
DIVO (Digital Video Option) XIO Board
Owner’s Guide

Document Number 007-3524-002

DIVO (Digital Video Option) XIO Board Owner’s Guide
Document Number 007-3524-002

CONTRIBUTORS

Written by Carolyn Curtis
Illustrated by Dany Galgani, Chris Pirazzi, Dan Young, Cheri Brown, and

Carolyn Curtis
Production by Kirsten Pekarek
Engineering contributions by Ashok Yerneni, Scott Pritchett, Vince Uttley, Chris

Pirazzi, Ed Miszkiewicz, Andrew Khau, Will McCann, and Paul Spencer
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

FCC Warning
This equipment has been tested and found compliant with the limits for a Class A
digital device, pursuant to Part 15 of the FCC rules. These limits are designed to
provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment. This equipment generates, uses, and can
radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful
interference in which case the user will be required to correct the interference at his
own expense.

Attention
This product requires the use of external shielded cables in order to maintain
compliance pursuant to Part 15 of the FCC Rules.

DIVO (Digital Video Option) XIO Board Owner’s Guide
Document Number 007-3524-002

European Union Statement
This device complies with the European Directives listed on the “Declaration of
Conformity” which is included with each product. The CE mark insignia displayed
on the device is an indication of conformity to the aforementioned European
requirements.

International Special Committee on Radio Interference (CISPR)
This equipment has been tested to and is in compliance with the Class A limits per
CISPR publication 22, Limits and Methods of Measurement of Radio Interference
Characteristics of Information Technology Equipment; Germany’s BZT Class A
limits for Information Technology Equipment; and Japan’s VCCI Class 1 limits.

Canadian Department of Communications Statement
This digital apparatus does not exceed the Class A limits for radio noise emissions
from digital apparatus as set out in the Radio Interference Regulations of the
Canadian Department of Communications.

Attention
Le présent appareil numérique n’émet pas de perturbations radioélectriques
dépassant les normes applicables aux appareils numériques de Classe A prescrites
dans le Règlement sur les interferences radioélectriques établi par le Ministère des
Communications du Canada.

VCCI Class 1 Statement for Japan

TUV

geprufte
Sicherheit

R

NRTL/C

DIVO (Digital Video Option) XIO Board Owner’s Guide
Document Number 007-3524-002

Chinese Class A Warning

Silicon Graphics, the Silicon Graphics logo, OpenGL, Geometry Engine, and IRIS are
registered trademarks and IRIX, XIO, Onyx, Onyx2, Origin, Origin200, Origin2000,
Graphics Library, REACT, XFS, and Sirius Video are trademarks of Silicon Graphics,
Inc. QuickTime is a registered trademark of Apple Computer, Inc. Abekas is a
registered trademark of Carlton International Corporation, Carlton Communications
PLC. Gennum is a registered trademark of Gennum, Inc. Videomedia is a registered
trademark and V-LAN is a trademark of VideoMedia, Inc.

v

Contents

List of Figures ix

List of Tables xiii

About This Guide xv
Audience xv
Structure of This Guide xvi
Other Documents xvii
Conventions xvii

1. DIVO Features and Capabilities 1
DIVO Features 1
DIVO Panel 3
Digital Video Ports 6
Color-Space Converters 7
Interpolation and Decimation Filters 7
DIVO Audio 7

vi

Contents

2. Programming DIVO 9
VL Basics for DIVO 10

VL Concepts 11
VL Syntax Elements 11
VL Object Classes 12
VL Nodes for DIVO 13
VL Data Transfer Functions 15

Compression Through the VL 16
DIVO Controls 16
Setting Field Dominance 21
VL Support for the General-Purpose Interface (GPI) 24

Using VL_GPI_OUT_MODE 24
Using VL_GPI_STATE 25
Using VL_TRANSFER_TRIGGER 26

VL Support for the Vertical Inline Time Clock (VITC) 27
DIVO Events 27
Setting Inline Controls 29
Reporting 29

A. DIVO I/O Panel Connector Specifications 31
DIVO Connectors 31
GPI Interface 33

GPI Pinouts 33
GPI Transmitter 36
GPI Receiver, Switch Closure Mode, and Current Sense Mode 38

B. Setting Up DIVO for Your Video Hardware 41
Setting Up Digital Source Video 41
Setting Up the Output (Drain) 43
Setting Up Sync 44

Setting Up Internal Sync 44
Setting Up External Sync 45

Saving Settings 46

Contents

vii

C. Pixel Packings and Color Spaces 47
DIVO Pixel Packings 47

Packings and Color Spaces 48
Packing Diagram Conventions 48
Packings and Library Tokens 50
Packing Naming Conventions 51
8-Bit Pixel Packings 53
16-Bit Pixel Packings 55
20-Bit Pixel Packings 57
24-Bit Pixel Packings 58
32-Bit Pixel Packings 60
36-Bit Pixel Packing 69
48-Bit Pixel Packings 70
64-Bit Pixel Packings 72

Sampling Patterns 76
4:4:4 and 4:4:4:4 Sampling 76
4:2:2 and 4:2:2:4 Sampling 77

Color Spaces 78
Determining the Color Space 79

D. Color-Space Conversions 81
DIVO Color Spaces 82

RGB 82
YUV 83
CCIR 83
RP-175 Compressed RGB 84

Mathematical Operations Performed During Conversions 84
Implications of Color Space Conversions 85

Precision of Color Conversions Done by DIVO 85
Range Issues For Color Conversions Done by Any Means 85

Example Color Conversions 89
Example 1: 100% Color Bars 89
Example 2: Luminance Ramp 93
Example 3: Simultaneous Chroma/Luma Ramp 97

viii

Contents

E. Programming Methods for Real-Time Digital Media Recording and Playback 101
Direct I/O 102
Scatter/Gather I/O 103
Multiprocessing 107
Asynchronous I/O 108
File Formats 108

F. Diagnostics 111
divo_confidence Functionality 111
Running divo_confidence 112
divo_confidence Output 114

Index 119

ix

List of Figures

Figure 1-1 DIVO Board Architecture 3
Figure 1-2 DIVO I/O Panel 4
Figure 1-3 DIVO Video Top-Level System Diagram (Onyx2 System) 6
Figure 2-1 Simple VL Path 11
Figure 2-2 Fields and Frames for NTSC and PAL 21
Figure 2-3 Output GPI (OFF Assumed to Be Low) 24
Figure A-1 GPI Connectors 33
Figure A-2 GPI Pinouts 33
Figure A-3 GPI Jumper Locations (Factory Setting) 35
Figure A-4 Example GPI Interface 36
Figure A-5 GPI Transmitter Electrical Specifications 37
Figure A-6 Jumpering for GPI Switch Closure (Factory Setting) 39
Figure A-7 Jumpering for GPI Current Sense Mode 39
Figure B-1 DIVO Ports 41
Figure B-2 Selecting Digital Input Video Format in vcp 42
Figure B-3 Selecting Video Drain Format 43
Figure B-4 Setting Standalone or Genlock Sync 44
Figure B-5 GEN IN Port on the DIVO I/O Panel 45

x

List of Figures

Figure C-1 VL_PACKING_444_8 49
Figure C-2 VL_PACKING_4_8 53
Figure C-3 VL_PACKING_R444_332 54
Figure C-4 VL_PACKING_444_332 54
Figure C-5 VL_PACKING_242_8 55
Figure C-6 VL_PACKING_R242_8 55
Figure C-7 VL_PACKING_X4444_5551 56
Figure C-8 VL_PACKING_444_5_6_5 56
Figure C-9 VL_PACKING_242_10 57
Figure C-10 VL_PACKING_R242_10 57
Figure C-11 VL_PACKING_444_8 58
Figure C-12 VL_PACKING_R444_8 59
Figure C-13 VL_PACKING_4444_6 60
Figure C-14 VL_PACKING_4444_8 61
Figure C-15 VL_PACKING_R4444_8 62
Figure C-16 VL_PACKING_R0444_8 63
Figure C-17 VL_PACKING_0444_8 64
Figure C-18 VL_PACKING_4444_10_10_10_2 65
Figure C-19 VL_PACKING_2424_10_10_10_2Z 66
Figure C-20 VL_PACKING_R2424_10_10_10_2Z 66
Figure C-21 VL_PACKING_242_10_in_16_L 67
Figure C-22 VL_PACKING_242_10_in_16_R 67
Figure C-23 VL_PACKING_R242_10_in_16_L 68
Figure C-24 VL_PACKING_R242_10_in_16_R 68

List of Figures

xi

Figure C-25 VL_PACKING_444_12 69
Figure C-26 VL_PACKING_4444_12 70
Figure C-27 VL_PACKING_444_10_in_16_L 71
Figure C-28 VL_PACKING_4444_10_in_16_L 72
Figure C-29 VL_PACKING_4444_10_in_16_R 73
Figure C-30 VL_PACKING_4444_12_in_16_L 73
Figure C-31 VL_PACKING_4444_12_in_16_R 74
Figure C-32 VL_PACKING_4444_13_in_16_L 74
Figure C-33 VL_PACKING_4444_13_in_16_R 75
Figure C-34 4:4:4 Sampling 76
Figure C-35 4:2:2 Sampling 77
Figure D-1 RGB Cube in CCIR Space 87
Figure D-2 Color Cube With Luminance/Chrominance

Ramp Vector 88
Figure D-3 100% Color Bars: Cr/R 90
Figure D-4 100% Color Bars: Y/G 91
Figure D-5 100% Color Bars: Cb/B 92
Figure D-6 Luminance Ramp: Cr/R 94
Figure D-7 Luminance Ramp: Y/G 95
Figure D-8 Luminance Ramp: Cb/B 96
Figure D-9 Chroma/Luma Ramp: Cr/R 98
Figure D-10 Chroma/Luma Ramp: Y/G 99
Figure D-11 Chroma/Luma Ramp: Cb/B 100
Figure F-1 /usr/diags/DIVO Contents 112

xiii

List of Tables

Table 1-1 Interface for Video Equipment 4
Table 1-2 DIVO Panel LEDs 5
Table 2-1 DIVO Node Controls 17
Table 2-2 Controls for DIVO 18
Table 2-3 DIVO Events 28
Table A-1 Return Loss for DIVO Video and Genlock Channels 31
Table A-2 Characteristics for DIVO Digital Video Out Channels 31
Table A-3 Usage for LINK A and LINK B in 4:2:2:4 Mode 32
Table A-4 Usage for LINK A and LINK B in 4:4:4:4 Mode 32
Table A-5 GPI Pinouts 34
Table A-6 GPI Transmitter Electrical Specifications 37
Table A-7 GPI Receiver Input Optoisolator 38
Table C-1 DIVO Packings 51
Table C-2 VL_COLORSPACE Options 79
Table D-1 Clamping Ranges for RGB Component Conversions 82
Table F-1 divotest Output Identifiers 114

xv

About This Guide

The Digital Video Option (DIVO) board is a video option that provides Onyx 2,
Origin200, and Origin2000 workstations and servers with broadcast-quality video. The
option also provides 16 channels of audio.

Note: This option requires IRIX 6.4 or later.

Features of the DIVO option are controlled with the Video Library (VL) and the Audio
Library (AL). VL device-independent calls and controls are explained in the Digital Media
Programming Guide (007-1799-060 or later; online only). That manual also gives
information on using the AL.

Audience

This guide was written for the sophisticated video user in a professional or research
environment. You should be familiar with video standards, the operation of the Onyx2,
Origin200, or Origin2000 workstation or server, and the VL information in the Digital
Media Programming Guide.

Many current Silicon Graphics owner’s guides, programming guides, and user’s guides
are available through the World Wide Web: http://techpubs.sgi.com/library.

xvi

About This Guide

Structure of This Guide

This guide includes the following chapters and appendices:

• Chapter 1, “DIVO Features and Capabilities,” outlines the main components of the
DIVO option.

• Chapter 2, “Programming DIVO,” describes using the VL to accomplish common
specific tasks.

• Appendix A, “DIVO I/O Panel Connector Specifications,” summarizes technical
specifications for the DIVO board.

• Appendix B, “Setting Up DIVO for Your Video Hardware,” describes connecting
video equipment to DIVO board connectors and using the control panel vcp to
configure the DIVO board for the equipment.

• Appendix C, “Pixel Packings and Color Spaces,” sets forth all packing formats used
by the DIVO hardware.

• Appendix D, “Color-Space Conversions,” explains DIVO color spaces, the
mathematical operations performed during conversions, and the implications of
color space conversions.

• Appendix E, “Programming Methods for Real-Time Digital Media Recording and
Playback,” explains programming concepts, such as real-time disk I/O, and gives
examples.

• Appendix F, “Diagnostics,” explains use of the diagnostic script.

An index completes this guide.

About This Guide

xvii

Other Documents

The Digital Media Programming Guide is available with the IRIX digital media
development environment software (dmedia_dev). This guide is also online in the
following locations:

• IRIS InSight Library: From the Toolchest, choose Help > Online Books >
SGI EndUser or SGI Admin, and select the applicable owner’s or hardware guide.

Once you are in the library, choose Catalogs > Hardware Catalog and look under
Owner’s Guides for the applicable owner’s guide.

• Technical Publications Library: If you have access to the Internet, enter the
following URL in your Web browser location window:
http://techpubs.sgi.com/library

Conventions

In command syntax descriptions and examples, square brackets ([]) surrounding an
argument indicate an optional argument. Variable parameters are in italics. Replace these
variables with the appropriate string or value.

In text descriptions, IRIX filenames are in italics.

Helvetica Bold font is used for labels on hardware, such as the names of ports on the I/O
panel.

Messages and prompts that appear on-screen are shown in typewriter font. Entries
that are to be typed exactly as shown are in boldface typewriter font.

In each chapter or appendix in which it occurs, the Digital Media Programming Guide is
referred to by its full title at the first occurrence and thereafter as the DMPG.

1

Chapter 1

1. DIVO Features and Capabilities

DIVO is a video option for Onyx2 graphics, Origin200, and Origin2000 deskside and
server workstations. Supporting the SMPTE 259 10-bit digital video standard, it fully
integrates video into Silicon Graphics workstation and server environments.

The option utilizes one XIO slot and provides independent dual-link 10-bit serial digital
component input and output ports. Depending on the system type, multiple DIVO
boards can be installed on a system for video server applications.

This chapter discusses

• “DIVO Features” on page 1

• “DIVO Panel” on page 3

• “Digital Video Ports” on page 6

• “Color-Space Converters” on page 7

• “Interpolation and Decimation Filters” on page 7

• “DIVO Audio” on page 7

DIVO Features

DIVO features include

• dual-link 10-bit serial digital video (SMPTE 259) streaming to and from system
memory

• AES3-1992 (AES/EBU) embedded audio and ancillary data (SMPTE 272M) with up
to 24-bit precision and sample rates of 32 KHz, 44.1 KHz, and 48 KHz; up to 16
channels output and 16 channels input

• lossless built-in compression and decompression using adaptive entropy coding to
approximately 2:1 compression

• transparent color-space conversion between YUV and RGB

2

Chapter 1: DIVO Features and Capabilities

• flexible data-packing capability to facilitate easy integration to OpenGL component
packing methods

• unadjusted system time/media stream count (UST/MSC) hardware-supported
audio/video synchronization mechanisms

• low latency in video transfers to/from system memory (typically less than one
frame)

• support for fields and frames

• active video or data mode capture and playback

• vertical internal time clock (VITC) extraction and insertion

• hardware error detection and handling (EDH) and link autophasing

• support for SDDI/CSDI interfaces

• for each video pipe, two channels of input and output trigger signal pairs based on
the general-purpose interface (GPI)

• output genlocking

The DIVO board supports video and audio data transfers to and from system memory
only. You can view the video in real time on the Onyx2 workstation using the OpenGL
interface to copy video images to graphics. DIVO supports a wide variety of packing
formats to facilitate easy integration of video in graphics.

To capture graphics to video, you can use OpenGL to read pixels into memory. However,
the coordinate system differs between video and Open GL; under OpenGL, the origin is
at the lower left corner and in Video, origin is in the upper left corner. To adjust for this
difference, the image must be inverted in memory before it is sent to the DIVO board for
output.

Besides sending an image out to the DIVO board, you can use the GVO graphics option
to get zero latency transcoding to CCIR 601-2 digital video.

For controlling videotape recorders, you can use a direct RS-422 connection to the deck
with third-party software, or an RS-422 V-LAN controller option and V-LAN software
from Silicon Graphics with the on-board GPI triggering mechanism.

DIVO is fully integrated into the Silicon Graphics Digital Media Library interfaces. The
Video Library (VL) API has been enhanced to support some of its advanced features.

DIVO Panel

3

DIVO Panel

Figure 1-1 shows the top-level diagram of DIVO board. Each DIVO board has two
independent pipes, each with its own dedicated R4650 processor and SDRAM.

Figure 1-1 DIVO Board Architecture

Bridge
R4650

CPCI

CPCI

OUT LINK A

OUT LINK B

Input
LoopPipe 1

Pipe 2IN LINK A

IN LINK B

LINCSDRAMR4650

GenlockGPI

LINCSDRAM Output

video
pipe

Input

video
pipe

4

Chapter 1: DIVO Features and Capabilities

Figure 1-2 shows features of the DIVO I/O panel. Although the board is installed
vertically in the chassis, Figure 1-2 shows the panel sideways to aid in reading the
connector and LED labels.

Figure 1-2 DIVO I/O Panel

Table 1-1 summarizes DIVO board external connectors that interface with video
equipment.

Table 1-1 Interface for Video Equipment

Connector Format Use

IN LINK A, IN LINK B 10-bit CCIR 601-2
75-ohm BNCs
Terminated, unbalanced

Serial digital video input from digital tape deck or other recording
device. Conforms to SMPTE 259M for component video, SMPTE
272M for embedded audio, and SMPTE 266M for DVITC. Both
inputs autophased.

OUT LINK A, OUT LINK B 10-bit CCIR 601-2
75-ohm BNCs

Serial digital video output to digital tape deck or other recording
device. Conforms to SMPTE 259M for component video, SMPTE
272M for embedded audio, and SMPTE 266M for DVITC.

Note: The transfer mode (packing format) selected determines
LINK A and LINK B usage, as explained in Table A-3 and Table A-4
in Appendix A, “DIVO I/O Panel Connector Specifications.”

GEN IN 75-ohm BNC
Loopthrough, unbalanced,
unterminated

External analog sync source (precision time base or other source of
house sync) or analog loopthrough.

