
NQE Administration

SG–2150 3.3

Document Number 007–3799–001

Copyright © 1993, 1998 Cray Research, a Silicon Graphics Company. All Rights Reserved. This manual or parts thereof may not
be reproduced in any form unless permitted by contract or by written permission of Cray Research.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS,
CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

AIX and IBM are trademarks and RISC System/6000 is a product of International Business Machines Corporation. AXP, DEC,
DECnet, and Digital are trademarks of Digital Equipment Corporation. DynaText is a trademark of Electronic Book Technologies.
FLEXlm is a trademark of GLOBEtrotter Software, Inc. HP and HP-UX are trademarks of Hewlett-Packard Company. IRIS, IRIX,
and Silicon Graphics are registered trademarks and IRIS InSight, Origin2000, and the Silicon Graphics logo are trademarks of
Silicon Graphics, Inc. Kerberos is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of Open
Software Foundation, Inc. NASTRAN is a trademark of the National Aeronatics and Space Administration. Netscape is a
trademark of Netscape Communications Corporation. Oracle is a trademark of Oracle Corporation. UniChem is a trademark of
Oxford Molecular. NFS, Solaris, Sun, and SunOS are trademarks of Sun Microsystems, Inc.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

NQE Administration SG–2150 3.3

This revised NQE Administration, publication SG–2150, supports the 3.3 release of the Network Queuing
Environment (NQE) release.

NQE system administration documentation was revised to support the following NQE 3.3 features:

• On CRAY T3E systems, NQE now supports checkpointing and restarting of jobs. This feature was
initially supported in the NQE 3.2.1 release. This feature requires the UNICOS/mk 2.0 release or later.

• On CRAY T3E systems, NQE now supports the Political Scheduling feature. This feature was initially
supported in the NQE 3.2.1 release. This feature requires the UNICOS/mk 2.0 release or later.

• On CRAY T3E systems, NQE now supports mixed mode scheduling.

• Applications running on a CRAY T3E system are killed when a PE assigned to the application goes
down. NQS is now notified when a job is terminated by a SIGPEFAILURE signal (UNICOS/mk systems
only). NQE will requeue the job and either restart or rerun the job, as applicable.

• For CRAY T3E systems, this release adds CPU and memory scheduling weighting factors for application
PEs. The NQS scheduling weighting factors are used with the NQS priority formula to calculate the
intra-queue job initiation priority for NQS runnable jobs. This release also restores user-specified priority
scheduling functionality.

• The multilevel security (MLS) feature on UNICOS/mk systems is supported with this NQE release.

• Distributed Computing Environment (DCE) support was enhanced as follows:

– Ticket forwarding and inheritance is now supported. This feature allows users to submit jobs in a
DCE environment without providing passwords.

– IRIX systems now support access to DCE resources for jobs submitted to NQE.

– UNICOS/mk systems now support access to DCE resources for jobs submitted to NQE.

DCE is supported on all NQE platforms except SunOs. Ticket forwarding is not supported for the
Digital UNIX operating system in the NQE 3.3 release.

• For IRIX systems running NQE, this release introduces a new scheduler called the Miser scheduler. The
Miser scheduler is a predictive scheduler that evaluates the number of CPUs and the amount of memory
a batch will require. NQE now supports the submission of jobs that specify Miser resources.

• Array services support was added for UNICOS systems.

• The new nqeinfo(5) man page documents all NQE configuration variables; the nqeinfo(5) man page
is provided in online form only and is accessible by using the man(1) command or through the NQE
configuration utility Help facility.

• This release replaces the NQE_TYPE variable in the nqeinfo(5) file with a new
NQE_DEFAULT_COMPLIST variable, which defines the list of NQE components to be started or stopped.
The NQE 3.3 release is shipped with the NQE_DEFAULT_COMPLIST variable set to the following
components: NQS, COLLECTOR, and NLB.

• The following NQE database enhancements were made:

– Increased number of simultaneous connections for clients and execution servers to the NQE database.

– The MAX_SCRIPT_SIZE variable was added to the nqeinfo file, allowing an administrator to limit
the size of the script file submitted to the NQE database. If the MAX_SCRIPT_SIZE variable is set to
0 or is not set, a script file of unlimited size is allowed. The script file is stored in the NQE database;
if the file is bigger than MAX_SCRIPT_SIZE, it can affect the performance of NQE database and the
nqedbmgr. The nqeinfo(5) man page includes the description of this new variable.

• The csuspend utility has the following two new command-line options: -l loopcount and -p period.
These two new options suspend or enable batch processing based on interactive use. The amount of
interactive use is determined by calls to sar. These options give the administrator greater control over
how sar is used and, consequently, the frequency of checking on whether to suspend or start NQE. The
csuspend(8) man page were revised to reflect this new capability.

• The qstart(8) and qstop(8) commands now allow an administrator to execute programs immediately
before and after the NQS daemon starts (NQE_ETC/qstart.pre and NQE_ETC/qstart.pst, where
NQE_ETC is defined in the nqeinfo file) and immediately before and after the the NQS daemon is shut
down (NQE_ETC/qstop.pre and NQE_ETC/qstop.pst, where NQE_ETC is defined in the nqeinfo
file). The administrator must create the file and it must be executable. The nqeinit(8), nqestop(8),
qstart(8), and qstop(8) man pages were revised to reflect this new capability.

• NQS sets several environment variables that are passed to a login shell when NQS initiates a job. One of
the environment variables set is LOGNAME, which is the name of the user under whose account the job
will run. Some platforms, such as IRIX, use the USER environment variable rather than LOGNAME. On
those platforms, csh writes an error message into the job’s stderr file, noting that the USER variable is
not defined. To accommodate this difference, NQS now sets both the LOGNAME and USER environment
variables to the same value before initiating a job. The ilb(1) man page were revised to include this
new variable.

• Year 2000 support for NQE has been completed.

• The chapters documenting “Preparing a Node to Run NQE” and “NQE Version Maintenance” removed
from this administration guide; they are included in NQE Installation, publication SG–5236.

• The project ID is added to the end of the current accounting records in the NQS accounting file
(nqsacct) written by the NQS daemon accounting.

For a complete list of new features for the NQE 3.3 release, see the NQE Release Overview, publication
RO–5237.

Record of Revision

Version Description

1.0 December 1993.
Original Printing. This publication describes how to use the Network Queuing
Environment (NQE) release 1.0, running on UNIX or UNICOS systems.

1.1 June 1994.
Incorporates information for NQE release 1.1.

2.0 May 1995.
Incorporates information for the NQE 2.0 release. This publication also supports
Network Queuing EXtentions (NQX) synchronous with the UNICOS 9.0 release.

3.0 March 1996.
Incorporates information for the NQE 3.0 release.

3.1 September 1996.
Incorporates information for the NQE 3.1 release.

3.2 February 1997.
Incorporates information for the NQE 3.2 release. This document was revised and is
provided in online form only for this release.

3.3 March 1998.
Incorporates information for the NQE 3.3 release.

SG–2150 3.3 i

Contents

Page

Preface xxiii

Related Publications . xxiii

Ordering Cray Research Publications xxiv

Conventions . xxiv

Reader Comments . xxv

NQE Overview [1] 1

Scope of This Manual . 1

NQE Environment . 2

Running NQE As an Environment 6

NQE File Structure . 8

Using the World Wide Web Interface 9

Concepts and Terms [2] 11

Batch Requests . 11

Nice Values . 11

Shell Interpretation . 11

Alternate User Validation . 14

Intraqueue Priority . 15

Resource Limits . 15

Request States . 15

Queues . 17

Batch Queues . 18

Pipe Queues . 18

Queue, Queue Complex, and Global Limits 19

SG–2150 3.3 iii

NQE Administration

Page

Request Processing . 19

Request Destination . 19

NQS Server Local Submission . 20

NQE Client Submission . 20

Client Submission to NQS . 20

Client Submission to NQE Database 21

NQS Server Remote Submission 22

Daemon Processing . 23

Controlling and Deleting Requests 23

Displaying Queue Status . 24

Queue Attributes . 24

Batch and Pipe Queue Attributes 24

Access Restrictions . 24

pipeonly . 25

Interqueue and Intraqueue Priority 25

Queue Run Limit . 25

Batch Queue Attributes . 25

loadonly . 25

Queue Group Limit . 26

Queue Memory Limit . 27

Queue User Limit . 27

Queue MPP Processing Element (PE) Limit 27

Queue Quick-file Limit . 27

Queue States . 27

Queue Complexes . 28

Global Limits . 29

Load Balancing and Destination Selection 29

NLB . 29

iv SG–2150 3.3

Contents

Page

NLB Servers . 30

Destination Selection . 30

Policies . 31

NLB Collectors . 31

NLB Clients . 31

NQE Database . 31

NQE Database Server (MSQL) 32

NQE Database Monitor . 33

Scheduler . 33

Lightweight Server (LWS) (Bridge to NQS) 33

File Transfer . 33

File Transfer Services . 34

Domain Names . 34

FTA Users . 34

Network Peer-to-peer Authorization 34

File Transfer Requests . 34

Queue Directories . 34

Configuring NQE variables [3] 35

Starting the NQE Configuration Utility 35

Editing the NQE Configuration Variables 36

NQE Configuration Display Menus 38

Starting and Stopping NQE [4] 45

Starting NQE . 45

Stopping NQE . 46

NQS Configuration [5] 47

Configuration Guidelines . 48

Overview of NQS Manager Actions 49

SG–2150 3.3 v

NQE Administration

Page

Defining NQS Hosts in the Network 50

Configuring Remote Output Agents 52

Commands for Defining Machines 54

TCP/IP Network Configuration Example 55

Stand-alone Configuration Example 56

Defining Managers and Operators 56

Commands for Defining Managers and Operators 57

Example of Adding Managers and Operators 58

Configuring the Scope of the User Status Display 58

Defining NQS Queues . 58

Setting Queue Limits . 61

Hints for Defining Queues . 62

Commands Used to Define Queues 63

Adding Destinations to a Pipe Queue 63

Resetting Destinations for a Queue 64

Deleting Destinations from a Queue 65

Changing the Interqueue Priority for a Queue 65

Changing the Run Limit for a Queue 65

Changing the Pipe Client Server for a Queue 65

Commands for Configuring Destination-selection Queues 65

Displaying Details of the Currently Defined Queues 66

Examples of Defining Queues . 66

Example of Changing the Order of the Destinations 68

Deleting a Queue . 68

Defining a Default Queue . 68

Displaying the Current Default Queue 69

Example of Defining a Default Queue 69

vi SG–2150 3.3

Contents

Page

Restricting User Access to Queues 69

Hints on Restricting User Access to Queues 69

Commands Available to Restrict User Access 70

Displaying Details of the Currently Defined Queues 71

Example of Restricting User Access 71

Defining Queue Complexes . 71

Queue Complex Examples . 73

Defining Global Limits . 73

Displaying the Current Global Limits 74

Example of Setting Limits . 75

Defining Per-request and Per-process Limits 75

Displaying Per-process and Per-request Limits 80

Example of Setting Per-process and Per-request Limits 81

How Queue Limits Affect Requests 82

Enabling per Request Limits on Memory Size, CPU Time, and Number of Processors on IRIX
Systems . 82

Defining Job Scheduling Parameters 82

Example Commands for Scheduler Weighting Factors 85

Example Display of Scheduler Weighting Factors 87

Defining Political Scheduling Daemon Threshold 87

Unified Resource Manager (URM) for UNICOS Systems 88

Miser Scheduler for IRIX Systems 89

Setting the Job Scheduling Type 90

Directing Batch Queues to Forward Requests to the Miser Scheduler 90

NQS Periodic Checkpointing . 92

Periodic Checkpoint File Restrictions 93

Periodic Checkpoint Modes . 93

Compatibility Mode . 93

SG–2150 3.3 vii

NQE Administration

Page

User-initiated Mode . 94

CPU Time Mode . 94

Wall-clock Mode . 95

CPU and Wall-clock Mode . 96

Periodic Checkpoint Behavior in NQS 97

NQS System Shutdown . 97

Request Completion . 97

qchkpnt Command . 97

Abort . 97

Modify Request . 97

Hold Request . 97

Preempt Request . 98

Release Request . 98

Rerun Request . 98

Restore Request . 98

Resume Request . 98

Suspend Request . 99

Setting the Log File . 99

Displaying Information on the Current Log File 101

Log File Command Examples . 102

Setting the Debug Level . 102

Establishing NQS Accounting Procedures 103

Enabling and Disabling Accounting 103

Accounting Records . 104

Setting the Validation Strategy for Remote Access 107

User Validation Commands . 109

Example of Setting User Validation 109

Defining Other System Parameters 110

viii SG–2150 3.3

Contents

Page

Setting Retry Limits . 110

Displaying the Current Retry Limits 110

Example of Setting Retry Limits 110

Defining the Sender of NQS Mail 111

Displaying the Current Sender of Mail 111

Example of Setting NQS Mail User 111

Locking and Unlocking Daemon Processes 111

Displaying the Current Locking State 112

Using a Script File As Input to the qmgr Utility 112

Creating a qmgr Script File of the Current Configuration 113

Output Validation . 114

NQS and Multilevel Security on UNICOS and UNICOS/mk Systems 115

NQS Multilevel Directories (MLDs) 117

PALs . 119

Security Policies . 119

MAC Security Policy . 120

DAC Security Policy . 123

I&A Security Policy . 124

System Management . 124

Auditing . 125

NQS Multilevel Security Configuration 126

Converting to Wildcard Labeled Directories 127

NQS Local Changes for UNICOS and UNICOS/mk Systems 128

NQS User Exits for UNICOS and UNICOS/mk Systems 128

NQS Source-code Modification for UNICOS Systems 132

Operating NQS [6] 133

Overview of Operator Actions . 133

SG–2150 3.3 ix

NQE Administration

Page

Starting NQS . 134

NQS Shutdown and Restart . 140

Monitoring NQS . 141

Displaying System Parameters 142

Displaying a List of Managers and Operators 150

Displaying a Summary Status of NQS Queues 150

Displaying All the Characteristics Defined for an NQS Queue 153

Displaying Summary Status of User Requests in NQS Queues 156

Displaying the Mid Database . 159

Controlling the Availability of NQS Queues 159

Enabling and Disabling Queues 160

Example of Enabling and Disabling Queues 160

Starting and Stopping Queues 161

Example of Starting and Stopping Queues 161

Manipulating Requests . 162

Moving Requests between NQS Queues 162

Example of Moving Requests between Queues 162

Moving Requests within a Queue 163

Example of Moving Requests within a Queue 163

Holding and Releasing Requests 164

Example of Holding and Releasing Requests 164

Suspending, Resuming, and Rerunning Executing Requests 165

Example of Suspending and Resuming Requests 165

Modifying the Characteristics of Requests in Queues 166

Example of Modifying a Queued Request 168

Deleting Requests in NQS Queues 168

Example of Deleting a Queued Request 169

x SG–2150 3.3

Contents

Page

Deleting or Signaling Requests in Remote NQS Queues 169

Recovering Jobs Terminated Because of Hardware Problems 170

NLB Administration [7] 173

NLB Overview . 173

Overview of NLB Configuration . 175

Server Database Integrity . 175

Editing the NLB Configuration File 176

Configuring ACLs for the NLB . 178

Starting the NLB Server . 179

Specifying the NLB Server Location 179

Creating Redundant NLB Servers 181

Starting NLB Collectors . 181

Managing the NLB Server . 185

Specifying the Server on the Command Line 185

Verifying the NLB Server Is Running 186

Shutting down the Server . 186

Rereading the policies File . 186

Configuring Name Maps, Objects, and ACLs 186

Examples of Configuring Name Maps and Objects 189

Changing ACL Permissions . 189

Implementing NLB Policies [8] 193

Defining Load-balancing Policies 193

The policies File . 194

Example of How Policies Are Applied 196

Step 1: The Name . 196

Step 2: The Constraints . 196

Step 3: The Sort . 197

SG–2150 3.3 xi

NQE Administration

Page

Step 4: The Count . 197

Approaches to Designing Policies: Averaging Data 198

Other Factors: Weighting Machines 199

Other Factors: Alternate Policies for Different Time Periods 200

Policy Examples . 201

Example of Writing a Load-balancing Policy 201

Testing Policies . 203

File Formats . 204

The Name Map File . 204

The Object Data File . 211

Implementing NQS Destination-selection Policies 214

Configuring NQS Destination Selection 214

NQS User Interface to NLB . 215

Policy Definition . 215

NQS Processing . 217

Example of Load Balancing Using the Default Policy 219

Example of Load Balancing by Selection 219

Using Batch Request Limits in Policies 221

Defining Request-attribute Policies 223

Testing the Policy . 225

Storing Arbitrary Information in the NLB Database (Extensible Collector) 226

NLB Differences on UNICOS/mk 229

NQE Database [9] 231

NQE Database Model . 231

NLB Scheduling Versus NQEDB Scheduling 232

Failure Recovery . 232

Number of Connections . 232

xii SG–2150 3.3

Contents

Page

Cluster Rerun . 232

Performance . 233

Relative Priority of Jobs . 233

Site-defined Scheduling . 233

Overview of the NQE Database . 234

NQE Database Components . 235

Database Server (MSQL) . 236

Monitor System Task . 237

Scheduler System Task . 237

LWS System Task . 237

Client Commands . 238

NQE Database Concepts and Terms 239

Objects . 239

Task Owners . 240

Task States . 241

Events . 243

Starting the NQE Database . 244

Stopping the NQE Database . 246

Obtaining Status . 247

Security . 248

Connection . 249

Target . 251

Events . 252

Status . 252

Compacting the NQE Database . 253

Configuring the Database Components 253

Global Configuration Attributes for the NQE Database 254

Scheduler Attributes . 256

LWS Attributes . 258

SG–2150 3.3 xiii

NQE Administration

Page

Writing an NQE Scheduler [10] 261

The Scheduler System Task . 261

Writing a Simple Scheduler . 263

Requirements . 263

Goal . 266

Step 1: Create a New Scheduler System Task Object 266

Step 2: Create the Simple Scheduler File 267

Step 3: Write a Tinit Callback Function 269

Step 4: Write a Tentry Callback Function for New Tasks 271

Step 5: Write a Tpass Callback Function 276

Step 6: Write a Tnewowner Callback Function 280

Step 7: Write a Tentry Callback Function for User Tasks Returned from an LWS 282

Step 8: Run the New Scheduler 283

Tcl Errors . 284

Trace Levels . 285

Examining Tcl Variables . 285

Step 9: Add Configuration Enhancements 286

Tracking down Problems . 287

Attribute Names and nqeinfo File Variable Names 289

nqeinfo Variables . 289

Event Objects . 290

User Task Attributes . 292

System Task Object . 297

Global Configuration Object . 299

Tcl Built-in Functions . 302

Using csuspend [11] 307

csuspend Options . 307

csuspend Functionality . 308

xiv SG–2150 3.3

Contents

Page

csuspend Examples . 310

Job Dependency Administration [12] 313

Managing the NLB Database for Job Dependency 313

Multiple NLB Servers and Job Dependency 314

FTA Administration [13] 317

FTA Overview . 317

User Interface . 318

Common Services . 318

File Transfer Services . 319

Configuration . 320

Viewing the FTA Configuration 321

Global FTA Configuration Parameters 321

FTA Domain Configuration . 323

Changing the FTA Configuration 326

FTA Configuration for UNICOS Systems That Run Only the NQE Subset 327

Changing the ftpd Port Number 329

Editing System Configuration Files 329

Configuring Network Peer-to-peer Authorization 330

Configuring S-keys . 331

NPPA Example . 332

Modifying the NLB Database for NPPA 335

Example of Modifying the NLB Database 336

Administration . 336

FTA System Startup . 336

FTA Recovery . 337

Byte-level Recovery of Binary Transfers 337

Setting the Recovery Interval 337

SG–2150 3.3 xv

NQE Administration

Page

Types of Failure . 339

FTA Recovery Limits . 340

FTA Recovery Strategy . 341

Information Log . 342

FTA Management Functions and Status 344

Transfer Status . 348

Configuring DCE/DFS [14] 351

Enabling DCE Support for NQE . 351

Using a Password to Submit a Task 352

Using a Forwardable Ticket to Submit a Task 354

Checkpoint and Restart Support on UNICOS Systems 355

Support for Renewing and Refreshing Tickets 355

User Requirements . 356

Administrating Kerberos and DCE 357

Configuring ilb [15] 361

ilbrc File . 361

LOGIN Blocks . 361

SYSTEM Blocks . 362

$HOME/.ilbrc File . 362

User Environment Variables . 363

Problem Solving [16] 365

Verifying That NQE Components Are Running 365

Verifying That Daemons Are Running 366

NQS Troubleshooting . 368

A Request Has Disappeared . 368

A Queued Request Will Not Run 369

xvi SG–2150 3.3

Contents

Page

Limits Reached . 369

Pipe Queue’s Destination List Points to a Disabled Batch Queue 369

Standard Output and Standard Error Files Cannot Be Found 369

Syntax Errors . 370

File Not Found Errors in Standard Error File 371

Queues Shut Off by NQS . 371

Unexpected Changes in Request States 371

Problems Issuing qmgr Commands 371

NQS or qmgr Fails with a no local machine id Message 371

NQS Seems to Be Running Slowly 373

Configuring the Scope of User Status Display 373

Client Troubleshooting . 373

Client Users Cannot Access the NQS Server 374

Non-secure network port Messages 374

A Request Is Accepted by NQS but Not Run 375

No account authorization at transaction peer Messages 375

Commands Do Not Execute . 375

ctoken generation failure Messages 376

NQE Load Display Fails . 376

NLB Troubleshooting . 377

NLB Commands Report cannot determine server location 377

Collector Is Running, but No Data Appears in Server 377

nlbconfig -pol Reports Errors 377

Collectors on Solaris Systems Report Incorrect Data 377

Policies Cause Unexpected Results 378

Modifying ACL for Type C_OBJ Reports no privilege for requested operation . 378

NQE Database Troubleshooting . 378

NQE Database Authorization Failures 378

SG–2150 3.3 xvii

NQE Administration

Page

NQE Database Connection Failures 379

Network Debugging . 379

Checking Connectivity . 379

Checking Transport Service Connections 380

Connection failed Messages 380

User’s Job Project Displays As 0 . 381

Reinstalling the Software . 381

Calling Customer Service . 382

Appendix A Man Page List 383

User Man Pages . 383

Application Interfaces Man Pages 384

File Formats Man Pages for UNICOS Systems 385

Product Support Man Page . 385

Administrator-level Man Pages . 385

Appendix B NQE Sample Configurations 387

NQE Servers and Clients . 387

NQE Cluster Configuration . 388

Simple Cluster . 388

NQE Load-balanced Cluster . 389

NQE Scheduler Cluster . 390

Server Considerations . 390

Load-balancing Policies . 390

NQE Scheduler and NQE Database Options 390

NQS Queue Configuration . 391

NQE Database and Scheduler Structure 393

Appendix C config.h/nqeinfo File Variables 395

xviii SG–2150 3.3

Contents

Page

Index 419

Figures
Figure 1. Sample NQE Configuration 7

Figure 2. NQE File Structure . 9

Figure 3. Request Processing for Local Submission 20

Figure 4. Request Processing for Client Submission to NQS 21

Figure 5. Request Processing for Client Submission to the NQE Database 22

Figure 6. Request Processing for Remote Submission 23

Figure 7. Queue Configuration That Uses theloadonly Attribute 26

Figure 8. Basic Concept of the NQE Database 32

Figure 9. NQE Configuration Display, Condensed View 37

Figure 10. NQE Configuration Display, File Menu 39

Figure 11. NQE Configuration Display, Action Menu 40

Figure 12. NQE Configuration Display, View Menu 41

Figure 13. NQE Configuration Display, Full View 42

Figure 14. NQE Configuration Display, Install View 43

Figure 15. Example of a TCP/IP network 55

Figure 16. Average Machine Load Data 198

Figure 17. Instantaneous Machine Load Data 199

Figure 18. NQS Configuration with Load Balancing by Default 219

Figure 19. NQS Configuration with Load Balancing by Selection 220

Figure 20. NQE Database Layout 235

Figure 21. NQE Database Components 236

Figure 22. User Task Owners and States 242

Figure 23. Scheduler Program Structure 262

Figure 24. Component Relationships in FTA 320

SG–2150 3.3 xix

NQE Administration

Page

Figure 25. NPPA Configuration Example 334

Figure 26. Simple NQE Cluster 389

Figure 27. NQE Load-balanced Cluster 389

Figure 28. Default NQE Queue Configuration 392

Figure 29. NQE Database and NQE Scheduler Components 393

Tables
Table 1. Information for defining machines 51

Table 2. Machine IDs, names, and output agents 56

Table 3. Definable queue characteristics 59

Table 4. Platform support of NQS limits 77

Table 5. Accounting records . 105

Table 6. Attribute Types . 207

Table 7. Reserved Host Object Attributes 208

Table 8. Attribute Implementation Across Platforms 210

Table 9. Request Limit Attributes 223

Table 10. Standard Events . 244

Table 11. nqedbmgr Process Startup Control Commands 245

Table 12. nqedbmgr Process Shutdown Control Commands 247

Table 13. nqedbmgr Status Commands 248

Table 14. nqedbmgr Predefined Global NQE Database Configuration Attributes 255

Table 15. nqedbmgr Predefined Scheduler Attributes 258

Table 16. nqedbmgr Predefined LWS Attributes 259

Table 17. Mandatory Task States Recognized by the Tentry Callback 271

Table 18. Variables That May Be Defined in the nqeinfo File 289

Table 19. Event Objects Attributes 291

Table 20. Events Defined by Default 292

Table 21. User Task Object Attributes 292

Table 22. System Task Object Attributes 298

xx SG–2150 3.3

Contents

Page

Table 23. Global Configuration Object Attributes 300

Table 24. Tcl Built-in Functions . 302

Table 25. Additional Functions Implemented in Tcl 304

Table 26. File Transfer Components 317

Table 27. FTA_FTS Class Parameters 325

Table 28. FTA_FLAGS Parameters 325

Table 29. fta -config Output and nlbconfig Output Comparison 329

Table 30. Example of NPPA Configuration Characteristics 333

Table 31. NQE Server Daemons 366

SG–2150 3.3 xxi

Preface

This publication describes how to configure, monitor, and control the Cray
Network Queuing Environment (NQE) running on a UNIX system. NQE is a
software product that lets users submit, monitor, and control batch requests for
execution on an NQS server in an NQE cluster. This publication is written for
NQE administrators who are responsible for defining and maintaining the NQE
network configuration. This publication also may be accessed online by using
the Cray Research online documentation reader.

The NQE graphical user interface (GUI) allows users to submit and control
batch requests to a central storage database and to obtain status on their batch
requests and file transfers.

The Network Load Balancer (NLB) uses the system load information received
from NQE execution servers to offer NQS an ordered list of servers to run a
request; NQS uses the list to distribute the request.

The NQE database provides an alternate mechanism for distributing work.
Requests are submitted and stored centrally. The NQE scheduler examines each
request and determines when and where the request is run.

The File Transfer Agent (FTA) provides asynchronous and synchronous file
transfer. You can queue your transfers so that they are retried if a network link
fails.

Related Publications

The following documents contain additional information that may be helpful:

• NQE Release Overview, publication RO–5237, provides NQE release
information.

• NQE Installation, publication SG–5236, describes how to install or upgrade
the NQE software.

• Introducing NQE, publication IN–2153, provides an overview of NQE
functionality and describes how to access documentation online. This
publication also may be accessed online by using the Cray Research online
documentation reader.

• NQE User’s Guide, publication SG–2148, provides more detailed user-level
information than Introducing NQE, such as how to do user tasks by using

SG–2150 3.3 xxiii

NQE Administration

either the NQE graphical user interface (GUI) or the command-line interface,
how to customize your environment, and so on. This publication may also
be accessed online by using the Cray Research online documentation reader.

Ordering Cray Research Publications

The User Publications Catalog, Cray Research publication CP–0099, describes the
availability and content of all Cray Research hardware and software documents
that are available to customers. Cray Research customers who subscribe to the
Cray Inform (CRInform) program can access this information on the CRInform
system.

To order a document, either call the Distribution Center in Mendota Heights,
Minnesota, at +1–612–683–5907, or send a facsimile of your request to fax
number +1–612–452–0141. Cray Research employees may send electronic mail
to orderdsk (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

xxiv SG–2150 3.3

Preface

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have
man pages associated with them.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

The default shell in the UNICOS and UNICOS/mk operating systems, referred
to in Cray Research documentation as the standard shell, is a version of the Korn
shell that conforms to the following standards:

• Institute of Electrical and Electronics Engineers (IEEE) Portable Operating
System Interface (POSIX) Standard 1003.2–1992

• X/Open Portability Guide, Issue 4 (XPG4)

The UNICOS and UNICOS/mk operating systems also support the optional use
of the C shell.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

publications@cray.com

SG–2150 3.3 xxv

NQE Administration

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBS for the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–612–683–5599.

We value your comments and will respond to them promptly.

xxvi SG–2150 3.3

NQE Overview [1]

The Network Queuing Environment (NQE) is a framework for distributing
work across a network of heterogeneous systems. NQE consists of the
following components:

• Cray Network Queuing System (NQS)

• NQE clients

• Network Load Balancer (NLB)

• NQE database and its scheduler

• File Transfer Agent (FTA)

Note: Cray PVP systems that do not have an NQE license are limited to
accessing and using only the NQE subset (NQS and FTA components).

After you have installed NQE, follow the instructions in Chapters 3 through 6
of this administrator’s guide. For information about the content of this guide,
see Section 1.1.

1.1 Scope of This Manual

This manual provides information on how to configure and manage NQE. This
manual contains the following chapters:

• Chapter 1, page 1 (this chapter) describes the components of NQE and
provides an overview of NQE.

• Chapter 2, page 11 describes concepts and terms relevant to NQE. It is
meant to act as an introduction for administrators unfamiliar with batch
concepts; it also can act as a reference for more experienced administrators.

• Chapter 3, page 35 describes how to use the nqeconfig(8) utility to
configure the NQE configuration file (nqeinfo file).

• Chapter 4, page 45 describes how to start and stop NQE. It also describes the
list of valid NQE components set in the NQE_DEFAULT_COMPLIST variable
in the nqeinfo(5) file used by the nqeinit(8) and nqestop(8) scripts.

SG–2150 3.3 1

NQE Administration

• Chapter 5, page 47 describes configuration and management of the NQS
component of NQE. It describes the use of qmgr commands that are
available only to NQS managers.

• Chapter 6, page 133 describes the qmgr commands that are available to NQS
operators.

• Chapter 7, page 173 describes configuration and management of the NLB
components of NQE.

• Chapter 8, page 193 describes how to implement load-balancing policies
with NQE.

• Chapter 9, page 231 provides an overview of the NQE database and its
components, and it describes management and configuration of the NQE
database and the NQE scheduler.

• Chapter 10, page 261 describes how to modify the NQE scheduler to meet
the needs of your site.

• Chapter 11, page 307 describes how to use the csuspend(8) command to
make use of unused cycles on a server.

• Chapter 12, page 313 describes how the job dependency feature affects NQE
administration.

• Chapter 13, page 317 describes configuration and management of the FTA
component of NQE.

• Chapter 14, page 351 describes configuration of the Distributed Computing
Environment (DCE) when using NQE.

• Chapter 15, page 361 describes configuration of the ilb(1) command.

• Chapter 16, page 365 provides possible solutions to problems you may
encounter as an NQE administrator.

• Appendixes provide supplemental information to help you administer NQE.

1.2 NQE Environment

NQE supports computing with a large number of nodes in a large network
supporting two basic models:

• The NQE database model that supports up to 36 servers and hundreds of
clients

2 SG–2150 3.3

NQE Overview [1]

• The NQS model that supports an unlimited number of servers and
hundreds of clients

The grouping of servers and clients is referred to as an NQE cluster. The servers
provide reliable, unattended processing and management of the NQE cluster.
Users who have long running requests and a need for reliability can submit
batch requests to an NQE cluster.

NQE clients support the submission, monitoring, and control of work from the
workstation for job execution of the batch requests on the nodes. The client
interface has minimal overhead and administrative cost; for example, no
machine ID (mid) administration is needed for a client machine. NQE clients are
intended to run on every node in the NQE cluster where users need an
interactive interface to the NQE cluster. The NQE client provides the NQE GUI,
which is accessed through the nqe command. The NQE client also provides a
command-line interface. For a list of user-level commands, see Appendix A,
page 383. For information about using the NQE GUI and the command-line
interface, see the NQE User’s Guide, publication SG–2148.

The Network Queuing System (NQS) initiates requests on NQS servers. An NQS
server is a host on which NQS runs. As system administrator, you designate
the default NQS server in the NQE configuration file (nqeinfo file); a user
may submit a request to the default NQS server or submit it to a specific NQS
server by using the NQE GUI Config window or by setting the NQS_SERVER
environment variable. Cray NQS provides unattended execution of shell script
files (known as batch requests) in batch mode. Users can monitor and control the
progress of a batch request through NQE components in the NQE cluster.
When the request has completed execution, standard output and standard error
files are returned to the user in the default location or specified alternate
location. Privileged users defined as qmgr managers can configure, monitor,
and control NQS; users defined as qmgr operators can control NQS queues and
requests with the qmgr utility.

The NQE database provides a central repository for batch requests in the NQE
cluster. When a request is submitted to the NQE database, it works with an
administrator-defined NQE scheduler to analyze aspects of the request and to
determine which NQS server will receive and process the request. When the
scheduler has chosen a server for your request, the lightweight server (LWS) on
the selected server obtains request information from the NQE database, verifies
validation, submits the copy of a request to NQS, and obtains exit status of
completed requests from NQS. By default, the copy of the request is submitted
directly into a batch queue on the NQS server. Because the original request
remains in the NQE database, if a problem occurs during execution and the
server copy of the request is lost, a new copy can be resubmitted for processing

SG–2150 3.3 3

NQE Administration

if you have the clusterwide rerun feature enabled. For additional information
about the NQE database and NQE scheduler, see Chapter 9, page 231, and
Chapter 10, page 261.

The Network Load Balancer (NLB) provides status and control of work
scheduling within the group of components in the NQE cluster. Sites can use
the NLB to provide policy-based scheduling of work in the cluster. NLB
collectors periodically collect data about the current workload on the machine
where they run. The data from the collectors is sent to one or more NLB
servers, which store the data and make it accessible to the NQE GUI Status
and Load functions. The NQE GUI Status and Load functions display the
status of all requests which are in the NQE cluster and machine load data.

Cray FTA allows reliable (asynchronous and synchronous) unattended file
transfer across the network using the ftp protocol. Network peer-to-peer
authorization allows users to transfer files without specifying passwords.
Transfer may be queued so that they are retried if a network link fails. Queued
transfer requests may be monitored and controlled.

The csuspend(8) utility lets you suspend and restart batch activity on a server
when interactive use occurs.

The NQE_DEFAULT_COMPLIST variable in the nqeinfo(5) file contains the list
of NQE components to be started or stopped (see Chapter 4, page 45). You can
set this list to one or more of any of the following valid NQE components:

NQS Network Queuing System

NLB Network Load Balancer

COLLECTOR NLB collector

NQEDB NQE database

MONITOR NQE database monitor

SCHEDULER NQS scheduler

LWS Lightweight server

Beginning with the NQE 3.3 release, the default component list consists of the
following components: NQS, NLB, and COLLECTOR.

Below find a brief a description of the valid NQE components:

• The Network Load Balancer (NLB) server which receives and stores
information from the NLB collectors in the NLB database which it manages.

For more information on the NLB, see Section 2.9.1, page 29.

4 SG–2150 3.3

NQE Overview [1]

• The NQE database server which serves connections from clients, the
scheduler, the monitor and lightweight server (LWS) components in the
cluster to add, modify, or remove data from the NQE database. Currently,
NQE uses the mSQL database.

For more information on the NQE database server, see Section 2.9.2, page 31.

• The NQE scheduler which analyses data in the NQE database, making
scheduling decisions.

For more information on the NQE scheduler, see Section 2.9.2.3, page 33.

• The NQE database monitor which monitors the state of the database and
which NQE database components are connected.

For more information on the NQE database monitor, see Section 2.9.2.2, page
33.

• NQE clients (running on numerous machines) contain software so users may
submit, monitor, and control requests by using either the NQE graphical
user interface (GUI) or the command-line interface. From clients, users also
may monitor request status, delete or signal requests, monitor machine load,
and receive request output using the FTA.

The machines in your network where you run NQS are usually machines where
there is a large execution capacity. Job requests may be submitted from
components in an NQE cluster, but they will only be initiated on an NQS server
node.

FTA can be used from any NQS server to transfer data to and from any node in
the network by using the ftpd daemon. It also can provide file transfer by
communicating with ftad daemons that incorporate network peer-to-peer
authorization, which is a more secure method than ftp.

On NQS servers you need to run a collector process to gather information about
the machine for load balancing and request status for the NQE GUI Status and
Load windows programs. The collector forwards this data to the NLB server.

The NLB server runs on one or more NQE nodes in a cluster, but it is easiest to
run it initially on the first node where you install NQE. Redundant NLB servers
ensure greater availability of the NLB database if an NLB server is unreachable
through the cluster.

Note: The NQE database must be on only one NQE node, there is no
redundancy.

SG–2150 3.3 5

NQE Administration

You can start the csuspend(8) utility on any NQS server to monitor interactive
terminal session (tty) activity on that server. If tty activity equals or exceeds the
input or output thresholds you set, NQE suspends batch activity. When
interactive activity drops below the thresholds you specify, batch work is
resumed.

Client nodes provide access to the following client commands: nqe(1) (which
invokes the NQE GUI), cevent(1), cqsub(1), cqstatl(1), and cqdel(1).
Client nodes also require access to the FTA ftad daemon (which services FTA
requests issued by the requests and NQE itself). In a typical configuration, there
would be many more client nodes than any other type of NQE node. Also, you
can configure the client nodes to use the ilb(1) utility so that a user may
execute a load-balanced interactive command; for more information, see
Chapter 15, page 361.

In addition to the client commands, server nodes provide access to the
following commands: qalter(1), qchkpnt(1), qconfigchk(1), qdel(1),
qlimit(1), qmgr(1), qmsg(1), qping(1), qstat(1), and qsub(1).

For a complete list of commands, see Appendix A, page 383.

1.3 Running NQE As an Environment

The example given in this section shows how the NQE components work as an
environment. For information about NQE user features and about setting NQE
environment variables, see Introducing NQE, publication IN–2153, and the NQE
User’s Guide, publication SG–2148. Both documents, as well as this
administration document, are available online (see Introducing NQE, publication
IN–2153, for information about accessing NQE documentation online).

Figure 1 shows a possible NQE configuration. The user mary uses the client
workstation snow, which has an NQE client interface to the NQS server latte
(set by the environment variable NQS_SERVER to latte). mary wants the
output from her batch request to go to her research assistant (fred) at another
NQE client workstation, gale.

6 SG–2150 3.3

NQE Overview [1]

user fred on workstation gale
 running an NQE client

latte
running NQS

a10261

user mary on workstation snow
running an NQE client
NQS_SERVER latte

Figure 1. Sample NQE Configuration

User mary has several batch requests to run. One of the requests (named jjob)
looks like the following example:

#QSUB -eo #merge stdout and stderr

#QSUB -J m #append NQS job log to stdout
#QSUB -o "%fred@gale/nppa_latte:/home/gale/fred/mary.jjob.output"

#returns stdout to fred@gale

#QSUB -me #sends mail to submitter at completion

#QSUB #optional qsub delimiter

date #prints date

rft -user mary -host snow -domain nppa_latte -nopassword -function get jan.data nqs.data
#use FTA to transfer jan.data from latte to the NQS server (latte)

cc loop.c -o prog.out #compile loop.c./prog.out

rm -f loop.c prog.out jan.data nqs.data #delete files

echo job complete

The following embedded qsub option uses FTA to return the standard output
file from the request to fred at the workstation gale; nppa_latte is the FTA
domain:

#QSUB -o "%fred@gale/nppa_latte:/home/gale/fred/mary.jjob.output"

The request script uses FTA (the rft command) to transfer its files as shown in
the following example:

rft -user mary -host snow -domain nppa_latte -nopassword -function get jan.data nqs.data

SG–2150 3.3 7

NQE Administration

The FTA domain name nppa_latte and the option -nopassword indicate
that peer-to-peer authorization is used, so mary does not need to specify a
password; however, mary must have a .netrc file on latte to log into
fred’s account and mary must also have an account on gale with permission
to read fred’s file (see the #QSUB example, above).

User mary submits the request by using the following command line
(alternatively, mary could submit the request by using the NQE GUI):

cqsub jjob

The request is sent to the NQS server latte, since mary ’s environment
variable NQS_SERVER is set to latte.

The load-balancing policy for mary’s site allows work to be shared among NQS
systems on latte, pendulum, telltale, and gevalia. Because of the
workload on the machines, mary’s first request is sent to gevalia, the second
and third are sent to latte, the fourth and fifth are sent to pendulum, and the
sixth is sent to telltale. User mary does not need to know where her
requests are executing to find out their status. She can use the NQE GUI
Status window to determine their status.

Because NQE GUI Status window is refreshed periodically, user mary can
monitor the progress of all her requests. Because she used the embedded
#QSUB -me option, she receives mail when each request completes.

For more information about FTA and rft syntax, about using #QSUB directives,
or about using the NQE GUI Status window to determine status of requests,
see the NQE User’s Guide, publication SG–2148.

1.4 NQE File Structure

Throughout this guide, the path /nqebase is used in place of the default NQE
path name, which is /opt/craysoft/nqe on UNICOS, UNICOS/mk, and
Solaris systems and is /usr/craysoft/nqe on all other supported platforms.

Figure 2 shows the NQE file structure.

8 SG–2150 3.3

NQE Overview [1]

a10527

bin etc examples include lib man src www

$NQE_VERSION

/nqebase

license.dat

nqs_config

name_map

fta.conf

cat1

cat3

cat5

cat7

cat8

cgi_src

cgi_bin

images

help

nqein

nqeout

database nqeinfo

ftaqueue

log

msqldb

nlbdir

fta_conf

config

policies

nqedb

nqedb_iddir

nqedbusers

spool

$HOST

4
3

1

2

4

3

1

2

directories

Symbolic links to /nqebase/$NQE_VERSION directories

/etc/nqeinfo is a symbolic link to this file

Symbolic link to $NQE_SPOOL as defined in nqeinfo file

Key

[/opt /usr]/nqebase

files

README

install.log

dependencies

news

5 For UNICOS and UNICOS/mk systems only

6 For UNICOS systems that run only the NQE subset (NQS and FTA components)

5

6

Figure 2. NQE File Structure

1.5 Using the World Wide Web Interface

The NQE release contains a World Wide Web (WWW) interface to NQE. You
can access the interface through WWW clients such as Mosaic or Netscape. A
single interface lets users submit requests (from a file or interactively), obtain
status on their requests, delete requests, signal requests, view output, and save
output. Online help is provided.

NQE administrators are encouraged to configure and customize this interface.
It is provided so that administrators may supply users of nonsupported NQE
platforms (such as personal computers) a tool that allows them to access NQE
resources.

For information about managing the interface, read the /nqebase/www/README
file. You can obtain the most current version of the NQE WWW interface at
ftp.cray.com in the /pub/nqe/www file.

SG–2150 3.3 9

NQE Administration

Note: The WWW interface is not available to UNICOS systems that run only
the NQE subset (NQS and FTA components).

10 SG–2150 3.3

Concepts and Terms [2]

This chapter discusses concepts and terms important to NQE use and
administration.

2.1 Batch Requests

Batch requests are shell scripts that are executed independently of any interactive
terminal connection. The operating system treats this shell script as the standard
input file (stdin). The only difference between this and a conventional shell
script is that you can include NQS options (preceded by a special prefix) in the
batch request file as comments before the first executable shell command.

When a request is submitted from the local or remote host, the standard output
(stdout) and standard error (stderr) files are returned to the directory from
which the request was submitted or returned to a user-specified alternative
path. Optionally, users can request that stdout, stderr, and the job log file be
merged (a job log file contains messages of NQS activity about a request).

Batch requests can have the attributes that are described in the following
sections.

2.1.1 Nice Values

The nice value is the execution priority of the processes that form the batch
request. A user can explicitly set the nice value (through the Job Limits
selection of the Configure menu on the NQE GUI Submit window or as a
cqsub or qsub command option) or NQS can set the nice value implicitly,
based on the queue in which the request resides. Increasingly negative nice
values increase the relative execution priority of a process.

Warning: Do not specify a negative nice increment for a queue because it
may cause serious CPU scheduling problems, such as timeouts in system
daemons or interference with kernel scheduling.

2.1.2 Shell Interpretation

A batch request can specify the full path name of a shell to interpret its shell
script. If a user does not specify a shell, the user’s login shell is used.

When NQS initiates a request, it spawns a second shell.

SG–2150 3.3 11

NQE Administration

The second shell invoked is always /bin/sh unless another shell is specified
by the user. The two-shell method allows stdin read-ahead by commands
such as remsh and cat.

To define a shell for the first shell invoked, users can use the General
Options selection of the Configure menu on the NQE GUI Submit window
or use the cqsub -s or qsub -s command.

Users can define a shell other than /bin/sh to interpret their batch request by
including the following line as the first line of the file (before any #QSUB
directives):

#! shell_path

(such as /bin/csh)

You can include shell options on this line.

NQS sets the QSUB_SHELL environment variable to the shell the user is in
when executing a request. NQS sets the SHELL environment variable to the
initial shell executed by NQS.

The initial shell is not necessarily the same shell as the second shell. The second
shell will always be /bin/sh, unless the user includes #! shell_path as the first
line of the batch request.

The following example uses the cqsub command and shows how to verify the
shells that an NQS request is using. User jjj uses csh as a login shell. The
batch request file job1 contains only one line, as follows:

ps -ef | fgrep jjj

The request is submitted by using the following command:

cqsub -s /bin/csh job1

The following output shows that the request was executed under /bin/sh
because jjj did not modify the first line of the file as required:

jjj 11874 11873 2 15:18:17 ? 0:00 fgrep jjj

jjj 11355 11354 0 14:54:37 pts/0 0:00 -csh

jjj 11873 11871 2 15:18:17 ? 0:00 /bin/sh
/nqebase/nqeversion/poe/database/spool/scripts/++++2++cd4X+++
jjj 11871 11870 22 15:18:16 ? 0:00 -csh

jjj 11875 11874 9 15:18:17 ? 0:00 ps -ef

12 SG–2150 3.3

Concepts and Terms [2]

To run the request under csh, you must modify the batch request file as follows:

#!/bin/csh

ps -ef | fgrep jjj

The cqsub -s /bin/csh job1 command produces the following output:

jjj 11969 11967 19 15:23:06 ? 0:00 /bin/csh

/nqebase/nqeversion/pendulum/database/spool/scripts/++++3++cd4X+++
jjj 11355 11354 0 14:54:37 pts/0 0:00 -csh

jjj 11967 11966 5 15:23:05 ? 0:00 -csh
jjj 11974 11969 9 15:23:08 ? 0:00 ps -ef

If you want to use a one-shell invocation method, you can set the
NQSCHGINVOKE environment variable to true or yes. The environment
variable is set on a per-request basis; you must export environment variables by
using the General Options selection of the Configure menu on the NQE
GUI Submit window or by using the qsub -x option. If NQSCHGINVOKE is set
to true, and you do not request a shell (by using the General Options
selection of the Configure menu on the NQE GUI Submit window or by
using cqsub -s or qsub -s), NQS invokes the request owner’s UDB shell on
UNICOS and UNICOS/mk systems or their login shell on UNIX systems.

To set a fixed shell path and invocation method, edit the nqeinfo file to define
the following two variables:

NQE_NQS_SHELLPATH

NQE_NQS_SHELLINVOCATION

The default values are a null string for the shell path and 2 for the invocation
method.

The allowed value for NQE_NQS_SHELLPATH is any valid shell path name. The
default null string for NQE_NQS_SHELLPATH uses the user’s login shell. If you
specify a shell path name for NQE_NQS_SHELLPATH, the shell you specify is
used for batch request processing.

The value specified by using the General Options selection of the
Configure menu on the NQE GUI Submit window or specified by using the
cqsub -s or qsub -s option, if used, overrides the system-level shell path
configured in the nqeinfo file.

SG–2150 3.3 13

NQE Administration

The allowed value for NQE_NQS_SHELLINVOCATION is 1 or 2. A value of 1 for
NQE_NQS_SHELLINVOCATION uses a one-shell invocation method for all NQS
requests. A value of 2 uses the default two-shell invocation method.

The value of any NQSCHGINVOKE environment variable received with a request
overrides the system-level invocation method configured in the nqeinfo file.

During NQS startup, the values of these two variables are verified. If a stat()
system call of a non-null shell path name fails, or if the value of the invocation
method is not either 1 or 2, the nqsdaemon aborts its startup. Messages
describing the problem are written to the NQS console file and/or the log file.

2.1.3 Alternate User Validation

Note: Alternate user validation applies only for NQS requests submitted
using the cqsub command.

By default, an NQE job is submitted for execution under the user name
executing the cqsub command. By using the cqsub -u command, or by
setting the User Name field in the NQE GUI Submit display, a user can
submit a request for execution under a different user name.

The user account on the client workstation is referred to as the originating client
user account, and the user account on the NQS server is referred to as the target
user account.

The nqeinfo file variable NQE_NQS_NQCACCT controls which user account is
validated on the NQS_SERVER when a user submits a job for execution under a
different user name. The value of this variable on the NQS_SERVER host
determines which user name is used for validation on the NQS_SERVER.

The value ORIGIN means that the originating client user account is validated
on the NQS_SERVER. This means that the client user must have an account on
the NQS_SERVER with the same name (but not necessarily the same UID) as the
originating client user account.

The value TARGET means that the target user account is validated on the
NQS_SERVER. It is not necessary for the client user to have an account on the
NQS_SERVER with the same name as the client user account.

If the NQE_NQS_NQCACCT variable is not set on the NQS_SERVER, it defaults to
the value ORIGIN.

If NQE_NQS_NQCACCT is set to ORIGIN, and password validation is set on the
NQS_SERVER, then both the client user account on the NQS_SERVER and the

14 SG–2150 3.3

Concepts and Terms [2]

target user account on the NQS server must have the same password or the
password validation will fail.

2.1.4 Intraqueue Priority

The intraqueue priority determines the order in which requests are initiated.
After a request is accepted into a batch queue, the NQS scheduler calculates the
intraqueue priority each time it scans the requests in the queue. The order in
which queues are considered does not change; only the order in which requests
are selected from a queue changes. The eligible request with the highest
intraqueue priority is selected next for initiation. (Eligible means the request
meets all quotas such as run limit, user limit, and group limit). For additional
information, see Section 5.12, page 82.

2.1.5 Resource Limits

A request or the individual processes of a request can impose a set of limits on
the use of a resource. Typical limits are maximum file size, CPU time, and
maximum memory size. A user can explicitly set up resource limits by using
NQE GUI options or cqsub command options, or NQS can set the resource
limits implicitly, based on the batch queue in which the request executes.

The limits supported by NQS are described in Section 5.11, page 75.

2.2 Request States

The state of a request can be found by using the NQE GUI Status window or
the cqstatl -f or qstat -f command. The state is displayed after Status:
or at the top right of the detailed request display. (To access a detailed request
display through the NQE GUI Status window, double-click on a request line.)

An abbreviated form of the status also is displayed on the NQE GUI Status
window under the Job Status column or under the ST column of the request
summary display of the cqstatl -a or qstat -a command.

The current state of the request shown on the cqstatl or qstat display can
be composed of a major and a minor status value. Major status values are as
follows:

Code Description

A Arriving

SG–2150 3.3 15

NQE Administration

C Checkpointed

D Departing

E Exiting

H Held

N NQE Database request

Q Queued

R Routing (pipe queues only)

R Running (batch queues only)

S Suspended

U Unknown state

W Waiting for a date and/or time specified by the -a option to
cqsub, waiting for a license, or waiting for a network connection

Minor status values are described on the cqstatl(1) and qstat(1) man pages.

A batch request submitted to the NQE database typically progresses through
the following states; the first four characters of a state are displayed in the ST
column of a database request summary (shown by using the cqstatl -a or
qstat -a command):

State Description

New The request is in the NQE database.

Pending The request is in the NQE database awaiting
scheduling.

Scheduled The request is in the NQE database and has been
scheduled by the NQE scheduler.

Submitted A copy of the request has been submitted from
the NQE database for processing.

Completed The copy of the request submitted from the NQE
database for processing has completed processing.

Terminated The copy of the request submitted from the NQE
database for processing has terminated.

A batch request submitted to a local pipe queue for routing to a batch queue
(defined in the next section) typically progresses through the following states at
a local pipe queue:

16 SG–2150 3.3

Concepts and Terms [2]

State Description

queued Awaiting routing to another queue

routing Being moved to another queue

A request progresses through the following states in a batch queue:

State Description

arriving Being moved from another queue

queued Awaiting processing

running Being processed

waiting Waiting for a specified execution time

exiting Processing complete

departing Left the queue but not yet deleted

An executing request can also have the following states:

State Description

held Held by NQS operator action; resources are not
released.

suspended Processing temporarily suspended by an
operator; resources are released.

The ordering of requests within a queue does not always determine the order in
which the request is processed; the NQS request scheduler determines the
processing order, depending on the various limits that the system administrator
or operator imposes.

2.3 Queues

A queue is a set of batch requests. NQS assigns requests to a particular queue,
where they wait until they are selected for execution. NQS also assigns an
execution priority to each request. NQS executes each request according to its
priority and routes any output to the specified destination. The following
sections describe the two types of queues: batch and pipe.

NQE is shipped with one pipe queue and one batch queue configured on each
NQS server. The default pipe queue is nqenlb . The default batch queue is
nqebatch. This configuration uses the nqenlb queue to send requests to the
NLB, which then sends requests to nqebatch on the most appropriate system,

SG–2150 3.3 17

NQE Administration

based on an NLB policy. The default NLB policy, called nqs, sends batch
requests to the system with the most available CPU cycles. If requests are
submitted to the queue nqebatch, the request runs on the local NQS server.

2.3.1 Batch Queues

Batch queues accept and process batch requests. Each batch queue has an
associated set of request and process resource limits. If a request is to be
accepted in a particular batch queue, no resource limit specified by the request
may exceed the corresponding limit specified by the target batch queue. If a
batch request fails to specify a resource limit that is enforced, NQS sets the limit
for the request to the corresponding default limit of the queue. The qmgr
commands define the queue default values.

Note: For UNICOS and UNICOS/mk systems, NQS assigns the limit for the
request to either the default limit of the queue or the user database (UDB)
limit, whichever is more restrictive.

If the qmgr manager lowers the request and process resource of a queue, all
requests that are already in the queue with quotas that exceed the new limits
remain in the queue through a "grandfather" clause.

Every batch queue also has a set of associated queue limits, which are described
in Section 2.5, page 24.

2.3.2 Pipe Queues

Pipe queues handle the routing and delivery of requests from one queue to
another. They serve as pipelines, transporting requests to other local and
remote queue destinations.

Pipe queues do not have associated quota limits (although they can have
attributes). Pipe queues have a set of associated queue destinations, on both
local and remote machines, to which they route requests. These destinations
can be batch queues or other pipe queues.

NLB pipe queues used for load balancing do not have destinations associated
with them.

Each request in a pipe queue is routed to one of the queue’s destinations.
Destinations are considered in the order in which the administrator configures
them. If a request cannot be accepted by a destination queue (for example, if its
resource requirements exceed those allowed for membership in the queue), the

18 SG–2150 3.3

Concepts and Terms [2]

next destination is considered. If no destination accepts the request, the request
is deleted, and the user receives a mail message.

If a destination is inaccessible (for example, if the network connection is broken
or if the loadonly limit for a queue has been reached), NQS tries to requeue
the request at specified intervals (defined by the qmgr command set default
destination_retry wait) for a specified length of time (defined by the
qmgr command set default destination_retry time). If these
attempts fail, NQS abandons the attempted request and the user receives a mail
message.

Each pipe queue has an associated program spawned to handle every request
initiated from the queue for routing and delivery. In the context of the
client/server network connection, this program is referred to as the pipeclient
process.

2.3.3 Queue, Queue Complex, and Global Limits

Queue, queue complex, and global limits (defined beginning with Section 2.5,
page 24) limit the number of requests that can run concurrently. You can use
qmgr commands to set a finite value that limits the maximum number of
requests that can run at one time. Most limits can be set to unlimited. When
a queue is created, these limits are defined as unspecified; unspecified
means that the queue has the default value for that limit.

You do not have to set every limit. A comprehensive set of limits is provided so
that you can configure the workload to meet your site’s needs.

2.4 Request Processing

This section provides summary information on the request submission process,
controlling requests, and monitoring requests.

2.4.1 Request Destination

By default, requests are sent to NQS. You may change the default and have
requests sent to the NQE database, or your users may select the destination of
their individual requests. For additional information about configuring the
NQE database, see Chapter 9, page 231.

SG–2150 3.3 19

NQE Administration

2.4.2 NQS Server Local Submission

When a user submits a batch request to NQS, the request is sent to nqsdaemon.
The nqsdaemon checks the request qualifiers (if there are any) against the
defined queue limits and attributes. Based on these checks, nqsdaemon accepts
or rejects the request. If the queue is a pipe queue, when nqsdaemon
determines that a request should be routed, it spawns the pipeclient
program to route the request from the pipe queue to another pipe or batch
queue. Figure 3 shows this process.

Request
executes

Batch
request nqsdaemon

Request
submitted

pipeclient nqsdaemon
Pipe

queue
Batch
queue

a10262

Figure 3. Request Processing for Local Submission

Note: The concept of local submission does not apply for requests submitted
to the NQE database.

2.4.3 NQE Client Submission

A user can submit a request to NQS or to the NQE database. The following
sections describe the process of submitting a request to each destination.

2.4.3.1 Client Submission to NQS

When a user submits a request to NQS using the NQE GUI Submit window or
the NQE cqsub command, no queues are involved on the local host. The
request is sent to the netdaemon process on the server machine as specified by
the NQS_SERVER variable. The netdaemon creates a child process
(netserver) to handle the request. The child process tries to queue the request
with nqsdaemon. netserver ensures that the user has an account on the
target host and that the user name on the local machine is authorized to run
requests on the target machine.

The target nqsdaemon then checks the request qualifiers against the defined
queue limits and attributes and, based on these checks, accepts or rejects the
request. Figure 4 shows this process.

20 SG–2150 3.3

Concepts and Terms [2]

pipeclient

Request executes

Batch
requestrequest Batch

queue

Local NQE client

netdaemon

netserver

Pipe
queuenqsdaemon

nqsdaemon

NQS server

a10263

Figure 4. Request Processing for Client Submission to NQS

2.4.3.2 Client Submission to NQE Database

When a user submits a request to the NQE database using the NQE GUI
Submit window or the NQE cqsub command, the NQE scheduler determines
when and where the request will execute. The NQE database routes a copy of
the request to the lightweight server (LWS) on the node running the NQS
server. The LWS verifies validation, sends a copy of the request to the NQS
batch queue for processing, and obtains exit status of completed requests.

Figure 5 shows request processing for client submission to the NQE database.

SG–2150 3.3 21

NQE Administration

6

NQE
client

Batch
request

1

2

NQE
scheduler

3

4

5

Client
displays

7

8 Output
returned

Copy of
request
routed

NQS
batch
queue

9

6

LWS

Status
returned

6

Output
returned

8

NQE
database

a11561

Node A

Node B

Figure 5. Request Processing for Client Submission to the NQE Database

2.4.4 NQS Server Remote Submission

If the request is sent from one NQS system to a remote NQS system,
pipeclient sends the request to the remote netdaemon. The rest of the
processing is the same as it is for client submission to NQS. Figure 6 shows this
process.

Note: The concept of remote submission does not apply for requests
submitted to the NQE database.

