
Indigo Magic™

User Interface Guidelines

Document Number 007-2167-002

Indigo Magic™ User Interface Guidelines
Document Number 007-2167-002

CONTRIBUTORS

Written by Jackie Neider, Deb Galdes, John C. Stearns, and Arthur Evans
Illustrated by John C. Stearns, Arthur Evans, Delle Maxwell, and Doug O’Morain
Edited by Christina Cary
Production by Cindy Stief
Principal architects of the Silicon Graphics Style: Deb Galdes, Delle Maxwell, Mike

Mohageg, Michael Portuesi, Rob Myers, and Betsy Zeller
Special thanks to Donna Davilla, Debbie Myers, Dave Ciemiewicz, Steve Yohanan,

and Kim Rachmeler
Other contributions by Dave Story, Eva Manolis, Susan Dahlberg, Doug Young, Josie

Wernecke, Susan Angebranndt, Roger Powell, Dave Mott, Tom Davis, David
Curley, Ken Jones, Richard Wright, Ron Edmark, Victor Riley, Ashmeet Sidana,
Ken Kershner, Joel Tesler, Bob Brown, Dan Miley, Greg Ferguson, Jerry Granucci,
Ed Immenschuh, Grace Pariante, Rebecca Underwood, James Raby, Pete Sullivan,
Mike Chow, Tony Wong, Jamie Schein, Mike Keeler, Anna Wichansky, Beth Fryer,
Robert Reimann

© Copyright 1996, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks of Silicon Graphics, Inc. IRIX,
IconSmith, Indigo Magic, InPerson, IRIS IM, IRIS InSight, and IRIS Showcase are
trademarks of Silicon Graphics, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company, Ltd.
Motif and OSF/Motif are trademarks of the Open Systems Foundation. MediaMail
is a trademark of Z-Code Software Corp. PostScript is a registered trademark of
Adobe Systems, Inc. X Window System is a trademark of the Massachusets Institute
of Technology.

iii

Contents

List of Figures xiii

List of Tables xvii

About This Guide xix
What This Guide Contains xx

Part One: Integrating With the Indigo Magic Desktop xx
Part Two: Interface Components xxi
Appendix xxi

What You Should Know Before Reading This Guide xxi
Suggestions for Further Reading xxii
Conventions Used in This Guide xxiii

Style Guidelines xxiii
Font Conventions xxiii

PART I Integrating With the Indigo Magic Desktop

1. Overview of the Indigo Magic Desktop 3
Overview of the Desktop 3
How Users Interact With Desktop Icons 6
Mouse and Keyboard Hardware 8

2. Icons 11
Designing the Appearance of Icons 11

General Icon Design: Components, Size, and Colors 13
Icon Components 14
Icon Size 16
Icon Colors 17
Icon Orientation 20

iv

Contents

Application Icon Design 22
File Icon Design 24
Icon Appearance Design Guidelines 26

Defining the Behavior of Icons With FTRs 27
User and Icon Interaction 27
Icon Behavior Guidelines 29

Making Application Icons Accessible 30
Putting Icons Into the Icon Catalog 30
Naming and Locating Executables for the
Find an Icon Tool 31
Application Icon Accessibility Guidelines 33

3. Windows in the Indigo Magic Environment 35
The Indigo Magic Look: Graphic Features and Schemes 36

Enhanced Graphics in the Indigo Magic Look 36
Schemes for Colors and Fonts 39
Indigo Magic Look Guidelines 40

Application Window Categories and Characteristics 40
Application Window Categories 41
Application Models 41

“Single Document, One Primary” Application Model 42
“Single Document, Multiple Primaries” Application Model 42
“Multiple Document, Visible Main” Application Model 42
“Multiple Document, No Visible Main” Application Model 43

Window Decorations and the Window Menu 43
Window Title Bar 46

Rules for Labeling the Title Bar in Main Primary Windows 47
Rules for Labeling the Title Bar in Windows Other Than Main 48

Window Size 49
Window Placement 51
Application Window Characteristic Guidelines 52

Keyboard Focus Across Windows 55
Single-Action Pointer Grab Model 56
Multiple-Action Pointer Grab Model 58

Contents

v

Guidelines for Keyboard Focus Across Windows 59
Minimized Windows 60

Choosing an Image for Your Minimized Window 60
Labeling a Minimized Window 63
Processing While Minimized 64
Using the Minimized Window to Show Status 64
Minimized Window Guidelines 65

Desks 66
Desks Guidelines 68

Session Management 68
Session Management Guidelines 70

4. Indigo Magic Desktop Services 73
Software Installation 73

Software Installation Guideline 75
Online Help 75

Providing Help Using SGIHelp 75
Types of Online Help 76

Context-Sensitive Information 78
Overview Information 78
Task-Oriented Information 79
Index of Help Topics 79
Keyboard Shortcut Information 80
Product Information 80

Providing Help through a Help Menu 80
Providing Help Through a Help Button 82
Guidelines for Designing Online Help 83
Writing Online Help Content for SGIHelp 85

Learning About SGIHelp 85
Creating Help Cards 86
Writing Context-Sensitive Help 87
Writing Overview Information 87
Writing Task Information 87
Writing Index Information 88

vi

Contents

Writing Keyboard Shortcut Information 88
Writing for Windows With Help Buttons 89

Guidelines for Creating SGIHelp Content 89
Online Documentation 91
Desktop Variables 91

Scheme Setting 92
Auto Window Placement Setting 92
Language Setting 92
Mouse Double-Click Speed Setting 93
Editor Preference Setting 94
Desktop Variables Guidelines 97

File Alteration Monitor (FAM) 97
File Monitoring Guideline 98

5. Data Exchange on the Indigo Magic Desktop 99
Supporting the Clipboard Transfer Model 99
Supporting the Primary Transfer Model 101
Data Types Supported for Inter-Application Transfer 105
Data Exchange Guidelines 106

PART II Interface Components

6. Application Windows 111
Application Models 111

Window Types 112
Standard Application Models 113

“Single Document, One Primary” Application Model 113
“Single Document, Multiple Primaries” Application Model 115
“Multiple Document, Visible Main” Application Model 116
“Multiple Document, No Visible Main” Application Model 118

Application Model Guidelines 118
Main and Co-Primary Windows 119

Menu Bars in Primary Windows 121
Scrollable Work Areas in Primary Windows 122

Contents

vii

Control Areas in Primary Windows 122
Status Areas in Primary Windows 123
Splitting Primary Windows Into Panes 124
Popup Menus in Primary Windows 124
Primary Window Guidelines 124

Support Windows 125
General Support Window Design 126
A Specific Standard Support Window: The Indigo Magic Color Chooser 127
Support Window Guidelines 129

Pointer Behavior in a Window 130
Pointer Behavior Guidelines 131

7. Focus, Selection, and Drag and Drop 133
Keyboard Focus and Navigation 133

Keyboard Focus Policy and Navigation Within a Window 134
Keyboard Navigation 135
Mouse Navigation 138

Keyboard Focus and Navigation Guidelines 139
Selection 139

Selection Models—What Can Be Selected and How To Select It 140
Highlighting a Selection 143
Multiple Collections in One Application Window 143
Selection Guidelines 144

Drag and Drop 144
Two Models of Drag and Drop 145

Drag and Drop for Non-Text Objects 145
Drag and Drop for Text 146

Pointers for Drag Operations 147
Drag and Drop Guidelines 147

8. Menus 149
Types of Menus 149

Pull Down Menus 150
Popup Menus 151

viii

Contents

Option Menus 151
Menu Traversal and Activation 152

Using the Mouse to Manipulate Menus 153
Spring-Loaded Manner 153
Posted Manner 153
Mouse Click 154

Using the Keyboard to Manipulate Menus 154
Menu Traversal and Activation Guidelines 155

The Menu Bar and Pull-Down Menus 155
Standard Menus 157

File Menu 158
Selected Menu 161
Edit Menu 161
View Menu 164
Tools menu 165
Options menu 165
Help menu 165

What to Put in the Pull-Down Menus 166
Naming Menus in the Menu Bar 167
Naming Menu Entries in the Pull-Down Menus 168
Ordering Menus and Menu Entries in the Pull-Down Menus 169
Using Cascading Menus 170
Using Radio Buttons and Checkboxes in Pull-Down Menus 171

Choosing Mnemonics 171
Choosing Keyboard Accelerators 172
Disabling Menu Entries 174
Dynamic Menu Entries 174
Pull-Down Menu Guidelines 175

Popup Menus 178
What to Put in Popup Menus 179
Disabling Popup Menu Entries 180
Popup Menu Guidelines 180

Contents

ix

9. Controls 183
Pushbuttons 184

Pushbutton Guidelines 184
Option Buttons 185

Option Button Guidelines 186
Checkboxes 187

Checkbox Guidelines 187
Radio Buttons 188

Radio Button Guidelines 189
LED Indicators 190

LED Button Guidelines 190
Lists 191

List Guidelines 192
Text Fields 193

Text Field Guidelines 193
Scrollbars 194

Scrollbar Guidelines 195
Indigo Magic Scales 197

Indigo Magic Scale Guidelines 197
Labels 198

Label Guidelines 198
File Finder 199

File Finder Guidelines 200
Thumbwheels 200

Thumbwheel Guidelines 201
Dials 202

Dial Guidelines 202

10. Dialogs 205
Types and Modes of Dialogs 205

Dialog Modes 209
Guidelines for Using the Various Types and Modes of Dialogs 210

Designing Dialogs 210
Decorations, Initial State, and Layout of Dialogs 211

x

Contents

Standard Dialog Actions 213
Choosing Specific Actions for Your Dialogs 213
Choosing Default Actions 214
Labeling Dialog Buttons 215

Content of Specific Types of Dialogs 215
Prompt Dialogs 216
Error Dialogs 216
Warning Dialogs 216
Question Dialogs 217
Working Dialogs 217

Guidelines for Designing Dialogs 218
Invoking Dialogs 220

Invoking Dialogs When Manipulating Files 221
Other Situations for Invoking Dialogs 223
Guidelines for Invoking Dialogs 223

11. User Feedback 225
Types of Feedback 225

Providing Graphic Feedback 225
Keeping Information Up to Date 226
Providing Messages to the User 227
General User Feedback Guidelines 227

Pointer Shapes and Colors 228
Standard Pointer Shapes and Colors 228
Designing New Pointer Shapes 230
Pointer Shapes and Colors Guidelines 230

A. Summary of Guidelines 233
Icon Appearance Design Guidelines 235
Icon Behavior Guidelines 236
Application Icon Accessibility Guidelines 237
Indigo Magic Look Guidelines 237
Application Window Characteristic Guidelines 238
Guidelines for Keyboard Focus Across Windows 241

Contents

xi

Minimized Window Guidelines 241
Desks Guidelines 242
Session Management Guidelines 243
Software Installation Guideline 243
Guidelines for Designing Online Help 243
Guidelines for Creating SGIHelp Content 246
Desktop Variables Guidelines 248
File Monitoring Guideline 249
Data Exchange Guidelines 249
Application Model Guidelines 250
Primary Window Guidelines 250
Support Window Guidelines 251
Pointer Behavior Guidelines 252
Keyboard Focus and Navigation Guidelines 252
Selection Guidelines 253
Drag and Drop Guidelines 254
Menu Traversal and Activation Guidelines 254
Pull-Down Menu Guidelines 255
Popup Menu Guidelines 258
Tab Panel Guidelines 259
Pushbutton Guidelines 259
Option Button Guidelines 260
Checkbox Guidelines 262
Radio Button Guidelines 263
LED Button Guidelines 264
List Guidelines 264
Text Field Guidelines 265
Scrollbar Guidelines 266
Indigo Magic Scale Guidelines 268
Label Guidelines 269
File Finder Guidelines 269
Thumbwheel Guidelines 270
Dial Guidelines 270

xii

Contents

Guidelines for Using the Various Types and Modes of Dialogs 271
Guidelines for Designing Dialogs 272
Guidelines for Invoking Dialogs 274
General User Feedback Guidelines 275
Pointer Shapes and Colors Guidelines 276

Index 279

xiii

List of Figures

Figure 1-1 Major Elements of the Indigo Magic Desktop 5
Figure 1-2 Icon States: User Actions and Effects 8
Figure 2-1 Web Tools Icons 12
Figure 2-2 File Icons 13
Figure 2-3 Application and File Icon Components 14
Figure 2-4 IconSmith Examples 16
Figure 2-5 IconSmith Color Palette 18
Figure 2-6 Icon States and Effects on Color 19
Figure 2-7 Potential Icon Background Areas and Colors 21
Figure 2-8 Application Icon in Running and Not Running States 22
Figure 2-9 Examples of Application Icons That Could be Improved 24
Figure 2-10 Examples of Standard File Icons 25
Figure 2-11 Examples of File Icons for Application-Specific File Formats 26
Figure 2-12 Launch Dialog Box 29
Figure 2-13 Icon Catalog 31
Figure 2-14 The Find an Icon Tool 32
Figure 3-1 Examples of Graphic Modifications in the Indigo Magic Look 38
Figure 3-2 Scheme Setting Control Panel 39
Figure 3-3 Features of a Typical Main Primary Window 44
Figure 3-4 Title Bar Label Appearing in Desks Overview 47
Figure 3-5 Labels for Main Window Title Bars 48
Figure 3-6 Default Maximum and Minimum Window Size Examples 50
Figure 3-7 Setting Auto Window Placement 51
Figure 3-8 Single-Action Pointer Grab Example: Capture by Sweeping 57
Figure 3-9 Multiple-Action Pointer Grab Example 59
Figure 3-10 Minimized Window Example: Good User Association With

Application 60

xiv

List of Figures

Figure 3-11 Minimized Window Examples 62
Figure 3-12 Minimized Window Example: Incorrect Design 62
Figure 3-13 Minimized Window Example: Design That’s Too Literal 63
Figure 3-14 Minimized Window Example: Indicating Status With the Label 65
Figure 3-15 Desks Overview Window 67
Figure 3-16 Setting Session Management 68
Figure 3-17 Setting Auto Window Placement 69
Figure 4-1 The Indigo Magic Software Manager 74
Figure 4-2 Typical Help Menu and Related Windows 77
Figure 4-3 Context-Sensitive Help Example 78
Figure 4-4 Typical Help Menu 81
Figure 4-5 Help Button Example 83
Figure 4-6 Task-Oriented Help Example 88
Figure 4-7 Language Control Panel 93
Figure 4-8 Mouse Settings Control Panel 94
Figure 4-9 Desktop Settings Control Panel 95
Figure 4-10 Selecting Preferred Editor in MediaMail 96
Figure 5-1 Clipboard Transfer Example 101
Figure 5-2 Primary Selection Example 102
Figure 5-3 Primary Transfer Example: Before Transfer 103
Figure 5-4 Primary Transfer Example: After Transfer 104
Figure 6-1 Allowable Parent-Child Window Relationships 113
Figure 6-2 ”Single Document, One Primary” Application Model 114
Figure 6-3 ”Single Document, Multiple Primaries” Application Model 115
Figure 6-4 ”Multiple Document, Visible Main” Application Model 117
Figure 6-5 ”Multiple Document, No Visible Main” Application Model 118
Figure 6-6 Basic Primary Window 119
Figure 6-7 Primary Windows With Tool Palettes 120
Figure 6-8 Primary Window With Two Panes 121
Figure 6-9 The IRIS Showcase Align Gizmo 127
Figure 6-10 The Indigo Magic Color Chooser 128
Figure 7-1 Location Cursor Example 134
Figure 7-2 Components and Fields 137

List of Figures

xv

Figure 7-3 File Finder Component 146
Figure 8-1 Menu Bar 150
Figure 8-2 Pull-Down Menu 150
Figure 8-3 Cascading Menu 151
Figure 8-4 Popup Menu 151
Figure 8-5 Option Menu Button 152
Figure 8-6 An Open Option Menu 152
Figure 8-7 Elements of a Pull-Down Menu 156
Figure 8-8 Standard Menus for Menu Bars 158
Figure 8-9 The Standard File Menu 159
Figure 8-10 The Standard Edit Menu 162
Figure 8-11 Radio buttons 171
Figure 8-12 Checkboxes 171
Figure 8-13 Popup Menu 179
Figure 9-1 Pushbuttons 184
Figure 9-2 Option Button and Option Menu 186
Figure 9-3 Checkboxes 187
Figure 9-4 Radio Buttons 189
Figure 9-5 LED Button 190
Figure 9-6 List 191
Figure 9-7 Scrollbar 195
Figure 9-8 Indigo Magic Scale 197
Figure 9-9 The File Finder 199
Figure 9-10 Thumbwheel 201
Figure 9-11 Dials 202
Figure 10-1 Sample Prompt, Error, Warning, Working, Question and

Information Dialogs 207
Figure 10-2 The Indigo Magic File Selection Dialog 208
Figure 10-3 Warning Dialog Layout 212
Figure 10-4 Warning Dialog With Save, Discard, and Cancel Buttons 215
Figure 10-5 Error Dialog With Specific Entity 216
Figure 10-6 Working Dialog with Indigo Magic Scale 217
Figure 10-7 Warning Dialog for Overwriting a File 222

xvi

List of Figures

Figure 10-8 Warning Dialog for Reverting to Previous Version 222
Figure 10-9 Product Information Dialog 223

xvii

List of Tables

Table 1-1 Mouse Button Names and Functions 9
Table 1-2 Keyboard Substitutes 10
Table 2-1 User/Icon Interactions and Expected Behavior 28
Table 3-1 Window Decorations and Window Menu Entries by Window

Category 45
Table 5-1 Data Types Supported for Inter-Application Transfer 105
Table 7-1 Selection Actions and Results 141
Table 8-1 File Menu Entries 159
Table 8-2 Standard Edit Menu Entries 163
Table 8-3 Keyboard Accelerators 172
Table 10-1 Types of Dialogs, Their Modality, and When to Use Them 206
Table 11-1 Standard Pointer Shapes and Colors 228

xix

About This Guide

This guide is written for developers of software products used on Silicon Graphics®
workstations, including software engineers, graphical user interface designers, human
factors specialists, and others involved in the design process. It contains recommended
guidelines to help you design products that are consistent with other applications and
that integrate seamlessly into the Indigo Magic™ Desktop. The result of this consistency
and integration is that your products work the way end users expect them to work;
consequently, end users find your products easier to learn and use. This guide provides
information on how to design user interfaces for Silicon Graphics applications, along
with specific examples of what is and isn’t appropriate and why. Note that the guidelines
discussed in this book are just that—guidelines, not rules; they’re designed to apply to
the majority of applications, but there will certainly be anomalous applications for which
these guidelines don’t make sense.

This guide assumes you’re programming with the IRIS IM™ user interface toolkit. IRIS
IM is the Silicon Graphics port of the industry-standard OSF/Motif™ user interface
toolkit for use on Silicon Graphics computers. The Indigo Magic guidelines encourage
compliance with the OSF/Motif guidelines described in OSF/Motif Style Guide, Release
1.2, so you should be familiar with the OSF/Motif manual before reading this one. In
addition, the Indigo Magic guidelines clarify and elaborate on many OSF/Motif style
issues; they recommend many value-added extensions and improvements to the
OSF/Motif style that don’t conflict with the basic OSF/Motif interface. Following the
recommendations in this book will help ensure that your software product provides all
of the functionality and ease of use designed into the Indigo Magic Desktop.

This guide also focuses on how your application should look and feel on the Indigo
Magic Desktop when you’re finished creating it—that is, how users will expect to be able
to interact with your application. The implementation details of how to achieve this look
and feel are covered in the OSF/Motif Programmer’s Guide and the Indigo Magic Desktop
Integration Guide.

xx

About This Guide

What This Guide Contains

This guide contains two parts, which are described in the following sections. For your
convenience, this guide is available online so that you can search it using the IRIS
InSight™ Viewer; also, the online version contains many links to the Indigo Magic Desktop
Integration Guide so that you can rapidly reach the necessary implementation
information. Also this guide is available on the World Wide Web.

Part One: Integrating With the Indigo Magic Desktop

This part describes how users will expect to be able to interact with your application from
the Indigo Magic Desktop; it contains the following chapters:

• Chapter 1, “Overview of the Indigo Magic Desktop,” sets the context for Part One; it
gives you an overview of the desktop environment in which users will encounter
your application and describes the mouse and keyboard hardware provided with
Silicon Graphics systems.

• Chapter 2, “Icons,” describes how to design your application and file icons so that
they’re meaningful, they properly reflect their state (such as selected or open), and
they behave appropriately for user actions such as double-click and drag-and-drop.
It also describes how to make your application icon accessible so that users can
interact with your application through the desktop tools, such as the Icon Catalog
and the Find an Icon tool.

• Chapter 3, “Windows in the Indigo Magic Environment,” defines the various
categories of windows and describes the Indigo Magic look for your application’s
windows. This look is an enhanced version of IRIS IM and includes pre-packaged
color and font schemes. This chapter also covers the expected behaviors that your
application’s windows should support—such as sizing, moving, and minimizing
windows, managing the keyboard focus across windows, interacting with desks,
and responding to session management.

• Chapter 4, “Indigo Magic Desktop Services,” explains how your application can
take advantage of several services provided by the Indigo Magic Desktop, such as
Software Manager, SGIHelp, the IRIS InSight online documentation viewer, and
global desktop settings.

• Chapter 5, “Data Exchange on the Indigo Magic Desktop,” describes the data
transfer models that your application should support. It also lists the data types
supported for data exchange in the Indigo Magic environment.

About This Guide

xxi

Part Two: Interface Components

The second part of this guide describes the individual components of an application,
such as windows, menus, controls, and dialogs. Part Two contains the following
chapters:

• Chapter 6, “Application Windows,” discusses the different types of windows, how
your application should combine them, what elements are appropriate for primary
and support windows, and how these elements should be arranged.

• Chapter 7, “Focus, Selection, and Drag and Drop,” discusses three general
mechanisms by which users interact with your application: keyboard focus (within
a window), selection, and drag and drop.

• Chapter 8, “Menus,” describes the kinds of menus your application can use
(pull-down, popup, and option menus), how users display, traverse, activate, and
close these menus, and how to design menus and menu items for your application.

• Chapter 9, “Controls,” describes controls that are supported in the standard
OSF/Motif environment (such as push buttons, lists, and scrollbars) and those that
are unique to the Indigo Magic environment (such as thumbwheels and dials). Each
description consists of a general description of the control, and guidelines for when
to use the control, how to label the control, and how the control should behave.

• Chapter 10, “Dialogs,” defines the standard types of dialogs and discusses when to
use them. It also covers how to design application-specific dialogs.

• Chapter 11, “User Feedback,” describes various types of feedback users expect your
application to provide. It also tells you when to use each of the standard pointer
shapes and provides guidelines for designing your own pointer shapes.

Appendix

Appendix A, “Summary of Guidelines,” provides a checklist that you can use to
determine whether your product follows the Indigo Magic user interface guidelines. This
checklist contains all of the individual guidelines that appear throughout the book.

What You Should Know Before Reading This Guide

This guide assumes that you understand the concepts and terminology used with
computers whose user interface is based on the X Window System™ and OSF/Motif. It

xxii

About This Guide

also assumes that you’re familiar with the OSF/Motif Style Guide, Release 1.2; the material
presented in this guide represents enhancements to and clarification of information
presented in that manual.

Suggestions for Further Reading

The programming details of how to implement the style guidelines described in this
book are described in the following books, all of which are available online through IRIS
InSight:

• Indigo Magic Desktop Integration Guide

• Software Packager User’s Guide

• Topics in IRIX Programming

• OSF/Motif Programmer’s Guide

• OSF/Motif Reference Manual

• The X Window System, Volume 1: Xlib Programming Manual

• The X Window System, Volume 4: X Toolkit Intrinsics Programming Manual

In addition, you may want to take a look at IRIS Essentials (also an online manual), which
explains how users interact with the Indigo Magic Desktop.

Finally, you may want to refer to additional references that describe user interface design:

• Brown, C. Marlin “Lin.” Human-Computer Interface Design Guidelines. Norwood,
New Jersey: Ablex Publishing Corporation, 1989. (This book presents general user
interface guidelines.)

• Laurel, Brenda, ed. The Art of Human-Computer Interface Design. Reading,
Massachusetts: Addison-Wesley Publishing Co., 1990. (This book addresses future
directions in user interface design.)

• Mayhew, Deborah J. Principles and Guidelines in Software User Interface Design
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1992. (This book covers the
overall design process and presents general user interface guidelines.)

• Norman, Donald A. The Design of Everyday Things. Reading, Massachusetts:
Addison-Wesley Publishing Co., 1991. (This book uses examples of commonly used
products to illustrate why good design is necessary.)

About This Guide

xxiii

• Shneiderman, Ben (1992) Designing the User Interface: Strategies for Effective
Human-Computer Interaction, second edition. Reading, Massachusetts:
Addison-Wesley Publishing Co., 1992. (This book presents general user interface
guidelines.)

Conventions Used in This Guide

In this guide you’ll find the following conventions that act as visual cues for different
types of information.

Style Guidelines

❑ This icon indicates a guideline that summarizes the preceding discussion. The
guidelines appear at the end of each main section, and a complete list is provided in
Appendix A, “Summary of Guidelines.”

Font Conventions

The typographical conventions used in this book include:

• Bold text indicates that a term is a data type, a keyword, an X or IRIS IM widget
name, a function, a command-line option, or an X resource.

• Italic text indicates that a term is a file name, a button name, a variable, an IRIX™
command, or a document title.

• Screen type indicates screen displays and code examples.

• Bold screen type indicates user input and nonprinting keyboard keys.

• “Quoted text” indicates menu items.

• Angle brackets indicate special keys, as in <Ctrl>.

• Regular text is used for menu and window names.

PART ONE

Integrating With the Indigo Magic Desktop I

Chapter 1

Overview of the Indigo Magic Desktop

Chapter 2

Icons

Chapter 3

Windows in the Indigo Magic Environment

Chapter 4

Indigo Magic Desktop Services

Chapter 5

Data Exchange on the Indigo Magic Desktop

3

Chapter 1

1. Overview of the Indigo Magic Desktop

The Indigo Magic Desktop environment allows users to interact with applications by
using a graphical, point-and-click interface based on icons and windows. It offers an
easy, powerful alternative to typing commands in the traditional UNIX® style.

This chapter provides a brief overview of the Indigo Magic Desktop environment from
the user’s perspective. It describes how users expect to interact with their graphical
environment and with your application. The specific implications for your application
are discussed in the remainder of Part One, “Integrating With the Indigo Magic
Desktop.” For details on how users interact with the Indigo Magic Desktop, see the
online IRIS Essentials manual.

This chapter covers the following topics:

• “Overview of the Desktop” briefly describes the major elements of the Indigo Magic
Desktop including the various types of desktop icons.

• “How Users Interact With Desktop Icons” describes how users interact with icons
and how icons appear on the desktop during these interactions.

• “Mouse and Keyboard Hardware” describes the mouse and keyboard hardware
provided for use with Silicon Graphics systems.

Overview of the Desktop

The Indigo Magic Desktop appears in Figure 1-1 along with the major desktop tools and
examples of icons and minimized windows. The important elements in the Indigo Magic
Desktop environment are:

• 4Dwm—the window manager application underlying the Indigo Magic Desktop.
(4Dwm is the only sanctioned window manager for the Indigo Magic environment.)
It is an X Window System client based on the Motif Window Manager (MWM).
4Dwm provides window management, desks (defined below), and session
management. It provides facilities for controlling window placement, window size,
keyboard focus ownership, and minimized windows.

4

Chapter 1: Overview of the Indigo Magic Desktop

• Toolchest—a menu bar that provides general system commands not specific to any
application. This menu bar is displayed horizontally or vertically, depending on the
user’s preference, and is positioned by default in the upper left corner of the
desktop.

• Find an Icon tool—a tool for either retrieving a file’s icon, given the name, or
obtaining the full path and filename given the icon.

• Directory Views—windows that display the contents of a UNIX file directory
(folder icon) in various formats involving icons. The Directory View has an optional
shelf pane where users can store frequently used icons. Note the thumbwheel on the
lower left side of the window—it lets users adjust the viewing size of icons in the
display area of the Directory View window.

• Desks Overview—a tool for creating and managing multiple virtual screens (desks).
It lets users set up and switch desks, typically for organizing their work. 4Dwm
allows these desks to display different backgrounds.

• Search tool—a tool that lets users search for files, printers, hosts, drives, and people.

• Icons on the screen background—symbols that represent entities, such as
applications, files, directories, people, printers, the Indy Cam™ camera, removable
media devices (for example, CDROM, floppy, and DAT drives), and other devices.
Users can place icons in any portion of the desktop to have them readily accessible.

• Customize control panels—windows that let users specify various types of
preferences, such as screen background and language.

• Icon Catalog—a window that allows users to access application icons directly. It
uses a page-oriented metaphor with six default pages: Applications, Collaboration,
Demos, Desktop Tools, Media Tools, and Control Panels. Users can also create their
own pages.

These tools affect the design of your application. Specific design implications are
discussed in detail in the remainder of Part One. For more information on the tools
themselves, see the IRIS Essentials manual.

Overview of the Desktop

5

Figure 1-1 Major Elements of the Indigo Magic Desktop

Toolchest

Minimized windows

Directory

Search tool

Dumpster
icon

Data file
icon

Device icon
(CDROM)

View

Find An
Icon tool

Icon
Catalog

Desks
Overview

Customize
control
panel

Directory
View

(Applications
page)

Directory
icon

Application
icon

Device
icon (DAT)

(showcase)

Device
icon
(printer)

shelf

(Mouse
Settings)

6

Chapter 1: Overview of the Indigo Magic Desktop

How Users Interact With Desktop Icons

Users interact with icons on the Indigo Magic Desktop using a point-and-click graphical
user interface. For example, the following techniques represent some of the ways a user
can launch an application using icons:

• double-clicking the application icon, which launches the application and opens a
new file

• double-clicking a file icon, which launches the application opened to that specific
file

• selecting the application icon (by single-clicking or dragging a rectangle that
encloses it) and then choosing “Open Icon” from the Selected menu (in the
Toolchest for icons on the screen background or in the specific tool window for
other icons)

• dragging a compatible file icon and dropping it on top of the application icon,
which launches the application and opens that specific file

The six states that are used to represent icon manipulations are indicated primarily by
painting specific portions of the icon with a predefined “icon color.” As the state changes,
the areas painted with the icon color change color. For the specific implications on the
design of your application’s icons, see “General Icon Design: Components, Size, and
Colors” in Chapter 2.

The icon states of the IRIS Showcase application icon are illustrated in Figure 1-2. (Note
that the magic carpet under the magician’s hat is the generic executable symbol used in
the Indigo Magic environment to identify the icon as an application icon.) In the figure,
the hat brim, the light shading on the hat, and the carpet are in the predefined icon color
and thus change color as the state changes. The states are:

• neutral—the icon isn’t involved in any operations. The icon appears in the base
colors you’ve chosen. The portions containing the icon color appear in light gray.

• locate highlight—the pointer is resting on the icon and the icon isn’t currently
selected (see the following description of the selected state). The icon color portions
change from the neutral state color light gray to white. The locate highlight feature
lets the user know that the highlighted icon will be selected if the user single-clicks
or opened if the user double-clicks. (The locate highlight feature also applies to
components in windows to provide feedback as to which objects are true
components and which are passive graphics, as described in “Enhanced Graphics in
the Indigo Magic Look” in Chapter 3.)

How Users Interact With Desktop Icons

7

• selected—the icon has been chosen potentially for some operation. Users select an
icon by single-clicking on it with the left mouse button or dragging a rectangle
around it using the left mouse button. When an icon is selected, the icon color
portions turn yellow. Note that the icon color is bright yellow when the window
containing the icon (or the screen background) has the keyboard focus; otherwise,
the icon color is a dim yellow. Users can choose entries from the Selected menu (from
the Toolchest if the icon is on the screen background or from a window’s menu bar
if contained in a tool window) to perform various operations on the object
represented by the icon.

• open—applies to application icons but not to data file icons. For application icons,
the open state indicates that the application is running. Application icons indicate
their open state by moving the magic carpet from a horizontal to a vertical position
and by changing their application icon symbol. This is discussed in more detail in
“Application Icon Design” in Chapter 2. Note that application icons don’t indicate
their open state with colors.

• drag—an icon is in the process of being moved on the screen. Users drag icons by
pressing and holding down the left mouse button while the pointer is positioned
over the icon and then moving the mouse. The icon moves around the desktop with
the pointer. As an icon is dragged, the portions colored with the icon color display in
yellow since it’s in the selected state, and a ghost image of the icon with the icon
color portions displaying in dark gray remains in the original position. The ghost
image remains until the user drops or places the icon or cancels the drag operation.

• drop-accepting—an icon has another icon moved on top of it to perform some
operation. For example, users can move a file from one directory to another by
dragging the icon representing the file and dropping it onto the icon representing
the new directory. When an icon has another icon positioned over it, the icon color
portions of the destination icon turn royal blue if the destination icon can accept
dropped icons or remain in their current color if the destination icon doesn’t accept
them.

8

Chapter 1: Overview of the Indigo Magic Desktop

Figure 1-2 Icon States: User Actions and Effects

Mouse and Keyboard Hardware

The Silicon Graphics three-button mouse supports the mouse actions defined in the
OSF/Motif Style Guide (such as press, release, click, motion, multiclick, multipress, and
multimotion). Table 1-1 lists these buttons and their functions. If a mouse action is
mentioned in this guide without reference to a specific mouse button, assume that the

Neutral

Selected
User single-clicks icon or
drags a rectangle around
it; icon color turns bright

No user action;
standard icon displays in

Drag
User moves icon. Icon

Drop-accepting
User drags an icon
on top of another icon;
icon color turns royal
blue only if icon is able to
accept dropped icons.

Open
User launches application;
no color changes, but the
magic carpet rises and the
open icon symbol displays

Locate highlight
User moves cursor over
icon; icon color turns
white if the icon is not

yellow while the window
to indicate that the application
is running.

base colors. Icon color is
light gray. currently selected; otherwise

there is no change.

color portions turn bright
yellow and the icon moves
with the pointer. Ghost
image with an icon color

original position until

containing the icon has
keyboard focus and turns.

.
dim yellow when the window
loses keyboard focus.

of dark gray remains in

move is completed.

Mouse and Keyboard Hardware

9

button being used is the left mouse button. For example, “when the user clicks on the OK
button. . .” means “when the user positions the pointer over the OK button and clicks the
left mouse button. . . .” Note that users can switch the mouse to a left-handed mouse via
the Mouse Settings control panel available from the Desktop->Customize menu in the
Toolchest.

Silicon Graphics keyboards support the following special keys that are used to interact
with Motif-compliant applications:

a. This table assumes a right-handed mouse.

Table 1-1 Mouse Button Names and Functions

Buttona OSF/Motif
Name

Silicon Graphics
Name

Function

Leftmost button BSelect Left mouse
button

Used for all primary interactions,
including selection, activation, and
setting the location cursor.

Middle button BTransfer Middle mouse
button

Used for moving and copying elements.
Can be used for advanced user shortcuts
that are also included in a more obvious
interface.

Rightmost button BMenu Right mouse
button

Exclusively used for popping up menus.

<Tab>

<Space>

<Back Space>

<Escape>

<Insert>

<Delete>

<Home>

<End>

<Page Up>

<Page Down>

Modifier keys: <Ctrl>, <Alt>, <Shift>

10

Chapter 1: Overview of the Indigo Magic Desktop

In addition to these keys, Silicon Graphics keyboards also support the function keys
<F11> and <F12>, which aren’t included in the OSF/Motif Style Guide. If your application
uses these keys, limit them to application-specific functionality rather than the general
functionality described in this guide.

Table 1-2 lists the keys that the OSF/Motif Style Guide defines but that don’t appear on
Silicon Graphics keyboards; it also lists the corresponding Motif-compliant substitutions
for Silicon Graphics keyboards.

Ten function keys: <F1> through <F10>

Special printing characters: </>, <\>, <!>

Arrow keys: <down arrow>, <left arrow>, <right arrow>, <up arrow>

Table 1-2 Keyboard Substitutes

OSF/Motif Key Silicon Graphics Substitute

<Return> <Enter>

<Cancel> <Escape>

<Help> <F1>

<Menu> <Shift><F10>

<Begin> <Home>

11

Chapter 2

2. Icons

The Indigo Magic Desktop uses icons to represent entities such as applications, files,
directories, people, printers, the Indy Cam camera, removable media devices (for
example, CDROM, floptical, and DAT drives), and other devices. Users can manipulate
these icons through a point-and-click graphical user interface to initiate certain actions,
such as launching an application or sending a data file to the printer.

This chapter covers the following topics:

• “Designing the Appearance of Icons” tells you how to design an application icon to
represent your application’s executable file and a file icon to represent your data
files.

• “Defining the Behavior of Icons With FTRs” explains which File Typing Rules
(FTRs) you need to define for your application and file icons so that they will
respond to user actions such as double-click and drag-and-drop.

• “Making Application Icons Accessible” discusses adding your application icon to
the Icon Catalog and naming and locating your executable file in the file system so
that users can easily find your application icon.

Note: In this guide, the term icon refers to Indigo Magic Desktop icons and not to
minimized windows, as in the OSF/Motif Style Guide. Minimized windows are described
in“Minimized Windows” in Chapter 3.

Designing the Appearance of Icons

This section discusses icon design. Topics include:

• “General Icon Design: Components, Size, and Colors”

• “Application Icon Design”

• “File Icon Design”

12

Chapter 2: Icons

Your application’s desktop icons can appear in any of several places on the Indigo Magic
Desktop, along with icons from other applications. For example, your icons can appear
on the desktop background, in Directory View windows, and in the Icon Catalog.
Figure 2-1 shows the Icon Catalog, which displays several application icons representing
executable files. Figure 2-2 shows various data file icons that can appear on a user’s
desktop.

For each application, you’ll need to create an application icon. If your application saves
its data in a unique format, you’ll also need to create a data file icon. (If your application
saves its data in a standard data format, your application’s data files will automatically
appear on the desktop using the appropriate standard data icon.)

Figure 2-1 Web Tools Icons

Designing the Appearance of Icons

13

Figure 2-2 File Icons

To make your application and file icons stand out in a group of icons, be sure to create
meaningful symbols that are distinctive and represent your product. Your icon designs
should also follow the guidelines detailed in the remainder of this section so that users
recognize your icons as desktop icons and know that they can interact with these icons
in expected ways.

General Icon Design: Components, Size, and Colors

Design your application and file icons so that they:

• convey your product identity

• have the correct components and thus are recognizable as desktop icons

Text file icon

Code file icon mail folder icon

rgb image file icon

IRIS Showcase file icon
PostScript file icon

InPerson file icon

Move file icon

Audio file icon

IRIS Inventor file icon

14

Chapter 2: Icons

• are identifiable when zoomed to the minimum and maximum sizes allowed by the
Indigo Magic Desktop

• use an effective color scheme, which allows the icon to reflect its state

Your primary goal is to differentiate your icons from those of other products and to make
the design fairly simple because desktop icons are small when minimized.

Icon Components

Application and file icons consist of several components (as shown in Figure 2-3):

• a symbol identifying the application or type of data file

• an outline around the edge of the symbol

• a drop shadow that helps give the icons a 3D appearance

• a label identifying the executable or data file

Application icons also include a magic carpet, the generic executable symbol, which
differentiates them from file icons and shows whether or not the application is running
(by moving from the horizontal, at-rest position into a vertical, up-and-running
position). File icons for document-based applications incorporate the generic data file
symbol (three rectangles representing sheets of paper) into the file icon design.

Figure 2-3 Application and File Icon Components

You need to create the symbols for your application icon and for any unique file types
your application creates. Create the symbols with the IconSmith™ drawing tool, which
is described in Chapter 12, “Using IconSmith,” in the Indigo Magic Desktop Integration
Guide. IconSmith provides a drawing grid with tools for creating 3D graphics. It also

Application symbol
Generic executable

Drop shadow
Icon label

Data file format symbol

Drop shadow

Icon label (data file

Application Icon File Icon

Outline Outline

(executable

symbol (magic carpet)

file name)

Generic data file symbol
(stack of papers)

name)

Designing the Appearance of Icons

15

supplies predefined templates for the magic carpet in both the running and not running
states and the data file format symbol, complete with drop shadows.

You can create your unique icon symbols in the drawing area and can readily add the
predefined templates to your design. Figure 2-4 shows four examples of IconSmith. The
drawing area in the example in the upper left corner contains the IRIS Showcase
application symbol for its not-running state. The other three examples contain the three
predefined templates. The icon labels are supplied automatically when the icons are
displayed on the desktop. This label is the name of the executable for application icons
and the name of the data file for file icons.

16

Chapter 2: Icons

Figure 2-4 IconSmith Examples

Icon Size

Draw your icon within the 100×100-pixel boundary box defined by IconSmith. Keep in
mind that your symbol designs should allow any generic icon components, such as the

Magic carpet symbol (not running) Magic carpet symbol (running)

Data file symbolShowcase application symbol (not running)

Designing the Appearance of Icons

17

magic carpet and stack of papers, to be at least partially visible. This is described in more
detail in “Application Icon Design” and “File Icon Design” later in this chapter.

By default, icons are reduced to fit within a 50x50 pixel area when they’re displayed on
the desktop. Because users can adjust the viewing scale for icons making the icons either
larger or smaller than this default, your icon drawings should look good across the range
of available sizes. You can use the IconSmith preview box to see what your icon looks like
when scaled to various sizes.

Icon Colors

IconSmith provides the color palette shown in Figure 2-5 for specifying the colors in your
icon. The following two buttons are of particular importance for applying color to icons:

• Specific—lets you apply a color from the color selection area to the selected part of
the graphic. The specific color remains constant as an icon goes through its states.

• Icon—lets you apply the predefined icon color to the selected part of the graphic.
Portions painted with the icon color change color dynamically as the icon changes its
state.

When choosing colors for your icons, consider that the icon color changes to indicate state
and that icons appear against a variety of differently colored backgrounds. To
accommodate these issues, you need to enable your icon to show its state and make sure
your icon stands out from the most likely backgrounds, as explained in the following
paragraphs. (See Chapter 1, “Overview of the Indigo Magic Desktop,” for explanations
of icon states from the user’s point of view.)

18

Chapter 2: Icons

Figure 2-5 IconSmith Color Palette

To enable your icon to reflect what state it’s in, you need to paint portions of it with the
predefined icon color supplied by IconSmith. Those portions of your icon are changed
automatically by the Indigo Magic Desktop to indicate the icon’s state. In the example
shown in Figure 2-6, the hat brim, the light shading on the hat, and the carpet of the IRIS
Showcase application icon use the predefined icon color (which is a light gray in the
neutral state). In addition, to make the state color changes easier for users to detect in
your icons, avoid (or use sparingly) intense, strongly saturated colors and the specific
colors used by the Indigo Magic Desktop to indicate state—bright yellow, dim yellow,
royal blue, pure white, and light gray.

Defined color types

Color selection area
for fill areas

for fill areas

Specific color button

Icon color button

Designing the Appearance of Icons

19

Figure 2-6 Icon States and Effects on Color

You can increase your icon’s visibility on user-customized desktops. (Remember that
users can customize the desktop background to be any color and pattern, as described in
Chapter 1, “Overview of the Indigo Magic Desktop.”) To increase visibility:

• Use the icon color defined by IconSmith to color most of your icon.

• Use two or more areas of accent colors to help your icon stand out against
user-customized background colors.

• Avoid using only very small color areas (2-4 pixels) because these small areas may
be difficult to see against a patterned background.

• Use the outline color (which is black) supplied by IconSmith to define the outline of
your icon.

Neutral Select (with input focus)

Drag Drop-accepting

Locate highlight

icon color is white icon color is bright yellowicon color is light gray

icon color is dark gray
in ghost image and bright
yellow in dragged image

icon color is royal blue
in accepting icon

Select (no input focus)

icon color is dim yellow

20

Chapter 2: Icons

• Since your icons can display in certain Indigo Magic tools as shown in Figure 2-7,
avoid (or use sparingly) the following background colors used by these tools:

– light gray-green—used in Directory View windows

– cadet blue—used in read/write panes such as drop pockets, shelves in
Directory View windows, and the Icon Catalog pages

– Navajo white—used in read-only panes such as the results area of the Search
tool

See /usr/lib/X11/schemes/Base/OzSpec for colors used by these tools:

*ozDirPanelColor: AlternateBackground4
*ozCltnPanelColor: AlternateBackground5
*ozDropPocketColor: AlternateBackground5

See /usr/lib/X11/schemes/Base/BaseColorPalette for definitions of these colors:

#define AlternateBackground4 #729c9c
#define AlternateBackground5 #5680ab
#define AlternateBackground6 #b6b6aa

Note: The color descriptions “light gray-green” and “cadet blue” are approximate since
hardware and gamma values vary. Look at these colors on your system in Directory View
windows and read/write panes, and avoid using these colors in your icon or use them
sparingly.

Icon Orientation

Icons on the Indigo Magic Desktop should display at a three-quarter view and face the
lower right of the screen to make them appear 3D. When designing your application and
data file format symbols, draw them using this perspective. This is the same perspective
that is used for the generic executable symbol (the magic carpet) and the generic data file
symbol (stack of papers). Icons that don’t follow this convention appear to be facing the
wrong way.

Designing the Appearance of Icons

21

Figure 2-7 Potential Icon Background Areas and Colors

Directory View
shelf (cadet blue)

Icon Catalog
display area
(cadet blue)

Search tool
display area
(Navajo white)

Directory View icon display
area (light gray-green)

Drop pockets
(cadet blue)

22

Chapter 2: Icons

Application Icon Design

In addition to adhering to the guidelines discussed in the previous section, “General Icon
Design: Components, Size, and Colors,” the application icon that represents your
application’s executable needs to convey to users:

• that it’s an application icon (as opposed to a data file icon)

• what its current state is (whether or not the application is running)

The magic carpet is the generic executable symbol; it differentiates application icons from
data file icons. As mentioned in the previous section, the magic carpet and its drop
shadow are predefined components that can easily be incorporated into your icon design
when using IconSmith. For details of having them appear with your application symbol,
see Chapter 11, “Creating Desktop Icons: An Overview,” in the Indigo Magic Desktop
Integration Guide.

As shown in Figure 2-8, the application icon uses both of the following techniques to
indicate its state—that is, whether or not the application is running:

• The 3D application symbol changes (in this example, items pop out of the hat in the
running state).

• The magic carpet moves from a horizontal, at-rest position to a vertical,
up-and-running one, and the drop shadow changes shape appropriately. Since the
magic carpet must be recognizable in both states, make sure that your application
symbol doesn’t completely obscure it in either position.

Figure 2-8 Application Icon in Running and Not Running States

To have your application icon change to reflect its running state, create two different
symbols using IconSmith and associate them with your application. See Chapter 11,

Application symbol

Magic carpet in

Application symbol
(running)

RunningNot Running

Magic carpet in
vertical position
(running)

(not running)

horizontal position
(not running)

Designing the Appearance of Icons

23

“Creating Desktop Icons: An Overview,” in the Indigo Magic Desktop Integration Guide for
details on how to do this. The specific design of the two symbols is up to you, but keep
in mind that you’re trying to convey an inactive state and an active, running one. Also,
when viewed in succession, the two symbols look like a progressive animation rather
than two unrelated icons.

The IRIS Showcase application icon shown in Figure 2-8 is an example of a well-designed
icon: it animates to show which state the application is in, and the carpet is always
visible. Figure 2-9 shows three examples of application icon designs that can be
improved:

• The first example is an application icon for a point-and-click ASCII text editor. Its
carpet is clearly visible and functions properly. The application symbol doesn’t
change, however, to reflect that the application is running. To improve the design,
the existing symbol could be used to show the running state and the pencil could be
aligned at the bottom or side of a blank version of the pad when the application
isn’t running.

• The application icon in the second example represents an online book viewer. The
application symbol changes nicely to indicate its running state. The carpet,
however, is almost totally obscured when the application isn’t running and doesn’t
appear at all when the application is running.

• The third application icon represents a database application for tracking software
bugs. The application symbol is visually appealing but completely obscures the
carpet. In addition, there’s no change in the application symbol to reflect its running
state, and the symbol is oriented toward the lower left instead of the lower right.
The design could be improved by adding a second symbol for the not-running state
(perhaps showing the file drawer closed with the bug’s antennae sticking out),
making the application symbol smaller so that the magic carpet is visible, and
redrawing the symbol so that it faces the lower right.

24

Chapter 2: Icons

Figure 2-9 Examples of Application Icons That Could be Improved

File Icon Design

If your application creates files, those files need to be associated with data file icons. Silicon
Graphics defines a set of standard data formats and provides associated data file icons,
some of which are shown in Figure 2-10. (For information on these file formats, see
Appendix E, “Predefined File Types,” in the Indigo Magic Desktop Integration Guide.) If
your application saves its data in any of these standard formats, it will automatically use
the appropriate data file icon for those files.

If your application saves its data in a unique format, however, you need to design a
distinctive file icon that relates graphically to the theme of your application icon.
Indicate, if possible, how the data is used. Your file icon should follow the guidelines
discussed in this section and in the earlier section “General Icon Design: Components,
Size, and Colors.”

RunningNot Running

No change in
application symbol

No change in
application symbolObscured carpet

Obscured carpet Missing carpet

Obscured carpet

Incorrect icon orientation
Incorrect icon
orientation

Designing the Appearance of Icons

25

Figure 2-10 Examples of Standard File Icons

The standard file icons shown in Figure 2-10 that symbolize documents all contain the
generic data file symbol (stack of papers). If your application creates data files, your file
icon should include this generic symbol. Both the generic symbol and its drop shadow
are predefined components available in IconSmith. If you’re creating a unique icon that
does not use the generic data file symbol, create an appropriately shaped drop shadow
for your design and paint it with the shadow color predefined in IconSmith.