525 A-LCK

525

625625 D-LCK
OUT GPI GEN IN GEN OUTOUT LINK BOUT LINK AIN LINK BIN LINK A IN GPI

SYNC525 525

625 625

GPI input

Serial digital
video in, Link B

LEDs for IN LINK A LEDs for OUT LINK A
and OUT LINK B

LEDs for sync

LEDs for IN LINK B LED for digital output sync

Serial digital
video in, Link A

Serial digital
video out, Link A

LED for analog
output sync

Serial digital
video out, Link B

GPI output

Genlock loopthrough

DIVO Panel

5

See Appendix A, “DIVO I/O Panel Connector Specifications,” for technical details of the
connectors, including GPI pinouts.

Table 1-2 summarizes the function of the LEDs on the panel.

GEN OUT 75-ohm BNC
Loopthrough, unbalanced,
unterminated

External reference loop out; passive loopthrough for genlock input
with buffered signal to workstation.

Note: If you attach a cable to one GEN connector, you must attach
either another cable to other equipment accepting analog sync or a
75-ohm BNC terminator to the other GEN connector.

GPI IN, GPI OUT 8-pin mini-DIN General Purpose Interface for each video port; frame-accurate
event triggering to or from source or destination (tape deck or
digital recorder). Configurable for switch closure (factory setting)
or current sense operation.

Table 1-2 DIVO Panel LEDs

LED Purpose

Leftmost LEDs between IN LINK A and
IN LINK B (525 and 625)

Top LED lights when valid 525-line serial digital signal detected on IN LINK A.

Bottom LED lights when valid 625-line serial digital signal detected on IN LINK A.

Rightmost LEDs between IN LINK A
and IN LINK B (525 and 625)

Valid 525-line (top LED) or 625-line (bottom LED) serial digital signal detected on
IN LINK B.

Leftmost LEDs between OUT LINK A
and OUT LINK B (525 and 625)

Valid 525-line (top LED) or 625-line (bottom LED) serial digital signal detected on
OUTLINK A and OUT LINK B; these outputs are locked together, regardless of
whether OUT LINK B is used.

A-LCK Output is locked to an analog source: standalone, genlock (to another sync source), or
free run.

D-LCK Output is locked to a digital source (IN LINK A or IN LINK B).

SYNC 525 and 625 Valid 525-line sync source (top LED) or 625-line sync source (bottom LED) detected.

Table 1-1 (continued) Interface for Video Equipment

Connector Format Use

6

Chapter 1: DIVO Features and Capabilities

Figure 1-3 diagrams how the DIVO board interacts with other workstation components.

Figure 1-3 DIVO Video Top-Level System Diagram (Onyx2 System)

Digital Video Ports

The DIVO board has two independent 10-bit serial digital video ports for equipment that
complies with the CCIR 60-1-2 standard. The ports can be configured for 4:4:4:4 or 4:2:2:4
in dual-link mode, or 4:2:2 in single-link mode where alpha is ignored.

Each port consists of two unidirectional interconnections, Link A and Link B:

• In 4:4:4:4 mode, Link A carries Y plus Cr and Cb from even-numbered sample
points; Link B carries alpha plus Cr and Cb from odd-numbered sample points.

• In 4:2:2:4 mode, Link A carries Y plus Cr and Cb; Link B carries alpha only.

The video format selected determines Link A and Link B usage. For more information,
see the following standards, which contain provisions for video signals:

• CCIR 601-2: Encoding Parameters of Digital Television for Studios (4:2:2 component
video signals, single link)

• ANSI/SMPTE 125M-1992: Television—Component Video Signal 4:2:2—Bit-Parallel
Digital Interface

Node boards memory

XBOW

XBOW

XTOWN

GFX

DIVO

XIO

XIO

XIO slots

Color-Space Converters

7

• SMPTE Recommended Practice (RP) 175-1993: Digital Interface for 4:4:4:4
Component Video Signals (Dual Link)

• SMPTE 259M-1993: Television—10-Bit 4:2:2 Component and 4fsc NTSC composite
Digital Signals—Serial Digital Interface

• SMPTE RP 157-1990: Key Signals

• SMPTE 272M: Television - Formatting AES/EBU Audio and Auxiliary Data into
Digital Video Ancillary Data Space

Color-Space Converters

Four color spaces are native to DIVO: full-range RGBA, compressed range RGB (RP-175),
CCIR601, and full-range YUV. The video interface supports only RP-175 and CCIR 601-2.
The memory interface supports all four color spaces. See “Color Spaces” in Appendix C
for an explanation of full- and compressed-range color spaces.

DIVO uses the Gennum GF9105 component digital transcoder. The GF9105 uses 13-bit
multiplier coefficients and provides up to 13-bit output resolution, allowing for
transparent color-space conversion between YUV and RGB.

Interpolation and Decimation Filters

The GF9105 transcoder also provides interpolation and decimation filtering between the
4:2:2:4 and 4:4:4:4 sampling rates. Both interpolation and decimation operations are fully
compliant with the CCIR 601-2 standard.

DIVO Audio

DIVO provides one 16-channel wide input device and one 16-channel wide output
device, which are compliant with the SMPTE 272M standard. Applications can open
either device as 2, 4, 8, or 16 channels. Unused output channels are set to zero; unused
input channels are discarded. DIVO audio supports sample rates of 32 KHz, 44.1 KHz,
and 48 KHz. It supports 20- and 24-bit word sizes. Access to the audio is through the
Audio Library (AL) interfaces specified in the DMPG.

9

Chapter 2

2. Programming DIVO

The DIVO board supports the Video Library (VL) and the Audio Library (AL)
programming APIs. The APIs are described in the Digital Media Programming Guide
(007-1799-060 or later; hereafter referred to as the DMPG).

This chapter explains

• “VL Basics for DIVO” on page 10

• “Compression Through the VL” on page 16

• “DIVO Controls” on page 16

• “Setting Field Dominance” on page 21

• “VL Support for the General-Purpose Interface (GPI)” on page 24

• “VL Support for the Vertical Inline Time Clock (VITC)” on page 27

• “DIVO Events” on page 27

• “Setting Inline Controls” on page 29

• “Reporting” on page 29

10

Chapter 2: Programming DIVO

VL Basics for DIVO

To build programs that run under VL, you must

• install the dmedia_dev and dmedia_eoe options

• link with libvl

• include dmedia/vl.h and dmedia/vl_DIVO.h for device-dependent functionality

The client library for VL is /usr/lib32/libvl.so. The header files for the VL are in
/usr/include/dmedia; the main file is vl.h. This file contains the main definition of the VL
API and controls that are common across all hardware. Several useful digital media
programming examples are in /usr/share/src/dmedia/tools.

Note: When building a VL-based program, you must add -lvl to the linking command.

For more information on the Video Library and the API usage, see the latest version of
the DMPG.

This section explains

• “VL Concepts” on page 11

• “VL Syntax Elements” on page 11

• “VL Object Classes” on page 12

• “VL Nodes for DIVO” on page 13

• “VL Data Transfer Functions” on page 15

VL Basics for DIVO

11

VL Concepts

The Video Library defines a basic set of primitives and mechanisms to specify
interconnections and controls to achieve the desired setup. The two central concepts for
VL are

• path: an abstraction for a way of moving data around

• node: an endpoint of the path

The basic nodes are a source (such as a VTR) and a drain (such as memory). Figure 2-1
diagrams the simplest VL path, with one of each of these two nodes.

Figure 2-1 Simple VL Path

Another type of node besides source and drain is the device node (a global control), such
as trigger, GPI, sync, or default source. DIVO nodes are further discussed in “VL Nodes
for DIVO” on page 13.

VL Syntax Elements

VL syntax elements are as follows:

• VL types and constants begin with uppercase VL; for example, VLServer

• VL functions begin with lowercase vl; for example, vlOpenVideo()

Source Drain

VTR

Picture in
memory

12

Chapter 2: Programming DIVO

VL Object Classes

The VL recognizes these classes of objects:

• devices, each including sets of nodes

• nodes, which are sources, drains, and internal nodes (as discussed in the preceding
section)

• paths, connecting sources and drains (as discussed in the preceding section)

• buffers, for sending and receiving field/frame data to and from host memory

DIVO requires the use of DMbuffers (digital media buffers) and not the original
ring buffer mechanisms (VL buffers) used with earlier Silicon Graphics video
options. The new buffering scheme is much more flexible and versatile than the
older VL buffer-based scheme. See Chapter 5 of the DMPG.

DMbuffers, an abstraction of main memory, allow efficient and API-independent
interchange of data between the different digital media libraries. For example, video
fields can be captured into DMbuffers via VL and then displayed in graphics using
OpenGL. They can also be passed between two processes without the data having
to be copied explicitly. Refer to Chapter 5, “Digital Media Buffers,” in the DMPG for
details.

• events, for monitoring video I/O status

• controls, or parameters that modify how data flows through nodes; for example:

– video device parameters, such as sync source

– video data parameters such as packing, size, and color space

VL controls fall into two categories:

• device-global or device-independent (prefix VL_), which can be used by several Silicon
Graphics video products

For details of the device-independent controls, refer to the DMPG.

• device-dependent (prefix VL_DIVO_), specific to a particular video device, in this
case, DIVO

Both types of VL controls are explained in this chapter with respect to their usage with
DIVO.

VL Basics for DIVO

13

VL Nodes for DIVO

Use vlGetNode() to specify nodes. This call returns the node’s handle, which is used
when setting controls or setting up paths. Its function prototype is:

VLNode vlGetNode(VLServer svr, int type, int kind, int number)

In this prototype, variables are as follows:

svr Names the server (as returned by vlOpenVideo()).

type Specifies the type of node:

• VL_SRC: source, such as a digital tapedeck connected to an input
port

Note: The DIVO option has only one input.

• VL_DRN: drain, such as system memory

• VL_DEVICE: global control, such as a default source; Table 2-1
summarizes the values for this type

Note: If you are using VL_DEVICE, the VLNode should be set to 0.

kind Specifies the kind of node:

• VL_VIDEO: connection to a video device equipment; for example,
a video tapedeck or camera

• VL_MEM: workstation memory

number Number of the node in cases of two or more identical nodes, such as two
video source nodes. The default value for all kinds is 0.

VL_ANY can also used as a value for number to reference the first available node of the
specificated type and kind.

14

Chapter 2: Programming DIVO

In general, a path on DIVO has a memory node and a video node. The following
fragment creates a digital video input source node and a memory drain node, and creates
the path:

VLServer svr;
VLPath path;
VLNode src;
VLNode drn;
 /*Set up video source node */
VLControlValue timing,format, val;
src = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);
 /*Set up memory drain node */
drn = vlGetNode(svr, VL_DRN, VL_MEM, VL_ANY);
 /* Create source-to-drain path */
if((path = vlCreatePath(svr, VL_ANY, src, drn)) < 0){
 fprintf(stderr,”%s\n”,vlStrError(vlGetErrno()));
 exit(1);
}
 /* Set up path with shared src and drn node */
vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE, VL_SHARE);

After nodes are specified, use vlSetControl() to specify parameters:

• video nodes: video timing (drain only) and format (for example digital component)

• memory nodes: timing, packing, and color space

Controls for each node are defined in “DIVO Controls” later in this chapter, and are
summarized in Table 2-3.

VL Basics for DIVO

15

VL Data Transfer Functions

This section summarizes VL data transfer categories, and gives the basic steps of creating
an application. For DIVO, VL data transfers always involve memory (video to memory,
memory to video) and require setting up a DMbuffer pool.

In the VL programming model, the process of creating a VL application consists of these
steps:

1. Open a connection to the video daemon (vlOpenVideo()).

2. Specify nodes on the data path (vlGetNode()).

3. Create the path (vlCreatePath()).

4. Optional step: add more nodes to a path (vlAddNode()).

5. Set up the hardware for the path (vlSetupPaths()).

6. Specify path-related events to be captured (vlSelectEvents(), vlAddCallback()).

7. Set input and output parameters (controls) for the nodes on the path
(vlSetControl()); video format and timing must be specified.

8. Create a dmBuffer pool to hold data for memory transfers (vlDMGetParams(),
dmBufferSetPoolDefaults(), dmBufferCreatePool(), vlGetTransferSize()).

9. Register the buffer (vlDMPoolRegister(),vlDMPoolDeregister()).

10. Start the data transfer (vlBeginTransfer()).

11. Get the data (vlDMBufferGetValid(), vlDMBufferPutValid(), dmBufferAllocate(),
dmBufferAllocateSize(), dmBufferGetPoolState(), dmBufferGetPoolFD(),
dmBufferSetPoolSelectSize(), dmBufferMapData(), dmBufferFree()) to
manipulate frame data.

12. Handle data stream events (vlSelectEvents(), vlNextEvent(), vlPending()).

13. Clean up (vlEndTransfer(), vlDMPoolDeregister(), vlDestroyPath(),
vlCloseVideo()).

Note: Error handling (vlPerror()) is accomplished throughout.

16

Chapter 2: Programming DIVO

Compression Through the VL

Compression is handled via enhancements to the VL API; the DIVO board does not
support the Compression Library API.

Compression in the VL is supported by adding compression-related controls on memory
nodes. The control VL_COMPRESSION specifies the compression. Based on the
compression type, additional controls specify compression-related parameters. Table 2-2
later in this chapter summarizes these controls.

DIVO can use Rice compression, a lossless entropy coding mechanism that provides an
average compression of 2:1. In some cases, compression can add to the size of the data
being transferred, but is limited to a maximum of 1% increase. Tests at Silicon Graphics
show that this compression mechanism can reduce data in ratios of 2:1 to 6:1.

Please refer to the source examples (divo_vidtomem.c for encoding and divo_memtovid.c for
decoding) in the directory /usr/share/src/dmedia/video/DIVO. For encoding, specify the
controls VL_COMPRESSION, VL_RICE_COMP_PRECISION, and
VL_RICE_COMP_SAMPLING. For decoding, the control information is already
embedded in the stream; you need specify only the data type, by using the
VL_COMPRESSION control. For best memory utilization with Rice compression, use
variably sized buffers.

DIVO Controls

To determine the available devices (that is, video options in the workstation, such as the
DIVO board) and the nodes available on them, run vlinfo. To determine possible controls
for each device, enter

vlinfo -l

Note: VL controls specified as true with vlSetControl() are executed immediately.
However, they are not guaranteed to happen at a specific time. For better precision on the
execution of these controls, see “Setting Inline Controls” on page 29.

DIVO Controls

17

To set controls for DIVO nodes, use vlSetControl(). The following example sets video
format and timing on a node:

timing.intVal = VL_TIMING_525_CCIR601;
format.intVal = VL_FORMAT_RGB;

if (vlSetControl(svr, path, drn, VL_TIMING, &timing) <0)
{
 vlPerror(“VlSetControl:TIMING”);
 exit(1);
}
if (vlSetControl(svr, path, drn, VL_FORMAT, &format) <0)
{
 vlPerror(“VlSetControl:FORMAT”);
 exit(1);
 }

For details on vlSetControl() and vlGetControl(), see the latest version of the DMPG.

Tables in this section summarize

• device-global controls for DIVO

• controls for DIVO nodes

• control values and uses

Table 2-1 summarizes supported node controls for DIVO.

Table 2-1 DIVO Node Controls

Control Video Source Memory Source Video Drain Memory Drain

VL_ASPECT X (read only) X (read only)

VL_CAP_TYPE X X

VL_COLORSPACE X X

VL_COMPRESSION X X

VL_DIVO_LOOPBACK X

VL_DIVO_RASTER_MODE X X

VL_FIELD_DOMINANCE X X

VL_FORMAT X X

18

Chapter 2: Programming DIVO

Table 2-2 summarizes the values and uses of controls for DIVO.

VL_GPI_OUT_MODE X X

VL_GPI_STATE X X

VL_OFFSET X (read only) X X (read only) X

VL_PACKING X X

VL_RICE_COMP_PRECISION X X

VL_RICE_COMP_SAMPLING X X

VL_SIZE X (read only) X X (read only) X

VL_SYNC X

VL_SYNC_SOURCE X

VL_TIMING X (read only) X X X

VL_TRANSFER_TRIGGER X X

VL_ZOOM X (read only) X (read only) X (read only) X (read only)

Table 2-2 Controls for DIVO

Control Values or Range Use

VL_ASPECT Aspect (read-only). Reads aspect ratio.

VL_CAP_TYPE Memory nodes:

VL_CAPTURE_FIELDS
VL_CAPTURE_INTERLEAVED
VL_CAPTURE_NONINTERLEAVED

Selects type of frame(s) or field(s) to
capture.

VL_COLORSPACE VL_COLORSPACE_RGB (full-range RGB)
VL_COLORSPACE_CCIR601(compressed-range
YUV)
VL_COLORSPACE_RP175 (compressed-range
RGB)
VL_COLORSPACE_YUV (full-range YUV)

Specifies color space of video data in
memory.

Table 2-1 (continued) DIVO Node Controls

Control Video Source Memory Source Video Drain Memory Drain

DIVO Controls

19

VL_COMPRESSION VL_COMPRESSION_NONE
VL_COMPRESSION_RICE
VL_COMPRESSION_JPEG
VL_COMPRESSION_MPEG2
VL_COMPRESSION_DVCPRO

Specifies compression option for video.
See vl.h for information on
compression-specific controls. For
example, to access Rice entropy coding, use
VL_COMPRESSION_RICE as the
compression control for the memory node.

VL_DIVO_LOOPBACK VL_DIVO_LOOPBACK_ON
VL_DIVO_LOOPBACK_OFF

Specifies if the video source on input
should be from the output pipe.

VL_DIVO_RASTER_MODE VL_DIVO_RASTER_VIDEO

VL_DIVO_RASTER_DATA

Grabs video specified by the VL_SIZE and
VL_OFFSET.

Grabs or puts the full raster; used for SDDI
or CSDI interfaces.

VL_FIELD_DOMINANCE VL_F1_IS_DOMINANT
VL_F2_IS_DOMINANT

Note: Frames that are output are deinterlaced
differently depending on the choice of output field
dominance. Deinterlacing is specified in the
application.

Identifies frame boundaries in a field
sequence; see “Setting Field Dominance.”

VL_FORMAT
VL_FORMAT_DIGITAL_COMPONENT_SERIAL
VL_FORMAT_DIGITAL_COMPONENT_DUAL_
SERIAL

Sets video format in or out:
Serial 4:2:2:4
Serial 4:4:4:4

VL_GPI_OUT_MODE

Conditions:
VL_GPI_OUT_XFER_START
VL_GPI_OUT_XFER_STOP

Specifies when the GPI_OUT line is
asserted, to control downstream devices in
a studio environment. For more
information, see “VL Support for the
General-Purpose Interface (GPI).”
Asserts GPI_OUT at BeginTransfer.
Asserts GPI_OUT at EndTransfer.