22 SG–2150 3.3

Concepts and Terms [2]

pipeclient

Pipe
queue

Request
executes

Batch
request

nqsdaemon

Request
submitted

pipeclient

Local NQS

netdaemon

netserver

nqsdaemon nqsdaemon

NQS server

Pipe
queue

Batch
queue

a10265

Figure 6. Request Processing for Remote Submission

2.4.5 Daemon Processing

When nqsdaemon determines that a request is eligible to run, it spawns a
shepherd process. The shepherd process sets up the environment for the
request and runs it. It sends mail to the user if it cannot execute the request.
The shepherd process waits for the request to complete and returns output
file(s) to the specified or default file destination.

2.4.6 Controlling and Deleting Requests

NQS users can control or delete their own requests by using the NQE GUI
Status window Actions menu options or by using the cqdel or the qdel
command. NQS operators and managers can control requests with the
following qmgr commands (see Section 6.6, page 162, for a description of these
commands and examples of their use):

• abort request

• delete request

• hold request

• modify request

• move request

SG–2150 3.3 23

NQE Administration

• release request

• rerun request

• resume request

• schedule request (first, next, now, system)

• suspend request

Managers and operators can also delete requests from any user by using the
cqdel or qdel command.

2.4.7 Displaying Queue Status

The cqstatl command, the qstat command, and the qmgr commands show
long queues and show queues display the current status of NQS queues.

2.5 Queue Attributes

Queue attributes define the properties of a queue. A queue attribute can be
assigned by using the qmgr set attribute command. For a description of
how to set attributes, use the qmgr help set attribute command.

The following sections describe possible attributes for NQS queues. For
additional information about defining queue properties, see Section 5.6, page 58.

2.5.1 Batch and Pipe Queue Attributes

The queue attributes described in the following sections apply to both batch
and pipe queues.

2.5.1.1 Access Restrictions

Queue access can be either restricted or unrestricted. If access is restricted, only
requests submitted by users defined in the access set for the queue are accepted.
If access is unrestricted, any request can enter the queue.

The access set is composed of individual users or groups and is defined by the
system administrator.

24 SG–2150 3.3

Concepts and Terms [2]

2.5.1.2 pipeonly

A batch queue or a pipe queue can be declared pipeonly, meaning that it can
accept requests only from a pipe queue. This declaration is useful when the
pipeclient process selects the final queue, based on the network queue
configuration. For example, if all requests are submitted to a pipe queue, the
pipe queue can retry submissions if no batch queues are currently accepting
requests. Another example might be that you want to configure your queues
such that requests of a certain size go to certain queues; if all requests are
submitted to pipe queues, the pipe queue can route the requests to the proper
queues without users having to know which queue to use.

2.5.1.3 Interqueue and Intraqueue Priority

The interqueue priority dictates the order in which queues of each type (batch
or pipe) are scanned in a search for the next request to process. The queue with
the highest priority is scanned first.

The difference between interqueue and intraqueue priority is important. The
interqueue priority determines the order in which queues are searched for
requests to process; the intraqueue priority determines the order in which
requests within a queue are considered for initiation when the queue is
searched.

2.5.1.4 Queue Run Limit

The queue run limit is the maximum number of requests allowed to be
executing from the queue at any one time.

2.5.2 Batch Queue Attributes

The queue attributes described in the following sections apply only to batch
queues.

2.5.2.1 loadonly

You may not submit requests directly to a loadonly queue. Requests may
come only from a pipe queue. In other words, a loadonly queue is a
pipeonly queue that has the additional restriction of being able to accept only
a limited number of requests.

A batch queue can be declared loadonly, meaning that it can accept only a
limited number of requests. The number of requests that can be queued is

SG–2150 3.3 25

NQE Administration

restricted to the run limit of that queue. Therefore, if no other limits exist, a
loadonly queue accepts only the number of requests that it can run.
Specifically, the algorithm is the number of requests queued + number of requests
running + number of requests waiting + number of requests arriving <= run limit.

This algorithm can be used for load sharing between multiple machines or
across multiple queues on a single machine. In the example in Figure 7,
requests are submitted to the pipe queues batch@hot and batch@ice; they
are routed from these queues to the central pipe queue, which queries all three
batch queues on both hot and ice. The central pipe queue would try to route
a small request to smalljobs@hot first, next try smalljobs@ice, and
continue down the list until a place in a queue became available. Without using
loadonly queues, the queue smalljobs@hot may accept the request, and the
request may remain queued.

Pipe queue
batch@ice

Central
pipe queue

smalljobs@hot

mediumjobs@hot

largejobs@hot

mediumjobs@ice

largejobs@hot

largejobs@ice

Pipe queue
batch@hot

smalljobs@hot

smalljobs@ice

mediumjobs@hot

Request
submitted

Request
submitted

a10266

Figure 7. Queue Configuration That Uses theloadonly Attribute

2.5.2.2 Queue Group Limit

The queue group limit associated with each batch queue is the maximum
number of requests allowed to run in the queue at any one time that were
submitted by all users who are members of one group.

26 SG–2150 3.3

Concepts and Terms [2]

2.5.2.3 Queue Memory Limit

The queue memory limit associated with a batch queue is the maximum
amount of memory that can be requested by all running requests in the queue
at one time.

2.5.2.4 Queue User Limit

The queue user limit associated with a batch queue is the maximum number of
requests allowed to be run in the queue at any time by one user.

2.5.2.5 Queue MPP Processing Element (PE) Limit

For Cray MPP systems, each batch queue has an associated MPP PE limit. This
is the maximum number of MPP PEs that can be requested by all running jobs
in the queue at any one time.

2.5.2.6 Queue Quick-file Limit

For UNICOS systems with SSD solid-state storage devices, each batch queue
has an associated quick-file limit. This is the maximum size of secondary data
segments that can be allocated to all batch requests running concurrently in the
queue.

2.6 Queue States

At any time, the state of a queue is defined by two properties:

• The queue’s ability to accept requests. The states associated with this
property are as follows:

State Description

CLOSED The NQS daemon (nqsdaemon) is not
running at the local host.

DISABLED The queue is not currently accepting requests.

ENABLED The queue is currently accepting requests.

• The queue’s ability to route (pipe queue) or initiate (batch queue) requests.
The states associated with this property are as follows:

SG–2150 3.3 27

NQE Administration

State Description

INACTIVE Queued requests are allowed to run, although
none are currently running.

RUNNING Queued requests are allowed to run, and some
are currently running.

SHUTDOWN NQS is not running on the host in which the
queue resides.

STOPPED Queued requests are not allowed to run, and
none are currently running.

STOPPING New queued requests are not allowed to run,
although currently executing requests are
running to completion.

2.7 Queue Complexes

A queue complex is a set of local batch queues. Each complex has a set of
associated attributes, which provide for control of the total number of
concurrently running requests in member queues. This, in turn, provides a level
of control between queue limits and global limits (see Section 2.5, page 24, for
information about queue attributes and Section 2.8, page 29, for information
about global limits). The following queue complex limits can be set:

• Group limits

• Memory limits

• Run limits

• User limits

• MPP processing element (PE) limits (CRAY T3D systems), or MPP
application processing elements (CRAY T3E systems, or number of
processors (IRIX systems)

• Quick-file limits (UNICOS systems with SSDs only)

Several queue complexes can be created at a given host, and a batch queue can
be a member of several complexes.

Note: A batch request is considered for running only when all limits of all
complexes of which the request is a member have been met.

28 SG–2150 3.3

Concepts and Terms [2]

Section 5.9, page 71, describes how to set queue complex limits.

2.8 Global Limits

Global limits restrict the total workload executing concurrently under NQS
control. While queue limits restrict requests in queues and complex limits
restrict requests in a complex, global limits restrict the activity in the entire NQS
system. The following global limits may be set:

• Batch limits

• Group limits

• Memory limits

• Pipe limits

• Tape drive limits

• User limits

• MPP processing element (PE) limits (CRAY T3D systems), or MPP
application processing elements (CRAY T3E systems, or number of
processors (IRIX systems)

• Quick-file limits (UNICOS systems with SSDs only)

Section 5.10, page 73, describes how to set global limits.

2.9 Load Balancing and Destination Selection

Load balancing is the process of allocating work (such as NQS batch requests) in
order to spread the work more evenly among the available hosts in a group of
NQE nodes in the NQE cluster. Load balancing can minimize instances in
which one machine has idle time while another remains saturated with work.

Load balancing can be done either by using the Cray Network Load Balancer
(NLB) or by using the NQE database and its associated scheduler. The two
methods are described in the following sections.

2.9.1 NLB

The following sections describe the concepts used in the Cray Network Load
Balancer (NLB).

SG–2150 3.3 29

NQE Administration

2.9.1.1 NLB Servers

The NLB server provides a generic, network-accessible data storage mechanism
that can be used for a variety of purposes, including load balancing, NQS
request status, and network configuration. Because the data can be used for
various purposes, the server holds data as generic network data objects; it has
no knowledge of the meaning of the data it stores. The programs that load and
interrogate the database, known as collectors and clients, define the meaning of
the data in the server.

NLB servers can be replicated to ensure that if connection to one is lost, a
duplicate can be reached by collectors and clients. The server is a passive
process; it does not actively solicit data from other processes. The NLB
collectors periodically generate new information and send it to all configured
NLB servers. The various NLB clients query NLB servers one by one in the
configured order until they find one that is running or until they exhaust the list.

Some object types require access control to prevent unauthorized entry and
extraction of data. Such objects are controlled with access control lists (ACLs)
used in conjunction with authentication data sent with each message to the
NLB server. ACLs are also groups of objects and can be edited and viewed
using nlbconfig. The master ACL controls access to all other ACLs; it is
defined in the NLB configuration file.

The server associates an ACL with each group of objects it maintains. Records
in the ACL consist of a user name, host name, and a set of privileges (read,
update, or delete). There are two special ACL user names: OWNER and
WORLD. If an object has an owner attribute associated with it, the OWNER ACL
controls the particular user’s permissions. An ACL record with the same name
and host as the user making a request controls that user’s access rights, and the
WORLD record controls all other users.

The read privilege lets users extract an object from the server; the update
privilege lets users add new objects of that type or modify existing objects; and
the delete privilege lets users remove objects from the server.

When an object is sent to the server by an authenticated collector, a special
OWNER attribute may be present. This attribute is used to check permissions to
read the object on subsequent queries.

2.9.1.2 Destination Selection

Destination selection is the process of determining the best host to which to send
work. A destination selection policy (also called a load-balancing policy) is the
mechanism whereby the NLB server determines which host to recommend as

30 SG–2150 3.3

Concepts and Terms [2]

the target for work (such as a batch request). When a batch request is submitted
to a load-balanced queue within NQS, the NLB server applies a policy to the
current information it has on hosts in the group of NQE nodes in the NQE
cluster. It then provides NQS with a list of machines, ordered according to the
specifications of the policy.

An NQS pipe queue can be configured to obtain its destinations by applying a
policy rather than having the destinations defined with qmgr commands. If you
define an NLB pipe queue, you do not define any destinations for it, because
the NLB selects destinations for you.

2.9.1.3 Policies

A load-balancing policy is a set of equations used to select hosts and sort them
into an order based on the data held in the NLB.

2.9.1.4 NLB Collectors

NLB collectors periodically collect data about the machines on which they are
running and forward this data to the NLB server. Some of the data on machine
load and batch request status is gathered dynamically from the operating
system. Other data can be read from a file by the collector or written directly
into the NLB server using the nlbconfig program. These collectors reside in
the program ccollect. (The ccollect program will reflect the port number.)
For more information about NLB collectors, see Chapter 7, page 173.

2.9.1.5 NLB Clients

NLB clients query servers for information to use for destination selection or for
use in displays. Examples of NLB clients are the NQS pipeclient and the
NQE graphical user interface (GUI).

2.9.2 NQE Database

The NQE database provides the following:

• A mechanism for the client user to submit requests to a central storage
database.

• A scheduler that analyses the requests in the NQE database and chooses
when and where a request will run.

SG–2150 3.3 31

NQE Administration

• The ability for a request to be submitted to the selected NQS server once the
NQE scheduler has selected it.

Figure 8 shows the basic concept of the NQE database in the NQE:

Database
Client commands

NQS
server

Scheduler

Client machine

Submit

run request

NQS
server

NQS
server

Decide where
and when to
run request

request

a11563

Node A

Node B

Node C

Node D

Figure 8. Basic Concept of the NQE Database

The components of the NQE database are described in the following sections.

2.9.2.1 NQE Database Server (MSQL)

The NQE database server (mSQL) serves connections from clients in the
network or locally to access data in the database. The database used is mSQL,
and it has the following features:

• Simple, single-threaded network database server

32 SG–2150 3.3

Concepts and Terms [2]

• Relational database structure with queries issued in a simple form of SQL

2.9.2.2 NQE Database Monitor

The monitor is responsible for monitoring the state of the database and which
NQE database components are connected. Specifically, it determines which
component processes are connected and alive and, optionally, it purges old
requests (called tasks when they are within the database) from the database.

2.9.2.3 Scheduler

The scheduler analyses data in the database, making scheduling decisions.
Specifically, it does the following:

• Tracks the lightweight servers (LWSs) currently available for use in
destination selection.

• Receives new requests, verifies them for validity, and accepts or rejects them.

• Executes a regular scheduling pass to find NQS servers to run pending
requests.

Administrator-defined functions may be written in Tcl to perform site-specific
scheduling (see Chapter 10, page 261).

2.9.2.4 Lightweight Server (LWS) (Bridge to NQS)

The LWS performs the following tasks:

• Obtains request information from the database for requests assigned to it by
the scheduler.

• Checks authorization files locally.

• Changes context and submits requests to NQS.

• Obtains the exit status of completed requests from NQS and updates the
NQE database with this information.

2.10 File Transfer

The following sections describe terms commonly used with the File Transfer
Agent (FTA). FTA provides file transfer between remote systems on a network.

SG–2150 3.3 33

NQE Administration

2.10.1 File Transfer Services

A file transfer service is a program that provides FTA with access to a network
system that uses a specific file transfer protocol.

2.10.2 Domain Names

A unique FTA domain_name is assigned to each of the file transfer services that
are available to FTA. A domain name is subsequently used to identify a specific
transfer service.

2.10.3 FTA Users

FTA defines specific types of users, as follows:

• Admin users: A user or a member of a group who is listed in the FTA
configuration file as an administrator.

• Status users: A user or member of a group who is listed in the FTA
configuration file as a status user.

2.10.4 Network Peer-to-peer Authorization

Network peer-to-peer authorization (NPPA) lets users transfer files without
sending a password across the network. It requires FTA on the local system and
support for network peer-to-peer authorization on the remote system. It can be
used to authorize both batch and interactive file transfers.

2.10.5 File Transfer Requests

A file transfer request is an object containing information that describes the file
transfer operations to be performed by FTA on behalf of a user. Each request is
a separate file, which is located in the FTA queue directory.

2.10.6 Queue Directories

A queue directory is a file system directory that contains file transfer request files.

34 SG–2150 3.3

Configuring NQE variables [3]

The NQE configuration utility (nqeconfig(8)) assists administrators in creating
and maintaining the NQE configuration file (nqeinfo file). The NQE
configuration file contains the NQE configuration variables and is created by
the NQE installation procedure. All configured NQE server nodes and clients
must each have a unique NQE configuration file.

When you use the NQE configuration utility, each NQE configuration variable
is displayed along with its value. Most variables are configurable. However,
some variables are derived from the values of other variables and may not be
changed. This helps to ensure that changes are propagated throughout the file
and reduces the risk of misconfiguration due to conflicting values of related
variables.

Note: Some variables may be set in the user’s environment to indicate
individual preferences. The NQE configuration file variables are used only if
an individual has not indicated a preference.

This chapter describes how to start and use the NQE configuration utility. For a
complete list of all NQE configuration variables, see the nqeinfo(5) man page
or the NQE configuration utility Help facility.

Note: For UNICOS 9.0.x and 9.1 systems upgrading to this NQE release,
Appendix C, page 395, includes a list of NQE configuration file (nqeinfo
file) names that were previously included in the config.h file.

3.1 Starting the NQE Configuration Utility

To start the NQE configuration utility, use the nqeconfig(8) command. The
nqeconfig(8) command has the following syntax:

nqeconfig [-a] [-f filename][-o filename]
[-D variable=value[,variable=value,...]]

The nqeconfig(8) command accepts the following options:

Option Description

-a Instructs nqeconfig(8) to run in autopilot mode.
No prompting occurs when this command is run

SG–2150 3.3 35

NQE Administration

in this mode. The configuration file is generated
using the values from the file indicated by the
NQEINFOFILE environment variable (or from the
/etc/nqeinfo file if the NQEINFOFILE variable
is not set), from the values in the input file
specified on the command line with the -f
option, and from other values specified with the
-D option.

-f filename Indicates the input file used to specify additional
configuration variables and new values for
existing variables. The format of this file is the
same as that of the nqeinfo file.

-o filename Specifies the file location for the new
configuration file. This location may be
overridden in the File menu of the
nqeconfig(8) display.

-D variable=value
[,variable=value,...]

Allows you to specify, on the command line,
additional configuration variables and new values
for existing variables. The argument to this
variable is a comma-separated list of variable=value
pairs. Multiple -D options may be specified.

3.2 Editing the NQE Configuration Variables

By default, after you execute the nqeconfig(8) command, the following NQE
Configuration display appears, as shown in Figure 9:

36 SG–2150 3.3

Configuring NQE variables [3]

a11555

Figure 9. NQE Configuration Display, Condensed View

!
Caution: Always stop NQE before making changes to the NQE
configuration. Each NQE command and server program reads the
configuration file once during command or server initialization. Changes
made to the configuration file while NQE is running can result in NQE
commands and servers using different configuration file values, which will
result in unpredictable problems.

The NQE Configuration display presents the NQE configuration variables
and their associated values. Values with a dark background are derived from
the values of other variables and may not be edited. Other values may be

SG–2150 3.3 37

NQE Administration

edited either by entering the appropriate text or by choosing a value from a set
of options. The scrollbar allows you to scroll through the list.

When you have finished making configuration changes, write the configuration
changes to the new configuration file by clicking on the OK button, or you can
cancel the changes by clicking on the Cancel button.

Context-sensitive help is available at the bottom of the display.

3.3 NQE Configuration Display Menus

The following menus provide additional functionality:

Menu Description

File menu Contains options that allow you to save your
changes to the default file location, to the location
specified with the -o option on the command
line, to specify another file and save the changes,
or to exit the utility without saving changes. The
File menu is as follows:

38 SG–2150 3.3

Configuring NQE variables [3]

a11556

Figure 10. NQE Configuration Display, File Menu

Action menu Allows you to revert to the NQE default
configuration values, to revert to the values in
use when the utility started, or to add variables
to or remove variables from the configuration.
The Action menu is as follows:

SG–2150 3.3 39

NQE Administration

a11557

Figure 11. NQE Configuration Display, Action Menu

View menu Allows you to select one of three views:
Condensed, Full, or Install. The View menu
is as follows:

40 SG–2150 3.3

Configuring NQE variables [3]

a11558

Figure 12. NQE Configuration Display, View Menu

The Condensed view displays only the variables
that you may modify. This is the default view
when you execute the nqeconfig(8) command.
The Condensed view is shown in Figure 9, page
37.

The Full view, as shown below, displays all
variables that will be placed in the output file:

SG–2150 3.3 41

NQE Administration

a11559

Figure 13. NQE Configuration Display, Full View

The Install view, which is shown as follows, is
functional only during the NQE installation
process; this view applies to all systems except
UNICOS/mk systems, UNICOS systems, and
IRIX systems that use the inst utility:

42 SG–2150 3.3

Configuring NQE variables [3]

a11552

Figure 14. NQE Configuration Display, Install View

SG–2150 3.3 43

Starting and Stopping NQE [4]

This chapter describes how to start and stop NQE.

!
Caution: You must monitor the files in $NQE_SPOOL/log to ensure the log
files for the startup and shutdown utilities (for nqeinit(8), nqestop(8),
qstart(8), and qstop(8)) and related utilities do not accumulate and
consume space needlessly.

4.1 Starting NQE

The nqeinit(8) script is called to start the NQE cluster and to initialize its
components. It checks the NQE_DEFAULT_COMPLIST variable in the
nqeinfo(5) file for the list of components to be started. You can set this list to
one or more of any of the following valid NQE components:

NQS Network Queuing System

NLB Network Load Balancer

COLLECTOR NLB collector

NQEDB NQE database

MONITOR NQE database monitor

SCHEDULER NQS scheduler

LWS Lightweight server

Beginning with the NQE 3.3 release, the default component list consists of the
following components: NQS, NLB, and COLLECTOR.

Component names in the NQE_DEFAULT_COMPLIST component list can be
specified in upper or lower case, but not mixed case for one component name.
When more than one component name is specified (that is, a list of
components), the component names are separated by a comma (,).

You can use the -C component option of the nqeinit command to override the
NQE_DEFAULT_COMPLIST variable component list. When you use the nqeinit
-C option, only the components specified (see valid component names in Section
4.1, page 45, above) are started and the NQE_DEFAULT_COMPLIST variable in
the nqeinfo file is ignored for this invocation of the nqeinit(8) command.

SG–2150 3.3 45

NQE Administration

Note: For UNICOS systems that run only the NQE subset (NQS and FTA
components), use the qstart(8) command instead of the nqeinit(8) script
to start NQS. For additional information, see Section 6.2, page 134.

Note: Start any NQE nodes configured to run the NQE database server or
the NLB server first because each node once started sends system status
information to the NLB server for use in load balancing.

Typically, nqeinit(8) should be called as part of the normal system startup
procedure by using either a direct call in a system startup script or a startup
utility such as sdaemon(8).

For information about nqeinit(8) command-line options, see the nqeinit(8)
man page.

For information about symbolic links used by NQE, see the nqemaint(8) man
page.

4.2 Stopping NQE

The nqestop(8) script is called to stop the NQE cluster and to shutdown its
components. It checks the NQE_DEFAULT_COMPLIST variable in the
nqeinfo(5) file for the list of components to be stopped. You can set this list to
one or more of any of the following valid NQE components: NQS, COLLECTOR,
NLB, NQEDB, MONITOR, SCHEDULER, and LWS. For more information on these
components, see Section 4.1, page 45. For more information on the
NQE_DEFAULT_COMPLIST variable, see Section 4.1, page 45.

You can use the -C component option of the nqestop command to override the
NQE_DEFAULT_COMPLIST variable component list. When you use the
nqeinit -C option, only the components specified (see valid component
names in , above) are stopped and the NQE_DEFAULT_COMPLIST variable in
the nqeinfo file is ignored for that invocation of the nqestop(8) command.

Note: For UNICOS systems that run only the NQE subset (NQS and FTA
components), use the qstop(8) command to stop NQS. For additional
information, see Section 6.3, page 140

Typically, nqestop(8) should be called as part of the normal system shutdown
procedure by using either a direct call in a system shutdown script or a
shutdown utility such as sdaemon(8).

For information about nqestop(8) command-line options, see the nqestop(8)
man page.

46 SG–2150 3.3

NQS Configuration [5]

When you install NQE, a default configuration is provided for you. You may
not find it necessary to make many changes to the initial installation and
configuration as it is described in the installation instructions. However, if you
do need to make changes to your NQE configuration, this chapter describes
how to make changes to the NQS configuration in the network and on the local
host. All of these actions are performed using the qmgr utility. An NQS
manager can also perform the daily operations of the NQS system as described
in Chapter 6, page 133.

This chapter discusses the following topics:

• Configuration guidelines

• Overview of manager actions

• Defining the NQS hosts in the network

• Defining managers and operators

• Configuring the scope of the user status display

• Defining NQS queues

• Defining a default queue

• Restricting user access to queues

• Defining queue complexes

• Defining global limits

• Defining per-request and per-process limits

• Defining job scheduling parameters

• Defining the political scheduling daemon threshold

• Unified Resource Manager (URM) for UNICOS systems

• Miser scheduler for IRIX systems

• NQS periodic checkpointing

• Setting the log file

SG–2150 3.3 47

NQE Administration

• Setting the debug level

• Establishing NQS accounting procedures

• Setting the validation strategy for remote access

• Defining other system parameters (such as the default time a request can
wait in a pipe queue and the name of the user who sends NQS mail)

• Using a script file as input to the qmgr utility, and generating a script file for
the currently defined configuration

• Output validation

• NQS and multilevel security on UNICOS systems and on UNICOS/mk
systems

• NQS user exits for UNICOS and UNICOS/mk systems

5.1 Configuration Guidelines

You can use the qmgr(8) subsystem to configure the local NQS host to meet
site-specific requirements. However, many of the NQS parameters are already
configured with a chosen default value and may not require modification.

Usually, NQS configuration is done only once, when NQS is started for the first
time. This configuration is preserved through subsequent shutdowns and
startups. You can change the configuration at any NQS startup by providing a
new configuration file as input to the qstart -i command or the nqeinit -i
command (see the qstart(8) and nqeinit(8) man pages for more
information).

You should consider the following guidelines when configuring NQS:

• Abbreviated forms of commands can be used with qmgr; however, you
should use the full form in standard configuration scripts to avoid confusion.

• If you do not use load balancing, you can provide better control by defining
batch queues as pipeonly and creating pipe queues that have batch queue
destinations.

• Avoid configuring pipe queues that have other local pipe queues as
destinations, which can create a loop. No check exists for an occurrence of
this in NQS.

48 SG–2150 3.3

NQS Configuration [5]

• When a request is forwarded from a nonload-balancing pipe queue, the
destinations are considered in the order you configured them by using the
qmgr add destination command. A request is accepted into the first
batch queue with per-process and per-request limits that are not exceeded
by the request. Therefore, always set the order for pipe queue destinations
and batch queue limits so that a batch request is accepted by the most
appropriate queue.

• The scheduler weighting factors have significant value only when they are
compared with each other. See Section 2.1.4, page 15, for a description of
intraqueue priority and Section 5.12, page 82, for a description and examples
of the set sched_factor commands.

• When defining checkpoint_directory, consider whether a specific
device has sufficient space available to save the checkpoint images of all
currently executing batch requests.

The absolute_pathname that you select as the checkpoint directory must be an
absolute path name to a valid directory that has only owner read, write, and
search permissions (NQS sets the permission bits to 0700). The directory
named by absolute_pathname must also be retained across UNICOS system
restarts (you should not use the /tmp directory) and should be dedicated to
NQS checkpoint files. The checkpoint files that are created are used to
restart the NQS jobs when NQS restarts.

5.2 Overview of NQS Manager Actions

An NQS manager is responsible for the configuration of an NQS system. An
NQS manager also can perform all of the operator actions; see Chapter 6, page
133, for a description of operator actions.

SG–2150 3.3 49

NQE Administration

The actions for managing a configuration include using the qmgr utility to do
the following:

• Define the NQS systems in the network

• Define the users who can be NQS managers or operators

• Create NQS queues

• Restrict user access (if desired) to NQS queues, and set the type of user
validation to authenticate the users’ identities

• Define other system parameters such as the name of the default NQS queue,
the name of the log file, and the retry limits to use when an attempt to send
a request on to another system fails

After the configuration is initially defined, an NQS manager can change it by
using the qmgr utility. Changes can be made to any of the parameters when the
NQS system is running without stopping and restarting the system.

Note: Except for defining the list of NQS systems in the network, the
nqsdaemon must be started before you can define or change any other
configuration items; see Section 6.2, page 134, for a description of how to
start nqsdaemon.

5.3 Defining NQS Hosts in the Network

Each NQS system in the network must know about the other NQS systems in
the network. If NQS will not be communicating with any remote hosts, you
need only the local host defined. Typically, the qmgr commands used to define
hosts appear in the NQS configuration file.

Because each NQS server in a TCP/IP network can have multiple host names
and Internet addresses (usually one for each network to which the server is
connected or for each interface the server has), it may not be sufficient to
uniquely identify the server by host name and Internet address. Therefore, NQS
uses machine IDs (mids) to define each server in the network.

When NQS tries to connect between two hosts, it verifies that the name
provided by the TCP/IP protocol has the same name and a corresponding mid
on both hosts.

The hostname or alias associated with the mid is used to obtain the network
address from the /etc/hosts file. When NQS detects a connection from
another machine, it is given the peer network address, which is then located in

50 SG–2150 3.3

NQS Configuration [5]

the /etc/hosts file, yielding the network path corresponding to an alias or
hostname in the network database. Some systems may store host name
information on NIS, NIS+, or DSN. The network path is then used to verify the
mid of the peer. If the mids and names do not match, the connection is refused.

Table 1 describes the elements in each host definition.

Table 1. Information for defining machines

Item Description

mid A machine ID number in the NQS database that has a maximum value of 231-1 and is
unique for each machine in the network. If you do not supply a mid, NQS creates one
for you from the lower 31 bits of the TCP/IP address of the host.

hostname A unique name for each machine in the network; the name specified must correspond
to the machine’s entry in the /etc/hosts file (see hosts(5) for more information).

agents Agents available to spool output on the machine. The following agents are supported
(see Section 5.3.1, page 52):

fta File Transfer Agent (FTA)
nqs NQS internal spooling

alias A local machine name or another network interface that consists of a maximum of 255
characters. You must define all network interfaces or requests will be rejected.

If you are configuring more than one NQS server, you must add NQS mids to
each NQS database. NQE clients do not need mids.

The mid and host name must be the same in the database of each machine in
the network. Aliases must be unique to each machine in the local configuration,
but may differ from server to server.

Note: After the NQS database is generated, the mid for the local machine
should not be changed. If a change is required, the local NQS database must
be re-created and all requests are lost.

The agents element defines how the standard error and standard output files of
completed requests will be returned to the submitting user. For more
information, see Section 5.3.1.

A machine alias is known only to the local server. However, a server can be
known by more than one alias. The alias list may include host names associated

SG–2150 3.3 51

NQE Administration

with any interface on the local host. An alias is required for each possible route
between hosts.

5.3.1 Configuring Remote Output Agents

You can set the output agent for each NQS host defined in the NQS database.
The output agent at each host defines how the standard error and standard
output files of completed requests are returned to the submitting user.

Note: Output agents are not configured for clients. Client output return uses
the File Transfer Agent (FTA), then RCP. NQS always uses FTA with the
default domain, which is inet. For information about FTA and network
peer-to-peer authorization (NPPA) of users, see Chapter 13, page 317.

When you specify nqs (the default output agent), NQS tries to connect directly
to the remote NQS host to transfer the files. If any errors occur during the
processing, the output is returned to the user’s home directory on the execution
host. If for some reason, this is not possible (for example, if the owner does not
have write permission), NQS will place the files in
$NQE_NQS_SPOOL/private/root/failed. NQE_NQS_SPOOL is defined in
the nqeinfo file.

When you specify fta, NQS passes control of the output file transfer to FTA by
creating an FTA file transfer request to move the output file to the remote host.
When you specify fta as the output agent, NQS validation is used; for detailed
information, see Chapter 13, page 317, and the nqsfts(8) man page. If any
errors occur during the processing of the output file transfer, FTA will save the
transfer request and try to transfer it again, or return the output to the user’s
home directory on the execution host. If the error is transient (for example, the
network failed during the file transfer), FTA retries the transfer request.

You can use the following qmgr commands to add or delete the output agents,
respectively. You must include either the machine ID (mid) or the host name:

add output_agent agent mid|host
delete output_agent agent mid|host

The order in which you add output agents is important. The order in which
you add the agents becomes the order in which the agents are used to attempt
transfer.

To display current configuration, use either of the following qmgr commands:

show mid

show mid hostname|mid

52 SG–2150 3.3

NQS Configuration [5]

In the resulting display, the output agents are shown in the column called
AGENTS.

The following list shows the output agents that you can specify and their
descriptions:

Agent Description

<NONE> NQS immediately places the output files in the
user’s home directory on the host that executed
the request. The user receives a mail message
when the files are returned.

To set the agent to <NONE>, use the following
command:

delete output_agent nqs [mid, hostname]

fta NQS creates an FTA file transfer request to
transfer the output file to the remote host.

fta nqs NQS tries to create an FTA file transfer request to
handle the output file transfer. If FTA fails, NQS
tries to connect to the NQS system on the remote
host and directly transfer the request output file.

nqs NQS tries to connect to the NQS system on the
remote host and directly transfer the request’s
output file. This option directs NQS to handle the
output file transfer directly. This is the default
agent.

nqs fta NQS tries to connect to the NQS system on the to
the remote host and directly transfer the request’s
output file. If NQS fails, NQS tries to create an
FTA file transfer request to handle the output file
transfer.

The nqs output agent is configured automatically unless you configure the
output agent differently.

Note: In the case that all transfer agents fail to return output, the output is
placed in the user’s home directory on the host that executed the request.
This is the same as configuring with output agent <NONE>.

SG–2150 3.3 53

NQE Administration

An output agent should always be configured for the local host to avoid output
being inadvertently returned to the user’s home directory on the host of
execution; this is usually done by specifying the nqs agent.

See Chapter 13, page 317, and the fta(8), nqsfts(8), and fta.conf(5) man
pages for details about how to configure FTA. NQS uses the FTA domain name
nqs-rqs to spool output over TCP/IP.

5.3.2 Commands for Defining Machines

You can use the following qmgr command to add a new entry to the mid
database (see Table 1, page 51, for an explanation of mid, hostname, agent, and
alias). You do not have to specify a mid; if you do not, qmgr creates one for you
from the lower 31 bits of the TCP/IP address for the host. An optional list of
aliases may be supplied on the same line. You do not enter the commands on
client systems or issue add mid commands for client machines.

add mid [mid] hostname[alias alias ...]

The following command adds an alias name to the list of aliases for the system
with the specified mid or hostname:

add name [=] alias mid|hostname

The following command adds an output agent to the list of output agents for
the system with the specified mid or hostname.

add output_agent [=] agent mid|hostname

See Section 5.3.1, page 52, for more information on output agents.

A similar series of delete commands can be used to delete an entry
completely from the list, delete an alias name from an entry, and delete an
output agent from an entry. You can specify either a mid or a hostname:

delete mid mid|hostname
delete name [=] alias
delete output_agent [=] agent mid|hostname

To display information about a specific mid or hostname, use the following qmgr
command:

show mid [mid|hostname]

To display information about all known mids, use the following qmgr command:

show mid

54 SG–2150 3.3

NQS Configuration [5]

See Section 5.3.1, page 52, for an example display.

5.3.3 TCP/IP Network Configuration Example

Figure 15 shows an example of a network that consists of four machines, each
with two paths. In the example, hn refers to host name, and na refers to
network address.

rain-ip
na = 128.162.11.1

ec-net = 128.162.10

rain-ec
na = 128.162.10.1

squall-ip
na = 128.162.11.2

squall-ec
na = 128.162.10.2

gale-ip
na = 128.162.11.3

gale-ec
na = 128.162.10.3

gust-ip
na = 128.162.11.4

gust-ec
na = 128.162.10.4

ip-net = 128.162.11

mid = 10619649
hn = rain

mid = 10619650
hn = squall

mid = 10619651
hn = gale

mid = 10619652
hn = gust

a10268

Figure 15. Example of a TCP/IP network

In this example, the /etc/hosts file contains the following:

128.162.12.0 rain rain-ip

128.162.10.1 rain-ec

128.162.11.2 squall squall-ip

128.162.10.2 squall-ec
128.162.11.3 gale gale-ip

128.162.10.3 gale-ec

128.162.11.4 gust gust-ip

128.162.10.4 gust-ec

SG–2150 3.3 55

NQE Administration

Table 2 shows the contents of the NQS network database for the previous
example:

Table 2. Machine IDs, names, and output agents

Machine ID Principal name Agents Aliases

10619649 rain nqs fta rain-ip, rain-ec

10619650 squall nqs fta squall-ip, squall-ec

10619651 gale nqs gale-ip, gale-ec

10619652 mist nqs mist-ip, mist-ec

The qmgr commands used to create the database in the preceding example are
as follows (you may supply your own mid value):

add mid rain rain-ip rain-ec

add output_agent fta rain
add mid squall squall-ip squall-ec

add output_agent fta squall

add mid gale gale-ip gale-ec

add mid mist mist-ip mist-ec

To create the database on each NQS server, you would enter these commands
on each.

5.3.4 Stand-alone Configuration Example

If you are running NQS but will not be accessing any other systems in the
network, a mid database must still be created, consisting of the machine on
which NQS is running. This mid database is automatically created for you
during installation and system startup.

5.4 Defining Managers and Operators

You can define two special classes of users: managers and operators. NQS
qmgr managers have full access to all qmgr commands to monitor, control, and
configure NQS. Operators are allowed to monitor and control all queues and
requests. The only qmgr commands available to users without special
privileges are show, help, exit, and quit.

56 SG–2150 3.3

NQS Configuration [5]

When NQS is initially installed, root must run qmgr first to define other users
as either an NQS manager or an operator. root cannot be deleted from the list
of NQS managers. On a UNICOS system that is running MLS or on a
UNICOS/mk system that is running Cray ML-Safe and that has a PAL assigned
to the qmgr program, people in the default qmgr PAL categories can also define
other users as either an NQS manager or operator.

Managers can execute all qmgr commands; operators can execute only a subset
of the qmgr commands that allow them to monitor and control submitted batch
requests when they are in local NQS queues. An operator cannot define another
user as an operator or as a manager. Only a manager can add and delete
managers or operators.

5.4.1 Commands for Defining Managers and Operators

The following qmgr commands add a user name to the list of managers or list
of operators, respectively, for the local NQS system:

add managers username:m
add managers username:o

The suffix indicates that the user is a manager (:m) or an operator (:o).

If you want to set the list of NQS managers or NQS operators to a single user
name (in addition to root), you can use one of the following two commands
because any users defined previously as managers or operators (except root)
are removed from the list.

set managers username:m
set managers username:o

To delete a user name from the list of managers or operators, use one of the
following commands.

delete managers username:m
delete managers username:o

To display the currently defined managers and operators, use the following
qmgr command:

show managers

See Section 6.4.2, page 150, for an example display.

SG–2150 3.3 57

NQE Administration

5.4.2 Example of Adding Managers and Operators

To add a user called abc to the list of operators or to set the list of managers to
one user called xyz, use the following qmgr commands:

add managers abc:o
set managers xyz:m

5.5 Configuring the Scope of the User Status Display

NQE allows the administrator to expand the default scope of the information
displayed to non-NQS managers using the qstat(1) or cqstatl(1) commands.
The default behavior for these commands is to only display information to
non-NQS managers regarding jobs that they have submitted themselves. To
allow users to display the status of all jobs residing at that NQS node when
they execute the qstat(1) or cqstatl(1) command, use the nqeconfig(1)
command and define the nqeinfo file variable NQE_NQS_QSTAT_SHOWALL to
be 1.

Note: NQE must be stopped and restarted for this change to take effect.

5.6 Defining NQS Queues

NQS has both batch and pipe queues. Batch queues accept and process batch
requests; pipe queues receive batch requests and then route those requests to
another destination. Section 2.3, page 17, provides background information
about queues and how they work.

NQE is shipped with one pipe queue and one batch queue configured on each
NQS server. The default pipe queue is nqenlb . The default batch queue is
nqebatch. This configuration uses the nqenlb queue to send requests to the
NLB, which then sends requests to nqebatch on the most appropriate system,
based on an NLB policy. The default NLB policy, called nqs, sends batch
requests to the system with the most available CPU cycles. If requests are
submitted to the queue nqebatch, the request runs on the local NQS server.

To create batch or pipe queues, use the following qmgr commands:

create batch_queue characteristics
create pipe_queue characteristics

Table 3 shows the characteristics you can define for an NQS queue.

58 SG–2150 3.3

NQS Configuration [5]

Table 3. Definable queue characteristics

Characteristic Description Queue type

queue_name Each NQS queue must have a name that is
unique among the other NQS queues defined at
this host. This is the name users use when
submitting requests.
The queue name can consist of a maximum of
15 characters, and it can consist of any
printable character, except @, =, (,),], and the
space character. The name cannot begin with a
number (0 through 9).

Batch and Pipe

destination Each NQS pipe queue must have one or more
destinations, which can be either another NQS
pipe or batch queue.

Pipe

The destination queue can be in one of the
following forms:

local_queuename

local_queuename@local_hostname

remote_queuename@local_hostname

remote_queuename@[remote_mid]

Any hostname must be defined in the NQS
configuration machine ID (mid) database. For a
remote queue, the last of the preceding forms
lets you specify the mid rather than the host
name (for example, bqueue15@[23]).
The mid must be enclosed within brackets.

run_limit By default, a queue can process only one
request at a time (although any number may be
waiting in the queue). You can increase this
limit by defining a run limit for a queue. This
limit sets the maximum number of requests that
can be processed in the queue at any one time.

Batch and Pipe

SG–2150 3.3 59

NQE Administration

Characteristic Description Queue type

interqueue_priority Each queue has an interqueue priority. This
defines the order in which queues are searched
to find the next request to process. The queue
with the highest priority is scanned first. The
priority is an unsigned integer in the range from
0 (lowest priority) through 63 (highest priority).
Requests also have an intraqueue priority that a
user can specify when submitting a request.
This is different from interqueue priority. The
request intraqueue priority determines the
order in which requests are considered for
initiation when a queue is searched.

Batch and Pipe

loadonly qualifier By default, an NQS batch queue can receive
requests either directly from a user submitting
the request or from a pipe queue. A batch
queue can be declared loadonly, meaning
that it can accept only a limited number of
requests and requests must be routed through a
local or remote pipe queue. The number of
requests that can be queued is restricted to the
runlimit of that queue (the runlimit is the
number of requests that can be processed).
Therefore, if there are no other limits to
consider, a loadonly queue accepts only the
number of requests that it can run. See Section
2.5.2, page 25, for a description of how
loadonly queues can be used.

Batch

pipeonly qualifier If a queue has the characteristic pipeonly, a
user cannot submit a request directly to the
queue. The queue can receive only requests
sent from a local NQS pipe queue.

Batch and Pipe

60 SG–2150 3.3

NQS Configuration [5]

Characteristic Description Queue type

server NQS pipe queues can be associated with a
server from which they will receive requests.
This server is an image the pipe queue runs to
do work. For example, you must define a
server when you create pipe queues for load
balancing. If you specify pipeclient, NQS
looks for the binary in the NQE_bin directory
as configured in the /etc/nqeinfo file. If the
pipeclient is not in that directory, then you
must specify the absolute location. It is
recommended that you use pipeclient.
A pipe queue can be defined as a
destination-selection (load-balancing), as
described in Section 5.6.4, page 65. When you
define a destination-selection queue, you must
include, as part of the server definition, the
characters CRI_DS in uppercase, the
load-balancing policy name (the default is
nqs), and the TCP/IP host and service name
on which the NLB server(s) are running (the
default is the NLB_SERVER defined in the
nqeinfo file).

Pipe

These are the basic characteristics of an NQS queue. You also can define other
controls on the use of a queue, as follows:

• You can define a list of users who have permission to use a queue. Requests
belonging to a user who is not on this list cannot be placed in the queue.
See Section 5.8, page 69.

• You can specify global system defaults for queues. See Section 5.10, page 73.

• You can specify limits on the number and size of the requests in a queue, as
described in Section 5.6.1.

5.6.1 Setting Queue Limits

To specify limits on the requests running in a queue, use the following qmgr
command:

set queue option = limit queuename

SG–2150 3.3 61

NQE Administration

An NQS operator or manager can executed this command. The option can be
one of the following:

Option Description

group_limit Sets the maximum number of requests allowed to
run in the queue at one time from users in one
group.

memory_limit Sets the maximum amount of memory that can be
requested by all running requests in the queue at
one time.

run_limit Sets the maximum number of batch requests that
can run in a queue concurrently. You also can set
this limit by using the command create batch
queue run_limit.

user_limit Sets the maximum number of requests allowed to
be run in the queue at one time by one user.

mpp_pe_limit Sets the maximum number of MPP processing
elements (PEs) that are available to all batch
requests running concurrently in a queue.

quickfile_limit Sets the quickfile space limit for a queue. The
limit determines the maximum quickfile space
that can be allocated to all batch requests running
concurrently in a queue. The queue must exist
already and be a batch type queue.

Some queue limits are enforced only for certain machines. For more
information on these limits, see Table 4, page 77.

5.6.2 Hints for Defining Queues

The NQS daemon must be started before you can create or change the
characteristics of a queue because nqsdaemon is the process that manipulates
queues.

The destinations for an NQS pipe queue are usually NQS batch queues,
although they could be any type of queue, such as a pipe queue on a specific
remote machine.

Before a queue can receive requests, it must be enabled by using the qmgr
command enable queue (see Section 6.5.1, page 160). Enabling a queue means

62 SG–2150 3.3

NQS Configuration [5]

that requests can be placed in the queue. Before a queue can process its
requests, the queue must be started using the qmgr command start queue
(see Section 6.5.2, page 161).

Avoid configuring pipe queues that have other local pipe queues as
destinations, which can create a loop. NQS has no check for this situation.

5.6.3 Commands Used to Define Queues

The first time a queue is defined, it must be created by using one of the
following qmgr commands:

create batch_queue queuename \

priority = queue-priority[loadonly] [pipeonly] \
[run_limit = run-limit]

create pipe_queue queuename \

priority = queue-priority[pipeonly] \

[destination = (destinations)] \
[run_limit = run-limit] \

[server = (pipeclient_and_options)]

See Table 3, page 59, for a description of these parameters. The queuename
argument and the priority parameter are required. A pipe queue (unless it is
a destination-selection (load-balancing) queue) also must have at least one
destination defined by using this command, the add destination command,
or the set destination command.

The destinations argument can be one or more destinations; destinations must be
separated with a comma.

Note: See Section 5.6.4, page 65, for information on configuring a
destination-selection queue.

5.6.3.1 Adding Destinations to a Pipe Queue

To add destinations to those already defined for a pipe queue, use the following
command:

add destination [=] destinations queuename \ [position]

The destinations argument is one or more destinations to be added to the list of
destinations for queuename. If you specify more than one destination, they must
be enclosed in parentheses and separated with a comma. If you omit the

SG–2150 3.3 63

NQE Administration

position argument, the destinations are added at the end of the existing
destinations defined for queuename.

The position argument can be one of the following:

Position Description

first Places the specified destinations at the start of the
existing list

before old-des Places the specified destinations in the list
immediately before the existing destination old-des

after old-des Places the specified destinations in the list
immediately after the existing destination old-des

last Places the specified destinations at the end of the
existing list

Destinations are not used in destination-selection (load-balancing) queues.

Note: A pipe queue’s destination list should not contain any elements that
are disabled batch queues. In the event that this does occur, any jobs that are
submitted to the pipe queue remain stuck in the pipe queue if they cannot be
sent to any of the other destinations in the list. Because the disabled batch
queue exists, NQS waits for the queue to become enabled or for it to be
deleted before it moves the job from the pipe queue. To ensure that jobs are
not sent to a particular destination in the pipe queue’s list, remove the
destination from the list rather than disabling the batch queue.

5.6.3.2 Resetting Destinations for a Queue

If you want to change the destinations for a queue, you can use the following
command:

set destination [=] destinations queuename

If you include more than one destination, separate them with a comma.

This command discards all the previous destinations.

64 SG–2150 3.3

NQS Configuration [5]

5.6.3.3 Deleting Destinations from a Queue

To delete one or more destinations from the list of those defined for a pipe
queue, use the following command:

delete destination [=] destinations queuename

Separate the destinations with a comma.

Any requests in the queue that are currently being transferred to a destination
that is deleted by this command are allowed to transfer successfully.

Requests can be submitted to a queue that has no destinations, but the requests
are not routed until a destination is defined for the queue.

5.6.3.4 Changing the Interqueue Priority for a Queue

To change the interqueue priority for an existing queue, use the following
command:

set priority = priority queuename

5.6.3.5 Changing the Run Limit for a Queue

To change the run limit for an existing NQS queue, use the following command:

set queue run_limit = run-limit queuename

5.6.3.6 Changing the Pipe Client Server for a Queue

To change the pipe client server that is invoked to process a request sent to the
specified NQS queue, use the following command:

set pipe_client = (client-and-arguments) queuename

5.6.4 Commands for Configuring Destination-selection Queues

Load balancing is described in Chapter 8, page 193. The pipe queue nqenlb is
defined by default to accept requests that use load balancing. The following
qmgr command creates a destination-selection (load-balancing) pipe queue
named nlbqueue:

create pipe_queue nlbqueue priority=priority \

server=(pipeclient CRI_DS [policyname][hostname:port])

SG–2150 3.3 65

NQE Administration

The arguments unique to creating a destination selection queue are as follows:

• The name of the executable for the pipe client server (pipeclient).

• The characters CRI_DS in uppercase, which mark this as a
destination-selection pipe queue.

• The load-balancing policy name (such as nqs). This policy must be defined
in the NLB policies file. If this field is omitted, the policy name defaults
to nqs.

• An optional list of 1 to 8 host:port pairs that define the TCP/IP host and
service name where the NLB server(s) are running. If this field is omitted,
the NLB database server name defaults to the hosts configured in the NLB.
The NLB_SERVER is defined in the nqeinfo file. There should be one pair
for each NLB server from which you want to gather host information. Only
one is necessary, but if servers are replicated for redundancy in case of
network failure, all servers should be included. In the example, hostname is
the host name where the server resides and port is a service name (from the
/etc/services file) or a port number on which the server is listening.

After the qmgr create command is issued, users can submit requests for
destination selection to the queue nlbqueue.

If you want this new queue to be the default for requests, use the following
qmgr command:

set default batch_request queue nlbqueue

5.6.5 Displaying Details of the Currently Defined Queues

You must use the cqstatl or qstat command (instead of the qmgr utility) to
display details about an NQS queue; for example:

cqstatl -f queues

See Section 6.4.4, page 153, for an example display.

5.6.6 Examples of Defining Queues

In the following example, an NQS pipe queue is required that routes requests to
a remote NQS system called host1. A maximum of two requests can be
processed in the NQS pipe queue at any one time. The following qmgr
commands are required:

66 SG–2150 3.3

NQS Configuration [5]

% qmgr

Qmgr: create pipe_queue standard priority=60 server=(pipeclient)
Qmgr: set queue run_limit=2 standard

Qmgr: add destination st_express@host1 standard

Qmgr: add destination st_little@host1 standard

Qmgr: add destination st_medium@host1 standard

Qmgr: quit%

SG–2150 3.3 67

NQE Administration

This queue could also be defined in one command, as follows:

% qmgr

Qmgr: create pipe_queue standard priority=60 server=(pipeclient)

destination=(st_express@host1,st_little@host1,st_medium@host1)

run_limit=2

5.6.6.1 Example of Changing the Order of the Destinations

The order of the destinations is important because this is the order in which
NQS tries to route a request. In this example, if you want to move st_little
to the beginning of the destination list, you could type in the following two
qmgr commands:

delete destination st_little@host1 standard

add destination st_little@host1 standard first

To redefine all the destinations for the queue, use the following qmgr command:

set destination=(st_little@host1, st_express@host1,

st_medium@host1) standard

5.6.7 Deleting a Queue

After a queue has been stopped and disabled, delete it by using the following
qmgr command:

delete queue queuename

If the queuename argument is also the default queue, you should define a new
default queue (see Section 5.7).

5.7 Defining a Default Queue

To define an NQS queue to be the default queue, use the following qmgr
command:

set default batch_request queue queuename

The queuename argument can be the name of any NQS batch queue that you
have already created.

68 SG–2150 3.3

NQS Configuration [5]

To change the definition of the default queue so that there is no longer a default
queue, use either of the following qmgr commands:

set no_default batch_request queue
set default batch_request queue none

5.7.1 Displaying the Current Default Queue

To display the current default queue, use the following qmgr command:

show parameters

The setting is shown next to Default batch_request queue. See Section
6.4.1, page 142, for an example display.

5.7.2 Example of Defining a Default Queue

To define the default NQS queue to be bqueue10, use the following qmgr
command:

set default batch_request queue bqueue10

5.8 Restricting User Access to Queues

When you initially create an NQS queue, any user can submit a request to it. To
restrict user access to a queue, create a list of the users and a list of the groups
whose members can access the queue. These lists are held in the NQS
configuration database and NQS manager can edit them by using qmgr
commands.

5.8.1 Hints on Restricting User Access to Queues

For a user to have access to a queue, one of the following requirements must be
true:

• Access to the queue is unrestricted (this is true when a queue is first created
or when the qmgr command set unrestricted_access was issued for
the queue).

• The user belongs to a group that was added to the list of groups that can
access the queue by using the qmgr command add groups.

SG–2150 3.3 69

NQE Administration

• The user was added to the list of users who can access the queue by using
the qmgr command add users. root does not have automatic access to all
queues.

If the access to the queue is unrestricted, you cannot use the add groups or
add users command. You must first set the queue to have no access by using
the qmgr command set no_access.

5.8.2 Commands Available to Restrict User Access

To restrict the access to the queue, use qmgr commands, as follows:

1. Define the queue as having no access by any user, using the following qmgr
command:

set no_access queuename

2. Add individual users, or user groups, to the list of users or groups that can
submit requests to the queue, as follows:

add users = (user-names) queuename
add groups = (group-names) queuename

The user-names argument is one or more user names; group-names is one or
more group names. If you specify more than one user name or group
name, you must enclose all the names in parentheses and separate them
with a space or a comma. Use the numeric UNIX user IDs and group IDs
(which must be enclosed in brackets []) as an alternative to user names
and group names.

If you later want to allow any user to access the queue, enter the following
qmgr command:

set unrestricted_access queuename

To delete users or groups from the list of those allowed to access a queue, use
the following qmgr commands:

delete users = (user-names) queuename
delete groups = (group-names) queuename

70 SG–2150 3.3

NQS Configuration [5]

5.8.3 Displaying Details of the Currently Defined Queues

To display the current restrictions on user and group access to a queue, use the
cqstatl or the qstat command instead of a qmgr utility; for example:

cqstatl -f queues

The access restrictions appear on the display under the heading <ACCESS>.

See Section 6.4.4, page 153, for an example display.

5.8.4 Example of Restricting User Access

In the following example, you want to restrict access to an NQS queue called
standard. Unless the access permissions to a queue have been changed, any
user can access it. You first issue the set no_access command to restrict all
users, and then add those groups you want to have access. To restrict access to
only those users belonging to a UNIX user group called research, enter the
following two qmgr commands:

set no_access standard

add groups research standard

5.9 Defining Queue Complexes

To create a queue complex (a set of batch queues), use the following qmgr
command:

create complex = (queuename(s)) complexname

To add or remove queues in an existing complex, use the following qmgr
commands:

add queues = (queuename(s)) complexname
remove queues = (queuename(s)) complexname

Note: The difference between the commands remove queues and delete
queues is important. The remove queues command removes a queue from
the queue complex, but the queue still exists. The delete queues
command deletes the queue completely.

SG–2150 3.3 71

NQE Administration

After a complex has been created and the appropriate queues added to it,
associate complex limits with it by using the following qmgr command:

set complex option=limit complexname

The option provides for control of the total number of concurrently running
requests in the queues on the local host. option may be one of the following:

Option Description

group_limit Sets the maximum number of requests that all
users in a group can run concurrently in all
queues in the complex

memory_limit Sets the maximum amount of memory for all
requests running concurrently in all queues in the
complex

mpp_pe_limit Each batch queue has an associated MPP PE
limit. This is the maximum number of MPP PEs
that can be requested by all running jobs in the
queue at any one time.

quickfile_limit (UNICOS systems with SSD solid state storage
devices) Each batch queue has an associated
quick-file limit. This is the maximum size of
secondary data segments that can be requested by
all running jobs in the queue at any one time.

run_limit Sets the maximum number of requests allowed to
run concurrently in all queues in the complex

user_limit Sets the maximum number of requests that any
one user is allowed to run concurrently in all
queues in the complex

Note: A batch request is considered for running only when all limits of all
complexes of which the request is a member have been met.

NQS managers and operators can set queue complex limits. Some complex
limits are enforced only on certain machines. For more information on what
limits are enforced, see Table 4, page 77.

72 SG–2150 3.3

NQS Configuration [5]

5.9.1 Queue Complex Examples

The following example creates a queue complex named weather that contains
the bqueue11, bqueue12, and bqueue13 queues:

create complex=(bqueue11,bqueue12,bqueue13) weather

The following example limits all users in one group to a maximum of 20
requests in the queue complex weather:

set complex group_limit=20 weather

5.10 Defining Global Limits

To set limits on the total workload executing concurrently under NQS control
on the local host, use the following qmgr command:

set global option=limit

Queue limits restrict requests in queues and complex limits restrict requests in a
complex. Global limits restrict the activity in the entire NQS system. NQS
managers and operators can set global limits.

The option can be one of the following:

Option Description

batch_limit Sets the maximum number of batch requests
allowed to run concurrently at the host.

group_limit Sets the maximum number of batch requests all
users in a group can run at the host.

memory_limit Sets the maximum amount of memory that can be
allocated to all batch requests running
concurrently at the host.

mpp_pe_limit The maximum number of MPP PEs that can be
requested by all batch requests running
concurrently under NQS control.

pipe_limit Sets the maximum number of pipe requests
allowed to run concurrently at the host.

quickfile_limit (UNICOS systems with SSDs) The maximum
amount of secondary data segment space that can

SG–2150 3.3 73

NQE Administration

be requested by all batch requests running
concurrently under NQS control.

tape_drive_limit Sets the maximum number of tape drives per
device group that can be requested by all batch
requests running concurrently at the host. NQS
supports eight tape groups (see the qmgr(8) man
page).

user_limit Sets the maximum number of batch requests that
any one user is allowed to run concurrently at the
host.

Some global limits are enforced only on certain machines. For more information
on what limits are enforced, see Table 4, page 77.

5.10.1 Displaying the Current Global Limits

To display the current global limits, use the following qmgr command:

show global_parameters

The resulting display resembles the following:

Global batch group run-limit: 20

Global batch run-limit: 30

Global batch user run-limit: 20

Global MPP Processor Element limit: unspecified
Global memory limit: unlimited

Global pipe limit: 20

Global quick-file limit: unlimited

Global tape-drive a limit: unspecified

Global tape-drive b limit: unspecified
Global tape-drive c limit: unspecified

Global tape-drive d limit: unspecified

Global tape-drive e limit: unspecified

Global tape-drive f limit: unspecified

Global tape-drive g limit: unspecified

Global tape-drive h limit: unspecified

You also can see these limits in the show parameters display. See Section
6.4.1, page 142, for an example. Some parameters are not enforced if the
operating system does not support the feature, such as MPP processor elements.

74 SG–2150 3.3

NQS Configuration [5]

5.10.2 Example of Setting Limits

To set global limits as they are displayed in the previous display, use the
following qmgr commands:

set global group_limit = 20
set global batch_limit = 30

set global user_limit = 20

set global pipe_limit = 20

5.11 Defining Per-request and Per-process Limits

To set per-process and per-request limits on batch queues, use the following
qmgr commands:

set per_process option = limit queuename
set per_request option = limit queuename

Per-request limits apply to the request as a whole; they limit the sum of the
resources used by all processes started by the request. Per-process limits apply to
individual processes started by a request (including the parent shell and each
command executed). For example, the per-request memory size limit is a limit
on the sum total of memory used by all processes started by the request; the
per-process memory size limit is the maximum amount of memory that each
process can use.

Per-process and per-request limits on a queue are compared with the limits set
on a request. If the request’s limits are lower, it can enter the queue. If the limits
are higher, the request cannot enter the queue. If requests have improperly set
limits and enter queues with lower limits than the request actually needs, the
request may abort when it attempts to exceed limits imposed by the queue.

Table 4, page 77, shows the limits that can be enforced on NQS requests. This
table uses the following notation:

Symbol Meaning

Y Limit is supported and enforced on this platform

N Limit is not supported or enforced on this platform

PP Limit is a per-process limit

SG–2150 3.3 75

NQE Administration

PR Limit is a per-request limit

Note: The limits included in Table 4 can be set by using the qsub command
option listed in the table or by using the NQE GUI Job Limits submenu of
the Configure menu on the Submit window. For detailed information
about the command options, see the qsub(1) man page. For detailed
information about using the NQE GUI Job Limits submenu of the
Configuration menu, see the NQE User’s Guide, publication SG–2148.