Figure 2-11 shows some file icons for application-specific file formats. For example, the
IRIS Showcase file icon includes the generic data file symbol (a stack of papers) to
indicate that it represents a document, and the data file format symbol is similar to that
found in the IRIS Showcase application symbol for the running state.

ASCII text file

C program

IRIS Movie

rgb file

command script

PostScript file

AIFF sound file

Player movie
file

file

source file

shared library
executable file

archive file

Inventor file

26

Chapter 2: Icons

Figure 2-11 Examples of File Icons for Application-Specific File Formats

Icon Appearance Design Guidelines

For any icon you create . . .

❑ Provide a meaningful, distinctive symbol that gives your product an identity and
that allows users to readily identify your application and its corresponding custom
data files, if any.

❑ Keep designs fairly simple because desktop icons can be displayed in small sizes.

❑ Make sure that your icon can be identified across the range of viewing sizes.

❑ Color most of your icon using the icon color predefined by IconSmith so that your
icon’s state is easy to detect.

❑ Use two or more areas of accent colors to help your icon stand out against
user-customized background colors.

❑ Avoid small areas of color (2-4 pixels) because they’re difficult to see against
patterned backgrounds.

❑ Use an outline around your custom symbol, and use the outline color supplied by
IconSmith.

❑ Avoid or use sparingly intense, strongly saturated colors and the specific colors used
by the Indigo Magic Desktop—bright yellow, dim yellow, royal blue, light
gray-green, cadet blue, and Navajo white. These colors make it difficult to
distinguish between certain icon states and to find your icon against the background
colors of many desktop tools.

❑ Orient your icon so that it displays a three-quarter view that faces the lower right
corner of the screen.

When designing an application icon . . .

❑ Include the magic carpet, the generic executable symbol, with your application’s
symbol.

Showcase data file InPerson data file

Defining the Behavior of Icons With FTRs

27

❑ Indicate the state of the application (not running vs. running) by moving the magic
carpet from a horizontal (not running) to vertical (running) position, or by providing
two different application symbols and moving the magic carpet from a horizontal to
vertical position. Remember that your application symbols should resemble a
progressive animation when viewed in succession.

❑ Make sure that your application symbols do not completely obscure the magic carpet
in either its horizontal or vertical position.

❑ Application icons that have two separate symbols for the not running and running
states should make sure that the main part of the symbol remains in the same
location during both states, so that the symbol appears stationary to the user.

If your application saves data in a custom file format . . .

❑ Design a unique data file format symbol that is readily associated with your
application icon design and also indicates how the data is used.

❑ If your application is document-based, include the generic data file symbol (stack of
papers) in your design.

❑ If your data file icon does not use the generic data file symbol, create an
appropriately shaped shadow for your file icon and use the predefined shadow color
supplied by IconSmith.

Defining the Behavior of Icons With FTRs

Define the behavior of icons on the Indigo Magic Desktop by creating a File Typing Rule
(FTR) file for each icon. This behavior includes such things as what happens when the
user double-clicks on an icon and what happens when the user drags and drops one type
of icon onto another type of icon. This section describes:

• “User and Icon Interaction,” which explains how users can interact with icons, how
an FTR supports these interactions (in brief).

• “Icon Appearance Design Guidelines,” which lists the minimal set of standard
behaviors your application and file icons should support.

User and Icon Interaction

Table 2-1 shows the behavior users expect for given interactions with application and file
icons. The last column lists the rules for each type of interaction. For information on

28

Chapter 2: Icons

implementing these behaviors, see Chapter 11, “Creating Desktop Icons: An Overview,”
in the Indigo Magic Desktop Integration Guide.

a. Design the application so it can accept specific data (for example, a filename) as a command-line argument.

Table 2-1 User/Icon Interactions and Expected Behavior

User Goal User Action Expected Behavior Implementation Hints

Launch application Selects application icon and
chooses “Open” from the
corresponding Selected menu
-or-
Double-clicks application icon

The magic carpet and the application
symbol change from the not-running
to the running state. The application
launches, set to a new file.

Add a CMD OPEN rule for
the application icon

Launch application
with a particular file
by directly opening
file

Selects file icon and chooses
“Open” from the corresponding
Selected menu
-or-
Double-clicks file icon

The magic carpet and the application
symbol change from the not-running
to the running state. The application
launches, set to the specified file.

Add a CMD OPEN rule for
the file icon that specifies its
applicationa

Launch application
with a particular file
by dragging and
dropping

Drops file icon onto application
icon

If file is compatible, application
launches, set to specified file

If file is incompatible, application
posts an appropriate error message
and doesn’t launch.

In both cases, the magic carpet and
the application symbol change from
the not running to the running state.

Add a CMD DROP rule for
the application icon

Launch application
with command-line
arguments

Double-clicks application icon
while holding down the <Alt>
key

The Launch dialog box opens,
displaying the path to your
executable (see Figure 2-12). Users
can add arguments if desired.
Clicking OK executes the text input
as specified. The magic carpet and
the application symbol then change
from the not-running to the running
state.

Add a CMD ALTOPEN rule
for the application icona

Print file Selects file icon and chooses
“Print” from the corresponding
Selected menu
-or-
Drops file icon onto printer icon

Specified file prints on default
printer if activated by a menu
selection or prints on specified
printer if activated by a drag and
drop action.

Add a PRINT rule for the file
icona

Defining the Behavior of Icons With FTRs

29

Figure 2-12 Launch Dialog Box

Icon Behavior Guidelines

When creating an FTR to define your application icon’s behavior . . .

❑ Provide a CMD OPEN rule that launches the application. This allows the user to
open your application either by selecting your application icon and then choosing
“Open” from the corresponding Selected menu, or by double-clicking your
application icon.

❑ Provide a CMD ALTOPEN rule that opens the Launch dialog box shown in
Figure 2-12 with the path to your executable displayed in the text field of this
window. This allows the user to open the Launch dialog box by double-clicking your
application icon while holding down the <Alt> key.

❑ Provide a CMD DROP rule that launches your application with the file specified by
the dropped icon. If your application doesn’t understand the type of file represented
by the icon dropped on it, your application should provide an appropriate error
message to the user rather than launching. This allows the user to launch your
application with a specific file by dragging the file icon and dropping it on your
application icon.

When creating an FTR for your file icon . . .

❑ Provide a CMD OPEN rule that launches your application and automatically opens
the file represented by the file icon. This allows the user to open a file created by your
application either by selecting the file icon and then choosing “Open” from the
corresponding Selected menu, or by double-clicking the file icon.

❑ Provide a CMD PRINT rule that sends the file represented by the file icon to the
specified printer. This allows the user to send your application’s data files to the
default printer by selecting the file icon and then choosing “Print” from the
corresponding Selected menu. It also allows the user to send your application’s data

30

Chapter 2: Icons

files to any printer by dragging the file icon and dropping it on an icon that
represents the specific printer.

Making Application Icons Accessible

In addition to designing the appearance and defining the behavior of your application
icon, you need to make it accessible to users. This section describes:

• “Putting Icons Into the Icon Catalog”

• “Naming and Locating Executables for the Find an Icon Tool”

Putting Icons Into the Icon Catalog

After users install an application, they expect to find its icon in the Icon Catalog
(described in “Overview of the Desktop” in Chapter 1), so you need to add your
application icon to the Catalog as part of the installation process. Also, decide on which
page of the Catalog your icon should appear or, if necessary, create a new page. Once
you’ve chosen an appropriate page for your application icon, refer to Chapter 11,
“Creating Desktop Icons: An Overview,” in the Indigo Magic Desktop Integration Guide for
details on making your application icon appear on the chosen page.

As shown in Figure 2-13, the Icon Catalog lets users access applications visually without
having to search through the file hierarchy. Some of the Icon Catalog pages are listed
below along with typical applications that can appear on them:

• Application page—multimedia presentation application (showcase), text editor (jot),
electronic mail program (MediaMail)

• Collaboration page—desktop conferencing application (inperson), 3D model
annotator (annotator)

• Demos page—xlogo and buttonfly

• Desktop Tools page—calculator program (xcalc), clock program (xclock), select fonts
(xfontsel), mail notifier utility (mailbox), calendar display (ical), and screen magnifier
(mag)

• Media Tools page—compact disc player (cdman), digital audio tape player (datman),
image file format conversion utility (imgcopy), movie creation/editing application
(moviemaker), audio editing application (soundeditor)

Making Application Icons Accessible

31

• Control Panels page—audio control panel (apanel), background setting control
panel (background), desktop settings control panel (desktop)

• Web Tools page—Netscape Navigator (netscape), WebMagic (webmagic),
WebSpace Navigator, WebJumper (webjumper), OutBox/WebServer, DynaWeb
Server, What’s New, TarDist

In most cases your application icon will appear on the Applications page, since that’s
where users will expect to find it. If you’re developing a suite of applications, however,
you may want to create a new page for your icons and let users know (in your product’s
documentation) that you’ve done this.

Figure 2-13 Icon Catalog

Naming and Locating Executables for the
Find an Icon Tool

The Find an Icon tool, shown in Figure 2-14, allows users to find applications by typing
the name of the executable. If they type the correct name and if the executable is located
in a directory on the user’s search path or under the user’s home directory, the
corresponding icon appears in the drop pocket. The user can then drag the icon to
another location such as the desktop, or open it directly from the Find an Icon tool by
double-clicking the icon.

32

Chapter 2: Icons

Figure 2-14 The Find an Icon Tool

Since users may be guessing at the most likely name for the application’s executable,
adhere to the following naming conventions:

• Choose a name that matches the product name or is strongly associated with the
product. For example, the name of the IRIS Showcase executable is showcase, and the
name of the online book application, IRIS InSight, is insight. Don’t use an
abbreviation of your product name.

• Use only lowercase letters for the name. For example, the name for the SoundEditor
executable is soundeditor.

• Don’t include spaces in the name since UNIX doesn’t handle spaces elegantly.

• Don’t use numbers in the name to represent versions of a product. For example, the
executables for IRIS InSight 2.2.1 and its earlier versions are all named insight.

• Don’t use any special characters in the name, such as underlines or periods. Simply
remove any spaces when converting your product’s name to an appropriate name
for your
executable.

Since the Find an Icon tool searches only directories on the user’s search path and under
the user’s home directory, put your executable—or a link to it, which is preferable—in
one of the directories on the user’s default path. The directories included in the default
path are:

The most appropriate place to put a link to your executable—and the one that will result
in users finding your application the fastest—is /usr/sbin.

/usr/sbin /usr/bsd /sbin

/usr/bin /bin /usr/bin/X11

Drop pocket, for Text entry field, Recycle button,
for entering the filename
or complete pathname

for retrieving a previouslyoperating on
found icon entered pathname

Making Application Icons Accessible

33

Application Icon Accessibility Guidelines

When making your application icons accessible to users . . .

❑ Place your application icon on the Applications page in the Icon Catalog. If you
produce a suite of software applications, consider creating your own page.

❑ In your documentation, refer users to the appropriate page in the Icon Catalog after
they’ve installed your application.

❑ When naming your executable, use the product name or choose a name that’s
strongly associated with the product.

❑ When naming your executable, use only lowercase letters. Don’t use numbers,
spaces, or special characters such as underlines or periods. Don’t use an abbreviation
of the product name.

❑ Make sure that a link to your executable (preferred method) or the executable itself
resides in a directory in the user’s default search path. Ideally, place a link to your
executable in the /usr/sbin directory. This helps ensure that users can quickly find
your application icon using the Find an Icon tool.

35

Chapter 3

3. Windows in the Indigo Magic Environment

When users run your application on the Indigo Magic Desktop, they interact with its
windows through 4Dwm, the IRIS Extended Motif Window Manager. This chapter
describes the look, interactions, and behaviors that your application’s windows should
support. (For information on individual window components, see Chapter 6,
“Application Windows,” and Chapter 9, “Controls.”) This chapter covers the following
topics:

• “The Indigo Magic Look: Graphic Features and Schemes” discusses general
characteristics of windows, including the Indigo Magic enhanced look provided by
the IRIS IM toolkit and its advantages, and color and font schemes.

• “Application Window Categories and Characteristics” defines the categories of
windows in the Indigo Magic Desktop environment and presents several models of
applications using the various window types. It also lists the required window
decorations and Window menu for each window category, prescribes how to
choose labels for title bars, and discusses window size and placement issues.

• “Keyboard Focus Across Windows” establishes the 4Dwm default keyboard focus
policy across windows as implicit, and describes the behavior for applications that
need to maintain control of the pointer while it’s outside of the application’s
windows.

• “Minimized Windows” provides ideas for designing minimized window images,
describes how to choose labels for minimized windows, and discusses application
behavior while minimized.

• “Desks” describes the tool that provides users with multiple virtual screens or desks.
It covers the design implications for your application windows, which can be
distributed over these multiple desks.

• “Session Management” describes the 4Dwm session manager and the implications
of allowing users to log out while your application is running and return
automatically to the same state upon subsequent login.

36

Chapter 3: Windows in the Indigo Magic Environment

The Indigo Magic Look: Graphic Features and Schemes

When using the IRIS IM user interface toolkit, you can choose one of two different
appearances for your application:

• the Indigo Magic look (preferred by Silicon Graphics)

• the basic OSF/Motif look

The Indigo Magic look provides an attractive, 3D look for your application and the
default colors and fonts used by the Indigo Magic Desktop. The two components to the
Indigo Magic look are described below:

• “Enhanced Graphics in the Indigo Magic Look”

• “Schemes for Colors and Fonts”

Enhanced Graphics in the Indigo Magic Look

The Indigo Magic look contains a number of graphic modifications made to the standard
IRIS IM interface. These modifications improve the appearance and ease of use of
applications. They have no impact on the component layout and require minimal work
on the part of the developer. Some of the differences between the Indigo Magic look and
the standard IRIS IM look appear in Figure 3-1. In comparison, the Indigo Magic look:

• Uses smooth shading with a rounded dimensional look to create a high-quality
visual appearance. Numerous sharp bevels, such as those found in standard Motif
components, detract from rather than add to the visual presentation of an
application. (See Figure 3-1A.)

• Adds locate highlight (the object brightens as the pointer passes over it) so that
users can tell which components are live functional objects and which are passive
graphics or are disabled. Locate highlight also gives users feedback as to whether or
not the application is listening.

• Adds additional visual feedback for selected checkboxes and radio buttons. A
distinct red arrow and a blue triangle clearly indicate a selected checkbox and radio
button, respectively (see Figure 3-1A).

• Enhances scrollbars by providing a grip on the slider used in scrollbars and a
temporarily indented impression to indicate the original location of the slider
during the scrolling process (see Figure 3-1C). The grip makes it easier for users to
recognize the slider as something to be dragged rather than a button to be pressed.

The Indigo Magic Look: Graphic Features and Schemes

37

• Uses a stroked underline to indicate mnemonics in menus simply to give the look of
an application some pizazz (see Figure 3-1D).

• Provides a more consolidated treatment for composite objects. For example, the
Indigo Magic look visually integrates the arrow stepper buttons in scrollbars with
the scrollbars themselves to give a less cluttered look. In addition, the scrollbars are
visually integrated with the client pane as much as possible to make the whole
assembly appear as a single, integrated unit (see Figure 3-1C).

• Uses decals instead of stacked, 3D elements to make it easier for users to see the
components (see Figure 3-1B). There is no gratuitous use of 3D such as the raised
arrows and rectangular option buttons in standard Motif.

• Renders black outlines around stand-alone widgets to improve the readability and
perception of adjoining color areas (see Figure 3-1B and C). For example, the black
outline around buttons and scrollbars make them stand out from a window’s
background.

• Uses closely grouped dialog buttons that are right justified. This style makes the
buttons easier to read, and the close grouping may reduce mouse motion.

For details on how to obtain the graphic enhancements of the Indigo Magic look, see
Chapter 2, “Getting the Indigo Magic Look,” in the Indigo Magic Desktop Integration Guide.
For guidance on designing other aspects of your application windows, such as general
layout principles and use of controls, see Chapter 6, “Application Windows” and
Chapter 9, “Controls.”

38

Chapter 3: Windows in the Indigo Magic Environment

Figure 3-1 Examples of Graphic Modifications in the Indigo Magic Look

Standard IRIS IM LookIndigo Magic Look

Arrow decal Raised 3D arrow

Convex indicates

Scroll bar slider

(A) Toggles

(C) Scroll bars

(B) Arrow buttons

Rounded radio

Blue triangle Red check mark

buttons

indicates "on"

Rounded check
boxes

Slider grip

Outlining No outlining

Sharp bevels

Menu strokes Menu underlines

(D) Menu accelerators

Integrated

"off"

Concave
indicates "on"

indicates "on"

of buttons

scroll bar

The Indigo Magic Look: Graphic Features and Schemes

39

Schemes for Colors and Fonts

In addition to the graphic modifications described in the previous section, “Enhanced
Graphics in the Indigo Magic Look,” the Indigo Magic look includes schemes. A scheme is
a pre-packaged collection of colors and fonts that users can apply to application
windows.

Schemes deliver several benefits to users. When all applications on a workstation use
schemes, users can conveniently customize their environment. The schemes are
designed with an eye to effective use of color, taking into account both usability and
aesthetic considerations. Multiple schemes are provided to address such problems as
red/green color-blindness, monochrome X-terminals, and user preference for light or
dark text. A user changes the scheme for the desktop by selecting the new scheme from
the control panel shown in . (This control panel is accessed from the
Desktop->Customize cascading menu in the Toolchest.)

Figure 3-2 Scheme Setting Control Panel

Using schemes also benefits you as a developer by leveraging the work that has already
been done on appropriate color and font choices. Using schemes eliminates worrying
about different display resolutions, gamma values, user preferences, or most style guide
color and font issues.

40

Chapter 3: Windows in the Indigo Magic Environment

The model for using schemes as a developer is to specify color and font choices as
abstract names from the predefined scheme color and font palettes instead of
hard-coding specific color and font values. Then, when the user specifies a scheme, the
palette entries are mapped to specific RGB color and font values.

By default, the Indigo Magic Desktop comes up in the Indigo Magic scheme. This scheme
is organized around a neutral gray palette with the typographically neutral Helvetica
font. Using neutral colors for standard user interface elements preserves the use of color
for the application’s content areas.

Schemes are meant to apply to any region of an application window built with the
standard toolkit components. Don’t use schemes for application client areas which are
content specific—for example, a rendering window, a movie player, or a molecular
modeler. The colors in such client areas will be application-specific and not subject to
change when a user selects a new scheme.

For information on supplying schemes in your application, see Chapter 3, “Using
Schemes,” in the Indigo Magic Desktop Integration Guide.

Indigo Magic Look Guidelines

When designing the look for your application . . .

❑ Use the Indigo Magic look rather than the standard IRIS IM look.

❑ Use the pre-packaged color and font schemes supplied by Silicon Graphics rather
than designing your own colors and fonts.

Application Window Categories and Characteristics

This section defines the four categories of windows in the Indigo Magic Desktop
environment; presents four models of applications using these window types; and lists
the decorations, Window menus, and behavior required for each window type.
Specifically, this section covers:

• “Application Window Categories”

• “Application Models”

• “Window Decorations and the Window Menu”

Application Window Categories and Characteristics

41

• “Window Title Bar”

• “Window Size”

• “Window Placement”

Application Window Categories

The OSF/Motif Style Guide refers to two categories of windows: primary windows and
secondary windows. The Indigo Magic environment subdivides each of these categories to
yield two additional categories useful in many applications. There are two types of
primary windows:

• A main primary window serves as the application’s main controlling window. It’s
used to view or manipulate data, get access to other windows within the
application, and kill the process when users quit. There’s only one main primary
window per application (and sometimes it isn’t visible to users).

• A co-primary window is used for major data manipulation or viewing of data outside
of the main window.

There are two types of secondary windows:

• A support window is a persistent special-purpose window. It typically contains a
control panel or tool palette that operates directly on data in a primary window. It is
used repeatedly.

• A dialog is a transient window, typically used for short, quick, user input, such as an
action confirmation, or system output, as in a warning message. It may be
user-requested or application-generated.

Application Models

Although there can be many combinations in an application of the four window types
discussed in the previous section (main, co-primary, support, and dialog windows), most
applications can be classified as fitting one of four basic models. The distinguishing
factors between the models are:

• whether they can have one or multiple documents (files) open at a time

• their use of primary windows

42

Chapter 3: Windows in the Indigo Magic Environment

Note: The term document means a grouping of data and shouldn’t be thought of as
simply a text-oriented file. It covers such data types as film clips, audio segments, and
Inventor scenes.

These models are illustrated and discussed in more detail in “Application Models” in
Chapter 6. For information about how to implement the various models, see
“Implementing an Application Model” in Chapter 5 in the Indigo Magic Desktop
Integration Guide.

“Single Document, One Primary” Application Model

“Single document, one primary” is the most basic model—it accomplishes all of its tasks
within the main window and uses as many support windows and dialogs as needed.
Users can work on only one document at a time. Thus, when a user has one document
open and opens a second document, the second document replaces the first. IRIS
Showcase operates in this manner.

“Single Document, Multiple Primaries” Application Model

The “single document, multiple primaries” model uses both main and co-primary
windows to accomplish major tasks. In this model, the co-primary windows perform
different functions. MediaMail is an example of this model. Its main window lets users
select electronic mail messages from a folder and perform actions on them such as
viewing, printing, deleting, and sorting. Its Compose and Message windows are typical
of co-primary windows with different functions designed to support the functionality of
the main window. In this model, each primary window has its own menu bar tailored
specifically to the functions in that window.

“Multiple Document, Visible Main” Application Model

The “multiple document, visible main” model has a main window that is mostly used to
launch co-primary windows. These co-primary windows are identical to each other and
perform the same functions on different files or documents. Each co-primary window
has its own menu bar. IRIS InSight is an example of this model. Its main window lets
users launch co-primary viewing windows, browse available files, and conduct global
searches through these files. The co-primary windows are used for viewing online books.

Application Window Categories and Characteristics

43

“Multiple Document, No Visible Main” Application Model

The “multiple document, no visible main” model is identical to the “multiple document,
visible main” model except that the main window is invisible to the user and new
co-primary windows are launched from co-primary windows that are already open.
Users open one document and leave it open while opening others. When the last open
document is closed, the process is killed.

Window Decorations and the Window Menu

Users primarily interact with windows on the Indigo Magic Desktop through the
window decorations and Window menu, which 4Dwm, the IRIS window manager,
places on each window. The decorations and Window menu entries vary according to the
category of the window (see “Application Window Categories” earlier in this chapter)
and whether any of the components in the window are resizable. Figure 3-3 shows the
decorations for a typical main window. For complete details of the behavior of each of
the window decorations, see Section 7.3, “Window Decorations,” in the OSF/Motif Style
Guide.

44

Chapter 3: Windows in the Indigo Magic Environment

Figure 3-3 Features of a Typical Main Primary Window

The recommended decorations and Window menu entries for each category of window
are shown in Table 3-1. To meet these requirements, you may have to modify both the
default window decorations and Window menu entries for at least some of your
application windows. For information on modifying the default window decorations
and Window menu entries, see Chapter 5, “Window, Session, and Desk Management,”
in the Indigo Magic Desktop Integration Guide. Table 3-1 also lists the keyboard accelerators
and mnemonics provided by 4Dwm for each Window menu item. These keyboard
accelerators are reserved; do not assign them to other functions in your application.

The behavior of the window decorations and Window menu entries is consistent with
the definitions in Section 7.3 of the OSF/Motif Style Guide, with two notable differences:

Title barWindow menu Minimize Maximize
button

Resize
border

buttonbutton

Application Window Categories and Characteristics

45

• 4Dwm Window menus include the entry “Raise.” “Raise” allows the user to move
the window to the top of the window hierarchy, making it completely visible (in
contrast to “Lower”).

• “Exit” lets users quit the application completely from a primary window. Your
application must do all the appropriate cleanup work for an exit from the Window
menu, such as prompting the user whether to save changes to a file. The behavior of
“Exit” in the Window menu is the same as that of “Exit” in the File menu. See “File
Menu” in Chapter 8 for information on the File menu. (Note that the “Close” entry
on a co-primary window closes that window and any associated support windows
and dialogs. It doesn’t quit the application.)

The Window menu entries are based on the functionality available for that type of
window. For example, users can’t exit the application from support or dialog windows,
so these window types don’t include an “Exit” entry. If a window can’t be resized, it
doesn’t need the “Size” entry or the “Maximize” entry in its Window menu. (To eliminate
the ability of a window to be resized, set the maximum and minimum window sizes
equal to the default window size. See “Window Size” later in this chapter.) Dialogs can’t
be minimized independently of their parent windows and thus don’t have a “Minimize”
entry.

Table 3-1 Window Decorations and Window Menu Entries by Window Category

Window Decorations and
Window Menu Entries

Main Windows Co-Primary Windows Support Windows Dialogs

Window menu button Required Required Required Required

“Restore Alt+F5”a Required Required Requireda Requireda

“Move Alt+F7” Required Required Required Required

“Size Alt+F8” /
Resize handles

Optional; use if user
may need to expand
work area or other
components. If
resizable, set minimum
and maximum size
limits.

Optional; use if user
may need to expand
work area or other
components. If
resizable, set minimum
and maximum size
limits.

Optional; use if user
may need to expand
any components, such
as text input fields or
scrolling lists. If
resizable, set minimum
and maximum size
limits.

Optional; use if user
may need to expand
any components, such
as text input fields or
scrolling lists. If
resizable, set minimum
and maximum size
limits.

“Minimize Alt+F9” /
Minimize button

Required Required Don’t use Don’t use

46

Chapter 3: Windows in the Indigo Magic Environment

Window Title Bar

By default, all windows on the Indigo Magic Desktop have a title bar that contains a label
for the window. The default label used in the title bar (the application name) rarely
provides enough information for users to be able to distinguish one window from
another. Label your title bars according to the rules shown below to help your users
distinguish among windows belonging to the same application as well as instances of the
same application. (For information on how to set the label in the title bar, see “Interacting
With the Window and Session Manager” in Chapter 5 of the Indigo Magic Desktop
Integration Guide.)

In general, use the title bar label to identify the window; don’t use it to display general
status (such as current page number or viewing mode) or application-critical
information. Using the title bar to display information can cause problems. For example:

• The title bar may be covered by another window or off the screen.

• Users aren’t accustomed to looking for status information in the title bar, so they‘re
likely to overlook it if your application displays it there.

• It’s expensive for the application to update the title bar continuously.

a. This entry always appears in the Window menu, and it’s automatically disabled if there’s no “Maximize” entry; this default behavior can’t be
changed.

“Maximize Alt+F10” /
Maximize button

Use only if there’s a
“Size” entry.

Use only if there’s a
“Size” entry.

Use only if there’s a
“Size” entry.

Use only if there’s a
“Size” entry.

“Raise Alt+F2” Required Required Required Required

“Lower Alt+F3” Required Required Required Required

“Close Alt+F4” Don’t use; not relevant
for main windows.

Required Required Required

“Exit Alt+F12” Required; closes all
windows for this
application and quits.

Optional; use if users
can quit application
from this window.

Don’t use Don’t use

Table 3-1 (continued) Window Decorations and Window Menu Entries by Window

Window Decorations and
Window Menu Entries

Main Windows Co-Primary Windows Support Windows Dialogs

Application Window Categories and Characteristics

47

For more information on where to place status information or application-critical
information in your application window’s title bars, see “Status Areas in Primary
Windows” in Chapter 6.

The label you put in the title bar is also used in the Desks Overview window (see “Desks”
later in this chapter). By default, as a user moves the pointer over the thumbnail window
sketches in the Desks Overview, the thumbnail window’s title bar label displays as
shown in Figure 3-4. (Note that users can specify that the minimized window label be
shown in the thumbnail sketches instead of the title bar label.) This further emphasizes
the need for users to be able to distinguish windows using only the title bar information.

Figure 3-4 Title Bar Label Appearing in Desks Overview

Rules for Labeling the Title Bar in Main Primary Windows

The rules for labeling title bars in main windows are illustrated in Figure 3-5.

• First determine if your application accesses document files. If not, use just the
application name.

• If your application is document-based, use the application name followed by a
colon (:) and the filename (or “Untitled” if it’s a new file) as the label in the title bar.
Unless you have a real need and enough room, don’t include the full pathname in
the title bar. Note that if you do include a filename in the label, you need to update
the label whenever the file changes.

• If your application is displaying remotely, use the host name followed by a colon as
a prefix to the title bar label determined above. Be sure to leave spaces between
strings and colons in the label.

Pointer

Title bar label

48

Chapter 3: Windows in the Indigo Magic Environment

• Don’t use the version number in the title bar; make that information available from
the “Product Information” entry in the Help menu (see “Types of Online Help” in
Chapter 4 for more information).

Figure 3-5 Labels for Main Window Title Bars

Rules for Labeling the Title Bar in Windows Other Than Main

For those co-primary windows that are used to supplement the main window’s
functionality as in the “single document, multiple primaries” application model, use the
application name and function in the format AppName : Function.

Make sure that the function closely matches the entry in the menu or the label on the
button that invokes it. If the co-primary window follows a multiple document model
such as the “multiple document, visible main” application model or the “multiple
document, no visible main” application model, use the format AppName : Filename (or
AppName : Untitled if it’s a new file). Unless you have a real need and enough room, don’t
include the full pathname in the title bar.

Support windows use the application name and the function in the format AppName :
Function. Make sure that the function closely matches the entry in the menu or the label
on the button that invokes it.

For dialog windows, use the application name, followed by the type of dialog in the
format AppName : DialogType, where DialogType can be “Prompt,” “Error,” “Warning,”

(a) For applications that are not document-based

(b) For document-based applications with a new file

(c) For document-based applications operating on an existing file

(d) For any application running remotely

Application Window Categories and Characteristics

49

“Question,” “Information,” “Working,” or “File Selection.” (For information on dialogs,
see Chapter 10, “Dialogs.”)

Window Size

The 4Dwm window manager provides users with complete control over the size of
application windows unless the application sets limits. Without a minimum window
limit, users can shrink your windows to the point where they’re unusable. With no
maximum limit, users can expand a window to cover the full screen, potentially wasting
valuable screen real estate. These extreme cases, along with a window at its default size,
are illustrated in Figure 3-6. Set appropriate maximum and minimum window sizes for
all of your application windows. See “Interacting With the Window and Session
Manager” in Chapter 5 of the Indigo Magic Desktop Integration Guide.

In general, windows should be resizable only if they contain areas or components that a
user might wish to resize, for example, a primary window with a resizable work area or
a support window with a scrolling list or text input field. If a window does not contain
resizable areas or components, then it shouldn’t be resizable and you should set both the
maximum and minimum size equal to the default size. Remember also to remove the
Size and Maximize entries from the Window menu as described in “Window
Decorations and the Window Menu” earlier in this chapter. For more information on
specific window components, see Chapter 9, “Controls.”

50

Chapter 3: Windows in the Indigo Magic Environment

Figure 3-6 Default Maximum and Minimum Window Size Examples

Window at default maximum size

Window at default minimum sizeWindow at default size

Application Window Categories and Characteristics

51

Window Placement

Users expect the placement of all primary windows to respond to the value of the Auto
Window Placement option in the Window Settings control panel, as shown in . (Users
access this control panel from the Desktop->Customize cascading menu in the
Toolchest.) Support windows and dialogs are always placed automatically.

Figure 3-7 Setting Auto Window Placement

When auto window placement is on (the default), 4Dwm automatically places an
application’s primary windows. If a primary window does not supply any position
information, 4Dwm by default places it in the upper left corner of the screen. When auto
window placement is off, users expect to be able to interactively place all primary
windows. In this case, a window displays initially as a red outline attached to the pointer
at its upper left corner, allowing the user to place the window manually. The user places
the window by moving the outline to the desired location on the screen and clicking the
left mouse button.

To take advantage of the Auto Window Placement setting, you must supply 4Dwm with
a preferred window position for each primary window rather than a required window

Auto Window Placement button

52

Chapter 3: Windows in the Indigo Magic Environment

position. With a preferred window position, when Auto Window Placement is on, 4Dwm
places the window at its preferred position. When Auto Window Placement is off, 4Dwm
ignores the preferred position, allowing the user to place the window interactively. If the
window has a required position, however, 4Dwm always tries to place the window at this
preferred position even when users want to place windows themselves.

Furthermore, users expect complete control when moving windows and should be able
to move any of your application’s windows anywhere on the desktop. Some applications
try to “help” the user by repositioning the window programmatically; this strategy is
never successful and instead ends up frustrating the user.

For details on how to set a preferred window placement, see “Interacting With the
Window and Session Manager” in Chapter 5 of the Indigo Magic Desktop Integration
Guide.

Application Window Characteristic Guidelines

In general, when deciding on the characteristics for your application windows . . .

❑ Determine which category (main, co-primary, support, or dialog) each application
window belongs to and assign characteristics appropriately.

When setting up your window decorations . . .

❑ Include a Window menu button for all windows.

❑ Include resize handles only if the window contains resizable components such as
work areas, scrolling lists, and text input fields.

❑ Include a Minimize button for all primary windows. Do not include this button on
support windows or dialogs.

❑ Include a Maximize button only if the window contains resizable components.

(To see the above window decoration requirements arranged according to window type,
see Table 3-1.)

When designing the Window menus for your application windows . . .

❑ Include “Restore Alt+F5” for all primary windows. Include it for support windows
and dialogs only if the menu contains a “Maximize” entry.

❑ Include “Move Alt+F7” for all windows.

Application Window Categories and Characteristics

53

❑ Include “Size Alt+F8” and resize handles for windows that contain resizable
components such as works areas, scrolling lists, and text input fields.

❑ Include “Minimize Alt+F9” and the Minimize button for all primary windows. Do
not include the Minimize entry for support windows or dialogs.

❑ Include “Maximize Alt+F10” for windows that are resizable, that is, they have a
“Size Alt+F8” entry.

❑ Include “Raise Alt+F2” for all windows.

❑ Include “Lower Alt+F3” for all windows.

❑ Include “Close Alt+F4” for all windows except the main primary window.

❑ Include “Exit Alt+F12” for the main primary window. Include “Exit Alt+F12” for
those co-primary windows from which users can quit the application. “Exit” always
has the same behavior, that is, it quits the application, no matter how it’s activated.
Don’t include “Exit” for support windows or dialogs.

(To see the above Window menu requirements arranged according to window type, see
Table 3-1.)

❑ Always use the default behaviors for the Window menu entries except for “Exit.”
Don’t add functionality to these commands. When users choose “Exit,” your
application must perform any necessary clean up, such as prompting the user to save
unsaved changes before quitting.

❑ Don’t add application-specific entries to this menu. Users don’t expect
application-specific entries in the Window menu.

❑ Don’t add a title to the Window menu.

❑ Don’t use the keyboard accelerators <Alt-F2>, <Alt-F3>, <Alt-F4>, <Alt-F5>,
<Alt-F7>, <Alt-F8>, <Alt-F9>, <Alt-F10>, or <Alt-F12> for other functions in your
application. They are reserved for the 4Dwm Window menu entries.

When specifying the label in the title bar . . .

❑ For all categories of windows, limit the length of each title bar label such that the
entire label displays when the window is viewed at its default size.

❑ Don’t include application-critical information or general status information in the
title bar such as the current page number or whether a file is in view-only mode.

❑ For main windows, first determine if your application uses document files. If it is not
document-based, use the application name only. If it is document-based, use the

54

Chapter 3: Windows in the Indigo Magic Environment

application name followed by a colon and the filename (or Untitled if new file) in the
format AppName : filename and update the label whenever the filename changes.
Don’t use the full pathname unless that information is required for users to
distinguish one window from another. If your application is displaying remotely,
add the host name followed by a colon at the beginning of the title bar label in the
format Host : AppName

❑ Don’t include full pathnames unless that information is required by users to
distinguish one window from another. For remote applications, don’t include
domain information.

❑ Don’t use the version number in the title bar; make that information available from
the “Product Information” entry in the Help menu.

❑ For co-primary windows used in multiple document models, use the format
AppName : Filename (or AppName : Untitled if a new file). For co-primary windows
used in the “single document, multiple primaries” model, use the format AppName :
Function. Make sure that the function matches the menu entry or the label on the
button that invokes it. Don’t use the full pathname unless that information is
required for users to distinguish one window from another.

❑ For support windows, use the application name and function in the format:
AppName : Function. Make sure that the function closely matches the menu entry or
the label on the button that invokes it.

❑ For dialog windows, use the application name, followed by the type of dialog in the
format: AppName : DialogType, where DialogType is “Prompt,” “Error,” “Warning,”
“Question,” “Information,” “Working,” or “File Selection.”

❑ Leave spaces between strings and colons in a label.

For windows without title bars . . .

❑ Display the “Exit” option with the right mouse button.

❑ Allow users to resize the window with the left mouse button.

When determining the default, minimum, and maximum sizes for your windows . . .

❑ Specify a default size for each window.

❑ If the window is resizable, specify a minimum size at which all controls and work
areas will be visible and large enough to be usable. If the window is not resizable, set
the minimum size equal to the default size.

Keyboard Focus Across Windows

55

❑ If the window is resizable, specify a maximum size such that your application
window doesn’t expand to fill screen space unnecessarily. If the window is not
resizable, set the maximum size equal to the default size.

When considering window placement . . .

❑ Set a preferred window position for all primary windows. Don’t set a required
window position for primary windows.

❑ Try to anticipate other application windows that may be displayed with your
application and set your preferred default position appropriately.

Keyboard Focus Across Windows

As defined in the OSF/Motif Style Guide, the two types of keyboard focus (also referred to
as input focus) include:

• implicit, in which the keyboard focus tracks the pointer

• explicit, which requires the user to explicitly select (by clicking with the left mouse
button) which window or component receives the keyboard focus

The Indigo Magic Desktop uses implicit focus when moving the keyboard focus across
windows. Your application should work well under implicit focus and shouldn’t require
users to change the default keyboard focus policy to explicit. (Note that within windows,
applications should use explicit focus to move the keyboard focus between components
in the window. Guidelines for using explicit focus within windows are discussed in
“Keyboard Focus and Navigation” in Chapter 7.)

Certain applications need to grab the keyboard focus, that is, use the pointer while it is
outside of the application window—for example, applications performing screen
captures. This is called pointer grab mode.

There are two recommended interaction models for pointer grab mode:

• single-action, which permits the user only one action to capture the data before
returning to implicit focus

• multiple-action, which lets the user perform multiple actions while in pointer grab
mode

56

Chapter 3: Windows in the Indigo Magic Environment

In the multiple-action model, the user turns on a toggle to maintain keyboard focus while
specifying the data to capture. In both the single- and multiple-action models, the
application should change the pointer shape to indicate that the pointer belongs to a
specific window and no longer adheres to implicit focus. (For a list of standard pointers,
see “Pointer Shapes and Colors” in Chapter 11.)

Single-Action Pointer Grab Model

The InPerson desktop conferencing application is a good example of the single-action
pointer grab model. The sequence in Figure 3-8 illustrates the single-action pointer grab
where the action is to sweep out an area of the screen to be captured as an image. The
user chooses the “Snap Screen Area” entry from the screen capture menu in the
whiteboard’s tool bar. The pointer changes to a sighting pointer (a camera with a cross
hair) and the user can then drag a rectangle around the area of the screen that the user
wants to capture as an image. When the user completes the single action of dragging,
InPerson releases the pointer and it is no longer in pointer grab mode. Note that in
pointer grab mode, the active window is the window that has grabbed the keyboard
focus, regardless of where the pointer is positioned on the screen.

Keyboard Focus Across Windows

57

Figure 3-8 Single-Action Pointer Grab Example: Capture by Sweeping

Step 1 - User chooses Snap "Screen Area"
from screen capture menu in InPerson

screen capture menu

Step 2 - Pointer transforms to sighting
pointer and user sweeps capture area.

capture rectangle

sighting pointer

Step 3 - User finishes drag action, which

window.

releases the pointer from pointer grab mode.

standard pointer

58

Chapter 3: Windows in the Indigo Magic Environment

Multiple-Action Pointer Grab Model

The IRIS Showcase Image Gizmo, used for doing screen captures, is an example of the
multiple-action pointer grab model. The IRIS Showcase Image Gizmo lets users capture
an area of the screen as an image, then place that image in a IRIS Showcase document.
The major difference between the Image Gizmo screen capture and the InPerson screen
capture described in the previous section (“Single-Action Pointer Grab Model”) is that
the Image Gizmo allows a user to perform multiple actions when defining the screen
capture region and not just a single action like InPerson. This allows users to grab the
pointer, sweep out an area to capture, and make any adjustments to the capture area
before releasing the pointer and returning to implicit focus mode.

The IRIS Showcase Image Gizmo provides an example of entering pointer grab mode.
Here’s the process:

1. The user clicks the Sweep Area button in the Image Gizmo. This changes the pointer
to a camera with a cross hair, which is used as the sighting pointer. At this point, the
sighting pointer is limited to the Image Gizmo window, that is, the user hasn’t
initiated pointer grab mode yet.

2. The user enters pointer grab mode by clicking the Grab Selection Focus button. Once
in pointer grab mode, the sighting pointer is no longer limited to the Image Gizmo
window. Now when the user moves the pointer out of the Image Gizmo window,
the Image Gizmo retains the keyboard focus and the sighting pointer continues to
display.

Note: A better design would be to eliminate the step of requiring the user to click the
Grab Selection Focus button and to instead have the Image Gizmo grab the keyboard
focus when the user clicks the Sweep Area button.

3. The user drags a rectangle around the area of interest on the screen. At this point,
the user is still in pointer grab mode and can redefine the area by dragging the
boundaries of the current rectangle or sweeping out a completely new area.

4. The user clicks the Grab Image button, which releases the pointer, completes the
screen capture, and returns the user to implicit focus mode.

Figure 3-9 shows this example during pointer grab mode.

Keyboard Focus Across Windows

59

Figure 3-9 Multiple-Action Pointer Grab Example

Guidelines for Keyboard Focus Across Windows

When designing your application windows . . .

❑ Make sure that your application works well under implicit focus across windows.

❑ Don’t have your application move the pointer to another location on the screen.
Always allow the user to control the position of the pointer on the screen.

When incorporating a “pointer grab” function into your application . . .

❑ If the user is always going to specify the data to capture with a single action such as
a single mouse click or a single mouse drag, use the single-action pointer grab model;
otherwise use the multiple-action pointer grab model.

❑ Display a standard or modified sighting pointer whenever your application window
grabs keyboard focus. This indicates that the keyboard focus belongs to your

Sighting pointer

Rectangle defining
swept area

Resulting image
in application window

60

Chapter 3: Windows in the Indigo Magic Environment

application’s window and that the pointer isn’t currently following implicit focus
across windows.

Minimized Windows

Minimizing windows frees up screen area for other uses. On the Indigo Magic Desktop,
users minimize windows by clicking the Minimize button in the window’s title bar or
choosing the “Minimize” entry from the Window menu. When a window is minimized,
it’s replaced by an 85x67-pixel representation with an identifying label of twelve
characters or fewer. The 4Dwm window manager determines the placement of all
minimized windows. This section describes:

• “Choosing an Image for Your Minimized Window”

• “Labeling a Minimized Window”

• “Processing While Minimized”

• “Using the Minimized Window to Show Status”

Note that primary windows can be minimized independently of each other. Note also
that dialogs and support windows become unmapped when their associated primary
windows are minimized.

Choosing an Image for Your Minimized Window

It’s important for users to be able to identify application windows readily when
minimized. You need to define a specific image for your main window and any
co-primary windows in your application. A good example in which users can easily
associate the minimized window with the application appears in Figure 3-10. In the
example, the IRIS InSight viewer window uses an open book as its minimized window
image with the name of the book as the label.

Figure 3-10 Minimized Window Example: Good User Association With Application

Minimized Windows

61

If your application fits either of the single document application models discussed in
“Application Models” earlier in this chapter, provide separate images for all primary
windows. If your application fits one of the multiple document models, then provide one
image for the main window and a second image for the co-primary windows.

When choosing a minimized window image, use:

• Marketing theme—If your application has a symbol used in packaging or
marketing your product, you can use some or all of it to create an image. The IRIS
Showcase minimized window is an example of this approach.

• Window snapshots—If your application’s main primary window layout is
distinctive, you can use a snapshot of a recognizable portion of it, as in the Icon
Catalog and Directory View window examples.

• Symbolic theme—You can use a symbol that reflects the nature of your application.
For example, the text editor Jot uses an image of a writing hand. The IRIS Insight
online book viewer uses an image of a stack of books to represent the main library
window.

• Evocative image—You can use an image that’s evocative of the function your
application performs. For example, the minimized window image for the mouse
control panel is an image of a mouse. The minimized window image for the
background control panel is an image that uses a combination of the various
background patterns available for users via this tool.

62

Chapter 3: Windows in the Indigo Magic Environment

Examples of minimized windows appear in Figure 3-11.

Figure 3-11 Minimized Window Examples

Although it is desirable to keep some family resemblance between the minimized
window and other elements of an application, it’s a bad idea to use a snapshot of a
desktop icon as an image for a minimized window. The problem is that users can mistake
the minimized window for the real desktop icon. Figure 3-12 demonstrates this problem.
The minimized window at the left (faked for this example) uses a snapshot of the
application icon in its open state as its image. Users can confuse the minimized window
with the application icon itself. The actual minimized window appears at the right of the
figure, demonstrating good design. It reuses the magician’s hat theme, showing the
family resemblance, but uses a different rendition of the hat to avoid confusion.

Marketing theme Window snapshot examples

Symbolic theme examples Evocative image examples

Minimized Windows

63

Figure 3-12 Minimized Window Example: Incorrect Design

Whichever theme you choose, make sure that the significance of your image will be
grasped in foreign countries and will not offend international users. Images that are too
literal will not be understood by an international audience. For example, the minimized
window in Figure 3-13 is for a debugging application and uses an image, with an English
acronym “RIP,” that represents dead bugs. This may not be readily apparent to some
non-English speaking users.

Figure 3-13 Minimized Window Example: Design That’s Too Literal

For information on creating and implementing minimized window images, see
Chapter 6, “Customizing Your Application’s Minimized Windows,” in the Indigo Magic
Desktop Integration Guide

Labeling a Minimized Window

By default, the 4Dwm window manager reuses the title bar label for the minimized
window label. (The guidelines for specifying title bar labels are discussed in “Window
Title Bar” earlier in this chapter.) This doesn’t usually work due to the space limit
(approximately twelve characters) on the minimized window label. Thus, you will need
to specify a label for each of your minimized windows.

Those applications that aren’t document-based should use the application name as the
minimized window label for the main window. Any minimized co-primary windows for

Good minimizedIcon in open statePoor minimized
window designwindow design

Resemblance
too close

myFile myFile

64

Chapter 3: Windows in the Indigo Magic Environment

these applications should use the label Function, where Function is the same function as
in the co-primary window’s title bar.

Applications that are document-based and follow the single-document models (see
“Application Models” earlier in this chapter) should use Filename (or “Untitled” for new
files) for the minimized main window label. Any co-primary windows for these
applications should use Function for the minimized window label, where Function is the
same function as in the co-primary window’s title bar.

Applications that are document-based and follow the multiple-document models (see
“Application Models” earlier in this chapter), should use the application name as the
label for the main window (if this main window is visible). The co-primary windows in
these models represent the multiple documents and should have the minimized window
label Filename (or “Untitled” for new files).

The minimized window label is also used in the Desks Overview window (see “Desks”
later in this chapter). The user can customize the Desks Overview so that moving the
pointer over the thumbnail window sketches in the Desks Overview displays the
minimized window labels for those windows. This further emphasizes the need for users
to be able to distinguish windows using only the minimized window label.

For more information on specifying a label for a minimized window image, see
Chapter 6, “Customizing Your Application’s Minimized Windows,” in the Indigo Magic
Desktop Integration Guide.

Processing While Minimized

Users generally expect an application to continue processing while its windows are
minimized; when re-opened, the window’s contents should have changed appropriately.
Of course, it doesn’t make sense for all types of functions to continue processing while
the window is minimized. For example, you needn’t keep moving a clock application’s
hands while it is minimized. It’s up to you to determine which functions are appropriate
for continued processing and which are inappropriate. Be sure to stop those functions
that don’t need to process as they can be a drain on CPU resources.

Using the Minimized Window to Show Status

If it is typical for users to minimize your application’s windows while processing
continues, you may wish to use your minimized application window to indicate status.

Minimized Windows

65

Figure 3-14 shows how to use the minimized window label to indicate status in an
electronic mail application by showing the number of messages in a mail folder.

Figure 3-14 Minimized Window Example: Indicating Status With the Label

It is also possible to change the minimized window image to show status, however this
is quite difficult. For more information on changing minimized window labels and
images to show status, see Chapter 6, “Customizing Your Application’s Minimized
Windows,” in the Indigo Magic Desktop Integration Guide.

Minimized Window Guidelines

When designing images for your minimized primary windows . . .

❑ Use a color image rather than the standard two-color Motif bitmap.

❑ Design your images to look best at the default size of 85x67 pixels.

❑ If your application is based on a single document model, create separate images for
each of the primary windows. If your application is based on a multiple document
model, create one image for the main window and a second image to use for all
co-primary windows.

❑ Choose images that clearly identify the window that is minimized. If you have
multiple images, make sure that the separate images work well together.

❑ Make sure that the images you use for minimized windows will be understood by
an international audience.