VL_GPI_STATE State:
VL_GPI_CLEAR
VL_GPI_OFF
VL_GPI_ON
VL_GPI_PULSE (transition for one field time)

Sets/Gets the state of output_gpi lines. For
more information, see “VL Support for the
General-Purpose Interface (GPI)” on
page 24.

Table 2-2 (continued) Controls for DIVO

Control Values or Range Use

20

Chapter 2: Programming DIVO

VL_OFFSET Any position within the video raster. Sets the position within the video raster to
stuff bits.

VL_PACKING Supported packings; see Appendix C, “Pixel
Packings and Color Spaces,”for information.

Sets packing format for memory source or
drain node.

VL_RICE_COMP_PRECISION VL_RICE_COMPRESSION_8
VL_RICE_COMPRESSION_10
VL_RICE_COMPRESSION_12
VL_RICE_COMPRESSION_13

Specifies the component size.

VL_RICE_COMP_SAMPLING VL_RICE_COMPRESSION_422
VL_RICE_COMPRESSION_4224
VL_RICE_COMPRESSION_444
VL_RICE_COMPRESSION_4444

Specifies the sampling resolution.

VL_SIZE Any size of the raster. Size plus offset or origin should not exceed
the raster dimensions.

VL_SYNC VL_SYNC_INTERNAL
VL_SYNC_GENLOCK

Sets sync mode for source or drain; on
source, this is set to VL_SYNC_GENLOCK.

VL_SYNC_SOURCE VL_DIVO_SYNC_HOUSE
VL_DIVO_SYNC_DIGITAL_INPUT_LINK_A
VL_DIVO_SYNC_DIGITAL_INPUT_LINK_B
VL_DIVO_SYNC_DBOARD

Selects the genlock source:
VL_DIVO_SYNC_DBOARD is used when
the compressed stream provides a sync
source.

VL_TIMING
VL_TIMING_525_CCIR601
VL_TIMING_625_CCIR601

Sets or gets video timing:
13.50 MHz, 720 x 486
13.50 MHz, 720 x 576

VL_TRANSFER_TRIGGER VL_TRIGGER_NONE
VL_TRIGGER_GPI
VL_TRIGGER_VITC
VL_TRIGGER_MSC

Specifies the conditions under which
transfers begin on a path (video nodes
only); see “Using
VL_TRANSFER_TRIGGER” in this
chapter.

VL_ZOOM Zoom factor (read-only) Reads zoom factor of video stream.

Table 2-2 (continued) Controls for DIVO

Control Values or Range Use

Setting Field Dominance

21

Setting Field Dominance

Field dominance identifies the frame boundaries in a field sequence; that is, it specifies
which pair of fields in a field sequence constitute a frame. The control
VL_FIELD_DOMINANCE allows you to specify whether an edit occurs on the nominal
video field boundary (field 1) or on the intervening field boundary (field 2)).

• F1 dominant: The edit occurs on the nominal video field boundary.

• F2 dominant: The edit occurs on the intervening field boundary.

Figure 2-2 shows fields as defined for NTSC and PAL.

Note: In digital formats and other input modes, half lines become full lines.

Figure 2-2 Fields and Frames for NTSC and PAL

.

.

.

1
2
3
4
5
.

.

.

482
483
484
485

FrameFrame (raster)
Line number

Field 1

Field 2

Odd field
(242.5 lines;

Even field
(242.5 lines;

no blanking)

no blanking)

NTSC/

PAL/

Component 525

Component 625
.

.

.

2
3
4
5
.

.

.

572
573
574
575

FrameFrame (raster)
Line number

2
4
.

572
574

.

.

.

1
3
5
.

573
575

.

.

.

Field 2

Field 1

Frame (raster)
Line number

Odd field
(287.5 lines;

Even field
(287.5 lines;

no blanking)

no blanking)

6
.

2
4
.

482
484

.

.

.

1
3
5
.

483
485

.

.

.

Frame (raster)
Line number

6
.

1 Line 0

Line 0

Line 0

Line 0

22

Chapter 2: Programming DIVO

Users typically want to edit on Field 1 boundaries, where Field 1 is defined as the first
field in the video standard’s two-field output sequence. 525 standards send the second
(whole) raster line out to begin the first field, and the first (half) raster line out to begin
the second field; 625 standards send the first (half) raster line out to begin the first field,
and the second (whole) raster line to begin the second field.

Some users may want to edit on F2 boundaries, which fall on the field in between the
video standard’s frame boundary. To do so, use this control, then program your deck to
select F2 edits.

NTSC users might need to vary their field dominance choice, depending on the origin of
the input material they are to edit.

Note: To output a set of frames, they must be deinterlaced into fields differently,
depending on the choice of output field dominance. For example, when F1 dominance is
selected, the field with the topmost line must be the first field to be transferred; when F2
dominance is selected, the field with the topmost line must be the second field to be
transferred. Deinterlacing must be specified in the application; the following code
fragment contains an example of how to consult the field dominance control to
determine deinterleave order.

/*
* Set the memory node’s timing based upon the video drain’s timing,
 * which has been set up by the daemon from the defaults file, or by
 * the user via vcp.
 *
 * When we get around to reading image files, we’ll check the file
 * size against the size reported by the VL for this node: if the file
 * size does not match the format’s, we’ll punt.
 */

int is_525, F1_is_first;
VLControlValue drn timing, dominance;
if (vlGetControl(svr, MEMtoVIDPath, drn, VL_TIMING, &drainTiming) < 0)
{
 vlPerror(“GetControl(VL_TIMING) on video drain failed”);
 exit(1);
}
if (vlSetControl(svr, MEMtoVIDPath, src, VL_TIMING, &drainTiming) < 0)
{
 vlPerror(“SetControl(VL_TIMING) on memory source failed”);
 exit(1);
}

Setting Field Dominance

23

/*
 * Read the video drains’s field dominance control setting and timing,
 * then set a variable to indicate which field has the first line, so
 * readimage() will know how to deinterleave frames to fields.
 */
if (vlGetControl(svr, MEMtoVIDPath, drn,
 VL_FIELD_DOMINANCE, &dominance) < 0) {
 vlPerror(“GetControl(VL_FIELD_DOMINANCE) on video drain failed”);
 exit(1);
}

is_525 = (drainTiming.intVal == VL_TIMING_525_CCIR601));

switch (dominance.intVal) {
 case VL_F1_IS_DOMINANT:
 if (is_525) {
 F1_is_first = 0;
 } else {
 F1_is_first = 1;
 }
 break;
 case VL_F2_IS_DOMINANT:
 if (is_525) {
 F1_is_first = 1;
 } else {
 F1_is_first = 0;
 }
 break;
 }

24

Chapter 2: Programming DIVO

VL Support for the General-Purpose Interface (GPI)

The DIVO board has two GPI connectors, each associated with one of the serial digital
video ports. Each port has two transmit and two receive channels, lines 0 and 1 in and
out.

The VL API supports the GPI as a device-independent interface. It supports GPI triggers
in three vlSetControl() interfaces. The union VLControlValue has been extended to
support the controls for

• output triggering, discussed in “Using VL_GPI_OUT_MODE” on page 24

• explicitly setting and querying the GPI lines, discussed in “Using VL_GPI_STATE”
on page 25

• setting up triggering to begin transfers on a path, discussed in “Using
VL_TRANSFER_TRIGGER” on page 26

Note: See the section “GPI Interface” in Appendix A for extensive hardware information
on the GPI interface.

Using VL_GPI_OUT_MODE

Use VL_GPI_OUT_MODE to program the gpi_out line. Two conditions are supported
for asserting the GPI line: transfer_start and transfer_stop. You can have multiple trigger
conditions outstanding.

Figure 2-3 diagrams the effect of VL_GPI_OUT_MODE values.

Figure 2-3 Output GPI (OFF Assumed to Be Low)

Note: In this section, OFF is assumed to be low. VL_CLEAR_GPI changes the state of the
GPI signal to low.

ON

OFF

VL_GPI_OUT_XFER_START VL_GPI_OUT_XFER_STOP

VL Support for the General-Purpose Interface (GPI)

25

The following pseudocode segment illustrates a setup for gpi_out line 1 to toggle at the
beginning and end of transfer:

VLControlValue val;

 /* make sure the GPI line is high */
val.gpi_state.gpi = VL_GPI_OUT;
val.gpi_state.instance = <which GPI line>; /* integer */
val.gpi_state.state = VL_GPI_OFF;
vlSetControl(svr,path,VL_GPI_STATE,&val);

 /* transfer start */
val.gpi_out.condition = VL_GPI_OUT_XFER_START;
val.gpi_out.instance = <which GPI output line >;
val.gpi_out.state = VL_GPI_ON;

vlSetControl(svr,path,VL_GPI_OUT_MODE,&val);

 /* transfer stop */
val.gpi_out.condition = VL_GPI_OUT_XFER_STOP;
val.gpi_out.instance = <which GPI output line >;
val.gpi_out.state = VL_GPI_OFF;

vlSetControl(svr,path,VL_GPI_OUT_MODE,&val);

To clear all outstanding trigger controls on a particular line, use the gpi_state control with
the clear flag.

Using VL_GPI_STATE

Use VL_GPI_STATE to query the state of the input GPI lines and to set or get the state of
output GPI lines. The states are ON, OFF, PULSE (transition for one field time), and
CLEAR.

The following code fragment clears all output triggers on the specified line:

val.gpi_state.gpi = VL_GPI_OUT;
val.gpi_state.instance = <which GPI line>;
val.gpi_state.state = VL_GPI_CLEAR;

vlSetControl(svr,path,VL_GPI_STATE,&val);

26

Chapter 2: Programming DIVO

To get the GPI state on an input line, use

val.gpi_state.gpi = VL_GPI_IN;
val.gpi_state.instance = <which GPI line>;
vlGetControl (svr, path, VL_GPI_STATE, &val);

Using VL_TRANSFER_TRIGGER

The VL_TRANSFER_TRIGGER control specifies the conditions under which transfers
begin on a path based on external GPI triggers. This control is valid only on video nodes.

The following code illustrates an input GPI-based trigger transfer setup:

VLTransferDescriptor desc;
int num_images = 30; /* 1 second of video */
int trigger = TRUE;/* enable trigger transfers */

if (trigger) {
 val.xfer_trigger.triggerType = VL_TRIGGER_GPI;
 val.xfer_trigger.value.instance = 1; /* GPI line 1 */
 desc.trigger = VLDeviceEvent;
}
else { /* reset for subsequent transfers */
 val.xfer_trigger.triggerType = VL_TRIGGER_NONE;
 desc.trigger = VLTriggerImmediate;
}

vlSetControl(svr, path, src, VL_TRANSFER_TRIGGER, &val);

desc.mode = VL_TRANSFER_MODE_DISCRETE;
desc.count = num_images;
desc.delay = 0;

vlBeginTransfer(svr, path, 1, &desc);

Note: The trigger type is a persistent device control setting and remains valid until reset.
Thus the VL_TRANSFER_TRIGGER control must be set to VL_TRIGGER_NONE if
subsequent transfers are of a nontrigger type.

VL Support for the Vertical Inline Time Clock (VITC)

27

VL Support for the Vertical Inline Time Clock (VITC)

DIVO always extracts VITC information from the fields as they are captured and passes
this information to the application as buffer information associated with the dmBuffer.
To extract this information, call vlDMBufferGetVideoInfo(). In the structure returned, a
valid bit (validinfo) indicates if the VITC is valid. Refer to the programming example
divo_vitc.c in the directory /usr/share/src/dmedia/video/DIVO.

To insert VITC, fill the DMBufferVideoInfo* structure and call the function
vlDMBufferSetVideoInfo().

DIVO Events

The VL provides several ways of handling data stream events, such as completion or
failure of data transfer, vertical retrace event, loss of the path to another client, lack of
detectable sync, or dropped fields or frames. The method you use depends on the kind
of application you are writing:

• For a strictly VL application, use

– vlSelectEvents() to choose the events to which you want the application to
respond

– vlCallback() to specify the function called when the event occurs

– your own event loop or a main loop (vlMainLoop()) to dispatch the events

• For an application that also accesses another program or device driver, or if you are
adding video capability to an existing X or OpenGL application, set up an event
loop in the main part of the application and use the IRIX file descriptor (FD) of the
event(s) you want to add.

For more information on these functions, see Chapter 4 in the Digital Media Programming
Guide.

28

Chapter 2: Programming DIVO

Table 2-3 summarizes events for DIVO. For DIVO, this table supersedes the table of
events in Chapter 14, “VL Event Handling,” in the DMPG; DIVO supports only the
events listed in Table 2-3.

Table 2-3 DIVO Events

Event Use

VLSyncLost Sync is not detected

VLStreamStarted Stream started delivery

VLStreamStopped Stream stopped delivery

VLSequenceLost A field/frame was dropped

VLControlChanged A control on the path has changed

VLTransferComplete A field/frame transfer has completed

VLTransferFailed A transfer has failed and DMA is aborted

VLEvenVerticalRetrace Vertical retrace event for an even field

VLOddVerticalRetrace Vertical retrace event for an odd field

VLDeviceEvent A dev0 ice-specific event

A transfer error was discovered; field may be invalid

Setting Inline Controls

29

Setting Inline Controls

Because of the asynchronous nature of the implementation, controls executed with
vlSetControl() have no guarantees as to when they are executed once transfers are in
progress. However, in certain situations, it is useful to be able to specify when controls
on a path are executed; for example, to play out video clips with different packings or
color-space formats without having to stop transfers while a memory-to-video operation
is in progress.

Inline controls specify control changes to happen between buffers. For example, if you
want to play out two video clips that have different packing formats in memory, the
application would set up the path, queue the buffers from the first clip, set up inline
controls to match the next clip, and queue the buffers from the second clip. The syntax
for usage is

int vlSetControlInLine(VLServer svr, VLPath path, VLNode node,
 VLNode refnode, VLControlType control, VLControlValue *val)

In this syntax, refnode is the reference node, identifying a unique connection in a path
with more than two nodes.

Inline controls are generally applied on a memory node being used as the source node.
Control changes are queued to the hardware along with the buffers and are executed in
order. To change packing control inline, for example, use

VLNode mem;
mem = vlGetNode(svr, VL_SRC, VL_MEM, VL_ANY);
val.intval = VL_PACKING_444_12;
vlSetControlInLine(svr, path, mem, mem, VL_PACKING, &val);

Reporting

The DMediaInfo structure has been enhanced to report the Unadjusted System Time
(UST) and VITC information.

DIVO makes use of the error events noted in Chapter 4 of the DMPG, as well as
VLTransferErrorEvent, which reports nonfatal video transfer errors, including error
detection and handling (EDH) errors. The VLTransferComplete and VLSequenceLost
events also report the Media Stream Count (MSC) of the field or frame transferred or
failed.

31

Appendix A

A. DIVO I/O Panel Connector Specifications

This appendix summarizes hardware specifications for the DIVO option:

• “DIVO Connectors” on page 31

• “GPI Interface” on page 33

DIVO Connectors

Table A-1 summarizes return loss for the IN LINK A, IN LINK B, and GEN IN connectors.

Table A-2 summarizes output characteristics for the OUT LINK A and OUT LINK B
connectors.

Table A-1 Return Loss for DIVO Video and Genlock Channels

Channel Value

IN LINK A, IN LINK B > 15 dB @ 270 MHz

GEN IN > 40 dB @ 6 MH

Table A-2 Characteristics for DIVO Digital Video Out Channels

Characteristic Value

Amplitude 800 mV +/-10%

Rise/fall time .75 nsec to 1.5 nsec

Overshoot <10% p-p

Alignment jitter <740 ps p-p

32

Appendix A: DIVO I/O Panel Connector Specifications

Table A-3 explains the use of LINK A and LINK B connectors for 4:2:2:4 mode. If LINK B is
not used in 4:2:2:4 format, the resulting format is 4:2:2. The LINK A connector carries
10-bit wide UVY information; the LINK B connector carries 10-bit alpha. Usage is similar
for 10-bit RGBA.

Table A-4 explains the use of LINK A and LINK B connectors for 4:4:4:4 mode. The LINK A
connector carries a 4:2:2 sampled portion of 10-bit wide UVY; the LINK B connector
carries the remaining 10-bit UV samples and 10-bit alpha. Usage is similar for 10-bit
RGBA.

The GEN OUT and GEN IN connectors make up a passive genlock loopthrough
connection. If you attach a cable to one GEN connector, you must attach to the other GEN
connector either a 75-ohm BNC terminator or a cable to other equipment accepting
analog sync. If another cable is connected, it must ultimately be terminated.

Table A-3 Usage for LINK A and LINK B in 4:2:2:4 Mode

Sample LINK A LINK B

0 Cb0 x

1 Y0 A0

2 Cr0 x

3 Y1 A1

Table A-4 Usage for LINK A and LINK B in 4:4:4:4 Mode

Sample LINK A LINK B

0 Cb0 Cb1

1 Y0 A0

2 Cr0 Cr1

3 Y1 A1

GPI Interface

33

GPI Interface

For each video pipe, the General Purpose Interface (GPI) provides two channels of input
and output trigger signal pairs. This section explains

• “GPI Pinouts” on page 33

• “GPI Transmitter” on page 36

• “GPI Receiver, Switch Closure Mode, and Current Sense Mode” on page 38

GPI Pinouts

The DIVO board has two GPI connectors, each associated with one of the serial digital
video ports (two transmit and two receive channels each). Figure A-1 points out the GPI
connectors on the DIVO panel.

Figure A-1 GPI Connectors

Figure A-2 shows pinouts for the GPI; the information is applicable for both the IN GPI
and OUT GPI connectors. In this figure, CCT denotes contact closure transmit, and CCR
denotes contact closure receive.

Figure A-2 GPI Pinouts

525 A-LCK

525

625625 D-LCK
OUT GPI GEN IN GEN OUTOUT LINK BOUT LINK AIN LINK BIN LINK A IN GPI

SYNC525 525

625 625

GPI for IN
video connectors

GPI for OUT
video connectors

CCR0-

CCR0+

CCR1+

CCR1-CCT1-

CCT1+

CCT0-

CCT0+

34

Appendix A: DIVO I/O Panel Connector Specifications

Each +/- signal pair of the same name applies to one channel of either a receive or
transmit optical device. Table A-5 gives the meaning of the pins in Figure A-2.