76 SG–2150 3.3

NQS Configuration [5]

Table 4. Platform support of NQS limits

Run-time enforcement on executing NQS

Description Limit type qsub qualifier

UNICOS/mk
and
UNICOS Solaris AIX DEC HP-UX IRIX

Core file size PP -lc Y Y Y Y N Y

Data segment size PP -ld N Y Y Y N Y

Permanent file size PP -lf Y Y Y Y N Y

PR -lF Y N N N N N

Memory size PP -lm Y N N N N Y

PR -lM Y N N N N Y2

MPP memory size PP -1 p_mpp_m Y N N N N N

PR -1 mpp_m Y N N N N N

Nice value PP -ln Y Y Y Y Y Y

Quick file size (not on
UNICOS/mk)

PP -lq Y N N N N N

PR -lQ Y N N N N N

Stack segment size PP -ls N Y Y Y N Y

CPU time PP -lt Y Y Y Y N Y

PR -lT Y Y1 Y1 Y1 N Y2

1 The per-request limit is enforced as if it were per-process.

SG–2150 3.3 77

NQE Administration

Run-time enforcement on executing NQS

Description Limit type qsub qualifier

UNICOS/mk
and
UNICOS Solaris AIX DEC HP-UX IRIX

Tape drive limit PR -lU Y N N N N N

Temporary file size PP -lv N N N N N N

PR -lV Y N N N N N

Working set size PP -lw N Y Y Y N Y

MPP processing
elements (T3D systems)
or MPP application
processing elements
(T3E systems) or
Number of processors
(IRIX systems)

PR -l mpp_p Y N N N N Y2

MPP residency time
(T3D systems) or CPU
time for application PEs
(T3E systems)

PP -l p_mpp_t Y N N N N N

PR -l mpp_t Y N N N N N

Shared memory size PR -l shm_limit Y N N N N N

Shared memory
segment size

PR -l shm_segments Y N N N N N

The following options to the qmgr commands set per_process and set
per_request set per-process and per-request limits on NQS queues.

2 Optionally enabled. See Section 5.11.4, page 82.

78 SG–2150 3.3

NQS Configuration [5]

Option Description

corefile_limit Sets the maximum size (in bytes) of a core file
that may be created by a process in the specified
batch queue.

cpu_limit Sets the per-process or per-request maximum
CPU time limit (in seconds) for the specified
batch queue. On CRAY T3E systems, this CPU
time limit applies to command PEs (commands
and single-PE applications); for CRAY T3E
applications PEs (multi-PE applications),
maximum CPU time is set by using the set
per_process and set per_request
mpp_limit command.

The value can be specified as seconds, as
minutes:seconds or as hours:minutes:seconds.

data_limit Sets the maximum size (in bytes) for the data
segment of a process in the specified batch queue.
This defines how far a program may extend its
break with the sbrk () system call.

memory_limit Sets the per-process or per-request maximum
memory size limit for the specified batch queue.

mpp_memory_limit Sets the per-process or per-request MPP
application PE memory size requirements for the
specified batch queue.

mpp_pe_limit Sets the MPP processing element (PE) limit for a
batch queue against which the per-request MPP
PE limit for a request is compared.

mpp_time_limit Sets the CRAY T3D MPP per-process or
per-request wall-clock residency time limit or sets
the CRAY T3E MPP per-process or per-request
CPU time limit for application PEs (multi-PE
applications) for the subsequent acceptance of a
batch request into the named batch queue.

permfile_limit Sets the per-process or per-request maximum
permanent file size limit (in bytes) for the
specified batch queue. The per-process request
limit is the maximum size of files created by all
processes on any type of directory. The

SG–2150 3.3 79

NQE Administration

per-request limit is the maximum amount of disk
space used by all processes that make up an NQS
request.

quickfile_limit Sets the per-request maximum quickfile space for
a batch queue against which the per-request
quickfile space limit for a request is compared.

shm_limit Sets the maximum per-request shared memory
size limit for a batch queue against which the
per-request shared memory size limit for a
request is compared.

shm_segment Sets the maximum per-request shared memory
segment limit for a batch queue against which the
per-request shared memory segment limit for a
request is compared.

stack_limit Sets the per-process maximum size (in bytes) for
a stack segment in the specified batch queue.
This defines how far a program’s stack segment
may be extended automatically by the system.

tape_limit Sets the per-request maximum tape devices of the
specified group for the specified batch queue.

tempfile_limit Sets the per-request maximum temporary file
space for an NQS batch queue; not enforced on
Cray NQS but available for compatibility with
other versions of NQS.

working_set_limit Sets the maximum size (in bytes) of the working
set of a process in the specified batch queue. This
imposes a limit on the amount of physical
memory to be given to a process; if memory is
limited, the system may take memory from
processes that are exceeding their declared
working set size.

5.11.1 Displaying Per-process and Per-request Limits

To check the per-process and per-request limits assigned to a queue, use the
cqstatl -f or qstat -f command; for example:

cqstatl -f queuename

80 SG–2150 3.3

NQS Configuration [5]

The limits appear under the characters <REQUEST LIMITS>. There is one
column for per-process limits and one for per-request limits. See the next section
for a partial example, or Section 6.4.4, page 153, for a full example display.

5.11.2 Example of Setting Per-process and Per-request Limits

The following qmgr commands set per-process limits for CPU time, permanent
file space, and memory:

set per_process cpu_limit = 10:0 bqueue15

set per_process permfile_limit = 1Mb bqueue15

When you set the limits to 10 minutes, as in this example, that value appears in
the cqstatl or qstat command display as 600 seconds.

The following qmgr commands set per-request limits for CPU time and
permanent file size:

set per_request cpu_limit = 10:20 bqueue15

set per_request permfile_limit = 1Mb bqueue15

SG–2150 3.3 81

NQE Administration

These commands result in the following CPU Time Limit and Memory Size
fields in the cqstatl output:

<RESOURCES>
PROCESS LIMIT REQUEST LIMIT

CPU Time Limit <600sec> <620sec>

Memory Size <256mw> <256mw>...

Some parameters are not enforced if the operating system does not support the
feature; see Table 4, page 77, for a list of limit enforcements.

5.11.3 How Queue Limits Affect Requests

Request limits are set to the lower of the user-requested limit or the queue limit
you set when you created the queue. If a user does not specify a limit, the
request inherits the limit set on the queue.

For example, if a user specifies a per-request memory limit, NQS tries to send it
to a queue that allows the specified limit. If the same user does not specify a
per-process memory limit, the request inherits the per-process memory limit of
the queue to which it is sent (even though it was not specified on the command
line).

5.11.4 Enabling per Request Limits on Memory Size, CPU Time, and Number of Processors on IRIX
Systems

Per request limits on memory size, CPU time, and number of processors must
be enabled on IRIX systems. These limits are not turned on by default. To
enable checking of these limits, add NQE_NQS_JL_INTERVAL =”seconds” to the
nqeinfo(5) file. The ”seconds” value specifies the number of seconds between
limits checking operations. Values of 15 to 120 seconds are recommend, if limits
are enabled. Low interval values produce more accurate checking. High
interval values generate less overhead.

5.12 Defining Job Scheduling Parameters

To set the weighting factors that will determine the intraqueue priority for
runnable requests, use the following qmgr commands:

set sched_factor share

set sched_factor cpu

set sched_factor memory

82 SG–2150 3.3

NQS Configuration [5]

set sched_factor time

set sched_factor mpp_cpu
set sched_factor mpp_pe

set sched_factor user_priority

All requests in a specific queue are ranked according to four criteria; the
following weighting factors determine the importance of each criteria:

Factor Description

share Fair share (UNICOS and UNICOS/mk systems
only)

cpu Per-request CPU limit requested

memory Per-request memory limit requested

time Time the request has been waiting in the queue
for initiation

mpp_cpu Per-request MPP application PE CPU limit
requested

mpp_pe Per-request number of MPP application PEs
requested

user_priority Per-request user specified priority requested

Each value must be a positive integer less than 1,000,000, including 0. To turn
off a weighting factor, specify 0.

The values of the weighting factors are significant only in relation to each other.
As the value of one factor increases relative to the others, it has more impact in
choosing a request from the suitable requests. If all weighting factors are 0, the
request is selected from a specific queue on a first-in, first-out (FIFO) basis.

For all supported platforms except UNICOS/mk, the NQS request scheduler
uses the following algorithm to select a request for initiation from all of the
eligible requests in a specific queue:

intraqueue_priority = ((time_in_queue/ max_time_in_queue) * normalized_time_wt) +

((1.0 - (cpu_time / max_cpu_time)) * normalized_cpu_wt) +

((1.0 - (memory_sz / max_memory_sz)) * normalized_mem_wt) +

((1.0 - (share_pri / max_share_pri)) * normalized_share_wt) +
((1.0 - (mpp_cpu_time / max_mpp_cpu_time)) * _mpp_cpu_wt) +

((1.0 - (mpp_pe / max_mpp_pe)) * normalized_mpp_pe_wt) +

((user_priority / max_user_priority) * normalized_user_pri_wt)

SG–2150 3.3 83

NQE Administration

For UNICOS/mk systems, the NQS request scheduler uses the following
algorithm to select a request for initiation from all of the eligible requests in a
specific queue:

intraqueue_priority=

((time_in_queue/ max_time_in_queue) * rel_time_wt) +

((1.0 - (cpu_time / max_cpu_time)) * rel_cpu_wt) +

((1.0 - (memory_sz / max_memory_sz)) * rel_mem_wt) +

((share_pri / max_share_pri)) * rel_share_wt) +

((1.0 - (mpp_cpu_time / max_mpp_cpu_time)) * rel_mpp_cpu_wt) +
((1.0 - (mpp_pe / max_mpp_pe)) * rel_mpp_pe_wt) +

((user_priority / max_user_priority) * rel_user_pri_wt

Each of the job-scheduling resources is scaled from 0 to 1 relative to the other
queued jobs. The scheduling weighting factors are also normalized. The
normalized share_wt, time_wt, cpu_wt, and mem_wt parameters are determined
by the qmgr command set sched_factor. They determine the amount of
influence of the fair-share usage, time-in-queue, total requested CPU time, and
total requested memory values, respectively, on the computation of the
intraqueue priority. The algorithm is designed so that, when all parameters are
set to the same value, all of the weighting factors will have an equal effect. The
share_wt value is valid only for UNICOS and UNICOS/mk systems.

The cpu_requested and the mem_requested values are the per-request CPU and
memory limits from the batch request. These values and the time-in-queue value
are from the batch request structure. The share_priority value is the fair-share
usage value and is valid only for UNICOS and UNICOS/mk systems. On
UNICOS systems, the fair-share usage value is obtained by accessing the lnode
information through the limits(2) system call if the user is active at that time;
otherwise, the UDB is used to obtain the value. On UNICOS/mk systems, the
share_priority is obtained from the political scheduling daemon.

On UNICOS/mk or IRIX systems, the number of requested application PEs
(mpp_pe) and the application PE CPU time (max_mpp_pe) weighting factors
allow you to further tune the NQS job initiation (intraqueue) priority formula.

If a user specifies a priority by using the General Options selection of the
Configure menu on the NQE GUI Submit window, the priority is displayed
by the cqstatl or qstat command while the request resides in a pipe queue,
and it continues to be in the request queue if the request is routed to another
machine. The value specified by the user is not used in the calculation of the
intraqueue priority; it is still valid on NQE systems because it allows
compatibility with public-domain versions of NQS.

84 SG–2150 3.3

NQS Configuration [5]

For UNICOS systems, the qsub -p priority and cqsub -p priority commands
specify the user-requested intraqueue priority for all systems or the Unified
Resource Manager (URM) priority increment for UNICOS systems running
URM. The priority is an integer between 0 and 63. If you do not use this option,
the default is 1.

If you are running URM, the priority is passed to URM during request
registration. URM adds this value as an increment value to the priority that it
calculates for the request.

To change the intraqueue priority of queued job requests, use the qmgr
schedule request commands. Scheduling a request changes the position of
a request within a queue. The request must still meet the global, complex,
queue, and user limits criteria before it is initiated, except when it is specified in
the schedule request now command. Requests in queues that have a
higher interqueue priority usually are initiated before requests in lower-priority
queues, regardless of whether they have been scheduled.

user_priority is the scheduling weighting factor for user specified priority.

In order to get the previously supported behavior of the qsub -p command
user specified priority for job initiation scheduling, you should set the
user_priority weighting factor to nonzero and set all of the other weighting
factors to 0. Then, only user specified priority will be used in determining a
job’s intraqueue priority for job initiation. The qmgr modify request
command can still be used to modify a job’s user priority.

The user specified priority is displayed in request full status displays of the
qstat(1), cqstatl(1), and the NQE GUI. The column name displays as
follows:

User Priority/URM Priority Increment: 22

The qsub -p submission option is used for both user priority and URM
priority. If NQS is configured for URM job scheduling, then any -p submission
option is handled as an URM minirank priority increment by the nqsdaemon.
Otherwise, the -p submission option is handled as a user specified priority,
which is used with the NQS job initiation formula when calculating intraqueue
priority for the job. Either NQS or URM is making job ordering decisions, but
not both at the same time.

5.12.1 Example Commands for Scheduler Weighting Factors

Perhaps the most effective way to use intraqueue priority is to set the scheduling
factors so a request is kept waiting in relation to how long it will take to run.

SG–2150 3.3 85

NQE Administration

For example, if there are two requests with a disparate need for CPU time, they
can greatly affect each other. If request big needs 900 seconds of CPU time and
request small needs only 10 seconds, letting big run before small is
significant for the user who submits small. If big will take 900 seconds to
run, the effect on big of letting small run first is about 2% of big’s expected
run time. However, if big runs before small, the effect on small is about
6000% of small ’s expected run time. Thus, it makes more sense to give small
the higher priority.

However, it is also significant how long a request has been waiting to run. If
big has been set aside in favor of smaller requests for several days, it too
suffers a disproportionate waiting time.

For UNICOS and UNICOS/mk systems, you can set a job-scheduling factor
that seeks to schedule according to the considerations just described. You can
schedule by the requested CPU time and the time the request has been waiting
in the queue. The following settings for the set sched_factor commands
equally weight the amount of time the request has been waiting and the
amount of CPU time requested (the qmgr command set sched_factor
share is valid only on UNICOS systems):

set sched_factor share = 0

set sched_factor cpu = 100

set sched_factor memory = 0

set sched_factor time = 100
set sched_factor mpp cpu = 0

set sched_factor mpp pe = 0

set sched_factor user specified priority = 0

The value of 100 is not significant; what is significant is that CPU time and time
waiting in the queue are equal.

In this scenario, the more CPU time the request needs, the lower its scheduling
priority. After it waits longer than its requested CPU time, it has a higher
scheduling priority. This stops a large request from being excluded indefinitely
by many small requests.

86 SG–2150 3.3

NQS Configuration [5]

5.12.2 Example Display of Scheduler Weighting Factors

The following example shows the qmgr display from a show parameters
command for a machine that has set a strategy that equally weights requested
CPU time and time waiting in a queue:

Job Initiation Weighting Factors:

Fair Share is not enabled.

Fair Share Priority = 0

Requested CPU Time = 1

Requested Memory = 0

Time-in-Queue = 1
Requested MPP CPU Time = 0

Requested MPP PEs = 0

User Specified Priority = 0

5.13 Defining Political Scheduling Daemon Threshold

NQS uses various user, queue, complex and global configurable limits for
CRAY T3E application PEs when deciding whether a particular job should be
initiated. Since this information is not directly related to the actual availability
of PEs on a CRAY T3E system, NQS can initiate jobs which then wait in a
Global Resource Manager (GRM) queue, waiting for sufficient application PEs
to become available.

You can configure NQS to query the CRAY T3E political scheduling daemon
(psched) to receive the current size of the maximum contiguous block of
application PEs. A threshold to be used before contacting the psched daemon
is configurable within the nqeinfo(5) file. This new variable is
NQE_PSCHED_THRESHOLD. The valid values for this variable are as follows:

• -1 (default value)

• 0 through 100

This value represents a percentage amount. The default of -1 disables the
checking of the application PE size. This variable is not in the default nqeinfo
file. You can use the nqeconfig(8) command to add this variable to the
nqeinfo file.

The threshold percentage is applied against the number of application PEs that
NQS thinks are available, using NQS requested PE counts of running jobs and
the NQS global PE limit. If a job requests that threshold amount or a number of
application PEs greater than the threshold amount, then the nsqdaemon(8) calls

SG–2150 3.3 87

NQE Administration

the psched daemon to get the current maximum contiguous application PE
size. If the job’s requested application PEs are at or below this size, the job is
initiated. Otherwise, the job is not initiated and the job’s status display
substatus is set to mp. The mp substatus indicates that the job was not initiated
because there were not enough application PEs available.

Here is an example given this scenario:

The NQE_PSCHED_THRESHOLD variable is added to the nqeinfo(5) file and is
set to 80.

The NQS global application PE limit is 240.

Currently running jobs submitted through NQS have requested 200 application
PEs.

NQS assumes that 40 applications PEs are still available.

The application PE space is fragmented and only 37 application PEs are
available in a contiguous block.

The next job selected to be initiated requests 36 application PEs. The 80 percent
threshold is applied against the 40 PEs that NQS thinks are available. The job is
asking for application PEs above the threshold of 32 PEs, so the psched
daemon is contacted. The returned application PE contiguous job size of 37
allows this job to be initiated.

If the job had requested 38 application PEs, the job would not be initiated. A
status display for this job would show a substatus of mp, indicating that
insufficient applications PEs were available to run the job.

If the nqsdaemon is unable to get application PE size information from the
psched daemon for any reason, the job is not held back but is initiated.
Messages are written to the NQS logfile describing the error.

5.14 Unified Resource Manager (URM) for UNICOS Systems

The UNICOS Unified Resource Manager (URM) is a job scheduler that provides
a high-level method of controlling the allocation of system resources to run
jobs. When you enable URM scheduling within NQS, NQS registers certain jobs
with URM. Which jobs are registered depends upon which job-scheduling type
the set job scheduling command has specified. The jobs registered with
URM are in a qmgr scheduling pool and show, in the qstat display, a major
status of Q and a substatus of us.

88 SG–2150 3.3

NQS Configuration [5]

URM advises NQS when to initiate jobs that have been placed in the scheduling
pool. When URM scheduling is in effect, the intraqueue priority has no
meaning and is displayed as ---. All qmgr schedule commands, except qmgr
schedule now, have no effect when URM is recommending which jobs to
initiate. The qmgr schedule now command initiates a job immediately
without consulting URM as to whether the current machine load can tolerate
the submission.

For more information about URM, see UNICOS Resource Administration,
publication SG–2302.

5.15 Miser Scheduler for IRIX Systems

The IRIX 6.5 release introduces a new scheduler called the Miser scheduler. The
Miser scheduler (also referred to as Miser) is a predictive scheduler. As a
predictive scheduler, Miser evaluates the number of CPUs and amount of
memory a batch job will require. Using this information, Miser consults a
schedule that it maintains to track the utilization of CPU and memory resources
on the system. Miser determines the time when a batch job can be started and
have its requirement for CPU and memory usage met. The batch job is then
scheduled to begin execution based on this time.

Miser is beneficial because it reserves the resources that a batch job requests. As
a result, when the batch job begins to execute, it does not need to compete with
other processes for CPU and memory resources. A disadvantage of using Miser
is that a job may have to wait for its reservation period before it can begin
executing. Additionally, batch jobs must provide the Miser scheduler with a list
of resources that they will require. Currently, those resources are the number of
CPUs, the amount of memory required, and the length of execution time
required.

For a request to be successfully submitted to the Miser scheduler on an NQE
execution host, the following criteria must be met:

• The job scheduling class must equal Miser Normal. For more information
on Miser Normal, see Section 5.15.1, page 90.

• The request specifies a Miser resource reservation option. For more
information on the Miser resource reservation option, see the NQE User’s
Guide, publication SG–2148.

• The destination batch queue has been directed to forward requests to the
Miser scheduler. For more information on directing batch queues to forward
requests to the Miser scheduler, see Section 5.15.2, page 90.

SG–2150 3.3 89

NQE Administration

• Miser is running on the execution host.

• The Miser queue exists and is accessible on the execution host .

• The request can be scheduled to begin execution before the scheduling
window expires. The schedule for a request will depend upon the resources
requests (CPU, memory, and time). For more information, see Section 5.15.2,
page 90.

5.15.1 Setting the Job Scheduling Type

A new job scheduling type has been created to allow NQS to inter-operate with
the Miser scheduler on IRIX systems. The new scheduling type is Miser
Normal. The Miser Normal scheduling type is derived from the Nqs
Normal scheduling type. Under Miser Normal scheduling, the order of the
batch jobs in the NQS queues is determined by the queue ordering algorithms
that operate under Nqs Normal scheduling.

The difference between Miser Normal and Nqs Normal scheduling is
realized when a job is being analyzed to determine if it should be executed.
During this analysis, the request is scanned to determine if Miser resource
options have been specified. If Miser options are specified, the NQS batch
queue is directed to forward requests to the Miser scheduler and NQS queries
the Miser scheduler. If no Miser options are specified, the request is started as a
normal NQS request (the request will be processed by the operating system
default scheduler).

When querying the Miser scheduler, NQS tries to determine if the request can
be started by Miser, given the resources requested, before the defined
scheduling window expires. If the request cannot be scheduled, NQS continues
to hold the request in the batch queue.

For more information on Miser Normal scheduling and for the syntax to set
the job scheduling type, see the qmgr(8) man page.

5.15.2 Directing Batch Queues to Forward Requests to the Miser Scheduler

To configure NQS to operate with the IRIX Miser scheduler you must define the
batch queue to indicate that it is capable of forwarding requests to a Miser
scheduling queue. You can use the qmgr(8) command to set the batch queue to
forward requests to the Miser scheduling queue as follows:

qmgr> set miser [batch queue] [miser queue] [H:M.S|INT[s|m|h]

90 SG–2150 3.3

NQS Configuration [5]

The options for the qmgr(8) command are as follows:

batch queue Name of the NQS batch queue

miser queue Name of the Miser scheduler resource queue

H:M.S|INT[s|m|h Time for the scheduling window defined in
hours: minutes.seconds or an integer value with
the suffix: s for seconds, m for minutes, and h for
hours.

For the qmgr command to execute successfully, the batch queue must exist,
Miser must be running, and the Miser resource queue must exist.

The scheduling window determines how long a request can wait in the Miser
scheduler resource queue before it begins executing; that is, before its resource
reservation period arrives. This scheduling window can be used to control the
job mix that is forwarded to the Miser resource queue. For example, three NQS
batch queues might be defined as follows:

• One queue is defined for jobs that require 32 or more CPUs.

• A second queue may be defined for jobs that require between 8 and 32 CPUs.

• A third queue may be defined for jobs that require less than 8 CPUs.

All of these batch queues can be designated to send requests to the same Miser
resource queue.

You can define the scheduling windows so that the batch queues that forward
requests that require larger amounts of resources are given a larger scheduling
window. You can also define scheduling windows so that batch queues that
require fewer resources are given smaller scheduling windows. Defining the
scheduling windows in this manner results in a configuration where requests
that are lightweight are throttled back so that they do not interfere with the
scheduling of requests that require more resources.

An example of the set miser command is as follows:

qmgr> set miser batnam1 chemistry 20m

This example shows that the NQS batch queue batnam1 will forward requests
to the Miser resource queue chemistry. The scheduling window specified is
20 minutes. When NQS attempts to execute a request in queue batnam1, it will
query the Miser scheduler to determine when the request will be given the
resources it has requested using the qsub -X command. If the query indicates
that the request will begin executing before the scheduling window expires, the

SG–2150 3.3 91

NQE Administration

request is submitted to Miser. Otherwise, NQS will continue to queue the
request.

To remove the relationship between a NQS batch queue and Miser run queue,
subsitute the keyword none for the Miser resource queue name. The value for
the scheduling window is irrelevant in this case. The following example shows
how you can remove the relationship between the NQS batch queue batnam1
and the Miser resource queue chemistry:

qmgr> set miser batnam1 none 0

5.16 NQS Periodic Checkpointing

On UNICOS, UNICOS/mk, and IRIX systems, NQS periodic checkpointing
provides transparent automatic checkpointing of NQS requests. The checkpoint
files restart NQS requests from the time the checkpoint file was created. To
checkpoint the requests at intervals that are site-controlled, use the qmgr set
periodic_checkpoint commands. For more information, see the qmgr(8)
man page.

Periodic checkpointing initiates a checkpoint for all NQS requests based on the
amount of CPU time that is used or the amount of wall-clock time that has
elapsed. An NQS administrator can tailor the following periodic checkpoint
options:

• Enable and disable periodic checkpointing for all NQS requests

• Enable and disable periodic checkpoint intervals based on the CPU time

• Enable and disable periodic checkpoint intervals based on the wall-clock
time

• Exclude short running requests

• Exclude large memory requests

• Exclude large secondary data segments (SDS) requests (UNICOS systems
only)

• Set an interval for periodic checkpoints based on the CPU and wall-clock
time

• Set the maximum number of concurrent periodic checkpoints

• Define an interval to check eligible requests

92 SG–2150 3.3

NQS Configuration [5]

Users can enable and disable periodic checkpointing during the life of a job by
using the qalter command in jobs. For more information, see the qalter(1)
man page.

5.16.1 Periodic Checkpoint File Restrictions

The periodic checkpoint/restart file cannot be a network file system (NFS) file,
but a process with open NFS files can be checkpointed and restarted.

If a process is checkpointed with an open NFS file, and the file is on a file
system that was manually mounted, that file system also must be manually
mounted when the process is restarted; otherwise, the restart will fail.

5.16.2 Periodic Checkpoint Modes

You can set your periodic checkpoint environment to one of the following
modes:

• Compatibility mode (default)

• User-initiated mode

• CPU time mode

• Wall-clock mode

• CPU and wall-clock mode

This section describes how to set each periodic checkpoint mode of operation
by using the NQS qmgr(8) and qalter(1) commands.

5.16.2.1 Compatibility Mode

To set your periodic checkpoint environment to compatibility mode, keep the
periodic checkpointing turned off. This is the default environment for periodic
checkpoint. To disable periodic checkpointing, use the following command:

set periodic_checkpoint status off

If the qalter(1) command is used in a request, the settings are retained while
periodic checkpointing is disabled and used if periodic checkpointing is
enabled later. The jobs are checkpointed at NQS shutdown.

SG–2150 3.3 93

NQE Administration

5.16.2.2 User-initiated Mode

To set your periodic checkpoint environment to user-initiated mode, you must
enable periodic checkpointing with the CPU and wall-clock intervals disabled.
This mode periodically checkpoints a request that contains qalter(1)
commands to enable checkpointing for the request. The following example
shows how you can use periodic checkpoint commands to set the user-initiated
mode:

set periodic_checkpoint status on

set periodic_checkpoint time_status off

set periodic_checkpoint cpu_status off
set periodic_checkpoint cpu_interval = 15

set periodic_checkpoint time_interval = 90

set periodic_checkpoint max_mem_limit = 64MW

set periodic_checkpoint max_sds_limit = 48MW

set periodic_checkpoint min_cpu_limit = 600
set periodic_checkpoint scan_interval = 60

set periodic_checkpoint concurrent_checkpoints = 1

In this example, individual requests can be periodically checkpointed. The NQS
system status is enabled, but the wall-clock and CPU time status are disabled.
NQS lets requests that were modified by the qalter(1) command be enabled
for periodic checkpointing. If a qalter command enables the CPU-based
periodic checkpointing but does not define an interval, the request receives the
default of 15 minutes. If a qalter command enables the wall-clock based
periodic checkpointing but does not define an interval, the request receives the
system default value of 90 minutes.

If a request has a limit of more than 64 Mwords of memory, more than 48
Mwords of SDS space, or has a CPU time limit of less than 600 seconds, it is
excluded from periodic checkpointing. NQS scans requests every 60 seconds to
determine whether a running request is eligible for periodic checkpointing.
Only one periodic checkpoint request can be run at a time. The jobs are
checkpointed at NQS shutdown.

5.16.2.3 CPU Time Mode

To set your periodic checkpoint environment to CPU time mode, you must
enable periodic checkpointing to create the checkpoint files after a specific
amount of CPU time has been used by the request.

On IRIX systems, job limit checking must be enable per CPU time mode
periodic checkpoint.

94 SG–2150 3.3

NQS Configuration [5]

The following example shows how you can use the periodic checkpoint
commands to set the CPU time mode:

set periodic_checkpoint status on
set periodic_checkpoint time_status off

set periodic_checkpoint cpu_status on

set periodic_checkpoint cpu_interval = 30

set periodic_checkpoint time_interval = 60

set periodic_checkpoint max_mem_limit = 32MW

set periodic_checkpoint max_sds_limit = 32MW
set periodic_checkpoint min_cpu_limit = 900

set periodic_checkpoint scan_interval = 60

set periodic_checkpoint concurrent_checkpoints = 1

In this example, NQS system-wide periodic checkpointing is enabled, and
CPU-time-based checkpointing is enabled. The wall-clock-time checkpointing is
disabled. NQS checkpoints requests every 30 CPU minutes.

If a request has a limit of more than 32 Mwords of memory or more than 32
Mwords of SDS space, or has a CPU time limit of less than 900 seconds, it is
excluded from periodic checkpointing. NQS scans requests every 60 seconds to
determine whether a running request is eligible for periodic checkpointing. No
more than one periodic checkpoint request can be running. The jobs are
checkpointed at NQS shutdown.

5.16.2.4 Wall-clock Mode

To set your periodic checkpoint environment to wall-clock mode, you must
enable periodic checkpointing to create the checkpoint files after a specified
amount of wall-clock time has elapsed for a request.

The following example shows how you can use the periodic checkpointing
commands to set the wall-clock mode:

set periodic_checkpoint status on

set periodic_checkpoint time_status on
set periodic_checkpoint cpu_status off

set periodic_checkpoint cpu_interval = 30

set periodic_checkpoint time_interval = 60

set periodic_checkpoint max_mem_limit = 64MW

set periodic_checkpoint max_sds_limit = 64MW

set periodic_checkpoint min_cpu_limit = 900
set periodic_checkpoint scan_interval = 120

set periodic_checkpoint concurrent_checkpoints = 2

SG–2150 3.3 95

NQE Administration

In this example, NQS system-wide periodic checkpointing is enabled, and
checkpointing based on wall-clock time is enabled. The CPU-time-based
checkpointing is disabled. NQS checkpoints requests every 60 wall-clock
minutes.

If a request has a limit of more than 64 Mwords of memory or more than 64
Mwords of SDS space, or has a CPU time limit of less than 900 seconds, it is
excluded from periodic checkpointing. NQS scans requests every 120 seconds
to determine whether a running request is eligible for periodic checkpointing.
Two periodic checkpoint requests can run simultaneously. The jobs are
checkpointed at NQS shutdown.

5.16.2.5 CPU and Wall-clock Mode

To set your periodic checkpoint environment to CPU and wall-clock mode, you
must enable periodic checkpointing to create the checkpoint files after a
specified amount of CPU or wall-clock time has elapsed for a request,
whichever occurs first. The following example shows how you can use the
periodic checkpoint commands to set the CPU and wall-clock mode:

set periodic_checkpoint status on

set periodic_checkpoint time_status on

set periodic_checkpoint cpu_status on

set periodic_checkpoint cpu_interval = 20

set periodic_checkpoint time_interval = 45
set periodic_checkpoint max_mem_limit = 64MW

set periodic_checkpoint max_sds_limit = 64MW

set periodic_checkpoint min_cpu_limit = 1200

set periodic_checkpoint scan_interval = 90

set periodic_checkpoint concurrent_checkpoints = 3

In this example, NQS system-wide periodic checkpointing, CPU-time-based
checkpointing, and wall-clock-time-based checkpointing are all enabled. NQS
checkpoints requests every 45 wall-clock minutes or every 20 CPU minutes,
whichever occurs first.

If a request has a limit of more than 64 Mwords of memory or more than 64
Mwords of SDS space, or has a CPU time limit of less than 1200 seconds, it is
excluded from periodic checkpointing. NQS scans requests every 90 seconds to
determine whether a running request is eligible for periodic checkpointing.
Three periodic checkpoint requests can run simultaneously. The jobs are
checkpointed at NQS shutdown.

96 SG–2150 3.3

NQS Configuration [5]

5.16.3 Periodic Checkpoint Behavior in NQS

The following sections describe how periodic checkpointing affects NQS events.

5.16.3.1 NQS System Shutdown

Periodic checkpoints are not initiated during a system shutdown. The
checkpoints that are in progress continue to run until they are completed.

5.16.3.2 Request Completion

No checkpointing occurs when a request is terminating. However, a checkpoint
event can be initiated and a request can terminate during the grace period. In
this case, NQS request completion cleans up the checkpoint end. If this request
will be requeued, the previous valid checkpoint file is retained.

5.16.3.3 qchkpnt Command

A qchkpnt(1) command is similar to a periodic checkpoint event. If another
checkpoint event is in progress, a qchkpnt command is rejected. A qchkpnt
event is counted toward a periodic checkpoint event, and the timers are reset
for the next periodic event after a qchkpnt completes.

5.16.3.4 Abort

A periodic checkpoint that is in progress during an abort event is terminated,
and the checkpoint file is deleted.

5.16.3.5 Modify Request

If you modify a request, its CPU or memory limit can change. This change can
make the request ineligible for periodic checkpointing if its CPU time is set to a
value less than the value of the set periodic_checkpoint
min_cpu_limit command, its memory limit is set to a value greater than the
value of the set periodic_checkpoint max_mem_limit command, or its
SDS request limit is set to a value greater than the value of the set
periodic_checkpoint max_sds_limit command.

5.16.3.6 Hold Request

If a request is being held, it will be checkpointed, terminated, and requeued. If
another checkpoint event is in progress, the requests that are being held are

SG–2150 3.3 97

NQE Administration

rejected. After a request has been held, it is no longer running or eligible for
periodic checkpointing.

5.16.3.7 Preempt Request

If a request is being preempted or has completed preemption, no checkpoint
events for that request can occur. If a request is currently in a preempted state
or in the process of being preempted, no periodic checkpointing is tried.

5.16.3.8 Release Request

If a request is released, it requeues a previously held request and makes it
eligible for initiation. The request is started from the last checkpoint file that
was created. Any changes that are related to periodic checkpointing are
retained, and those values are used when the request is spawned.

5.16.3.9 Rerun Request

If a request is rerun, it is terminated and requeued, and any checkpoint files are
deleted. The request is rerun as though it were a new request. Periodic
checkpointing is not affected. If the qalter(1) command changed any periodic
checkpoint options, they revert back to the system-wide default values that
qmgr(8) defined.

5.16.3.10 Restore Request

If a request is restored, it resumes a request that was previously preempted and
makes it eligible for execution. If changes related to periodic checkpointing
were made while the request was preempted, they are retained, and those
values are used when the request begins to execute.

5.16.3.11 Resume Request

If a request is resumed, it resumes a request that was previously suspended and
makes it eligible for execution. If changes related to periodic checkpointing
were made while the request was suspended, they are retained, and those
values are used when the request begins to execute.

98 SG–2150 3.3

NQS Configuration [5]

5.16.3.12 Suspend Request

If a request is being suspended or has completed suspension, checkpoint events
for a request cannot occur. If a request is currently in a suspended state or in
the process of being suspended, no periodic checkpoint is tried.

5.17 Setting the Log File

NQS maintains a log file in which time-stamped messages of NQS activity are
recorded. These messages are in text format. To define the file specification of
the log file, use the following command:

set log_file name

The name specified may be either an absolute path name or a path name
relative to the spool directory. If you specify the same log file name as the
existing log file, new information is appended to that file.

To truncate the current log file, use the following qmgr command:

reset logfile

The log file is maintained throughout every shutdown and recovery sequence;
new messages are appended to the end of the file. If the log file name is
changed, the old file is preserved and is then available for further processing.

NQS can be configured to copy the existing log file automatically to a new file
and then reset the existing log file to its beginning. This process is called
segmenting the log file.

To specify the directory where the segmented log file is kept, use the following
command:

set segment directory dirname

The dirname is either the absolute specification of the directory in which
segmented files are to be placed, or it is relative to the spool directory (as
indicated by the value of NQE_NQS_SPOOL in the nqeinfo file). Segmentation
will not take place if directory is not set or is set to none. You should not
specify /dev/null as the log file name. The segmented NQS log file names
reflect the date and time of the earliest information contained in the segment.

SG–2150 3.3 99

NQE Administration

To set the log file segmentation at NQS start-up, use the following qmgr
commands:

set segment on_init on
set segment on_init off

To segment the log file when it reaches a certain size or age, use the following
qmgr commands:

set segment size = bytes
set segment time_interval = minutes

To control the detail level of the information recorded in the log file, use the
following qmgr commands:

set message_types on event_type(s)
set message_types off event_type(s)

Warning, fatal, and unrecoverable messages are always recorded in the log file.
You can turn off informational, efficiency, caution, and trace messages for
specific types of events. The following is a list of the event types; the brackets
indicate the portion of the command that does not need to be typed when it is
entered:

100 SG–2150 3.3

NQS Configuration [5]

al[l] (except flow) db_r[eads] op[er] rec[overy]

ac[ccounting] db_w[rites] ou[tput] req[uest]

ch[eckpoint] f[low] packet_c[ontents] rou[uting]

com[mand_flow] network_m[isc] packet_f[low] s[cheduling]

con[fig] network_r[eads] proto_c[ontents] user1

db_m[isc] network_w[rites] proto_f[low] user2

user3

user4

user5

Note: Use the set message_types on flow command only for a short
time interval to help with problem analysis because it can cause severe
performance degradation.

To control the amount of information in the header of each log message, use the
following qmgr commands:

set message_header long

set message_header short

Long message headers can help with quicker problem resolution.

To control the level of detail of information in the log file, set the debug level
through the qmgr command set debug. For more information, see Section
5.18, page 102.

5.17.1 Displaying Information on the Current Log File

To display information about the current log file, use the following qmgr
command:

show parameters

The settings are shown next to the Log_file, MESSAGE_Header,
MESSAGE_Types, and various SEgment display entries. See Section 6.4.1, page
142, for an example display.

SG–2150 3.3 101

NQE Administration

5.17.2 Log File Command Examples

To set the log file name, the message header information level, the recorded
message types, and the segmentation interval for the log file (the file is relative
to the NQS spool directory), use the following qmgr commands:

set log_file active.log

set message_header long

set message_types on all

set segment on_init on

set segment directory = nqs.log

set segment time_interval = 1440

Segmented log files are placed in the nqs.log directory under the NQS spool
directory, which is set as described in Section 5.17, page 99.

5.18 Setting the Debug Level

To control the level of information recorded in the log file, use the following
qmgr command to set the debug level for NQS:

set debug level

Currently, two sets of debug information are supported:

Level Meaning

0 No debug information is recorded.

1-3 When you specify each higher number (level), the amount of
debugging information that is recorded increases, respectively.

To avoid excessive disk usage, set a nonzero debug level only when extra
information is required to analyze a problem. The default on an installed NQS
system is 0.

To display the current debug level, use the following qmgr command:

show parameters

The setting is shown next to the words Debug level on the display. See
Section 6.4.1, page 142, for an example display.

102 SG–2150 3.3

NQS Configuration [5]

5.19 Establishing NQS Accounting Procedures

The accounting information that NQS produces is part of daemon accounting.
This information deals with job initiation, termination, and conditions, such as
rerun, restart, and preemption. The set accounting off and set
accounting on commands in the qmgr(8) subsystem let you specify whether
this information will be produced.

The accounting file location is $NQE_SPOOL/spool/private/root/nqsacct
or $NQE_NQS_SPOOL/private/root/nqsacct, where $NQE_SPOOL is the
spool location defined at installation time. Both variables appear in the
nqeinfo file.

5.19.1 Enabling and Disabling Accounting

The qmgr commands set accounting off and set accounting on are
used to turn NQS daemon accounting off or on.

On UNICOS and UNICOS/mk systems, NQS daemon accounting information
is set using the standard UNICOS and UNICOS/mk accounting system. For
detailed information about UNICOS accounting, see UNICOS System
Administration, publication SG–2113 or UNICOS/mk Resource Administration,
publication SG–2602.

On UNIX systems, NQS simply writes accounting records to the file
private/root/nqsacct (as indicated by the value of NQE_NQS_SPOOL in the
nqeinfo file) under the NQS spool directory. The file format is ASCII and has
the following fields: User ID, Job ID, Sequence Number, Time, Type, Subtype,
Host, Request name, and Queue. For job termination records, the user, system,
child user, and child system time for NQS shepherd processes are also recorded.
The same information can be logged to the NQS log file by using the qmgr
command set message_type on accounting.

The following qmgr command is used to turn NQS daemon accounting off:

set accounting off

The current state of NQS daemon accounting can be displayed by using the
show parameters command.

The following qmgr command is used to turn NQS daemon accounting on:

set accounting on

SG–2150 3.3 103

NQE Administration

Note: This is with respect to NQS. For UNICOS and UNICOS/mk systems, it
is up to the UNICOS or UNICOS/mk accounting system to actually enable
NQS daemon accounting.

The current state of NQS daemon accounting can be displayed by using the
qmgr command show parameters.

5.19.2 Accounting Records

Accounting records are written to the NQS log and/or the NQS accounting file.
Table 5 describes the record types and subtypes. The formats of the Type 1 and
Type 2 records that are written follow the table.

104 SG–2150 3.3

NQS Configuration [5]

Table 5. Accounting records

Type Subtype Format Description

NQ_INFO NQ_INFO_ACCTON Type 1 Written when accounting is enabled

NQ_INFO NQ_INFO_ACCTOFF Type 1 Written when accounting is disabled

NQ_RECV NQ_RECV_NEW Type 1 Written when new request is received

NQ_RECV NQ_RECV_LOCAL Type 1 Written when new request is received
from local pipe queue

NQ_RECV NQ_RECV_REMOTE Type 1 Written when new request is received
from remote pipe queue

NQ_INIT NQ_INIT_START Type 1 Written when request is started on
NQS execution server

NQ_INIT NQ_INIT_RESTART Type 1 Written when request is restarted on
NQS execution server

NQ_INIT NQ_INIT_RERUN Type 1 Written when request is rerun on
NQS execution server

NQ_TERM NQ_TERM_EXIT Type 2 Written when request terminates
normally

NQ_TERM NQ_TERM_REQUEUE Type 2 Written when request terminates
normally and will be requeued

NQ_TERM NQ_TERM_PREEMPT Type 2 Written when request terminates
normally because it was preempted

NQ_TERM NQ_TERM_HOLD Type 2 Written when request terminates
normally because it was held

NQ_TERM NQ_TERM_OPRERUN Type 2 Written when request terminates
normally because the operator reran
the request

NQ_TERM NQ_TERM_RERUN Type 2 Written when request terminates
normally and will be rerun

NQ_DISP NQ_DISP_NORM Type 1 Written when request is disposed
normally

NQ_DISP NQ_DISP_BOOT Type 1 Written when request cannot be
requeued at boot time

SG–2150 3.3 105

NQE Administration

Type Subtype Format Description

NQ_SENT NQ_SENT_INIT Type 2 Written when request starts being
sent to NQS

NQ_SENT NQ_SENT_TERM Type 2 Written when request completes
being sent to NQS

NQ_SPOOL NQ_SPOOL_INIT Type 1 Written when request output starts
being transferred

NQ_SPOOL NQ_SPOOL_TERM Type 1 Written when request output
completes being transferred

NQE writes two formats of accounting records; the formats are described below.
In both formats, all records are ASCII text and fields are separated by spaces.

The Type 1 record format is as follows:

Format Description

uid UNIX user ID number for this request

jobid Process ID of the NQE shepherd for this request

sequence_number NQE request sequence number

time_of_day Time of day the record is written; such as,

Tue Oct 10 08:49:17 1995

type Record type

subtype Record subtype

host_name Host name on which the record was written

request_name NQE request name

queue_name NQE queue name

utime User time of NQE shepherd for this job

stime System time of NQE shepherd for this job

cutime Sum of user CPU time for all processes in this job

cstime Sum of system CPU time for all processes in job

106 SG–2150 3.3

NQS Configuration [5]

project_id Project ID for all processes in this job (IRIX
systems only)

Note: Total job time = utime + stime + cutime + cstime

Total overhead = utime + stime

Total user time = cutime + cstime

The Type 2 record format is as follows:

Format Description

uid UNIX user ID number for this request

jobid Process ID of the NQE shepherd for this request

sequence_number NQE request sequence number

time_of_day Time of day the record is written; such as,

Tue Oct 10 08:49:17 1995

type Record type

subtype Record subtype

host_name Host name on which the record was written

request_name NQE request name

queue_name NQE queue name

project_id Project ID for all processes in this job (IRIX
systems only)

The units used for utime, stime, cutime, and cstime vary by machine and
operating system level. The unit is measured in ticks per second. The unit is
defined on each system by the value of sysconf (_SC_CLK_TCK), which can
vary by machine and may be run-time alterable.

5.20 Setting the Validation Strategy for Remote Access

To provide security against unauthorized remote access of the local NQS
system, you can specify that you want to validate incoming client requests. The
type of validation you select is performed for all actions: submitting requests,
monitoring requests and queues, and deleting or signaling requests.

SG–2150 3.3 107

NQE Administration

The administrator of each NQS server in the group of NQE nodes in the NQE
cluster can set a validation type. To avoid confusing users, all NQS servers in
the group of NQE nodes in the NQE cluster should use the same validation
type. The default validation type for an NQS server when first installed is
validation file checking.

You can specify the following validation types for the NQS host:

Validation type Description

No validation No validation is performed by NQS. If the name
of the user under which a command is issued
(the target user) is a valid user at the NQS server,
the command is successful.

Validation files A validation file is examined to determine
whether there is an entry that allows the user
under which the command is issued to access the
server. The validation file can be either an
.rhosts or .nqshosts file in the user’s home
directory at the NQS server. (If you do not use
.rhosts files at your site, you can use
.nqshosts). Individual users create these files.

Note: If a machine name has any aliases, the
.rhosts files must contain all forms of the
machine name.

Password checking The NQS user is required to supply a password
for the user name at the NQS server at which the
request is to be run. A password may be no
longer than 8 characters. The password is
checked only at the NQS server. The password is
used for validating the user name under which a
user command will be executed (either through
the NQE GUI functions or through the following
commands: cqsub, cqstatl, cqdel, qsub,
qstat, and qdel).

The password is encrypted and passed over the
network, and NQS checks the password file to
ensure that the password is valid.

Password checking and
validation files

In this combined method, a user may supply a
password when issuing a command as is done in
password checking. If a password is supplied, the

108 SG–2150 3.3

NQS Configuration [5]

local NQS server validates it; if the password is
incorrect, NQS rejects the action the client
command requested. If a password is not
supplied, validation file checking is performed.

Note: For client commands, the user is prompted for a password if the -P
option is specified on the command line or if the NQS_PASSWORD_NEEDED
environment variable is set.

5.20.1 User Validation Commands

To set the validation type, use the following qmgr commands:

set validation [password] [file]

The default validation is by file. You can specify one or both of the
parameters, as follows:

Parameter Definition

password Password checking only.

file Validation file checking only.

password file Password checking if a password is supplied;
otherwise, validation file checking is performed.

To turn off validation, use the following command:

set no_validation

The following field in the qmgr command show parameters display indicates
the validation policy is by file:

Validation type = validation files

See Section 6.4.1, page 142, for a full example display.

5.20.2 Example of Setting User Validation

To set the method of validation to password checking only, use the following
qmgr command:

set validation password

SG–2150 3.3 109

NQE Administration

5.21 Defining Other System Parameters

This section describes miscellaneous NQS configuration settings.

5.21.1 Setting Retry Limits

If the NQS system cannot send a request from a local pipe queue to its
destinations (for example, because the network connection to the system
supporting the destinations has failed), it will try resending the request at
regular intervals. To define how often the server will retry sending a request,
use two qmgr commands, as follows:

• To define the interval (in minutes) between successive attempts to send the
request, use the following qmgr command:

set default destination_retry wait interval

The initial value for a newly installed NQS system is 5 minutes.

• To avoid continuous retries, use the following qmgr command to define the
maximum elapsed time (in hours) for which a request can be retried. If this
time is exceeded, the request submission fails and a mail message is sent to
the user who submitted the request.

set default destination_retry time time

The initial value for a newly installed NQS system is 72 hours.

5.21.1.1 Displaying the Current Retry Limits

The following fields in the qmgr command show parameters display indicate
the values for retry limits:

Default destination_retry time = 72 hours

Default destination_retry wait = 5 minutes

See Section 6.4.1, page 142, for a full example display.

5.21.1.2 Example of Setting Retry Limits

In this example, you want to retry requests every 10 minutes. However, you
want to set a limit of 48 hours on the time during which the retries can occur;
after this time, NQS will abandon sending the request and inform the user that
the request failed. To do this, you must enter the following qmgr commands:

110 SG–2150 3.3

NQS Configuration [5]

set default destination_retry wait 10

set default destination_retry time 48

5.21.2 Defining the Sender of NQS Mail

NQS can send different types of mail messages to users. For example, a message
can be sent when the request completes execution if the qsub -me option was
used in the request submission. Messages are also sent when errors occur. The
initial setting uses the user name root in the From field of the message.

To change the name in the From field to another name, use the following qmgr
command:

set mail name

The name argument must be the name of a valid user at the system running the
server.

5.21.2.1 Displaying the Current Sender of Mail

The following field in the show parameters display indicates that root is the
sender of NQS mail:

Mail account = root

See Section 6.4.1, page 142, for a full example display.

5.21.2.2 Example of Setting NQS Mail User

If you have a special user account as the NQS manager, you may want users to
identify mail messages from that user account rather than just indicating that
they are from root. For example, if there is a user called nqsman, enter the
following qmgr command:

set mail nqsman

Mail then seems to come from a user called nqsman.

5.21.3 Locking and Unlocking Daemon Processes

The UNIX system swaps processes in and out of memory as required.
Therefore, more processes can be run simultaneously than when all the
processes are in memory all of the time. Although this does slightly increase

SG–2150 3.3 111

NQE Administration

the overhead on the system performance to manage the swapping, it is not
usually useful to lock a process into memory.

By default, the NQS daemon nqsdaemon is not locked into memory (it can be
swapped in and out as required). If you want to lock it into memory, use the
following qmgr command:

lock local_daemon

Note: The ability to lock nqsdaemon into memory is supported only for
systems running a derivative of UNIX System V.

To unlock the process from memory, use the following qmgr command:

unlock local_daemon

5.21.3.1 Displaying the Current Locking State

The following field in the show parameters display indicates that the NQS
daemon is not currently locked in memory:

NQS daemon is not locked into memory.

See Section 6.4.1, page 142, for a full example display.

5.22 Using a Script File As Input to the qmgr Utility

If you are defining many systems or queues, perform the configuration
manually or create a script file of qmgr commands to use as input to qmgr
instead of entering the information at the qmgr prompt.

After you complete an initial configuration, use the qmgr snap command to
generate a script file automatically. This file contains the qmgr commands that
will generate the current NQS configuration; see Section 5.22.1, page 113 for
more information.

To edit the script file, use any standard text editor. The qmgr commands in the
file are the same as those you would enter at the qmgr prompt.

To pipe the file into the qmgr utility, use the following command line:

cat filename | qmgr

Each line in the file is executed as if it were entered at the qmgr prompt.
Messages are displayed by qmgr as usual in response to the commands. If a

112 SG–2150 3.3

NQS Configuration [5]

command produces an error, the error message is displayed, and execution
continues to the next line of the file.

To record the output that qmgr produces (the size of the output display usually
is larger than the size of your screen display), use the following command to
redirect the standard output to a file:

cat filename | qmgr > output-filename

5.22.1 Creating a qmgr Script File of the Current Configuration

The qmgr command snap creates a file containing the qmgr commands that are
necessary to redefine the current NQS configuration. This file can then be input
to qmgr at another NQS system to build a duplicate copy of the configuration
there.

The format of the snap command is as follows:

snap [file = pathname]

The pathname argument is the path name of the file that will receive the qmgr
commands. If you omit this argument, the qmgr commands are written to the
file specified by the qmgr command set snapfile. If no file was specified,
the snap command fails.

The format of the set snapfile command is as follows:

set snapfile pathname

The pathname is relative to the NQS spool directory, or it can be an absolute
path name. The current file (if any) is shown on the display produced by the
qmgr command show parameters. The name appears after the characters
snap_file. The initial value of the file name is /dev/null. See Section 6.4.1,
page 142, for an example display.

To input a snap file to qmgr, use the cat(1) command, as follows:

cat pathname | qmgr

The pathname is an absolute path name or relative to the current directory.

In the following example, the default file that snap uses is first set to nqssnap
in the NQS spool directory, and then snap is used to write the file. The more(1)
command displays the first few lines of the snap file to show what is written to
the file.

SG–2150 3.3 113

NQE Administration

snow% qmgr

Qmgr: set snapfile nqssnap
NQS manager[TCML_COMPLETE]: Transaction complete at local host.

Qmgr: snap

Qmgr: quit

snow% more nqssnap

#

#Create the nqs network information concerning Mid, Service,
#and Aliases.

#

add mid rain rain-hy rain-ec

add output_agent fta rain

add mid squall squall-hy squall-ec
add output_agent fta squall

--More--

The script file produced by snap contains comments that divide the commands
into functional groups.

The next screen shows how this script file can be used as input to qmgr at
another NQS system:

$ cat /nqebase/database/spool/snapfile | qmgr > outfile

5.23 Output Validation

The NQS server returns output from requests to the client host or to another
host (depending on the location that the user specified in the request’s output
options) by either writing output to a common file space or using fta or rcp.
The default is fta using ftp protocol. Return output to the DFS system is
restricted to writing output to a common file space or using fta; rcp does not
support DFS.

Output option Output location

No location specified or
filename specified

The user’s working directory at submission on
the client workstation.

host and filename
specified

Specified server and file name. The directory is
the user’s home directory on host, unless
otherwise specified.

114 SG–2150 3.3

NQS Configuration [5]

user, host and/or domain,
and pathname specified

Specified user, host, and path name. The pathname
can be a simple file name or an absolute path. If
the pathname is a simple file name, the file is
placed in the user’s home directory on the
specified host. The domain specifies an FTA
domain name that uses network peer-to-peer
authorization (NPPA) rather than a password. If
users do not want to use NPPA, they can provide
a password.

NQS tries to return output to the correct user and directory according to what
the user specified. The NQS server uses the following methods to determine
how output will be returned to the client (listed in order of precedence):

Note: When using the qsub(1) command, numbers 2 and 3 do not apply, and
the order of precedence is dependent upon the output agents defined.

1. If the output destination host is the local NQS server (NQS_SERVER), output
is placed locally in the directory from which the request was submitted or
in a specified local location.

2. If the output destination host is not the local NQS server, NQS uses FTA.
NQS always tries to locate a password for the FTA transfer, which may be
embedded in the cqsub -o command line or in the user’s .netrc file, or it
may be specified when using the NQE GUI to submit a request. FTA
transfers the file according to the rules configured for the domain specified.
If the user omits domain, FTA uses its default domain, which is inet unless
you have reconfigured FTA. The inet domain uses ftp protocol and
requires a password unless you have configured NPPA. If you have
configured NPPA, no password is required.

3. If the FTA transfer fails, NQS tries to send the output using rcp. rcp uses
the .rhosts file on the destination host.

4. If all of these methods fail, NQS places the output in the home directory of
the user on the execution host.

5.24 NQS and Multilevel Security on UNICOS and UNICOS/mk Systems

This section explains the differences for NQS when used on UNICOS or
UNICOS/mk systems that run the multilevel security feature (MLS). It is
assumed that you are familiar with the UNICOS or UNICOS/mk
documentation about general system administration and the multilevel security
feature on the UNICOS or UNICOS/mk system.

SG–2150 3.3 115

NQE Administration

Note: If you are running NQE 3.3 on a UNICOS 10.0 system or UNICOS/mk
2.0.2, this section applies to your system since the MLS features are always
available at these release levels.

If you are running UNICOS 9.0, this section applies to your system if you are
running the MLS feature.

When NQS runs on a UNICOS or UNICOS/mk system that runs the multilevel
security feature, the following differences exist:

Note: If the MLS feature on UNICOS or security enhancements on
UNICOS/mk are enabled on your system, the job output files are labeled
with the job execution label. For jobs that are submitted locally, the return of
the job output files may fail if the job submission directory label does not
match the job execution label. For example, if a job is submitted from a level
0 directory, and the job is executed at a requested level 2, the job output files
cannot be written to the level 0 directory. If the home directory of the
UNICOS user under whom the job ran is not a level 2 directory, does not
have a wildcard label, or is not a multilevel directory, the job output files
cannot be returned to that directory either. The job output files will be stored
in the NQS failed directory.

If the MLS feature on UNICOS or security enhancements on UNICOS/mk
are enabled on your system and you submitted a job remotely, the Internet
Protocol Security Options (IPSO) type and label range that are defined in the
network access list (NAL) entry for the remote host affect the job output file
return.

• When job output is returned, the output files are labeled at the job execution
label for both local and remote destinations.

• When a job is restarted, the session security attributes are reverified; if these
attributes are not in a valid range, based on the user’s user database (UDB)
entry and the socket (or system) security attributes when the job was
queued, the job is deleted. If the job is deleted, a message is written to the
syslog file.

• A label requested by using the -L and -C options of the qsub or cqsub
command or the NQE GUI must dominate the job submission label.

• Mail is sent at the appropriate job label. Mail is not sent at the nqsdaemon
label, but at either the job submission or job execution label, as applicable. If
the job has not yet been initiated, mail sent to the job owner is sent at the
job submission label. If the job has been initiated or has completed

116 SG–2150 3.3

NQS Configuration [5]

execution, mail is sent at the job execution label. To read this mail, users
must have their current active label set appropriately.

• Session security attributes are constrained by the socket security attributes
when the job was queued and the user’s UDB entry. For local submissions,
the system minimum and maximum label range is used. For more
information on the socket security attributes, see your UNICOS or
UNICOS/mk system administration documentation.

• The workstation access list (WAL) is checked for remote job activity, such as
job acceptance, job status, and deleting jobs. If the execution host has a WAL
entry for the origin host that restricts access to NQS services for the caller,
remote job activity to a remote host can fail. For more information on the
WAL, see your UNICOS or UNICOS/mk system administration
documentation.

• For sites running the MLS SECURE_MAC feature, all NQS user commands
are labeled as trusted processes so that they can write to a syshigh labeled
log file. The NQS user commands write messages to the NQS log file.

• On an upgrade installation from a system not running the multilevel
security feature to a system that is running the multilevel security feature or
an upgrade installation from UNICOS 9.0 to UNICOS 10.0, the jobs are held
and are not initiated at NQS startup. The NQS administrator can then either
release the job (which will then run at the job owner’s UDB default label) or
delete the job.

For information on implementing the multilevel security feature, see your
UNICOS or UNICOS/mk system administration documentation.

5.24.1 NQS Multilevel Directories (MLDs)

If you are upgrading your NQS configuration to use multilevel directories, you
must convert your wildcard directories to multilevel directories (MLDs). To
convert between existing wildcard-labeled directories and MLDs, use the
cvtmldir command. (For more information, see the cvtmldir(8) man page.)
This conversion must be performed in single-user mode after installing NQE.