❑ Don’t use a snapshot of the desktop icon for the image. This could be confused with
the real icon.

When choosing labels for your minimized primary windows . . .

❑ Limit the label to approximately twelve characters. If you need a few more characters
than this, check that your label will fit with the default size and font for minimized
windows (the label may be truncated).

66

Chapter 3: Windows in the Indigo Magic Environment

Desks

67

❑ If your application is not document-based, use the application name as the
minimized window label for the minimized main window. Use the label Function for
minimized co-primary windows where Function is the same function as in the
co-primary window’s title bar.

❑ If your application is document-based and follows one of the single-document
models, use Filename (or “Untitled” for new files) for the minimized main window
label. Use Function for minimized co-primary window labels where Function is the
same function as in the co-primary window’s title bar.

❑ If your application is document-based and follows one of the multiple-document
models, use the application name as the label for the main window (if it is visible).
The co-primary windows in these models represent the multiple documents and
should have the minimized window label Filename (or “Untitled” for new files).

When determining the behavior for a window that the user has chosen to minimize . . .

❑ Decide which operations should and should not continue to be processed while the
window is minimized.

❑ Indicate status with the minimized window label if your application is typically
minimized during long processes.

❑ Use the default screen locations supplied by 4Dwm for the minimized window. Don’t
specify your own screen location.

Desks

The Indigo Magic Desktop provides users with a handy tool called Desks Overview for
organizing their work (see Figure 3-15). The Desks Overview application allows users to
create multiple virtual screens (desks). The user can place any primary window (main or
co-primary) on any desk. The window appears in the thumbnail sketch in the Desks
Overview window. Support windows and dialogs don’t appear in these thumbnail
sketches.

68

Chapter 3: Windows in the Indigo Magic Environment

Figure 3-15 Desks Overview Window

There are several things you need to know about desks and the corresponding effects on
the design of your application.

• 4Dwm treats application windows on desks other than the current one as if they are
minimized. The windows are no longer mapped to the screen display and the
application is informed that it’s unmapped. This emphasizes how important it is for
you to decide which operations continue processing when the application is in an
unmapped (minimized) state. (See “Processing While Minimized” earlier in this
chapter.)

• As users move the pointer over the miniaturized window representations in the
thumbnail sketches, the title bar labels display by default. If the user prefers, the
minimized window labels can be displayed instead. This further emphasizes the
need to pick title bar labels and minimized window labels so that a user can
distinguish windows using only this information. (For information on defining
these labels, see “Window Title Bar” and “Labeling a Minimized Window” earlier in
this chapter.)

• Support windows and dialogs will appear on all desks if their associated parent
window is not mapped to the screen. Since support windows and dialogs should
only appear on the desk where their parent appears, make sure that all parent
windows are visible and mapped to the screen.

• Your application should not create a screen background. Screen backgrounds are
managed by 4Dwm by default or by the user through the Background control panel.
Users typically employ different screen backgrounds on different desks as an aid in
orienting themselves.

Session Management

69

Desks Guidelines

When designing your application . . .

❑ Make sure that all windows with associated support or dialogs are visible and
mapped to the screen so that the support windows and dialogs appear only on the
desk where their parent window displays.

❑ Don’t design your application to manage the screen background.

Session Management

Session management allows users to log out of their accounts and have any running
applications automatically restart when they log back in, thus eliminating the need for
users to restart applications manually when they log back in. In 4Dwm, users have the
option of turning session management on (the default) or off by using the Window
Settings control panel (which is available from the Desktop->Customize cascading menu
in the Toolchest), as shown in Figure 3-16.

Figure 3-16 Setting Session Management

Session management setting

70

Chapter 3: Windows in the Indigo Magic Environment

For your application to be restarted via the 4Dwm session manager, your application
needs to create a command line that will launch the application and restore its current
state. Your application needs to update this command line as the application state
changes. For details of specifying this command line and keeping it up to date, see
“Interacting With the Window and Session Manager” in Chapter 5 of the Indigo Magic
Desktop Integration Guide. The following scenario outlines the process.

Figure 3-17 Setting Auto Window Placement

When a user launches an application, that application registers itself with the 4Dwm
session manager by creating a command line that will launch the application and restore
its current state. For example, if your application is used to edit a specific file, the
command line should contain the information necessary to launch your application and
open this specific file. There is only one command line per application.

As the state changes over time, your application needs to update this command line. So,
to continue the example, suppose the user opens a different file to edit under your
application. In such a case, your application needs to create a new command line that will
launch the application and open this new file.

Auto Window Placement button

Session Management

71

If the user opens co-primary windows or support windows (see “Application Window
Categories and Characteristics” earlier in this chapter for window definitions), these
windows should also redisplay when the user logs out and back in again. (Dialogs
typically don’t redisplay.) One method for obtaining this behavior is to allow your
application to take command line arguments to redisplay these windows so that you can
include these arguments on the stored command line when appropriate.

When the user logs out, 4Dwm saves the command lines for all applications that are
currently running on the user’s desktop. When the user logs back in, 4Dwm attempts to
execute the commands that it saved and restore the user’s desktop to what it was when
the user logged out.

Applications can also request to have 4Dwm inform them when a user chooses “Log
Out.” When applications receive this notification, they should not post any dialogs such
as “Save unsaved changes before quitting?” Instead, if 4Dwm notifies your application
that the user is logging out and there are unsaved changes for the current file, your
application should use one of the following strategies:

• Save these changes into another file and name it something logical such as
original_file_name.save. When the application is restarted at login, post a dialog that
tells the user that this file with unsaved changes exists and query the user whether
to open the original file or the file with the unsaved changes. This is the preferred
strategy.

• Ignore the user’s unsaved changes, and simply restart the application using the
most recent saved version of the file. This strategy is okay, but it is not preferred.

Don’t automatically save the user’s changes by default. This may cause the user to lose
as much data as throwing away all unsaved changes. Let the user control when changes
are saved.

For details on how to request log-out notification from 4Dwm, see “Interacting With the
Window and Session Manager” in Chapter 5 of the Indigo Magic Desktop Integration
Guide.

Session Management Guidelines

When designing your application . . .

❑ Have your application create a command line that will launch the application and
restore its current state. This current state should minimally include reopening any

files that are currently open under the application and opening any primary or
support windows that are currently open.

❑ Update this command line as the state of the application changes.

❑ If your application allows users to create and edit data files, have 4Dwm notify your
application when the user chooses “Log Out.”

If your application is running when the user chooses “Log Out” and there are unsaved
changes for a specific file . . .

❑ Save these changes into another file and name it something logical such as
original_file_name.save. When the application is restarted at login, post a dialog that
tells the user that this file with unsaved changes exists and query the user to
determine whether to open the original file or the file with the unsaved changes.

❑ If you cannot implement the preferred strategy described above, ignore the user’s
unsaved changes. Do not automatically save the user’s changes by default.

73

Chapter 4

4. Indigo Magic Desktop Services

Indigo Magic provides desktop services you can take advantage of in your applications.
These services save you time by providing common functionality that you don’t have to
develop on your own. Using the services can also help ensure that your application is
consistent with other applications in the Indigo Magic environment. This chapter covers
the following topics:

• “Software Installation” describes how users install, remove, and upgrade
applications using Software Manager, an Indigo Magic Desktop utility.

• “Online Help” describes SGIHelp, the standard online help system on all Silicon
Graphics platforms.

• “Online Documentation” discusses IRIS InSight, an online documentation delivery
system available on all Silicon Graphics platforms.

• “Desktop Variables” describes certain customization settings that users can choose
and their implications for your application.

• “File Alteration Monitor (FAM)” describes the FAM service, which informs your
application about ongoing changes to the file system, eliminating the need for your
application to do its own polling.

Software Installation

Users install software on Silicon Graphics workstations using the Software Manager, a
graphical tool for installing, removing, and tracking software (see Figure 4-1). For your
application to work with the Software Manager, you must package your files into
software images that it will understand. This packaging process is simplified by the
Software Packager tool, which is described in the Software Packager User’s Guide.

74

Chapter 4: Indigo Magic Desktop Services

Figure 4-1 The Indigo Magic Software Manager

Although you can create installation and removal scripts independently of the Software
Manager, it’s strongly recommended that you package your application to use the
Software Manager format. The advantages of the Software Manager are:

• It gives users a single, graphical tool to install all of their applications, upgrades,
and maintenance releases. Users won’t have to learn how to use additional tools,
read lengthy installation instructions, or enter commands in a UNIX shell.

• It allows users to remove their applications cleanly. Users can remove your
application and all supporting directories and files using Software Manager. They
don’t have to rely on specialized removal instructions or guess which directories
and files to remove.

Online Help

75

• It helps users upgrade applications cleanly. When the user installs an upgrade, the
Software Manager automatically removes previous versions of that application.

• It provides installation status information. Users can query the Software Manager
database to quickly obtain information such as whether the application is installed,
when it was installed, how much disk space it uses, and whether any upgrades or
maintenance releases have been installed. The Software Manager can’t track this
information for applications that were installed using specialized scripts.

Software Installation Guideline

❑ Make sure that users can install and remove your application through the Software
Manager, an Indigo Magic Desktop utility.

Online Help

Your application should provide online help. In the Indigo Magic environment, users are
accustomed to specific kinds of online help information, including context-sensitive help
(letting users click on window areas and components to get specific help) and
task-oriented help (presenting help information for specific tasks that can be performed
using the application). This section covers the following topics:

• “Providing Help Using SGIHelp”

• “Types of Online Help”

• “Providing Help through a Help Menu”

• “Providing Help Through a Help Button”

• “Writing Online Help Content for SGIHelp”

Providing Help Using SGIHelp

SGIHelp is the online help system available on all Silicon Graphics platforms. It provides
an easy method for delivering help information to users. Although you can supply your
own help system, it’s strongly recommended that you use SGIHelp. The advantages of
supplying SGIHelp with your application are:

• Users like it—it’s easy to use and convenient. SGIHelp provides context-sensitive
help and task-oriented help. It also allows users to get help information by

76

Chapter 4: Indigo Magic Desktop Services

browsing and searching an index of available help topics and by following
cross-references (links) to related topics.

• Silicon Graphics users are familiar with it. They may get frustrated if they have to
learn a different help system for your application, particularly when they’re looking
for help.

• You don’t have to create and maintain your own help system. All of the help
capabilities that your application supports (which are discussed in the next section,
“Types of Online Help”) are provided automatically when you use SGIHelp.

SGIHelp is a full-featured system that provides users with: fast, direct access to any help
topic, the ability to navigate forward and backward through cross-referenced help topics,
an index of help topics, search capabilities, and convenient printing of help information.
SGIHelp is also a multimedia tool—you can include inline images, 3D objects, and audio
clips, and you can launch applications from it. For details on how to include SGIHelp in
your application, see Chapter 9, “Providing Online Help With SGIHelp,” in the Indigo
Magic Desktop Integration Guide.

Types of Online Help

The keys to supplying useful online help are to anticipate users’ questions and to provide
them with easy access to the answers to those questions. Each window in your
application should include a Help menu if the window has a menu bar or a Help button
if the window doesn’t have a menu bar.

Figure 4-2 demonstrates how users access online help from a Help menu. A typical Help
menu showing the various types of information appears in the upper left of the figure.
The SGIHelp windows available from the “Overview,” “Index,” and “Keys & Shortcuts”
menu entries are shown in clockwise order around the Help menu.

Online help consists of six general categories:

• context-sensitive information

• overview information

• task-oriented information

• index of help topics

• keyboard shortcut information

• product information

Online Help

77

These categories are defined and discussed in the following paragraphs.

Figure 4-2 Typical Help Menu and Related Windows

Context-sensitive
Help menu

Help "Overview"

Help "Index"

List of tasks

Index

Product

Keyboard shortcuts

Help "Keys & Shortcuts"

Overview

information

Navigation buttons

78

Chapter 4: Indigo Magic Desktop Services

Context-Sensitive Information

Context-sensitive information answers the question “What is the purpose of this area or
component in this window?” It should be available for all primary and support
windows. Context-sensitive help mode should be enabled when the user either chooses
the “Click for Help” entry in a Help menu (if the window has a menu bar) or presses
<Shift>-<F1> (whether or not the window has a menu bar).

Once the user has enabled context-sensitive help mode for a particular window, the
pointer should change to a question mark and the user should be able to click in any area
of the window to get specific help information (see Figure 4-3). At a minimum, your
application should provide separate context-sensitive help for each control area, work
area, status area, and menu in the window. This help should describe the purpose of the
corresponding area and include cross-references to task-oriented help topics which
describe tasks which use this area.

Figure 4-3 Context-Sensitive Help Example

Overview Information

Overview information answers the question “What does this application or window do?”
Provide overview help information in all main windows regardless of whether help is
provided from a menu or a button. Co-primary and support windows with menu bars

Application window Resulting help window

?
Context-sensitive
help pointer

Online Help

79

should also provide this information. If the window has a menu bar, the overview
information should be accessible from an “Overview” entry in the Help menu. For main
windows that don’t have a menu bar, this overview information should be contained in
the help that’s displayed when the user clicks on the Help button in the window.

For main windows, the overview information should briefly describe the functionality of
the entire application. For co-primary and support windows, the overview should
describe the functionality of the current window. It can also provide cross-references to
task-oriented information. An example Overview help topic is shown in Figure 4-2.

Task-Oriented Information

Task-oriented information answers the question “How do I accomplish a specific task?” It
also serves to give users a quick overview of your application; users often scan a new
application’s menus—especially the Help menu—to get an idea of the application’s
functionality.

Provide task-oriented help in all windows. Windows with a menu bar should provide
Help menu entries for each of the most important tasks that users can accomplish in that
particular window. When a user chooses any of these entries, the resulting help topic
should present task-oriented information that describes step-by-step instructions for
accomplishing the given task. A typical list of tasks is shown in the Help menu for
Figure 4-2. For windows without a menu bar, the task-oriented information should be
displayed when the user clicks on the Help button in that window. This help information
should include step-by-step instructions for accomplishing all of the tasks in that specific
window.

Index of Help Topics

The index of help topics answers the question “What help topics are available for this
application?” This index should be available from all windows with a menu bar and
appear when the user chooses the “Index” entry from the Help menu. It should list all
available help topics for the application, including those that are generated using the
context-sensitive help mode and those that are available directly from the Help menu.
Users should be able to browse the index and select individual help topics as an
alternative to the other methods of accessing help. See Figure 4-2 for an example index.

80

Chapter 4: Indigo Magic Desktop Services

Keyboard Shortcut Information

Keyboard shortcut information answers the question “How can I use the keyboard as a
shortcut for performing specific actions?” This information should include all
mnemonics, keyboard accelerators, and function keys available for the entire application
(not just those for a specific window). An example keyboard shortcuts help topic is
shown in Figure 4-2.

All main windows should provide information on keyboard shortcuts. Co-primary and
support windows with menu bars should also provide access to this information. If the
window has a menu bar, the keyboard shortcut information should be accessible from a
“Keys & Shortcuts” entry in the Help menu. For main windows that don’t have a menu
bar, this shortcut information should be contained in the help that’s displayed when the
user clicks on the Help button in the window.

Product Information

Product information answers generic questions about the application. At a minimum, it
identifies the application and version number, but it can also include general product
information such as copyright and trademarking, licensing, and customer support
access. Provide access to this information from all main windows. Co-primary and
support windows with menu bars should also provide access to this information.

If the window has a menu bar, the product information should be accessible from a
“Product Information” entry in the Help menu. For main windows that don’t have a
menu bar, this product information should be contained in the help that is displayed
when the user clicks on the Help button in the window.

Always provide product information using an Information dialog rather than using the
SGIHelp system. Some users don’t install online help to save disk space, so using a dialog
for this information allows more users to access the application’s version number and
customer support contact information. See “Other Situations for Invoking Dialogs” in
Chapter 10 for information about how to design an appropriate product information
dialog.

Providing Help through a Help Menu

All windows that have a menu bar should provide a Help menu. (See “Standard Menus”
in Chapter 8 for more information on standard menus.) Help menus have the general
layout, mnemonics, and keyboard accelerators shown in Figure 4-4. The entries are

Online Help

81

divided into four groups. The list of tasks appears between the “Overview” and “Index”
entries and is specific to the application.

Figure 4-4 Typical Help Menu

Help menus should contain these elements, in the order presented:

• “Click for Help” provides context-sensitive information for the current window. It
uses <Shift+F1> as the keyboard accelerator. (Note that this differs from the
OSF/Motif Style Guide which recommends using the label “Context-Sensitive Help”
for this entry.)

• “Overview” provides an overview of the entire application when it appears in the
Help menu for the main window. Otherwise, it provides an overview of the
functionality of the current window and should be labeled “Overview for <window
name>”.

• The list of tasks provides menu entries for those tasks that can be performed in the
current window. This task-oriented information should include step-by-step
instructions for how to accomplish the specific task. If you have more than ten or
twelve or task entries, consider using a cascading menu such as the “Arranging
Icons” entry in Figure 4-4. Cascading menus are described in “Using Cascading
Menus” in Chapter 8. Don’t use mnemonics or keyboard accelerators in these
entries.

Separators

List of tasks

82

Chapter 4: Indigo Magic Desktop Services

• “Index” displays a list of all help topics available for the application and allows
users to choose topics from this list for viewing.

• “Keys & Shortcuts” displays all mnemonics, keyboard accelerators, and function
keys available for the entire application and not just those for a specific window.
(Note that this differs from the OSF/Motif Style Guide which recommends using the
label “Keyboard” for this entry.)

• “Product Information” identifies the application and version number. Additionally,
this entry can provide general product information such as copyright and
trademarking, licensing, and customer support access.

Providing Help Through a Help Button

If an application window doesn’t have a menu bar, provide a Help button for accessing
online help. When users click this button on a main window, they should get information
that includes an overview of the functionality of the application (overview), step-by-step
instructions for how to perform all of the tasks in this main window (task-oriented), a list
of all keyboard shortcuts for the application, and the version number, copyright,
licensing, and customer support access information for the application (product
information).

When users activate the Help button in a co-primary or support window, they should get
information that describes the function of the specific window (overview), and
step-by-step instructions for how to perform all of the tasks in this window
(task-oriented). For dialogs, activating the Help button should provide help that focuses
on the main purpose of the dialog, describes how to use the dialog, and might also
provide pointers to additional information, especially in the case of error dialogs.

Both primary and support windows with Help buttons should also provide
context-sensitive help when the user presses <Shift>-<F1>. Dialogs typically don’t
support context-sensitive help mode.

A typical window with a Help button appears in Figure 4-5. For specific information on
laying out pushbuttons in windows, see “Control Areas in Primary Windows” in
Chapter 6 and “Decorations, Initial State, and Layout of Dialogs” in Chapter 10.

Online Help

83

Figure 4-5 Help Button Example

Guidelines for Designing Online Help

When designing access to online help for your application . . .

❑ Provide access in each window of your application from either a Help menu if the
window has a menu bar or a Help button if the window doesn’t have a menu bar.

❑ Use SGIHelp. This provides users with a familiar viewer and familiar navigation
techniques when reading the online help for your application.

When defining the types of online help for your application . . .

❑ Provide context-sensitive help, overview information, task-oriented help, a list of
keyboard shortcuts, product information, and an index of help topics.

Help button

Links to task information (in blue)

Overview information

Application window

Resulting help card

84

Chapter 4: Indigo Magic Desktop Services

❑ Provide context-sensitive help for all primary and support windows.

❑ Enable context-sensitive help mode when the user either chooses the “Click for
Help” entry in a Help menu (if the window has a menu bar) or presses <Shift>-<F1>
(whether or not the window has a menu bar). Change the pointer to a question mark
when context-sensitive help mode is enabled.

❑ At a minimum, provide separate context-sensitive help for each control area, work
area, status area, and menu in the window. This help should describe the purpose of
the corresponding area and should include cross-references to task-oriented help
topics which describe tasks which use this area.

❑ Provide overview information for all main windows whether help is provided from
a menu or a button. This overview should briefly describe the functionality of the
entire application.

❑ For co-primary and support windows that include a menu bar, provide overview
information that describes the functionality of that specific window.

❑ Provide task-oriented information for all windows. This information should include
step-by-step instructions for how to accomplish all of the tasks available in the
current window.

❑ For windows with a menu bar, provide access to an index of help topics. This index
should list all available help topics for the application including those that are
generated using the context-sensitive help mode and those that are available directly
from the Help menu. In addition, users should be able to browse the index and select
topics for reading.

❑ Provide keyboard shortcut information for all main windows (whether help is
provided from a menu or a button) and for co-primary and support windows that
include a menu bar. This information should include the mnemonics, accelerators,
and function keys available for the entire application and not just for the current
window.

❑ Provide product information for all main windows (whether help is provided from
a menu or a button) and for co-primary and support windows that include a menu
bar. This information should minimally include the product name and version
number. It might also include other general product information such as copyright
and trademarking, licensing, and customer support access.

❑ Display product information using an Information dialog so that users who don’t
install an application’s online help can still access version number and customer
support information.

Online Help

85

When providing a Help menu in an application window . . .

❑ Include a “Click for Help” entry to enable context-sensitive help mode with the
keyboard accelerator <Shift>-<F1>.

❑ Include an “Overview” entry for main windows. For co-primary and support
windows, include an entry labeled “Overview for <window name>”.

❑ Include entries that represent a list of tasks that users can accomplish in the current
window. If this list of tasks is more than ten or twelve entries, use cascading menus.
These entries shouldn’t have mnemonics or keyboard accelerators.

❑ Include an “Index” entry that allows the user to access the help index.

❑ Include a “Keys & Shortcuts” entry to display all keyboard shortcuts for the
application.

❑ Include a “Product Information” entry.

When providing a Help button in an application window . . .

❑ Provide a Help button for all windows that don’t have a menu bar.

❑ For main windows, provide overview, task-oriented, keyboard shortcuts, and
product information when the user clicks this button.

❑ For co-primary and support windows, provide overview and task-oriented
information when the user clicks this button.

❑ For dialogs, provide help that focuses on the main purpose of the dialog and
describes how to use the dialog.

❑ For primary and support windows that include a Help button, also provide access to
context-sensitive help when the user presses <Shift>-<F1>. Dialogs typically don’t
support context-sensitive help mode.

Writing Online Help Content for SGIHelp

This section discusses the actual writing of the online help content. It might be of interest
to both application designers and online help documentation writers.

Learning About SGIHelp

The basic unit of help information in SGIHelp is the help card (see Figure 4-2, Figure 4-3,
and Figure 4-5). Help cards typically cover one topic although they may be divided into

86

Chapter 4: Indigo Magic Desktop Services

subtopics. They can have cross-references (links) to other help cards for the application.
These links appear as blue text in the help card viewer window.

Before writing online help content for SGIHelp, read through the help information for
some Indigo Magic applications to get a feel for content, functionality, and presentation.
Some good examples of help in applications with a Help menu are the Directory View
windows and the Icon Catalog application. Take a look at the User Manager (accessed
from the System menu in the Toolchest) as an example of a utility that provides help
through a Help button. Also try out the Help button in dialogs in the desktop
applications.

As you experiment with SGIHelp, follow some (blue) hypertext links to other help topics.
Trace these cross-reference links both forward and backward. Look at the presentation of
inline figures. Print some of the help information. Bring up the help index and search this
index for specific keywords and phrases. Be sure to try out the “Click for Help” facility
to get a feel for how specific the information is when you click on an area of the window.

Creating Help Cards

Online help is designed to be presented in short pieces (chunks) of information that
answer specific questions. (See “Types of Online Help” earlier in this chapter for a list of
the types of questions users ask and the types of information that should be available in
your online help to answer these questions.) Each help topic consists of one card of
information that answers a specific question. The SGIHelp viewer is designed to take up
no more than one quarter of the screen. If a help card has more information than will fit
in the viewer window at one time, the user can use the scroll bar to scroll through the
information. Each help card should span no more than three viewer windows of
information to minimize scrolling. The content shouldn’t assume that users have read
other help topics. Sometimes a help card may depend on another help card. It’s better to
provide a link to the supplementary card than to repeat the information.

All help cards have titles. Make each title as descriptive as possible to tell the reader
what’s contained in the specific help card. The titles should also appear in an index of
help topics. Users can display the list of help topics in the index by choosing “Index”
from the Help menu. Note that the topics listed in the index should match the titles of the
help cards as closely as possible.

As in any form of documentation, use familiar terminology and natural, friendly,
real-world language. Remember that when users access online help, they’re often
searching for a quick answer to a specific question. This isn’t the time to teach them new
technical terms.

Online Help

87

Writing Context-Sensitive Help

Before the writing process begins for context-sensitive help, list all appropriate window
components that users might need help on. Describe components in terms of the user
tasks they support. That is, don’t just say what the component is—tell users when they
would find this component useful. Be careful not to mix specific step-by-step instructions
with the context-sensitive information; instead, you might include links to the
appropriate task-oriented information. Figure 4-3 shows the help card for
context-sensitive help on the shelf area in a Directory View window.

Writing Overview Information

Overview information should be a one or two paragraph overview of either the
application’s functionality (main windows) or the functionality of a specific application
window (co-primary and support windows). It should answer the question, “What does
this application (or application window) do?” Figure 4-2 shows the overview card for
Directory View windows. Notice how it provides an overview of the entire application
and limits the information to the application’s functionality.

Writing Task Information

Start by compiling a list of major tasks that users will want to perform using the
application. For each task, supply the step-by-step instructions necessary to accomplish
that task. If the instructions span more than three or four viewer windows of
information, try to divide this topic into several smaller help topics. In addition to the
step-by-step information, provide a brief summary paragraph at the beginning of the
help card. Some readers take the time to read only the first few sentences of a help card.

Figure 4-6 is an example of a task-oriented help card taken from a Directory View
window. Note that it displays the summary paragraph and the initial steps in the in the
first viewer window of information. Remember that when displayed in a Help menu, the
list of tasks gives users a quick overview of what the application can do, before they’ve
even had to look at a help card. Make sure that you have descriptive titles for your
task-oriented help cards and review them as a group. See Figure 4-2.

88

Chapter 4: Indigo Magic Desktop Services

Figure 4-6 Task-Oriented Help Example

Writing Index Information

Users access the help index to browse or to search for specific topics, so it’s important to
have descriptive titles for your help cards. The help index presents topics roughly in the
order in which they appear in the Help menu: overview, list of tasks, context-sensitive
topics, and keyboard shortcuts. If the application has more than one window with a Help
menu, the help topics are grouped by windows. See Figure 4-2.

Writing Keyboard Shortcut Information

Every Help menu should have a “Keys & Shortcuts” entry containing all the mnemonics,
keyboard accelerators, and function keys for the entire application. Typically, this help
card contains an introductory description and a three-column table containing columns
for the menu entry label, keyboard accelerator, and mnemonic. Also include information
on function keys and other shortcuts that can be used in your application. See Figure 4-2.

Procedural Steps

Summary Paragraph

Online Help

89

Writing for Windows With Help Buttons

If your main application window has a Help button rather than a Help menu, the initial
help card should contain an overview of your application, task-oriented information, a
list of all keyboard shortcuts, and product information. To make it easier for users to
navigate through this amount of information, after the overview information at the
beginning of the help card, place links which take users directly to the other chunks of
help information contained in the card. This strategy greatly reduces the amount of
scrolling and searching necessary. See Figure 4-5 for an example help card with links to
additional information.

On other windows with a Help button, present only the help information for the specific
window. If this information is longer than three or four viewer windows of information,
use the above strategy of presenting brief overview or summary information followed by
a list of links to the individual chunks for the task-oriented information.

Guidelines for Creating SGIHelp Content

When writing any online help for your product . . .

❑ Create separate help “cards” for each help topic.

❑ Limit each help card to no more than three viewer windows full of information.

❑ Write a descriptive heading for each help card.

❑ If a particular help topic needs supplemental information, provide links to that
information rather than repeating it in the current card.

❑ Use language your users will understand.

❑ Use figures when appropriate. SGIHelp allows users to view graphics inline with the
help text.

When writing “Click for Help” context-sensitive information for your application . . .

❑ Begin by listing the individual controls and areas of your application windows that
you need to describe.

❑ At a minimum, provide separate help cards for each group of controls and areas in
that window.

❑ Provide descriptions in terms of the user tasks the components support.

90

Chapter 4: Indigo Magic Desktop Services

❑ Don’t include procedural, task-oriented information with the context-sensitive
information—include links to the appropriate task-oriented topics instead.

When writing the overview help cards for your application . . .

❑ Restrict the content to information about what the product does, not how to use it.

❑ Limit the text to one or two viewer windows of information.

❑ Use the heading “Overview” for the main window’s overview help card and
“Overview of <window name>” for co-primary and support windows with overview
help cards.

When writing the task-oriented information for your application . . .

❑ Begin by listing the tasks that users will want to accomplish with your application.

❑ For each task, list the step-by-step instructions users will need to accomplish that
task. If these instructions span more than three or four viewer windows, try to divide
this topic into several smaller help topics.

❑ Provide a brief summary paragraph at the beginning of the help card, followed by
the step-by-step information.

When writing the keyboard shortcuts information for your application . . .

❑ Include all shortcuts for your application in a single card—mnemonics, keyboard
accelerators, and function keys.

When creating the index for your help topics . . .

❑ Match the titles in the index as closely as possible to the titles of the help cards.

❑ Place the topics in the index in the following order—overview, list of tasks,
context-sensitive topics, and keyboard shortcuts.

When writing help information that will be available from a Help button rather than
from a Help menu . . .

❑ For the main application window, the help card should contain an overview of your
application, task-oriented information, a list of all keyboard shortcuts, and product
information.

❑ For Help buttons not on the main application window of your application, present
only the help information for the specific window.

Online Documentation

91

❑ If the amount of information on this one help card spans more than three or four
viewer windows of information, after the overview or summary information at the
beginning of the help card, place links which take users directly to the other chunks
of help information contained in that card.

After writing your online help . . .

❑ Have reviewers examine your help content online rather than reviewing a printed
copy. Help topics will “read” differently depending on which paths readers
(reviewers) traveled to get there.

❑ Have reviewers check the titles of the help topics to make sure they are descriptive
and appropriate.

❑ Have reviewers test out all links to make sure they are appropriate.

Online Documentation

Silicon Graphics now ships many manuals in online form using IRIS InSight. IRIS InSight
is an online documentation delivery system based on SGML (Standard Generalized
Markup Language), a portable, platform-independent document description language.

InSight offers users a convenient means of viewing manuals. It can save money for
organizations that ship a high volume of manuals, that have frequent releases, and
whose users can get by without hardcopy versions of the manual. If your organization
fits this description and uses a process based on a standardized approach to document
management, consider using IRIS InSight. To contact Silicon Graphics for more
information, send email to techpubs@sgi.com.

Desktop Variables

The Indigo Magic Desktop allows users to set a variety of variables that can affect the
way an application behaves on the desktop. These variables are set using the graphical
control panels selected from the Desktop->Customize cascading menu in the Toolchest.
Users expect all applications to adhere to the values set in these graphical control panels.
Your application should support this expectation by using the values that users have set
for these variables.

92

Chapter 4: Indigo Magic Desktop Services

Desktop settings described in this section include:

• “Scheme Setting”

• “Auto Window Placement Setting”

• “Language Setting”

• “Mouse Double-Click Speed Setting”

• “Editor Preference Setting”

Your application needs to be concerned only with those variables listed in this section.
For details on having your application respond to the settings of these variables, see
Chapter 3, “Using Schemes,” and Chapter 5, “Window, Session, and Desk
Management,” in the Indigo Magic Desktop Integration Guide. Other variables that users
can set using the graphical control panels either don’t affect your application or
automatically apply to your application. These variables define the mouse settings for
right-handed or left-handed users and the default permissions for new files.

Scheme Setting

The Scheme variable allows users to change the color and font scheme used by
applications that are currently running on the desktop. This variable is discussed in the
section “Schemes for Colors and Fonts” in Chapter 3.

Auto Window Placement Setting

The Auto Window Placement setting allows users to specify whether newly opened
windows should be placed automatically by the 4Dwm window manager or be placed
interactively by the user. This variable is discussed in the section “Window Placement”
in Chapter 3.

Language Setting

When users launch an application, they expect the application to appear in the language
set in the Language Control panel (see Figure 4-7). The default setting is U.S. English. For
guidelines on designing an internationalized application, see the online manual Topics in
IRIX Programming.

Desktop Variables

93

Figure 4-7 Language Control Panel

Mouse Double-Click Speed Setting

Users expect applications to respond to the mouse double-click speed set in the Mouse
Settings control panel (see Figure 4-8). Don’t reset the speed in your application.

94

Chapter 4: Indigo Magic Desktop Services

Figure 4-8 Mouse Settings Control Panel

Editor Preference Setting

When users open ASCII text files on the Indigo Magic Desktop, the default editor is jot,
a point-and-click graphical editor. Users can change the default editor using the Desktop
control panel (see Figure 4-9). Applications that let users modify ASCII text files should
default to the text editor specified in the Desktop control panel.

Mouse click
speed settings

Desktop Variables

95

Figure 4-9 Desktop Settings Control Panel

For example, the Compose window in the MediaMail application, shown in Figure 4-10,
gives users a simple editor for composing electronic mail messages. In addition, users
can also elect to use their preferred editor by selecting the “Editor” entry in the Edit menu
for this window. This launches the editor set in the Desktop control panel, which in this
example is jot.

Default editor
setting

96

Chapter 4: Indigo Magic Desktop Services

Figure 4-10 Selecting Preferred Editor in MediaMail

Main MediaMail

MediaMail Compose

"Editor" entry
in Edit menu

Preferred editor - jot

window

window

File Alteration Monitor (FAM)

97

Desktop Variables Guidelines

In general . . .

❑ Always honor the user’s desktop customization settings. Never override or ignore
them.

When considering color and font schemes for your application . . .

❑ Use the pre-packaged color and font schemes supplied by Silicon Graphics rather
than designing your own.

When considering window placement . . .

❑ Set a preferred window position for all primary windows. Don’t set a required
window position for primary windows.

❑ Try to anticipate other application and tool windows that may be displayed with
your application and set your preferred default position appropriately.

To allow users to control the language for your application . . .

❑ Check the value of the default language each time your application is launched.
Don’t reset this value while the application is running.

To allow users to control the mouse double-click speed for your application . . .

❑ Check the value of the double-click speed each time your application is launched.
Don’t reset this value while the application is running.

If users will be editing and/or browsing ASCII text files in your application . . .

❑ Make their preferred editor (specified in the Desktop control panel) available for use
on text files.

❑ Check the value for the preferred editor each time your application is launched, but
don’t reset this value while your application is running.

❑ If users can only browse the ASCII text files, launch the editor in read-only mode.

File Alteration Monitor (FAM)

The File Alteration Monitor (FAM) is a service that monitors changes to files and
directories in the file system and notifies interested applications of these changes. If your

98

Chapter 4: Indigo Magic Desktop Services

application needs to stay in sync with the state of any part of the file system, you should
use FAM. This process is considerably more efficient than having an application poll the
file system itself to detect changes. (See Chapter 8, “Monitoring Changes to Files and
Directories,” in the Indigo Magic Desktop Integration Guide for details on using FAM in
your application.)

Here are two examples of Indigo Magic applications that use FAM:

• The File Manager relies on FAM to track any changes to directories and/or files that
are visible on the user’s desktop or in any open Directory View windows. When
FAM notifies the File Manager of any changes, the File Manager updates the views.
This guarantees that the user always sees an accurate view of the file system, both
on the desktop and in the Directory View windows.

• MediaMail uses FAM to monitor the arrival of new mail by tracking changes to the
/usr/mail directory. If a user is running MediaMail and new mail arrives, the user is
immediately notified.

File Monitoring Guideline

❑ If your application needs to stay in sync with the state of any part of the file system,
use FAM. Don’t have your application directly poll the file system to detect changes.

99

Chapter 5

5. Data Exchange on the Indigo Magic Desktop

The Indigo Magic Desktop enables users to transfer data between applications. There are
two types of transfers from the user’s point of view. Copy takes data specified in the
source application and creates a duplicate in the destination application. Move removes
the data specified in the source application and places it in the destination application.
The source and destination applications can be the same application.

This chapter covers the following topics:

• “Supporting the Clipboard Transfer Model” explains what users expect when
performing operations using theusing “Cut,” “Copy,” and “Paste” entries in the
Edit menu.

• “Supporting the Primary Transfer Model” describes the expected behavior when
users select data and copy it using the left and middle mouse buttons.

• “Data Types Supported for Inter-Application Transfer” lists those data types that
users can transfer between applications.

Supporting the Clipboard Transfer Model

In the clipboard transfer model, users move or copy a selection using the “Cut,” “Copy,”
and “Paste” entries from the Edit menu. If your application contains data that users will
want to transfer to other applications or across separate instantiations of your
application, your application should support the clipboard transfer model described in
this section. Note that this model is a subset of the clipboard transfer model described in
Section 4.3 of the OSF/Motif Style Guide. For information on implementing clipboard
transfer, see "Implementing the Clipboard Transfer Model" in Chapter 7,
“Interapplication Data Exchange,” of the Indigo Magic Desktop Integration Guide. For more
information on the layout of the Edit menu, the behaviors of each entry, and keyboard
accelerators, see “Edit Menu” in Chapter 8.

In a typical clipboard transfer, the user selects data in an application window and
initiates a move or copy transfer operation by choosing “Cut” or “Copy” from the

100

Chapter 5: Data Exchange on the Indigo Magic Desktop

window’s Edit menu. The source application then takes ownership of the clipboard atom
replacing the prior owner (if there was one). The user completes the transfer by choosing
“Paste” from the Edit menu in the destination application. The destination application
then moves or copies the data associated with the clipboard to this destination. When the
transfer is complete, the newly pasted data is not selected or highlighted. For more
information on selection techniques, see “Selection” in Chapter 7.

Note that clipboard data is nonpersistent. If a user quits the application that currently
owns the clipboard, the data associated with the clipboard atom is lost. Only one
application can own the clipboard atom at any given time. For persistent media storage
use the Indigo Magic MediaWarehouse. For more information, see the Indigo Magic
MediaWarehouse User’s Guide.

Figure 5-1 illustrates clipboard transfer using the SoundEditor application. In the figure,
there are two instantiations of the application; the window on the left is the source and
the one on the right is the destination. Note that the clipboard atom in the figure is only
a representation and doesn’t actually appear. In this example, the user selects a region of
sound in the source window and chooses “Copy” from the Edit menu in that window.
The source instantiation of SoundEditor takes ownership of the clipboard atom. When
the user chooses “Paste” from the Edit menu in the destination window, the data
associated with the clipboard is inserted into the destination sound file at the insertion
cursor (the vertical black line). Note that after the “Paste” operation, the SoundEditor
application doesn’t select or highlight the newly pasted data.

Supporting the Primary Transfer Model

101

Figure 5-1 Clipboard Transfer Example

The clipboard operates independently of the primary selection described in the next
section, “Supporting the Primary Transfer Model.” When a user chooses “Cut” or
“Copy” from an Edit menu, that application takes ownership of the clipboard but the
primary selection remains unchanged.

Supporting the Primary Transfer Model

In the primary transfer model, users select the data for transfer using the left mouse
button and copy the data to the destination application using the middle mouse button.
If your application contains data that users will want to transfer to other applications or

STEP 1 - User selects

STEP 5 - Sound data fromSTEP 3 - SoundEditor

STEP 2 - User chooses "Copy" STEP 4 - User chooses "Paste"

sound data to copy

asserts ownership
of clipboard atom

clipboard atom is pasted

Source window Destination window

Insertion cursor
position

but not selected

102

Chapter 5: Data Exchange on the Indigo Magic Desktop

across separate instantiations of your application, your application should support the
primary transfer model described in this section. Note that this model is a subset of the
primary transfer model described in Section 4.3 of the OSF/Motif Style Guide. For
information on implementing primary transfer, see "Implementing the Primary Transfer
Model" in Chapter 7, “Interapplication Data Exchange,” of the Indigo Magic Desktop
Integration Guide.

In the primary transfer model, when a user begins a selection in an application, that
application takes ownership of the primary selection atom, replacing the previous owner
if there was one. This selection is referred to as the primary selection. The user can then
copy the primary selection to a destination application by moving the pointer to the
destination window (making it the active window) and clicking the middle mouse
button. At this point, the destination application copies the primary selection data to this
destination. Note that the data is pasted at the position of the pointer, not at the insertion
cursor. Also note that when the copy is complete, the newly pasted data isn’t selected or
highlighted. For more information on selection techniques, see “Selection” in Chapter 7.

Figure 5-2 through Figure 5-3 illustrate primary selection and transfer using the
SoundEditor application. Figure 5-2 illustrates making a primary selection. The user
creates a selection by dragging with the left mouse button across a range of sound data.
As soon as the user begins this selection, SoundEditor takes ownership of the primary
selection atom. This selection is then referred to as the primary selection.

Figure 5-2 Primary Selection Example

Selected sound
data assigned Pointer position when

left mouse buttonto primary selection
is released

Supporting the Primary Transfer Model

103

Figure 5-3 shows the source and destination windows just prior to a primary transfer.
Figure 5-4 shows the source and destination windows after the transfer. Note that when
the user clicks the middle mouse button, the primary selection is inserted at the pointer
location rather than at the insertion cursor. Also note that after the transfer operation, the
SoundEditor application doesn’t select or highlight the newly pasted data and the
primary selection doesn’t change.

Figure 5-3 Primary Transfer Example: Before Transfer

Source window

Insertion cursor position

Destination window

Primary selection
just before transfer

Pointer position
just before transfer

104

Chapter 5: Data Exchange on the Indigo Magic Desktop

Figure 5-4 Primary Transfer Example: After Transfer

In general, when your application loses the primary selection, it should keep its current
selection highlighted. When a user has selections highlighted in more than one window
at a time, the most recent selection is always the primary selection. This is consistent with
the persistent always selection model discussed in Section 4.2 in the OSF/Motif Style Guide.
Exceptions to this guideline are those applications that use selection only for primary
transfer—for example, the winterm Unix shell window. The only reason for users to select
text in a shell window is to transfer that text using the primary transfer mechanism. In
this case, when the winterm window loses the primary selection, the highlighting is
removed. This is referred to as nonpersistent selection in Section 4.2 in the OSF/Motif Style
Guide. For guidelines on selection in general, see “Selection” in Chapter 7.

If the user returns the keyboard focus to a window with a highlighted, superseded
primary selection, the application should allow the user to reinstate the highlighted
selection as the primary selection by pressing <Alt-Insert>. In addition to supporting this
key combination, you can also add the entry “Promote” to the Edit menu for the
application window. Make the “Promote” menu entry active only when your application
has a selection which is not the primary selection. (For details of placing this item in the
Edit menu, see “Edit Menu” in Chapter 8.)

Source window

Insertion cursor position

Destination window

Primary selection
at time of transfer

Pointer positionTransferred data
at time of transfer

Data Types Supported for Inter-Application Transfer

105

Note that when a user begins to modify a selection, such as adding elements to it, it’s
considered to be a new selection. In this case, your application needs to reassert
ownership of the primary selection if your application doesn’t currently own it.

The primary selection operates independently of the clipboard, as described in the
previous section, “Supporting the Clipboard Transfer Model.” When the user makes a
selection, that selection becomes the primary selection—there’s no effect on the contents
of the clipboard.

Data Types Supported for Inter-Application Transfer

Applications can use the atom names for both clipboard and primary transfer of the
corresponding types of data. A few atom names are listed in Table 5-1; the tables in
Chapter 7, “Interapplication Data Exchange,” in the Indigo Magic Desktop Integration
Guide provide a complete list. If you want users to be able to transfer data from your
application to other applications, you need to be able to export the data. If your
application is to receive data from other applications, it must be able to import the data.
For complete details of implementing both clipboard and primary data transfer, see
Chapter 7, “Interapplication Data Exchange,” in the Indigo Magic Desktop Integration
Guide.

Table 5-1 Data Types Supported for Inter-Application Transfer

Target Format Atom Name Nature of Data What Target Receives Receiving Application
Requirements

INVENTOR 3D, generated by
Inventor

Inventor data (Scene
Graph)

Ability to read Inventor data

_SGI_RGB_IMAGE_FILENAME color image in rgb
format

rgb file name Ability to use rgb files

_SGI_RGB_IMAGE color image in rgb
format

stream of rgb data Ability to use rgb files

_SGI_AUDIO_FILENAME sound data audio file name SGI audio file library
libaudiofile

_SGI_AUDIO sound data stream of audio data SGI audio file library
libaudiofile

_SGI_MOVIE_FILENAME movie data movie file name SGI Movie library libmovie

106

Chapter 5: Data Exchange on the Indigo Magic Desktop

Data Exchange Guidelines

If your application contains data that users may wish to transfer to other applications
or across separate instantiations of your application . . .

❑ Support the Clipboard Transfer Model using the “Cut,” “Copy,” and “Paste” entries
in the Edit menu. In this model, the clipboard is a global entity that’s shared by all
applications. Your application shouldn’t use these entries to refer to a clipboard
that’s private to your application.

❑ When supporting the Clipboard Transfer Model, don’t select or highlight newly
pasted data after a “Paste” operation.

❑ Support the Primary Transfer Model. Assert ownership of the primary selection
when the user begins to make a selection. Insert data at the location of the pointer
when the user clicks the middle mouse button (which isn’t necessarily at the
insertion cursor).

❑ When supporting the Primary Transfer Model, don’t select or highlight newly
transferred data after a transfer operation.

❑ Use persistent always selection highlighting (keep the current selection highlighted
even when your application loses the primary selection), unless the only action that
can be performed on the selection is to copy the data using primary data transfer. In
this case, use nonpersistent selection highlighting—that is, remove the selection
highlight when the selection is no longer the primary selection.

❑ When supporting the Primary Transfer Model, if the current active window has a
selection that isn’t the primary selection, reinstate this selection as the primary
selection if the user presses <Alt-Insert>. Additionally, you can include a “Promote”
entry in the Edit menu to perform the same function.

_SGI_MOVIE movie data stream of movie data SGI Movie library libmovie

STRING text encoded as ISO
Latin 1

textual data Ability to read text encoded as
ISO Latin 1

COMPOUND_TEXT compound text textual data formatted as
compound text

Ability to read compound text

Table 5-1 (continued) Data Types Supported for Inter-Application Transfer

Target Format Atom Name Nature of Data What Target Receives Receiving Application
Requirements

Data Exchange Guidelines

107

❑ When supporting the Primary Transfer Model, when the user begins to modify a
selection, such as adding elements to it, reassert ownership of the primary selection
if your application does not currently own it.

❑ When supporting both Clipboard Transfer and Primary Transfer, keep the primary
selection independent from the clipboard. When the user begins to make a selection
in your application, assert ownership of the primary selection but do not change the
ownership of the clipboard. When the user chooses “Cut” or “Copy” from an Edit
menu in your application, assert ownership of the clipboard but do not change the
ownership of the primary selection.

PART TWO

Interface Components II

Chapter 6

Application Windows

Chapter 7

Focus, Selection, and Drag and Drop

Chapter 8

Menus

Chapter 9

Controls

Chapter 10

Dialogs

Chapter 11

User Feedback

111

Chapter 6

6.Application Windows

This chapter discusses the role of different types of windows in the Indigo Magic
environment. It includes information on how your application should combine the
different types of windows, as well as guidelines on what elements are appropriate for
primary and support windows, and how these elements should be arranged. (Dialog
windows are discussed in detail in Chapter 10, “Dialogs.”)

This chapter covers the following topics:

• “Application Models” discusses different models for applications. Which model is
appropriate for your application depends upon whether your application needs
multiple primary windows, and whether it can have multiple documents open at
the same time.

• “Main and Co-Primary Windows” describes the design of primary windows.

• “Support Windows” explains the design of support windows.

• “Pointer Behavior in a Window” discusses the limits of what your application
should do with the mouse pointer.

Note that by default, 4Dwm, the window manager for the Indigo Magic Desktop,
provides window decorations and a Window menu for all application windows. The
specific window decorations and contents of the Window menu depend on the type of
window and whether any of the components in the window are resizable. For guidelines
on window decorations, Window menu entries, and related issues, see “Application
Window Categories and Characteristics” in Chapter 3.

Application Models

This section describes how the different types of windows used in the Indigo Magic
environment can be used together in applications. Topics include:

• “Window Types”

• “Standard Application Models”

112

Chapter 6: Application Windows

Window Types

As discussed in “Application Window Categories” in Chapter 3, windows in the Indigo
Magic environment are divided into four types, which are subdivisions of Motif’s two
types: primary and secondary. Primary windows are divided into main primary
windows and co-primary windows, and secondary windows are divided into support
windows and dialogs. The definitions are repeated here for your convenience:

• A main primary window serves as the application’s main controlling window. It’s
used to view or manipulate data, get access to other windows within the
application, and kill the process when users quit. There’s only one main primary
window per application (and sometimes it isn’t visible to users).

• A co-primary window is used for major data manipulation or viewing of data outside
of the main window

• A support window is a persistent special-purpose window. It typically contains a
control panel or tool palette that operates directly on data in a primary window. A
support window can be used repeatedly.

• A dialog is a transient window, typically used for short, quick user input, such as an
action confirmation, or system output, as in a warning message. A dialog may be
user-requested or application-generated. It is usually dismissed as soon as it has
served its purpose. Dialogs are discussed in detail in Chapter 10, “Dialogs.”

The next section (“Standard Application Models”) describes several standard models for
combining these types of windows in a real application. When choosing a model, try to
keep the window hierarchy shallow so users can form a relatively simple conceptual
model of how your application’s windows are related. Figure 6-1 shows the allowable
parent and child relationships within an application’s window hierarchy. For example,
all co-primary windows should be children of the main window, so primary windows
should never be more than two levels deep; dialogs can be children of any type of
window.