Table A-5 GPI Pinouts

Pin Symbol Name Channel

8 CCT0+ Contact Closure Transmit + 0

4 CCT0- Contact Closure Transmit - 0

5 CCT1+ Contact Closure Transmit + 1

2 CCT1- Contact Closure Transmit - 1

6 CCR0+ Contact Closure Receive + 0

7 CCR0- Contact Closure Receive - 0

3 CCR1+ Contact Closure Receive + 1

1 CCR1- Contact Closure Receive - 1

GPI Interface

35

Each GPI header (row of four pins) configures one of four receiver channels: two
channels for GPI in and two channels for GPI out. Figure A-3 shows the location of the
jumper pins on the board.

Figure A-3 GPI Jumper Locations (Factory Setting)

Note that the jumpers for the OUT GPI connector are near the OUT GPI mini-DIN
connector, while the jumpers for the IN GPI connector are relatively far away from the IN
GPI connector.

For the factory setting of switch closure mode, two jumpers are factory-installed,
shorting pins 1-2 and pins 3-4. These jumpers need not be moved unless you wish to use
current sense mode. You can choose to mix the modes for the various channels. This
reconfiguration is typically performed by a Silicon Graphics System Service Engineer
when the DIVO board is installed in the chassis. Switch closure and current sense modes
are explained in “GPI Receiver, Switch Closure Mode, and Current Sense Mode” on
page 38.

IN GPI
Jumpers

OUT GPI
Jumpers

36

Appendix A: DIVO I/O Panel Connector Specifications

Figure A-4 shows GPI headers and jumpering. The printed circuit board (PCB) reference
designators are included to aid identification of the header associated with each GPI
receiver channel.

Figure A-4 Example GPI Interface

Note: For information on VL controls for configuring the GPI ports, see “VL Support for
the General-Purpose Interface (GPI)” in Chapter 2.

GPI Transmitter

GPI contact closure transmit (CCT) outputs use an optically coupled solid-state relay
(SSR) to provide a means of electrical isolation for destination equipment. The GPI
transmitter is triggered by a computer command which forward-biases the internal LED,
which in turn drives the output MOSFET, closing the contacts of the SSR.

C4J7
(channel 1)

Pin 1

Pin 1

Pin 1 Pin 1

OUT GPI IN GPI

Current Sense Switch Closure

Jumper across 2-3 Jumpers across 1-2 and 3-4

C4J9
(channel 0)

A9H8
(channel 1)

A2H8
(channel 0)

GPI Interface

37

When the GPI trigger is off, a high resistance exists between the CCT+/- terminals. When
the GPI is on (triggered by the computer), a low resistance exists between the terminals.

Figure A-5 and Table A-6 show electrical specifications for the GPI transmitter.

Figure A-5 GPI Transmitter Electrical Specifications

Table A-6 GPI Transmitter Electrical Specifications

Parameter Value

On resistance 10 ohms typical, 15 ohms maximum

Off resistance 5000 G ohms

Current limit 360 mA typical, 460 mA maximum

Output capacitance 60 pF

Continuous DC load current 180 mA

Output power dissipation 600 mW

Isolation voltage 3750 V rms

+V

CCT+

CCT-

S and S1 (bi-directional outputs)

Typical OFF resistance: 5000 G ohms
Typical ON resistance: 10 ohms

Computer
trigger

Optical solid state relay (SSR)

S1

S

38

Appendix A: DIVO I/O Panel Connector Specifications

The GPI transmitter can be interfaced to the destination equipment by tying the CCT-
terminal to GND and using the CCT+ terminal as a current sink. The input device can
consist of a logic device with active pullup, an optoisolator LED with series-limiting
resistor, or relay primary with series-limiting resistor.

The GPI transmitter’s logic sense can be swapped (inverted) by tying the CCT+ terminal
to the logic power supply (VCC) of the destination equipment and using the CCT-
terminal to drive the input of the receiving device.

GPI Receiver, Switch Closure Mode, and Current Sense Mode

GPI Contact Closure Receive (CCR) inputs use an optical isolator device to provide a
means of electrical isolation from source equipment. The device consists of a
bidirectional input LED optically coupled to a bipolar transistor. A voltage pulse applied
across the CCR+/- pins causes the LED to become forward-biased and to produce a GPI
trigger to the computer.

Table A-7 summarizes electrical specifications for the GPI receiver optoisolator.

Table A-7 GPI Receiver Input Optoisolator

Parameter Value

Forward voltage (VF) 1.55 V, 1.2 V typical (IF = 10 mA)

Continuous forward current (IF) 30 mA

Peak forward current 1000 mA (10 us duration, 1% DC)

Reverse current (IR) 0.1 uA, 100 uA maximum (VR = 6 V)

Isolation surge voltage (V10) 2500 VACRMS (t = 1 min)

GPI Interface

39

Figure A-6 shows switch closure jumpering, which creates a digital pulse.

Figure A-6 Jumpering for GPI Switch Closure (Factory Setting)

In switch closure mode, the +5 V power supply and ground of the DIVO board are not
electrically isolated from the chassis of the source equipment.

Figure A-7 shows current sense jumpering.

Figure A-7 Jumpering for GPI Current Sense Mode

In current sense mode, the DIVO board is electrically isolated from the chassis of the
source equipment.

32

41

Computer
trigger

Optoisolator

Jumper pins 1-2 and 3-4

0V +5V

470
CCR -

CCR +

32

41

Computer
trigger

Optoisolator

Jumper pins 2-3

0V +5V

CCR -

CCR +

470

40

Appendix A: DIVO I/O Panel Connector Specifications

For switch closure mode, the GPI receiver can be interfaced to the source equipment by
tying the CCR+ and CCR- terminals across the output terminals of an optoisolator,
solid-state relay, or any device that acts like a single-pole contact switch. A GPI trigger is
generated as long as the source switch is closed.

Note: Polarity of the CCR+/- signals must be observed for the source equipment in
switch closure mode.

For current sense mode, the CCR+ and CCR- signals can be interfaced by tying the CCR+
terminal to the output of a TTL or CMOS logic device, and by tying the CCR- terminal to
GND of the source equipment. Whenever the logic device is sourcing current (driving a
logic high), a GPI trigger is generated.

In current sense mode, the logic sense can be swapped (inverted) by moving the CCR-
signal from GND to the logic power supply (typically VCC) of the source equipment. The
CCR+ signal remains connected to the output of the logic device; however, in this
configuration an open collector type device can be used. Whenever the logic device is
sinking current (driving a logic low), a GPI trigger is generated.

41

Appendix B

B. Setting Up DIVO for Your Video Hardware

This appendix illustrates how to attach video equipment to connectors on the DIVO I/O
panel and how to use the video control panel vcp to set the DIVO board to match your
installation.

This appendix explains

• “Setting Up Digital Source Video” on page 41

• “Setting Up the Output (Drain)” on page 43

• “Setting Up Sync” on page 44

• “Saving Settings” on page 46

Figure B-1 shows connectors on the DIVO I/O panel.

Figure B-1 DIVO Ports

Setting Up Digital Source Video

DIVO has two 10-bit digital video input ports (IN LINK A and IN LINK B) for equipment
that complies with the CCIR 601 standard. The ports can be configured for 4:4:4:4 or
4:2:2:4 dual-link mode; for 4:2:2 single-link mode, ignore the alpha:

• In 4:4:4:4 mode, Link A carries Y plus the U and V from even-numbered sample
points; Link B carries alpha plus the U and V from odd-numbered sample points.

• In 4:2:2:4 mode, Link A carries Y plus the U and V from all sample points; Link B
carries alpha only.

525 A-LCK

525

625625 D-LCK
OUT GPI GEN IN GEN OUTOUT LINK BOUT LINK AIN LINK BIN LINK A IN GPI

SYNC525 525

625 625

42

Appendix B: Setting Up DIVO for Your Video Hardware

To set up DIVO for a digital video source, follow these steps:

1. Connect a video device to IN LINK A and, if you are using a device for alpha key
data, also IN LINK B. If you use only one input, it must be IN LINK A.

2. Call up the panel:

/usr/sbin/vcp

3. In the Inputs(s): DIVO Digital Video Source section of the control panel vcp for the
channel(s) you are using, select the format that matches your equipment, as shown
in Figure B-2.

Figure B-2 Selecting Digital Input Video Format in vcp

4. In the Digital Video Source portion of the panel for the channel(s) you are using,
select the timing that matches your equipment: CCIR 525 or CCIR 625.

Setting Up the Output (Drain)

43

Setting Up the Output (Drain)

To set up the digital video output, follow these steps:

1. Connect the video equipment to OUT LINK A and, if you are using a device for alpha
key data, also OUT LINK B. If you use only one output, it must be OUT LINK A.

2. If necessary, call up the panel (/usr/sbin/vcp).

3. In the Output(s): DIVO Video Drain section of the control panel, select the format
that matches your equipment, as shown in Figure B-3.

Figure B-3 Selecting Video Drain Format

4. Select the timing that matches your equipment: CCIR 525 or CCIR 625.

5. To set field dominance, at the “Input Timing” menu item select “F1 dominant” for
the edit to occur on the nominal video field boundary, or “F2 dominant” for the edit
to occur on the intervening field boundary. See “Setting Field Dominance” in
Chapter 2 for more information on field dominance.

44

Appendix B: Setting Up DIVO for Your Video Hardware

Setting Up Sync

This section explains

• “Setting Up Internal Sync” on page 44

• “Setting Up External Sync” on page 45

Setting Up Internal Sync

In the Output(s): DIVO Digital Video Drain section of the control panel, select the Sync
format that matches your equipment:

• standalone (not synced to another device): select Standalone (internal)

• output sync to an external source connected to the genlock in: select Genlock

These two choices toggle, as shown in Figure B-4.

Figure B-4 Setting Standalone or Genlock Sync

Setting Up Sync

45

Setting Up External Sync

To set up DIVO for an external sync source, follow these steps:

1. Connect the sync source equipment to one of the following connectors:

• the GEN IN BNC on the I/O panel, as diagrammed in Figure B-5.

Figure B-5 GEN IN Port on the DIVO I/O Panel

• IN LINK A or IN LINK B (if the device is not already cabled to this connector)

2. If you are using the same signal for other equipment, attach a BNC cable to the GEN
OUT BNC to loop the signal through the board. Make sure the final element in the
chain is terminated.

If DIVO is the last element in the sync chain, make sure a terminator is attached to
the GEN OUT BNC.

3. If necessary, call up the panel (/usr/sbin/vcp).

4. Select the appropriate setting in Output(s): Sync Source:

• select External for a device connected to GEN IN

• select Digital Input Link A or B if you are syncing to the device attached to IN
LINK A or IN LINK B, respectively

525 A-LCK

525

625625 D-LCK
OUT GPI GEN IN GEN OUTOUT LINK BOUT LINK AIN LINK BIN LINK A IN GPI

SYNC525 525

625 625

Sync from
external source

46

Appendix B: Setting Up DIVO for Your Video Hardware

Saving Settings

Once you have set values in vcp to match your installation, save them; they are written
to /usr/etc/video/videod.defaults. Select “Restore Settings” on the video control panel File
menu to load the values in this file to vcp.

The last settings saved are automatically loaded every time the system is reinitialized. If
the panel is running, current settings are in effect.

Note: You do not need to open the panel to put its settings into effect.

You can also use File menu choices to restore the factory defaults and close the panel.

47

Appendix C

C. Pixel Packings and Color Spaces

This appendix explains

• “DIVO Pixel Packings” on page 47

• “Sampling Patterns” on page 76

• “Color Spaces” on page 78

DIVO Pixel Packings

This section presents each packing used by the DIVO hardware, giving a diagram and its
tokens in the pertinent libraries. It explains

• “Packings and Color Spaces” on page 48

• “Packing Diagram Conventions” on page 48

• “Packings and Library Tokens” on page 50

• “Packing Naming Conventions” on page 51

• “8-Bit Pixel Packings” on page 53

• “16-Bit Pixel Packings” on page 55

• “20-Bit Pixel Packings” on page 57

• “24-Bit Pixel Packings” on page 58

• “32-Bit Pixel Packings” on page 60

• “36-Bit Pixel Packing” on page 69

• “48-Bit Pixel Packings” on page 70

• “64-Bit Pixel Packings” on page 72

48

Appendix C: Pixel Packings and Color Spaces

Packings and Color Spaces

A packing

• determines which of the four components are sampled, either RGBA or VYUA
(more correctly, CrYCbA)

• determines the sampling pattern (for example, 4:4:4:4 or 4:2:2:4), which specifies
where and how often each component of the image is sampled

• allocates a certain number of bits to represent the component samples, and
positions those samples along with possible padding in memory; each sample is an
unsigned number, unless specified otherwise in the description of the packing

A color space

• determines the color in each component by specifying the color set (see Table C-2)

• specifies a canonical minimum and maximum value for each component, either full
range or compressed range (headroom range); see “Color Spaces” on page 78 for an
explanation

In most Silicon Graphics libraries, a single token encodes both color space and packing.
For example, VL_PACKING_RGBA_8 is a 32-bit packing in the RGBA color space. For
the VL of DIVO and other advanced products, the two parameters are specified
separately with different controls: VL_PACKING and VL_COLORSPACE. The color
space must be defined with the VL_COLORSPACE control.

Packing Diagram Conventions

In all illustrations, as you move from left to right:

• each byte goes from the most significant bit to the least significant bit

• the bytes increase in memory address by 1

• component samples go from most significant bit to least significant bit

DIVO Pixel Packings

49

Each illustration shows the smallest repeating spatial pattern of component samples that
is a multiple of 8 bits wide. No additional padding or alignment is to be inferred. For
example, a 24-bit-per-pixel diagram, such as that for VL_PACKING_444_8 (Figure C-1),
indicates 3-byte quantities packed together in memory; the values are not padded out to
32-bit boundaries.

Figure C-1 VL_PACKING_444_8

The packing defines a bit layout, but for convenience, as shown in Figure C-1, the
component slots are filled with the RGBA or VYUA color set as appropriate. (See “Color
Spaces” later in this appendix for more information.) For chroma components, Cr and Cb
are more accurate terms than V and U, because the analog NTSC video specification
ANSI/SMPTE 170M uses V and U with a slightly different meaning. However, this
chapter uses the letters V and U in the illustrations of packings for typographical
convenience.

Packings that use 4:2:2 sampling also show the location of each component sample: left
and right for 4:2:2. The diagrams assume row-major, left-to-right ordering of pixels in
memory.

An x (“don’t care”) in a bit means the following:

• Readers may get any garbage in this bit.

• Writers can leave this bit as garbage.

A 0 means the following:

• Readers may assume this bit is zero.

• Writers can leave this bit as garbage.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

r r r r r r r r g g g g g g g g b b b b b b b b

v v v v v v v v y y y y y y y y u u u u u u u u

50

Appendix C: Pixel Packings and Color Spaces

An s indicates a padding bit that is a sign extension bit. For the DIVO option, this
convention applies only to the more significant bits in 12-bit and 13-bit packings with
rightward orientation; that is, VL_PACKING_4444_12_in_16_R and
VL_PACKING_4444_13_in_16_R.

A p indicates a padding bit in the least significant bits of a left-justified 10-, 12-, or 13-bit
word, such as VL_PACKING_R242_10_in_16_L or VL_PACKING_4444_13_in_16_L:

• Readers can assume that the bits are replicated from the component found in the
same word: With bits numbered starting with 0 for the least significant, there are n
contiguous p bits to the right of the component. The p bits contain a copy of bits
[9,9-n+1] of the component.

• Writers can leave the p bits as garbage.

The DIVO device can natively transfer data of all the packings shown in this appendix in
real time.

Packings and Library Tokens

Following each packing diagram are comments and library tokens for that packing,
listing, where applicable, the color set (RGBA or VYUA) and the library (VL, OpenGL,
and DM) for each library token.

• DM refers to the tokens in /usr/lib/dmedia/dm_image.h, which are used by several
libraries (libdmedia (dmParams, dmIC, dmColor), libmoviefile, libmovieplay, and
others). See “Color Spaces” in this appendix for more information.

• For most packings, two indications are given for VL:

– VL, new style, includes the packing control value and a color-space control
value; for example, VL_PACKING_4_8 + VL_COLORSPACE_{CCIR,YUV}. For
DIVO, you set packing and color space separately for memory nodes. In
contrast to Sirius Video, VL_COLORSPACE replaces VL_FORMAT on DIVO
memory nodes. The new definitions provide a more flexible way to specify
memory layout of pixels and their color spaces.

– VL, old style (for example, VL_PACKING_Y_8_P) is included for reference;
these tokens are still recognized in case you are using programs for earlier
Silicon Graphics video options that include these. It is not recommended for
new development.

DIVO Pixel Packings

51

Packing Naming Conventions

In packing tokens, the following applies:

• _L and _R appended to the end of tokens with padding (0 bits) indicate that the 0
bits are at the left end or the right end of the pattern, respectively; for example,
VL_PACKING_4444_10_in_16_L and VL_PACKING_4444_10_in_16_R).

• X before the numerical part of the token at the end of a token indicates a component
order other than the standard (RGBA or ABGR, VYUA or AUYV); for example,
VL_PACKING_X4444_5551, which uses ARGB order.

• R before the numerical part of the token indicates reverse order of the components;
for example, VL_PACKING_242_8 and VL_PACKING_R242_8 have the same
pattern of component bits, but their order is reversed in VL_PACKING_R242_8.

• Z at the end of the token name means that the packing is padded to the word
boundary; for example, the packing in VL_PACKING_2424_10_10_10_2Z is 30 bits
per pixel, but it is padded to 32 bits per pixel.

Table C-1 lists the DIVO packings in the order of the number of bits in the pattern of
component samples—the order in which they are described in the rest of this section.

