to create a record for every potential client in the bootptab file. The only constraint is
that bootp will only respond to a request from a client if it can deduce the client’s Internet address. There
are three ways that this can happen: 1) the client already knows its Internet address and includes it in the
BOOTP request packet, 2) there is an entry in /usr/etc/bootptab that matches the client’s network hardware
address or, 3) there are entries in the /etc/ethers and /etc/hosts files (or their NIS equivalents) that allow the
client’s network hardware address to be translated into an Internet address.

Booting Through Gateways
Since the BOOTP request is distributed using a UDP broadcast, it will only be received by other hosts on
the same network as the client. In some cases the client may wish to boot from a host on another net-
work. This can be accomplished by using the forwarding function of BOOTP servers on the local net-
work. To use BOOTP forwarding, there must be a bootp process running in a gateway machine on the
local network. A gateway machine is simply a machine with more than one network interface board. The
gateway bootp must be invoked with the −−f option to activate forwarding. Such a forwarding bootp will
resend any BOOTP request it receives that asks for a specific host by name, if that host is on a different
network from the client that sent the request. The BOOTP server forwards the packet using the full rout-
ing capabilities of the underlying IP layer in the kernel, so the forwarded packet will automatically be
routed to the requested BOOTP server if the kernel routing tables contain a route to the destination net-
work.

DIAGNOSTICS
The BOOTP server logs messages using the system logging daemon, syslogd(1M). The actual disposition
of these messages depends on the configuration of syslogd on the machine in question. Consult
syslogd(1M) for further information.

Bootp can produce the following messages:

´get interface config´ ioctl failed (message)
´get interface netmask´ ioctl failed (message)
getsockname failed (message)

3

BOOTP(1M) BOOTP(1M)hh

forwarding failed (message)
send failed (message)
set arp ioctl failed

Each of the above messages mean that a system call has returned an error unexpectedly. Such
errors usually cause bootp to terminate. The message will be the appropriate standard system
error message.

less than two interfaces, −f flag ignored
Warning only (debug mode). Means that the −−f option was specified on a machine that is not a
gateway. Forwarding only works on gateways.

request for unknown host xxx from yyy
Information only. A BOOTP request was received asking for host xxx, but that host is not in the
host database. The request was generated by yyy, which may be given as a host name or an Inter-
net address.

request from xxx for ’fff’
Information only. Bootp logs each request for a boot file. The host xxx has requested boot file fff.

can’t access boot file fff (message)
A request has been received for the boot file fff, but that file isn’t accessible.

reply boot file name fff too long
The file name length fff exceeds the BOOTP protocol limit of 127 characters.

reply boot file fff
Information only. Bootp has selected the file fff as the boot file to satisfy a request.

can’t reply to dd.dd.dd.dd (unknown net)
This bootp has generated a response to a client and is trying to send the response directly to the
client (i.e., the request did not get forwarded by another bootp), but none of the network interfaces
on this machine is on the same directly-connected network as the client machine.

reply: can’t find net for dd.dd.dd.dd
The server is acting as BOOTP forwarder and has received a datagram with a client address that’s
not on a directly-connected network.

can’t open /usr/etc/bootptab
The bootp configuration file is missing or has wrong permissions.

(re)reading /usr/etc/bootptab
Information only. Bootp checks the modification date of the configuration file on the receipt of
each request and rereads it if it has been modified since the last time it was read.

bad hex address: xxx at line nnn of bootptab
bad internet address: sss at line nnn of bootptab

4

BOOTP(1M) BOOTP(1M)hh

string truncated: sss, on line nnn of bootptab
These messages mean that the format of the BOOTP configuration file is not valid.

´hosts´ table length exceeded
There are too many lines in the second section of the BOOTP configuration file. The current limit
is 512.

can’t allocate memory
A call to malloc(3) failed.

gethostbyname(sss) failed (message)
A call to gethostbyname(3N) with the argument sss has failed.

gethostbyaddr(dd.dd.dd.dd) failed (message)
A call to gethostbyaddr(3N) with the argument dd.dd.dd.dd has failed.

SEE ALSO
inetd(1M), rarpd(1M), syslogd(1M), tftpd(1M), ethers(4), hosts(4), services(4)

5

BRC(1M) BRC(1M)hh

NAME
brc, bcheckrc − system initialization procedures

SYNOPSIS
/etc/brc

/etc/bcheckrc

DESCRIPTION
These shell procedures are executed via entries in /etc/inittab by init(1M) whenever the system is booted
(or rebooted).

First, the bcheckrc procedure checks the status of the root file system. If the root file system is found to be
bad, bcheckrc repairs it.

Then, the brc procedure clears the mounted file system table, /etc/mtab, and puts the entry for the root file
system into the mount table.

After these two procedures have executed, init checks for the initdefault value in /etc/inittab. This tells init
in which run level to place the system. Since initdefault is initially set to 2, the system will be placed in the
multi-user state via the /etc/rc2 procedure.

Note that bcheckrc should always be executed before brc. Also, these shell procedures may be used for
several run-level states.

SEE ALSO
fsck(1M), init(1M), rc2(1M), shutdown(1M).

1

CHKCONFIG(1M) CHKCONFIG(1M)hh

NAME
chkconfig − configuration state checker

SYNOPSIS
/sbin/chkconfig [−−s]
/sbin/chkconfig flag
/sbin/chkconfig [−−f] flag [on | off]

DESCRIPTION
chkconfig with no arguments or with the −−s option prints the state (on or off) of every configuration flag
found in the directory /var/config. The flags normally are shown sorted by name; with the −−s option they
are shown sorted by state.

A flag is considered on if its file contains the string ‘‘on’’ and off otherwise.

If flag is specified as the sole argument, chkconfig exits with status 0 if flag is on, and with status 1 if flag is
off or nonexistent. The exit status can be used by shell scripts to test the state of a flag. Here is an exam-
ple using sh(1) syntax:

if /sbin/chkconfig verbose; then

echo "Verbose is on"

else

echo "Verbose is off"

fi

The optional third argument allows the specified flag to be set. The flag file must exist in order to change
its state. Use the −−f (‘‘force’’) option to create the file if necessary.

These flags are used for determining the configuration status of the various available subsystems and dae-
mons during system startup and during system operation.

A daemon or subsystem is enabled if its configuration flag in the /var/config directory is in the "on" state.
If the flag file is missing, the flag is considered off. The following is a list of available flags and the associ-
ated action if the flag is on. Depending upon your configuration, they may not all be available on your
system.

4DDN Initialize 4DDN (DECnet connectivity) software.

acct Start process accounting.

automount Start the NFS automounter daemon.

desktop If off, fewer of the Indigo Magic user interface features are enabled, and typically a
different toolchest menu is used. It is identical to creating the file
$HOME/.disableDesktop except that it applies to all accounts. The specific effect is
that the desktop version of Xsession (/usr/lib/X11/xdm/Xsession.dt) will not be run
upon login, and therefore programs started from that file will not be run, or run
with different options.

1

CHKCONFIG(1M) CHKCONFIG(1M)hh

directoryserver Start the Cadmin directory server daemon.

gated Start Cornell routing daemon instead of BSD routed.

hypernet Initialize HyperNET controller and routes.

ipfilterd Enable SGI IP Packet Filtering daemon.

jserver Start Japanese convert engine, if the optional product Japanese Language Module is
installed.

lockd Start the NFS lock and status daemons.

mediad Start the removable media daemon.

mrouted Start IP multicast routing daemon (useful only on gateways).

named Start Internet domain name server.

network Allow incoming and outgoing network traffic. This flag can be set off if you need to
isolate the machine from network without removing cables.

nfs Start the NFS daemons nfsd and biod . Mount all NFS filesystems.

noiconlogin Don’t show user icons on the login screen

nsr Start up the IRIS NetWorker daemons. See nsr(1M) for more details.

nostickytmp Do not turn the sticky bit on for the directories /tmp and /var/tmp .

objectserver Start the Cadmin object server daemon.

pcnfsd Start the PC-NFS server daemon.

quotacheck Run quotacheck(1M) on the filesystems which have quotas enabled. See quotas(4) for
more details.

quotas Enable quotas for local configured filesystems.

rarpd Start the Reverse ARP daemon.

routed Start 4.3BSD RIP routing daemon. See routed(1M) for more details.

rtnetd Initialize preemptable networking for real-time use.

rwhod Start 4.3BSD rwho daemon.

sar Start the system activity reporter.

snmpd Start Simple Network Management Protocol daemon.

soundscheme Start the Indigo Magic audio cue daemon.

timed Start 4.3BSD time synchronization daemon.

timeslave Start SGI time synchronization daemon.

2

CHKCONFIG(1M) CHKCONFIG(1M)hh

verbose Print name of daemons as they are started.

vswap Add virtual swap. See swap(1M) for a discussion of virtual swap. By default 80000
blocks are added. You may increase or decrease this amount by modifying the
/var/config/vswap.options file.

visuallogin Enable the visual login screen

windowsystem Start the X window system. If windowsystem is off , then it is necessary to modify
the inittab(4) file to enable getty(1M) on the textport window if you wish to use
graphics as a dumb terminal.

The recommended means of enabling and disabling the windowsystem are the
commands startgfx(1G) and stopgfx(1G).

xdm Start the X display manager.

yp Enable NIS, start ypbind daemon.

ypmaster If yp is on, become the NIS master and start the passwd server. The ypserv flag
should be on too.

ypserv If yp is on, become a NIS server.

FILES
/var/config directory containing configuration flag files

SEE ALSO
cron(1M), rc0(1M), rc2(1M).

3

CHROOT(1M) CHROOT(1M)hh

NAME
chroot − change root directory for a command

SYNOPSIS
/sbin/chroot newroot command

DESCRIPTION
chroot causes the given command to be executed relative to the new root. The meaning of any initial
slashes (/) in the path names is changed for the command and any of its child processes to newroot . Furth-
ermore, upon execution, the initial working directory is newroot .

Notice, however, that if you redirect the output of the command to a file:

chroot newroot command >x

will create the file x relative to the original root of the command, not the new one.

The new root path name is always relative to the current root: even if a chroot is currently in effect, the
newroot argument is relative to the current root of the running process.

This command can be run only by the superuser.

CAVEAT
In order to execute programs which use shared libraries, the following directories and their contents must
be present in the new root directory.

./lib This directory must contain the run-time loader (/lib/rld) and any shared object files needed
by your applications. At the very least, it should contain a version of the libc.so shared object
file. If you intend to run IRIX4 binaries, you should also copy /lib/libc_s into this directory.

./dev The run-time loader needs the zero device in order to work correctly. Copy /dev/zero into
this directory and make it read-only (mode 444).

SEE ALSO
cd(1), chroot(2)

NOTES
One should exercise extreme caution when referencing device files in the new root file system.

When using chroot, do not exec a command that uses shared libraries. This will result in killing your pro-
cess.

1

CORE(4) CORE(4)hh

NAME
core − format of core image file

SYNOPSIS
#include <core.out.h>

DESCRIPTION
The IRIX system writes out a core image of a terminated process when any of various errors occur. See
signal(2) for the list of reasons; the most common are memory violations, illegal instructions, bus errors,
and user-generated quit signals. The core image is called core and is written in the process’s working
directory (provided it can be; normal access controls apply). A process with an effective user ID different
from the real user ID will not produce a core image.

The format of the core image is defined by <core.out.h>. It consists of a header, maps, descriptors, and
section-data.

The header data includes the process name (as in ps(1)), the signal that caused the core-dump, the
descriptor array, and the corefile location of the map array.

Each descriptor defines the length of useful process data. One descriptor defines the general-purpose
registers at the time of the core-dump for example. The data is present in the core image at the file-
location given in the descriptor only if the IVALID flag is set in the descriptor.

Each map defines the virtual address and length of a section-of-the-process at the time of the core-dump.
The data is present in the core image at the file-location given in the descriptor only if the VDUMPED
flag is set in the map. The process’ stack, and data sections are normally written in the core image. The
process’ text is not normally written in the core image.

NOTE
Core image format designed by Silicon Graphics, Inc.

SEE ALSO
edge(1), dbx(1), ps(1), setuid(2), signal(2).

1

CSHRC(4) CSHRC(4)hh

NAME
cshrc − system-wide csh initialization command file

DESCRIPTION
The file /etc/cshrc contains a list of commands to be invoked whenever a user logs into the system with
csh(1) as their login shell. These commands are executed before those in the .cshrc and .login files in the
home directory of the user.

FILES
/etc/cshrc

SEE ALSO
csh(1).

1

DEVNM(1M) DEVNM(1M)hh

NAME
devnm − device name

SYNOPSIS
/etc/devnm [names]

DESCRIPTION
devnm identifies the special file associated with the mounted file system where the argument name resides.

This command is most commonly used by /etc/brc (see brc(1M)) to construct a mount table entry for the
root device.

EXAMPLE
The command:

/etc/devnm /usr

produces

/dev/dsk/ips0d0s2 usr

if /usr is mounted on /dev/dsk/ips0d0s2.

FILES
/dev/dsk/∗
/etc/mtab

SEE ALSO
brc(1M).

1

DISTCP(1M) DISTCP(1M)hh

NAME
distcp − copy or compare software distributions

SYNOPSIS
distcp [−−cnrsvw] from to [file ...]

DESCRIPTION
distcp copies or compares software distributions. Software distributions are software releases for one or
more software products that are prepared by Silicon Graphics and installed by inst(1M). distcp is typically
used to create more copies of a software release tape, or to copy software from tape to a server worksta-
tion which becomes the software distribution source for many workstations on a network.

from is the location of the software distribution to be copied and to is the location where the copy will be
created. from can be a tape device, a directory containing a software distribution, or the name of a pro-
duct in a distribution directory. to can be a tape device or a directory. from and to can include the name
of a remote machine and possibly a userid.

When accessing a remote machine, you must be superuser when you give the distcp command. In addi-
tion, the userid you use on the remote machine (default is ‘‘guest’’) must have read permission (for from)
and/or write permission (for to). The exact syntax for from and to is identical to the syntax for the source
argument of the inst −−f option. See inst(1M) for details.

The optional file arguments are an additional way to specify what to copy or compare. A software distri-
bution is a collection of files. Some of these files are archives that contain the files in the product while
other files contain information about what’s in the software distribution, installation configuration infor-
mation, and tools for performing the installation.

The possible files are:

sa sa contains the standalone tools and environment for miniroot installations (see inst(1M)).

mr mr is an additional file for miniroot installations.

product This file is known as a ‘‘product descriptor’’ for product and contains information about the
contents of the distribution. product is a short name for one software product.

product.idb This file is called the ‘‘idb file’’ and contains one line for every file, directory, link and fifo
in a software product.

product.image These files are called ‘‘images’’ and contain the files that will be installed by inst on a
workstation. Typical images are ‘sw’ and ‘man’.

A software distribution can contain multiple products. The sa and mr files are required for doing miniroot
installations, but need not be included in every software distribution you create with distcp. The default is
to include them in copies or comparisons. The −−n option can be used to exclude them.

By default, distcp copies software distributions. Options allow you to compare distributions or otherwise
alter distcp’s default behavior:

1

DISTCP(1M) DISTCP(1M)hh

−−c Compare (rather than copy) from and to.

−−n Do not include the standalone files sa and mr. The tape will not be bootable. The file mr is normally
a 0 length file; it is required on bootable tapes for backwards compatibility. distcp no longers
requires an empty mr file in a source directory when writing a bootable tape; it will create the empty
tape file without it, when this option is not specifed.

−−r Retension tape before reading or writing.

−−s Compare silently; return exit status only.

−−v Verbose; report file names as they are copied.

−−w Warnings for short files; report during comparison if file sizes do not match.

EXAMPLES
To create a distribution directory that will enable users on a network to install from disk rather than tape,
first create a directory (such as /d/newrel) on a system that has enough disk space to contain all of the
software on all of the tapes. Then, insert each tape in the drive and give this command once per tape:

distcp /dev/nrtape /d/newrel

To make a tape from a remote machine of just one product in a distribution directory, say the Network
File System (nfs), give the command:

distcp −n machine:/d/newrel /dev/nrtape "nfs*"

NOTES
If you are using a tape to copy the distribution, it should be the no-rewind tape device. The tape device
MUST also be the fixed blocksize device (and must be 512 byte blocks; use the mt setblksiz 512 command to
set the blocksize, if necessary) to work reliably, and to work at all for booting the miniroot it must be the
byte swapped device. See intro(7) for more information on tape device names.

Only QIC (quarter inch) tapes are bootable on all machines. Some machines that are newer can boot from
other tape types, but this is not guaranteed.

It is possible to copy to a remote directory but you cannot create a tape on a remote machine.

distcp can not be used to copy distributions from CD-ROM to a directory, since the CD-ROM is itself
mounted as an EFS filesystem (one may of course use the mounted CD-ROM directory as a source when
using distcp to copy to tape). To make a local copy of a CD-ROM, use cp with the -r option, or one of the
many other methods of doing directory copies. Similarly, to copy an installable CD-ROM over the net-
work, use rcp with the -r

distcp takes tape as an argument by itself to be a synonym for /dev/nrtape . Thus, if you want to refer to a
directory named tape, you must refer to it by the full pathname, or ./tape, or similar workarounds.

2

DISTCP(1M) DISTCP(1M)hh

SEE ALSO
inst(1M), versions(1M), cp(1), rcp(1), tps(7)
IRIS-4D Series Installation Guide.

3

DVHTOOL(1M) DVHTOOL(1M)hh

NAME
dvhtool − modify and obtain disk volume header information

SYNOPSIS
/sbin/dvhtool [−b [list] [bootfile [rootpart [swappart]]]]

[−v [creat unix_file dvh_file]
[add unix_file dvh_file] [delete dvh_file]
[get dvh_file unix_file] [list]] [header_filename]

DESCRIPTION
Dvhtool allows modification of the disk volume header information, a block located at the beginning of all
disk media. The disk volume header consists of three main parts: the device parameters, the partition
table, and the volume directory. The volume directory is used to locate files kept in the volume header
area of the disk for standalone use. The partition table describes the logical device partitions. The device
parameters describe the specifics of a particular disk drive.

Note that it is necessary to be superuser in order to use dvhtool.

Invoked with no arguments (or just a volume header name), dvhtool allows the user to interactively exam-
ine and modify the disk volume header on the root drive. The read command prompts for the name of
the device file for the volume header to be worked on. This may be /dev/rvh for the header of the root
disk, or the header name of another disk in the /dev/rdsk directory. See vh(7m) . It then reads the volume
header from the specified device.
The vd, pt, and dp commands first list their respective portions of the volume header and then prompt
for modifications. The write command writes the possibly modified volume header to the device.

Note: use of dvhtool for changing partitions and parameters is not recommended. Parameters and parti-
tions should be manipulated with fx(1m) .

Invoked with arguments, dvhtool reads the volume header, performs the specified operations, and then
writes the volume header. If no header_filename is specified on the command line, /dev/rvh is used.

The following describes dvhtool’s command line arguments.

The −−b flag allows you to set the current bootfile, root, and swap partitions. The list option displays their
current settings.

The −−v flag provides five options for modifying and listing the contents of the volume directory informa-
tion in the disk volume header: create, add, delete, get, and list.

The creat option allows creation of a volume directory entry with the name dvh_file and the contents of
unix_file. If an entry already exists with the name dvh_file, it is overwritten with the new contents.

The add option adds a volume directory entry with the name dvh_file and the contents of unix_file. Unlike
the creat option, the add options will not overwrite an existing entry.

1

DVHTOOL(1M) DVHTOOL(1M)hh

The delete option removes the entry named dvh_file, if it exists, from the volume directory.

The get option copies the requested file from the volume header to the file system.

The list option lists the current volume directory contents.

SEE ALSO
vh(7m)
fx(1m)

NOTE
Several Mbytes of disk space may be required in the /tmp directory when creating or adding files if the
free space in the volume header is fragmented. This also makes dvhtool run much slower, since all files
must then be copied to /tmp, and then back to the volume header.

2

ECC(1) ECC(1)hh

NAME
ecc − dump memory ecc log

SYNOPSIS
ecc [-c]

DESCRIPTION
ecc dumps the memory ecc log. This log is produced by the memory subsystem each time a memory
error occurs. Types of errors are single data or check bit errors (which are automatically corrected) and
double bit errors (which are uncorrectable). Some uncorrectable memory errors will cause programs to
be killed or the system to crash. Correctable errors, while ok, should be watched. Too many correctable
errors in a given memory bank may be an early warning signal as to future more serious problems. The -
c option will cause the log to be cleared.

This command only functions on systems which have error correcting memory.

Note that on system crash and subsequent reset the log contents are not cleared, and may be read via the
prom monitor. Upon system boot, the log is cleared.

The various memory configurations cannot be determined by software, so ecc prints out the SIM locations
for all possible configurations. It is up to service personnel to determine which is appropriate for a given
system.

1

ed(1) ed(1)hh

NAME
ed, red − text editor

SYNOPSIS
ed [−s] [−p string] [−x] [−C] [file]

red [−s] [−p string] [−x] [−C] [file]

DESCRIPTION
ed is the standard text editor. If the file argument is given, ed simulates an e command (see below) on
the named file; that is to say, the file is read into ed’s buffer so that it can be edited. Both ed and red
process supplementary code set characters in file, and recognize supplementary code set characters in the
prompt string given to the −p option (see below) according to the locale specified in the LC_CTYPE
environment variable [see LANG on environ(5)]. In regular expressions, pattern searches are per-
formed on characters, not bytes, as described below.

−s Suppresses the printing of byte counts by e, r, and w commands, of diagnostics from e and q
commands, and of the ! prompt after a !shell command.

−p Allows the user to specify a prompt string. The string may contain supplementary code set char-
acters.

−x Encryption option; when used, ed simulates an X command and prompts the user for a key.
This key is used to encrypt and decrypt text using the algorithm of crypt(1). The X command
makes an educated guess to determine whether text read in is encrypted or not. The temporary
buffer file is encrypted also, using a transformed version of the key typed in for the −x option.
See crypt(1). Also, see the NOTES section at the end of this manual page.

−C Encryption option; the same as the −x option, except that ed simulates a C command. The C
command is like the X command, except that all text read in is assumed to have been encrypted.

ed operates on a copy of the file it is editing; changes made to the copy have no effect on the file until a w
(write) command is given. The copy of the text being edited resides in a temporary file called the buffer.
There is only one buffer.

red is a restricted version of ed. It will only allow editing of files in the current directory. It prohibits
executing shell commands via !shell command. Attempts to bypass these restrictions result in an error
message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After including a format specification as
the first line of file and invoking ed with your terminal in stty −tabs or stty tab3 mode [see
stty(1)], the specified tab stops will automatically be used when scanning file. For example, if the first
line of a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72 would be imposed.
NOTE: when you are entering text into the file, this format is not in effect; instead, because of being in
stty −tabs or stty tab3 mode, tabs are expanded to every eighth column.

1

ed(1) ed(1)hh

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a single-
character command, possibly followed by parameters to that command. These addresses specify one or
more lines in the buffer. Every command that requires addresses has default addresses, so that the
addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text. This text
is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be in input mode .
In this mode, no commands are recognized; all input is merely collected. Leave input mode by typing a
period (.) at the beginning of a line, followed immediately by pressing RETURN.

ed supports a limited form of regular expression notation; regular expressions are used in addresses to
specify lines and in some commands (for example, s) to specify portions of a line that are to be substi-
tuted. A regular expression specifies a set of character strings. A member of this set of strings is said to
be matched by the regular expression. The regular expressions allowed by ed are constructed as follows:

The following one-character regular expressions match a single:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character regular expression
that matches itself.

1.2 A backslash (\) followed by any special character is a one-character regular expression that matches
the special character itself. The special characters are:

a. ., ∗ , [, and \ (period, asterisk, left square bracket, and backslash, respectively), which are
always special, except when they appear within square brackets ([]; see 1.4 below).

b. ˆ (caret or circumflex), which is special at the beginning of a regular expression (see 4.1 and 4.3
below), or when it immediately follows the left of a pair of square brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of a regular expression (see 4.2 below).

d. The character that is special for that specific regular expression, that is used to bound (or delimit)
a regular expression. (For example, see how slash (/) is used in the g command, below.)

1.3 A period (.) is a one-character regular expression that matches any character, including supplemen-
tary code set characters, except new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one-character regular expres-
sion that matches one character, including supplementary code set characters, in that string. If, how-
ever, the first character of the string is a circumflex (ˆ), the one-character regular expression matches
any character, including supplementary code set characters, except new-line and the remaining char-
acters in the string. The ˆ has this special meaning only if it occurs first in the string. The minus (−)
may be used to indicate a range of consecutive characters, including supplementary code set charac-
ters; for example, [0−9] is equivalent to [0123456789]. Characters specifying the range must be
from the same code set; when the characters are from different code sets, one of the characters speci-
fying the range is matched. The − loses this special meaning if it occurs first (after an initial ˆ, if
any) or last in the string. The right square bracket (]) does not terminate such a string when it is the
first character within it (after an initial ˆ, if any); for example, []a−f] matches either a right square
bracket (]) or one of the ASCII letters a through f inclusive. The four characters listed in 1.2.a

2

ed(1) ed(1)hh

above stand for themselves within such a string of characters.

The following rules may be used to construct regular expressions from one-character regular expressions:

2.1 A one-character regular expression is an regular expression that matches whatever the one-character
regular expression matches.

2.2 A one-character regular expression followed by an asterisk (∗) is a regular expression that matches
zero or more occurrences of the one-character regular expression, which may be a supplementary
code set character. If there is any choice, the longest leftmost string that permits a match is chosen.

2.3 A one-character regular expression followed by \{m\}, \{m,\}, or \{m,n\} is a regular expres-
sion that matches a range of occurrences of the one-character regular expression. The values of m
and n must be non-negative integers less than 256; \{m\} matches exactly m occurrences; \{m,\}
matches at least m occurrences; \{m,n\} matches any number of occurrences between m and n
inclusive. Whenever a choice exists, the regular expression matches as many occurrences as possi-
ble.

2.4 The concatenation of regular expressions is an regular expression that matches the concatenation of
the strings matched by each component of the regular expression.

2.5 A regular expression enclosed between the character sequences \(and \) is an regular expression
that matches whatever the unadorned regular expression matches.

2.6 The expression \n matches the same string of characters as was matched by an expression enclosed
between \(and \) earlier in the same regular expression. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of \(counting from the left. For example, the
expression ˆ\(.∗ \)\1$ matches a line consisting of two repeated appearances of the same string.

A regular expression may be constrained to match words.

3.1 \< constrains a regular expression to match the beginning of a string or to follow a character that is
not a digit, underscore, or letter. The first character matching the regular expression must be a digit,
underscore, or letter.

3.2 \> constrains a regular expression to match the end of a string or to precede a character that is not a
digit, underscore, or letter.

A regular expression may be constrained to match only an initial segment or final segment of a line (or
both).

4.1 A circumflex (ˆ) at the beginning of a regular expression constrains that regular expression to match
an initial segment of a line.

4.2 A dollar sign ($) at the end of an entire regular expression constrains that regular expression to
match a final segment of a line.

4.3 The construction ˆregular expression$ constrains the regular expression to match the entire line.

3

ed(1) ed(1)hh

The null regular expression (for example, //) is equivalent to the last regular expression encountered.
See also the last paragraph of the DESCRIPTION section below.

To understand addressing in ed it is necessary to know that at any time there is a current line. Generally
speaking, the current line is the last line affected by a command; the exact effect on the current line is dis-
cussed under the description of each command. Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ′x addresses the line marked with the mark name character x, which must be a lower-case letter
(a−z). Lines are marked with the k command described below.

5. A regular expression enclosed by slashes (/) addresses the first line found by searching forward
from the line following the current line toward the end of the buffer and stopping at the first line
containing a string matching the regular expression. If necessary, the search wraps around to the
beginning of the buffer and continues up to and including the current line, so that the entire buffer is
searched. See also the last paragraph of the DESCRIPTION section below.

6. A regular expression enclosed in question marks (?) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the buffer and stopping
at the first line containing a string matching the regular expression. If necessary, the search wraps
around to the end of the buffer and continues up to and including the current line. See also the last
paragraph of the DESCRIPTION section below.

7. An address followed by a plus sign (+) or a minus sign (−) followed by a decimal number specifies
that address plus (respectively minus) the indicated number of lines. A shorthand for .+5 is .5.

8. If an address begins with + or −, the addition or subtraction is taken with respect to the current
line; for example, −5 is understood to mean .−5.

9. If an address ends with + or −, then 1 is added to or subtracted from the address, respectively. As
a consequence of this rule and of Rule 8, immediately above, the address − refers to the line preced-
ing the current line. (To maintain compatibility with earlier versions of the editor, the character ˆ in
addresses is entirely equivalent to −.) Moreover, trailing + and − characters have a cumulative
effect, so −− refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon (;) stands for the
pair .,$.

Commands may require zero, one, or two addresses. Commands that require no addresses regard the
presence of an address as an error. Commands that accept one or two addresses assume default
addresses when an insufficient number of addresses is given; if more addresses are given than such a
command requires, the last one(s) are used.

4

ed(1) ed(1)hh

Typically, addresses are separated from each other by a comma (,). They may also be separated by a
semicolon (;). In the latter case, the first address is calculated, the current line (.) is set to that value, and
then the second address is calculated. This feature can be used to determine the starting line for forward
and backward searches (see Rules 5 and 6, above). The second address of any two-address sequence
must correspond to a line in the buffer that follows the line corresponding to the first address.

In the following list of ed commands, the parentheses shown prior to the command are not part of the
address; rather they show the default address(es) for the command.

It is generally illegal for more than one command to appear on a line. However, any command (except
e, f, r, or w) may be suffixed by l, n, or p in which case the current line is either listed, numbered or
printed, respectively, as discussed below under the l, n, and p commands.

(.)a
<text>
.

The append command accepts zero or more lines of text and appends it after the addressed line
in the buffer. The current line (.) is left at the last inserted line, or, if there were none, at the
addressed line. Address 0 is legal for this command: it causes the ‘‘appended’’ text to be placed
at the beginning of the buffer. The maximum number of bytes that may be entered from a termi-
nal is 256 per line (including the new-line character).

(.)c
<text>
.

The change command deletes the addressed lines from the buffer, then accepts zero or more
lines of text that replaces these lines in the buffer. The current line (.) is left at the last line input,
or, if there were none, at the first line that was not deleted.

C
Same as the X command, described later, except that ed assumes all text read in for the e and
r commands is encrypted unless a null key is typed in.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line after the last line
deleted becomes the current line; if the lines deleted were originally at the end of the buffer, the
new last line becomes the current line.

e file
The edit command deletes the entire contents of the buffer and then reads the contents of file into
the buffer. The current line (.) is set to the last line of the buffer. If file is not given, the currently
remembered file name, if any, is used (see the f command). The number of characters read in is
printed; file is remembered for possible use as a default file name in subsequent e, r, and w
commands. If file is replaced by !, the rest of the line is taken to be a shell [sh(1)] command
whose output is to be read in. Such a shell command is not remembered as the current file name.
See also DIAGNOSTICS below. If file is replaced by %, and if additional file arguments were
specified on the command line, then the next file name specified on the command line is used.

5

ed(1) ed(1)hh

E file
The Edit command is like e, except that the editor does not check to see if any changes have
been made to the buffer since the last w command.

f file
If file is given, the f ile-name command changes the currently remembered file name to file; oth-
erwise, it prints the currently remembered file name.

(1,$)g/regular expression/command list
In the global command, the first step is to mark every line that matches the given regular expres-
sion. Then, for every such line, the given command list is executed with the current line (.) ini-
tially set to that line. A single command or the first of a list of commands appears on the same
line as the global command. All lines of a multi-line list except the last line must be ended with a
\; a, i, and c commands and associated input are permitted. The . terminating input mode
may be omitted if it would be the last line of the command list. An empty command list is
equivalent to the p command. The g, G, v, and V commands are not permitted in the command
list. See also the NOTES section and the last paragraph of the DESCRIPTION section below.

(1,$)G/regular expression/
In the interactive Global command, the first step is to mark every line that matches the given reg-
ular expression. Then, for every such line, that line is printed, the current line (.) is changed to
that line, and any one command (other than one of the a, c, i, g, G, v, and V commands)
may be input and is executed. After the execution of that command, the next marked line is
printed, and so on; a new-line acts as a null command; an & causes the re-execution of the most
recent command executed within the current invocation of G. Note that the commands input as
part of the execution of the G command may address and affect any lines in the buffer. The G
command can be terminated by an interrupt signal (ASCII DEL or BREAK).

h
The help command gives a short error message that explains the reason for the most recent ?
diagnostic.

H
The Help command causes ed to enter a mode in which error messages are printed for all subse-
quent ? diagnostics. It will also explain the previous ? if there was one. The H command alter-
nately turns this mode on and off; it is initially off.

(.)i
<text>
.

The insert command accepts zero or more lines of text and inserts it before the addressed line in
the buffer. The current line (.) is left at the last inserted line, or, if there were none, at the
addressed line. This command differs from the a command only in the placement of the input
text. Address 0 is not legal for this command. The maximum number of characters that may be
entered from a terminal is 256 per line (including the new-line character).

6

ed(1) ed(1)hh

(.,.+1)j
The join command joins contiguous lines by removing the appropriate new-line characters. If
exactly one address is given, this command does nothing.

(.)kx
The mark command marks the addressed line with name x, which must be a lower-case letter
(a−z). The address ′x then addresses this line; the current line (.) is unchanged.

(.,.)l
The list command prints the addressed lines in an unambiguous way: a few non-printing char-
acters (for example, tab, backspace) are represented by visually mnemonic overstrikes. All other
non-printing characters are printed in octal, and long lines are folded. An l command may be
appended to any command other than e, f, r, or w.

(.,.)ma
The move command repositions the addressed line(s) after the line addressed by a . Address 0 is
legal for a and causes the addressed line(s) to be moved to the beginning of the file. It is an error
if address a falls within the range of moved lines; the current line (.) is left at the last line moved.

(.,.)n
The number command prints the addressed lines, preceding each line by its line number and a
tab character; the current line (.) is left at the last line printed. The n command may be
appended to any command other than e, f, r, or w.

(.,.)p
The print command prints the addressed lines; the current line (.) is left at the last line printed.
The p command may be appended to any command other than e, f, r, or w. For example,
dp deletes the current line and prints the new current line.

P
The editor will prompt with a ∗ for all subsequent commands. The P command alternately
turns this mode on and off; it is initially off.

q
The quit command causes ed to exit. No automatic write of a file is done; however, see DIAG-
NOSTICS below.

Q
The editor exits without checking if changes have been made in the buffer since the last w com-
mand.

($)r file
The read command reads the contents of file into the buffer. If file is not given, the currently
remembered file name, if any, is used (see the e and f commands). The currently remembered
file name is not changed unless file is the very first file name mentioned since ed was invoked.
Address 0 is legal for r and causes the file to be read in at the beginning of the buffer. If the read
is successful, the number of characters read in is printed; the current line (.) is set to the last line
read in. If file is replaced by !, the rest of the line is taken to be a shell [see sh(1)] command

7

ed(1) ed(1)hh

whose output is to be read in. For example, $r !ls appends current directory to the end of the
file being edited. Such a shell command is not remembered as the current file name.

(.,.)s/regular expression/replacement/ or
(.,.)s/regular expression/replacement/g or
(.,.)s/regular expression/replacement/n n = 1-512

The substitute command searches each addressed line for an occurrence of the specified regular
expression. In each line in which a match is found, all (non-overlapped) matched strings are
replaced by the replacement if the global replacement indicator g appears after the command. If
the global indicator does not appear, only the first occurrence of the matched string is replaced. If
a number n, appears after the command, only the n-th occurrence of the matched string on each
addressed line is replaced. It is an error if the substitution fails on all addressed lines. Any char-
acter other than space or new-line may be used instead of / to delimit the regular expression and
the replacement; the current line (.) is left at the last line on which a substitution occurred. See
also the last paragraph of the DESCRIPTION section below.

An ampersand (&) appearing in the replacement is replaced by the string matching the regular
expression on the current line. The special meaning of & in this context may be suppressed by
preceding it by \ . As a more general feature, the characters \n, where n is a digit, are replaced
by the text matched by the n-th regular subexpression of the specified regular expression
enclosed between \(and \). When nested parenthesized subexpressions are present, n is
determined by counting occurrences of \(starting from the left. When the character % is the
only character in the replacement, the replacement used in the most recent substitute command is
used as the replacement in the current substitute command. The % loses its special meaning when
it is in a replacement string of more than one character or is preceded by a \ .

A line may be split by substituting a new-line character into it. The new-line in the replacement
must be escaped by preceding it by \ . Such substitution cannot be done as part of a g or v
command list.

(.,.)ta
This command acts just like the m command, except that a copy of the addressed lines is placed
after address a (which may be 0); the current line (.) is left at the last line copied.

u
The undo command nullifies the effect of the most recent command that modified anything in
the buffer, namely the most recent a, c, d, g, i, j, m, r, s, t, v, G, or V command.

(1,$)v/regular expression/command list
This command is the same as the global command g, except that the lines marked during the
first step are those that do not match the regular expression.

(1,$)V/regular expression/
This command is the same as the interactive global command G, except that the lines that are
marked during the first step are those that do not match the regular expression.

8

ed(1) ed(1)hh

(1,$)w file
The write command writes the addressed lines into file. If file does not exist, it is created with
mode 666 (readable and writable by everyone), unless your file creation mask dictates other-
wise; see the description of the umask special command on sh(1). The currently remembered
file name is not changed unless file is the very first file name mentioned since ed was invoked. If
no file name is given, the currently remembered file name, if any, is used (see the e and f com-
mands); the current line (.) is unchanged. If the command is successful, the number of characters
written is printed. If file is replaced by !, the rest of the line is taken to be a shell [see sh(1)]
command whose standard input is the addressed lines. Such a shell command is not remem-
bered as the current file name.

(1,$)W file
This command is the same as the write command above, except that it appends the addressed
lines to the end of file if it exists. If file does not exist, it is created as described above for the w
command.

X
A key is prompted for, and it is used in subsequent e, r, and w commands to decrypt and
encrypt text using the crypt(1) algorithm. An educated guess is made to determine whether
text read in for the e and r commands is encrypted. A null key turns off encryption. Subse-
quent e, r, and w commands will use this key to encrypt or decrypt the text [see crypt(1)].
An explicitly empty key turns off encryption. Also, see the −x option of ed.

($)=
The line number of the addressed line is typed; the current line (.) is unchanged by this com-
mand.

!shell command
The remainder of the line after the ! is sent to the UNIX system shell [see sh(1)] to be inter-
preted as a command. Within the text of that command, the unescaped character % is replaced
with the remembered file name; if a ! appears as the first character of the shell command, it is
replaced with the text of the previous shell command. Thus, !! will repeat the last shell com-
mand. If any expansion is performed, the expanded line is echoed; the current line (.) is
unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be printed. A new-line alone is equivalent
to .+1p; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its command level.

Some size limitations: 512 bytes in a line, 256 bytes in a global command list, and 1024 bytes in the path-
name of a file (counting slashes). The limit on the number of lines depends on the amount of user
memory: each line takes 1 word.

9

ed(1) ed(1)hh

When reading a file, ed discards ASCII NUL characters.

If a file is not terminated by a new-line character, ed adds one and puts out a message explaining what it
did.

If the closing delimiter of a regular expression or of a replacement string (for example, /) would be the
last character before a new-line, that delimiter may be omitted, in which case the addressed line is
printed. The following pairs of commands are equivalent:

lf4w(.75i) lf4. s/s1/s2s/s1/s2/p g/s1 g/s1/p ?s1 ?s1?

FILES
$TMPDIR

if this environmental variable is not null, its value is used in place of /var/tmp as the directory
name for the temporary work file.

/var/tmp
if /var/tmp exists, it is used as the directory name for the temporary work file.

/tmp if the environmental variable TMPDIR does not exist or is null, and if /var/tmp does not exist,
then /tmp is used as the directory name for the temporary work file.

ed.hup
work is saved here if the terminal is hung up.

/usr/lib/locale/locale/LC_MESSAGES/uxcore.abi
language-specific message file [See LANG on environ (5).]

SEE ALSO
edit(1), ex(1), grep(1), sed(1), sh(1), stty(1), umask(1), vi(1)
fspec(4), regexp(5)

DIAGNOSTICS
? for command errors. Type the ‘h’ command for a short error message.
?file for an inaccessible file.

(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed warns
the user if an attempt is made to destroy ed’s buffer via the e or q commands. It prints ? and allows
one to continue editing. A second e or q command at this point will take effect. The −s command-line
option inhibits this feature.

NOTES
The − option, although it continues to be supported, has been replaced in the documentation by the −s
option that follows the Command Syntax Standard [see intro(1)].

The encryption options and commands are provided with the Encryption Utilities package, which is
available only in the United States.

A ! command cannot be subject to a g or a v command.

10

ed(1) ed(1)hh

The ! command and the ! escape from the e, r, and w commands cannot be used if the editor is
invoked from a restricted shell [see sh(1)].

The sequence \n in a regular expression does not match a new-line character.

If the editor input is coming from a command file (for example, ed file < ed_cmd_file), the editor exits at
the first failure.

11

FIND(1) FIND(1)hh

NAME
find − find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
find recursively descends the directory hierarchy for each path name in the path-name-list (that is, one or
more path names) seeking files that match a boolean expression written in the primaries given below. In
the descriptions, the argument n is used as a decimal integer where +n means more than n, −−n means less
than n and n means exactly n. Valid expressions are:

−−name file True if file matches the current file name. Normal shell argument syntax may be used if
escaped (watch out for [, ? and ∗∗).

−−perm [−−]onum True if the file permission flags exactly match the octal number onum (see chmod(1)). If
onum is prefixed by a minus sign, only the bits that are set in onum are compared with
the file permission flags, and the expression evaluates true if they match.

−−type c True if the type of the file is c, where c is b, c, d, l, p, f, or s for block special file, charac-
ter special file, directory, symbolic link, fifo (a.k.a named pipe), plain file, or socket
respectively.

−−links n True if the file has n links.

−−user uname True if the file belongs to the user uname. If uname is numeric and does not appear as a
login name in the /etc/passwd file, it is taken as a user ID.

−nouser True if the file belongs to a user not in the /etc/passwd file.

−−group gname True if the file belongs to the group gname. If gname is numeric and does not appear in
the /etc/group file, it is taken as a group ID.

−nogroup True if the file belongs to a group not in the /etc/group file.

−−size n[c] True if the file is n blocks long (512 bytes per block). If n is followed by a c, the size is in
characters.

−−inum n True if n is the inode number of the file.

−−atime [+-]n True if the file has been accessed in n days (see stat(2) for a description of which file
operations change the access time of a file). The access time of directories in path-name-
list is changed by find itself.

−−mtime [+-]n True if the file has been modified in n days (see stat(2) for a description of which file
operations change the modification time of a file).

−−ctime [+-]n True if the file has been changed in n days (see stat(2) for a description of which file
operations change the change time of a file).

1

FIND(1) FIND(1)hh

−−exec cmd True if the executed cmd returns a zero value as exit status. The end of cmd must be
punctuated by an escaped semicolon. A command argument {} is replaced by the
current path name.

−−ok cmd Like −−exec except that the generated command line is printed with a question mark
first, and is executed only if the user responds by typing y.

−−print Always true; causes the current path name to be printed.

−−cpio device Always true; write the current file on device in cpio (1) format (5120-byte records).

−−newer file True if the current file has been modified more recently than the argument file (see
stat(2) for a description of which file operations change the modification time of a file).

−−anewer file True if current file has been accessed more recently than the argument file (see stat(2)
for a description of which file operations change the access time of a file).

−−cnewer file True if current file has been changed more recently than the argument file (see stat(2)
for a description of which file operations change the change time of a file).

−−depth Always true; causes descent of the directory hierarchy to be done so that all entries in a
directory are acted on before the directory itself. This can be useful when find is used
with cpio(1) to transfer files that are contained in directories without write permission.

−−prune Always true; do not examine any directories or files in the directory structure below the
pattern just matched. If the current path name is a directory, find will not descend into
that directory, provided −−depth is not also used.

−−mount Always true; restricts the search to the file system containing the current element of the
path-name-list .

−fstype type True if the filesystem to which the file belongs is of type type.

−−local True if the file physically resides on the local system; causes the search not to descend
into remotely mounted file systems.

−−follow Always true; causes the underlying file of a symbolic link to be checked rather than the
symbolic link itself.

(expression) True if the parenthesized expression is true (parentheses are special to the shell and
must be escaped).

The primaries may be combined using the following operators (in order of decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).

3) Alternation of primaries (−−o is the or operator).

2

FIND(1) FIND(1)hh

EXAMPLES
To remove all files named a.out or ∗∗ .o that have not been accessed for a week:

find / \(−name a.out −o −name ′∗ .o′ \) −atime +7 −exec rm {} \;

To display all character special devices on the root file system except those under any dev directory:

find / −mount \(−type d −name dev −prune \) −o −type c −print

FILES
/etc/passwd UID information supplier
/etc/group GID information supplier

SEE ALSO
chmod(1), cpio(1), sh(1), test(1), stat(2), umask(2), fs(4)

BUGS
find / −−depth always fails with the message: ‘‘find: stat failed: : No such file or directory’’.
find relies on a completely correct directory hierarchy for its search. In particular, if a directory’s ’..’ is
missing or incorrect, find will fail at that point and issue some number of ‘‘stat failed:’’ messages.
-depth and -prune do not work together well.

3

FS(4) FS(4)hh

NAME
efs − layout of the Extent file system

SYNOPSIS
#include <sys/param.h>
#include <sys/fs/efs.h>

DESCRIPTION
An Extent filesystem may reside on a regular disk partition, or on a logical volume: see lv(1M) . The disk
partition or volume is divided into a certain number of 512 byte long sectors, also called basic blocks.

Note that the current maximum size limit of an Extent filesystem is 16777214 blocks, equivalent to 8 giga-
bytes.

The Extent filesystem imposes a common format for certain vital information on its underlying storage
medium.

Basic block 0 is unused and is available to contain a bootstrap program or other information.

Basic block 1 is the super-block. The format of an Extent file system super-block is:

/*

* Structure of the super-block for the Extent file system

*/

struct efs {

/*

* This portion is read off the volume

*/

long fs_size; /* size of file system, in sectors */

long fs_firstcg; /* bb offset to first cg */

long fs_cgfsize; /* size of cylinder group in bb’s */

short fs_cgisize; /* bb’s in inodes per cylinder group */

short fs_sectors; /* sectors per track */

short fs_heads; /* heads per cylinder */

short fs_ncg; /* # of groups in file system */

short fs_dirty; /* fs needs to be fsck’d */

time_t fs_time; /* last super-block update */

long fs_magic; /* magic number */

char fs_fname[6]; /* file system name */

char fs_fpack[6]; /* file system pack name */

long fs_bmsize; /* size of bitmap in bytes */

long fs_tfree; /* total free data blocks */

long fs_tinode; /* total free inodes */

long fs_bmblock; /* bitmap location */

long fs_replsb; /* location of replicated superblock. */

1

FS(4) FS(4)hh

char fs_spare[24]; /* space for expansion */

long fs_checksum; /* checksum of volume portion of fs */

/*

* The remainder of this structure, defined fully in

* <sys/fs/efs_sb.h> is used by the operating system only.

*/

};

Note that the struct efs that is defined in <sys/fs/efs_sb.h> contains more fields. The extra fields are used
internally by the operating system, and are not discussed here. If in doubt, consult the include file for any
recent changes to both the section discussed here, and changes to relevant definitions. fs_size holds the
size in basic blocks of the file system. This variable is filled in when the file system is first created with
mkfs(1M).

fs_firstcg contains the basic block offset to the first cylinder group. There are fs_ncg cylinder groups con-
tained in the file system. Each cylinder group is composed of fs_cgfsize basic blocks, of which fs_cgisize
basic blocks are used for inodes.

fs_sectors, and fs_heads are used to specify the geometry of the underlying disk containing the file system.
Note that fs_heads is in fact currently unused, and should not be relied upon.

fs_dirty is a flag which indicates if the file system needs to be checked by the fsck(1M) program. The
fs_time field contains the time stamp of when the file system was last modified. fs_name holds the name of
the file system (where it is mounted, more or less) while fs_fpack contains which volume this file system is.
The fs_fpack field is singularly useless, but is provided for utility compatibility. fs_magic is used to tag the
superblock of the file system as an Extent file system. There are two values that are currently used, and a
macro used to test for either one.

#define EFS_MAGIC 0x072959

#define EFS_NEWMAGIC 0x07295A

#define IS_EFS_MAGIC(x) ((x == EFS_MAGIC) || (x == EFS_NEWMAGIC))

The NEWMAGIC version was added in IRIX 3.3 when the superblock format changed slightly. Filesys-
tems created with that version of mkfs or later (or modified with Imkfs -r or extended with growfs will get
the new magic number; otherwise the older magic number will be retained, if present.

The fs_bmsize field contains, in bytes, the size of the data block bitmap. The data block bitmap is used for
data block allocation. Each one in the bitmap indicates a free block. The fs_bmblock field contains the loca-
tion of the bitmap if it has been moved from its default location (basic block 2) because the file system has
been constructed on a logical volume which has been extended (see growfs(1m)).

fs_tfree and fs_tinode contain the total free blocks and inodes, respectively.
The fs_replsb field contains the location of a replicated superblock, if one exists.
The fs_spare field is reserved for future use.
Lastly, the fs_checksum variable holds a checksum of the above fields (not including itself).

2

FS(4) FS(4)hh

During the mount(1M) of the file system, the fs_dirty and fs_checksum fields are examined. If fs_dirty is
non-zero, or the fs_checksum variable does not match the systems computed checksum, then the file sys-
tem must be cleaned with fsck before it can be mounted. If the file system is the root partition, then this
check is ignored, as it is necessary to be able to run fsck on a dirty root from a dirty root . For the format of
an inode and its flags, see inode(4).