Application Models

113

Figure 6-1 Allowable Parent-Child Window Relationships

Standard Application Models

Applications can combine the basic window types in many ways, but most applications
fall into one of four basic models. These models differ with respect to whether they can
have one or multiple documents (files) open at a time and their use of primary windows.
(For information about how to implement the various models, see Chapter 5, “Window,
Session, and Desk Management,” in the Indigo Magic Desktop Integration Guide.)

Note: The term document means a grouping of data and shouldn’t be thought of as
referring exclusively to text-oriented files. A document can include such data types as
film clips, audio segments, and 3D scenes.

“Single Document, One Primary” Application Model

“Single Document, One Primary” (see Figure 6-2) is the most basic model. It
accomplishes all of its tasks within the main window and uses as many support windows
and dialogs as needed. Users can work on only one document at a time. Thus, when a

Main window

File Edit Help

Graph . . . Help

Co-primary window

Support window

Dialog

WARNING! Etc.

Support window

Dialog

WARNING! Etc.

Dialog

WARNING! Etc.

Dialog

WARNING! Etc.

114

Chapter 6: Application Windows

user has one document open and opens a second document, the second document
replaces the first. IRIS Showcase operates in this manner.

Figure 6-2 ”Single Document, One Primary” Application Model

Main window
Support windows

File Edit Help

Dialogs

Save changes?

WARNING! Etc.

Do you want . . .?

Application Models

115

“Single Document, Multiple Primaries” Application Model

The “Single Document, Multiple Primaries” model (see Figure 6-3) uses both main and
co-primary windows to accomplish major tasks. In this model, each co-primary window
performs a different function; these functions supplement the functionality of the main
window. MediaMail is an example of this model. Its main window lets users select
electronic mail messages from a folder and perform actions on them such as viewing,
printing, deleting, and sorting. Its Compose and Message windows are typical of
co-primary windows with different functions designed to support the functionality of
the main window.

Also in this model, each primary window has its own menu bar tailored specifically to
the functions in that window. Each co-primary window is opened from the main
window. Each support and dialog window is associated with a specific primary window.

Figure 6-3 ”Single Document, Multiple Primaries” Application Model

The single-document application with multiple primary windows is useful for dealing
with data that the user needs to view in a number of different ways at the same time. For

First item
Second item
Third item
Fourth item

List . . . Help

Main window
Support windows

File Edit . . . Help
Dialogs

Save changes?

Graph . . . Help

Co-primary window Co-primary window
Etc.

Support windowsDialogs

WARNING! Etc.

Support windowsDialogs

Do you want . . .?

116

Chapter 6: Application Windows

example, the WorkShop debugger operates on a single executable at a time. However, at
a given time WorkShop might have several primary windows displaying source code,
with other primary windows displaying call graphs and output from running the
executable. In the case of WorkShop, the nature of the application demands
multiple-primary windows.

“Multiple Document, Visible Main” Application Model

The “Multiple Document, Visible Main” model (see Figure 6-4) has a main window that’s
used primarily to launch co-primary windows. These co-primary windows are identical
to each other and perform the same functions on different files or documents. All
co-primary windows have identical entries in the menu bar and identical sets of dialogs
and support windows. Each set of dialogs and support windows acts on a single
document, the one represented by the co-primary window from which the dialog or
support window was invoked.

Co-primary windows are opened either from the main window or from a co-primary
window that’s already open. IRIS InSight is an example of this model. Its main window
lets users launch co-primary viewing windows, browse available files, and conduct
global searches through these files. The co-primary windows are used for viewing online
books.

A multi-document application should have a visible main window only if the main
window offers functionality that can’t be provided from the co-primary windows. For
example, the IRIS InSight main window allows users to browse a list of books and to
search a collection of books for specific words or phrases. A multi-document application
should not have a visible main window if the only thing in the main window would be a
menu bar. In this case, use the “multiple documents, no visible main” model; make the
menu entries from the main window available from the pull-down menus in each of the
co-primary windows, as described in the next section.

Application Models

117

Figure 6-4 ”Multiple Document, Visible Main” Application Model

Main window
Support windows

File Edit . . . Help
Dialogs

WARNING! Etc.

Etc.Co-primary window

Support windowsDialogs

Save changes?

File Edit . . . Help

Co-primary window

Support windowsDialogs

Save changes?

File Edit . . . Help

118

Chapter 6: Application Windows

“Multiple Document, No Visible Main” Application Model

The “Multiple Document, No Visible Main” model (see Figure 6-5) is identical to the
“Multiple Document, Visible Main” model described in the previous section except that
the main window is invisible to the user (that is, unmapped) and new co-primary
windows are launched from co-primary windows that are already open. Users open one
document and leave it open while opening others. When the user has closed all of the
documents, the process is killed.

Figure 6-5 ”Multiple Document, No Visible Main” Application Model

Application Model Guidelines

For all applications . . .

❑ Choose an appropriate application model for combining the different types of
windows in your application.

❑ Use only the allowable parent-child window relationships and keep your
application window hierarchy shallow.

Co-primary window

Support windowsDialogs

Save changes?

Do you want . . .?

File Edit . . . Help

Co-primary window

Support windowsDialogs

Save changes?

Do you want . . .?

File Edit . . . Help

Co-primary window

Support windowsDialogs

Save changes?

Do you want . . .?

File Edit . . . Help

Main and Co-Primary Windows

119

Main and Co-Primary Windows

Every application has at least one primary window that serves as the application’s main
controlling window. In fact, the majority of a user’s interactions should occur in the main
and co-primary windows (these window types are defined in “Window Types” earlier in
this chapter).

This section discusses main and co-primary windows:

• “Menu Bars in Primary Windows”

• “Scrollable Work Areas in Primary Windows”

• “Control Areas in Primary Windows”

• “Status Areas in Primary Windows”

• “Splitting Primary Windows Into Panes”

• “Popup Menus in Primary Windows”

Several typical layouts for primary windows are shown in Figures 6-6 through 6-8. These
layouts are discussed in the following sections.

Figure 6-6 Basic Primary Window

Scrollable work area

Control area

Status message area

Menu bar

120

Chapter 6: Application Windows

Figure 6-7 Primary Windows With Tool Palettes

Main and Co-Primary Windows

121

Figure 6-8 Primary Window With Two Panes

Menu Bars in Primary Windows

Primary windows typically have a menu bar, which is part of the window as shown in
Figures 6-6 through 6-8. Don’t create a detached menu bar contained in a separate
window. For details on designing the menu bar and its contents for a primary window,
see “The Menu Bar and Pull-Down Menus” in Chapter 8.

If the primary window doesn’t have a menu bar and all of its functionality is available
using buttons, the window should still respond to the keyboard accelerators for Close
(Ctrl+W) and Exit (Ctrl+Q) when appropriate. That is, the window should respond to
these accelerators according to the guidelines for when to use just Exit, when to use just
Close, and when to use both Close and Exit for a window, as described in the section “File
Menu” in Chapter 8.

122

Chapter 6: Application Windows

Scrollable Work Areas in Primary Windows

The most prominent area of the window is typically a scrollable work area, as shown in
Figures 6-6 through 6-8. Use scrollbars for the work area of a window when the window
can be resized such that some of the available data may be hidden in the work area. Note
that the scrollbars scroll only the work area and don’t scroll the menu bar, buttons in a
command area, or the status message area.

Each scrollbar should span the entire width or height of the scrollable region. Don’t put
controls or status information in the areas reserved for the scroll bars. Put controls in the
control area, as described later in “Control Areas in Primary Windows.” Put status
information in the status area, as described later in “Status Areas in Primary Windows.”

Use a vertical scrollbar on the right of the work area if the window or pane that contains
the work area can be resized such that the data being displayed in the work area won’t
fit in a vertical direction. Similarly, use a horizontal scrollbar directly below the work area
if the window or pane can be resized such that the data being displayed in the work area
won’t fit in a horizontal direction. Disable (rather than remove) the appropriate scrollbar
when all of the data is being displayed in a given direction. For more information on
using scrollbars, see “Scrollbars” in Chapter 9.

Control Areas in Primary Windows

Controls in primary windows, which are typically pushbuttons, are generally placed
directly beneath the horizontal scrollbar and on the left side of the window (see Figures
6-6 through 6-8). (Note that this is different than the OSF/Motif Style Guide, which states
that controls can be arranged along the top, bottom, or side of the work area.) As stated
in the previous section, don’t place controls directly below or on the right side of the
work area in the scroll bar area—scrollbars should span the entire width and height of
the work area. (See Chapter 9, “Controls,” for more information about how to use
controls in your application.)

Control areas sometimes contain pushbuttons that are grouped into tool palettes. Figures
6-6 through 6-8 show primary windows with pushbuttons in the control areas, and
Figure 6-7 shows primary windows with both tool palettes and pushbuttons that aren’t
part of a palette. Buttons that are part of a tool palette don’t need to have corresponding
menu entries. These “tools” typically allow a user to launch support and co-primary
windows, or put the work area in a different mode (for example, edit mode or draw
mode).

Main and Co-Primary Windows

123

In contrast, pushbuttons used in control areas that do not represent tool palettes should
represent the most frequently accessed application-specific menu entries which provide
users a more convenient way of accessing these actions. There are two advantages to
having these buttons repeat functionality from the menus:

• Having the functions in a menu allows you to assign keyboard accelerators to those
common functions and allows users to choose between using point-and-click on the
button or using a keyboard accelerator to access the functionality.

• Having the functions in a menu means that users can skim one place (the menu
entries) to get an idea of the overall functionality of the product, and can skim
another place (the control area) to see the frequently used functionality.

These non-palette buttons generally don’t include actions from the standard File, Edit, or
Help menus because these entries typically aren’t the most frequently accessed when
compared to the functionality that’s specific to your application. For example, these
buttons don’t include the actions “Exit” or “Close” because these functions are used only
once each time the window is opened, and they don’t include “Help” because help is
easily accessible from the Help menu. (For more information on buttons, see
“Pushbuttons” in Chapter 9; also see “Standard Menus” in Chapter 8.)

The control area can also include an area to enter command line input. This command
line area should be in addition to the buttons. Note that this differs from the OSF/Motif
Style Guide, which states that the command area can contain only command line input.
For an example window with an command line input area, see Section 6.2.1 in the
OSF/Motif Style Guide.

Status Areas in Primary Windows

Primary windows can also include a single status message area at the bottom of the
window if the application needs to post frequent messages to the user about the status of
the application or the status of specific user actions (see Figures 6-6 through 6-8). For
example, messages in this area might confirm that a file has been saved or that an option
has been turned on or off. Provide vertical scrollbars for this area so that users can view
previously displayed messages.

Don’t use this area for warnings, errors, or other kinds of messages requiring the user to
respond. Instead, use dialogs to display these types of messages. (See Chapter 10,
“Dialogs,” for guidelines on designing dialogs.) Also, don’t use it to display help
information.

124

Chapter 6: Application Windows

Splitting Primary Windows Into Panes

Windows can be split into various panes of information (see Figure 6-8). Panes are
separated from each other by separator lines. Each separator line may or may not include
a sash control, which allows users to resize the panes. (See the Sash reference page in
Chapter 9 of the OSF/Motif Style Guide.) Windows can include panes that are stacked
vertically (Figure 6-8) or that are next to each other in a side-by-side horizontal layout
(Figure 6-7). Note that control areas can be associated either with a specific pane or with
the entire window.

Don’t overuse panes—each application window typically should have no more than four
separate panes and no more than three sash controls. If certain panes are optional to
performing the task, provide menu entries that show or hide specific panes of
information (see “View Menu” in Chapter 8).

Popup Menus in Primary Windows

Popup menus (which aren’t shown in the figures in this chapter) can provide quick
access to frequently used functions in primary windows. For information on when and
how to use popup menus, see “Popup Menus” in Chapter 8.

Primary Window Guidelines

When designing a primary window . . .

❑ Use a menu bar unless all of the window’s functionality is available through
pushbuttons. Don’t use a “floating” menu bar in a separate window.

❑ Support keyboard accelerators for Close (Ctrl-W) and Exit (Ctrl-Q) as appropriate,
even if the window doesn’t have a menu bar.

When designing a scrollable work area in a primary window . . .

❑ Use a vertical scrollbar on the right side of the work area when the data being
displayed in the work area may not fit in a vertical direction. Use a horizontal
scrollbar directly below the work area when the data may not fit in a horizontal
direction. Don’t use scrollbars if you’re certain the data will fit.

❑ Disable the appropriate scrollbar when all the data is visible in a given direction.
Don’t remove the scrollbar.

Support Windows

125

❑ Make each scrollbar span the entire height or width of the work area. Don’t include
controls or status information in the scrollbar region.

When designing control areas in a primary window . . .

❑ Place controls below horizontal scrollbars or to the left of work areas.

❑ Provide pushbuttons for the most frequently accessed application-specific functions
from the pull-down menus. Don’t use pushbuttons for standard menu entries such
as Open, Save, Close, Exit, Cut, Copy, Paste, and Help.

❑ Use pushbuttons only for functions that appear in menus, unless the pushbuttons are
part of a tool palette.

❑ Provide an area for command-line input, if appropriate, in addition to (not in place
of) pushbuttons.

To display status information . . .

❑ Use a status area along the bottom of a primary window if your application needs to
post frequent messages about its status. Provide vertical scrollbars for this area so
that users can view previously displayed messages.

❑ Use a status area to display messages that the user doesn’t have to respond to rather
than posting this noncritical information in dialogs. However, don’t put critical
warning or error messages in the status area (use a dialog instead).

❑ Don’t use the status area to display help information.

When dividing a primary window into panes . . .

❑ Divide panes using separator lines. If users might need to resize the pane, also
include a sash control.

❑ Try to limit the number of panes in a single window to four with no more than three
sash controls.

❑ If certain panes are optional, allow users to hide or show these individual panes
using entries in the “View” menu.

Support Windows

As defined in “Window Types” earlier in this chapter, support windows are persistent
secondary windows that allow users convenient, constant access to sets of important

126

Chapter 6: Application Windows

controls that directly manipulate data in the associated primary window. The next two
sections discuss:

• “General Support Window Design”

• “A Specific Standard Support Window: The Indigo Magic Color Chooser”

General Support Window Design

Each support window should be associated with a specific primary window (its parent),
which should be visible and mapped to the screen. (Support windows with invisible,
unmapped parents don’t work properly with desks, as described in “Desks” in
Chapter 3.) Support windows shouldn’t have other support windows or dialogs as
parent windows. Note that this differs from the OSF/Motif Style Guide, which states that
secondary windows can have other secondary windows as parents.

Support windows typically don’t have menu bars like primary windows, but they
should still respond to the keyboard accelerator for closing a window (“Ctrl+W”).
Launch support windows from items in the Tools menu of the associated primary
window’s menu bar (see “Tools menu” in Chapter 8) or from a tool palette in the primary
window (see “Control Areas in Primary Windows”). Users can show or hide support
windows as they wish, and rearrange where they’re displayed with respect to the
primary window. This makes support windows more versatile than control areas in a
primary window. When bringing up support windows, don’t overlap the work area of
the associated primary window if you can avoid it. Note that 4Dwm constrains support
windows to always appear on top of the parent window in the window hierarchy.

A support window should be smaller and less complex than its associated primary
window, so that you don’t need to split the support window’s contents into separate
panes. Support windows typically include a related set of controls that are associated
with the parent primary window. Each related set of functions or input fields should be
given its own support window. The controls (which can include buttons, text fields, and
scrolling lists) typically either operate directly on selected data or change the mode of the
primary window. For example, they might allow the user to choose a texture that will be
applied to the selected objects in the primary window, or they might allow the user to
choose a specific drawing tool that changes what’s drawn in the parent window. For
example, the IRIS Showcase Align Gizmo shown in Figure 6-9 aligns the objects that are
currently selected in IRIS Showcase’s main window. Don’t add or remove controls from
a support window depending on the current context—the layout and contents of a
support window should be static.

Support Windows

127

Figure 6-9 The IRIS Showcase Align Gizmo

Support windows also typically contain a response area that includes standard actions
for the window: “Apply,” “Cancel/Close,” and “Help.” See “Standard Dialog Actions”
in Chapter 10 for more information about these actions. In addition, support windows
may contain secondary work areas for manipulating data that will eventually be
integrated into the work area of the associated primary window. Texture, pattern, icon,
and geometry editors are examples of support windows that might contain secondary
work areas. The Align Gizmo in Figure 6-9 contains a small display area showing a circle,
a square, and a triangle, which shows the effects of the user’s changes before they’re
applied to the main window.

Support windows should be modeless—that is, they shouldn’t prevent the user from
interacting with any of the application’s other windows. If your application requires a
secondary window that the user must dismiss before interacting with the rest of the
application, use a modal dialog (see “Dialog Modes” in Chapter 10).

A Specific Standard Support Window: The Indigo Magic Color
Chooser

The Indigo Magic color chooser is a standard support window that allows users to edit
colors. Use the color chooser in your application whenever you want to offer the user an
unrestricted choice of colors. For a restricted choice of colors, you can offer the user a

128

Chapter 6: Application Windows

palette of colors to choose from, a list, an option button, or a set of radio buttons,
depending on the number of choices available. Figure 6-10 shows the color chooser in its
default configuration.

Figure 6-10 The Indigo Magic Color Chooser

You can allow users to access the Indigo Magic color chooser from your application in
one of two ways: by having them click on a button that displays its (editable) color, or
having them click on an object for which the color should be changed. The first method
is used by the Background control panel (which is available from the
Desktop->Customize menu in the Toolchest). With this panel, the user clicks on one of
the color buttons to open the color chooser. If the color chooser is already open, clicking
on a color button selects that color for the color chooser to edit. The colors of the buttons
represent the current colors being used by the desktop background. With the second
method, the user selects an object and then chooses the “Color Editor” entry from the
Edit menu, as described in the section “Edit Menu” in Chapter 8. This menu entry opens
the color chooser. For details on how to include the Indigo Magic color chooser in your
application, see Chapter 4, “Using the Silicon Graphics Enhanced Widgets,” of the Indigo
Magic Desktop Integration Guide.

Color hexagon

Color slider

Color swatches

Hue and saturation selector

Pushbutton area

Text fields

Support Windows

129

As noted in Figure 6-10, the color chooser includes the following components:

• Two color swatches: one for showing the current selected color and one for enabling
the user to store a second color for reference.

• A color hexagon that provides visual selection of the hue and saturation
components of a color in an HSV color space. The user changes the hue and
saturation by moving the selector (which appears as a small circle) in the color
hexagon.

• Color sliders for controlling various color components.

• Text fields that show the exact values for hue, saturation, and value color
components and allow users to set these values numerically. (There are also text
fields indicating the values of the red, green and blue color components when the
red, green, and blue sliders are visible.)

• Menus for Options (which allows users to easily find the color white) and Sliders
(which provides various combinations of sliders for setting hue, saturation, value,
red, green, blue input values).

• Pushbuttons that allow users to apply the current values, cancel a pending change,
or get help on this window.

Note: Because of drawing-speed considerations, the color hexagon and color sliders are
available only if running under GL. For X-only configurations, the Color Chooser uses a
Scale widget instead of the color sliders, and there is no color hexagon.

The user can apply the new color to the selected object by pressing either the OK or Apply
buttons. If the user presses OK, the color chooser should be dismissed after the new color
is applied. If the user selects a new object in the parent primary window while the color
chooser is open, the color chooser should update its current color to the color of the
selected object. Thus, a single color chooser window can be used to change the color of a
number of different objects.

Support Window Guidelines

When designing support windows . . .

❑ Use them to provide access to sets of related controls.

❑ Allow users to access them either through entries in the Tools menu or through
pushbuttons in a tool palette in the parent primary window.

130

Chapter 6: Application Windows

❑ Be sure that each support window has a visible parent primary window that’s
mapped to the screen.

When designing the layout of a support window . . .

❑ Make the layout simple and static. Don’t include multiple panes of information.

❑ Include a response area for standard actions that’s similar to the one dialogs have.

❑ Don’t include a menu bar in most cases, but do support the keyboard accelerator for
Close (Ctrl-W).

When opening support windows . . .

❑ Avoid overlapping the work area of the parent window.

❑ Bring them up as modeless secondary windows.

When allowing the user to make color choices . . .

❑ Use the Indigo Magic color chooser whenever you want to offer the user an
unrestricted choice of colors. For a restricted choice of colors, use a palette of colors
to choose from, a list, an option button, or a set of radio buttons, depending on the
number of choices available.

Pointer Behavior in a Window

The user should retain control over the location of the pointer at all times. Your
application shouldn’t change the location of the pointer. (This is sometimes referred to as
“warping” the pointer.) Similarly, your application shouldn’t change the gain and
acceleration characteristics of mouse movement. Users set these on a global basis using
the Mouse Settings control panel available from the Desktop->Customize cascading
menu in the Toolchest. If your application requires finer motion control than what’s
provided by the default gain settings, provide a zoom feature in the View menu that
allows users to change the relative size of an area of your application. (See “View Menu”
in Chapter 8 for more information about this menu.)

Although users control the location of the pointer, your application needs to control the
shape of the pointer. This shape gives the user feedback about the current state of the
application (for example, whether it’s waiting for user input or whether it’s busy
processing). Pointer shapes are discussed in “Pointer Shapes and Colors” in Chapter 11.

Pointer Behavior in a Window

131

Pointer Behavior Guidelines

When designing your application . . .

❑ Always allow the user to control the location of the pointer; your application
shouldn’t change the position of the pointer.

❑ Don’t change the gain or acceleration characteristics of the pointer. If your
application requires fine manipulation, provide a zoom feature in the View menu.

133

Chapter 7

7. Focus, Selection, and Drag and Drop

Users can interact with your application through three general mechanisms, which are
discussed in the following sections:

• “Keyboard Focus and Navigation” discusses how your application should allow
users to direct keyboard input to specific components. It also discusses how certain
components should be controlled from the keyboard.

• “Selection” discusses various models for allowing users to select data in your
application.

• “Drag and Drop” discusses how users expect to directly manipulate text and other
objects in your application by dragging them with the mouse.

Keyboard Focus and Navigation

Keyboard input allows users to enter data into text fields and to control other
components in your application. The keyboard focus policy determines which
component in which window receives the keyboard input. Only one component in one
window receives input from the keyboard at any given time; this component has the
keyboard focus (also called input focus). For example, if a button has the keyboard focus
and the user presses the Space bar on the keyboard, the button is activated. The process
of moving the keyboard focus is called navigation. Keyboard navigation allows the user to
navigate among components in a window using only the keyboard rather than having to
manipulate the mouse (or other pointing device).

As described in “Keyboard Focus Across Windows” in Chapter 3, the Indigo Magic
environment uses one policy for moving the keyboard focus among components within
a window and a different policy for moving the keyboard focus between windows.
When moving the keyboard focus among components within a window, your
application should use an explicit focus policy. In other words, the user clicks a mouse
button or presses a key to move the keyboard focus to a new component in the active
window. In contrast, 4Dwm, the window manager for the Indigo Magic Desktop, uses
implicit focus across windows: the window directly underneath the pointer receives

134

Chapter 7: Focus, Selection, and Drag and Drop

keyboard input (that is, it’s the active window). Note that users can’t navigate among
windows using the keyboard when using 4Dwm in its default configuration.

This section discusses keyboard focus and navigation among components in the active
window and includes:

• “Keyboard Focus Policy and Navigation Within a Window”

• “Keyboard Focus and Navigation Guidelines”

Keyboard Focus Policy and Navigation Within a Window

Only one component in the active window has the keyboard focus at any given time.
Your application should use explicit focus (as opposed to implicit focus) within a
window; in other words, the user must explicitly select the component that receives the
keyboard input. Your application should support the models described in this section for
navigating to specific components in a window and for using the keyboard to activate
these components.

Within the active window, the component with the keyboard focus is visually identified
by the location cursor. The location cursor isn’t necessarily a cursor in the traditional
sense of a text cursor. It gives the user visual feedback as to which component receives
the keyboard input. Each standard component described in Chapter 9, “Controls,” has
its own method for displaying a location cursor when the component has keyboard
focus. For example, the location cursor used to indicate that a specific radio button has
the keyboard focus is a simple box, as shown in Figure 7-1.

Figure 7-1 Location Cursor Example

Keyboard activation and keyboard navigation are strongly linked: if a user can activate
or control a component from the keyboard, the user should also be able to navigate to
that component from within the window using the keyboard. This enables the user to
perform the task without having to frequently switch between using the mouse and
keyboard.

Location cursor

Keyboard Focus and Navigation

135

Section 2.2 in the OSF/Motif Style Guide states that “all application functionality must be
available from the keyboard alone.” This includes navigating among windows,
navigating among components in a window, and activating components. By default,
users will be able to navigate to and control all components in a window except for those
that aren’t traversable or don’t accept input (for example, labels and separators).

Since all Silicon Graphics systems include a mouse, it’s not as critical to provide access to
all functionality from the keyboard alone when programming for Silicon Graphics
systems. Just keep in mind that some users use alternate input devices that rely on
having functions available from the keyboard. At a minimum, your application should
let users do the following from the keyboard:

• navigate between editable text fields in a window

• enter data into editable text fields

• select data in a text field (see “Selection” later in this chapter and “Text Fields” in
Chapter 9)

• navigate to a list component (see “Lists” in Chapter 9)

• select data in a list (see “Selection” later in this chapter and “Lists” in Chapter 9)

• navigate among all types of menus (pull-down, popup, and option menus) and
their entries (see “Menu Traversal and Activation” in Chapter 8)

• activate menu entries (see “Menu Traversal and Activation” in Chapter 8)

• scroll any scrollable component (see “Scrollbars” in Chapter 9)

• activate the default button in a dialog if there is one (see “Standard Dialog Actions”
in Chapter 10)

• use mnemonics for all menu titles and menu entries in the pull-down menus (see
“Choosing Mnemonics” in Chapter 8)

• use keyboard accelerators for frequently used entries in the pull-down menus, such
as “Cut,” “Copy,” and “Paste” in the Edit menu (see “Choosing Keyboard
Accelerators” in Chapter 8)

Keyboard Navigation

This section discusses guidelines for moving the focus to a different component in the
window using the keyboard. (The OSF/Motif Style Guide refers to this as component
navigation.) Each window is divided into fields, where a field can be an individual control
(for example, a text input field) or a group of controls (such as a group of radio buttons).

136

Chapter 7: Focus, Selection, and Drag and Drop

By default, the fields that can accept the keyboard focus are ordered, in general, from
upper left to lower right. If a window has multiple panes, the focus moves by default
through the fields in the topmost (or leftmost) pane, then the fields in the next pane, and
so on, until it wraps back to the beginning.

In some cases, you may have to modify the default order in which components are
navigated from the keyboard. For example, when a window first becomes active, the
component that should have the keyboard focus is the one that the user is most likely to
want to interact with using the keyboard. This isn’t necessarily the component in the upper
left-hand corner. Also, when a user returns the keyboard focus to a window that was
previously the active window, the keyboard focus should return to where it was when
the user moved the focus out of that window.

By default, users can cycle through the fields in order using the <Tab> key. They also can
use the arrow keys to move the keyboard focus among the individual components in the
current field. For example, in the Add Printer window, shown in Figure 7-2, a user can
use <Tab> to move keyboard focus from the first field (“New Printer Name”) to the
second field (“Connection Type”). Once in the second field, the user can move keyboard
focus between the radio buttons using the directional arrow keys.

Keyboard Focus and Navigation

137

.

Figure 7-2 Components and Fields

By default, the following keyboard commands are used for navigating within a window.
In addition, as discussed in “Menu Traversal and Activation” in Chapter 8,
<Shift>-<F10> should move the location cursor to a popup menu if one is available for
the current context.

<Tab> Moves the location cursor to the next field that can accept the keyboard
focus, unless the current field is a multi-line editable text field. In this
case it simply inserts a tab character.

<Ctrl>-<Tab> Always moves the location cursor to the next field that can accept the
keyboard focus.

<Shift>-<Tab> Moves the location cursor to the previous field that can accept the
keyboard focus.

<Ctrl>-<Shift>-<Tab>
Always moves the location cursor to the previous field that can accept
the keyboard focus.

Field 1

Field 2

Field 3

Field 4

Field 5

138

Chapter 7: Focus, Selection, and Drag and Drop

<down arrow> Moves the location cursor within a field forward (or down) to the next
component that can receive the keyboard focus, eventually wrapping
back to the first component. If the components are in a matrix, <down
arrow> moves down through a column and then proceeds to the top of
the next column to the right.

<up arrow> Moves the location cursor within a field opposite to the direction of the
<down arrow> to the next component that can receive the keyboard
focus. Eventually it wraps back to the last component.

<right arrow> Moves the location cursor within a field to the next component to the
right that can receive the keyboard focus, eventually wrapping back to
the first component. If the components are in a matrix, <right arrow>
moves across an entire row and then proceeds to the row below.

<left arrow> Moves the location cursor within a field opposite to the direction of the
<right arrow> to the next component that can receive the keyboard
focus. Eventually it wraps back to the last component.

<F10> Moves the location cursor to the leftmost menu in the menu bar if there
is one. If a menu is already displayed, <F10> closes the menu and
returns the location cursor to where it was previously. (See “Menu
Traversal and Activation” in Chapter 8.)

Because the keys listed above are used for navigating among components, don’t use
them for other purposes. However, there’s an exception to this rule: the arrow keys can
be used to control a component that’s the only component in its field. For this reason,
each editable text field, list, scrollbar or sash is by default placed in its own
field.

Mouse Navigation

To move the keyboard focus in the current active window using the mouse, users put the
pointer over a specific component and click the left mouse button. The keyboard focus
moves to the selected component, if you’ve allowed that component to accept keyboard
focus, and typically performs some action or selects some data. For example, clicking the
left mouse button on a pushbutton activates the pushbutton, as well as moves keyboard
focus to the pushbutton. Clicking the left mouse button in an editable text field moves
keyboard focus to the text field and places the insertion point in the text field at the
pointer location. If users want to move the keyboard focus to a component using the
mouse without activating that component, they can position the pointer over the
component, then hold down the <Ctrl> key while clicking the left mouse button.

Selection

139

By default, certain components do not grab the keyboard focus when activated using the
mouse. These include scrollbars, sashes, any other component that’s used only to change
the size or location of other elements, and any components that you’ve designated as
being unable to accept keyboard focus. If the user uses the mouse to activate any of these
components, it’s activated and the keyboard focus stays where it was.

Keyboard Focus and Navigation Guidelines

When designing keyboard focus and navigation for your application windows . . .

❑ Use explicit focus for navigating among components within a window.

❑ Support at least the minimum required functionality from the keyboard, such as
navigating to and entering data into editable text fields, using mnemonics and
keyboard accelerators to access menu entries, and scrolling any scrollable
component. Keep in mind that some users use alternate input devices that rely on
having functions available from the keyboard.

❑ When the window becomes active for the first time, give focus to the component that
the user is most likely to want to interact with using the keyboard. When a user
returns the keyboard focus to a window that was previously the active window,
return the keyboard focus to where it was when the user moved the focus out of that
window.

❑ Put each component that requires the use of arrow keys to control it in its own field.
The following components are by default put in fields of their own: editable text
fields, lists, scrollbars, and sashes.

❑ Don’t use the default keyboard navigation keys for other purposes. These keys are
<Tab>, <Ctrl>-<Tab>, <Shift>-<Tab>, <Ctrl>-<Shift>-<Tab>, the arrow keys, <F10>,
<Shift>-<F10>, and <Ctrl> in combination with a left mouse button click.

Selection

IRIS IM is based on the object-action model of direct manipulation. This means that a
user must first select an object or group of objects, then choose an action to perform on
that data. Users typically select data by clicking the left mouse button (to select a single
object) or by dragging with the left mouse button (to select a range of objects). The
selection is completed when the mouse button is released. Making a selection shouldn’t
automatically perform any operation on that selection. When users select data in an

140

Chapter 7: Focus, Selection, and Drag and Drop

application window, that data should be highlighted in some way so that when they pick
an action, they’ll know which chunk of data that action is being applied to.

At any time, there’s one selection that’s the primary selection. This is the last selection
explicitly started by the user and is used to copy data between applications. For details
on supporting the primary transfer model in your application, see “Supporting the
Primary Transfer Model” in Chapter 5.

This section describes:

• “Selection Models—What Can Be Selected and How To Select It”

• “Highlighting a Selection”

• “Multiple Collections in One Application Window”

Selection Models—What Can Be Selected and How To Select It

The data in an application window is divided into collections. A collection is a group of
related elements that share a selection model. There are four basic selection models
described in the OSF/Motif Style Guide:

• In the single selection model, only one element in the collection can be selected at any
given time. For example, a color palette usually allows you to pick only one color at
a time.

• The browse selection model is essentially the same as the single selection model,
except that it allows users to browse through the available elements by dragging
with the left mouse button. The list of available schemes in the Schemes control
panel is an example of this model.

• In the range selection model, more than one element in the collection can be selected
at any given time, but these elements must be next to each other. Text is usually
selected in this fashion—a user can select any number of contiguous characters in a
piece of text.

• In the discontiguous selection model, more than one element in the collection can be
selected at any given time, and these elements don’t have to be next to each other.
An example of this model is a list of files that allows a user to select multiple files.

Note that the OSF/Motif Style Guide also describes a fifth selection model, multiple
selection. Your application shouldn’t use this model because it uses mouse actions for
adding and removing selected elements that are different from other mouse actions.

Selection

141

Eliminating these inconsistent mouse actions for selection makes it much easier for users
to learn how to select data.

Each collection of data in your application should support the mouse and keyboard
actions for selecting and deselecting data listed in Table 7-1, depending on which of the
above models it supports. By default, the IRIS IM list component supports the browse
selection model, and the IRIS IM text component supports the range selection model.

Table 7-1 Selection Actions and Results

Action Model Result

Click on an element in the collection All The element is selected, and any elements in the collection that were
previously selected are deselected. The location cursor is moved to the
selected element.

Drag through a range of data in the
collection

Browse As the user moves the pointer over each element in the collection, that
element becomes selected and all other elements in the collection are
deselected. When the user releases the left mouse button, the element
currently under the pointer remains the selected item, and the location
cursor is moved to this element.

Drag through a range of data in the
collection

Range and
discontiguous

Any elements in the collection that were previously selected are
deselected, and an anchor is set on the element or at the location where
the left mouse button was pressed. While the user continues to drag the
mouse, all elements between the anchor and the current location of the
pointer are selected. When the user releases the mouse button, the
current selection is set to all the elements between the anchor and the
location of the pointer when the mouse button was released.

<Shift>-click on an element or
<Shift>-drag through a range of
elements in a collection

Range or
discontiguous

The anchor is left in place, and the current selection is modified using
one of three models for extending a range described in Section 4.1.4 of
the OSF/Motif Style Guide. The preferred model is the balance beam
model, which is also the default for the IRIS IM text component.

<Ctrl>-click on an element in the
collection

Discontiguous The selection state of the element is toggled, and the anchor and
location cursor are moved to that element.

<Ctrl> drag through a range of data
in the collection

Discontiguous The selection state of the range of elements is toggled based on the
anchor toggle model described in the OSF/Motif Style Guide, section 4.1.5.
That is, you pick the element in the range that is closest to the anchor
and set all of the elements in the range to the inverse of the selection
state of this element.

142

Chapter 7: Focus, Selection, and Drag and Drop

When users select data in a component that can be scrolled, the component should
support automatic scrolling—that is, if the data being selected is in a scrollable
component and the user drags the pointer out of the data display region while still
holding down the mouse button, the data should scroll in the direction of the pointer and
should continue to be selected. Note that this behavior is automatically supported in the
IRIS IM list and text components.

The mouse and keyboard actions described above represent a subset of those defined in
the OSF/Motif Style Guide, which requires that all functionality be available from the
keyboard. The OSF/Motif Style Guide describes specific keyboard actions to select
individual elements, select a range of data, and modify the data selected. If you
determine that users will want to access any of this functionality in your application
using the keyboard, see Section 4.1.6 of the OSF/Motif Style Guide for details on
supporting keyboard selection. Note that keyboard selection is automatically supported
in IRIS IM list and text components.

Click outside of the selection (but
not on any element in a collection
that requires at least one element to
be selected at any given time)

All All elements are deselected.

When all of the data in a collection is
selected, click anywhere inside the
collection

Range and
discontiguous

All elements are deselected.

<Esc> while in the process of
making a selection in any collection
of data.

All The current selection action is cancelled, and all user input is ignored
until the user has released all keys and buttons. The selection state is
returned to its previous state.

<Ctrl>-</> when the collection has
keyboard focus

Range and
discontiguous

All elements in the collection are selected. The anchor is placed at the
beginning of the collection. The location cursor remains unchanged.

<Ctrl>-<\> when the collection has
keyboard focus

Range and
discontiguous

All elements in the collection are deselected. The location cursor
remains at its current position, and the anchor is moved to where the
location cursor is.

Table 7-1 (continued) Selection Actions and Results

Action Model Result

Selection

143

Highlighting a Selection

When the user initiates and continues to add to a selection, your application should
visually highlight the currently selected data. In addition, while the data in the collection
is being adjusted, the currently selected data should always be highlighted to show users
what would be selected if they were to release the mouse button immediately. Selections
should remain highlighted, even when the window containing that selection is no longer
the active window. The OSF/Motif Style Guide refers to this as persistent always
highlighting. This is the best type of selection highlighting to use when implicit focus is
used for moving the keyboard focus across windows (implicit focus is the default for
4Dwm, as explained in “Keyboard Focus Across Windows” in Chapter 3).

Use persistent always highlighting except when the only reason a user can make a
selection is to transfer that data using the primary transfer model and the user cannot
perform any other actions on this data. (The primary transfer model is discussed in
“Supporting the Primary Transfer Model” in Chapter 5.) For this type of data, your
application should use nonpersistent highlighting, which means that the selection is
highlighted only when it’s the primary selection. When this data is no longer the primary
selection, the currently selected data is no longer highlighted and the current selection is
set to empty.

Multiple Collections in One Application Window

This section describes some common ways that multiple collections of data might
interact in a single application window. There are three basic scenarios for using multiple
collections in the same window:

• The user can select data in only one collection at a time.

• The user can select data in more than one collection at a time, and any given mouse,
keyboard, or menu command applies to only one of the collections.

• The user can select data in more than one collection at a time, and some mouse,
keyboard, or menu commands can be applied to more than one of the collections.

If the user can select data in only one collection at a time, deselect the previous selection
whenever the user makes a new selection in any of the collections. If the user can select
data in more than one collection at a time, and any given mouse, keyboard, or menu
command applies to only one of the collections, don’t do anything special. Since each
action can be applied only to one collection, it’s obvious which collection to apply it to.
For mouse, keyboard, or menu commands that can be applied to more than one of the

144

Chapter 7: Focus, Selection, and Drag and Drop

collections, apply the operation to the collection that most recently had a selection made
in it. (See “Keyboard Focus and Navigation” earlier in this chapter.)

Selection Guidelines

For each collection of data . . .

❑ Use one of the four recommended selection models—single selection, browse
selection, range selection, or discontiguous selection. Don’t use the multiple
selection model.

❑ Automatically scroll the data as the user drags the pointer out of the scrollable data
display region.

❑ Determine if your users will need to create or modify a selection using the keyboard.
If so, then support the keyboard actions defined in Section 4.1.6 of the OSF/Motif Style
Guide. (These actions are automatically supported if you use the IRIS IM list or text
components.)

When highlighting a selection . . .

❑ Update the highlighting continuously as the user initiates and extends the selection.

❑ Use persistent always highlighting, unless the only reason a user can select this data
is to transfer it using the primary transfer model. In this case, use nonpersistent
highlighting.

When managing multiple collections of data in a single window . . .

❑ Deselect the previous selection whenever the user makes a new selection in any of
the collections for cases where the user can select data in only one collection at a time.

❑ Apply the operation to the collection that most recently had a selection made in it
when the user can select data in more than one collection at a time and there are
mouse, keyboard, or menu commands that can be applied to more than one of the
collections.

Drag and Drop

Direct manipulation, or drag and drop, describes an interface in which the user moves
icons on the desktop or in application windows in order to perform various actions on

Drag and Drop

145

the objects represented by the icons. Some typical uses for drag and drop include the
following:

• Moving an object from one place to another by dragging the object with the mouse
and dropping it on a target. For example, to move a file from one directory to
another, the user drags the icon representing the file and drops it on the folder icon
representing the new directory location.

• Making a reference to the object in the new location. For example, to add an online
book to the personal bookshelf in IRIS Insight, the user drags an icon representing
an online book from the main bookshelf to the personal bookshelf. This creates a
reference to that book on the personal bookshelf in addition to the reference on the
main bookshelf.

• Performing some operation on the item being dragged. For example, a user can
print a file by dragging the icon that represents the file onto a printer icon.

If the user presses <Esc> during a drag and drop operation, the operation should be
cancelled, and both the object and the target should be left as they were before the
operation was initiated.

This section covers the following topics:

• “Two Models of Drag and Drop”

• “Pointers for Drag Operations”

Two Models of Drag and Drop

Two models for drag and drop exist, one recommended for use with text, and the other
recommended for use with other objects.

Drag and Drop for Non-Text Objects

The most common model for drag and drop found in applications requires the user to
select and drag the object using the left mouse button. This is the preferred model for
implementing drag and drop of non-text objects; it reinforces the direct manipulation
model of controlling objects directly using the left mouse button. The two most common
scenarios for this are the following:

• The user initiates dragging the object by positioning the cursor over the object,
pressing with the left mouse button and dragging the mouse. Pressing the left
mouse button in this case selects the object. Dragging the mouse drags the object.

146

Chapter 7: Focus, Selection, and Drag and Drop

(Note that if the pointer is over two different elements that can be dragged, the
topmost element should be the one selected and dragged.) Releasing the mouse
button drops the object on the target below the pointer location.

• The user selects one or more objects in a collection using the left mouse button. The
user then positions the pointer anywhere over the selection, presses the left mouse
button, and drags the mouse to drag the object(s). As with the above scenario, when
the user releases the mouse button, the object is dropped on the target below the
pointer location. Note that in this case, if users positions the pointer outside of the
selection and begins dragging with the left mouse button, they’re indicating that
they want to make a new selection. See “Selection” earlier in this chapter.

For either of the above scenarios, after a drop the target should determine both the format
of the data and whether the user meant to perform a move or a copy operation. In some
cases, dropping the object might simply mean that the object should be moved to a new
location in the same component. In the case where the drop is in the same component,
after the drop the data should remain selected. For example, the user can move files
around in a Directory View window using drag and drop. In other cases, dragging an
object onto a target means that the object should be copied to the target so that the target
can perform some operation on it. For example, when the user drags a file onto a printer
icon, the file is translated into an appropriate format and sent to the printer.

To make drag and drop of file objects easy to include in your application, Indigo Magic
includes a file finder component, which provides a drop pocket (see Figure 7-3). If the
user drops a file icon in the drop pocket, the text field updates to show the pathname of
the file represented by the icon. If the user types in the field, the icon in the drop pocket
changes to show the new choice. For guidelines on when to use this type of control in
your application, see “File Finder” in Chapter 9.

Figure 7-3 File Finder Component

Drag and Drop for Text

Drag and drop can also be implemented using the middle mouse button. Use this model
of drag and drop for transferring text rather than the model described in the previous
section because the left mouse button is so heavily used for selection in text.

drop pocket text field

Drag and Drop

147

In this case, the user selects a region of text to be dragged using the selection techniques
described in “Selection,” earlier in this chapter. Then the user positions the pointer over
the selected text region and drags the text with the middle mouse button. When the user
releases the middle mouse button, the text is dropped on the target under the pointer. By
default, all text (including labels) can be dragged using the middle mouse button. You
may want to turn off drag and drop for some of the text in your application if users will
never need to drag it (for example, labels).

For additional details of implementing drag and drop of text, see Sections 4.3.4 and 6.2.5
in the OSF/Motif Style Guide.

Pointers for Drag Operations

When selecting and dragging are integrated into the left mouse button, use the standard
arrow cursor for simplicity. When drag and drop is implemented using the middle
mouse button (typically for dragging text), replace the standard pointer with a drag icon.
This reinforces to users that they’re using the middle mouse button to perform a drag
and drop operation. The design of drag icons is discussed in Section 6.2.5.1 of the
OSF/Motif Style Guide.

Drag and Drop Guidelines

When designing drag and drop for your application . . .

❑ Cancel a drag and drop operation if the user presses <Esc>, and leave both the object
and the target as they were before the operation was initiated.

❑ Use the left mouse button for both selecting and dragging non-text objects. Use the
standard cursor in this case.

❑ Use the middle mouse button for dragging text, and replace the cursor with a drag
icon when the text is being dragged.

149

Chapter 8

8. Menus

Menus allow users to browse through options, settings, and commands available in your
application. A well-organized set of menus shows users what your application can do
and makes it easy to locate particular functions. This chapter describes the kinds of
menus your application should use and how menus and menu items should be
organized, in these sections:

• “Types of Menus” defines the three types of menus that your application can use:
pull-down, popup, and option menus.

• “Menu Traversal and Activation” describes the default IRIS IM model for accessing
menus with the mouse and the keyboard, with two additions that your application
should support.

• “The Menu Bar and Pull-Down Menus” discusses how to design pull-down menus
(which include cascading, or nested, menus).

• “Popup Menus” discusses how to design popup menus.

Option menus are discussed only briefly in this chapter; they’re covered in detail in
“Option Buttons” in Chapter 9.

Types of Menus

Indigo Magic supports three types of menus, all of which are defined in the OSF/Motif
Style Guide: pull-down menus, popup menus, and option menus. This section discusses
these menu types:

• “Pull Down Menus”

• “Popup Menus”

• “Option Menus”

150

Chapter 8: Menus

Pull Down Menus

Of the three types, pull-down menus are the most frequently used. Most applications
have a menu bar, which is a collection of pull-down menus. Figure 8-1 shows a typical
menu bar.

Figure 8-1 Menu Bar

Each pull-down menu is represented in the menu bar by its title. A user can display a
menu by pressing the left mouse button on the menu title. Figure 8-2 shows a typical
pull-down menu.

Figure 8-2 Pull-Down Menu

Pull-down menus can include submenus, or cascading menus. A menu entry for a
cascading menu is indicated by an arrowhead next to the entry, as shown in Figure 8-3.
Pull-down menus are discussed in detail in “The Menu Bar and Pull-Down Menus” later
in this chapter.

Types of Menus

151

Figure 8-3 Cascading
Menu

Popup Menus

Unlike pull-down menus, popup menus are not represented by a title on the screen. A
user displays a popup menu by pressing the right mouse button. The contents of the
popup menu depend on where the mouse pointer is located when the button is pushed.
Figure 8-4 shows a popup menu. Popup menus are discussed in detail in “Popup
Menus” later in this chapter.

Figure 8-4 Popup Menu

Option Menus

Option menus allow the user to select a single option from a list of options. An option
menu appears as a button marked with a horizontal bar, as shown in Figure 8-5.

Cascading menuEntry for cascading menu

152

Chapter 8: Menus

Figure 8-5 Option Menu Button

The option button is labelled with the currently selected option. When a user presses the
left mouse button over the option button, the option menu is displayed, as shown in
Figure 8-6. If the user selects a different option from this menu, the label on the button
updates to reflect this new value.

Figure 8-6 An Open Option Menu

Entries in an option menu represent mutually exclusive values of a parameter. They
shouldn’t be used for actions. Guidelines for using option buttons and option menus are
discussed in “Option Buttons” in Chapter 9.

Menu Traversal and Activation

Pull-down, popup, and option menus should use the default IRIS IM model for menu
traversal and activation, with two additions. This model is defined in the OSF/Motif Style
Guide, Chapter 3, and summarized below. The two additional guidelines are also
described in the following paragraphs.

Pull-down menus use mnemonics and keyboard accelerators for traversal and
activation; these techniques are described in the next section, “The Menu Bar and
Pull-Down Menus.”

Menu Traversal and Activation

153

With the default model, users can use either the mouse or the keyboard to display,
traverse, activate, and close menus. This section describes:

• “Using the Mouse to Manipulate Menus”

• “Using the Keyboard to Manipulate Menus”

Using the Mouse to Manipulate Menus

With the mouse, users have the additional choice of manipulating menus in either a
spring-loaded or a posted manner.

Spring-Loaded Manner

To display a pull-down or option menu in a spring-loaded manner, the user positions the
pointer over the menu and presses the left mouse button. To display a popup menu in a
spring-loaded manner, the user positions the pointer in an area of the window that has a
popup menu associated with it and presses the right mouse button. The user traverses
any of these menus by moving the pointer over the menu entries while continuing to
hold the mouse button.

If the pointer is over a menu entry when the user releases the mouse button, that entry is
activated and the menu is removed.

Posted Manner

To display a menu in a posted manner, the user positions the mouse pointer over the
menu or over the appropriate area of the window and clicks the appropriate mouse
button (left for pull-down and option menus, right for popup). The menu is then
displayed with the location cursor on the first available menu entry (that is, the first
non-disabled entry). To activate one of the menu entries, the user positions the pointer
over the appropriate entry and clicks the left mouse button.

To remove the menu, the user clicks the left mouse button anywhere outside the menu.
For popup menus, the user can click either the left or right mouse buttons to select an
entry or remove the menu.

154

Chapter 8: Menus

Mouse Click

In addition to supporting this default model for manipulating spring-loaded and posted
menus with the mouse, make sure your application handles the mouse click that closes
a posted menu as follows: Even though this click is passed on to the underlying
application window, your application should ignore this click so that users don’t lose
selections they’ve made in the window just because they display and close menus.