The cvtmldir command requires absolute path names; you must rename the
affected spool directories before calling cvtmldir to convert from wildcard
directories to multilevel directories. In the following examples, the
NQS_SPOOL/private/root/control directory is being converted, but you
also must convert the following NQS directories, the locations of which are
defined in your nqeinfo file:

SG–2150 3.3 117

NQE Administration

• NQS_SPOOL/private/requests

• NQS_SPOOL/private/root/chkpnt

• NQS_SPOOL/private/root/control

• NQS_SPOOL/private/root/data

• NQS_SPOOL/private/root/failed

• NQS_SPOOL/private/root/interproc

• NQS_SPOOL/private/root/output

• NQS_SPOOL/private/root/reconnect

To convert from wildcard directories to MLDs, use the following procedure
(you must be root):

1. Ensure that the nqsdaemon is not running while the conversion is
occurring. For more information on how to shut down NQS, see the
qstop(8) man page. For more information on nqsdaemon, see the
nqsdaemon(8) man page.

2. Activate the secadm category by entering the setucat secadm command
if needed.

3. Change to the parent directory; in this example, to convert the
NQS_SPOOL/private/root/control directory, change to the
NQS_SPOOL/private/root directory.

4. Rename the control directory to control.temp by entering the
following command:

/bin/mv ./control ./control.temp

5. Enter the following command to create a multilevel symbolic link called
NQS_SPOOL/private/root/control, which points to a directory named
NQS_SPOOL/private/root/control.mld. The files in the
control.temp directory are linked or copied, when necessary, into the
new control.mld directory. The files are not deleted from the
control.temp directory.

/etc/cvtmldir -m $NQS_SPOOL/private/

root/control.temp $NQS_SPOOL/private/root/control

118 SG–2150 3.3

NQS Configuration [5]

6. Enter the following command to create a relative path name for the
multilevel symbolic link output, allowing access to the files and directories
in NQS_SPOOL/private/root while running with the caller’s privileges:

/etc/unlink NQS_SPOOL/private/root/control

/bin/ln -m ./control.mld ./control

You should ensure that the directories were converted successfully. The
control.temp directory and its files should not be deleted until NQS has
been restarted and the jobs are successfully requeued or restarted. Repeat the
preceding steps for each NQS directory that is listed earlier in this section.

5.24.2 PALs

Note: PALs are required for UNICOS 10.0 and UNICOS/mk systems but not
for UNICOS 9.0 systems.

You must assign the privilege assignment lists (PALs) by running the
privcmd(8) command. For more information on PALs and the multilevel
security feature, see your UNICOS or UNICOS/mk system administration
documentation. Multilevel security on a UNICOS or UNICOS/mk system
provides a default set of PALs.

To install PALs on each UNICOS or UNICOS/mk multilevel security server,
execute the following command:

/etc/privcmd -b /nqebase/etc/nqs.db

5.24.3 Security Policies

This section describes the following multilevel security policies that are
available on a UNICOS or UNICOS/mk system, which are supported on NQS.

Note: To determine if these policies are supported on your system, see your
UNICOS or UNICOS/mk system administration documentation.

• Mandatory access controls (MACs)

• Discretionary access controls (DACs)

• Identification and authentication (I&A)

• System management

• Auditing

SG–2150 3.3 119

NQE Administration

5.24.3.1 MAC Security Policy

Mandatory access controls (MACs) are rules that control access based directly on a
comparison of the subject’s clearance and the object’s classification.

The security policy controls read and write operations to prohibit unauthorized
disclosure of any system or user information. The security policy is defined as
the set of rules and practices by which a system regulates the disclosure of
information.

NQS provides enforcement of the MAC rules for status, signal, and delete
requests (local and remote). To audit the delete requests, use the SLG_NQS audit
record for both successful and failed requests. To audit the MAC override for
NQS managers and operators, use the SLG_TRUST (trusted process) audit
record. For more information on auditing, see the description of the multilevel
secuity feature in your UNICOS or UNICOS/mk system administration
documentation.

The MAC rules for status requests require that the caller’s active security label
dominate the submission label of a job before information about that job can be
displayed (that is, the caller’s label must be greater than or equal to the job
label).

The MAC rules for signal and delete requests require that the caller’s active
security label equal the label of the job. If the job is queued, the caller’s active
label must equal that of the job submission label. If the job is executing, the
caller’s active label must equal that of the job execution label.

If you want to enforce the MAC rules, set the NQE_NQS_MAC_COMMAND
configuration parameter to 1 in the nqeinfo file before NQS is started;
otherwise, MAC checking is not performed. The setting of this parameter does
not affect the NQS managers and operators, who can automatically bypass the
MAC rules and administer NQS without additional restrictions.

If MAC rules enforcement is enabled, users from a system that is not running
the multilevel security feature can check the status of and delete their jobs only
if the jobs have a level 0, no compartments label (UNICOS 9.0 systems only).
Depending on the network access list (NAL) configuration on the execution host,
these users may not be allowed to submit jobs that request a higher label. For
more information on the NAL configuration, see your UNICOS or UNICOS/mk
system administration documentation and the spnet(8) man page.

NQS lets you specify a job execution label by using the NQE GUI or the -C and
-L options of the qsub and cqsub commands. Descriptions of the execution

120 SG–2150 3.3

NQS Configuration [5]

labels follow, assuming that the user’s UDB security attributes allow the
specified execution label:

• If no -C or -L command–line options are specified, or if the job execution
label is not specified using the NQE GUI:

– For a local job, the execution label equals the job submission label.

– For a remote job, the execution label equals the user’s default label if it is
within the session bounds (based on the socket minimum and maximum
values and the user’s UDB minimum and maximum values); if it is not
within the session bounds, the execution label equals the session
minimum label.

• If the -C command–line option is specified, or if the job execution label is
not specified using the NQE GUI:

– For a local job, the execution label equals the job submission level and
the requested compartment set.

– For a remote job, the execution label equals the socket active level and
the requested compartment set.

• If the -L command–line option is specified, or if the job execution label is
specified using the NQE GUI:

– For a local job, the execution label equals the requested level and the
submission compartment set.

– For a remote job, the execution label equals the requested level and the
socket active compartment set.

• If both the -C and -L command–line options are specified, or if the job
execution label is specified using the NQE GUI:

– For a local job, the execution label equals the requested level and the
requested compartment set.

– For a remote job, the execution label equals the requested level and the
requested compartment set.

A requested label must dominate the job submission label. For example, if a
user has an active label of level 2 and compartments sysadm and secadm, and
submits a job by using the qsub -L 4 -C sysadm command, this requested
label does not dominate the submission label. The requested compartment set
must be a superset of the submission compartment set. If the user’s UDB entry
allows authorized compartments of secadm, sysadm, and sysops, the qsub

SG–2150 3.3 121

NQE Administration

-L 4 -C sysadm,secadm command and the qsub -L 4 -C
sysadm,secadm,sysops command would dominate.

For a remote job, the socket security information is stored during job acceptance
in the tail of the control file, as the new record type s, and also within the
rawreq extension structure. If the receiving host is configured for strict B1
compliance, the stored socket minimum level and maximum level are set to the
socket active level, and the stored socket valid compartment set is set to the
socket active compartment set. This constrains the session security minimum
and maximum to the socket active label, and, therefore, also contains the job
execution label to the socket active label.

If a remote job is queued when the system is not enabled for multilevel security
and the system is then configured to be enabled for multilevel security, the s
record values are set based on the system security values, and the submission
label is set to the user’s default label.

If you have installed PALs on your system, any user with an active secadm,
sysadm, sysops, or system category can start nqsdaemon; this procedure is
audited. The qst PAL privilege text identifies which categories of users can
start nqsdaemon. The shutdown procedure is not changed; the caller must be
an NQS administrator, who does not need an active category. For more
information on nqsdaemon, see the nqsdaemon(8) man page.

The following changes occur in NQS with the MAC security policy:

• The following directories are either labeled as multilevel directories (MLDs)
or are wildcard directories as defined in your nqeinfo file:

– NQS_SPOOL/private/root/control

– NQS_SPOOL/private/root/data

– NQS_SPOOL/private/root/failed

– NQS_SPOOL/private/root/interproc

– NQS_SPOOL/private/root/output

– NQS_SPOOL/private/root/chkpnt

– NQS_SPOOL/private/requests

– NQS_SPOOL/private/reconnect

• If UNICOS or UNICOS/mk is configured to support the syslow and
syshigh MAC labels, the log file, console file, and daemons file are labeled

122 SG–2150 3.3

NQS Configuration [5]

system high (syshigh); all other NQS database files are labeled system low
(syslow).

• The client processes access the NQS protocol named pipe through the
privilege mechanism (or the pipe is labeled as wildcarded).

• Enforcement of the MAC rules for status and delete operations is
configurable; NQS administrators bypass this enforcement.

• The MAC rules for writing to job output files are enforced; NQS
administrators bypass this enforcement. For more information on writing
messages to job output files, see the qmsg(1) man page.

• Output files are labeled at the job execution label.

• Mail is sent at the job label using the following conditions:

– If the job is queued, mail is sent at the job submission label.

– If the job has been initiated or has completed, the mail is sent at the job
execution label.

• The socket security attributes at job acceptance are used to determine the
session security attributes for jobs that are submitted remotely; this
constrains the user’s UDB security attributes.

• Session security attributes are reverified at job restart; if constraints have
changed, the job may be deleted instead of restarted.

5.24.3.2 DAC Security Policy

Discretionary access controls (DACs) are rules that control and limit access to an
object, based on an identified individual’s need to know and without
intervention by a security officer for each individual assignment.

This is accomplished by using standard mode permission bits and an access
control list (ACL); the ACL and mode bits allow the owner of a file to control
r/w/x access to that file. The owner of the file can create or modify an ACL
that contains the identifiers and the r/w/x permissions for those individuals
and groups that will be allowed to access the file.

The mandatory policy restrictions established by the security administrator
always govern object access.

For more information on how ACLs are used and for examples that show how
to create and maintain ACLs, see the spacl(1) man page and your UNICOS or
UNICOS/mk system administration documentation.

SG–2150 3.3 123

NQE Administration

When DAC is used on a secure system, the following changes occur in NQS:

• You must explicitly add root to the queue access lists (this is also true on
non-multilevel security systems).

• Any current NQS manager or user who is authorized through the PAL (see
Section 5.24.3.4) can add NQS administrators.

5.24.3.3 I&A Security Policy

The identification and authentication (I&A) feature describes the login and
password features used on a UNICOS or UNICOS/mk system that is running
multilevel security. When I&A is used on a secure system, the following
changes occur in NQS:

• Centralized authentication is used to authenticate remote and alternative
users (this is also true on UNICOS 9.0 non-multilevel security systems).

• When the NQS validation type is file, and the system is configured for
strict B1 compliance, the effect on the alternative user is as follows:

– The remote user must be the same as the local user.

– The remote host must be in the /etc/hosts.equiv file.

– The remote host must be in the local user’s .rhosts/.nqshosts file.

– To provide alternative user capability for NQS when it is configured for
file validation on a system that has multilevel security enabled, you must
add the NETW_RCMD_COMPAT configuration parameter to the
SECURE_NET_OPTIONS macro in the system config.h file before
building and installing the kernel.

• The WAL is checked for remote job queuing, remote status, and remote
signal/deletion events to see whether the user is allowed access to NQS.

5.24.3.4 System Management

Note: For UNICOS 10.0 and UNICOS/mk systems, sites can run with
PRIV_SU and PALs or PAL-only Trusted UNICOS or PAL-only Cray ML-Safe.

The ability to separate and define different administrative roles and tasks is part
of the security-related system management policies and procedures. This
section describes the authorizations required to perform each administrative
task or function for each system management mechanism.

124 SG–2150 3.3

NQS Configuration [5]

• All NQS user commands are labeled as trusted processes because they may
write to the syshigh labeled log file; this is when SECURE_MAC is turned
on. The privcmd(8) command is used to assign PALs, and MAC and DAC
labels.

• When using the super-user mechanism (PRIV_SU), only root can change
the user validation type.

• When using the PAL privilege mechanism, the chgm privilege text (for an
active secadm or sysadm category) is used to determine who can add,
delete, and set managers, and to change the user validation type. To change
the user validation type, the caller must be an NQS manager.

5.24.3.5 Auditing

The site can define the security auditing policy for a UNICOS or UNICOS/mk
system on which the multilevel security feature is enabled. The site policy
should be determined before the system is up and running, and it should be
applied consistently at all times. Consistent and proper use of the the
multilevel security auditing features will help ensure site security.

For information on producing the NQS security log records in the multilevel
security feature, see your UNICOS or UNICOS/mk system administration
documentation.

The audit records specific to NQS are SLG_NQS and SLG_NQSCF. Whenever an
NQS delete request is made, the SLG_NQS record is produced. These entries are
logged through the slgentry(2) system call. Whenever a security-related
change is made to the configuration of NQS, the SLG_NQSCF record is
produced. These entries are logged through the slgentry(2) system call.

To enable auditing, you can use either the /etc/spaudit -e record_type
(record_type is either nqs or nqscf) command or the UNICOS
Installation/Configuration Menu System (on UNICOS systems) or the system
configuration files (on UNICOS/mk systems). For more information on
auditing the multilevel security feature on a UNICOS or UNICOS/mk system,
see your UNICOS or UNICOS/mk system administration documentation and
the spaudit(8) man page. The following security-related events are audited by
the NQS audit records, or the SLG_LOGN or SLG_TRUST audit records:

• User authentication success/failure (SLG_LOGN)

• Failure to set job process label (SLG_LOGN)

• Job deletion (SLG_NQS)

SG–2150 3.3 125

NQE Administration

• Queue access list insertions and deletions (SLG_NQSCF)

• User validation type changes (SLG_NQSCF)

• Add, delete, and set managers and operators (SLG_NQSCF)

• Attempt to execute qmgr subcommands by a nonprivileged user
(SLG_NQSCF)

• Bypass of the MAC rules enforcement by NQS administrators (SLG_TRUST)

5.24.4 NQS Multilevel Security Configuration

The configurable multilevel security features for NQS on UNICOS or
UNICOS/mk systems, which are described in Section 5.24.3, page 119, are
disabled by default. To enable these features, you must make the following
configuration changes.

Note: To determine if these policies are supported on your system, see your
UNICOS or UNICOS/mk system administration documentation.

1. Enforce the MAC rules for status and delete requests by setting the
NQE_NQS_MAC_COMMAND variable to 1 in the nqeinfo file.

2. Use MLDs instead of wildcard-labeled spool directories by setting the
NQE_NQS_MAC_DIRECTORY variable to 1 in the nqeinfo file.

If the NQS spool directories already exist, see Section 5.24.1, page 117, for
conversion instructions.

Note: To execute the mlmkdir(8) command, which is used to create
MLDs, special authorization is required. To create or convert to MLDs in
the NQS spool area, you must be root and must have the following
additional authorizations, depending on your system configuration:
PAL-based (Active secadm category) and PRIV_SU (No additional
privilege).

3. Set the NQE_NQS_PRIV_FIFO variable to 1 in the nqeinfo file. This action
enforces the use of privilege through PALs for client processes, such as
qsub, by writing over the NQS protocol named pipe and the NQS log pipe.

Before starting NQS, see NQE Installation, publication SG–5236, appendix A,
Preparing a Node to Run NQE. For more information, see the privcmd(8)
man page.

126 SG–2150 3.3

NQS Configuration [5]

Warning: If your system is configured to enforce the syshigh and syslow
security labels, the NQS spool directories and the NQS log file and console
file must be on a file system that has syshigh and syslow in its label range.

On UNICOS systems, ensure that the UNICOS installation tool menu is set as
follows:

Configure system -> Multilevel security (MLS) configuration ->

System options -> Enforce system high/low security labels -> ON

5.24.4.1 Converting to Wildcard Labeled Directories

Note: To use the mlmkdir(8) command, which is used to create MLDs,
special authorization is required. To create or convert to MLDs in the NQS
spool area, you must be root and must have the following additional
authorizations, depending on your system configuration:

PAL-based Active secadm category

PRIV_SU No additional authorization

To convert from MLDs to wildcard-labeled directories, use the following
procedure:

1. Ensure that the nqsdaemon is not running while the conversion is
occurring. For more information on how to shut down NQS, see the
qstop(8) man page. For more information on nqsdaemon, see the
nqsdaemon(8) man page.

2. As root, activate the secadm category, if needed, by entering the setucat
secadm command.

3. Change to the directory that you want to convert; in this example, change
to the NQS_SPOOL/private/root directory.

4. Remove the multilevel symbolic link control, so that a name can be used
with the cvtmldir(8) command to create the directory that will be labeled
as a wildcard directory by entering the following commands:

/bin/ln -m ./control.mld ./control.temp

/etc/unlink ./control

The control.temp directory is now a symbolic link pointing to
.control/.mld.

SG–2150 3.3 127

NQE Administration

5. Create a multilevel symbolic link called
NQS_SPOOL/private/root/control, which points to a directory named
NQS_SPOOL/private/root/control.mld, by entering the following
command:

/etc/cvtmldir -w $NQS_SPOOL/private

/root/control.temp $NQS_SPOOL/private/root/control

The files in the control.mld directory are linked or copied, when
necessary, into the new control directory. The files are not deleted from
the control.mld directory.

6. Set the NQE_NQS_MAC_DIRECTORY parameter value to 0 in the nqeinfo
file. You must restart NQS with these values.

The administrator should ensure that the directories were converted
successfully. You should not delete the control.temp directory and its files
until NQS has been restarted and the jobs are requeued or restarted
successfully. You must repeat the preceding steps for each NQS directory that is
listed at the beginning of Section 5.24.1, page 117.

5.25 NQS Local Changes for UNICOS and UNICOS/mk Systems

On UNICOS and UNICOS/mk systems, you may make local changes to NQS.
For Cray PVP systems, you may make changes to NQS by using user exits and
by making source-code modifications. For UNICOS/mk systems, you may
make changes to NQS only by using user exits.

5.25.1 NQS User Exits for UNICOS and UNICOS/mk Systems

For UNICOS and UNICOS/mk systems that support the user exit feature, the
NQS user exits (which are located in the /usr/src/lib/libuex directory) let
you introduce local code at defined points (compatible from release to release)
to customize NQS without having access to the source.

The user exits let sites tailor various functions of NQS, including queue
destination selection, qsub(1) option preprocessing, job startup and termination
processing, and NQS startup and shutdown processing.

NQS user exits are used for the following functions:

• NQS daemon packet. Lets sites add functionality when a packet arrives.

128 SG–2150 3.3

NQS Configuration [5]

• NQS destination ordering. Lets sites control the order of pipe queue
destinations within NQS.

• NQS fair-share priority calculation for the share_pri value.

• NQS job selection. Lets sites determine whether the request chosen by NQS
should be started, and lets them customize the order in which requests are
started by NQS.

• NQS job initiation. Allows a user exit before job initiation.

• NQS job termination. Allows a user exit after job termination.

• NQS qmgr(8) command. Allows additional functionality when a qmgr
command will be processed.

• qsub directives. Allows user exits before the first #QSUB directive, on each
#QSUB directive, and after the last #QSUB directive.

• NQS startup. Lets sites perform processing during the NQS startup.

• NQS shutdown. Lets sites perform processing during the NQS shutdown.

• Job submission. NQS uses the centralized user password identification and
authentication (I&A) routines. The user exits that are a part of the new
validation routines allow sites to implement their own NQS user
identification and validation algorithms. For more information on the I&A
user exits in the multilevel security feature, see your UNICOS or
UNICOS/mk system administration documentation.

To use the user exits, follow these steps:

Warning: The NQE /opt header files are not available in a chroot
environment. If you create an NQS user exit which references header files in
/nqebase/nqe/.../ and then build UNICOS, the libuex.a library build
described in the steps below will fail. You must keep your UNICOS build
and your build for NQS user exits separate.

1. Copy the user exit template file (or the site’s customized file) to
/usr/src/lib/libuex/local (for example, copy
nqs_uex_jobselect.template to local/nqs_uex_jobselect.c).

2. Ensure that the path names to the NQS header files (.h) are correct.

3. Execute the nmakefile file by using the nmake install command in the
/usr/src/lib/libuex directory to build the libuex.a library. This

SG–2150 3.3 129

NQE Administration

library must be rebuilt whenever a user exit is modified, added to, or
deleted from libuex/local.

4. Execute the NQS nmakefile file by using the /etc/build_nqs script in
the /nqebase/$NQE_VERSION directory to rebuild NQS.

To disable a user exit, you must remove (or rename) your local user exit file (for
example, local/nqs_uex_jobselect.c) and repeat steps 3 and 4 to rebuild
libuex.a and NQS with the default user exit stub. For examples on how to
code the NQS user exits, see the /usr/src/lib/libuex directory.

The NQS user exits are described as follows:

User exit Description

nqs_uex_dorder Lets sites change the destination list of a pipe
client just before it tries to send a request to that
list of destinations. To configure the pipe queue
destinations, use the qmgr create pipe_queue
and qmgr add destinations commands. The
order of the pipe queue destinations determines
the order in which they are contacted. If the
configured list of destinations is empty, this user
exit is not called.

A return code of 0 is the only valid return code
and indicates successful completion of this user
exit; any other return code is treated as if it were
a 0.

nqs_uex_jobinit Lets sites provide additional functionality when a
job is initiated. A site can use this exit to set
additional environment variables.

A return code of 0 is the only valid return code
and indicates successful completion of this user
exit; any other return code is treated as if it were
a 0.

nqs_uex_jobselect Determines whether the request chosen by NQS
should be started. You can customize the order in
which NQS starts requests.

A return code of 0 indicates that normal NQS
scheduling should occur. A return code of 1
indicates that the job should not be started. A

130 SG–2150 3.3

NQS Configuration [5]

return code of 2 indicates that the job should be
started.

nqs_uex_jobterm Lets sites provide additional functionality when a
job is terminated.

A return code of 0 is the only valid return code;
any other return code is treated as if it were a 0.

nqs_uex_packet Lets sites provide additional functionality when
specific NQS packets arrive in the daemon. A
user exit is required in the NQS daemon each
time a packet arrives.

A return code of 0 indicates that NQS should
process this packet. A return code of 1 indicates
that NQS should ignore this packet.

nqs_uex_qmgr Lets sites provide additional functionality when a
qmgr subcommand is entered, providing control
of the operator functions and the customization
of requests.

A return code of 0 indicates that NQS should
process this command. A return code of 1
indicates that NQS should ignore this command.

nqs_uex_qsub_after Lets sites provide additional functionality after all
qsub options have been processed. This user exit
executes under the user’s process.

A return code of 0 indicates that NQS should
continue processing this request. A return code of
1 indicates that NQS should discard this request.

nqs_uex_qsub_before Lets sites provide additional functionality before
qsub handles the first QSUB directive. This user
exit executes under the user’s process.

A return code of 0 indicates that NQS should
continue processing this request. A return code of
1 indicates that NQS should discard this request.

nqs_uex_qsub_each Lets sites interrogate or change each QSUB
directive that is processed by QSUB. This user exit
executes under the user’s process.

SG–2150 3.3 131

NQE Administration

A return code of 0 indicates that NQS should
continue processing this request. A return code of
1 indicates that NQS should discard this request.

nqs_uex_shrpri Lets sites provide their own calculation for the
share_pri value when the fair-share scheduler is
active. The share_pri value is used in the priority
calculation for job scheduling.

A return code of 0 indicates that the share_pri
value generated by NQS should be used. A
nonzero return code indicates that the share_pri
value from this user exit should be used.

nqs_uex_shutdown Lets sites do additional processing when the NQS
daemon is terminating.

A return code of 0 is the only valid return code;
any other return code is treated as if it were a 0.

nqs_uex_start Lets sites do additional processing when the NQS
daemon is initializing.

A return code of 0 indicates that NQS should
continue the startup; a return code of 1 indicates
that NQS should abort the startup.

5.25.2 NQS Source-code Modification for UNICOS Systems

For Cray PVP systems, you may make changes to NQS by making source-code
modifications. The source code is provided when you receive NQS; it is located
in /nqebase/src.

If you wish to modify NQS by changing the source-code, make a backup copy
of the content of the /nqebase directory, and then modify the source as desired.

Rebuild NQS by using the /etc/build_nqs script in the
/nqebase/$NQE_VERSION directory.

132 SG–2150 3.3

Operating NQS [6]

This chapter describes how a user defined as an NQS operator can monitor and
control NQS on the local execution server. Most of these actions are performed
using the commands of the qmgr utility. A user defined as an NQS manager
can perform all of the actions described in this chapter.

This chapter discusses the following topics:

• Overview of operator actions

• Starting and stopping NQS on the local execution server

• Monitoring the local NQS server, including displaying system parameters,
monitoring the status of queues and requests, and displaying the list of
machines currently defined in the network

• Controlling the availability of local NQS queues, including starting and
enabling queues

• Manipulating batch requests on the local execution server

6.1 Overview of Operator Actions

An NQS operator can perform the following actions on the local NQS server
(these actions may also be performed by an NQS manager):

• Controlling the availability of NQS:

– Starting up and shutting down the system

– Enabling and disabling NQS queues

– Starting and stopping NQS queues

• Monitoring NQS by using various qmgr show commands and by using the
cqstatl or qstat utility to display the following:

– The current values of system parameters

– The status of NQS queues

– A detailed description of the characteristics of NQS queues

– The status of individual requests in NQS queues

SG–2150 3.3 133

NQE Administration

You must use the cqstatl or qstat command to display information about
NQS queues.

• Controlling the processing of batch requests that users submit to the system:

– Moving requests between queues or within queues

– Holding and releasing requests in various ways

– Modifying characteristics of a request

– Deleting requests

6.2 Starting NQS

The nqeinit script is responsible for starting all NQE components. It calls
qstart to start the NQS component. You can also start an individual process
by executing the qstart command (as follows), which then automatically
starts the other NQS processes.

% qstart options

Note: For customers who plan to install PALs on UNICOS systems that run
only the NQE subset (NQS and FTA components), the qstart -c option
should be used to direct the NQS console file into a directory that does not
require root to write to it.

See the qstart(8) man page for a complete description of the syntax of the
qstart command.

The qstart command is a shell script that starts nqsdaemon and passes qmgr
startup commands to the daemon. By default, qstart performs the following
functions:

• Starts nqsdaemon

• Initializes the system’s NQS environment with commands defined in the
qmgr input file

On startup, the nqeinit and qstart commands check whether the NQS
database has been created. If it has not, the commands create it. During the
creation of the NQS database, default values are taken from the following file:

/nqebase/etc/nqs_config

134 SG–2150 3.3

Operating NQS [6]

When NQS is being configured, this process occurs only once, unless you delete
the NQS database structure. After the database is created, nqs_config is not
used again.

During each startup of NQS, /nqebase/etc is examined for a file called
NQS.startup. If the file exists, NQS uses it as input to qmgr as NQS is being
started. If it does not exist, NQS is brought up and the qmgr start all
command is issued. You can see a log of the startup activity in the NQS log
directory ($NQE_SPOOL/log).

The directory structure under $NQE_SPOOL/log is as follows:

cd $NQE_SPOOL

ls

ftaqueue log nlbdir spool

ls log

nqscon.26553.out nqslog qstart.26553.out

Except for the nqslog file, the files have the UNIX process ID appended, which
makes the files unique across invocations of qstart and qstop.

After the initial boot of NQS on a system, you should make subsequent
database changes interactively using qmgr. After changes are made, you can
use the qmgr snap file command to save the current configuration. To
update the standard configuration file, you can replace the nqs_config file
with the snap file.

Note: In order to use the qmgr snap file command, you must have NQS
manager privilege.

You do not need an NQS.startup file to preserve changes made to qmgr. Any
qmgr changes are written to the NQS database and preserved across shutdowns
and startups. You should make a copy of your changes to either the
nqs_config or NQS.startup file, in case your database is ever corrupted.

After nqsdaemon is initialized, qstart determines whether the NQS spool
database (usually in $NQE_SPOOL/spool) exists. If qstart finds that the
database is missing, the /nqebase/etc/nqs_config configuration file is sent as
input to qmgr. This file should contain the complete NQS database
configuration, including the machine IDs, queues, and global limits. You can
copy the output from a qmgr snap file to /nqebase/etc/nqs_config when
you are doing an upgrade and an NQS database must be constructed. NQS
executes the /nqebase/etc/NQS.startup file each time it starts up, whether or
not an NQS database exists.

SG–2150 3.3 135

NQE Administration

The changes that you make to the /nqebase/etc/nqs_config file are not
propagated automatically into the active NQS spool database. Usually, the
database is in $NQE_SPOOL/spool when the system is booted; therefore, the
configuration is already loaded (except when the system is initially installed or
when a clean $NQE_SPOOL/spool is being used).

To ensure that the NQS daemon is running, use the following command:

/nqebase/bin/qping -v
nqs-2550 qping: INFO

The NQS daemon is running.

The following is a sample NQS.startup file, which the site can configure. A
copy of the file, as it is shown in this example, is contained in
/nqebase/examples.

136 SG–2150 3.3

Operating NQS [6]

USMID %Z%%M% %I% %G% %U%

#
NQS.startup - Qmgr commands to start up NQS.

#

Example of site-configurable script that resides in /nqebase/etc/config;
/nqebase/etc/qstart will invoke /nqebase/etc/NQS.startup unless the

-i option is specified.

#
#

Set general parameters.

#

Fewer timeouts on qstat, qmgr, etc., if nqsdaemon locked in memory.

#
lock local_daemon

#

Site may not run accounting during nonprime time to save disk space.

#

set accounting on
#

Could have put checkpoint directory in /tmp/nqs/chkpnt

for a benchmark; so make sure it is in usual place

for prime time.

#

set checkpoint_directory =(/usr/spool/nqe/spool/private/root/chkpnt)
#

Could ensure that NQS will not fill up /usr/spool/nqe by

setting the log_file to /tmp/nqs/nqslog.

#

set log_file =/usr/spool/nqe/log/nqslog
#

Debug level may have been set to 3 (verbose) for testing;

reduce log file size for prime time by reducing level.

#

set debug 0
#

There are many NQS message types that can be turned on and

off separately. Set some message types on when wanting

more information logged for areas of interest or set all

message types on when tracking problems. Note that

"set message_type on all" will turn on all but "flow"
messages. Using "set message_type on flow" should only be

used very selectively in controlled situations for tracking

a very difficult problem.

SG–2150 3.3 137

NQE Administration

#

set message_type off all
#

NQS message headers in the log file can now be set to short

(same as always) or long, which includes information on where

the message is being issued from. Use long when tracking

problems.

#
set message_header short

#

NQS log files can be automatically segmented based on time, size,

or at each startup of NQS. The directory to which NQS will

segment the log file is specified with the "set segment directory"
command.

#

set segment directory /usr/spool/nqe/log

#

NQS can now automatically segment the NQS log file each time NQS
is started.

#

set segment on_init on

#

Name "batch" is not magic; corresponds to hypothetical pipe_queue.

See nqs/example/qmgr.example.
#

set default batch_request queue batch

#

Number of hours during which a pipe queue can be unreachable;

a routing request that exceeds this limit is marked as failed.
#

set default destination_retry time 72

#

Number of minutes to wait before trying a pipe queue destination

that was unreachable at the time of the last attempt.
#

set default destination_retry wait 5

#

Turn on the default return of the user’s job log file.

#

set default job_log on
#

Assumes NQS account exists on the Cray Research system

and belongs to group root. If -me or -mb on qsub; this is

138 SG–2150 3.3

Operating NQS [6]

who mail will be from.

#
set mail nqs

#

#

Now set global parameters.

#

set global batch_limit = 20
set global user_limit = 20

set global group_limit = 15

#

Consider this number an "oversubscription"; it does not

have to be the size of the machine.
#

set global memory_limit = 256Mw

#

Consider this number an "oversubscription"; it does not

have to be the size of the SSD.
#

set global quickfile_limit = 1Gw # Y-MP Only

#

The numbers in each tape group must reflect

local site configuration.

#
set global tape_limit a = 10

set global tape_limit b = 5

set global tape_limit c = 5

set global tape_limit d = 0

set global tape_limit e = 0
set global tape_limit f = 0

set global tape_limit g = 0

set global tape_limit h = 0

#

Maximum number of pipe requests allowed to run concurrently.
#

set global pipe_limit = 5

#

Capture configuration status at startup; written to

/usr/spool/nqe/log/qstart.out unless otherwise specified.

These commands are entirely optional, but handy
for reference if problems occur.

#

sho queues

SG–2150 3.3 139

NQE Administration

sho parameters

sho mids
sho man

#

Now NQS will begin scheduling jobs.

#

start all_queues

6.3 NQS Shutdown and Restart

The nqestop script is responsible for stopping all NQE components. It calls
qstop to stop the NQS component. You can also stop an individual NQS
process by executing the qstop(8) command as follows:

% qstop options

See the qstop(8) man page for a complete description of the syntax of the
qstop command.

!
Caution: When you stop NQS by using the qstop command, you should be
aware that you have not stopped NQE. The Network Load Balancer collector
daemon uses logdaemon services . The qstop command does not stop NLB
collectors; use nqestop(8) to stop all of NQE.

When the qmgr shutdown command shuts down NQS, all processes that
make up a restartable running batch request on the local host are killed. On
UNICOS, UNICOS/mk, and IRIX systems, an image of the request is saved in a
file in the checkpoint directory by NQS using the chkpnt(2) system call on
UNICOS and UNICOS/mk systems and the cpr(1) command on IRIX systems.

For UNICOS, UNICOS/mk, and IRIX systems, for a batch request to be
considered restartable, it must meet the recoverability criteria of job and process
recovery, as described in General UNICOS System Administration, publication
SG–2301 or in the Checkpoint and Restart Operation Guide, publication
007–3236–001, a Silicon Graphics publication.

When NQS is restarted, checkpointed requests are recovered from the images in
their respective restart files. They resume processing from the point of
suspension before the shutdown. After a request is restarted successfully, the
restart file is kept until the request completes (in which case, the file is removed)
or the request is checkpointed again (in which case, the file is overwritten).

140 SG–2150 3.3

Operating NQS [6]

The following is a sample NQS.shutdown file, which the site can configure. A
copy of the file, as it is shown in this example, is contained in
/nqebase/examples.

USMID %Z%%M% %I% %G% %U%

#

NQS.shutdown - Qmgr commands to shut down NQS.

#
Example of site-configurable script that resides in /nqebase/etc/config;
/nqebase/etc/qstop invokes /etc/config/NQS.shutdown, unless the

-i option is specified.

#

stop all
#

The "set accounting off" line has been removed from this example

as it was found that setting accounting off at NQS.shutdown time

turned NQS accounting off before accounting records had been given

their appropriate terminating status and this caused problems with

the post-processing accounting routine summaries of the accounting
data.

#

The 60-second grace period means shutdown will take longer than 60

seconds. The nqsdaemon sends a SIGSHUTDN signal to the processes

of all running requests and then waits for the number of seconds
specified by the grace period. After the grace period, nqsdaemon

attempts to checkpoint all running requests that are restartable;

i.e., qsub option -nc NOT specified. nqsdaemon will send SIGKILL to

processes of requests that were not checkpointed, including those

for which the checkpoint failed. All checkpointed requests and
rerunnable requests (i.e., qsub option -nr NOT specified) will be

requeued to be restarted or rerun when NQS is next initiated.

#

shutdown 60

6.4 Monitoring NQS

Several qmgr commands are available to monitor NQS; these commands all
begin with show.

You also can use the NQE GUI Status display and the cqstatl or the qstat
command to gather valuable information about requests and queues.

SG–2150 3.3 141

NQE Administration

6.4.1 Displaying System Parameters

To display the current values for system parameters, use the following qmgr
command:

show parameters

An example of the display follows:

142 SG–2150 3.3

Operating NQS [6]

Qmgr: sho parameters

sho para

Checkpoint directory =

/nqebase/version/pendulum/database/spool/private/root/chkpnt

Debug level = 1

Default batch_request queue = nqenlb

Default destination_retry time = 72 hours

Default destination_retry wait = 5 minutes

Default return of a request’s job log is OFF

Global batch group run-limit: unspecified

Global batch run-limit: 5

Global batch user run-limit: 2

Global MPP Processor Element limit: unspecified

Global memory limit: unlimited

Global pipe limit: 5

Global quick-file limit: unspecified

Global tape-drive a limit: unspecified

Global tape-drive b limit: unspecified

Global tape-drive c limit: unspecified

Global tape-drive d limit: unspecified

Global tape-drive e limit: unspecified

Global tape-drive f limit: unspecified

Global tape-drive g limit: unspecified

Global tape-drive h limit: unspecified

Job Initiation Weighting Factors:

Fair Share Priority = 0 (Fair Share is not enabled)

Requested CPU Time = 0

Requested Memory = 0

Time-in-Queue = 1

Requested MPP CPU Time = 0

Requested MPP PEs = 0

User Specified Priority = 0

Job Scheduling: Configured = nqs normal Active = nqs normal

Log_file = /nqebase/version/pendulum/database/spool/../log/nqslog

MESSAGE_Header = Short

SG–2150 3.3 143

NQE Administration

MESSAGE_Types:

Accounting OFF CHeckpoint OFF COMmand_flow OFF

CONfig OFF DB_Misc OFF DB_Reads OFF

DB_Writes OFF Flow OFF NETWORK_Misc OFF

NETWORK_Reads OFF NETWORK_Writes OFF OPer OFF

OUtput OFF PACKET_Contents OFF PACKET_Flow OFF

PROTOCOL_Contents OFF PROTOCOL_Flow OFF RECovery OFF

REQuest OFF ROuting OFF Scheduling OFF

USER1 OFF USER2 OFF USER3 OFF

USER4 OFF USER5 OFF

Mail account = root

Netdaemon = /nqebase/bin/netdaemon

Network client = /nqebase/bin/netclient
Network retry time = 31 seconds

Network server = /nqebase/bin/netserver

NQS daemon accounting is OFF

NQS daemon is not locked in memory

Periodic_checkpoint concurrent_checkpoints = 1

Periodic_checkpoint cpu_interval = 60

Periodic_checkpoint cpu_status on

Periodic_checkpoint max_mem_limit = 32mw

Periodic_checkpoint max_sds_limit = 64mw

Periodic_checkpoint min_cpu_limit = 60

Periodic_checkpoint scan_interval = 60

Periodic_checkpoint status off

Periodic_checkpoint time_interval = 180

Periodic_checkpoint time_status off

SEgment Directory = NONE

SEgment On_init = OFf

SEgment Size = 0 bytes

SEgment Time_interval = 0 minutes

Sequence number for next request = 0

Snapfile = /nqebase/version/pendulum/database/spool/snapfile

Validation type = validation files

This information also is displayed by the following qmgr command (along with
the list of managers and operators and any user access restrictions on queues):

show all

144 SG–2150 3.3

Operating NQS [6]

The following qmgr command displays only the global limits (a subset of the
output displayed in the preceding command):

show global_parameters

All entries in the show parameters display, except for the Sequence
number for next request, can be configured by qmgr commands.

Note: Some parameters are not enforced if the operating system does not
support the feature, such as MPP processing elements or checkpointing.

The following list explains each entry and shows the qmgr command (in
parentheses) that is used to change the entry. Most of these commands can be
used only by an NQS manager; commands that can be issued by an NQS
operator are prefixed by a dagger (†).

Display
entry

Description

Debug level

The level of information written to the log file (set debug).

Default batch request queue

The queue to which requests are submitted if the user does not
specify a queue (set [no_]default batch_request
queue).

Default destination retry time

The maximum time that NQS tries to send a request to a pipe
queue (set default destination_retry time).

Default destination retry wait

The interval between successive attempts to retry sending a
request (set default destination_retry wait).

Default return of request’s job log

Determines whether the default action is to send a job log to
users when the request is complete (set default job log
on/off).

Global batch group run-limit

The maximum number of batch requests that all users of a
group can run concurrently (†set global group_limit).

SG–2150 3.3 145

NQE Administration

Global batch run-limit

The maximum number of batch requests that can run
simultaneously at a host (†set global batch_limit).

Global batch user run-limit

The maximum number of batch requests any one user can run
concurrently (†set global user_limit).

Global MPP Processor Element limit

The maximum number of MPP processing elements available to
all batch requests running concurrently (†set global
mpp_pe_limit). Valid only on the Cray MPP systems and
optionally enabled on IRIX systems (see Section 5.11.4, page 82).

Global memory limit

The maximum memory that can be allocated to all batch
requests running concurrently (†set global memory_limit).

Global pipe limit

The maximum number of requests that can be routed
simultaneously at the host (†setglobal pipe_limit).

Global quick-file limit

The maximum quickfile space that can be allocated to all batch
requests running concurrently on NQS on UNICOS systems
(†set global quickfile_limit).

Global tape-drive x limit

The maximum number of the specified tape drives that can be
allocated to all batch requests running concurrently (†set
global tape_limit).

Job Initiation Weighting Factoring

The weight of the specified factor in selecting the next request
initiated in a queue (set sched_factor
cpu|memory|share|time|mpp_cpu|mpp_pe|user_priority)

Job Scheduling option(s)

The job scheduling type used by nqsdaemon (set
job_scheduling).

146 SG–2150 3.3

Operating NQS [6]

Log file

The path name of the log file (set log_file).

MESSAGE_Header

The NQS message header (set message_header
long|short).

MESSAGE_Types

The type of NQS messages sent to message destinations such as
the NQS log file or the user’s terminal (set message_types
off|on).

Mail account

The name that appears in the From: field of mail sent to users
by NQS (set mail).

Netdaemon

The name of the TCP/IP network daemon (set
[no_]network daemon).

Network client

The name of the network client process (set network
client).

Network retry time

The maximum number of seconds a network function can fail
before being marked as completely failed (set network
retry_time).

Network server

The name of the network server process (set network
server).

NQS daemon accounting

Determines whether NQS daemon accounting is enabled (set
accounting off|on).

SG–2150 3.3 147

NQE Administration

NQS daemon is/is not locked in memory

The state of the nqsdaemon process; that is, whether it is
locked into memory or not (†lock local daemon and
†unlock local daemon).

Periodic_checkpoint concurrent_checkpoints

The maximum number of checkpoints that can occur
simultaneously during a periodic checkpoint scan interval
(valid only on UNICOS, UNICOS/mk, and IRIX systems) (set
periodic_checkpoint concurrent_checkpoints).

Periodic_checkpoint cpu_interval

The default CPU time interval for periodic checkpointing (valid
only on UNICOS, UNICOS/mk, and IRIX systems) (set
periodic_checkpoint cpu_interval).

Periodic_checkpoint cpu_status on

Determines whether NQS periodic checkpoints are initiated
based on the CPU time used by a request (valid only on
UNICOS, UNICOS/mk, and IRIX systems) (set
periodic_checkpoint cpu_status off|on).

Periodic_checkpoint max_mem_limit

The maximum memory limit for a request that can be
periodically checkpointed (valid only on UNICOS,
UNICOS/mk, and IRIX systems) (set
periodic_checkpoint max_mem_limit).

Periodic_checkpoint max_sds_limit

The maximum SDS limit for a request that can be periodically
checkpointed (valid only on UNICOS systems) (set
periodic_checkpoint max_sds_limit).

Periodic_checkpoint min_cpu_limit

The minimum CPU limit for a request that can be periodically
checkpointed (valid only on UNICOS, UNICOS/mk, and IRIX
systems) (set periodic_checkpoint max_mem_limit).

148 SG–2150 3.3

Operating NQS [6]

Periodic_checkpoint scan_interval

The time interval in which NQS scans running requests to find
those eligible for periodic checkpointing (valid only on
UNICOS, UNICOS/mk, and IRIX systems) (set
periodic_checkpoint scan_interval).

Periodic_checkpoint status off

Determines whether NQS will examine running requests to see
whether they can be checkpointed and then schedule them for
checkpointing (on). If the status is off, no requests are
periodically checkpointed (valid only on UNICOS,
UNICOS/mk, and IRIX systems) (set
periodic_checkpoint status off|on).

Periodic_checkpoint time_interval

The default wall-clock time interval for periodic checkpointing
(valid only on UNICOS, UNICOS/mk, and IRIX systems) (set
periodic_checkpoint cpu_interval).

Periodic_checkpoint time_status off

Determines whether NQS periodic checkpoints are initiated
based on wall-clock time used by a request (valid only on
UNICOS, UNICOS/mk, and IRIX systems) (set
periodic_checkpoint time_status off|on).

SEgment Directory

The name of the directory containing log file segments (set
segment directory).

SEgment ON_init

Determines whether the log file is segmented at initialization
(set segment on_init off|on).

SEgment Size

The maximum size of an NQS log file before it is segmented
(set segment size).

SEgment Time_interval

The maximum time that can elapse before the NQS log file is
segmented (set segment time_interval).

SG–2150 3.3 149

NQE Administration

Sequence number for next request

The next sequence number that will be assigned to a batch
request.

Snap_file

The default name of the file that will receive output from the
snap command (set snapfile).

Validation type

The type of user validation that will be performed on user
requests (set [no_]validation).

6.4.2 Displaying a List of Managers and Operators

To display a list of the currently defined NQS managers and operators for this
server, use the following qmgr command:

show managers

In the resulting display, users who are managers are indicated by a :m suffix;
operators are indicated by a :o suffix, as follows:

Qmgr: show managers

show managers

root:m

snowy:m

fred:o

xyz:o

The list always includes root (as a manager).

6.4.3 Displaying a Summary Status of NQS Queues

To display a brief summary status of all currently defined batch and pipe
queues, use the following qmgr command:

show queue

An example of the display follows; it is identical to that produced by the
cqstatl -s or qstat -s command:

150 SG–2150 3.3

Operating NQS [6]

Qmgr: show queue

show queue

NQS BATCH QUEUE SUMMARY

QUEUE NAME LIM TOT ENA STS QUE RUN

----------------------- --- --- --- --- --- ---

nqebatch 5 0 yes on 0 0
----------------------- --- --- --- --- --- ---

pendulum 5 0 0 0

----------------------- --- --- --- --- --- ---

NQS PIPE QUEUE SUMMARY

QUEUE NAME LIM TOT ENA STS QUE ROU

----------------------- --- --- --- --- --- ---

nqenlb 1 0 yes on 0 0

----------------------- --- --- --- --- --- ---
pendulum 5 0 0 0

----------------------- --- --- --- --- --- ---

To display a more detailed summary, use the following qmgr command:

show long queue

An example of the display follows; it is identical to that produced by the
cqstatl or qstat command.

SG–2150 3.3 151

NQE Administration

Qmgr: show long queue

show long queue

NQS BATCH QUEUE SUMMARY

QUEUE NAME LIM TOT ENA STS QUE RUN WAI HLD ARR EXI

---------------------- --- --- --- --- --- --- --- --- --- ---

nqebatch 5 0 yes on 0 0 0 0 0 0

---------------------- --- --- --- --- --- --- --- --- --- ---

latte 5 0 0 0 0 0 0 0

---------------------- --- --- --- --- --- --- --- --- --- ---

NQS PIPE QUEUE SUMMARY

QUEUE NAME LIM TOT ENA STS QUE ROU WAI HLD ARR DEP DESTINATIONS

---------------------- --- --- --- --- --- --- --- --- --- --- -------------

nqenlb 1 0 yes on 0 0 0 0 0 0

cool 1 0 yes on 0 0 0 0 0 0 batch@cool

---------------------- --- --- --- --- --- --- --- --- --- --- -------------

latte 5 0 0 0 0 0 0 0

---------------------- --- --- --- --- --- --- --- --- --- --- -------------

The columns in these summary displays are described as follows:

Column name Description

QUEUE NAME Indicates the name of the queue.

LIM Indicates the maximum number of requests that
can be processed in this queue at any one time.
This is the run limit that the NQS manager
defines for the queue.

For batch queues, LIM indicates the maximum
number of requests that can execute in this queue
at one time. After this limit is reached, additional
requests will be queued until a request already in
the queue completes execution.

For pipe queues, LIM indicates the maximum
number of requests that can be routed at one time.

TOT Indicates the total number of requests currently in
the queue.

152 SG–2150 3.3

Operating NQS [6]

ENA Indicates whether the queue was enabled to
accept requests. If the queue is disabled (ENA is
no), the queue will not accept requests.

STS Indicates whether the queue has been started. If a
queue was not started (STS is off), the queue
will accept requests, but it will not process them.

QUE The number of requests that are waiting to be
processed.

ROU The number of pipe queue requests that are
currently being routed to another queue.

RUN The number of batch queue requests that are
currently running.

WAI The number of requests that are waiting to be
processed at a specific time.

HLD The number of requests the NQS operator or
manager has put into the hold state.

ARR The number of requests currently arriving from
other queues.

DEP The number of requests currently terminating
their processing.

DESTINATIONS The destinations that were defined for the queue
by the NQS manager.

The last line of the display shows the total figures for the use of the queues by
users at the NQS host (host1 in the example), except for the LIM column,
which shows the global pipe limit for this system.

When you use a cqstatl command rather than qmgr show commands, you
can limit the display to NQS pipe queues by using the -p option, or limit the
display to NQS batch queues by using the -b option.

6.4.4 Displaying All the Characteristics Defined for an NQS Queue

To display details of all the characteristics defined for NQS queues, use the
cqstatl -f or the qstat -f command. You can restrict the display to specific
queues by using the queues option.

You must separate queue names with a space character.

SG–2150 3.3 153

NQE Administration

An example of a full display for the batch queue nqebatch follows:

% cqstatl -f nqebatch

NQS BATCH QUEUE: nqebatch@latte Status: ENABLED/INACTIVE

Priority: 30
<ENTRIES>

Total: 0

Running: 0 Queued: 0 Waiting: 0

Holding: 0 Arriving: 0 Exiting: 0

<RUN LIMITS>
Queue: 5 User: unspecified Group: unspecified

<COMPLEX MEMBERSHIP><RESOURCE USAGE>

LIMIT ALLOCATED

Memory Size unspecified 0kw

Quick File Space unspecified 0kw

MPP Processor Elements unspecified 0
<REQUEST LIMITS>

PER-PROCESS PER-REQUEST

type a Tape Drives unspecified

type b Tape Drives unspecified

type c Tape Drives unspecified
type d Tape Drives unspecified

type e Tape Drives unspecified

type f Tape Drives unspecified

type g Tape Drives unspecified

type h Tape Drives unspecified
Core File Size unspecified

Data Size unspecified

Permanent File Space unspecified unspecified

Memory Size unspecified unspecified

Nice Increment 0

Quick File Space unspecified unspecified
Stack Size unspecified

CPU Time Limit unlimited unlimited

Temporary File Space unspecified unspecified

Working Set Limit unspecified

MPP Processor Elements unspecified
MPP Time Limit unspecified unspecified

154 SG–2150 3.3

Operating NQS [6]

Shared Memory Limit unspecified

Shared Memory Segments unspecified

MPP Memory Size unspecified unspecified

<ACCESS>

Route: Unrestricted Users: Unrestricted

<CUMULATIVE TIME>

System Time: 904.22 secs User Time: 59.14 secs

Some parameters are not enforced if the operating system does not support the
feature, such as MPP processor elements.

An example of a full display for the pipe queue nqenlb follows:

% cqstatl -f nqenlb

NQS PIPE QUEUE: nqenlb@latte Status: ENABLED/INACTIVE

Priority: 63
<ENTRIES>

Total: 0

Running: 0 Queued: 0 Waiting: 0

Holding: 0 Arriving: 0 Departing: 0

<DESTINATIONS>

<SERVER>

/nqebase/bin/pipeclient CRI_DS

<ACCESS>

Route: Unrestricted Users: Unrestricted

<CUMULATIVE TIME>
System Time: 269.92 secs User Time: 95.21 secs

The cqstatl or qstat command also can be used to display details of
characteristics defined for NQS queues on other hosts. The difference is that
you must give the name of the remote host where the queues are located. For

SG–2150 3.3 155

NQE Administration

example, for the cqstatl command, you could include the -h option to
specify the remote host, as follows:

cqstatl -d nqs -h target_host -f queues

You also can change your NQS_SERVER environment variable to specify the
remote host.

6.4.5 Displaying Summary Status of User Requests in NQS Queues

You can display a summary of the requests currently in the queue if you
include the queue-name parameter in the qmgr commands show queue and
show long queue:

show queue queue-name
show long queue queue-name

If no requests are currently in the queue, the following message is displayed:

nqs-2224 qmgr: CAUTION
no requests in queue queue-name

You can restrict the display to the requests in the queue that were submitted by
a specific user by including the name of that user after the queue-name argument:

show queue queue-name username
show long queue queue-name username

An example of the display for a batch queue follows:

Qmgr: show long queue nqebatch

show long queue nqebatch

NQS BATCH REQUEST SUMMARY

IDENTIFIER NAME USER LOCATION/QUEUE JID PRTY REQMEM REQTIM ST

---------- ----- -------- ---------------- ---- ---- ------ ------ ---
39.latte STDIN mary nqebatch@latte 10644 --- 262144 ** R

The columns in this display have the following descriptions:

Column name Description

IDENTIFIER The request identifier (as displayed when the
request was submitted).

156 SG–2150 3.3

Operating NQS [6]

NAME The name of the script file.

USER The user name under which the request will be
executed at the NQS system.

LOCATION/QUEUE The NQS queue in which the request currently
resides.

JID The job identifier for the request at the NQS
system.

PRTY The nice value of the request.

REQMEM The number of kilowords of memory the request
is using.

REQTIM The number of seconds of CPU time remaining to
the request.

ST An indication of the current state of the request.
This can be composed of a major and a minor
status value. Major status values are as follows:

A Arriving

C Checkpointed

D Departing

E Exiting

H Held

Q Queued

R Running

S Suspended

U Unknown state

W Waiting

See the cqstatl(1) and qstat(1) man pages for
a list of the minor values.

The show queue display has much of this information, but it does not contain
the USER, QUEUE, JID, and PRTY fields.

The following example display is a summary of all requests in an NQS pipe
queue called squall at a system called host1:

SG–2150 3.3 157

NQE Administration

Qmgr: show long queue nqenlb

show long queue nqenlb

NQS PIPE REQUEST SUMMARY

IDENTIFIER NAME OWNER USER LOCATION/QUEUE PRTY ST

------------- ------- -------- -------- --------------------- ---- ---

40.latte STDIN 1201 mary nqenlb@latte 1 Q

The columns in this display have the following meanings:

Column name Description

IDENTIFIER The request identifier (as displayed when the
request was submitted).

NAME The name of the script file, or stdin if the
request was created from standard input.

OWNER The user name under which the request was
submitted.

USER The user name under which the request will be
executed.

LOCATION/QUEUE The queue in which the request currently resides.

PRTY The intraqueue priority of the request.

ST An indication of the current state of the request
(in this case, Q means the request is queued and
ready to be routed to a batch queue).

The show queue display has much of this information in it, but it does not
contain the OWNER, USER, QUEUE, and PRTY fields.

A list of all requests that run in all NQS queues can be displayed by root or an
NQS manager (otherwise, the display shows only the submitting user’s
requests). Use the cqstatl or qstat command with the -a option; for
example:

cqstatl -a

Note: For information about displaying requests in the NQE database, see
Chapter 9, page 231.

158 SG–2150 3.3

Operating NQS [6]

6.4.6 Displaying the Mid Database

To display a list of NQS systems that are currently defined in the machine ID
(mid) database, use the following qmgr command:

show mid

An example of the display follows:

Qmgr: sho mid

sho mid

MID PRINCIPAL NAME AGENTS ALIASES

-------- -------------- ------ -------
10111298 latte nqs latte.cray.com

10653450 pendulum nqs

10671237 gust nqs gust.cray.com

This display shows that three systems are currently defined; the descriptions of
these entries are explained in Section 5.3, page 50.

The following qmgr command displays information on a specific mid or host:

show mid hostname|mid

An example of such a display follows:

Qmgr: show mid latte

show mid latte

MID PRINCIPAL NAME AGENTS ALIASES
-------- -------------- ------ -------

10111298 latte nqs latte.cray.com

6.5 Controlling the Availability of NQS Queues

Before an NQS queue can receive and process requests submitted by a user, it
must meet the following requirements:

• The queue must be enabled so that it can receive requests. If a queue is
disabled, it can still process requests already in the queue, but it cannot
receive any new requests.

SG–2150 3.3 159

NQE Administration

• The queue must be started so that it can process requests that are waiting in
the queue. If a queue is stopped, it can still receive new requests from users,
but it will not try to process them.

The NQS operator (or manager) can control these states, thereby controlling the
availability of a queue.

For example, you can disable all queues before shutting down the NQS system
and prevent users from submitting any additional requests. The requests that
are already in the queues will be processed.

Another example might be when no destination for a pipe queue will be
available for some time (for example, the destination host may not be
functioning). You can stop the queue rather than having NQS repeatedly try to
send requests and deplete system resources. There is a system limit to the
amount of time a request can wait in a queue.

6.5.1 Enabling and Disabling Queues

To enable a queue and allow requests to be placed in it, use the following qmgr
command:

enable queue queue-name

If the queue is already enabled, no action is performed.

To disable a queue and prevent any additional requests from being placed in it,
use the following qmgr command:

disable queue queue-name

If the queue is already disabled, no action is performed. If requests are already
in the queue, these can still be processed (if the queue has been started).

An NQS manager also can prevent or enable individual users’ access to a queue
(see Section 5.8, page 69).

6.5.1.1 Example of Enabling and Disabling Queues

In the following example, you want to prevent users from sending requests to
the NQS queue called express for a few hours. To disable the queue, use the
following qmgr command:

disable queue express

160 SG–2150 3.3

Operating NQS [6]

When you want to enable the queue, use the following qmgr command:

enable queue express

6.5.2 Starting and Stopping Queues

To start an NQS queue and allow it to process any requests waiting in it, use
the following qmgr command:

start queue queue-name

If the queue is already started, no action is performed.

To start all NQS queues, use the following qmgr command:

start all_queues

To stop a queue and prevent any further requests in it from being processed,
use the following qmgr command:

stop queue queue-name

If the queue is already stopped, no action is performed. A request that had
already begun processing before the command was issued is allowed to
complete processing. All other requests in the queue, and any new requests
placed in the queue, are not processed until the queue is started.

To stop all NQS queues, use the following qmgr command:

stop all_queues

You can also suspend the processing of a specific request in a queue (instead of
the entire queue); see Section 6.6.4, page 165.

6.5.2.1 Example of Starting and Stopping Queues

In the following example, you can stop all NQS queues except the queue called
cray1-std, by first stopping all queues and then restarting cray1-std, as
follows:

stop all_queues

start queue cray1-std

The following qmgr command starts all of the queues:

start all_queues

SG–2150 3.3 161

NQE Administration

6.6 Manipulating Requests

You can perform certain actions by using qmgr commands on requests that
were submitted by users. To delete a request, you must have either operator
privileges on NQS or be the owner of the request.

6.6.1 Moving Requests between NQS Queues

To move a request from one NQS queue to another, use the following qmgr
command:

move request = request queue_name

A request can be moved only if it has not yet started processing (that is, has not
yet started being transferred to another queue).

The request argument is the request identifier. It corresponds to the value
displayed under the IDENTIFIER column of the summary request display (see
Section 6.4.5, page 156). The queue_name argument is the name of the queue to
hold the request.

To move more than one request, use the following qmgr command:

move request = (requests) queue_name

You must separate request identifiers with a space or a comma and enclose
them all in parentheses.

To move all requests that have not started processing in one queue to another
queue, use the following qmgr command:

move queue from_queue_name to_queue_name

6.6.1.1 Example of Moving Requests between Queues

The following example moves the two requests with request identifiers 123 and
135 from the current queue to another queue called fast:

move request = (123,135) fast

You do not have to specify the queue in which these requests currently reside.

162 SG–2150 3.3

Operating NQS [6]

6.6.2 Moving Requests within a Queue

The following qmgr command schedules queued requests manually, changing
their position in a queue:

schedule request request(s) [order]

The request argument is one or more request identifiers of the request to be
rescheduled. If you specify more than one request, you must enclose them all in
parentheses and separate them with a space character or a comma.

The order argument can be one of the following:

• first, before all other requests in the queue, including restarted or rerun
requests

• next, after all other qmgr scheduled requests in the queue

• now, immediately initiating the request and bypassing all NQS limit checks

• system, moving a previously scheduled request back to system-controlled
scheduling

You can use the schedule command only on queued requests.