FILES
/usr/include/sys/fs/efs*.h
/usr/include/sys/stat.h

SEE ALSO
fsck(1M), mkfs(1M), growfs(1M), inode(4).

3

FSCK(1M) FSCK(1M)hh

NAME
fsck, dfsck − check and repair file systems

SYNOPSIS
/etc/fsck [−−c] [−−f] [−−g] [−−m] [−−n] [−−q] [−−y] [−−l dir] [file-systems]
/etc/dfsck [options1] fsys1 . . . −− [options2] fsys2 . . .

DESCRIPTION
Fsck

fsck audits and repairs inconsistent conditions for file systems. The user must have both read and write
permission for the device containing the file system, unless the -n flag is given, in which case only read
permission is required.

If the file system is inconsistent, the user is normally prompted for concurrence before each correction is
attempted. It should be noted that most corrective actions will result in some loss of data. The amount
and severity of data loss may be determined from the diagnostic output. The default action for each
correction is to wait for the user to respond yes or no. However, certain option flags cause fsck to run in a
non-interactive mode.

On completion, the number of files, blocks used, and blocks free are reported.

Note: checking the raw device is almost always faster.

The following options are accepted by fsck:

−−c Checks the file system only if the superblock indicates that it is dirty, otherwise a message is
printed saying that the file system is clean and no check is performed. The default in the absence of
this option is to always perform the check.

−−y Assumes a yes response to all questions asked by fsck.

−−n Assumes a no response to all questions asked by fsck; does not open the file system for writing.

−−g A low risk "gentle" mode, similar to BSD preen. Problems that do not present any risk of data loss
are fixed: these include bad link counts, bad free list and dirty superblock. If any serious damage is
encountered that cannot be repaired without risk of data loss, fsck terminates with a warning mes-
sage.

−−q Quiet fsck. This option is effectively a version of the −−y option with less verbose output.

−−f Fast check. Check block and sizes and check the free list. The free list will be reconstructed if it is
necessary. No directory or pathname checks are performed.

−−m Forks multiple instances of fsck to check file systems in parallel for improved speed. Note that this
option is effective only when fsck is working from the file systems listed in /etc/fstab and is ignored
if explicit file system arguments are given. Also, when this option is specified entries in /etc/fstab
with the noauto option specified will be ignored.

1

FSCK(1M) FSCK(1M)hh

−−l Allows a directory on a mounted file system, located elsewhere on the system, to be specified as a
salvage directory. Unreferenced regular files, named after their inode numbers, will be copied into
this salvage directory. This allows files to be salvaged from very badly corrupted file systems that
may not be repairable in place -- if the root inode is lost, for example.

If no file-systems are specified, fsck will read a list of default file systems from the file /sbin/fstab. Note
that this will not include the root file system, fsck will run on root only if this is explicitly specified.

Normally, a file system must be unmounted in order to run fsck on it, an error message is printed and no
action taken if invoked on a mounted file system. The one exception to this is the root file system, which
must be mounted to run fsck. If inconsistencies are detected when running on root, fsck causes a remount
of root.

PARALLEL OPERATION
When invoked with the -m flag and without explicit file system parameters, fsck will scan /etc/fstab and
attempt to fork a check process for each efs file system found. These checks proceed in parallel, for
improved speed.

The name of the device holding the file system is printed as each check begins. However, to avoid confu-
sion, the remaining output from these parallel checks is not printed; instead it is placed in log files in the
directory /etc/fscklogs. This directory is created if it does not currently exist.

The log files are named after the last component of the pathname of the device where the file system
resides. For example, if a file system was on /dev/dsk/ips0d1s7 the logfile would be named
/etc/fscklogs/ips0d1s7.

Note that since there is no interaction with the checks, the -m option is accepted only in combination with
another option implying non interactive behavior: -y or -g.

As each check completes, the name of the device is printed along with a message indicating success or
failure. In the event of failure, the name of the logfile containing the output from the check of that file sys-
tem is also printed.

Some control over the parallelization is possible by placing passnumbers in /etc/fstab (see fstab(4)). If pass
numbers are given for file systems, they will be checked in the order of their pass numbers. All file sys-
tems with a given pass number will be checked (in parallel, if more than one file system has the same pass
number) before the next highest pass number. A missing pass number defaults to zero. If no pass
numbers are present, all file systems will be checked simultaneously if possible.

(Note: in fact, fsck takes note of the amount of memory available in the system, and will limit the number
of simultaneous check processes to avoid swapping).

2

FSCK(1M) FSCK(1M)hh

CHECKS PERFORMED
Inconsistencies checked are as follows:

1. Inode block addressing checks: Too many direct or indirect extents, extents out of order, bad
magic number in extents, blocks that are not in a legal data area of the file system, blocks that are
claimed by more than one inode.

2. Size checks: Number of blocks claimed by inode inconsistent with inode size, directory size not
block aligned.

3. Directory checks: Illegal number of entries in a directory block, bad freespace pointer in directory
block, entry pointing to unallocated or outrange inode, overlapping entries, missing or incorrect
dot and dotdot entries.

4. Pathname checks: Files or directories not referenced by a pathname starting from the file system
root.

5. Link count checks: Link counts that do not agree with the number of directory references to the
inode.

6. Freemap checks: Blocks claimed free by the freemap but also claimed by an inode, blocks
unclaimed by any inode but not appearing in the freemap.

7. Super Block checks: Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the user’s concurrence, reconnected
by placing them in the lost+found directory, if the files are nonempty. The user will be notified if the file
or directory is empty or not. Empty files or directories are removed, as long as the −−n option is not
specified. fsck will force the reconnection of nonempty directories. The name assigned is the i-node
number. The directory lost+found must preexist in the root of the file system being checked and must
have empty slots in which entries can be made. This directory is always created by mkfs(1m) when a file
system is first created.

SUPERBLOCKS AND FILESYSTEM ROBUSTNESS
In IRIX 3.3 and later, a replicated superblock exists in the EFS file system, situated at the end of the file
system space. If fsck cannot read the primary superblock it will attempt to use the replicated superblock.
It prints a message to notify the user of the situation. This is automatic; no user intervention is required.
Further, fsck attempts to determine if a replicated superblock exists, and if not, will optionally create one.
Thus, older file systems benefit from this feature.

Finally, if no superblock can be found on a damaged file system, it may be possible to regenerate one by
using the new -r option of mkfs(1M) , and then use fsck to salvage the file system. Warning: this will not be
effective if the file system was created under a version of IRIX other than the currently running version,
since mkfs defaults have changed from release to release.

3

FSCK(1M) FSCK(1M)hh

OBSOLETE OPTIONS
The options -b -D -s -S and -t, which were supported by earlier versions of fsck, are now obsolete.

The -b option caused a reboot of the system when fsck was run on the root file system and errors were
detected. The behavior now is always to remount the root file system in this case.

The -t option specified a scratch file for temporary storage; this is now never required.

The -D option added extra directory checks; these are now always done by default.

The -s and -S options caused conditional or forced rebuild of the freelist. The freelist is now exhaustively
checked and will always be rebuilt if necessary.

All of these options are now legal no-ops.

DFSCK
Note: now that fsck has the capability of checking file systems in parallel, use of dfsck is strongly depre-
cated. This program will not be supported beyond the current release.

Dfsck should not be used to check the root file system.

Dfsck allows two file system checks on two different drives simultaneously.

options1 and options2 are used to pass options to fsck for the two sets of file systems. A −− is the separator
between the file system groups.

The dfsck program permits a user to interact with two fsck programs at once. To aid in this, dfsck will print
the file system name for each message to the user. When answering a question from dfsck, the user must
prefix the response with a 1 or a 2 (indicating that the answer refers to the first or second file system
group).

FILES
/etc/fstab contains default list of file systems to check.

SEE ALSO
mkfs(1M), ncheck(1M), fpck(1M), findblk(1M), uadmin(2), fstab(4), filesystems(4)

4

FSDB(1M) FSDB(1M)hh

NAME
fsdb − file system debugger

SYNOPSIS
/etc/fsdb [options] special

DESCRIPTION
The options available to fsdb are:

-? display usage
-o override some error conditions
-p’string’ set prompt to string
-w open for write

Since fsdb reads the disk raw, it is able to circumvent normal file system security. It also bypasses the
buffer cache mechanism. Hence, it is not advisable to use fsdb to write to a mounted file system.

fsdb can be used to patch up a damaged file system after a crash. It has conversions to translate block
and i-numbers into their corresponding disk addresses. Also included are mnemonic offsets to access dif-
ferent parts of an inode. These greatly simplify the process of correcting control block entries or descend-
ing the file system tree.

fsdb contains several error-checking routines to verify inode and block addresses. These can be disabled
if necessary by invoking fsdb with the −o option or by the use of the o command.

Special should be the name of a character device file. fsdb searches /etc/fstab for the raw character dev-
ice file name, if given the name of a file system. A buffer management routine is used to retain commonly
used blocks of data in order to reduce the number of read system calls. All assignment operations result
in an immediate write-through of the corresponding block. Since fsdb opens the raw device file, any
write-through’s will bypass the file system buffer cache, resulting in a potential mismatch between on-
disk and buffer cache data-structures. Hence, it is recommended that fsdb not be used to write to a
mounted file system. Note that in order to modify any portion of the disk, fsdb must be invoked with the
-w option.

Wherever possible, adb-like syntax was adopted to promote the use of fsdb through familiarity.

Numbers are considered hexadecimal by default. However, the user has control over how data is to be
displayed or accepted. The base command will display or set the input/output base. Once set, all input
will default to this base and all output will be shown in this base. The base can be overridden temporarily
for input by preceding hexadecimal numbers with ’0x’, preceding decimal numbers with ’0t’, or octal
numbers with ’0’. Hexadecimal numbers beginning with a-f or A-F must be preceded with ’0x’ to distin-
guish them from commands.

Disk addressing by fsdb is at the byte level. However, fsdb offers many commands to convert a desired
inode, directory entry, block, superblock and so forth, to a byte address. Once the address has been calcu-
lated, fsdb will record the result in dot .

1

FSDB(1M) FSDB(1M)hh

Several global values are maintained by fsdb: the current base (referred to as base), the current address
(referred to as dot), the current inode (referred to as inode), the current count (referred to as count), and
the current type (referred to as type). Most commands use the preset value of dot in their execution. For
example,

> 2:inode

will first set the value of dot to 2, ’:’ will alert the start of a command, and the inode command will set inode
to 2. A count is specified after a ’,’. Once set, count will remain at this value until a new command is
encountered, which will then reset the value back to 1 (the default). So, if

> 2000,400/X

is typed, 400 hex longs are listed from 2000, and when completed, the value of dot will be 2000 + 400 *
sizeof (long). If a carriage-return is then typed, the output routine will use the current values of dot ,
count, and type and display 400 more hex longs. A ’*’ will cause the entire block to be displayed.

End of block and file are maintained by fsdb. When displaying data as blocks, an error message will be
displayed when the end of the block is reached. When displaying data using the db, directory, or file com-
mands an error message is displayed if the end of file is reached. This is needed primarily to avoid pass-
ing the end of a directory or file and getting unknown and unwanted results.

Examples showing several commands and the use of carriage-return would be:
> 2:ino; 0:dir?d

or
> 2:ino; 0:db:block?d

The two examples are synonymous for getting to the first directory entry of the root of the file system.
Once there, subsequent carriage-returns (or +, -) will advance to subsequent entries.

2

FSDB(1M) FSDB(1M)hh

Note that:

> 2:inode; :ls /
or

> 2:inode
> :ls /

is again synonymous.

EXPRESSIONS
fsdb recognizes the following symbols. There should be no white space between the symbols and the
arguments.

carriage-return
Update the value of dot by the current value of type and display using the current value of count.

Numeric expressions may be composed of +, -, *, and % operators (evaluated left to right) and
may use parentheses. Once evaluated, the value of dot is updated.

,count Count indicator. The global value of count will be updated to count. The value of count will
remain until a new command is run. A count specifier of ’*’ will attempt to show a blocks’s worth
of information. The default for count is 1.

?f Display in structured style with format specifier f (see FORMATTED OUTPUT section).

/f Display in unstructured style with format specifier f (see FORMATTED OUTPUT section).

. The value of dot .

+e Increment the value of dot by the expression e. The amount actually incremented is dependent on
the size of type :

dot = dot + e * sizeof (type)

The default for e is 1.

-e Decrement the value of dot by the expression e (see +).

*e Multiply the value of dot by the expression e. Multiplication and division don’t use type. In the
above calculation of dot , consider the sizeof (type) to be 1.

%e Divide the value of dot by the expression e (see *).

<name Restore an address saved in register name. name must be a single letter or digit.

>name Save an address in register name. name must be a single letter or digit.

=f Display indicator. If f is a legitimate format specifier (see FORMATTED OUTPUT section), then
the value of dot is displayed using format specifier f. Otherwise, Assignment is assumed (see next
item).

3

FSDB(1M) FSDB(1M)hh

=[e]

=[s] Assignment indicator. The address pointed to by dot has its contents changed to the value of the
expression e or to the ASCII representation of the quoted (") string s. This may be useful for
changing directory names or ASCII file information.

=+e Incremental assignment. The address pointed to by dot has its contents incremented by expres-
sion e.

=-e Decremental assignment. The address pointed to by dot has its contents decremented by expres-
sion e.

COMMANDS
A command must be prefixed by a ’:’ character. Only enough letters of the command to uniquely distin-
guish it are needed. Multiple commands may be entered on one line by separating them by a space, tab
or ’;’.

In order to view a potentially unmounted disk in a reasonable manner, fsdb offers the cd, pwd , ls and find
commands. The functionality of these commands substantially matches those of its UNIX counterparts
(see individual command for details). The ’*’, ’?’, and ’[-]’ wild card characters are available.

base=b Display or set base. As stated above, all input and output is governed by the current base . If the
’=b’ is left off, the current base is displayed. Otherwise, the current base is set to b. Note that this
is interpreted using the old value of base . To ensure correctness use the ’0’, ’0t’, or ’0x’ prefix
when changing the base. The default for base is hexadecimal.

block Convert the value of dot to a block address.

cd dir Change the current directory to directory dir. The current values of inode and dot are also
updated. If no dir is specified, then change directories to inode 2 ("/").

cg Convert the value of dot to a cylinder group.

directory
If the current inode is a directory, then the value of dot is converted to a directory slot offset in that
directory. dot now points to this entry.

file The value of dot is taken as a relative block count from the beginning of the file. The value of dot
is updated to the first byte of this block.

find dir [-name n] [-inum i]
Find files by name or i-number. find recursively searches directory dir and below for file names
whose i-number matches i or whose name matches pattern n. Note that only one of the two
options (-name or -inum) may be used at one time. Also, the -print is not needed or accepted.

fill=p Fill an area of disk with pattern p. The area of disk is delimited by dot and count.

inode Convert the value of dot to an inode address. If successful, the current value of inode will be
updated as well as the value of dot. As a convenient shorthand, if ’:inode’ appears at the begin-
ning of the line, the value of dot is set to the current inode and that inode is displayed in inode for-
mat.

4

FSDB(1M) FSDB(1M)hh

ls [-R] [-l] pat1 pat2 ...
List directories or files. If no file is specified, the current directory is assumed. Either or both of
the options may be used (but, if used, must be specified before the file name specifiers). Also, as
stated above, wild card characters are available and multiple arguments may be given. The long
listing shows only the i-number and the name; use the inode command with ’?i’ to get more infor-
mation. The output is sorted in alphabetical order. If either one of the -R or the -l options is used,
then the files may have a character following the file name, indicating the type of the file. Direc-
tories have a "/", symbolic links have a "@", AF_UNIX address family sockets have a "=" and fifo’s
have "f". Regular files and block and character device files have a "*" if they are executable. If the
file type is unknown, then a "?" is printed.

override
Toggle the value of override. Some error conditions may be overridden if override is toggled on.

prompt p
Change the fsdb prompt to p. p must be surrounded by (")s.

pwd Display the current working directory.

quit Quit fsdb.

sb The value of dot is taken as the basic block number and then converted to the address of the
superblock in that cylinder group. As a shorthand, ’:sb’ at the beginning of a line will set the
value of dot to the superblock and display it in superblock format.

! sh Escape to shell

INODE COMMANDS
In addition to the above commands, there are several commands that deal with inode fields and operate
directly on the current inode (they still require the ’:’). They may be used to display more easily or change
the particular fields. The value of dot is only used by the ’:db’, ":len" and ’:off’ commands. Upon comple-
tion of the command, the value of dot is changed to point to that particular field. For example,

> :ln=+1

would increment the link count of the current inode and set the value of dot to the address of the link
count field. It is important to know the format of the disk inode structure and the size and alignment of
the respective fields, otherwise the output of these commands will not be coherent. The disk inode struc-
ture is available in <sys/fs/efs_ino.h>.

at Access time.

ct Creation time.

db Use the current value of dot as an index into the list of extents stored in the disk inode to get the
starting disk block number associated with the corresponding extent. Extents number from 0 - 11.
In order to display the block itself, you need to ’pipe’ this result into the block command. For
example,

> 1:db:block,20/X

5

FSDB(1M) FSDB(1M)hh

would get the contents of disk block number field of extent number 1 from the inode, convert it to
a block address. 20 longs are then displayed in hexadecimal (see the FORMATTED OUTPUT sec-
tion).

gen Inode generation number.

gid Group ID.

ln Link count.

len Use the current value of dot as an index into the list of extents stored in the disk inode to get the
length associated with the corresponding extent. Extents number from 0 - 11. This field is one
byte long.

6

FSDB(1M) FSDB(1M)hh

For example,

> 1:len/b

would display the contents of the "len" field of extent number 1.

mt Modification time.

md Mode.

maj Major device number.

min Minor device number.

nex Number of extents.

nm Although listed here, this command actually operates on the directory name field. Once poised at
the desired directory entry (using the directory command), this command will allow you to
change or display the directory name. For example,

> 7:dir:nm="foo"

will get the 7th directory entry of the current inode and change its name to foo. Note that names
have to be the same size as the original name. If the new name is smaller, it is padded with ’#’. If
it is larger, the string is truncated to fit and a warning message to this effect is displayed.

off Use the current value of dot as an index into the list of extents stored in the disk inode to get the
logical block offset associated with the corresponding extent. Extents number from 0 - 11. This
field is 3 bytes long. For example,

> 3:off,3/b

would display the contents of the "off" field of extent number 3.

sz File size.

uid User ID.

FORMATTED OUTPUT
There are two styles and many format types. The two styles are structured and unstructured. Structured
output is used to display inodes, directories, superblocks and the like. Unstructured output only displays
raw data. The following table shows the different ways of displaying:

?
c Display as cylinder groups
i Display as inodes
I Display as inodes (all direct extents)
d Display as directories
s Display as superblocks

7

FSDB(1M) FSDB(1M)hh

e Display as extents

/
b Display as bytes
c Display as characters
o O Display as octal shorts or longs
d D Display as decimal shorts or longs
x X Display as hexadecimal shorts or longs

The format specifier immediately follows the ’/’ or ’?’ character. The values displayed by ’/b’ and all ’?’
formats are displayed in the current base . Also, type is appropriately updated upon completion.

EXAMPLES
> :base Display the current input/output base (hexadecimal by default).

> :base=0xa Change the current input/output base to decimal.

> 0t2000+(0t400%(0t20+0t20))=D
Display 2010 in decimal (use of fsdb as a calculator for complex arithmetic). The "0t"
indicates that the numbers are to be interpreted as decimal numbers and are necessary
only if the current base is not decimal. Brackets should be used to force ordering since
fsdb does not force the normal ordering of operators. Note that "%" is the division sym-
bol.

> 386:ino?i Display i-number 386 in an inode format. This now becomes the current inode.

> :ln=4 Change the link count for the current inode to 4.

> :ln/x Display the link count as a hexadecimal short.

> :ln=+1 Increments the link count by 1.

> :sz/D Display the size field as a decimal long.

> :sz/X Display the size field as a hexadecimal long.

> :ct=X Display the creation time as a hexadecimal long.

> :mt=t Display the modification time in time format.

> 0:db,3/b Display the block number of the first extent as 3 bytes. The block number has to be
printed out as bytes, due to alignment considerations.

> 0:file/c Display, in ASCII, block zero of the file associated with the current inode.

> 5:dir:inode; 0:file,*/c
Change the current inode to that associated with the 5th directory entry (numbered
from zero) of the current inode. The first logical block of the file is then displayed in
ASCII.

8

FSDB(1M) FSDB(1M)hh

> :sb Display the superblock of this file system.

> 0:cg?c Display cylinder group information and summary for the first cylinder group (cg
number 0).

> 7:dir:nm="name"
Change the name field in the directory slot to name.

> 2:db:block,*?d Display the third block of the current inode as directory entries.

> 0:db=0x43b Change the disk block number associated with extent 0 of the inode to 0x43b.

> 0:len=0x4 Change the length of extent 0 to 4.

> 1:off=0xa Change the logical block offset of extent 1 to 4.

> 0x43b:block/X Display the first four bytes of the contents of block 0x43b.

> 0x43b:block=0xdeadbeef
Set the contents of disk block number 0x43b to 0xdeadbeef. 0xdeadbeef may be trun-
cated depending on the current type.

> 2050=0xffffffff Set the contents of address 2050 to 0xffffffff. 0xffffffff may be truncated depending on
the current type.

> 1c92434="this is some text"
Place the ASCII for the string at 1c92434.

> 2:inode:0:db:block,*?d
Change the current inode to 2. Take the first block associated with this (root) inode and
display its contents as directory entries. It will stop prematurely if the eof is reached.

SEE ALSO
fsck(1M), dir(4), inode(4), fs(4).

9

FSSTAT(1M) FSSTAT(1M)hh

NAME
fsstat − report file system status

SYNOPSIS
/sbin/fsstat special_file

DESCRIPTION
fsstat reports on the status of the file system on special_file . During startup, this command is used to
determine if the file system needs checking before it is mounted. fsstat succeeds if the file system is
unmounted and appears okay. For the root file system, it succeeds if the file system is active and not
marked bad.

SEE ALSO
fs(4)

DIAGNOSTICS
The command has the following exit codes:

0 The file system is not mounted and appears okay,
except for root where 0 means mounted and okay.

1 The file system is not mounted and needs to be checked.

2 The file system is mounted.

3 The command failed.

1

FSTAB(4) FSTAB(4)hh

NAME
fstab − static information about filesystems

DESCRIPTION
The file /etc/fstab describes the filesystems and swapping partitions used by the local machine. The system
administrator can modify it with a text editor. It is read by commands that mount, unmount and check
the consistency of filesystems. The file consists of a number of lines of the form:

filesystem directory type options frequency pass

For example:

/dev/root / efs rw 0 0

Fields are separated by white space; a ‘#’ as the first non-white character indicates a comment.

The entries from this file are accessed using the routines in getmntent(3), which returns a structure of the
following form:

struct mntent {

char *mnt_fsname; /* filesystem name */

char *mnt_dir; /* filesystem path prefix */

char *mnt_type; /* e.g. efs, nfs, proc, or ignore */

char *mnt_opts; /* rw, ro, hard, soft */

int mnt_freq; /* dump frequency, in days */

int mnt_passno; /* parallel fsck pass number */

};

This structure is defined in the <mntent.h> include file. To compile and link a program that calls
getmntent(3), follow the procedures for section (3Y) routines as described in intro(3).

The mnt_dir field is the full path name of the directory to be mounted on. The mnt_type field determines
how the mnt_fsname and mnt_opts fields will be interpreted. Here is a list of the filesystem types currently
supported, and the way each of them interprets these fields:

efs mnt_fsname must be a block special device (e.g., /dev/root).

proc mnt_fsname should be the /proc directory. See proc(4).

fd mnt_fsname should be the /dev/fd directory. See fd(4).

nfs mnt_fsname is the path on the server of the directory to be served. (NFS option only).

cdfs A synonym for type iso9660 (see below). This type is required for MIPS ABI compliance.

iso9660 mnt_fsname must be a generic SCSI device. These are located in the directory /dev/scsi (e.g.,
/dev/scsi/sc0d7l0). See ds(7M). This filesystem type is used to mount CD-ROM discs in
ISO 9660 (with or without Rock Ridge extensions) and High Sierra formats. eoe2.sw.cdrom
must be installed in order to use the iso9660 file system type.

1

FSTAB(4) FSTAB(4)hh

dos mnt_fsname must be a floppy device. These are located in the directory /dev/rdsk (e.g.,
/dev/rdsk/fds0d2.3.5). See smfd(7M).

hfs mnt_fsname must be either a floppy device or a generic SCSI device. Floppy devices are
located in the directory /dev/rdsk (e.g., /dev/rdsk/fds0d2.3.5hi). See smfd(7M). SCSI dev-
ices are located in the directory /dev/scsi (e.g., /dev/scsi/sc0d4l0). See ds(7M).

swap mnt_fsname should be the full path name to the file or block device to be used as a swap
resource.

cachefs mnt_fsname should be the file system name for the backing file system to be mounted as a
cache file system. This will either be the special file name (e.g., /dev/scsi/sc0d7l0) or
host:path.

If the mnt_type is specified as ignore, then the entry is ignored. This is useful to show disk partitions not
currently used. mnt_freq is not used in current IRIX systems.

mnt_passno may be used to control the behavior of parallel filesystem checking on bootup, see fsck(1M).

The mnt_opts field contains a list of comma-separated option words. Some mnt_opts are valid for all
filesystem types, while others apply to a specific type only.

Options valid on all filesystems (the default is rw):

rw read/write.

ro read-only.

noauto ignore this entry during a mount −−a command, to allow the definition of fstab entries for
commonly-used filesystems that should not be automatically mounted.

grpid causes a file created within the filesystem to have the group-ID of its parent directory, not
the creating process’s group-ID.

nosuid setuid execution not allowed for non super-users. This option has no effect for the super-
user.

nodev access to character and block special files is disallowed.

Options specific to efs filesystems (the default is fsck, noquota):

raw=path the filesystem’s raw device pathname (e.g. /dev/rroot).

fsck fsck(1M) invoked with no filesystem arguments should check this filesystem.

nofsck fsck(1M) should not check this filesystem by default.

quota disk quotas enforced

noquota disk quotas not enforced

lbsize=n the number of bytes transferred in each read or synchronous write operation.

The value assigned to the lbsize option must be a power of two at least as large as NBPC (as defined in
/usr/include/sys/param.h), and no larger than 32768. The current default for lbsize is the largest power of

2

FSTAB(4) FSTAB(4)hh

two less than or equal to the size of one disk track. An invalid size will cause the mount to fail with the
error EINVAL. Note that less than lbsize bytes will be transferred if there are not lbsize contiguous bytes
of the addressed portion of the file on disk.

Options specific to iso9660 filesystems (the default is rw, which has no effect since CD-ROM discs are
always read-only):

setx set execute permission on every file on the mounted file system. The default is to make
an intelligent guess based on the first few bytes of the file.

notranslate
don’t translate ISO 9660 filenames to UNIX filenames. The default is to convert upper
case to lower case, and to truncate the part including and after the semi-colon.

cache=blocks
set the number of 2048 byte blocks to be used for caching directory contents. The default
is to cache 128 blocks.

noext Ignore Rock Ridge extensions. The default when the noext option is not specified is to
use Rock Ridge extensions if present.

susp Enable processing of System Use Sharing Protocol extensions to the ISO 9660
specification. This is the default.

nosusp Disable processing of System Use Sharing Protocol extensions. This has the same effect
as the noext option.

rrip Enable processing of the Rock Ridge extensions. This is the default.

norrip Disable processing of the Rock Ridge extensions. This is equivalent to the noext option.

nmconv=[clm]
This option is supplied for MIPS ABI compliance; some non-IRIX systems may imple-
ment it only for type cdfs, IRIX allows it with type iso9660 also. Only one of the 3 letters
c, l, or m may be specified. This option controls filename translation. c has the same
meaning as notranslate above. l requests translation to lower case (the IRIX default), and
m suppresses the version number (also the IRIX default).

NFS clients may mount iso9660, dos, and hfs filesystems remotely by specifying hostname:mountpoint
for filesystem and nfs for type, where an iso9660, dos or hfs filesystem is mounted at mountpoint on the
host hostname. In this case, the same options apply as with nfs (see below).

If the NFS option is installed, the following options are valid for nfs filesystems:

bg if the first attempt fails, retry in the background.

fg retry in foreground. (Default)

3

FSTAB(4) FSTAB(4)hh

retry=n set number of mount failure retries to n.
(Default = 10000)

rsize=n set read buffer size to n bytes. (Default = 8K)

wsize=n set write buffer size to n bytes. (Default = 8K)

timeo=n set NFS timeout to n tenths of a second.
(Default = 11)

retrans=n set number of NFS retransmissions to n.
(Default = 5)

port=n set server UDP port number to n. (Default = 2049)

hard retry request until server responds. (Default)

soft return error if server doesn’t respond.

intr allow accesses to be interrupted by the following signals: SIGHUP, SIGINT,
SIGQUIT, SIGKILL, SIGTERM and SIGTSTP. (This is ‘‘off’’ by default.)

acregmin=t set the regular file minimum attribute cache timeout to t seconds. (Default = 3)

acregmax=t set the regular file maximum attribute cache timeout to t seconds. (Default = 60)

acdirmin=t set the directory minimum attribute cache timeout to t seconds. (Default = 30)

acdirmax=t set the directory maximum attribute cache timeout to t seconds. (Default = 60)

actimeo=t set regular and directory minimum and maximum attribute cache timeouts to t
seconds.

noac no attribute caching.

private do not flush delayed writes on last close of an open file, and use local file and record
locking instead of a remote lock manager.

symttl=t set the time-to-live for symbolic links cached by NFS to t seconds. symttl=0 turns off
NFS symlink caching. The maximum value for t is 3600. (Default = 3600)

The bg option causes mount to run in the background if the server’s mountd(1M) does not respond. Mount
attempts each request retry=n times before giving up.

Once the filesystem is mounted, each NFS request waits timeo=n tenths of a second for a response. If no
response arrives, the time-out is multiplied by 2, up to a maximum of MAXTIMO (900), and the request is
retransmitted. When retrans=n retransmissions have been sent with no reply a soft mounted filesystem
returns an error on the request and a hard mounted filesystem retries the request. Filesystems that are
mounted rw (read-write) should use the hard option. The number of bytes in a read or write request can
be set with the rsize and wsize options.

4

FSTAB(4) FSTAB(4)hh

In the absence of client activity that would invalidate recently acquired file attributes, NFS holds attri-
butes cached for an interval between acregmin and acregmax for regular files, and between acdirmin and
acdirmax for directories. The actimeo option sets all attribute timeout constraints to a given number of
seconds. The noac option disables attribute caching altogether.

The private option greatly improves write performance by caching data and delaying writes on the
assumption that only this client modifies files in the remote filesystem. It should be used only if the
greater risk of lost delayed-write data in the event of a crash is acceptable given better performance. Note
that EFS uses caching strategies similar to private NFS, and that the system reduces the risk of data loss
for all filesystems by automatically executing a partial sync(2) at regular intervals.

Options specific to swap resources:

pri=t set the priority of the swap device to t. The legal values are from 0 to 7 inclusive.

swplo=t
set the first 512 byte block to use to t (default is 0).

length=t
set the number of 512 byte blocks to use to t (default is entire file/partition).

maxlength=t
set the maximum number of 512 byte blocks to grow the swap area to t (default is to use
length)

vlength=t
set the number of virtual 512 byte blocks to claim this swap file has to t (default is to use
length).

All other options except for noauto are ignored for swap files.

If the CacheFS option is installed, the following options are valid for cachefs filesystems. Note: the
backfstype argument must be specified. Additionally, any mount points which share the same cache
directory must have the same set of the following options: write-around, non-shared, noconst, and
purge. For example, if one CacheFS file system is mounted with the options "cachedir=/foo,noconst", all
mounts for the cache directory /foo must have the noconst option as well.

backfstype=file_system_type
The file system type of the back file system (for example, nfs). Any file system type may be
used as the back file system with the exception of proc, fd, and swap.

backpath=path
Specifies where the back file system is already mounted. If this argument is not supplied,
CacheFS determines a mount point for the back file system.

cachedir=directory
The name of the cache directory.

5

FSTAB(4) FSTAB(4)hh

cacheid=ID
ID is a string specifying a particular instance of a cache. If you do not specify a cache ID,
CacheFS will construct one.

write-around | non-shared
Write modes for CacheFS. The write-around mode (the default) handles writes the same as
NFS does; that is, writes are made to the back file system, and the affected file is purged from
the cache. You can use the non-shared mode when you are sure that no one else will be writ-
ing to the cached file system. In this mode, all writes are made to both the front and the back
file system, and the file remains in the cache.

noconst
By default, consistency checking is performed. Disable consistency checking by specifying
noconst only if you mount the file system read-only.

local-access
Causes the front file system to interpret the mode bits used for access checking instead or
having the back file system verify access permissions.

purge Purge any cached information for the specified file system.

suid | nosuid
Allow (default) or disallow set-uid execution.

acregmin=n
Specifies that cached attributes are held for at least n seconds after file modification. After n
seconds, CacheFS checks to see if the file modification time on the back file system has
changed. If it has, all information about the file is purged from the cache and new data is
retrieved from the back file system. The default value is 30 seconds.

acregmax=n
Specifies that cached attributes are held for no more than n seconds after file modification.
After n seconds, all file information is purged from the cache. The default value is 30
seconds.

acdirmin=n
Specifies that cached attributes are held for at least n seconds after directory update. After n
seconds, CacheFS checks to see if the directory modification time on the back file system has
changed. If it has, all information about the directory is purged from the cache and new data
is retrieved from the back file system. The default value is 30 seconds.

acdirmax=n
Specifies that cached attributes are held for no more than n seconds after directory update.
After n seconds, all directory information is purged from the cache. The default value is 30
seconds.

6

FSTAB(4) FSTAB(4)hh

actimeo=n
Sets acregmin, acregmax, acdirmin, and acdirmax to n.

NOTES
The default fstab supplied with IRIS-4D systems contains the following entry for the /usr filesystem:

/dev/usr /usr efs rw,noquota,raw=/dev/rusr 0 0

The setup program MAKEDEV (see makedev(1M)) creates /dev/usr and /dev/rusr as links to partition 6 on
the root disk. This is the normal disk usage; however, if you wish to set up a machine with the /usr
filesystem residing elsewhere (for example, on a second disk or on a logical volume, described in lv(7M)),
the mnt_fsname field must be changed to the full pathname of the device where the /usr filesystem actually
resides. If present, the path specified by the raw option should also be changed to the corresponding full
pathname. For example:

/dev/dsk/ips0d1s7 /usr efs rw,raw=/dev/rdsk/ips0d1s7 0 0

Note that if this is done, the /dev/usr and /dev/rusr devices created by MAKEDEV will not point to the dev-
ice containing the /usr filesystem, and they should not be referenced.

Caution: do not attempt to reconfigure a system with /usr in a non-default volume by manually recreat-
ing these /dev/usr and /dev/rusr links and leaving the fstab entry unchanged. While this would work in
normal operation, it will lead to incorrect behavior when installing new software.

FILES
/etc/fstab

SEE ALSO
swap(1), fsck(1M), mount(1M), quotacheck(1M), quotaon(1M), cfsadmin(1M), fsck_cachfs(1M),
getmntent(3), fd(4), mtab(4), proc(4).

7

FTP(1C) FTP(1C)hh

NAME
ftp − Internet file transfer program

SYNOPSIS
ftp [−−v] [−−d] [−−i] [−−n] [−−g] [host]

DESCRIPTION
Ftp is the user interface to the Internet standard File Transfer Protocol. The program allows a user to
transfer files to and from a remote network site.

The client host with which ftp is to communicate may be specified on the command line. If this is done,
ftp will immediately attempt to establish a connection to an FTP server on that host; otherwise, ftp will
enter its command interpreter and await instructions from the user. When ftp is awaiting commands
from the user the prompt ‘‘ftp>’’ is provided to the user. The following commands are recognized by ftp :

! [command [args]]
Invoke an interactive shell on the local machine. If there are arguments, the first is taken to be a
command to execute directly, with the rest of the arguments as its arguments.

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef command. Arguments are
passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access to resources once a
login has been successfully completed. If no argument is included, the user will be prompted for
an account password in a non-echoing input mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is left unspecified, the local file
name is used in naming the remote file after being altered by any ntrans or nmap setting. File
transfer uses the current settings for type , format , mode , and structure.

ascii Set the file transfer type to network ASCII. This is the default type if ftp cannot determine the type
of operating system running on the remote machine or the remote operating system is not UNIX.

bell Arrange that a bell be sounded after each file transfer command is completed.

binary Set the file transfer type to support binary image transfer. This is the default type if ftp can deter-
mine that the remote machine is running UNIX.

bye Terminate the FTP session with the remote server and exit ftp . An end of file will also terminate
the session and exit.

case Toggle remote computer file name case mapping during mget commands. When case is on
(default is off), remote computer file names with all letters in upper case are written in the local
directory with the letters mapped to lower case.

1

FTP(1C) FTP(1C)hh

cd remote-directory
Change the working directory on the remote machine to remote-directory .

cdup Change the remote machine working directory to the parent of the current remote machine work-
ing directory.

chmod mode file-name
Change the permission modes for the file file-name on the remote sytem to mode.

close Terminate the FTP session with the remote server, and return to the command interpreter. Any
defined macros are erased.

cr Toggle carriage return stripping during ascii type file retrieval. Records are denoted by a carriage
return/linefeed sequence during ascii type file transfer. When cr is on (the default), carriage
returns are stripped from this sequence to conform with the UNIX single linefeed record delim-
iter. Records on non-UNIX remote systems may contain single linefeeds; when an ascii type
transfer is made, these linefeeds may be distinguished from a record delimiter only when cr is off.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Toggle debugging mode. If an optional debug-value is specified it is used to set the debugging
level. When debugging is on, ftp prints each command sent to the remote machine, preceded by
the string ‘‘-->’’.

dir [remote-directory] [local-file]
Print a listing of the directory contents in the directory, remote-directory , and, optionally, placing
the output in local-file. If interactive prompting is on, ftp will prompt the user to verify that the
last argument is indeed the target local file for receiving dir output. If no directory is specified,
the current working directory on the remote machine is used. If no local file is specified, or local-
file is −−, output comes to the terminal.

disconnect
A synonym for close.

form format
Set the file transfer form to format . The default format is ‘‘file’’.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file name is not specified, it is
given the same name it has on the remote machine, subject to alteration by the current case,
ntrans, and nmap settings. The current settings for type , form, mode , and structure are used while
transferring the file.

glob Toggle filename expansion for mdelete, mget and mput. If globbing is turned off with glob, the
file name arguments are taken literally and not expanded. Globbing for mput is done as in
csh(1). For mdelete and mget, each remote file name is expanded separately on the remote
machine and the lists are not merged. Expansion of a directory name is likely to be different from

2

FTP(1C) FTP(1C)hh

expansion of the name of an ordinary file: the exact result depends on the foreign operating sys-
tem and ftp server, and can be previewed by doing ‘mls remote-files −−’. Note: mget and mput are
not meant to transfer entire directory subtrees of files. That can be done by transferring a tar(1)
archive of the subtree (in binary mode).

hash Toggle hash-sign (‘‘#’’) printing for each data block transferred. The size of a data block is 1024
bytes.

help [command]
Print an informative message about the meaning of command. If no argument is given, ftp prints a
list of the known commands.

idle [seconds]
Set the inactivity timer on the remote server to seconds seconds. If seconds is omitted, the current
inactivity timer is printed.

lcd [directory]
Change the working directory on the local machine. If no directory is specified, the user’s home
directory is used.

ls [remote-directory] [local-file]
Print a listing of the contents of a directory on the remote machine. The listing includes any
system-dependent information that the server chooses to include; for example, most UNIX sys-
tems will produce output from the command ‘‘ls −lA’’. (See also nlist.) If remote-directory is left
unspecified, the current working directory is used. If interactive prompting is on, ftp will prompt
the user to verify that the last argument is indeed the target local file for receiving ls output. If no
local file is specified, or if local-file is −−, the output is sent to the terminal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name; a null line (consecutive
newline characters in a file or carriage returns from the terminal) terminates macro input mode.
There is a limit of 16 macros and 4096 total characters in all defined macros. Macros remain
defined until a close command is executed. The macro processor interprets ’$’ and ’\’ as special
characters. A ’$’ followed by a number (or numbers) is replaced by the corresponding argument
on the macro invocation command line. A ’$’ followed by an ’i’ signals that macro processor that
the executing macro is to be looped. On the first pass ’$i’ is replaced by the first argument on the
macro invocation command line, on the second pass it is replaced by the second argument, and
so on. A ’\’ followed by any character is replaced by that character. Use the ’\’ to prevent special
treatment of the ’$’.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive prompting is on, ftp will
prompt the user to verify that the last argument is indeed the target local file for receiving mdir
output.

3

FTP(1C) FTP(1C)hh

mget remote-files
Expand the remote-files on the remote machine and do a get for each file name thus produced. See
glob for details on the filename expansion. Resulting file names will then be processed according
to case, ntrans, and nmap settings. Files are transferred into the local working directory, which
can be changed with ‘lcd directory’; new local directories can be created with ‘! mkdir directory’.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Like nlist, except multiple remote files may be specified, and the local-file must be specified. If
interactive prompting is on, ftp will prompt the user to verify that the last argument is indeed the
target local file for receiving mls output.

mode [mode-name]
Set the file transfer mode to mode-name . The default mode is ‘‘stream’’ mode.

modtime file-name
Show the last modification time of the file on the remote machine.

mput local-files
Expand wild cards in the list of local files given as arguments and do a put for each file in the
resulting list. See glob for details of filename expansion. Resulting file names will then be pro-
cessed according to ntrans and nmap settings.

newer file-name
Get the file only if the modification time of the remote file is more recent that the file on the
current system. If the file does not exist on the current system, the remote file is considered newer.
Otherwise, this command is identical to get.

nlist [remote-directory] [local-file]
Print a list of the files of a directory on the remote machine. If remote-directory is left unspecified,
the current working directory is used. If interactive prompting is on, ftp will prompt the user to
verify that the last argument is indeed the target local file for receiving nlist output. If no local
file is specified, or if local-file is −−, the output is sent to the terminal.

nmap [inpattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the filename map-
ping mechanism is unset. If arguments are specified, remote filenames are mapped during mput
commands and put commands issued without a specified remote target filename. If arguments
are specified, local filenames are mapped during mget commands and get commands issued
without a specified local target filename. This command is useful when connecting to a non-
UNIX remote computer with different file naming conventions or practices. The mapping fol-
lows the pattern set by inpattern and outpattern . Inpattern is a template for incoming filenames
(which may have already been processed according to the ntrans and case settings). Variable
templating is accomplished by including the sequences ’$1’, ’$2’, ..., ’$9’ in inpattern. Use ’\’ to
prevent this special treatment of the ’$’ character. All other characters are treated literally, and
are used to determine the nmap inpattern variable values. For example, given inpattern $1.$2 and

4

FTP(1C) FTP(1C)hh

the remote file name "mydata.data", $1 would have the value "mydata", and $2 would have the
value "data". The outpattern determines the resulting mapped filename. The sequences ’$1’, ’$2’,
...., ’$9’ are replaced by any value resulting from the inpattern template. The sequence ’$0’ is
replace by the original filename. Additionally, the sequence ’[seq1,seq2]’ is replaced by seq1 if seq1
is not a null string; otherwise it is replaced by seq2. For example, the command "nmap $1.$2.$3
[$1,$2].[$2,file]" would yield the output filename "myfile.data" for input filenames "myfile.data"
and "myfile.data.old", "myfile.file" for the input filename "myfile", and "myfile.myfile" for the
input filename ".myfile". Spaces may be included in outpattern , as in the example: nmap $1 |sed
"s/ *$//" > $1 . Use the ’\’ character to prevent special treatment of the ’$’, ’[’, ’]’, and ’,’ charac-
ters.

ntrans [inchars [outchars]]
Set or unset the filename character translation mechanism. If no arguments are specified, the
filename character translation mechanism is unset. If arguments are specified, characters in
remote filenames are translated during mput commands and put commands issued without a
specified remote target filename. If arguments are specified, characters in local filenames are
translated during mget commands and get commands issued without a specified local target
filename. This command is useful when connecting to a non-UNIX remote computer with dif-
ferent file naming conventions or practices. Characters in a filename matching a character in
inchars are replaced with the corresponding character in outchars . If the character’s position in
inchars is longer than the length of outchars , the character is deleted from the file name.

open host [port]
Establish a connection to the specified host FTP server. An optional port number may be sup-
plied, in which case, ftp will attempt to contact an FTP server at that port. If the auto-login option
is on (default), ftp will also attempt to automatically log the user in to the FTP server (see below).

prompt
Toggle interactive prompting. Interactive prompting occurs during multiple file transfers to
allow the user to selectively retrieve or store files. If prompting is turned off (default is on), any
mget or mput will transfer all files, and any mdelete will delete all files.

proxy ftp-command
Execute an ftp command on a secondary control connection. This command allows simultaneous
connection to two remote ftp servers for transferring files between the two servers. The first
proxy command should be an open, to establish the secondary control connection. Enter the
command "proxy ?" to see other ftp commands executable on the secondary connection. The fol-
lowing commands behave differently when prefaced by proxy: open will not define new macros
during the auto-login process, close will not erase existing macro definitions, get and mget
transfer files from the host on the primary control connection to the host on the secondary control
connection, and put, mput, and append transfer files from the host on the secondary control con-
nection to the host on the primary control connection. Third party file transfers depend upon
support of the ftp protocol PASV command by the server on the secondary control connection.

5

FTP(1C) FTP(1C)hh

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is left unspecified, the local file name is used
after processing according to any ntrans or nmap settings in naming the remote file. File transfer
uses the current settings for type , format , mode , and structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote arg1 arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server.

recv remote-file [local-file]
A synonym for get.

reget remote-file [local-file]
Reget acts like get, except that if local-file exists and is smaller than remote-file, local-file is presumed
to be a partially transferred copy of remote-file and the transfer is continued from the apparent
point of failure. This command is useful when transferring very large files over networks that are
prone to dropping connections.

remotehelp [command-name]
Request help from the remote FTP server. If a command-name is specified it is supplied to the
server as well.

remotestatus [file-name]
With no arguments, show status of remote machine. If file-name is specified, show status of file-
name on remote machine.

rename [from] [to]
Rename the file from on the remote machine, to the file to .

reset Clear reply queue. This command re-synchronizes command/reply sequencing with the remote
ftp server. Resynchronization may be necessary following a violation of the ftp protocol by the
remote server.

restart marker
Restart the immediately following get or put at the indicated marker. On UNIX systems, marker is
usually a byte offset into the file.

rmdir directory-name
Delete a directory on the remote machine.

runique
Toggle storing of files on the local system with unique filenames. If a file already exists with a
name equal to the target local filename for a get or mget command, a ".1" is appended to the
name. If the resulting name matches another existing file, a ".2" is appended to the original name.
If this process continues up to ".99", an error message is printed, and the transfer does not take
place. The generated unique filename will be reported. Note that runique will not affect local
files generated from a shell command (see below). The default value is off.

6

FTP(1C) FTP(1C)hh

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, ftp will attempt to use a PORT command when
establishing a connection for each data transfer. The use of PORT commands can prevent delays
when performing multiple file transfers. If the PORT command fails, ftp will use the default data
port. When the use of PORT commands is disabled, no attempt will be made to use PORT com-
mands for each data transfer. This is useful for certain FTP implementations which do ignore
PORT commands but, incorrectly, indicate they’ve been accepted.

site arg1 arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server as a SITE command.

size file-name
Return size of file-name on remote machine.

status Show the current status of ftp .

struct [struct-name]
Set the file transfer structure to struct-name. By default ‘‘stream’’ structure is used.

sunique
Toggle storing of files on remote machine under unique file names. Remote ftp server must sup-
port ftp protocol STOU command for successful completion. The remote server will report
unique name. Default value is off.

system Show the type of operating system running on the remote machine.

tenex Set the file transfer type to that needed to talk to TENEX machines.

trace Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name . If no type is specified, the current type is printed. The
default type is network ASCII.

umask [newmask]
Set the default umask on the remote server to newmask. If newmask is omitted, the current umask
is printed.

user user-name [password] [account]
Identify yourself to the remote FTP server. If the password is not specified and the server
requires it, ftp will prompt the user for it (after disabling local echo). If an account field is not
specified, and the FTP server requires it, the user will be prompted for it. If an account field is
specified, an account command will be relayed to the remote server after the login sequence is
completed if the remote server did not require it for logging in. Unless ftp is invoked with ‘‘auto-
login’’ disabled, this process is done automatically on initial connection to the FTP server.

7

FTP(1C) FTP(1C)hh

verbose
Toggle verbose mode. In verbose mode, all responses from the FTP server are displayed to the
user. In addition, if verbose is on, when a file transfer completes, statistics regarding the
efficiency of the transfer are reported. By default, verbose is on.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.

ABORTING A FILE TRANSFER
To abort a file transfer, use the terminal interrupt key (usually Ctrl-C). Sending transfers will be immedi-
ately halted. Receiving transfers will be halted by sending a ftp protocol ABOR command to the remote
server, and discarding any further data received. The speed at which this is accomplished depends upon
the remote server’s support for ABOR processing. If the remote server does not support the ABOR com-
mand, an "ftp>" prompt will not appear until the remote server has completed sending the requested file.

The terminal interrupt key sequence will be ignored when ftp has completed any local processing and is
awaiting a reply from the remote server. A long delay in this mode may result from the ABOR process-
ing described above, or from unexpected behavior by the remote server, including violations of the ftp
protocol. If the delay results from unexpected remote server behavior, the local ftp program must be
killed by hand.