Using the Keyboard to Manipulate Menus

By default, in IRIS IM, users can also display, traverse, activate, and close menus using
the keyboard:

1. To display pull-down menus, users first press <F10> to move the keyboard focus to
the leftmost menu in the menu bar and then press the down arrow key. To display
an option menu, users first move keyboard focus to the option menu button and
then press the space bar.

2. Once a menu is displayed, the user can use the up arrow and down arrow keys to
traverse a menu. Similarly, the user can use the left arrow and right arrow keys to
move from menu to menu across the menu bar.

3. Once a menu is displayed, pressing <Enter> or the space bar activates the item
under the location cursor, closes the menu, and returns the keyboard focus to where
it was before the menu was displayed.

4. Pressing <Esc> while a menu is displayed closes the menu and returns the keyboard
focus to where it was before the menu was displayed. Pull-down menus can also be
closed by pressing <F10>.

In addition to supporting this default model for manipulating menus with the keyboard,
your application should allow <Shift><F10> to display a popup menu if one is available
and move the keyboard focus to the first available entry in the menu. Pressing
<Shift><F10> again should close the popup menu and return the keyboard focus to
where it was before <Shift><F10> was pressed originally. This behavior is recommended
in the OSF/Motif Style Guide (where <Shift><F10> is described as the substitute for the
<Menu> key), but it isn’t supported by default in IRIS IM.

The Menu Bar and Pull-Down Menus

155

Menu Traversal and Activation Guidelines

In general, when designing traversal and activation for your menus . . .

❑ Allow users to activate and traverse the menus using the default IRIS IM behaviors
for mouse and keyboard actions.

❑ If a user closes a menu by clicking somewhere outside of the menu, make sure the
application ignores this click so that users don’t lose selections they’ve made in the
window just because they display and close menus.

❑ Allow users to display and close popup menus using the key combination
<Shift><F10>. When <Shift><F10> displays a popup menu, the location cursor
should be on the first available menu entry. When <Shift><F10> closes the menu, the
keyboard focus should be returned to where it was before the menu was displayed.

The Menu Bar and Pull-Down Menus

In most cases, each of an application’s primary windows has a menu bar as described in
“Menu Bars in Primary Windows” in Chapter 6. Users should be able to access most of
an application’s functions through its menu bars. This makes it easy for users to see what
functions are available to them. This section describes the menu bar and pull-down
menus:

• “Standard Menus”

• “What to Put in the Pull-Down Menus”

• “Choosing Mnemonics”

• “Choosing Keyboard Accelerators”

• “Disabling Menu Entries”

• “Dynamic Menu Entries”

Each menu bar contains several pull-down menus. Each pull-down menu is represented
in the menu bar by its title and contains entries that are either an action, a label for a
cascading menu, or a separator, as shown in Figure 8-7. Also as shown, the cascading
menus contain additional actions. See “What to Put in the Pull-Down Menus” for more
information about the content of pull-down menus.

156

Chapter 8: Menus

Figure 8-7 Elements of a Pull-Down Menu

Users interact with pull-down menus according to the model described in the previous
section, “Menu Traversal and Activation.” In addition, users can access menu entries
using mnemonics, which are the underlined characters in the menu titles and on menu
entries (see Figure 8-7).

To access a menu using a mnemonic, a user moves the pointer into the application
window, then holds down the <Alt> key while pressing the character key that matches
the underlined character in the menu title. For example, to display the Catapult menu
shown in Figure 8-7, the user holds down the <Alt> key and presses the “c” key. Then,
to select a projectile from the Projectiles cascading menu, the user presses the “p” key to
display the Projectiles cascading menu, and then presses “p” again to select “Piano.”
Note that mnemonics are always activated without the <Shift> key, even if the
underlined character happens to be uppercase. Choosing appropriate mnemonics is
discussed in more detail in “Choosing Mnemonics” later in this
chapter.

Menu entries that represent frequently used actions can have keyboard accelerators, as
shown in Figure 8-7. These keyboard accelerators are displayed in the menu next to the
action and are typically a combination of the <Ctrl> key and one other key. To initiate a
menu action using a keyboard accelerator, a user moves the pointer over the window to
make it the active window and then presses the key combination shown in the menu
entry. For example, instead of selecting “Fire catapult” from the Catapult menu in
Figure 8-7, a user could fire the catapult by holding down the <Ctrl> key and pressing
the “f” key. When to use keyboard accelerators and how to choose ones which are
appropriate are discussed in more detail in the “Choosing Keyboard Accelerators”
section later in this chapter.

Underlined mnemonic

Menu entry

Menu title

Keyboard accelerator

Separator

Cascading menu

Ellipsis

The Menu Bar and Pull-Down Menus

157

A menu entry that’s followed by an ellipsis (such as the “Select target...” entry shown in
Figure 8-7) brings up a dialog that requests more information from the user before any
action is performed. When to use an ellipsis in a menu entry is discussed in more detail
later in this chapter in “Naming Menu Entries in the Pull-Down Menus.” Menu entries
that aren’t currently available are disabled. This is usually shown by graying out the
menu entry, as discussed in “Disabling Menu Entries.”

When designing the menu bar and its pull-down menus for your application, start with
the standard menus described in the next section, “Standard Menus.” Then, modify these
standard menus to fit your specific application, using the guidelines in the section “What
to Put in the Pull-Down Menus.”

Standard Menus

Your application needs its own customized set of menus and menu entries; however, use
the standard set as the starting point for the overall menu structure. Standard menus
include:

• “File Menu”

• “Selected Menu”

• “Edit Menu”

• “View Menu”

• “Tools menu”

• “Options menu”

• “Help menu”

All of the menu entries discussed in this chapter are optional; many of them are
appropriate for most applications (but there are always exceptions), and some entries are
generally less common than others. For example, “Print” is a fairly common entry for the
“File” menu, but printing doesn’t generally make sense for audio applications. “Import”
is another entry for the “File” menu, but it’s less common than “Print.” Figure 8-8 shows
a menu bar with all of the standard menus (in the correct order) and their mnemonics.
This menu bar includes all of the menus defined in the MenuBar reference page of
Chapter 9 in the OSF/Motif Style Guide, plus an additional menu, Tools, which is defined
in the Indigo Magic environment. The standard menus are described in the following
sections.

158

Chapter 8: Menus

Figure 8-8 Standard Menus for Menu Bars

Note that for each of the standard menu entries described in the following sections,
mnemonics are represented by the underlined character in the entry label. This label also
includes an ellipsis if the entry should include them. The entries are listed in the order in
which they should appear in menus, and entries that are likely to be less common are
indicated. Keyboard accelerators, if they exist, are listed in the description of the specific
menu entry (Table 8-3 lists standard keyboard accelerators). Appropriate places for
separators are shown in the figures depicting the standard menus. Situations where a
menu entry should be disabled are included in the description of the menu entry if
applicable. Also, the keyboard shortcuts are shown as they should be displayed in the
menus (for example, <Ctrl>-s is shown as “Ctrl+S”).

File Menu

The File menu contains entries for actions that are performed on files, such as “Open,”
“Save,” and “Print,” and on the application as a whole, such as “Exit.” Figure 8-9 shows
the standard File menu with the most common entries; note that its mnemonic is “F.”
These standard entries, as well as a few other less common ones (“Reopen,” “Import,”
and “Revert”), are described in Table 8-1 in the order in which they should appear in the
menu. All of these entries should behave as defined by the File Menu reference page in
the OSF/Motif Style Guide, Chapter 9, except as noted in the table. Note that “New,”
“Open,” “Close,” and “Exit” should display a dialog as described in “Invoking Dialogs”
in Chapter 10 if there are unsaved changes to the current document.

The Menu Bar and Pull-Down Menus

159

Figure 8-9 The Standard File Menu

Table 8-1 lists each File menu entry, its mnemonic, OSF/Motif behavior, Indigo Magic
additions and exceptions, and keyboard accellator.

Table 8-1 File Menu Entries

Menu Entry
and Mnemonic

OSF/Motif Behavior Indigo Magic Additions and Exceptions Keyboard
Accelerator

New Creates a new, empty
file.

If your application allows more than one document window to be open
at a time, it should create a new, empty document window; if the current
document window is already empty, the action should have no effect.
For more information on designing applications that support multiple
open documents, see “Standard Application Models” in Chapter 6. If
your application requires more information before creating a new
document (for example, the user must select a template), this action may
display a dialog to request the information. In this case, the entry label
should be followed by an ellipsis.

Ctrl+N

Open Brings up a dialog,
allowing the user to
choose an existing file to
open.

If your application allows more than one document window to be open
at a time, it should create a new document window to display the
specified file; however, if the current document window is already
empty, the file should be displayed in the current document window.
This new document window shouldn’t be a separate instantiation of the
application.

Ctrl+O

160

Chapter 8: Menus

Reopena Not defined. “Reopen” allows a user to return to a file that had been previously
opened by the application. Choosing “Reopen” should display a
cascading menu of previously opened files; you might choose to limit
the length of this list to a maximum of 10 entries. (You should disable
this entry if there are no previously opened files—for example, if this is
the first time the user has launched the application.) If there are unsaved
changes to the current file, your application should display a dialog that
asks the user whether to save or discard the changes (see “Invoking
Dialogs When Manipulating Files” in Chapter 10).

Importa Not defined. “Import” allows a user to read an existing data file into the current
application. This entry can display the Indigo Magic file selection dialog
(in which case it should be displayed with an ellipsis), and the
application should automatically determine the type of the file after it’s
selected. (See “Types and Modes of Dialogs” in Chapter 10 for details on
the Indigo Magic file selection dialog.) Alternatively, this entry can use
a cascading menu to display the types of data that your application
allows users to import. Each of these entries should be followed by an
ellipsis and display the file selection dialog to allow the user to specify
the specific file to import. Follow this entry with a separator.

Save Saves the current file. Although some applications disable this entry when there are no
changes to be saved, your application should never disable this entry (as
described in “Disabling Menu Entries”).

Ctrl+S

Save As... Brings up a dialog and
saves the current file
with a new name. Also
closes the previous file
and opens the new one.

If the current document already has a filename, that filename should be
the default value in the file selection dialog.

Reverta Not defined. “Revert” allows a user to undo all changes made to the current file since
the last time the user saved it. (This entry should be disabled if there are
no unsaved changes.) Your application should display a warning dialog
before executing this action, as described in “Invoking Dialogs When
Manipulating Files” in Chapter 10.

Print Prints the current file. If choosing “Print” brings up a dialog to allow the user to select from a
list of all available printers, it should be followed by an ellipsis. If the
keyboard accelerator is used to activate this entry, the print job should
be sent to the default printer.

Ctrl+P

Table 8-1 (continued) File Menu Entries

Menu Entry
and Mnemonic

OSF/Motif Behavior Indigo Magic Additions and Exceptions Keyboard
Accelerator

The Menu Bar and Pull-Down Menus

161

Selected Menu

The Selected menu contains application-specific actions that are performed on the
currently selected objects. For example, Directory View windows on the Indigo Magic
Desktop display icons representing files. Each Directory View window has a Selected
menu that allows users to perform actions on the selected files, such as “Open,” “Print,”
and “Remove.” (Note that since actions in the Selected menu act on the selected data
while actions in the File menu act on the entire file of data, the same entry—“Print,” for
example—can mean something different in the two menus.) The Selected menu should
not contain editing actions such as “Cut” since these should be in the Edit menu. Use “S”
as the mnemonic for the Selected menu.

Edit Menu

The Edit menu contains actions that transfer data to or from the clipboard, actions that
modify the current selection, and “Undo.” It contains actions for both the clipboard data
exchange model (“Cut,” “Copy,” and “Paste”) and for the primary data exchange model
(“Promote”). Both of these data exchange models are described in Chapter 5, “Data
Exchange on the Indigo Magic Desktop.” Figure 8-10 shows the most common entries in
the standard Edit menu; use “E” as its mnemonic.

a. These entries are probably less common than the others.

Close Closes a window and its
associated support
windows and dialogs,
without quitting the
current application.

“Close” should be provided on co-primary windows and on support
windows if they have menu bars. It shouldn’t be provided on the main
primary window. (See “Window Types” in Chapter 6 for definitions of
these window types and “Window Decorations and the Window Menu”
in Chapter 3 for details on the “Close” entry.) Applications that follow
the “Multiple Document, No Visible Main” model should exit the
application when the last co-primary window is closed. (See ““Multiple
Document, No Visible Main” Application Model” in Chapter 6.)

Ctrl+W

Exit Closes all windows for
the application and
quits the application.

“Exit” should always be provided in the main primary window. If users
are likely to want to exit your application from a specific co-primary
window in the application, that window should include an “Exit” entry
in the leftmost menu, in addition to a “Close” entry. (See “Window
Decorations and the Window Menu” in Chapter 3 for details on when to
use “Exit” and “Close.”)

Ctrl+Q

Table 8-1 (continued) File Menu Entries

Menu Entry
and Mnemonic

OSF/Motif Behavior Indigo Magic Additions and Exceptions Keyboard
Accelerator

162

Chapter 8: Menus

Figure 8-10 The Standard Edit Menu

These standard entries, as well as a few other less common ones (“Clear,” “Promote,” and
“Color Editor”), are described in Table 8-2 in the order in which they should appear in
the menu. Make sure that all of these entries behave as defined in the Edit Menu reference
page in Chapter 9 of the OSF/Motif Style Guide, except as noted in the table.

The name of the action to be undone
(for instance, "Cut")

The Menu Bar and Pull-Down Menus

163

Table 8-2 Standard Edit Menu Entries

Menu Entry and
Mnemonic

OSF/Motif Behavior Indigo Magic Additions and Exceptions Keyboard
Accelerator

Undo [action] Reverses the effect of a previous action.
The “Undo” action may apply to
actions that the user accomplishes
without using the menus—typing text,
for example.

At a minimum, your application should be able to undo
all of the actions in the Edit menu. If an undo action will
change the data significantly and can’t be undone, you
should display a warning dialog explaining that the
change can’t be undone and ask for confirmation. See
“Types and Modes of Dialogs” in Chapter 10 for
information on warning dialogs. The “Undo” entry
should be disabled if the last change cannot be undone
or if there are no changes.

If your application has only a single-level undo (that is,
it can undo only the most recent action), after the user
selects “Undo,” the “Undo” entry should be changed to
“Redo [action].” If the user selects “Redo” the
application should reverse the effects of the previous
“Undo,” and toggle the menu entry back to “Undo
[action].” If your application has multiple-level undo
(that is, it can undo a series of actions), you should
provide a separate “Redo” menu entry. Typically,
applications don’t allow users to undo beyond the saved
version of the file; if your application does, you should
display a warning dialog.

Ctrl+Z

Redo [action] Not defined. “Redo” reverses the effect of a previous “Undo” action.
It is useful to have a separate “Redo” entry if your
application has multiple-level undo. Like “Undo,” the
“Redo” entry should indicate the action that will be
redone (for example, “Redo Cut,” “Redo Paste”). If you
provide a “Redo” command, place it after the Undo
entry and follow it with a separator.

Shift+Ctrl
+Z

Cut Removes the selected data from the
application window to the clipboard.

The “Cut” entry should be disabled if there’s nothing
currently selected in the window.

Ctrl+X

Copy Copies the selected data to the
clipboard without removing it from
the application window.

The “Copy” entry should be disabled if there’s nothing
currently selected in the window.

Ctrl+C

164

Chapter 8: Menus

View Menu

The View menu contains entries for application-specific actions that change the user’s
view of the current data but that don’t change the actual data.

a. These entries are probably less common than the others.

Paste Copies the contents of the clipboard
into the application window.

If there’s nothing currently on the clipboard available to
be pasted, display a dialog saying there’s nothing
available. See “Invoking Dialogs” in Chapter 10.

Ctrl+V

Delete Removes the selected data from the
application window.

The “Delete” entry should be disabled if there’s nothing
currently selected in the window.

Select All Selects all of the elements in a
component of the application window.

The mnemonic for “Select All” is “A.” Ctrl+A

Deselect All Deselects all of the elements in a
component of the application window.

The “Deselect All” entry should be disabled if there’s
nothing currently selected in the window. The
mnemonic for “Deselect All” is “l.”

Shift+Ctrl
+A

Cleara Same as “Delete,” except that the
remaining data isn’t reorganized to fill
in the space left by the cleared data.

If you provide a “Clear” command, place it before the
“Delete” entry. The “Clear” entry should be disabled if
there’s nothing currently selected in the window.

Promotea Promotes the current selection to the
primary selection.

“Promote” should be included if it can be difficult or
time-consuming to recreate a selection in your
application, and if your application supports the
primary transfer model described in “Supporting the
Primary Transfer Model” in Chapter 5. Disable this
entry when there’s no current selection or when the
current selection is already the primary selection; it
should be enabled only when the application window
has a selection that isn’t currently the primary selection.
See “Selection” in Chapter 7 for information on
selections. The mnemonic for “Promote” is “m.”

Alt+ Insert

Color Editor...a Not defined. Choosing “Color Editor” invokes the Indigo Magic color
chooser, which allows the user to select colors. (See “A
Specific Standard Support Window: The Indigo Magic
Color Chooser” in Chapter 6.)

Table 8-2 (continued) Standard Edit Menu Entries

Menu Entry and
Mnemonic

OSF/Motif Behavior Indigo Magic Additions and Exceptions Keyboard
Accelerator

The Menu Bar and Pull-Down Menus

165

For example, if your application window has several panes of information, the View
menu could provide the user with a way to turn each individual pane on or off. Group
together the entries representing the individual panes, and provide a checkbox in front
of each one indicating whether the pane is currently being displayed or not. (See
“Splitting Primary Windows Into Panes” in Chapter 6 for information on multiple-pane
windows. You can find more information on menu checkboxes in “Using Radio Buttons
and Checkboxes in Pull-Down Menus.”)

Other entries in the View menu can adjust the scale of the view (zoom in and zoom out),
display support elements (such as rulers and grid lines), and hide or display certain parts
of the data. Use “V” as the mnemonic for the View menu.

Tools menu

The Tools menu contains application-specific entries that allow the user to open support
windows for manipulating the data in the parent primary window. For example, a
desktop publishing package might have separate support windows that provide special
controls for editing graphics, tables, and mathematical equations; access to these support
windows would be placed in the Tools menu. See “Support Windows” in Chapter 6 for
a discussion of support windows. Use “T” as the mnemonic for the Tools menu.

Options menu

The Options menu contains application-specific entries that allow the user to customize
the application. For example, a multi-window application might have entries in the
Options menu to allow the user to set preferences such as which windows should come
up by default when the application is started, and whether window sizes and positions
should be saved between sessions. Use “O” as the mnemonic for the Options menu.

Help menu

The Help menu contains entries for actions that provide several different kinds of help
information to the user. All application windows that have a menu bar should contain a
Help menu. Its mnemonic is “H.” The standard entries for the Help menu are discussed
in “Providing Help through a Help Menu” in Chapter 4.

166

Chapter 8: Menus

What to Put in the Pull-Down Menus

Make sure your application’s pull-down menus include the standard menu entries that
are relevant to your application, plus the application-specific entries you need to
represent your application’s core functionality. The previous section, “Standard Menus,”
describes when and how to use the standard entries; this section presents guidelines for
application-specific modifications and additions to the standard menus.

As you decide which standard entries to include in your application, consider each of
these entries on a case-by-case basis. For example, you almost certainly need an “Exit”
entry, but it’s possible that none of the other standard File menu entries make sense for
your application, including the “File” menu title itself.

Users often learn the functionality of a new application by scanning the menus to see
what actions are available and by browsing the online help. Also, when users want to
perform some action, they usually look first for that action in the pull-down menus.
Thus, make all simple, frequent actions accessible from the pull-down menus.

Be sure to include actions for performing basic operations (such as “Cut,” “Paste,” or
“Save”), for setting the value of an attribute (for example, make selected text bold, or turn
grid lines on or off), for online help, and for “Undo” (particularly if users can perform
actions that destroy or significantly change their data). If this important functionality is
hidden in a dialog, users won’t easily discover it. (See Chapter 10, “Dialogs” for details
on when to use dialogs.) Also, don’t include more than 10-12 entries in a menu or users
will have trouble scanning it; make sure that all of your entries fit on the screen at one
time because Motif doesn’t support scrolling menus.

Actions that are accomplished using buttons in primary windows should be repeated in
the pull-down menus because they’re probably the most frequently accessed actions.
Including them in the menus gives users one place to look for all actions and allows you
to assign keyboard accelerators and mnemonics that are clearly shown in the menu
entries.

Provide users with the option of using the keyboard for frequently used actions rather
than restricting them to pointing-and-clicking on buttons. In addition, all simple actions
should have an associated menu command even if there’s a direct manipulation method
or mouse double-click shortcut available for accomplishing the task. Providing menu
commands avoids hidden functionality, and helps those users who have difficulty
performing double-clicks.

The Menu Bar and Pull-Down Menus

167

If you think that your users need constant access to a group of actions, make these actions
available in your application’s support window. As a second choice, you can use a
tear-off menu as described in the OSF/Motif Style Guide, section 6.2.3. Support windows
are designed to include groups of controls that the user might want to use continuously.
Support windows allow for a more flexible layout of controls than tear-off menus do, and
support windows can contain all kinds of components, such as labels and text input
fields, not just push buttons. (See “Support Windows” in Chapter 6 for information on
designing support windows.) Make sure that users can access such support windows as
well as co-primary windows from the menu bar of their parent window. Make sure that
these windows have an appropriate titlebar.

Naming Menus in the Menu Bar

Use one-word (capitalized) titles in all menus in the menu bar since users may interpret
a second word as a separate menu title. Use entire words for menu titles rather than
abbreviations. Don’t use bitmaps as menu titles. Use the standard titles for menus (for
example, File and Edit) if they’re applicable to your application, but don’t use a standard
title if you’re changing the standard definition. (See “Standard Menus” for standard
menu titles and their definitions.)

The leftmost menu contains actions that operate on a logical unit of data for the
application; it’s generally titled “File” because most applications read and write data
files. However, if your application doesn’t manipulate data files, the leftmost menu
should reflect the unit of data that the user expects to operate on. For example, the Search
tool’s leftmost menu is called Page because the application doesn’t manipulate data files,
but it does offer several different pages that define search categories.

If your application does read and write data files but the word “File” might be confusing
to users, choose a more appropriate title for the leftmost menu. For example, in
MediaMail, a group of documents (mail messages) are stored in a single file referred to
as a mail folder. The leftmost menu in the main window is named “Folder” to make it
clear that it contains actions that apply to the entire folder of messages rather than to
individual messages. If the menu were named “File,” it might not be clear whether the
“Open” entry opened a message or a mail folder. Similarly, you can change the names of
other standard menus to make them more meaningful. The second menu in the main
window of MediaMail is named “Message” because all operations in that menu are
performed on the selected messages. This menu could have been called the Selected
menu, but “Message” makes it clear what the menu entries act on.

168

Chapter 8: Menus

Naming Menu Entries in the Pull-Down Menus

As with menu names in the menu bar, use the standard names for menu entries within
pull-down menus if they’re applicable to your application; don’t use a standard name if
you’re changing the standard definition. (See “Standard Menus.”) Menu entries should
be capitalized using the same rules for capitalizing book titles: capitalize the first word
and other non-articles, but don’t capitalize articles unless they’re the first word.
Generally, a menu entry should be one of the following:

• A verb—such as “Cut,” “Copy,” or “Delete.”

• A value for a parameter, when the action is to set the parameter to that specific
value. For instance, IRIS Showcase has a “Grids” cascading menu with entries
corresponding to grid sizes such as “1/8 inch” and “1/4 inch.”

• An attribute name, when the action is to assign some entity that attribute—such as
whether shapes are drawn filled or unfilled.

• A window name, if the menu entry brings up a co-primary, support, or dialog
window. For example, a Directory View window has a menu entry for setting
permissions. This entry brings up a dialog named “Permissions,” so the menu entry
is also named “Permissions,” rather than “Set Permissions.”

• The name of a cascading menu (see “Using Cascading Menus” later in this chapter).

If none of these categories applies, choose a one- or two-word phrase that indicates
clearly what action will be taken. Include the name of the object that will be acted on if
it’s needed for clarity. For example, “New,” generally indicates that a new data file will
be created. If your application doesn’t create data files, the menu entry for creating a new
entity should be “New object” such as “New Folder” (Directory View windows) or “New
Page” (Icon Catalog). Don’t use abbreviations in menu entries.

You can use graphic labels for menus entries, but keep in mind that graphic labels are
often unclear. They work best when used along with a text label, and typically there’s not
enough room for both graphic and text labels in a menu entry. For those cases where
graphics are better descriptions than text (for example, when showing bitmaps or
textures), you should probably include these options in a tool palette either as individual
buttons or as entries in an option menu. See “Pushbuttons” and “Option Buttons” in
Chapter 9 for more information about these alternatives.

If the entry is something that toggles its state, use one of the following alternatives:

• Toggle the menu entry name to indicate the action that will be taken if the user
selects this entry. For example, a menu entry “Show Grid” indicates that the grid

The Menu Bar and Pull-Down Menus

169

isn’t currently shown and that choosing this item will display it. If the user chooses
this item, the grid is displayed and the entry should toggle to “Hide Grid.”

• Choose a menu entry name that clearly indicates what action will be taken, place a
checkbox indicator next to the menu entry, and use the checkbox to indicate
whether or not the action has been taken. For example, the menu entry “Italics”
with a checkmark next to it indicates that the current font is an Italic one; the same
entry with no checkmark indicates that the current font isn’t Italic. (For more details
on the use of checkboxes in menus, see “Using Radio Buttons and Checkboxes in
Pull-Down Menus” later in this chapter.)

• If the entry belongs to a group of related entries, all of which toggle their states,
place checkbox indicators next to each of them. The entry names should be nouns or
attributes that clearly imply their actions (and these names should remain constant
rather than toggling). And separate the entire group from other menu items by
separator lines. (See “Using Radio Buttons and Checkboxes in Pull-Down
Menus.”)

A menu entry should be followed by an ellipsis if it brings up a dialog for the purpose of
requesting more information from the user before performing the action. The ellipsis
does not simply mean that the menu entry displays a dialog. For example, the “Save
As...” menu entry brings up a dialog that asks the user to enter additional necessary
information before the action can be performed. “Help,” on the other hand, brings up a
dialog that contains the information that the user requested.

Ordering Menus and Menu Entries in the Pull-Down Menus

Use the order described in “Standard Menus” for standard menus in the menu bar and
their entries. If you need to create additional menus for your application, place them
between the View and Tools menus. If you need to change the name of one of the
standard menus (as discussed earlier in “Naming Menus in the Menu Bar”), leave this
menu in the same order as if it had the standard name. For example, in MediaMail the
File menu is renamed Folder and the Selected menu is renamed Message, but Folder is
still the leftmost menu and Message is still next to the Folder menu.

Within menus, organize entries into logical groups. If one of your application-specific
menu entries is logically related to one of the standard menu entries, place it near that
standard entry. If this isn’t a good fit, create new menus that group the entries according
to function. For example, the Directory View window has an Arrange menu that contains
different options for arranging the file icons displayed in the window. Within the logical
groups, first place entries in the order in which they need to be used. For example, in the
Edit menu, “Copy” is before “Paste” because the user must do a “Copy” operation before

170

Chapter 8: Menus

doing a “Paste.” Secondarily, order them by frequency of use, placing the more
frequently used entries closer to the top of the menu. In any case, be sure that when you
use “Close” and “Exit,” they’re always at the end of the leftmost menu, whether or not
this menu is named File.

When creating logical groups of entries, use separators to define the groups, but avoid
overusing separators because they can make it difficult to scan the entries. Two situations
where separators are especially useful are:

• Groups where only one of the entries can be selected at any one time

• Groups whose entries represent multiple attributes that can be applied to a single
object

As described later in “Using Radio Buttons and Checkboxes in Pull-Down Menus,” also
use radio buttons in the first case and checkboxes in the second.

If the menu contains entries that can be determined only when the user launches the
application (for example, a menu listing plug-in modules), alphabetize the entries. If this
alphabetized group appears in a menu that contains other entries, place the group at the
end of a menu and use a separator between it and the preceding
entries.

Using Cascading Menus

As you’re organizing your menus, you can use cascading menus, but don’t use more than
a single level. If you think you need more than one level of cascading menus, try adding
a new menu instead, especially if you have numerous items in the cascading menus. If
you have only a few items, consider creating groups of items by using separators, rather
than putting them in separate cascading menus.

In general, try to limit your use of cascading menus since users tend to scan only the
top-level menus when they’re looking for a specific function or trying to learn the
functionality of the application. When naming a cascading menu, use a name that
suggests what it contains so that users know what functions they’re likely to find. For
example, in an early version of IRIS Showcase, the grid was under a cascading menu
named “Editing Options” in the Edit menu, and users often weren’t able to find it. Now,
the different grid sizes are under a cascading menu named “Grids” in the View
menu.

The Menu Bar and Pull-Down Menus

171

Using Radio Buttons and Checkboxes in Pull-Down Menus

If a user can select only one of a group of menu items at any one time, provide a radio
button next to each item in the group, and allow only one radio button to be active at any
given time. For example, the radio buttons in allow the user to choose exactly one type
of tea at a time, because if you ordered two cups of tea at a time the second one would
get cold before you could drink it. Use separator lines to separate a set of radio buttons
from other entries in the menu.

Figure 8-11 Radio buttons

If a user can select several of a group of related menu items at any one time, provide a
checkbox next to each item in the group, and show the active entries with checkmarks.
These items typically represent attributes of an object, more than one of which can be
applied to the object. For example, the checkboxes in allow the user to select milk or
sugar, or both, or neither. Use separator lines to separate a set of checkboxes from other
entries in the menu.

Figure 8-12 Checkboxes

Choosing Mnemonics

You need to choose single-character mnemonics for any menus or menu entries you
create. Each of the menus in the menu bar should have a unique mnemonic, as should
each of the entries within any specific menu. Use the standard mnemonics for standard
menu titles and entries, as described earlier in “Standard Menus.” You can use a standard
mnemonic for a different entry if you’re not using that standard entry.

172

Chapter 8: Menus

If possible, use the first character in the label for the mnemonic. If two menu titles—or
two entries in the same menu—have the same first character, use the first character for
the mnemonic of the menu title or entry that will be used most frequently. For example,
“Save” is used more frequently than “Save As...”, so “Save” has the mnemonic “S” and
“Save As...” has the mnemonic “A.”

When the first character can’t be used as the mnemonic, try to pick a consonant in the
name that’s strongly associated with the word (such as “x” for Maximize in the Window
menu). If no such consonant exists, choose the first available vowel (such as “a” for Raise
in the Window menu). Note that the mnemonic chosen can be an uppercase or lowercase
character in the label, but it must be case insensitive for activation (that is, users don’t
need to hold down the <Shift> key).

Choosing Keyboard Accelerators

Use the keyboard accelerators for the standard menu entries as described in “Standard
Menus”; don’t use any of the standard accelerators for application-specific entries, even
if you’re not using those standard entries. For menu entries you create, provide keyboard
accelerators only for the most commonly used actions, not for every menu entry in every
pull-down menu.

In most cases, use the <Ctrl> key and a character for a keyboard accelerator. To avoid
conflicts with mnemonics, don’t use the <Alt> key rather than <Ctrl>. To make
accelerators easier to remember, choose a character that’s associated with the menu entry.
For example, the standard keyboard accelerators include <Ctrl-c> for “Copy” and
<Ctrl-s> for “Save,” and the Directory View window uses <Ctrl-i> for “Get Info.”
Table 8-3 lists the standard keyboard accelerators.

Table 8-3 Keyboard Accelerators

Menu Entry and Mnemonic Keyboard Accelerator

New Ctrl+N

Open Ctrl+O

Save Ctrl+S

Print Ctrl+P

Get Info Ctrl+I

The Menu Bar and Pull-Down Menus

173

If a pair of menu entries that both require keyboard accelerators, and one entry reverses
the results of the other, their keyboard accelerators should be related. Choose a character
that’s associated with the more frequently used entry (so that its accelerator is
<Ctrl-character>), and add <Shift> to create the other accelerator (so that its accelerator is
<Shift-Ctrl-character>, where character is the same for both accelerators). For example, the
keyboard accelerator for Undo is <Ctrl-z>, and the keyboard accelerator for Redo is
<Shift-Ctrl-z>. In general, avoid using multiple modifier keys such as
<Shift-Ctrl-character>, except for this situation.

Note that any keyboard accelerator that involves a lowercase character should be shown
in the menu as “Ctrl+uppercase_character” (for example, <Ctrl-s> should be displayed as
“Ctrl+S”). This is because uppercase characters are easier to read in the menus. If the
accelerator involves an uppercase character, display it as
“Shift+Ctrl+uppercase_character” (for example, <Ctrl-S> should be displayed as
“Shift+Ctrl+S”).

Close Ctrl+W

Exit Ctrl+Q

Undo [action] Ctrl+Z

Redo [action] Shift+Ctrl+Z

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Select All Ctrl+A

Deselect All Shift+Ctrl+A

Promote Alt+Insert

Click for Help Shift+F1

Table 8-3 (continued) Keyboard Accelerators

Menu Entry and Mnemonic Keyboard Accelerator

174

Chapter 8: Menus

Disabling Menu Entries

As discussed in “Standard Menus,” disable menu entries that aren’t currently available
(they become grayed out). See the next section, “Dynamic Menu Entries,” for discussion
of the rare cases in which menu entries can be removed from the menu when they’re
unavailable.

In general, disabling entries when selecting them would give the user an error message.
For example, if a menu entry works on a selection (such as “Cut” and “Copy”), disable
it if there’s no current selection. If selecting the menu entry would result in no action at
all (not even an error message), do not disable the menu entry. As an example, choosing
“Save” from the File menu saves the current document; if the document hasn’t been
edited, selecting “Save” has no real effect, but there’s no need to display an error
message, so never disable this menu entry.

Never disable menu entries that launch modeless dialogs. If the dialog isn’t applicable
when it’s launched, disable the OK and Apply buttons on the dialog rather than
disabling the menu entry that launches the dialog. Suppose the user launches the dialog
and the current context of the application is such that the dialog isn’t applicable. Because
the dialog is modeless, the user should be able to change the state of the application after
the dialog has been launched to put the application in a state where the dialog is now
applicable. In contrast, menu entries that launch modal dialogs should be disabled if the
dialog isn’t currently applicable because the user must dismiss the modal dialog before
changing the state of the application. So, if the modal dialog isn’t applicable when it’s
launched, the user has no way to change the state of the application to get it in a state
where the dialog would be applicable. See “Dialog Modes” in Chapter 10 for a discussion
of modal and modeless dialogs.

Don’t include always-disabled menu entries whose action isn’t available in the current
version of your application, so that users don’t waste time looking for a way to enable
the entry. For example, if your application doesn’t provide a tutorial, don’t include a
disabled menu entry for “Tutorial” in the Help menu. Instead, just leave this entry out of
the Help menu. If a feature requires certain hardware configurations, don’t disable its
menu entry; instead, have it display an information dialog stating why the feature isn’t
available.

Dynamic Menu Entries

Dynamic menu entries are strongly discouraged, especially when less than four such
entries exist. If you have only a few entries that aren’t always available, put them in the

The Menu Bar and Pull-Down Menus

175

menu and disable them when they aren’t available. You can use dynamic menu entries
in those rare cases when almost everything in a menu can change. For example, the
grelnotes program has a Chapter menu that has entries for each chapter in the current set
of release notes. When the user loads a new set of release notes, the entries in the Chapter
menu are changed to reflect the new chapter titles. Unless a more obvious ordering is
suggested by the content of the entries (for example, the order of chapters), alphabetize
the entries in a dynamic menu.

Dynamic menu entries are discouraged because they make it hard for users to learn what
entries are in each of the menus since they’re visible only when the application is in a
specific state. Users are likely to assume that certain functions aren’t available when they
don’t see menu entries for them as they’re scanning your application’s menus for the first
time. Users might not realize that they must first get the application in a particular state
before they can even see the action. Even when users work with your application for a
while, they may not look for certain actions in the menus because they think they’ve
already seen the full contents of the menus, which never included the action that they
now want. Also, users become accustomed to the spatial positions of items in menus—
for example, “Cut” is always the second item in the Edit menu—and will be frustrated if
these positions change.

Pull-Down Menu Guidelines

In general, when designing pull-down menus in a menu bar . . .

❑ Be sure that users can access most of your application’s functionality from the menu
entries. At a minimum, make sure that the core functionality can be accessed from
the menus.

❑ Don’t include more than a 10-12 entries in a menu and make sure that all of your
entries can fit on the screen at one time.

❑ Provide mnemonics for all menus and menu entries. In most cases, the mnemonic
should be either the first character of the name or, if there’s a conflict, a character
that’s strongly associated with and included in the name. Use standard mnemonics
for standard menus and entries.

❑ Limit the use of tear-off menus. Instead, use support windows for groups of controls
that users might want to use continuously.

176

Chapter 8: Menus

When selecting specific menus and entries for an application window . . .

❑ Use the standard menus and menu entries as the basis for the overall design of the
menu structure. Include all standard menus and entries that are applicable to your
application.

❑ Include a Help menu as the rightmost menu.

❑ Include an “Undo” menu entry, particularly if users can perform actions that destroy
or significantly change their data .

❑ Include an “Exit” menu entry for all main windows and for co-primary windows if
users will want to completely exit the application from that co-primary window.

❑ Include a “Close” menu entry for all co-primary windows and support windows that
have menu bars. Don’t provide a “Close” entry for main windows.

❑ Include menu entries that repeat the functionality of any pushbuttons on the primary
window.

❑ Include menu entries for actions that are accomplished using a direct manipulation
method or a mouse shortcut such as double-clicking.

❑ Include menu entries for accessing all primary and support windows that are
children of the current window.

❑ Don’t include entries for functions that aren’t available for the current version of
your application.

When naming menus . . .

❑ Use entire one-word titles for menus rather than abbreviations.

❑ Use the standard titles for menus (for example, File and Edit) if they’re applicable,
but change the standard title if this will make the function more clear.

❑ Don’t use a standard menu title if you’re changing the standard definition.

When naming menu entries . . .

❑ Use the standard names for standard menu entries, but don’t use a standard name
for a menu entry that doesn’t support the standard behavior.

❑ Each entry name should be an action word, the value of a parameter, an attribute
name, the name of a cascading menu, or the name of a co-primary, support, or dialog
window. Don’t use more than two words (except for task-oriented Help menu
entries), and avoid using graphic labels for menus entries unless the graphics make
the functionality more clear.

The Menu Bar and Pull-Down Menus

177

❑ Choose descriptive names that help users learn the functionality of the application.
For cascading menus, choose a name that clearly implies the contents of the menu.

❑ Add a word if necessary to be sure the entry clearly indicates what entity will be
acted upon. For example, you might use “New object” such as “New Folder” or
“New Page” rather than just “New.”

❑ If a menu entry toggles its state, use a checkbox and leave the menu entry name the
same for the different states (“Italics”). If this won’t be clear, toggle the name so that
it indicates what action will be taken if the menu entry is selected (“Show Grid,”
“Hide Grid”).

❑ Capitalize the menu entry using the same rules as capitalizing book titles.

❑ Use entire words rather than abbreviations.

❑ Display an ellipsis (...) after menu entries that bring up a dialog that requests more
information from the user. Don’t use ellipses if the dialog simply brings up
information that the user requested (for example, a Help dialog).

When ordering menus and menu entries . . .

❑ Place the standard menus in the standard order (File, Selected, Edit, View, Tools,
Options, Help), even if you have renamed any of these menus. Place any new menus
between the View and Tools menus.

❑ Place standard menu entries in the standard order. “Close” and “Exit” are always at
the end of the leftmost menu whether or not this menu is named File.

❑ Group menu entries logically. If a new menu entry is related to one of the standard
menu entries, place it near that standard menu entry.

❑ Place items in the menu first according to the order they will be used, and second
according to their frequency of use (with more frequently used items closer to the top
of the menu).

❑ Alphabetize entries that can be determined only when the user launches the
application. If this alphabetized group appears in a menu that contains other entries,
place the group at the end of a menu and use a separator between it and the
preceding entries.

❑ Use radio buttons for mutually exclusive menu entries, and checkboxes for a group
of related menu entries, any number of which can be selected at any one time.

❑ Use separators when necessary to group items—for example, to set off a group of
related entries that use radio buttons or checkboxes.

178

Chapter 8: Menus

❑ Limit the use of cascading menus. Never use more than one level of cascading
menus.

When selecting keyboard accelerators for menu entries . . .

❑ Use standard keyboard accelerators for standard menu entries; don’t use any of the
standard accelerators for your own entries, even if you’re not using those standard
entries.

❑ Provide keyboard accelerators for the most frequently used menu entries. Don’t
provide accelerators for all menu entries.

❑ Use the key combination <Ctrl>character. Don’t use the key combination
<Alt>character because this conflicts with mnemonics.

❑ For pairs of menu entries where one entry reverses the results of the other entry
(“Undo” and “Redo”), use <Ctrl>character for the most frequently used entry and
<Shift><Ctrl>character for the other entry where character is the same for both
accelerators.

❑ Display all characters in keyboard accelerators as uppercase (for example, display
<Ctrl>s as “Ctrl+S”). For keyboard accelerators that involve uppercase characters,
show the <Shift> key as part of the keyboard accelerator (for example, display
<Ctrl>S as “Shift+Ctrl+S”).

When deciding when to disable menu entries . . .

❑ If selecting the menu entry in the current context would give the user an error
message, show the menu entry as disabled (dimmed).

❑ Avoid using dynamic entries. Rather than removing an entry when it’s temporarily
unavailable, include it and disable it as appropriate.

Popup Menus

Use popup menus to provide a quick way for users to access the most commonly used
functions in the associated work are. This section covers:

• “What to Put in Popup Menus”

• “Disabling Popup Menu Entries”

For example, you might provide a popup menu containing “Cut,” “Copy,” “Paste,” and
“Delete” in a text application. Never allow popup menus to be the sole access to

Popup Menus

179

functions because these menus are hidden. Instead, popup entries typically represent the
most commonly used actions from the application window’s pull-down menus. (See
“Menu Traversal and Activation” for a description of how users interact with popup
menus.)

At most, provide a different popup menu for each main area of your application’s
window (that is, for each main field or pane). Note that this differs from the OSF/Motif
Style Guide, which allows the availability and content of popup menus to vary depending
on the element under the pointer or the selection state of the element.

Provide one set of entries in the popup menu, and enable and disable each of them as
appropriate, instead of following the OSF/Motif model. With one set of entries, users
will become familiar with the popup entries more quickly and won’t be confused when
entries are sometimes unavailable (see “Dynamic Menu Entries” for discussion of how
dynamic entries can be confusing to users).

What to Put in Popup Menus

For each popup menu, include a title followed by a separator and the individual menu
entries (see Figure 8-13). The title should be the name of the application or, if the
application has more than one popup menu, it should describe the purpose of the menu.
Since the entries typically repeat entries found in the pull-down menus, display titles
similarly: in the same order, and with the same or very similar names as in the pull-down
menu. Include ellipses and keyboard accelerators if they’re included in the
corresponding entry in the pull-down menu, but don’t show mnemonics in popup
menus.

Figure 8-13 Popup Menu

Popup menus generally don’t have entries that require radio buttons or checkboxes since
these are rarely common enough actions to be included in a popup menu. If you do need
to include these kinds of entries in a popup menu, separate them from the rest of the
entries with separators and include the radio buttons or checkboxes. See “Using Radio

180

Chapter 8: Menus

Buttons and Checkboxes in Pull-Down Menus” for more information. Popup menus
shouldn’t contain cascading menus, nor should they be tear-off
menus.

Disabling Popup Menu Entries

As with pull-down menu entries, if one of the entries in a popup menu is unavailable for
selection in the current context, disable that menu entry. Don’t, however, remove it from
the menu.

Popup Menu Guidelines

When choosing when a popup menu should appear . . .

❑ At most, provide a different popup menu for each main area (that is main field or
main pane) of the window. Don’t change the availability of a popup menu based on
what graphical element the pointer is over or based on the selection state of any of
the graphical elements.

When deciding what to include in a popup menu . . .

❑ Include entries for the most commonly used functions from the pull-down menus,
and use the same names in the same order as they’re displayed in the pull-down
menus.

❑ Avoid entries that require checkboxes or radio buttons. These are typically not the
most commonly used menu functions.

❑ Don’t make menu entries the sole access to these functions.

❑ Don’t change the content of the menu based on what graphical element the pointer
is over, or based on the selection state or contents of this element. Instead, put all
entries in the popup menu for the main area of the window, then enable and disable
entries as appropriate.

❑ Don’t include cascading menus and don’t use tear-off menus.

When displaying the contents of the popup menu . . .

❑ Include a title that’s either the name of the application, or if the application has more
than one popup menu, that describes the purpose of the menu.

Popup Menus

181

❑ Use only one separator, which goes between the title and the individual menu
entries.

❑ Show ellipses and keyboard accelerators if these are shown in the corresponding
pull-down menu entry, but don’t show mnemonics.

If selecting the menu entry in the current context would give the user an error message,
show the menu entry as disabled (dimmed). Don’t remove the menu entry when it’s
temporarily unavailable.

183

Chapter 9

9. Controls

Two types of controls are described in this chapter—those supported in the standard
OSF/Motif environment (such as pushbuttons, lists, and scrollbars), and those unique to
the Indigo Magic environment (such as enhanced scales, thumbwheels, and dials). These
controls can be used in any window of an application. Each description consists of a
general description of the control and guidelines for when to use it, how to label it, and
how it should behave.

Note that some of the standard controls have been enhanced in the Indigo Magic
environment as described in “Enhanced Graphics in the Indigo Magic Look” in
Chapter 3. To use these enhanced controls in your application, see , “Using the Silicon
Graphics Enhanced Widgets,” of the Indigo Magic Desktop Integration Guide. The reference
pages in Chapter 9 of the OSF/Motif Style Guide provide details on the behavior of the
OSF/Motif controls discussed in this chapter. This chapter describes the following
controls:

• “Pushbuttons”

• “Option Buttons”

• “Checkboxes”

• “Radio Buttons”

• “LED Indicators”

• “Lists”

• “Text Fields”

• “Scrollbars”

• “Indigo Magic Scales”

• “Labels”

• “File Finder”

• “Thumbwheels”

• “Dials”

184

Chapter 9: Controls

Pushbuttons

A pushbutton is a button that invokes an operation. Pushbuttons are rectangular and can
be labeled with either text or icons, as shown in Figure 9-1. The basic operations for
pushbuttons are described in the section “Other Operations,” in the reference page for
PushButton in the OSF/Motif Style Guide, Chapter 9. See “Control Areas in Primary
Windows” in Chapter 6 for guidelines on using pushbuttons in control areas and tool
palettes, and see “Standard Dialog Actions” in Chapter 10 for guidelines on using
pushbuttons in dialogs.

Figure 9-1 Pushbuttons

Pushbutton Guidelines

When using pushbuttons . . .

❑ In windows with menu bars, use pushbuttons to provide easy access to the most
frequently used application-specific functions in the pulldown menus. For primary
windows, these pushbuttons appear in the control area of the window.

❑ In windows without menu bars, use pushbuttons to access help and to close the
window.

❑ Use pushbuttons to create tool palettes, either in support windows or in primary
windows.

❑ Use pushbuttons in the response area of a dialog for the standard actions for that
dialog.

❑ Always have the pushbutton perform the same operation (although the input to that
operation may vary based on what data is currently selected). Don’t use the same
pushbutton to perform different tasks based on some mode of the application.

❑ Use pushbuttons to perform an action; don’t use them merely to set state, such as a
parameter value in a dialog box. Use checkboxes, radio buttons, or option menus for
this purpose.

Option Buttons

185

When labeling a pushbutton . . .

❑ Use either a text or graphic label that describes the action associated with the button.
With text labels, use an active verb describing the operation the button performs.
Make each text label a single, capitalized word. Don’t use abbreviations in labels.

❑ Center the label on the button.

❑ If the pushbutton opens a dialog to collect more information from the user before the
action represented by the pushbutton can be completed, place an ellipsis after the
button label. Don’t use an ellipsis if the button opens a dialog simply to display some
information to the user as an end result of the operation. This use of ellipses is the
same as that described for menu entries in the section “Naming Menu Entries in the
Pull-Down Menus” in Chapter 8.

When displaying pushbuttons . . .

❑ If the action associated with a button is temporarily unavailable, disable the button
rather than remove it.

❑ Don’t resize pushbuttons when the window is resized.

❑ Don’t use dynamic buttons whose labels change to indicate different functionality
depending on the current context. Instead, use multiple buttons and disable buttons
that represent functionality that’s currently unavailable. With multiple buttons, the
functionality is obvious even if some of the buttons aren’t currently active. With
dynamic buttons, the user has to put the application into the proper context to
discover some of the functionality. The one exception to this guideline is the
Cancel/Close button used in Dialogs with the Apply button. See “Standard Dialog
Actions” in Chapter 10 for information on this special case.

Option Buttons

An option button is a button that displays an option menu. It allows the user to choose
one of the options listed in the menu, and its label changes to reflect the currently selected
menu entry. Entries in the option menu represent mutually exclusive values of a
parameter. Users interact with option menus according to the model described in “Menu
Traversal and Activation” in Chapter 8. Figure 9-2 shows an option button and its option
menu. Note that the button has a special graphic on it to distinguish it from regular
pushbuttons. The basic operations for option buttons are described in the section “Other
Operations,” in the reference page for OptionButton in the OSF/Motif Style Guide,
Chapter 9.