Table C-1 DIVO Packings

Packing Bits Color Space

VL_PACKING_4_8 8 VYUA monochrome/luma only

VL_PACKING_R444_332 8 RGBA

VL_PACKING_444_332 8 RGBA

VL_PACKING_242_8 16 VYUA

VL_PACKING_R242_8 16 VYUA

VL_PACKING_X4444_5551 16 RGBA

VL_PACKING_444_5_6_5 16 RGBA

VL_PACKING_242_10 20 VYUA

VL_PACKING_R242_10 20 VYUA

VL_PACKING_444_8 24 RGBA/VYUA

52

Appendix C: Pixel Packings and Color Spaces

VL_PACKING_R444_8 24 RGBA/VYUA

VL_PACKING_4444_6 24 RGBA/VYUA

VL_PACKING_4444_8 32 RGBA/VYUA

VL_PACKING_R4444_8 32 RGBA/VYUA

VL_PACKING_R0444_8 32 RGBA/VYUA

VL_PACKING_0444_8 32 RGBA/VYUA

VL_PACKING_4444_10_10_10_2 32 RGBA/VYUA

VL_PACKING_2424_10_10_10_2Z 32 VYUA

VL_PACKING_R2424_10_10_10_2Z 32 VYUA

VL_PACKING_242_10_in_16_L 32 VYUA

VL_PACKING_242_10_in_16_R 32 VYUA

VL_PACKING_R242_10_in_16_L 32 VYUA

VL_PACKING_R242_10_in_16_R 32 VYUA

VL_PACKING_444_12 36 RGBA/VYUA (signed)

VL_PACKING_4444_12 48 RGBA/VYUA (signed)

VL_PACKING_444_10_in_16_L 48 RGBA/VYUA

VL_PACKING_4444_10_in_16_L 64 RGBA/VYUA

VL_PACKING_4444_10_in_16_R 64 RGBA/VYUA

VL_PACKING_4444_12_in_16_L 64 RGBA (signed)

VL_PACKING_4444_12_in_16_R 64 RGBA (signed)

VL_PACKING_4444_13_in_16_L 64 RGBA (signed)

VL_PACKING_4444_13_in_16_R 64 RGBA (signed)

Table C-1 (continued) DIVO Packings

Packing Bits Color Space

DIVO Pixel Packings

53

The packings are explained in these categories:

• “8-Bit Pixel Packings” on page 53

• “16-Bit Pixel Packings” on page 55

• “20-Bit Pixel Packings” on page 57

• “24-Bit Pixel Packings” on page 58

• “32-Bit Pixel Packings” on page 60

• “36-Bit Pixel Packing” on page 69

• “48-Bit Pixel Packings” on page 70

• “64-Bit Pixel Packings” on page 72

8-Bit Pixel Packings

Figure C-2 shows the VL_PACKING_4_8, an 8-bit packing useful for VYUA
monochrome/luma only.

Figure C-2 VL_PACKING_4_8

This packing is

• VL_PACKING_4_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

• VL_PACKING_Y_8_P in the VL, old style

• GL_LUMINANCE GL_UNSIGNED_BYTE in OpenGL

• DM_IMAGE_PACKING_LUMINANCE in DM

P i x e l 1

B y t e 1

y y y y y y y y

54

Appendix C: Pixel Packings and Color Spaces

Figure C-3 shows VL_PACKING_R444_332, an 8-bit packing in the RGBA color space.

Figure C-3 VL_PACKING_R444_332

This packing is

• VL_PACKING_R444_332 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

• VL_PACKING_RGB_332_P in the VL, old style

• DM_IMAGE_PACKING_BGR233 in DM

Figure C-4 shows VL_PACKING_444_332, an 8-bit RGBA packing.

Figure C-4 VL_PACKING_444_332

This packing is

• VL_PACKING_444_332 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

• GL_RGB GL_UNSIGNED_BYTE_3_3_2_EXT in OpenGL

• DM_IMAGE_PACKING_RGB332 in DM

P i x e l 1

B y t e 1

b b g g g r r r

P i x e l 1

B y t e 1

r r r g g g b b

DIVO Pixel Packings

55

16-Bit Pixel Packings

Figure C-5 shows VL_PACKING_242_8, a 16-bit VYUA packing.

Figure C-5 VL_PACKING_242_8

This rarely used packing is VL_PACKING_242_8 + VL_COLORSPACE_{CCIR,YUV} in
the VL. It samples chroma and luma in a 4:2:2 pattern. See “Sampling Patterns,” later in
this appendix.

Figure C-6 shows VL_PACKING_R242_8, a 16-bit 4:2:2 VYUA packing. The most
commonly used 4:2:2 packing, it is used by other Silicon Graphics video hardware as well
as DIVO hardware.

Figure C-6 VL_PACKING_R242_8

This packing is

• VL_PACKING_R242_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

• VL_PACKING_YVYU_422_8 in the VL, old style

• GL_YCRCB_422_SGIX GL_UNSIGNED_BYTE in OpenGL

• DM_IMAGE_PACKING_CbYCrY in DM

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4

v v v v v v v v y y y y y y y y u u u u u u u u y y y y y y y y

l e f t r i g h t

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4

u u u u u u u u y y y y y y y y v v v v v v v v y y y y y y y y

l e f t r i g h t

56

Appendix C: Pixel Packings and Color Spaces

Figure C-7 shows VL_PACKING_X4444_5551, a 16-bit RGBA packing that corresponds
to the QuickTime file 16-bit uncompressed format with alpha.

Figure C-7 VL_PACKING_X4444_5551

This packing is

• VL_PACKING_X4444_5551 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

• VL_PACKING_ARGB_1555 in the VL, old style

• DM_IMAGE_PACKING_XRGB1555 in DM (even though the upper bit is really
alpha)

Figure C-8 shows VL_PACKING_444_5_6_5, a 16-bit RGBA packing.

Figure C-8 VL_PACKING_444_5_6_5

This packing is VL_PACKING_444_5_6_5 + VL_COLORSPACE_{RGB,RP175} in the VL,
new style.

P i x e l 1

B y t e 1 B y t e 2

a r r r r r g g g g g b b b b b

P i x e l 1

B y t e 1 B y t e 2

r r r r r g g g g g g b b b b b

DIVO Pixel Packings

57

20-Bit Pixel Packings

Figure C-9 shows VL_PACKING_242_10, a 20-bit VYUA packing.

Figure C-9 VL_PACKING_242_10

This packing is VL_PACKING_242_10 + VL_COLORSPACE {CCIR,YUV}.

Figure C-10 shows VL_PACKING_R242_10, a 20-bit VYUA packing.

Figure C-10 VL_PACKING_R242_10

This packing is VL_PACKING_R242_10 + VL_COLORSPACE {CCIR,YUV}.

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5

v v v v v v v v v v y y y y y y y y y y u u u u u u u u u u y y y y y y y y y y

l e f t r i g h t

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5

u u u u u u u u u u y y y y y y y y y y v v v v v v v v v v y y y y y y y y y y

l e f t r i g h t

58

Appendix C: Pixel Packings and Color Spaces

24-Bit Pixel Packings

Figure C-11 shows VL_PACKING_444_8, a 24-bit RGBA/VYUA packing.

Figure C-11 VL_PACKING_444_8

This packing is

• RGBA:

– GL_RGB GL_UNSIGNED_BYTE in OpenGL

– VL_PACKING_444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– VL_PACKING_BGR_8_P in the VL, old style

– GL_RGB GL_UNSIGNED_BYTE in OpenGL

– DM_IMAGE_PACKING_RGB in DM

• VYUA:

– VL_PACKING_444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– VL_PACKING_UYV_8_P in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

r r r r r r r r g g g g g g g g b b b b b b b b

v v v v v v v v y y y y y y y y u u u u u u u u

DIVO Pixel Packings

59

Figure C-12 shows VL_PACKING_R444_8, a 24-bit RGBA/VYUA packing.

Figure C-12 VL_PACKING_R444_8

This packing is

• RGBA:

– VL_PACKING_R444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– VL_PACKING_RGB_8_P in the VL, old style

– DM_IMAGE_PACKING_BGR in DM

• VYUA:

– VL_PACKING_R444_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

– DM_IMAGE_PACKING_CbYCr in DM

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

b b b b b b b b g g g g g g g g r r r r r r r r

u u u u u u u u y y y y y y y y v v v v v v v v

60

Appendix C: Pixel Packings and Color Spaces

Figure C-13 shows VL_PACKING_4444_6, a 24-bit DIVO-only packing with 6 bits per
pixel.

Figure C-13 VL_PACKING_4444_6

This packing is

• RGBA: VL_PACKING_4444_6 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

• VYUA: VL_PACKING_4444_6 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

32-Bit Pixel Packings

This section explains

• “OpenGL-Like 32-Bit Pixel Packing” on page 61

• “IRIS GL-Like 32-Bit Pixel Packings” on page 62

• “32-Bit Pixel Packing for QuickTime” on page 64

• “4:4:4:4 10_10_10_2 32-Bit Pixel Packing” on page 65

• “4:2:2:4 10_10_10_2 32-Bit Pixel Packings” on page 66

• “4:2:2 10_in_16 32-Bit Pixel Packings” on page 67

P i x e l 1

B y t e 1 B y t e 2 B y t e 3

r r r r r r g g g g g g b b b b b b a a a a a a

v v v v v v y y y y y y u u u u u u a a a a a a

DIVO Pixel Packings

61

OpenGL-Like 32-Bit Pixel Packing

Figure C-14 shows VL_PACKING_4444_8, an OpenGL-like 32-bit packing. This packing,
supported by many Silicon Graphics video products, is the most commonly used
OpenGL packing.

Figure C-14 VL_PACKING_4444_8

This packing is

• RGBA:

– VL_PACKING_4444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– VL_PACKING_ABGR_8 in the VL, old style

– GL_RGBA GL_UNSIGNED_BYTE in OpenGL (the default)

– DM_IMAGE_PACKING_RGBA in DM

• VYUA:

– VL_PACKING_4444_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new style

– VL_PACKING_AUYV_4444_8 or VL_PACKING_AUYV_8 in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

r r r r r r r r g g g g g g g g b b b b b b b b a a a a a a a a

v v v v v v v v y y y y y y y y u u u u u u u u a a a a a a a a

62

Appendix C: Pixel Packings and Color Spaces

IRIS GL-Like 32-Bit Pixel Packings

Figure C-15 shows VL_PACKING_R4444_8, an IRIS GL-like 32-bit packing. This
packing, supported by many Silicon Graphics video products, is the default IRIS GL
packing.

Figure C-15 VL_PACKING_R4444_8

This packing is

• RGBA:

– VL_PACKING_R4444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

– VL_PACKING_RGBA_8 in the VL, old style

– GL_ABGR_EXT GL_UNSIGNED_BYTE in OpenGL

– DM_IMAGE_PACKING_ABGR in DM

• VYUA:

– VL_PACKING_R4444_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

– VL_PACKING_YUVA_4444_8 in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

a a a a a a a a b b b b b b b b g g g g g g g g r r r r r r r r

a a a a a a a a u u u u u u u u y y y y y y y y v v v v v v v v

DIVO Pixel Packings

63

Figure C-16 shows VL_PACKING_R0444_8, an IRIS GL-like 32-bit packing. This packing
is supported by many Silicon Graphics video products.

Figure C-16 VL_PACKING_R0444_8

• RGBA:

– VL_PACKING_R0444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

– VL_PACKING_RGB_8 in the VL, old style

– DM_IMAGE_PACKING_XBGR

Use DM_IMAGE_PACKING_ABGR instead of this packing unless you
specifically want to inform a piece of software (such as dmColor) not to spend
processing time on the alpha channel.

• VYUA:

– VL_PACKING_R0444_8 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

– VL_PACKING_YUV_444_8 in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

x x x x x x x x b b b b b b b b g g g g g g g g r r r r r r r r

x x x x x x x x u u u u u u u u y y y y y y y y v v v v v v v v

64

Appendix C: Pixel Packings and Color Spaces

32-Bit Pixel Packing for QuickTime

Figure C-17 shows VL_PACKING_0444_8, a 32-bit packing used for QuickTime files
(uncompressed format without alpha).

Figure C-17 VL_PACKING_0444_8

This packing is

• RGBA:

– VL_PACKING_0444_8 + VL_COLORSPACE_{RGB,RP175} in the VL, new style

– DM_IMAGE_PACKING_XRGB in DM

• VYUA: VL_PACKING_0444_8 + VL_COLORSPACE_{CCIR,YUV}

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

x x x x x x x x r r r r r r r r g g g g g g g g b b b b b b b b

x x x x x x x x v v v v v v v v y y y y y y y y u u u u u u u u

DIVO Pixel Packings

65

4:4:4:4 10_10_10_2 32-Bit Pixel Packing

Figure C-18 shows VL_PACKING_4444_10_10_10_2, the 32-bit 4:4:4:4 10_10_10_2
packing.

Figure C-18 VL_PACKING_4444_10_10_10_2

This packing is

• RGBA:

– VL_PACKING_4444_10_10_10_2 + VL_COLORSPACE_{RGB,RP175} in the VL,
new style

– VL_PACKING_A_2_BGR_10 in the VL, old style

– GL_RGBA GL_UNSIGNED_INT_10_10_10_2_EXT in OpenGL

• VYUA:

– VL_PACKING_4444_10_10_10_2 + VL_COLORSPACE_{CCIR,YUV} in the VL,
new style

– VL_PACKING_A_2_UYV_10 in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4

r r r r r r r r r r g g g g g g g g g g b b b b b b b b b b a a

v v v v v v v v v v y y y y y y y y y y u u u u u u u u u u a a

66

Appendix C: Pixel Packings and Color Spaces

4:2:2:4 10_10_10_2 32-Bit Pixel Packings

Figure C-19 shows VL_PACKING_2424_10_10_10_2Z, the 4:2:2:4 10_10_10_2 32-bit
VYUA packing. Only DIVO uses this packing.

Figure C-19 VL_PACKING_2424_10_10_10_2Z

This packing is

• 4:2:2:4 sampling; see “Sampling Patterns” on page 76 in this appendix

• VL_PACKING_2424_10_10_10_2Z + VL_COLORSPACE_{CCIR,YUV} in the VL,
new style

Figure C-20 shows VL_PACKING_R2424_10_10_10_2Z, an alternate 4:2:2:4 10_10_10_2
32-bit packing.

Figure C-20 VL_PACKING_R2424_10_10_10_2Z

This packing is

• 4:2:2:4 sampling; see “Sampling Patterns” on page 76 in this appendix

• VL_PACKING_R2424_10_10_10_2Z + VL_COLORSPACE_{CCIR,YUV} in the VL,
new style

• VL_PACKING_AYU_AYV_10 in the VL, old style

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

v v v v v v v v v v y y y y y y y y y y a a a a a a a a a a 0 0 u u u u u u u u u u y y y y y y y y y y a a a a a a a a a a 0 0

l e f t 0 0 l e f t r i g h t 0 0

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

u u u u u u u u u u y y y y y y y y y y a a a a a a a a a a 0 0 v v v v v v v v v v y y y y y y y y y y a a a a a a a a a a 0 0

l e f t 0 0 l e f t r i g h t 0 0

DIVO Pixel Packings

67

4:2:2 10_in_16 32-Bit Pixel Packings

The diagrams of packings that use 4:2:2 sampling show the location (left and right) of
each component sample. Only DIVO uses this packing.

Figure C-21 shows VL_PACKING_242_10_in_16_L, a DIVO-only 4:2:2 10_in_16 32-bit
VYUA packing. For an explanation of the p bit, see “Packing Diagram Conventions” on
page 48.

Figure C-21 VL_PACKING_242_10_in_16_L

This packing is

• 4:2:2 sampling; see “Sampling Patterns” on page 76 in this appendix

• VL_PACKING_242_10_in_16_L + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

Figure C-22 shows VL_PACKING_242_10_in_16_R, a DIVO-only 4:2:2 10_in_16 32-bit
VYUA packing.

Figure C-22 VL_PACKING_242_10_in_16_R

This packing is

• 4:2:2 sampling; see “Sampling Patterns” on page 76 in this appendix

• VL_PACKING_242_10_in_16_R + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

v v v v v v v v v v p p p p p p y y y y y y y y y y p p p p p p u u u u u u u u u u p p p p p p y y y y y y y y y y p p p p p p

l e f t p p p p p p l e f t p p p p p p l e f t p p p p p p r i g h t p p p p p p

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

0 0 0 0 0 0 v v v v v v v v v v 0 0 0 0 0 0 y y y y y y y y y y 0 0 0 0 0 0 u u u u u u u u u u 0 0 0 0 0 0 y y y y y y y y y y

0 0 0 0 0 0 l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 r i g h t

68

Appendix C: Pixel Packings and Color Spaces

Figure C-23 shows VL_PACKING_R242_10_in_16_L, a 4:2:2 10_in_16 32-bit VYUA
packing. This packing is supported by several Silicon Graphics video products. For an
explanation of the p bit, see “Packing Diagram Conventions” on page 48.

Figure C-23 VL_PACKING_R242_10_in_16_L

This packing is

• 4:2:2 sampling; see “Sampling Patterns” on page 76 in this appendix

• VL_PACKING_R242_10_in_16_L + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

• VL_PACKING_YVYU_422_10 in the VL, old style

Figure C-24 shows VL_PACKING_R242_10_in_16_R, a DIVO-only 4:2:2 10_in_16 32-bit
VYUA packing.

Figure C-24 VL_PACKING_R242_10_in_16_R

This packing is

• VYUA VL_PACKING_R242_10_in_16_R + VL_COLORSPACE_{CCIR,YUV}

• 4:2:2 sampling; see “Sampling Patterns” on page 76 in this appendix

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

u u u u u u u u u u p p p p p p y y y y y y y y y y p p p p p p v v v v v v v v v v p p p p p p y y y y y y y y y y p p p p p p

l e f t p p p p p p l e f t p p p p p p l e f t p p p p p p r i g h t p p p p p p

P i x e l s 1 - 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

0 0 0 0 0 0 u u u u u u u u u u 0 0 0 0 0 0 y y y y y y y y y y 0 0 0 0 0 0 v v v v v v v v v v 0 0 0 0 0 0 y y y y y y y y y y

0 0 0 0 0 0 l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 l e f t 0 0 0 0 0 0 r i g h t

DIVO Pixel Packings

69

36-Bit Pixel Packing

Figure C-25 shows VL_PACKING_444_12, the 36-bit packing, which has 12 bits per
component. Only DIVO uses this packing.

Figure C-25 VL_PACKING_444_12

This packing is

• RGBA: VL_PACKING_444_12 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

• VYUA: VL_PACKING_444_12 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

The components in this packing are signed:

• For RGB and RP-175 color spaces, the components are often negative.

• For the YUV color space, they are negative when the incoming video signal has
values outside of the nominal range.

• For the CCIR601 color space, they are always positive.

P i x e l 1 P i x e l 2

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8 B y t e 9

r r r r r r r r r r r r g g g g g g g g g g g g b b b b b b b b b b b b r r r r r r r r r r r r g g g g g g g g g g g g b b b b b b b b b b b b

v v v v v v v v v v v v y y y y y y y y y y y y u u u u u u u u u u u u v v v v v v v v v v v v y y y y y y y y y y y y u u u u u u u u u u u u

70

Appendix C: Pixel Packings and Color Spaces

48-Bit Pixel Packings

Figure C-26 shows VL_PACKING_4444_12, a 48-bit packing, with 12 bits per
component. Only DIVO uses this packing.