FILE NAMING CONVENTIONS
Files specified as arguments to ftp commands are processed according to the following rules.

1) If the file name ‘‘−’’ is specified, the stdin (for reading) or stdout (for writing) is used.

2) If the first character of the file name is ‘‘|’’, the remainder of the argument is interpreted as a shell
command. Ftp then forks a shell, using popen(3) with the argument supplied, and reads (writes)
from the stdout (stdin). If the shell command includes spaces, the argument must be quoted; e.g.,
‘‘"| ls −lt"’’. A particularly useful example of this mechanism is: ‘‘dir |more’’.

3) Failing the above checks, if ‘‘globbing’’ is enabled, local file names are expanded according to the
rules used in the csh(1); c.f. the glob command. If the ftp command expects a single local file (e.g.,
put), only the first filename generated by the "globbing" operation is used.

4) For mget commands and get commands with unspecified local file names, the local filename is
the remote filename, which may be altered by a case, ntrans, or nmap setting. The resulting
filename may then be altered if runique is on.

5) For mput commands and put commands with unspecified remote file names, the remote
filename is the local filename, which may be altered by a ntrans or nmap setting. The resulting
filename may then be altered by the remote server if sunique is on.

8

FTP(1C) FTP(1C)hh

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters which may affect a file transfer. The type may be one of
‘‘ascii’’, ‘‘image’’ (binary), ‘‘ebcdic’’, and ‘‘local byte size’’ (for PDP-10’s and PDP-20’s mostly). Ftp sup-
ports the ascii and image types of file transfer, plus local byte size 8 for tenex mode transfers.

Ftp supports only the default values for the remaining file transfer parameters: mode , form, and struct.

OPTIONS
Options may be specified at the shell command line. Several options can be enabled or disabled with ftp
commands.

The −−v (verbose on) option forces ftp to show all responses from the remote server, as well as report on
data transfer statistics.

The −−n option restrains ftp from attempting ‘‘auto-login’’ upon initial connection. If auto-login is enabled,
ftp will check the .netrc file (see below) in the user’s home directory for an entry describing an account on
the remote machine. If no entry exists, ftp will prompt for the remote machine login name (default is the
user identity on the local machine), and, if necessary, prompt for a password and an account with which
to login.

The −−i option turns off interactive prompting during multiple file transfers.

The −−d option enables debugging.

The −−g option disables file name globbing.

THE .netrc FILE
The .netrc file contains login and initialization information used by the auto-login process. It resides in
the user’s home directory. The following tokens are recognized; they may be separated by spaces, tabs, or
new-lines:

machine name
Identify a remote machine name. The auto-login process searches the .netrc file for a machine
token that matches the remote machine specified on the ftp command line or as an open com-
mand argument. Once a match is made, the subsequent .netrc tokens are processed, stopping
when the end of file is reached or another machine or a default token is encountered.

default This is the same as machine name except that default matches any name. There can be only one
default token, and it must be after all machine tokens. This is normally used as:

default login anonymous password user@site
thereby giving the user automatic anonymous ftp login to machines not specified in .netrc. This
can be overridden by using the −−n flag to disable auto-login.

login name
Identify a user on the remote machine. If this token is present, the auto-login process will initiate
a login using the specified name.

9

FTP(1C) FTP(1C)hh

password string
Supply a password. If this token is present, the auto-login process will supply the specified string
if the remote server requires a password as part of the login process. Note that if this token is
present in the .netrc file for any user other than anonymous, ftp will abort the auto-login process if
the .netrc is accessible by anyone besides the user (see below for the proper protection mode.)

account string
Supply an additional account password. If this token is present, the auto-login process will sup-
ply the specified string if the remote server requires an additional account password, or the auto-
login process will initiate an ACCT command if it does not. Note that if this token is present in
the .netrc file, ftp will abort the auto-login process if the .netrc is accessible by anyone besides the
user (see below for the proper protection mode.)

macdef name
Define a macro. This token functions like the ftp macdef command functions. A macro is defined
with the specified name; its contents begin with the next .netrc line and continue until a null line
(consecutive new-line characters) is encountered. If a macro named init is defined, it is automati-
cally executed as the last step in the auto-login process.

The error message

Error: .netrc file is readable by others.

means the file is ignored by ftp because the file’s password and/or account information is unprotected.
Use

chmod go-rwx .netrc

to protect the file.

SEE ALSO
ftpd(1M)

BUGS
Correct execution of many commands depends upon proper behavior by the remote server.

An error in the treatment of carriage returns in the 4.2BSD UNIX ascii-mode transfer code has been
corrected. This correction may result in incorrect transfers of binary files to and from 4.2BSD servers
using the ascii type. Avoid this problem by using the binary image type.

10

FX(1M) FX(1M)hh

NAME
fx − disk utility

SYNOPSIS
fx [-x] [-r maxretries] [-l logfile] [-c] [drivetype[(ctrlr,unit)]] [VERIFY] [INITIALIZE] [FORMAT] (with
-c)

DESCRIPTION
fx is an interactive, menu-driven disk utility. It allows bad blocks on a disk to be detected and mapped
out. It also allows display of information stored on the label of the disk, including partition sizes, disk
drive parameters and the volume directory.

An expert mode, available by invoking with the -x flag, provides additional functions normally used dur-
ing factory set-up or servicing of disks, such as formatting the disk and creating or modifying the disk
label or drive parameters. Warning: unless you are very familiar with the parameters and partitions of
your disks, you are strongly advised not to invoke the expert mode of fx. A mistake in expert mode can
destroy all the data on the disk. When this option is used, fx will also warn of discrepancies between the
disk label and the parameters that would normally be used for the drive, and then ask if you want to fix
them. You should usually NOT change these unless you have all the data on the drive backed up and are
prepared to restore it, since the changes will frequently result in a different partition layout.

The -r retries option allows you to specify how many retries fx will attempt when exercising the disk. If
you have persistent soft errors, -r 0 will usually allow fx to find the bad sectors and spare them. For
SCSI disks, also see the section on parameters under the LABEL MENU.

The -l logfile option (in the UNIX command version only) will cause fx to log disk errors, blocks that are
forwarded, and other severe errors in the given file.

The -c option (in the UNIX command version only) is designed for the use of programs and scripts; the -x
option must also be given. When used, the VERIFY, INITIALIZE, or FORMAT (or any combination)
options must be given at the end of the command line, and the full drive specification must be given on
the command line. In this mode, no keyboard input (except keyboard interrupts) is accepted, and any
error causes the program to exit with a non-zero value, following an error message. A warning message
is printed at startup that destructive operations will follow, with no subsequent confirmation required.
Additionally, it is considered a fatal error if the drive contains any mounted filesystems, or is part of a
mounted logical volume filesystem. The VERIFY option is the equivalent of /exercise/complete -a , and
overwrites any existing data on the drive. The INITIALIZE option only creates the volume header and
partition table; this is the minimum that needs to be done for a disk drive to be usable. The FORMAT
option is the equivalent of format with the current parameters (all data on the drive is destroyed). All the
above options will create a new partition table (suitable for an option disk) and volume header, if neces-
sary.

1

FX(1M) FX(1M)hh

USING FX
There are 2 versions of fx. One runs in the standalone environment, and must be used when the system
disk will be modified; it may be used for most other purposes as well, but may be less convenient. The jag
(VME SCSI), rad (SCSI-attached RAID), and fd (floppy) devices are not supported in the standalone ver-
sion; the -l option is also not supported in standalone.

The other version runs as a normal command, and must normally be used by the superuser. While some
features can be used by an ordinary user if the disk device permissions permit, other features (typically
formatting, and bad block management) have permission checks within the various drivers that can only
be used by the super user. A notable exception is that as shipped, all floppy related fx features can be
used by any user. When used on a mount disk, or a disk whose partitions are part of mounted logical
volume, this version will warn you not to do anything destructive, but does not otherwise prohibit it.

A copy of the standalone version is normally kept in /stand/fx , and may be invoked when the system is
not running by giving the following command at the PROM monitor:

boot stand/fx

A standalone fx is provided in the /stand directory of CD-ROM discs containing software distributions
with install tools, and may be invoked by the PROM command:

boot -f dksc(ctlr,unit,8)sash.CPU dksc(ctlr,unit,7)stand/fx.CPU

Or, for later systems with the ARCS prom (R4K Indigo, Indigo2, Indy, Onyx, Challenge):

boot -f dksc(ctlr,unit,8)sashARCS dksc(ctlr,unit,7)stand/fx.ARCS

Or, for R8000 systems with 64-bit ARCS prom (POWER Challenge, POWER Onyx, R8000 Indigo2):

boot -f dksc(ctlr,unit,8)sash64 dksc(ctlr,unit,7)stand/fx.64

where ctlr is the controller number (usually 0), unit is the SCSI id of the CD-ROM drive, and CPU is the
CPU type (for example, IP6). If CPU consists of 4 or more characters, omit the . (period) after sash . (Note
that IP7, IP9, and IP15 are not really distinct CPU types from IP5; for all 4 of these models, use IP5 for
CPU.)

fx may also be booted from tape by giving this command at the PROM monitor:

boot -f tpsc(ctlr,unit)fx.CPU

or

boot -f tpqic()fx.CPU

2

FX(1M) FX(1M)hh

When the standalone version is booted without the -x option, it prompts to see if you wish to use the
expert mode, since it is not uncommon to forget to specify it.

The command version of fx is invoked by name like any regular command.

On invocation, fx prompts for a disk controller type, with a default of the root disk controller type. Recog-
nized controller types are dksc for SCSI drives, rad for SCSI attached RAID drives, dkip for ESDI drives
with Interphase controllers, xyl for SMD drives with Xylogics controllers, ipi for IPI drives with Xylogics
controllers, jag for SCSI drives connected to the Jaguar VME SCSI controller fd for floppy drives. Note
that jag , fd, and rad are not available in the standalone version, and that not all types of systems support
all of the above drive types.

Controller number will normally be 0 unless your system has more than one controller and you wish to
work on disks attached to an additional controller (1, 2, etc.). Drive number depends on controller type.
Non-SCSI drives are numbered from 0 to 1 (or 0 to 3, if the controller can handle 4 drives), with drive 0 on
controller 0 normally used as the root disk. SCSI drives are numbered from 1 to 7, or from 1 to 15
depending on the type of system, with drive 1 on controller 0 normally used as the root disk. fx next
prompts for the drive type, with a default of the drive type stored in the disk label.

The controller type, controller number and drive number as well as drive type may be given as command
line parameters, bypassing the interactive questions just described. The format is (drive_type is unused
for SCSI drives):

fx "controllertype(controller_number, drive_number)" "drive_type"

For example:

fx "dkip(0,1)" "Hitachi 512-17"

or

fx "dksc(0,1)"

The quotes are necessary in the first argument in the command version, since parentheses are shell special
characters, and in the second because the drive name contains a space. For floppy disk drives, you are
also prompted for the density to use.

Once controller type, controller number, drive number and drive type are selected, fx issues a diagnostic
command to the drive. For SCSI drives, the drive information from the inquiry command is displayed,
including the firmware revision; for other drive types, the previously assigned type from the volume
header is displayed. A controller or drive self test is then performed, followed by sanity checks on the
partition layout, etc., are performed. If any ’major’ differences are found, you will be asked if you want to
use the existing values. It is almost always correct to keep the existing values, unless you are going to ini-
tialize the disk anyway.

3

FX(1M) FX(1M)hh

If it appears that no valid volume header is present, fx will ask if you want to use the defaults; you may
answer no if you plan to set up custom parameters or partitions.

fx then enters its main menu. Menu items may be selected by typing the least unambiguous prefix (the
portion included between [and], or the full name may be entered. A menu item may be an action (for
example, exit), or the name of a submenu (for example, badblock). Submenus have a trailing / to indicated
that they are submenus.

Selecting a submenu name will cause that submenu to be displayed, and items from it may then be
selected. To return to a parent menu from a submenu, enter two dots (".."). The menus are organized as a
hierarchy, so one may go up 2 levels by typing ../.., or use a command several levels down by separating
each level by a /. By typing a "full pathname", such as

/label/show/partition

a command may be executed from any point in the menu hierarchy. Similarly, typing the full pathname
of any menu will move you to that menu (this includes typing / for the top level).

To obtain help for the items on the current menu, enter a question mark ("?") at the prompt. Many of the
functions listed below have options to modify their actions; to obtain more information about them than
the summary, enter "? item" where the item may be either the least unambiguous prefix, or the full name.
Most of the (non-default) options are not listed in this document.

To exit from fx, select exit at the main menu; a shorthand for exiting from any level is /exit . Entering /..
from any menu allows you to select a different disk without having to exit and restart; the normal
prompts will occur if modified parameters are not yet committed to disk.

Once the main menu is reached, fx catches interrupts: an interrupt will stop any operation in progress but
will not terminate fx itself. The current operation executing in the disk driver (if any) will complete first;
this is most notable when formatting a SCSI disk, as that is a single operation lasting many minutes.

FX PROMPTS
A general note about prompts: when a prompt with the word "no" or the word "yes" appears at the end,
simply pressing RETURN will accept that value. For other prompts that ask a question, you must answer
either "yes" or "no". For prompts requesting numeric values, you may usually reply with a decimal
number, or a hex number (a leading 0x). If a number is displayed at the end of the prompt, then pressing
RETURN will accept that value. It is usually the current value, although it is sometimes a reasonable
default.

In many cases, if you are unsure of what your choices are, typing a "?" will give you a short description of
your choices.

TOP LEVEL MENU
The top level fx menu contains the following choices:

4

FX(1M) FX(1M)hh

exit Exits from fx. If changes have been made to the copy fx keeps of the disk label and this has not
been written to the disk, a prompt will give the option to write it to disk.

badblock
Selects the menu of operations dealing with bad block handling.

debug Selects the menu of debug functions.

exercise
Selects the menu of functions for analyzing the disk surface to find bad blocks.

label Selects the menu of functions for reading (and, in expert mode, modifying) the disk label.

repartition
Allows simple repartitioning of disks. A disk can be easily partitioned into a root (system) or
option (all of usable disk in one partition) disk. The size of a single partition can be easily
modified, with the adjacent partitions (if any) resized to match.

The remaining options appear only in expert mode.

auto Initializes a new disk. The disk is formatted, a label is created and written to it, and it is exercised
to detect and map out bad blocks.

format Formats the disk, erasing all information on the disk. With SCSI disks, the whole disk is format-
ted in a single un-interruptible operation, lasting 5-25 minutes, depending size and type. (It is
very rare that a low level format like this is necessary on a SCSI disk.) The rad drives should not
be formatted using this command, see raid(1M) for more information.

With non-SCSI disks, it is possible to format a range of cylinders; prompts are given for start cylinder and
number of cylinders, the defaults being the entire disk. With SMD disks, the defect information placed on
the disk by the manufacturer is destroyed by formatting. When formatting an SMD disk, fx automatically
attempts to read and save this information first. If the disk has been previously formatted, fx will find no
defect information on the disk. In this case, it will print a message saying that no defect information was
found after trying a few tracks, offering the possibility of abandoning the search for it or continuing. If it
is known that an SMD disk has been previously formatted, the reformat will be considerably speeded up
by a "no" answer to this question.

BADBLOCK MENU
Badblocks are handled differently by SCSI and IPI/ESDI/SMD controllers. In the case of SCSI controll-
ers, the list of badblocks is maintained by the SCSI controller/formatter hardware; it can be interrogated
and altered but does not appear in the user-readable part of the disk. Note that rad drives do not support
badblock forwarding.

For IPI/ESDI/SMD disks, the badblock list is a structure maintained explicitly by fx in the SGI-specific
label area on the disk. IPI/ESDI/SMD badblocks are managed on a track basis: if a track has one or more
bad blocks, the entire track is replaced with one from the "track replacement" area reserved on the disk.

5

FX(1M) FX(1M)hh

The badblock menu contains the following choices:

addbb Allows new bad blocks to be added to the badblock list. Blocks may be identified either by a sin-
gle blocknumber or as cylinder/head/sector. To terminate adding bad blocks, enter two dots
(".."); this returns to the badblock menu. In the SCSI case, an entered bad block is immediately
inserted in the on-disk list maintained by the SCSI controller/formatter. In the IPI/ESDI/SMD
case, it goes into the in-core copy of the badblock list maintained by fx, and does not become
effective until the forward command has been given.

deletebb
Deletes a block from the badblock list. This function does not appear for SCSI disks. There is no
way to remove an added badblock from a SCSI disk without reformatting the whole disk.

You will be asked if you want to try and preserve the data. If the disk contains valuable data,
answer yes; if the disk is blank, answer no. There are two applications for this command: (1) to
allow any mistake made during initial bad block entry to be corrected, and (2) to move data back
off a replacement track which is also going bad.

In the second case, be certain to use dd(1) to save the data onto another disk, delete the bad block
forwarding ("deletebb" orig), add the replacement track to the bad block list ("addbb" replace-
ment), update the forwarding ("forward"), mark the original block as bad ("addbb" orig), update
the forwarding again ("forward"), and then use dd(1) to replace the saved data. This procedure is
necessary to ensure data integrity, as data may be corrupted when moving it back onto the origi-
nal defective track.

readdefects
Appears only in the menu for non-SCSI disk types. It reads the defect information placed on the
disk by the disk manufacturer, and adds bad blocks to the bad block list. (If the blocks identified
by the manufacturer’s defect information are already in the bad block list, nothing is altered). This
function is useful for retrieving original defect information if the badblock list in the disk label
has become lost or corrupted for some reason. Note that once an SMD disk has been formatted,
the manufacturer’s defect information is overwritten.

readinbb
Reads the bad block list in the disk label into memory. (Note that fx does not keep an in-core bad
block list for SCSI drives, so this function appears only for non-SCSI drive types). It should be
used before adding any bad blocks, to ensure that the current badblock list is being worked on.

showbb
Displays the current badblock list. For non-SCSI disks, the displayed list is the in-core copy kept
by fx, originally read in with readinbb and possibly modified with addbb .
For SCSI disks, it is obtained by interrogating the SCSI controller. In this case, usually the physical
location of the bad sectors is displayed. Some SCSI drives can also display the logical block
number (showbb-l) or the bytes from index format (showbb-b).

6

FX(1M) FX(1M)hh

forward
For non-SCSI disks, this saves the badblock list to disk, and causes the disk controller to map out
any newly added bad blocks. (It does not appear for SCSI disks since added bad blocks on a SCSI
disk are effective immediately).

The remaining option appears only in expert mode for non-SCSI disks.

createbb
Clears out any existing badblock list held by fx for the disk. It is used primarily when a disk is
being completely reformatted.

Most disks have a number of defective spots where data cannot be stored. It is normally less than 1 defect
per megabyte of disk capacity. Disks with higher numbers of defects may be failing, or may require for-
matting, particularly if new defects keep appearing. The disk driver or controller is able to get around
this by dynamically replacing a bad block with a good block from a pool reserved for this purpose. A list
is kept on the disk of defects and their replacements. If new bad blocks develop during the life of the sys-
tem, it is necessary to add these new bad blocks to the badblock list.

Typically, the disk driver will print error messages on the console when it encounters a bad block. These
messages are also normally logged to the system log file /var/adm/SYSLOG. The error messages will give
the location of the bad block, either as a single block number or as cylinder, head and sector (in a form
such as chs: 123/4/5), depending on the controller type. The disk is identified by its special file name: see
dkip(7), dksc(7), ipi(7), jag(7), rad(7) or xyl(7).

The SCSI disk driver prints bad block numbers relative to the start of the partition it is accessing, as well
as the absolute block number. It is the absolute block number that must be used when adding a bad
block.

Note: fx attempts to save data when mapping out bad blocks by re-reading the old data a number of
times. In all cases, it is strongly recommended to make a backup of the disk before proceeding with any
badblock operations. Badblock mapping is NOT supported for floppy disk drives.

To manually map out a bad block, follow the procedures below. Unless you are completely sure that a
particular block or track is bad, it is often a good idea to use the exercise function to locate and automati-
cally map out the bad blocks. In some cases, a bad block may be reported that was the first block of a
read or write request, and not the block that is actually bad. For this reason, the exercising routines will
attempt to read each block in a failed i/o individually to find the bad block(s).

Persistent soft errors may not be found by the exerciser, and may require using the manual procedure.
For SCSI drives, you may wish to reduce the number of retries performed by the drive itself to 0, if the
drive supports it, so that fx will be more likely to find and forward the bad block. See the section on
parameters. The default exerciser function is to do a read-only scan of the entire disk surface. The
exercising method will only add blocks that are unrecoverable. Using the badblock menu, you can add
any block, whether it is bad or not. For SCSI drives, there is no way to remove a block from the badblock
list without re-formatting the drive. Thus, the data in any block that is mistakenly entered may be per-
manently lost, if the original data could not be read. A read-only exercise pass may not work if the block
fails on writes only, and the disk contains important data, so that a write-read-compare pass isn’t practi-
cal. In this case, you may need to manually map the bad block(s). However, if the disk is backed up and

7

FX(1M) FX(1M)hh

can be restored after the exercise is complete, a write-compare exercise pass will find and automatically
map bad blocks.

The procedure for forwarding bad blocks is divided into two parts: for SCSI disks (both dksc and jag , but
not rad), and for other types. SCSI disks are much simpler, as the badblock map is maintained by the
drive itself, rather than by the driver. Note that rad devices do not support badblock forwarding. It is not
necessary to read a badblock list before adding new bad blocks.

For non-SCSI disks, select the readinbb item to read in the existing badblock list from the disk. Next, select
the showbb item to display the existing badblock list. Typically, there will be a small number of entries. If
there are no entries, it is possible that the badblock list has been lost or corrupted. In this case, you should
attempt to recover the manufacturer’s original defect list by entering readdefects.

To enter new bad blocks, select the addbb item. Then enter the location of the bad block (fx accepts either a
single blocknumber or a cylinder/head/sector specification). More than one badblock can be entered.
When you have finished entering, terminate the entries by entering two dots (".."). The updated badblock
list must then be saved to disk and the new bad blocks mapped out. Select the forward option on the bad-
block menu to do this.

For SCSI disks, bad blocks are mapped out as soon as they are entered by the addbb function. Nothing
more needs to be done. All SCSI badblocks are entered by logical block number relative to the start of the
disk, using the addbb function. (Driver messages about bad blocks typically give 2 numbers, where the
smaller one is relative to the start of a partition, and the larger is relative to the start of the disk.) Enter as
many badblocks as you want, one per line, ending the list by typing ".." on a line by itself. The showbb
function will display the complete list of bad blocks. The -m option may be used to show only the
manufacturer’s bad block list, in one of several formats, which varies from drive to drive; the default and
the most common is to display by cyl/head/sec, even though blocks are entered by logical block number.

All disk error messages are logged to the system log /var/adm/SYSLOG by default. You should examine
the log periodically. If the same blocks show up repeatedly, you should add them to the bad block list
with the exercise method. If necessary, use the badblock menu. It is best to replace a block that is going
bad before it becomes unreadable.

FX LABEL FUNCTIONS
fx can display the information in the various parts of the disk label. To do this, select the label option at the
main menu. Then select the readin function, and select the part(s) of the label you wish to display. This
will read in the information from the disk. This choice is not present for SCSI disks, because all of the
drive related label information is read from the embedded drive controller. Return to the label menu and
select show . The various parts of the label can then be selected for display.

When expert mode is used, the label values can be changed. Some of the values that can be changed are
also sent directly to the drive or controller. Changing some parameters may require reformatting the
drive before it can be used.

8

FX(1M) FX(1M)hh

LABEL MENU
This menu gives access to functions for displaying and, in expert mode, modifying information contained
in the disk label. It contains the following items:

readin Allows part or all of the label to be read in from the disk. Selecting this item brings up a menu of
the accessible parts of the label. (These are described in detail below). Selecting a part causes that
part to be read in from disk; there is also an all option, to read in all parts at once. Note that this
is normally done automatically before the first menu is displayed.

show Allows display of parts of the label. As with readin, it brings up a menu of the label parts, allow-
ing selection of the part to be displayed.

The remaining items appear only in expert mode, since they offer the possibility of changing data on the
disk.

sync Writes the in-core copy of the disk label back to disk, as well as changing the parameters in the
disk driver.

set Allows parts of the label to be modified. As for readin, it brings up a menu of the label parts,
allowing selection of the part to be modified. The current values are given as the default in the
prompts, so simply pressing return for every prompt will leave the values unchanged. For SCSI
drives, the drive parameters are divided into geometry and parameters menus. Changes to the
geometry values will require that the drive be reformatted, while other changes do not require
reformatting of the drive.

create Discards existing label information, and creates new label information. For SCSI drives, the infor-
mation used to create the label is obtained from the drive by modesense commands. For other
drive types, the information comes from tables compiled into fx, unless the other choice was
selected for the drive type, in which case the user entered data is used. This would normally be
used only for attempting to repair a damaged disk label (or to recover from major errors during
set). As with readin, it brings up a menu of the label parts, allowing selection of the part to be
worked on.

PARTS OF THE DISK LABEL
A disk label contains the following parts:

parameters
This is information used by the disk controller, such as disk geometry (for example, number of
cylinders), and format information (for example, interleave). The parameters actually used will
depend on the type of controller. For SCSI disks, there is an additional menu called "geometry",
and changes to values on the parameter menu will not require a reformat of the drive; changes to
those on the geometry menu will.

These values will not need to be changed in normal use. A full discussion of the disk controller
and disk drive is beyond the scope of this document. The reader should refer to the
manufacturer’s documentation. Some parameters affect only the label, others are passed on to
the controller or drive. For SCSI drives, the parameters are sent to the disk with the save-
parameters bit set, so that they remain in force even if the system is restarted.

9

FX(1M) FX(1M)hh

When exercising SCSI drives, and attempting to find blocks with soft errors, it may be advisable
to set the number of retries performed by the drive to 0, so that intermittent errors can be found.
You may also want to disable ECC error correction on the drive. Not all drives will allow you to
change the number of retries. If you do change it during the exercise pass, you probably want to
restore the old value before exiting.

geometry
This menu exists only for SCSI disks. A change to any of the parameters on this menu will
require reformatting the drive before it can be used. Not all drives support changing all
geometry items. Some changes will also affect drive capacity. For some drives this capacity
change will be reflected immediately in values read from the drive, while for others the new
values will not be returned until after the drive is formatted.

partitions
The disk surface is divided for convenience into a number of different sections ("partitions") used
for various purposes. (See intro(7) for more details). When the operating system is accessing the
disk, its drivers make the connection between the special file name and the physical disk parti-
tion, using information from the partition table in the disk label.

Even if not started in expert mode, the drive partitions may be displayed and changed by using
the repartition menu; See the section, CHANGING DISK PARTITIONS.

There may be up to 16 partitions on a disk, numbered 0 to 15 (though not all need be present).
Partitions of 0 length (0 or -1 for backwards compatibility) are not normally displayed, as they are
logically not present. Each partition is described by its starting block on the disk, its size in
blocks, and a type indicating its expected use (for example, file system, disk label, swap, and so
forth). The MAKEDEV program will only create the entries in /dev for the SGI standard parti-
tions (0, 1, 6, 7, vh (8), and vol (10). If you create and use other partitions, you must create entries
for them in /dev with the mknod(1M) command. Older versions of IRIX would remove these
non-standard entries in /dev on each software installation; this is no longer done.

For some drives with variable geometry, a partition layout is created that may result in either
fewer or more logical cylinders being used than the drive actually has. Whether the value is larger
or smaller depends on how the drive reports the number of sectors per track. It is sometimes
reported as an average (that may be rounded up or down), and sometimes as the smallest
number of sectors on any track.

sgiinfo This contains information kept for administrative purposes: the type of disk drive and its serial
number. For labels created under IRIX 4.0, it also includes the version of fx that was used to
create the label (and presumably to do the drive setup).

bootinfo
This contains information used by the system PROMs during a normal system boot. It specifies
the root partition, the name of the file on the root partition to boot, and the swap partition. Nor-
mal defaults for these are: unix for the bootfile, 0 for the root partition, and 1 for the swap

10

FX(1M) FX(1M)hh

partition.

directory
Some system files are normally kept in the label area (volume header) on the disk. These are files
used in standalone operations such as the standalone shell sash and sometimes the diagnostic pro-
gram ide, depending on system type. The directory is a table in the label that enables these files to
be located. The show submenu of the label menu allows the directory of these files to be displayed.
The files in the disk label are manipulated by the use of dvhtool(1m). fx does not provide facilities
for adding or deleting files. It will write the sgilabel file when it has changed and the user requests
it. Also note that using create/directory will clear the directory.

CHANGING DISK PARTITIONS
The top level menu repartition is provided in both the modes. In the expert mode, one additional function
is provided. The expert function is simply an alternate method of reaching the /label/set/partition function,
provided for ease of use. You need to use this function if you want to create or modify other than parti-
tions that are not normally used.

When this menu is entered, the current partition layout is displayed, as well as the total drive capacity.
For all of the non-expert choices, you are asked if you really want to change the partition layout after
choosing the function. You are warned that any existing data on the drive could be lost if the partitions
are changed. Remember that you must normally use the mkfs(1M) command to create file systems on
partitions before you can install software or restore files onto them.

The rootdrive function will create a drive with the standard partitioning for a system (or root) drive. This
function should be used if you are setting up a new drive, or changing an option drive into a root drive.

The optiondrive function will create a drive with all of the usable area in a single partition (partition 7).
Some space is still allocated to the volume label, and for non-SCSI drives, to the badblock replacement
partition.

The resize function allows you to resize any of the standard partitions (root, swap, usr, and entire). After
you select this function, a message is shown, reminding you that after you finish resizing a partition, the
other partitions will be resized to match (if necessary). You will be shown the changes and given a chance
to reject them, before they are committed to the disk, unless no changes were made.

The default partition presented depends on whether the drive appears to be a system (root) drive, or an
option drive. For option drives, the default is entire. For system drives, the default is the swap partition.

After choosing the partition, you are shown the current values for the partition, and then asked to choose
the method of partitioning the drive. The choices are to resize by megabytes, blocks, cylinders, or as a
percentage of the entire disk. The default is megabytes. Next you are shown the maximum allowable
size, and asked to enter the new size.

If you made a change, the new partition layout of the drive is shown. You are asked to confirm that you
want to use it (with a default of no). If you accept it, the new partition layout is immediately written to
the drive and driver.

11

FX(1M) FX(1M)hh

EXERCISE MENU
This gives access to functions intended for surface analysis of the disk to find bad blocks. Only read-only
tests are possible in normal (non-expert) mode. Destructive read-write tests are allowed in expert mode.
For all choices except random , I/O is done one cylinder at a time, unless an error is found. If an error is
found, the I/O is repeated one sector at a time to find the actual block that is bad, except for drive types
that require the entire track to be mapped (such as ESDI drives).

For each unrecoverable error that is found, the failing block is added to the bad block list. The number of
retries performed by fx itself defaults to 3. It may be set to any number, including 0, using the -r option.
Most drivers, and some drives, will do retries before reporting an error. For most SCSI drives, the
number of retries performed may be set by using the /label/set/param menu. By using the stoponerror menu
selection, you can have fx stop and ask you if you want to map the badblock. Whether you answer yes or
no, you are then asked if you want to continue exercising. This can be useful when trying to determine
how many errors a disk has before you commit yourself to mapping the bad blocks.

butterfly
Invokes a test pattern in which successive transfers cause seeks to widely separated areas of the
disk. This is intended to stress the head positioning system of the drive, and will sometimes find
errors that do not show up in a sequential test. It prompts for the range of disk blocks to exercise,
number of scans to do, and a test modifier. Each of the available test patterns may be executed in
a number of different modes (read-only, read-write etc) that will be described below.

errlog Prints the total number of read and write errors that have been detected during a preceding exer-
cise, showing both soft and hard errors. If the -l option is used, the blocks on which errors
occurred are also reported. Soft errors are those errors for which a driver reported an error, but
fx was able to successfully complete the i/o on a retry. Blocks with soft errors are not forwarded.

random
Invokes a test pattern in which the disk location of successive transfers is selected randomly. It is
intended to simulate a multiuser load. Like the butterfly test, it prompts for range of blocks to
exercise, number of scans, and modifier. This does random sized i/o’s (from 1 block to the
cylinder size) as well as seeking to random locations on the disk. It is useful for finding problems
on drives with seek problems, and sometimes with errors in the caching logic or hardware.

sequential
Invokes a test pattern in which the disk surface is scanned sequentially. As with the butterfly test,
it prompts for: range of blocks to exercise, number of scans, and modifier.

stop_on_error
Toggles whether fx proceeds automatically when errors are detected. The default is automatic. If
stop is set, then you are asked on each error whether you want to continue or not. If you con-
tinue, you are then asked if you want to add the failing block to the bad block list. This can be
useful if you want to find all the failing bad blocks but not actually add them to the bad block list.

12

FX(1M) FX(1M)hh

The following items appear only in expert mode, because they are concerned with destructive (write)
tests.

settestpat
Allows you to specify the pattern of data that will be used in tests which write to the disk to be
created. Up to 4Kbytes of pattern may be set, byte-by-byte. Each byte may be entered as a decimal
or hex value (with a leading 0x). Enter a .. when you are done entering the pattern. The pattern
will be repeated as many times as necessary to fill the buffer. The default is a random pattern
1023 bytes long ensuring that few, if any sectors will have the same data. This helps find drives
that have hardware or firmware problems causing them to write data to the wrong location on
the drive, when used with the write-compare test.

showtestpat
Displays the pattern of data that will be used in tests which write to the disk. This may be
changed with settestpat .

complete
Causes a write-and-compare sequential test to be run on the entire disk area; all data on the drive
is lost.

The butterfly, random and sequential tests prompt for a modifier that determines the type of transfer that
will occur during the test patterns. Possible modifiers are:

rd-only Performs reads only. The value of read data is ignored. The test detects only the success or
failure of the read operation.

rd-cmp Causes two reads at each location in the test pattern. The data obtained in the two reads is com-
pared. If there is a difference, the block(s) that differ are considered bad.

seek Causes each block in the test pattern to be read (no writes) separately. It is used to verify indivi-
dual sector addressability. (This is a rather time-consuming operation!)

The following modifiers are presented and legal only in expert mode, since they cause writing to the disk,
thereby destroying existing data. Be absolutely sure you have backed up any data you care about before
using them. You are given one last chance to abort after you have specified all the parameters to use.

wr-only Performs writes only. Written data is not re-examined. The test detects only the success or
failure of the write operation. Certain kinds of media errors will cause write errors, but not read
errors.

wr-cmp Performs a write, read, compare operation. If any of the three operations fail, the block is con-
sidered to be bad. Data miscompares are reported differently than i/o errors, but a data miscom-
pare will still cause the block with the miscompare to be added to the badblock list. This is the
most thorough test, and highly recommended after formatting a drive.

13

FX(1M) FX(1M)hh

DEBUG FUNCTIONS
fx has a menu of disk debug functions. For safety reasons, most are not present in the normal (non-expert)
mode, where only nondestructive functions are available. In the expert mode, disk blocks may be written
as well as read. For SCSI disks, the drive parameters (modesense pages) may be displayed, and indivi-
dual bytes can be altered, and then sent to the disk via modeselect commands.

A function that may be useful is the ability to directly read and display the contents of any block on the
disk. An internal memory buffer is provided as a source or destination for data; the contents of this
buffer may be displayed and edited.

For SCSI drives, there are also functions to display the drive capacity, to display the modesense page
values, and to allow setting of modeselect page values (as decimal, octal, or hex values, rather than sym-
bolicly, as is normally done with the label functions).

cmpbuf
Allows blocks of data in different areas of the buffer to be compared; written and read-back data,
for example. It prompts for the starts of the two areas to be compared (relative to the beginning
of the internal buffer), and for the length of comparison.

dumpbuf
Allows display of the contents of the buffer. It prompts for start address (relative to beginning of
buffer), length to display and display format: bytes, (2-byte) words, or (4-byte) longwords. Data is
displayed in the hex format selected, and also in character format with non-printable characters
represented by dots.

editbuf Allows individual buffer locations to be modified in byte, 2-byte or 4-byte units.

fillbuf Allows sections of the buffer to be filled with a repeating pattern. It prompts for start location and
length to fill, and for a string of data to use as the fill pattern. (Unfortunately, only a string is
accepted. It is not possible to enter hex data. The buffer may be cleared by entering a null string).

number
Accepts a decimal number, and prints it in octal and hex. For non-SCSI drive types only, it also
prints the input, interpreted as a blocknumber in the form of cylinder/head/sector for the current
drive. It will also accept input in the form of cylinder/head/sector (for example, 123/4/5) and
print the corresponding blocknumber. (SCSI drives are always accessed by a single blocknumber,
so this translation is not performed if the current drive type is SCSI).

readbuf
Allows disk blocks to be read into the internal buffer. It prompts for buffer address (relative to
start of buffer), and number of blocks to read. Up to 100 blocks may be read in one operation.
The disk block address from which the read will occur is maintained as an internal variable by fx.
It can be set with the seek function.

seek Sets the internal fx variable that holds the source or destination blocknumber on disk for transfers
between disk and the internal buffer. A prompt of the current value is given. Does not cause any
i/o, just sets the block number for the next i/o.

14

FX(1M) FX(1M)hh

The remaining functions appear only in expert mode, since they are either potentially destructive (for
example, writebuf), or of little interest to the normal user.

writebuf
Writes blocks from the internal buffer to the disk. It prompts for source buffer address and
number of blocks to write. The disk address block for the write is taken from the internal fx vari-
able set by seek , as for readbuf.

showuib
Appears only for non-SCSI drives. It prints the Unit Initialization parameters used by the disk
controller for the current drive.

rawreadbuf
Appears only for non-SCSI drives. It is something of a misnomer, because it actually invokes the
disk controller command intended for reading non-SCSI manufacturer’s flawmaps at the start of
tracks. It prompts for destination buffer address, disk address and length. The sector part of disk
address is irrelevant, because the controller always reads at start of track for this function. Also,
the length parameter is ignored! The controller always transfers one sector for this operation.

passthru
Appears only because the runtime fx utility shares common code with the standalone version.
Direct passthrough of drive command codes is not allowed at runtime.

showcapacity
Appears only for SCSI drives. It shows the output of the SCSI readcapacity command. This can
be used to verify that the partition layout chosen is valid (fx verifies this automatically, but it can
still be useful to see this). Drives with variable geometry may have a partition layout that does
not use all of the drive. The partitions should never extend past the value displayed by showcapa-
city. Note that after geometry on SCSI drives is changed, the drive may not report any capacity
changes until after a format is done.

showpages
Appears only for SCSI drives. It shows which modesense pages (drive parameters) the drive
supports, their length, and with the -l option, their current values. The -c and -d options display
the changeable and default values, respectively. This is sometimes useful when attempting to
connect a drive that has features not already supported by fx.

setpage
Appears only for SCSI drives. It allows you to set the values of a modeselect page (and option-
ally the block descriptor) on a byte-by-byte basis. As with other fx input, numbers are decimal by
default, octal with a leading 0, or hex with a leading 0x. Trailing bytes not entered are treated as
0. The values will be masked with the changeable values; the masked values are displayed before
they are set. There are no sanity checks on the values entered (other than that they must fit in a
byte). Therefore it is possible to render a drive unusable by changing values this way. This func-
tion is intended for those who understand the meanings of the values in the modeselect pages,
primarily when dealing with new types of drives. It is sometimes possible to recover from mis-
takes by doing /label/creat/all, following by /format.

15

FX(1M) FX(1M)hh

INITIALIZING NEW DISKS
fx may be used to initialize disk drives that have not been previously formatted. The new drive to be ini-
tialized MUST be physically connected to the system.

Warning: do not connect or disconnect non-RAID drives while the system is powered up, as this could
damage the drive or controller. On SCSI drives, it could also cause the termination power fuse to fail (on
those machines having them; some have solid state replacements), resulting in apparently random SCSI
errors.

The disk drives in a RAID brick can be removed and added while the system is up and accessing the
RAID. Initialization of a RAID should be done using the RAID administrative utility: raid(1M).

Take care that termination of the new drive is correct. This varies with the drive type and system type.
On systems with SCSI drives and an external terminator pack, none of the drives should be terminated
unless they are external to the system; in that case, only the device at the end of the SCSI bus should have
terminators. Be sure that the drive ID does not conflict with that of any other drive connected to the same
controller. For all systems shipped by SGI, the controller (host adapter) SCSI ID is 0. Many other
manufacturers’ systems are shipped with the controller as ID 7, so be sure to check the ID when moving
drives from one type of system to another.

With the new drive connected, bring the system back up to normal multiuser mode, and invoke fx in
expert mode (the -x option). Enter the controller type and number, and the drive number for the new
drive. For SCSI drives, the drive type will be determined automatically by an inquiry operation on the
drive. For non-SCSI drives, a menu of known drive types will appear. It is important to know the exact
model number of the drive you are adding.

It is possible to work with (non-SCSI) drives other than those on the menu by entering a drive name of
"other", and then entering parameters for the drive. This is intended only for engineering tests and
evaluations. SCSI drives determine all of the information about the drive by using the modesense com-
mand, after determining which modesense pages the drive supports. If the drive supports the SCSI 2
pages, they are used. Otherwise, the CCS extensions to SCSI 1 are assumed (as well as some "defacto
standard" vendor specific pages). If none of the geometry pages are supported, fx will choose some rea-
sonable set of defaults, such that most disks should be able to be used to their full capacity. Use of drives
not qualified by Silicon Graphics Inc., is not recommended.

Once drive type is identified, select the auto item on the main menu. This will format the drive, scan it for
bad blocks, and place a label on it. On completion, exit from fx. The drive is now ready for use.

It will usually be necessary to make file systems on the drive and to mount these file systems before the
drive can be used. See mkfs(1M), Add_disk (1) (for SCSI dksc drives only), and mount (1M).

Note: Use of auto on SCSI drives will format the drive with the current drive parameters. Older versions
used the manufacturer’s default parameters, which did not always match the parameters as shipped by
Silicon Graphics. The default parameters will work, but may not give you the same drive capacity or per-
formance as those shipped by Silicon Graphics.

16

FX(1M) FX(1M)hh

FILES
/dev/rdsk/jag*, /dev/rdsk/ipi*, /dev/rdsk/ips*, /dev/rdsk/dks*, /dev/rdsk/xyl*, /dev/rdsk/fds*,
/dev/rdsk/rad*

SEE ALSO
mknod(1M), mount(1M), dvhtool(1M), MAKEDEV(1M), Add_disk(1), xyl(7), dkip(7), dksc(7), rad(7), ipi(7),
smfd(7), jag(7), and vh(7).

17

GETTYDEFS(4) GETTYDEFS(4)hh

NAME
gettydefs − speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty(1M) to set up the speed and terminal settings
for a line. It supplies information on what the login(1) prompt should look like. It also supplies the speed
to try next if the user indicates the current speed is not correct by typing a <break> character.

NOTE: Customers who need to support terminals that pass 8 bits to the system (as is typical outside the
U.S.A.) must modify the entries in /etc/gettydefs as described in the WARNINGS section.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain quoted characters of the form \b,
\n, \c, etc., as well as \nnn, where nnn is the octal value of the desired character. The various fields are:

label This is the string against which getty(1M) tries to match its second argument. It is often
the speed, such as 1200, at which the terminal is supposed to run, but it need not be (see
below).

initial-flags These flags are the initial ioctl(2) settings to which the terminal is to be set if a terminal
type is not specified to getty(1M). The flags that getty(1M) understands are the same as the
ones listed in /usr/include/sys/termio.h [see termio(7)]. Normally only the speed flag is
required in the initial-flags . getty(1M) automatically sets the terminal to raw input mode
and takes care of most of the other flags. The initial-flag settings remain in effect until
getty(1M) executes login(1).

final-flags These flags take the same values as the initial-flags and are set just before getty(1M) exe-
cutes login(1). The speed flag is again required. The composite flag SANE takes care of
most of the other flags that need to be set so that the processor and terminal are communi-
cating in a rational fashion. The other two commonly specified final-flags are TAB3, so that
tabs are sent to the terminal as spaces, and HUPCL, so that the line is hung up on the final
close.

login-prompt This entire field is printed as the login-prompt. Unlike the above fields where white space is
ignored (a space, tab or new-line), they are included in the login-prompt field. As a special
feature, this field may contain the string $HOSTNAME which will be replaced by the
current host name of the machine. See hostname(1) for more information.

1

GETTYDEFS(4) GETTYDEFS(4)hh

next-label If this entry does not specify the desired speed, indicated by the user typing a <break>
character, then getty(1M) will search for the entry with next-label as its label field and set up
the terminal for those settings. Usually, a series of speeds are linked together in this
fashion, into a closed set; for instance, 2400 linked to 1200, which in turn is linked to 300,
which finally is linked to 2400.

If getty(1M) is called without a second argument, then the first entry of /etc/gettydefs is used, thus mak-
ing the first entry of /etc/gettydefs the default entry. It is also used if getty(1M) can not find the specified
label. If /etc/gettydefs itself is missing, there is one entry built into getty(1M) which will bring up a termi-
nal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs, it be run through getty(1M)
with the check option to be sure there are no errors.

FILES
/etc/gettydefs

SEE ALSO
login(1), stty(1), getty(1M), ioctl(2), termio(7)

WARNINGS
To support terminals that pass 8 bits to the system (also, see the BUGS section), modify the entries in the
/etc/gettydefs file for those terminals as follows: add CS8 to initial-flags and replace all occurrences of
SANE with the values: BRKINT IGNPAR ICRNL IXON OPOST ONLCR CS8 ISIG ICANON ECHO ECHOK

An example of changing an entry in /etc/gettydefs is illustrated below. All the information for an entry
must be on one line in the file.

Original entry:

CONSOLE # B9600 HUPCL OPOST ONLCR # B9600 SANE IXANY TAB3

HUPCL # $HOSTNAME console Login: # console

Modified entry:

CONSOLE # B9600 CS8 HUPCL OPOST ONLCR # B9600 BRKINT IGNPAR

ICRNL IXON OPOST ONLCR CS8 ISIG ICANON ECHO ECHOK IXANY

TAB3 HUPCL # $HOSTNAME console Login: # console

This change will permit terminals to pass 8 bits to the system so long as the system is in MULTI-USER
state. When the system changes to SINGLE-USER state, the getty(1M) is killed and the terminal attributes
are lost. So to permit a terminal to pass 8 bits to the system in SINGLE-USER state, after you are in
SINGLE-USER state, type (see stty(1)):

stty −istrip cs8

2

GETTYDEFS(4) GETTYDEFS(4)hh

BUGS
8-bit with parity mode is not supported.

3

GROWFS(1M) GROWFS(1M)hh

NAME
growfs − expand a filesystem

SYNOPSIS
/sbin/growfs [-s size] special

DESCRIPTION
Growfs expands an existing Extent Filesystem, see fs(4). The special argument should be the pathname of
the device special file where the filesystem resides. The filesystem must be unmounted to be grown, see
umount(1M). The existing contents of the filesystem are undisturbed, and the added space becomes avail-
able for additional file storage.

If a size argument is given, the filesystem will be grown to occupy size basic blocks of storage (if avail-
able).

If no size argument is given, the filesystem will be grown to occupy all the space available on the device.

It is anticipated that growfs will most often be used in conjunction with logical volumes see lv(7M). How-
ever, it can also be used on a regular disk partition, for example if a partition has been enlarged while
retaining the same starting block.

PRACTICAL USE
Filesystems normally occupy all of the space on the device where they reside. In order to grow a filesys-
tem, it is necessary to provide added space for it to occupy. Therefore there must be at least one spare
new disk partition available.

Adding the space is done through the mechanism of logical volumes.

If the filesystem already resides on a logical volume, the volume is simply extended using mklv(1M).

If the filesystem is currently on a regular partition, it is necessary to create a new logical volume whose
first member is the existing partition, with subsequent members being the new partition(s) to be added.
Again, mklv is used for this.

In either case growfs is run on the logical volume device, and the expanded filesystem is then available for
use on the logical volume device.

DIAGNOSTICS
Growfs will expand only clean filesystems. If any problem is detected with the existing filesystem, the fol-
lowing error message is printed:

"growfs: filesystem on <special> needs cleaning."

If a size argument is given, growfs checks that the specified amount of space is available on the device. If
not, it prints the error message:

1

GROWFS(1M) GROWFS(1M)hh

"growfs: cannot access <size> blocks on <special>."

Growfs works in units of the cylinder group size in the existing filesystem. To usefully expand the filesys-
tem there must be space for at least one new cylinder group. Failing this, it prints the error message:

"growfs: not enough space to expand filesystem."

COMPATIBILITY NOTE
Growfs can expand a filesystem from any IRIX release, and filesystems may be expanded repeatedly.
However, once a filesystem has been grown, it is NOT possible to mount it on an IRIX system earlier than
release 3.3, and a pre-3.3 fsck will not recognize it.

SEE ALSO
mkfs(1M), mklv(1M), lv(7M).

2

HINV(1M) HINV(1M)hh

NAME
hinv − hardware inventory command

SYNOPSIS
hinv [-v] [-s] [-c class] [-t type]

DESCRIPTION
hinv displays the contents of the system hardware inventory table. This table is created each time the sys-
tem is booted and contains entries describing various pieces of hardware in the system. The items in the
table include main memory size, cache sizes, floating point unit, and disk drives. Without arguments, the
hinv command will display a one line description of each entry in the table. The -v option will give a
more verbose description of some items in the table. The -c class option will display items from class.
Classes are processor, disk, memory, serial, parallel, tape, graphics, and network. The -t type option will display
items from type. Types are cpu, fpu, dcache, icache, memory, and qic. The -s option, when used with either
the -c or -t options, suppresses output.

The hinv command, when used with the -c or -t options, will exit with a value of 1, if no item of the
specified class or type is present in the hardware inventory table. Otherwise, hinv exits with a value of 0.