186

Chapter 9: Controls

Figure 9-2 Option Button and Option Menu

Option Button Guidelines

When using option buttons . . .

❑ Use an option button when you want to offer the user about 5-12 mutually exclusive
options; use a list for more than 12 choices. If there’s enough space, use radio buttons
for fewer than 5 choices.

❑ Don’t put radio buttons or checkboxes in an option menu.

❑ Don’t use an option button if the user can select several options at the same time—
use a list or a set of checkboxes instead.

❑ Don’t put actions (such as zoom or rotate) in the option menu—use pulldown menus
or pushbuttons instead.

❑ Don’t add or delete the choices in the option menu. If the choices must change, use
a list.

❑ Don’t use cascading menus in the option menu. If there are so many items that they
don’t fit conveniently into an option menu, use a scrolling list instead.

❑ Don’t use a tear-off entry in an option menu.

When labeling an option button . . .

❑ Use the default label for the option button itself, which is the current value of the
parameter.

❑ Use a second label that describes the parameter that the option button controls. Place
this parameter label to the left of the option button and put a colon (:) and a space
after it (see Figure 9-2). This label is typically a noun and is not
abbreviated.

Option button

Option menu

Checkboxes

187

When labeling the entries in an option menu . . .

❑ Use nouns that indicate the possible values of the parameter being set.

❑ Use entire words for the entries rather than abbreviations.

When displaying option menus . . .

❑ If one of the entries in an option menu is unavailable for selection in the current
context, disable the menu entry. Don’t remove the entry from the menu. Note that the
user should always be able to display the contents of an option menu even if all of
the menu entries are currently disabled.

❑ Don’t include a title in option menus.

Checkboxes

A checkbox is a button with two states—on and off. In a group of checkboxes, each can
be turned on or off independently. The on state is indicated in the Indigo Magic look by
a red check mark, as shown in Figure 9-3. The basic operations for checkboxes are
described in the section “Other Operations,” in the reference page for CheckButton in the
OSF/Motif Style Guide, Chapter 9.

Figure 9-3 Checkboxes

Checkbox Guidelines

When using checkboxes . . .

❑ Use checkboxes for single attributes or states that can be turned on and off, or for
groups of items where multiple items in the group can be selected independently.
(Also see “Using Radio Buttons and Checkboxes in Pull-Down Menus” in
Chapter 8.)

188

Chapter 9: Controls

❑ Use checkboxes for groups of less than about six items. When dealing with more than
a handful of items, use a list that allows multiple elements to be selected at the same
time.

❑ Don’t use checkboxes for mutually exclusive options. If only one item in a group of
items can be selected at a time, use radio buttons instead.

❑ Don’t use checkboxes for actions; use pushbuttons instead.

❑ Don’t change the choices in the group based on the current context. If you want to
offer a dynamic set of choices, use a list.

When labeling checkboxes . . .

❑ Give each checkbox a label that describes the attribute, state, or option it controls.

❑ Create a group label for each group of checkboxes, and indent the checkboxes below
the label. This group label should be a noun that describes the function of the group.

❑ Don’t use abbreviations for either the checkbox labels or the group
label.

When displaying checkboxes . . .

❑ Keep checkboxes updated to reflect the current state of the application and the
settings of the current selection (if the settings of the checkboxes relate to the current
selection). For example, if a checkbox exists for turning underlining on and off and
the user selects some text, update the checkbox to reflect whether or not the selection
is underlined.

❑ Disable checkboxes representing choices that aren’t currently available. Don’t
remove the checkboxes.

Radio Buttons

A radio button is a button with two states—on and off. Unlike checkboxes, radio buttons
are always used in groups. Only one of a group of radio buttons can be turned on at any
given time. The on state is indicated in the Indigo Magic look by a blue triangle, as shown
in Figure 9-4. The basic operations for radio buttons are described in the section “Other
Operations,” in the reference page for RadioButton in the OSF/Motif Style Guide,
Chapter 9.

Radio Buttons

189

Figure 9-4 Radio Buttons

Radio Button Guidelines

When using radio buttons . . .

❑ Use radio buttons in groups, never as single buttons. If you need to use a single
button that shows an on/off state, use a checkbox instead. (Also see “Using Radio
Buttons and Checkboxes in Pull-Down Menus” in Chapter 8.)

❑ Use radio buttons for mutually exclusive options. If more than one item in the group
can be selected at a time, use checkboxes or a list instead.

❑ Use radio buttons when you want to offer the user fewer than six options. If you have
more than six options, or if screen space is extremely limited, use an option button
instead. (See the section “Option Buttons” earlier in this chapter.) If you have more
than 12 options, consider using a list where only a single element can be selected at
a time. (See the section “Lists” later in this chapter.)

❑ Don’t use radio buttons for actions; use pushbuttons instead.

❑ Don’t change the choices in a group of radio buttons based on the current context. If
you want to offer a dynamic set of choices, use a list because users expect the
elements of a list to change occasionally, but they don’t expect radio buttons to
change.

When labeling radio buttons . . .

❑ Give each radio button a label that describes the attribute or option it controls.

❑ Create a group label for each group of radio buttons, and indent the radio buttons
below the label. This group label should be a noun that describes the function of the
group.

❑ Don’t use abbreviations for either the radio button labels or the group
label.

190

Chapter 9: Controls

When displaying radio buttons . . .

❑ Keep radio buttons updated. If the settings of the radio buttons depend on the
current selection, update them when the user makes a new selection so that they
reflect the settings of the new selection.

❑ Disable radio buttons representing options that aren’t currently available. Don’t
remove the radio buttons.

LED Indicators

The LED Button is a toggle button with an enhanced appearance. It appears in the form
of a push button, with an imbedded indicator lamp (LED) that provides state feedback.
The button has two states—on or off. When the button is toggled to the ON state, it
appears lighted; when OFF, it appears darkened.

You can use a LED button (as shown in Figure 9-5) instead of a radio button to indicate
that one of a range of options or modes is currently in effect. Alternatively, you can use a
toggle button instead of a checkbox, to indicate whether a given option or mode is
currently on or off.

In either case, an LED button is most appropriate in a context where other push buttons
are used as part of a control panel, since an LED button is the same size as a push button.

Figure 9-5 LED Button

For LED example code, see “Example Programs for SGI Enhanced Widgets” in the Indigo
Magic Desktop Integration Guide.

LED Button Guidelines

When using LED buttons . . .

❑ Use LED buttons for single attributes or states that can be turned on and off, or for
groups of items where multiple items in the group can be selected independently.

Lists

191

(Also see “Using Radio Buttons and Checkboxes in Pull-Down Menus” in
Chapter 8.)

❑ Don’t use LED buttons for actions; use pushbuttons instead.

❑ Don’t change the choices in the group based on the current context. If you want to
offer a dynamic set of choices, use a list.

When labeling LED buttons . . .

❑ Label each LED button with a term that describes the attribute, state, or option it
controls.

❑ If there is a group of LED buttons, create a group label for the group, and indent the
LED buttons below the label. Use a noun that describes the function of the group.

❑ Don’t use abbreviations for either the LED button labels or the group
label.

Lists

A list allows the user to choose from a series of elements. It can allow the user to choose
a single element at a time or choose multiple elements at once. Lists should have vertical
and horizontal scrollbars when necessary. (See “Scrollbars” later in this chapter.) When
allowing users to select elements in the list, follow the selection guidelines described in
“Selection” in Chapter 7. Figure 9-6 shows a list with vertical and horizontal scrollbars.
The basic operation of lists is described in the section “Other Operations,” in the
reference page for List in the OSF/Motif Style Guide, Chapter 9.

Figure 9-6 List

192

Chapter 9: Controls

List Guidelines

When using lists . . .

❑ Use a list when you want to allow the user to choose a single option from a large list
(that is, more than 15 options). If you have fewer than 15 options, use either an option
button (best for 5-15 options; see “Option Buttons” earlier in this chapter) or a set of
radio buttons (best for 2-5 options; see “Radio Buttons” earlier in this chapter).

❑ Use a list when you want to allow the user to choose several options from a list of six
or more elements. If you have fewer options, use checkboxes (see “Checkboxes”
earlier in this chapter).

❑ If you want to allow the user to choose elements from a dynamic list of options, use
a list regardless of the number of options. (Option menus and groups of checkboxes
or radio buttons should represent static lists of options.)

When labeling a list . . .

❑ Label the list with a noun that indicates the function of the elements in the list. Don’t
use abbreviations in the label.

❑ Place the label directly above and either left-aligned with or slightly to the left of the
first element of the list.

When labeling the list entries . . .

❑ If the elements in the list represent operations to perform, use active verbs.
Otherwise, use nouns. In either case, use entire words rather than abbreviations.

When displaying lists . . .

❑ When a window using a list is first opened, the currently selected list elements
should be highlighted and the list should be scrolled to display these. If multiple
elements are selected, scroll the list so that the first selected one appears at the top of
the viewing area. See “Selection” in Chapter 7.

❑ Allow users to select elements in the list according to the selection guideline
discussed in “Selection” in Chapter 7.

❑ Disable list elements that aren’t currently available.

❑ Allow the list to autoscroll (the default behavior) if the user is making a selection and
the selection goes outside the range of the displayed elements. See “Selection” in
Chapter 7.

Text Fields

193

Text Fields

Text fields can be single-line or multi-line. Single-line text fields don’t have scrollbars,
even if all of the text can’t be displayed horizontally in the field. Multi-line text fields
should have vertical and horizontal scrollbars when necessary. (See “Scrollbars” later in
this chapter.)

Text fields can be either editable or noneditable. Editable and noneditable text fields have
different colored backgrounds to indicate to the user whether the information can be
changed. These background colors vary depending on what scheme the user has selected
(see “Schemes for Colors and Fonts” in Chapter 3 for information on schemes).

Indigo Magic offers an enhanced text field; it allows the application to select a section of
text and flag it with an error status. The error selection shows up with a special
background color to distinguish it from an ordinary text selection. For example, a
debugger might use the error selection to indicate to the user which section of code was
causing an error.

The enhanced text field control allows you to specify the following:

• both the foreground and background colors of the selected text (See “Selection” in
Chapter 7 for information on selection.)

• the background color for text that’s marked with an error status

• whether to show the text cursor only when the text component currently has
keyboard focus (See “Keyboard Focus and Navigation” in Chapter 7 for
information on keyboard focus.)

The basic operations for text fields are described in the section “Other Operations” in the
reference page for Text in the OSF/Motif Style Guide, Chapter 9.

Text Field Guidelines

When using text fields . . .

❑ Use single-line, editable text fields to display values of parameters that users can
edit.

❑ Use single-line, noneditable text fields to display values of parameters that users
can’t edit, whenever these values either change over time or might need to be

194

Chapter 9: Controls

selected by the user. If the value doesn’t change and the user doesn’t need to select
it, use a label.

❑ Don’t use a text field if you need to display and edit pathnames; use the Indigo Magic
File Finder instead.

❑ Use text fields for values that change over time; don’t use labels.

When labeling text fields . . .

❑ Label each editable or noneditable text field, unless the field represents the bulk of a
window and the field’s function is clear. Use entire words in labels rather than
abbreviations.

❑ For single-line text fields, place the label to the left of the text field, and follow the
label with a colon (:) and a space. Vertically center the label within the text
field.

When displaying text fields . . .

❑ Use the default selection and highlighting discussed in “Selection” in Chapter 7.

❑ Allow the user to cancel a text edit in progress by pressing <Esc>. That is, once the
user has selected text and started to replace it with new text, <Esc> should cancel any
changes that the user has made.

❑ Keep text fields updated. When a window using a text field is first opened, show the
default or current setting (if either exists) for the text field.

❑ Make the text automatically scroll if the user is making a selection and the selection
goes outside the range of the displayed elements.

❑ When an editable text field can’t be edited in the current context but the information
is still useful to the user, change it to a noneditable text field. If the information isn’t
useful to the user (that is, the user doesn’t need to know the value and won’t need to
select it), disable the text field.

Scrollbars

A scrollbar “scrolls” the data in a viewing region to change the portion of the data that’s
visible. Scrollbars can be either horizontal or vertical. (“Enhanced Graphics in the Indigo
Magic Look” in Chapter 3 describes enhancements to the scrollbar’s appearance.)
Figure 9-7 shows a scrollbar.

Scrollbars

195

Figure 9-7 Scrollbar

A scrollbar includes the scroll region (shown as a trough), which represents the size of
the entire scrollable element with arrow buttons at each end. If there’s data that can be
scrolled, the scrollbar also includes a slider that indicates the relative position and
portion of the data currently being displayed. As the user moves the slider, a temporarily
indented impression of the slider indicates the position of the slider before the user began
moving it. This indented impression disappears when the user releases the mouse button
to complete the scroll action. The basic operations for scrollbars are described in the
section “Other Operations,” in the reference page for ScrollBar in the OSF/Motif Style
Guide, Chapter 9.

Scrollbar Guidelines

When using scrollbars . . .

❑ Use scrollbars to pan an associated view.

❑ Use scrollbars with components that can be resized such that all of the available
information contained in the component can’t be displayed at one time. Typical
scrollable components include work areas in primary windows, lists, multiple line
text fields, and data display areas in primary or support windows.

❑ Use scrollbars with a list when the number of elements in the list doesn’t fit in the
viewing region (vertical scrollbar), when the elements are too wide to fit in the
viewing region (horizontal scrollbar), or when the window containing the list can be

Slider grip

Integrated scroll bar

Scroll region

Arrow button

196

Chapter 9: Controls

resized such that either of these situations can occur. See “Lists” earlier in this
chapter for information.

❑ Use scrollbars with multi-line text regions when the data can’t all be displayed
vertically or horizontally or when the window can be resized such that this is true.
See “Text Fields” earlier in this chapter for information.

❑ Don’t use scrollbars with single-line text fields. See “Text Fields” earlier in this
chapter for information.

❑ Don’t use scrollbars for zooming or for rotation. Use an Indigo Magic thumbwheel
instead. See “Thumbwheels” later in this chapter.

❑ Don’t use scrollbars to choose a value in a range; use the Indigo Magic scale instead.

When displaying scrollbars . . .

❑ Place vertical scrollbars along the right of the element being scrolled, and place
horizontal scrollbars along the bottom of the element being scrolled.

❑ Keep scrollbars updated. When a window using a scrollbar is first opened, the
scrollbar should reflect the current area being displayed in the scrolled region.

❑ Update the data in the scrolled area continuously as the user drags the slider along
the scroll region. This gives the feeling of direct, continuous control. Don’t wait until
the user has released the slider to update the data, because users often use the current
view of the data to determine when to stop dragging the slider.

❑ When a component is being scrolled, don’t scroll it beyond the first or last elements.
That is, there should be no extra white space before the first element or after the last
element. The exception to this rule is scrolling text elements that represent physical
pages (for example, in a desktop publishing application).

❑ Make all components that use scrollbars automatically scroll when the user makes a
selection that goes outside of the data currently being displayed. Also, make the
component automatically scroll if the user performs an operation that moves the
cursor outside of the current view (for example, if the user inserts or deletes text that
moves the cursor outside of the current view). In this case, the view should be
automatically scrolled so that the cursor is shown when the operation is finished.

❑ When using the <Page Up>, <Page Down>, <Ctrl>-<Page Up>, or <Ctrl>-<Page
Down> key sequences to scroll a page at a time, leave one unit of overlap from the
previous page to make it easier for the user to preserve the current context. This unit
is application-specific; it might be a line of text, an item in a list, a row of icons, or a
specific number of pixels (for example, in a drawing region). By default, this
behavior is automatic for IRIS IM list and text components.

Indigo Magic Scales

197

❑ Remove the slider from the scrollbar when all of the data is currently being
displayed. Don’t remove the scrollbar or disable it in some other fashion.

❑ Allow the user to cancel scroll actions by pressing <Esc>. By default, if the user
presses the <Esc> key while dragging the slider along the scroll region, the scroll
action is canceled, and both the data and the slider are returned to the position they
had before the user initiated the scroll action.

Indigo Magic Scales

Scales can be used either to allow users to change a value in a given range or to display
a value in a range. The size of the control shows the size of the range. When the scale is
being used to allow users to specify or change a value, the slider indicates the current
value in the range and can be dragged by the user. When the scale is being used for
display only, there’s no slider for the user to control. Figure 9-8 shows the Indigo Magic
scale in both modes. The basic operations for scales are described in the section “Other
Operations” in the reference page for Scale in the OSF/Motif Style Guide, Chapter 9. For
specific details on using the Indigo Magic scale in your application, see “The Scale
(Percent Done Indicator) Widget” in Chapter 4, “Using the Silicon Graphics Enhanced
Widgets,” in the Indigo Magic Desktop Integration Guide.

Figure 9-8 Indigo Magic Scale

Indigo Magic Scale Guidelines

When using the Indigo Magic scale . . .

❑ Use scales to allow users to change a value in a given range. Use scales in
display-only mode to display values that the user can’t control. For example, use a
display-only scale as a percent-done indicator to show progress in a Working dialog.
(See “Working Dialogs” in Chapter 10.)

❑ Don’t use scales for scrolling.

Display-only scaleScale for changing the value

Slider

198

Chapter 9: Controls

When labeling a scale . . .

❑ Label it with the current value for the scale.

❑ If the function of the scale isn’t immediately apparent, give the scale an additional
label that indicates its purpose. Don’t use abbreviations in this label.

When displaying scales . . .

❑ Keep scales updated. When a window using a scale is first opened, the slider of the
scale should show the current setting for the scale control.

❑ For sliders where the user can change the value, update the value being manipulated
as the user moves the slider. Give the impression of direct, continuous manipulation.
For sliders that also manipulate an object, update the object continuously as well. For
sliders that are used only to display values, immediately update the slider to reflect
the new value as the value changes.

❑ Allow the user to cancel a scale operation by pressing <Esc>. If the user presses the
<Esc> key while manipulating the scale, the action should be canceled, and the scale
should return to the position it had before the user initiated the action.

Labels

Labels are noneditable text or graphical objects. They aren’t selectable.

Label Guidelines

When using labels . . .

❑ Use entire words in labels rather than abbreviations.

❑ Use labels for displaying text information that the user won’t need to edit or select.

❑ Use labels for labeling controls as described under the individual controls in this
chapter.

❑ Use labels for labeling groups of controls. When used to label a group of controls, use
a colon (:) and a space after the label, and place it either to the left of the item in the
upper left corner of the group or above and slightly to the left of the item in the upper
left corner of the group.

File Finder

199

❑ Use labels for simple instructions when necessary. Before adding instructions to any
of your application windows, however, first try to design some alternatives that
might make the instructions unnecessary. For example, if these instructions are
necessary because the user interface works in a nonstandard way, redesigning the
interface to be more standard is likely to make the instructions unnecessary.

❑ Place labels on the background of the window (that is, the part of the window that
isn’t recessed).

When displaying labels . . .

❑ Don’t change the text or graphic on a label. If this information will change, consider
putting it in a noneditable text field instead; users don’t expect label text to change.

❑ Disable labels when the controls they represent are disabled. Don’t disable group
labels.

File Finder

The File Finder is an Indigo Magic control. It allows users to navigate the file hierarchy
quickly and to specify directories and files easily, using drag and drop of desktop icons.
The File Finder is pictured in Figure 9-9.

Figure 9-9 The File Finder

The File Finder includes several pieces:

• text field—allows the user to enter the pathname for a file or directory.

• drop pocket—displays the desktop icon representing the current file or directory
whose name is displayed in the text field. A user can also drop a desktop icon into
this drop pocket and have the text field automatically update with the pathname of
the icon.

Drop pocket Path navigation bar

History buttonText field

200

Chapter 9: Controls

• path navigation bar—each button represents the directory being displayed below it
in the text field. A user can quickly navigate to ancestor directories by clicking on
any of these buttons.

• history button—similar to an option menu button; maintains a list of directories that
the user already visited while using this control. The user can select any of these
previously visited directories to return immediately to that directory.

For specific details on using the file finder in your application, see the SgFinder(3X)
reference page.

File Finder Guidelines

When using the File Finder . . .

❑ Use the File Finder when the user needs to enter the pathname of a directory or file.
This allows the user to drag and drop desktop icons to specify the file and to navigate
the file hierarchy.

❑ When a window using a file finder is first opened, the text field in the file finder
should show the default or current value of the pathname, if any. Also place this
value in the history list under the history button.

Thumbwheels

The thumbwheel is an Indigo Magic control that allows users to specify or change a
value, either in a given range (for instance, when zooming) or in an infinite range (for
instance, when rotating a 3D object). Users change the current value by direct
manipulation of the wheel (that is, by clicking and dragging). The thumbwheel can also
include a “home button” that returns the thumbwheel to a default value. Thumbwheels
can be oriented either horizontally or vertically. Figure 9-10 shows a thumbwheel. For
specific details on using the thumbwheel in your application, see the
SgThumbWheel(3X) reference page.

Thumbwheels

201

Figure 9-10 Thumbwheel

Thumbwheel Guidelines

When using thumbwheels . . .

❑ Use thumbwheels to change the values of continuous variables (that is, variables that
don’t have discrete values). For discrete values, consider a scale or dial instead.

❑ Use thumbwheels with finite ranges for zooming operations and thumbwheels with
infinite range for rotating objects.

❑ When a thumbwheel is used to change a value that has a clear default, provide a
home button. For example, a Directory View window has a thumbwheel that allows
the user to set the size of the desktop icons. Pressing the home button on this
thumbwheel sets the icons to their default size.

❑ Use thumbwheels when screen real estate is extremely limited.

❑ Don’t use a thumbwheel for panning; use a scrollbar instead. A scrollbar gives the
user much more information about the object being scrolled than a thumbwheel
could.

When displaying a thumbwheel . . .

❑ Update the object or value being manipulated as the user moves the thumbwheel.
The thumbwheel should give the impression of direct, continuous
manipulation.

Thumbwheel

Home button

202

Chapter 9: Controls

Dials

The dial is an Indigo Magic control that allows users to specify or change a value in a
given range. Users change the current value by direct manipulation of the dial—by
dragging or by clicking on the appropriate tic mark that represents the desired value. The
appearance and the behavior of the dial can be modified. For example, the angular range
in degrees through which the dial is allowed to rotate and the color of the dial and tic
marks can be changed. Figure 9-11 shows two dials with different appearance options.
For a complete list of options for dials, and other specific details on using dials in your
application, see the SgDial(3X) reference page.

Figure 9-11 Dials

Dial Guidelines

When using dials . . .

❑ Use dials as an alternative to scales for setting parameters. Dials are best for numeric
parameters where the range of allowable values is small and the values are discrete.

When labeling dials . . .

❑ Place a label either directly below or directly above the dial, specifying the parameter
that the dial controls.

❑ When you have a group of dials, place each dial label in the same position relative to
its dial (that is, either all the labels are below the dials or all the labels are above the
dials).

❑ Use entire words in the label rather than abbreviations.

Dials

203

When displaying dials . . .

❑ When a window using a dial is first opened, the dial should show the current setting.

❑ As a dial is rotated, update the value being manipulated to reflect the new value on
the dial. The dial should give the impression of direct, continuous manipulation.
Also, if the dial is controlling an object, continuously update the object as the dial is
manipulated.

205

Chapter 10

10.Dialogs

Dialogs are transient windows that your application uses either to communicate
something important to the user (for example, that a pending action could cause some
data to be lost), or to obtain a specific piece of information from the user (for example,
which file to open). Users interact quickly with dialogs and then dismiss them. This
chapter covers dialogs in the following sections:

• “Types and Modes of Dialogs” discusses the standard types of dialogs, when to use
them, and whether they should be modal or not (that is, whether they should
prevent the user from doing anything else until the dialog is dismissed).

• “Designing Dialogs” discusses general dialog design issues—such as the dialog
window decorations, the layout of dialog information, and what the standard
actions are (in the form of push buttons). It also covers specific design and content
issues for the various types of dialogs listed in the previous section.

• “Invoking Dialogs” describes the most common situations that require dialogs and
which types of dialogs to use in them.

Types and Modes of Dialogs

Dialogs are used to give information to the user or to get information from the user; once
they’ve served their purpose, they go away. Dialogs that give information to the user are
instigated by the application; these application-generated dialogs present important
messages for the user’s immediate attention. Dialogs whose purpose is to get
information from the user are displayed as the result of a user action (such as pushing a
button or selecting a menu entry). An example of such a user-requested dialog occurs
when the user selects “Open...” from the File menu; the application should display the
Indigo Magic File Selection dialog so that the user can specify a file to open.

The OSF/Motif Style Guide defines several types of application-generated and
user-requested dialogs. The most common of these are listed in Table 10-1, along with a
brief description of when each might be used in an application and whether they should
be modal or not. Figure 10-1 shows each of the standard OSF/Motif dialogs with the

206

Chapter 10: Dialogs

Indigo Magic look, and Figure 10-2 shows the Indigo Magic File Selection dialog. Each of
these standard dialogs are discussed in more detail in the rest of this chapter and in their
reference pages in Chapter 9 of the OSF/Motif Style Guide. Dialog modes are defined and
discussed in the next section (“Dialog Modes”).

Table 10-1 Types of Dialogs, Their Modality, and When to Use Them

Type of Dialog When to Use It Modality

Prompt To ask users for specific information. Modeless or modal

Error To tell users about an error they’ve made in interacting with your application. Application-modal

Warning When there’s an action pending that will cause users to lose data. Application-modal

Question To ask users a specific question that they must respond to before continuing to interact
with the application. Note that although Warning dialogs can also ask users a question,
that question relates to a pending action that’s destructive.

Application-modal

Working When an operation takes more than 5 seconds to complete. This dialog gives users the
chance to cancel or stop the operation. Note that you might have to choose one of several
different platforms as your standard for estimating times of operations. Also note that
the pointer shape might need to change to the watch if the Working dialog is modal; see
“Standard Pointer Shapes and Colors” in Chapter 11.

Modeless or modal

Information To give users information that’s of immediate importance. Use this type of dialog
sparingly; use a status area in one of your primary application windows for the less
important messages (see “Status Areas in Primary Windows” in Chapter 6).

Modeless

File Selection To allow users to navigate the file hierarchy and choose a file. Note that the Indigo Magic
File Selection dialog, which is shown in Figure 10-2, is slightly different from the
standard OSF/Motif File Selection dialog.

Modeless

Types and Modes of Dialogs

207

Figure 10-1 Sample Prompt, Error, Warning, Working, Question and Information Dialogs

208

Chapter 10: Dialogs

Figure 10-2 The Indigo Magic File Selection Dialog

Both the Indigo Magic and IRIS IM File Selection dialogs provide lists of the contents of
the current directory and a text input field; the Indigo Magic list contains both the files
and the subdirectories of the current directory, while the IRIS IM list presents these in two
separate lists. The Indigo Magic File Selection dialog also allows users to navigate
through the file hierarchy using the drop pocket, path navigation bar, and history button.
As discussed in detail in “File Finder” in Chapter 9, these components allow users to
drop file or directory icons in the drop pocket, traverse to ancestors of the current
directory, or return to any directory visited previously. In addition, the Indigo Magic
dialog presents a Filter button (rather than the IRIS IM text input field), which brings up
a dialog that allows the user to enter the filter string.

Drop pocket

Path navigation bar

History button

Contents of current

Current pathname

Filter button

directory

Types and Modes of Dialogs

209

Dialog Modes

As listed in Table 10-1, dialogs can have different modes whereby the application can
require the user to respond to the dialog before continuing with other actions in the
application. The following are the most commonly used modes defined by OSF/Motif:

Modeless Modeless dialogs, such as the Indigo Magic File Selection dialog, don’t
require the user to respond before continuing. The user can interact with
any other window associated with the application and with any other
application.

Primary-modal
Primary-modal dialogs require the user to respond to the dialog before
continuing to interact with the dialog’s parent window or any other
ancestor window. Note that these ancestor windows can’t receive mouse
or keyboard input until the user has responded to the dialog.

Application-modal
Application-modal dialogs require the user to respond to the dialog
before continuing to interact with the application. Note that none of the
application’s windows (except the dialog) can receive mouse or
keyboard input until the user has responded to the dialog. An example
of this type is a dialog that asks the user for a root password.

In addition to these modes, OSF/Motif defines a system-modal dialog that requires the
user to interact with the dialog before doing anything else on the system. You shouldn’t
use system-modal dialogs because your application should never need to restrict users’
activities to this degree.

Modal dialogs typically show static information, but modeless dialogs should display
dynamically updated information as the current state changes. Otherwise, the dialog
becomes useless. For example, the Indigo Magic File Selection dialog dynamically
updates itself if a user changes the file hierarchy while it’s displayed; if it didn’t, the user
could select a file that no longer exists, for example.

As listed in Table 10-1, File Selection and Information dialogs are modeless. Error,
Warning, and Question dialogs are application-modal. Working and Prompt dialogs can
be modeless or modal, depending on what they are being used for in the application. For
example, the desktop displays a Working dialog when you’re copying a large directory
from a remote system using a directory view, but you can still do other things in the
Directory View while the copy is in progress. In other situations, you might not want to
allow user input until your application has completed a particular operation. For

210

Chapter 10: Dialogs

example, when a user opens a large folder in MediaMail, no other actions can be
performed in that window until the folder has been read in completely. See “Working
Dialogs” on page 217 for details on the design of Working dialogs.

Guidelines for Using the Various Types and Modes of Dialogs

When choosing the type and mode of a dialog . . .

❑ Use a Prompt dialog to ask users for specific information. This dialog can be
modeless or modal.

❑ Use an application-modal Error dialog to tell users about an error they’ve made in
interacting with your application.

❑ Use an application-modal Warning dialog when there’s an action pending that will
cause users to lose data.

❑ Use an application-modal Question dialog to ask users a specific question that they
must respond to before continuing to interact with the application.

❑ Use a Working dialog when an operation takes more than 5 seconds to complete.
This dialog can be modeless or modal.

❑ Use a modeless Information dialog to give users information that’s of immediate
importance. Use this type of dialog sparingly.

❑ Use the modeless Indigo Magic File Selection dialog to allow users to navigate the
file hierarchy and choose a file.

❑ Don’t use system-modal dialogs.

❑ Use modal dialogs to show static information, and update modeless dialogs
dynamically as the current state changes.

Designing Dialogs

This section discusses general guidelines that apply to the design of all dialogs—for
example, dialog window decorations, size, information displayed when they first come
up, and the layout of information. It also describes the standard actions (in the form of
pushbuttons) that dialogs should contain. Finally, this section covers guidelines for the
content of the specific types of dialogs.

Designing Dialogs

211

Keep in mind that as discussed in Chapter 6, “Application Windows,” every dialog is
associated with a specific primary or support window (its parent). The parent window
should be visible and mapped to the screen so that dialogs work properly across Desks,
as noted in “Desks” in Chapter 3.

This section covers:

• “Decorations, Initial State, and Layout of Dialogs”

• “Standard Dialog Actions”

• “Content of Specific Types of Dialogs”

Decorations, Initial State, and Layout of Dialogs

All dialogs should have the window decorations and Window menu entries listed in
Table 3-1 and described in “Window Decorations and the Window Menu” in Chapter 3.
These decorations and menu entries allow the user to:

• Move a dialog using the title bar. Since 4Dwm doesn’t guarantee that a dialog will
be placed in a specific location, a user may need to move the dialog to access
information in order to figure out the appropriate response to the dialog. Note that
a dialog’s title bar should follow the guidelines discussed in “Rules for Labeling the
Title Bar in Windows Other Than Main” in Chapter 3. A proper label allows users to
quickly identify the type of dialog and the application to which it belongs.

• Resize a dialog that contains resizable components such as text input fields and
scrolling lists. See “Window Decorations and the Window Menu” and “Window
Size” in Chapter 3 for specific guidelines on when a dialog should be resizable.

Note that these window decorations and menu entries don’t include operations either for
minimizing a dialog (since dialogs can’t be minimized independently of their parent
window) or for exiting an application from a dialog.

When a dialog is opened, its size, placement, keyboard focus, and information displayed
should follow these guidelines:

• The default size should allow all of the components and information to be
displayed in their entirety. Users shouldn’t have to resize a dialog to see its contents.

• The dialog should be placed automatically on the screen—either near (but not
overlapping) any related information in the parent window, or in the center of the
parent window (if the contents of the dialog aren’t related to the contents of the

212

Chapter 10: Dialogs

parent window). For more information on choosing a screen location, see “Window
Placement” in Chapter 3.

• The keyboard focus should be in the field with which the user is most likely to want
to interact. For example, if there are text input fields, the focus should probably be
in one of those fields. In general, dialogs should follow the keyboard focus and
keyboard navigation guidelines discussed in “Keyboard Focus Policy and
Navigation Within a Window” in Chapter 7.

• The information being displayed in the dialog should always match the current
state of the application. If the dialog is modeless, this information should be
dynamically updated, as described in “Dialog Modes” on page 209.

All dialogs you create should include a response area that contains standard dialog
actions (pushbuttons) tailored to the type and purpose of the dialog. The next section
(“Standard Dialog Actions”) discusses what the appropriate buttons are for this area. In
addition to the response area, Prompt dialogs should include an input area that consists
of whatever controls are necessary for selecting objects or setting application parameters.
Instead of this input area, Error, Warning, Question, Working, and Information dialogs
should include a message area, as shown in Figure 10-3. The message area consists of an
icon and text region that displays the dialog’s message.

Figure 10-3 Warning Dialog Layout

Don’t include menu bars in dialogs; they’re intended for short, quick user input rather
than for accessing lots of functionality. Also, dialogs don’t contain secondary work areas;
if you need additional work areas, use a support window instead. (See “Support
Windows” in Chapter 6 for information.) Also note that the pre-designed Indigo Magic
File Selection dialog has a somewhat different set of elements and layout than the other
types of dialogs.

Message area

Response area

Text region

Icon

Designing Dialogs

213

Standard Dialog Actions

All dialogs include a response area that contains a horizontal row of pushbuttons across
the bottom of the dialog. The standard dialog pushbuttons (or actions) are Yes, No, OK,
Close, Apply, Retry, Stop, Pause, Resume, Clear, Reset, Cancel, and Help, and they
should appear in that order. Your dialogs will typically contain some subset of these
buttons and possibly additional ones; the additional buttons should appear after the OK
and Apply buttons but before the Cancel and Help buttons.

All of these standard actions except Clear are defined in the reference page for DialogBox
in the OSF/Motif Style Guide. Clear, which is used in Indigo Magic applications, should
clear all of the text input fields in the dialog. Note that this differs from the “Reset” action,
which resets all controls in a dialog (not just the text fields) to default values.

Choosing Specific Actions for Your Dialogs

When choosing which of the standard actions to include in your specific dialog, use the
guidelines listed in the OSF/Motif Style Guide, Sections 6.2.1.7 and 6.2.4.2, with the
following additions and exceptions:

• Most dialogs should have a Help button. If the situation is stated clearly, you might
not need a Help button.

• Avoid using both OK and Apply on the same dialog because it often confuses users.
Consider using both when the number of users who will want to make one set of
changes, apply them, and close the dialog is equal to the number of users who will
want to make and apply multiple sets of changes before closing the dialog.

• To decide between OK and Apply, determine whether users are more likely to use
the dialog to make one set of changes at a time (if so, use OK) or whether they’re
more likely to want to make and apply changes repeatedly before closing the dialog
(in this case, use Apply).

If you can’t decide which of these scenarios best describes your users, use Apply
rather than OK. With Apply, users who want to make a single set of changes must
press an extra button (Apply, then Close, instead of just OK), which is at most a
minor annoyance. On the other hand, using OK by itself forces users who want to
make several sets of changes to re-launch the dialog for each set of changes, which
can be annoying.

• Any dialog that has an Apply button should also include a Cancel/Close button.
When the dialog is opened, the button is labelled “Cancel.” After the user applies
some irreversible change, the label on the button changes to “Close” to inform users

214

Chapter 10: Dialogs

that the action is irreversible. This button doesn’t indicate whether or not there are
pending changes to be applied.

• Working dialogs should have a Cancel button that allows users to cancel an
operation and return the application to the state it was in before the operation
began. If you can’t return your application to the pre-operation state, you should
still allow users to stop the operation at the current point in the processing. It’s even
better to allow the user a choice of actions—for example, Pause (with the option of
later resuming) and Cancel.

• By default, pressing the <Esc> key within a dialog is equivalent to clicking a Cancel
button. This is true even if the dialog doesn’t have an explicit Cancel button.

Choosing Default Actions

For many dialogs, you should choose one of the actions in the response area to be the
default action. By default, the default pushbutton is visually distinguished from the
other buttons (for example, the OK button in Figure 10-3), and it’s activated when the
user presses the <Enter> key while the dialog is the active window. If other buttons in
the response area can accept keyboard focus, they become the default button when they
have the focus—that is, they’re visually distinct from the other buttons, and pressing
<Enter> causes them to be activated. When none of these other buttons has the keyboard
focus, the default button status returns to the original default button.

The following bullets describe common default actions for certain types of dialogs:

• The default action for Information dialogs, which typically have buttons only for
OK and Help, is OK.

• The default action for Question, Warning, Error, and any other dialogs that contain
buttons but no text fields is the response that users are most likely to select. For
example, a Warning dialog that asks, “Do you really want to do this destructive
action?” should have the affirmative response as the default action. Note that as
discussed in the next section, “Labeling Dialog Buttons,” make sure that each
button name clearly indicates the specific action that will occur if that button is
clicked.

• The default action for dialogs that have only one text field and no other controls
than the buttons in the response area (such as the File Selection and Prompt dialogs)
is the action that the user is most likely to select after entering a text string.

Dialogs that contain multiple text fields should not have a default action since many
applications require users to press <Enter> after entering data in a text field. Users tend

Designing Dialogs

215

to press <Enter> regardless of whether they have to, and they expect that action to ensure
that their data is entered; they don’t expect that action to invoke the dialog’s default
action.

Labeling Dialog Buttons

When labeling dialog buttons, use the OSF/Motif standard names except in the
following cases:

• Replace the “Yes” and “No” labels in Warning and Question dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked.
The buttons replacing Yes and No perform the action and close the dialog. As an
example, consider the Warning dialog shown in Figure 10-4.

Figure 10-4 Warning Dialog With Save, Discard, and Cancel Buttons

• Replace the “OK” or “Apply” labels in Prompt or Warning dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked
(for example, Open, Save, Print). Don’t replace these names when the button is used
for more than one purpose—for example, when the file browser is used to specify a
name for a new file, the OK button can be used to both name the file and display the
contents of a directory.

Also don’t replace either of these names on those rare instances when OK and
Apply are used together in a Prompt dialog.

Content of Specific Types of Dialogs

In addition to the general guidelines discussed in the two previous sections
(“Decorations, Initial State, and Layout of Dialogs” and “Standard Dialog Actions”),

216

Chapter 10: Dialogs

follow the more specific guidelines for the different types of dialogs presented in this
section. (The dialog types are defined in Table 10-1.)

Prompt Dialogs

Prompt dialogs use a variety of controls to collect information from the user, including
text input fields, a list of all possible choices, radio buttons, checkboxes, and option
menus. Try to collect this information in related chunks—that is, avoid collecting
unrelated pieces of information in the same dialog, and don’t launch multiple dialog
boxes one right after the other to collect several pieces of information if these pieces are
frequently collected at the same time.

Error Dialogs

All Error dialogs should include a description of the error, step-by-step instructions for
how to recover from it (or a pointer to information on how to recover from it if the
instructions are long), and a pointer to more information about why the error might have
occurred. If the error involves a specific entity (for instance, a file, user, or host), name the
entity in the error message, as shown in Figure 10-5. Invoke Error dialogs only when
they’re directly relevant to the user; for example, don’t tell the user that the printer is out
of paper until the user has a job in the queue.

Figure 10-5 Error Dialog With Specific Entity

Warning Dialogs

Warning dialogs should clearly state what data is likely to be lost and why, and give the
user a chance to cancel the action.

Designing Dialogs

217

Question Dialogs

Limit your use of Question dialogs to those situations where the user couldn’t have
provided the information in advance. Also, don’t use Question dialogs for questions that
relate to a pending destructive action—for these cases, use Warning dialogs instead.

Working Dialogs

For Working dialogs, use the Indigo Magic scale to dynamically indicate the percentage
of how much of the operation is complete. A Working dialog, also known as Progress
dialog or Percent Done indicator, is shown in Figure 10-6. See “Indigo Magic Scales” in
Chapter 9 for more information about these indicators.

Figure 10-6 Working Dialog with Indigo Magic Scale

As described earlier in this chapter in “Choosing Specific Actions for Your Dialogs,”
Working dialogs should include at least one way to interrupt the task in progress. If the
dialog is modal, you should also switch from the general-purpose pointer to the watch
pointer in the dialog’s parent window. If for some reason you’re unable to include any
buttons in the Working dialog (such as Cancel, Pause, Resume, or Help), switch to the
watch pointer in the Working dialog to indicate that user input will be ignored while the
operation is in progress. See “Standard Pointer Shapes and Colors” in Chapter 11 for
more information about the watch pointer.

218

Chapter 10: Dialogs

Guidelines for Designing Dialogs

When choosing the window decorations, initial state, and layout of dialogs . . .

❑ Associate every dialog with a primary or support window (its parent) that’s mapped
to the screen.

❑ Use the window decorations and Window menu entries listed in Table 3-1 and
described in “Window Decorations and the Window Menu” and “Rules for Labeling
the Title Bar in Windows Other Than Main” in Chapter 3.

❑ Have the default size large enough to allow all of the components and information
to be displayed in their entirety.

❑ Place the dialog on the screen either near (but not overlapping) any related
information in the parent window, or in the center of the parent window if the
contents of the dialog aren’t related to the contents of the parent window.

❑ Locate the initial keyboard focus in the field with which the user is most likely to
want to interact.

❑ Be sure the information being displayed in the dialog matches the current state of the
application. If the dialog is modeless, update this information dynamically.

❑ Include a response area that contains standard dialog actions (pushbuttons) tailored
to the type and purpose of the dialog. Also include an input area that consists of
whatever controls are necessary for selecting objects or setting application
parameters in Prompt dialogs. Include a message area in Error, Warning, Question,
Working, and Information dialogs.

❑ Don’t include secondary work areas; if you need additional work areas, use a
support window instead.

❑ Don’t include menus. If the dialog includes so much functionality that menus are
necessary, use a support window.

When choosing pushbutton actions for dialogs . . .

❑ Use a subset of the standard dialog actions (Yes, No, OK, Close, Apply, Retry, Stop,
Pause, Resume, Clear, Reset, Cancel, and Help), and have them appear in that order.
If you include additional buttons, put them after the OK and Apply buttons but
before the Cancel and Help buttons.

❑ Include a Help button unless the situation is explained thoroughly in the dialog.

❑ Avoid using both OK and Apply on the same dialog.

Designing Dialogs

219

❑ To decide between OK and Apply, determine whether users are more likely to use
the dialog to make one set of changes at a time (if so, use OK), or whether they’re
more likely to want to make and apply changes repeatedly before closing the dialog
(in this case, use Apply).

❑ Include a Cancel/Close button on any dialog that has an Apply button.

❑ Include a Cancel button on Working dialogs and, if possible, a Pause button (with the
option of later resuming).

When choosing and creating default actions . . .

❑ Whenever appropriate, choose one of the actions to be the default action.

❑ Have OK be the default action for Information dialogs (which typically have buttons
only for OK and Help).

❑ Have the response that users are most likely to select be the default action for
Question, Warning, Error, and any other dialogs that contain buttons but no text
fields.

❑ Have the response that users are most likely to select after entering a text string be
the default action for dialogs that have only one text field. Use no other controls than
the buttons in the response area (such as the File Selection and Prompt dialogs).

❑ Don’t have a default action for dialogs that contain multiple text fields.

When labeling dialog buttons . . .

❑ Replace the “Yes” and “No” labels in Warning and Question dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked.

❑ Replace the “OK” or “Apply” labels in Prompt or Warning dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked,
unless the button is used for more than one purpose, or in the rare instance that “OK”
and “Apply” are used together in a Prompt dialog.

❑ In all other cases, use the OSF/Motif standard names.

When deciding what content to include in specific types of dialogs . . .

❑ Use Prompt dialogs to collect information in related chunks—that is, avoid collecting
unrelated pieces of information in the same dialog, and don’t launch multiple dialog
boxes sequentially to collect several pieces of information if these pieces are
frequently collected at the same time.

220

Chapter 10: Dialogs

❑ Include a description of the error, step-by-step instructions for how to recover from
it, and a pointer to more information in Error dialogs. If the error involves a specific
entity (for instance, a file, user, or host), name the entity in the error message.

❑ Invoke Error dialogs only when they’re directly relevant to the user; for example,
don’t tell the user that the printer is out of paper until the user has a job in the queue.

❑ State what data is likely to be lost and why, and give the user a chance to cancel the
action in Warning dialogs.

❑ Limit your use of Question dialogs to those situations where the user couldn’t have
provided the information in advance.

❑ Don’t use Question dialogs for questions that relate to a pending destructive
action—for these cases, use Warning dialogs instead.

❑ Dynamically indicate how much of the operation is complete with the Indigo Magic
scale used as a percent-done indicator in Working dialogs.

❑ Switch from the general-purpose pointer to the watch pointer in the parent window
of a modal Working dialog.

Invoking Dialogs

Users expect to encounter dialogs in certain situations. This section describes the most
common situations and gives an example of the dialog your application should provide
if users can encounter this situation when interacting with your application. Topics
include:

• “Invoking Dialogs When Manipulating Files”

• “Other Situations for Invoking Dialogs”

For more information about the standard menu entries referred to in this section, see
“Standard Menus” in Chapter 8.

Since dialogs are designed to get the user’s attention, overuse of them will be distracting
to the user. Similarly, don’t use application-generated dialogs to provide general status
information; use a status area in the associated primary or support window instead (see
“Status Areas in Primary Windows” in Chapter 6).

Invoking Dialogs

221

Invoking Dialogs When Manipulating Files

Users expect to be prompted with a dialog whenever they choose a menu entry that
includes an ellipsis. These dialogs prompt the user for information that’s necessary
before the action can be completed, as described in the following common examples.

• “Open...” from the File (or leftmost) menu should display the Indigo Magic File
Selection dialog shown in Figure 10-2. The first time this dialog is opened for an
application, it should show the current working directory and no specific file.
Subsequently, it should come up in the state it was last in when the user dismissed
it—that is, it shows the last directory the user traversed to, and the file that the user
opened the last time is selected. (See Table 10-1 and Figure 10-2 earlier in this
chapter for more information about the Indigo Magic File Selection dialog.)

• “Save As...” from the File (or leftmost) menu should display the Indigo Magic File
Selection dialog. If the file being saved doesn’t exist yet, the dialog should show the
current working directory and no specific file. If the file exists, the dialog should
show that file’s directory, and the current name of the file should be selected. If the
user uses “Save As...” to change the name of an existing file, your application
should create a copy of the existing file with the new name, close the previous file,
and open the new file. (See “File Menu” in Chapter 8.)

When users open, close, or save changes to files, prompt them with the Warning dialog
shown in Figure 10-4 whenever these actions will cause data to be lost. The standard
situations in which this can arise include the following (see “Application Models” in
Chapter 6 for a discussion of the single- and multiple-document application models
described in the following paragraphs):

• In an application that allows only one document to be open at a time, when the user
chooses to open another (new or existing) document and there are unsaved changes
in the currently opened document. The user can open another document by
selecting “New” from the File menu, by selecting “Open...” from the File menu and
using the File Selection dialog, or by choosing a file from the “Reopen” cascading
menu in the File menu.

• When the user chooses “Close” from the File menu in a co-primary window, and
the co-primary window contains data that will be lost if the window is closed. This
situation is especially common in applications that support multiple open
documents because for these applications, closing a co-primary window is
equivalent to closing a file.

• When the user chooses “Exit” from the File menu, and at least one open co-primary
window contains data that will be lost if the application is exited. For applications

222

Chapter 10: Dialogs

that support multiple open documents, prompt the user with a separate dialog box
for each file that’s currently open and has unsaved changes.

Other common file-related situations that require dialogs include:

• When the user chooses “Save” from the File menu, and the current file is untitled. In
this situation, prompt the user with the Indigo Magic File Selection dialog, as
described above for “Save As....”

• When the user is interacting with the File Selection dialog and chooses a filename
that already exists. In this situation, prompt the user with the Warning dialog
shown in Figure 10-7.

Figure 10-7 Warning Dialog for Overwriting a File

• When the user chooses “Revert” from the File menu, and the file currently has
unsaved changes. In this situation, prompt the user with the Warning dialog shown
in Figure 10-8.

Figure 10-8 Warning Dialog for Reverting to Previous Version

Invoking Dialogs

223

Other Situations for Invoking Dialogs

When the user chooses “Product Information” from the Help menu, provide an
Information dialog like the one shown in Figure 10-9. (See “Product Information” in
Chapter 4 for some suggestions about what to include in Product Information dialogs.)

Figure 10-9 Product Information Dialog

When users initiate an operation that takes more than five seconds to complete, your
application should display a Working dialog. In this situation, prompt the user with the
Working dialog shown in Figure 10-6. Note that you might have to choose one of several
different platforms as your standard for estimating times of operations. See “Working
Dialogs” earlier in this chapter for more information about the content of these dialogs.

When the user chooses “Paste” from the Edit menu and there’s nothing currently on the
clipboard to be pasted, bring up an Information dialog that says “The clipboard is
empty” and that contains the single button “OK.” (See “Edit Menu” in Chapter 8.)

Guidelines for Invoking Dialogs

When determining when to display a dialog and which dialog to display . . .