Figure C-26 VL_PACKING_4444_12

This packing is

• RGBA: VL_PACKING_4444_12 + VL_COLORSPACE_{RGB,RP175} in the VL, new
style

• VYUA: VL_PACKING_4444_12 + VL_COLORSPACE_{CCIR,YUV} in the VL, new
style

The components in this packing are signed:

• For RGB and RP-175 color spaces, the components are often negative.

• For the YUV color space, they are negative when the incoming video signal has
values outside of the nominal range.

• For the CCIR601 color space, they are always positive.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6

r r r r r r r r r r r r g g g g g g g g g g g g b b b b b b b b b b b b a a a a a a a a a a a a

v v v v v v v v v v v v y y y y y y y y y y y y u u u u u u u u u u u u a a a a a a a a a a a a

DIVO Pixel Packings

71

Figure C-27 shows VL_PACKING_444_10_in_16_L, a 48-bit packing, with 10 bits per
component and no alpha. For an explanation of the p bit, see “Packing Diagram
Conventions” on page 48.

Figure C-27 VL_PACKING_444_10_in_16_L

This packing is

• RGBA: VL_PACKING_444_10_in_16_L + VL_COLORSPACE_{RGB,RP175} in the
VL, new style

• VYUA: VL_PACKING_444_10_in_16_L, + VL_COLORSPACE_{CCIR,YUV} in the
VL, new style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6

r r r r r r r r r r p p p p p p g g g g g g g g g g p p p p p p b b b b b b b b b b p p p p p p

v v v v v v v v v v p p p p p p y y y y y y y y y y p p p p p p u u u u u u u u u u p p p p p p

72

Appendix C: Pixel Packings and Color Spaces

64-Bit Pixel Packings

Figure C-28 shows VL_PACKING_4444_10_in_16_L. For an explanation of the p bit, see
“Packing Diagram Conventions” on page 48.

Figure C-28 VL_PACKING_4444_10_in_16_L

This packing is

• RGBA:

– VL_PACKING_4444_10_in_16_L + VL_COLORSPACE_{RGB,RP175} in the VL,
new style

– VL_PACKING_ABGR_10 in the VL, old style

• VYUA:

– VL_PACKING_4444_10_in_16_L + VL_COLORSPACE_{CCIR,YUV} in the VL,
new style

– VL_PACKING_AUYV_4444_10 in the VL, old style

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

r r r r r r r r r r p p p p p p g g g g g g g g g g p p p p p p b b b b b b b b b b p p p p p p a a a a a a a a a a p p p p p p

v v v v v v v v v v p p p p p p y y y y y y y y y y p p p p p p u u u u u u u u u u p p p p p p a a a a a a a a a a p p p p p p

DIVO Pixel Packings

73

Figure C-29 shows VL_PACKING_4444_10_in_16_R.

Figure C-29 VL_PACKING_4444_10_in_16_R

This packing is

• RGBA: VL_PACKING_4444_10_in_16_R + VL_COLORSPACE_{RGB,RP175}

• VYUA: VL_PACKING_4444_10_in_16_R + VL_COLORSPACE_{CCIR,YUV}

Figure C-30 shows VL_PACKING_4444_12_in_16_L, a 64-bit RGBA packing. For an
explanation of the p bit, see “Packing Diagram Conventions” on page 48.

Figure C-30 VL_PACKING_4444_12_in_16_L

This packing is VL_PACKING_4444_12_in_16_L + VL_COLORSPACE_{RGB,RP175} in
the VL, new style.

The components in this packing are signed:

• For RGB and RP-175 color spaces, they are often negative.

• For the YUV color space, they are negative when the incoming video signal has
values outside of the nominal range.

• For the CCIR601 color space, they are always positive.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

0 0 0 0 0 0 r r r r r r r r r r 0 0 0 0 0 0 g g g g g g g g g g 0 0 0 0 0 0 b b b b b b b b b b 0 0 0 0 0 0 a a a a a a a a a a

0 0 0 0 0 0 v v v v v v v v v v 0 0 0 0 0 0 y y y y y y y y y y 0 0 0 0 0 0 u u u u u u u u u u 0 0 0 0 0 0 a a a a a a a a a a

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

r r r r r r r r r r r r p p p p g g g g g g g g g g g g p p p p b b b b b b b b b b b b p p p p a a a a a a a a a a a a p p p p

74

Appendix C: Pixel Packings and Color Spaces

Figure C-31 shows VL_PACKING_4444_12_in_16_R, a 64-bit RGBA packing for use with
extended RGB components.

Figure C-31 VL_PACKING_4444_12_in_16_R

This packing is VL_PACKING_4444_12_in_16_R + VL_COLORSPACE_{RGB,RP175} in
the VL, new style.

Note: The components in this packing are signed, with positive and negative values
varying by color space, as explained for VL_PACKING_4444_12_in_16_L. The s in the
more significant bits in Figure C-31 indicates a sign extension padding bit.

Figure C-32 shows VL_PACKING_4444_13_in_16_L, a 64-bit RGBA packing for use with
extended RGB components. For an explanation of the p bit, see “Packing Diagram
Conventions” on page 48.

Figure C-32 VL_PACKING_4444_13_in_16_L

This packing is VL_PACKING_4444_13_in_16_L + VL_COLORSPACE_{RGB,RP175} in
the VL, new style.

The components in this packing are signed, with positive and negative values varying by
color space, as explained for VL_PACKING_4444_12_in_16_L.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

s s s s r r r r r r r r r r r r s s s s g g g g g g g g g g g g s s s s b b b b b b b b b b b b s s s s a a a a a a a a a a a a

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

r r r r r r r r r r r r r p p p g g g g g g g g g g g g g p p p b b b b b b b b b b b b b p p p a a a a a a a a a a a a a p p p

DIVO Pixel Packings

75

Figure C-33 shows VL_PACKING_4444_13_in_16_R, a 64-bit packing for use with
extended RGB components.

Figure C-33 VL_PACKING_4444_13_in_16_R

This packing is VL_PACKING_4444_13_in_16_R + VL_COLORSPACE_{RGB,RP175} in
the VL, new style.

Note: The components in this packing are signed, with positive and negative values
varying by color space, as explained for VL_PACKING_4444_12_in_16_L. The s in the
more significant bits in Figure C-33 indicates a sign extension padding bit.

P i x e l 1

B y t e 1 B y t e 2 B y t e 3 B y t e 4 B y t e 5 B y t e 6 B y t e 7 B y t e 8

s s s r r r r r r r r r r r r r s s s g g g g g g g g g g g g g s s s b b b b b b b b b b b b b s s s a a a a a a a a a a a a a

76

Appendix C: Pixel Packings and Color Spaces

Sampling Patterns

Sampling patterns are

• “4:4:4 and 4:4:4:4 Sampling” on page 76

• “4:2:2 and 4:2:2:4 Sampling” on page 77

4:4:4 and 4:4:4:4 Sampling

Some of the diagrams in the “DIVO Pixel Packings” section indicate 4:4:4 or 4:4:4:4
sampling. This video industry terminology means that each of the three or four
components is sampled at every pixel. Figure C-34 diagrams this sampling pattern.

Figure C-34 4:4:4 Sampling

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr
Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb Cb

Luma:

Chroma:

Sampling Patterns

77

4:2:2 and 4:2:2:4 Sampling

The packings shown in diagrams that indicate 4:2:2 sampling make sense only in the
VYUA color spaces. For every two pixels, there are two luma samples (two Y’s) but only
one chroma sample (one sample of Cr and Cb, which together determine the chroma), as
shown in Figure C-35.

Figure C-35 4:2:2 Sampling

The chroma samples belong at the same instant in space as the left Y sample (the
chrominance samples and the left Y are co-sited). The diagrams for 4:2:2 packings in the
“DIVO Pixel Packings” section of this appendix show the location of each Y, Cr, or Cb
component as left or right. The first pixel of each line is a left pixel.

Converting 4:4:4 video to 4:2:2 video is like converting 44.1 kHz audio into 22.05 kHz
audio: just dropping every other Cr,Cb sample yields extremely poor results. Video
devices that need to convert between 4:4:4 and 4:2:2 use carefully designed filters. The
characteristics of the required filter are specified in ITU-R BT.601-4 (Rec. 601).

4:2:2 sampled packings that also include alpha are called 4:2:2:4. This method has one
alpha value per pixel, like the Y value.

Y Y Y Y Y Y Y Y Y Y Y Y Y

Cr Cr Cr Cr Cr Cr Cr
Cb Cb Cb Cb Cb Cb Cb

Luma:

Chroma:

78

Appendix C: Pixel Packings and Color Spaces

Color Spaces

Each component of an image has

• a color that it represents

• a canonical minimum value

• a canonical maximum value

Normally, a component stays within the minimum and maximum values. For example,
for a luma signal such as Y, you can think of these limits as the black level and the peak
white level, respectively. For an unsigned component with n bits, there are two
possibilities for [minimum value, maximum value]:

• full range: [0, (2nbits)-1], which provides the maximum resolution for each
component

• compressed (headroom) range, which provides numerical headroom, which is often
useful when processing video images:

– Cr and Cb: [(2n)/16, 15*(2n)/16]

– Y, A, R, G, and B: [(2n)/16, 235*(2n)/256]

Compressed range is defined for 8 and 10 bits in ITU-R BT.601-4 (Rec. 601). For example:

• for 8-bit components:

– Cr and Cb: [16, 240]

– Y, A, R, G, B: [16, 235]

• for 10-bit components:

– Cr and Cb: [64, 960]

– Y, A, R, G, B: [64, 940]

Two sets of colors are commonly used together, RGB (RGBA) and YCrCb/YUV (VYUA).
YCrCb (YUV), the most common representation of color from the video world,
represents each color by a luma component called Y and two components of chroma,
called Cr (or V), and Cb (or U). The luma component is loosely related to brightness or
luminance, and the chroma components make up a quantity loosely related to hue. These
components are defined rigorously in ITU-R BT.601-4 (also known as Rec. 601 and CCIR
601).

Color Spaces

79

The alpha channel is not a real color. For that channel, the canonical minimum value
means completely transparent, and the canonical maximum value means completely
opaque.

For more information about color spaces, see A Technical Introduction to Digital Video, by
Charles A. Poynton (New York: Wiley, 1996).

Determining the Color Space

For OpenGL, IRIS GL, and DM:

• the library constant indicates whether the data is RGBA or VYUA

• RGBA data is full-range by default

• VYUA data in DM can be full-range or compressed-range; you must determine this
from context

Using the traditional VL_PACKING tokens from IRIX 6.2, the VL_PACKING constant
indicates whether the data is RGBA or VYUA (as in VL_PACKING_UYV_8_P). The VL
that comes with the DIVO option (for IRIX 6.4) makes all of the parameters (packing, set
of colors, range of components) explicit:

• Use VL_PACKING to specify only the memory layout. The new memory-only
VL_PACKING tokens are disjoint from the old, and the old tokens are still honored,
so this change is backward-compatible.

• Use VL_COLORSPACE to specify the color space parameters, as shown in
Table C-2.

The option VL_COLORSPACE_NONE is useful when you want to treat CCIR 601
digital video as a raw 10-bit data stream (as in SDDI).

DIVO performs color-space conversion if the color space implied by VL_FORMAT on the
video node disagrees with that implied by VL_COLORSPACE on the memory node.

Table C-2 VL_COLORSPACE Options

Color Set Full-Range Components Compressed-Range Components

RGBA VL_COLORSPACE_RGB VL_COLORSPACE_RP175

VYUA VL_COLORSPACE_YUV VL_COLORSPACE_CCIR

81

Appendix D

D. Color-Space Conversions

The DIVO board supports four native color spaces—RGB, YUV, CCIR, and RP-175
compressed RGB. The choice of color space is determined by the format control for video
sources and drains and by the color-space controls for memory sources and drains. If the
color space selected for memory sources and drains matches that used by the current
video format, no color-space conversions are performed. When DIVO performs
color-space conversions, extreme care is taken to assure the correctness and precision of
the result.

Understanding the capabilities of DIVO to perform color space conversions and the
results of these conversions allows developers and end users to maximize the quality of
their output. This appendix explains

• “DIVO Color Spaces” on page 82

• “Mathematical Operations Performed During Conversions” on page 84

• “Implications of Color Space Conversions” on page 85

The appendix concludes with examples.

82

Appendix D: Color-Space Conversions

DIVO Color Spaces

The DIVO option uses a minimum of ten bits of precision for each color component at all
steps of its internal pipeline. Representations for the four native internal color
representations are explained separately in this section.

RGB

RGB is the color space used by the graphics subsystem. RGB has the most accurate
representation of visible colors, because all possible combinations are valid. This color
space does not support superblack or other nonvisible color values. Each component is
represented by a 10-bit value between 0 and 1023. Black has the value [0,0,0], and white
is [1023,1023,1023]. Table D-1 summarizes the clamping range for each resulting RGB
component for various conversions.

DIVO uses this color space only at the memory interface.

Note: You should not normally use 4:2:2 coding with RGB data.

Table D-1 Clamping Ranges for RGB Component Conversions

When converting to... Each resulting RGB component is
clamped to the range

10-bit RGB [0..1023]

8-bit RGB [0..255]

12-bit signed RGB [-2048..2047]

13-bit signed RGB [-4096..4095]

DIVO Color Spaces

83

YUV

The YUV color space is obtained from RGB by the matrix transformation in Equation 1.

Equation 1

The V, Y, and U values range from [0..1023]. Black has the VYU value [512,0,512]. White
has the value [512,1023,512].

DIVO uses this color space only at the memory interface. With proper filtering, 4:2:2
coding can be used.

CCIR

The CCIR color space is obtained from RGB by the matrix transformation in Equation 2.

Equation 2

The Cr, Y, and Cb 10-bit values are clamped to the range [4..1019]. Black has the CrYCb
value [512,64,512]. White has the value [512,940,512]. For 8 bits, the values are clamped
to the range [1..254]; black has the CrYCb value [128,16,128], and white has the value
[128,235,128].

This color space is used by the component digital formats. The memory interface can use
this color space. With proper filtering, 4:2:2 coding can be used.

0.500 0.419– 0.081–

0.299 0.587 0.114

0.169– 0.331– 0.500

R
G
B

×
512

0

512

+
V
Y
U

=

0.500 0.419– 0.081–

0.299 0.587 0.114

0.169– 0.331– 0.500

R
G
B

×

896
1023

876
1023

896
1023

512

64

512

+×
Cr
Y

Cb

=

84

Appendix D: Color-Space Conversions

RP-175 Compressed RGB

The RP-175 color space is obtained from RGB by the matrix transformation in Equation 3.

Equation 3

When converting to 10-bit R‘G‘B‘, the R‘,G‘, and B‘ values are clamped to the range
[0..1023]. Black has the R‘G‘B‘ value [64,64,64]. White has the value [940,940,940]. Other
clamping ranges are the same as the standard RGB case.

This color space is used by the component digital RGB format. The memory interface can
use this color space. You should not use 4:2:2 coding with this color space.

Mathematical Operations Performed During Conversions

DIVO can process and store each color space explained in the previous section. For best
precision, the input color space should be maintained through the processing path. For
example, an application that implements DDR functionality could choose to store data
in the native representation of the input signal: Data from a D1 deck should be stored as
a 8-bit 4:2:2 in the CCIR color space. Data from a dual-link telecine could be stored as 4:4:4
10-bit RP-175 RGB. If the application works in this way, no conversions are performed
and the data is passed directly through the system. In particular, CCIR601 data coming
from a D1 deck is bit-accurate in this case.

However, it might not be desirable for the application to work this way. If that is the case,
the application can use all of the conversion, decimation and interpolation capabilities of
the DIVO option to perform real-time color space and 4:2:2 ⇔ 4:4:4 conversions.

Conversions are performed only when absolutely required. Each incoming or outgoing
stream can be converted from its current color space to any other color space.

876
1023

R
G
B

×
64

64

64

+
R'
G'
B'

=

Implications of Color Space Conversions

85

Implications of Color Space Conversions

The two major concerns when performing conversions from one color space to another
are precision and range.

Precision of Color Conversions Done by DIVO

The DIVO board stores colors with a minimum of 10 bits of precision at all steps in its
pipeline. When performing color space conversions, the data is converted to 13-bit
signed values before being passed to the matrix multipliers. The matrix multipliers have
13-bit coefficients and 26-bit accumulators. The most significant 14 bits of the
matrix-multiplication result are passed on to additional hardware, which applies any
needed offsets and then clamps to the proper range.

Silicon Graphics, Inc., has verified both through simulation and hardware testing that the
maximal error for two conversions (RGB to CCIR to RGB) is two units out of 1024. The
matrix coefficients have been biased to round slightly high rather than slightly low to
avoid the type of problems that can otherwise easily occur in the blue component.

Range Issues For Color Conversions Done by Any Means

Different color spaces allocate the available bits of precision in different ways. The RGB
space is designed to maximize the accuracy of color representations. The YUV and CCIR
color spaces are designed to strongly decouple chrominance and luminance information.

Since RGB represents visible colors, it is contained inside the YUV and CCIR spaces. The
CCIR and RP-175 color spaces also have a slight amount of additional headroom that was
intended to prevent aliasing artifacts when Finite Impulse Response filtering operations
are performed on the digital data.

Any time a conversion operation is performed between CCIR and one of the other color
spaces, the colors that are not representable in the destination color space must be
somehow mapped into colors that are representable. The usual way to do this is to clamp
each component to the available range in the destination color space. Other methods,
such as projecting towards the center of the representable space, might produce results
that appear to be better in some cases, but imply modification of the original signal and
generally result in a loss of saturation.

86

Appendix D: Color-Space Conversions

During conversion from CCIR to YUV, the axes of the two spaces are parallel, so the
result of this clamping operation is very predictable. Superblack and superwhite are
clipped to black and white, respectively, and oversaturated colors might also be clipped.

During conversion from RGB to YUV or CCIR, clamping never occurs, because all RGB
colors are representable in those color spaces.

During conversion from CCIR or YUV to RGB or RP-175 RGB, the results of clamping are
much less intuitive, because these conversions involve rotation and scaling operations,
with the result that the component axes in one color space don’t align with those in the
other.

DIVO also supports signed RGB representations with 12 or 13 significant bits. If one of
these representations is used, the entire CCIR color space is representable and no
clamping will occur. Application software must specifically select this mode and handle
the (12/13)-bit data to gain this benefit.