NOTE
For many devices, the device will not be displayed in the inventory if the corresponding driver is not
configured into IRIX.

SEE ALSO
lboot(1m), getinvent(3)

1

HOSTS(4) HOSTS(4)hh

NAME
hosts − host name-address database

DESCRIPTION
The /etc/hosts file contains information regarding the known hosts on the network. For each host a single
line should be present with the following information:

g Internet address

g official host name

g aliases (optional)

Items are separated by any number of blanks and/or tab characters. A ‘‘#’’ indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file. For
example,

192.0.2.2 iris.widgets.com iris

This file must include entries for all of the machine’s network interfaces, the ‘‘localhost’’ address and a
few important machines on the local network. ifconfig(1M) uses this file when assigning addresses to the
network interfaces during system initialization.

By default, this file is used by gethostbyname(3N) and gethostbyaddr(3N) only when the NIS or the Berkeley
Internet name server (named(1M)) are not enabled. The system can be configured to use NIS, named,
and/or this file, as described in resolver(4).

If the host is not connected to any network, the file should contain an entry defining the hostname as an
alias for the ‘‘localhost’’ entry. For example, if the hostname is IRIS, the /etc/hosts file should contain
this line:

127.1 localhost IRIS

Sites connected to the Internet should configure the system to use the name server. This file may be
created from the official host database maintained at the Network Information Center (NIC), though local
changes may be required to bring it up to date regarding unofficial aliases and/or unknown hosts. The
host database maintained at NIC is incomplete.

Network addresses are specified in the conventional ‘‘.’’ (dot) notation using the inet_addr() routine from
the Internet address manipulation library, inet(3N). Legal host names may contain any alphanumeric
character, the minus sign (−) and period (.). Periods are not part of the name but serve to separate com-
ponents of a ‘‘domain-style’’ name.

FILES
/etc/hosts

1

HOSTS(4) HOSTS(4)hh

SEE ALSO
gethostbyname(3N), ifconfig(1M), named(1M), resolver(4),
sys_id(4), hostname(5)

2

init(1M) init(1M)hh

NAME
init, telinit − process control initialization

SYNOPSIS
/etc/init [0123456SsQqabc]

/etc/telinit [0123456SsQqabc]

DESCRIPTION
init

init is a general process spawner. Its primary role is to create processes from information stored in an
inittab file [see inittab(4)]. The default inittab file used is /etc/inittab; other files can be specified
using the INITTAB keyword in the system file [see system(4)].

At any given time, the system is in one of eight possible run levels. A run level is a software configuration
of the system under which only a selected group of processes exist. The processes spawned by init for
each of these run levels is defined in inittab. init can be in one of eight run levels, 0−6 and S or
s (run levels S and s are identical). The run level changes when a privileged user runs /etc/init.
This user-level init sends appropriate signals to the original init (the one spawned by the operating
system when the system was booted) designating the run level to which the latter should change.

The following are the arguments to init.

0 Shut the machine down so it is safe to remove the power. Have the machine remove
power if it can.

1 Put the system into system administrator mode. All filesystems are mounted. Only a
small set of essential kernel processes run. This mode is for administrative tasks such as
installing optional utilities packages. All files are accessible and no users are logged in on
the system.

2 Put the system into multi-user state. All multi-user environment terminal processes and
daemons are spawned.

3 Start the remote file sharing processes and daemons. Mount and advertise remote
resources. Run level 3 extends multi-user mode and is known as the remote-file-sharing
state.

4 Define a configuration for an alternative multi-user environment. This state is not neces-
sary for normal system operations; it’s usually not used.

5 Stop the UNIX system and enter firmware mode.

6 Stop the UNIX system and reboot to the state defined by the initdefault entry in
inittab.

a,b,c Process only those inittab entries for which the run level is set to a, b, or c. These
are pseudo-states, which may be defined to run certain commands, but which do not
cause the current run level to change.

1

init(1M) init(1M)hh

Q,q Re-examine inittab.

S,s Enter single-user mode. When the system changes to this state as the result of a com-
mand, the terminal from which the command was executed becomes the system console.

This is the only run level that doesn’t require the existence of a properly formatted init-
tab file. If this file does not exist, then by default the only legal run level that init can
enter is the single-user mode.

The set of filesystems mounted and the list of processes killed when a system enters sys-
tem state s are not always the same; which filesystems are mounted and which processes
are killed depends on the method used for putting the system into state s and the rules
in force at your computer site. The following paragraphs describe state s in three cir-
cumstances: when the system is brought up to s with init; when the system is brought
down (from another state) to s with init; and when the system is brought down to s
with shutdown.

When the system is brought up to s with init, the only filesystem mounted is / (root).
Filesystems for users’ files are not mounted. With the commands available on the
mounted filesystems, you can manipulate the filesystems or transition to other system
states. Only essential kernel processes are kept running.

When the system is brought down to s with init, all mounted filesystems remain
mounted and all processes started by init that should be running only in multi-user
mode are killed. Because all login related processes are killed, users cannot access the
system while it’s in this state. In addition, any process for which the utmp file has an
entry will be killed. Other processes not started directly by init (such as cron) will
remain running.

When you change to s with shutdown, the system is restored to the state in which it
was running when you first booted the machine and came up in single-user state, as
described above. (The powerdown command takes the system through state s on the
way to turning off the machine; thus you can’t use this command to put the system in
system state s.)

When a UNIX system is booted, init is invoked and the following occurs. First, init looks in init-
tab for the initdefault entry [see inittab(4)]. If there is one, init will usually use the run level
specified in that entry as the initial run level for the system. If there is no initdefault entry in init-
tab, init requests that the user enter a run level from the virtual system console. If an S or s is
entered, init takes the system to single-user state. In the single-user state the virtual console terminal is
assigned to the user’s terminal and is opened for reading and writing. The command /sbin/sulogin
is invoked, which prompts the user for a root password (see sulogin(1M)), and a message is generated on
the physical console saying where the virtual console has been relocated. If /sbin/sulogin cannot be
found, then init will attempt to launch a shell: looking first for /bin/csh, then for /sbin/sh, then finally
for /bin/ksh. Use either init or telinit, to signal init to change the run level of the system. Note
that if the shell is terminated (via an end-of-file), init will only re-initialize to the single-user state if the
inittab file does not exist.

2

init(1M) init(1M)hh

If a 0 through 6 is entered, init enters the corresponding run level. Run levels 0, 5, and 6 are
reserved states for shutting the system down. Run levels 2, 3, and 4 are available as multi-user operat-
ing states.

If this is the first time since power up that init has entered a run level other than single-user state,
init first scans inittab for boot and bootwait entries [see inittab(4)]. These entries are per-
formed before any other processing of inittab takes place, providing that the run level entered
matches that of the entry. In this way any special initialization of the operating system, such as mounting
filesystems, can take place before users are allowed onto the system. init then scans inittab and
executes all other entries that are to be processed for that run level.

To spawn each process in inittab, init reads each entry and for each entry that should be
respawned, it forks a child process. After it has spawned all of the processes specified by inittab,
init waits for one of its descendant processes to die, a powerfail signal, or a signal from another init
or telinit process to change the system’s run level. When one of these conditions occurs, init re-
examines inittab. New entries can be added to inittab at any time; however, init still waits for
one of the above three conditions to occur before re-examining inittab. To get around this, the init
Q (or init q) command wakes init to re-examine inittab immediately. Note, however, that if the
inittab has been edited to change baud-rates, those changes will only take effect when new getty
processes are spawned to oversee those ports. Use killall getty to terminate all current getty
processes, then init Q to re-examine the inittab and respawn them all again with the new baud-
rates.

When init comes up at boot time and whenever the system changes from the single-user state to
another run state, init sets the ioctl(2) states of the virtual console to those modes saved in the file
/etc/ioctl.syscon. This file is written by init whenever the single-user state is entered.

When a run level change request is made init sends the warning signal (SIGTERM) to all processes that
are undefined in the target run level. init waits five seconds before forcibly terminating these
processes via the kill signal (SIGKILL).

When init receives a signal telling it that a process it spawned has died, it records the fact and the rea-
son it died in /var/adm/utmp and /var/adm/wtmp if it exists [see who(1)]. A history of the
processes spawned is kept in /var/adm/wtmp.

If init receives a powerfail signal (SIGPWR) it scans inittab for special entries of the type power-
fail and powerwait. These entries are invoked (if the run levels permit) before any further processing
takes place. In this way init can perform various cleanup and recording functions during the power-
down of the operating system.

telinit
telinit, which is linked to /sbin/init, is used to direct the actions of init. It takes a one-character
argument and signals init to take the appropriate action.

3

init(1M) init(1M)hh

FILES
/etc/inittab − default inittab file
/var/adm/utmp
/var/adm/wtmp
/etc/ioctl.syscon
/dev/console

SEE ALSO
login(1), sh(1), stty(1), who(1), getty(1M), killall(1M), powerdown(1M), sulogin(1M),
shutdown(1M), kill(2), inittab(4), system(4), utmp(4), termio(7)

DIAGNOSTICS
If init finds that it is respawning an entry from the inittab file more than ten times in two minutes,
it will assume that there is an error in the command string in the entry, and generate an error message on
the system console. It will then refuse to respawn this entry until either five minutes has elapsed or it
receives a signal from a user-spawned init or telinit. This prevents init from consuming system
resources when someone makes a typographical error in the inittab file or a program is removed that
is referenced in inittab.

When attempting to boot the system, failure of init to prompt for a new run level may be because the
virtual system console is linked to a device other than the physical system console.

NOTES
init and telinit can be run only by a privileged user.

The S or s state must not be used indiscriminately in the inittab file. A good rule to follow when
modifying this file is to avoid adding this state to any line other than the initdefault.

If a default state is not specified in the initdefault entry in inittab, state 6 is entered. Conse-
quently, the system will loop; that is, it will go to firmware and reboot continuously.

If the utmp file cannot be created when booting the system, the system will boot to state s regardless of
the state specified in the initdefault entry in the inittab file.

In the event of a file table overflow condition, init uses a file descriptor associated with the inittab
file that it retained from the last time it accessed that file. This prevents init from going into single user
mode when it cannot obtain a file descriptor to open the inittab file.

4

INITTAB(4) INITTAB(4)hh

NAME
inittab − script for the init process

DESCRIPTION
The /etc/inittab file supplies the script to init’s role as a general process dispatcher. The process that con-
stitutes the majority of init’s process dispatching activities is the line process /etc/getty that initiates indi-
vidual terminal lines. Other processes typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent and have the following format:

id:rstate:action:process

Each entry is started with a character other than ’#’ and ended by a newline. Lines starting with ’#’ are
ignored. A backslash (\) preceding a newline indicates a continuation of the entry. Up to 512 characters
per entry are permitted. Comments may be inserted in the process field using the sh(1) convention for
comments. Comments in the process field of lines that spawn gettys are displayed by the who(1) com-
mand. Such process field comments can contain information about the line such as its location. There are
no limits (other than maximum entry size) imposed on the number of entries within the inittab file. The
entry fields are:

id This field, of up to four characters, is used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed. Run-levels effectively correspond
to a configuration of processes in the system. That is, each process spawned by init is assigned a
run-level or run-levels in which it is allowed to exist. The run-levels are represented by the letter s
(or S), or a number ranging from 0 through 6. As an example, if the system is in run-level 1, only
those entries having a 1 in the rstate field will be processed. When init is requested to change
run-levels, all processes which do not have an entry in the rstate field for the target run-level will
be sent the warning signal (SIGTERM) and allowed a grace period (see init(1M) for the length of
this grace period), before being forcibly terminated by a kill signal (SIGKILL). The rstate field
can define multiple run-levels for a process by selecting more than one run-level in any combina-
tion from 0−−6, s and S. If no run-level is specified, then the process is assumed to be valid at all
run-levels. There are three other values, a, b and c, which can appear in the rstate field, even
though they are not true run-levels. Entries which have these characters in the rstate field are
processed only when the telinit [see init(1M)] process requests them to be run (regardless of the
current run-level of the system). They differ from run-levels in that init can never enter run-level a,
b or c. Also, a request for the execution of any of these processes does not change the current
run-level. Furthermore, a process started by an a, b or c command is not killed when init
changes levels. They are only killed if their line in /etc/inittab is marked off in the action field,
their line is deleted entirely from /etc/inittab, or init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process specified in the process field. The actions
recognized by init are as follows:

respawn If the process does not exist then start the process, do not wait for its termination
(continue scanning the inittab file), and when it dies restart the process. If the pro-
cess currently exists then do nothing and continue scanning the inittab file.

1

INITTAB(4) INITTAB(4)hh

wait Upon init’s entering the run-level that matches the entry’s rstate , start the process
and wait for its termination. All subsequent reads of the inittab file while init is in
the same run-level will cause init to ignore this entry.

once Upon init’s entering a run-level that matches the entry’s rstate , start the process, do
not wait for its termination. When it dies, do not restart the process. If upon enter-
ing a new run-level, where the process is still running from a previous run-level
change, the program will not be restarted.

boot The entry is to be processed only at init’s boot-time read of the inittab file. Init is to
start the process, not wait for its termination; and when it dies, not restart the pro-
cess. In order for this instruction to be meaningful, the rstate should be the default
or it must match init’s run-level at boot time. This action is useful for an initializa-
tion function following a hardware reboot of the system.

bootwait The entry is to be processed the first time init goes from single-user to multi-user
state after the system is booted. (If initdefault is set to 2, the process will run right
after the boot.) Init starts the process, waits for its termination and, when it dies,
does not restart the process.

powerfail Execute the process associated with this entry only when init receives a power fail
signal [SIGPWR, see signal(2)].

powerwait Execute the process associated with this entry only when init receives a power fail
signal (SIGPWR) and wait until it terminates before continuing any processing of
inittab .

off If the process associated with this entry is currently running, send the warning sig-
nal (SIGTERM) and wait 20 seconds before forcibly terminating the process via the
kill signal (SIGKILL). If the process is nonexistent, ignore the entry.

ondemand This instruction is really a synonym for the respawn action. It is functionally ident-
ical to respawn but is given a different keyword in order to divorce its association
with run-levels. This is used only with the a, b or c values described in the rstate
field.

initdefault An entry with this action is only scanned when init initially invoked. Init uses this
entry, if it exists, to determine which run-level to enter initially. It does this by tak-
ing the highest run-level specified in the rstate field and using that as its initial state.
If the rstate field is empty, this is interpreted as 0123456 and so init will enter run-
level 6. Additionally, if init does not find an initdefault entry in /etc/inittab, then it
will request an initial run-level from the user at reboot time.

sysinit Entries of this type are executed before init tries to access the console (i.e., before the
Console Login: prompt). It is expected that this entry will be only used to initialize
devices on which init might try to ask the run-level question. These entries are exe-
cuted and waited for before continuing.

2

INITTAB(4) INITTAB(4)hh

process This is a sh command to be executed. The entire process field is prefixed with exec and passed to
a forked sh as sh −−c ′′exec command ′′ . For this reason, any legal sh syntax can appear in the process
field. Comments can be inserted with the ; #comment syntax.

FILES
/etc/inittab

SEE ALSO
sh(1), who(1), getty(1M), init(1M), exec(2), open(2), signal(2)

3

INODE(4) INODE(4)hh

NAME
inode − format of an Extent File System inode

SYNOPSIS
#include <sys/param.h>
#include <sys/fs/efs_ino.h>

DESCRIPTION
An inode is the volume data structure used by The Extent File System (EFS) to implement the abstraction
of a file. (This is not to be confused with the in-core inode used by the operating system to manage
memory-resident EFS files.)

An inode contains the type (e.g., plain file, directory, symbolic link, or device file) of the file; its owner,
group and public access permissions; the owner and group id numbers; its size in bytes; the number of
links (directory references) to the file; and the times of last access and last modification to the file. In addi-
tion, there is a list of data blocks claimed by the file.

An inode under the Extent File System has the following structure.

#define EFS_DIRECTEXTENTS 12

/*
* Extent based file system inode as it appears on disk.
* The efs inode is 128 bytes long.
*/
struct efs_dinode {

ushort di_mode; /* type and access permissions */
short di_nlink; /* number of links */
ushort di_uid; /* owner’s user id number */
ushort di_gid; /* group’s group id number */
off_t di_size; /* number of bytes in file */
time_t di_atime; /* time of last access (to contents) */
time_t di_mtime; /* of last modification (of contents) */
time_t di_ctime; /* of last modification to inode */
long di_gen; /* generation number */
short di_numextents; /* # of extents */
u_char di_version; /* version of inode */
u_char di_spare; /* UNUSED */
union {

extent di_extents[EFS_DIRECTEXTENTS];
dev_t di_dev; /* device for IFCHR/IFBLK */

} di_u;
};

1

INODE(4) INODE(4)hh

The types ushort , off_t , time_t , and dev_t are defined in types(5). The extent type is defined as follows:

typedef struct extent {
unsigned int

ex_magic:8, /* magic #, must be 0 */
ex_bn:24, /* bb # on volume */
ex_length:8, /* length of this extent in bb’s */
ex_offset:24; /* logical file offset in bb’s */

} extent;

di_mode contains the type of the file (plain file, directory, etc), and its read, write, and execute permissions
for the file’s owner, group, and public. di_nlink contains the number of links to the inode. Correctly
formed directories have a minimum of two links: a link in the directory’s parent and the ‘.’ link in the
directory itself. Additional links may be caused by ‘..’ links from subdirectories. di_uid and di_gid contain
the user id and group id of the file (used to determine which set of access permissions apply: owner,
group, or public). di_size contains the length of the file in bytes.

di_atime is the time of last access to the file’s contents. di_mtime is the time of last modification of the file’s
contents. di_ctime is the time of last modification of the inode, as opposed to the contents of the file it
represents. These times are given in seconds since the beginning of 1970 GMT.

di_gen is the inode generation number used to sequence instantiations of the inode.

An extent descriptor maps a logical segment of a file to a physical segment (i.e., extent) on the volume.
The physical segment is characterized by a starting address and a length, both in basic blocks (of 512
bytes) and a logical file offset, also in basic blocks.

di_numextents is the number of extents claimed by the file. If less than or equal to EFS_DIRECTEXTENTS
then the extent descriptors appear directly in the inode as di_u.di_extents[0 .. di_numextents-1]. When the
number of extents exceeds this range, then di_u.di_extents[0 .. di_u.di_extents[0].ex_offset-1] are indirect
extents that map blocks holding extent information. There are at most EFS_DIRECTEXTENTS indirect
extents.

If the inode is a block or character special inode, di_u.di_numexents is 0, and di_u.di_dev contains a number
identifying the device.

If the inode is a symbolic link and di_u.di_numexents is 0, the symbolic link path string is stored in the
extent descriptor area of the inode. A symbolic link is created with in-line data only when the data string
fits within the extent descriptor area, and the tuneable parameter "efs_line" is non-zero (see
systune(1M)).

FILES
/usr/include/sys/param.h
/usr/include/sys/types.h
/usr/include/sys/inode.h
/usr/include/sys/stat.h

2

INODE(4) INODE(4)hh

SEE ALSO
stat(2), fs(4), efs(4), types(5).

3

INST(1M) INST(1M)hh

NAME
inst − software installation tool

SYNOPSIS
inst [−−anAMNQXY] [−−f source] [−−m hardware=value] [−−r target] [−−u action] [−−F selections-file] [
−−I product] [−−R product] [−−K product] [-P file] [-V resource:value]

DESCRIPTION
inst is the installation tool used to install, upgrade or remove software distributed by Silicon Graphics.
There are two ways to run inst:

− Invoke inst as a command from the shell.

This is known as invoking inst using ‘‘IRIX Installation’’ and you must be superuser to do this. Some
software cannot be installed using IRIX Installation (Release Notes and inst itself warn you about this
software) and some commands within inst cannot be performed when using IRIX Installation. This
is due to system integrity problems that can arise from changing some software or performing cer-
tain operations while that software is running.

− Invoke inst in a standalone mode.

To invoke inst in a standalone mode (known as ‘‘Miniroot Installation’’), you shut down the system
to the PROM monitor level (see shutdown(1M)), and load a collection of files known as the miniroot
into the swap partition of your system disk. The miniroot contains a UNIX kernel, inst and several
other programs. inst is automatically invoked after you load the miniroot and the / and /usr file sys-
tems are automatically mounted as /root and /root/usr. New versions of IRIX and some software
options must be installed from the miniroot. Directions for loading the miniroot are in the IRIS
Software Installation Guide.

The software that you install using inst is known as a software distribution. Software distributions are
prepared by Silicon Graphics and are in a format that can be read only by inst.

Software distributions can be on 1/4" cartridge tapes, on CD-ROM discs (CDs), and on disk. inst can read
the distribution from a drive (tape, CD-ROM or disk) mounted on the same workstation that the software
will be installed on (known as the local workstation), or from a tape drive, CD-ROM drive or disk on
another workstation (known as the remote workstation) connected to the same network. If a distribution
is on disk, it is in a directory called a distribution directory.

In order to install software from a distribution on a remote workstation (tape, CD-ROM, or distribution
directory), the user ID that you use must have read permission for the device or distribution directory.
By default, inst uses the current user ID and if the connection can’t be established the user ID ‘‘guest’’ is
used. For any user ID this requires that either there is no password for the account on the remote works-
tation or that the user ID has been added to the .rhosts file. See example below. A different user ID can be
specified with the −−f option (see below) or the ‘‘from’’ command within inst. The user ID for any account
that does not have a password will work if it is able to read the distribution directory or device. If an
account with an assigned password must be used, the .rhosts file for that user ID on the remote worksta-
tion must contain the name of the local workstation and the user ID. For example, the file
/usr/people/joe/.rhosts on ‘bigserver’ would contain the line:

1

INST(1M) INST(1M)hh

rock.csd.sgi.com joe

When joe wants to install C++ on ‘rock’ and the software distribution for C++ is located on bigserver in
the directory /d/newrelease, he would enter the command:

inst −f joe@bigserver:/d/newrelease/c++

The .rhosts file must have the correct ownership and permissions for access to be granted. See the
hosts.equiv(4) manual page for details.

When using a distribution on a remote workstation, the file /usr/etc/inetd.conf on the remote workstation
and on any gateway workstations between the local and remote workstation needs to be modified. See
the IRIS Software Installation Guide for details.

When inst first comes up, it displays the default location of the software distribution and possibly the user
ID it is using. When using IRIX Installation, the default location of the software distribution will be the
location of the software distribution that you last installed. The −−f option (see below) can be used to
specify the location of the the software distribution when IRIX Installation is used. This sets the default
location that will be reported when inst comes up. In the case of a Miniroot Installation, the default loca-
tion is wherever the miniroot came from. If the distribution is none inst will not load one automatically;
this is useful for removing or browsing just the installed software. Within inst, the ‘‘from’’ command can
be used to change the distribution location.

The inst command line options are:

−−a Execute inst from IRIX with no interaction from the user (automatic mode). No menus will
appear and the default location of the software distribution will be used unless the −−f option is
given. The software that will be installed will be selected by inst using an algorithm described in
the IRIS Software Installation Guide.

2

KILLALL(1M) KILLALL(1M)hh

NAME
killall − kill named processes

SYNOPSIS
/sbin/killall [[−] signal]
/sbin/killall [−gv] [−k secs] [[−]signal] [pname ...]
/sbin/killall [−gv] [−k secs] [−signame] [pname ...]
/sbin/killall −l

DESCRIPTION
killall sends a signal to a set of processes specified either by name, process group, or process ID. It is simi-
lar to kill(1), except that it allows processes to be specified by name and has special options used by
/etc/shutdown.

When no processes are specified, killall terminates all processes that are not in the same process group as
the caller. This form is for use in shutting down the system and is only available to the super-user.

When a process is specified with pname, killall sends signal to all processes matching that name. This form
is available to all users, provided that their user ID matchs the real, saved, or effective user ID of the
receiving process. The signal number can be preceded by a hyphen ("−"), which is required if pname looks
like a signal number. A mnemonic name for the signal can be used; killall −l lists the signal names (see
kill(1) for more information about signal naming). For example,

killall 16 myproc

killall -16 myproc

killall -USR1 myproc

are equivalent. If no signal value is specified, a default of 9 (KILL) is used.

The −−v option reports if the signal was successfully sent. The −−g option causes the signal to be sent to the
named processes’ entire process group. In this form, the signal number should be preceded by "-" in
order to disambiguate it from a process name. The −−k option allows the user to specify a maximum time
to die for a process. With this option, an argument specifying the maximum number of seconds to wait
for a process to die is given. If after delivery of the specified signal (which defaults to SIGTERM when
using the −−k option), killall will wait for either the process to die, or for the time specified by secs to elapse.
If the process does not die in the allotted time, then the process is sent SIGKILL.

This command can be quite useful for killing a process without knowing its process ID. Killall can be
used to stop a run-away user program, without having to wait for ps(1) to find its process ID. It can be
particularly useful in scripts, because it makes it unnecessary to run the output of ps(1) through grep(1)
and then through sed(1) or awk(1).

FILES
/etc/shutdown

1

KILLALL(1M) KILLALL(1M)hh

SEE ALSO
kill(1), ps(1), fuser(1M), shutdown(1M), signal(2)

2

LBOOT(1M) LBOOT(1M)hh

NAME
lboot − configure bootable kernel

SYNOPSIS
/usr/sbin/lboot [−−m master] [−−s system] [−−b boot] [−−n mtune] [−−c stune] [−−u unix]

DESCRIPTION
The lboot command is used to configure a bootable UNIX kernel. Master files in the directory master con-
tain configuration information used by lboot when creating a kernel. System files in the directory system
are used by lboot to determine which modules are to be configured into the kernel.

If a module in master is specified in the system file via "INCLUDE:", that module will be included in the
bootable kernel. For all included modules, lboot searches the boot directory for an object file with the same
name as the file in master, but with a ".o" or ".a" appended. If found, this object is included when building
the bootable kernel.

For every module in the system file specified via "VECTOR:", lboot takes actions to determine if a
hardware device corresponding to the specified module exists. Generally, the action is a memory read at
a specified base, of the specified size. If the read succeeds, the device is assumed to exist, and its module
will also be included in the bootable kernel.

Master files that are specified in the system file via "EXCLUDE:" are also examined; stubs are created for
routines specified in the excluded master files that are not found in the included objects.

Master files that are specified in the system file via "USE:" are treated as though the file were specified via
the "INCLUDE:" directive, if an object file corresponding to the master file is found in the boot directory.
If no such object file is found, "USE:" is treated as "EXCLUDE:".

To create the new bootable object file, the applicable master files are read and the configuration informa-
tion is extracted and compiled. The output of this compilation is then linked with all included object files.
Unless directed otherwise in the system file, the information is compiled with $TOOLROOT/usr/bin/cc
and combined with the modules in the boot directory using $TOOLROOT/usr/bin/ld.

The options are:

−−m master This option specifies the directory containing the master files to be used for the bootable
kernel. The default master directory is $ROOT/var/sysgen/master.d.

−−s system This option specifies the directory containing the system files. The default system direc-
tory is $ROOT/var/sysgen/system.

−−b boot This option specifies the directory where object files are to be found. The default boot
directory is $ROOT/var/sysgen/boot.

−−n mtune This option specifies the directory where tunable parameters are to be found. The
default mtune directory is $ROOT/var/sysgen/mtune.

−−c stune This option specifies the name of the file defining customized tunable parameter values.
The default stune file is $ROOT/var/sysgen/stune.

1

LBOOT(1M) LBOOT(1M)hh

−−r ROOT If this option is specified, ROOT becomes the starting pathname when finding files of
interest to lboot. Note that this option sets ROOT as the search path for include files
used to generate the target kernel. If this option is not specified, the ROOT environment
variable (if any) is used instead.

−−v This option makes lboot slightly more verbose.

−−u unix This option specifies the name of the target kernel. By default, it is unix.new , unless the
−−t option is used, in which case the default is unix.install.

−−d This option displays debugging information about the devices and modules put in the
kernel.

−−a This option is used to autoregister all dynamically loadable loadable kernel modules that
contain a ’d’ and an ’R’ in their master files.

−−l This option is used to ignore the ’d’ in all master files and link all necessary modules into
the kernel.

−−w This option is used to specify a "work directory" into which the master.c and edt.list files
will be written. By default these files are written into the boot directory.

−−t This option tests if the existing kernel is up-to-date. If the kernel is not up-to-date, it
prompts you to proceed. It compares the modification dates of the system files, the object
files in the boot directory, the modification time of the boot directory, the configuration
files in the master.d directory and the modification time of the stune file, with that of the
existing kernel. It also ‘‘probes’’ for the devices specified with "VECTOR:" lines in the
system file. If the devices have been added or removed, or if the kernel is out-of-date, it
builds a new kernel, adding ‘‘.install’’ to the target name.

−−T This option performs the same function as the -t option, but does not prompt you to
proceed.

−−L master This option specifies the name of the dynamically loadable kernel module to load into
the running kernel. master is the name of a master file in the
$ROOT/var/sysgen/master.d directory.

−−R master This option specifies the name of the dynamically loadable kernel module to register.
master is the name of a master file in the $ROOT/var/sysgen/master.d directory.

−−U id This option is used to unload a dynamically loadable kernel module. id is found by
using the lboot -V command.

−−W id This option is used to unregister a dynamically loadable kernel module. id is found by
using the lboot -V command.

−−V This option is used to list all of the currently registered and loaded dynamically loadable
kernel modules.

2

LBOOT(1M) LBOOT(1M)hh

It is best to reconfigure the kernel on a system with the autoconfig command.

EXAMPLE
lboot −−s newsystem

This will read the file named newsystem to determine which objects should be configured into the bootable
object.

FILES
/var/sysgen/system
/var/sysgen/master.d/*
/var/sysgen/boot/*
/var/sysgen/mtune/*
/var/sysgen/stune

SEE ALSO
autoconfig(1m), setsym(1m), systune(1m), master(4), system(4), mtune(4), stune(4), mload(4)

3

login(1) login(1)hh

NAME
login − sign on

SYNOPSIS
login [-d device] [name [environ ...]]

DESCRIPTION
The login command is used at the beginning of each terminal session and allows you to identify your-
self to the system. It will be invoked by the system when a connection is first established. It is invoked by
the system when a previous user has terminated the initial shell by typing a cntrl-d to indicate an
end-of-file.

If login is invoked as a command it must replace the initial command interpreter. This is accomplished
by typing

exec login
from the initial shell.

login asks for your user name (if it is not supplied as an argument), and if appropriate, your password.
Echoing is turned off (where possible) during the typing of your password, so it will not appear on the
written record of the session.

Login reads /etc/default/login to determine default behavior. To change the defaults, the system adminis-
trator should edit this file. The examples shown below are login defaults. Recognized values are:

CONSOLE=device
If defined, only allows root logins on the device specified, typically
/dev/console. This MUST NOT be defined as either /dev/syscon or
/dev/systty! If undefined, root can log in on any device.

PASSREQ=NO Determines whether all accounts must have passwords. If YES, and user has no
password, they will be prompted for one at login time.

MANDPASS=NO
Like PASSREQ, but won’t allow users with no password to log in.

ALTSHELL=YES
If YES, the environment variable SHELL will be initialized.

UMASK=022 Default umask, in octal.

TIMEOUT=60 Exit login after this many seconds of inactivity (maximum 900, or 15 min.)

SLEEPTIME=1 Sleep for this many seconds before issuing "login incorrect" message (maximum
60 seconds).

DISABLETIME=20
After LOGFAILURES or MAXTRYS unsuccessful attempts, sleep for DISABLE-
TIME seconds before exiting (no maximum).

1

login(1) login(1)hh

MAXTRYS=3 Exit login after MAXTRYS unsuccessful attempts (0 = unlimited attempts).

LOGFAILURES=3
If there are LOGFAILURES consecutive unsuccessful login attempts, each of
them will be logged in /var/adm/loginlog, if it exists. LOGFAILURES has a
maximum value of 20. Note: Users get at most the minimum of (MAXTRYS,
LOGFAILURES) unsuccessful attempts.

IDLEWEEKS=-1
If non-negative, specify a grace period during which users with expired pass-
words will be allowed to enter a new password. In other words, accounts with
expired passwords can stay idle up to this long before being "locked out". If
IDLEWEEKS is zero, there is no grace period, and expired passwords are the
same as invalidated passwords.

PATH= Path for normal users (from /usr/include/paths.h).

SUPATH= Path for superuser (from /usr/include/paths.h).

SYSLOG=FAIL Log to syslog all login failures (SYSLOG=FAIL) or all successes and failures
(SYSLOG=ALL). Log entries are written to the LOG_AUTH facility (see sys-
log(3) and syslogd(1M) for details). No messages are sent to syslog if not set.
Note this is separate from the login log, /var/adm/loginlog .

INITGROUPS=YES
If YES, make the user session be a member of all of the user’s supplementary
groups (see multgrps(1) or initgroups(3)).

SVR4_SIGNALS=YES
Use the SVR4 semantics for the SIGXCPU and SIGXFSZ signals. If
SVR4_SIGNALS=YES, then the SVR4 semantics are preserved and all processes
will ignore SIGXCPU and SIGXFSZ by default. If SVR4_SIGNALS=NO, then
these two signals will retain their default action, which is to cause the receiving
process to core dump. If users intend to make use of the CPU and filesize
resource limits, SVR4_SIGNALS should be set to NO. Note that using these sig-
nals while SVR4_SIGNALS is set to YES will cause behavior which varies
depending on the login shell. This setting has no affect on processes which
explicitly alter the behavior of these signals using the signal(2) system call.

SITECHECK= Use an external program to authenticate users instead of using the encrypted
password field. This allows sites to implement other means of authentication,
such as card keys, biometrics, etc. The program is invoked with user name as
the first argument, and remote hostname and username, if applicable. The
action taken depend on exit status, as follows:

0 - success: user was authenticated, log in.
1 - failure; exit login.
2 - failure; try again (don’t exit login).
other - use normal UNIX authentication.

2

login(1) login(1)hh

If authentication fails, the program may chose to indicate either exit code 1 or 2,
as appropriate. If the program is not owned by root, is writable by others, or
cannot be executed, normal password authentication is performed. It is recom-
mended that the program be given a mode of 500. WARNING! Because this
option has the potential to defeat normal IRIX security, any program used in this
way must be designed and tested very carefully.

LOCKOUT= If non-zero, after this number of consecutive unsuccessful login attempts by the
same user, by all instances of xdm and login, lock the account by invoking
"passwd -l username".

At some installations, you may be required to enter a dialup password for dialup connections as well as a
login password. In this case, the prompt for the dialup password will be:

Dialup Password:
Both passwords are required for a successful login.

For remote logins over the network, login prints the contents of /etc/issue before prompting for a
username or password. The file /etc/nologin disables remote logins if it exists; login prints the
contents of this file before disconnecting the session.

The system may be configured to automate the login process after a system restart. When the file
/etc/autologin exists and contains a valid user name, the system will log in as the specified user without
prompting for a user name or password. The automatic login takes place only after a system restart; once
the user logs out, the normal interactive login session will be used until the next restart. This is intended
to be used at sites where the normal security mechanisms provided by login are not needed or desired. If
you make five incorrect login attempts, all five may be logged in /var/adm/loginlog (if it exists) and
the TTY line will be dropped.

If you do not complete the login successfully within a certain period of time (by default, 20 seconds), you
are likely to be silently disconnected.

After a successful login, accounting files are updated, the /etc/profile script is executed, the time
you last logged in is printed (unless a file .hushlogin is present in the user’s home directory),
/etc/motd is printed, the user-ID, group-ID, supplementary group list, working directory, and
command interpreter (usually sh) are initialized, and the file .profile in the working directory is
executed, if it exists. The name of the command interpreter is − followed by the last component of the
interpreter’s path name (e.g., −sh). If this field in the password file is empty, then the default command
interpreter, /usr/bin/sh is used. If this field is *, then the named directory becomes the root directory,
the starting point for path searches for path names beginning with a /. At that point login is re-
executed at the new level which must have its own root structure. At the very least, this root structure
must include /dev/zero, /etc/group, /etc/passwd, /lib/rld, /lib/libc.so.1,
/usr/bin/login, /usr/lib/libcrypt.so, and /usr/lib/libgen.so. These files will allow
login to execute correctly, but you will also need to include additional files, like shells or applications,
which the user is allowed to execute. Since these applications may in turn rely on additional shared
libraries, it may also be necessary to place additional shared objects in /usr/lib. See the ftpd(1)
man page for more information about setting up a root environment.

3

login(1) login(1)hh

The basic environment is initialized to:

HOME=your-login-directory
LOGNAME=your-login-name
PATH=/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=/var/mail/your-login-name
TZ=timezone-specification

The environment may be expanded or modified by supplying additional arguments when login prints
the prompt requesting the user’s login name. The arguments may take either of two forms: xxx or
xxx=yyy. Arguments without an equal sign are placed in the environment as

Ln=xxx
where n is a number that starts at 0 and is incremented each time a new variable name is required.
Variables containing = are placed in the environment without modification. If such a variable is already
defined, the new value replaces the old value. To prevent users who log in to restricted shell
environments from spawning secondary shells that are not restricted, the following environment
variables cannot be changed:

HOME
IFS
LOGNAME
PATH
SHELL

login understands simple, single-character quoting conventions. Typing a backslash in front of a
character quotes it and allows the inclusion of such characters as spaces and tabs.

To enable dial-in line password protection, two files are required. The file /etc/dialups must contain of
the name of any dialup ports (e.g., /dev/ttyd2) that require password protection. These are specified one
per line. The second file, /etc/d_passwd consists of lines with the following format:

shell :password :

This file is scanned when the user logs in, and if the shell portion of any line matches the command
interpreter that the user will get, the user is prompted for an additional dialin password, which is
encoded and compared to that specified in the password portion of the line. If the command interpreter
cannot be found, the entry for the default shell, /sbin/sh, (or, for compatibility with existing
configurations, /bin/sh) will be used. (If both are present the last one in file will be used.) If there is no
such entry, then no dialup password will be required. In other words, the /etc/d_passwd entry for
/sbin/sh is the default.

NOTES
Autologin is controlled by the existence of the /etc/autologin.on file. The file is normally created at boot
time to automate the login process and then removed by login to disable the autologin process for
succeeding terminal sessions.

4

login(1) login(1)hh

In the default configuration, encrypted passwords for users are kept in the system password file,
/etc/passwd, which is a text file and is readable by any system user. The program pwconv(1M) can be
used by the system administrator to activate the shadow password mechanism. When shadow
passwords are enabled, the encrypted passwords are kept only in /etc/shadow, a file which is only
readable by the superuser. Refer to the pwconv(1M) manual entry for more information about shadow
passwords.

FILES
/etc/dialups
/etc/d_passwd
/etc/motd message of the day
/etc/passwd password file
/etc/shadow shadow password file
/etc/profile system profile
$HOME/.profile user’s login profile
/usr/lib/iaf/login/scheme

login authentication scheme
/var/adm/lastlog time of last login
/var/adm/loginlog record of failed login attempts
/var/adm/utmp accounting
/var/adm/wtmp accounting
/var/mail/your_name mailbox for user your_name
/usr/lib/locale/locale/LC_MESSAGES/uxcore

language-specific message file [See LANG on environ(5).]

SEE ALSO
mail(1), newgrp(1M), pwconv(1M), sh(1), su(1M).
loginlog(4), passwd(4), profile(4), shadow(4), environ(5).

DIAGNOSTICS
The message:

UX:login: ERROR: Login incorrect
is printed if the user name or the password cannot be matched or if the user’s login account has expired
or remained inactive for a period greater than the system threshold.

5

LVCK(1M) LVCK(1M)hh

NAME
lvck − check and restore consistency of logical volumes

SYNOPSIS
/sbin/lvck [-l lvtabname] [lvx]
/sbin/lvck -d
/sbin/lvck block_special_filename

DESCRIPTION
Lvck checks the consistency of logical volumes by examining the logical volume labels of devices constitut-
ing the volumes. Depending on the invocation, the volumes may also be checked against lvtab entries, see
lvtab(4) . The default system file /etc/lvtab is normally assumed in this case; an alternate lvtab file may be
specified with the −−l option.

Invoked without parameters, lvck checks every logical volume for which there is an entry in /etc/lvtab.

Invoked with the name of a logical volume device, for example lv0, lvck checks only that entry in
/etc/lvtab.

Invoked with the -d flag, lvck ignores /etc/lvtab and searches through all disks connected to the system to
locate all logical volumes that are present. lvck prints a description of each logical volume found in a form
resembling an lvtab entry; this facilitates recreation of an lvtab for the system should this be necessary.

Invoked with the device block special file name of a disk device (for example, /dev/dsk/ips0d1s4), lvck
prints any logical volume label that exists for that device, again in a form resembling an lvtab entry. This
mode of lvck is purely informational; no checks are made of any other devices mentioned in the label.

Lvck has some repair capabilities. If it determines that the only inconsistency in a logical volume is that a
minority of devices have missing or corrupt labels, it is able to restore a consistent logical volume by
rewriting good labels. lvck interactively queries the user before attempting any repairs on a volume.

DIAGNOSTICS
Lvck detects four general types of errors:

1) Disks connected in the wrong place.

2) Inconsistencies between the on-disk labels of a volume.

3) Internal inconsistencies in an lvtab entry.

4) Inconsistencies between a volume defined by its on-disk labels, and the lvtab entry for that volume.

(The two latter are relevant only for modes of lvck that examine the lvtab). Details of these errors are given
below.

1

LVCK(1M) LVCK(1M)hh

1) If a disk device which is a member of a logical volume is connected with the wrong id, the volume
cannot be used since the device will not be correctly located from the labels. Lvck will print a mes-
sage describing the problem. For example:

"lvck: device currently connected as /dev/dsk/ips1d2s7
was initialized when connected as /dev/dsk/ips0s2s7.

lvck: Incorrect device connections must be rectified
before logical volumes can be used."

The offending disks must be physically reconnected with the appropriate ID. See intro(7) for details
of the SGI disk device ID conventions.

2) If lvck detects inconsistencies between the on-disk labels for a logical volume, it prints a description
of the volume in a form resembling an lvtab entry, with the device pathname for each member on a
separate line. A short message describing the problem with the member appears on the line with
the pathname. For example:

lv6:test 6:stripes=3:step=31:devs= \
/dev/dsk/ips0d1s2, \
/dev/dsk/ips0d1s3, <CAN’T ACCESS> \
/dev/dsk/ips0d1s4, \
/dev/dsk/ips0d1s11, <NO LABEL PRESENT> \
/dev/dsk/ips0d1s12, \
/dev/dsk/ips0d1s13

Possible messages and their meanings are:

<NOT A MEMBER OF THIS VOLUME>
The label for this device identifies it as a member of a different volume from the other dev-
ices. Probably the wrong disk has been connected.

<CAN’T ACCESS>
The named special file is missing or cannot be opened. The disk may be missing, or there
may be a hardware problem.

<CAN’T READ DISK HEADER>
Lvck could not read the disk header partition for this device to search for the logical volume
label.

<ILLEGAL PARTITION TYPE>
The pathname refers to a type of partition (such as track replacement) that is not legal as
part of a logical volume. Probably logical volume labels or disk headers have been cor-
rupted.

2

LVCK(1M) LVCK(1M)hh

<INCORRECT PARTITION SIZE>
The partition size does not agree with the logical volume label. Possibly the disk has been
incorrectly repartitioned since creation of the logical volume.

<SPECIAL FILE DEV IS WRONG>
The major and minor numbers of the special file disagree with the SGI naming conventions.
There has probably been an incorrect use of mknod(1M) in the /dev/dsk directory.

<FILE NOT BLOCK SPECIAL>
The pathname does not refer to a block special file, even though it has the conventional for-
mat. The /dev/dsk directory needs repair.

<INCORRECT PARTITION TYPE>
The partition type stored in the disk header does not indicate that this partition is a logical
volume member. Probably the wrong disk has been connected.

<LABEL UNREADABLE>
The disk header directory indicates that a logical volume label exists for this device, but it
cannot be read. Possibly there is a bad block on the disk.

<NO LABEL PRESENT>
There is no logical volume label for this device. It may have been inadvertently deleted, or
the wrong disk may have been connected.

<LABEL CORRUPTED>
Label is present but damaged.

3) Internal inconsistencies in lvtab entries.
In this case lvck prints error messages that are intended to be self-explanatory. Possible messages
are listed below (the items in brackets <xxx> represent places where the actual erring values will
appear):

"Lvtab entry with no device name: ignored"

"Lvtab entry with illegal device name <xxx>: ignored"

"Illegal number of pathnames <n> in lvtab entry <lvx>: ignored"

"Number of pathnames in lvtab entry <lvx> is not multiple of striping: entry ignored."

"Illegal striping step in lvtab entry <lvx>: ignored"

"Duplicate lvtab entry <lvx>: ignored"

"Bad pathname <xxx> in lvtab entry <lvx>: entry ignored."

"Duplicate pathname <xxx> in lvtab entry <lvx>: entry ignored"

3

LVCK(1M) LVCK(1M)hh

"Illegal entry <lvx> in logical volume table: ignored"

See lvtab(4) for details of the expected form of lvtab entries, and constraints upon the entries. Limits
on the number of devices in a volume, striping step size, volume name length, and so forth, are
given in the include file <sys/lvtab.h> .

4) Inconsistencies between on-disk labels and the lvtab entry.
This may occur if the lvtab entry has been incorrectly modified, or if the disks connected to the sys-
tem do not contain the logical volume expected in the lvtab entry. Lvck prints error messages that
are intended to be self-explanatory. Possible messages are listed below (the items in brackets <xxx>
represent places where the actual erring values will appear):

"Volume name <xxx> in lvtab entry disagrees with name <yyy> in on-disk labels."

"Number of devs in lvtab entry <lvx> is greater than number <d> in on-disk labels."

"Number of devs in lvtab entry <lvx> is less than number <d> in on-disk labels."

"Stripes specified in lvtab entry for <lvx> don’t agree with on-disk labels."

"Step specified in lvtab entry for <lvx> doesn’t agree with on-disk labels."

SEE ALSO
lvinit(1M), mklv(1M), lvtab(4), intro(7M), lv(7M).

CAVEAT
The repair capabilities of lvck are limited to recreating damaged or missing logical volume labels for disk
devices so that the system is again able to use an ensemble of disk devices as a logical volume. However,
if data on the devices themselves has been corrupted, or if an incorrect disk device has been connected,
the contents of the logical volume will be corrupt. It is strongly advisable to check that no incorrect disks
have been connected before proceeding with any repair attempt.

4

LVINFO(1M) LVINFO(1M)hh

NAME
lvinfo − print information about active logical volumes

SYNOPSIS
/sbin/lvinfo [pathname || volume_device_name]

DESCRIPTION
Lvinfo prints descriptions of logical volumes that are currently active in a system. See lv(7m) .

Invoked without arguments, lvinfo prints descriptions of all volumes that are currently active. These may
be only a subset of those described in the lvtab(4) configuration file, since volumes may have failed to ini-
tialize. Failure to initialize could be due to missing physical disks, for example.

The information printed may be limited to specified logical volume devices by using options. These may
be either the full pathname of a logical volume device, such as /dev/rdsk/lv1 , or a logical volume device
name of the form lvn where n is a small integer. For example:

lv2.

The information printed by lvinfo consists of a line giving the total size of the volume in 512 byte basic
blocks, followed by a description of the volume in a form, which resembles an entry in lvtab(4) .

EXAMPLE
prompt> /sbin/lvinfo
lv5 size is 4680648 blocks
lv5: :stripes=3:step=148:devs= /dev/dsk/ipi0d1s6, \

/dev/dsk/ipi0d8s6, \
/dev/dsk/ipi1d0s6

Note that the values of all options are printed, even though some may have been omitted in the lvtab
entry, causing defaults to be used.
Also note that the human-readable name of the volume is not printed: lvinfo works from information
held by the lv(7) device driver, which does not use this information.

DIAGNOSTICS
Invoked with no arguments, lvinfo simply prints the active volumes and is silent about any which are not
initialized.
To obtain a printout of all logical volume devices whether initialized or not, invoke as:

/sbin/lvinfo /dev/rdsk/lv*

Invoked with arguments, it will print for each argument either a logical volume description as above, or
an error message. Possible error messages are:

"XXXX is not a logical volume device name."

1

LVINFO(1M) LVINFO(1M)hh

"lvxx is not initialized."
This message means that there is a special device file for a logical volume of that name, but it is not
currently active. This may be because there is no entry in /etc/lvtab for that volume, or because initializa-
tion of that volume failed, owing to faulty or missing disks, for example.

"Can’t open /dev/rdsk/lvx"
This message means that the given logical volume name is legal and plausible, but no special device file
exists for it. Probably a volume of that name has never been created on the system.

SEE ALSO
lvinit(1M), mklv(1M), lvck(1M), lvtab(4), lv(7M).

2

LVINIT(1M) LVINIT(1M)hh

NAME
lvinit − initialize logical volume devices

SYNOPSIS
/sbin/lvinit [-l lvtabname] [volume_device_names]

DESCRIPTION
Lvinit initializes the logical volume device driver which allows access to disk storage as logical volumes.
See lv(7m) .

It is run automatically on system startup, and will not normally need to be invoked explicitly.

It works from entries in /etc/lvtab, see lvtab(4) .

No data access to a logical volume device is possible until it has been initialized with lvinit, since the ini-
tialization process provides the driver with the information needed to map requests on the logical volume
device into requests on the underlying physical disk devices.

Note: this implies that the root file system of a machine must reside on a regular partition rather than a
logical volume, since lvinit must be accessible before logical volumes can be initialized.

Invoked without arguments, lvinit initializes every logical volume device for which there is an entry in
/etc/lvtab. The −−l option allows an alternate lvtab file to be specified. If volume_device_name arguments
are present, it initializes only those volumes in the lvtab identified by the arguments. These arguments
must be of the form lvn, where n is a small integer. For example,

lv2.