If a queue has a higher interqueue priority, the requests in that queue are
usually initiated before those in queues with a lower interqueue priority.

6.6.2.1 Example of Moving Requests within a Queue

The following example repositions the requests 100, 101, and 102 to the order
101, 102, and then 100:

schedule request 100 next

schedule request 101 now

schedule request 102 first

Request 101 is scheduled immediately, before all other queued requests.

Request 102 is scheduled to go before all other requests scheduled by qmgr
(but not before those scheduled with the schedule now command, which take
precedence).

Request 100 is scheduled to go after all requests scheduled by qmgr, but before
system-scheduled requests.

SG–2150 3.3 163

NQE Administration

6.6.3 Holding and Releasing Requests

To hold specific queued requests so that they are not processed, use the
following qmgr command:

hold request request(s) [grace-period]

The request argument is one or more request identifiers of the requests to be
held. If you specify more than one request, you must enclose them all in
parentheses and separate them with a space character or a comma.

The grace-period argument is the number of seconds between when the command
is issued and when the request is actually held; the default is 60 seconds.

Held requests become ineligible for processing; they are removed from the run
queue and their NQS resources are released. UNICOS, UNICOS/mk, and IRIX
requests that are running can be held; they are checkpointed until they are
released. On other platforms, running requests cannot be held because they
cannot be checkpointed.

You can hold more than one request at a time. Until it is released, you cannot
process a held request (for instance, move it to another queue).

To release requests that are held, use the following qmgr command:

release request request(s)

The qmgr command release request does not affect any request that is in a
state other than being held. No grace period exists for releasing a request.

6.6.3.1 Example of Holding and Releasing Requests

In the following example, the request with identifier 123 is immediately held to
prevent it from being routed to a destination by using the following qmgr
command:

hold request 123 0

When you want to begin processing the request, release the request by using
the following qmgr command:

release request 123

164 SG–2150 3.3

Operating NQS [6]

6.6.4 Suspending, Resuming, and Rerunning Executing Requests

To suspend specific requests that are running and make their processes
ineligible for execution, use the following qmgr command:

suspend request request(s)

The request argument is one or more request identifiers of the requests to be
held. If you specify more than one request, you must enclose them all in
parentheses and separate them with a space character or a comma.

The resources of the request are not released with the suspend command.

You can suspend more than one request at a time.

When you suspend a request, its processes are sent a SIGSTOP signal; when
you resume processing of the request, a SIGCONT signal is sent. On UNICOS
and UNICOS/mk systems, NQS uses the suspend(2) system call.

You cannot process a suspended request (for instance, route it to another queue)
until it is resumed.

To resume requests that are suspended, use the following qmgr command:

resume request request(s)

The resume request command does not affect any request that is in a state
other than suspension.

To abort and immediately requeue a running request, use the following qmgr
command:

rerun request request(s)

This command kills processes of the request and the request is returned to the
queued state at its current priority. If a request is not running or cannot be
rerun, no action is taken. Users can specify that a request cannot be rerun by
using the NQE GUI Submit display, the cqsub or qsub command with the
-nr option, or the qalter -r command.

6.6.4.1 Example of Suspending and Resuming Requests

In the following example, the request with identifier 222 is suspended and its
processes become ineligible for execution:

suspend request 222

SG–2150 3.3 165

NQE Administration

When you want to begin processing the request, you must release the request
by using the following qmgr command:

resume request 222

6.6.5 Modifying the Characteristics of Requests in Queues

The following qmgr command changes characteristics of a request in a queue:

modify request request option=limit

The request argument is the request identifier of the request to be modified.

The limit argument overrides the limit specified when the request was
submitted and overrides the default limit defined for the batch queue in which
the request is to be executed. NQS considers the new limit for selecting the
batch queue in which the request will execute.

The option can set the following per-process and per-request attributes; the
actual name of the option is given in parentheses:

Attribute Description

CPU time limit Per-request and per-process CPU time that can be
used; on CRAY T3E MPP systems, this limit
applies to command PEs (commands and
single-PE applications) (rtime_limit and
ptime_limit).

priority NQS user specified priority of a request.

To enable user specified priority for job initiation
scheduling, you should set the user_priority
weighting factor to nonzero and set all of the
other weighting factors to 0. Then, only user
specified priority will be used in determining a
job’s intraqueue priority for job initiation.

Memory limit Per-request and per-process memory that can be
used (rmemory_limit and pmemory_limit).

Nice value Execution priority of the processes that form the
batch request; specified by a nice increment
between 1 and 19 (nice_limit).

Per-request permanent
file space limit

Per-request permanent file space that can be used
(rpermfile_limit).

166 SG–2150 3.3

Operating NQS [6]

Per-process permanent
file space limit

Per-process permanent file space that can be used
(ppermfile_limit).

Per-request MPP
processing elements
(CRAY T3D systems) or
MPP application
processing elements
(CRAY T3E systems) or
number of processors
(IRIX systems) limit;
optionally enabled on
IRIX systems, see
Section 5.11.4, page 82

Per-request Cray MPP processing elements (PEs)
limit (-l mpp_p).

Per-process Cray MPP
residency time limit

For CRAY T3D MPP systems, sets the per-process
wallclock residency time limit, or for CRAY T3E
MPP systems, sets the per-process CPU time limit
for application PEs (multi-PE applications) for
subsequent acceptance of a batch request into the
specified batch queue (-l p_mpp_time_limit) .

Per-request Cray MPP
residency time limit

For CRAY T3D MPP systems, sets the per-request
wallclock residency time limit, or for CRAY T3E
MPP systems, sets the per-request CPU time limit
for application PEs (multi-PE applications) for
subsequent acceptance of a batch request into the
specified batch queue (-l r_mpp_time_limit) .

Per-request quick-file
size limit

(UNICOS systems with SSDs) The user’s
per-process secondary data segments (SDS) limit,
which is set to the value of the user’s user
database (UDB) entry for per-process SDS limits
(-lQ).

Per-request shared
memory size limit

Per-request shared memory size limit
(-l shm_limit) .

Per-request shared
memory segment limit

Per-request shared memory segment limit
(-l shm_segment).

MPP memory size Per-process and Per-request MPP application PE
memory size limits (-l p_mpp_m,mpp_m).

You can add a suffix to the memory limit with one of the following characters
(these are case sensitive) which denote the units of size used. A word is 8 bytes

SG–2150 3.3 167

NQE Administration

on UNICOS, UNICOS/mk, and 64-bit IRIX systems, and a word is 2 bytes on
other supported systems.

Suffix Units

b Bytes (default)

w Words

kb Kilobytes (210 bytes)

kw Kilowords (210 words)

mb Megabytes (220 bytes)

mw Megawords (220 words)

gb Gigabytes (230 bytes)

gw Gigawords (230 words)

6.6.5.1 Example of Modifying a Queued Request

In this example, a request with identifier 1340 is waiting to execute in an NQS
queue. The submitter of the request wants to increase the memory allocated to
the request to 500 Mwords. To do this, you can enter the following qmgr
command:

modify request 1340 rmemory_limit=500mw

6.6.6 Deleting Requests in NQS Queues

The following qmgr commands delete a request that is in a NQS queue:

• abort request, which sends a SIGKILL signal to each of the processes of
a running request.

• delete request, which deletes requests that are not currently running.

The request is removed from the queue and cannot be retrieved. The original
script file of the request is unaffected by this command.

To delete all requests in a particular NQS queue, use the following qmgr
command:

• abort queue, which sends a SIGKILL signal to all running requests in the
specified queue

• purge queue, which purges all waiting, held, and queued requests in the
specified queue but allows running requests to complete

168 SG–2150 3.3

Operating NQS [6]

To delete requests using the NQE GUI Status window, select the request to be
deleted by clicking on the request line; then select Delete from the Actions
menu.

You can also use the cqdel or the qdel command to delete requests; an
example of the syntax follows:

cqdel -u username requestids

The username argument is the name of the user who submitted the request.

6.6.6.1 Example of Deleting a Queued Request

To delete all requests waiting in the queue bqueue15, use the following qmgr
command:

purge queue bqueue15

6.6.7 Deleting or Signaling Requests in Remote NQS Queues

After a request is in an NQS queue at a remote system, you can use the NQE
GUI Status window or the cqdel or qdel command to delete or signal the
request (the qmgr subcommands affect only requests in local NQS queues). You
must authenticate yourself by entering the correct password or having an entry
in your .rhosts or .nqshosts file and in the .rhosts or .nqshosts file of
the job’s owner. You do not have any special privileges to delete other users’
requests on remote NQS systems, even if you are an NQS operator or manager
on both the local and the remote host.

Note: If you are using the NQE database, you only need system access to the
NQE database from your remote host. For more information, see Chapter 9,
page 231, and the nqedbmgr(8) man page.

To delete requests using the NQE GUI Status window, select the request to be
deleted by clicking on the request line; then select Delete Job from the
Actions menu. For more information about using the cqdel and qdel
commands to delete or signal requests on NQS, see the cqdel(1) and qdel(1)
man pages.

SG–2150 3.3 169

NQE Administration

6.7 Recovering Jobs Terminated Because of Hardware Problems

When a process within a job has been terminated by a SIGUME or SIGRPE
signal or a SIGPEFAILURE signal (UNICOS/mk systems only), NQS requeues
the job rather than deleting it if either of the following is true:

• The job is rerunnable

• The job is restartable and has a restart file

Applications running on a CRAY T3E system are killed when a PE assigned to
the application goes down. NQS is now notified when a job is terminated by a
SIGPEFAILURE signal. NQS will requeue the job and either restart or rerun the
job, as applicable.

Periodic checkpointing should be enabled so that restart files will be available
for restarting rather than rerunning jobs which were terminated by a downed
PE SIGPEFAILURE signal.

By default, each NQS job is both rerunnable and restartable. These defaults can
be changed through use of the qsub -nr and -nc options and through use of
the qalter -r n and -c n options. The job’s owner can specify the qsub
options and use the qalter command to modify the job rerun and/or restart
attributes. An administrator can also use the qalter command to modify any
job’s rerun and/or restart attributes.

If NQS requeues a job because the job was terminated by either the SIGUME or
SIGRPE signals, the following message is written into the system syslog, the
NQS log file, and the job’s log file:

Request <1.subzero>: Request received SIGRPE or SIGUME

signal; request requeued.

If NQS requeues a job because the job was terminated by the SIGPEFAILURE
signal, the following message is written into the system syslog, the NQS log
file, and the job’s log file:

Request <1.subzero>: Request received SIGPEFAILURE signal; request requeued.

As a requeued job, the job will be reinitiated after it is selected by the NQS
scheduler. The qmgr schedule request now command can be used to force
the job to be reinitiated immediately.

170 SG–2150 3.3

Operating NQS [6]

The following actions can be expected when a job is terminated by either a
SIGRPE or SIGUME signal or a SIGPEFAILURE signal (UNICOS/mk systems
only):

• For a job that has default rerun and restart attributes, the job is requeued
and rerun.

• For a job that has default rerun and restart attributes and has a restart file
associated with it, the job is requeued and restarted from the restart file.

• For a job that has the no-rerun attribute and has no restart file, the job is
deleted.

• For a job that has the no-rerun attribute but does have a restart file, the job
is requeued and restarted from the restart file.

• For a job that has the no-restart attribute and uses the default rerun
attribute, the job is requeued and rerun.

• For a job that has the no-rerun and no-restart attributes, the job is deleted.

SG–2150 3.3 171

NLB Administration [7]

The Network Load Balancer (NLB) is comprised of servers, collectors, and
clients. The NQE GUI Status function uses collectors that communicate with
the NLB server to obtain batch request status information.

This chapter describes NLB administration. The following topics are discussed:

• Overview of NLB

• Overview of NLB configuration

• Editing NLB configuration file

• Configuring ACLs for the NLB

• Starting the NLB server

• Specifying the NLB server location

• Creating redundant NLB servers

• Starting NLB collectors

• Managing the NLB server, including shutdown

The NQE User’s Guide, publication SG–2148, describes the NQE GUI Load
window, which allows you to monitor machine load and system usage across
the complex.

For information about the NQE database and NQE scheduler, see Chapter 9,
page 231.

7.1 NLB Overview

The Network Load Balancer (NLB) server contains the NLB database for NQE
information. It stores this information in the form of objects. A policy is the
mechanism by which the NLB server selects destinations based on the
information in the NLB database. (Policies are described in Section 8.1, page
193.)

Each object in the NLB database is uniquely identified by a combination of its
type (the definition of the object) and its name. All objects of a specific type have

SG–2150 3.3 173

NQE Administration

unique names to differentiate them; these object names are case insensitive. The
following example describes one object in the NLB database:

object NLB (host1)

The object type is NLB and the name of the object is host1.

Each object contains a set of attributes. An attribute consists of unique attribute
names, which identify it and its corresponding attribute value. Attribute names
are defined when the object type is defined; attribute names are case insensitive.
The object type and attribute names are defined in the name map.

The following is an example of an object with one of its attributes:

object NLB (host1) {

NLB_HARDWARE = "Sun4c"

}

The NLB object named host1 contains an attribute called NLB_HARDWARE,
which is set to Sun4c. For a complete list of attributes for an object type, use
the following command:

nlbconfig -mdump -t object_type

Although the NLB database can store any defined object, within NQE only the
following object types are defined and used:

Object type Description

NLB Data sent by the collector processes containing
information about the NQE server that may be
used for destination selection. Attributes of this
object include such things as CPU load.

NJS and NJS_ALIVE Data sent by collector processes describing NQS
requests on the NQE server. This is used by the
NQE GUI Status function. NJS_ALIVE tells you
the last time the NLB hear from a collector; it is
used by the NQE GUI Load function to indicate
an NQE server is no longer talking to the NLB. It
may also be used for destination selection.

FTA_CONFIG and
FTA_DOMAIN

FTA configuration objects. For information on
defining these objects, see Section 13.2.10, page
335.

174 SG–2150 3.3

NLB Administration [7]

NLB_JOB Data sent to the NLB about the request, which the
NLB uses to choose a destination for the request.

C_OBJ Configuration for the NLB itself.

7.2 Overview of NLB Configuration

The NLB has the following configuration requirements:

• The NLB server can be run from any account unless it is configured to use a
privileged TCP/IP port number.

• The server requires a working directory and free space for data storage. This
directory holds configuration files used by the server; it also stores a
permanent copy of the NLB database. To run 750 requests, 250 Kbytes
should be ample space.

• There are two configuration files, as follows:

– config, which defines some constants of operation and the master ACL
used to control administrative access to the server. It is read at startup
time.

– policies, which contains the definitions of policies. This file also is read
at startup, but the servers reads it again when the administrator issues
the nlbconfig -pol command. This file is described in Section 8.2,
page 194. NQS is shipped with a policy named nqs, which selects batch
queues based on which system has the highest average idle CPU load.

The location of these files is defined in the NLB_SERVER_DIR attribute of the
nqeinfo file.

7.2.1 Server Database Integrity

The NLB server database is held in memory, but it is periodically backed up to
disk if it has been modified. The update interval is configurable; the default is
30 seconds. See the SKULK field in the NLB configuration file, described in the
following section. The NLB database also is written out to disk on server
shutdown. When the server restarts, it reads the NLB database from disk.

Access control lists (ACLs) are read and written in the same manner as the NLB
server database. (For a description of ACLs, see Section 7.9.5, page 186.)

SG–2150 3.3 175

NQE Administration

The restart sequence, in combination with collectors, provides a high degree of
consistency between NLB database contents and the information sent to the
server.

7.3 Editing the NLB Configuration File

The NLB configuration file sets the configurations that cannot be changed while
the NLB server is running. To change these settings, edit the NLB configuration
file and then restart the NLB.

The NLB configuration file, $NLB_SERVER_DIR/config (where
NLB_SERVER_DIR is defined in the nqeinfo file), is an ASCII text file that has
the following format:

KEY:value

The KEY field defines the parameter being controlled; value gives the setting of
the parameter. The interpretation of value depends on the KEY. Any text after a
symbol is a comment; spaces or tabs can be used anywhere in the file. There
are defaults for all fields.

KEY Description of value

OBJECTS: Number of different object types the server will allow. The
default is 32.

PORT: TCP/IP port number or service name on which the server should
listen for connections. The default is nlb.

SKULK: The interval (in seconds) between NLB database write operations
to disk. The server checks for NLB database modifications every
value seconds, and it writes out those object lists or ACLs that
have changes. The default is 30 seconds.

M_ACL: The record to add to the master ACL. This determines who is
allowed access to the ACL objects.

This value contains three fields: the user name, the host name,
and the privileges to be granted. The host name can be used to
allow the user access from any location.

If no M_ACL record is present, the ACL defaults to the user who
started the server on the same host as the server.

D_ACL: Record to add to the default ACL for a new object. This value has
the same format as the M_ACL record. If it is not specified, there

176 SG–2150 3.3

NLB Administration [7]

is no default ACL, and any user is allowed access to any object
except ACL objects. Read access is allowed for the ACL for the
C_OBJ object type, but no access is allowed for any other ACLs.

DBASE: Path name of the directory used for object storage. You can
override it by using the nlbserver -d option.

OBJ: Controls the storage class for an object, which you can configure
by using the nlbconfig command.

Two fields are required: the object ID and the storage class.
Storage class is one of the following:

persistent Objects are written to disk at the
rate controlled by SKULK.

permanent Objects are written to disk when
the server is shut down.

transient Objects are never written to disk.

SG–2150 3.3 177

NQE Administration

The following is an example of a configuration file:

NLB server configuration file - master and default ACLs

#

OBJECTS: - defines maximum number of different object types

SKULK: - interval in seconds between database update

PORT: - TCP service name or port number to listen on
M_ACL: - record for master ACL (can be repeated)

D_ACL: - record for default ACL (can be repeated)

#

If M_ACL is not defined then it defaults to the user who

started the server on the same machine. The master ACL
controls the editing of other ACLs.

#

If D_ACL is not defined the default ACL is empty which

means objects are not restricted. If there is an ACL for an

individual object type it overrides the default ACL

#

OBJECTS: 32 # number of different objects

PORT: nlb # tcp service name

SKULK: 30

OBJ: 500 permanent

OBJ: 501 permanent

User Host Privs

---- ---- -----

M_ACL: root * all

M_ACL: fred * all

7.4 Configuring ACLs for the NLB

Access to data in the NLB is controlled through Access Control Lists (ACLs).
Each object type may have its own ACL. If no ACL is defined for an object
type, then the default ACL (D_ACL) is used for objects of that object type. If
there is no ACL for an object type and there is not an ACL, then access to any
object of that object type is unrestricted. The ability to access the ACLs is
controlled by the master ACL (M_ACL).

178 SG–2150 3.3

NLB Administration [7]

The M_ACL and the D_ACL are controlled by the config file in
NLB_SERVER_DIR (as defined in the nqeinfo file) and may not be changed
without restarting the NLB.

The following values are supplied with the initial installation of NQE:

User Host Privs

---- ---- -----

#

M_ACL: root * all

M_ACL: WORLD * r

D_ACL: root * all
D_ACL: OWNER * all

D_ACL: WORLD * r

With the initial configuration, only root is able to change ACLs; everyone else,
indicated by the keyword WORLD, has read-only access. Access may be granted
for specific hosts, but an asterisk (*) is a wildcard indicating root access,
regardless of the NQE server. If no ACLs are defined, the default ACL is used,
and either root or an object’s owner may change the object. Everyone else may
view the object but not change it (read-only access). The types of privileges are:
d (delete the object), u (update (change) the object), and r (read the object).

For information about editing the NLB configuration file, see Section 7.3, page
176.

For information about changing ACLs for different object types, see Section
7.9.7, page 189.

7.5 Starting the NLB Server

To start the NLB server, use the following command:

nlbserver

The nlbserver command automatically runs in the background; you will
receive the system prompt before the command completes execution.

7.6 Specifying the NLB Server Location

All programs that communicate with the NLB server (the collector, the NQE
GUI Status and Load functions, and the nlbconfig and nlbpolicy clients)

SG–2150 3.3 179

NQE Administration

can use the same set of mechanisms to locate the server. These mechanisms are
as follows; they are listed in order of precedence:

1. The command line

2. The NLB_SERVER environment variable

3. The value set in the nqeinfo file at installation

4. The .Xdefaults file

In each of these cases, the syntax is as follows. For one server, the syntax is:

"hostname[:service_name]"

If you have multiple servers, specify multiple hostname[:service_name] pairs;
commas are not allowed, use a space to separate the servers. The syntax is as
follows:

"hostname[:service_name] hostname[:service_name] hostname[:service_name]"

The hostname is the Internet host name of the server host. The optional
service_name can be either a name that is mapped to a port number or an ASCII
representation of the port number. The service name is the string contained in
the configuration file (see Section 7.3, page 176) as a value for the keyword
PORT. The default value of service_name is nlb. Use quotation marks on the
command line or when setting the NLB_SERVER environment variable. The
following are examples of NLB_SERVER syntax:

"cool:nlb_server"

"ice:10001"

"hot:604 wind rain gust:705"

If you place the environment variable NLB_SERVER in the system startup file
on a host, it will be available for all NLB commands. Specifying a server on a
command line will override the environment variable.

In the case of the collector, data is sent to all servers listed. For all other
programs the servers are tried in turn until one responds. If a server exits, the
clients will automatically switch to the next specified server.

Note: If you will send data to multiple NLB servers and will use job
dependency, read Section 12.2, page 314.

180 SG–2150 3.3

NLB Administration [7]

7.7 Creating Redundant NLB Servers

Running redundant NLB servers ensures that all of the NQE nodes can still
communicate with an NLB server, even if a network failure occurs.

When you install NQE collector nodes, specify all of the hosts on which you
will run NLB servers so that collectors can send data to all NLB nodes.

You can set the NLB_SERVER environment variable to point to several hosts.
The first host specified is the first one queried for information. If the first host
does not respond, NQE tries the second host, and so on. For more information
on setting environment variables, see Chapter 3, page 35.

Warning: The job dependency feature does not provide synchronization of
events over multiple NLB servers. If you will use job dependency and
redundant NLB servers, you must read the information about job
dependency in Chapter 12, page 313.

7.8 Starting NLB Collectors

An NLB collector should be configured to run on each NQE node on which
NQS is configured to run. The collector extracts various statistics from the
system at regular intervals and sends them to the server.

Note: If you will send data to multiple NLB servers and will use job
dependency, read Section 12.2, page 314.

A number of attributes are collected (see Section 8.5, page 204). For those
attributes that collect dynamic statistics (such as NLB_PHYSMEM), both the
current value and a rolling average are collected. The rolling average is the
value of the attribute over the last n seconds; n is specified with the ccollect
-r option.

You can start the collector from any directory. To start the collector, use the
following command:

ccollect option

The ccollect command automatically runs in the background; you will
receive the system prompt before the command completes execution.

The option can have the following meanings:

SG–2150 3.3 181

NQE Administration

Option Description

-a Specifies that you want to use awk(1) to parse
request (qstat) information instead of getting
the information directly from the NQS database,
which is the default source of information. To
customize how data is parsed, use this option in
conjunction with the -f, -p, and -q options.

-c Specifies whether NLB will have a permanent
TCP/IP connection to the server. The default is to
establish a new connection for each update. Even
though new connections mean that the server
uses more CPU time, they reduce the number of
connections the server needs to have open.

-C filename Specifies the full or relative path name of a file
that contains custom objects that are read by the
collector and then sent to the NLB server. If the
path is relative, the directory search order is the
current working directory and then the
/nqebase/etc directory (which is $NQE_ETC, as
defined in the nqeinfo file), or the
$NQE_ETC/config directory. You can specify
this option multiple times. You also can set this
option by using the NQE_CUSTOM_FILE_LIST
variable either in the nqeinfo file or in the
environment. If the variable exists in both places,
the value in the environment takes precedence.
The variable mechanism syntax lets you specify
multiple files by separating them with either a
space or a comma. The search order is the same
as above.

Files used with the -C option are read when the
collector performs an update, and the values for
the attributes are sent to the NLB server.

-d file_system Reports the kilobytes of free disk space to the
NLB server. The -d option adds the following
attributes to the name_map file:

NLB_TMPNAME Directory name

182 SG–2150 3.3

NLB Administration [7]

NLB_FREETMP Free space in the
file system (in
kilobytes)

NLB_A_FREETMP The rolling average
of NLB_FREETMP

-f parsefile Specifies the name of a file used to parse qstat
information. The default is njs_qstat.awk.
When you use this option, you also must use -a.

-i interval Specifies the interval (in seconds) at which the
collector gathers machine load information. The
default is 15 seconds.

-I interval Specifies the interval (in seconds) at which the
collector gathers information about NQS batch
requests. The default is 30 seconds.

-J Starts a collector that collects only job status
statistics.

-L Starts a collector that collects only machine load
statistics.

-o filename Used at collector startup time only. Specifies an
object definition file that contains extra attributes
to be sent to the server from this collector.
Specifying additional attributes allows a site to
use its own attributes in displays and policies (for
example, a site might write a policy that uses a
weighted value based on the number of CPUs).

-p "parse_command" Specifies a pattern-scanning command used to
parse the output of a qstat command. When
you use this option, also you must use -a.

-q "qstat_command" Specifies a qstat command to be used in
gathering network job status statistics. This
option is used if the qstat command is not in
the collector’s PATH environment variable. This
must be a full path name. When you use this
option, you also must use -a.

-Q queue (Required) Specifies the host’s NLB_QUEUE_NAME
attribute in the NLB database, which defines the
queue name NQS uses when it sends
load-balanced requests to this machine. If you are

SG–2150 3.3 183

NQE Administration

using the default NQE queue configuration, this
queue is nqebatch.

-r interval Specifies the interval (in seconds) over which the
rolling averages of attributes are calculated. This
value is turned into a multiple of the update
interval. A value of 0 turns off the rolling average
attributes.

Rolling average attributes are provided to prevent
load-balancing decisions from being influenced
by sudden spikes in the various measurements.
However, the longer the time period over which
the averages are taken, the longer it will take the
load balancer to note changes in a machine’s
current load. For more information on averaging
data, see Section 8.3.5, page 198.

-s server Specifies the name of the NLB server to which to
send information. If you want to specify that
multiple servers will be updated from this
collector, you either can specify the -s option
more than once, or you can specify the option
once but place the server names in quotation
marks. If you omit the option, the NLB_SERVER
environment variable is used to locate the server.

The default mechanism for gathering batch request information is to read it
directly from the NQS database. To customize the method by which data is
collected and stored, use the -a, -f, -p, and -q options.

If you use the -a option, batch request information is parsed by using the
qstat -af | awk -f njs_qstat.awk command.

To change the path name of the qstat command, use the ccollect -q option.
You may want to do this if qstat is not in the collector’s PATH environment
variable. You must specify a full path name. If you use this option, you also
must use the -a option.

To change the awk command used to parse the qstat output, use the -p
option. For example, you may want to use nawk(1). If you use this option, you
also must use the -a option.

To change the file name used to parse qstat information, use the -f option.
You can customize the script njs_qstat.awk to parse the data the collector
gathers so that it suits your site’s needs. For example, you can modify the

184 SG–2150 3.3

NLB Administration [7]

script so that two different collectors report information to two different NLB
servers, thus keeping user communities separated.

To customize NLB collectors, see Section 8.8, page 226.

7.9 Managing the NLB Server

The nlbconfig facility lets you maintain and administer the NLB server. It
provides the following capabilities:

• Shutdown an NLB server

• Instruct an NLB server to reread its policy file (the file name is policies)

• Display, write, and modify name map information

• Display, write, and modify object information

• Display, write, and modify ACL information

• Change storage class of objects

The following sections describe the nlbconfig command.

7.9.1 Specifying the Server on the Command Line

To specify a server on the command line, use the following command:

nlbconfig -s server

The server is the name of the host on which the NLB server resides. The server
also can be specified in the nqeinfo file or with the NLB_SERVER environment
variable (as described in Section 7.6, page 179). Specifying -s server overrides
the value of NLB_SERVER. If you do not specify a server name and it is not set
by any of the methods listed in Section 7.6, page 179, the nlbconfig command
will fail with the following message:

nlbconfig: cannot determine server location

SG–2150 3.3 185

NQE Administration

7.9.2 Verifying the NLB Server Is Running

To ensure that the NLB server is running, use the following command:

nlbconfig -ping

The response you receive tells you whether the NLB server is running. If the
server is running, the response tells you the name of the server that was
contacted when you issued the command.

7.9.3 Shutting down the Server

To shut down the server, use the following command:

nlbconfig -kill

7.9.4 Rereading the policies File

To reread the policies file and make any new information in it available to
the NLB, use the following command:

nlbconfig -pol

Note: The policies file that NLB reads when you issue an nlbconfig
-pol command is in the location defined in the nqeinfo file
NLB_SERVER_DIR/policies. Do not confuse this file with the policies
file located in the /nqebase/etc directory, which is only used when the NLB
directory is created. If you make changes to the policies file, make them to
the NLB_SERVER_DIR/policies file.

7.9.5 Configuring Name Maps, Objects, and ACLs

The nlbconfig command uses similar options to operate on name maps,
objects, and access control lists (ACLs).

You can list and dump the contents of the name map, object, and ACL files the
server is currently using. When you list information, you receive basic
information about the type of objects in the server. When you dump
information, the current values of the objects are formatted and displayed. The
following options perform these operations:

Option Description

-mlist Lists names, types, and storage classes in the name map file

186 SG–2150 3.3

NLB Administration [7]

-olist Lists names of objects

-alist Lists names of an ACL list

-mdump Dumps values in name map file

-odump Dumps values in the object file

-adump Dumps values in the ACL list

The following options replace the contents (or part of the contents) of the name
map, object, and ACL files.

Option Description

-mput Downloads a name map file to the server

-oput Downloads the specified object(s) to the server

-aput Downloads the specified ACLs to the server

The following options delete objects or ACLs in the server’s files:

Option Description

-odel Deletes the specified object(s)

-adel Deletes the specified ACLs

-mdel Deletes the name map for the specified object types from the
server

The following option adds attributes to objects in the server’s files, leaving all
the current attributes unchanged:

Option Description

-oupdat Updates the specified object(s) with additional attributes

The following options change the storage class of an object in the name map file
(see page Section 8.5.1, page 204 for more information about storage classes):

Option Description

-perm Changes the storage class of the specified object to permanent

-pers Changes the storage class of the specified object to persistent

SG–2150 3.3 187

NQE Administration

-tran Changes the storage class of the specified object to transient

Options are provided to qualify the options already described. For example,
when you want to download a name map file, you use the -f option with the
nlbconfig command to specify the file name of the new file. The following
qualifying options are provided (for definitions of objects, object names, and
attribute names, see Section 7.1, page 173):

Option Description

-f file Specifies a file name that contains objects or ACL descriptions.

-t type Specifies an object type or ACL type.

-h host Specifies an ACL host name; the default is "*" (denoting all
names).

-n name Specifies an object name.

-a
attribute

Specifies an object attribute name or a set of ACL privileges.

-u user Specifies an ACL user name.

The following list indicates the options that can be qualified:

Option Qualifier

-adel Object type, user, and host

-adump Object type and output file

-alist Object type and output file

-aput Object type, object attribute, user, host, and output file

-mdel Object type

-mdump Object type and output file

-mlist Object type and output file

-mput Input file

-odel Object type and object name

-odump Object type, object name, object attribute, and file

-olist Object type, object name, and file

-oput Input file

-oupdat Input file

188 SG–2150 3.3

NLB Administration [7]

-perm Object type

-pers Object type

-trans Object type

The -kill, -pol, and -ping options do not use qualifiers.

7.9.6 Examples of Configuring Name Maps and Objects

The following example lists the name map for the server defined by the
NLB_SERVER environment variable:

nlbconfig -mlist

This command produces the following output:

object type id storage class

----------- ---- -------------

NLB 1024 persistent
NJS 500 permanent

C_OBJ 1 persistent

NJS_ALIVE 501 permanent

FTA_CONFIG 400 persistent

FTA_DOMAIN 401 persistent

FTA_DATA 402 persistent
FTA_ACTION 403 persistent

NLB_JOB 1025 persistent

NLB_POL 3 persistent

EVENT 601 transaction

The following example deletes the object of type C_OBJ with the name gust on
the server defined (to locate the server, use the mechanisms described in Section
7.6, page 179):

nlbconfig -odel -t C_OBJ -n gust

7.9.7 Changing ACL Permissions

ACLs control permissions for reading, updating, or deleting objects in the NLB
server. ACL permissions are usually changed with the nlbconfig command.

SG–2150 3.3 189

NQE Administration

The following example adds an ACL to the ACL list that allows user mario to
read (r) all objects of type C_OBJ from any host (the default) on the server
defined by the NLB_SERVER environment variable:

nlbconfig -aput -t C_OBJ -u mario -a r

The master ACL controls all other ACLs; only users in this ACL can edit other
ACL lists with nlbconfig. If you receive the following error message, you
need to change the master ACL:

nlbconfig -aput -t C_OBJ -u mario -a r

gust: No privilege for requested operation

To change the master ACL, edit the $NLB_SERVER_DIR/config file and
restart the NLB; you cannot change it by using nlbconfig.

By default, all users have read permission for ACL information in the server
database. The keyword WORLD is used to specify all users. If you changed
permissions for any users, you must explicitly add WORLD read permission
again.

To modify data in the server database, the NLB collector account (that is, the
account from which the ccollect command is issued) must have u (update)
and d (delete) permission.

All users can monitor all requests (through the NQE GUI Status window) in
the NQE cluster.

To avoid having to issue a long list of commands, you can place the
information in a file and then download that file to the server. The following
command places the current ACL for NJS objects in a file named acl_njs:

nlbconfig -s cool -alist -f acl_njs

The acl_njs file has the following format:

type user host priv

---- ---- ---- ----

NJS luigi * dru

NJS root * dru

NJS mario * dru

NJS WORLD * r

All jobs in the NQE database will be seen, regardless of how you set you ACL.

190 SG–2150 3.3

NLB Administration [7]

The following nlbconfig command places the information in the server:

nlbconfig -aput -f acl_file

SG–2150 3.3 191

Implementing NLB Policies [8]

This chapter describes the NQE Network Load Balancer (NLB) policies and
their implementation. The following topics are discussed:

• Defining load-balancing policies

• The policies file

• Examples of how policies are applied

• Testing policies

• File formats

• Implementing NQS destination-selection policies

• Using batch request limits in policies

• Storing arbitrary information in the NLB database (extensible collector)

8.1 Defining Load-balancing Policies

A load-balancing policy is the mechanism whereby the NLB server determines a
list of hosts (with the most desirable first) to be used as the target for a batch
request. For example, when a request is submitted to a load-balanced queue,
the NLB server applies a policy to the current information it has about hosts in
the complex. The server provides NQS with a list of machines sorted by the
specifications of the policy.

Policies are filters and sort routines that are applied to destination selection.
The information in the NLB database objects is used to determine how to filter
and sort the destinations (that is, how to balance the load across the NQE.)
Policies consist of a set of Boolean and arithmetic expressions that use kernel
statistics collected from the target machines. These expressions are defined in
the policies file of the server and you can reread the file using the
nlbconfig(8) command. Multiple policies can exist at any one time.

Some attributes are reserved by the NLB, and others can be defined by a site.

Sites have different requirements for the way they want work to be assigned to
machines, and the workload in an NQE complex is often varied; therefore, no
single set of rules need be successfully applied. Sites have the ability to
determine their own policies based on their unique needs.

SG–2150 3.3 193

NQE Administration

8.2 The policies File

When the system is installed and initially configured, the NLB reads the
$NQE_ETC/policies file for the initial configuration and writes it to the
$NLB_SERVER_DIR/policies file. After that, only the
$NLB_SERVER_DIR/policies file is read. You should define any local,
site-defined policies in the $NQE_SPOOL/policies file.

Note: The policies file that NLB reads when you issue an nlbconfig
-pol command is located by default in $NLB_SERVER_DIR/policies. Do
not confuse this file with the policies file located in the /nqebase/etc
directory, which is used only on NQE start-up (after an install) if
$NLB_SERVER_DIR/policies does not exist. If you make changes to the
policies file, make them to the file in /usr/spool/nqe/nlbdir.

The template for a policy definition is as follows:

name is the mechanism for selecting an individual policy

policy: name

A host must satisfy all specified constraints to be

selected as a destination by the policy. There can be

zero, one or many constraints.

constraint: Boolean expression
constraint: Boolean expression

Hosts which meet all constraints are then sorted by an

equation. The operation is applied to the attributes of

each host in turn, the host producing the largest result
is returned first.

sort: arithmetic operation

Optional maximum number of results, prevents NQS from

attempting to send the request to too many destinations.

count: integer

Multiple policies can exist in the file. The first policy is defined as the default
policy, which is named NQS and is the one used if the client does not specify a
policy by name or if it specifies a policy that does not exist.

The following Boolean operators are supported in all expressions in a policy:

194 SG–2150 3.3

Implementing NLB Policies [8]

Operator Description

|| Logical OR

&& Logical AND

^ Exclusive or (a or b but not a and b)

! Logical not

== Equal to

!= Not equal to

>= Greater than or equal to

<= Less than or equal to

> Greater than

< Less than

=> Implies. For example, a => b means that if a is true, b must also
be true for the expression to be true. If a is false, the value of b is
not examined and the expression is false.

Operator precedence is the same as in the C language. The implies operator
(=>) has the lowest precedence; that is, the => operation will be performed after
all other operators.

The following functions also are available to you when defining load-balancing
policies:

Function Description

[variable == "regex"] Tests that the string variable equals the regular
expression (regex). This is a regular expression as
understood by grep and ed, not the shell file
name expansion form. Regular expressions are
case insensitive.

exists (attrib) Tests the existence of an attribute. The expression
is true if the attribute exists and false if the
attribute does not exist.

age The number of seconds that have elapsed since
this host’s attributes were last updated. Used to
filter out hosts that are not responding.

All expressions support (), /, *, +, and - operators. The attributes of the hosts
are used as the variables in the policy expressions. NQS attributes specified by

SG–2150 3.3 195

NQE Administration

using the NQE GUI or by using the -la option of the qsub or cqsub
command can also be used in policies.

Attributes provided at startup are described in Table 7, page 208. Additional
static attributes can be defined and set using the nlbconfig command; these
attributes can then be used in policies.

Note: The extensible collector allows you to add your own dynamic
attributes. For additional information about the extensible collector, see
Section 8.8, page 226.

8.3 Example of How Policies Are Applied

The following section describes how a policy for NQS load balancing is applied.
For information about how to specify a policy name, see Section 5.6.4, page 65.

8.3.1 Step 1: The Name

After receiving a request in a load-balanced pipe queue, NQS will send a query
to the NLB server. This query includes the name of the policy to be used.

The policy name is used to find the correct policy to apply. If the name is not
that of a known policy, the default policy is applied. The default policy is the
one named NQS.

NQS is shipped with a policy named nqs, which selects batch queues based on
which system has the highest average idle CPU load.

8.3.2 Step 2: The Constraints

The first constraint is taken in and applied to the list of hosts that have sent
data to the server by using the ccollect process (described in Section 7.8,
page 181). It is applied to the objects of object type NLB. For a list of these
objects, use the following command:

nlbconfig -olist -t NLB

A constraint is expected to be a Boolean expression, and a true result means
that the host is kept as a valid target. A false result means the host is
discarded.

Each subsequent constraint is applied to the hosts that met the previous
constraints. This process continues until no more constraints are left, or until no

196 SG–2150 3.3

Implementing NLB Policies [8]

hosts meet a constraint. If there are no acceptable hosts, NLB returns a null list,
and NQS retries the request later. If there are no constraints, all hosts are
assumed to be acceptable targets for the policy.

Constraints can filter out machines that physically cannot run a request, as in
the following example:

Policy for SPARC-specific requests

policy: SPARC

constraint: [NLB_HARDWARE == "SPARC"]

For the nqs policy, any machines that do not have a queue name associated
with them are filtered out. It is also important to filter out machines that have
not sent data recently. The time period used to evaluate this depends on the
time interval between samples sent from the collectors. The following example
sets the time period to 300 seconds:

constraint: exists(NLB_QUEUE_NAME) && age < 300

Constraints can also remove machines that are currently not good choices. For
example, the following policy selects only machines that have more than 32768
Kbytes of free memory (32 Mbytes). Memory is measured in units of Kbytes:

policy: bigjob

constraint: NLB_FREEMEM > 32768

8.3.3 Step 3: The Sort

After the list of hosts has been filtered, the sort expression/operation is used to
order them. The expression/operation is applied to each host in turn, and the
result for that host is stored in the NLB database as the NLB_POLICY attribute.
The hosts are then sorted on this number. The host with the largest
NLB_POLICY value is regarded as the best choice.

8.3.4 Step 4: The Count

A policy can optionally specify a count of the maximum number of targets that
should be returned. This is needed in large networks to reduce the number of
different systems to which NQS might attempt to send a batch request.

SG–2150 3.3 197

NQE Administration

8.3.5 Approaches to Designing Policies: Averaging Data

Policies are based on statistical data gathered from machines by NLB collectors.
This data reflects the state of the machine in the recent past, but its current state
may be different.

The data available to the server is a dynamic snapshot of the machine state;
therefore, the server’s picture of the state of machines in the network is always
a little out-of-date.

This section describes a special collection of attributes, which, by convention,
are named NLB_A_regular attribute name, such as NLB_A_IDLECPU.

Because an instantaneous snapshot of machine load could cause an incorrect
view of its true state over time, the collectors provide two sets of
measurements: the instantaneous data (which is of most use in the NQE GUI
Load window displays) and averaged data for use in policies. The averaged
data tends to smooth out the short-term peaks and troughs in the instantaneous
data and to give a more accurate view of the overall load, as can be seen in
Figure 16 and Figure 17.

a10269

Figure 16. Average Machine Load Data

198 SG–2150 3.3

Implementing NLB Policies [8]

a10270

Figure 17. Instantaneous Machine Load Data

The averaged data (stored in attributes beginning with NLB_A_) are calculated
by adding the instantaneous measures taken over the last n seconds and
dividing by the number of samples taken (the ccollect -r option controls n).

You can tune the averaging of data in the policy to reflect the type of work
being run on a machine. For example, you can user longer sampling periods on
machines at which long requests are run. However, the longer the period you
use, the longer it takes the measures to catch up with reality; for example, even
after a large requests is finished, it takes time for the load it produced to work
its way out of the data.

8.3.6 Other Factors: Weighting Machines

A network usually will contain a mix of machines: different types of machines
and perhaps machines of the same type but differing capacity (such as
CRAY T90 and CRAY J90 systems).

The measures sent by the collectors reflect what is actually happening on a
particular machine, but they do not indicate how that activity compares to the
maximum capacity of that machine, or how that machine compares to others in

SG–2150 3.3 199

NQE Administration

the network. To measure these factors, you must introduce weighting or
normalization factors into policies.

For example, if you are concerned with the amount of idle CPU time available
on a machine (which is reported as a percentage), you could write a policy that
sorts on this factor, as follows:

policy: idlecpu

sort: NLB_IDLECPU

In this case, a small workstation may be selected as the best target for work in
preference to a large Cray Research system, even though 10% idle time
available on the Cray Research system could well represent much more
computing power than 50% idle time on the workstation.

By adding weighting factors to machines, you can balance out this difference. If
you define a new attribute called NLB_SITE_CPUNORM for each host (as in the
example in Section 8.3.9, page 201), and assign values representing the relative
CPU powers of the different machines (machine A is 100 while machine B is
10), you can factor this into the policy, as follows:

policy: idlecpu

sort: NLB_IDLECPU * NLB_SITE_CPUNORM

Of course, the relative powers of different machines are related to the nature of
the request to be executed. A highly vectorized application probably requires a
larger difference in weightings between a workstation and a Cray Research
system than would a scalar application.

8.3.7 Other Factors: Alternate Policies for Different Time Periods

You may want to apply different policies at different times of the day or the
week. For instance, you may want to allow requests to run on file servers at
night when there is little NFS activity. Although there is no direct support for
this in the NLB, you could use a cron job to load a new set of policies into the
server at defined times. This job would replace the policies file and cause
the server to reread it, as in the following example:

cp policies policies.day

cp policies.night policies

nlbconfig -pol

200 SG–2150 3.3

Implementing NLB Policies [8]

The following example would switch the policies files back again:

cp policies policies.night

cp policies.day policies
nlbconfig -pol

For this example to work, root must be in the master access control list (ACL)
for the server defined in its configuration file, because this ACL controls who
can update the policies file.

8.3.8 Policy Examples

The following example selects all hosts that have the attribute
NLB_QUEUE_NAME and for which the data has been updated within the last
minute (AGE < 60). The hosts are then sorted by weighted idle CPU time (as
described in Section 8.3.6, page 199).

policy: AGE

constraint: exists(NLB_QUEUE_NAME) && AGE < 60

sort: NLB_A_IDLECPU * NLB_SITE_CPUNORM

The following example selects all machines with an average system load of
10%/CPU (or less); NLB_A_SYSCPU is the average system CPU (percentage)
and NLB_NCPUS is the number of CPUs:

policy: default
constraint: [NLB_HARDWARE == "CRAY"] =>

(NLB_A_SYSCPU / NLB_NCPUS) < 10.0

constraint: [NLB_HARDWARE == "sun"] => NLB_PHYSMEM >= 32768

sort: NLB_NCPUS

8.3.9 Example of Writing a Load-balancing Policy

The following example defines a new attribute used to normalize CPU loads.
This is useful for a site with machines that have widely different CPU power.
First a new object attribute is created, then values are assigned to the attribute,
and finally the policy is added to the server NLB database so that data
associated with it can be stored. All this can occur without any part of the
system being restarted.

1. Define an attribute.

For a new attribute to be usable, it must be placed in the server’s
name_map file.

SG–2150 3.3 201

NQE Administration

To extract the name map from the server, use the following command:

nlbconfig -mdump -f name_map

This command produces a file containing all of the name maps known to
the server. To define an attribute, you must edit this file to contain a name,
description, and type for the new attribute, as in the following example:

map NLB=1024
{

NLB_SITE_CPUNORM "CPU Normalization Factor" integer(1000);

existing attributes
.

.
}

The new name (NLB_SITE_CPUNORM) and the new ID (1000) must not
match any existing ones. The attribute must appear in the list of attributes
for the NLB object (the top line of the example), and all existing attributes
must be included in the file. If you do not include all of the existing
attributes, they will be deleted when the new name_map file is read by the
server.

2. Add the attribute to the name map by using the following command:

nlbconfig -mput -f name_map

You have to do this only once; the server stores this data in its NLB
database until you explicitly overwrite it again.

3. Add a value for the new attribute to the host data by creating an object
definition that sets the value of the attribute for each NLB object, as follows:

object NLB (bighost) {

NLB_SITE_CPUNORM = 1000;

}
object NLB (smallhost) {

NLB_SITE_CPUNORM = 1;

}

This file is then loaded into the NLB database by using the following
command:

nlbconfig -oupdat -f obj_defs

The new attribute is now available for use in policies (in step 4).

202 SG–2150 3.3

Implementing NLB Policies [8]

4. Add a policy using the newly-defined attributes.

After values for an attribute have been placed in the NLB database (step 3),
you can write policies based on these values. The following policy could be
placed in the policies file to select hosts based on CPU normalization:

policy: idlecpu

sort: NLB_IDLECPU * NLB_SITE_CPUNORM

5. Issue the following command to cause the server to reread its policy file:

nlbconfig -pol

This policy is now available for use by NQS.

Note: Ensure an NQS load-balancing queue is defined to use the new
policy.

8.4 Testing Policies

The load-balancing policies that work best for your site depend on the
workload at your site. To help you develop policies, the nlbpolicy program
is provided as a direct interface to the NLB. You can, for example, experiment
with a policy without submitting requests to NQS. The syntax of the
nlbpolicy command is as follows:

nlbpolicy [-a attribute = value] [-c count] [-d] [-h host] [-p policy]
[-s server]

The nlbpolicy command sends the server a policy query. The -a option
specifies a list of attribute names and an optional value to find a host with the
specified attribute set, or the specified attribute set to the specified value. You
may specify more than one attribute and corresponding value. The value must
be a decimal integer or float, in normal or scientific notation. You must expand
(to a value in bytes) unit symbols to be acceptable to NQS commands, such as
10kw (for example, 10kw would be 10 x 8192 = 81,920).

The -c option controls the maximum number of hosts returned. The -p option
selects a policy by name. The -h option (which can be repeated) specifies an
acceptable target host to return.

Without the -d option, the program prints out the returned hosts ordered by
the policy sort equation and the result of the equation for that host. With the -d
option, all the information about each host is printed as an object data file.

SG–2150 3.3 203

NQE Administration

The following policy, called AGE, returns a list of hosts ordered by the
percentage of idle CPU time multiplied by a weighting factor:

policy:AGE
sort: NLB_A_IDLECPU * NLB_SITE_CPUNORM

To test the policy, use the following command:

nlbpolicy -p AGE

The following output is returned:

cool 5.000000
cloudy 0.701754

gust 0.239234

hot 0.028249

The following command uses the same policy, but the -d option dumps all of
the objects for the host, and the -c option limits the number of hosts to 2:

nlbpolicy -p AGE -d -c2

This command prints out all of the attributes of the selected hosts (objects of
object type NLB).

8.5 File Formats

The following two sections describe the NLB name map and the object data file
formats.

8.5.1 The Name Map File

The NLB server supports mappings between the internal values used to
represent objects and attributes, and the human-readable names and
descriptions. The mapping is defined by configuration data held within the
server. This data can be downloaded from the server and converted to a text
form by nlbconfig. The nlbconfig program also can take the text form of
the name map and load it back into the server, allowing you to add new
definitions to the map. This text form of the name map is known as a
name_map file.

The name_map file contains a sequence of definitions for different object types
and their associated attributes. Each object has a name and an ID. Each
attribute of an object has a name, a text description, and an ID formed from a

204 SG–2150 3.3

Implementing NLB Policies [8]

type and a number. The attribute ID and name must be unique from all other
attributes of that object.

A name map for an object of object type NLB (information about an individual
host) would be as follows; column one is the attribute name, column two is the
attribute description, and column three is the attribute type ID:

SG–2150 3.3 205

NQE Administration

map NLB = 1024

{

NLB_OSNAME "OS name" string(1);

NLB_RELEASE "Release" string(2);

NLB_VERSION "Version" string(3);

NLB_HARDWARE "Hardware" string(4);

NLB_QUEUE_NAME "Queue name" string(5);

NLB_TMPNAME "Temp file path" string(6);

NLB_BSUSPEND "Auto suspend state" string(7);

NLB_IDLECPU "Idle cpu" float(1);

NLB_RUNQLEN "Run queue" float(2);

NLB_SWAPPING "Swap activity" float(3);

NLB_POLICY "Policy Weighting" float(4);

NLB_SYSCPU "System cpu" float(5);

NLB_RUNQOCC "Run queue occupancy" float(6);

NLB_A_IDLECPU "Ave Idle cpu" float(11);

NLB_A_RUNQLEN "Ave Run queue" float(12);

NLB_A_SWAPPING "Ave Swap activity" float(13);

NLB_A_SYSCPU "Ave System cpu" float(14);

NLB_PHYSMEM "Memory" integer(1);

NLB_FREEMEM "Free memory" integer(2);

NLB_CLOCK "Clock speed" integer(3);

NLB_NCPUS "Num CPUs" integer(4);

NLB_PSWCH "Context switches" integer(5);

NLB_NUMPROC "Process count" integer(6);

NLB_FREETMP "Free temp space" integer(7);

NLB_KEYIDLE "Keyboard idle time" integer(8);

NLB_SWAPSIZE "Swap Device size" integer(9);

NLB_SWAPFREE "Free Swap space" integer(10);

NLB_A_FREEMEM "Ave Free memory" integer(11);

NLB_A_PSWCH "Ave Context switches" integer(12);

NLB_A_NUMPROC "Ave Process count" integer(13);

NLB_A_FREETMP "Ave Free temp space" integer(14);

NLB_A_SWAPFREE "Ave Free Swap space" integer(15);

NLB_IOTOTAL "Total user I/O rate" integer(16);

NLB_A_IOTOTAL "Ave Total user I/O Rate" integer(17);

NLB_IOREQS "I/O Requests per sec" integer(18);

NLB_A_IOREQS "Ave I/O Requests per sec" integer(19);

NLB_SYSCALLS "System calls per second" integer(20);

NLB_A_SYSCALLS "Ave system calls per second" integer(21);

NLB_TPDAEMONUP "Tape Daemon running" integer(22);

206 SG–2150 3.3

Implementing NLB Policies [8]

NLB_MPP_UP "Cray T3D available" integer(23);

NLB_NQS_UP "NQS available flag" integer(24);

NLB_NQS_VALTYPE "NQS validation type" integer(25);

NLB_TIMESTAMP "Update time" time(4096);

NLB_HOST "Originating host" string(4098);

}

You can change the attribute names (such as NLB_OSNAME) and the attribute
descriptions. However, you cannot change the attribute type ID. The type ID
numbers are built into ccollect(8); because of this, specific attributes always
represent the same piece of information.

Note: It is recommended that you do not change attribute names because
they are used in X resource definitions for the NQE GUI Load window
displays and in policy definitions.

Table 6 lists the allowed attribute types:

Table 6. Attribute Types

Type Contents

float Floating-point value

integer Integer value

string Null-terminated ASCII string

time Time stamp (the number of seconds since 1 January 1970)

You can add new attributes and store values to the NLB database at any time
by using the nlbconfig command. However, the data cannot be used
anywhere until the attribute has been defined in the name_map file, even if
objects in the NLB database possess the attribute. These site-defined values can
then be used in policies and the X resource definitions for the machine load
displays, which are displayed by using the NQE GUI Load window. For an
example of writing a load-balancing policy, see Section 8.3.9, page 201.

A number of object and attribute names are reserved. They are hardcoded into
the NLB collectors. A default name mapping file is supplied for these objects
and attributes. Attribute numbers below 8192 are reserved for Cray Research.
Table 7 lists the reserved host object attributes.

SG–2150 3.3 207

NQE Administration

There are averaged versions of all integer and floating-point attributes except
for NLB_POLICY, NLB_KEYIDLE, NLB_PHYSMEM, NLB_CLOCK, NLB_NCPUS, and
NLB_SWAPSIZE. These attributes use the naming convention _A inserted in the
middle of the name (for example, NLB_A_IDLECPU is the average version of
NLB_IDLECPU).

Table 7. Reserved Host Object Attributes

Attribute Description Type

NLB_BSUSPEND Status of interactive activity on a server
running csuspend(8).

String

NLB_CLOCK Clock speed. Integer (picoseconds)

NLB_FREEMEM Amount of memory currently available. Integer (Kbytes)

NLB_FREETMP Amount of free temporary file space. Integer (Mbytes)

NLB_HARDWARE Hardware type as shown by the uname(1)
command.

String

NLB_IDLECPU Percentage of idle CPU time. Float (0 to 100)

NLB_IOTOTAL Amount of I/O being performed by user
processes (read and write system calls).

Integer (Kbyte/s)

NLB_IOREQS Number of read and write system calls per
second.

Integer

NLB_KEYIDLE Amount of time since console key pressed or
mouse moved. Only valid on workstations.

Integer (minutes)

NLB_MPP_UP CRAY T3D MPP system available. True/false

NLB_NCPUS Number of configured CPUs. Integer

NLB_NUMPROC Number of processes in system at the last
sample point.

Integer

NLB_OSNAME Operating system name as shown by the
uname(1) command.

String

NLB_PHYSMEM Total amount of physical memory available to
user processes.

Integer (Kbytes)

NLB_POLICY Result of last policy sort equation applied to
host.

Float

208 SG–2150 3.3

Implementing NLB Policies [8]

Attribute Description Type

NLB_PSWCH Context switches per second. Integer

NLB_QUEUE_NAME Queue name for load-balanced NQS requests,
defined by the ccollect option -Q.

String

NLB_RELEASE Operating system release as shown by the
uname(1) command.

String

NLB_RUNQOCC Percentage of the time that the run queue was
occupied (that is, processes were waiting for
the CPU). A low number indicates the system
is under used.

Float (0 to 100)

NLB_RUNQLEN Number of runnable processes. Float

NLB_SWAPFREE Amount of unused swap space. Integer (Mbytes)

NLB_SWAPPING Rate of data movement to and from swap
devices.

Float (Kbyte/s)

NLB_SWAPSIZE Amount of swap space configured. Integer (Mbytes)

NLB_SYSCALLS Number of system calls executed per second. Integer

NLB_SYSCPU Percentage system CPU time. Float (0 to 100)

NLB_TMPNAME Path name of file system used for the
NLB_FREETMP attribute, defined by the
ccollect option -d.

String

NLB_TPDAEMONUP UNICOS tape daemon is present. True/false

NLB_VERSION Operating system version as shown by the
uname(1) command.

String

Table 8 lists the availability of the attribute data across platforms. The following
conventions are used in the table:

Y Indicates data is available

- Indicates no kernel data is available

The NLB_TPDAEMONUP and NLB_MPP_UP attributes are collected only from
UNICOS and UNICOS/mk systems.

SG–2150 3.3 209

NQE Administration

Table 8. Attribute Implementation Across Platforms

Attribute AIX Digital
UNIX

HP-UX IRIX Solaris UNICOS UNICOS/mk

NLB_OSNAME Y Y Y Y Y Y Y

NLB_RELEASE Y Y Y Y Y Y Y

NLB_VERSION Y Y Y Y Y Y Y

NLB_HARDWARE Y Y Y Y Y Y Y

NLB_QUEUENAME Y Y Y Y Y Y Y

NLB_TMPNAME Y Y Y Y Y Y Y

NLB_IDLECPU Y Y Y Y Y Y Y

NLB_RUNQLEN Y Y Y Y Y Y Y

NLB_SWAPPING Y Y Y Y Y Y -

NLB_SYSCPU Y Y Y Y Y Y Y

NLB_RUNQOCC Y - - Y Y Y Y

NLB_PHYSMEM Y Y Y Y Y Y Y

NLB_FREEMEM Y Y Y Y Y Y -

NLB_CLOCK - - - Y Y Y Y

NLB_NCPUS - Y Y Y Y Y Y

NLB_PSWCH Y Y Y Y Y Y Y

NLB_NUMPROC Y Y Y Y Y Y Y

NLB_FREETMP Y Y Y Y Y Y Y

NLB_KEYIDLE - Y - Y Y Y Y

NLB_SWAPSIZE Y Y Y Y Y Y -

NLB_SWAPFREE Y Y Y Y Y Y -

NLB_IOTOTAL Y - - Y Y Y Y

NLB_IOREQS Y - Y Y Y Y Y

NLB_SYSCALLS Y Y Y Y Y Y Y

210 SG–2150 3.3

Implementing NLB Policies [8]

Attribute AIX Digital
UNIX

HP-UX IRIX Solaris UNICOS UNICOS/mk

NLB_TPDAEMONUP Y Y Y Y Y Y Y

NLB_MPP_UP Y Y Y Y Y Y Y

The NLB also stores attributes for running requests. There is an attribute for
each field in the cqstatl or qstat -f display (over 200 attributes are
included). To obtain a list of these attributes, use the following command:

nlbconfig -mdump -t NJS | more

The output from this command lists attribute names, descriptions, and types.
An abbreviated example follows:

nlbconfig -mdump -t NJS |more

###
creation date: Wed Mar 22 15:08:13 1995

created by: ljgm

object timestamp: Sat Mar 18 11:56:52 1995

########

map NJS = 500
{

NJS_NQSID "NQS identifier" string(1);

NJS_JOBSTAT "Job status" string(2);

NJS_NUMPROC "Processes in job" integer(3);

NJS_RUNUSER "Running user" string(4);
NJS_QUENAM "Queue name" string(5);

NJS_CPUREQLIM "Per-request CPU limit" integer(6);

NJS_CPUREQUSE "Per-request CPU use" integer(7);

NJS_MEMREQLIM "Per-request memory limit" float(8);

NJS_MEMREQUSE "Per-request memory use" float(9);

NJS_PFSREQLIM "Per-request PFS limit" float(10);
NJS_PFSREQUSE "Per-request PFS use" float(11);

NJS_ORGHOST "Originating host" string(12);

NJS_ORIGUSER "Originating user" string(13);

NJS_QUEENT "Position in queue" integer(14);...