Figure D-1 shows the RGB color cube inside the CCIR color space. The volume contained
within the outer (CCIR) cube, but outside the inner (RGB) cube, represents “illegal”
colors that cannot be displayed.

Implications of Color Space Conversions

87

Figure D-1 RGB Cube in CCIR Space

As shown in the figure, the CCIR color space allocates almost three quarters of its
available bit combinations to illegal colors. When any of these color values are converted
to RGB, the result is clamped to the edge of the RGB cube. Since the inner cube contains
the displayable colors, this clamping operation has no impact on them.

Cr

Y

Cb

Black

White

Red

Green

Blue

Yellow

Magenta

Cyan

88

Appendix D: Color-Space Conversions

If CCIR is converted to RGB and back to CCIR using certain types of test signals, the
output can appear to be vastly wrong. A common and extreme version of this is the
signal that simultaneously ramps Cr, Y, and Cb from the minimum to maximum possible
values.

In Figure D-2, the heavy diagonal line passing through the figure is the set of colors in
the luma/chroma ramp test signal. As shown in the figure, a large portion of this pattern
is outside the RGB cube. In fact, over two thirds of this pattern is outside the displayable
range.

Figure D-2 Color Cube With Luminance/Chrominance Ramp Vector

Cyan
Green

YellowWhite

Magenta Red

Blue
Black

Cb

Cr

Y

Example Color Conversions

89

Example Color Conversions

This section includes example graphs that display the results of converting from CCIR to
eight or ten bit RGB and back. They show the same type of result you would see if you
passed a digital signal through DIVO using the soft_ee program with RGB as the color
space and an eight or ten-bit data-packing. If you use CCIR as the memory color space
or use a data-packing with 12/13-bit signed representations, the output will look exactly
like the input. If the memory color space matches the video color space, the output will
be a bit-perfect copy of the input.

Example 1: 100% Color Bars

This example, like the other two in this section, consists of three graphs. Each graph
displays the input CCIR pattern, intermediate RGB pattern, and output CCIR pattern for
a given color component. Figure D-3 shows the red and Cr components, Figure D-4 the
green and Y components, and Figure D-5 the blue and Cb components. In this example
and the others, if the input and output CCIR values are identical, only two lines are
shown.

In this example, conversion to RGB and back has no effect on the image. The 100%
amplitude color bar signal lies within the visible range and therefore is perfectly
represented in RGB.

90

Appendix D: Color-Space Conversions

Figure D-3 100% Color Bars: Cr/R

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Cr

RGB R

Output Cr

Example Color Conversions

91

Figure D-4 100% Color Bars: Y/G

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Y

RGB G

Output Y

92

Appendix D: Color-Space Conversions

Figure D-5 100% Color Bars: Cb/B

0.60

Value x 10 3

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.80 1.00

X x 10 3

Input Cb

RGB B

Output Cb

Example Color Conversions

93

Example 2: Luminance Ramp

In this example, the conversion to RGB and back affects only the superblack and
superwhite regions. All luminance values that are blacker than black are clamped to
black; all values whiter than white are clamped to white.

In the RGB color space, each component ramps from 0 to 1023 as the input luminance
ramps from 64 (black) to 940 (white). This test pattern lies along the Y axis of the color
cubes.

94

Appendix D: Color-Space Conversions

Figure D-6 Luminance Ramp: Cr/R

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Cr

RGB R

Output Cr

Example Color Conversions

95

Figure D-7 Luminance Ramp: Y/G

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0.00 0.20 0.40 0.800.60 1.00
X x 10 3

Input Y

RGB G

Output Y

96

Appendix D: Color-Space Conversions

Figure D-8 Luminance Ramp: Cb/B

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 103

Input Cb

RGB B

Output Cb

Example Color Conversions

97

Example 3: Simultaneous Chroma/Luma Ramp

This example is the most extreme of the three, and shows how surprising the results of
color conversions can be when arbitrary synthetic CCIR inputs are used.

Each CCIR input signal ramps from 0 to 1023 simultaneously. As mentioned in the first
example, over two thirds of this pattern lies outside the legal range. The portion within
the legal range is represented exactly, but the region outside is clamped to the RGB cube
surface.

98

Appendix D: Color-Space Conversions

Figure D-9 Chroma/Luma Ramp: Cr/R

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 103

Input Cr

RGB R

Output Cr

Example Color Conversions

99

Figure D-10 Chroma/Luma Ramp: Y/G

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Y

RGB G

Output Y

100

Appendix D: Color-Space Conversions

Figure D-11 Chroma/Luma Ramp: Cb/B

Value x 103

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
0.00 0.20 0.40 0.800.60 1.00

X x 10 3

Input Cb

RGB B

Output Cb

101

Appendix E

E. Programming Methods for Real-Time Digital Media
Recording and Playback

This appendix explains the following real-time disk I/O concepts:

• “Direct I/O” on page 102

• “Scatter/Gather I/O” on page 103

• “Multiprocessing” on page 107

• “Asynchronous I/O” on page 108

• “File Formats” on page 108

The example source for the utilities discussed in this appendix can be found in
/usr/share/src/dmedia/tools. The code examples are written to Digital Media buffers
(DMbuffers), a real-time data transport facility. See the Digital Media Programming Guide
(document number 007-1799-060 or later, hereafter referred to as the DMPG) for more
details. The emphasis here is not on how data is acquired from or transported to the
video device, but rather on how data is moved to disk in real time.

The DMPG covers basic digital media programming concepts; two simple programming
examples in /usr/share/src/dmedia, vidtomem.c and memtovid.c, illustrate how video data is
copied into and out of the DMbuffers for the simpler non-real-time case. Programming
examples can also be found in the developer’s toolbox,
http://www.sgi.com/Technology/toolbox.html. At an abstract level, high-bandwidth
throughput is simple; the work is in the details, as explained in this appendix.

102

Appendix E: Programming Methods for Real-Time Digital Media Recording and Playback

Direct I/O

The most efficient way to move data on and off a disk device is to use the XFS filesystem
with direct I/O mode and large data transfer sizes. If large transfer sizes cannot be
achieved, you can combine memory pages from noncontiguous locations using writev(2)
or readv(2). Finally, you can use asynchronous I/O to queue multiple I/O requests to the
kernel without waiting for blocked calls to return. Other real-time software features and
products, such as REACT, can be used to assure low-latency interrupts and high-priority
scheduling, but are not absolutely necessary for digital media applications.

Normally, when a disk file is opened with no status flags specified, a call to write(2) for
that file returns as soon as the data has been copied to a buffer managed by the device
driver (see open(2)). The actual disk write may not take place until considerable time has
passed. A common pool of disk buffers is used for all disk files.

Disk buffering is integrated with the virtual memory paging mechanism. A daemon
executes periodically and initiates output of buffered blocks according to the age of the
data and the needs of the system. You can force the writing of all pending output for a
file by calling fsync(2) or by opening the file and specifying the O_SYNC flag. However,
the process blocks until the data has been written to disk, and all output data must still
be copied from the buffer in the user address space to a buffer in the kernel address space.
See Chapter 8, “Optimizing Disk I/O for a Real-Time Program,” in the REACT Real Time
Programmer’s Guide for details.

If you use the O_DIRECT flag, writes to the file take place directly from your program’s
buffer, and the data is not copied to a buffer in the kernel first. Because the filesystem
cache is bypassed, your application must manage buffer alignment and block size
specification. To use O_DIRECT, you must transfer data in quantities that are multiples
of the filesystem block size. The following code shows how to query the filesystem block
size and system DMA transfer size limit.

struct dioattr da;
struct stat fileStat;
char *ioFileName = “videodata”;
int ioBlockSize, ioMaxXferSize;

ioFileFD = open(ioFileName,O_DIRECT | O_RDWR | O_CREAT | O_TRUNC,0644);
if (ioFileFD < 0)
 return(DM_FAILURE);
if (fcntl(ioFileFD, F_DIOINFO, &da) < 0)
 return(DM_FAILURE);
ioBlockSize = da.d_miniosz;

ioMaxXferSize = da.d_maxiosz;

Scatter/Gather I/O

103

The two important constraints of direct I/O with XFS are memory address alignment
and buffer length. Direct I/O requires all memory addresses to be page-aligned. XFS
requires buffers to be allocated as a multiple of the filesystem block size, ioBlockSize.
DMbuffers are guaranteed to be page-aligned, but to ensure that the buffers are properly
padded, you must set the buffer size, bytesPerXfer, to the size of the image data you will
transfer rounded up to the nearest multiple of ioBlockSize.

VLServer vlServer;
VLPath vlPath;
DMparams * paramsList;
int dmBufferPoolSize = 30; /* 1 second of video */
int vlBytesPerImage = vlGetTransferSize(vlServer, vlPath);
int ioBlocksPerImage = (vlBytesPerImage+ioBlockSize - 1) / ioBlockSize;
int bytesPerXfer = ioBlocksPerImage * ioBlockSize;

if (dmBufferSetPoolDefaults(paramsList,dmBufferPoolSize,bytesPerXfer,
 DM_TRUE, DM_TRUE) == DM_FAILURE) {
 fprintf(stderr, “error setting pool defaults\n”);
 return(DM_FAILURE);
}

All Silicon Graphics systems have a configurable maximum DMA transfer size (see
systune(1M)). This value should be compared with the user’s I/O request size.

if (bytesPerXfer > ioMaxXferSize) {
 fprintf(“DMA request size is too small. Reconfigure with
 systune()\n”);
 return(DM_FAILURE);

}

Scatter/Gather I/O

As shown in DMPG Chapter 5, “Digital Media Buffers,” and in the example programs
vidtomem.c and memtovid.c, video data is generally transported to or from DMbuffers one
image at a time using standard write and read functions that specify the number of bytes
and a pointer to a buffer. However, large reads and writes can usually increase I/O
performance. This technique reduces the number of transactions performed between the
application, operating system, and I/O device, and can allow the device to optimize
some of its activities. These advantages are particularly true with disk arrays.

104

Appendix E: Programming Methods for Real-Time Digital Media Recording and Playback

Since the DMbuffer’s memory pages are not guaranteed to be contiguous, standard reads
or writes cannot be made across multiple buffers. The readv(2) and writev(2) interfaces
allow an application to provide a list of I/O vectors, which are data structures consisting
of an address and byte-count pair. Because the list of vectors is submitted to the operating
system as a unit, it can be treated as a single large I/O request. Using readv() and writev()
with direct I/O is particularly efficient.

The restrictions on buffer alignment and block size for readv()/writev() are similar to
those of direct I/O. The address for each I/O vector must be page-aligned, but the length
of each I/O vector must be a multiple of the system page size, rather than the filesystem
block size, as is the case with direct I/O. Thus, the easy solution is to always use the
larger of the two values, page size or filesystem block size. This requirement wastes some
space, but is necessary to maintain functionality and performance. This calculation must
be performed before dmBufferSetPoolDefaults(3dm) is called.

int ioAlignment, ioBlockSize;
ioAlignment = getpagesize();
if (ioAlignment > ioBlockSize)
 ioBlockSize = ioAlignment;

The maximum allowable number of I/O vectors can be queried with sysconf(3C).

int ioVecCount=2; /* set default to two images */
long ioVecCountMax;
/* check for range */
 ioVecCountMax = sysconf(_SC_IOV_MAX);
 if (ioVecCount > ioVecCountMax) {
 ioVecCount = ioVecCountMax;
 fprintf(stderr, “cannot create more than %d I/O vectors\n”,
 ioVecCountMax);
 }
 else if (ioVecCount <= 0)
 ioVecCount = 2;

The aggregate size of all the I/O vectors cannot exceed the maximum DMA transfer size,
so you must check for this condition and adjust the number of I/O vectors if necessary:

int ioVecCount=2; /* set default to two images */
if (bytesPerXfer * ioVecCount > ioMaxXferSize)
 ioVecCount = ioMaxXferSize/bytesPerXfer;

Scatter/Gather I/O

105

When you work with video data using readv()/writev(), it is much easier to manage
frames or an even number of fields with one I/O vector per field or frame. Most Silicon
Graphics video devices can support either field or frame mode, which is selected with
the VL_CAPTURE_TYPE device control (see Chapter 4, “Video I/O Concepts” of the
DMPG). Hereafter, the term video image refers to a video data quantum: field or frame,
depending on how the hardware is set up. The restriction of working on frame or even
field boundaries is also relevant to the data file format, which is discussed at the end of
this appendix.

The following code fragment illustrates writing to disk. Upon the successful capture of a
video image, the VLTransferComplete event is placed on the event queue. A pointer to a
valid DMbuffer is returned by vlDMBufferGetValid(3dm); then the actual video data is
mapped into user space. Data is not written to disk until there are enough video images
to complete an I/O vector.

case VLTransferComplete:

 /* loop until we get a valid buffer */
 while (((retval = vlDMBufferGetValid(vlServer, vlPath, vlDrnNode,
 &dmBuffers[dmbuffer_index])) != VLSuccess) && (vlErrno == VLAgain))
 sginap(1);
 if (retval == VLSuccess) {
 /* map data to I/O vectors */
 (videoData+iov_index)->iov_base =
 dmBufferMapData(dmBuffers[dmbuffer_index]);
 (videoData+iov_index)->iov_len = bytesPerXfer;

 /* increment the buffer index for the next image */
 dmbuffer_index = (dmbuffer_index+1) % dmBufferPoolSize;

 /* write data to disk when we have enough I/O vectors */
 if (!(++iov_index % ioVecCount)) {
 first_index = vlXferCount - iov_index + 1
 dataOffset = (off64_t) vlXferCount *
 (off64_t) bytesPerXfer;
 /* seek to the correct position in the file, must use
 * lseek64() as the 64-bit offset value is necessary for
 * XFS filesystems larger than 2 gigabytes
 */
 if (lseek64(ioFileFD, dataOffset, SEEK_SET) != dataOffset)
 return(DM_FAILURE);

106

Appendix E: Programming Methods for Real-Time Digital Media Recording and Playback

 /* write the I/O vector to disk */
 if (writev(ioFileFD, videoData, ioVecCount) < 0)
 return(DM_FAILURE);

 /* the dmbuffers are managed as a ring buffer,
 * dmbuffer_free_index points to the next free buffer */
 for (i=0, dmbuffer_free_index = (dmbuffer_index - 1);
 i < iov_index; i++, dmbuffer_free_index--) {
 if (dmbuffer_free_index < 0)
 dmbuffer_free_index = dmbuffer_max_index;

 dmBufferFree(dmBuffers[dmbuffer_free_index]);
 }

 /* write the QuickTime movie offset data */
 if (mvFormat == MV_FORMAT_QT) {
 last_index = first_index + iov_index;
 if (write_qt_offset_data() == DM_FAILURE)
 return(DM_FAILURE);
 }

 /* reset the I/O vector index */
 iov_index = 0;
 }
 vlXferCount++;
 }
 else {
 fprintf(stderr, “cannot get a valid DM buffer: %s\n”,
 vlStrError(vlErrno));
 }
 break;

The example for reading data from disk can be found in /usr/share/src/dmedia/tools.

Multiprocessing

107

Multiprocessing

Some aspects of digital media programming lend themselves to a multiprocessing
programming model. On a multiprocessor system, the various tasks of moving multiple
streams of video and audio data on and off disk, serial I/O control of external video
equipment and input devices, processing of video data, or the transport of video data in
and out of the graphics framebuffer can be assigned to different processors. New
processes must be created with all virtual space attributes (shared memory, mapped files,
data space) shared. The following fragment illustrates how to create a process to perform
video recording.

if ((video_recorder_pid = sproc(video_recorder, PR_SADDR|PR_SFDS))<0){
 perror(“video_recorder”);
 exit(DM_FAILURE);
}

If you use multiprocessing, note the following caveats:

• When VL calls are made, VL objects such as VLServer, VLPath, VLNode, and so on,
are passed through the kernel to the video driver. However, you cannot create any
VL objects without first creating a VLServer, from which everything else is
instanced.

• In a process share group, only one VL call whose arguments derive from a VLServer
can execute at a time. This requirement applies even to VL calls that do not
explicitly take a VLServer as an argument (for example, vlBufferAdvise(3dm)).

• You can use objects derived from a given VLServer in any number of threads as
long as you use a locking scheme, such as usnewsema(3P) or
pthread_mutex_init(3P), to make the use in each thread mutually exclusive of a use
in any of the other threads.

The VL error state, returned by vlGetErrno(3dm), is global to a share group, not per
VLServer. If a VL call using one VLServer in one thread executes simultaneously with a
VL call using another VLServer in another thread, both calls try to set the error state
returned by vlGetErrno(). This call should be global only to the thread, not to the entire
process share group.

108

Appendix E: Programming Methods for Real-Time Digital Media Recording and Playback

Asynchronous I/O

Asynchronous I/O allows an application to process multiple read or write requests
simultaneously. On Silicon Graphics platforms, asynchronous I/O is available through
the aio facility. This facility, based on sproc(2)’ed processes, provides all of the benefits of
multiprocessing for free. Because multiple I/O requests might be outstanding, when you
use asynchronous I/O, the round-trip delay between making a request, having it
serviced, and issuing another request is removed. Any process-scheduling delay
between these steps is also eliminated.

Because asynchronous I/O operations complete out of sequence, the application must
keep track of the order in which data appears in the DMbuffers. DMbuffers are contained
in a DMbufferPool; the pool itself is unordered and buffers can be obtained and returned
to the pool in any order. Ordering is achieved by a first-in-first-out queue and maintained
only while the buffers reside in the queue. The application is free to impose any
processing order once buffers are dequeued.

File Formats

Each time a DMbuffer is written to disk, an offset must be recorded for the QuickTime
file.