The necessary information about the devices (disk partitions) constituting the logical volume, and the
volume geometry, is obtained from the logical volume labels for the devices specified in the lvtab entry as
constituting the volume.

The constituent devices must have been labeled as members of the volume with mklv before the volume
can be initialized.

DIAGNOSTICS
Lvinit does checks of the lvtab entry and the on-disk labels of a volume before attempting initialization.

See the DIAGNOSTICS section of the lvck man page for possible error messages.

SEE ALSO
mklv(1M), lvck(1M), lvtab(4), lv(7M).

1

LVTAB(4) LVTAB(4)hh

NAME
lvtab − information about logical volumes

DESCRIPTION
The file /etc/lvtab describes the logical volumes used by the local machine. There is an entry in this file for
every logical volume which will be used by the machine. It is read by commands that create, install and
check the consistency of logical volumes. The system administrator can modify it with a text editor to
add new logical volumes or to extend existing ones.

The file consists of entries which have the form:

volume_device_name:[volume_name]:[options:]device_pathnames

For example:

lv0:logical volume test:stripes=3:devs=/dev/dsk/ips0d1s7, \
/dev/dsk/ips0d2s7, /dev/dsk/ips0d3s7

Fields are separated by colons, and lines may be continued by the usual backslash convention as illus-
trated above. A ‘#’ as the first non-white character indicates a comment; blank lines may be present in the
file and will be ignored.

The fields in each entry have the following significance:

volume_device_name
This indicates the names of the special files through which the system will access the logical
volume. In the above example, the entry lv0 implies that the logical volume will be accessed via
the device special files /dev/dsk/lv0 and /dev/rdsk/lv0. Note that volume device names are
expected to be of the form ’lv’ followed by one or 2 digits; this is enforced by the logical volume
utilities.

volume name
This is a human-readable identifying name for the logical volume. The logical volume labels on
the disks constituting a volume also carry a copy of the volume name, so utilities are able to check
that the logical volume on the disks physically present is actually the volume expected by
/etc/lvtab.

This field may be null (indicated by a second colon immediately following the one terminating
the volume_device_name field). This is legal but deprecated, since in this case, no identity check of
the logical volume can be done by the utilities.

options Some numerical options concerning the volume may appear. These are specified in the format
"option_name=number:". There must be no space between the option_name, the ’=’ sign, the
numerical value given, and the terminating colon. Note that since the number of options is vari-
able, the terminating colon is considered part of the option entry: it is not necessary to indicate

1

LVTAB(4) LVTAB(4)hh

omitted options.

Currently recognized options are:

stripes=
step=

The stripes option allows a striped logical volume to be created; the value of the parameter
specifies the number of ways the volume storage is striped across its constituent devices. If this
option is omitted, the logical volume is unstriped.

The step option is meaningful only for striped volumes (and is ignored otherwise); it specifies the
granularity with which the storage is to be round-robin distributed over the constituent devices.
If this option is omitted, the default step value is the device tracksize; this is generally a good
value so the step option is not normally needed. step is in units of 512 byte blocks.

device_pathnames
Following any numerical options, there must be a list of the block special file pathnames of the
devices constituting the logical volume. This is introduced by the keyword

devs=

The pathnames must be comma-separated.
Each pathname should be the name of the special file for a disk device partition in the /dev/dsk
directory. The partition must be one which is legal for use as normal data storage, ie. it must not
be one of the dedicated partitions such as the disk volume label, track replacement area etc.

Note that if the volume is striped, some restrictions apply: the number of pathnames must be a
multiple of stripes. Further, considering the pathnames as successive groups, each of stripes
pathnames, the devices in each group must be all of the same size.
To obtain best performance from striping, each disk (within every group of ’stripes’ disks) should
be on a separate controller.

The entries from this file are accessed using the routines in getlvent(3), which returns a structure of the fol-
lowing form:

struct lvtabent {
char *devname; /* volume device name */
char *volname; /* volume name (human-readable) */
unsigned stripe; /* number of ways striped */
unsigned gran; /* granularity of striping(step value)*/
unsigned ndevs; /* number of constituent devices */
int mindex; /* not currently used. */
char *pathnames[1]; /* pathnames of constituent devices */

2

LVTAB(4) LVTAB(4)hh

};

This structure is defined in the <lvtab.h> include file.

FILES
/etc/lvtab

SEE ALSO
lvinit(1M), mklv(1M), lvck(1M), getlvent(3), lv(7M).

3

MAKEDEV(1M) MAKEDEV(1M)hh

NAME
MAKEDEV − Create device special files

SYNOPSIS
/dev/MAKEDEV [target] [parameter=val]

DESCRIPTION
MAKEDEV creates specified device files in the current directory; it is primarily used for constructing the
/dev directory. It is a "makefile" processed by the make command. Its arguments can be either targets in
the file or assignments overriding parameters defined in the file. The targets .I alldevs and owners are
assumed if no other targets are present (see below).

All devices are created relative to the current directory, so this command is normally executed from /dev.
In order to create the devices successfully, you must be the superuser.

The following are some of the arguments that are recognized by MAKEDEV. For a complete list you may
need to examine the script

ttys Creates tty (controlling terminal interface) files for CPU serial ports. In addition, creates spe-
cial files for console, syscon, systty, keybd, mouse, dials, and tablet. See duart(7), console(7), key-
board(7), mouse(7), pckeyboard(7), and pcmouse(7) for details.

cdsio Creates additional tty files enabled by using the Central Data serial board.

pty Creates special files to support "pseudo terminals". This target makes a small number of files,
with more created as needed by programs using them. Additional pty files can be made for
older programs not using library functions to allocate ptys by using the parameter override
MAXPTY=100, or any other number between 1 and 199. See pty(7M) for details.

ips Creates special files for ESDI disks connected to an Interphase ESDI disk controller. See
ips(7M) for details.

ipi Creates special files for IPI disks connected to a XYLOGICS IPI disk controller. See ipi(7M)
for details.

dks Creates special files for SCSI disks. See dksc(7M) for details.

rad Creates special files for SCSI attached RAID disks. See raid(1M) and usraid(7M) for details.

fds Creates special files for SCSI floppy drives. See smfd(7M) for details.

xyl Creates special files for SMD disks connected to a Xylogics SMD disk controller. See xyl(7M)
for details.

qictape Creates special files for 1/4-inch cartridge tape drives connected to an ISI QIC-O2 tape con-
troller. See ts(7M) for details.

usrvme Creates special files for user level VME bus adapter interfaces. See usrvme(7M) for details.

1

MAKEDEV(1M) MAKEDEV(1M)hh

usrdma Creates special files for user level access to DMA engines. See usrdma(7M) for details.

tps Creates special files for SCSI tape drives. See tps(7M) for details.

magtape Creates special files for 1/2-inch tape drives connected to a Xylogics Model 772 tape con-
troller. See xmt(7M) for details.

ikon Creates special files for hardcopy devices connected to an Ikon 10088 (or 10088A) printer con-
troller. This includes Versatec TTL and Versatec differential compatible devices, as well as
(Tektronix-compatible) Centronics printers. See ik(7) for details.

gpib Creates special files for the National Instruments GPIB-1014 controller and associated dev-
ices. See gpib(7) for details.

hl Creates special files for the hardware spinlock driver to use in process synchronization
(IRIS-4D/GTX models only).

t3270 Creates the special files for the IBM 3270 interface controller.

gse Creates the special files for the IBM 5080 interface controller.

dn_ll Creates the special file for the 4DDN logical link driver.

dn_netman Creates the special file for the 4DDN network management driver.

audio Creates the special file for the bi-directional audio channel interface for the IRIS-4D/20 series.
See audio(7) for details.

plp Creates the special file for the parallel printer interface for the IRIS-4D/20 series. See plp(7)
for details.

ei Creates the special file for the Challenge/Onyx external interrupt interface. See ei(7) for
details.

generic Creates miscellaneous, commonly used devices: tty, the controlling terminal device; mem,
kmem, mmem, and null, the memory devices; prf, the kernel profiling interface; tport, the tex-
port interface; shmiq, the event queue interface; gfx, graphics, the graphics device interfaces;
and zero, a source of zeroed unnamed memory. See tty(7), mem(7), prf(7), and zero(7) for
details concerning some of these respective devices.

links This option does both disk and tape

disk This option creates all the disk device special files for the dks ips ipi and xyl drives, and then
creates links by which one can conveniently reference them without knowing the
configuration of the particular machine. The links root, rroot, swap, rswap, usr, rusr, vh and rvh
are created to reference the current root, swap, usr and volume header partitions.

tape This option creates all the tps and xmt tape devices, then makes links to tape , nrtape , tapens ,
and nrtapens for the first tape drive found, if one exists. It first checks for xmt, then for SCSI
in descending target ID order.

2

MAKEDEV(1M) MAKEDEV(1M)hh

mindevs This option is shorthand for creating the generic, links, pty , ttys , gro , and grin device files.

alldevs This option creates all of the device special files listed above.

owners This option changes the owner and group of the files in the current directory to the desired
default state.

onlylinks This option does only the link portion of disk and tape above, in case a different disk is used
as root, or a different tape drive is used.

BUGS
The links made for /dev/usr and /dev/rusr always point to partition 6 of the root drive. While this is the
most common convention, it is not invariable.

If a system has been reconfigured with the /usr filesystem in some place other than this default, by speci-
fying the device in /etc/fstab, see fstab(4) , the /dev/usr and /dev/rusr devices will NOT point to the
device holding the real /usr filesystem.

SEE ALSO
mknod(1M) make(1) install(1)

3

MASTER(4) MASTER(4)hh

NAME
master − master configuration database

DESCRIPTION
The master configuration database is a collection of files. Each file contains configuration information for
a device or module that may be included in the system. A file is named with the module name to which it
applies. This collection of files is maintained in a directory called /var/sysgen/master.d. Each individual
file has an identical format. For convenience, this collection of files will be referred to as the master file, as
though it was a single file. This will allow a reference to the master file to be understood to mean the indi-
vidual file in the master.d directory that corresponds to the name of a device or module. The file is used
by the lboot(1M) program to obtain device information to generate the device driver and configurable
module files. master consists of two parts; they are separated by a line with a dollar sign ($) in column 1.
Part 1 contains device information for both hardware and software devices, and loadable modules. Part 2
contains parameter declarations. Any line with an asterisk (∗) in column 1 is treated as a comment.

Part 1, Description
Hardware devices, software drivers and loadable modules are defined with a line containing the follow-
ing information. Field 1 must begin in the left most position on the line. Fields are separated by white
space (tab or blank).

Field 1: element characteristics:
o specify only once
r required device
b block device
c character device
t initialize cdevsw[].d_ttys
j file system
s software driver
f STREAMS driver
m STREAMS module
x not a driver; a loadable module
k kernel module
u a stubs module which will be loaded after all other normal modules
n driver is fully semaphored for multi-processor operation; the n and p

directives are ignored on single-processor systems
p driver is not semaphored and should run on only one processor
w driver is prepared to perform any cache write back operation required

on write data passed via the strategy routine
d dynamically loadable kernel module
R auto-registrable dynamically loadable kernel module
N don’t allow auto-unload of dynamically loadable kernel module
D load, then unload a dynamically loadable kernel module

1

MASTER(4) MASTER(4)hh

e ethernet driver
Field 2: handler prefix (14 chars. maximum)
Field 3: software driver external major number; "−" if not a software driver, or to be

assigned during execution of lboot(1M). Multiple major numbers can be specified,
separated by commas.

Field 4: number of sub-devices per device; "−" if none
Field 5: dependency list (optional); this is a comma separated list of other drivers or

modules that must be present in the configuration if this module is to be included

For each module, two classes of information are required by lboot(1M): external routine refer-
ences and variable definitions. Routine lines begin with white space and immediately follow the
initial module specification line. These lines are free form, thus they may be continued arbitrarily
between non-blank tokens as long as the first character of a line is white space. Variable
definition lines begin after a line that contains a ’$’ in column one. Variable definitions follow C
language conventions, with slight modifications.

Part 1, Routine Reference Lines
If the UNIX system kernel or other dependent module contains external references to a module, but the
module is not configured, then these external references would be undefined. Therefore, the routine refer-
ence lines are used to provide the information necessary to generate appropriate dummy functions at boot
time when the driver is not loaded.
Routine references are defined as follows:

Field 1: routine name ()
Field 2: the routine type: one of

{} routine_name(){}
{nulldev}

routine_name(){nulldev();}
{nosys} routine_name(){return nosys();}
{nodev}

routine_name(){return nodev();}
{false} routine_name(){return 0;}
{true} routine_name(){return 1;}
{fsnull}

routine_name(){return fsnull();}
{fsstray}

routine_name(){return fsstray();}
{nopkg}

routine_name(){nopkg();}
{noreach}

routine_name(){noreach();}

2

MASTER(4) MASTER(4)hh

Part 2, Variables
Variables may be declared and (optionally) statically initialized on lines after a line whose first character is
a dollar sign (’$’). Variable definitions follow standard C syntax for global declarations, with the follow-
ing in−line substitutions:

##M the internal major number assigned to the current module if it is a device driver;
zero if this module is not a device driver

##E the external major number assigned to the current module; either explicitly defined
by the current master file entry, or assigned by lboot(1M)

##C number of controllers present; this number is determined dynamically by lboot(1M)
for hardware devices, or by the number provided in the system file for non-
hardware drivers or modules

##D number of devices per controller taken directly from the current master file entry

EXAMPLES
A sample master file for a shared memory module would be named "shm". The module is an optional
loadable software module that can only be specified once. The module prefix is shm, and it has no major
number associated with it. In addition, another module named "ipc" is necessary for the correct operation
of this module.

∗ FLAG PREFIX SOFT #DEV DEPENDENCIES
ox shm − − ipc

shmsys(){nosys}
shmexec(){}
shmexit(){}
shmfork(){}
shmslp(){true}
shmtext(){}

$
#define SHMMAX 131072
#define SHMMIN 1
#define SHMMNI 100
#define SHMSEG 6
#define SHMALL 512

struct shmid_ds shmem[SHMMNI];
struct shminfo shminfo = {

SHMMAX,
SHMMIN,
SHMMNI,
SHMSEG,
SHMALL,

};

3

MASTER(4) MASTER(4)hh

This master file will cause routines named shmsys, shmexec, etc., to be generated by the boot program if the
shm driver is not loaded, and there is a reference to this routine from any other module loaded. When the
driver is loaded, the structure array shmem will be allocated, and the structure shminfo will be allocated
and initialized as specified.

A sample master file for a VME disk driver would be named "dkip" The driver is a block and a character
device, the driver prefix is dkip, and the external major number is 4. The VME interrupt priority level and
vector numbers are declared in the system file /var/sysgen/system (see lboot(1M)).

∗ FLAG PREFIX SOFT #DEV DEPENDENCIES
bc dkip 4 − io

$$$
/∗ disk driver variable tables ∗ /
#include "sys/dvh.h"
#include "sys/dkipreg.h"
#include "sys/elog.h"

struct iotime dkipiotime[##C][DKIPUPC]; /∗ io statistics ∗ /
struct iobuf dkipctab[##C]; /∗ controller queues ∗ /
struct iobuf dkiputab[##C][DKIPUPC]; /∗ drive queues ∗ /
int dkipmajor = ##E; /∗ external major # ∗ /

This master file will cause entries in the block and character device switch tables to be generated, if this
module is loaded. Since this is a hardware device (implied by the block and character flags), VME inter-
rupt structures will be generated, also, by the boot program. The declared arrays will all be sized to the
number of controllers present, which is determined by the boot program, based on information in the sys-
tem file /var/sysgen/system.

FILES
/var/sysgen/master.d/∗
/var/sysgen/system

SEE ALSO
system(4), lboot(1M), mload(4)

4

MKBOOTTAPE(1M) MKBOOTTAPE(1M)hh

NAME
mkboottape − make a boot tape

SYNOPSIS
/etc/mkboottape [−−f output_file_name] [−−l |-x [file ...] | file ...]

DESCRIPTION
mkboottape Is used to build, list, or extract boot tapes. A boot tape consists of a special directory which
contains the list of file names, sizes, and offsets, and from one to 20 files. Filenames may be up to 16 char-
acters in length.

The following options are understood:

-l list the contents of the boot tape. In this case the file arguments are ignored.

-f [file] specify an alternate output file or device. The default is /dev/tape .

-x [file ...] extract files from the boot tape. If no file names are given, all files are extracted. Extracted files
have their original size (they are not null padded to a block multiple).

The typical use for this program is to create an output file which is copied to a boot tape with the
distcp(1m) program, along with product images. The prom monitor understands the boot tape format,
and can boot files from tapes created directly or indirectly via mkboottape .

NOTES
Unless you have means to create a stand alone program this utility is useful only listing or extracting the
files. In some cases it may be used to extract the standalone programs into a directory, since most stan-
dalone programs can be booted from the filesystem via sash or over a network.

The directory is written with all numeric values in big-endian order, regardless of whether the CPU is
big- or littlen-endian. mkboottape detects this and handles any required byte swapping when the -x or -l
options are used. No byte swapping of filenames or files is performed by mkboottape.

SEE ALSO
distcp(1m), inst(1m)

FILES
/dev/tape - default output device

1

MKFS(1M) MKFS(1M)hh

NAME
mkfs − construct a file system

SYNOPSIS
/sbin/mkfs [-q] [-a] [-i] [-r] [-n inodes] special [proto]
/sbin/mkfs [-q] [-i] [-r] special blocks inodes heads sectors cgsize cgalign ialign [proto]

DESCRIPTION
mkfs constructs a file system by writing on the special file using the values found in the remaining argu-
ments of the command line. Normally mkfs prints the parameters of the file system to be constructed; the
-q flag suppresses this.
If the -i flag is given, mkfs will ask for confirmation after displaying the parameters of the file system to be
constructed.

The -r flag causes mkfs to write only the superblock, without touching other areas of the file system. See
the section below on the recovery option.

The -a flag causes mkfs to align inodes and data on cylinder boundaries (equivalent to setting cgalign and
ialign to a cylinder size). This option can result in a loss of 10MB or more in a file system, since the result-
ing cylinder groups are not very flexible in size, and runt cylinder groups are not allowed. Aligning data
and inodes with this option can result in an increase in performance (about two percent) on drives that
have a fixed number of sectors per track. Many SCSI disk drives do not have a fixed number of sectors
per track, and thus, will see no benefit from this option.

When the first form of mkfs is used, mkfs obtains information about the device size and geometry by
means of appropriate IOCTLs, and assigns values to the file system parameters on the basis of this infor-
mation.

If the -n option is present, however, the given number of inodes is used rather than the default. This
allows a nonstandard number of inodes to be assigned without needing to resort to the long form invoca-
tion.

If the second form of mkfs is used, then all the file system parameters must be specified from the com-
mand line. Each argument other than special and proto is interpreted as a decimal number.

The file system parameters are as follows:

blocks is the number of physical (512 byte) disk blocks the file system will occupy.
Note that the current maximum limit on the size of an EFS filesystem is 16777214 blocks (two
to the 24th power). This could also be expressed as 8 gigabytes. mkfs will not attempt to make
a filesystem larger than this limit.
inodes is the number of inodes the file system should have as a minimum.
heads is an unused parameter, retained only for backward compatibility.
sectors is the number of sectors per track of the physical medium.
cgsize is the size of each cylinder group, in disk blocks, approximately.
cgalign is the boundary, in disk blocks, that a cylinder group should be aligned to.
ialign is the boundary, in disk blocks, that each cylinder group’s inode list should be aligned
to.

1

MKFS(1M) MKFS(1M)hh

Once mkfs has the file system parameters it needs, it then builds a file system containing two directories.
The file system’s root directory is created with one entry, the lost+found directory. The lost+found direc-
tory is filled with zeros out to approximately 10 disk blocks, so as to allow space for fsck(1M) to reconnect
disconnected files. The boot program block, block zero, is left uninitialized.

If the optional proto argument is given, mkfs uses it as a prototype file and will take its directions from that
file. The blocks and inodes specifiers in the proto file are provided for backwards compatibility, but are
otherwise unused. The prototype file contains tokens separated by spaces or new-lines. A sample proto-
type specification follows (line numbers have been added to aid in the explanation):

1. /stand/diskboot
2. 4872 110
3. d−−777 3 1
4. usr d−−777 3 1
5. sh −−−755 3 1 /bin/sh
6. ken d−−755 6 1
7. $
8. b0 b−−644 3 1 0 0
9. c0 c−−644 3 1 0 0
10 fifo p−−644 3 1
11 slink l−−644 3 1 /a/symbolic/link
12 : This is a comment line
13 $
14. $

Line 1 is a dummy string. (It was formerly the bootfile name). It is present for backward compatibility;
boot blocks are not used on SGI machines, and mkfs merely clears block zero.

Note that some string of characters must be present as the first line of the proto file to cause it to be parsed
correctly; the value of this string is immaterial since it is ignored.

Line 2 contains two numeric values (formerly the numbers of blocks and inodes). These are also merely
for backward compatibility: two numeric values must appear at this point for the proto file to be correctly
parsed, but their values are immaterial since they are ignored.

Lines 3-11 tell mkfs about files and directories to be included in this file system.

Line 3 specifies the root directory.

lines 4-6 and 8-10 specifies other directories and files. Note the special symbolic link syntax on line 11.

The $ on line 7 tells mkfs to end the branch of the file system it is on, and continue from the next higher
directory. It must be the last character on a line. The : on line 12 introduces a comment; all characters up
until the following newline are ignored. Note that this means you may not have files in a prototype file
whose name contains a :. The $ on lines 13 and 14 end the process, since no additional specifications fol-
low.

2

MKFS(1M) MKFS(1M)hh

File specifications give the mode, the user ID, the group ID, and the initial contents of the file. Valid syn-
tax for the contents field depends on the first character of the mode.

The mode for a file is specified by a 6-character string. The first character specifies the type of the file.
The character range is −−bcdpl to specify regular, block special, character special, directory files, named
pipes (fifos) and symbolic links, respectively. The second character of the mode is either u or −− to specify
set-user-ID mode or not. The third is g or −− for the set-group-ID mode. The rest of the mode is a 3-digit
octal number giving the owner, group, and other read, write, execute permissions (see chmod(1)).

Two decimal number tokens come after the mode; they specify the user and group IDs of the owner of the
file.

If the file is a regular file, the next token of the specification may be a path name whence the contents and
size are copied. If the file is a block or character special file, two decimal numbers follow which give the
major and minor device numbers. If the file is a symbolic link, the next token of the specification is used
as the contents of the link. If the file is a directory, mkfs makes the entries . and .. and then reads a list of
names and (recursively) file specifications for the entries in the directory. As noted above, the scan is ter-
minated with the token $.

RECOVERY OPTION
The -r flag causes mkfs to write only the superblock, without touching the remainder of the file system
space. This allows a last-ditch recovery attempt on a file system whose superblocks have been destroyed:
by running mkfs on the device with the -r option, a superblock is created from which fsck(1M) can obtain
the geometry information it needs to analyze the file system.

Note that this procedure will only be of use if the regenerated superblock matches the parameters of the
original file system. If the file system was created using the long form invocation, parameters identical to
the original invocation must be given with the -r option. Note also that file system defaults may change
from release to release to allow more efficient use of newer disk technologies; thus, the -r option may not
be useful for file systems created under IRIX versions other than the version being run.

It should be clear that this is a limited recovery facility; it will not help if, for example, the root directory
of the file system has been destroyed.

SEE ALSO
chmod(1), mkfp(1M), dir(4), fs(4)

BUGS
With a prototype file, it is not possible to specify hard links.

3

MKLV(1M) MKLV(1M)hh

NAME
mklv − construct or extend a logical volume

SYNOPSIS
/sbin/mklv [-l lvtabname] [-f] volume_device_name

DESCRIPTION
Mklv constructs a logical volume by writing logical volume labels for the devices which are to constitute
the volume.

It works from an entry in /etc/lvtab, see lvtab(4) , and constructs the logical volume identified in
/etc/lvtab by the volume_device_name argument. This argument must be of the form lvn where n is a small
integer, for example lv2. Mklv obtains the necessary information about the devices (disk partitions) con-
stituting the logical volume, and the volume geometry, from the lvtab entry.

Mklv also creates the necessary device files for the logical volume in the /dev/dsk and /dev/rdsk direc-
tories, if these files do not already exist.

Note that an existing logical volume may be extended by adding further device pathnames to the end of
the existing /etc/lvtab entry, and then rerunning mklv on that entry.

After writing the labels, mklv initializes the logical volume device with the appropriate information. Effec-
tively this invokes the functionality of lvinit(1M) .

The following options are accepted by mklv.

−−f Normally, for safety, mklv checks whether any of the specified constituent devices are already part
of a logical volume, or appear to contain a filesystem. These checks are skipped if the −−f flag is
given; this is useful for recycling disks which contain obsolete logical volumes or filesystems.

Note that this flag does not override a check for mounted filesystems on any of the specified dev-
ices. Mklv will unconditionally refuse to incorporate any device containing a mounted filesystem
as part of a logical volume.

−−l Mklv normally works from the default system file /etc/lvtab . This option allows an alternate lvtab
file to be specified.

DIAGNOSTICS
1) If the volume_device_name argument is not found in the lvtab mklv prints the error message:

"mklv: <arg> not found in lvtab".

2) The lvtab entry is checked before use. Mklv prints error messages if problems are found. See the
DIAGNOSTICS section of lvck(1M) for possible error messages concerned with lvtab entries.

1

MKLV(1M) MKLV(1M)hh

3) Mklv checks the specified devices for accessibility and legality before proceeding. If errors are
detected mklv prints the lvtab entry, with each device pathname on a separate line. A short mes-
sage describing the problem with the device appears on the line with the pathname. For example:

lv6:test 6:stripes=3:step=31:devs= \
/dev/dsk/ips0d1s2, \
/dev/dsk/ips0d2s3, <CAN’T ACCESS> \
/dev/dsk/ips0d3s4, <WRONG PARTITION SIZE> \
/dev/dsk/ips1d1s11, <CAN’T READ DISK HEADER> \
/dev/dsk/ips0d1s8, <ILLEGAL PARTITION TYPE> \
/dev/dsk/ips0d1s13

Possible messages and their meanings are listed in the DIAGNOSTICS section of lvck(1M).

4) Mklv checks for the existence of a mounted filesystem on any of the specified devices. If so, it exits
with the error message:

"<pathname> contains a mounted filesystem."

5) If the -f flag is not given, mklv checks whether there appears to be an unmounted filesystem on any
of the specified devices. If so, it prints the warning:

"<pathname> appears to contain a filesystem."
"This will be wiped out if we proceed. OK? (y/n)"

and waits for user response before proceeding.

As the message implies, any previous filesystem on the disks will be erased. This avoids errors
resulting from erroneous attempts to mount individual disks which are now part of a logical
volume.

There are cases where an existing filesystem should be retained: when a volume is being extended,
or when a disk partition containing a filesystem is being made into a volume for extension. These
cases are detected by mklv and no message or filesystem modification then occurs on the relevant
disk.

6) If the -f flag is not given, mklv checks whether any of the specified devices are already part of a log-
ical volume which is inconsistent with the volume specified in the lvtab entry. (Note: it is legal
when extending a volume for the on-disk volume to be a consistent subset of the newly specified
volume). If an inconsistency exists, mklv prints the error message:

"devices specified for <lvx> already contain a logical volume
which is inconsistent with the volume specified."

2

MKLV(1M) MKLV(1M)hh

NOTES
1) Execution of mklv does not cause a filesystem to be placed on the volume: it simply creates the

volume which may be regarded as effectively a large disk. If you want to use the volume for
filesystem storage, a filesystem must be placed on it; see mkfs(1m) .

2) The logical volume labels do not occupy space on the constituent partitions themselves, but are
files in the Disk Volume Header partitions of the disks containing the partitions, located via the
header directory. See vh(7M).
They are named for the partitions to which they refer, having names of the form lvlabn where n is
the partition number. Thus, if partition 6 on a disk is part of a logical volume, there will be a logical
volume label file named ’lvlab6’ in the header partition of that disk.

DEVICE NAME LINKS
Administrators sometimes make links in the /dev directory to allow disk devices to be referenced by
shorter names.

Some caution is needed, however, since the script MAKEDEV(1M) which is run on every system installa-
tion, will remove certain links and replace them with system defaults. In particular, the link /dev/usr
should never be changed to refer to a logical volume. If the /usr filesystem is moved to a logical volume,
the fstab(4) entry for /usr should be changed to refer explicitly to the appropriate logical volume device.

SEE ALSO
lvinit(1M), lvck(1M), lvtab(4), lv(7M), growfs(1M).

3

MLOAD(4) MLOAD(4)hh

NAME
mload − dynamically loadable kernel modules

DESCRIPTION
Irix supports dynamic loading and unloading of modules into a running kernel. Kernel modules can be
registered and then loaded automatically by the kernel when the corresponding device is opened, or they
can be loaded manually. Similarly, dynamically loaded modules can be unloaded automatically or
manually if the module includes an "unload" entry point. A loadable kernel module can be a character,
block or streams device driver, a streams module or a library module.

Module Configuration
Each loadable module should contain the string:

char *prefixmversion = M_VERSION;

M_VERSION is defined in the mload.h header file, which should be included by the loadable module.

A loadable module must be compiled with the following cc options:

-non_shared -coff -G0 -Wc,-pic0 -r -d -c -jalr

-non_shared Produce a static executable. The output object created will not use any shared
objects during execution.

-coff Produce a COFF object.
-G0 Disable global pointer since it is not supported for loadable modules.
-Wc,-pic0 Do not allocate extra stack space which is not necessary for non_shared coff objects.
-r Retain relocation entries in the output file.
-d Force definition of common storage and define loader defined symbols. Without

this option, space is not allocated in bss for common variables.
-c Suppress the loading phase of the compilation and force an object file to be pro-

duced even if only one program is compiled.
-jalr Force the compiler to produce jalr instructions rather than jal instructions. A jal

instruction has a 26 bit target, so if a module is loaded into K2SEG, for example, it
could not call a kernel routine in K0SEG.

A loadable module must not be dependent on any loadable module, other than a library module. In order
to load a module comprised of multiple object files, the object files should be linked together into a single
object file, using the following ld options:

-non_shared -coff -G0 -r -d

1

MLOAD(4) MLOAD(4)hh

Loading a Dynamically Loadable Kernel Module
Either lboot or the ml command can be used to load, register, unload, unregister and list loadable kernel
modules. The lboot command parses module type, prefix and major number information from the
module’s master file found in the /var/sysgen/master.d directory. The loadable object file is expected to
be found in the /var/sysgen/boot directory. The ml command also provides a means of loading, register-
ing and unloading loadable modules, without the need for creating a master file or reconfiguring the ker-
nel.

Load

When a module is loaded, the object file’s header is read; memory is allocated for the module’s text, data
and bss; the module’s text and data are read; the module’s text and data are relocated and unresolved
references into the kernel are resolved; a symbol table is created for the module; the module is added to
the appropriate kernel switch table; and the module’s init routine is called.

A module is loaded using the following ml command:

ml ld [-v] -[cbBfmi] module.o -p prefix [-s major major ...] [-a modname]

If a module is loaded successfully, an id number is returned which can be used to unload the module.

A module can also be loaded using lboot:

lboot -L master

Register

The register command is used to register a module for loading when its corresponding device is opened.
When a module is registered, a stub routine is entered into the appropriate kernel switch table. When the
corresponding device is opened, the module is actually loaded.

A module is registered using the following ml command:

ml reg [-v] -[cbBfmi] module.o -p prefix [-s major major ...] [-a modname] [-t autounload_delay]

If a module is registered successfully, an id number is returned which can be used to unregister the
module.

A module can also be registered using lboot:

lboot -R master

Unload

2

MLOAD(4) MLOAD(4)hh

A module can be unloaded only if it provides an "unload" entry point. A module is unloaded using:

ml unld id [id id ...]

or

lboot -U id [id id ...]

Unregister

A module can be unregistered using:

ml unreg id [id id ...]

or

lboot -W id [id id ...]

List

All loaded and/or registered modules can be listed using:

ml list [-rlb]

or

lboot -V

Master File Configuration
If a dynamically loadable module has an associated master file, the master file should include a d in Field
1. The d flag indicates to lboot that the module is a dynamically loadable kernel module. If the d flag is
present lboot will parse the module’s master file, but will not fill in the entry in the corresponding kernel
switch table for the module. All global data defined in the master file will be included in the generated
master.c file. The kernel should be configured with master files that contain the d option for each module
that will be a dynamically loadable module, if lboot will be used to load, register, unload, unregister or
autoregister the module. If the ml(1M) command will be used, then it is not necessary to create a master
file for the module.

Auto Registration
Loadable modules can be registered by lboot automatically at system startup when autoconfig is run. In
order for a module to be auto-registered, its master file should contain an R in Field 1, in addition to d,
which indicates that the module is loadable. When lboot runs at system startup, it registers each module
that contains an R in its master file.

3

MLOAD(4) MLOAD(4)hh

For more detailed information, see the lboot(1M), ml(1M) and master(4) manual entries.

Auto Unload
All registered modules that include an unload routine are automatically unloaded after last close, unless
they have been configured not to. Modules are unloaded 5 minutes after last close by default. The default
auto-unload delay can be changed by using systune to change the module_unld_delay variable. For
more information about systune, see the systune(1M) manual entry. A particular module can be
configured with a specific auto-unload delay by using the ml command. A module can be configured to
not be auto-unloaded by either placing an N in the flags field of its master.d file, if it is registered using
lboot, or by using ml to register the module and using the -t option.

Kernel Configuration
A kernel which supports loadable modules, should be configured so that the kernel switch tables gen-
erated by lboot(1M) contain "extra" entries for the loadable modules. Extra entries are generated by lboot
based on the values of the following kernel tuneable parameters:

* name default minimum maximum
bdevsw_extra 21 1 254
cdevsw_extra 23 3 254
fmodsw_extra 20 0
vfssw_extra 5 0

These tuneable parameters are found in the kernel /var/sysgen/mtune/kernel file and are set to the
defaults listed above. For more information about changing tuneable parameters, see the mtune(4) and
systune(1M) manual entries.

Module Entry Points
Loadable device drivers should conform to the SVR4 DDI/DKI standard. In addition to the entry points
specified by the DDI/DKI standard, if a loadable module is to be unloaded, the module needs to contain
an unload entry point:

int prefixunload (void)

An unload routine should be treated as an interrupt routine and should not call any routines that would
cause it to sleep, such as: biowait(), sleep(), psema() or delay().

An unload routine should free any resources allocated by the driver, including freeing interrupt vectors
and allocated memory and return 0.

Module Initialization
After a module is loaded, linked into the kernel and sanity checking is done, the modules’ initialization
routines, prefixinit(), prefixedtinit() and prefixstart() are called, if they exist. For more informa-
tion on these routines, refer to the SVR4 DDI/DKI Reference Manual and the IRIX Device Driver Pro-
gramming Guide.

4

MLOAD(4) MLOAD(4)hh

Edt Type Drivers
For drivers that have an edtinit entry point, which get passed a pointer to an edt structure, lboot must be
used to load the driver. A vector line should be added to the system file for the driver, as it would for any
driver. When the module is loaded, using lboot, lboot parses the vector line from the system file to create
an edt structure which is passed through the kernel and to the driver’s edtinit routine. For more informa-
tion, see the system(4) manual entries.

Library Modules
A library module is a loadable module which contains a collection of functions and data that other loaded
modules can link against. A library module can be loaded using the following ml command:

ml ld [-v] -l library.o

A library module must be loaded before other modules that link against it are loaded. Library modules
can not be unloaded, registered or unregistered. Only regular COFF object files are supported as loadable
library modules.

Loadable Modules and Hardware Inventory
Many device drivers add to the hardware inventory in their init or edtinit routines. If a driver is a dynam-
ically loadable driver and is auto-registered, it will not show up in the hardware inventory until the
driver has been loaded on the first open of the corresponding device. If a clean install or a diskless install
is done, a /dev entry will not get created by MAKEDEV for such a driver since it doesn’t appear in the
hardware inventory. If such a situation arises, the D master.d flag can be used to indicate that the driver
should be loaded, then unloaded by autoconfig. If the R master.d flag, which indicates that the driver
should be auto-registered, is also used, then the driver will be auto-registered as usual. A startup script
can then be added that will run MAKEDEV after autoconfig, if necessary. For an example, see the
/etc/init.d/chkdev startup script.

Runtime Symbol Table
A runtime symbol table which contains kernel routines and global data that modules can link against is
created by lboot from the tables in master.d/rtsymtab and master.d/*.exports. Only routines and globals
that are always present in the kernel should be added to master.d/rtsymtab.

If a routine or global exists in a module that could be configured out of the kernel, it should be added to
an xxx.exports file which will not be included in the kernel if the module is configured out. See
master.d/idev.exports, for example.

If a loadable module contains globals in its master.d file, an xxx.exports file will need to be created, which
includes those globals, so that they will be added to the runtime symbol table.

For more information on the runtime symbol table see master.d/rtsymtab.

5

MLOAD(4) MLOAD(4)hh

Debugging Loadable Modules
Symmon supports debugging of loadable modules. Symmon commands that do a symbol table lookup,
such as: brk, lkup, lkaddr, hx and nm, also search the symbol tables created for loadable modules. The
msyms command can also be used to list the symbols for a particular loaded module:

msyms id

The mlist command can be used to list all of the modules that are currently loaded and/or registered.

For more information, see the symmon(1M) manual page.

Load/Register Failures
If a registered module fails to load, it is suggested that the module be unregistered and then loaded using
ml ld or lboot -L, in order to get a more detailed error message about the failure.

The kernel will fail to load or register a module for any of the following reasons:

1. If autoconfig is not run at system startup, none of the dynamically loadable modules will be registered
or loaded.

2. If autoconfig fails for some reason, before it has processed the dynamically loadable module master.d
files, the modules will not be registered or loaded.

3. The major number specified either in the master file, or by the ml command, is already in use.

4. The object file is not compiled with the correct options, such as -G0 and -jalr.

5. The module is an "old style" driver, with either xxxdevflag set to D_OLD, or no xxxdevflag exists in the
driver.

6. A corrupted object file could cause "invalid JMPADDR" errors.

7. Not all of the module’s symbols were resolved by the kernel.

8. The device switch table is full and has no more room to add a loadable driver.

9. Required entry points for the particular type of module are not found in the object file, such as xxxopen
for a character device driver.

10. All major numbers are in use.

6

MLOAD(4) MLOAD(4)hh

EXAMPLE 1
The following example lists the steps necessary to build a kernel and load a character device driver, called
dlkm, using the lboot command:

1. Add ’d’ to the dlkm master file:

*FLAG PREFIX SOFT #DEV DEPENDENCIES
cd dlkm 38 2

2. Make sure that the cdevsw_extra kernel tuneable parameter allows for extra entries in the cdevsw table,
the default setting in /var/sysgen/mtune/kernel is:

cdevsw_extra 23 3 254

The systune(1M) command also lists the current values of all of the tuneable parameters. If the kernel is
not configured to allow extra entries in the cdevsw table, use the systune(1M) command to change the
cdevsw_extra parameter:

> systune -i
systune-> cdevsw_extra 3
systune-> quit
>

3. Build a new kernel and boot the target system with the new kernel.

4. Compile the dlkm.c driver:

cc -non_shared -coff -G0 -r -d -jalr -c dlkm.c

5. Copy dlkm.o to /var/sysgen/boot.

6. Load the driver into the kernel:

lboot -L dlkm

7. List the currently loaded modules to verify that the module was loaded:

lboot -V

7

MLOAD(4) MLOAD(4)hh

EXAMPLE 2
The following example lists the steps necessary to load a character device driver, called dlkm, using the
ml command:

1. Follow step 2 from example 1.

2. Follow step 4 from example 1.

3. Load the driver into the kernel:

ml ld -c dlkm.o -p dlkm -s 38

If a major number is not specified, the first free major number in the MAJOR table is used. If the load was
successful, an id number is returned, which can be used to unload the driver.

4. List the currently loaded modules to verify that the module was loaded:

ml list

CAVEATS
1. Loadable modules must not have any dependencies on loadable modules, other than library modules.
When a module is loaded, it is linked against the kernel symbol table and any loaded library modules’
symbol tables, but it is not linked against other modules’ symbol tables.

2. Only character, block and streams device drivers, streams modules and library modules are supported
as loadable modules at this time.

3. Old style drivers (devflag set to D_OLD) are not loadable.

4. Kernel profiling does not support loadable modules.

5. Memory allocated may be in either K0SEG or in K2SEG. If the module is loaded into K2SEG static
buffers are not necessarily in physically contiguous memory.

SEE ALSO
lboot(1M), ml(1M), master(4), cc(1), ld(1), mtune(4), systune(1M), symmon(1M) and the IRIX Device
Driver Programmer’s Guide.

8

MOUNT(1M) MOUNT(1M)hh

NAME
mount, umount − mount and dismount file systems

SYNOPSIS
/sbin/mount
/sbin/mount [−−M altmtab] [−−P prefix] −−p
/sbin/mount [−−h host] [−−fnrv]
/sbin/mount −−a[cfnv] [−−t type]
/sbin/mount [−−cfnv] [−−t type] [−−b list]
/sbin/mount [−−cfnrv] [−−t type] [−−o options] fsname dir
/sbin/mount [−−cfnrv] [−−o options] fsname | dir

/sbin/umount −−a[kv] [−−t type]
/sbin/umount −−h host [−−kv] [−−b list]
/sbin/umount [−−kv] fsname | dir

DESCRIPTION
Mount attaches a named file system fsname to the file system hierarchy at the pathname location dir. The
directory dir must already exist. It becomes the name of the newly mounted root. The contents of dir are
hidden until the file system is unmounted. If fsname is of the form host:path, the file system type is
assumed to be nfs.

Umount unmounts a currently mounted file system, which can be specified either as a mounted-on direc-
tory or a filesystem.

Mount and umount maintain a table of mounted file systems in /etc/mtab , described in mtab(4). If
invoked without an argument, mount displays the table. If invoked with only one of fsname or dir, mount
searches the file /etc/fstab (see fstab(4)) for an entry whose dir or fsname field matches the given argument.
For example, if this line is in /etc/fstab:

/dev/usr /usr efs rw 0 0

then the commands mount /usr and mount /dev/usr are shorthand for mount /dev/usr /usr.

MOUNT OPTIONS
−−a Attempt to mount all the file systems described in /etc/fstab . (In this case, fsname and dir are taken

from /etc/fstab .) If a type is specified, all of the file systems in /etc/fstab with that type are
mounted. Filesystems are not necessarily mounted in the order listed in /etc/fstab .

−−b list ‘‘all-but’’ − attempt to mount all of the file systems listed in /etc/fstab except for those associated
with the directories contained in list. list consists of one or more directory names separated by
commas.

−−c Invoke fsstat(1M) on each file system being mounted, and if it indicates that the file system is
dirty, call fsck(1M) to clean the file system. fsck is passed the −−D and −−y options.

1

MOUNT(1M) MOUNT(1M)hh

−−f Fake a new /etc/mtab entry, but do not actually mount any file systems.

−−h host Mount all file systems listed in /etc/fstab that are remote-mounted from host .

−−n Mount the file system without making an entry in /etc/mtab .

−−o options
Specify options, a list of comma-separated words, described in fstab(4).

−−p Print the list of mounted file systems in a format suitable for use in /etc/fstab.

−−r Mount the specified file system read-only. This is a shorthand for:

mount −−o ro fsname dir

Physically write-protected and magnetic tape file systems must be mounted read-only, or errors
occur when access times are updated, whether or not any explicit write is attempted.

−−t type The next argument is the file system type. The accepted types are proc, efs, nfs, fd, cachefs, dos,
hfs and iso9660; see fstab(4) for a description of these file system types. When this option is used,
mount calls another program of the form mount_typename, where typename is one of the above
types. This program must be on the default path.

−−v Verbose − mount displays a message indicating the file system being mounted and any problems
encountered.

−−M altmtab
Instead of /etc/mtab , use the mtab or fstab altmtab .

−−P prefix
Used with the −−p option, prepends prefix to the emitted filesystem and directory paths. Doesn’t
alter pathnames embedded in the options, such as the filesystem’s raw=path raw device path-
name.

UMOUNT OPTIONS
−−a Attempt to unmount all the file systems currently mounted (listed in /etc/mtab). In this case,

fsname is taken from /etc/mtab .

−−b list ‘‘all-but’’ − attempt to unmount all of the file systems currently mounted except for those associ-
ated with the directories contained in list. list consists of one or more directory names separated
by commas.

−−h host Unmount all file systems listed in /etc/mtab that are remote-mounted from host .

−−k Attempt to kill processes that have open files or current directories in the appropriate filesystems
and then unmount them.

−−t type Unmount all file systems of a given file system type. The accepted types are proc, efs, nfs, fd,
dos, hfs, and iso9660.

2

MOUNT(1M) MOUNT(1M)hh

−−v Verbose − umount displays a message indicating the file system being unmounted and any prob-
lems encountered.

EXAMPLES
mount /dev/usr /usr mount a local disk
mount −avt efs mount all efs file systems; be verbose
mount −t nfs server:/d /net/d mount remote file system
mount server:/d /net/d same as above
mount −o soft server:/d /net/d same as above but soft mount
mount −p > /etc/fstab save current mount state
mount −t dos /dev/rdsk/fds0d2.3.5 /floppy

mount a MS-DOS floppy
mount −t hfs /dev/rdsk/fds0d3.3.5hi /floppy

mount a Macintosh HFS floppy
mount −t iso9660 /dev/scsi/sc0d7l0 /cdrom

mount an ISO 9660 CD-ROM
mount server:/cdrom /net/cdrommount remote iso9660 file system
mount -M /root/etc/fstab -P /root -p |

sed ’s;raw=/;raw=/root/’ >> /etc/fstab
append /root/etc/fstab with /root
prefix to currently active fstab.

umount −t nfs −b /foo unmount all nfs file systems except /foo

FILES
/etc/fstab file system table
/etc/mtab mount table

SEE ALSO
mount(2), umount(2), fstab(4), mtab(4)
mountd(1M), nfsd(1M) if NFS is installed.
fsck(1M)

BUGS
Umount can mismanage the /etc/mtab mount table if another mount or umount call is in progress at the
same time.

Mount calls another "helper" program of the form mount_typename, where typename is one of the
accepted mount types. If this program is not on the default path, then mount returns with an error mes-
sage about unknown filesystem. The user must make sure that the helper mount program is in the path.
For example, /usr/etc must be in the path to mount an iso9660 CD.

NOTE
If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on
the directory to which the symbolic link refers, rather than being mounted on top of the symbolic link itself.

3

MOUNT(1M) MOUNT(1M)hh

The helper program mount_iso9660 is in the optional package eoe2.sw.cdrom. This package must be
installed in order to mount iso9660 filesystems.

4

MTUNE(4) MTUNE(4)hh

NAME
mtune − default system tunable parameters

DESCRIPTION
The directory /var/sysgen/mtune contains information about all the system tunable parameters, including
default values. The files in this directory should never be changed. Instead, use the systune(1M) utility to
change parameters in the /var/sysgen/stune file.

Parameters in the mtune directory are grouped together in modules, according to the nature of the parame-
ters. For example, all parameters dealing with the number of processes that can run on the system at any
given time are grouped together in the numproc module. A parameter’s tuning information is stored in the
mtune directory in a file with the same name as the module. The syntax of an mtune module file is given
below:

<module name>: <flag>

<parameter name 1> <default value> <minimum value> <maximum value>

<parameter name 2> <default value> <minimum value> <maximum value>

Lines that end with a colon character ‘‘:’’ are module names. Parameters are grouped together in modules
so that one ‘‘sanity checking’’ function can be used to verify the values and the dependencies between
these variables. The module name is optional if there is only one group in the module. For this case, the
configuration tools will use the module name as the group name. The group name is then followed by a
flag. The flag can be either ‘‘run’’ or ‘‘static’’. If the flag is run, that means this group of tunable variables
can be changed with the command systune on a running system. Otherwise, the variables are set at ini-
tialization time and can only be changed by creating a new kernel and booting that kernel.

Each tunable parameter is specified by a single line in the file. Blank lines and lines beginning with "#" or
"*" are considered comments and are ignored. The syntax for each line is:

<parameter name> <default value> <minimum value> <maximum value>

parameter name: This is the name of the tunable parameter. It is used to pass the value to the system
when a kernel is built or changed by systune command.

default value: This is the default value of the tunable parameter. If the value is not specified in the
stune file, this value is used when the system is built.

minimum value: This is the minimum allowable value for the tunable parameter. If the parameter is set
in the stune file, the lboot command checks that the new value is equal to or greater
than this value. The command systune also verifies the new value against this value
before changing the system.

1

MTUNE(4) MTUNE(4)hh

maximum value: This is the maximum allowable value for the tunable parameter. If the parameter is set
in the stune file, the lboot command checks that the new value is equal to or less than
this value. The command systune also verifies the new value against this value before
changing the system.

FILES
/var/sysgen/mtune/*

default system tunable parameters
/var/sysgen/stune local settings for system tunable parameters

SEE ALSO
stune(4)
lboot(1M), systune(1M)

2

NVRAM(1M) NVRAM(1M)hh

NAME
nvram, sgikopt − get or set non-volatile RAM variable(s)

SYNOPSIS
nvram [−−v] [name [value]]
sgikopt [name...]

DESCRIPTION
Nvram may be used to set or print the values of non-volatile RAM variables. If name is specified, nvram
prints the corresponding value. If value is specified and name is defined in non-volatile RAM, nvram
replaces name’s definition string with value. The −−v option causes nvram to print a line of the form
name=value after getting or setting the named variable. When invoked with no arguments, all known
variables are displayed in the name=value form.

If invoked as sgikopt , more than one name may be given. Names that do not match known variables are
ignored. The exit status is 1 if any arguments don’t match, and 0 otherwise.