❑ Limit the use of dialogs to those cases when they’re absolutely necessary. Don’t use
dialogs to provide general status information—use a status area in the associated
primary or support window instead.

❑ Invoke a dialog whenever users choose a menu entry that includes an ellipsis.

❑ Display the Indigo Magic File Selection dialog when the user chooses “Open...” from
the File menu. The first time this dialog is opened, it should show the current

224

Chapter 10: Dialogs

working directory and no specific file. Subsequently, it should come up in the state it
was last in when the user dismissed it.

❑ Display the Indigo Magic File Selection dialog when the user chooses “Save As...”
from the File menu. If the file being saved doesn’t exist yet, the dialog should show
the current working directory and no specific file. If the file exists, the dialog should
show that file’s directory, and the current name of the file should be selected.

❑ When users open, close, or save changes to files, prompt them with a Warning dialog
whenever these actions will cause data to be lost:

• In an application that allows only one document to be open at a time, when the
user chooses to open another (new or existing) document and there are unsaved
changes in the currently opened document. (For example, the user chooses
“New,” “Open,” or “Reopen” from the File menu.)

• When the user chooses “Close” from the File menu in a co-primary window,
and the co-primary window contains data that will be lost if the window is
closed.

• When the user chooses “Exit” from the File menu, and at least one open
co-primary window contains data that will be lost if the application is exited.
For applications that support multiple open documents, prompt the user with a
separate dialog box for each file that’s currently open and has unsaved changes.

❑ Prompt users with the File Selection dialog when they choose Save from the File
menu and the current file is untitled. The behavior is the same as the “Save As...”
entry in this situation.

❑ Prompt users with a Warning dialog when they’re interacting with the File Selection
dialog and they choose a filename that already exists.

❑ Prompt users with a Warning dialog when they choose “Revert” from the File menu
and the file currently has unsaved changes.

❑ Display an Information dialog when a user chooses the “Product Information” entry
from the Help menu.

❑ Display the Working dialog when users initiate an operation that takes more than
five seconds to complete. Note that you might have to choose one of several different
platforms as your standard for estimating times of operations.

225

Chapter 11

11.User Feedback

Your application should supply feedback to users so that they know it’s working and
what it’s doing. This chapter covers the following topics:

• “Types of Feedback” briefly describes various types of feedback users expect your
application to provide; it also tells you where to look in this guide for more
information about each type of feedback.

• “Pointer Shapes and Colors” discusses when to use each of the standard pointer
shapes and provides guidelines for designing your own pointer shapes.

Types of Feedback

Your application should provide feedback to users using the techniques described in this
section. Note that most of these techniques are covered in other chapters of this guide, as
indicated; these other chapters also include the explicit checklist guidelines to follow, so
they’re not repeated here. Topics include:

• “Providing Graphic Feedback”

• “Keeping Information Up to Date”

• “Providing Messages to the User”

Providing Graphic Feedback

Appropriate desktop icons for your application’s executable and data files allow users to
readily identify your application, files that were created using your application, and the
current state of the application (that is, running or not running). Design executable and
data file icons to provide this sort of graphic feedback, as discussed in Chapter 2, “Icons.”

The Indigo Magic look includes graphic modifications that were made to standard IRIS
IM in order to improve the level of user feedback. For instance, locate highlight visually
indicates which components are live functional objects and which are passive graphics.

226

Chapter 11: User Feedback

In addition, scrollbars were redesigned to keep track of their initial positions, and radio
buttons and checkboxes show their state more emphatically. Your application should use
the Indigo Magic look, which is discussed in “The Indigo Magic Look: Graphic Features
and Schemes” in Chapter 3.

Users expect the pointer to change shape to reflect the current state of the window—for
example, when the application is busy processing and can’t accept keyboard or mouse
input, the pointer changes to a watch. Guidelines for pointer shapes are discussed later
in this chapter, in “Pointer Shapes and Colors.”

As users select data in a window, highlight that data to show what’s included in the
current selection. The data should remain highlighted even when the window isn’t the
currently active window. See “Highlighting a Selection” in Chapter 7 for more
information about highlighting selections.

Keeping Information Up to Date

As users set particular values in components such as radio buttons, check boxes, lists,
and option menus, your application should always indicate the current values so that the
user knows what they are. For example, the Language control panel highlights the
current values for “Locations” and “Keyboards” in the two corresponding lists. Radio
buttons, checkboxes, lists, and option menus are discussed in more detail in Chapter 9,
“Controls.”

Even if users can change values or data without using an explicitly provided component,
your application should still endeavor to display the current information. For instance,
users can change the file hierarchy using the shell; if your application displays
information affected by such a change (such as a directory view), the display should
update dynamically as the user makes the change. If it’s impossible or if it would have a
significantly adverse effect on your application’s performance to make the display
dynamic, choose a design that looks static. For example, you might use label text, which
looks like it’s a permanent part of the background, rather than text fields, which look like
they should be updated constantly. The desktop uses this strategy for the “business
cards” that are displayed when a user double-clicks a person icon.

When component settings apply to a specific object, the displayed components should
reflect the values for the currently selected object (if there is one). For example, if you
select some text in an IRIS Showcase file, the “Font Family,” “Font Size,”
Bold/Italic/Underline, and color options in the Master Gizmo are updated to display the
characteristics of the selected text.

Types of Feedback

227

Providing Messages to the User

In addition to providing immediate graphic feedback through your application’s icons,
components, and pointers, provide textual messages that describe your application’s
status. Keep in mind that by default the window manager for the Indigo Magic Desktop,
4Dwm, sends stdout and stderr messages to the Console window, which users typically
keep minimized. (Users can choose to have stderr messages appear in a dialog box by
using the Desktop Settings control panel available from the Desktop->Customize
cascading menu in the Toolchest, and they can of course un-minimize the Console
window.) Because of these default settings, you can’t be sure that users will notice
messages sent to stdout and stderr; therefore, use dialogs or status areas in your
application instead.

In particular, use dialogs to provide warning messages, error messages, and
work-in-progress feedback, as discussed in Chapter 10, “Dialogs.” Also define an area on
primary windows for status messages in the cases discussed in “Status Areas in Primary
Windows” in Chapter 6. Finally, change the label (or possibly the image) of your
application’s minimized window when appropriate to provide feedback; “Minimized
Windows” in Chapter 3 discusses when to use this technique.

General User Feedback Guidelines

❑ Provide graphic feedback with appropriate desktop icon designs, by using the
Indigo Magic look, by changing pointer shapes appropriately, and by highlighting
selected text.

❑ Be sure your application displays up-to-date information—in controls and
components (display the settings that correspond to the currently selected object or
the current values), and in information displays (such as directory views). If the
information being displayed can’t be dynamically updated, choose a design that
looks static.

❑ Provide textual message to the user through dialogs, through status areas on your
primary windows, and by changing the label of your minimized window when
appropriate.

228

Chapter 11: User Feedback

Pointer Shapes and Colors

Your application should use different pointer shapes to indicate when it’s busy or in a
particular mode, or when one of its windows isn’t accepting input. This section
describes:

• “Standard Pointer Shapes and Colors”

• “Designing New Pointer Shapes”

Standard Pointer Shapes and Colors

The OSF/Motif Style Guide defines several standard pointer shapes. Your application
should use these standard shapes for the purposes described in Table 11-1; the table also
notes any additions and exceptions to the OSF/Motif policies for using these pointers. If
your application requires functionality beyond what’s described below, design your own
new pointers, as described in “Designing New Pointer Shapes,” rather than extend the
functionality of these standard ones.

Table 11-1 Standard Pointer Shapes and Colors

Pointer Name Purpose Additions and Exceptions to OSF/Motif Style

upper-left
arrow

General-purpose pointer, used for
selecting data, setting the values of
controls, and initiating actions (for
example, by clicking on a button).

In the Indigo Magic environment, this pointer should be red with
a white outline (rather than black with a white outline) so that it’s
easier to see against most typical user-customized background
colors and patterns.

upper-right
arrow

Indicates that a menu is being
displayed and that the application is
waiting for the user to select a menu
item or remove the menu.

This is the default pointer when a menu is pulled down from a
menu bar, popped up from the right mouse button, or displayed
from an option menu button. (See Chapter 8, “Menus,” for details
on the various types of menus.)

watch Indicates that an operation is in
progress in the area, and that all
mouse-button and keyboard events
are ignored in the area.

Use this pointer instead of the hourglass because the watch is a
more universally recognized symbol for time. Also, use this
pointer if you estimate that the operation generally takes more
than 3 seconds. (Note that you might have to choose one of
several different platforms as your standard for estimating times
of operations.) For less than 3 seconds, maintain the current
pointer shape to avoid distracting users. For more than 5 seconds,
use a work-in-progress dialog in addition to the watch pointer.
(See Chapter 10, “Dialogs.”)

Pointer Shapes and Colors

229

The OSF/Motif Style Guide defines a few pointers that you shouldn’t need to use:

• Hourglass—Use the watch instead of the hourglass because the watch is a more
universally recognized symbol for time.

• X—Reserved for use by the window manager.

OSF/Motif also defines a caution pointer to be used for indicating that all mouse and
keyboard events are ignored in the area until the user performs an expected action in a
primary modal or application modal dialog. You can use this pointer in your application
if you want; note that many Indigo Magic applications don’t use it because at this time

I-beam
pointer

Indicates that your application is in
text-editing mode. (Note that this
I-beam pointer is different from the
I-beam text insertion cursor.)

OSF/Motif allows this pointer to be used for indicating that the
pointer is over an editable text component in a window that uses
implicit focus. Since you should use explicit focus when moving
within a window, you don’t need the I-beam pointer for this
purpose. However, you can use it to indicate that your
application is in text-editing mode; this might be useful if your
application can edit both text and graphics, for example.

question
mark

Indicates that the user is in
context-sensitive help mode and
needs to click on an area of the
screen to specify the exact help
information requested.

none

cross hair Used to make fine position
selections; for example, to indicate a
pixel to fill in a drawing program, or
to select the endpoint of a line.

none

resize Indicates positions when resizing an
area.

none

4-directional
arrow

Indicates that either a move
operation or a resize operation
(before the resize direction has been
determined) is in progress.

none

Table 11-1 (continued) Standard Pointer Shapes and Colors

Pointer Name Purpose Additions and Exceptions to OSF/Motif Style

230

Chapter 11: User Feedback

there’s no automatic support for it in IRIS IM. (See “Dialog Modes” in Chapter 10 for
more information on primary and application modal dialogs.)

Designing New Pointer Shapes

You might find it necessary to design new pointer shapes that represent functionality
specific to your application, particularly if your application has modes. In these cases, the
pointer shape can be used to indicate the current mode. For example, a paint program
typically has different tools or modes that the user can select; the pointer shape might
resemble a specific brush style, spray paint can, eraser, or I-beam pointer, depending on
the tool selected. When you design new pointer shapes, follow the guidelines listed in
the reference page on Pointer Shapes in the OSF/Motif Style Guide: create a pointer shape
that gives a hint about its purpose and is easy to see, avoid shapes that create visual
clutter, and make its hotspot easy to locate. (The hotspot identifies where mouse actions
occur.)

Pointer Shapes and Colors Guidelines

When deciding which pointers to use in your application . . .

❑ Use the standard pointers when possible.

❑ Use the upper-left pointing arrow as a general-purpose pointer; this pointer should
be red with a white outline.

❑ Use the upper-right pointing arrow when a menu is pulled down from a menu bar,
popped up from the right mouse button, or displayed from an option menu button.

❑ Use the watch pointer for operations that take more than 3 seconds. (For less than 3
seconds, maintain the current pointer; for more than 5 seconds, also use a
work-in-progress dialog.)

❑ Use the I-beam pointer to indicate that your application is in a text-editing mode, but
don’t use it to indicate implicit focus over a text object within a window.

❑ Use the question mark to indicate that the user is in context-sensitive help mode.

❑ Use the sighting pointer (crosshair) to make fine position selections.

❑ Use resize pointers to indicate positions when resizing an area.

❑ Use the 4-directional arrow to indicate that either a move operation or a resize
operation is in progress.

Pointer Shapes and Colors

231

❑ Don’t use the hourglass pointer; use the watch pointer instead.

❑ Don’t use the X pointer (it’s reserved for the window manager).

❑ Don’t assign new functionality to the standard pointer shapes; instead, design your
own new pointer shape.

When designing new pointer shapes . . .

❑ Create a pointer shape that gives a hint about its purpose.

❑ Make the shape easy to see.

❑ Make the hotspot easy to locate.

❑ Avoid shapes that would create visual clutter.

233

Appendix A

A. Summary of Guidelines

This appendix contains an all-inclusive list of the guidelines for designing applications
for the Indigo Magic Desktop Environment. Its purpose is to serve as a master checklist
and summary; to understand the rationale for these guidelines, refer back to the chapters
of this manual where they are discussed in detail. The guidelines are grouped as follows:

• “Icon Appearance Design Guidelines” on page 235

• “Icon Behavior Guidelines” on page 236

• “Application Icon Accessibility Guidelines” on page 237

• “Indigo Magic Look Guidelines” on page 237

• “Application Window Characteristic Guidelines” on page 238

• “Guidelines for Keyboard Focus Across Windows” on page 241

• “Minimized Window Guidelines” on page 241

• “Desks Guidelines” on page 242

• “Session Management Guidelines” on page 243

• “Software Installation Guideline” on page 243

• “Guidelines for Designing Online Help” on page 243

• “Guidelines for Creating SGIHelp Content” on page 246

• “Desktop Variables Guidelines” on page 248

• “File Monitoring Guideline” on page 249

• “Data Exchange Guidelines” on page 249

• “Application Model Guidelines” on page 250

• “Primary Window Guidelines” on page 250

• “Support Window Guidelines” on page 251

• “Pointer Behavior Guidelines” on page 252

• “Keyboard Focus and Navigation Guidelines” on page 252

234

Appendix A: Summary of Guidelines

• “Selection Guidelines” on page 253

• “Drag and Drop Guidelines” on page 254

• “Menu Traversal and Activation Guidelines” on page 254

• “Pull-Down Menu Guidelines” on page 255

• “Popup Menu Guidelines” on page 258

• “Tab Panel Guidelines” on page 259

• “Pushbutton Guidelines” on page 259

• “Option Button Guidelines” on page 260

• “Checkbox Guidelines” on page 262

• “Radio Button Guidelines” on page 263

• “LED Button Guidelines” on page 264

• “List Guidelines” on page 264

• “Text Field Guidelines” on page 265

• “Scrollbar Guidelines” on page 266

• “Indigo Magic Scale Guidelines” on page 268

• “Label Guidelines” on page 269

• “File Finder Guidelines” on page 269

• “Thumbwheel Guidelines” on page 270

• “Dial Guidelines” on page 270

• “Guidelines for Using the Various Types and Modes of Dialogs” on page 271

• “Guidelines for Designing Dialogs” on page 272

• “Guidelines for Invoking Dialogs” on page 274

• “General User Feedback Guidelines” on page 275

• “Pointer Shapes and Colors Guidelines” on page 276

Icon Appearance Design Guidelines

235

Icon Appearance Design Guidelines

For any icon you create . . .

❑ Provide a meaningful, distinctive symbol that gives your product an identity and
that allows users to readily identify your application and its corresponding custom
data files, if any.

❑ Keep your design fairly simple because desktop icons can be displayed at very small
sizes.

❑ Make sure that your icon can be identified across the range of viewing sizes.

❑ Color most of your icon using the icon color predefined by IconSmith so that your
icon’s state is easy to detect.

❑ Use two or more areas of accent colors to help your icon stand out against
user-customized background colors.

❑ Avoid small areas of color (2-4 pixels) because they’re difficult to see against
patterned backgrounds.

❑ Include an outline around your custom symbol, and use the outline color supplied by
IconSmith.

❑ Avoid or use sparingly intense, strongly saturated colors and the specific colors used
by the Indigo Magic Desktop—bright yellow, dim yellow, royal blue, light
gray-green, cadet blue, and Navajo white. These colors make it difficult to
distinguish between certain icon states and to find your icon against the background
colors of many desktop tools.

❑ Orient your icon so that it displays a three-quarter view that faces the lower right
corner of the screen.

When designing an application icon . . .

❑ Include the magic carpet, the generic executable symbol, with your application’s
symbol.

❑ Indicate the state of the application (not running vs. running) by moving the magic
carpet from a horizontal (not running) to vertical (running) position, or by providing
two different application symbols and moving the magic carpet from a horizontal to
vertical position. Remember that your application symbols should resemble a
progressive animation when viewed in succession.

❑ Make sure that your application symbols do not obscure the magic carpet in either
its horizontal or vertical position.

236

Appendix A: Summary of Guidelines

❑ Application icons that have two separate symbols for the not running and running
states should make sure that the main part of the symbol remains in the same
location during both states, so that the symbol appears stationary to the user.

If your application saves data in a custom file format . . .

❑ Design a unique data file format symbol that is readily associated with your
application icon design and also indicates how the data is used.

❑ If your application is document-based, include the generic data file symbol (stack of
papers) in your design.

❑ If your data file icon does not use the generic data file symbol, create an
appropriately shaped shadow for your file icon and use the predefined shadow color
supplied by IconSmith.

Icon Behavior Guidelines

When creating an FTR to define your application icon’s behavior . . .

❑ Provide a CMD OPEN rule that launches the application. This allows the user to
open your application either by selecting your application icon and then choosing
“Open” from the corresponding Selected menu, or by double-clicking your
application icon.

❑ Provide a CMD ALTOPEN rule that opens the Launch dialog box shown in
Figure 2-12 with the path to your executable displayed in the text field of this
window. This allows the user to open the Launch dialog box by double-clicking your
application icon while holding down the Alt key.

❑ Provide a CMD DROP rule that launches your application with the file specified by
the dropped icon. If your application doesn’t understand the type of file represented
by the icon dropped on it, your application should provide an appropriate error
message to the user rather than launching. This allows the user to launch your
application with a specific file by dragging the file icon and dropping it on your
application icon.

When creating an FTR for your file icon . . .

❑ Provide a CMD OPEN rule that launches your application and automatically opens
the file represented by the file icon. This allows the user to open a file created by your
application either by selecting the file icon and then choosing “Open” from the
corresponding Selected menu, or by double-clicking the file icon.

Application Icon Accessibility Guidelines

237

❑ Provide a CMD PRINT rule that sends the file represented by the file icon to the
specified printer. This allows the user to send your application’s data files to the
default printer by selecting the file icon and then choosing “Print” from the
corresponding Selected menu. It also allows the user to send your application’s data
files to any printer by dragging the file icon and dropping it on an icon that
represents the specific printer.

Application Icon Accessibility Guidelines

When making your application icons accessible to users . . .

❑ Place your application icon on the Applications page in the Icon Catalog. If you
produce a suite of software applications, consider creating your own page.

❑ In your documentation, refer users to the appropriate page in the Icon Catalog after
they’ve installed your application.

❑ When naming your executable, use the product name or choose a name that’s
strongly associated with the product.

❑ When naming your executable, use only lowercase letters. Don’t use numbers,
spaces, or special characters such as underlines or periods. Don’t use an abbreviation
of the product name.

❑ Make sure that a link to your executable (preferred method) or the executable itself
resides in a directory in the user’s default search path. Ideally, place a link to your
executable in the /usr/sbin directory. This helps ensure that users can quickly find
your application icon using the Find an Icon tool.

Indigo Magic Look Guidelines

When designing the look for your application . . .

❑ Use the Indigo Magic look rather than the standard IRIS IM look.

❑ Use the pre-packaged color and font schemes supplied by Silicon Graphics rather
than designing your own colors and fonts.

238

Appendix A: Summary of Guidelines

Application Window Characteristic Guidelines

In general, when deciding on the characteristics for your application windows . . .

❑ Determine which category (main, co-primary, support, or dialog) each application
window belongs to and assign characteristics appropriately.

When setting up your window decorations . . .

❑ Include a Window menu button for all windows.

❑ Include resize handles only if the window contains resizable components such as
work areas, scrolling lists, and text input fields.

❑ Include a Minimize button for all primary windows. Do not include this button on
support windows or dialogs.

❑ Include a Maximize button only if the window contains resizable components.

(To see the above window decoration requirements arranged according to window type,
see Table 3-1.)

When designing the Window menus for your application windows . . .

❑ Include “Restore Alt+F5” for all primary windows. Include it for support windows
and dialogs only if the menu contains a “Maximize” entry.

❑ Include “Move Alt+F7” for all windows.

❑ Include “Size Alt+F8” and resize handles for windows that contain resizable
components such as works areas, scrolling lists, and text input fields.

❑ Include “Minimize Alt+F9” and the Minimize button for all primary windows. Do
not include the Minimize entry for support windows or dialogs.

❑ Include “Maximize Alt+F10” for windows that are resizable, that is, they have a
“Size Alt+F8” entry.

❑ Include “Raise Alt+F2” for all windows.

❑ Include “Lower Alt+F3” for all windows.

❑ Include “Close Alt+F4” for all windows except the main primary window.

Application Window Characteristic Guidelines

239

❑ Include “Exit Alt+F12” for the main primary window. Include “Exit Alt+F12” for
those co-primary windows from which users can quit the application. “Exit” always
has the same behavior, that is, it quits the application, no matter how it’s activated.
Don’t include “Exit” for support windows or dialogs.

(To see the above Window menu requirements arranged according to window type, see
Table 3-1.)

❑ Always use the default behaviors for the Window menu entries except for “Exit.”
Don’t add functionality to these commands. When users choose “Exit,” your
application must perform any necessary clean up, such as prompting the user to save
unsaved changes before quitting.

❑ Don’t add application-specific entries to this menu. Users don’t expect
application-specific entries in the Window menu.

❑ Don’t add a title to the Window menu.

❑ Don’t use the keyboard accelerators <Alt-F2>, <Alt-F3>, <Alt-F4>,
<Alt-F5>, <Alt-F7>, <Alt-F8>, <Alt-F9>, <Alt-F10>, or <Alt-F12> for other functions
in your application. They are reserved for the 4Dwm Window menu entries.

When specifying the label in the title bar . . .

❑ For all categories of windows, limit the length of each title bar label such that the
entire label displays when the window is viewed at its default size.

❑ Don’t include application-critical information or general status information in the
title bar such as the current page number or whether a file is in view-only mode.

❑ For main windows, first determine if your application uses document files. If it is not
document-based, use the application name only. If it is document-based, use the
application name followed by a colon and the filename (or Untitled if new file) in the
format AppName : filename and update the label whenever the filename changes.
Don’t use the full pathname unless that information is required for users to
distinguish one window from another. If your application is displaying remotely,
add the host name followed by a colon at the beginning of the title bar label in the
format Host : AppName

❑ Don’t include full pathnames unless that information is required by users to
distinguish one window from another. For remote applications, don’t include
domain information.

240

Appendix A: Summary of Guidelines

❑ For co-primary windows used in multiple document models, use the format
AppName : Filename (or AppName : Untitled if a new file). For co-primary windows
used in the “single document, multiple primaries” model, use the format AppName :
Function. Make sure that the function matches the menu entry or the label on the
button that invokes it.

❑ For support windows, use the application name and function in the format:
AppName : Function. Make sure that the function closely matches the menu entry or
the label on the button that invokes it.

❑ For dialog windows, use the application name, followed by the type of dialog in the
format: AppName : DialogType, where DialogType is “Prompt,” “Error,” “Warning,”
“Question,” “Information,” “Working,” or “File Selection.”

❑ Leave spaces between strings and colons in a label.

For windows without title bars . . .

❑ Display the “Exit” option with the right mouse button.

❑ Allow users to resize the window with the left mouse button.

When determining the default, minimum, and maximum sizes for your windows . . .

❑ Specify a default size for each window.

❑ If the window is resizable, specify a minimum size at which all controls and work
areas will be visible and large enough to be usable. If the window is not resizable, set
the minimum size equal to the default size.

❑ If the window is resizable, specify a maximum size such that your application
window doesn’t expand to fill screen space unnecessarily. If the window is not
resizable, set the maximum size equal to the default size.

When considering window placement . . .

❑ Set a preferred window position for all primary windows. Don’t set a required
window position for primary windows.

❑ Try to anticipate other application windows that may be displayed with your
application and set your preferred default position appropriately.

Guidelines for Keyboard Focus Across Windows

241

Guidelines for Keyboard Focus Across Windows

When designing your application windows . . .

❑ Make sure that your application works well under implicit focus across windows.

❑ Don’t have your application move the pointer to another location on the screen.
Always allow the user to control the position of the pointer on the screen.

When incorporating a “pointer grab” function into your application . . .

❑ If the user is always going to specify the data to capture with a single action such as
a single mouse click or a single mouse drag, use the single-action pointer grab model;
otherwise use the multiple-action pointer grab model.

❑ Display a standard or modified sighting pointer whenever your application window
grabs keyboard focus. This indicates that the keyboard focus belongs to your
application’s window and that the pointer isn’t currently following implicit focus
across windows.

Minimized Window Guidelines

When designing images for your minimized primary windows . . .

❑ Use a color image rather than a two-color bitmap.

❑ Design your images to look best at the default size of 85x67 pixels.

❑ If your application is based on a single document model, create separate images for
each of the primary windows. If your application is based on a multiple document
model, create one image for the main window and a second image to use for all
co-primary windows.

❑ Choose images that clearly identify the window that is minimized. If you have
multiple images, make sure that the separate images work well together.

❑ Make sure that the images you use for minimized windows will be understood by
an international audience.

❑ Don’t use a snapshot of the desktop icon for the image. This could be confused with
the real icon.

242

Appendix A: Summary of Guidelines

When choosing labels for your minimized primary windows . . .

❑ Limit the label to approximately twelve characters. If you need a few more characters
than this, check that your label will fit with the default size and font for minimized
windows.

❑ If your application is not document-based, use the application name as the
minimized window label for the minimized main window. Use the label Function for
minimized co-primary windows where Function is the same function as in the
co-primary window’s title bar.

❑ If your application is document-based and follows one of the single-document
models, use Filename (or “Untitled” for new files) for the minimized main window
label. Use Function for minimized co-primary window labels where Function is the
same function as in the co-primary window’s title bar.

❑ If your application is document-based and follows one of the multiple-document
models, use the application name as the label for the main window (if it is visible).
The co-primary windows in these models represent the multiple documents and
should have the minimized window label Filename (or “Untitled” for new files).

When determining the behavior for a window that the user has chosen to minimize . . .

❑ Decide which operations should and should not continue to be processed while the
window is minimized.

❑ Indicate status with the minimized window label if your application is typically
minimized during long processes.

❑ Use the default screen locations supplied by 4Dwm for the minimized window. Don’t
specify your own screen location.

Desks Guidelines

When designing your application . . .

❑ Make sure that all windows with associated support or dialogs are visible and
mapped to the screen so that the support windows and dialogs appear only on the
desk where their parent window displays.

❑ Don’t design your application to manage the screen background.

Session Management Guidelines

243

Session Management Guidelines

When designing your application . . .

❑ Have your application create a command line that will launch the application and
restore its current state. This current state should minimally include reopening any
files that are currently open under the application and opening any primary or
support windows that are currently open.

❑ Update this command line as the state of the application changes.

❑ If your application allows users to create and edit data files, have 4Dwm notify your
application when the user chooses “Log Out.”

If your application is running when the user chooses “Log Out” and there are unsaved
changes for a specific file . . .

❑ Save these changes into another file and name it something logical such as
original_file_name.save. When the application is restarted at login, post a dialog that
tells the user that this file with unsaved changes exists and query the user to
determine whether to open the original file or the file with the unsaved changes.

❑ If you cannot implement the preferred strategy described above, ignore the user’s
unsaved changes. Do not automatically save the user’s changes by default.

Software Installation Guideline

❑ Make sure that users can install and remove your application through the Software
Manager, an Indigo Magic Desktop utility.

Guidelines for Designing Online Help

When designing access to online help for your application . . .

❑ Provide access in each window of your application from either a Help menu if the
window has a menu bar or a Help button if the window doesn’t have a menu bar.

❑ Use SGIHelp. This provides users with a familiar viewer and familiar navigation
techniques when reading the online help for your application.

244

Appendix A: Summary of Guidelines

When defining the types of online help for your application . . .

❑ Provide context-sensitive help, overview information, task-oriented help, a list of
keyboard shortcuts, product information, and an index of help topics.

❑ Provide context-sensitive help for all primary and support windows.

❑ Enable context-sensitive help mode when the user either chooses the “Click for
Help” entry in a Help menu (if the window has a menu bar) or presses <Shift>-<F1>
(whether or not the window has a menu bar). Change the pointer to a question mark
when context-sensitive help mode is enabled.

❑ At a minimum, provide separate context-sensitive help for each control area, work
area, status area, and menu in the window. This help should describe the purpose of
the corresponding area and should include cross-references to task-oriented help
topics which describe tasks which use this area.

❑ Provide overview information for all main windows whether help is provided from
a menu or a button. This overview should briefly describe the functionality of the
entire application.

❑ For co-primary and support windows that include a menu bar, provide overview
information that describes the functionality of that specific window.

❑ Provide task-oriented information for all windows. This information should include
step-by-step instructions for how to accomplish all of the tasks available in the
current window.

❑ For windows with a menu bar, provide access to an index of help topics. This index
should list all available help topics for the application including those that are
generated using the context-sensitive help mode and those that are available directly
from the Help menu. In addition, users should be able to browse the index and select
topics for reading.

❑ Provide keyboard shortcut information for all main windows (whether help is
provided from a menu or a button) and for co-primary and support windows that
include a menu bar. This information should include the mnemonics, accelerators,
and function keys available for the entire application and not just for the current
window.

❑ Provide product information for all main windows (whether help is provided from
a menu or a button) and for co-primary and support windows that include a menu
bar. This information should minimally include the product name and version
number. It might also include other general product information such as copyright
and trademarking, licensing, and customer support access.

Guidelines for Designing Online Help

245

❑ Display product information using an Information dialog so that users who don’t
install an application’s online help can still access version number and customer
support information.

When providing a Help menu in an application window . . .

❑ Include a “Click for Help” entry to enable context-sensitive help mode with the
keyboard accelerator <Shift>-<F1>.

❑ Include an “Overview” entry for main windows. For co-primary and support
windows, include an entry labeled “Overview for <window name>”.

❑ Include entries that represent a list of tasks that users can accomplish in the current
window. If this list of tasks is more than ten or twelve entries, use cascading menus.
These entries shouldn’t have mnemonics or keyboard accelerators.

❑ Include an “Index” entry that allows the user to access the help index.

❑ Include a “Keys & Shortcuts” entry to display all keyboard shortcuts for the
application.

❑ Include a “Product Information” entry.

When providing a Help button in an application window . . .

❑ Provide a Help button for all windows that don’t have a menu bar.

❑ For main windows, provide overview, task-oriented, keyboard shortcuts, and
product information when the user clicks this button.

❑ For co-primary and support windows, provide overview and task-oriented
information when the user clicks this button.

❑ For dialogs, provide help that focuses on the main purpose of the dialog and
describes how to use the dialog.

❑ For primary and support windows that include a Help button, also provide access to
context-sensitive help when the user presses <Shift>-<F1>. Dialogs typically don’t
support context-sensitive help mode.

246

Appendix A: Summary of Guidelines

Guidelines for Creating SGIHelp Content

When writing any online help for your product . . .

❑ Create separate help “cards” for each help topic.

❑ Limit each help card to no more than three viewer windows full of information.

❑ Write a descriptive heading for each help card.

❑ If a particular help topic needs supplemental information, provide links to that
information rather than repeating it in the current card.

❑ Use language your users will understand.

❑ Use figures when appropriate. SGIHelp allows users to view graphics inline with the
help text.

When writing the “Click for Help” context-sensitive information for
your application . . .

❑ Begin by listing the individual controls and areas of your application windows that
you need to describe.

❑ At a minimum, provide separate help cards for each group of controls and areas in
that window.

❑ Provide descriptions in terms of the user tasks the components support.

❑ Don’t include procedural, task-oriented information with the context-sensitive
information—include links to the appropriate task-oriented topics instead.

When writing the overview help cards for your application . . .

❑ Restrict the content to information about what the product does, not how to use it.

❑ Limit the text to one or two viewer windows of information.

❑ Use the heading “Overview” for the main window’s overview help card and
“Overview of <window name>” for co-primary and support windows with overview
help cards.

Guidelines for Creating SGIHelp Content

247

When writing the task-oriented information for your application . . .

❑ Begin by listing the tasks that users will want to accomplish with your application.

❑ For each task, list the step-by-step instructions users will need to accomplish that
task. If these instructions span more than three or four viewer windows, try to divide
this topic into several smaller help topics.

❑ Provide a brief summary paragraph at the beginning of the help card, followed by
the step-by-step information.

When writing the keyboard shortcuts information for your application . . .

❑ Include all shortcuts for your application in a single card—mnemonics, keyboard
accelerators, and function keys.

When creating the index for your help topics . . .

❑ Match the titles in the index as closely as possible to the titles of the help cards.

❑ Place the topics in the index in the following order—overview, list of tasks,
context-sensitive topics, and keyboard shortcuts.

When writing help information that will be available from a Help button rather than
from a Help menu . . .

❑ For the main application window, the help card should contain an overview of your
application, task-oriented information, a list of all keyboard shortcuts, and product
information.

❑ For Help buttons not on the main application window of your application, present
only the help information for the specific window.

❑ If the amount of information on this one help card spans more than three or four
viewer windows of information, after the overview or summary information at the
beginning of the help card, place links which take users directly to the other chunks
of help information contained in that card.

After writing your online help . . .

❑ Have reviewers examine your help content online rather than reviewing a printed
copy. Help topics will “read” differently depending on which paths readers
(reviewers) traveled to get there.

248

Appendix A: Summary of Guidelines

❑ Have reviewers check the titles of the help topics to make sure they are descriptive
and appropriate.

❑ Have reviewers test out all links to make sure they are appropriate.

Desktop Variables Guidelines

In general . . .

❑ Always honor the user’s desktop customization settings. Never override or ignore
them.

When considering color and font schemes for your application. . .

❑ Use the pre-packaged color and font schemes supplied by Silicon Graphics rather
than designing your own.

When considering window placement . . .

❑ Set a preferred window position for all primary windows. Don’t set a required
window position for primary windows.

❑ Try to anticipate other application and tool windows that may be displayed with
your application and set your preferred default position appropriately.

To allow users to control the language for your application . . .

❑ Check the value of the default language each time your application is launched.
Don’t reset this value while the application is running.

To allow users to control the mouse double-click speed for your application . . .

❑ Check the value of the double-click speed each time your application is launched.
Don’t reset this value while the application is running.

If users will be editing and/or browsing ASCII text files in your application . . .

❑ Make their preferred editor (specified in the Desktop control panel) available for use
on text files.

❑ Check the value for the preferred editor each time your application is launched, but
don’t reset this value while your application is running.

❑ If users can only browse the ASCII text files, launch the editor in read-only mode.

File Monitoring Guideline

249

File Monitoring Guideline

❑ If your application needs to stay in sync with the state of any part of the file system,
use FAM. Don’t have your application directly poll the file system to detect changes.

Data Exchange Guidelines

If your application contains data that users may wish to transfer to other applications
or across separate instantiations of your application . . .

❑ Support the Clipboard Transfer Model using the “Cut,” “Copy,” and “Paste” entries
in the Edit menu. In this model, the clipboard is a global entity that’s shared by all
applications. Your application shouldn’t use these entries to refer to a clipboard
that’s private to your application.

❑ When supporting the Clipboard Transfer Model, don’t select or highlight newly
pasted data after a “Paste” operation.

❑ Support the Primary Transfer Model. Assert ownership of the primary selection
when the user begins to make a selection. Insert data at the location of the pointer
when the user clicks the middle mouse button (which isn’t necessarily at the
insertion cursor).

❑ When supporting the Primary Transfer Model, don’t select or highlight newly
transferred data after a transfer operation.

❑ Use persistent always selection highlighting (keep the current selection highlighted
even when your application loses the primary selection), unless the only action that
can be performed on the selection is to copy the data using primary data transfer. In
this case, use nonpersistent selection highlighting—that is, remove the selection
highlight when the selection is no longer the primary selection.

❑ When supporting the Primary Transfer Model, if the current active window has a
selection that isn’t the primary selection, reinstate this selection as the primary
selection if the user presses <Alt-Insert>. Additionally, you can include a “Promote”
entry in the Edit menu to perform the same function.

❑ When supporting the Primary Transfer Model, when the user begins to modify a
selection, such as adding elements to it, reassert ownership of the primary selection
if your application does not currently own it.

250

Appendix A: Summary of Guidelines

❑ When supporting both Clipboard Transfer and Primary Transfer, keep the primary
selection independent from the clipboard. When the user begins to make a selection
in your application, assert ownership of the primary selection but do not change the
ownership of the clipboard. When the user chooses “Cut” or “Copy” from an Edit
menu in your application, assert ownership of the clipboard but do not change the
ownership of the primary selection.

Application Model Guidelines

For all applications . . .

❑ Choose an appropriate application model for combining the different types of
windows in your application.

❑ Use only the allowable parent-child window relationships and keep your
application window hierarchy shallow.

Primary Window Guidelines

When designing a primary window . . .

❑ Use a menu bar unless all of the window’s functionality is available through
pushbuttons. Don’t use a “floating” menu bar in a separate window.

❑ Support keyboard accelerators for Close (Ctrl-W) and Exit (Ctrl-Q) as appropriate,
even if the window doesn’t have a menu bar.

When designing a scrollable work area in a primary window . . .

❑ Use a vertical scrollbar on the right side of the work area when the data being
displayed in the work area may not fit in a vertical direction. Use a horizontal
scrollbar directly below the work area when the data may not fit in a horizontal
direction. Don’t use scrollbars if you’re certain the data will fit.

❑ Disable the appropriate scrollbar when all the data is visible in a given direction.
Don’t remove the scrollbar.

❑ Make each scrollbar span the entire height or width of the work area. Don’t include
controls or status information in the scrollbar region.

Support Window Guidelines

251

When designing control areas in a primary window . . .

❑ Place controls below horizontal scrollbars or to the left of work areas.

❑ Provide pushbuttons for the most frequently accessed application-specific functions
from the pull-down menus. Don’t use pushbuttons for standard menu entries such
as Open, Save, Close, Exit, Cut, Copy, Paste, and Help.

❑ Use pushbuttons only for functions that appear in menus, unless the pushbuttons
are part of a tool palette.

❑ Provide an area for command-line input, if appropriate, in addition to (not in place
of) pushbuttons.

To display status information . . .

❑ Use a status area along the bottom of a primary window if your application needs to
post frequent messages about its status. Provide vertical scrollbars for this area so
that users can view previously displayed messages.

❑ Use a status area to display messages that the user doesn’t have to respond to rather
than posting this noncritical information in dialogs. However, don’t put critical
warning or error messages in the status area (use a dialog instead).

❑ Don’t use the status area to display help information.

When dividing a primary window into panes . . .

❑ Divide panes using separator lines. If users might need to resize the pane, also
include a sash control.

❑ Try to limit the number of panes in a single window to four with no more than three
sash controls.

❑ If certain panes are optional, allow users to hide or show these individual panes
using entries in the “View” menu.

Support Window Guidelines

When designing support windows . . .

❑ Use them to provide access to sets of related controls.

❑ Allow users to access them either through entries in the Tools menu or through
pushbuttons in a tool palette in the parent primary window.

252

Appendix A: Summary of Guidelines

❑ Be sure that each support window has a visible parent primary window that’s
mapped to the screen.

When designing the layout of a support window . . .

❑ Make the layout simple and static. Don’t include multiple panes of information.

❑ Include a response area for standard actions that’s similar to the one dialogs have.

❑ Don’t include a menu bar in most cases, but do support the keyboard accelerator for
Close (Ctrl-W).

When opening support windows . . .

❑ Avoid overlapping the work area of the parent window.

❑ Bring them up as modeless secondary windows.

When allowing the user to make color choices . . .

❑ Use the Indigo Magic color chooser whenever you want to offer the user an
unrestricted choice of colors. For a restricted choice of colors, use a palette of colors
to choose from, a list, an option button, or a set of radio buttons, depending on the
number of choices available.

Pointer Behavior Guidelines

When designing your application . . .

❑ Always allow the user to control the location of the pointer; your application
shouldn’t change the position of the pointer.

❑ Don’t change the gain or acceleration characteristics of the pointer. If your
application requires fine manipulation, provide a zoom feature in the View menu.

Keyboard Focus and Navigation Guidelines

When designing keyboard focus and navigation for your application windows . . .

❑ Use explicit focus for navigating among components within a window.

❑ Support at least the minimum required functionality from the keyboard, such as
navigating to and entering data into editable text fields, using mnemonics and

Selection Guidelines

253

keyboard accelerators to access menu entries, and scrolling any scrollable
component. Keep in mind that some users use alternate input devices that rely on
having functions available from the keyboard.

❑ When the window becomes active for the first time, give focus to the component that
the user is most likely to want to interact with using the keyboard. When a user
returns the keyboard focus to a window that was previously the active window,
return the keyboard focus to where it was when the user moved the focus out of that
window.

❑ Put each component that requires the use of arrow keys to control it in its own field.
The following components are by default put in fields of their own: editable text
fields, lists, scrollbars, and sashes.

❑ Don’t use the default keyboard navigation keys for other purposes. These keys are
<Tab>, <Ctrl>-<Tab>, <Shift>-<Tab>, <Ctrl>-<Shift>-<Tab>, the arrow keys, <F10>,
<Shift>-<F10>, and <Ctrl> in combination with a left mouse button click.

Selection Guidelines

For each collection of data . . .

❑ Use one of the four recommended selection models—single selection, browse
selection, range selection, or discontiguous selection. Don’t use the multiple
selection model.

❑ Automatically scroll the data as the user drags the pointer out of the scrollable data
display region.

❑ Determine if your users will need to create or modify a selection using the keyboard.
If so, then support the keyboard actions defined in Section 4.1.6 of the OSF/Motif Style
Guide. (These actions are automatically supported if you use the IRIS IM list or text
components.)

When highlighting a selection . . .

❑ Update the highlighting continuously as the user initiates and extends the selection.

❑ Use persistent always highlighting, unless the only reason a user can select this data
is to transfer it using the primary transfer model. In this case, use nonpersistent
highlighting.

254

Appendix A: Summary of Guidelines

When managing multiple collections of data in a single window . . .

❑ Deselect the previous selection whenever the user makes a new selection in any of
the collections for cases where the user can select data in only one collection at a time.

❑ Apply the operation to the collection that most recently had a selection made in it
when the user can select data in more than one collection at a time and there are
mouse, keyboard, or menu commands that can be applied to more than one of the
collections.

Drag and Drop Guidelines

When designing drag and drop for your application . . .

❑ Cancel a drag and drop operation if the user presses <Esc>, and leave both the object
and the target as they were before the operation was initiated.

❑ Use the left mouse button for both selecting and dragging non-text objects. Use the
standard cursor in this case.

❑ Use the middle mouse button for dragging text, and replace the cursor with a drag
icon when the text is being dragged.

Menu Traversal and Activation Guidelines

In general, when designing traversal and activation for your menus . . .

❑ Allow users to activate and traverse the menus using the default IRIS IM behaviors
for mouse and keyboard actions.

❑ If a user closes a menu by clicking somewhere outside of the menu, the application
should ignore this click so that users don’t lose selections they’ve made in the
window just because they display and close menus.

❑ Allow users to display and close popup menus using the key combination
<Shift><F10>. When <Shift><F10> displays a popup menu, the location cursor
should be on the first available menu entry. When <Shift><F10> closes the menu, the
keyboard focus should be returned to where it was before the menu was displayed.

Pull-Down Menu Guidelines

255

Pull-Down Menu Guidelines

In general, when designing pull-down menus in a menu bar . . .

❑ Be sure that users can access most of your application’s functionality from the menu
entries. At a minimum, make sure that the core functionality can be accessed from
the menus.

❑ Don’t include more than a 10-12 entries in a menu and make sure that all of your
entries can fit on the screen at one time.

❑ Provide mnemonics for all menus and menu entries. In most cases, the mnemonic
should be either the first character of the name or, if there’s a conflict, a character
that’s strongly associated with and included in the name. Use standard mnemonics
for standard menus and entries.

❑ Limit the use of tear-off menus. Instead, use support windows for groups of controls
that users might want to use continuously.

When selecting specific menus and entries for an application window . . .

❑ Use the standard menus and menu entries as the basis for the overall design of the
menu structure. Include all standard menus and entries that are applicable to your
application.

❑ Include a Help menu as the rightmost menu.

❑ Include an “Undo” menu entry, particularly if users can perform actions that destroy
or significantly change their data .

❑ Include an “Exit” menu entry for all main windows and for co-primary windows if
users will want to completely exit the application from that co-primary window.

❑ Include a “Close” menu entry for all co-primary windows and support windows that
have menu bars. Don’t provide a “Close” entry for main windows.

❑ Include menu entries that repeat the functionality of any pushbuttons on the primary
window.

❑ Include menu entries for actions that are accomplished using a direct manipulation
method or a mouse shortcut such as double-clicking.

❑ Include menu entries for accessing all primary and support windows that are
children of the current window.

❑ Don’t include entries for functions that aren’t available for the current version of
your application.

256

Appendix A: Summary of Guidelines

When naming menus . . .

❑ Use entire one-word titles for menus rather than abbreviations.

❑ Use the standard titles for menus (for example, File and Edit) if they’re applicable,
but change the standard title if this will make the function more clear.

❑ Don’t use a standard menu title if you’re changing the standard definition.

When naming menu entries . . .

❑ Use the standard names for standard menu entries, but don’t use a standard name
for a menu entry that doesn’t support the standard behavior.

❑ Each entry name should be an action word, the value of a parameter, an attribute
name, the name of a cascading menu, or the name of a co-primary, support, or dialog
window. Don’t use more than two words (except for task-oriented Help menu
entries), and avoid using graphic labels for menus entries unless the graphics make
the functionality more clear.

❑ Choose descriptive names that help users learn the functionality of the application.
For cascading menus, choose a name that clearly implies the contents of the menu.

❑ Add a word if necessary to be sure the entry clearly indicates what entity will be
acted upon. For example, you might use “New object” such as “New Folder” or
“New Page” rather than just “New.”

❑ If a menu entry toggles its state, use a checkbox and leave the menu entry name the
same for the different states (“Italics”). If this won’t be clear, toggle the name so that
it indicates what action will be taken if the menu entry is selected (“Show Grid,”
“Hide Grid”).

❑ Capitalize the menu entry using the same rules as capitalizing book titles.

❑ Use entire words rather than abbreviations.

❑ Display an ellipsis (...) after menu entries that bring up a dialog that requests more
information from the user. Don’t use ellipses if the dialog simply brings up
information that the user requested (for example, a Help dialog).

When ordering menus and menu entries . . .

❑ Place the standard menus in the standard order (File, Selected, Edit, View, Tools,
Options, Help), even if you have renamed any of these menus. Place any new menus
between the View and Tools menus.

Pull-Down Menu Guidelines

257

❑ Place standard menu entries in the standard order. “Close” and “Exit” are always at
the end of the leftmost menu whether or not this menu is named File.

❑ Group menu entries logically. If a new menu entry is related to one of the standard
menu entries, place it near that standard menu entry.

❑ Place items in the menu first according to the order they will be used, and second
according to their frequency of use (with more frequently used items closer to the top
of the menu).

❑ Alphabetize entries that can be determined only when the user launches the
application. If this alphabetized group appears in a menu that contains other entries,
place the group at the end of a menu and use a separator between it and the
preceding entries.

❑ Use radio buttons for mutually exclusive menu entries, and checkboxes for a group
of related menu entries, any number of which can be selected at any one time.

❑ Use separators when necessary to group items—for example, to set off a group of
related entries that use radio buttons or checkboxes.

❑ Limit the use of cascading menus. Never use more than one level of cascading
menus.

When selecting keyboard accelerators for menu entries . . .

❑ Use standard keyboard accelerators for standard menu entries; don’t use any of the
standard accelerators for your own entries, even if you’re not using those standard
entries.

❑ Provide keyboard accelerators for the most frequently used menu entries. Don’t
provide accelerators for all menu entries.

❑ Use the key combination <Ctrl>character. Don’t use the key combination
<Alt>character because this conflicts with mnemonics.

❑ For pairs of menu entries where one entry reverses the results of the other entry
(“Undo” and “Redo”), use <Ctrl>character for the most frequently used entry and
<Shift><Ctrl>character for the other entry where character is the same for both
accelerators.

❑ Display all characters in keyboard accelerators as uppercase (for example, display
<Ctrl>s as “Ctrl+S”). For keyboard accelerators that involve uppercase characters,
show the <Shift> key as part of the keyboard accelerator (for example, display
<Ctrl>S as “Shift+Ctrl+S”).

258

Appendix A: Summary of Guidelines

When deciding when to disable menu entries . . .

❑ If selecting the menu entry in the current context would give the user an error
message, show the menu entry as disabled (dimmed).

❑ Avoid using dynamic entries. Rather than removing an entry when it’s temporarily
unavailable, include it and disable it as appropriate.

Popup Menu Guidelines

When choosing when a popup menu should appear . . .

❑ At most, provide a different popup menu for each main area (that is main field or
main pane) of the window. Don’t change the availability of a popup menu based on
what graphical element the pointer is over or based on the selection state of any of
the graphical elements.

When deciding what to include in a popup menu . . .

❑ Include entries for the most commonly used functions from the pull-down menus,
and use the same names in the same order as they’re displayed in the pull-down
menus.

❑ Avoid entries that require checkboxes or radio buttons. These are typically not the
most commonly used menu functions.

❑ Don’t make menu entries the sole access to these functions.