8.5.2 The Object Data File

An object data file may be used to assign values to attributes for each object.
Objects can be represented in a text format. Functions and commands are

SG–2150 3.3 211

NQE Administration

provided so administrators can create their own objects and insert them into the
NLB database.

An object data file consists of a sequence of objects. Each object has a type, a
name, and a sequence of assignment statements that define attribute values.
The type names for objects and names for attributes are taken from the name
map in the NLB database. The following example defines two attributes on
three different hosts:

object NLB (cloudy) {

NLB_SITE_CPUNORM = 10;

NLB_APPLICATIONS = "UniChem dbase";
}

object NLB (gust) {

NLB_SITE_CPUNORM = 12;

NLB_APPLICATIONS = "UniChem TurboKiva";
}

object NLB (hot) {

NLB_SITE_CPUNORM = 24;

NLB_APPLICATIONS = "";

}

The legal values for an attribute depend on its type as defined in the name
map, as follows:

Type Contents

float Floating-point value. Only fixed-point representation is supported
(such as 35000.0 and not 3.5e4).

integer Integer value. This can be a signed integer. A leading 0 implies
octal.

string A string surrounded by quotation marks (") or a single word
containing only alphanumeric characters.

time Cannot be specified as input.

First you would update the name_map file with the new attributes
NLB_APPLICATIONS and NLB_SITE_CPUNORM and load it into the
nlbserver. Note that because of how the server code works any attributes
that are to be used in policies must be in either the NLB object or the NLB_JOB
object. If any attribute is used in the policy file that is not in either of these two
objects the policies file will not be read successfully by the nlbserver.

212 SG–2150 3.3

Implementing NLB Policies [8]

name_map file:

map NLB = 1024

{
NLB_APPLICATIONS

"Resident Applications"

string(999);

}

Second, the appropriate objects must have attributes set properly. For this
example, these are set with the following object data file that is downloaded to
the nlbserver with the following command:

nlbconfig -t nlb -oupdat filename

object NLB (gust) {
NLB_APPLICATIONS = "Unichem TurboKiva Nastran";

}

object NLB (wind) {

NLB_APPLICATIONS = "Nastran";

}
object NLB (rain) {

NLB_APPLICATIONS = "Unichem";

}

object NLB (frost) {

NLB_APPLICATIONS = "TurboKiva";

}

Third, write some policies that use the attribute in question.

Policy file:

policy:

first

constraint:

[NLB_APPLICATIONS == "Nastran"]

sort: (NLB_A_IDLECPU +5)/10000

policy:

second

constraint:

[NLB_APPLICATIONS == "Unichem"] ||\n [NLB_APPLICATIONS == "TurboKiva"]

sort: (NLB_A_IDLECPU +5)/10000

Finally see the results of the policies when they are invoked.

SG–2150 3.3 213

NQE Administration

Output from nlbpolicy:

nlbpolicy -p first

gust
0.0092525

wind

0.003213

nlbpolicy -p second

gust
0.009225

rain

0.004950

frost

0.000500

8.6 Implementing NQS Destination-selection Policies

It is relatively simple to set a policy that selects target NQS systems with the
lightest CPU load.

To use this destination selection mechanism, batch requests must be submitted
to a pipe queue that is configured to perform destination selection. By defining
both standard NQS pipe queues and destination-selection pipe queues, and by
setting an appropriate default batch queue, sites can define several workable
environments that allow integration of destination selection into their
environment.

The examples in Section 8.6.5, page 219, and Section 8.6.6, page 219, show how
sites might configure NQS destination-selection queues to determine how batch
requests are routed.

8.6.1 Configuring NQS Destination Selection

To configure an NQS destination selection environment, define a pipe queue as
a destination selection pipe queue on each system that will route requests using
NLB (as described in Section 8.6.5, page 219). No destinations should be defined
for this pipe queue. The queue must be marked as a destination selection pipe
queue (CRI_DS). (For additional information, see Section 5.6.4, page 65.)

214 SG–2150 3.3

Implementing NLB Policies [8]

The collectors on your NQE nodes have been reporting their availability. When
you submit a request to the new queue, the NLB selects one of these servers as
the destination queue for your job.

8.6.2 NQS User Interface to NLB

If the qmgr default batch queue is set to a destination-selection pipe queue, all
requests that do not designate a specific queue are routed using NLB. If the
default queue is not a destination-selection queue, you can use the General
Options Queue Name selection of the Configure menu on the NQE GUI
Submit window, use the -q queues option, or designate the queue in the script
file to select a destination-selection queue.

If you are using file validation, each user must create a .rhosts or
.nqshosts file on each system to which a request might be routed by the
NLB. If you are using password validation, the user’s password must be the
same on all systems to which the NLB could route the request.

8.6.3 Policy Definition

The following example could be used as a policy definition in the NLB
policies file:

SG–2150 3.3 215

NQE Administration

Policy for load-balancing between Cray systems

Note that NLB_HARDWARE can be "CRAY J90", "CRAY Y-MP",
"CRAY T3E", etc. and still match [NLB_HARDWARE == "cray"]

(AGE < 300) for systems that have sent data in the

last 5 minutes

(NLB_PHYSMEM - NLB_A_FREEMEM....) for a ratio of memory used

(real and swap) to real memory of less than 4

(NLB_NCPUS <= 2.... for less than 20% system CPU per CPU for
hosts with 1 or 2 CPUs

(NLB_NCPUS > 2.... for less than 3.5% system CPU per CPU for

hosts with more than 2 CPUs

#

#Sorted by ratio of number of CPUs to length of the run queue
#

policy: RUNQUEUE

constraint:[NLB_HARDWARE == "cray"] && age < 300

constraint:(NLB_PHYSMEM - NLB_A_FREEMEM +

(NLB_SWAPSIZE - NLB_SWAPFREE) * 1024)
/NLB_PHYSMEM < 4

constraint: NLB_NCPUS <= 2 => NLB_A_SYSCPU / NLB_NCPUS <20

constraint:(NLB_NCPUS > 2) => (NLB_A_SYSCPU / NLB_NCPUS <3.5)

sort: NLB_NCPUS / NLB_A_RUNQLEN

Destination selection can be used to limit requests when host resources reach a
threshold. For example, the following policy omits any host with system CPU
usage greater than 10%. This can keep a busy system from receiving more
requests.

policy: AGE

constraint: AGE < 300

constraint: NLB_A_SYSCPU < 10
sort: NLB_A_IDLECPU * NLB_NCPUS

NQS destination-selection queues used for load balancing specify the policy for
that queue. For this reason, you may want to have multiple load-balancing
queues for requests with disparate resource requirements. For example,
CPU-bound requests could be routed to a machine with idle CPU but little free
memory. The following policies, MEMORY and CPU, serve this purpose. The first
limits hosts to those with more than 32 Mbytes of memory and a low memory
demand, calculated by the memory oversubscription. Hosts are then sorted so
that larger memory machines are chosen first.

216 SG–2150 3.3

Implementing NLB Policies [8]

The CPU policy uses additional NLB attributes that would be added by the site.
NLB_SYSCPU_LIMIT would be defined as an integer value that could be
different for each host. NLB_RUNQLEN_LIMIT also could be different for each
host. The CPU policy limits the system CPU time and the run queue length.
Hosts are sorted so that those with idle CPU time are first, and those with more
CPUs are preferred. If there is no idle CPU time, the hosts are sorted by the
number of CPUs.

policy: MEMORY

constraint: NLB_PHYSMEM > 32768
constraint: (NLB_PHYSMEM - NLB_A_FREEMEM +

(NLB_SWAPSIZE - NLB_SWAPFREE) * 1024)

/ NLB_PHYSMEM < 3

sort: NLB_PHYSMEM

policy: CPU

constraint: NLB_A_SYSCPU / NLB_NCPUS < NLB_SYSCPU_LIMIT

constraint: NLB_A_RUNQLEN / NLB_NCPUS < NLB_RUNQLEN_LIMIT

sort: NLB_A_IDLECPU * NLB_NCPUS + NLB_NCPUS

8.6.4 NQS Processing

This section discusses NQS behavior when processing a batch request
submitted to a destination selection queue.

When a batch request is submitted to a destination selection queue, it obtains a
list of destinations from the NLB server. The list of destinations is tried one at a
time until the request is accepted by one of the destinations or until the list is
exhausted. If no destination accepts the request, NQS waits and tries again,
based on the interval set by the qmgr command set default
destination_retry time (the default is 5 minutes). NQS continues to try
to deliver the request to a destination until the request is accepted or the
request has waited the maximum allowable time, which is defined by the qmgr
command set default destination_retry wait (the default is 72
hours). If no destination accepts the request during the maximum time, the
request is deleted and the submitting user is notified by mail.

One of the following situations also may occur:

• If a destination selection pipe queue is defined incorrectly, the destination
selection function is not invoked and the request is rejected. The user
receives mail indicating that the request was submitted to a queue with no
destinations.

SG–2150 3.3 217

NQE Administration

• If an NLB server is not available at any of the hosts defined by
$NLB_SERVER, a message is written to the NQS log file. No other attempt is
made to route the request to a destination host. NQS continues to attempt to
deliver the request until it is accepted or until NQS has waited the
maximum allowable time.

• If the list of destinations is empty, a message is generated in the NQS log
file. NQS continues to attempt to deliver the request until it is accepted or
until the request has waited the maximum allowable time indicated by the
qmgr command set default destination_retry wait.

• If no host in the list of destinations will accept the request, a message is
generated in the NQS log file. NQS continues to attempt to deliver the
request until it is accepted or until the request has waited the maximum
allowable time indicated by the qmgr command set default
destination_retry wait.

• If you are using file validation, each user submitting requests to a
load-balanced pipe queue must have a .rhosts or .nqshosts file in their
home directory for each batch system that could run work. These files are
required to route requests to execution hosts and return results to the
originating host. If you are using password validation, the user’s password
must be the same on all NQE servers; for example, if you are using NIS.

• Requests that are routed using destination selection are not guaranteed to
run, because the local NQS systems may apply local limits to its queues. For
information about using batch request limits in policies, see Section 8.7, page
221.

218 SG–2150 3.3

Implementing NLB Policies [8]

8.6.5 Example of Load Balancing Using the Default Policy

a10271

NQS system on host cool

pipe queue nqebatch@cool

NLB collector

NLB server

List of queue@host

nlbqueue

Default queue
on all systems

NQS system on host gale

pipe queue nqebatch@gale

NLB collector

NQS system on host ice

NLB collector

NLB collector

NLB collector

Queries hosts in turn

pipe queue nqebatch@gale

pipe queue nqebatch@hotpipe queue nqebatch@ice

NQS system on host hot

Query server

NQS system on host gale

Figure 18. NQS Configuration with Load Balancing by Default

The following qmgr commands create the pipe queue nlbqueue and define it
as the default queue for batch job requests:

% qmgr

Qmgr: create pipe_queue nlbqueue server=(pipeclient CRI_DS) priority=33

Qmgr: set default batch_request queue nlbqueue

Qmgr: quit

All requests that use the default queue are routed to a destination host by the
destination selection algorithm. The NLB policy (for load balancing) defaults to
nqs. The NLB server host defaults to NLB_SERVER.

8.6.6 Example of Load Balancing by Selection

In this scenario, a site has multiple NQS systems. The systems are similar, but
there is production work that must run on specific systems. There is also work

SG–2150 3.3 219

NQE Administration

that could run on any available system. The default is that requests are
submitted to a standard pipe queue. Users are encouraged to choose a
destination selection queue when they submit work that can run anywhere in
the complex.

This situation can be accommodated by defining two pipe queues, as shown in
Figure 19. One is a standard pipe queue, called standard. The second, called
nlbqueue, is configured to perform destination selection.

a10272

NQS system on host cool

pipe queue nqebatch@cool

NLB collector

NLB server

standard

Default queue

NQS system on host gale

pipe queue nqebatch@gale

NLB collector

NQS system on host ice

NLB collector

NLB collector

NLB collector

pipe queue nqebatch@rain

pipe queue nqebatch@hotpipe queue nqebatch@ice

NQS system on host hot

NQS system on host rain

nlbqueue

On all systems

Figure 19. NQS Configuration with Load Balancing by Selection

The following qmgr commands create these pipe queues and set the default
queue to standard so that requests are routed by standard NQS routing. The
pipe queue standard explicitly defines a policy name, NLB host, and NLB
port.

Qmgr: create pipe_queue standard server=(pipeclient) \

destination=(nqebatch@cool,nqebatch@gale) priority=30

Qmgr: create pipe_queue nlbqueue \

server=(pipeclient CRI_DS CPU cool:nlb) priority=30

Qmgr: set default batch_request queue standard

220 SG–2150 3.3

Implementing NLB Policies [8]

Requests that are submitted to the queue nlbqueue are routed to the most
lightly loaded system.

8.7 Using Batch Request Limits in Policies

Users can set various per-process and per-request limits on batch requests when
they submit the request. You can use these limits to define policies that route a
request based on the size of the limits. NQS lets you specify attributes on a
request by using the General Options Attributes selection of the
Configure menu on the NQE GUI Submit window or by using the cqsub
-la option. These attributes can be used within NLB policies by defining the
same attributes in the NLB name map.

For example, using the cqsub -la option, the user specifies an NQS attribute
as follows:

cqsub -la nastran

When it receives the request, NQS adds the characters job_ to the beginning of
the attribute name and checks to see if the attribute has been defined in the
NLB name map. JOB_ attributes are attributes of type NLB_JOB. In this
example, the JOB_NASTRAN attribute is defined in the name map, and it will
have the value 1 when applying the policy.

For example, you could define a policy that restricts large memory requests to
large memory machines, or requests with small time limits could use less strict
constraints when selecting a destination.

Using nlbconfig, you can define absolute request size limits for hosts and
have policies enforce these limits. For example, a policy could constrain
requests that require more than a specified amount of memory, disk space, or
CPU time from being sent to specific machines.

The data sent by the destination selection module of the NQS pipeclient
includes the attributes shown in Table 9. The attributes are present only when
the associated command-line option was used in the request. All attributes,
with the exception of tape drives, are floating-point numbers, and all values are
normalized so that measurements are in bytes (or seconds for CPU limits). Tape
drive attributes are integers.

The string attribute JOB_REQNAME that contains the request name is always
present. You can use this attribute to make specific decisions for special request
names.

SG–2150 3.3 221

NQE Administration

Note: The following limits can also be set by selecting the General
Options Job Limits submenus of the Configure menu on the NQE GUI
Submit window.

222 SG–2150 3.3

Implementing NLB Policies [8]

Table 9. Request Limit Attributes

Option Description Attribute name

-lc Specifies the per-process core file size limit. JOB_PPCORESIZE

-ld Specifies the per-process data segment size limit. JOB_PPDATASIZE

-lf Specifies the per-process permanent file space limits. JOB_PPPFILESIZE

-lF Specifies the per-request permanent file space limits. JOB_PRPFILESPACE

-lm Specifies the per-process memory size limits. JOB_PPMEMSIZE

-lM Specifies the per-request memory size limits. JOB_PRMEMSIZE

-lQ Specifies the per-request SDS limits. JOB_PRQFILESPACE

-ls Specifies the per-process stack size limit. JOB_PPSTACKSIZE

-lt Specifies the per-process CPU time limits. JOB_PPCPUTIME

-lT Specifies the per-request CPU time limits. JOB_PRCPUTIME

-lw Specifies the per-process working set size limit. JOB_PPWORKSET

-lU type Specifies the per-request tape drive limits for type,
which can be a, b, c, d, e, f, g, or h.

JOB_TAPES_A to
JOB_TAPES_H

8.7.1 Defining Request-attribute Policies

If you have three different application packages, NASTRAN, Oracle, and
UniChem, which are used by requests but not available on all machines, you
would set up a policy as described in this section. To let users specify on the
command line which application packages are required, you can perform the
following steps:

1. Define attribute names for hosts and requests to represent these packages.
Download a copy of the existing name map by using the following
command:

nlbconfig -mdump -f name_map

Edit the file name_map as shown in the following example. The attributes
for the request must be defined for object type NLB_JOB with ID 1025 and
must start with job_. When you edit the file, do not delete the existing
names from the name map. If you do not include all of the existing names,
they will be deleted when the server reads the new name_map file. The

SG–2150 3.3 223

NQE Administration

host attributes enable you to specify whether or not each host has that
application available. Notice in step 2 that two of the three machines have
UniChem, two have Oracle, and only one has NASTRAN. If a job requires
an application, you want to submit it to a machine that has that application.
This is how you define whether or not a machine has that application.

map NLB_JOB = 1025
{

(All names from the existing name map must be included)

job_nastran "Job requires nastran" integer(8192);

job_oracle "Job requires oracle" integer(8193);
job_unichem "Job requires unichem" integer(8194);

}

map NLB = 1024

{

(All existing names from the name map must be included)

host_nastran "Host supports nastran" integer(8192);

host_oracle "Host supports oracle" integer(8193);

host_unichem "Host requires unichem" integer(8194);
}

To add these names to the name map, use the following command:

nlbconfig -mput -f name_map

2. Define the host_ attributes by creating an object data file and downloading
this into the server.

object NLB (cool) {

host_nastran = 1;
host_unichem = 1;

}

object NLB (gust) {

224 SG–2150 3.3

Implementing NLB Policies [8]

host_oracle = 1;

host_unichem = 1;
}

object NLB (hot) {

host_oracle = 1;

}

To load this file into the server, use the following command:

nlbconfig -oupdat -f obj_defs

3. Add constraints to the policy.

You must define constraints for the policy that selects hosts based on the
job_ attributes. These constraints have no effect unless the user specifies
an attribute using the -la option of the cqsub command or if using the
General Options Job Limits submenus of the Configure menu on
the NQE GUI Submit window.

Use the implies operator (=>), as follows:

constraint: exists(job_nastran) => exists(host_nastran)

constraint: exists(job_oracle) => exists(host_oracle)

constraint: exists(job_unichem) => exists(host_unichem)

Using the implies operator (=>) in these constraints means that if a job_
attribute is specified by the user, the equivalent host attribute also must
exist. If the job_ attribute is not present, the equivalent host attribute is
not required either.

Such job_ attributes can be used for any purpose. They are not restricted to
the presence or absence of applications on hosts.

8.7.2 Testing the Policy

You can test a policy by using the nlbpolicy -p option. Its syntax is as
follows:

nlbpolicy -p policyname

Optionally, you can use the -a option to specify any attribute described in
Table 9, page 223, or you can create your own attributes and add them to the
name map. Valid attributes are defined in the NLB for object type NLB_JOB.

SG–2150 3.3 225

NQE Administration

They must begin with the characters JOB_ and can be either a decimal
integer or a float. The value can be either a decimal or a float, in normal or
scientific notation. You cannot specify negative, hexadecimal, or octal numbers.

8.8 Storing Arbitrary Information in the NLB Database (Extensible Collector)

The extensible collector is a mechanism built into NQE that allows you to store
arbitrary information in the NLB database. This information is periodically sent
to the NLB along with the data that is normally stored and updated by NQE.
Once the customized data is in the NLB database, it can be used in policies or
displays just as any other data in the NLB database. NQE collects and stores
the customized data, but you define, generate, and update it.

The customized data that is stored in the NLB database is added as new
attributes to either the NLB object or the NLB_JOB object. Only attributes that
are in these two objects can be used in policies and displays. Attributes that are
in any other object that is used in a policy will result in the policy file not being
read, and no policies will be available.

As a background for the rest of this description, you should be familiar with
the following terms:

• Name map or name map file

• Object or NLB object

• Attribute

• Object data file

• nlbconfig command

• nqeinfo file; which is the site NQE configuration file, and it is generated at
installation time (see Chapter 3, page 35)

The following steps are necessary to get customized objects into NQE:

1. Define the new attributes and put them in either the NLB object or the
NLB_JOB object in the name map file so that they are available for use in a
load-balancing policy.

To add attributes to an object, the current name_map file should be
retrieved from the NLB server by using the nlbconfig command. Then
add the new attribute definitions to the current name_map file. (The current
name_map file retrieved from the NLB server is an ASCII file, so any

226 SG–2150 3.3

Implementing NLB Policies [8]

additions are done using an editor.) Finally, using the nlbconfig
command, download the updated name_map file to the NLB server.

SG–2150 3.3 227

NQE Administration

2. Generate an ASCII file of the following form:

object NLB ("host name") {

NEW_ATTRIBUTE_1 = 12345;
NEW_ATTRIBUTE_2 = "This is a text string";

}

The attribute values may be added to an object without specifying all
attributes of the object. This ASCII file is referred to as a custom object file.

3. Write a program or a shell script to populate a file with instances of the
newly defined attributes. The format of this file is that of an object data file.
This program or script will periodically update this object data file with
new values for the attributes that have been defined.

4. Instruct the NQE collector program to read from the new object data file.
This is done by using either the -C option of the ccollect program or by
using the variable NQE_CUSTOM_COLLECTOR_LIST in either the nqeinfo
file or as an environment variable. To specify multiple input files, use the
-C option for each file.

Note: If the environment variable method is used, it must be defined
before the collector is started.

The custom object files specified to the collector will be read once each
interval and forwarded to the NLB server. After the program that generates
the custom objects exists, the collector provides an additional option that
starts the user program each time the collector is started. The collector
automatically checks the NQE_CUSTOM_COLLECTOR_LIST variable for a list
of programs to start. In addition to starting a program, the collector detects
when the program terminates and restarts it.

The following example shows the syntax required to specify a list of custom
collectors that the NLB collector will start. The NLB collector looks for this list
in the NQE_CUSTOM_COLLECTOR_LIST environment variable or looks in the
nqeinfo file for a variable of the same name. This example assumes the
nqeinfo file is being used:

NQE_CUSTOM_COLLECTOR_LIST="prog1, arg1, arg2: prog2: prog3, arg1"

The program names are separated by a colon, and the arguments are separated
by a comma. The program names are either full path names, or they are
interpreted as being relative to the directory from which the NQE collector was
started, which is NQE_BIN if the nqeinit script is used.

228 SG–2150 3.3

Implementing NLB Policies [8]

An additional feature, called customized collector startup, can help automate the
generation of the extended object data files. This feature allows the
administrator to specify one or more programs that will be automatically
started by the NLB collector. The program can be either an executable file or a
script file. Each program can have multiple command-line arguments. The NLB
collector detects when any of the customized collectors has terminated and will
restart it during its next cycle.

8.9 NLB Differences on UNICOS/mk

The NLB database information is supplied by the ccollect program.
ccollect relies on the sar command for retrieving system performance data.
The sar command on UNICOS/mk systems currently does not provide system
performance data for memory or swapping usage statistics. As a result, the
NQE GUI Load window for memory demand displays a fixed value of 96%
when used for UNICOS/mk systems.

In addition, the following NLB attributes are not meaningful for UNICOS/mk
systems: NLB_A_SWAPPING, NLB_SWAPPING, NLB_SWAPSIZE,
NLB_SWAPFREE, NLB_FREEMEM, and NLB_A_FREEMEM.

SG–2150 3.3 229

NQE Database [9]

This chapter provides basic information about the NQE database and its
components. It includes the following information:

• NQE database model

• NLB scheduling versus NQEDB scheduling

• An overview of the NQE database

• NQE database components

• NQE database concepts and terms

• Starting the NQE database

• Stopping the NQE database

• Obtaining status

• Security

• Configuring the NQE database components

• Compacting the NQE database

Chapter 10, page 261, describes the NQE scheduler in detail and includes a
tutorial for writing a simple NQE scheduler.

9.1 NQE Database Model

While the NQE database model works well for specific environments, it has
some limitations. The database used has a limit of 40 simultaneous connections.
A connection is used for each execution server and each active client command.
The performance of the database makes it well suited for environments where
there are a small number of long running job scripts. It does not perform as
well when there are large numbers of job scripts or very large single scripts.

Also, using the NQE database model requires that an installation write their
own scheduler. The scheduler must be written using the TCL script language.

SG–2150 3.3 231

NQE Administration

9.2 NLB Scheduling Versus NQEDB Scheduling

This section provides a brief overview of the advantages and disadvantages of
both NLB scheduling and NQE database scheduling.

9.2.1 Failure Recovery

Failure recovery for the NLB is possible by specifying a list of nodes for the
NLB_SERVER variable in the nqeinfo(5) file. The collectors will update the
NLB database on each specified NLB server so that all nodes have up-to-date
information. The NLB clients query the NLB servers one by one in the
configured order until they find one that is running or until they exhaust the
list. The one potential problem with NLB failure recovery involves using the
cevent(1) command for Job Dependency. For more information, see Section
12.2, page 314.

There is no failure recovery for the NQEDB node. If the NQEDB node goes
down or loses network access, the cluster becomes a set of individual NQS
servers. If jobs finish while the NQEDB node is inaccessible, the NQE database
will not be updated and the jobs will still be marked as running in the NQE
database.

9.2.2 Number of Connections

The NQE database is limited to 36 connections. Four permanent connections
are used by the NQEDB sever and one permanent connection is used by each
lightweight server. Client connections are all transient and therefore limited
only by performance considerations. However, if all 36 connections are used by
servers, there is no connection left for clients connections. Therefore, the
maximum number of nodes that may be in an NQE cluster is somewhere
between 30 and 35, depending on the amount of expected client traffic.

9.2.3 Cluster Rerun

Cluster rerun of jobs is not available with NLB scheduling.

Cluster rerun of jobs is available with the NQE database. However, if there are
network problems between the NQEDB sever and an NQS server, the NQS
server will appear to be down. In this situation, the NQEDB sever will rerun
the job on another server; this results in the job running twice.

232 SG–2150 3.3

NQE Database [9]

9.2.4 Performance

Performance is better with the NLB. The NQE database and scheduler are
written in TCL, an interpretative language, and is slower. Also, you can run the
NLB without the NQEDB sever, but you can not run the NQEDB sever without
the NLB, if you are interested in total cycles.

9.2.5 Relative Priority of Jobs

NQS queues give users a rough idea of the relative position of their jobs on that
node.

In the NQE database implementation, there is no way for users to understand
their job request priority relative to other job requests in queued state.

9.2.6 Site-defined Scheduling

The NLB allows sites to define policies for destination selection (routing) but
not for priority scheduling of job requests. Priority scheduling is strictly first in,
first out (FIFO).

The NQE Database as shipped uses FIFO scheduling but also allows sites to
define their own schedulers using TCL scripts. This flexibility adds a level of
complexity, as well as the obvious level of effort. However, the following types
of scheduling would be possible with a customized NQE Scheduler:

• Destination selection where the job may not be sent immediately. An
example of this would be sending a job to a server only if that server has an
average idle CPU of greater than 50%, with the job remaining queued if no
server is available.

• Network-wide limits. An example of this would be maintaining a global or
network-wide limit on the number of jobs that a given user may run
simultaneously.

• Normalizing resources across machines. For example, CPU time-limit
requirements in a heterogeneous network are generally found empirically. It
would be useful for the submitting user to supply the CPU requirements in
an arbitrary unit that is then converted to seconds for the particular server
on which the job is run.

• Network-wide rerun of failed jobs. For example, if a server on the network
is detected as no longer running, certain jobs that were running on that
server could be rerouted and run on another server.

SG–2150 3.3 233

NQE Administration

• Scheduling on arbitrary data. Certain site-specific information may be
important in scheduling. For example, a site may possess only a limited
number of network-wide or server licenses for a particular application and
the scheduler should not attempt to start up too many jobs using this
application.

9.3 Overview of the NQE Database

The NQE database provides the following:

• A mechanism for the client user to submit requests to a central storage
database.

• A scheduler that analyzes the requests in the NQE database and chooses
when and where a request will run.

• The ability for a request to be submitted to the selected NQS server once the
NQE scheduler has selected it.

Figure 20 shows an example of the layout of the NQE database. Jobs are
submitted using client commands from client machines. The jobs are placed in
the NQE database on one machine. A scheduler program determines which
machine should run the job. In the example shown in Figure 20, the job is sent
to Node D, where it is submitted and run in NQS.

234 SG–2150 3.3

NQE Database [9]

Database
Client commands

NQS
server

Scheduler

Client machine

Submit

Run request

NQS
server

NQS
server

Decide where
and when to
run request

request

a11564

Node A

Node B

Node C

Node D

NQE cluster

Figure 20. NQE Database Layout

9.4 NQE Database Components

Figure 21 shows in greater detail the processes and components of the NQE
database. The components are described in the following sections.

SG–2150 3.3 235

NQE Administration

Database

Submit

NQS
server

LWS system task
(Bridge to NQS)

Monitor system task

Scheduler system

Client machine

Status application

Client machine

Job status

Job control

Running job
and exit status

NQS job

Delete

Database server
(mSQL)

task

Job
submission

a11562

Node A

Node B

NQE cluster

Figure 21. NQE Database Components

9.4.1 Database Server (MSQL)

The NQE database server (mSQL) serves connections from clients in the cluster
or locally to access data in the database. The database used is mSQL, and it has
the following features:

• Simple, single-threaded network database server

• Relational database structure with queries issued in a simple form of SQL

236 SG–2150 3.3

NQE Database [9]

9.4.2 Monitor System Task

The monitor system task is responsible for monitoring the state of the database
and which NQE database components are connected. Specifically, it determines
which system tasks are connected and alive and, optionally, it purges old
requests (called tasks when they are within the database) from the database.

A system task is an application that remains constantly connected to the
database and performs a special task.

9.4.3 Scheduler System Task

The scheduler system task analyzes data in the database, making scheduling
decisions. Specifically, it does the following:

• Keeps track of lightweight servers (LWSs) currently available for use in
destination selection

• Receives new requests, verifies them for validity, and accepts or rejects them

• Executes a regular scheduling pass to find NQS servers to run pending
requests

Administrator-defined functions may be written in Tcl to perform site-specific
scheduling (see Chapter 10, page 261).

9.4.4 LWS System Task

The lightweight server (LWS) system task is a bridge to NQS, which performs
the following tasks:

• Obtains request information from the database for requests assigned to it by
the scheduler

• Checks authorization files locally

• Changes context and submits requests to NQS

• Obtains the exit status of completed requests from NQS and updates the
NQE database with this information

SG–2150 3.3 237

NQE Administration

9.4.5 Client Commands

The following client commands give access to the NQE database; for additional
information, see the man page for the specific command or see the NQE User’s
Guide, publication SG–2148:

• cqsub -d nqedb ...

This command submits the task to the NQE database rather than to NQS
directly. The NQE database, scheduler, and LWS then submit an NQS
request.

Note: If you use the nqe command to invoke the NQE GUI, the NQE
GUI Submit window has a Submit to NQE selection on the General
Options menu that provides the same function as this command.

• cqstatl -d nqedb ...

This command gets the status of tasks in the NQE database, which allows
you to see the status of all tasks in the NQE database, not just the local NQS
system.

• cqdel -d nqedb ...

This command sends a signal event to the task in the NQE database. This
event is translated to signal or delete the corresponding NQS request; this
action does not delete the task from the NQE database.

Note: If you use the nqe command to invoke the NQE GUI, the NQE GUI
Status window has a Signal Job selection and a Delete selection on
the Actions menu that provide the same functions as this command.

• If you use the nqe command to invoke the NQE GUI, the NQE GUI
Status window provides status information for all requests (from the NQE
database as well as for requests submitted directly to NQS).

• nqedbmgr

This is the NQE database administration command. The command allows
administrators to connect to the NQE database, and to examine and modify
data in the database. In addition, it provides commands to start and stop
aspects of the NQE database. These functions are described in the following
sections.

• compactdb

238 SG–2150 3.3

NQE Database [9]

This is an NQE database administration command. The command allows an
administrator to compact the NQE database to improve its performance. For
more information, see Section 9.10, page 253.

9.5 NQE Database Concepts and Terms

This section describes the following NQE database terms and concepts:

• Objects

• Task owners

• Task states

• Events

9.5.1 Objects

The NQE database is comprised of objects. Each object is, in turn, made up of
attributes, which are simply name and value pairs. An instance of an object in
the NQE database can contain any number of attributes.

Each instance of an object always contains at least the following attributes:

Attribute name Description

type One-character attribute used to differentiate
between object types.

Object types are described below.

id A unique identifier for the object.

timein The UNIX time (seconds since 00:00:00 GMT,
January 1, 1970) at which the object was first
inserted into the NQE database.

timeup The UNIX time at which the object was last
updated in the NQE database.

sec.ins.dbuser The NQE database user name of the user who
inserted the object.

The following object types are defined:

SG–2150 3.3 239

NQE Administration

Object type (and
abbreviation)

Description

Task or User task (t) The object associated with an NQS request.
Whenever a request is inserted into the NQE
database, a new object of type t is created.

Examples of attributes in a task object are:
script, exit.status, and env.HOME. For a
list of user task object attributes, see Table 21,
page 292.

Event (e) The object describing an event. Event objects are
inserted into the NQE database in order to cause
an action to occur. For a list of standard events,
see Table 10, page 244.

Posting an event to the NQE database simply
means inserting an event object into the NQE
database.

System task (s) The object describing a system task. One object of
this type is created for each system task
connected to the NQE database.

Examples of information stored include s.host
(host in which the system task is running and
s.pid (process ID) of the system task).

Global object (g) The object containing global configuration data.
There is only one instance of this object type; it
contains any configuration information required
by any client connecting to the NQE database.

Configuration information stored here includes
the rate at which system tasks query the NQE
database for events, tasks, and so on. For a list of
configuration attributes, see Table 14, page 255.

9.5.2 Task Owners

The task owner is the system task that is currently responsible for a given user
task. Only the task owner may modify the attributes of a task. The task owner
is defined in the attributes t.sysclass and t.sysname.

240 SG–2150 3.3

NQE Database [9]

The name of a system task is expressed in the following form:

class.name

For example, the default scheduler’s name is scheduler.main.

• class groups together system tasks that perform similar functions. There are
three classes, which are defined as follows:

– The monitor system task has a class name of monitor.

– The scheduler system task has a class name of scheduler.

– All LWS system tasks have a class name of lws.

• name describes the system task. The name used is dependent upon the
system task class. A default name of main is given to both monitor and
scheduler system tasks. The default name of an LWS is the name of the host
on which the LWS runs.

As administrator, you may set the name of the scheduler and LWS system
tasks. This feature can be used to create, for example, a test scheduler.

Each system task regularly queries the NQE database to find any new user
tasks it owns.

The scheduler chooses a host on which the user task will run and then changes
ownership of the user task to the LWS system task for that host. The LWS
system task then submits the task to the LWS daemon on that host. The LWS
daemon issues the job request to the local NQS system.

9.5.3 Task States

User tasks have a state attribute (t.state). Different states signify different
stages in the progress of the task through the system. There is no limit to the
number of states a user task may pass through, and the name of a state is
arbitrary. However, there are some well-defined states.

A task’s state may be changed without changing the owner. Also, the owner of
a task may be changed without changing its state.

Figure 22 shows some ownership changes and state changes possible for a user
task.

SG–2150 3.3 241

NQE Administration

scheduler

monitor

lws

Scheduled

Key:

cqsub

Failed

New

Aborted

Completed

System task owner class

New task state

Pending Submitted
Terminated

State unchanged

a10275

Figure 22. User Task Owners and States

A typical path for a user task is as follows:

1. The user uses the cqsub command to insert the task into the NQE database.

2. cqsub assigns ownership to the default scheduler system task
(scheduler.main) with a state, New.

3. scheduler.main checks the task’s validity and places it in state Pending.
The Pending state is an example of an internal state; the scheduler may
define many such states. (How long the task is in the Pending state
depends upon the scheduler’s algorithm.)

4. When the task is scheduled to run, scheduler.main assigns it to one of
the lws system tasks with state Scheduled. There is, in general, one lws

242 SG–2150 3.3

NQE Database [9]

system task for each node in the cluster. The LWS system task sends the
request to the LWS daemon on its node.

5. The lws attempts to submit the task as an NQS request to the NQS running
locally. If this action succeeds, the state is changed internally to Submitted.
Until NQS completes the job, the user task remains in the Submitted state.

6. Upon job completion, the lws assigns task ownership back to
scheduler.main. The state will be one of the following:

• Completed, meaning that the request completed normally.

• Failed, meaning that the request was not successfully submitted to
NQS.

• Aborted, meaning that something went wrong with the request while it
was assigned to NQS.

• Terminated, meaning that the request was deleted because a signal or
delete command was sent to the request.

7. After job completion, scheduler.main examines the task’s state and
either places the task back in Pending state (signifying that the task is to
be rerun) or passes the task to the monitor system task (monitor.main)
without changing its state.

8. monitor.main receives all user tasks that will never run again. It is
responsible for removing the task from the NQE database.

9.5.4 Events

Events form the mechanism for communication among users, administrators,
user tasks, and system tasks.

Any client program connected to the NQE database may insert and post an
event by inserting an object of type e. System tasks regularly check for any new
user tasks they own. Once an event has been acted upon, it is marked as
acknowledged and may be removed from the NQE database. (The monitor
system task can be configured to automatically purge old events from the NQE
database.)

Users may only post the signal event (by using either NQE GUI menu selection
or the cqdel command) when it is targeted at user tasks they submitted.
System tasks and administrators may send events to any object (including
system tasks).

SG–2150 3.3 243

NQE Administration

To send an event, use the nqedbmgr event post or ask command. For
example, to post the event xyz with value 123 to object s23, use the following
command; case is ignored for xyz in the example:

event post s23 xyz 123

Table 10 lists the standard events:

Table 10. Standard Events

Event name Usual target Description

DUMP_VARS System task Request that a system task dump to its log file all
global Tcl variable names and values matching the
event value. The value may be a glob pattern to match
the desired variable(s), such as *config*, or values.

SHUTDOWN System task Request that the targeted system task shut down.

SIGDEL User task Send a signal to the NQS request represented by the
user task. Delete the NQS request if the job request is
not running. Assign the user task to the monitor
system task. Note that this does not delete the user
task from the NQE database. The value is optional
and may be a signal number or name.

TINIT System task Reinitialize without shutting down. This event is
typically posted to the scheduler to force it to restart.

TPASS Scheduler Request that the scheduler perform a scheduling pass.

TRACE_LEVEL System task Change the tracing level of the system task.

9.6 Starting the NQE Database

During installation, one NQE node may have been defined to run the mSQL
database server by specifying NQEDB, SCHEDULER, and MONITOR in the NQE
componets to be started or stopped by default (set by the
NQE_DEFAULT_COMPLIST variable of the nqeinfo(5) file). For more
information on the NQE_DEFAULT_COMPLIST variable and starting or stopping
NQE components, see Chapter 4, page 45. If so, ensure that the MSQL_SERVER
nqeinfo file variable is set to the name of the local machine. MSQL_SERVER
should have the same value across all nodes, and clients in the cluster.

244 SG–2150 3.3

NQE Database [9]

The LWS component should be specified in the NQE_DEFAULT_COMPLIST
variable of the nqeinfo file on each NQE node where an NQS server is
configured.

The nqeinit script is used to start all NQE components.

The nqedbmgr utility allows finer control over process startup. Table 11
describes commands available for this control; these commands are also
described on the nqedbmgr(8) man page:

Table 11. nqedbmgr Process Startup Control Commands

Command Description Example

db start Starts the database server (msqld).
This command will attempt to start the mSQL
daemon. If the daemon is already running, an
appropriate message is displayed.
You must be root and be on the NQE database
server node to perform this command.

db start

db create database Creates the NQE database.
This command creates all the table definitions
required for NQE’s database. If the tables are
already created, an appropriate message is
displayed.
You must be root and be on the NQE database
server node to perform this command.

db create database

create global name
[tclarrayname]

Creates the NQE global object.
This command inserts an object into the database
containing global configuration data. This object is
read by all processes connected to the database.
No action is performed if the object already exists.
tclarrayname is an optional name of a Tcl array
containing any extra configuration attributes for
the object.

create global config

SG–2150 3.3 245

NQE Administration

Command Description Example

create systask name
[tclarrayname]

Creates a system task object.
This command inserts an object into the database
to be used by system tasks.
One systask object is required for each system
process that is to connect to the database. That is,
one is needed for the monitor process, one is
needed for the scheduler process, and one is
needed for each lws process.

create systask
monitor
create systask lws

start systask Starts up the system task.
This command starts the named system task
process. On the MSQL_SERVER, nqeinit will start
a monitor, a scheduler, and an lws process.
On other NQE servers, nqeinit will create an
lws system task object and start an lws process on
the NQE server.

start lws
start monitor
start scheduler
start lws.$host

The nqeinit startup script uses nqedbmgr Tcl input scripts to perform all the
startup operations. See those input scripts for examples of how the individual
components are started.

Note: If NQS is not running on a system, the corresponding LWS system task
will be marked Exited, and no tasks will be scheduled for that node.

9.7 Stopping the NQE Database

The nqestop script stops all system tasks and shuts down all NQE components.

The nqedbmgr utility allows finer control over process shutdown. Table 12
describes commands available for this control:

246 SG–2150 3.3

NQE Database [9]

Table 12. nqedbmgr Process Shutdown Control Commands

Command Description Example

shutdown all Shuts down all system tasks.
This command sends events to all system tasks,
requesting that they shut down.

shutdown all

db shutdown Shuts down the database server.
This command stops the mSQL database daemon.
Any clients connected to the database are
immediately disconnected.
Any system tasks running when the mSQL daemon
is shut down continue to run but enter a
Connection retry loop.

db shutdown

The nqestop shutdown script uses nqedbmgr Tcl input scripts to perform all
the shutdown operations. See those iput scripts for examples of how the
individual components are stopped.

9.8 Obtaining Status

The nqedbmgr utility provides commands for determining the status of the
NQE database and examining data in the database. Table 13 describes
commands available to obtain status; these commands are also described on the
nqedbmgr(8) man page:

SG–2150 3.3 247

NQE Administration

Table 13. nqedbmgr Status Commands

Command Description Example

status [all|db] Provides a status of the components of the NQE
database.
status by itself displays which system tasks are
running, their PIDs, and the host on which they
are running.
status db obtains version information from the
mSQL server.
status all displays everything.

status

Note: If you are running NQE on more than one
host in your cluster and the system times for
each of these hosts are not synchronized, the
Last heartbeat: value for one or more of the
LWS objects shown by the status command
may show a negative number of seconds. This
has no effect on the operation of the NQE cluster
but can be resolved by synchronizing the system
times on each host running NQE in your cluster.

select options Reads data from the database and displays it.
This command reads (or selects) data from the
database and displays it. See the nqedbmgr(8)
man page for details.

select -f t

9.9 Security

Authorization is performed at the following points:

• Connection: Upon connecting to the NQE database (all client commands
and system tasks must connect to the database).

• Target: On the LWS machine just before a request is submitted on the target
host selected by the NQE scheduler.

• Events: When an event is inserted into the NQE database (a delete or signal
request sent by using the cqdel command or the NQE GUI inserts an event
in order to delete a job).

• Status: When reading (selecting) information from the database.

248 SG–2150 3.3

NQE Database [9]

Configuration requirements for each of these authorization points are described
in the following sections.

9.9.1 Connection

Every client user (including a system task) wishing to connect to the mSQL
daemon requires a valid database user entry in a file called nqedbusers; the
nqedbusers file resides in the NQE spool directory defined by NQE_SPOOL in
the nqeinfo file. When connected, any object (that is, request) inserted into the
database is owned by the dbuser. The dbuser name may be a string of any
alphanumeric characters and does not necessarily have to be a UNIX user name
(dbusers do not need /etc/passwd entries on the machine running the
mSQL daemon).

The mSQL daemon reads and uses the contents of the nqedbusers file to
determine whether a given client may connect to the database. If, as a result of
this check, the client user’s connection request is refused, a Connection
disallowed message is passed back to the client and the connection is broken.

The nqedbusers file is made up of an optional %host segment followed by
multiple %dbuser segments. Blank lines and lines beginning with # are
ignored.

The host segment specifies an optional list of client host names explicitly
allowed or disallowed access to the database. If the segment is not supplied, or
the list of host names is empty, any client host may connect to the database, and
the checks move on to the dbuser segments. The syntax in the nqedbusers
file is as follows:

%host

[clienthostspec
clienthostspec
...]

A clienthostspec is a host name optionally prefixed by + (to allow access
explicitly) or — (to disallow access).

The database user segment defines allowed or disallowed access for a specified
database user. The syntax in the nqedbusers file is as follows:

%dbuser dbusernamespec privtype
[clienthostspec clientuserspec
clienthostspec clientuserspec
...]

SG–2150 3.3 249

NQE Administration

The dbusernamespec is the dbuser name and may be optionally prefixed by —
to explicitly disallow the dbuser. The following formats allow any user to
connect to the NQE database:

%dbuser

%dbuser +

%dbuser + user

If the dbusernamespec is not supplied, or the list of dbuser names is empty, any
user may connect to the database. A dbusernamespec of + alone has a special
meaning and corresponds to a dbuser equal to the client user name. This entry
allows access for many users using their existing UNIX user names without the
necessity of explicitly specifying each name in the file. The %dbuser + user
format allows any user to connect to the NQE database; user is the privtype.

System tasks (monitor, scheduler and LWS) connect using a dbuser of root.

privtype specifies the type of connection privilege. Two types are defined, as
follows:

• user, which allows a request to be submitted and deleted and allows a user
to obtain the status of the request by using the cqsub, cqstatl, cqdel,
and NQE GUI interfaces.

• system, which allows full access to the NQE database.

clientuserspec is a UNIX user name optionally prefixed by + (to allow access
explicitly) or - (to disallow access). An entry of simply + allows any client to
connect as the given dbusername.

An example of an nqedbusers file follows:

nqedbusers file

#

Allow root access from any host

%host

Disallow hosts
-badhost

Allow other hosts

+

%dbuser root system

localhost root

server1 root
server2 root

%dbuser fred user

client1 shirley

250 SG–2150 3.3

NQE Database [9]

#

Allow any user access from any host.
(db username = client username)

%dbuser + user

-badclient bob

- amy

+ +

In this file, access is completely denied for host badhost, but all other hosts are
allowed access. A dbuser of root has been defined with full access privileges
(system) for hosts localhost, server1, and server2, which allows the
LWS to run from those three hosts. A dbuser of fred has been defined and
may be used by shirley from client host client1. All other users are
allowed to use their UNIX names to connect as the dbuser name, with the
exceptions of bob from badclient (bob can connect from anywhere except
from badclient) and amy, who cannot connect from any host.

9.9.2 Target

The administrator may define how the LWS validates jobs from the NQE
database before submitting them to NQS locally. Valid values are as follows:

• FILE. The LWS checks for a file called ~user/.nqshosts or
~user/.rhosts. Within the file is a list identifying which client users from
which client hosts are allowed or disallowed access. The task attributes
sec.ins.clienthost and sec.ins.clientuser are used to determine
which client hosts allow access by which users. These client host and client
user names must be included in the .rhosts file or .nqshosts file. For
information about user task attributes, see Section 10.3.3, page 292.

• PASSWD. A valid UNIX password is required.

The initial value when NQE is first started is FILE. After that, you must update
the global configuration object in the NQE database and post a TINIT event to
the lws to tell it to re-read the configuration. For example:

SG–2150 3.3 251

NQE Administration

% select s

Connected to coffee as DB user root (conn=3)

ID CLASS NAME STATE

s2 monitor main Running

s3 scheduler main Running

s4 lws coffee Running

s5 lws latte Running
s6 lws cappuchino Running

% select -f s4 {run_mechanism}

Object s4:

run_mechanism = File

% update s4 {run_mechanism Passwd}

Object s4 updated

% select -f s4 {run_mechanism}
Object s4:

run_mechanism = Passwd

% event post s4 TINIT

Posted event e16516

9.9.3 Events

Event objects are used to communicate between tasks, both system tasks and
user tasks. For example, if you change the global configuration, you need to
send a TINIT event to the appropriate system tasks in order to tell these tasks
to re-read the configuration and get the new values.

Table 20, page 292, lists the predefined events you may want to send.

A dbuser connected with the privilege type of user may only send events to
job tasks created by the same dbuser. Those connected with the privilege type
of system may send events to any task, including system tasks.

9.9.4 Status

A dbuser connected with system privilege may read any object in the
database by using the nqedbmgr interface. That is, any task may be examined.

252 SG–2150 3.3

NQE Database [9]

A dbuser connected with user privilege is restricted to using the cqsub,
cqstatl, cqdel, and NQE GUI interfaces.

The administrator may allow the user to see summary information on all tasks
in the NQE database, not just the user’s requests and tasks. This is achieved
with the global configuration attribute status.access.

Note: You do not need to post an event when you issue the following
nqedbmgr commands.

The following nqedbmgr command allows users to see summary information
on all requests and tasks (the default is all):

update config {status.access all}

The following nqedbmgr command allows a user to see only the requests and
tasks the user created:

update config {status.access own}

9.10 Compacting the NQE Database

The NQE database is an mSQL database that grows, but never shrinks. This
can degrade the performance of the database. You can use the compactdb(8)
script to compact the NQE database (nqedb) to improve its performance.

Warning: You must shut down the NQE database server before you invoke
the compactdb(8) script to avoid corruption of the database or lost data. You
can use the nqestop(8) script to stop all system tasks and shut down the
NQE database.

9.11 Configuring the Database Components

The MAX_SCRIPT_SIZE nqeinfo file variable lets the administrator limit the
size of scripts that are submitted through nqedb. If a script contains more lines
than the number of lines defined by the MAX_SCRIPT_SIZE variable, it is not
allowed. If MAX_SCRIPT_SIZE is 0 or is not set, scripts of unlimited size are
allowed.

You can set and/or update various global configuration attributes for the NQE
database by using the following nqedbmgr command syntax:

SG–2150 3.3 253

NQE Administration

update config_obj {attribname attribvalue...}

For example:

update g1 {status.access all}

A system task must be re-initialized or restarted in order to read any updated
global configuration attributes.

Note: If you are not certain which system tasks are affected by your change,
it is recommended that you re-initialize all system tasks to ensure all tasks
that read a specific variable are notified of the variable’s updated attributes.

To re-initialize a system task (for example, the scheduler), enter the
nqedbmgr command that inserts a TINIT event object into the database; this
object is read by the scheduler and acknowledged:

ask scheduler tinit

The following sections describe the predefined global configuration attributes
for the NQE database, NQE scheduler, and LWS attributes that you can use.

9.11.1 Global Configuration Attributes for the NQE Database

Table 14 lists the predefined global configuration attributes for the NQE
database (this table is also provided on the nqedbmgr(8) man page):

254 SG–2150 3.3

NQE Database [9]

Table 14. nqedbmgr Predefined Global NQE Database Configuration Attributes

Attribute name Description
Default if not
specified

hb.systask_timeout_period Time before monitor system task marks a
given system task as down.
The value may be a mathematical
expression. Units are seconds.

90

hb.update_period Time between each update of the
heartbeat. Each system task will update
the database within this period. It is used
by the monitor to determine whether a
system task is still alive.
The value may be a mathematical
expression. Units are seconds.

30

purge.systask_age Age (elapsed time since last update) of
acknowledged events concerning system
tasks that the monitor is to delete. The
monitor will delete all tasks that are the
specified age or older.
The value may be a mathematical
expression. Units are seconds.

24*60*60

purge.task_age Age (elapsed time since last update) of
completed user tasks and user events that
the monitor is to delete.
The value may be a mathematical
expression. Units are seconds.

24*60*60

status.access Type of access allowed by users when
attempting to obtain summary information
of jobs in the database. Value can be:

• all, which allows user to select
summary information from all tasks

• own, which allows user to select only
tasks submitted by the user

A user may only see full information for
tasks submitted by that user.

all

SG–2150 3.3 255

NQE Administration

Attribute name Description
Default if not
specified

sys.ev_rate Rate at which system tasks check for new
events targeted at them or at tasks they
own.
This attribute may be a mathematical
expression. Units are seconds.

10

sys.purge_rate Rate at which monitor checks the age of
user tasks, user events, and system events.
This attribute may be a mathematical
expression. Units are seconds.

5*60

sys.st_rate Rate at which system tasks check for new
tasks, changes in task state, and so on.
This attribute may be a mathematical
expression. Units are seconds.

10

sys.upd_rate Rate at which an LWS system task checks
for messages from NQS.
This attribute may be a mathematical
expression. Units are seconds.

10

9.11.2 Scheduler Attributes

The default scheduler file is situated in the /nqebase/bin directory and is called
local_sched.tcl. The default scheduler has the following properties:

• The number of tasks that may run on an LWS can be limited.

• The number of tasks per user that may run on an LWS can be limited.

• LWS selection can be performed by a simple round-robin or by using an
NLB policy (passing memory and CPU requirements).

• Tasks are ordered by time in.

• The user may narrow the list of target NQS servers by passing a
colon-separated list of hosts as a named request attribute, lws. For example,
cqsub -la lws=hosta:hostb narrows the target server list to hosta
and hostb.

• A simple cluster rerun facility is implemented.

256 SG–2150 3.3

NQE Database [9]

The default scheduler can interpret the following predefined attributes, which
are overridden if they are set in the system scheduler object. The following
example sets the scheduler passrate attribute, which overrides the default
value of 60:

nqedbmgr update scheduler {passrate 70}

Table 15 lists these attributes (this table is also provided on the nqedbmgr(8)
man page).

SG–2150 3.3 257

NQE Administration

Table 15. nqedbmgr Predefined Scheduler Attributes

Attribute name Description Default if not specified

max_fail_count Cluster rerun attribute.
Maximum job failures allowed (i.e., number
of times LWS returns a job to the scheduler
without completing it) before the job is no
longer requeued.

5

nlbpolicy NLB policy to use to determine a
destination-selection list for each task. none
means use round-robin.

none

passrate Rate, in seconds, at which scheduling passes
are made.

60

s.clrerun Allow cluster rerun. No

s.schedfile Name of scheduler file. The file name may
be the absolute path name or relative to the
NQE bin directory as defined by NQE_BIN
in the nqeinfo file.
Note: This attribute is always recognized; it
defines which scheduler is running.

local_sched.tcl

total_lws_max Limit on number of tasks that may be
running on any one LWS.

5

total_lws_user_max Limit on number of tasks that any one user
may have running on any one LWS.

2

9.11.3 LWS Attributes

Table 16 lists the predefined LWS attributes (this table is also provided on the
nqedbmgr(8) man page):

258 SG–2150 3.3

NQE Database [9]

Table 16. nqedbmgr Predefined LWS Attributes

Attribute Name Description
Default if not
specified

default_queue Name of the default NQS queue to which jobs are
submitted.

nqebatch

qmgrnow If set and true, requests that LWS follow any submission
to NQS by the qmgr> scheduler request xyz now,
where xyz is the NQS request ID.
This will force NQS to run a job, even if local NQS
scheduling parameters deny it.

Yes

run_mechanism Defines the validation mechanism used to check the target
user against the client user for local submission to NQS.
The mechanisms available are:

• File, which indicates that NQS file validation is to
be used

• Passwd, which indicates that NQS password
validation is to be used.

File

SG–2150 3.3 259

Writing an NQE Scheduler [10]

The scheduling algorithm used by the NQE scheduler is designed to be
modified. Also, it is possible to completely rewrite the scheduler. This chapter
describes the NQE database and scheduler in greater detail than Chapter 9,
page 231, and it guides you in writing a site-specific scheduler.

You should note the following points:

• All data concerning requests submitted to the NQE database is contained
within that database. Therefore, any data that the NQE scheduler wishes to
remain in existence after it shuts down must be stored in the NQE database.
Examples of this data include request information, request script files, job
log/history information, and scheduling configuration and request exit
statuses.

• If the scheduler is killed and then restarted, or the connection to the NQE
database is lost and then regained, the scheduler should be capable of
recovering its state based entirely on the contents of the NQE database.

This chapter contains information about the following:

• Scheduler system task

• Writing a simple scheduler

• Attribute names and nqeinfo file variable names

• Tcl built-in functions

10.1 The Scheduler System Task

All system tasks, including the scheduler, consist of Tcl scripts that do the
following:

• Run with root privilege.

• Connect to the NQE database and remain continuously connected.

• Regularly make queries of the NQE database, analyze data, and modify or
act on that data.

Figure 23 shows the structure of the scheduler system task (referred to as the
NQE scheduler). As shown by the diagram, it consists of three main parts:

SG–2150 3.3 261

NQE Administration

• nqe_tclsh. This is the NQE version of the Tcl shell. It contains built-in Tcl
functions to perform, among other things, the task of connecting to and
accessing the NQE database.

• nqedb_scheduler.tcl. This is the name of the Tcl script that implements
the mandatory parts of the NQE scheduler. It may be invoked as the first
argument to nqe_tclsh or directly as an executable script. The nqedbmgr
command start scheduler, simply executes this Tcl script as a
background UNIX process.

• local_sched.tcl. This is the name of the local scheduler (that is, the Tcl
script containing the local or site-specific scheduling algorithm). It is
sourced by nqedb_scheduler and contains callback functions to
implement the algorithm.

nqe_tclsh

Database

nqedb_scheduler.tcl

local_sched.tcl

Version of Tcl shell containing built-in functions
to access the NQE database

The main Tcl script for the scheduler

Site-defined script containing a local
scheduling algorithm

Tcl function callbacks (Tentry etc.)

a10276

Figure 23. Scheduler Program Structure

262 SG–2150 3.3

Writing an NQE Scheduler [10]

By default, the local scheduler script resides in the location defined by NQE_BIN
in the nqeinfo file. Its name and location may be changed by either of the
following:

• Defining another nqeinfo file variable, NQEDB_SCHEDFILE, set to the name
of the script file (this can be an absolute path name or relative to NQE_BIN).

• Setting a new attribute, s.schedfile, for a particular scheduler system
task object. See Section 10.2 for an example of how to do this.

10.2 Writing a Simple Scheduler

The scheduler is written in the Tcl language. The most effective way of
describing the operation of the NQE scheduler and the way in which it can be
modified is by performing the steps necessary to create a new, site-specific NQE
scheduler.

This section provides a tutorial in writing an NQE scheduler.

10.2.1 Requirements

The following is required before starting the tutorial:

• You must have knowledge of the Tcl language in order to modify the NQE
scheduler. Tcl is a very simple but powerful interpreted language. Many Tcl
language books include excellent tutorials on the language.

• You must have root access on the NQE database server node running the
mSQL daemon, the NQE scheduler system task, and the NQE monitor
system task. Only one NQE node is configured to run the mSQL daemon.
This is typically determined during installation of NQE. To ensure that a
given machine is configured to run the NQE database server, check that the
nqeinfo file variable NQE_DEFAULT_COMPLIST setting contains the
NQEDB, SCHEDULER, MONITOR, and LWS components, and that the
MSQL_SERVER variable is set to the name of the local machine.

• Your PATH must include the directory defined by the nqeinfo file variable,
NQE_BIN.

• The NQE database , NQE scheduler, and NQE monitor must be running.

SG–2150 3.3 263

NQE Administration

The nqeinit process should start these system tasks by default; the
following message is displayed:

NQE database startup complete

To check that system tasks are running, execute the nqedbmgr command
status. The output should show that mSQL is running and that the
monitor, scheduler, and at least the local lws system tasks are running.