NOTES
Non-volatile RAM contains a small set of well-known strings at fixed offsets. Nvram may not be used to
define new variables.

Only the super-user may set variables.

The term "Non-volatile RAM" is somewhat misleading, because some variables are placed only in volatile
RAM, and will be reset on power-up. Different models have different mixes of volatile and non-volatile
variables.

DIAGNOSTICS
If an attempt to get or set a variable fails for any reason, nvram prints an appropriate message on standard
error and exits with non-zero status.
Not all machines support the ability to change the contents of non-volatile memory with the nvram com-
mand. To change the contents of non-volatile memory on those machines you must use the PROM moni-
tor setenv command.

SEE ALSO
sgikopt(2), syssgi(2), prom(1m)

1

PASSWD(4) PASSWD(4)hh

NAME
passwd − password file

DESCRIPTION
/etc/passwd is an ASCII file containing entries for each user. Each field within each user’s entry is
separated from the next by a colon. Each user is separated from the next by a new-line. An entry begin-
ning with # is ignored.

The passwd file contains the following information for each user:

name User’s login name — consists of alphanumeric characters and must not be greater than eight
characters long. It is recommended that the login name consist of a leading lower case letter
followed by a combination of digits and lower case letters for greatest portability across multi-
ple versions of the Unix operating system. This recommendation may be safely ignored for
users local to IRIX systems. The pwck(1m) command checks for the greatest possible portabil-
ity on names, and will complain about user names that will not cause problems on IRIX.

password Encrypted password and optional password aging information. If the password field is null
(empty), no password is demanded when the user logs in. If the system is configured to use
shadow passwords, then this field of /etc/passwd is ignored by all programs that do password
checking. See pwconv(1M) for information about shadow passwords.

numerical user ID
This is the user’s ID in the system and it must be unique.

numerical group ID
This is the number of the group that the user belongs to.

user’s real name
In some versions of UNIX, this field also contains the user’s office, extension, home phone, and
so on. For historical reasons this field is called the GECOS field. The finger(1) program can
interpret the GECOS field if it contains comma (‘‘,’’) separated subfields as follows:

name user’s full name
office user’s office number
wphone user’s work phone number
hphone user’s home phone number

A & in the user’s full name field stands for the login name (in cases where the login name
appears in a user’s real name).

initial working directory
The directory that the user is positioned in when they log in — this is known as the ‘home’
directory.

shell The program to use as the command interpreter (‘‘shell’’) when the user logs in. If the shell
field is empty, the Bourne shell (/bin/sh) is assumed.

If the first character of this field is an *, then the login(1) program treats the home directory
field as the directory to be used as the argument to the chroot(2) system call, and then loops

1

PASSWD(4) PASSWD(4)hh

back to reading the /etc/passwd file under the new root, reprompting for the login. This
may be used to implement secure or restricted logins, in a manner similar to ftp(1c).

Password aging is effected for a particular user if his encrypted password is followed by a comma and a
non-null string of characters from a 64-character alphabet (.,/,0-9, A-Z, a-z). The first character of the age,
M say, denotes the maximum number of weeks for which a password is valid. A user who attempts to
login after his password has expired will be forced to change his password. The next character, m say,
denotes the minimum period in weeks which must expire before the password may be changed. If the
second character is omitted, zero week is the default minimum. M and m have numerical values in the
range 0−63 that correspond to the 64-character alphabet shown above (i.e., / = 1 week; z = 63 weeks). If m
= M = 0 (derived from the string . or ..) the user will be forced to change his password the next time he
logs in (and the "age" will disappear from his entry in the password file). If m > M (signified, e.g., by the
string ./) only the super-user will be able to change the password.

The password file resides in the /etc directory. Because of the encrypted passwords, it has general read
permission and can be used, for example, to map numerical user ID’s to names.

NIS ENTRIES
If the NFS option is installed, the passwd file can also have lines beginning with a ‘+’ (plus sign) which
means to incorporate entries from the NIS. There are three styles of + entries in this file:

+ means to insert the entire contents of the NIS password file at that point;

+name means to insert the entry (if any) for name from the NIS at that point;

+@netgroup means to insert the entries for all members of the network group netgroup at that point.

If a + entry has a non-empty password, directory, GECOS, or shell field, the value of that field overrides
what is contained in the NIS. The uid and gid fields cannot be overridden.

The passwd file can also have lines beginning with a ‘−−’ (minus sign) which means to disallow entries from
the NIS. There are two styles of ‘−−’ entries in this file:

−name means to disallow any subsequent entries (if any) for name (in this file or in the NIS);

−@netgroup means to disallow any subsequent entries for all members of the network group net-
group.

Password aging is not supported for NIS entries.

UID CONVENTIONS
User ID number restrictions and conventions in the Unix community are few and simple.

Reserved:

UID 0 The superuser (aka root).

UID −1 Invalid UID. Used to pass on a ’wire’ your ID to remote systems. See system calls like
chmod(2).

2

PASSWD(4) PASSWD(4)hh

UID −2 NFS ’nobody’. Note that because uid_t is unsigned, -2 is mapped to UIDMAX+1 or
60001.

UID 60002 to 65535
Invalid.

Conventions:
UID 1 to 10 commonly used for system pseudo users and daemons. UID 11 to 99 com-
monly used for uucp logins and ’famous users’. UID 100 to 60000 normal users (start at
100).

EXAMPLE
Here is a sample /etc/passwd file:

root:q.mJzTnu8icF.:0:10:superuser:/:/bin/csh

bill:6k/7KCFRPNVXg,z/:508:10:& The Cat:/usr2/bill:/bin/csh

+john:

+@documentation:no-login:

+::::Guest

nobody:*:-2:-2::/dev/null:/dev/null

In this example, there are specific entries for users root and bill, to assure that they can log in even when
the system is running stand-alone or when the NIS is not running. The user bill will have 63 weeks of
maximum password aging and 1 week of minimum password aging. Programs that use the GECOS field
will replace the & with ‘Bill’. The user john will have his password entry in the NIS incorporated without
change; anyone in the netgroup documentation will have their password field disabled, and anyone else
will be able to log in with their usual password, shell, and home directory, but with a GECOS field of
Guest. The user nobody cannot log in and is used by the exportfs(1M) command.

FILES
/etc/passwd

SEE ALSO
login(1), passwd(1), pwck(1M), pwconv(1M), ypchpass(1), yppasswd(1).
getpwent(3), crypt(3), a64l(3C).
group(4), netgroup(4), exports(4), shadow(4).

3

PROFILE(4) PROFILE(4)hh

NAME
profile − setting up an environment at login time

SYNOPSIS
/etc/profile
$HOME/.profile

DESCRIPTION
All users who have the shell, sh(1), as their login command have the commands in these files executed as
part of their login sequence.

/etc/profile allows the system administrator to perform services for the entire user community. Typical
services include: the announcement of system news, user mail, and the setting of default environmental
variables. It is not unusual for /etc/profile to execute special actions for the root login or the su(1) com-
mand.

The file $HOME/.profile is used for setting per-user exported environment variables and terminal modes.
The following example is typical (except for the comments):

Set the file creation mask to prohibit
others from reading my files.
umask 027
Add my own /bin directory to the shell search sequence.
PATH=$PATH:$HOME/bin
Set terminal type
eval ‘tset -S -Q‘
Set the interrupt character to control-c.
stty intr ˆc
List directories in columns if standard out is a terminal.
ls() { if [-t]; then /bin/ls -C $*; else /bin/ls $*; fi }

FILES
/etc/TIMEZONE timezone environment
$HOME/.profileuser-specific environment
/etc/profile system-wide environment

SEE ALSO
env(1), login(1), mail(1), sh(1), stty(1), tset(1), tput(1), su(1M), terminfo(4), timezone(4), environ(5),
term(5)

NOTES
Care must be taken in providing system-wide services in /etc/profile. Personal .profile files are better for
serving all but the most global needs.

1

PROM(1M) PROM(1M)hh

NAME
prom − PROM monitor

DESCRIPTION
The PROM monitor is a program that resides in permanently programmed read-only memory, which
controls the startup of the machine. The PROM is started whenever the system is first powered on, reset
with the reset button, or shutdown by the administrator. The PROM contains features that vary from
machine to machine. Description of various commands, options and interfaces below may not apply to
the PROM in your machine, and may vary between machines. Furthermore, since PROMs are not nor-
mally changed after the manufacture of the system, newly added features will not be present older
machines.

Some machines, such as the Indigo R4000, Indigo2, Indy, Onyx, and Challenge contain an ARCS PROM.
Machines that contain an MIPS R8000 such as the Power Challenge, Power Onyx and the Power Indigo2

use a 64-bit version of the ARCS PROM. The ARCS PROM offers the same functionality as previous
PROMs, but in some cases with a different interface. Refer to the ARCS PROM section below for details.

When the system is first powered on, the PROM runs a series of tests on the core components of the sys-
tem. It then performs certain hardware initialization functions such as starting up SCSI hard disks, ini-
tializing graphics hardware and clearing memory. Upon successful completion of these tasks, the PROM
indirectly starts the operating system by invoking a bootstrap loader program called ‘‘sash’’, which in
turn reads the Irix kernel from disk and transfers control to it.

Menu Commands
By default, the PROM attempts to boot the operating system kernel when the system is powered-on or
reset. Before doing so, however, the opportunity to press the Escape key is given. If the Escape key is
pressed within approximately ten seconds, the PROM will display a menu of alternate boot up options.
These other choices allow various types of system maintenance to be performed and are described below:

1. Start System
This option will cause the system to boot in the default way. It is the same as if the system had
been allowed to boot on its own.

2. Install System Software
This option is used when system software needs to be installed or upgraded. The PROM will first
attempt to find a tape drive on the system and if one is found, it will prompt the user to insert the
installation tape in it. If one is not found, then installation is expected to take place by Ethernet.
In this case, the PROM will prompt the user for the name of the machine that will be used as the
server.

Installation systems with an ARCS PROM uses a menu to select the
installation device. See ARCS PROM section below for details.

3. Run Diagnostics
This option invokes the extended hardware diagnostic program, which will perform a thorough
test of the CPU board and any graphics boards present. It will then report a summary.

1

PROM(1M) PROM(1M)hh

4. Recover System
This option may be used to perform special system administration tasks such as restoring a sys-
tem disk from backup tapes. It follows a similar sequence for installing system software, but
instead of starting the installation program, it invokes an interactive restoration tool.

5. Enter Command Monitor
Additional functions may be performed from an interactive command monitor. This option puts
the PROM into a manual mode of operation.

6. Select Keyboard Layout
Some systems display a sixth option when the console is on the graphics display which allows the
keyboard map to be interactively selected for SGI supported international keyboards.

Manual Mode
The PROM command monitor allows the user to customize certain features of the boot process for one-
time only needs or longer term changes. The command monitor has some features that are similar to an
Irix shell such as command line options and environment variables. Some of the environment variables
used in the PROM are stored in non-volatile RAM, which means that their value will be preserved even
after the power to the machine is turned off. The command monitor has a different method of specifying
disks and files than is used under Irix. A pathname is formed by prefixing the file name with a device
name as shown:

devicename(controller,unit,partition)filename

Valid device names include:

tpsc SCSI tape drive
dksc SCSI disk drive
dkip ESDI disk drive
ipi IPI disk drive
xyl SMD disk drive
tpqic VME-based Quarter-Inch tape drive
bootp Ethernet by BOOTP and TFTP protocols

The controller designates which hardware controller to use if multiple controllers for the same type of dev-
ice exist. Controllers are numbered starting at zero. The unit designates which drive to use when a single
controller is used with multiple drives. When used with a SCSI device, the unit number is the same as the
SCSI target number for the drive. The partition designates which disk partition is to be used. Partitions
are numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. The controller, unit, and partion all default to zero.

The devices supported by the PROM varies from machine to machine.

Manual Mode Commands

2

PROM(1M) PROM(1M)hh

auto Attempts to boot the system into normal operation. This is the equivalent of the ‘‘Start System’’
menu command.

boot [-f] [-n] pathname
Starts an arbitrary standalone program or kernel as specified by its arguments. The -f option
suppresses the invocation of the bootstrap loader program. The -n option causes the named pro-
gram to be loaded, but not started.

eaddr Prints the Ethernet address of the built-in Ethernet controller. This address is set at the factory
and cannot be changed.

date [mmddhhmm[ccyy||yy][.ss]]
Prints the date, or sets the date when given an argument. The prom does not understand time
zones, so times should be given relative to GMT.

exit Exits manual mode and returns to the PROM menu.

help Displays a short summary of the commands available in manual mode.

init Causes a partial restart of the PROM. This command can be used to change the default console
immediately. See the console environment variable.

hinv Lists the hardware present in the system. This list includes any disk or tape drives, memory and
graphics options. It will only list those devices ‘‘known’’ to the PROM and may not include all
optional boards.

ls device
List files contained on the device specified. This may be used to examine devices whose layout is
known by the PROM such as the disk volume header. It cannot be used to list directories on disk
partitions containing Irix file systems.

off Turns off the power. Only supported on a subset of machines with software power control.

passwd
Set the PROM password. The PROM password may be set to restrict operation of certain PROM
modes. With a password set, any attempt to do anything other than a standard system boot will
require that the password be re-entered. The password is remembered after the system is
powered off.

If the password is forgotten, some machines allow the super-user reset it while running IRIX.
Use the nvram command to set the passwd_key variable to a null string (nvram passwd_key "").
Other systems also have a jumper on the system board which can be removed to disable the
PROM password. In addition some systems force the console environment variable to ‘‘g’’ while
the jumper is removed. This jumper should only be removed temporarily in order to reset the
password or to fix the console environment variable. Indy and Indigo2 have this feature.

printenv
List the current state of the PROM environment variables. Some of the variables listed retain
their value after the system is powered off.

3

PROM(1M) PROM(1M)hh

resetenv
Set all of the PROM non-volatile environment variables to their factory defaults. This does not
affect the PROM password.

resetpw
Remove the PROM password. With no PROM password set, all commands and menu options
will function without restriction.

setenv [-p] variable value
Set the specified environment variable to a particular value. Environment variables that are
stored in non-volatile RAM are changed there as well. The -p option specifies that this variable
should be saved as a persistent variable by means of adding the variable to non-volatile RAM.
This is particularly useful for setting frequently used options when starting up the system. Note
that a fixed non-volatile RAM variable will not be superseded by this option, but the command
will behave as if the -p flag was not present. Currently this option is available only on the Indy.

single Start the system in single user mode. The system is booted as in the auto command described
above, except that it enters initstate ‘‘s’’ instead of initstate ‘‘2’’. See init(1M) for more informa-
tion on initialization states.

unsetenv variable
Disassociates any value with the named environment variable.

version
Prints a message containing information about the PROM.

In addition to the commands above, a pathname may be entered directly, which the PROM will attempt
to load and execute.

PROM Environment Variables
netaddr

Used when booting or installing software from a remote machine by Ethernet. This variable
should be set to contain the Internet address of the machine. This variable is stored in non-
volatile RAM.

dbaud Diagnostic baud rate. The variable can be used to specify a baud rate other than the default when
a terminal connected to serial port #1 is to be used as the console. This variable is stored in non-
volatile RAM.

bootfile
This variable controls two aspects of the automatic boot up process. First, it names the stan-
dalone loader that is used as an intermediary when booting from disk. Second, the device por-
tion of the file name is used to determine the default boot disk. The PROM assumes that the disk
specified as part of the standalone loader pathname is the disk where the Irix root file system
exists. Furthermore, during software installation, the PROM uses that disk’s swap partition for
the miniroot. The actual partitions assumed by the PROM to contain the root file system and
swap area are determined by reading the volume header. See vh(7M) for more information. This
variable is stored in non-volatile RAM.

4

PROM(1M) PROM(1M)hh

bootmode
The default mode of operation after you turn on power to the system is determined by the boot-
mode variable. If the bootmode is set to ‘‘c’’, then the system is automatically booted whenever it
is reset or power is turned on to the system. If the bootmode is set to ‘‘m’’, the PROM will
display the menu and wait for a command instead. Setting bootmode to ‘‘d’’ has the same affect
as ‘‘m’’, with the addition of more verbose power-on diagnostics. This variable is stored in non-
volatile RAM.

boottune
Selects among the availiable boot tunes, and is specified as a small integer such as ‘‘1’’, which is
the default tune. A setting of ‘‘0’’ selects a random tune. Currently only the Power Indigo2 sup-
ports this variable. This variable is stored in non-volatile RAM.

autopower
On machines with software power control a setting of ‘‘y’’ will allow the system to automatically
power back on after an AC power failure. The default setting of ‘‘n’’ requires the power switch to
be pressed to restart the system. This variable is stored in non-volatile RAM.

console
The system console may be set with the console variable. If console is set to ‘‘g’’ or ‘‘G’’, the con-
sole is assumed to be the graphics display. On some systems with multiple graphics adapters,
setting console to ‘‘g0’’ (identical to ‘‘g’’), ‘‘g1’’ or ‘‘g2’’ can be used to select alternate graphics
displays. If console is set to ‘‘d’’, then the console is assumed to be a terminal connected to the
first serial port. In addition, som systems also accept ‘‘d2’’ for a terminal connected to second
serial port. Lastly, this can be over-ridden on some systems by removing the password jumper
and the console will be forced to ‘‘g’’, which is useful for for recovering from setting the console
to ‘‘d’’ when a terminal is not available. This variable is stored in non-volatile RAM.

diskless
If set to ‘‘1’’, the kernel will assume that the machine is to be started up as a diskless node. This
variable is stored in non-volatile RAM.

monitor
Overrides the default monitor setting when an unrecognized monitor is attached to an Indy sys-
tem. Specifying ’h’ or ’H’ indicates the attached monitor supports high resolution mode
(1280x1024 @ 60Hz). Otherwise the default resolution is low resolution (1024x768 @ 60Hz). This
variable is usable only on an Indy system and is stored in non-volatile RAM.

nogfxkbd
If set to ‘‘1’’, the system will not require the keyboard to be plugged in. By default, if the console
is the graphics display and the keyboard is not plugged in or is otherwise unresponsive to com-
mands, it is assumed to be broken. The system will switch to the serial terminal console and wait
for a command. This variable is stored in non-volatile RAM.

5

PROM(1M) PROM(1M)hh

notape If set to ‘‘1’’, the PROM will assume that the Ethernet is to be used for software installation or sys-
tem recovery even if a tape drive is present on the machine. By default, if the PROM sees a tape
drive in the hardware inventory, it assumes that it will be used for software installation; setting
notape allows that assumption to be overruled.

volume
Sets the speaker volume during boot up. This controls the volume of the startup tone generated
on machines with integral audio hardware. This variable is stored in non-volatile RAM.

pagecolor
Sets the background color of the textport set with a six character string of hex rgb values. This
variable is stored in non-volatile RAM.

path The path variable is used with some commands to provide a default device name. It is derived
from the bootfile variable.

prompoweroff
If set to ‘‘y’’ the IRIX operating system will return to the PROM to do the actual powering off of
the system. Powering off the system by the PROM is preceded by the playing of the "shutdown"
tune that is normally played when returning to the PROM monitor via the shutdown or halt com-
mands. This variable is available only on Indy systems and must be set with the command
"setenv -p prompoweroff y" command to retain the setting after power is turned off.

rebound
If set to ‘‘y’’ the system attempts to automatically reboot in the event of a kernel panic overriding
the value of the ‘‘reboot_on_panic’’ systune parameter. This variable is stored in non-volatile
RAM.

sgilogo
If set to ‘‘y’’ the SGI logo and other product information is shown on systems that support the
standalone GUI. This variable is stored in non-volatile RAM.

ARCS PROM
Machines with the ARCS PROM behave similar to what is described above. Changes were made to sup-
port the Advanced Computing Environment’s (ACE) Advanced Risc Computing Standard (ARCS), pro-
vide a graphical user interface, and to clean up various loop-holes in older PROMs. In many cases efforts
were made to maintain old syntax and conventions.

The ARCS document describes system requirements, which includes minimum system function, pro-
cedure entry points, environment variables, hardware inventory and other system conventions. Program-
matic interfaces, and other hardware requirements are outside the scope of this manual page.

ARCS pathnames are tied directly to the hardware inventory, which is stored in a tree that represents the
machines device architecture. It is rooted with a system entry, and grows to peripheral devices such as a
disk drive. ARCS pathnames are written as a series of "type(unit)" components that parallel the inventory
tree.

6

PROM(1M) PROM(1M)hh

Old style pathnames are automatically converted to new style pathnames, so the old names can still be
used. The PROM will match the first device described by the pathname, so full pathnames are not always
required. The ‘‘-p’’ option to hinv will print the pathnames to all user accessible devices. Some examples
of common pathnames:

scsi(0)disk(1)partition(1) dksc(0,1,1)
disk(1)part(1) same as above
scsi(0)cdrom(5)partition(7) dksc(0,5,7)
network(0)bootp()host:file bootp()host:file
serial(0) first serial port
keyboard() graphics keyboard
video() graphics display

ARCS defines environment variables that provide the same function as in older PROMs, but with dif-
ferent names and values:

ConsoleIn/ConsoleOut
These two variables are set at system startup automatically from the console variable. They are
maintained only for ARCS compatibility only.

OSLoadPartition
Device partition where the core operating system is found. For IRIX, this variable is used as the
root partition when the "root" variable is unused and the device configured in the kernel variable
rootdev is not available. This variable is stored in non-volatile RAM, but is normally left unset,
which allows the PROM will automatically configure it at system power-on.

OSLoader
The operating system loader. For IRIX, this is sash. This variable is stored in non-volatile RAM,
but is normally left unset, which allows the PROM will automatically configure it at system
power-on.

SystemPartition
Device where the operating system loader is found. This variable is stored in non-volatile RAM,
but is normally left unset, which allows the PROM will automatically configure it at system
power-on.

OSLoadFilename
The file name of the operating system kernel. For IRIX this is /unix. This variable is stored in
non-volatile RAM, but is normally left unset, which allows the PROM will automatically
configure it at system power-on.

OSLoadOptions
The contents of this variable are appended to the boot command constructed when auto-booting
the system. This variable is stored in non-volatile RAM.

7

PROM(1M) PROM(1M)hh

AutoLoad
Controls if the system boots automatically on reset/power cycle. Can be set to ‘‘Yes’’ or ‘‘No’’.
Previously this function was controlled by setting bootmode to ‘‘c’’ or ‘‘m’’. This variable is
stored in non-volatile RAM.

To try and improve the looks and usability of the PROM, the ARCS prom uses a graphical interface when
console=g. In all cases the keyboard can be used instead of the mouse, and in most cases the familiar
keystrokes from previous PROMs will work.

For example the traditional 1-5 menu consists of a list of buttons containing one icon each. To make a
selection, either click any mouse button with the button, or press the corresponding 1-5 key.

The only major user interface changes is for Install Software and Recover System (menu items 2 and 4). The
interface allows interactive selection of a device type, and then selection among devices of that type. This
makes it easier than previous PROMS to install from local drives, or remote directories without hacks like
notape and tapedevice.

The set of commands available from the command monitor is relatively unchanged:

hinv By default hinv prints a formatted abbreviated list similar to the old style PROM. A ‘‘-t’’ option
has been added to print the ARCS configuration tree directly. A secondary option ‘‘-p’’ valid
only with ‘‘-t’’ prints the corresponding ARCS pathnames for peripheral devices.

There has also been some changes/additions to the SGI defined environment variables:

diskless
This controls if the system is run as a diskless machine. Since some of the other environment
variables are changed for ARCS compliance, diskless setup is slightly different. The environment
should be set as follows.

diskless=1
SystemPartition=bootp()host:/path
OSLoader=kernelname

keybd Normally this variable is left unset, and the system will automatically configure the keyboard to
use its native key map. To override the default this should be set to a three to five character
string. The following strings may be recognized, depending on the PROM revision: USA, DEU,
FRA, ITA, DNK, ESP, CHE-D, SWE, FIN, GBR, BEL, NOR, PRT, CHE-F or US, DE, FR, IT, DK, ES,
de_CH, SE, FI, GB, BE, NO, PT, fr_CH on systems with the keyboard layout selector. On newer
systems, JP is also acceptable. Alternatively on can select between swiss french and swiss german
by setting keybd to ‘‘d’’ or ‘‘D’’ for the german map. On machines with PC keyboards, a string
not matching one of the above will be passed to the X server and used as the name of the key-
board map to load. This variable is stored in non-volatile RAM.

diagmode
If set to ‘‘v’’ then power-on diagnostics are allowed to be verbose. In addition, more diagnostics
are run. This is similar to bootmode=d, however it does not affect the behavior of AutoLoad.
This variable is stored in non-volatile RAM.

8

PROM(1M) PROM(1M)hh

The ARCS standard specifies different error numbers than IRIX:

ESUCCESS 0
E2BIG 1
EACCES 2
EAGAIN 3
EBADF 4
EBUSY 5
EFAULT 6
EINVAL 7
EIO 8
EISDIR 9
EMFILE 10
EMLINK 11
ENAMETOOLONG 12
ENODEV 13
ENOENT 14
ENOEXEC 15
ENOMEM 16
ENOSPC 17
ENOTDIR 18
ENOTTY 19
ENXIO 20
EROFS 21
EADDRNOTAVAIL 31
ETIMEDOUT 32
ECONNABORTED 33
ENOCONNECT 34

Examples
To boot the disk formatter, fx(1M) from a local tape containing the installation tools:

1. Get into the command monitor by choosing option ‘‘5’’ from the menu.

2. Determine the type of CPU board in your machine with the hinv command. The board type is
listed as the letters ‘‘IP’’ followed by a number. Also, look for the item that lists the tape drive to
determine the format of the device name. For instance, a SCSI tape addressed as device seven
might be listed as ‘‘SCSI tape: tpsc(0,7)’’ in which case the device is ‘‘tpsc(0,7)’’.

3. With the installation tools tape in the drive, boot fx as follows:

boot -f tpsc(0,7)fx.IP6

where ‘‘tpsc(0,7)’’ is the device name and ‘‘IP6’’ is the CPU board type.

9

PROM(1M) PROM(1M)hh

To change the system console from the graphics display to a terminal connected to serial port #1:

1. Get into the command monitor by choosing option ‘‘5’’ from the menu.

2. Change the console variable to ‘‘d’’ as follows:

setenv console d

3. Re-initialize the PROM with the init command:

init

10

PRTVTOC(1M) PRTVTOC(1M)hh

NAME
prtvtoc − print disk volume header information.

SYNOPSIS
/etc/prtvtoc [header_device_name] device

DESCRIPTION
prtvtoc prints a summary of the information in the volume header of a disk. (See vh(7m)). The com-
mand can normally be used only by the superuser.

The device name should be the raw device filename of a disk volume header in the form
/dev/rdsk/xxs?d?vh.

Note: prtvtoc knows about the special file directory naming conventions, so the /dev/rdsk prefix may be
omitted.

If no name is given, the information for the root disk is printed.

prtvtoc prints information about the disk geometry (number of cylinders, heads, etc.), followed by infor-
mation about the partitions. For each partition, the type is indicated (for example, file system, raw data
and so forth). Cylinders may be non-integral values, as they may not correspond to actual physical
values, for some drive types. For file system partitions prtvtoc shows if there is actually a filesystem on
the partition, and if it is mounted, the mount point is shown.

The following options to prtvtoc may be used:

−−s Print only the partition table, with headings but without the comments.

−−h Print only the partition table, without headings and comments. Use this option when the out-
put of the prtvtoc command is piped into another command.

−−tfstab Use the file fstab instead of /etc/fstab.

−−mmnttab Use the file mnttab instead of /etc/mount.

1

PRTVTOC(1M) PRTVTOC(1M)hh

EXAMPLE
The output below is for a SCSI system (root) disk obtained by invoking prtvtoc without parameters.

Printing label for root disk

* /dev/rdsk/dks0d1vh (bootfile "/unix")

* 512 bytes/sector

* 74 sectors/track

* 15 tracks/cylinder

* 3 spare blocks/cylinder

* 1876 cylinders

* 3 cylinders occupied by header

* 1873 accessible cylinders

*

* No space unallocated to partitions

Partition Type Fs Start: sec (cyl) Size: sec (cyl) Mount

Directory

0 efs yes 3321 (3) 32103 (29) /

1 raw 35424 (32) 81918 (74)

6 efs yes 117342 (106) 1959390 (1770) /usr

7 efs 3321 (3) 2073411 (1873)

8 volhdr 0 (0) 3321 (3)

10 volume 0 (0) 2076732 (1876)

SEE ALSO
dvhtool(1M), fx(1m), vh(7m). dks(7m). ips(7m). ipi(7m). usraid(7m).

2

PS(1) PS(1)hh

NAME
ps − report process status

SYNOPSIS
ps [options]

DESCRIPTION
ps prints certain information about active processes. Without options, information is printed about
processes associated with the controlling terminal. The output consists of a short listing containing only
the process ID, terminal identifier, cumulative execution time, and the command name. Otherwise, the
information that is displayed is controlled by the selection of options.

Options accept names or lists as arguments. Arguments can be either separated from one another by com-
mas or enclosed in double quotes and separated from one another by commas or spaces. Values for pro-
clist and grplist must be numeric.

The options are given in descending order according to volume and range of information provided:

−−e Print information about every process now running.
−−d Print information about all processes except process group leaders.
−−a Print information about all processes most frequently requested: all those except process

group leaders and processes not associated with a terminal.
−−j Print session ID and process group ID.
−−M If the system supports Mandatory Access Control, print the security label for each process.

The -M option can be automatically be turned on by using an environmental variable
LABELFLAG. Set variable to "on" (not case sensitive) for automatic security label informa-
tion. To turn off feature set to "off" or NULL.

−−f Generate a full listing. (See below for significance of columns in a full listing.)
−−l Generate a long listing. (See below.)
−−c Print information in a format that reflects the scheduler properties. The −−c options affects

the output of the −−f and −−l options, as described below.
−−n name This argument is obsolete and is no longer used.
−−t termlist List only process data associated with the terminal given in termlist. Terminal identifiers

consist of the device’s name (e.g., ttyd1, ttyq1).
−−p proclist List only process data whose process ID numbers are given in proclist.
−−u uidlist List only process data whose user ID number or login name is given in uidlist. In the listing,

the numerical user ID will be printed unless you give the −−f option, which prints the login
name.

−−g grplist List only process data whose process group leader’s ID number(s) appears in grplist. (A
group leader is a process whose process ID number is identical to its process group ID
number. A login shell is a common example of a process group leader.)

−−ssesslist List information on all session leaders whose IDs appear in sesslist.

1

PS(1) PS(1)hh

Under the −−f option, ps tries to determine the command name and arguments given when the process
was created by examining the user block. Failing this, the command name is printed, as it would have
appeared without the −−f option, in square brackets.

The column headings and the meaning of the columns in a ps listing are given below; the letters f and l
indicate the option (full or long, respectively) that causes the corresponding heading to appear; all means
that the heading always appears. Note that these two options determine only what information is pro-
vided for a process; they do not determine which processes will be listed.

F (l) Flags (hexadecimal and additive) associated with the process:

01 Process is a system (resident) process.
02 Process is being traced.
04 Stopped process has been given to parent via wait(2).
08 Process is sleeping at a non-interruptible priority.
10 Process is in core.
20 Process user area is in core.
40 Process has enabled atomic operator emulation.
80 Process in stream poll or select.

2

PS(1) PS(1)hh

S (l) The state of the process:
0 Process is running on a processor.
S Process is sleeping, waiting for a resource.
R Process is running.
Z Process is terminated and parent not waiting [wait(2)].
T Process is stopped.
I Process is in intermediate state of creation.
X Process is waiting for memory.

UID (f,l) The user ID number of the process owner (the login name is printed under the −−f
option).

PID (all) The process ID of the process (this datum is necessary in order to kill a process).
PPID (f,l) The process ID of the parent process.
C (f,l) Processor utilization for scheduling. Not printed when the −−c option is used.
CLS (f,l) Scheduling class. Printed only when the −−c option is used. The values printed for CLS

are the two character mnemonics for the scheduler queues displayed by the −−q option
of pset(1M).

PRI (l) The priority of the process (higher numbers mean lower priority).
NI (l) Nice value, used in priority computation. Not printed when the −−c option is used.

Only processes in the time-sharing class have a nice value. Processes in other schedul-
ing classes will have their 2 letter class mnemonic printed in this field (refer to
schedctl(2) and pset(1M) for information about other scheduling classes).

P (l) If the process is running, gives the number of processor on which the process is exe-
cuting. Contains an asterisk otherwise.

SZ (l) Total size (in pages) of the process, including code, data, shared memory, mapped
files, shared libraries and stack. Pages associated with mapped devices are not
counted. A page is 4096 bytes.

SID (j) Session ID. This can be used with the −−s option.
PGID (j) Process group leader ID. This can be used with the −−g option.
RSS (l) Total resident size (in pages) of process. This includes only those pages of the process

that are physically resident in memory. Mapped devices (such as graphics) are not
included. Shared memory (shmget(2)) and the shared parts of a forked child (code,
shared objects, and files mapped MAP_SHARED) have the number of pages pro-
rated by the number of processes sharing the page. Two independent processes that
use the same shared objects and/or the same code will each count all valid resident
pages as part of their own resident size. A page is 4096 bytes.

WCHAN (l) The address of an event for which the process is sleeping, or in SXBRK state, (if blank,
the process is running).

STIME (f) The starting time of the process, given in hours, minutes, and seconds. (A process
begun more than twenty-four hours before the ps inquiry is executed is given in
months and days.)

3

PS(1) PS(1)hh

TTY (all) The controlling terminal for the process (the message, ?, is printed when there is no
controlling terminal).

TIME (all) The cumulative execution time for the process.
COMMAND(all) The command name (the full command name and its arguments are printed under the

−−f option).

A process that has exited and has a parent, but has not yet been waited for by the parent, is marked
<defunct>.

FILES
/dev
/dev/tty*
/etc/passwd UID information supplier
/tmp/.ps_data internal data structure. This file is used to improve the performance of ps by caching uid

to username translations, kernel info, and some device information. It is re-created
when it is older (either the mtime or ctime) than any of /unix, /dev , or /etc/passwd , or
when a read error occurs on the file. ps runs noticeably slower when this file isn’t used,
or needs to be re-created. Note that new NIS users may have jobs reported as numeric
values, since the ps_data file won’t be re-created automatically; removing this file and
re-running ps will fix the problem.

SEE ALSO
getty(1M), gr_osview(1), gr_top(1), kill(1), nice(1), pset(1M), top(1).

WARNING
Things can change while ps is running; the snap-shot it gives is only true for a split-second, and it may not
be accurate by the time you see it. Some data printed for defunct processes is irrelevant.

If no termlist, proclist, uidlist, or grplist is specified, ps checks stdin, stdout, and stderr in that order, looking
for the controlling terminal and will attempt to report on processes associated with the controlling termi-
nal. In this situation, if stdin, stdout, and stderr are all redirected, ps will not find a controlling terminal, so
there will be no report.

ps −−ef may not report the actual start of a tty login session, but rather an earlier time, when a getty was
last respawned on the tty line.

4

PWCK(1M) PWCK(1M)hh

NAME
pwck − password file checker

SYNOPSIS
/usr/sbin/pwck [file]

DESCRIPTION
pwck scans the password file and notes any inconsistencies. The checks include validation of: the number
of fields, login name, user ID, group ID, and whether the login directory and the program-to-use-as-Shell
exist. The default password file is /etc/passwd.

pwck has the ability to parse YP entries in the password file.

FILES
/etc/passwd

SEE ALSO
passwd(4)

DIAGNOSTICS
Too many/few fields

An entry in the password file does not have the proper number of fields.

No login name
The login name field of an entry is empty.

Bad character(s) in login name
The login name in an entry contains one or more non-alphanumeric characters.

Login name too long
The login name in an entry has more than 8 characters.

Invalid UID
The user ID field in an entry is not numeric or is greater than 65535.

Invalid GID
The group ID field in an entry is not numeric or is greater than 65535.

No login directory
The login directory field in an entry is empty.

Login directory not found
The login directory field in an entry refers to a directory that does not exist.

Optional shell file not found.
The login shell field in an entry refers to a program or shell script that does not exist.

No netgroup name
The entry is a Yellow Pages entry referring to a netgroup, but no netgroup is present.

1

PWCK(1M) PWCK(1M)hh

Bad character(s) in netgroup name
The netgroup name in a Yellow Pages entry contains characters other than lower-case letters and
digits.

First char in netgroup name not lower case alpha
The netgroup name in a Yellow pages entry does not begin with a lower-case letter.

2

pwconv(1M) pwconv(1M)hh

NAME
pwconv − install and update /etc/shadow with information from /etc/passwd

SYNOPSIS
pwconv

DESCRIPTION
The pwconv command creates and updates /etc/shadow with information from /etc/passwd.

If the /etc/shadow file does not exist, pwconv creates /etc/shadow with information from
/etc/passwd. The command populates /etc/shadow with the user’s login name, password, and
password aging information. If password aging information does not exist in /etc/passwd for a given
user, none is added to /etc/shadow. However, the last changed information is always updated.

If the /etc/shadow file does exist, the following tasks are performed:

Entries that are in the /etc/passwd file and not in the /etc/shadow file are added to the
/etc/shadow file.

Entries that are in the /etc/shadow file and not in the /etc/passwd file are removed from
/etc/shadow.

Password attributes (for example, password and aging information) in an /etc/passwd entry
are moved to the corresponding entry in /etc/shadow.

The pwconv program is a privileged system command that cannot be executed by ordinary users.

The contents of the /etc/passwd and /etc/shadow files are saved in /etc/opasswd and
/etc/oshadow, respectively. The system may be restored to its pre-conversion state by replacing the
content of the /etc/passwd file with the content of /etc/opasswd and removal of /etc/shadow (if
it did not exist prior to the run of pwconv) or its replacement by /etc/oshadow. These files are
overwritten each time the pwconv program is run. The use of some of the system administration tools
will cause pwconv to be run, and therefore the backup files to be overwritten, each time an entry is
added, deleted, or modified.

NOTES
1. There is no NIS equivalent to /etc/shadow. Therefore, if a user does not have an entry in
/etc/shadow, they will not be able to log in. This is because the password field must come from
/etc/shadow. Other NIS information such as user name, home directory, and so on will still be available,
just not passwords.

2. pwconv does not copy NIS entries from /etc/passwd. In order for such users to be able to log in, entries
in /etc/shadow must be created by hand on a user by user basis.

FILES
/etc/passwd, /etc/shadow, /etc/opasswd, /etc/oshadow

1

pwconv(1M) pwconv(1M)hh

SEE ALSO
passwd(1)

DIAGNOSTICS
The pwconv command exits with one of the following values:

0 Success.
1 Permission denied.
2 Invalid command syntax.
3 Unexpected failure. Conversion not done.
4 Unexpected failure. Password file(s) missing.
5 Password file(s) busy. Try again later.

2

RCP(1C) RCP(1C)hh

NAME
rcp − remote file copy

SYNOPSIS
rcp [−−pv] file1 file2
rcp [−−p] [−−rv] file ... directory

DESCRIPTION
Rcp copies files between machines. Each file or directory argument is either a remote file name of the form
‘‘remhost:path’’, or a local file name (containing no ‘:’ characters, or a ‘/’ before any ‘:’s). Hostnames may
also take the form ‘‘remuser@remhost’’ to use the user name remuser rather than the current user name on
the remote host.

If the −−r option is specified and any of the source files are directories, rcp copies each subtree rooted at
that name; in this case the destination must be a directory.

By default, the mode and owner of file2 are preserved if it already existed; otherwise the mode of the
source file modified by the umask(2) on the destination host is used. The −−p option causes rcp to attempt
to preserve (duplicate) in its copies the modification times and modes of the source files, ignoring the
umask . The −−v option causes the file name to be printed as it is copied to or from a remote host.

If path is not a full path name, it is interpreted relative to your login directory on remhost . A path on a
remote host may be quoted (using \, ", or ´) so that the metacharacters are interpreted remotely.

Rcp does not prompt for passwords; your current local user name must exist on remhost and allow remote
command execution via rsh(1C).

Rcp handles third party copies, where neither source nor target files are on the current machine.
Hostname-to-address translation of the target host is performed on the source host.

SEE ALSO
cp(1), ftp(1C), rsh(1C), rlogin(1C), hosts(4), rhosts(4)

BUGS
Rcp doesn’t detect all cases where the target of a copy might be a file in cases where only a directory
should be legal.

If you use csh(1), rcp will not work if your .cshrc file on the remote host unconditionally executes interac-
tive or output-generating commands. The message "protocol screwup" is displayed when this happens.
Put the offending commands inside the following conditional block:

if ($?prompt) then

endif
so they won’t interfere with rcp, rsh, and other non-interactive, rcmd(3)-based programs.

Rcp cannot handle file names which have imbedded newline characters. A newline character is a rcp pro-
tocol delimiter. The error message when this happens is:

1

RCP(1C) RCP(1C)hh

"protocol screwup: unexpected <newline>"

2

RESTORE(1) RESTORE(1)hh

NAME
Restore − restore the specified file or directory from tape

SYNOPSIS
Restore [−h hostname] [−t tapedevice] [directory name | file name]

DESCRIPTION
The Restore command copies the named file or directory from a local or remote backup tape(s) to disk. if
no file or directory is specified Restore will copy all the files found on the tape to disk.

Files are restored into the current directory if the backup tape contains "." relative path names.

Files on disk are overwritten even if they are more recent than the respective files on tape.

If a tape drive attached to a remote host is used for restore, the name of the remote host needs to be
specified with the −−h hostname option on the command line. For remote restore to successfully work, the
user should have a TCP/IP network connection to the remote host and also have "guest" login privileges
on that host.

If the local or remote tape device is pointed to by a device file other than /dev/tape, the device should be
specified by the −−t tapedevice option.

The Restore command expects the backup tape to be in the special "bru" format written by Backup(1) and
by the System Manager Backup & Restore tool when doing full (not partial) backups. This is the same
format used for system recovery.

SEE ALSO
Backup(1), List_tape(1), bru(1).

1

RESTORE(1M) RESTORE(1M)hh

NAME
restore, rrestore − incremental file system restore

SYNOPSIS
/sbin/restore key [name ...]
/sbin/rrestore key [name ...]

DESCRIPTION
restore reads tapes dumped with the dump (1M) command and restores them relative to the current direc-
tory. Its actions are controlled by the key argument. The key is a string of characters containing at most
one function letter and possibly one or more function modifiers. Any arguments supplied for specific
options are given as subsequent words on the command line, in the same order as that of the options
listed. Other arguments to the command are file or directory names specifying the files that are to be
restored. Unless the h key is specified (see below), the appearance of a directory name refers to the files
and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r Restore the entire tape. The tape is read and its full contents loaded into the current directory. This
should not be done lightly; the r key should only be used to restore a complete ’’level 0’’ dump tape
onto a clear file system or to restore an incremental dump tape after a full level zero restore. Thus

/etc/mkfs /dev/dsk/dks0d2s0
/etc/mount /dev/dsk0d2s0 /mnt
cd /mnt
restore r

is a typical sequence to restore a complete dump. Another restore can be done to get an incremental
dump in on top of this. Note that restore leaves a file restoresymtable in the root directory to pass
information between incremental restore passes. This file should be removed when the last incre-
mental tape has been restored. Also, see the note in the BUGS section below.

R Resume restoring. restore requests a particular tape of a multi volume set on which to restart a full
restore (see the r key above). This allows restore to be interrupted and then restarted.

x The named files are extracted from the tape. If the named file matches a directory whose contents
had been written onto the tape, and the h key is not specified, the directory is recursively extracted.
The owner, modification time, and mode are restored (if possible). If no file argument is given, then
the root directory is extracted, which results in the entire content of the tape being extracted, unless
the h key has been specified.

t The names of the specified files are listed if they occur on the tape. If no file argument is given, then
the root directory is listed, which results in the entire content of the tape being listed, unless the h
key has been specified. Note that the t key replaces the function of the old dumpdir program.

i This mode allows interactive restoration of files from a dump tape. After reading in the directory
information from the tape, restore provides a shell like interface that allows the user to move
around the directory tree selecting files to be extracted. The available commands are given below;
for those commands that require an argument, the default is the current directory.

1

RESTORE(1M) RESTORE(1M)hh

ls [arg] − List the current or specified directory. Entries that are directories are appended with a
‘‘/’’. Entries that have been marked for extraction are prepended with a ‘‘*’’. If the verbose
key is set the inode number of each entry is also listed.

cd arg − Change the current working directory to the specified argument.

pwd − Print the full pathname of the current working directory.

add [arg] − The current directory or specified argument is added to the list of files to be extracted. If
a directory is specified, then it and all its descendents are added to the extraction list (unless
the h key is specified on the command line). Files that are on the extraction list are prepended
with a ‘‘*’’ when they are listed by ls.

delete [arg] − The current directory or specified argument is deleted from the list of files to be
extracted. If a directory is specified, then it and all its descendents are deleted from the extrac-
tion list (unless the h key is specified on the command line). The most expedient way to
extract most of the files from a directory is to add the directory to the extraction list and then
delete those files that are not needed.

extract − All the files that are on the extraction list are extracted from the dump tape. restore will
ask which volume the user wishes to mount. The fastest way to extract a few files is to start
with the last volume, and work towards the first volume.

setmodes − All the directories that have been added to the extraction list have their owner, modes,
and times set; nothing is extracted from the tape. This is useful for cleaning up after a restore
has been prematurely aborted.

verbose − The sense of the v key is toggled. When set, the verbose key causes the ls command to list
the inode numbers of all entries. It also causes restore to print out information about each file
as it is extracted.

help − List a summary of the available commands.

quit − restore immediately exits, even if the extraction list is not empty.

The following characters may be used in addition to the letter that selects the function desired.

b The next argument to restore is used as the block size of the tape (in kilobytes). If the b option is not
specified, restore tries to determine the tape block size dynamically, but will only be able to do so if
the block size is 32 or less. For larger sizes, the b option must be used with restore.

2

RESTORE(1M) RESTORE(1M)hh

f The next argument to restore is used as the name of the archive instead of /dev/tape. If the name of the
file is ‘‘−’’, restore reads from standard input. Thus, dump(1M) and restore can be used in a pipeline
to dump and restore a file system with the command

dump 0f - /usr | (cd /mnt; restore xf -)
If the name of the file is of the format machine:device then the filesystem dump is restored from the
specified machine over the network. restore creates a remote server /etc/rmt, on the client machine
to access the tape device. Since restore is normally run by root, the name of the local machine must
appear in the .rhosts file of the remote machine. If the file name argument is of the form
user@machine:device, restore will attempt to execute as the specified use on the remote machine. The
specified user must have a .rhosts file on the remote machine that allows root from the local
machine.

v Normally restore does its work silently. The v (verbose) key causes it to type the name of each file it
treats preceded by its file type.

y restore will not ask whether it should abort the restore if gets a tape error. It will always try to skip
over the bad tape block(s) and continue as best it can.

m restore will extract by inode numbers rather than by file name. This is useful if only a few files are
being extracted, and one wants to avoid regenerating the complete pathname to the file.

h restore extracts the actual directory, rather than the files that it references. This prevents hierarchi-
cal restoration of complete subtrees from the tape.

s The next argument to restore is a number which selects the dump file when there are multiple dump
files on the same tape. File numbering starts at 1.

n Only those files which are newer than the file specified by the next argument are considered for res-
toration. restore looks at the modification time of the specified file using the stat(2) system call.

e No existing files are overwritten.

E Restores only non-existent files or newer versions (as determined by the file status change time
stored in the dump file) of existing files. Note that the ls(1) command shows the modification time
and not the file status change time. See stat(2) for more details.

d Turn on debugging output.

o Normally restore does not use chown(2) to restore files to the original user and group id unless it is
being run by the super-user (or with the effective user id of zero). This is to provide Berkeley style
semantics. This can be overridden with the o option which will result in restore attempting to
restore the original ownership to the files.

N Do not write anything to the disk. This option can be used to validate the tapes after a dump. If
invoked with the "r" option, restore goes through the motion of reading all the dump tapes without
actually writing anything to the disk.

3

RESTORE(1M) RESTORE(1M)hh

DIAGNOSTICS
restore complains about bad key characters.

On getting a read error, restore prints out diagnostics. If y has been specified, or the user responds ‘‘y’’,
restore will attempt to continue the restore.

If the dump extends over more than one tape, restore will ask the user to change tapes. If the x or i key
has been specified, restore will also ask which volume the user wishes to mount. The fastest way to
extract a few files is to start with the last volume, and work towards the first volume.

There are numerous consistency checks that can be listed by restore. Most checks are self-explanatory or
can ‘‘never happen’’. Common errors are given below.

Converting to new file system format.
A dump tape created from the old file system has been loaded. It is automatically converted to the
new file system format.

<filename>: not found on tape
The specified file name was listed in the tape directory, but was not found on the tape. This is
caused by tape read errors while looking for the file, and from using a dump tape created on an
active file system.

expected next file <inumber>, got <inumber>
A file that was not listed in the directory showed up. This can occur when using a dump tape
created on an active file system.

Incremental tape too low
When doing incremental restore, a tape that was written before the previous incremental tape, or
that has too low an incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previous incre-
mental tape left off, or that has too high an incremental level has been loaded.

Tape read error while restoring <filename>
Tape read error while skipping over inode <inumber>
Tape read error while trying to resynchronize

A tape read error has occurred. If a file name is specified, then its contents are probably partially
wrong. If an inode is being skipped or the tape is trying to resynchronize, then no extracted files
have been corrupted, though files may not be found on the tape.

resync restore, skipped <num> blocks
After a tape read error, restore may have to resynchronize itself. This message lists the number of
blocks that were skipped over.

Error while writing to file /tmp/rstdir*
An error was encountered while writing to the temporary file containing information about the
directories on tape. Use the TMPDIR environment variable to relocate this file in a directory which
has more space available.