MVid theMovie;
MVid mvImageTrack;
off64_t mvFieldGap= bytesPerXfer - vlBytesPerImage;
MVtimescale mvImageTimeScale=MV_IMAGE_TIME_SCALE_NTSC;
int mvFrameTime = 1001; /* for NTSC */
off64_t meta_data_offset;
int mv_frame_index;
MVframe mv_dummy_offset;
int i;

mvInsertTrackDataAtOffset(
 mvImageTrack,
 1,
 (MVtime) (i * mvFrameTime),
 (MVtime) mvFrameTime,
 mvImageTimeScale,
 (off64_t) meta_data_offset,
 vlBytesPerImage,
 MV_FRAMETYPE_KEY,
 0)

File Formats

109

/* get the index for the libmovie data corresponding to this field.
 * this is necessary in order to set the gap and field sizes for the
 * fields in the frame.*/
mvGetTrackDataIndexAtTime(
 mvImageTrack,
 (MVtime) (i * mvFrameTime),
 mvImageTimeScale,
 &mv_frame_index,
 &mv_dummy_offset)

/* tell libmovie the field gap and sizes for each field in the frame */
mvSetTrackDataFieldInfo(
 mvImageTrack,
 mv_frame_index,
 vlBytesPerImage, /* absolute size of field 1 */
 mvFieldGap, /* gap between fields */
 vlBytesPerImage) /* absolute size of field 2 */

When data recording completes, the following function must be called to properly close
the QuickTime file.

write_qt_file_header(void)
{
 int flags;

 /* if direct I/O mode is enabled, disable it because the
 * movie library does not do direct I/O
 */
 if (ioFileFD) {
 fsync(ioFileFD);
 flags = fcntl(ioFileFD, F_GETFL);
 flags &= ~FDIRECT;
 if (fcntl(ioFileFD, F_SETFL, flags) < 0) {
 fprintf(stderr,“unable to reset direct I/O file status\n”);
 return(DM_FAILURE);
 }
 }

 if (mvClose(theMovie) == DM_FAILURE) {
 fprintf(stderr, “unable to write movie file header %s\n”,
 mvGetErrorStr(mvGetErrno()));
 return(DM_FAILURE);
 }
}

111

Appendix F

F. Diagnostics

The divo_confidence diagnostic test shell script verifies proper DIVO board operation. This
script calls the diagnostic software for DIVO field service hardware diagnosis and board
fault isolation. When the DIVO board and its software are installed, this shell script is
run.

The script divo_confidence calls board-level tests and VL-based tests. It requires IRIX 6.4
or later.

The test suite is explained in these sections:

• “divo_confidence Functionality” on page 111

• “Running divo_confidence” on page 112

• “divo_confidence Output” on page 114

divo_confidence Functionality

A divo_confidence loop takes about five minutes per DIVO board. On the first DIVO board
it finds, the script performs the following actions.

1. It runs a set of board-level tests on the first DIVO board it finds, printing the results
at the end.

2. It runs VL-based tests on the same board, printing results at the end.

3. It repeats each set of tests.

4. It writes this output to a log file in /usr/tmp/DIVO/logs that reflects the number of the
DIVO board; for example:

• /usr/tmp/DIVO/logs/divo_confidence.log0 contains test output for DIVO board 0
(the first board)

• /usr/tmp/DIVO/logs/divo_confidence.log1 contains test output for DIVO board 1

112

Appendix F: Diagnostics

5. It runs the same tests on all other DIVO boards it finds, in numerical order, with
repeats as above, and writes them to a log file in /usr/tmp/DIVO/logs that reflects the
number of the DIVO board.

6. It creates a summary of all test results for all boards and prints them to the screen as
well as to a separate log file, /usr/tmp/DIVO/logs/elog.<n>.

Figure F-1 diagrams the contents of the /usr/diags/DIVO directory.

Figure F-1 /usr/diags/DIVO Contents

For detailed information on the board tests, see the divotest(1M) reference (man) page
(/usr/share/catman/a_man/cat7/divotest.z), or use

/usr/diags/DIVO/bin/divotest -help

or

/usr/diags/DIVO/bin/loopback -help

Running divo_confidence

You must have root privilege to run divo_confidence from the local or remote console. One
iteration of divo_confidence takes less than five minutes per DIVO board.

Follow these steps:

1. In /usr/diags/DIVO/bin, enter

divo_confidence

2. In the test summary, check the number of boards seen by the diagnostic test suite
versus the number installed.

/usr/diags/DIVO

bin
divo_confidence
divotest
loopback

ucode

data

rcp_dev_null.mcs
rcp_dev_spew.mcs

divotest.gold
TBD

Running divo_confidence

113

An example output for a system with one DIVO board follows.

===
========================= DIVO TEST SUMMARY =========================

 DIVO board 0 serial #: CEK544
 Test log for board 0: /usr/tmp/DIVO/logs/divo_confidence.log0
 Started on: Tue Apr 22 10:04:11 PDT 1997
 Ended on: Tue Apr 22 10:09:00 PDT 1997
 Total loops run: 2
 Overall test results: board 0 in slot io6 in module 1
passed!

========================= DIVO TEST SUMMARY =========================
===

The example output above notifies you that the DIVO board passed all tests. If DIVO
board 0 had failed, output might be as follows.

===
========================= DIVO TEST SUMMARY =========================

 DIVO board 0 serial #: CEK544
 Logfile for board 0: /usr/tmp/DIVO/logs/divo_confidence.log0
 Started on: Mon Apr 21 22:34:28 PDT 1997
 Ended on: Mon Apr 21 22:39:17 PDT 1997
 Total loops run: 2
 Overall test results: board 0 in slot io6 in module 1
failed!
 -> Please replace DIVO board 0 in slot io6 in module 1.
 -> View /usr/tmp/DIVO/logs/elog.0 for details of test failures.

========================= DIVO TEST SUMMARY =========================
===

To see ERROR and FAIL messages for each failed DIVO board in the system, look in the
error log file for that board, /usr/tmp/DIVO/logs/elog.<n>.

To see the complete divo_confidence output for an individual board, view its log file,
/usr/tmp/DIVO/logs/divo_confidence.log<n> (for example,
/usr/tmp/DIVO/logs/divo_confidence.log0). See Section , “divo_confidence Output,” for
more information.

The divotest suite reports failures to the field-replaceable unit (FRU) level; for DIVO, this
level is the board itself. If the board fails any test, contact your service provider to arrange
replacement of the board.

114

Appendix F: Diagnostics

divo_confidence Output

As mentioned previously, when divo_confidence runs the divotest suite, it prints results at
the end of each test iteration. The output format is line-based and never more than 80
characters long. Table F-1 summarizes the four-character identifiers that head each line
of output.

The following is an example test output for divo_confidence—that is, both divotest and
the VL-based tests—for a system with two DIVO boards correctly installed.

Note: For ease of understanding, iterations are indicated rather than reproduced in full.

Table F-1 divotest Output Identifiers

Identifier Meaning

TEST Test start marker, generated at the beginning of a test; gives test’s symbolic name
and description. All lines up to next TEST line belong to this test.

RSLT Test result, generated at the end of a test; gives test’s symbolic name and the test
result (PASS, FAIL, UNRESOLVED, UNTESTED).

DIAG Diagnostic message: one or more of these lines precedes any FAIL or
UNRESOLVED message. Message indicates components or wires that are possible
causes of the failure.

INFO Information useful to advanced user of the diagnostic test including test progress
reports, exp/rcv pairs, and so on.

DBUG Gives information only when debugging output is turned on (not recommended
for field use).

TIME Time stamp, generated at important time boundaries such as the beginning and end
of divotest.

META Summarizes information for several tests or across multiple full test loops in table
format, giving PASS and FAIL counts of each test and totals over all tests.

ABRT Reports an exceptional error condition leading to the abortion of the diagnostic
tests; probably caused by a malloc failure, unexpected system call failure, or
assertion failure; rare.

FILES /usr/diags/DIVO/bin/divotest contains executables for DIVO diagnostics.
/usr/diags/DIVO/ucode is a directory of DIVO diagnostic microcode.
/usr/diags/DIVO/data is a directory of data files for DIVO diagnostics. See Figure F-1.

divo_confidence Output

115

===== DIVO_CONFIDENCE ==== DIVO_CONFIDENCE ==== DIVO_CONFIDENCE =====
===== DIVO_CONFIDENCE ==== DIVO_CONFIDENCE ==== DIVO_CONFIDENCE =====

Starting divo_confidence script
Found 2 DIVO(s) installed

divo_confidence script takes about 5 minutes per board to run
Looping 2 time(s)

Test log for board 0 is /usr/tmp/DIVO/logs/divo_confidence.log0

 Uname: IRIX64 testsystem28-3 6.4 02121744 IP27
 Divotest is: /usr/diags/DIVO/bin/divotest
 VL tests path: /usr/dmedia/bin/DIVO

===> Tue Apr 22 10:04:12 PDT 1997
===> Running divotest (ex_loop 1) on board 0 slot io6 module 1
TIME 0.005 Tue Apr 22 10:04:12 1997
CMDL /usr/diags/DIVO/bin/divotest MODNUM=1 DEVNUM=0 REPEAT=10
CMDL -continue -fe0 -fe1 TRACE=/usr/tmp/DIVO/logs/divotest.0
CMDL -notime -noinfo -notrace
TEST init0 Initialize INPIPE front-end hardware
RSLT init0 PASS
TEST init1 Initialize OUTPIPE front-end hardware
RSLT init1 PASS
TEST refresh0 Refresh INPIPE SDRAM
RSLT refresh0 PASS
TEST refresh1 Refresh OUTPIPE SDRAM
RSLT refresh1 PASS
TEST bridge BRIDGE sanity test
RSLT bridge PASS
TEST linc0sanity INPIPE LINC sanity test
RSLT linc0sanity PASS
TEST linc1sanity OUTPIPE LINC sanity test
RSLT linc1sanity PASS
TEST flash0sanity INPIPE FLASHPROM sanity test
RSLT flash0sanity PASS
TEST flash1sanity OUTPIPE FLASHPROM sanity test
RSLT flash1sanity PASS
TEST sdram0 INPIPE SDRAM stress test
RSLT sdram0 PASS
TEST sdram1 OUTPIPE SDRAM stress test
RSLT sdram1 PASS
TEST linc0mbox INPIPE LINC mailbox test
RSLT linc0mbox PASS

116

Appendix F: Diagnostics

TEST linc1mbox OUTPIPE LINC mailbox test
RSLT linc1mbox PASS
TEST linc0dma INPIPE LINC DMA engine0/engine1 stress test
RSLT linc0dma PASS
TEST linc1dma OUTPIPE LINC DMA engine0/engine1 stress test
RSLT linc1dma PASS

<<<you might see other tests as well as these>>>
<<<test series repeats>>>
<<<results of divotest appear>>>

META ITERATION=10 PASSES NON-PASSES
META init0 10 0
META init1 10 0
META refresh0 10 0
META refresh1 10 0
META bridge 10 0
META linc0sanity 10 0
META linc1sanity 10 0
META flash0sanity 10 0
META flash1sanity 10 0
META sdram0 10 0
META sdram1 10 0
META linc0mbox 10 0
META linc1mbox 10 0
META linc0dma 10 0
META linc1dma 10 0
META TOTAL 150 0

<<<VL-based tests run next>>>
<<<results of VL-based tests appear>>>

<<<both test series repeat>>>
<<<complete suite is run on other board installed>>>
<<<then results of all tests are summarized>>

divo_confidence Output

117

===
========================= DIVO TEST SUMMARY =========================

 DIVO board 0 serial #: CEK544
 Test log for board 0: /usr/tmp/DIVO/logs/divo_confidence.log0
 Started on: Tue Apr 22 10:04:11 PDT 1997
 Ended on: Tue Apr 22 10:09:00 PDT 1997
 Total loops run: 2
 Overall test result: board 0 in slot io6 in module 1 passed!

 DIVO board 1 serial #: CEK545
 Test log for board 1: /usr/tmp/DIVO/logs/divo_confidence.log1
 Started on: Tue Apr 22 10:10:11 PDT 1997
 Ended on: Tue Apr 22 10:15:00 PDT 1997
 Total loops run: 2
 Overall test result: board 1 in slot io7 in module 1 passed!

========================== DIVO TEST SUMMARY ==========================
===

119

Index

Numbers

0 bit in packing, 49
0http

//techpubs.sgi.com/library, xv
//www.sgi.com/Technology/toolbox.html, 101

4:2:2
format, 6
sampling, 77
video, converting, 77

4:2:2:4
connector usage, 32
control for setting, 19
format, and Links A and B, 6, 41
sampling, 77

4:4:4
sampling, 76
video, converting, 77

4:4:4:4
connector usage, 32
control for setting, 19
format, and Links A and B, 6, 41
sampling, 76

A

asynchronous I/O, 108
audio, 7

B

buffer, 12

C

CCIR 601-2. See color space.
CCIR color space, 83
color space, 7, 78-79

compressed-range, 78-79
control, 17, 18
conversion, 81-100

math operations, 84
precision, 85
range, 85-88

converters, 7
full-range, 78-79

compressed-range color space, 78-79
compression, 16

control, 17, 18, 19, 20
Rice, 16

control, 18, 20
control

determining for device, 16
device-dependent, 12
device-global, 12, 17-20
device-independent. See control, device-global.
DIVO-specific, 12
inline, 29
prefix, 12
setting, 16
values and uses, 18-20

conventions, xvii
current sense, 39-40

120

Index

D

decimation filter, 7
device, 12

controls, 17-20
determining, 16

diagnostics, 111-117
digital video drain, setting up, 43
digital video ports, 6-7
digital video source

setting up, 41-42
timing in panel, 42

direct I/O, 102-103
DIVO

audio, 7
board architecture, 3
connectors, 4

resistance, 4
controls for, 12, 16-20
digital video ports, 6-7
functional block diagram, 6
I/O panel, 41
LEDs, 4, 5
path, 14
ports, 6
setting up for hardware, 41-46

divo_confidence, 111-117
DIVO I/O panel, 4
DMbuffer, 12
drain node. See node, drain.
dual-link mode, 6, 41-42

E

events, 27-28
external sync source, 4, 5

F

field dominance, 21-23, 43
control, 17, 19

file formats, 108-109
filter

decimation, 7
interpolation, 7

format control, 17, 19
full-range color space, 78-79

G

general-purpose interface. See GPI.
GEN IN, 4, 5, 32
genlock, 32
genlock interface, 4, 5
GEN OUT, 4, 5, 32
GPI

control, 17, 19
hardware, 33-40
interface, 5
pinouts, 33-36
programming, 24-26
receiver, 38-40

interfacing, 40
transmitter, 36-38

interfacing, 38
graphics to video, 2
GVO graphics option, 2

H

headroom-range color space. See compressed-range
color space.

http, xv, 101

121

Index

I

interpolation filter, 7
I/O

asynchronous, 108
direct, 102-103
scatter/gather, 103-106

I/O panel, 4

K

kind, 13

L

LEDs, 4, 5
LINK A, 6, 41

interface, 4
transfer mode usage, 32

LINK B, 6, 41
interface, 4
transfer mode usage, 32

linking, 10
loopback control, 17, 19
loopthrough for genlock input, 4, 32

M

MSC (media stream count), 2, 29
multiprocessing, 107

N

node, 11, 12, 13-14
drain, 11, 13
source, 11, 13

O

offset control, 17, 20
OpenGL to read pixels into memory, 2
origin, different in OpenGL and video, 2

P

packing, 47-75
0 bit, 49
16-bit, 55-56
20-bit, 57
24-bit, 58-60
32-bit, 60-68
36-bit, 69
48-bit, 70-71
64-bit, 72-75
8-bit, 53-54
and sampling pattern, 48
control, 18, 20
native to DIVO, 50
x bit, 49

panel, 42-46
callup, 42
Digital Video Drain, 43
Digital Video Source, 42
external sync source, 45
restoring settings, 46
saving settings, 46

path, 11, 12, 14

R

raster mode control, 17, 19
return loss for IN connectors, 31
RGB, 78, 82

See also color space.
Rice compression, 16

control, 18, 20
RP-175 compressed RGB, 84

122

Index

S

sampling pattern, 76-77
and packing, 48

scatter/gather I/O, 103-106
size control, 18, 20
source node. See node, source.
specifications, 31-32
switch closure, 39-40
sync

connectors, 4, 32
control, 18, 20
setting up, 44-45
source control, 18, 20

T

timing control, 18, 20
triggering, 26

control, 18, 20
type, 13

U

UST (unadjusted system time), 2

V

vcp, 41-46
callup, 42
See also panel.

vertical inline time clock. See VITC.
Video Library. See VL.
VITC, 27

VL
central concepts, 11
data transfer functions summarized, 15
header files, 10
object classes, 12
path, 11
requirements for running, 10

VL_ANY, 13
VL_ASPECT, 17, 18
VL_CAP_TYPE, 17, 18
VL_COLORSPACE, 17, 18
VL_COMPRESSION, 17, 19
VL_DIVO_LOOPBACK, 17, 19
VL_DIVO_RASTER_MODE, 17, 19
VL_FIELD_DOMINANCE, 17, 19, 21-23
VL_FORMAT, 17, 19
VL_GPI_OUT_MODE, 17, 19, 24-25
VL_GPI_STATE, 17, 19, 25
VL_MEM, 13
VL_OFFSET, 17, 20
VL_PACKING, 18, 20
VL_PACKING_0444_8, 64
VL_PACKING_242_10, 57
VL_PACKING_242_10_in_16_L, 67
VL_PACKING_242_10_in_16_R, 67
VL_PACKING_242_8, 55
VL_PACKING_2424_10_10_10_2Z, 66
VL_PACKING_4_8, 53
VL_PACKING_444_10_in_16_L, 71
VL_PACKING_444_12, 69
VL_PACKING_444_332, 54
VL_PACKING_444_5_6_5, 56
VL_PACKING_444_8, 49, 58
VL_PACKING_4444_10_10_10_2, 65

123

Index

VL_PACKING_4444_10_in_16_L, 72
VL_PACKING_4444_10_in_16_R, 73
VL_PACKING_4444_12, 70
VL_PACKING_4444_12_in_16_L, 73
VL_PACKING_4444_12_in_16_R, 74
VL_PACKING_4444_13_in_16_L, 74
VL_PACKING_4444_13_in_16_R, 75
VL_PACKING_4444_6, 60
VL_PACKING_4444_8, 48, 61
VL_PACKING_R0444_8, 63
VL_PACKING_R242_10, 57
VL_PACKING_R242_10_in_16_L, 68
VL_PACKING_R242_10_in_16_R, 68
VL_PACKING_R242_8, 55
VL_PACKING_R2424_10_10_10_2Z, 66
VL_PACKING_R444_332, 54
VL_PACKING_R444_8, 59
VL_PACKING_R4444_8, 62
VL_PACKING_X4444_5551, 56
VL_RICE_COMP_PRECISION, 18, 20
VL_RICE_COMP_SAMPLING, 18, 20
VL_SIZE, 18, 20
VL_SYNC, 18, 20
VL_SYNC_SOURCE, 18, 20
VL_TIMING, 18, 20
VL_TRANSFER_TRIGGER, 18, 20, 26
VL_VIDEO, 13
VL_ZOOM, 18, 20
V-LAN, 2
vlGetNode(), 13
vlinfo, 16
vlOpenVideo(), 11, 13
vlSetControl(), 14, 16

X

x bit in packing, 49

Y

YUV, 78, 83
See also color space.

Z

zoom factor control, 18, 20

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3524-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