❑ Don’t change the content of the menu based on what graphical element the pointer
is over, or based on the selection state or contents of this element. Instead, put all
entries in the popup menu for the main area of the window, then enable and disable
entries as appropriate.

❑ Don’t include cascading menus and don’t use tear-off menus.

When displaying the contents of the popup menu . . .

❑ Include a title that’s either the name of the application, or if the application has more
than one popup menu, that describes the purpose of the menu.

❑ Use only one separator, which goes between the title and the individual menu
entries.

❑ Show ellipses and keyboard accelerators if these are shown in the corresponding
pull-down menu entry, but don’t show mnemonics.

Tab Panel Guidelines

259

❑ If selecting the menu entry in the current context would give the user an error
message, show the menu entry as disabled (dimmed). Don’t remove the menu entry
when it’s temporarily unavailable.

Tab Panel Guidelines

When binding Page Up and Page Down to tab panels . . .

❑ If your application is based on presenting a page at a time and the user model is that
tabs are used to move through the pages, then bind Page Up and Page Down to the
tabs. In this case, <Ctrl><up arrow> and <Ctrl><down arrow> moves the vertical
scrollbar a window at a time, allowing the user to pan around the current page.

❑ If the user model is that a tab moves to another “document,” and the scrollbar is used
to view various pages in the current document, then bind Page Up and Page Down
to the scrollbar. In this case, no keyboard accelerator exists for moving to the
next/previous tab.

Pushbutton Guidelines

When using pushbuttons . . .

❑ In windows with menu bars, use pushbuttons to provide easy access to the most
frequently used application-specific functions in the pulldown menus. For primary
windows, these pushbuttons appear in the control area of the window.

❑ In windows without menu bars, use pushbuttons to access help and to close the
window.

❑ Use pushbuttons to create tool palettes, either in support windows or in primary
windows.

❑ Use pushbuttons in the response area of a dialog for the standard actions for that
dialog.

❑ Always have the pushbutton perform the same operation (although the input to that
operation may vary based on what data is currently selected). Don’t use the same
pushbutton to perform different tasks based on some mode of the application.

260

Appendix A: Summary of Guidelines

❑ Use pushbuttons to perform an action; don’t use them merely to set state, such as a
parameter value in a dialog box. Use checkboxes, radio buttons, or option menus for
this purpose.

When labeling a pushbutton . . .

❑ Use either a text or graphic label that describes the action associated with the button.
With text labels, use an active verb describing the operation the button performs.
Each text label should be a single, capitalized word. Don’t use abbreviations in
labels.

❑ Center the label on the button.

❑ If the pushbutton opens a dialog to collect more information from the user before the
action represented by the pushbutton can be completed, place an ellipsis after the
button label. Don’t use an ellipsis if the button opens a dialog simply to display some
information to the user as an end result of the operation. This use of ellipses is the
same as that described for menu entries in the section “Naming Menu Entries in the
Pull-Down Menus” in Chapter 8.

When displaying pushbuttons . . .

❑ If the action associated with a button is temporarily unavailable, disable the button
rather than remove it.

❑ Don’t resize pushbuttons when the window is resized.

❑ Don’t use dynamic buttons whose labels change to indicate different functionality
depending on the current context. Instead, use multiple buttons and disable buttons
that represent functionality that’s currently unavailable. With multiple buttons, the
functionality is obvious even if some of the buttons aren’t currently active. With
dynamic buttons, the user has to put the application intothe proper context to
discover some of the functionality. The one exception to this guideline is the
Cancel/Close button used in Dialogs with the Apply button. See “Standard Dialog
Actions” in Chapter 10 for information on this special case.

Option Button Guidelines

When using option buttons . . .

❑ Use an option button when you want to offer the user about 5-12 mutually exclusive
options; use a list for more than 12 choices. If there’s enough space, use radio buttons
for fewer than 5 choices.

Option Button Guidelines

261

❑ Don’t put radio buttons or checkboxes in an option menu.

❑ Don’t use an option button if the user can select several options at the same time—
use a list or a set of checkboxes instead.

❑ Don’t put actions (such as zoom or rotate) in the option menu—use pulldown menus
or pushbuttons instead.

❑ Don’t add or delete the choices in the option menu. If the choices must change, use
a list.

❑ Don’t use cascading menus in the option menu. If there are so many items that they
don’t fit conveniently into an option menu, use a scrolling list instead.

❑ Don’t use a tear-off entry in an option menu.

When labeling an option button . . .

❑ Use the default label for the option button itself, which is the current value of the
parameter.

❑ Use a second label that describes the parameter that the option button controls. This
parameter label should be to the left of the option button and should be followed by
a colon (:) and a space (see Figure 9-2). This label is typically a noun and is not
abbreviated.

When labeling the entries in an option menu . . .

❑ Use nouns that indicate the possible values of the parameter being set.

❑ Use entire words for the entries rather than abbreviations.

When displaying option menus . . .

❑ If one of the entries in an option menu is unavailable for selection in the current
context, disable the menu entry. Don’t remove the entry from the menu. Note that the
user should always be able to display the contents of an option menu even if all of
the menu entries are currently disabled.

❑ Don’t include a title in option menus.

262

Appendix A: Summary of Guidelines

Checkbox Guidelines

When using checkboxes . . .

❑ Use checkboxes for single attributes or states that can be turned on and off, or for
groups of items where multiple items in the group can be selected independently.
(Also see “Using Radio Buttons and Checkboxes in Pull-Down Menus” in
Chapter 8.)

❑ Use checkboxes for groups of less than about six items. When dealing with more than
a handful of items, use a list that allows multiple elements to be selected at the same
time.

❑ Don’t use checkboxes for mutually exclusive options. If only one item in a group of
items can be selected at a time, use radio buttons instead.

❑ Don’t use checkboxes for actions; use pushbuttons instead.

❑ Don’t change the choices in the group based on the current context. If you want to
offer a dynamic set of choices, use a list.

When labeling checkboxes . . .

❑ Give each checkbox a label that describes the attribute, state, or option it controls.

❑ Create a group label for each group of checkboxes, and indent the checkboxes below
the label. This group label should be a noun that describes the function of the group.

❑ Don’t use abbreviations for either the checkbox labels or the group label.

When displaying checkboxes . . .

❑ Keep checkboxes updated to reflect the current state of the application and the
settings of the current selection (if the settings of the checkboxes relate to the current
selection). For example, if you have a checkbox for turning underlining on and off
and the user selects some text, the checkbox should be updated to reflect whether or
not the selection is underlined.

❑ Disable checkboxes representing choices that aren’t currently available. Don’t
remove the checkboxes.

Radio Button Guidelines

263

Radio Button Guidelines

When using radio buttons . . .

❑ Use radio buttons in groups, never as single buttons. If you need to use a single
button that shows an on/off state, use a checkbox instead. (Also see “Using Radio
Buttons and Checkboxes in Pull-Down Menus” in Chapter 8.)

❑ Use radio buttons for mutually exclusive options. If more than one item in the group
can be selected at a time, use checkboxes or a list instead.

❑ Use radio buttons when you want to offer the user fewer than six options. If you have
more than six options, or if screen space is extremely limited, use an option button
instead. If you have more than 12 options, you should consider using a list where
only a single element can be selected at a time.

❑ Don’t use radio buttons for actions; use pushbuttons instead.

❑ Don’t change the choices in a group of radio buttons based on the current context. If
you want to offer a dynamic set of choices, use a list because users expect the
elements of a list to change occasionally, but they don’t expect radio buttons to
change.

When labeling radio buttons . . .

❑ Give each radio button a label that describes the attribute or option it controls.

❑ Create a group label for each group of radio buttons, and indent the radio buttons
below the label. This group label should be a noun that describes the function of the
group.

❑ Don’t use abbreviations for either the radio button labels or the group label.

When displaying radio buttons . . .

❑ Keep radio buttons updated. If the settings of the radio buttons depend on the
current selection, they should be updated when the user makes a new selection so
that they reflect the settings of the new selection.

❑ Disable radio buttons representing options that aren’t currently available. Don’t
remove the radio buttons.

264

Appendix A: Summary of Guidelines

LED Button Guidelines

When using LED buttons . . .

❑ Use LED buttons for single attributes or states that can be turned on and off, or for
groups of items where multiple items in the group can be selected independently.
(Also see “Using Radio Buttons and Checkboxes in Pull-Down Menus” in
Chapter 8.)

❑ Don’t use LED buttons for actions; use pushbuttons instead.

❑ Don’t change the choices in the group based on the current context. If you want to
offer a dynamic set of choices, use a list.

When labeling LED buttons . . .

❑ Label each LED button with a term that describes the attribute, state, or option it
controls.

❑ If there is a group of LED buttons, create a group label for the group, and indent the
LED buttons below the label. Use a noun that describes the function of the group.

❑ Don’t use abbreviations for either the LED button labels or the group label.

List Guidelines

When using lists . . .

❑ Use a list when you want to allow the user to choose a single option from a large list
(that is, more than 15 options). If you have fewer than 15 options, use either an option
button (best for 5-15 options; or a set of radio buttons (best for 2-5 options).

❑ Use a list when you want to allow the user to choose several options from a list of six
or more elements. If you have fewer options, use checkboxes.

❑ If you want to allow the user to choose elements from a dynamic list of options, use
a list regardless of the number of options. (Option menus and groups of checkboxes
or radio buttons should represent static lists of options.)

When labeling a list . . .

❑ Label the list with a noun that indicates the function of the elements in the list. Don’t
use abbreviations in the label.

Text Field Guidelines

265

❑ Place the label directly above and either left-aligned with or slightly to the left of the
first element of the list.

When labeling the list entries . . .

❑ If the elements in the list represent operations to perform, they should be active
verbs. Otherwise, they should be nouns. In either case, use entire words rather than
abbreviations.

When displaying lists . . .

❑ When a window using a list is first opened, the currently selected list elements
should be highlighted and the list should be scrolled to display these. If multiple
elements are selected, scroll the list so that the first selected one appears at the top of
the viewing area. See “Selection” in Chapter 7.

❑ Allow users to select elements in the list according to the selection guideline
discussed in “Selection” in Chapter 7.

❑ Disable list elements that aren’t currently available.

❑ Allow the list to autoscroll (the default behavior) if the user is making a selection and
the selection goes outside the range of the displayed elements. See “Selection” in
Chapter 7.

Text Field Guidelines

When using text fields . . .

❑ Use single-line, editable text fields to display values of parameters that users can
edit.

❑ Use single-line, noneditable text fields to display values of parameters that users
can’t edit, whenever these values either change over time or might need to be
selected by the user. If the value doesn’t change and the user doesn’t need to select
it, use a label.

❑ Don’t use a text field if you need to display and edit pathnames; use the Indigo Magic
File Finder instead.

❑ Use text fields for values that change over time; don’t use labels.

266

Appendix A: Summary of Guidelines

When labeling text fields . . .

❑ Label each editable or noneditable text field, unless the field represents the bulk of a
window and the field’s function is clear. Use entire words in labels rather than
abbreviations.

❑ For single-line text fields, place the label to the left of the text field, and follow the
label with a colon (:) and a space. The label should be vertically centered within the
text field.

When displaying text fields . . .

❑ Use the default selection and highlighting discussed in “Selection” in Chapter 7.

❑ Allow the user to cancel a text edit in progress by pressing <Esc>. That is, once the
user has selected text and started to replace it with new text, <Esc> should cancel any
changes that the user has made.

❑ Keep text fields updated. When a window using a text field is first opened, the
default or current setting (if either exists) for the text field should be shown.

❑ Make the text automatically scroll if the user is making a selection and the selection
goes outside the range of the displayed elements.

❑ When an editable text field can’t be edited in the current context but the information
is still useful to the user, change it to a noneditable text field. If the information isn’t
useful to the user (that is, the user doesn’t need to know the value and won’t need to
select it), disable the text field.

Scrollbar Guidelines

When using scrollbars . . .

❑ Use scrollbars to pan an associated view.

❑ Use scrollbars with components that can be resized such that all of the available
information contained in the component can’t be displayed at one time. Typical
scrollable components include work areas in primary windows, lists, multiple line
text fields, and data display areas in primary or support windows.

❑ Use scrollbars with a list when the number of elements in the list doesn’t fit in the
viewing region (vertical scrollbar), when the elements are too wide to fit in the
viewing region (horizontal scrollbar), or when the window containing the list can be
resized such that either of these situations can occur.

Scrollbar Guidelines

267

❑ Use scrollbars with multi-line text regions when the data can’t all be displayed
vertically or horizontally or when the window can be resized such that this is true.

❑ Don’t use scrollbars with single-line text fields.

❑ Don’t use scrollbars for zooming or for rotation. Use an Indigo Magic thumbwheel
instead.

❑ Don’t use scrollbars to choose a value in a range; use the Indigo Magic scale instead.

When displaying scrollbars . . .

❑ Place vertical scrollbars along the right of the element being scrolled, and place
horizontal scrollbars along the bottom of the element being scrolled.

❑ Keep scrollbars updated. When a window using a scrollbar is first opened, the
scrollbar should reflect the current area being displayed in the scrolled region.

❑ Update the data in the scrolled area continuously as the user drags the slider along
the scroll region. This gives the feeling of direct, continuous control. Don’t wait until
the user has released the slider to update the data, because users often use the current
view of the data to determine when to stop dragging the slider.

❑ When a component is being scrolled, don’t scroll it beyond the first or last elements.
That is, there should be no extra white space before the first element or after the last
element. The exception to this rule is scrolling text elements that represent physical
pages (for example, in a desktop publishing application).

❑ Make all components that use scrollbars automatically scroll when the user makes a
selection that goes outside of the data currently being displayed. Also, make the
component automatically scroll if the user performs an operation that moves the
cursor outside of the current view (for example, if the user inserts or deletes text that
moves the cursor outside of the current view). In this case, the view should be
automatically scrolled so that the cursor is shown when the operation is finished.

❑ When using the <Page Up>, <Page Down>, <Ctrl>-<Page Up>, or <Ctrl>-<Page
Down> key sequences to scroll a page at a time, leave one unit of overlap from the
previous page to make it easier for the user to preserve the current context. This unit
is application-specific; it might be a line of text, an item in a list, a row of icons, or a
specfic number of pixels (for example, in a drawing region). By default, this behavior
is automatic for IRIS IM list and text components.

❑ Remove the slider from the scrollbar when all of the data is currently being
displayed. Don’t remove the scrollbar or disable it in some other fashion.

268

Appendix A: Summary of Guidelines

❑ Allow the user to cancel scroll actions by pressing <Esc>. By default, if the user
presses the <Esc> key while dragging the slider along the scroll region, the scroll
action is canceled, and both the data and the slider are returned to the position they
had before the user initiated the scroll action.

Indigo Magic Scale Guidelines

When using the Indigo Magic scale . . .

❑ Use scales to allow users to change a value in a given range. Use scales in
display-only mode to display values that the user can’t control. For example, use a
display-only scale as a percent-done indicator to show progress in a Working dialog.
(See “Working Dialogs” in Chapter 10.)

❑ Don’t use scales for scrolling.

When labeling a scale . . .

❑ Label it with the current value for the scale.

❑ If the function of the scale isn’t immediately apparent, give the scale an additional
label that indicates its purpose. Don’t use abbreviations in this label.

When displaying scales . . .

❑ Keep scales updated. When a window using a scale is first opened, the slider of the
scale should show the current setting for the scale control.

❑ For sliders where the user can change the value, update the value being manipulated
as the user moves the slider. It should give the impression of direct, continuous
manipulation. For sliders that also manipulate an object, update the object
continuously as well. For sliders that are used only to display values, the slider
should be immediately updated to reflect the new value as the value changes.

❑ Allow the user to cancel a scale operation by pressing <Esc>. If the user presses the
<Esc> key while manipulating the scale, the action should be canceled, and the scale
should return to the position it had before the user initiated the action.

Label Guidelines

269

Label Guidelines

When using labels . . .

❑ Use entire words in labels rather than abbreviations.

❑ Use labels for displaying text information that the user won’t need to edit or select.

❑ Use labels for labeling controls as described under the individual controls in this
chapter.

❑ Use labels for labeling groups of controls. When used to label a group of controls, the
label should be followed by a colon (:) and a space, and should be placed either to
the left of the item in the upper left corner of the group or above and slightly to the
left of the item in the upper left corner of the group.

❑ Use labels for simple instructions when necessary. Before adding instructions to any
of your application windows, however, first try to design some alternatives that
might make the instructions unnecessary. For example, if these instructions are
necessary because the user interface works in a nonstandard way, redesigning the
interface to be more standard is likely to make the instructions unnecessary.

❑ Place labels on the background of the window (that is, the part of the window that
isn’t recessed).

When displaying labels . . .

❑ Don’t change the text or graphic on a label. If this information will change, consider
putting it in a noneditable text field instead; users don’t expect label text to change.

❑ Disable labels when the controls they represent are disabled. Don’t disable group
labels.

File Finder Guidelines

When using the File Finder . . .

❑ Use the File Finder when the user needs to enter the pathname of a directory or file.
This allows the user to drag and drop desktop icons to specify the file and to navigate
the file hierarchy.

❑ When a window using a file finder is first opened, the text field in the file finder
should show the default or current value of the pathname, if any. This value should
also be placed in the history list under the history button.

270

Appendix A: Summary of Guidelines

Thumbwheel Guidelines

When using thumbwheels . . .

❑ Use thumbwheels to change the values of continuous variables (that is, variables that
don’t have discrete values). For discrete values, consider a scale or dial instead.

❑ Use thumbwheels with finite ranges for zooming operations and thumbwheels with
infinite range for rotating objects.

❑ When a thumbwheel is used to change a value that has a clear default, provide a
home button. For example, a Directory View window has a thumbwheel that allows
the user to set the size of the desktop icons. Pressing the home button on this
thumbwheel sets the icons to their default size.

❑ Use thumbwheels when screen real estate is extremely limited.

❑ Don’t use a thumbwheel for panning; use a scrollbar instead. A scrollbar gives the
user much more information about the object being scrolled than a thumbwheel
could.

When displaying a thumbwheel . . .

❑ Update the object or value being manipulated as the user moves the thumbwheel.
The thumbwheel should give the impression of direct, continuous manipulation.

Dial Guidelines

When using dials . . .

❑ Use dials as an alternative to scales for setting parameters. Dials are best for numeric
parameters where the range of allowable values is small and the values are discrete.

When labeling dials . . .

❑ Place a label either directly below or directly above the dial, specifying the parameter
that the dial controls.

❑ When you have a group of dials, place each dial label in the same position relative to
its dial (that is, either all the labels should be below the dials or all the labels should
be above the dials).

❑ Use entire words in the label rather than abbreviations.

Guidelines for Using the Various Types and Modes of Dialogs

271

When displaying dials . . .

❑ When a window using a dial is first opened, the dial should show the current setting.

❑ As a dial is rotated, update the value being manipulated to reflect the new value on
the dial. The dial should give the impression of direct, continuous manipulation.
Also, if the dial is controlling an object, continuously update the object as the dial is
manipulated.

Guidelines for Using the Various Types and Modes of Dialogs

When choosing the type and mode of a dialog . . .

❑ Use a Prompt dialog to ask users for specific information. This dialog can be
modeless or modal.

❑ Use an application-modal Error dialog to tell users about an error they’ve made in
interacting with your application.

❑ Use an application-modal Warning dialog when there’s an action pending that will
cause users to lose data.

❑ Use an application-modal Question dialog to ask users a specific question that they
must respond to before continuing to interact with the application.

❑ Use a Working dialog when an operation takes more than 5 seconds to complete.
This dialog can be modeless or modal.

❑ Use a modeless Information dialog to give users information that’s of immediate
importance. Use this type of dialog sparingly.

❑ Use the modeless Indigo Magic File Selection dialog to allow users to navigate the
file hierarchy and choose a file.

❑ Don’t use system-modal dialogs.

❑ Use modal dialogs to show static information, and update modeless dialogs
dynamically as the current state changes.

272

Appendix A: Summary of Guidelines

Guidelines for Designing Dialogs

When choosing the window decorations, initial state, and layout of dialogs . . .

❑ Associate every dialog with a primary or support window (its parent) that’s mapped
to the screen.

❑ Use the window decorations and Window menu entries listed in Table 3-1 and
described in “Window Decorations and the Window Menu” and “Rules for Labeling
the Title Bar in Windows Other Than Main” in Chapter 3.

❑ Have the default size large enough to allow all of the components and information
to be displayed in their entirety.

❑ Place the dialog on the screen either near (but not overlapping) any related
information in the parent window, or in the center of the parent window if the
contents of the dialog aren’t related to the contents of the parent window.

❑ Locate the initial keyboard focus in the field with which the user is most likely to
want to interact.

❑ Be sure the information being displayed in the dialog matches the current state of the
application. If the dialog is modeless, update this information dynamically.

❑ Include a response area that contains standard dialog actions (pushbuttons) tailored
to the type and purpose of the dialog. Also include an input area that consists of
whatever controls are necessary for selecting objects or setting application
parameters in Prompt dialogs. Include a message area in Error, Warning, Question,
Working, and Information dialogs.

❑ Don’t include secondary work areas; if you need additional work areas, use a
support window instead.

❑ Don’t include menus. If the dialog includes so much functionality that menus are
necessary, you should probably use a support window.

When choosing pushbutton actions for dialogs . . .

❑ Use a subset of the standard dialog actions (Yes, No, OK, Close, Apply, Retry, Stop,
Pause, Resume, Clear, Reset, Cancel, and Help), and have them appear in that order.
If you include additional buttons, they should appear after the OK and Apply
buttons but before the Cancel and Help buttons.

❑ Include a Help button unless the situation is explained thoroughly in the dialog.

❑ Avoid using both OK and Apply on the same dialog.

Guidelines for Designing Dialogs

273

❑ To decide between OK and Apply, determine whether users are more likely to use
the dialog to make one set of changes at a time (if so, use OK), or whether they’re
more likely to want to make and apply changes repeatedly before closing the dialog
(in this case, use Apply).

❑ Include a Cancel/Close button on any dialog that has an Apply button.

❑ Include a Cancel button on Working dialogs and, if possible, a Pause button (with the
option of later resuming).

When choosing and creating default actions . . .

❑ Whenever appropriate, choose one of the actions to be the default action.

❑ Have OK be the default action for Information dialogs (which typically have buttons
only for OK and Help).

❑ Have the response that users are most likely to select be the default action for
Question, Warning, Error, and any other dialogs that contain buttons but no text
fields.

❑ Have the response that users are most likely to select after entering a text string be
the default action for dialogs that have only one text field. Use no other controls than
the buttons in the response area (such as the File Selection and Prompt dialogs).

❑ Don’t have a default action for dialogs that contain multiple text fields.

When labeling dialog buttons . . .

❑ Replace the “Yes” and “No” labels in Warning and Question dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked.

❑ Replace the “OK” or “Apply” labels in Prompt or Warning dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked,
unless the button is used for more than one purpose, or in the rare instance that “OK”
and “Apply” are used together in a Prompt dialog.

❑ In all other cases, use the OSF/Motif standard names.

When deciding what content to include in specific types of dialogs . . .

❑ Use Prompt dialogs to collect information in related chunks—that is, avoid collecting
unrelated pieces of information in the same dialog, and don’t launch multiple dialog
boxes sequentially to collect several pieces of information if these pieces are
frequently collected at the same time.

274

Appendix A: Summary of Guidelines

❑ Include a description of the error, step-by-step instructions for how to recover from
it, and a pointer to more information in Error dialogs. If the error involves a specific
entity (for instance, a file, user, or host), name the entity in the error message.

❑ Invoke Error dialogs only when they’re directly relevant to the user; for example,
don’t tell the user that the printer is out of paper until the user has a job in the queue.

❑ State what data is likely to be lost and why, and give the user a chance to cancel the
action in Warning dialogs.

❑ Limit your use of Question dialogs to those situations where the user couldn’t have
provided the information in advance.

❑ Don’t use Question dialogs for questions that relate to a pending destructive
action—for these cases, use Warning dialogs instead.

❑ Dynamically indicate how much of the operation is complete with the Indigo Magic
scale used as a percent-done indicator in Working dialogs.

❑ Switch from the general-purpose pointer to the watch pointer in the parent window
of a modal Working dialog.

Guidelines for Invoking Dialogs

When determining when to display a dialog and which dialog to display . . .

❑ Limit the use of dialogs to those cases when they’re absolutely necessary. Don’t use
dialogs to provide general status information—use a status area in the associated
primary or support window instead.

❑ Invoke a dialog whenever users choose a menu entry that includes an ellipsis.

❑ Display the Indigo Magic File Selection dialog when the user chooses “Open...” from
the File menu. The first time this dialog is opened, it should show the current
working directory and no specific file. Subsequently, it should come up in the state it
was last in when the user dismissed it.

❑ Display the Indigo Magic File Selection dialog when the user chooses “Save As...”
from the File menu. If the file being saved doesn’t exist yet, the dialog should show
the current working directory and no specific file. If the file exists, the dialog should
show that file’s directory, and the current name of the file should be selected.

General User Feedback Guidelines

275

❑ When users open, close, or save changes to files, prompt them with a Warning dialog
whenever these actions will cause data to be lost:

• In an application that allows only one document to be open at a time, when the
user chooses to open another (new or existing) document and there are unsaved
changes in the currently opened document. (For example, the user chooses
“New,” “Open,” or “Reopen” from the File menu.)

• When the user chooses “Close” from the File menu in a co-primary window,
and the co-primary window contains data that will be lost if the window is
closed.

• When the user chooses “Exit” from the File menu, and at least one open
co-primary window contains data that will be lost if the application is exited.
For applications that support multiple open documents, prompt the user with a
separate dialog box for each file that’s currently open and has unsaved changes.

❑ Prompt users with the File Selection dialog when they choose Save from the File
menu and the current file is untitled. The behavior is the same as the “Save As...”
entry in this situation.

❑ Prompt users with a Warning dialog when they’re interacting with the File Selection
dialog and they choose a filename that already exists.

❑ Prompt users with a Warning dialog when they choose “Revert” from the File menu
and the file currently has unsaved changes.

❑ Display an Information dialog when a user chooses the “Product Information” entry
from the Help menu.

❑ Display the Working dialog when users initiate an operation that takes more than
five seconds to complete. Note that you might have to choose one of several different
platforms as your standard for estimating times of operations.

General User Feedback Guidelines

❑ Provide graphic feedback with appropriate desktop icon designs, by using the
Indigo Magic look, by changing pointer shapes appropriately, and by highlighting
selected text.

❑ Be sure your application displays up-to-date information—in controls and
components (display the settings that correspond to the currently selected object or
the current values), and in information displays (such as directory views). If the

276

Appendix A: Summary of Guidelines

information being displayed can’t be dynamically updated, choose a design that
looks static.

❑ Provide textual message to the user through dialogs, through status areas on your
primary windows, and by changing the label of your minimized window when
appropriate.

Pointer Shapes and Colors Guidelines

When deciding which pointers to use in your application . . .

❑ Use the standard pointers when possible.

❑ Use the upper-left pointing arrow as a general-purpose pointer; this pointer should
be red with a white outline.

❑ Use the upper-right pointing arrow when a menu is pulled down from a menu bar,
popped up from the right mouse button, or displayed from an option menu button.

❑ Use the watch pointer for operations that take more than 3 seconds. (For less than 3
seconds, maintain the current pointer; for more than 5 seconds, also use a
work-in-progress dialog.)

❑ Use the I-beam pointer to indicate that your application is in a text-editing mode, but
don’t use it to indicate implicit focus over a text object within a window.

❑ Use the question mark to indicate that the user is in context-sensitive help mode.

❑ Use the sighting pointer (crosshair) to make fine position selections.

❑ Use resize pointers to indicate positions when resizing an area.

❑ Use the 4-directional arrow to indicate that either a move operation or a resize
operation is in progress.

❑ Don’t use the hourglass pointer; use the watch pointer instead.

❑ Don’t use the X pointer (it’s reserved for the window manager).

❑ Don’t assign new functionality to the standard pointer shapes; instead, design your
own new pointer shape.

Pointer Shapes and Colors Guidelines

277

When designing new pointer shapes . . .

❑ Create a pointer shape that gives a hint about its purpose.

❑ Make the shape easy to see.

❑ Make the hotspot easy to locate.

❑ Avoid shapes that would create visual clutter.

279

archive file icon, 25
ASCII file icon, 25
Auto Window Placement, 51-52, 92

B

backgrounds
and desks, 67

bars
path navigation, 199
scrollbars, 194

<Begin> key, 10
binding keys, 181
BMenu, 9
browse selection model, 140
BSelect, 9
BTransfer, 9
buttons, 184-185

dialogs, and, 184
dynamic, 185
option buttons, 151-152, 185-187
pull-down menus, and, 166
right justification, 37

C

<Cancel> key, 10
Cancel/Close button, 185
cards, 181

Numbers

4-directional arrow pointer, 229
4Dwm window manager

default setting, 111
See also window managers

A

activation
menus, 152-154

AIFF sound file icon, 25
<Alt>-<Insert> keys, 104
<Alt> key, 156
appearance, Indigo Magic. See Indigo Magic look
application icons

guidelines, 33
application icons (Desktop icons), 22-23
application-modal dialogs, 209
application models, 41-43, 113-118
applications

appearance, 36
data exchange, 99-107
data exchange guidelines, 106
editing text, 94-96
locations, 32
naming, 31-32
processing while minimized, 64, 67
session management, and, 69-70
windows, 35-71

Index

280

Index

cascading menus, 150-151, 170
categories

windows, 41, 112
checkboxes, 187-188

Indigo Magic look, 36, 225
in menus, 169, 171

“Clear” option (in Edit menu), 164
“Click for Help” option (in Help menu), 78, 81
clipboard data, nonpersistent, 100
clipboard transfer model, 99-101

example, 101
primary transfer model, independence, 101, 105

“Close” option (in File menu), 161, 221
“Close” option (in window menu), 45, 46
collections, 140-142

multiple, 143-144
color chooser, 127-129
“Color Editor” option (in Edit menu), 128, 164
colors

Desktop icons, 17-20
text fields, 193

color schemes, 39-40
command line input

windows, 123
command script file icon, 25
context-sensitive help, 78, 81

writing help content, 87
“Context-Sensitive Help” option (in Help menu), 81
control areas

co-primary windows, 122-123
main windows, 122-123

control panels
Desktop, 94-96, 227
Language, 92
Mouse Settings, 93, 130
Window Settings, 51, 68

controls, 183-203
buttons, 184-185

controls
checkboxes, 187-188
dials, 202-203
File Finder, 146, 199-200
labels, 198-199
LED buttons, 190-191
lists, 191-192
option buttons, 185-187
radio buttons, 188-190
scales, 197-198
scrollbars, 194-197
text fields, 193-194
thumbwheels, 200-201

co-primary windows, 41, 112, 119-125
See also windows
command line input, 123
control areas, 122-123
decorations, 43-45
Help button, 82
keyboard shortcuts, 121
menu (in title bar), 43-45
menu bars, 121
panes, 124
popup menus, 124
status areas, 123
title bar labels, 48-49
work areas, scrollable, 122

copying data, 99-101, 101-105
“Copy” option (in Edit menu), 99-101, 163
C program file icon, 25
cross hair pointer, 229
<Ctrl> key, 156, 172-173
<Ctrl><Page Down> keys, 196
<Ctrl><Page Up> keys, 196
<Ctrl><Shift><Tab> keys, 137
<Ctrl><Tab> keys, 137
cursors

location, 134

281

Index

customize
control panels, 4
desktop, 91

cut and paste. See data exchange
“Cut” option (in Edit menu), 99-101, 163
cutting data, 99-101

D

data, selecting, 141-142
data exchange, 99-107

<Alt>-<Insert> keys, 104
application guidelines, 106
clipboard data, nonpersistent, 100
clipboard transfer

example, 101
clipboard transfer model, 99-101

primary transfer model, independence, 101, 105
copying data, 99-101, 101-105
cutting data, 99-101
data types supported, 105
drag and drop, 144-147
highlighting selected data, 102-104, 226
nonpersistent selection model, 104
pasting data, 99-101, 101-105
persistent always selection model, 104
primary selection, 102-105

reinstating, 104
primary selection example, 102
primary transfer example, 104
primary transfer model, 101-105

clipboard transfer model, independence, 101,
105

selections, 139-144
data types

data exchange, supported, 105
decorations

dialogs, 43-45, 211
windows, 43-45

“Delete” option (in Edit menu), 164
“Deselect All” option (in Edit menu), 164
deselecting data, 141-142
Desks, 66-68
Desks Overview, 4, 66

example, 67
window titles, and, 47

Desktop
icons. See Desktop icons
overview, 3-10
windows. See windows

Desktop control panel, 94-96
stderr messages, 227

Desktop icons, 4, 11-33, 225
See also minimized windows
accessibility guidelines, 33
appearance, 12-33
appearance design guidelines, 26
application icons, 22-23
behavior, programming, 27-30
behavior guidelines, 29
colors, 17-20, 25
components, 14-15
creating with IconSmith, 14
data icons, 12
design guidelines, 26
designing appearance, 12-27
examples, 23
file icons, 24-25
Find an Icon tool, 31-32
generic data file symbol, 25
generic executable symbol (magic carpet), 14, 22
icon accessibility guidelines, 33
icon behavior guidelines, 29
Icon Catalog, 4, 30-31
icon color, 17-19
implementation hints, 27
launching applications, 6, 27-29
orientation, 20
outline color, 19

282

Index

Desktop icons
predefined templates, 14
printing files, 28
shadow color, 25
size, 16-17
states, 6-8, 17-18, 22-23, 225
templates, 14
user interaction, 6-8

Desktop services, 73-98
Auto Window Placement, 92
customize, 91
desktop variables, 91
desktop variables guideline, 97
editor, preferred, 94-96
File Alteration Monitor (FAM), 97-98
Language control panel, 92
mouse

double-click speed, 93
online documentation, 91
online help, 75-91

context-sensitive, 78, 81
design guidelines, 83
Help button, 78, 82-83
Help button guidelines, 85
help card guidelines, 89
Help menu, 80-82
index, 79, 82
index guidelines, 90
keyboard shortcuts, 80, 82
keyboard shortcuts guidelines, 90
overview, 78-79, 81
product information, 80, 82
task-oriented, 79, 81
types of, guidelines, 83
writing help content, 85-91

schemes, 92
software installation, 73-75
user control, 91

dialogs, 41, 112, 205-224
actions, 213-215

choosing, 213-214

dialogs
actions

default, 214-215
standard, 213

button labels, 215
buttons, and, 184
decorations, 43-45, 211
designing, 210-220
desks, and, 67
error, 206, 216
file selection, 206, 221-222
Help button, 82
information, 206
invoking, 220-224
justification of buttons, 37
menu (in title bar), 43-45, 211
modes, 209-210
placement, 211
prompt, 206, 216
pull-down menus, and, 166, 169
question, 206, 217
size, 211
title bar labels, 48-49
types, 205-208
user feedback, 227
warning, 206, 216
working, 206, 217, 223
See also windows

dials, 202-203
directories

monitoring changes, 97-98
Directory Views, 4
disabling menu entries, 174, 180
discontiguous selection model, 140
displays, updating, 226
documentation, online, 91
double-click speed, mouse, 93
<down arrow> key, 138, 154

283

Index

drag and drop, 144-147
non-text objects, 145-146
pointers, 147
text, 146-147

drag icons, 147
drag state, Desktop icons, 7
drop-accepting state, Desktop icons, 7
drop pocket, 199
dynamic buttons, 185
dynamic menu entries, 174-175

E

Edit menu, 161-164
editor, preferred, 94-96
ellipsis

in menus, 157
in pull-down menus, 169
in pushbuttons, 185

enabling menu entries, 174, 180
<Enter> key, 10, 154
error dialogs, 206, 216
<Escape> key, 10, 154, 194, 197, 198
“Exit” option (in File menu), 161, 221
“Exit” option (in window menu), 45, 46
explicit focus, 55, 133-134

F

<F1> key, 10
<F10> key, 138, 154
FAM (File Alteration Monitor), 97-98
feedback. See user feedback
File Alteration Monitor (FAM), 97-98
File Finder, 146, 199-200

file icons (Desktop icons), 24-25
File menu, 158-161
files

finding, 199-200
monitoring changes, 97-98
printing, 28

file selection dialogs, 206, 221-222
File Typing Rules (FTRs), 27-30
Find an Icon tool, 4, 31-32
focus, keyboard. See keyboard focus
font schemes, 39-40
FTRs (File Typing Rules), 27-30

G

generic data file symbol (Desktop icons), 25
generic executable symbol (Desktop Icons), 14, 22
graphic feedback, 225-226

H

hardware description, 8-10
<Help> key, 10
Help button, 78, 82-83

writing help content, 89
help cards, 85-86
Help menu, 80-82, 165

“Click for Help” option, 78
examples, 77
“Index” option, 79
“Keys & Shortcuts” option, 80
“Overview” option, 78
“Product Information” option, 80
task options, 79

help. See online help
highlighting selected data, 102-104, 143, 226

284

Index

history button, 200
<Home> key, 10
home button, 200-201
hourglass pointer, 229

I

I-beam pointer, 229
Icon Catalog, 4, 30-31

Application page, 30
Collaboration page, 30
Control Panels page, 31
Demos page, 30
Desktop Tools page, 30
Media Tools page, 30
Web Tools page, 31

icon color, Desktop icons, 17-19
icons. See Desktop icons
images

examples of minimized windows, 61
minimized windows, 60-63

implicit focus, 55, 133
“Import” option (in File menu), 160
index, help topics, 79, 82

writing help content, 88
“Index” option (in Help menu), 79, 82
indicators

scales, 197
Indigo Magic look, 36-40

examples, 38
guidelines, 40
user feedback, 225

information dialogs, 206
input focus. See keyboard focus
installing software, 73-75
internationalization, 92
Inventor file icon, 25

J

justification
dialog buttons, 37

K

keyboard accelerators, 156, 172-173
keyboard binding, 181
keyboard description, 9-10
keyboard focus, 55-60, 133-139

dialogs, 212
guidelines, 59

keyboard navigation, 133-138
keyboard shortcuts

co-primary windows, 121
help, 80, 82

writing help content, 88
main windows, 121
support windows, 126

keys
special, 9-10, 78, 137-138, 154, 156, 171-173, 196
substitutes to Motif-compliant keys, 10

“Keys & Shortcuts” option (in Help menu), 80, 82

L

labels, 198-199
buttons, 185
checkboxes, 188
dialog buttons, 215
dials, 202
ellipsis in button, 185
LED buttons, 190-191
lists, 192
minimized windows, 63-64, 67, 227
option buttons, 186
radio buttons, 189

285

Index

labels
scales, 198
text fields, 194

Language control panel, 92
launching applications

Desktop icons, 6, 27-29
LED buttons, 190-191
<left arrow> key, 138, 154
left mouse button, 9

data exchange, 101-102
lists, 191-192
located state, Desktop icons, 6
locate highlight, 36, 225
location cursor, 134
locations

applications, 32
look, Indigo Magic. See Indigo Magic look
“Lower” option (in window menu), 46

M

magic carpet, icon component, 14, 22
main windows, 41, 112, 119-125

See also windows
command line input, 123
control areas, 122-123
decorations, 43-45
example, 44
Help button, 82
keyboard shortcuts, 121
menu (in title bar), 43-45
menu bars, 121
panes, 124
popup menus, 124
status areas, 123
title bar labels, 47-48
work areas, scrollable, 122

maximize button (in title bar), 46

“Maximize” option (in window menu), 46
maximum window size, 49-50
<Menu> key, 10
menu bars, 149-150, 155-178

co-primary windows, 121
main windows, 121
menus

naming, 167
ordering, 169-170

menus, 149-181
activation, 152-154
cascading menus, 150-151, 170
ellipsis, 157
entries

checkboxes, 169, 171
disabling, 174, 180
dynamic, 174-175
enabling, 174, 180
naming, 168-169
ordering, 169-170
radio buttons, 169, 171
toggles, 168

Indigo Magic look, 37
keyboard accelerators, 156, 172-173
menu bars, 121, 149-150, 155-178
mnemonics, 156, 171-172
naming, in menu bars, 167
option menus, 151-152, 185-187

naming entries, 187
ordering, in menu bars, 169-170
popup, 124, 137, 178-181

contents, 179-180
popup menus, 151
posted, 153
pull-down, 149-150, 155-178

buttons, and, 166
contents, 166-171
dialogs, and, 166, 169
naming, in menu bars, 167
naming entries, 168-169

286

Index

menus
pull-down

ordering, in menu bars, 169-170
ordering entries, 169-170
support windows, and, 167

spring-loaded, 153
standard, 157-165
submenus, 150-151, 170
tear-off, 167
traversal, 152-154
types, 149-152
window (in title bar), 43-45, 211

messages, user, 227
middle mouse button, 9

data exchange, 101-102
minimize button (in title bar), 45
minimized windows, 60-66

See also Desktop icons
behavior guidelines, 66
images, 60-63
images examples, 61
images guidelines, 65
labels, 63-64, 67, 227
labels guidelines, 65
processing while minimized, 64, 67
showing status, 64-65
status example, 65

“Minimize” option (in window menu), 45
minimum window size, 49-50
mnemonics, menus, 156, 171-172
modeless dialogs, 209
modes

dialogs, 209-210
supports windows, and, 127

monitoring, files and directories, 97-98
mouse

buttons, 8
data exchange, 101-102

description, 8

mouse
double-click speed, 93
movement, 130

mouse navigation, 138-139
Mouse Settings control panel, 93, 130
“Move” option (in window menu), 45
movie file icon, 25
multiple-action pointer grab, example, 59
multiple-action pointer grab model, 55, 58-59
multiple collections, 143-144
“multiple document, no visible main” application

model, 43, 118
“multiple document, visible main” application

model, 42, 116-117
multiple selection model, 140

N

naming
applications, 31-32

navigation. See keyboard navigation, mouse
navigation

neutral state, Desktop icons, 6
“New” option (in File menu), 159, 221
nonpersistent selection model, 104, 143

O

online documentation, 91
online help, 75-91

context-sensitive, 78, 81
writing help content, 87

design guidelines, 83
Help button, 78, 82-83

writing help content, 89
Help button guidelines, 85

287

Index

online help
help card guidelines, 89
Help menu, 80-82
index, 79, 82

writing help content, 88
index guidelines, 90
keyboard shortcuts, 80, 82

writing help content, 88
keyboard shortcuts guidelines, 90
overview, 78-79, 81

writing help content, 87
product information, 80, 82
task-oriented, 79, 81

writing help content, 87-88
types of, guidelines, 83
writing help content, 85-91

“Open” option (in File menu), 159, 221
open state, Desktop icons, 7
option buttons, 151-152, 185-187
option menus, 151-152, 185-187

naming entries, 187
Options menu, 165
orientation

Desktop icons, 20
outline color, Desktop icons, 19
overview help, 78-79, 81

writing help content, 87
“Overview” option (in Help menu), 78, 81

P

packaging software for installation, 73-75
<Page Down> key, 196
pages, 181
<Page Up> key, 196
palettes, 181
panes

co-primary windows, 124

panes
main windows, 124

“Paste” option (in Edit menu), 99-101, 164, 223
pasting data, 99-101, 101-105
path navigation bar, 200
percent-done indicator, 197
persistent always selection model, 104, 143
placement

dialog, 211
windows, 51-52

pointer, 130
designing, 230
drag and drop, 147
shapes, state and, 130, 226, 228-230

pointer grab, 55-60
multiple-action, example, 59
multiple-action model, 55, 58-59
single-action, example, 57
single-action model, 55-57

popup menus, 137, 151, 178-181
contents, 179-180
co-primary windows, 124
disabling entries, 180
main windows, 124

posted menus, 153
PostScript file icon, 25
preferred editor, 94-96
primary-modal dialogs, 209
primary selection, 102-105, 139

reinstating, 104
primary transfer model, 101-105

clipboard transfer model, independence, 101, 105
primary windows, 112
primary windows. See main windows, co-primary

windows, windows
printing files

Desktop icons, 28
“Print” option (in File menu), 160

288

Index

processing while minimized, 64, 67
product information, 80, 82, 223
“Product Information” option (in Help menu), 80,

82, 223
“Promote” option (in Edit menu), 104, 164
prompt dialogs, 206, 216
pull-down menus, 149-150, 155-178

buttons, and, 166
contents, 166-171
dialogs, and, 166, 169
ellipsis, 169
entries

naming, 168-169
ordering, 169-170

naming, in menu bars, 167
ordering, in menu bars, 169-170
support windows, and, 167

pushbuttons. See buttons

Q

question dialogs, 206, 217
question mark pointer, 229

R

radio buttons, 188-190
Indigo Magic look, 36, 225
in menus, 169, 171

“Raise” option (in window menu), 45, 46
range selection model, 140
“Redo” option (in Edit menu), 163
“Reopen” option (in File menu), 160, 221
resize handles (in title bar), 45
resize pointer, 229
restarting applications

session management, 69-70

“Restore” option (in window menu), 45
<Return> key, 10
“Revert” option (in File menu), 160, 222
rgb file icon, 25
<right arrow> key, 138, 154
right mouse button, 9

S

“Save As” option (in File menu), 160, 221
“Save” option (in File menu), 160, 222
scales, 197-198
schemes, 39-40, 92
screen backgrounds

and desks, 67
scrollable lists, 191-192
scrollable work areas

co-primary windows, 122
main windows, 122

scrollbars, 194-197
Indigo Magic look, 36, 225

Search tool, 4
secondary windows. See support windows, dialogs,

windows
“Select All” option (in Edit menu), 164
Selected menu, 161
selected state, Desktop icons, 7
selecting data, 141-142
selections, 139-144

collections, 140-142
multiple, 143-144

highlighting, 143
models, 140-142

session management, 68-71
guidelines, 70
logging out, 70-71
logging out guidelines, 71

289

Index

SGIHelp system. See online help
SGML, 91
shading

in Indigo Magic look, 36
shadow color, Desktop icons, 25
shared library file icon, 25
<Shift><F1> keys, 78, 81
<Shift><F10> key, 137
<Shift><F10> keys, 10, 154
<Shift><Tab> keys, 137
single-action pointer grab, example, 57
single-action pointer grab model, 55-57
“single document, multiple primaries” application

model, 42, 115-116
“single document, one primary” application model,

42, 113-114
single selection model, 140
size

Desktop icons, 16-17
dialogs, 211
windows, 49-50

“Size” option (in window menu), 45
slider bars, 194
sliding scalebars

scale, 197
software installation, 73-75
Software Manager, 73-75

advantages, 74
example, 74

Software Packager, 73-75
spring-loaded menus, 153
standard menus, 157-165
states

applications and sessions management, 69-70
Desktop icons, 6-8, 17-18, 22-23, 225
pointers, shapes and, 130, 226, 228-230

status areas, 227
co-primary windows, 123
main windows, 123

stderr, 227
stdout, 227
submenus, 150-151, 170
support windows, 41, 112, 125-130

See also windows
color chooser, 127-129
decorations, 43-45
design, 126-127
desks, and, 67
Help button, 82
keyboard shortcuts, 126
menu (in title bar), 43-45
parent windows, 126
pull-down menus, and, 167
title bar labels, 48-49
Tools menu, and, 126

system-modal dialogs, 209

T

<Tab> key, 137
task-oriented help, 79, 81

writing help content, 87-88
tear-off menus, 167
text fields, 193-194

enhanced, 193
thumbwheels, 200-201
title bar labels, 46-49, 67
Toolchest, 4
tool palettes, 122, 184
Tools menu, 165

support windows, and, 126
traversal

menus, 152-154

290

Index

U

“Undo” option (in Edit menu), 163
<up arrow> key, 138, 154
updating displays, 226
upper-left arrow pointer, 228
upper-right arrow pointer, 228
user feedback, 225-231

graphic, 225-226
messages, 227
updating displays, 226

user messages, 227

V

variables
desktop, 91

View menu, 164
views, 181

W

warning dialogs, 206, 216
watch pointer, 228
widgets

outlines in Indigo Magic look, 37
shading in Indigo Magic look, 36

windows, 35-71, 111-131
categories, 41, 112
characteristics guidelines, 52
co-primary windows, 112
decorations, 43-45
decorations guidelines, 52
default setting, 111
dialogs, 112
Indigo Magic environment, 35
keyboard focus, 55-60

windows
main windows, 112, 119-125
menu (in title bar), 43-45
menu bars, 121
menus guidelines, 52
minimized, 60-66
minimized, guidelines, 65
“multiple document, no visible main” application

model, 118
“multiple document, visible main” application

model, 116-117
no title bar, 54
placement, 51-52
placement guidelines, 55
primary windows, 112
resize, 49
scrollable work areas, 122
“single document, multiple primaries” application

model, 115-116
“single document, one primary” application

model, 113-114
size, 49-50
size guidelines, 54
support windows, 112
title bar label guidelines, 53
title bar labels, 46-49, 67

Window Settings control panel, 51, 68
work areas, scrollable

co-primary windows, 122
main windows, 122

working dialogs, 206, 217, 223

X

X pointer, 229

Tell Us About This Manual

As a user of Silicon Graphics documentation, your comments are important to us. They
help us to better understand your needs and to improve the quality of our
documentation.

Any information that you provide will be useful. Here is a list of suggested topics to
comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Important Note

Please include the title and part number of the document you are commenting on. The
part number for this document is
007-2167-002.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your comments on
the postage-paid card for your country, then detach and mail it. If your country is not
listed, either use the international card and apply the necessary postage or use electronic
mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail message and mail
it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of pages from the manual) to
Technical Publications at this FAX number:
415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