4

RESTORE(1M) RESTORE(1M)hh

Error while writing to file /tmp/rstdir*
An error was encountered while writing to the temporary file containing information about the
owner, mode and timestamp information of directories. Use the TMPDIR environment variable to
relocate this file in a directory which has more space available.

EXAMPLES
restore r

will restore the entire tape into the current directory, reading from the default tape device /dev/tape.

restore rf guest@kestrel.sgi.com:/dev/tape

will restore the entire tape into the current directory, reading from the remote tape device /dev/tape on
host kestrel.sgi.com using the guest account.

restore x /etc/hosts /etc/fstab /etc/myfile

will restore the three specified files into the current directory, reading from the default tape device
/dev/tape.

restore x /dev/dsk

will restore the entire /dev/dsk directory and subdirectories recursively into the current directory, read-
ing from the default tape device /dev/tape

restore rN

will read the entire tape and go through all the motions of restoring the entire dump, without writing to
the disk. This can be used to validate the dump tape.

restore xe /usr/dir/foo

will restore (recursively) all files in the given directory /usr/dir/foo. However, no existing files are
overwritten.

restore xn /usr/dir/bar

will restore (recursively) all files which are newer than the given file /usr/dir/bar.

FILES
/dev/tape

This is the default tape device used unless the environment variable TAPE is set.

5

RESTORE(1M) RESTORE(1M)hh

/tmp/rstdir*
This temporary file contains the directories on the tape. If the environment variable TMPDIR is set,
then the file will be created in that directory.

/tmp/rstmode*
This temporary file contains the owner, mode, and time stamps for directories. If the environment
variable TMPDIR is set, then the file will be created in that directory.

./restoresymtable
Information is passed between incremental restores in this file.

SEE ALSO
dump(1M), mount(1M), mkfs(1M), rmt(1M), rhosts(4), mtio(7)

NOTES
rrestore is a link to restore.

BUGS
restore can get confused when doing incremental restores from dump tapes that were made on active file
systems.

A ’’level 0’’ dump must be done after a full restore. Because restore runs in user code, it has no control
over inode allocation. This results in the files being restored having an inode numbering different from
the filesystem that was originally dumped. Thus a full dump must be done to get a new set of directories
reflecting the new inode numbering, even though the contents of the files is unchanged, so that later incre-
mental dumps will be correct.

Existing dangling symlinks are modified even if the e option is supplied, if the dump tape contains a hard
link by the same name.

6

RLOGIN(1C) RLOGIN(1C)hh

NAME
rlogin − remote login

SYNOPSIS
rlogin rhost [−−l username] [−−e c] [−−8] [−−L]
rlogin username@rhost [−−e c] [−−8] [−−L]

DESCRIPTION
Rlogin connects your terminal on the current local host system lhost to the remote host system rhost. The
remote username used is the same as your local username, unless you specify a different remote name
with the −−l option or the username@rhost format.

Each host has a file /etc/hosts.equiv which contains a list of rhost’s with which it shares account names.
(The host names must be the standard names as described in rsh(1C).) When you rlogin as the same user
on an equivalent host, you don’t need to give a password. Each user may also have a private equivalence
list in a file .rhosts in his login directory. Each line in this file should contain an rhost and a username
separated by a space, giving additional cases where logins without passwords are to be permitted. If the
originating user is not equivalent to the remote user, then a login and password will be prompted for on
the remote machine as in login(1). To avoid some security problems, the .rhosts file must be owned by
either the remote user or root.

The remote terminal type is the same as your local terminal type (as given in your environment TERM
variable). The TERM value ‘‘iris-ansi’’ is converted to ‘‘iris-ansi-net’’ when sent to the host. The terminal
or window size is also copied to the remote system if the server supports the option, and changes in size
are reflected as well. All echoing takes place at the remote site, so that (except for delays) the rlogin is
transparent. Flow control via ˆS and ˆQ and flushing of input and output on interrupts are handled prop-
erly. The optional argument −−8 allows an eight-bit input data path at all times; otherwise parity bits are
stripped except when the remote side’s stop and start characters are other than ˆS/ˆQ. The argument −−L
allows the rlogin session to be run in litout mode. A line of the form ‘‘˜.’’ disconnects from the remote
host, where ‘‘˜’’ is the escape character. A line starting with ‘‘˜!’’ starts a shell on the IRIS. Similarly, the
line ‘‘˜ˆZ’’ (where ˆZ, control-Z, is the suspend character) will suspend the rlogin session if you are using
csh(1). A different escape character may be specified by the −−e option. There is no space separating this
option flag and the argument character.

SEE ALSO
rsh(1C), hosts(4), rhosts(4)

BUGS
Only the TERM environment variable is propagated. The rlogin protocol should be extended to pro-
pagate useful variables, such as DISPLAY. (Note that telnet(1C) is able to propagate environment vari-
ables.)

1

SAVECORE(1M) SAVECORE(1M)hh

NAME
savecore − save a crash vmcore dump of the operating system

SYNOPSIS
/etc/savecore [−f] [−v] dirname [system]

DESCRIPTION
savecore is meant to be called by /etc/rc2.d/S48savecore. Its function is to save the core dump of the system
(assuming one was made) and to write a reboot message in the shutdown log. The S48savecore script
specifies dirname as /var/adm/crash by default, unless overridden by site-specific command-line options in
the file /etc/config/savecore.options .

When the system crashes, one of the last steps that the kernel performs is to write the contents of system
memory to the dump device. The dump device is /dev/swap , When the system crashes, the process of
creating the dump image will overwrite any data on the dump device. Thus, the dump device must be a
raw partition that does not contain any data that needs to be preserved across a system crash (which is
why /dev/swap is the obvious candidate for the dump device).

savecore reads the core image saved on the dump device and saves that core image in the file
dirname/vmcore.n.

IRIX savecore can also write compressed core image files which are named dirname/vmcore.n.comp.
These compressed files also contain a header which gives certain information about the dump. When
copying out a compressed dump, savecore also logs the last few messages printed to the console before the
system went down. A compressed dump can be expanded with the uncompvm command.

Making sense of any saved core image requires the symbol table of the operating system that was running
at the time of the crash. For this reason savecore also saves the current default kernel boot file /unix as
dirname/unix.n. The trailing ".n" in the pathnames is replaced by a number that grows every time savecore
is run in that directory.

Before savecore writes out a core image, it reads a number from the file dirname/minfree. If the number of
free bytes on the file system that contains dirname is less than the number obtained from the minfree file,
the core dump is not saved. If the minfree file does not exist, savecore always writes out the core file
(assuming that a core dump was taken).

savecore also logs a reboot message using facility LOG_AUTH (see syslog(3B)). If the system crashed as a
result of a panic, savecore logs the panic string also.

savecore assumes that /unix corresponds to the running system at the time of the crash. If the core dump
was from a system other than /unix, the name of that system must be supplied as system.

The following options apply to savecore:

−−f Ordinarily, savecore checks a magic number on the dump device (usually /dev/swap) to determine
if a core dump was made. This flag will force savecore to attempt to save the core image regard-
less of the state of this magic number. This may be necessary since savecore will always clear the
magic number after reading it. If a previous attempt to save the image failed in some manner, it
will still be possible to restart the save with this option.

1

SAVECORE(1M) SAVECORE(1M)hh

−−v Give more verbose output.

DIAGNOSTICS
"warning: /unix may not have created core file" is printed if savecore believes that the system core file does
not correspond with the /unix operating system binary.

"savecore: /unix is not the running system" is printed for the obvious reason. If the system that crashed
was /unix, use mv(1) to change its name before running savecore. Use mv(1) or ln(1) to rename or produce
a link to the name of the file of the currently running operating system binary. This will enable savecore to
find name list information about the current state of the running system from the file /unix.

FILES
/unix current UNIX
/var/adm/crash default place to create dump files
/var/adm/crash/bounds number for next dump file
/var/adm/crash/minfree minimum file system free space
/etc/config/savecore.options site-specific command-line options

SEE ALSO
nlist(3X), uncompvm(1M)

2

SETMNT(1M) SETMNT(1M)hh

NAME
setmnt − establish mount table

SYNOPSIS
/sbin/setmnt [−−f mtab]

DESCRIPTION
setmnt creates the /etc/mtab table, which is used by the mount(1M) and umount commands, among others.
If given the −−f option, it creates an alternate mtab . setmnt reads standard input and writes an entry in
mtab(4) format for each line read. Input lines have the format:

fsname dir

where fsname is the name of the file system’s special file (for example, /dev/dsk/dks?d?s?) and dir is the
mount-point of that file system. Thus, fsname and dir become the first two strings in the mount table
entry.

FILES
/etc/mtab

SEE ALSO
devnm(1M), mount(1M).

BUGS
Problems may occur if fsname or dir is longer than 127 characters.

1

SH(1) SH(1)hh

NAME
sh, jsh, rsh − shell, the standard/job control/restricted command programming language

SYNOPSIS
sh [−−acefhiknprstuvx] [args]
jsh [−−acefhiknprstuvx] [args]
/usr/lib/rsh [−−acefhiknprstuvx] [args]

DESCRIPTION
sh is a command programming language that executes commands read from a terminal or a file.

jsh is an interface to the shell which provides all the functionality of sh and enables Job Control (see ‘‘Job
Control’’ below).

/usr/lib/rsh is a restricted version of the standard command interpreter sh; it is used to set up login names
and execution environments whose capabilities are more controlled than those of the standard shell. See
‘‘Invocation’’ below for the meaning of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or underscores beginning with a letter
or underscore. A parameter is a name, a digit, or any of the characters ∗∗ , @, #, ?, −−, $, and !.

Commands
A simple-command is a sequence of non-blank words separated by blanks . The first word specifies the
name of the command to be executed. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as argument 0 (see exec(2)). The
value of a simple-command is its exit status if it terminates normally, or (octal) 200+status if it terminates
abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by J. The standard output of each command
but the last is connected by a pipe(2) to the standard input of the next command. Each command is run as
a separate process; the shell waits for the last command to terminate. The exit status of a pipeline is the
exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or J J, and optionally terminated by ; or
&. Of these four symbols, ; and & have equal precedence, which is lower than that of && and J J. The
symbols && and J J also have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline (i.e., the
shell does not wait for that pipeline to finish). The symbol && (J J) causes the list following it to be exe-
cuted only if the preceding pipeline returns a zero (non-zero) exit status. An arbitrary number of new-
lines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise stated, the value returned
by a command is that of the last simple-command executed in the command.

1

SH(1) SH(1)hh

for name [in word . . .] do list done
Each time a for command is executed, name is set to the next word taken from the in word list. If
in word . . . is omitted, then the for command executes the do list once for each positional param-
eter that is set (see Parameter Substitution below). Execution ends when there are no more words
in the list.

case word in [pattern [J pattern] . . .) list ;;] . . . esac
A case command executes the list associated with the first pattern that matches word . The form of
the patterns is the same as that used for file-name generation (see ‘‘File Name Generation’’)
except that a slash, a leading dot, or a dot immediately following a slash need not be matched
explicitly.

if list then list [elif list then list] . . . [else list] fi
The list following if is executed and, if it returns a zero exit status, the list following the first then
is executed. Otherwise, the list following elif is executed and, if its value is zero, the list follow-
ing the next then is executed. Failing that, the else list is executed. If no else list or then list is
executed, then the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit status of the last command in
the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do list
are executed, then the while command returns a zero exit status; until may be used in place of
while to negate the loop termination test.

(list)
Execute list in a sub-shell.

{list;}
list is executed in the current (that is, parent) shell. The { must be followed by a space.

name () {list;}
Define a function which is referenced by name. The body of the function is the list of commands
between { and }. The list may appear on the same line as the {. If it does, the { and list must be
separated by a space. The } may not be on the same line as list; it must be on a newline. Execu-
tion of functions is described below (see Execution). The { and } are unnecessary if the body of
the function is a command as defined above, under ‘‘Commands.’’

The following words are only recognized as the first word of a command and when not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following characters up to a new-line to be ignored.

Command Substitution
The shell reads commands from the string between two grave accents (` `) and the standard output from
these commands may be used as all or part of a word. Trailing new-lines from the standard output are
removed.

2

SH(1) SH(1)hh

No interpretation is done on the string before the string is read, except to remove backslashes (\) used to
escape other characters. Backslashes may be used to escape a grave accent (`) or another backslash (\)
and are removed before the command string is read. Escaping grave accents allows nested command
substitution. If the command substitution lies within a pair of double quotes (" ...` ...` ... "), a backslash
used to escape a double quote (\") will be removed; otherwise, it will be left intact.

If a backslash is used to escape a new-line character (\new-line), both the backslash and the new-line are
removed (see the later section on "Quoting"). In addition, backslashes used to escape dollar signs (\$) are
removed. Since no interpretation is done on the command string before it is read, inserting a backslash to
escape a dollar sign has no effect. Backslashes that precede characters other than \, `, ", new-line, and $
are left intact when the command string is read.

Parameter Substitution
The character $ is used to introduce substitutable parameters . There are two types of parameters, posi-
tional and keyword. If parameter is a digit, it is a positional parameter. Positional parameters may be
assigned values by set. Keyword parameters (also known as variables) may be assigned values by writ-
ing:

name=value [name=value] . . .

Pattern-matching is not performed on value. There cannot be a function and a variable with the same
name .

${parameter}
The value, if any, of the parameter is substituted. The braces are required only when parameter is
followed by a letter, digit, or underscore that is not to be interpreted as part of its name. If param-
eter is ∗∗ or @, all the positional parameters, starting with $1, are substituted (separated by spaces).
Parameter $0 is set from argument zero when the shell is invoked.

${parameter :−−word}
If parameter is set and is non-null, substitute its value; otherwise substitute word .

${parameter :=word}
If parameter is not set or is null set it to word ; the value of the parameter is substituted. Positional
parameters may not be assigned to in this way.

${parameter :?word}
If parameter is set and is non-null, substitute its value; otherwise, print word and exit from the
shell. If word is omitted, the message ‘‘parameter null or not set’’ is printed.

${parameter :+word}
If parameter is set and is non-null, substitute word ; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the following
example, pwd is executed only if d is not set or is null:

echo ${d:−`pwd` }

3

SH(1) SH(1)hh

If the colon (:) is omitted from the above expressions, the shell only checks whether parameter is set or
not.

The following parameters are automatically set by the shell:
* Expands to the positional parameters, beginning with 1.
@ Expands to the positional parameters beginning with 1, except when expanded within

double quotes, in which case each positional parameter expands as a separate field.
The number of positional parameters in decimal.
−− Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed command.
$ The process number of this shell. $ reports the process ID of the parent shell in all shell

constructs, including pipelines, and in parenthesized sub-shells.
! The process number of the last background command invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command, set to the user’s login

directory by login(1) from the password file [see passwd(4)].
PATH The search path for commands (see Execution below). The user may not change PATH if

executing under rsh.
CDPATH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail file and the MAILPATH parameter is not set,

the shell informs the user of the arrival of mail in the specified file.
MAILCHECK

This parameter specifies how often (in seconds) the shell will check for the arrival of mail
in the files specified by the MAILPATH or MAIL parameters. The default value is 600
seconds (10 minutes). If set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the shell informs the user
of the arrival of mail in any of the specified files. Each file name can be followed by %
and a message that will be printed when the modification time changes. The default mes-
sage is you have mail .

PS1 Primary prompt string, by default ‘‘$ ’’.
PS2 Secondary prompt string, by default ‘‘> ’’.
IFS Internal field separators, normally space, tab, and new-line.
SHACCT

If this parameter is set to the name of a file writable by the user, the shell will write an
accounting record in the file for each shell procedure executed.

4

SH(1) SH(1)hh

SHELL When the shell is invoked, it scans the environment (see ‘‘Environment’’ below) for this
name. If it is found and ’rsh’ is the filename part of its value, the shell becomes a res-
tricted shell.

The shell gives default values to PATH, PS1, PS2, MAILCHECK and IFS. HOME and MAIL are set by
login(1).

Blank Interpretation
After parameter and command substitution, the results of substitution are scanned for internal field
separator characters (those found in IFS) and split into distinct arguments where such characters are
found. Explicit null arguments ("" or ´ ´) are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed. The original whitespace characters (space, tab, and newline)
are always considered internal field separators.

Input/Output
A command’s input and output may be redirected using a special notation interpreted by the shell. The
following may appear anywhere in a simple-command or may precede or follow a command and are not
passed on as arguments to the invoked command. Note that parameter and command substitution
occurs before word or digit is used.

<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If the file does not exist it is created;

otherwise, it is truncated to zero length.
>>word Use file word as standard output. If the file exists output is appended to it (by first seek-

ing to the end-of-file); otherwise, the file is created.
<<[−−]word After parameter and command substitution is done on word , the shell input is read up to

the first line that literally matches the resulting word , or to an end-of-file. If, however, −− is
appended to <<:
1) leading tabs are stripped from word before the shell input is read (but after parameter

and command substitution is done on word),
2) leading tabs are stripped from the shell input as it is read and before each line is com-

pared with word , and
3) shell input is read up to the first line that literally matches the resulting word , or to an

end-of-file.
If any character of word is quoted (see "Quoting," later), no additional processing is done
to the shell input. If no characters of word are quoted:
1) parameter and command substitution occurs,
2) (escaped) \new-line is ignored, and
3) \ must be used to quote the characters \, $, and `.

5

SH(1) SH(1)hh

The resulting document becomes the standard input.
<&digit Use the file associated with file descriptor digit as standard input. Similarly for the stan-

dard output using >&digit.
<&−− The standard input is closed. Similarly for the standard output using >&−−.

If any of the above is preceded by a digit, the file descriptor which will be associated with the file is that
specified by the digit (instead of the default 0 or 1). For example:

. . . 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates redirections left-to-right.
For example:

. . . 1>xxx 2>&1

first associates file descriptor 1 with file xxx . It associates file descriptor 2 with the file associated with file
descriptor 1 (i.e., xxx). If the order of redirections were reversed, file descriptor 2 would be associated
with the terminal (assuming file descriptor 1 had been) and file descriptor 1 would be associated with file
xxx .

Using the terminology introduced on the first page, under ‘‘Commands,’’ if a command is composed of
several simple commands, redirection will be evaluated for the entire command before it is evaluated for
each simple command. That is, the shell evaluates redirection for the entire list, then each pipeline within
the list, then each command within each pipeline, then each list within each command.

If a command is followed by & the default standard input for the command is the empty file /dev/null.
Otherwise, the environment for the execution of a command contains the file descriptors of the invoking
shell as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

File Name Generation
Before a command is executed, each command word is scanned for the characters ∗∗ , ?, and [. If one of
these characters appears the word is regarded as a pattern . The word is replaced with alphabetically
sorted file names that match the pattern. If no file name is found that matches the pattern, the word is left
unchanged. The character . at the start of a file name or immediately following a /, as well as the character
/ itself, must be matched explicitly.

∗∗ Matches any string, including the null string.
? Matches any single character.
[. . .] Matches any one of the enclosed characters. A pair of characters separated by −− matches

any character lexically between the pair, inclusive. If the first character following the
opening ``[´´ is a ‘‘!’’ any character not enclosed is matched.

6

SH(1) SH(1)hh

Quoting
The following characters have a special meaning to the shell and cause termination of a word unless
quoted:

; & () J ˆ < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with a backslash (\) or inserting it
between a pair of quote marks (´ ´ or ""). During processing, the shell may quote certain characters to
prevent them from taking on a special meaning. Backslashes used to quote a single character are
removed from the word before the command is executed. The pair \new-line is removed from a word
before command and parameter substitution.

All characters enclosed between a pair of single quote marks (´ ´), except a single quote, are quoted by
the shell. Backslash has no special meaning inside a pair of single quotes. A single quote may be quoted
inside a pair of double quote marks (for example, "´ ").

Inside a pair of double quote marks (""), parameter and command substitution occurs and the shell
quotes the results to avoid blank interpretation and file name generation. If $∗∗ is within a pair of double
quotes, the positional parameters are substituted and quoted, separated by quoted spaces ("$1 $2 . . .");
however, if $@ is within a pair of double quotes, the positional parameters are substituted and quoted,
separated by unquoted spaces ("$1" "$2" . . .). \ quotes the characters \, `, ", and $. The pair \new-line
is removed before parameter and command substitution. If a backslash precedes characters other than \,

`, ", $, and new-line, then the backslash itself is quoted by the shell.

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a command. If at any
time a new-line is typed and further input is needed to complete a command, the secondary prompt (i.e.,
the value of PS2) is issued.

Environment
The environment (see environ(5)) is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list. The shell interacts with the environment in several ways. On invo-
cation, the shell scans the environment and creates a parameter for each name found, giving it the
corresponding value. If the user modifies the value of any of these parameters or creates new parameters,
none of these affects the environment unless the export command is used to bind the shell’s parameter to
the environment (see also set -a). A parameter may be removed from the environment with the unset
command. The environment seen by any executed command is thus composed of any unmodified
name-value pairs originally inherited by the shell, minus any pairs removed by unset, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more assign-
ments to parameters. Thus:

TERM=450 cmd and
(export TERM; TERM=450; cmd)

7

SH(1) SH(1)hh

are equivalent (as far as the execution of cmd is concerned if cmd is not a Special Command). If cmd is a
Special Command, then

TERM=45 cmd

will modify the TERM variable in the current shell.

If the −−k flag is set, all keyword arguments are placed in the environment, even if they occur after the
command name. The following first prints a=b c and c:

echo a=b c
set −k
echo a=b c

Signals
When a command is run in the background (cmd &) under sh, it can receive INTERRUPT and QUIT sig-
nals but ignores them by default. [A background process can override this default behavior via trap or
signal. For details, see the description of trap, below, or signal(2).] When a command is run in the
background under jsh, however, it does not receive INTERRUPT or QUIT signals.

Otherwise signals have the values inherited by the shell from its parent, with the exception of signal 11
(SIGSEGV). See also the trap command below.

Execution
Each time a command is executed, the command substitution, parameter substitution, blank interpreta-
tion, input/output redirection, and filename generation listed above are carried out. If the command
name matches the name of a defined function, the function is executed in the shell process (note how this
differs from the execution of shell procedures). If the command name does not match the name of a
defined function, but matches one of the ‘‘Special Commands’’ listed below, it is executed in the shell pro-
cess. The positional parameters $1, $2, are set to the arguments of the function. If the command
name matches neither a Special Command nor the name of a defined function, a new process is created and
an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the command. Alternative
directory names are separated by a colon (:). The default path is
:/usr/sbin:/usr/bsd:/bin:/usr/bin:/usr/bin/X11 (specifying the current directory, /usr/sbin, /usr/bsd, /bin,
/usr/bin, and /usr/bin/X11, in that order). Note that the current directory is specified by a null path name,
which can appear immediately after the equal sign, between two colon delimiters anywhere in the path
list, or at the end of the path list. If the command name contains a / the search path is not used; such com-
mands will not be executed by the restricted shell. Otherwise, each directory in the path is searched for
an executable file. If the file has execute permission but is not an a.out file, it is assumed to be a file con-
taining shell commands. A sub-shell is spawned to read it. A parenthesized command is also executed in
a sub-shell.

The location in the search path where a command was found is remembered by the shell (to help avoid
unnecessary execs later). If the command was found in a relative directory, its location must be re-
determined whenever the current directory changes. The shell forgets all remembered locations when-
ever the PATH variable is changed or the hash -r command is executed (see below).

8

SH(1) SH(1)hh

Special Commands
Input/output redirection is now permitted for these commands. File descriptor 1 is the default output
location. When Job Control is enabled, additional Special Commands are added to the shell’s environ-
ment (see ‘‘Job Control’’).

: No effect; the command does nothing. A zero exit code is returned.
. file Read and execute commands from file and return. The search path specified by PATH is used to

find the directory containing file.
break [n]

Exit from the enclosing for or while loop, if any. If n is specified break n levels.
continue [n]

Resume the next iteration of the enclosing for or while loop. If n is specified resume at the n-th
enclosing loop.

cd [arg]
Change the current directory to arg . The shell parameter HOME is the default arg . The shell
parameter CDPATH defines the search path for the directory containing arg . Alternative direc-
tory names are separated by a colon (:). The default path is <null> (specifying the current direc-
tory). Note that the current directory is specified by a null path name, which can appear immedi-
ately after the equal sign or between the colon delimiters anywhere else in the path list. If arg
begins with a / the search path is not used. Otherwise, each directory in the path is searched for
arg . The cd command may not be executed by rsh.

echo [arg . . .]
Echo arguments. See echo(1) for usage and description.

eval [arg . . .]
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg . . .]
The command specified by the arguments is executed in place of this shell without creating a new
process. Input/output arguments may appear and, if no other arguments are given, cause the
shell input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omitted the exit status is that of the
last command executed (an end-of-file will also cause the shell to exit.)

export [name . . .]
The given names are marked for automatic export to the environment of subsequently-executed
commands. If no arguments are given, variable names that have been marked for export during
the current shell’s execution are listed. (Variable names exported from a parent shell are listed
only if they have been exported again during the current shell’s execution.) Function names are
not exported.

9

SH(1) SH(1)hh

getopts
Use in shell scripts to support command syntax standards (see intro(1)); it parses positional
parameters and checks for legal options. See getopts (1) for usage and description.

hash [−−r] [name . . .]
For each name , the location in the search path of the command specified by name is determined
and remembered by the shell. The -r option causes the shell to forget all remembered locations.
If no arguments are given, information about remembered commands is presented. Hits is the
number of times a command has been invoked by the shell process. Cost is a measure of the work
required to locate a command in the search path. If a command is found in a "relative" directory
in the search path, after changing to that directory, the stored location of that command is recal-
culated. Commands for which this will be done are indicated by an asterisk (∗∗) adjacent to the
hits information. Cost will be incremented when the recalculation is done.

limit [−−h] [resource [maximum-use]]
Limits the consumption by the current process and each process it creates to not individually
exceed maximum-use on the specified resource. If no maximum-use is given, then the current limit is
printed; if no resource is given, then all limitations are given. If the −−h flag is given, the hard limits
are used instead of the current limits. The hard limits impose a ceiling on the values of the
current limits. Only the super-user may raise the hard limits, but a user may lower or raise the
current limits within the legal range.

Resources controllable currently include cputime, the maximum number of cpu-seconds to be
used by each process, filesize, the largest single file which can be created, datasize, the maximum
growth of the data region via sbrk(2) beyond the end of the program text, stacksize, the maximum
size of the automatically-extended stack region, coredumpsize, the size of the largest core dump
that will be created, memoryuse, the maximum amount of physical memory a process may have
allocated to it at a given time, descriptors, the maximum number of open files, and vmemory, the
maximum total virtual size of the process, including text, data, heap, shared memory, mapped
files, stack, etc..

The maximum-use may be given as a (floating point or integer) number followed by a scale factor.
For all limits other than cputime the default scale is ‘k’ or ‘kilobytes’ (1024 bytes); a scale factor of
‘m’ or ‘megabytes’ may also be used. For cputime the default scaling is ‘seconds’, while ‘m’ for
minutes or ‘h’ for hours, or a time of the form ‘mm:ss’ giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the names suffice.
newgrp [arg . . .]

Equivalent to exec newgrp arg See newgrp(1) for usage and description.
pwd Print the current working directory. See pwd(1) for usage and description.

10

SH(1) SH(1)hh

read [name . . .]
One line is read from the standard input and, using the internal field separator, IFS (normally
space or tab), to delimit word boundaries, the first word is assigned to the first name, the second
word to the second name, etc., with leftover words assigned to the last name. Lines can be contin-
ued using \new-line. Characters other than new-line can be quoted by preceding them with a
backslash. These backslashes are removed before words are assigned to names, and no interpreta-
tion is done on the character that follows the backslash. The return code is 0 unless an end-of-file
is encountered.

readonly [name . . .]
The given names are marked readonly and the values of the these names may not be changed by
subsequent assignment. If no arguments are given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is omitted, the return status is
that of the last command executed.

set [−−−−aefhkntuvx [arg . . .]]
−−a Mark variables which are modified or created for export.
−−e Exit immediately if a command exits with a non-zero exit status.
−−f Disable file name generation
−−h Locate and remember function commands as functions are defined (function commands

are normally located when the function is executed).
−−k All keyword arguments are placed in the environment for a command, not just those that

precede the command name.
−−n Read commands but do not execute them.
−−t Exit after reading and executing one command.
−−u Treat unset variables as an error when substituting.
−−v Print shell input lines as they are read.
−−x Print commands and their arguments as they are executed.
−−−− Do not change any of the flags; useful in setting $1 to −−.
Using + rather than −− causes these flags to be turned off. These flags can also be used upon invo-
cation of the shell. The current set of flags may be found in $−−. The remaining arguments are
positional parameters and are assigned, in order, to $1, $2, If no arguments are given the
values of all names are printed.

shift [n]
The positional parameters from $n+1 . . . are renamed $1 If n is not given, it is assumed to be
1.

test
Evaluate conditional expressions. See test(1) for usage and description.

11

SH(1) SH(1)hh

times
Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] . . .
The command arg is to be read and executed when the shell receives signal(s) n. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) Trap commands are executed
in order of signal number. Any attempt to set a trap on a signal that was ignored on entry to the
current shell is ineffective. An error results when an attempt is made to trap signal 11
(SIGSEGV—segmentation fault). If arg is absent all trap(s) n are reset to their original values. If
arg is the null string this signal is ignored by the shell and by the commands it invokes. If n is 0
the command arg is executed on exit from the shell. The trap command with no arguments prints
a list of commands associated with each signal number.

type [name . . .]
For each name, indicate how it would be interpreted if used as a command name.

ulimit [n]
Impose a size limit of n blocks on files written by the shell and its child processes (files of any size
may be read). If n is omitted, the current limit is printed. You may lower your own ulimit, but
only a super-user (see su(1M)) can raise a ulimit.

umask [nnn]
The user file-creation mask is set to nnn (see umask(1)). If nnn is omitted, the current value of the
mask is printed.

unlimit [−−h] [resource]
Removes the limitation on resource. If no resource is specified, then all resource limitations are
removed. If −−h is given, the corresponding hard limits are removed. Only the super-user may do
this.

unset [name . . .]
For each name, remove the corresponding variable or function. The variables PATH, PS1, PS2,
MAILCHECK and IFS cannot be unset.

wait [n]
Wait for your background process whose process id is n and report its termination status. If n is
omitted, all your shell’s currently active background processes are waited for and the return code
will be zero.

Invocation
If the shell is invoked through exec(2) and the first character of argument zero is −−, commands are initially
read from /etc/profile and from $HOME/.profile , if such files exist. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as /bin/sh. The flags below are inter-
preted by the shell on invocation only; Note that unless the −−c or −−s flag is specified, the first argument is
assumed to be the name of a file containing commands, and the remaining arguments are passed as posi-
tional parameters to that command file:

12

SH(1) SH(1)hh

−−c string If the −−c flag is present commands are read from string.

−−s If the −−s flag is present or if no arguments remain commands are read from the standard
input. Any remaining arguments specify the positional parameters. Shell output (except for
Special Commands) is written to file descriptor 2.

−−i If the −−i flag is present or if the shell input and output are attached to a terminal, this shell is
interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interactive shell)
and INTERRUPT is caught and ignored (so that wait is interruptible). In all cases, QUIT is
ignored by the shell.

−−p If the −−p flag is present, the shell skips the processing of the system profile (/etc/profile)
and the user profile (.profile) when it starts.

−−r If the −−r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

Job Control (jsh)
When the shell is invoked as jsh, Job Control is enabled in addition to all of the functionality described
previously for sh. Typically Job Control is enabled for the interactive shell only. Non-interactive shells
typically do not benefit from the added functionality of Job Control.

With Job Control enabled every command or pipeline the user enters at the terminal is called a job. All
jobs exist in one of the following states: foreground, background, or stopped. These terms are defined as
follows: 1) a job in the foreground has read and write access to the controlling terminal; 2) a job in the
background is denied read access and has conditional write access to the controlling terminal [see
stty(1)]; 3) a stopped job is a job that has been placed in a suspended state, usually as a result of a
SIGTSTP signal [see signal(2)]. Jobs in the foreground can be stopped by INTERRUPT or QUIT sig-
nals from the keyboard; background jobs cannot be stopped by these signals.

Every job the shell starts is assigned a positive integer, called a job number, which is tracked by the shell
and is used, later, as an identifier to indicate a specific job. Additionally the shell keeps track of the
current and previous jobs. The current job is the most recent job to be started or restarted. The previous job
is the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

%jobid

where, jobid may be specified in any of the following formats:

% or + for the current job

− for the previous job

?<string> specify the job for which the command line uniquely contains string.

n for job number n, where n is a job number

13

SH(1) SH(1)hh

pref where pref is a unique prefix of the command name (for example, if the command ls
−l foo were running in the background, it could be referred to as %ls); pref cannot
contain blanks unless it is quoted.

When Job Control is enabled, the following commands are added to the user’s environment to manipu-
late jobs:

bg [%jobid . . .]
Resumes the execution of a stopped job in the background. If %jobid is omitted the current job is
assumed.

fg [%jobid . . .]
Resumes the execution of a stopped job in the foreground, also moves an executing background
job into the foreground. If %jobid is omitted the current job is assumed.

jobs [−p|−l] [%jobid . . .]

jobs −x command [arguments]
Reports all jobs that are stopped or executing in the background. If %jobid is omitted, all jobs that
are stopped or running in the background will be reported. The following options will
modify/enhance the output of jobs:

−l Report the process group ID and working directory of the jobs.

−p Report only the process group ID of the jobs.

−x Replace any jobid found in command or arguments with the corresponding process group
ID, and then execute command passing it arguments.

kill [−signal] %jobid
Builtin version of kill to provide the functionality of the kill command for processes
identified with a jobid.

stop %jobid . . .
Stops the execution of a background job(s).

suspend
Stops the execution of the current shell (but not if it is the login shell).

wait [%jobid . . .]
wait builtin accepts a job identifier. If %jobid is omitted, wait behaves as described above
under ‘‘Special Commands.’’

Restricted Shell (/usr/lib/rsh) Only
/usr/lib/rsh is used to set up login names and execution environments whose capabilities are more
controlled than those of the standard shell. The actions of /usr/lib/rsh are identical to those of sh,
except that the following are disallowed:

changing directory (see cd(1)),
setting the value of $PATH,
specifying path or command names containing /,
redirecting output (> and >>).

14

SH(1) SH(1)hh

The restrictions above are enforced after .profile is interpreted.

A restricted shell can be invoked in one of the following ways: (1) rsh is the file name part of the last entry
in the /etc/passwd file (see passwd(4)); (2) the environment variable SHELL exists and rsh is the file name
part of its value; (3) the shell is invoked and rsh is the file name part of argument 0; (4) the shell is invoke
with the −−r option.

When a command to be executed is found to be a shell procedure, /usr/lib/rsh invokes sh to execute it.
Thus, it is possible to provide to the end-user shell procedures that have access to the full power of the
standard shell, while imposing a limited menu of commands; this scheme assumes that the end-user does
not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile (see profile(4)) has complete control over user
actions by performing guaranteed setup actions and leaving the user in an appropriate directory (prob-
ably not the login directory).

The system administrator often sets up a directory of commands (ie., /usr/rbin that can be safely invoked
by a restricted shell. Some systems also provide a restricted editor, red.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. If the
shell is being used non-interactively execution of the shell file is abandoned. Otherwise, the shell returns
the exit status of the last command executed (see also the exit command above).

jsh Only
If the shell is invoked as jsh and an attempt is made to exit the shell while there are stopped jobs, the
shell issues one warning:

UX:jsh:WARNING:there are stopped jobs

This is the only message. If another exit attempt is made, and there are still stopped jobs they will be sent
a SIGHUP signal from the kernel and the shell is exited.

FILES
/etc/profile
$HOME/.profile
/tmp/sh∗
/dev/null

SEE ALSO
cd(1), dup(2), echo(1), env(1), exec(2), fork(2), getopts(1), getrlimit(2), intro(1), login(1), newgrp(1),
pipe(2), profile(4), pwd(1), signal(2), test(1), ulimit(2), umask(1), wait(1)

CAVEATS
Positional parameters have a range of 0 to 9. Attempting to use the positional parameter $10 gives the
contents of $1 followed by a ’0’, which is probably not the desired result.

15

SH(1) SH(1)hh

Words used for filenames in input/output redirection are not interpreted for filename generation (see
‘‘File Name Generation,’’ above). For example, cat file1 >a∗∗ will create a file named a∗∗ .

Because commands in pipelines are run as separate processes, variables set in a pipeline have no effect on
the parent shell.

If you get the error message cannot fork, too many processes, try using the wait (1) command to clean up
your background processes. If this doesn’t help, the system process table is probably full or you have too
many active foreground processes. (There is a limit to the number of process ids associated with your
login, and to the number the system can keep track of.)

BUGS
Only the last process in a pipeline can be waited for.

If a command is executed, and a command with the same name is installed in a directory in the search
path before the directory where the original command was found, the shell will continue to exec the origi-
nal command. Use the hash command to correct this situation.

Prior to Irix Release 5.0, the rsh command invoked the restricted shell. This restricted shell command is
/usr/lib/rsh and it can be executed by using the full pathname. Beginning with Irix Release 5.0, the
rsh command is the remote shell. See rsh_bsd(1).

16

shadow(4) shadow(4)hh

NAME
shadow − shadow password file

DESCRIPTION
/etc/shadow is an access-restricted ASCII system file. The fields for each user entry are separated by
colons. Each user is separated from the next by a new-line. Unlike the /etc/passwd file,
/etc/shadow does not have general read permission. To create /etc/shadow from /etc/passwd
use the pwconv command [see pwconv(1M)].

Here are the fields in /etc/shadow:

username The user’s login name (ID).

password A 13-character encrypted password for the user, a lock string to indicate that the login is
not accessible, or no string to show that there is no password for the login.

lastchanged The number of days between January 1, 1970, and the date that the password was last
modified.

minimum The minimum number of days required between password changes.

maximum The maximum number of days the password is valid.

warn The number of days before password expires that the user is warned.

inactive The number of days of inactivity allowed for that user.

expire An absolute date specifying when the login may no longer be used.

flag Reserved for future use, set to zero. Currently not used.

The encrypted password consists of 13 characters chosen from a 64-character alphabet (., /, 0−9, A−Z,
a−z).

To update this file, use the passwd command.

FILES
/etc/shadow

SEE ALSO
login(1), passwd(1), passmgmt(1M), pwconv(1M), passwd(4).
getspent(3C), putspent(3C).

NOTES
Shadow passwords may be used with NIS entries. If the shadow password file is present, each NIS entry
must have a distinct shadow password entry, and the NIS-supplied encrypted password is not used. This
effectively precludes the use of the NIS wildcard entry, +::-1:-1::: or netgroup (+@) expansions.

1

STUNE(4) STUNE(4)hh

NAME
stune − local settings for system tunable parameters

DESCRIPTION
The file /var/sysgen/stune contains local system settings for tunable parameters. The parameter settings in
this file replace the default values specified in /var/sysgen/mtune/*, if the new values are within the legal
range for the specified parameter. Blank lines and lines beginning with the ‘‘#’’ or ‘‘*’’ characters are con-
sidered comments and are ignored. The file contains one line for each parameter to be reset. The syntax
for each line is :

<parameter name> = <value>

parameter name: This is the name of the tunable parameter.

value: This field contains the new value for the tunable parameter.

The file stune normally resides in /var/sysgen. You may edit this file, as root, as you find necessary. How-
ever, it is suggested that you use the system tuning tool, systune(1M), instead of making changes directly
to the stune file. systune makes specified changes in the stune file for you. You should never directly edit
the default configuration files in the mtune directory.

FILES
/var/sysgen/mtune/*

default system parameters
/var/sysgen/stune local settings for system tunable parameters

SEE ALSO
mtune(4)
lboot(1M), systune(1M)

1

STATD(1M) STATD(1M)hh

NAME
statd − network status monitor daemon

SYNOPSIS
/usr/etc/rpc.statd

DESCRIPTION
statd is an intermediate version of the status monitor. It implements a simple protocol which allows appli-
cations to monitor the status of other machines. lockd(1M) uses statd to detect both client and server
failures.

statd is started during system initialization if the chkconfig(1M) ‘‘lockd’’ flag is set on.

Applications use RPC to register machines they want monitored by statd . The status monitor maintains a
database of machines to track and the corresponding applications to notify of crashes. It also maintains a
database of machines to notify upon recovery of its own host machine and a counter of the number of
times it has "recovered".

FILES
/var/statmon/sm machines to monitor
/var/statmon/sm.bak machines to notify upon recovery
/var/statmon/state recovery counter (a.k.a. version number)

SEE ALSO
network(1M), lockd(1M), statmon(4)

BUGS
The crash of a site is only detected upon its recovery.

1

SU(1M) SU(1M)hh

NAME
su − become super-user or another user

SYNOPSIS
su [−−] [name [arg . . .]]

DESCRIPTION
su allows one to become another user without logging off. The default user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (except as described below). If the password is
correct, su will execute a new shell with the real and effective user ID set to that of the specified user. The
new shell will be the optional program named in the shell field of the specified user’s password file entry
(see passwd(4)), or /bin/sh if none is specified (see sh(1)). To restore normal user ID privileges, type an
EOF (cntrl-d) to the new shell.

Su prompts for a password if the specified user’s account has one. However, su will not prompt you if
your user name is root or your name is listed in the specified user’s .rhosts file as:

localhost your_name

(The hostname of "localhost" is shorthand for the machine’s name.)

Any additional arguments given on the command line are passed to the program invoked as the shell.
When using programs like sh(1), an arg of the form −−c string executes string via the shell and an arg of −−r
will give the user a restricted shell.

Su reads /etc/default/su to determine default behavior. To change the defaults, the system administrator
should edit this file. Recognized values are:

SULOG=file # Use file as the su log file.
CONSOLE=device # Log successful attempts to su root to device.
SUPATH=path # Use path as the PATH for root.
PATH=path # Use path as the PATH for normal users.
SYSLOG=FAIL # Log to syslog all failures (SYSLOG=FAIL)

or all successes and failures (SYSLOG=ALL).

The following statements are true only if the optional program named in the shell field of the specified
user’s password file entry is like sh(1). If the first argument to su is a −−, the environment will be changed
to what would be expected if the user actually logged in as the specified user. This is done by invoking
the program used as the shell with an arg0 value whose first character is −−, thus causing first the system’s
profile (/etc/profile) and then the specified user’s profile (.profile in the new HOME directory) to be exe-
cuted.

Otherwise, the environment is passed along with the possible exception of $PATH, which is set to

/usr/sbin:/usr/bsd:/sbin:/usr/bin:/bin:/etc:/usr/etc:/usr/bin/X11

for root. Note that if the optional program used as the shell is /bin/sh, the user’s .profile can check arg0
for −−sh or −−su to determine if it was invoked by login(1) or su(1), respectively. If the user’s program is
other than /bin/sh, then .profile is invoked with an arg0 of −−program by both login(1) and su(1).

1

SU(1M) SU(1M)hh

All attempts to become another user using su are logged in the log file /var/adm/sulog by default.

EXAMPLES
To become user bin while retaining your previously exported environment, execute:

su bin

To become user bin but change the environment to what would be expected if bin had originally logged
in, execute:

su − bin
To execute command with the temporary environment and permissions of user bin, type:

su − bin −c "command args"

FILES
/etc/passwd system’s password file
/etc/profile system’s initialization script for /bin/sh users
/etc/cshrc system’s initialization script for /bin/csh users
$HOME/.profile /bin/sh user’s initialization script
$HOME/.cshrc /bin/csh user’s initialization script
$HOME/.rhosts user’s list of trusted users
/var/adm/sulog log file
/etc/default/su defaults file

SEE ALSO
env(1), login(1), sh(1), passwd(4), cshrc(4), profile(4), rhosts(4), environ(5)

2

SYMMON(1M) SYMMON(1M)hh

NAME
symmon − kernel symbolic debugger

DESCRIPTION
Symmon is a standalone program used to debug the kernel. It is intended to be used only by those
involved in writing and debugging device drivers or other parts of the kernel. The implementation of
symmon is machine dependent and the commands and functionality described here may not apply to all
machines.

To use symmon, several steps must be taken to prepare the machine. First, symmon is not installed on
the system as shipped from the factory and must be manually installed by the user. This can be done by
installing the ‘‘Debugging Kernels’’ subsystem in the development option tape. Second, alterations must
be done to the file /var/sysgen/system/irix.sm to build a kernel capable of being debugged; see the com-
ments in that file for details. Third, the program setsym needs to be run on the newly generated kernel to
allow symmon to recognize symbols in it. Finally, symmon needs to be installed in the volume header of
the root drive with dvhtool(1M). This will normally happen as part of the software installation process.

Symmon is typically used with a terminal as the system console (see prom(1M) for information on how to
enable a terminal as the console). When a debug kernel is booted, it will automatically try to load sym-
mon from the same source. Once symmon is loaded, the system will operate normally until symmon is
triggered by the keyboard, or an exceptional condition happens in the kernel that causes it to enter the
debugger automatically. To enter symmon from the keyboard, a control-a is typed. Symmon prompts
with ‘‘DBG:’’ and accepts commands described below.

Built-in Commands
Symmon has a set of basic commands for setting and clearing breakpoints and examining machine state.
Not all of the commands listed below are supported on all machines. Some commands take memory
addresses as arguments. Address may be given either directly in decimal, in hex if preceded by ‘‘0x’’, in
binary if preceded with ‘‘0b’’, as names of functions or data, as names of registers if preceded by ‘‘$’’, or
as a combination of those with ‘‘+’’ and ‘‘-’’. Some commands take a range of addresses specified as
either ‘‘ADDR:ADDR’’ for an inclusive range or ‘‘ADDR#COUNT’’ for a count of COUNT starting at
ADDR. Commands are listed below:

brk [ADDR]
Set a breakpoint at the given address. If no arguments are given, the set of current breakpoints is
listed.

bt [MAX_FRM]
Print a stack back trace of up to MAX_FRM frames. See the discussion about ubt below for an
alternate form of stack back trace.

c Continue execution from a breakpoint.

cacheflush [RANGE]
Flush both the instruction and data caches over the range of address given.

1

SYMMON(1M) SYMMON(1M)hh

calc

call ADDR [ARGLIST]
Set up a stack frame and call the procedure at the specified address.

clear Clear the screen.

dis [RANGE]
Disassemble instructions in memory over the range specified.

dump [-b||-h||-w] [-o||-d||-x||-c] RANGE
Dump the contents of memory. The -b , -h , and -w , flags may be used to specify byte, halfword,
or full word data and the -o, -d , -x , and -c flags may be used to specify octal, decimal, hexade-
cimal, or ASCII data formats.

The specified range of memory to dump may take the form: a) base for a single location, b)
base#count for count locations starting at base, or c) base:limit for locations whose addresses are
greater than or equal to base but less than limit.

g [-b||-h||-w] [ADDR||$regname]
Get and display the contents of memory at the address given. If a register name is given, its con-
tents are displayed at the time the kernel was stopped.

goto ADDR
Continue execution until the given address or a breakpoint is reached. This is a short hand way
to set a breakpoint at an address, continue, and then remove that breakpoint.

help List a short summary of the built-in commands.

hx NAME
The symbol table is searched for entries matching NAME, and if one is found, its value is printed.

kp [KPNAME]
Kernel print command. If no arguments are given, a list of the available kernel print commands
is given. If a name is given, that print function is executed. See the discussion on kernel print
commands below for more information.

lkaddr ADDR
The given address is matched against the symbol table and the symbols near it are listed.

lkup STRING
The given string is matched against the symbol table and any symbol with an equal or longer
name is printed. This is convenient when you cannot remember the precise symbol name.

msyms ID
Print dynamically loaded kernel module’s symbols. The module id is found using either the lboot
-V command or the ml list command. See the mload(4) manual page for more information.

2

SYMMON(1M) SYMMON(1M)hh

nm ADDR
The address given is matched against the symbol table and if an exact match is found, the sym-
bolic name is printed. This is a more restrictive version of the lkaddr command described above.

p [-b||-h||-w] ADDR VALUE
Put the value given into the address given. This causes a write to memory.

printregs
List the contents of the general purpose registers when the kernel was stopped.

quit Restart the PROM.

s [COUNT]
Single step the kernel for either one instruction or the given count. If the current instruction is a
branch, then both it and the following instruction are executed. The next unexecuted instruction
is disassembled when the command completes. After a step command is issued, symmon will
enter a command repeat mode where a null command will cause another step to be taken. This
repeat mode is indicated by a change to the prompt.

S [COUNT]
Same as the step command above, except that jump-and-link instructions are stepped over.

tlbdump [RANGE]
List the contents of the translation lookaside buffer. If specified, the range of tlb entries given is
listed. The range should specify a subset of the 64 tlb slots.

tlbflush [RANGE]
Flush the tlb over the range of entries given or the entire tlb if no range is specified.

tlbmap [-i INDEX] [-n||-d||-g||-v] VADDR PADDR
Inserts an entry in the tlb that maps the virtual address given by VADDR to the physical address
given by PADDR. If specified, the tlb slot given by INDEX is used. The -n, -d, -g, and -v may be
used to turn on the non-cached, dirty, global, and valid bits. The current tlb context number is
used.

tlbpid [PID]
Get or set the current tlb context number. If no argument is given, the current tlb context number
is returned; otherwise, the context number is set to the argument.

tlbptov PADDR
Display tlb entries that map a virtual address to the physical address given.

tlbvtop VADDR [PID]
Find the physical address mapped to the virtual address given by VADDR. If PID is given, then
it is used as the tlb context number in the match; otherwise, the current tlb context number is
used.