Following is an example of the status output for a two node cluster with the
NQE database server running on latte and a LWS running on pendulum:

264 SG–2150 3.3

Writing an NQE Scheduler [10]

nqedbmgr status

--
Connection:

Connecting... Successful

Client user name: root

DB user name: root

DB server name: latte
DB server port: 603

--

Global config object:

Heartbeat timeout: 90
Heartbeat rate: 30

System event purge rate: 24*60*60

User task purge rate: 24*60*60

Summary status: all

--
System tasks:

monitor.main (id=s2):

Status: Running

Pid and host: 2669 on latte

Last heartbeat: 26 seconds ago (Update rate is every 30 secs)

scheduler.main (id=s3):

Status: Running

Pid and host: 2678 on latte

Last heartbeat: 22 seconds ago (Update rate is every 30 secs)

lws.latte (id=s4):

Status: Running

Pid and host: 2686 on latte

Last heartbeat: 20 seconds ago (Update rate is every 30 secs)
Default queue: nqebatch

lws.pendulum (id=s5):

Status: Running

Pid and host: 24149 on pendulum

Last heartbeat: 22 seconds ago (Update rate is every 30 secs)
Default queue: nqebatch

SG–2150 3.3 265

NQE Administration

10.2.2 Goal

The goals of the tutorial are as follows:

• Create a new NQE scheduler, called simple, that will work alongside the
default NQE scheduler (by default called main).

• Write a simple scheduler algorithm that schedules tasks to lightweight
servers (LWSs) in a round-robin manner. The simple scheduler should also
limit the total number of jobs a given LWS can run at any time; in other
words, you will implement a global LWS run limit.

• Test the scheduler.

• Add the enhancement of allowing the run limit to be configurable.

The steps in achieving this are listed below and are described in the following
sections:

1. Create a new scheduler system task object for simple

2. Create a simple local scheduler file

3. Write a Tinit callback function to initialize variables

4. Write a Tentry callback function to handle user tasks newly assigned or
newly reassigned to your scheduler

5. Write a Tpass callback function to schedule user tasks

6. Write a Tnewowner callback function to update internal counts and lists

7. Write a Tentry callback function for user tasks returned from an LWS

8. Run the new scheduler and submit jobs that it will schedule

9. Add configuration enhancements to the Tinit callback function

10.2.3 Step 1: Create a New Scheduler System Task Object

It is desirable to develop and test a scheduler without disturbing any
production NQE scheduler already running on the system. This can be achieved
by creating a new scheduler system task object with the following command:

nqedbmgr create systask scheduler.simple

This command inserts a new system task object into the NQE database.

266 SG–2150 3.3

Writing an NQE Scheduler [10]

Note: This action does not start the scheduler; it only creates the system task
object.

The output should look similar to the following:

Connected to latte as DB user root (conn=4)
Object scheduler.simple inserted (s6)

Here the local host name is latte. A new system task object has been created
with the ID s6. This ID varies depending upon how many system task objects
already exist in the NQE database. The system task class is scheduler. Its
name is simple (the default scheduler name is main). When test jobs are
submitted to the NQE database, you will be able to specify which scheduler
should receive, own, and schedule the job.

The system task object can be deleted by using the following commands:

nqedbmgr shutdown scheduler.simple
nqedbmgr delete scheduler.simple

!
Caution: The delete command should never be issued while the simple
scheduler is still running.

For additional information about the nqedbmgr shutdown command, see
Section 9.7, page 246.

10.2.4 Step 2: Create the Simple Scheduler File

The following local scheduler files are provided with NQE:

File Description

template_sched.tcl (Located in the /nqebase/bin directory). This is a
template file for local schedulers. If run without
modifications, this scheduler will accept all tasks
but never schedule them.

local_sched.tcl (Located in the /nqebase/bin directory). This is
the default scheduler supplied. (For more
information about the default scheduler, see
Section 9.11.2, page 256.)

simple_sched.tcl (Located in the /nqebase/examples directory).
This is a final version of the simple scheduler

SG–2150 3.3 267

NQE Administration

described in the remainder of this tutorial and
may be used for comparison.

Copy the template file to a file named simple_sched.tcl in the $NQE_BIN
directory. Ensure that the file has write permission because it will be modified
in later steps.

The newly created scheduler system task object (step 1) must be configured as
follows to read the Tcl file you just created:

nqedbmgr

% update scheduler.simple {s.schedfile simple_sched.tcl}

% exit

This command updates the scheduler.simple system task object, setting the
attribute s.schedfile to simple_sched.tcl.

You can list the attributes in scheduler.simple by using the following
command:

nqedbmgr select -f scheduler.simple

The scheduler will read this object and source the file specified by this attribute.

It is the responsibility of the local scheduler file, simple_sched.tcl, to do the
following:

• Define at least four special Tcl functions to perform the scheduling. These
special Tcl functions are callbacks used by the scheduler program.

• Invoke the Tcl function sched_set_callback for each of the four
callbacks to register the functions’ names. The syntax is as follows:

sched_set_callback callback functionname

callback may be one of the following:

Function Description

Tinit Initialize scheduler

Tentry Handle new tasks

Tpass Make a scheduling pass

268 SG–2150 3.3

Writing an NQE Scheduler [10]

Tnewowner Assign a new owner

An example of its use follows:

Register function fnc_Tinit for callback Tinit

sched_set_callback Tinit fnc_Tinit

The remaining steps describe how to create the functions listed above and
explain their purpose.

10.2.5 Step 3: Write a Tinit Callback Function

Write a Tinit callback function.

The Tinit callback is called when the following occurs:

• The scheduler starts up.

• The scheduler receives the TINIT event. You can send an event to the
simple scheduler by using the following nqedbmgr command:

nqedbmgr ask scheduler.simple tinit

• The scheduler reconnects to the NQE database after a previous, unexpected
disconnection.

The Tinit callback should be used to perform any local initialization required
by the scheduler. It returns with a value of 1 if initialization was successful;
otherwise, it returns with a value of 0, and the scheduler shuts down.

The following two global Tcl variables are defined before the Tinit callback is
invoked:

• Obj_config. This is a global Tcl array containing the global configuration
object. The elements of the array correspond to the attributes of the NQE
database object of type g and name config.main.

The config.main object is read from the NQE database just before the
Tinit callback function is called. The object can contain any configuration
information required by user commands and system tasks.

For a list of predefined attributes, see Section 10.3.5, page 299. You may add
others.

• Obj_me. This global Tcl array contains the attributes corresponding to the
scheduler system task object itself.

SG–2150 3.3 269

NQE Administration

This array is the main mechanism for passing configuration data to a
particular system task.

For a list of predefined attributes, see Section 10.3.4, page 297.

The first version of the simple scheduler will not make use of the two global Tcl
arrays. It will, however, use its own global Tcl array (called Sched) to store all
running information concerning the tasks. This array should be unset and
initialized at this point. The code for the Tinit callback follows. The variables
initialized will be described later. The following code should be added to
simple_sched.tcl:

#
Register the function
#
sched_set_callback Tinit fnc_Tinit

#
Define function fnc_tinit
Arguments: None
#
proc fnc_Tinit {} {

global Obj_config Obj_me

global Sched

sched_log "TINIT: Entered"

if { [info exists Sched] } {
#
Clear internal information array if it exists
#
unset Sched

}

Global run limit per LWS
set Sched(total_lws_max) 5
sched_trace "TPASS: Global per-LWS run limit:\

$Sched(total_lws_max) "

Scheduler pass rate (when idle)
set Sched(passrate) 60

The round-robin index
set Sched(rrindex) 0

Initialize lists

270 SG–2150 3.3

Writing an NQE Scheduler [10]

set Sched(pending_list) ""
set Sched(schedule_list) ""

return 1
}

10.2.6 Step 4: Write a Tentry Callback Function for New Tasks

Write a Tentry callback function to handle new tasks.

The Tentry callback is called when the following occurs:

• A newly submitted user task is detected. New tasks always enter the system
with state New.

• Upon startup or Tinit, Tentry is called once for each user task already
owned by the scheduler.

• A user task is completed or fails on an LWS.

The Tentry callback should be used to update local lists and counts,
depending upon the state of the user task. The Tentry callback may also
change the state and/or owner of the user task.

A local scheduler may define as many states as it wants for the user tasks it
owns. Table 17 lists the states that must be recognized by the Tentry callback:

Table 17. Mandatory Task States Recognized by the Tentry Callback

Task state Description

New Indicates the initial state immediately after submission by
user (by using NQE GUI or the cqsub command).

Scheduled Indicates the scheduler has assigned a user task to a
specific LWS. The LWS system task interprets this state as
meaning "This task is to be submitted to the local NQS."
After successful submission, the LWS places the task in
Submitted state. However, this latter state is never
communicated to the scheduler and does not need to be
trapped.

Completed Indicates that the job request has completed successfully.

Failed Indicates that the job request cannot be submitted to NQS.

SG–2150 3.3 271

NQE Administration

Task state Description

Aborted Indicates that NQS cannot run the job request associated
with this user task. This may occur, for example, if the
job request is successfully submitted to an NQS pipe
queue but then cannot be placed in a batch queue due to
queue limits.

Terminated Indicates that a user task has been terminated by
execution of a delete request (either through the NQE
GUI or the cqdel command).

In this step, you will write code to deal with the New state and to define a new
local state, Pending, which indicates that the user task has been accepted by
this scheduler and is queued.

272 SG–2150 3.3

Writing an NQE Scheduler [10]

Replace the template version of fnc_Tentry with the following fnc_Tentry
function:

#

Register the function

#

sched_set_callback Tentry fnc_Tentry

#

Define function fnc_Tentry

Argument: objid. Object ID of user task

#

proc fnc_Tentry { objid } {
global Obj_config Obj_me Us Lwsid

global Sched

Associate global variable Obj_$objid

with variable obj in this fnc.

upvar #0 Obj_$objid obj

#

Set some local variables for ease of use

#

set state $obj(t.state)
set substate $obj(t.substate)

Log a message to scheduler log file

sched_log "TENTRY: objid = $objid, state =

$state/$substate"

Look at the state of this task

switch -regexp $state {

New {

New: Task has just been submitted to NQE by cqsub
set upd(t.state) Pending

sched_update $objid upd

}

Pending {
Pending: Scheduler-specific state

Add task to pending_list

nqe_listrep Sched(pending_list) $objid

SG–2150 3.3 273

NQE Administration

Acknowledge task

sched_update $objid
Ask for a scheduling pass as soon as possible

sched_post_tpass

}

}

return

}

The following two additional global Tcl variables are defined before the Tentry
callback is invoked:

• Us. This global Tcl array contains various scheduling values. It is described
in more detail in the next step.

• Obj_$objid. Each attribute of each user task object owned by the
scheduler is represented in Tcl by an array with a name of the form
Obj_$objid; $objid is the object ID of the task (such as, t6).

Unfortunately, Tcl arrays with variable names are difficult to access directly
in Tcl scripts. Therefore, it is usually more convenient to associate the name
of the array with a local name for the duration of the function. This is
achieved by using either the Tcl function upvar #0 or the NQE Tcl function
globvar. See standard Tcl documentation for a full description of these
functions.

274 SG–2150 3.3

Writing an NQE Scheduler [10]

The following important functions have been introduced in this step:

Tcl
function

Description

sched_log message [severity]

Log a message to the log file.

message is the message to log.

severity describes the severity level of the message. It may be
one of the following:

i Informational

w Warning

e Error

f Fatal

If a severity level is provided, the message is prefixed in the log
file by a string showing that severity. If no severity level is
provided, the message is logged without a prefix.

The following example

sched_log "My message" w

logs a message similar to the following:

11/08/95 16:36:51 WARN: My message

The function does not return any value.

sched_post_tpass

Request a scheduling pass.

This function causes the scheduling algorithm to be called as
soon as possible. In other words, as soon as the Tentry
callback completes, the Tpass callback is invoked.

The function does not return any value.

SG–2150 3.3 275

NQE Administration

sched_update objid updatearr
or
sched_update objid updatelist

This is the main NQE database update function. It must be
used to update any attributes in a user task object.

objid is the object ID of the object to be updated.

updatearr is the name of a Tcl array that contains all the
attributes to update.

The following example updates the object with ID t6, setting
attributes t.state and otherattrib:

set upd(t.state Pending)
set upd(otherattrib 23)

sched_update t6 upd

The equivalent syntax is as follows:

sched_update t6 [list t.state Pending

otherattrib 23]

The function does not return any value. If an error occurs, Tcl
traps it and deals with it elsewhere.

10.2.7 Step 5: Write a Tpass Callback Function

Write the Tpass scheduling algorithm.

The Tpass callback is called as follows:

• Once upon receipt of Tinit or upon startup

• Regularly (as defined by the Tpass callback’s return value)

• Soon after any call to sched_post_tpass

Note: The Tpass callback is not called when the state of any LWS
changes. This means that the scheduler may not react to the startup of a
new LWS until the next regular scheduling pass.

The Tpass callback should attempt to find a user task that can be scheduled on
an LWS. In other words, the main scheduling algorithm should be coded here.

276 SG–2150 3.3

Writing an NQE Scheduler [10]

Only one task should be scheduled in any one pass, and no internal counts or
lists should be updated by this function. These jobs should be left to the
Tentry and Tnewowner callbacks. This ensures that lists and counts are based
solely on the contents of the NQE database.

The simple scheduler algorithm is as follows:

#

Register the function

#

sched_set_callback Tpass fnc_Tpass

#

Define function fnc_Tpass

Argument: None

#

proc fnc_Tpass {} {

global Obj_config Obj_me Us Lwsid

global Sched

sched_trace "TPASS..."

Skip if there are no lws running

if { $Us(lwsruncount) <= 0 } {

sched_trace "TPASS: No running LWS"

return $Sched(passrate)

}

Loop through tasks

foreach taskid $Sched(pending_list) {

Find an ordered list of target LWS

set lwstouselist [getrrlist]

foreach lws $lwstouselist {

Has the lws any room?

if { [info exists Sched(total $lws)] && \

$Sched(total_$lws) >= $Sched(total_lws_max)} {

#This LWS is already at its limit

continue

}

Schedule the task to this LWS

SG–2150 3.3 277

NQE Administration

sched_log "TPASS: Scheduling $taskid\

to $lws ($Lwsid($lws))"

set upd(t.state) Scheduled

set upd(t.sysclass) $Us(lwsclass)

set upd(t.sysname) $lws

sched_update $taskid upd

Update round-robin index

incr Sched(rrindex)

Ask for another pass as soon as possible

return 0

}

}

return $Sched(passrate)

}

The Us global Tcl array contains useful scheduling information. The following
array items are defined:

• lwsclass, which is the name of the LWS class. This is needed to assign
ownership of a user task to an LWS. It is always set to lws.

• lwscount, which is set to the number of LWS system tasks configured. Not
all LWSs configured are necessarily running.

• lwslist, which is set to the names of the LWS system task objects
configured. The number of names in this list equals lwscount.

• lwsruncount, which is set to the number of LWS system tasks currently
running (that is, in Running state).

• lwsrunlist, which is set to the names of the LWS system tasks currently
running.

• monitorclass, which is the name of the monitor class. This is needed to
assign ownership of a user task to the monitor when the task is completed.
It is always set to monitor.

• monitorname, which is the name of the monitor. This is needed to assign
ownership of a user task to the monitor. It is always set to main.

278 SG–2150 3.3

Writing an NQE Scheduler [10]

• schedulerclass, which is the name of the scheduler class. This is needed
to assign ownership of a user task to another scheduler. It is usually set to
scheduler.

• schedulername, which is the name of this scheduler. For the tutorial
example scheduler, the name will be simple.

Note: sched_update may change any attribute. The following attributes
are often modified:

Name of attribute Description

t.state New state of the task. This serves both as
information and as a verification for the
system task that owns this task. When
changing ownership to a new system task,
the state must be set to a value known to
that system task.

t.sysclass Name of the class of the system task object
that is to own this task. The classes may be
obtained from the global Tcl array Us.

t.sysname Name of the system task object that is to
own this user task. The name is, by default,
main for the scheduler and monitor, and is
usually the name of the host for the lws.

The function to obtain an ordered list of LWSs by the round-robin method
(getrrlist) is as follows; this function is in the scheduler released with NQE,
in the file local_sched.tcl:

proc getrrlist {} {

global Us Sched

Round-robin tasks to the current active LWS list

#

if { $Us(lwsruncount) <= $Sched(rrindex) } {

#

Round-robin index is greater than the current number

of active LWSs, reset to 0

#

set Sched(rrindex) 0

}

Create the LWS to use list in round-robin order

SG–2150 3.3 279

NQE Administration

#

return [concat \

[lrange $Us(lwsrunlist) $Sched(rrindex) end] \

[lrange $Us(lwsrunlist) 0 [expr $Sched(rrindex) - 1]] \

]

}

10.2.8 Step 6: Write a Tnewowner Callback Function

Write the Tnewowner callback function.

The Tnewowner callback is called as follows:

• Once for every user task owned by any LWS, immediately after Tinit or
upon startup.

• Whenever the system task ownership of a task changes away from the
scheduler. In other words, the Tnewowner callback is invoked after
sched_update has been used to assign a user task to an LWS to run or to a
monitor to be disposed.

The Tnewowner callback should update any lists based on the new owner of
the task. When the function returns, the scheduler will unset the in-memory Tcl
global array of the user task because the task will no longer be owned by the
scheduler. The following code writes the Tnewowner callback function:

#

Register the function

#

sched_set_callback Tnewowner fnc_Tnewowner

#

Define function fnc_Tnewowner

Arguments: objid - object ID of task

oclass - new owner class

oname - new owner name

#

proc fnc_Tnewowner { objid oclass oname } {

global Obj_config Obj_me Us Lwsid

global Sched

Associate global variable Obj_$objid with variable obj

upvar #0 Obj_$objid obj

lg_log "TNEWOWNER: objid = $objid, owner now $oclass/$oname"

280 SG–2150 3.3

Writing an NQE Scheduler [10]

See which type of system task now owns the task

switch $oclass {

lws {

#

A LWS now owns task. This occurs immediately after

changing the owner of the task to a lws (i.e. after

scheduling a task to run in Tpass).

#

Remove it from the pending list

nqe_listrem Sched(pending_list) $objid

Add task ID to list of scheduled tasks

nqe_listrep Sched(schedule_list) $objid

#Update counts

if { ! [info exists Sched(total $oname)] }{

set Sched(total_$oname) 0

}

incr Sched(total $oname)

sched_trace "LWS $oname run count increased to\

$Sched(total_$oname)"

}

monitor {

Monitor now owns task. This occurs when a task

has completed and is never to run again.

Remove it from the lists.

nqe_listrem Sched(pending_list) $objid

nqe_listrem Sched(schedule_list) $objid

}

}

return

}

The following additional functions were introduced in this section (step 6):

Tcl
function

Description

nqe_listrem listname element

Remove an element from a list.

SG–2150 3.3 281

NQE Administration

This function searches for and deletes an element of a list. No
action is performed if the list does not exist or if the element is
not found.

nqe_listrep listname element

Adds an element in a list.

If the list does not yet exist, this function creates the list and
adds the element to the list. If the list exists, this function adds
the element to the list. Otherwise, it performs no action.

10.2.9 Step 7: Write a Tentry Callback Function for User Tasks Returned from an LWS

Add to the Tentry callback.

When a user task that is owned by an LWS completes or fails in some way, it is
reassigned to the scheduler. This action allows the scheduler to update local
counts and possibly requeue the task to run again.

Tasks to be rerun enter the scheduler in the same way as new tasks.

In this simple scheduler, the scheduler will assign any task in Completed,
Failed, Aborted, or Terminated state to the monitor unmodified. A more
sophisticated scheduler could analyze the reasons for completion and perform
some other action.

Merge the following code into the Tentry function that you have already
defined:

proc fnc_Tentry { objid } {

...

Note use of -regexp to allow "|" in cases

switch -regexp $state {

New {

...

}

Pending {

...

}

Completed|Failed|Aborted|Terminated {

282 SG–2150 3.3

Writing an NQE Scheduler [10]

Task finished

Send to the monitor.

sched_log "$objid: Task has completed ($state)" i

Update the LWS lists/counts

Note that task attribute t.lastlws

contains the name of the lws which owned the task

if { [lsesarch -exact $Sched(schedule_list) $objid] \

>=0 } {

incr Sched(total_$obj(t.lastlws)) -1

sched_trace "LWS $obj(t.lastlws) run count\

reduced to $Sched(total_$obj(t.lastlws))"

}

set upd(t.sysclass) $Us(monitorclass)

set upd(t.sysname) $Us(monitorname)

sched_update $objid upd

sched_post_tpass

}

default {

Catch-all for unknown states.

sched_log "$objid: Unknown state,\

$state. Task disposed"

sched_update $objid [list

t.state $state \

t.sysclass $Us(monitorclass) \

t.sysname $Us(monitorname) \

]

}

}

return

}

The t.lastlws attribute is defined automatically and contains the name of the
LWS that last ran this task.

10.2.10 Step 8: Run the New Scheduler

The following two mechanisms exist for running the scheduler:

SG–2150 3.3 283

NQE Administration

1. Invoke the nqedb_scheduler.tcl script interactively as a command in a
terminal by using the following command:

nqedb_scheduler.tcl name

This command is useful while debugging. Logging and tracing output is
sent to the screen.

2. Use the nqedbmgr start scheduler.simple command. This command
sets the process in the background and creates a log file in the log directory
under NQE’s spool directory (see the nqeinfo file variable NQE_SPOOL).
This command is useful when the scheduler is in production.

Before invoking the scheduler, set a trace level so that scheduling trace
messages are reported; this will aid debugging. Use the nqedbmgr ask or
nqedbmgr post event command to set the trace level. For information about
trace levels and how to set them, see Section 10.2.10.2.

This tutorial uses the first mechanism to invoke the scheduler; to do this,
simply type the following command:

nqedb_scheduler.tcl simple

The first argument is the name of the scheduler. If no name is supplied, main is
assumed. Output and trace messages will appear on the screen.

To submit a job that will be scheduled by scheduler simple, use the
scheduler attribute of the cqsub command, as follows:

cqsub -d nqedb -la scheduler=simple

10.2.10.1 Tcl Errors

It is very possible that the Tcl interpreter will encounter syntax errors while a
local scheduler is being developed.

All Tcl errors are trapped. If the error was due to a failure in the connection to
the NQE database server, the scheduler enters a retry state. All other Tcl errors
cause the scheduler to abort immediately. A description of the error and a Tcl
stack trace are placed in the log file (or printed to the screen if the scheduler is
being run interactively).

A significant advantage to Tcl is the ability to quickly correct this type of
problem.

284 SG–2150 3.3

Writing an NQE Scheduler [10]

10.2.10.2 Trace Levels

It is possible to increase the amount of information logged by the scheduler by
setting its trace_level attribute. Its value is a mask of the types of tracing
required. Values may be separated by commas. The following list provides
some useful trace-level names:

Trace-level name Usage

sched Local scheduler trace messages; this type of trace
is reserved for use by local schedulers.

pr Process fork/exec tracing.

gen General system task tracing.

db NQE database function tracing.

0 Disable tracing; this is the default trace-level
setting.

You can set the trace level while the system object is running or when it is not
running. To set the trace level while the system object is running, use the
nqedbmgr ask or the nqedbmgr post event command. The nqedbmgr
ask command is the same as the nqedbmgr post event command, except
that it waits for a response. The following example sets the trace level to sched
on the simple scheduler as it runs:

nqedbmgr ask scheduler.simple trace_level sched

The nqedbmgr post event -o command sets the trace level whether or not
the system object is in a Running state. The following example sets the trace
level to sched on the simple scheduler whether or not it is running:

nqedbmgr post event -o scheduler.simple trace_level sched

10.2.10.3 Examining Tcl Variables

The DUMP_VARS event causes the contents and names of a running scheduler’s
global Tcl variables to be logged. The event value is a glob pattern to match the
global Tcl variable name or value.

For example, to ask the simple scheduler to dump out the contents of the
Sched array, use the following command:

nqedbmgr ask scheduler.simple dump_vars Sched

SG–2150 3.3 285

NQE Administration

To dump out all variables, use the following command:

nqedbmgr ask scheduler.simple dump_vars "*"

The quotation marks are needed if the command is passed on a UNIX
command line.

10.2.11 Step 9: Add Configuration Enhancements

The following simple addition to the Tinit callback allows modification of
configuration:

proc fnc_Tinit {} {

global Obj_config Obj_me

...

Global run limit per LWS

set Sched(total_lws_max) 5

catch {set Sched(total_lws_max) $Obj_me(total_lws_max)}

sched_trace "TPASS: Global per-LWS run limit:\n $Sched(total_lws_max) "

Scheduler pass rate (when idle)

set Sched(passrate) 60

catch {set Sched(passrate) $Obj_me(passrate)}

...

return 1

}

The total_lws_max and passrate attributes can be overridden by setting
attributes with the same names in the system task’s object (Obj_me). The
simple scheduler loads its own system task object on startup or after receiving
the TINIT event.

Update the system task’s object as follows:

nqedbmgr

% update scheduler.simple {total_lws_max 2}

% exit

Restart the scheduler or post the Tinit event. The new maximum should now
be in force.

286 SG–2150 3.3

Writing an NQE Scheduler [10]

10.2.12 Tracking down Problems

This section describes some common errors you may experience and provides
suggested solutions.

FATAL: Failure occurred. Was not loss of connection
FATAL: Don’t know what to do here. Exiting

This shows a general problem encountered by a system task. A
Tcl error description and Tcl stack trace follow the messages.

FATAL: TINIT reports fatal error

The local scheduler Tinit function returned 0, signifying that
it could not initialize correctly. Check the local scheduler’s
Tinit code.

FATAL: System object abc.xyz must be created before starting
up this system task

An attempt was made to start a system task before its system
task object was inserted into the database. Insert its object by
using the nqedbmgr create command before starting the
system task.

FATAL: System task file lock could not be obtained.
Currently held by PID xxxx
INFO: Another system task with ID sxx may be running

This signifies that a system task of the same ID is already
running on this host. Check for a process with this PID on the
system.

FATAL: Configured time syntax for "xyz" is bad: expr

A global or system task attribute representing a time value (for
example, purge.task_age) is not a valid mathematical
expression. Check the attribute (using nqedbmgr select -f
obj) and modify it. The system task should be restarted.

WARN: Callback Tpass is not defined. No regular scheduling
passes will occur

Your local scheduler has not registered a Tpass function. This
means that no regular scheduling passes can ever occur. Edit
the scheduler, and either restart the scheduler or send it a
TINIT event.

SG–2150 3.3 287

NQE Administration

WARN: System object xyz host name attribute (hostA) different
from this host (hostB)

This warning is issued if a given system task is started on a
machine other than the machine used for its previous invocation
(this means system file locks cannot be used to ensure that
multiple system tasks are not running). It may occur as a result
of moving the mSQL database to another machine.

ERROR: DB_CONNECT: Failed. Retry in 10 secs...

The system task could not connect to the NQE database. This
may be due to one of the following:

• Incorrectly configured nqeinfo file; check that the variables
MSQL_SERVER and MSQL_TCP are set to the host name and
port running the mSQL server.

• The mSQL server is not running; check that the msqld
process is running and that the nqedbmgr command
status db executes successfully.

• Connection was refused by the mSQL server; check the
msqld log file. It may give a security authorization reason
for the connection failure.

ERROR: Cannot find the user scheduler file: xyz

You have specified a local scheduler file that does not exist.
Check the nqeinfo file variable NQEDB_SCHEDFILE and the
scheduler’s system task attribute, s.schedfile (which takes
precedence), for the file name given. If the file name is not an
absolute path name, it is assumed to be relative to the NQE
bin directory.

INFO: Interrupt occurred

An interrupt was received by the system task. This generally
occurs when the scheduler is being run interactively, and

288 SG–2150 3.3

Writing an NQE Scheduler [10]

CONTROL-C is pressed. The scheduler will shut down and must
be restarted.

10.3 Attribute Names and nqeinfo File Variable Names

This section lists and describes all predefined attribute names for the nqeinfo
file and for NQE database objects.

10.3.1 nqeinfo Variables

Table 18 describes variables that may be defined in the nqeinfo file. The table
also indicates its default value if it has one.

Table 18. Variables That May Be Defined in the nqeinfo File

Name of variable Description Notes

MSQL_DBDEFS Location and name of mSQL table definitions
for NQE database.
The file specified by this variable is used as
input to mSQL to create tables for the first
time. Once the NQE database is created, the
file is no longer required.

Default value is
$NQE_BIN/nqedb.struct.
Needed by the node
configured as the NQE
database server only.

MSQL_DBNAME Name of mSQL database.
The mSQL daemon may serve multiple
databases. Each database comprises one or
more SQL tables. After connecting, NQE
database clients such as cqsub and system
tasks will select a database based on this name.

Default value is nqedb. Value
must not be greater than 8
characters in length.
Needed by the node
configured as the NQE
database server only.

MSQL_HOME Location of mSQL database files.
This directory specifies the location on disk of
the data stored by the mSQL daemon.

Default value is $NQE_SPOOL.
mSQL automatically uses the
msqld directory below this.
Needed by the node
configured as the NQE
database server only.

SG–2150 3.3 289

NQE Administration

Name of variable Description Notes

MSQL_SERVER Name of mSQL daemon server host.
This variable contains the name (plus optional
colon followed by TCP port) of the host that is
running the mSQL daemon. Only master
server machines can run the daemon and only
one should be defined for the network.

No default is defined.
May be overridden by setting
the environment variable
MSQL_SERVER.
Needed by all NQE machines.

MSQL_TCP_PORT Name of mSQL daemon server port.
This contains the name or number of the TCP
port on which the mSQL daemon listens.

Mandatory if no port
specified in MSQL_SERVER.
Default is 603.
May be overridden by setting
port number in
MSQL_TCP_PORT . If
MSQL_SERVER is set with a
port number, the value of
MSQL_TCP_PORT is ignored.
Needed by all NQE machines.

NQEDB_IDDIR Name of directory to contain the LWS ID files.
The ID directory contains files used for
communication between an NQS and its local
LWS system task.

Default is
$NQE_SPOOL/nqedb_iddir.
Needed by nodes configured
as the NQE database server,
NQS server, and LWS.

NQEDB_SCHEDFILE File specification of local scheduler Tcl script.
This variable may be set to give an alternative
name (relative to NQE_BIN) or the full path
name of the Tcl script used to implement local
scheduling algorithms.

Default if not specified is
local_sched.tcl.
Overridden by defining the
attribute s.schedfile in the
scheduler’s system task object.
Used by the node configured
as the Scheduler.

10.3.2 Event Objects

The event object type is e. Event objects are used to communicate among tasks
(both system and user). Attributes are described in Table 19:

290 SG–2150 3.3

Writing an NQE Scheduler [10]

Table 19. Event Objects Attributes

Name of attribute Description Notes

type Object type (e)

e.ack This field is used by the system to record
when a system task has acknowledged the
existence of the user task object it now owns.
0 means that this task has changed owner but
that the new owner has not acknowledged it.
1 means that the new owner has
acknowledged ownership.

e.name A name for this event. See Table 20, page 292, for list
of predefined event names.

e.response Optional response associated with the event.
This is set when an event is acknowledged.

If not explicitly set, is set to
"".

e.targid Object ID of the target task intended for this
event. It may be a user task or system task ID.

e.targtype Object type of the target of this event.

e.value Optional value for event. If not explicitly set, is set to
"".

id Unique ID for the task. In mSQL, this is in
the form en, where n is an integer.

Allocated when the task is
first inserted into the NQE
database.

sec.ins.dbuser NQE database user name of originator of this
task.

See Section 9.9, page 248.

timein Time object was inserted into NQE database.

timeup Time object was last updated.

Table 20 lists the events that are defined by default:

SG–2150 3.3 291

NQE Administration

Table 20. Events Defined by Default

Event name Value Description

DUMP_VARS Glob pattern for variables to dump Dump to the log all variable names and
values matching the glob pattern
supplied. For debugging.

SIGDEL Signal name or number Send the signal to the process if it is
running. Otherwise, delete the process.
This event is posted by qdel/cqdel.

SHUTDOWN None Shut down the system task.

TRACE_LEVEL Trace level Set the trace level of the target system
object to the value passed.

TINIT None Reinitialize the system task. This event
causes the system task to leave Running
state and enter connected state, where
it clears and reloads all information.
The principal use of this event is to
restart the scheduler.

10.3.3 User Task Attributes

The user task object type is t. This object is used to contain all information
concerning a job to run on NQS. Attributes are described in Table 21:

Table 21. User Task Object Attributes

Name of attribute Description Notes

att.account Account name or project name. cqsub option: -A

att.compartment Compartment names. cqsub option: -C

att.seclevel Security levels. cqsub option: -L

att.time.sched Request run time. cqsub option: -a

file.1.name Standard output file specification name. cqsub option: -o

file.2.name Standard error file name. cqsub option: -e

292 SG–2150 3.3

Writing an NQE Scheduler [10]

Name of attribute Description Notes

file.3.name Job log file name. cqsub option: -j

file.eo Merge standard error and standard output
files.

cqsub option: -eo

file.jo Job log control (-J m|n|y). cqsub option: -J

file.ke Keep standard error file on execution machine.
The option is set if value is 1 and is not set if
value is 0 or attribute is not set.

cqsub option: -ke

file.kj Keep job log file on execution machine.
The option is set if value is 1, and is not set if
value is 0 or the attribute is not set.

cqsub option: -kj

file.ko Keep standard output file on execution
machine.
The option is set if value is 1, and is not set if
value is 0 or attribute is not set.

cqsub option: -ko

id Unique ID for the task. In mSQL, this will be
of the form tn, where n is an integer.

Mandatory attribute.
Allocated when the task is
first inserted into the NQE
database.

lim.core Core file size limit. cqsub option: -lc

lim.data Data segment size limit. cqsub option: -ld

lim.mpp_m Per-request MPP memory size limit cqsub option: -l mpp_m

lim.mpp_p Per-request MPP processor elements. cqsub option: -l mpp_p

lim.p_mpp_m Per-process MPP memory size limit cqsub option: -l p_mpp_m

lim.mpp_t Per-request MPP time limit. cqsub option: -l mpp_t

lim.p_mpp_t Per-process MPP time limit. cqsub option: -l p_mpp_t

lim.ppcpu Per-process CPU time limit. cqsub option: -lt

lim.ppfile Per-process permanent file size limit. cqsub option: -lf

lim.ppmem Per-process memory size limit. cqsub option: -lm

lim.ppnice Per-process nice value. cqsub option: -ln

lim.pptemp Per-process temporary file size limit. cqsub option: -lv

lim.prcpu Per-request CPU time limit. cqsub option: -lT

SG–2150 3.3 293

NQE Administration

Name of attribute Description Notes

lim.prfile Per-request permanent file size limit. cqsub option: -lF

lim.prmem Per-request memory size limit. cqsub option: -lM

lim.prq Per-request quick file space limit. cqsub option: -lQ

lim.prtemp Per-request temporary file size limit. cqsub option: -lV

lim.shm Per-request shared memory limit. cqsub option: -l shm_lim

lim.shm_seg Per-request shared memory segments. cqsub option: -l shm_seg

lim.stack Stack segment size limit. cqsub option: -ls

lim.tape.a Per-request drive limit for tape type a. cqsub option: -lUa

lim.tape.b Per-request drive limit for tape type b. cqsub option: -lUb

lim.tape.c Per-request drive limit for tape type c. cqsub option: -lUd

lim.tape.d Per-request drive limit for tape type d. cqsub option: -lUc

lim.tape.e Per-request drive limit for tape type e. cqsub option: -lUe

lim.tape.f Per-request drive limit for tape type f. cqsub option: -lUf

lim.tape.g Per-request drive limit for tape type g. cqsub option: -lUg

lim.tape.h Per-request drive limit for tape type h. cqsub option: -lUh

lim.work Working set size limit. cqsub option: -lw

mail.begin Send mail upon beginning execution.
The option is set if value is 1 and is not set if
value is 0 or the attribute is not set.

cqsub option: -mb

mail.end Send mail upon ending execution.
The option is set if value is 1, and is not set if
value is 0 or the attribute is not set.

cqsub option: -me

mail.rerun Send mail upon request rerun.
The option is set if value is 1, and is not set if
value is 0 or the attribute is not set.

cqsub option: -mr

mail.transfer Send mail upon request transfer.
The option is set if value is 1, and is not set if
value is 0 or the attribute is not set.

cqsub option: -mt

mail.user User name to which mail is sent; default is the
user submitting the request.

cqsub option: -mu

294 SG–2150 3.3

Writing an NQE Scheduler [10]

Name of attribute Description Notes

nqs.export Export environment variables.
The option is set if value is 1, and is not set if
value is 0 or the attribute is not set.

cqsub option: -x

nqs.nochkpnt Do not checkpoint; not restartable.
The option is set if value is 1, and is not set if
value is 0 or the attribute is not set.

cqsub option: -nc

nqs.norerun Do not rerun.
The option is set if value is 1, and is not set if
value is 0 or the attribute is not set.

cqsub option: -nr

nqs.pri Intraqueue request priority. cqsub option: -p

nqs.queue Queue name for submission.
If not set or set to "default", the LWS will use
a default queue (defined in its system task
attribute default_queue).

cqsub option: -q

nqs.re Writes to the standard error file while the
request is executing.
The option is set if value is 1, and is not set if
value is 0 or attribute is not set.

cqsub option: -re

nqs.ro Writes to the standard output file while the
request is executing.
The option is set if value is 1, and not set if
value is 0 or attribute is not set.

cqsub option: -ro

nqs.shell Batch script shell name; initial shell when a
job is spawned.

cqsub option: -s

sec.ins.clienthost Client host name. Host name used for file
validation; name must be in
the .rhosts or .nqshosts
file.

sec.ins.clientuser Client user name. User name used for file
validation; name must be in
the .rhosts or .nqshosts
file.

sec.ins.dbuser NQE database user name of originator of this
task.

See Section 9.9, page 248.

sec.ins.hash Hash value for sec.ins.* values.

SG–2150 3.3 295

NQE Administration

Name of attribute Description Notes

sec.ins.tuser Target user specification.

sec.ins.tuser.pwe Target user specification (encrypted).

sec.target.user Target user for a particular LWS. This attribute is created by
the LWS after the task is
submitted locally.

script.0 Script file contents. This may be a very long
attribute and may not be
displayable by nqedbmgr.

t.ack This field is used by the system to record
when a system task has acknowledged the
existence of the user task object it now owns.
0 means that this task has changed owner but
that the new owner has not acknowledged
ownership.
1 means that the new owner has
acknowledged ownership.

t.class The class name for this task. Always set to USER.

t.failedlws List of LWS names where this job has failed.
This may be used to determine whether the
task should be rescheduled to a given LWS.

t.failure Failure message.

t.lastlws Name of LWS that last submitted this task to
NQS. This is updated by the LWS when the
task is completed or has failed.

This is set by the scheduler
when passing ownership to
an lws.

t.lastsched System task name of the scheduler that
owned and scheduled the task.

This is set by the scheduler
when passing ownership to
an lws.

t.message Messages concerning success or failure of job.

t.name A name for this task. The name is not used
except for information. By default, it is set to
the name of the NQS job, as specified by -r.

cqsub option: -r

t.reqid The current NQS request ID for this task. This
ID may change if the task is submitted to one
LWS’s NQS, fails, and is then submitted to
another.

Not set until task has been
submitted to NQS.

296 SG–2150 3.3

Writing an NQE Scheduler [10]

Name of attribute Description Notes

t.state State of task. This serves both as information
and as a checkpoint for the system task that
owns this task. When changing owner from
one system task to another, the state must be
set to a value known to the new system task.

t.substate Substate. May be "".

t.sysclass Name of class of system object that owns this
task. The class may be scheduler, lws, or
monitor.

t.sysname Name of system object that owns this task.
The name is main for the scheduler and
monitor and the name of the host for the
lws.

timein Time at which the task was inserted into the
NQE database.

timeup Time at which the task was last updated.

type Task type (t). Always set to t for user
tasks.

user.attr_name Job attributes. cqsub option: -la

10.3.4 System Task Object

The system task object type is s. One system task object is created for each
system task that is to run in this system. On a typical system, there is one
scheduler system task, one monitor system task, and one LWS system task for
each NQS server node. Attributes are described in Table 22:

SG–2150 3.3 297

NQE Administration

Table 22. System Task Object Attributes

Name of attribute Description Notes

default_queue Provides the name of the NQS queue to
which jobs are submitted by default.

Used by the LWS only.

id Unique ID for the object. In mSQL, this will
be of the form sn, where n is an integer.

Mandatory attribute.
Allocated when the task is
first inserted into the NQE
database.

qmgrnow If set and true, requests that the LWS follow
any submission to NQS with the command
qmgr>scheduler request xyz now, where
xyz is the NQS request ID.
This forces NQS to run a job, even if local
NQS scheduling parameters deny it.

LWS specific.

run_mechanism Defines the validation mechanism used to
check the target user against the client user
for local submission to NQS.

Used only by the LWS. If it is
set to File, LWS checks for
local ~/.nqshosts or
~/.rhosts file; if it is set to
Passwd, LWS checks for target
password.

s.class The class name of this system task. Possible
values at present are as follows:

• lws (LWS system task) There may be
more than 1 instance of these.

• scheduler (scheduler system task)
• monitor (monitor system task)

s.host Name of host on which this system task is
running.

s.name The system task’s name. This is main for the
scheduler and monitor and is, by default, the
host name for the LWS.

s.pid UNIX PID of the system task. Set to -1 when system task
exits.

298 SG–2150 3.3

Writing an NQE Scheduler [10]

Name of attribute Description Notes

s.schedfile Local scheduler (user scheduler) file. The file
may include the absolute path name or the
path name relative to the NQE bin directory.
This attribute is always recognized, no matter
which local scheduler is running.

Used by the scheduler only.
Default is local_sched.tcl.
See Section 10.2.4, page 267,
for usage.

s.state State of system task:

• Exited: The system task is no longer
running.

• Aborted: The system task aborted. Check
log file for reason.

• Running: The system task is running.
• Down: The monitor has marked this

system task as down.

sec.ins.dbuser NQE database user name of the originator of
this task. For a system task, this will usually
be root.

See Section 9.9, page 248.

trace_level Current trace level for the system task. Default setting is 0.

10.3.5 Global Configuration Object

The global configuration object type is g. This special object type exists for the
purposes of containing global configuration data. There is only one instance of
this object type in the NQE database. Attributes are described in Table 23:

SG–2150 3.3 299

NQE Administration

Table 23. Global Configuration Object Attributes

Name of attribute Description Notes

hb.systask_timeout
_period

Time before monitor system task marks a
given system task as Down.
The value may be a mathematical
expression. Units are seconds.

Default value is 90.

hb.update_period Time between each update of the heartbeat.
Each system task will update the NQE
database within this period. The heartbeat
is used by the monitor to determine
whether a system task is still alive.
The value may be a mathematical
expression. Units are seconds.

Default value is 30.

id Unique ID for the object. In mSQL, this will
be of the form gn, where n is an integer.

Allocated when the object is
first inserted into the NQE
database.

purge.systask_age The monitor system task will delete (purge
from the NQE database) all acknowledged
events concerning system tasks that have
not been updated within the specified time
period.
The value may be a mathematical
expression. Units are seconds.

Default value is 24*60*60

purge.task_age The monitor system task will delete (purge
from the NQE database) all user tasks that
are finished and have not been updated
within the specified time period.
The value may be a mathematical
expression. Units are seconds.

Default value is 24*60*60

s.class Object class (config).

s.name Object name (main).

sec.ins.dbuser NQE database user name of the originator
of this object (usually root).

See Section 9.9, page 248.

300 SG–2150 3.3

Writing an NQE Scheduler [10]

Name of attribute Description Notes

status.access Type of access granted to users when
attempting to obtain summary information
about jobs in the NQE database. Value can
be one of the following:

• all: Allows user to select summary
information for all tasks.

• own: Allows user to select only
information about tasks submitted by
the user.

A user may only see full information for
tasks submitted by that user.

Default value is all.

sys.ev_rate Rate at which system tasks check for new
events targeted at them or at tasks they own.
This attribute may be a mathematical
expression. Units are seconds.

Default value is 10.

sys.purge_rate Rate at which the monitor checks the age of
a completed job.
This attribute may be a mathematical
expression. Units are seconds.

Default value is 5*60.

sys.st_rate Rate at which system tasks check for new
tasks, changes in task state, and so on.
This attribute may be a mathematical
expression. Units are seconds.

10

sys.upd_rate Rate at which LWS system tasks check for
messages from NQS.
This attribute may be a mathematical
expression. Units are seconds.

10

timehb Time of last heartbeat.

timein Time at which object was inserted into the
NQE database.

timeup Time at which object was last updated.

type Object type (s); always set to s for system
tasks.

SG–2150 3.3 301

NQE Administration

10.4 Tcl Built-in Functions

Tcl was chosen to become part of NQE scheduling for the purpose of providing
a simple, standard interpreted language with which administrators can write
schedulers. It is very portable and can be interfaced to C very easily.

The manager command, nqedbmgr, is simply Tcl invoked interactively. All
nqedbmgr commands are Tcl functions (defined in nqedbmgr.tcl).

In order to use Tcl effectively in system tasks, various built-in functions (that is,
functions written in C and linked with Tcl) were implemented. Table 24
provides a brief description of these functions.

Table 24. Tcl Built-in Functions

Tcl built-in function Description

globvar Because Tcl arrays with variable names
are difficult to access directly in Tcl
scripts, globvar is used to associate the
name of the array with a local name for
the duration of the function.

lg_init, lg_config, lg_log,
lg_trace

Logging and tracing functions.

pr_create, pr_set, pr_get,
pr_execute, pr_signal,
pr_wait, pr_clear

Provide a mechanism for forking and
execing processes, and changing context
to another user.

nqe_after, nqe_pause Implementation of a simple asynchronous
timing loop. These functions are used to
give the system tasks event-driven
characteristics.

nqe_curtime Returns the elapsed seconds since UNIX
Epoch.

nqe_daemon_init() Initializes the caller as a daemon process.
It makes a setid() call to create a new
session with no controlling tty and also
ignores SIGHUP signals.

nqe_strtime Converts UNIX Epoch to a
human-readable string.

302 SG–2150 3.3

Writing an NQE Scheduler [10]

Tcl built-in function Description

nqe_lock, nqe_locked,
nqe_unlock

File locking functions.

nqe_pipe UNIX pipe() implementation.

nqe_rmfile Unlink or remove a file.

nqedb_connect,
nqedb_insert,
nqedb_select,
nqedb_getobj,
nqedb_update,
nqedb_delete,
nqedb_disconnect
nqedb_insert_event,
nqedb_insert_task,
nqedb_cancel_event

Tcl implementations of the NQE database
C APIs.

nqe_getenv, nqe_getvar Obtain environment variable/ nqeinfo
file variables.

nqe_getid Returns effective/real UIDs and GIDs.

nqe_gethostname Returns local host name.

Table 25 lists other useful functions implemented in Tcl:

SG–2150 3.3 303

NQE Administration

Table 25. Additional Functions Implemented in Tcl

Tcl built-in function Description

nqe_listrem listname element Removes an element from a list.
This function searches for and deletes an element of
a list. No action is performed if the list does not
exist or if the element is not found.

nqe_listrep listname element Replaces an element from a list.
This function adds an element to a list if the list
does not yet exist or if the element is not in the list;
otherwise, it performs no action.

sched_log message [severity] Logs a message to the log file. message is the
message to the log. severity describes the severity
level of the message. It may be one of the following:

i Informational
w Warning
e Error
f Fatal

If a severity level is provided, the message is
prefixed in the log file with a string showing that
severity. If no severity level is provided, the
message is logged without a prefix. There is no
return.

304 SG–2150 3.3

Writing an NQE Scheduler [10]

Tcl built-in function Description

sched_post_tpass Requests a scheduling pass.
This function causes the scheduling algorithm
(Tpass) to be called as soon as possible.
There is no return value.

sched_set_callbac callback functionanme Registers the Tcl function, functionname, with
callback callback.
callback may be one of the following:

Tinit Initialize
Tentry Task

entry
Tpass Scheduling

pass
Tnewowner New

owner
There is no return value.

sched_update objid updatearr or sched_update
objid updatelist

This is the main NQE database update function. It
must be used to update any attributes in a user task
object. objid is the object ID of the object to be
updated.
updatearr is the name of a Tcl array that contains all
the attributes to update.
Alternatively, you may pass a list of attribute names
and values in updatelist.
The function does not return any value. If an error
occurs, Tcl traps it and deals with it elsewhere.

SG–2150 3.3 305

Using csuspend [11]

NQE lets you put to use the unused cycles on servers generally reserved for
interactive use. This process is sometimes called cycle stealing. This chapter
describes how to use the csuspend(8) command to enable or disable batch
work, depending on interactive use. The following topics are discussed:

• csuspend options

• csuspend functionality

• csuspend examples

11.1 csuspend Options

The syntax of the csuspend command is as follows:

csuspend [-i value] [-l loopcount] [-o value] [-p period] [-s] [-t
interval]

The options are described as follows:

Option Description

-i value Specifies the input character rate (in bytes) that is
compared to the input character rate of sar -y.
If the current tty input rate on the server equals
or exceeds value, csuspend initiates suspension
of batch activity. If the current tty input rate on
the server is less than value, csuspend initiates
resumption of batch activity. If you omit value,
the default is 1.

-l loopcount Specifies the number of periods for which sar
collects interactive activity data to determine if
NQE will resume, be suspended, or continue to
be suspended. The default number of periods
(loopcount) is 7. See the -p period option for
information about specifying the length of a
period.

SG–2150 3.3 307

NQE Administration

-o value Specifies the output character rate (in bytes) that
is compared to the output character rate of sar
-y. If the current tty input rate on the server
equals or exceeds value, csuspend initiates
suspension of batch activity. If the current tty
input rate on the server is less than value,
csuspend initiates resumption of batch activity.
If you omit value, the default is 100.

-pperiod Specifies the length of time (in seconds) that sar
collects interactive activity data. The default
period is 10 seconds. The minimum setting
allowed for period is 5 seconds; if period is set to
less than 5, it is automatically set to 5 seconds.

-s Specifies that the NLB object NLB_BSUSPEND
attribute is set to YES when batch activity is
suspended and NO when batch activity is
resumed. NLB policies can use this value to
distribute work to the server. The default is not
to update the NLB database.

-t interval Specifies the interval (in seconds) that csuspend
waits before it begins to check tty status. The
check of tty status takes 60 seconds. The default
value to wait between checks is 10 seconds.

11.2 csuspend Functionality

The csuspend command uses sar to monitor interactive terminal session (tty)
activity on a specific server. You must invoke csuspend on the server. If tty
activity equals or exceeds the input or output thresholds set by using the -i or
-o options, NQE suspends NQS batch activity. All queues are disabled, and no
additional batch work is accepted. This process allows interactive users the full
use of the server. When interactive activity drops below the thresholds
specified, batch jobs are resumed. Using the -l and -p options gives an
administrator greater control over how sar is used and the frequency of the
check on whether to suspend or start NQE.

To use csuspend in Network Load Balancer (NLB) policies, invoke it with the
-s option. Using this option ensures that the NLB server is aware when NQS is
suspended.

308 SG–2150 3.3

Using csuspend [11]

The csuspend command runs in a scan loop until the command is terminated
with a CONTROL-C or the kill-15 signal. It is often run in the background
with standard output (stdout) and standard error (stderr) directed to a file.

The csuspend utility has no log file; by default, stdout and stderr are
written to the terminal screen. If you want to log csuspend activity, redirect
the output to a file.

When you stop csuspend, it resets queue states and exits. Even if the NQS
server is shut down (by using nqestop(8) or qstop(8)), csuspend continues
to run. When NQS is started (by using nqeinit(8) or qstart(8)), csuspend
will recognize it.

Note: nqeinit and nqestop do not start or stop the csuspend process.

When csuspend detects interactive use, it performs the following functions:

• Reports tty input and output rates.

• Disables and suspends all pipe queues on the server.

• Disables and suspends all batch queues on the server.

• Suspends all running batch requests.

• Logs a suspend message to the request’s job log.

• If you used the -s option, the NLB object NLB_BSUSPEND attribute is set to
YES.

When csuspend detects cessation of interactive use, it performs the following
functions:

• Reports tty input and output rates.

• Resumes all running batch requests.

• Resumes and enables all batch queues on the server.

• Resumes and enables all pipe queues on the server.

• Logs a resume message to the request’s job log.

• If you used the -s option, the NLB object NLB_BSUSPEND attribute is set to
NO.

The csuspend command uses the following commands and files; they must be
present on the server on which you invoke csuspend:

SG–2150 3.3 309

NQE Administration

• awk(1)

• getopts(1)

• ksh(1)

• nqeinfo file

• qmgr(8)

• qstat(1)

• sar(1)

• If you use the -s option, the nlbconfig(8) command and the NLB must be
available.

Because csuspend needs access to NQS spool directories and uses qmgr(8)
commands, you must invoke it from root.

Because csuspend is a ksh script, you can tailor it for individual site and
server needs. The default values for its options appear after the initial comment
lines at the start of the script file ($NQE_ETC/csuspend). To change the
defaults or parts of the command logic, edit this file.

11.3 csuspend Examples

The following example invokes csuspend and places it in the background.

nohup csuspend -i 5 -o 50 -s -t 30 &

If the sar -y tty input character count equals or exceeds 5 (set by using -i), or
if the output character count equals or exceeds 50 (set by using -o), batch
request are suspended. When the rates fall below these values, batch request
are resumed. The NLB_BSUSPEND attribute is updated (set by using -s).
csuspend examines interactive tty activity every 30 seconds.

The following example invokes csuspend with all default values, which are
echoed to stdout:

310 SG–2150 3.3

Using csuspend [11]

csuspend

Mar 30 23:50:58 - csuspend initiated for nqe server latte

Mar 30 23:50:58 - using options: i=1,o=100,s=NO,t=10

Mar 30 23:50:58 - using NQE in /usr

Mar 30 23:50:58 - using NLB server latte

Mar 30 23:52:09 - auto resume processing cycle initiated

Mar 30 23:52:09 - input character rate=0, output character rate=0

Mar 30 23:52:10 - found 1 batch queues to process

Mar 30 23:52:10 - processing batch queue nqebatch

Mar 30 23:52:11 - found 2 pipe queues to process

Mar 30 23:52:11 - processing pipe queue nqenlb

Mar 30 23:52:12 - processing pipe queue gate

(character input occurs)

Mar 31 08:07:28 - auto suspend processing cycle initiated

Mar 31 08:07:28 - input character rate=4, output character rate=0

Mar 31 08:07:29 - found 2 pipe queues to process

Mar 31 08:07:29 - processing pipe queue nqenlb

Mar 31 08:07:30 - processing pipe queue gate

Mar 31 08:07:31 - found 1 batch queues to process

Mar 31 08:07:31 - processing batch queue nqebatch

The following example uses the -l and -p options to suspend or enable batch
processing based upon the interactive use as determined by calls to sar.

csuspend -l 11 -p 60 &

If period is set to 60 and loopcount is set to 11, sar collects data over a 60-second
period, and if the interactive activity is low enough during 10 (11 minus 1)
periods, then NQE resumes. Otherwise, NQE is suspended or remains
suspended.

SG–2150 3.3 311

Job Dependency Administration [12]

This chapter discusses administrative tasks that job dependency requires. The
following topics are covered:

• Managing the NLB database for job dependency

• Multiple NLB servers and job dependency

12.1 Managing the NLB Database for Job Dependency

Job dependency event information remains in the NLB database until it is
explicitly cleared either by you or the user who issued the cevent(1) command.

In order to keep the size of the NLB database manageable, you should clear
unwanted events regularly. To list and clear events, use the cevent command.

User root can list any event from any event group by using the following
command:

cevent -la

The following example shows how the output looks when you use the default
delimiter:

cevent -la

Time: Group: Name: Value:

--

Mon Dec 11 12:18:15 1995 g1 n1 <NONE>

Mon Dec 11 12:18:18 1995 g2 n1 <NONE>
Mon Dec 11 12:18:21 1995 g4 n1 <NONE>

You can parse and analyze the output from the cevent -la command from
within a script to produce a set of events to delete. To do this, it may be useful
to redefine the delimiter character. If you use the -d to specify the delimiter !,
the output would look like the following example:

cevent -la -d ’!’

Mon Dec 11 12:18:15 1995!g1!n1!<NONE>

Mon Dec 11 12:18:18 1995!g2!n1!<NONE>
Mon Dec 11 12:18:21 1995!g4!n1!<NONE>

SG–2150 3.3 313

NQE Administration

To delete all events from all groups, use the following command:

cevent -ca

To delete all events from a group named g1, use the following command:

cevent -c -g g1

To delete the events n1 and n2 from the group g1, use the following command:

cevent -c -g g1 n1 n2

12.2 Multiple NLB Servers and Job Dependency

A potential problem exists when you use job dependency and multiple NLB
servers. This section describes the problem and methods you can use to prevent
it from occurring.

Multiple or redundant NLB servers work like disk mirroring. The NLB collector
processes on each node configured to run as a collector send the same system
and request status information to all defined NLB servers. If an NLB server
goes down and then comes back up, the collectors will soon resend their data to
it and make it current.

If you specify more than one NLB server in your nqeinfo file, the cevent
command tries to send information to the first server listed. If that server is
temporarily down (or unavailable due to network problems), the cevent
command tries the second server, and so on. If the first server subsequently
comes up, the cevent command will send information to it (rather than the
one to which it previously sent information).

For example, assume that your nqeinfo file lists two NLB servers, as follows;
quotes are required in the syntax:

#

NLB_SERVER - Location of NLB server host

#

NLB_SERVER="host1 host2"

If a user posts job dependency information on the server that uses this
nqeinfo file, the collector on the server tries to send the information to the
NLB server database on host host1. If host1 does not respond, the collector
tries to send the information to host2. If both fail, cevent returns an error.

314 SG–2150 3.3

Job Dependency Administration [12]

If a user posts an event when host1 is unavailable, the event is posted to
host2. If host1 becomes available, any cevent commands will use it because
it is first on the list in the nqeinfo file. If cevent tries to read an event that
was posted to host2, it will actually look for the event on host1. The event
will not be read because it is not posted on host1.

To prevent these problems, users can set their NLB_SERVER environment
variable to one machine before they invoke cevent. This will force all
subsequent cevent invocations to use the specified server. The cevent -w
command will wait a specified number of seconds for a response, so the user
can wait for transient network, NLB, or system problems on the server to be
corrected.

You can use the following methods to avoid the problem:

• If the NLB server on host host1 or host1 goes down, ensure that the NLB
server on host1 stays down until some quiet period. Then bring the NLB
server on host2 down. Move the NLB data on host2 to host1 by copying
all obj_* files in /usr/spool/nqe/nlbdir on host2 to
/usr/spool/nqe/nlbdir on host1. Then bring both NLB servers back
up.

• This method requires a manual procedure or a script. If the NLB server on
host host1 or host1 goes down, log in to host2 as root during a quiet
period and dump (using nlbconfig -odump) all of the cevent objects for
all event groups in the NLB database on host2. Log in to host1 as root
and update all events with this data (by using nlbconfig -oupdat).

• You can rename the cevent script, create a new script in the same directory,
and name the new script cevent. The new script then sets the
NLB_SERVER environment variable and calls cevent under the new name.
This guarantees that cevent will use the NLB server that you specify in the
script.

SG–2150 3.3 315

FTA Administration [13]

The File Transfer Agent (FTA) can be used to transfer files to and from any node
in the Network Queuing Environment (NQE) in either immediate (interactive)
or queued mode. It also provides network peer-to-peer authorization (NPPA) of
users, which is a more secure method than ftp(1) provides.

This chapter provides the following information about managing FTA:

• FTA overview

• Configuration

• Administration

13.1 FTA Overview

The FTA facility consists of the three components shown in Table 26.

Table 26. File Transfer Components

Component Program Location of description

User interface ftua(1) and rft(1) Section 13.1.1, page 318

Common services fta(8) Section 13.1.2, page 318

File transfer services ftad(8) and
nqsfts(8)

Section 13.1.3, page 319
and
Section 13.1.3, page 319

The three-tier stack of file transfer components consists of the file transfer user
interface, the common services, and the file transfer services (FTS).

The ftua(1) and rft(1) commands use FTA to transfer files. A file transfer
request is an object that contains information describing the file transfer
operations that FTA will perform on behalf of a user.