3

SYMMON(1M) SYMMON(1M)hh

unbrk [BPNUM]
Remove the breakpoint with the breakpoint number given. The breakpoint number may by
determined by listing the set breakpoints with the brk command.

wpt [r||w||rw] [0||phys addr]
Set a read, write or read/write watch point at on physical address using the R4000 watch point
registers. The address must be double word aligned, and the watch point will trip on any access
within the next eight bytes. An argument of zero clears the watch point. Note that the R4000
only supports one watch point at a time.

[ADDR]/[COUNT][d||D||o||O||x||X||b||s||c||i]
Dump the contents of memory at the given address. This command functions in a similar
manner as the dbx command of the same syntax.

Kernel Print Commands
The kernel extends the set of built-in symmon commands with kernel print commands. These commands
dump various kernel data structures.

proc PROCINDEX
Dump the process structure associated with the given process table index. Note that the process
table index is not the same as the Irix process ID.

user PROCINDEX
Dump the contents of the user structure for the process with the process table index given.

buf BUFNUM
Dump the contents of a buffer structure. The address of the buffer to be dumped is controlled by
the BUFNUM argument. If BUFNUM is a valid K0, K1, or K2 address, then the buffer at that
address is displayed. If BUFNUM is a small integer, it is used as an index into the buffer table. If
BUFNUM is equal to -1, summary information about the buffer pool is displayed.

qbuf DEVICE
Dump the contents of buffers queued for the device given. The device argument is given as the
major/minor device number of the desired device.

pda [CPUID]
Dump the contents of the processor private data area for the processor ID given.

runq Dump the run queue. A short summary of each process waiting for CPU time is listed.

eframe [ADDR]
The exception frame at the given address is displayed. If the address is a small integer, the excep-
tion frame of the process with that process table index is used. The exception frame holds the
contents of the general purpose registers at the time the process last executed.

ubt [PROCINDEX]
User process stack back trace. A stack back trace is listed for the process whose process table
index is given.

4

SYMMON(1M) SYMMON(1M)hh

plist Process table list. This gives an output similar to ps(1) and can be used to find the process table
index number for a process.

pb Dump console print buffer. The contents of the console print buffer are printed. This can be use-
ful when an important message has scrolled off the screen.

SEE ALSO
prom(1M)

5

SYSLOGD(1M) SYSLOGD(1M)hh

NAME
syslogd − log systems messages

SYNOPSIS
/usr/etc/syslogd [−−fconfigfile] [−−mmarkinterval] [−−plogpipe] [−−d]

DESCRIPTION
Syslogd reads and logs messages into a set of files described by the configuration file /etc/syslog.conf.
Each message is one line. A message can contain a priority code, marked by a number in angle braces at
the beginning of the line. Priorities are defined in <sys/syslog.h>. Syslogd reads from the stream device
/dev/log , from an Internet domain socket specified in /etc/services, and from the special device /dev/klog (to
read kernel messages).

Syslogd reads its configuration when it starts up and whenever it receives a hangup signal. Lines in the
configuration file have a selector to determine the message priorities to which the line applies and an
action . The action field(s) are separated from the selector by one or more tabs. A maximum of 20 lines can
be specified.

Selectors are semicolon separated lists of priority specifiers. Each priority has a facility describing the part
of the system that generated the message, a dot, and a level indicating the severity of the message. Sym-
bolic names can be used. An asterisk selects all facilities, while "debug" selects all levels. All messages of
the specified level or higher (greater severity) are selected. More than one facility can be selected, using
commas to separate them. For example:

*.emerg;mail,daemon.crit

selects all facilities at the emerg level and the mail and daemon facilities at the crit level.

Known facilities and levels recognized by syslogd are those listed in syslog(3) without the leading ‘‘LOG_’’.
The additional facility ‘‘mark’’ logs messages at priority LOG_INFO every 20 minutes (this interval may
be changed with the −−m flag). The ‘‘mark’’ facility is not enabled by a facility field containing an asterisk.
The level ‘‘none’’ may be used to disable a particular facility. For example:

*.debug;mail.none

sends all messages except mail messages to the selected file.

1

SYSLOGD(1M) SYSLOGD(1M)hh

The second part of each line describes where the message is to be logged if this line is selected. There are
five forms:

g A filename (beginning with a leading slash). The file will be opened in append mode.

g A hostname preceded by an at sign (‘‘@’’). Selected messages are forwarded to the syslogd on the
named host.

g A comma-separated list of users. Selected messages are written to those users if they are logged in.

g An asterisk. Selected messages are written to all logged-in users.

g A |, followed immediately by a program name, which is taken to be all chars after the | up to the next
tab; at least one action must follow the tab. The filter is expected to read stdin, and write the filtered
response to stdout. The filter receives the source and message through stdin. A filter may also access
the priority, facility and hostname via environmental variables: PRIORITY, FACILITY and FROM.
The values are stored as strings defined in <sys/syslog.h>.

If the filter exits with a non-zero value, the original message is logged, as well as a message that the filter
failed. The filter has a limited time (currently 8 seconds) to process the message. If the filter exits with
status 0 without writing any data, no message is logged. The data to be read by the filter is not ter-
minated with a newline, nor should the data written have a newline appended. See below for a sample
filter.

Blank lines and lines beginning with ‘#’ are ignored.

For example, the configuration file:

kern.debug |/usr/sbin/klogpp /var/adm/SYSLOG

kern.debug |/usr/sbin/klogpp /dev/console

user,mail,daemon,auth,syslog,lpr.debug /var/adm/SYSLOG

kern.err @ginger

*.emerg *

*.alert eric,beth

*.alert;auth.warning ralph

filters all kernel messages through /usr/sbin/klogpp and writes them to the system console and into
/var/adm/SYSLOG and logs debug (or higher) level messages into the file /var/adm/SYSLOG. Kernel
messages of error severity or higher are forwarded to ginger. All users will be informed of any emer-
gency messages. The users ‘‘eric’’ and ‘‘beth’’ will be informed of any alert messages. The user ‘‘ralph’’
will be informed of any alert message or any warning message (or higher) from the authorization system.

2

SYSLOGD(1M) SYSLOGD(1M)hh

Syslogd is started at system initialization from /etc/init.d/sysetup. Optional site-specific flags belong in
/etc/config/syslogd.options. The flags are:

−−f Specify an alternate configuration file.

−−m Select the number of minutes between mark messages.

−−d Turn on debugging. syslogd runs in the foreground and writes debugging information to stdout.

−−p Use the given name for the device instead of /dev/log.

Syslogd rereads its configuration file when it receives a hangup signal, SIGHUP. To bring syslogd down, it
should be sent a terminate signal (for example, killall −TERM syslogd).

FILTER EXAMPLE
This example shows how to use the filter mechanism. To have ftpd(1M) messages logged in a different
file, add the following line to /etc/syslog.conf:

daemon,auth.debug |/var/adm/ftpd.filt /var/adm/ftpd.log

The /var/adm/ftpd.filt file is a shell script:

#!/bin/sh

This filter only accepts ftpd messages

read line

set $line

case "$1" {

ftpd\[*)

echo "$line\c"

exit 0

;;

}

exit 0

MESSAGE EXAMPLE
The following is an example line from the /var/adm/SYSLOG file:

Aug 10 10:32:53 6F:sgihost syslogd: restart

Each line has several parts. The date and time of the message are listed first, followed by a priority and
facility code. Priorities are listed as 0-7 and facilities are listed as A-T. Reference <sys/syslog.h>. The
source is the name of the program that generated the message. Following the source, is the message itself.
Messages with "[HELP=<HELP_TAG>]" at the end, have help cards associated with them. See
sysmon(1M).

3

SYSLOGD(1M) SYSLOGD(1M)hh

FILES
/etc/syslog.conf Default configuration file
/dev/log Device read by syslogd
/dev/klog The kernel log device
/usr/sbin/klogpp Filter for kernel messages
/etc/config/syslogd.options

Command-line flags used at system startup

SEE ALSO
logger(1), syslog(3), sysmon(1M)

4

SYSTEM(4) SYSTEM(4)hh

NAME
system − system configuration information directory

DESCRIPTION
This directory contains files (with the .sm suffix) which are used by the lboot program to obtain
configuration information. These files generally contain information used to determine if specified
hardware exists, a list of software drivers to include in the load, the assignment of system devices such as
pipedev and swapdev, as well as instructions for manually overriding the drivers selected by the self-
configuring boot process. Each major subsystem may have its own configuration file, for example:
irix.sm (base operating system configuration file), gfx.sm (graphics subsystem configuration file) and so
forth. lboot logically concatenates all files in the system directory with the .sm suffix and processes the
results.

The syntax of the system files is given below. The parser for the /var/sysgen/system/*.sm file is case sen-
sitive. All upper case strings in the syntax below should be upper case in the /var/sysgen/system/*.sm file
as well. Nonterminal symbols are enclosed in angle brackets "<>" while optional arguments are enclosed
in square brackets "[]". Ellipses "..." indicate optional repetition of the argument for that line.

<fname> ::= master file name from /master.d directory
<func> ::= interrupt function name
<device> ::= special device name | DEV(<major>,<minor>)
<major> ::= <number>
<minor> ::= <number>
<proc> ::= processor # as interpreted by runon(1)
<number> ::= decimal, octal or hex literal

Lboot can determine if hardware exists for a given module by use of probe commands. The syntax for
probe commands is:

<probe_cmd> ::= probe=<number> [probe_size=<number>]
| <extended_probe>

<extended_probe> ::= exprobe=<probe_sequence>
| exprobe=(<probe_sequence>,<probe_sequence>, ...)

<probe_sequence> ::= (<seq>,<address>,<size>,<value>,<mask>)
<seq> ::= a sequence of 1 or more r’s, rn’s, or w’s, indicating a read

from <address>, or a write to <address>.
<address> ::= <number>
<size> ::= <number>
<value> ::= <number>
<mask> ::= <number>

In order to deal with the high degree of configurability of the Challenge and Onyx systems, a new com-
plementary set of probe routines has been added which are used in conjunction with a new style of VEC-
TOR line, described later in this manual entry. The new probe commands are the only means to detect
peripherals on the Challenge and Onyx systems, but the new commands are supported on all IRIS

1

SYSTEM(4) SYSTEM(4)hh

platforms.

<probe_cmd> ::= probe_space=(<bus_space>,<number> [probe_size=<number>]
| <extended_probe>)

<extended_probe> ::= exprobe_space=<probe_sequence>
| exprobe_space=(<probe_sequence>,<probe_sequence>, ...)

<probe_sequence> ::= (<seq>,<bus_space>,<address>,<size>,<value>,<mask>)
<seq> ::= a sequence of 1 or more r’s, rn’s, or w’s, indicating a read

from <address>, or a write to <address>.
<bus_space> ::= A16NP | A16S | A24NP | A24S | A32NP | A32S
<address> ::= <number>
<size> ::= <number>
<value> ::= <number>
<mask> ::= <number>

As shown from the grammar, there are two forms of probe commands. The first allows the specification
of an address to read, and optionally, a number of bytes to read. If a probe address is specified, the boot
program will attempt to read probe_size bytes (default 4) to determine if the hardware exists for the
module. If the read succeeds, the hardware will be assumed to exist, and the module will be included.

The extended form specifies a sequence of one or more five-tuples used to determine if the hardware
exists. Each five-tuple specifies a read/write sequence, an address to read or write, a size of up to four bytes,
a value, and a mask. Then, for each five-tuple, the following is performed:

for each element in command do
if element == ’w’ then

if write(address, value & mask, size) != size then
failure

if element == ’r’ then
if read(address, temp, size) != size then

failure
if suffix == ’n’ then

if temp & mask == value & mask then
failure

else
if temp & mask != value & mask then

failure

The lines listed below may appear in any order. Blank lines may be inserted at any point. Comment lines
must begin with an asterisk. Entries for VECTOR, EXCLUDE and INCLUDE are cumulative. For all
other entries, the last line to appear in the file is used -- any earlier entries are ignored. There are two
styles of VECTOR line. The first version defined is the historical version and will not work on newer plat-
forms such as the Challenge and Onyx series. The second VECTOR command defined is the new version

2

SYSTEM(4) SYSTEM(4)hh

which supports the Challenge and Onyx series along with newer bus types like EISA. The second ver-
sion is the preferred method since it will work across all IRIS hardware platforms.

VECTOR: module=<fname> [intr=<func>]
[vector=<number> ipl=<number> unit=<number>] [base=<number>]
[base2=<number>] [base3=<number>]
[<probe_cmd>]
[intrcpu=<number>] [syscallcpu=<number>]

specifies hardware to conditionally load. (Note that this is must be a single line.) If a probe com-
mand is specified, the boot program will perform the probe sequence, as discussed above. If the
sequence succeeds, the module is included. If a probe sequence is not specified, the hardware
will be assumed to exist. The intr function specifies the name of the module’s interrupt handler.
If it is not specified, the prefix defined in the module’s master file (see master(4)) is concatenated
with the string "intr", and, if a routine with that name is found in the module’s object (which
resides in the directory /var/sysgen/boot, it is used as the interrupt routine. If the triplet (vector,
ipl, unit, base) is specified, a VME interrupt structure is assigned, using the corresponding VME
address "vector", priority level "ipl", unit "unit". If the modules’ object contains a routine whose
name is the concatenation of the master file prefix and ‘‘edtinit’’, that routine is involved once at
startup and passed a pointer to an edt structure which contains the values for base, base2, base3,
and a pointer to the VME interrupt structure. If intrcpu is specified, it hints to the driver the
desired cpu to take interrupts on. This is only a hint and may not be honored in all cases. If sys-
callcpu is specified, it indicates the cpu to run non-MP driver syscalls on. This directive is always
honored for non-MP drivers, and is silently ignored by MP drivers. This option should be used
with caution as non-MP drivers may expect their syscalls and interrupts to run on the same cpu.

VECTOR: bustype=<bustype> module=<fname> adapter=<number> ipl=<number>
[intr=<func>] [vector=<number>] [ctlr=<number>]
[iospace=(<address-space>,<address>,<size>)]
[iospace2=(<address-space>,<address>,<size>)]
[iospace3=(<address-space>,<address>,<size>)]
[<probe_cmd>]

specifies hardware to conditionally load. (Note that this is must be a single line.) If a probe com-
mand is specified, the boot program will perform the probe sequence, as discussed above. If the
sequence succeeds, the module is included. If a probe sequence is not specified, the hardware
will be assumed to exist. The bustype specifies the type of bus on which the device is connected.
This would be VME for a VME bus. The adapter specifies to which bus of type bustype the dev-
ice is connected. If adapter is set to "*", the system will look at each bus of type bustype to find
the device. The intr function specifies the name of the module’s interrupt handler. If it is not
specified, the prefix defined in the module’s master file (see master(4)) is concatenated with the
string "intr", and, if a routine with that name is found in the module’s object (which resides in the
directory /var/sysgen/boot, it is used as the interrupt routine. If the vector is not specified, it is
assumed to be programmable. The ctlr field is used to pass a value into the driver which is
specific to the device. This can be used to identify which device is present when there are multi-
ple VECTOR lines for a particular device. If the modules’ object contains a routine whose name is

3

SYSTEM(4) SYSTEM(4)hh

the concatenation of the master file prefix and ‘‘edtinit’’, that routine is involved once at startup
and passed a pointer to an edt structure which contains the values for iospace, iospace2, iospace3,
and a pointer to the bus info structure.

EXCLUDE: [<string>] ...
specifies drivers to exclude from the load even if the device is found via VECTOR information.

INCLUDE: [<string>[(<number>)]] ...
specifies software drivers or loadable modules to be included in the load. This is necessary to
include the drivers for software "devices". The optional <number> (parenthesis required)
specifies the number of "devices" to be controlled by the driver (defaults to 1). This number
corresponds to the builtin variable ##c which may be referred to by expressions in part two of the
/var/sysgen/master file.

ROOTDEV: <device>
identifies the device containing the root file system.

SWAPDEV: <device> <number> <number>
identifies the device to be used as swap space, the block number the swap space starts at, and the
number of swap blocks available.

PIPEDEV: <device>
identifies the device to be used for pipe space.

DUMPDEV: <device>
identifies the device to be used for kernel dumps.

IPL: <IRQ level> <proc>
send VME interrupt at <IRQ level> to <proc>. If <proc> does not exist at run time, the kernel will
default to use processor 0.

USE: [<string>[(<number>)] [<extended_probe>]] ...
If the driver is present, it is the same as INCLUDE. Behaves like EXCLUDE if the module or
driver is not present in /var/sysgen/boot.

KERNEL: [<string>] ...
Specifies the module containing the heart of the operating system. It must be present in the sys-
tem file.

NOINTR: <proc> ...
In Challenge and Onyx systems, it provides a way to prevent processor(s) from receiving any
interrupt other than the VME IRQ levels defined using IPL directive. This can be used for mark-
ing a processor for real time purpose. CPU 0 although should not be restricted from receiving
interrupts. This directive is ignored on all other platforms.

LINKMODULES: <1|0>
If set to 1, this option will cause lboot to ignore the ’d’ option in all master files and link all neces-
sary modules into the kernel.

CC
LD are the names of the compiler and linker used to build the kernel. If absent, they default to "cc"

and "ld", respectively.

4

SYSTEM(4) SYSTEM(4)hh

CCOPTS
LDOPTS

are option strings given to cc(1) and ld(1) respectively, to compile the master.c file and link the
operating system.

FILES
/var/sysgen/system/*.sm
/usr/include/sys/edt.h

SEE ALSO
lboot(1M), master(4).

5

SYSTUNE(1M) SYSTUNE(1M)hh

NAME
systune − display and set tunable parameters

SYNOPSIS
/usr/sbin/systune [−−p rootpath] [−−n name] [−−brfi]

DESCRIPTION
systune is a tool that allows you to examine and configure your tunable kernel parameters. systune can
adjust some parameters in real time and informs you if you need to reboot your system after
reconfiguration. It saves the reconfigured kernel in /unix.install, unless the f option is used.

systune has two modes: interactive and non interactive. Interactive mode allows the user to query infor-
mation about various portions of tunable parameters or to set new values for tunable parameters. To
enter interactive mode, use the –i option. In non interactive mode, systune displays the values of all tun-
able parameters. Non interactive mode is the default.

The options are:

−−p rootpath
If you specify this option, rootpath becomes the starting pathname for systune to check for
/var/sysgen/stune and /var/sysgen/mtune. The default rootpath directory is /.

−−n name
This option specifies an alternate kernel name to tune in place of /unix.

−−b Both target kernel and the running system are updated with the new values that user specified, if
the new values are within the legal range for the parameter specified in /var/sysgen/mtune. The
new values with the corresponding tunable variables are also added into /var/sysgen/stune file.
This is the default behavior.

−−r The new values will change on the running system only. If the tunable parameter can not be
changed on the running system, nothing will be affected. The default is –b. (See above.)

−−f This option forces systune to not save the reconfigured kernel in /unix.install. By default, systune
tests to see if /unix.install exists and whether it is identical to the running system. If it is identical,
systune makes any changes in /unix.install; otherwise, systune copies the current /unix kernel or the
kernel specified by the –n option to /unix.install and makes all changes to the copied kernel. If the
copy fails for any reason, such as lack of disk space or the presence of the –f option, the currently
running kernel will be changed.

−−i When systune is invoked in interactive mode, no parameter values are immediately displayed.
Instead, you see the systune prompt:

systune->

1

SYSTUNE(1M) SYSTUNE(1M)hh

The systune commands available in interactive mode are:

quit Quit the systune program immediately. Any changes you have made up to that point are
saved and cannot be discarded. You must go through and change back any parameters
that you do not wish to be changed.

all Print information on all tunable parameters. This command displays the same informa-
tion as systune invoked in non interactive mode.

parameter_groupname
Display information for all the tunable parameters in this group.

parameter_name
Display information for this tunable parameter only.

parameter_name newvalue
Verify the new value and set the specified tunable parameter to the new value.

help Show all the built in commands and group names.

To display a list of the available systune commands and kernel parameter group names, type
help at the systune-> prompt and press <Return>. systune responds by listing two com-
mands (help and all) and the groups of kernel tunable parameters. Each group of tunable parame-
ters is organized so that related parameters are kept together. For example, one of the parameter
groups listed is numproc. numproc contains parameters related to the number of processes allowed
to run on the system at any given time. The parameters in numproc are:

ncsize = 808 (0x328)
ncallout = 40 (0x28)
callout_himark = 332 (0x14c)
ndquot = 808 (0x328)
nproc = 300 (0x12c)

When you type the name of a parameter group at the systune prompt and press <Return>, the
parameters in that group are displayed, along with their various values in decimal numerals and
in hexadecimal notation. The systune prompt is returned at the end of the parameter display.

You can change any parameter in any group at the systune-> prompt. Type the name of the
parameter and the new value that you would like assigned to that parameter. For example, to
raise the nproc parameter in the numproc parameter group from 300 to 400, type the following
sequence at the systune-> prompt and press <Return>:

systune-> nproc 400

systune responds with:

nproc = 300 (0x12c)

Do you really want to change nproc to 400 (0x190)? (y/n) y

2

SYSTUNE(1M) SYSTUNE(1M)hh

Enter y and press <Return> to confirm your change. Next systune displays the following mes-
sage:

In order for the change in parameter nproc to become effective,
/unix.install must be moved to /unix and the system rebooted

This message tells you that the change does not take effect until a new kernel with the new value
is running on your system.

Some parameters can be changed while the system is running, and some require a new copy of
the kernel to be booted. systune always prints a message to inform you if you need to reboot your
system for a kernel change to take effect.

systune makes all requested changes to the kernel in three places, if possible. (Non dynamically
adjustable parameters can be changed in only two out of three places.) The parameters are
changed in:

the running kernel image on the workstation

the /unix or /unix.install file

the /var/sysgen/stune file

Some ‘‘sanity checking’’ is performed on the modified kernel parameters to help prevent the crea-
tion of kernels that will not function correctly. This checking is performed both by systune and by
the lboot utility. For example, some variables have preset minimum and maximum values. Any
attempt to change the variable beyond these threshold values will result in an error message, and
the variable will not be changed.

FILES
/var/sysgen/mtune/* system tunable parameters

/var/sysgen/stune local settings for system tunable parameters

SEE ALSO
mtune(4), stune(4)
lboot(1M), autoconfig(1M)

3

SYS_ID(4) SYS_ID(4)hh

NAME
sys_id − system identification (hostname) file

DESCRIPTION
The file /etc/sys_id contains the name by which the system will be known on communications networks
such as the Internet and UUCP. The name can be up to 64 alphanumeric characters long and may include
periods and hyphens. Periods are not part of the name but serve to separate components of a ‘‘domain-
style’’ name. For example

iris.widgets.com

During system startup this file is read by the script /etc/rc2.d/S20sysetup and the contents are passed as a
parameter to hostname(1) to initialize the system name. Once this has been done, this name will be
returned by the commands hostname(1) and uname(1), and the system calls gethostname(2) and uname(2).
uname(1) returns only the first eight characters up to the first period.

FILES
/etc/sys_id

SEE ALSO
hostname(1), uname(1), gethostname(2), uname(2), hostname(5)

1

TELNET(1C) TELNET(1C)hh

NAME
telnet − User interface to the TELNET protocol

SYNOPSIS
telnet [−−d] [−−n tracefile] [−−l user | −−a] [−−e escape-char] [host [port]]

DESCRIPTION
The telnet command is used to communicate with another host using the TELNET protocol. If telnet is
invoked without the host argument, it enters command mode, indicated by its prompt (telnet>). In this
mode, it accepts and executes the commands listed below. If it is invoked with arguments, it performs an
open command (see below) with those arguments.

Options:

−−d Sets the initial value of the debug toggle to TRUE.

−−n tracefile
Opens tracefile for recording trace information. See the set tracefile command below.

−−l user When connecting to the remote system, if the remote system understands the ENVIRON option,
then user will be sent to the remote system as the value for the variable USER. This option may
also be used with the open command.

−−a Auto-login. Same as specifying −−l with your user name. This option may also be used with the
open command.

−−e escape-char
Sets the initial telnet escape character to escape-char. If escape-char is the null character (specified
by "" or ’’), then there will be no escape character.

host Indicates the official name, an alias, or the Internet address of a remote host.

port Indicates a port number (address of an application). If a number is not specified, the default tel-
net port is used.

Once a connection has been opened, telnet will attempt to enable the TELNET LINEMODE option. If this
fails, then telnet will revert to one of two input modes: either ‘‘character at a time’’ or ‘‘old line by line’’
depending on what the remote system supports.

When LINEMODE is enabled, character processing is done on the local system, under the control of the
remote system. When input editing or character echoing is to be disabled, the remote system will relay
that information. The remote system will also relay changes to any special characters that happen on the
remote system, so that they can take effect on the local system.

In ‘‘character at a time’’ mode, most text typed is immediately sent to the remote host for processing.

In ‘‘old line by line’’ mode, all text is echoed locally, and (normally) only completed lines are sent to the
remote host. The ‘‘local echo character’’ (initially ‘‘ˆE’’) may be used to turn off and on the local echo (this
would mostly be used to enter passwords without the password being echoed).

1

TELNET(1C) TELNET(1C)hh

If the LINEMODE option is enabled, or if the localchars toggle is TRUE (the default for ‘‘old line by line‘‘;
see below), the user’s quit, intr, and flush characters are trapped locally, and sent as TELNET protocol
sequences to the remote side. If LINEMODE has ever been enabled, then the user’s susp and eof are also
sent as TELNET protocol sequences, and quit is sent as a TELNET ABORT instead of BREAK. There are
options (see toggle autoflush and toggle autosynch below) which cause this action to flush subsequent
output to the terminal (until the remote host acknowledges the TELNET sequence) and flush previous ter-
minal input (in the case of quit and intr).

While connected to a remote host, telnet command mode may be entered by typing the telnet ‘‘escape
character’’ (initially ‘‘ˆ]’’). When in command mode, the normal terminal editing conventions are avail-
able.

The following telnet commands are available. Only enough of each command to uniquely identify it need
be typed (this is also true for arguments to the mode, set, toggle, unset, slc, environ, and display com-
mands).

close
Close a TELNET session and return to command mode.

display [argument...]
Displays all, or some, of the set and toggle values (see below).

mode type
Type is one of several options, depending on the state of the TELNET session. The remote host
is asked for permission to go into the requested mode. If the remote host is capable of enter-
ing that mode, the requested mode will be entered.

character
Disable the TELNET LINEMODE option, or, if the remote side does not understand the
LINEMODE option, then enter ‘‘character at a time‘‘ mode.

line
Enable the TELNET LINEMODE option, or, if the remote side does not understand the
LINEMODE option, then attempt to enter ‘‘old-line-by-line‘‘ mode.

isig (−−isig)
Attempt to enable (disable) the TRAPSIG mode of the LINEMODE option. This requires
that the LINEMODE option be enabled.

edit (−−edit)
Attempt to enable (disable) the EDIT mode of the LINEMODE option. This requires
that the LINEMODE option be enabled.

softtabs (−−softtabs)
Attempt to enable (disable) the SOFT_TAB mode of the LINEMODE option. This
requires that the LINEMODE option be enabled.

2

TELNET(1C) TELNET(1C)hh

litecho (−−litecho)
Attempt to enable (disable) the LIT_ECHO mode of the LINEMODE option. This
requires that the LINEMODE option be enabled.

?
Prints out help information for the mode command.

open host [[−−l user | −−a] [−−]port]
Open a connection to the named host. If no port number is specified, telnet will attempt to
contact a TELNET server at the default port. The host specification may be either a host name
(see hosts(4)) or an Internet address specified in the ‘‘dot notation’’ (see inet(3N)). The −−l
option may be used to specify the user name to be passed to the remote system via the
ENVIRON option. The −−a option sends your user name to the remote system via the ENVIRON
option. When connecting to a non-standard port, telnet omits any automatic initiation of TEL-
NET options. When the port number is preceded by a minus sign, the initial option negotia-
tion is done. After establishing a connection, the .telnetrc in the user’s home directory is
opened. Lines beginning with a # are comment lines. Blank lines are ignored. Lines that
begin without whitespace are the start of a machine entry. The first thing on the line is the
name of the machine that is being connected to. The rest of the line, and successive lines that
begin with whitespace are assumed to be telnet commands and are processed as if they had
been typed in manually to the telnet command prompt.

quit
Close any open TELNET session and exit telnet. An end of file (in command mode) will also
close a session and exit.

send arguments
Sends one or more special character sequences to the remote host. The following are the argu-
ments which may be specified (more than one argument may be specified at a time):

abort
Sends the TELNET ABORT (ABORT processes) sequence.

ao
Sends the TELNET AO (Abort Output) sequence, which should cause the remote sys-
tem to flush all output from the remote system to the user’s terminal.

ayt
Sends the TELNET AYT (Are You There) sequence, to which the remote system may or
may not choose to respond.

brk
Sends the TELNET BRK (Break) sequence, which may have significance to the remote
system.

3

TELNET(1C) TELNET(1C)hh

ec
Sends the TELNET EC (Erase Character) sequence, which should cause the remote sys-
tem to erase the last character entered.

el
Sends the TELNET EL (Erase Line) sequence, which should cause the remote system to
erase the line currently being entered.

eof
Sends the TELNET EOF (End Of File) sequence.

eor
Sends the TELNET EOR (End of Record) sequence.

escape
Sends the current telnet escape character (initially ‘‘ˆ]’’).

ga
Sends the TELNET GA (Go Ahead) sequence, which likely has no significance to the
remote system.

getstatus
If the remote side supports the TELNET STATUS command, getstatus will send the
subnegotiation to request that the server send its current option status.

ip
Sends the TELNET IP (Interrupt Process) sequence, which should cause the remote sys-
tem to abort the currently running process.

nop
Sends the TELNET NOP (No OPeration) sequence.

susp
Sends the TELNET SUSP (SUSPend process) sequence.

synch
Sends the TELNET SYNCH sequence. This sequence causes the remote system to dis-
card all previously typed (but not yet read) input. This sequence is sent as TCP urgent
data (and may not work if the remote system is a 4.2 BSD system — if it doesn’t work,
a lower case ‘‘r’’ may be echoed on the terminal).

?
Prints out help information for the send command.

set argument value

unset arguments...
The set command will set any one of a number of telnet variables to a specific value or to
TRUE. The special value off turns off the function associated with the variable, this is
equivalent to using the unset command. The unset command will disable or set to FALSE any
of the specified functions. The values of variables may be interrogated with the display

4

TELNET(1C) TELNET(1C)hh

command. The variables which may be set or unset, but not toggled, are listed here. In addi-
tion, any of the variables for the toggle command may be explicitly set or unset using the set
and unset commands.

echo
This is the value (initially ‘‘ˆE’’) which, when in ‘‘line by line’’ mode, toggles between
doing local echoing of entered characters (for normal processing), and suppressing
echoing of entered characters (for entering, say, a password).

eof
If telnet is operating in LINEMODE or ‘‘old line by line’’ mode, entering this character
as the first character on a line will cause this character to be sent to the remote system.
The initial value of the eof character is taken to be the terminal’s eof character.

erase
If telnet is in localchars mode (see toggle localchars below), and if telnet is operating in
‘‘character at a time’’ mode, then when this character is typed, a TELNET EC sequence
(see send ec above) is sent to the remote system. The initial value for the erase charac-
ter is taken to be the terminal’s erase character.

escape
This is the telnet escape character (initially ‘‘ˆ[’’) which causes entry into telnet com-
mand mode (when connected to a remote system).

flushoutput
If telnet is in localchars mode (see toggle localchars below) and the flushoutput charac-
ter is typed, a TELNET AO sequence (see send ao above) is sent to the remote host. The
initial value for the flush character is taken to be the terminal’s flush character.

interrupt
If telnet is in localchars mode (see toggle localchars below) and the interrupt character
is typed, a TELNET IP sequence (see send ip above) is sent to the remote host. The ini-
tial value for the interrupt character is taken to be the terminal’s intr character.

kill
If telnet is in localchars mode (see toggle localchars below), and if telnet is operating in
‘‘character at a time’’ mode, then when this character is typed, a TELNET EL sequence
(see send el above) is sent to the remote system. The initial value for the kill character
is taken to be the terminal’s kill character.

lnext If telnet is operating in LINEMODE or ‘‘old line by line‘‘ mode, then this character is
taken to be the terminal’s lnext character. The initial value for the lnext character is
taken to be the terminal’s lnext character.

quit
If telnet is in localchars mode (see toggle localchars below) and the quit character is
typed, a TELNET BRK sequence (see send brk above) is sent to the remote host. The
initial value for the quit character is taken to be the terminal’s quit character.

5

TELNET(1C) TELNET(1C)hh

reprint
If telnet is operating in LINEMODE or ‘‘old line by line‘‘ mode, then this character is
taken to be the terminal’s reprint character. The initial value for the reprint character
is taken to be the terminal’s reprint character.

start
If the TELNET TOGGLE-FLOW-CONTROL option has been enabled, then this character
is taken to be the terminal’s start character. The initial value for the kill character is
taken to be the terminal’s start character.

stop
If the TELNET TOGGLE-FLOW-CONTROL option has been enabled, then this character
is taken to be the terminal’s stop character. The initial value for the kill character is
taken to be the terminal’s stop character.

susp
If telnet is in localchars mode, or LINEMODE is enabled, and the suspend character is
typed, a TELNET SUSP sequence (see send susp above) is sent to the remote host. The
initial value for the suspend character is taken to be the terminal’s suspend character.

tracefile
This is the file to which the output, caused by netdata or option tracing being TRUE,
will be written. If it is set to ’−’, then tracing information will be written to standard
output (the default).

worderase
If telnet is operating in LINEMODE or ‘‘old line by line‘‘ mode, then this character is
taken to be the terminal’s worderase character. The initial value for the worderase
character is taken to be the terminal’s worderase character.

slc state
The slc command (Set Local Characters) is used to set or change the state of the spe-
cial characters when the TELNET LINEMODE option has been enabled. Special charac-
ters are characters that get mapped to TELNET commands sequences (like ip or quit)
or line editing characters (like erase and kill). By default, the local special characters
are exported.

export
Switch to the local defaults for the special characters. The local default char-
acters are those of the local terminal at the time when telnet was started.

import
Switch to the remote defaults for the special characters. The remote default
characters are those of the remote system at the time when the TELNET con-
nection was established.

6

TELNET(1C) TELNET(1C)hh

check
Verify the current settings for the current special characters. The remote side
is requested to send all the current special character settings, and if there are
any discrepancies with the local side, the local side will switch to the remote
value.

?
Prints out help information for the slc command.

environ arguments...
The environ command is used to manipulate the variables that my be sent through
the ENVIRON option. The initial set of variables is taken from the user’s environment
with only the DISPLAY and PRINTER variables being exported by default.
Valid arguments for the environ command are:

define variable value
Define the variable variable to have a value of value. Any variables defined by
this command are automatically exported. The value may be enclosed in sin-
gle or double quotes so that tabs and spaces may be included.

undefine variable
Remove variable from the list of environment variables.

export variable
Mark the variable variable to be exported to the remote side.

unexport variable
Mark the variable variable to not be exported unless explicitly asked for by the
remote side.

send variable
Send the variable variable to the remote side.

list
List the current set of environment variables. Those marked with a * will be
sent automatically, other variables will only be sent if explicitly requested.

?
Prints out help information for the environ command.

?
Displays the legal set (unset) commands.

toggle arguments...
Toggle (between TRUE and FALSE) various flags that control how telnet responds to events.
These flags may be set explicitly to TRUE or FALSE using the set and unset commands listed
above. More than one argument may be specified. The state of these flags may be interro-
gated with the display command. Valid arguments are:

7

TELNET(1C) TELNET(1C)hh

autoflush
If autoflush and localchars are both TRUE, then when the ao, intr, or quit characters
are recognized (and transformed into TELNET sequences; see set above for details), tel-
net refuses to display any data on the user’s terminal until the remote system ack-
nowledges (via a TELNET TIMING MARK option) that it has processed those TELNET
sequences. The initial value for this toggle is TRUE if the terminal user had not done
an "stty noflsh", otherwise FALSE (see stty(1)).

autosynch
If autosynch and localchars are both TRUE, then when either the intr or quit charac-
ters is typed (see set above for descriptions of the intr and quit characters), the result-
ing TELNET sequence sent is followed by the TELNET SYNCH sequence. This pro-
cedure should cause the remote system to begin throwing away all previously typed
input until both of the TELNET sequences have been read and acted upon. The initial
value of this toggle is FALSE.

binary
Enable or disable the TELNET BINARY option on both input and output.

inbinary
Enable or disable the TELNET BINARY option on input.

outbinary
Enable or disable the TELNET BINARY option on output.

crlf
If this is TRUE, then carriage returns will be sent as <CR><LF>. If this is FALSE, then
carriage returns will be send as <CR><NUL>. The initial value for this toggle is
FALSE.

crmod
Toggle carriage return mode. When this mode is enabled, most carriage return char-
acters received from the remote host will be mapped into a carriage return followed
by a line feed. This mode does not affect those characters typed by the user, only
those received from the remote host. This mode is not very useful unless the remote
host only sends carriage return, but never line feed. The initial value for this toggle is
FALSE.

debug
Toggles socket level debugging (useful only to the superuser). The initial value for this
toggle is FALSE.

localchars
If this is TRUE, then the flush, interrupt, quit, erase, and kill characters (see set
above) are recognized locally, and transformed into (hopefully) appropriate TELNET
control sequences (respectively ao, ip, brk, ec, and el; see send above). The initial
value for this toggle is TRUE in ‘‘old line by line’’ mode, and FALSE in ‘‘character at a
time’’ mode. When the LINEMODE option is enabled, the value of localchars is

8

TELNET(1C) TELNET(1C)hh

ignored, and assumed to always be TRUE. If LINEMODE has ever been enabled, then
quit is sent as abort, and eofand suspend are sent as eofand susp, see send above).

netdata
Toggles the display of all network data (in hexadecimal format). The initial value for
this toggle is FALSE.

options
Toggles the display of some internal telnet protocol processing (having to do with TEL-
NET options). The initial value for this toggle is FALSE.

prettydump
When the netdata toggle is enabled, if prettydump is enabled the output from the net-
data command will be formatted in a more user readable format. Spaces are put
between each character in the output, and the beginning of any TELNET escape
sequence is preceded by a ’*’ to aid in locating them.

?
Displays the legal toggle commands.

z
Suspend telnet. This command only works when the user is using the csh(1).

! [command]
Execute a single command in a subshell on the local system. If command is omitted, then an
interactive subshell is invoked.

status
Show the current status of telnet. This includes the peer one is connected to, as well as the
current mode.

? [command]
Get help. With no arguments, telnet prints a help summary. If a command is specified, telnet
will print the help information for just that command.

ENVIRONMENT
Telnet uses at least the HOME, SHELL, USER, DISPLAY, and TERM environment variables. Other
environment variables may be propagated to the other side via the TELNET ENVIRON option.

FILES
˜/.telnetrc user customized telnet startup values

NOTES
On some remote systems, echo has to be turned off manually when in ‘‘old line by line’’ mode.

In ‘‘old line by line’’ mode or LINEMODE the terminal’s eof character is only recognized (and sent to the
remote system) when it is the first character on a line.

9

TTYTYPE(4) TTYTYPE(4)hh

NAME
ttytype − data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION
Ttytype is a database containing, for each tty port on the system, the kind of terminal that is attached to it.
There is one line per port, containing the terminal kind (as a name described in terminfo(4)), a space, and
the name of the tty, minus /dev/.

This information is read by tset(1) to initialize the TERM environment variable at login time.

EXAMPLE

iris-ansiconsole
vt100 ttyd1
?h19 ttyd2
?h19 ttyd3
?v50am ttyd4
?v50am ttyd5
?v50am ttyd6
?v50am ttyd7
?v50am ttyd8
?v50am ttyd9
?v50am ttyd10
?v50am ttyd11
?v50am ttyd12

FILES
/etc/ttytype

SEE ALSO
tset(1), login(1), terminfo(4).

1

VERSIONS(1M) VERSIONS(1M)hh

NAME
versions − software versions tool

SYNOPSIS
versions [−−abndpvI] [−−r root] [display] [name ...]

versions [−−ckmpsuvxBSU] [−−e pattern] [−−i pattern] [−−r root]
[listtype] [user] [name ...]

versions [−−v] [−−r root] remove name ...

DESCRIPTION
IMPORTANT: "versions" is provided only for backwards compatibility. In reality it calls the programs
showprods, showfiles, and (in the case of removing software with versions remove), inst. Users are strongly
encouraged to use these programs directly, instead of versions, since the versions program will be discon-
tinued in a future release.

To find out what command line versions would execute with a given set of arguments, use the -V option
ahead of other options, e.g. versions -V remove ftn.sw pas.sw.

The versions command has three functions:

− (showprods): It displays information about the software that is currently installed on your system and
the software that has been available for installation, but is not presently installed. This information is
presented at the product, image, and subsystem levels (see the Definitions section).

− (showfiles): It displays lists of files on your system and information about those files.

− (inst): It removes installed software from your system.

The synopsis for each of these three uses of the versions command is shown above and the functions are
discussed in detail in the sections that follow. In addition, the Definitions section defines some terms that
are key to understanding and using versions. The section called Updating Configuration Files explains
how to use versions to identify and modify files that require site-specific modifications after new software
is installed.

Definitions

The name argument to versions is a product, image, or subsystem. A product is a collection of files that inst
installs on your system. This collection of files is typically a Silicon Graphics software option such as the
Network File System (NFS). Products have short names that are used for installation purposes (for exam-
ple, ‘nfs’).

The files in a product are organized into a three-level hierarchy for ease of installation. The highest level
is the product level, the next level is the image level, and the third level is the subsystem level. Thus, the
files that make up a product such as NFS are grouped into subsystems. The names of these subsystems
reflect the hierarchy: product.image.subsystem. Some examples for NFS are ‘nfs.sw.nis’ and
‘nfs.man.relnotes’.

1

VERSIONS(1M) VERSIONS(1M)hh

When you enter a name argument to versions, you can enter a product name (for example, ‘nfs’), an image
name (for example, ‘nfs.sw’) or a subsystem name (for example, ‘nfs.sw.nis’), depending on what parts of
a product you are interested in. You can also use ‘*’ as a shell-type wildcard in name, but it must be
escaped with double quotes (") if you are using versions from the shell. For example, if you are at the shell
and you want to list information about all of the installed subsystems that have an image name of ‘man’,
you would enter the command:

versions "*.man.*"

An example of using wildcards from within inst is this command to list the ‘sw’ images in eoe1 and eoe2:

versions eoe*.sw.*

All of the files on a workstation can be divided into two categories: installed files and user files. The files in
a product are called installed files and are put on your system by inst. All other files on your system, no
matter how they got there, are called user files. There are two types of installed files, system files and
configuration files. System files are modified by the user of the system only in unusual circumstances.
Configuration files, on the other hand, are very likely to need modification because they contain informa-
tion that is often machine-specific or site-specific. On diskless systems, installed files are also shared or
unshared as well as being system files or configuration files.

Because configuration files often contain modifications, inst treats them specially during the installation
process. If they have not been modified, inst removes the old file and installs the new version during
software updates. For configuration files that have been modified, one of three things occurs:

− The new version is not installed at all.

− The new version is installed and the old version is renamed by adding the suffix ‘.O’ (for older) to the
name.

− The new version is put in a file whose name is created by adding ‘.N’ (for newer) to the original name.

The section, Updating Configuration Files, discusses .O and .N files in more detail.

2

VERSIONS(1M) VERSIONS(1M)hh

Using versions to List Products, Images, and Subsystems

With no command line options or arguments, versions displays one installed software product, image, or
subsystem per line for all products currently installed on the system.

− The first column contains an indication of the installation status of the product, image, or subsystem
listed on that line. When no command line options are given, the installation status will be ‘I’
(installed).

− The second column gives the name of the product, image, or subsystem.

− The third column gives the date of installation.

− The fourth column gives a description of the product, image or subsystem.

The options that follow allow you to change the output:

−−I (installed) List currently installed products, images and subsystems only. (This is the default
behavior.)

−−a (all) List all the products, images and subsystems that are installed, that have been installed and
then removed, or were available for installation, but not installed. This is also known as "all of the
subsystems inst has seen since the last time you made file systems". Products and images that have
at least one subsystem installed are marked ‘I’, otherwise their first column is blank. Installed sub-
systems are marked ‘I’. Subsystems that have been installed and later removed are marked ‘R’.
Subsystems that have never been installed are blank in the first column. Older versions of products
that have been replaced by a newer version of the product do not appear on any versions list.

−−n (number) Show the internal version number rather than the date it was installed.

−−d (date) Show the creation date rather than the date it was installed.

−−v (verbose) Include subsystems in the output. (This is the default.)

−−b (brief) Display only products.

−−p (pause) Use the built-in pausing mechanism (similar to more(1)) after each screenful of output.
(This is the default when versions is used within inst.)

The −−r option allows you to operate on an IRIX tree rooted at root. The default root directory while run-
ning under IRIX is /, and while in the miniroot is, /root (see inst(1M)). You might have a different root
directory for diskless prototype trees or for test installations that have been done somewhere other than
the default of the system’s root.

The display argument explicitly requests one line per product, image, and subsystem type output from
versions. It is the default behavior in the absence of a listtype argument, the argument remove, or one of
the options ckmsuxSU.

The possible values for the name argument are discussed in the Definitions section above. If no name is
given, the default is to display all currently installed software.

3

VERSIONS(1M) VERSIONS(1M)hh

Using versions to List Installed Files

The second form of the versions command displays lists of file names. The combination of single character
options, listtype, the optional user argument, and optional names determines the list of files that will be
displayed. For some values of listtype, additional information is also displayed. If you are not superuser,
you may not be able to access some files.

The single character options, listtype arguments and other arguments for this form of versions are:

−−m (modified) List only modified installed files. There are three types of modified installed files:
configuration files that the user has changed to be system or site-specific, files that were
modified automatically as part of the installation process, and other installed files that the
user has changed.

−−u (unmodified) List only unmodified installed files.

−−B (bad) List only deleted or unreadable installed files.

−−c (configuration) List only installed configuration files.

−−s List only installed system files.

−−S (shared) List only diskless client shared files.

−−U (unshared) List only unshared files.

−−k (checksums) Calculate checksums of user files in the long listing.

−−i pattern (include) Add a file name or file name pattern to be included in user file listings.

−−e pattern (exclude) Add a file name or file name pattern to be excluded from the user file listings.

−−p (pause) Use the built-in pausing mechanism (similar to more(1)) after each screenful of out-
put. (This is the default when standard output is a terminal.)

−−r root (root) Use an IRIX tree rooted at root. The default root directory while running under IRIX is
/, and while in the miniroot is /root (see inst(1M)). You might have a different root directory
for diskless prototype trees or for test installations that have been done somewhere other
than the default of the system’s root.

list List installed files. This is the default listtype if no listtype is given, but one of options
ckmusxSU is given.

long List installed files and include the file type, the checksum (by sum −r), the size in blocks at
time of installation, the subsystem name, and flags. The file types are:

f Plain file
d Directory
b Block special
c Character special
l Symbolic link
p FIFO, also known as, named pipe

4

VERSIONS(1M) VERSIONS(1M)hh

The flags are:

c Configuration file
t Orphaned configuration file (it was installed with a subsystem that has since been

removed)
m File is machine-specific (see inst(1M) −−m)

user List user files. This argument can be used by itself, or with the list or long arguments.

config List all installed configuration files and any corresponding .N and .O files.

changed List installed configuration files that have a corresponding .O or .N file and their respective
.O or .N files.

name The possible values for the name argument are discussed in the Definitions section above. If
no name is given, the default is to display all currently installed files that meet the criteria of
the options and arguments.

Using versions to Remove Products, Images, and Subsystems

The versions command with the remove argument, and one or more name arguments, is used to remove
most of the files of one or more subsystems. The files that are not removed are modified configuration
files.

If removal of the indicated subsystems will cause conflicts, versions will refuse the action, unless the -F
option is given, in which case no system integrity checking is done, so it is possible to remove subsystems
that are critical to the operation of IRIX, the window system or applications that you may want to use.

You must be superuser to use remove.

Updating Configuration Files

As discussed in the Definitions section, some files in a product are called configuration files and are han-
dled specially during installation because they contain system or site-specific information. As a result of
this, ‘.O’ (older) and ‘.N’ (newer) versions of configuration files may be left on your system after an instal-
lation.

When you reboot your system, a check for .O and .N files is done. If any are present, a message is
displayed suggesting that you merge configuration files in cases where there are two versions. To do this,
first enter the command:

versions changed

If the output contains any .O configuration files:

The .O version of the configuration file is your earlier version. The no-suffix version contains
changes that are required for compatibility with the rest of the newly installed software, that increase
functionality, or that fix bugs. You should use diff(1) or gdiff(1) to compare the two versions of the
files and transfer information that you recognize as machine or site-specific from the .O version to
the no-suffix version.

If you have any .N configuration files:

5

VERSIONS(1M) VERSIONS(1M)hh

The .N version of the configuration file is the new version. It contains changes or new features that
can be added to the no-suffix version of the configuration file at your option. You should use diff(1)
or gdiff(1) to compare the two versions of the files and add changes that appeared in the new
software from the .N version to the no-suffix version if you want them.

After you have examined the .O and .N configuration files and made any changes you want, you can
delete the .O and .N versions of the configuration files. If you want to keep them, you should rename
them because they might be removed automatically during the next software installation. If you remove
all of the .O and .N configuration files, then no message about configuration files will appear when you
boot your system. The message will also stop appearing even if .O or .N files continue to exist after some
number of reboots.

NOTES
versions remove will fail if there is no space in /usr to create temporary files.

FILES
/var/inst/histbinary file that contains the installation history of your machine
/var/inst/<product>binary files, one per product, available in any distribution since the last time the file
systems were remade Various other files used by inst, showprods and showfiles.

SEE ALSO
showprods(1M), showfiles(1M), inst(1M), swmgr(1M),
Software Installation Administrator’s Guide.

6

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2159-004.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