The fta command performs the actions required for reliable file transfer
between hosts. These functions include transfer retry, status, and recovery. File
transfer management options are also provided.

SG–2150 3.3 317

NQE Administration

Using fta, the file transfer user commands are given a common interface to the
file transfer services that operate on various networks. A domain name selects
the file transfer services for a given host name.

13.1.1 User Interface

The ftua(1) and rft(1) commands are the user interfaces to FTA services.
They transfer files to and from a remote host by using the file transfer services
supported by the underlying file transfer agent. FTA supports file transfer
services that use TCP/IP protocols. In fact, ftua operates like the TCP/IP
ftp(1B) file transfer program. The ftua utility supports autologin through the
use of the .netrc file to allow access to accounts without specifying a
password.

Note: The ftua autologin feature is prohibited on UNICOS and
UNICOS/mk systems when the multilevel security feature is enabled.

See the NQE User’s Guide, publication SG–2148, for an overview of the user
interface commands. The ftua(1) and rft(1) man pages contain complete
reference information.

13.1.2 Common Services

The fta(8) program provides the following FTA common services, which are
common to any protocol used to transfer files:

• Creation of the file transfer requests

• Management of file transfer requests

• Invocation of the file transfer services

• Display of status information

• Management of security keys for NPPA

• Status about file transfers

File transfer requests are created when user agents invoke fta with the
-service option.

Management functions must be invoked specifically. The primary management
function is transfer recovery, which restarts transfers that failed or were
interrupted.

318 SG–2150 3.3

FTA Administration [13]

To examine the status of requests, use the -queue option. You will get more
complete output by also including the -verbose option.

Note: For UNICOS and UNICOS/mk systems running the multilevel
security feature, in order for fta to operate correctly, you must install fta
with a specific security environment. This can be done by using the spset
command as follows to ensure that the fqueue directory is wildcarded (see
the spset(1) man page for additional information); the NQE_FTA_QUEUE
variable is set in the nqeinfo file:

spset -l63 NQE_FTA_QUEUE

The fta(8) man page contains complete reference information.

13.1.3 File Transfer Services

The file transfer service establishes the connection to the remote system. If the
file transfer service being used is anything other than ftp, the invocation of the
service results in an additional process. When the file transfer service
completes, FTA updates the status of the request file and exits.

The FTS operation proceeds as follows:

1. Establishes a network connection to the remote host

2. Passes user validation information to the remote host

3. Performs file transfer operations

4. Closes the network connection

The file transfer service for the TCP/IP protocol FTP is integrated into the fta
program. See the fta(8) man page for further details.

The nqsfts(8) program provides the file transfer service for exclusive use by
NQS. This service supports only the NPK_MVOUTFILE subset of the NQS
protocol. NQS can use this service through fta(8) to transfer job output files
between NQS systems. This service supports the NQS hosts by using the
TCP/IP network. See the nqsfts(8) man page for further details.

Figure 24 shows the relationships among the FTA components.

SG–2150 3.3 319

NQE Administration

User

ftua(1)User
agents

rft(1)
NQS

Common services fta(8)

Queue files

File transfer
services (FTS) fta(8) nqsfts(8)

ftp protocol

TCP/IP
network

NQS protocol

Data files

a10277

Figure 24. Component Relationships in FTA

13.2 Configuration

FTA configuration information is stored in the Network Load Balancer (NLB)
during NQE startup. This FTA configuration applies to all hosts in the NQE
except UNICOS systems that run only the NQE subset. For information about
configuring FTA for UNICOS systems that run only the NQE subset, see Section
13.2.5, page 327.

The NPPA S-keys must be configured on each separate system. For information
about configuring S-keys, see Section 13.2.8.1, page 331.

320 SG–2150 3.3

FTA Administration [13]

FTA configuration information is contained in the NLB database. Two FTA
object types exist in the NLB database: FTA_CONFIG and FTA_DOMAIN.

Note: If you change or add a port, you must edit system files on each
system, as described in Section 13.2.7, page 329, in order for the FTA daemon
(ftad(8)) to be invoked when a transfer request is received.

FTA administration must take place on each system, even if the systems are
reading the same configuration from the NLB. For more information about FTA
administration, see Section 13.3, page 336.

This section explains how to view and change the FTA configuration.

13.2.1 Viewing the FTA Configuration

FTA configuration is contained in the NLB. The FTA configuration is contained
in the NLB as objects of the following two attribute types:

Type Description

FTA_CONFIG Global type

FTA_DOMAIN Describes each domain

Also, the queue parameter is defined in the nqeinfo file (see Section 13.2.2).

FTA configuration may be viewed by using the nlbconfig command.

13.2.2 Global FTA Configuration Parameters

Note: For UNICOS systems that run only the NQE subset (NQS and FTA
components), see Section 13.2.5, page 327, for information about configuring
FTA.

If you issue the nlbconfig -odump -t FTA_CONFIG -n DEFAULT
command, the output is as follows:

SG–2150 3.3 321

NQE Administration

%nlbconfig -odump -t FTA_CONFIG -n DEFAULT

###
creation date: Mon Nov 13 16:45:09 1995

created by: luigi

object timestamp: Tue oct 10 15:16:15 1995

########

object FTA_CONFIG ("DEFAULT") {

FTA_MODE = 384;
FTA_RESTART_LIMIT = 30;

FTA_ADMIN_USER = "root";

FTA_ADMIN_GROUP = "bin";

Note: FTA_MODE is represented in the NLB database as a decimal number
(384).

The nlbconfig FTA_CONFIG object type, displayed with the command
nlbconfig -odump -t FTA_CONFIG, is defined as follows:

Parameter Description

queue "path"

Defines the directory that holds transfer request control files
while they are present in the queue. This parameter is always
required. You can change this parameter in the nqeinfo
configuration file.

Note: On UNICOS and UNICOS/mk systems running the
multilevel security feature, the queue directory must be
wildcarded to ensure that users can write a queue file to the
database directory. Use the spset(1) command to do this.

FTA_RESTART_LIMIT=limit

Defines the maximum number of FTS processes (limit) that will
be started during transfer recovery. This figure is independent
of any domain-specific limit. If limit is none or unspecified,
limits are not applied.

FTA_MODE=file-mode

Defines the file permission mode of the files in the queue
directory. The default permission mode is 0600. Octal values
must have a leading 0.

322 SG–2150 3.3

FTA Administration [13]

FTA_ADMIN_USER "username"|
FTA_ADMIN_GROUP "groupname" [,...]

Defines the users, groups, or a combination of the two that can
perform FTA management functions on behalf of other users.
Without this parameter, only the super user has this privilege.

FTA_STATUS_USER "username"|
FTA_STATUS_GROUP "groupname" [,...]

Defines the users, groups, or a combination of the two that can
perform FTA status functions on behalf of other users. Without
this parameter, only the super user has this privilege.

13.2.3 FTA Domain Configuration

Note: For UNICOS systems that run only the NQE subset (NQS and FTA
components), to configure FTA, see Section 13.2.5, page 327.

If you issue the nlbconfig -odump -t FTA_DOMAIN -n inet command,
the output is as follows:

%nlbconfig -odump t FTA_DOMAIN -n inet

###

creation date: Wed Nov 15 12:45:39 1995
created by: luigi

object timestamp: Fri Nov 13 09:34:31 1995

########

object FTA_DOMAIN ("inet") {

FTA_PORT = 605;
FTA_RESTART_LIMIT = 30;

FTA_FTS = "ftp";

FTA_FLAGS = "nopassword";

The nlbconfig FTA_DOMAIN object type, displayed with the command
nlbconfig -odump -t FTA_DOMAIN is defined as follows:

Parameter Description

FTA_FTS=class

Defines the file transfer service class to be associated with a
domain. The valid class identifiers are described below. The

SG–2150 3.3 323

NQE Administration

validity of other domain configuration parameters depends on
the FTA_FTS class used. This parameter is required. See Table
27 for a list of classes that may be used.

FTA_RESTART_LIMIT=limit

Defines the maximum number of FTS processes (limit) that will
be started for a domain during transfer recovery.

FTA_GATEWAY="hostname"

Defines the name of a gateway host.

FTA_PORT=number

Defines the port number to connect to on the remote system.
The default is 605 on NQE systems. By default, the ftad
daemon listens on port 605; the ftpd demon listens on port 21.

FTA_PATH="fts_path"

Defines the path of the FTS process to be invoked.

FTA_FLAGS=flag [,flag]...

Defines the flags to be used with the domain. An exclamation
point (!) can precede a flag to explicitly declare a flag to be off.
See Table 28 for a list of flags that can be used with this
parameter.

The class associated with the FTA_FTS parameter can be any of the following,
as shown in Table 27:

324 SG–2150 3.3

FTA Administration [13]

Table 27. FTA_FTS Class Parameters

Class Description

common Defines a domain in which the FTS uses a standard FTS
interface module. The path of the FTS program is required.

dap Defines a domain for a remote DECnet (DAP) gateway, which
is controlled by using the built-in FTP FTS program. The
hostname associated with the FTA_GATEWAY parameter must
be running an FTP/DAP gateway. A gateway TCP/IP
hostname name is required and defined using the
FTA_GATEWAY parameter.

ftp Defines an Internet FTP domain. The ftp FTS program is
built into fta. An additional path parameter is not required.

The flags associated with the FTA_FLAGS parameter can be any of the
following, as shown in Table 28:

Table 28. FTA_FLAGS Parameters

Flag Description

cancel Specifies that user agent cancellation will be performed using
the FTS.

debug Specifies that the FTS be run with debug tracing enabled. The
FTS program determines the exact function of the FTS debug
tracing flag.

nopassword Specifies that a password need not be provided before a file
transfer request is accepted; that is, the password is optional.
NPPA requires this flag.

nopermanent Specifies that any permanent error be treated as transient.
This will enable the transfer to be recovered.

nostart Specifies that a request should not be started when the user
agent completes a session with the fta server; instead, a
request is processed when transfer recovery is initiated.

notify Specifies that user agent notification will be performed using
the FTS.

SG–2150 3.3 325

NQE Administration

privileged Specifies that the FTS will be invoked as a privileged process,
inheriting all privileges endowed to the fta recovery process.
This usually results in the FTA process running as root (user
ID 0).

trace Specifies that the FTS will be run with protocol tracing
enabled. The FTS program determines the exact function of
the FTS protocol tracing flag.

13.2.4 Changing the FTA Configuration

You can change the default FTA configuration using the following procedure:

1. List the FTA objects in the NLB database with the following commands:

nlbconfig -olist -t FTA_CONFIG

------ type: FTA_CONFIG count: 1 ------

DEFAULT

nlbconfig -olist -t FTA_DOMAIN
------ type: FTA_DOMAIN count: 4 ------

inet ftp nqe nqs-rqs

The output indicates that there is one FTA configuration object named
DEFAULT. There are four FTA domain objects named inet, ftp, nqe, and
nqs-rqs. When the count is more than one, specify a specific name with
the nlbconfig -t type -n name command.

2. To display all the attributes of the object type FTA_CONFIG with the name
DEFAULT, issue the following command:

nlbconfig -odump -t FTA_CONFIG -n DEFAULT

You will receive output similar to the following:

326 SG–2150 3.3

FTA Administration [13]

###

creation date: Mon Dec 25 16:45:09 1995
created by: luigi

object timestamp: Fri Oct 13 15:16:15 1995

########

object FTA_CONFIG ("DEFAULT") {

FTA_MODE = 384;

FTA_RESTART_LIMIT = 30;
FTA_ADMIN_USER = "root";

FTA_ADMIN_GROUP = "bin";

You can either completely replace this information with new information, or
update it to change a part of it. Note that the FTA_MODE is represented in
the NLB database as a decimal number (384).

3. To change the information, create a file (called, for example, odat.1) that
contains the attribute(s) you want to change or add, as in the following
example:

object FTA_CONFIG ("DEFAULT") {

FTA_ADMIN_USER = "root, luigi";

}

4. Update the object file by using the nlbconfig -oupdat -f odat.1
command. All of the existing information is retained, and the
FTA_ADMIN_USER attribute is modified.

5. To completely replace the information in the object file, dump the
information in the object file into working file (called, for example, odat.2)
by using the following command:

nlbconfig -odump -f odat.2

Edit this file to contain the information you want and replace the entire
object file with the following command:

nlbconfig -oput -f odat.2

13.2.5 FTA Configuration for UNICOS Systems That Run Only the NQE Subset

For UNICOS systems that run only the NQE subset (NQS and FTA
components), FTA configuration is not maintained in the NLB. Instead,
UNICOS FTA configuration is maintained in the FTA configuration file
/nqebase/etc/fta.conf. To view fta configuration for UNICOS systems, use

SG–2150 3.3 327

NQE Administration

the fta -config command. For additional information, see the fta.conf(5)
man page.

Note: If you change or add a port, you must edit system files on each
system, as described in Section 13.2.7, page 329, in order for the FTA daemon
(ftad(8)) to be invoked when a transfer request is received.

You must add the entry NQE_FTA_FTACONF=/nqebase/etc/fta.conf to the
nqeinfo file (either by using the nqeconfig(8) utility or by manually adding
the entry to the end of the file). To initially generate the fta.conf file and FTA
queue directory, use the configure.fta script in the /nqebase/examples
directory. This script will use values that are in the nqeinfo file to create the
proper FTA configuration.

If you issue the fta -config command, the output is as follows. The section
of the output that begins with FTA corresponds to the FTA_CONFIG NLB object.
The section of the output that begins with FTS corresponds to the FTA_DOMAIN
NLB object. NQE_FTA_QUEUE is set in the nqeinfo file.

% fta -config

FTA

queue="NQE_FTA_QUEUE"

mode=0600

admin_users="root"
admin_groups="bin"

restartlimit=30

FTS

domain="inet"

fts=ftp
restartlimit=30

port=605

flags="nopassword"

Table 29 describes how the fta -config output corresponds to the output
from the nlbconfig commands.

328 SG–2150 3.3

FTA Administration [13]

Table 29. fta -config Output and nlbconfig Output Comparison

fta -config output nlbconfig output

mode FTA_MODE

admin_users FTA_ADMIN_USER

admin_groups FTA_ADMIN_GROUP

restartlimit FTA_RESTART_LIMIT

domain FTA_DOMAIN

fts FTA_FTS

port FTA_PORT

flags FTA_FLAGS

Note: nlbconfig represents FTA_MODE as a decimal number, rather than the
octal number that is displayed when you use the fta -config command.

13.2.6 Changing the ftpd Port Number

If you are running a TCP/IP transport service from another vendor (that is, one
other than the remote system TCP/IP), and the ftp daemon is already
configured on port 21, you must add the ftpd service to an unused port
number that is greater than 256 and less than 1024.

To add the ftpd service to an unused port number, you must ensure that this
matches the ftp/fta port number on the local system.

13.2.7 Editing System Configuration Files

FTA itself is configured during the installation of NQE. However, if you change
or add a port, you must edit the following system files on each machine in
order for inetd to invoke ftad when a transfer request is received:

/etc/services

/etc/inetd.conf

Optionally, you might edit /etc/syslogd.conf.

Add the following line to /etc/services:

fta unused_port_number/tcp

SG–2150 3.3 329

NQE Administration

Add the following lines to /etc/inetd.conf:

#<service_name> <socket_type> <proto> <flags> <user> <server_pathname> <args> <options>

#

FTAD daemon

#

fta stream tcp nowait root /nqebase/bin/ftad ftad options

You can add the -d option to the end of the last line. The -d option allows the
server to log messages to syslogd.

If this option is required, ensure that the following line is included in
syslog.conf (it may already be included if other daemons are already
sending messages to syslogd):

*.debug /var/adm/messages

The inetd utility rereads its configuration file once when it is started and again
whenever it receives the hangup signal (SIGHUP). New services can be
activated and existing services can be deleted or modified by editing the
configuration file, then sending inetd a SIGHUP signal.

Note: On AIX systems, if you manually edit the inetd.conf file, you must
synchronize the inetd.conf file and the object data manager (ODM)
database by using the inetimp command.

For additional information about setting port numbers, see the NQE Installation,
publication SG–5236.

13.2.8 Configuring Network Peer-to-peer Authorization

You can authorize users to transfer files without exposing passwords across the
network. This is especially desirable for NQS users who might otherwise have
to make their FTA passwords visible in the NQS job file script. Network
peer-to-peer authorization (NPPA) is a method of enabling users to open a
connection to a remote system without sending a password across the network.

Note: NPPA is enabled by default on all platforms except UNICOS and
UNICOS/mk systems. To enable NPPA on UNICOS and UNICOS/mk
systems, use the ftad -N command in /etc/inetd.conf.

NPPA requires the use of ftua or rft on the local system and ftad on the
remote system. Both systems must have support for the NPPA process. NPPA

330 SG–2150 3.3

FTA Administration [13]

only works if you have a flat user name space; that is the user name of an FTA
user must be the same on both systems.

The FTA domains inet and nqe are set up to use NPPA by default. You do not
have to make changes to the FTA domain configuration to use NPPA in these
domains. If you want to use a different name for NPPA connections, you can
add another domain. This procedure is described in Section 13.2.10, page 335.

Each system that is going to use NPPA must be configured with the
authentication information that it will send to another system during session
setup, and with the authentication information that it will expect to receive
from other NPPA systems. This authentication information consists of an S-key
(security key) and a password, both of which are alphanumeric strings. The
first S-key and password pair defined on each system is designated as the
primary S-key and password pair for that system.

When a user starts ftua or rft and uses a domain configured for NPPA, the
system encrypts its primary S-key and password pair and sends it to the system
with which it is attempting to establish a connection. The remote system
performs a similar encryption for each S-key and password pair on its list of
expected authorization information and accepts the connection when it finds a
match.

Note: If multiple ftads are configured on different ports, they will all use
the NPPA configuration file (fta.nppa) pointed to by the
NQE_FTA_NPPAPATH variable that is set in the nqeinfo file.

13.2.8.1 Configuring S-keys

To configure network peer-to-peer authorization, the administrator must
establish the primary S-key and password pair for each system. These S-key
and password pairs can be the same for all systems, or they may differ.

The first S-key set up on each system becomes the primary S-key, which is sent
to remote systems during connection establishment. After defining the primary
S-key on a system, the administrator adds all the S-key and password pairs for
all the hosts that will be authorized to open NPPA connections to that system.

To configure network peer-to-peer authorization, you must assign S-key and
password pairs on all of the systems that will use NPPA.

To create and delete S-keys, you must be root.

Note: On UNICOS systems that run only the NQE subset, use the fta(8)
command to configure S-keys.

SG–2150 3.3 331

NQE Administration

To assign S-keys, use the skey -addkey keylabel command, as follows:

skey -addkey key1

Enter key password

Verification

Alternatively, if FTA is running on the system, you can also use the fta
-addkey command. The effect of the two commands is identical.

To display the keys on the system, use the -showkey option, as follows:

skey -showkey

Keys on this system

1) key1 - Primary Key

To delete S-keys, use the skey -delkey keylabel command.

Note: For UNICOS systems running NQE 2.0 or earlier in your network, you
cannot use ftua to connect to a UNICOS platform (whether it is a Cray
Research system-to-Cray Research system or a workstation-to-Cray Research
system) because UNICOS systems running the earlier versions of NQE do
not support ftad. NQE version 3.0 running on UNICOS does support ftad.

13.2.9 NPPA Example

This example is based on having three systems that you want to communicate
by using FTA. The systems are called host1, host2, and host3. They have
the following characteristics:

332 SG–2150 3.3

FTA Administration [13]

Table 30. Example of NPPA Configuration Characteristics

System FTS Port FTS listens on Port provided for
domain nppa

S-keys

host1 ftp 21 (ftpd) 605 key2

host2 ftp 605 (ftad) 605 key1

host3 ftp 605 (ftad) 605 key1, key2

Figure 25 shows this configuration.

SG–2150 3.3 333

NQE Administration

NLB database entry:

object FTA_DOMAIN (" nppa") {
 FTA_PORT = 605;
 FTA_RESTART_LIMIT = 10;
 FTA_FTS = " ftp" ;
 FTA_FLAGS = " nopassword" ;

Output from skey - showkey:

Keys on this system

 1) key2 - Primary Key
ftpd listens on port 21

System: host1

NLB database entry:

object FTA_DOMAIN (" nppa") {
 FTA_PORT = 605;
 FTA_RESTART_LIMIT = 10;
 FTA_FTS = " ftp" ;
 FTA_FLAGS = " nopassword" ;

Output from skey - showkey:

Keys on this system

 1) key1 - Primary Key
ftad listens on 605

System: host2

NLB database entry:

object FTA_DOMAIN (" nppa") {
 FTA_PORT = 605;
 FTA_RESTART_LIMIT = 10;
 FTA_FTS = " ftp" ;
 FTA_FLAGS = " nopassword" ;

Output from skey -showkey:

Keys on this system

 1) key1 - Primary Key
 2) key2
ftad listens on port 605

System: host3

a10278

Figure 25. NPPA Configuration Example

In this configuration, you want users to be able to use cqsub to submit NQS
batch requests from host3 to host1 and to have FTA return the output. FTA
on host1 will construct an authentication packet that includes the S-key key2 as

334 SG–2150 3.3

FTA Administration [13]

one of its components. host1 transmits its authentication packet to host3. On
host3, two authentication packets are generated, one that uses the S-key key2
and one that uses the S-key key1. Both of the packets generated on host3 are
checked against the packet received from host1. The packet that uses the
S-key key2 matches, and the authentication succeeds.

If users initiate an FTA session from host3 to host1 that uses the domain
nppa, the session will fail because no FTA daemon is listening on port 605 on
the host1 system.

If users initiate an FTA session from host3 to host1 without specifying a
domain, a connection to the ftp daemon port (usually 21) can be made
successfully. This session will not use NPPA because the ftp daemon does not
support NPPA.

Users can use cqsub to submit an NQS batch request from host3 to host2
and have FTA return the output. FTA on host2 constructs an authentication
packet that includes the S-key key1 as a component. host2 transmits this
packet to host3. On host3, two authentication packets are generated, and the
one that uses the S-key key1 matches, and authentication succeeds.

If users initiate an FTA session from host3 to host2 that uses the domain
nppa, the session will succeed because the FTA daemon is listening on the
same port number (605) on host2.

13.2.10 Modifying the NLB Database for NPPA

If you want to create a new FTA domain for users to specify when they use
NPPA, you must add that FTA domain to the NLB database. You must have
ACL write privileges to change the NLB database. The domain must have the
following attributes; you can add others if you want:

Attribute Description

FTA_FTS = ftp File transfer class used by the
remote system; ftp is an
example.

FTA_PORT = nnn TCP/IP ftad port number on
the remote system on which
the fta daemon is listening;
Section 13.2.10.1, page 336
contains an example.

SG–2150 3.3 335

NQE Administration

FTA_FLAGS = nopassword Flag (nopassword) that
informs FTA that NPPA can
be used for this domain.

For a complete listing of possible attributes and values, see Section 13.2.1, page
321.

13.2.10.1 Example of Modifying the NLB Database

To add an NPPA domain to the NLB database, create a file (called, for example,
nppa.odat) such as the following, which adds the domain nppa on the local
system, with the ftad daemon listening on port number 258:

object FTA_DOMAIN ("nppa") {
FTA_FTS = "ftp";

FTA_PORT = 258;

FTA_FLAGS = "nopassword";

}

To update NLB object file and add the new domain object to the NLB database,
use the following command:

nlbconfig -oupdat -f nppa.odat

For more details on how to modify the NLB database, see Section 13.2.4, page
326.

13.3 Administration

FTA startup, logging, and recovery functions are not entirely contained within
the bounds of the fta(8) program. This section explains some of the interactions
that occur between the FTA facility and other parts of the operating system.
The actions described in this section are done (or a default value is provided)
during installation. If you want to make changes, you can use these procedures.

Note: FTA administration must take place on each system, even if the
systems are reading the same configuration from the NLB.

13.3.1 FTA System Startup

At system boot time, you can restart any FTA file transfers that stopped when
the system shut down by running a recovery process.

Note: Do not start a recovery process before TCP/IP is brought up.

336 SG–2150 3.3

FTA Administration [13]

The system startup recovery process is started as follows:

fta -recover

13.3.2 FTA Recovery

The following sections describe FTA recovery.

13.3.2.1 Byte-level Recovery of Binary Transfers

Binary transfers can be recovered at the byte level. System administrators
enable or disable this recovery level by setting the NQE_FTA_SMART_RESTART
environment variable to be ON or OFF. The NQE_FTA_SMART_RESTART
environment variable may be set in the nqeinfo file or through the shell. The
default value is ON.

Note: The configuration variable is ignored if the operation is not taking
place in binary mode; restarting will be disabled.

The FTA_DBY NLB attribute of the FTA_ACTION object appears only after the
transfer has begun; it remains even if the transfer is interrupted.

13.3.2.2 Setting the Recovery Interval

FTA does not have a daemon recovery service; that is, the recovery of a queued
request is not automatically provided. Therefore, it is recommended that you
start a recovery process either at regular intervals or at specific times of the day
or week.

If you use the clock daemon, cron(8), to start FTA recovery for all users, you
must use the super-user crontab file. The following example of a crontab
entry starts an FTA recovery process every 15 minutes, each day of the week.
Refer to crontab(1) for syntax information.

0,15,30,45 * * * * fta -recover

It also is useful to run a recovery process at significant times, such as the
following:

• Nightly, to clean up any failures.

• After network failure is resolved. Use -domain as a selector to direct the
recovery for a specific domain or network.

SG–2150 3.3 337

NQE Administration

• After a remote host is rebooted. Use -host to recover requests that transfer
to or from that specific host.

To recover queued requests for all users of the system, run the fta -recover
process, using the root user ID or the ID of an FTA administrator.

The following example runs the recovery process on the specific file transfer
request entry aa003yy; -debug is used to monitor the process:

338 SG–2150 3.3

FTA Administration [13]

% fta -debug -recover -entry aa003yy

fta: debug: getuid=11431, geteuid=11431
fta: debug: Reading config file...

fta: debug: ftsconf: class=1, domain=solaris, gateway=None, path=None, port=510

fta: debug: ftsconf: class=1, domain=osf, gateway=None, path=None, port=535

fta: debug: ftsconf: class=6, domain=nppa_ice, gateway=ice, path=None, port=256

fta: debug: ftsconf: class=1, domain=inet, gateway=None, path=None, port=0

fta: debug: User is an administrator
fta: debug: User can see status

fta: debug: queue: reading dir NQE_FTA_QUEUE

fta: debug: entry aa006bk rejected (name mismatch)

fta: debug: queue: opening file qfaa003yy

fta: debug: entry aa003yy selected
fta: debug: entry aa001bb rejected (name mismatch)

fta: debug: entry aa004WE rejected (name mismatch)

fta: debug: entry aa004YM rejected (name mismatch)

fta: debug: entry aa004dw rejected (name mismatch)

fta: debug: entry aa004fJ rejected (name mismatch)
fta: debug: entry aa0053J rejected (name mismatch)

fta: debug: entry aa0059I rejected (name mismatch)

fta: debug: entry aa005Q0 rejected (name mismatch)

fta: log: aa003yy: starting recovery.

fta: debug: setUserId: uid=11431, euid=11431

fta: debug: ftp_open: connecting to yankee...
fta: debug: ftp_connect: connection up

fta: debug: waiting for initial 220 msg...

fta: debug: got initial 220 msg

fta: debug: doing request

fta: debug: operation Copy (get)
fta: debug: copyio: called

fta: debug: copyio: 2879 bytes transferred

fta: debug: operation completed (status = 20200)

fta: debug: pullstatus: status = 20200

fta: debug: updating/removing request entry
fta: debug: request succeeded (ES_NONE)

fta: log: aa003yy: completed successfully.

fta: debug: rmEntry: aa003yy: request removed

13.3.2.3 Types of Failure

The following problems might prevent file transfers from occurring when FTA
is used:

SG–2150 3.3 339

NQE Administration

• A network route is down.

• A remote system is down.

• User validation information is not valid.

• A file transfer operation is not valid.

These errors are categorized as either transient or permanent.

Type of error Resulting action

Transient FTA retains the request file in the request queue
directory. Status information showing the reason
for the failure is included in the request.

Permanent FTA notifies the user or user agent (ftua or rft)
with a message containing information that
describes the error, and the transfer request is
removed from the request queue directory.

When file transfer is successful, FTA removes the request file from the queue
directory. You can use the ftua notify command to notify the user of
successful completion.

A queued request that fails with a transient error can be rerun by invoking a
recovery process. Recovery proceeds with the following steps:

1. Scan the queue for entries.

2. Invoke FTA and FTS processes for each request to be recovered.

3. Update the status of the request queue.

If you are root or an FTA administrator, you can start a recovery process by
executing the following command:

fta -recover

13.3.2.4 FTA Recovery Limits

If many file transfer requests are queued, recovery can create many processes.
This can create a heavy load on the system. To reduce the load, you can limit
the number of requests that are recovered at any one time. The
FTA_RESTART_LIMIT attribute of the FTA_CONFIG NLB object controls the
number of requests that are started at any one time. The number of requests

340 SG–2150 3.3

FTA Administration [13]

recovered at any one time, regardless of domain, is controlled by this limit. The
following NLB object shows a global configuration restart limit of 30:

object FTA_CONFIG ("DEFAULT") {
FTA_MODE

FTA_RESTART_LIMIT = 30;

To control the load presented by a specific domain, assign a limit on a
per-domain basis. This limit is known as a domain restart limit. Section 13.2.4,
page 326, explains how to change the FTA configuration.

The following example from the NLB object shows that the inet domain
restart limit as 10:

object FTA_DOMAIN ("inet") {

FTA_FTS = "common";
FTA_RESTART_LIMIT = 10;

}

Both the fta and domain restart limits are applied to the queue during
recovery. If either limit is reached, the number of requests recovered is
constrained. If a domain restart limit is set higher than the fta restart limit, the
number of requests recovered for that domain is constrained by the fta restart
limit.

If neither an fta nor a domain restart limit is defined, no limit is applied. It
also is possible to use the keyword none in place of a number to explicitly
denote that there is no limit.

13.3.2.5 FTA Recovery Strategy

When you start a recovery process, the queue of file transfer requests is sorted
before any restart limits are applied. The following criteria determine the order
in which requests are recovered. The order of the following list is significant;
the first differentiating factor determines the order in which the requests are
recovered. Selector options are applied to the queue to filter out the requests
chosen by a user.

1. Requests that were never run are favored over those that ran before.

2. Requests that were run least recently are favored over those that were run
most recently.

3. Requests that were queued least recently are favored over those that were
queued most recently.

SG–2150 3.3 341

NQE Administration

The following example shows an application of these criteria. Because requests
aa00093 and aa00136 never ran, they are favored over the other requests
(rule 1). Because request aa00093 is older, it is placed before aa00136 in an
internal recovery list (rule 3). Requests aa00101 and aa00127 have run.
Because both have the same run date, they are equally qualified under rule 2;
however, aa00101 was queued before aa00127, so aa00101 is favored over
aa00127 (rule 3). Recovery would occur in the following order: aa00093,
aa00136, aa00101, and aa00127.

QID Date queued Date run

aa00093 Thu Nov 16 08:16:35 Never

aa00101 Thu Nov 16 08:18:22 Thu Nov 16 08:28:14 BST 1995

aa00127 Thu Nov 16 08:28:12 Thu Nov 16 08:28:14 BST 1995

aa00136 Thu Nov 16 08:30:43 Never

If the restart limit were set to 3, which limits the number of recovered requests,
only the first three requests from this sorted list (that is, aa00093, aa00136,
and aa00101) would be recovered.

Suppose that after the recovery the queue state is as follows:

QID Date queued Date run

aa00101 Thu Nov 16 08:18:22 Thu Nov 16 09:45:13 BST 1995

aa00127 Thu Nov 16 08:28:12 Thu Nov 16 08:28:14 BST 1995

Requests aa00093 and aa00136 completed, but request aa00101 experienced
a transient error and was requeued. If a second recovery starts now, neither
request qualifies under rule 1; therefore, queue ordering would be determined
by rule 2, the time the requests were last run. In this example, request aa00127
would be placed before aa00101, because aa00127 ran least recently.

13.3.3 Information Log

The NQE_FTA_NLBCOLLECT variable activates logging of transfer information
to the NLB. Values may be ON or OFF. The variable may be set in the nqeinfo
file or as an environment variable. The default value is ON.

342 SG–2150 3.3

FTA Administration [13]

FTA information is logged by the syslogd(8) daemon under the facility name
daemon. Three syslogd priorities are used: notice, err, and debug.
Normal FTA events are logged with the notice priority; FTA errors are logged
with the err priority, and all events are logged when debug is turned on.

Other facilities also use the syslogd facility name daemon, and a
corresponding syslog.conf entry might already be in use. Review the
syslog.conf file for other uses of the daemon facility.

The following is a sample entry from a syslog.conf file used to direct FTA
notice and error logging information to the /usr/adm/syslog/daylog
system log file:

daemon.notice;daemon.err /usr/adm/syslog/daylog

With the addition of the following line, FTA errors also are sent to an operator’s
terminal:

daemon.err operator

A typical entry in a log file that is generated by fta using syslogd follows:

Sep 29 12:27:21 yankee fta[16331]: aa003z7: starting recovery

Sep 29 12:27:22 yankee fta[16331]: User: js Host: yankee Request: aa003z7

Mode: Immediate

Sep 29 12:27:22 yankee fta[16331]: Remote file: lgn Local

file: /net/home/palm3/js/temp Size: 879 bytes

Sep 29 12:27:22 yankee fta[16331]: aa003z7: completed successfully

Sep 29 12:28:20 yankee fta[16335]: aa005Q0: cancelled (null operation)

Sep 29 12:28:20 yankee fta[16335]: aa005Q0: failed: Cancelled by user/operator

Sep 29 12:28:26 yankee sendmail[16337]: AA16337:

message-id=<9309291728.AA16337@yankee.yankeegroup>

Sep 29 12:28:26 yankee sendmail[16337]: AA16337: from=js, size=563, class=0,

received from local

Sep 29 12:28:27 yankee sendmail[16339]: AA16337: to=js@palm, delay=00:00:06,

stat=Sent

Sep 29 12:29:18 yankee fta[16342]: aa004YM: cancel: request active

SG–2150 3.3 343

NQE Administration

!
Caution: When you invoke FTA recovery, you can use the -log option to
route the information logged to the standard output of the fta recovery
process. If this option is used from a tty, you must redirect the standard
output. If no redirection or pipe is used, and the output is sent to the
controlling tty, some of the log output will be lost. This behavior is a side
effect caused by fta using the setjob(2) system call during the recovery
process

13.3.4 FTA Management Functions and Status

FTA management functions include the following:

• Canceling requests

• Deleting requests

• Holding requests

• Releasing requests

• Displaying request status

The super user can perform management functions on any requests that exist in
the FTA queue.

If necessary, specific users or groups of users can be authorized to use FTA
management functions. In the following NLB object example, user joe and the
members of the group operator are authorized to perform FTA management
functions:

object FTA_CONFIG ("DEFAULT") {

FTA_MODE = 384;
FTA_RESTART_LIMIT = 30;

FTA_ADMIN_USER = "joe";

FTA_ADMIN_GROUP = "operator";

Specific users or groups of users also can be authorized to display the status of
any requests in the FTA queue. In the following NLB object example, user joe
and the members of the group staff can display the status of any request:

object FTA_CONFIG ("DEFAULT") {
FTA_MODE = 384;

FTA_RESTART_LIMIT = 30;

FTA_STATUS_USER = "joe";

FTA_STATUS_GROUP = "staff";

344 SG–2150 3.3

FTA Administration [13]

Note: Unless explicitly listed, users can perform management functions on,
and display the status of, only their own requests.

You can use selector options to filter sets of requests for specific status or
management functions (see the fta man page). Selectors are provided to filter
requests based on the following attributes:

• Time the request was queued

• Domain name

• Host name

• Request owner

• Queue request identifier

• Request status

If you combine different selectors, a request is selected only when it satisfies all
attributes specified with the given selectors. If selectors are not specified, all
requests are selected. The following example lists all requests that were queued
at or before 12 P.M. and that tried to transfer but failed.

fta -before 12:00 -failed -queue

The following examples use the -debug option to show the output from
requests to cancel and delete an entry:

SG–2150 3.3 345

NQE Administration

% fta -cancel -entry aa005Q0 -debug

fta: debug: getuid=11431, geteuid=11431

fta: debug: Reading config file...

fta: debug: ftsconf: class=1, domain=solaris, gateway=None, path=None, port=510

fta: debug: ftsconf: class=1, domain=osf, gateway=None, path=None, port=535

fta: debug: ftsconf: class=6, domain=nppa_ice, gateway=ice, path=None, port=256

fta: debug: ftsconf: class=1, domain=inet, gateway=None, path=None, port=0

fta: debug: User is an administrator

fta: debug: User can see status

fta: debug: queue: reading dir NQE_FTA_QUEUE

fta: debug: entry aa006bk rejected (name mismatch)

fta: debug: entry aa001bb rejected (name mismatch)

fta: debug: entry aa004WE rejected (name mismatch)

fta: debug: entry aa004YM rejected (name mismatch)

fta: debug: entry aa004dw rejected (name mismatch)

fta: debug: entry aa004fJ rejected (name mismatch)

fta: debug: entry aa0053J rejected (name mismatch)

fta: debug: entry aa0059I rejected (name mismatch)

fta: debug: queue: opening file qfaa005Q0

fta: debug: entry aa005Q0 selected

fta: log: aa005Q0: cancelled (null operation).

fta: log: aa005Q0: failed: Cancelled by user/operator.

fta: debug: rmEntry: aa005Q0: request removed

346 SG–2150 3.3

FTA Administration [13]

% fta -delete -entry aa006bk -debug

fta: debug: getuid=11431, geteuid=11431

fta: debug: Reading config file...

fta: debug: ftsconf: class=1, domain=solaris, gateway=None, path=None, port=510

fta: debug: ftsconf: class=1, domain=osf, gateway=None, path=None, port=535

fta: debug: ftsconf: class=6, domain=nppa_ice, gateway=ice, path=None, port=256

fta: debug: ftsconf: class=1, domain=inet, gateway=None, path=None, port=0

fta: debug: User is an administrator

fta: debug: User can see status

fta: debug: queue: reading dir NQE_FTA_QUEUE

fta: debug: queue: opening file qfaa006bk

fta: debug: entry aa006bk selected

fta: debug: entry aa001bb rejected (name mismatch)

fta: debug: entry aa004WE rejected (name mismatch)

fta: debug: entry aa004YM rejected (name mismatch)

fta: debug: entry aa004dw rejected (name mismatch)

fta: debug: entry aa004fJ rejected (name mismatch)

fta: debug: entry aa0053J rejected (name mismatch)

fta: debug: entry aa0059I rejected (name mismatch)

fta: debug: rmEntry: aa006bk: request removed

The following examples show the output from requests to display the status of
an entry:

SG–2150 3.3 347

NQE Administration

% fta -queue

--QID-- ---Queued On --- --User-- ---State--- -----Status-----
aa001bb Tue Sep 14 09:19 sparks Active UA connected

aa004WE Tue Sep 21 08:54 sparks Active Connecting

aa004YM Tue Sep 21 09:00 sparks Active Connected

aa004fJ Tue Sep 21 09:36 sparks Active Connecting

aa0053J Tue Sep 21 11:52 sparks Active Connecting

aa0059I Tue Sep 21 12:09 sparks Active Connecting

% fta -queue -verbose

--QID-- ---Queued On --- --User-- --Group--

aa001bb Tue Sep 14 09:19 sparks rqsgrp

State: Active
Status: UA connected

Priority: 0

Last Attempt: Tue Sep 14 10:33:22

Controlling-PID: 27788

Domain: osf
Host: alphabet

Username: sparks

Copy (get)

RemoteFile: fta30.1.tar

LocalFile: /net/home/palm3/sparks/fta.tar

aa004WE Tue Sep 21 08:54 sparks rqsgrp

State: Active

Status: Connecting

Priority: 0

Last Attempt: Never
Domain: inet

Host: alphabet

13.3.5 Transfer Status

FTA provides progress statistics about file transfer status. The total file size,
bytes transferred, and estimated time to completion are tracked, and the
progress statistics are stored in the NLB. Users and administrators can view this
status information by using the FTA summary option of the NQE GUI Status
window. You can change the interval between NLB updates by setting the
NQE_FTA_STAT_INTERVAL variable, which may be set in the nqeinfo file;
alternatively, you can override the configured internal value through the
NQE_FTA_STAT_IN environment variable in the shell. The variable is an

348 SG–2150 3.3

FTA Administration [13]

integer, which represents the number of seconds between NLB updates. If the
NQE_FTA_STAT_INTERVAL environment variable is set to 0, progress statistics
are disabled. The default value is 2.

For DFS transfers, the FTA_DFS NLB attribute of the FTA_ACTION object
appears only after the transfer has begun; it remains even if the transfer is
interrupted. The FTA_DFS NLB attribute is set to -1 if FTA is unable to
determine the file size; this action does not prevent the transfer from continuing.

SG–2150 3.3 349

Configuring DCE/DFS [14]

This chapter describes how to administrate the interoperability of NQE tasks
and Distributed Computing Environment (DCE) resources such as the
Distributed File System (DFS).

Note: DCE support is optional, and is disabled by default. It is a licensed
feature of NQE.

The following topics are discussed in this chapter:

• Enabling DCE support for NQE

• Using a password to submit a task

• Using a forwardable ticket to submit a task

• Checkpoint and restart support

• Support for renewing and refreshing tickets

• User requirements

• Administrating Kerberos and DCE

14.1 Enabling DCE Support for NQE

Before enabling DCE support, system administrators should note the following:

• The NQE Distributed Computing Environment/Distributed File Service
(DCE/DFS) feature is restricted to operating within a single DCE cell. Cross
realm authentication is not supported.

• Ticket forwarding is dependent upon the use of the NQE database when
submitting tasks.

• Support for tasks that use forwarded tickets for DCE authentication is
provided on UNICOS, UNICOS/mk, IRIX, and Solaris platforms only.
Support for tasks that use a password for DCE authentication is available on
all NQE 3.3 (or later) platforms. Tickets may be forwarded from any NQE
3.3 or later client to any NQE 3.3 (or later) server that supports forwarded
tickets as a means of DCE authentication. (Ticket forwarding for either
clients or servers is not supported for the Digital UNIX platform in the NQE
3.3 release.)

SG–2150 3.3 351

NQE Administration

• NQE support for DCE/DFS does not include installations residing in DFS
accessible file space. Installed components must reside in UNIX file space.

• If DCE support is enabled, a system cannot be configured to disable ticket
forwarding.

• Kerberos is the authentication component of DCE.

• NQE supports Open Software Foundation (OSF) DCE version 1.1 only.

Note: For UNICOS and IRIX systems, the DCE integrated login feature
must be enabled for DCE credentials to be passed through NQE. For more
information, see the Cray DCE Client Services/Cray DCE DFS Server Release
Overview, publication RO–5225.

To enable DCE support on an NQE node, use the Action menu of the NQE
configuration utility, nqeconfig(8)), to add the following variables to the
nqeinfo file:

• NQE_AUTHENTICATION. Set the NQE authentication type. The value of this
variable should be dce to enable DCE/DFS support.

• NQE_DCE_REFRESH. If DCE support is enabled, DCE renew/refresh support
is automatically set to a value of 300 minutes. The value assigned to this
variable must be an integer representing the number of minutes between
each renew/refresh attempt. The value should be approximately half of the
minimum ticket lifetime for any user. A value of 0 disables the DCE refresh
feature.

• NQE_DCE_BIN. If the path to the kdestroy and kinit commands is not
the default /opt/dcelocal/bin path, then add the NQE_DCE_BIN
variable to the nqeinfo file, and set it to the correct full path name.

To enable DCE ticket forwarding support on an NQE client machine, only the
NQE_AUTHENTICATION variable needs to be set in the nqeinfo file on the
client.

14.2 Using a Password to Submit a Task

In order for a task, which utilizes DCE authentication, such as DFS, to access
resources , it must first acquire credentials. This is accomplished in two ways;
either by providing a password or by forwarding existing credentials. When a
user submits a task to NQE, they may choose to provide a password. The
password remains with the task until it is complete, and it is used by NQS to
acquire and refresh credentials for the user on the execution host. When

352 SG–2150 3.3

Configuring DCE/DFS [14]

submitting a task from the command line, a user may provide a password by
appending the -P argument to the cqsub(1) command. The user will be
prompted for their password prior to submission of the task. When submitting
a task using the NQE GUI, a user may specify a password by selecting the Set
Password item of the Actions menu in the NQE Job Submission window.

Note: This action is separate from the user authentication performed by NQS
when queuing a remotely submitted request or validating an alternate user
identity. Although a password is required to obtain DCE credentials, the
NQS user validation type defined within qmgr can remain unchanged.

!
Caution: If user home directories are located in DFS space, NQS user
validation must be set to password or no_validation if ticket
forwarding will not be used .

The integrated login feature is used on UNICOS or IRIX NQE servers for DCE
authentication when a password is supplied. The DCE credentials acquired
through integrated login are used for both initiating the request and returning
request output files. Because integrated login is unavailable on most UNIX NQE
servers, NQS makes DCE security login library calls to obtain separate sets of
DCE credentials when initiating the request and returning request output files.

Failure to obtain DCE credentials results in a nonfatal error on all NQE
platforms. The request will be initiated even if the attempt to obtain DCE
credentials for the request owner fails. If DCE credentials are successfully
obtained, the KRB5CCNAME environment variable is set within the request
process that is initiated.

Note: Users may use the klist(1) command within a request script to verify
that DCE credentials were obtained.

Messages are written to the NQS log file when attempts are made to obtain
DCE credentials. A sample message indicating a successful attempt to obtain
DCE credentials follows:

Request 1927.latte: Acquired DCE credentials for user <jane>,

KRB5CCNAME <FILE:/opt/dcelocal/var/security/creds/dcecred_41fffce1>.

A sample message indicating an unsuccessful attempt to obtain DCE credentials
follows:

Request 1928.latte: Failed to get DCE credentials for user <jane>.

SG–2150 3.3 353

NQE Administration

14.3 Using a Forwardable Ticket to Submit a Task

Another method of DCE authentication involves forwarding a user’s credentials
between machines to submit a task. When a user obtains their initial DCE
credentials using the kinit(1) command, they may explicitly request that they
be granted a forwardable ticket. This allows the user to establish a new DCE
context without having to provide their password again. After the user
provides their password to the kinit command, their credential cache file is
populated with a forwardable Kerberos ticket.

A user may also request that their DCE credentials be renewable. Because
credentials have lifetimes associated with them, they eventually expire. When a
user’s credentials expire, they are no longer granted access to resources that
utilize DCE as an authentication mechanism. The user’s credentials have two
lifetimes associated with them; the ticket lifetime and the renewable lifetime.
The ticket lifetime is usually less than one day. The renewable lifetime is
generally much longer than the ticket lifetime, and may last for weeks or
months. Before the ticket lifetime of a user’s credentials expires, they may
request that it be renewed. If the ticket has not exceeded its maximum
renewable lifetime, the lifetime of the ticket is reset. In this way, a user’s
credentials may be valid throughout the maximum renewable lifetime of the
ticket.

For information on DCE policy regarding ticket lifetime, see the OSF DCE
Administration Guide - Core Services.

In order to use ticket forwarding, DCE authentication must be enabled for NQE
(see Section 14.1, page 351). Prior to submitting a task to NQE, a user must
acquire a forwardable and renewable Kerberos ticket granting ticket (TGT). This
may be accomplished by using the kinit(1) command. Here is an example:

/opt/dcelocal/bin/kinit -f -r 100h jane

This command specifies that user jane is requesting that a forwardable ticket
be granted with a renewable lifetime of one hundred hours. The user is then
prompted for their DCE password. Upon entering the correct password, a
credential cache file may be created if one does not already exist. Otherwise,
the user’s existing credential cache will be updated.

Note: Although this example refers specifically to the kinit(1) command
supplied with DCE, a properly configured version of kinit from the
Massachusetts Institute of Technology (MIT) Kerberos Version 5 package may
also be used. In this way, it is possible for an NQE client machine without
DCE installed to submit tasks that access DCE dependent resources when
they are executed.

354 SG–2150 3.3

Configuring DCE/DFS [14]

The user may now use the cqsub(1) command to submit a task to the NQE
database. It is not necessary to pass any additional arguments to the cqsub
command to enable ticket forwarding. Forwarding is attempted by default
when NQE authentication is set to DCE. If the user’s credentials could not be
forwarded, an informational message will be printed as shown in the following
example:

CQSUB: INFO: Unable to forward Kerberos ticket: <Explanation>

This is not a fatal error. The task will be scheduled to run, although it will not
obtain DCE credentials unless an appropriate password was provided with the
task.

14.4 Checkpoint and Restart Support on UNICOS Systems

On UNICOS systems, requests accessing DFS files can be checkpointed and
restarted. NQS obtains new DCE credentials for the request owner just before
restarting the request. The qmgr(8) subcommands which checkpoint and restart
requests, handle this automatically.

!
Caution: A restarted job correctly gets the new credentials obtained from
NQS, but the KRB5CCNAME environment variable within the restart file is not
reset to the new cache file name. After the job is restarted, a klist within
the job script will incorrectly state that there are no credentials.
Consequently, DCE services are affected but not DFS, which continues to
work with the new credentials.

14.5 Support for Renewing and Refreshing Tickets

In order for a user’s credentials to remain valid throughout the life of a task, it
may be necessary to periodically refresh the credentials . The DCE credential
renew/refresh feature within NQE provides this functionality. For tasks using
DCE ticket forwarding, it allows the user’s credentials to remain valid
throughout the maximum renewable lifetime of the user’s initial ticket granting
ticket. For tasks submitted with a password, the ticket may be refreshed as long
as the password remains valid for the user. This feature is available on all NQE
servers that support DCE.

When a task is submitted to the NQE database, the scheduler may choose not
to assign the task to a lightweight server (LWS) immediately. The scheduler

SG–2150 3.3 355

NQE Administration

provided with the NQE 3.3 release periodically refreshes the credentials
associated with the task if DCE ticket forwarding is being used.

Note: It will be necessary to make changes to your default scheduler if you
are upgrading to the NQE 3.3 release, and plan to use your old scheduler
with this feature. Pay special attention to the addition of the ticket
commands within the new scheduler.

Once the task has been scheduled, the LWS will submit the job to its NQS
server. The NQS request server will acquire credentials for the task and
continue to renew/refresh the credentials until the task is complete.

The default renew/refresh interval is 300 minutes. This value should be
approximately half of the minimum ticket lifetime for any user. For example, if
user jane has the smallest default ticket lifetime of any user configured in the
DCE cell of two hours, then the refresh interval should be configured to a value
of 60. To change the renew/refresh interval, see Section 14.1, page 351.

14.6 User Requirements

Users who submit tasks that make use of NQE DCE/DFS interoperability
should be aware of the following:

• Tasks must be submitted to the NQE database. If this is not configured as the
default behavior, the user must include -d nqedb as part of the cqsub(1)
command arguments. This behavior must be configured in the NQE Job
Submission Options window when using the NQE GUI to submit tasks.

• A password, forwardable credentials, or both must be available at task
submission time in order for credentials to be acquired when the task is
executed.

• A user’s home directory may reside within DFS space.

• The request script file may reside within DFS space.

• The target directory for job output may reside within DFS space. Directing
output to DFS space may be accomplished by using the standard cqsub
arguments, which specify the destination of standard output (-o) and
standard error (-e) files. The format of the DFS path should begin with
/:/ followed by the remainder of the desired location.

• The user supplied password and the DCE registry password for the user
must be identical.

356 SG–2150 3.3

Configuring DCE/DFS [14]

!
Caution: NQS limits a password to eight characters. If a user’s DCE
password is more than eight characters, DCE authentication will fail and
credentials will not be acquired.

• A user may provide a different DCE registry user name when submitting a
request by using the User Name field of the NQE GUI Submit window
General Options menu or by using the -u option of the cqsub(1)
command.

• After a request completes, NQS on UNICOS systems uses the kdestroy(1)
command to destroy any credentials obtained by NQS on behalf of the
request owner. On non-UNICOS systems, this is accomplished by calling
built-in Kerberos library routines.

!
Caution: Including a kdestroy command within a request script file on
UNICOS systems will destroy the credentials obtained by NQS and prevent
NQS from returning request output files into DFS space.

14.7 Administrating Kerberos and DCE

In order for NQE tasks to utilize DCE/DFS resources, it is necessary to properly
configure your DCE/DFS environment. To accomplish this, several issues must
be addressed. These issues can be broken into two main groups; Kerberos
specific and DCE/DFS specific.

Configuration issues relating specifically to DCE are as follows:

• User accounts (or principals) within DCE should be inspected to determine
the range of ticket lifetimes. As discussed earlier, the renew/refresh interval
within NQE should be approximately half of the minimum configured value
in this range. Performing a ticket refresh is not a particularly expensive
operation in most cases, but need not be performed at an unnecessarily high
frequency. The administrator may choose to extend the ticket lifetime of all
user principals to a period of at least ten hours. This allows the default NQE
renew/refresh interval (300 minutes = 5 hours) to fit appropriately with the
ticket lifetimes of the user principals.

• User accounts (or principals) within DCE should be inspected to determine
the range of renewable lifetimes. The renewable lifetime of a principal
should always exceed the maximum projected task lifetime (time from task
submission to completion) for a user. If a task lives longer than the
renewable lifetime of its associated credentials, the task will lose access to

SG–2150 3.3 357

NQE Administration

DCE/DFS resources unless a valid DCE password is associated with the
task. This is most important for tasks utilizing DCE ticket forwarding.

• User accounts (or principals) within DCE should be set to allow
forwardable, renewable, and proxiable certificates.

• The account and password lifespan policies should be inspected. If an
account expires, or if its password becomes invalid, the task may lose access
to DCE controlled resources.

• Kerberos performs authentication in part based on an IP address encrypted
within the ticket. The KDC (or DCE security service) checks that the ticket
granting ticket (TGT) contains a IP address that matches the IP address of
the interface that the request was made on. This can create difficulty for
machines that have multiple IP addresses (multi-homed). The Domain Name
Service (DNS) can store multiple interface IP addresses for a multi-homed
host. Therefore , if you run named(8) on your Cray Research system you can
accommodate multi-homed hosts. Kerberos 5 has the ability to store
multiple IP addresses for a host within the TGT. If you do not run named
you must ensure that the IP address provided by a gethostbyname(3C) call
will return the same address on every machine that is to act as a login utility
client (that is the host you wish to run klogin on for example). This IP
address must also be the interface that the destination host (the host running
klogind) will use to make requests to the KDC (DCE security service).

Configuration issues relating specifically to Kerberos are as follows:

• All systems that have both NQE and DCE or Kerberos installed will need to
be configured for Kerberos.

• The file /etc/krb5.conf should contain realm specific data. In the
following example, the default realm is configured to be the system latte,
which acts as a DCE key distribution center (KDC):

[libdefaults]

default_realm = latte.cray.com

default_tkt_enctypes = des-cbc-crc

default_tgs_enctypes = des-cbc-crc

kdc_req_checksum_type = 2

ccache_type = 2

358 SG–2150 3.3

Configuring DCE/DFS [14]

[realms]

latte.cray.com = {

kdc = latte

default_domain = cray.com

}

[domain_realm]

.cray.com = latte.cray.com

• The entries in /etc/services must be configured so that either the
kerberos or kerberos-sec services operate on port 88/udp. To preserve
an existing Kerberos V4 configuration, use the following entry:

kerberos-sec 88/udp kdc

For Kerberos V5 only, the entry may be as follows:

kerberos 88/udp kdc

• For more detailed information regarding Kerberos configuration, please refer
to the Kerberos V5 Installation Guide available from MIT.

SG–2150 3.3 359

Configuring ilb [15]

The ilb utility executes a command on a machine chosen by the Network Load
Balancer (NLB). To use the utility, enter the ilb(1) command followed by the
command you want to execute. The NLB is queried to determine the machine
to which you will be connected. After the login process is complete, the
command is executed and I/O is connected to your terminal or pipeline. For
information about using the ilb utility, see the ilb(1) man page.

Administration of ilb involves three main components, which affect the
behavior of the ilb application. The components are as follows and are
described in this chapter:

• ilbrc file (requires a specific format)

• $HOME/.ilbrc file (requires a specific format)

• User’s environment variables

15.1 ilbrc File

The ilbrc file is located in the /nqebase/etc directory. There are two categories
of information contained in the ilbrc file: LOGIN blocks and SYSTEM blocks.

15.1.1 LOGIN Blocks

LOGIN blocks are used to define login methods. These blocks start with a line
containing LOGIN <name> and end with the line END LOGIN. There are three
directives in the LOGIN block, USER, INVOKE, and SYS, which are described as
follows:

Directive Description

USER Specifies whether a line is to be input from (USER<) or output to
(USER>) the user’s terminal. For example, the USER> directive
indicates that the remainder of the line is printed to the user’s
terminal. The USER< directive must be followed by a temporary
variable that indicates where the input will be stored. The
USER_QUIET< directive is used for non-echoing input so that
passwords are not visible when entered.

SG–2150 3.3 361

NQE Administration

INVOKE Specifies the application to be started to initiate a connection to a
remote system.

SYS Sends data to (SYS>) or receives data from (SYS<) the remote
system in order to complete the connection.

The following three variables, which may be used in LOGIN blocks, are set
automatically by the ilb utility:

Variable Description

$SYS Stores the name of the system that was selected by the NLB for
the session.

$USER Stores the user name of the account to log into. The $USER
variable is set with the -l option, or by reading the environment
variables ILB_USER and LOGNAME or USER.

$PROMPT Specifies a user’s prompt; it contains a regular expression and may
be changed by setting the environment variable ILB_PROMPT.

15.1.2 SYSTEM Blocks

SYSTEM blocks define options specific to machine names. The SYSTEM blocks
begin with the line SYSTEM name; name is the name of a system or is DEFAULT
to define the fallback case. The SYSTEM block ends with END SYSTEM.

The CONNECT attribute of the SYSTEM block defines which of the LOGIN
blocks should be applied to a particular system.

The AVOID directive is placed outside of the LOGIN and SYSTEM blocks. It
should be followed by a space-separated list of machine names; the ilb should
not use these names. This is useful when a user or administrator wants to
eliminate certain systems for use with the ilb.

15.2 $HOME/.ilbrc File

Users may have their own ilb configuration files residing in their home
directory. These configuration files are called .ilbrc. If this file is not present,
the ilb uses the information contained in the system’s ilbrc file. The format
of this file is identical to that of the system’s ilbrc file, which is defined in
Section 15.1, page 361.

362 SG–2150 3.3

Configuring ilb [15]

15.3 User Environment Variables

The user may also control the behavior of the ilb by defining the following
specific environment variables.

Note: The user may need to set up these variables if the default values do
not work correctly.

Variable Description

ILB_USER Defines the login name to use on the remote
system. This variable also alters the value of
$USER in the ilbrc files. The default value is
whatever $LOGNAME or $USER is set to be in the
user’s environment.

ILB_PROMPT A regular expression that identifies the user’s
prompt on a remote machine. The default value
is "^.*\[%$#:\] $", which looks for any string
ending with %, $, #, or :.

NLB_SERVER Defines the machine name and port number of
the NLB server.

SG–2150 3.3 363

Problem Solving [16]

This chapter helps you to identify common problems you may experience while
administering NQE; possible causes and resolutions are also included.

For information on DCE/DFS issues, see Chapter 14, page 351.

For information on obtaining support from customer service, see Section 16.10,
page 382.

The following categories of problems are included in this chapter:

• Verifying that NQE components are running

• Verifying that daemons are running

• NQS troubleshooting

• Client troubleshooting

• NLB troubleshooting

• NQE database troubleshooting

• Network debugging

• Determining Array Services status

• Reinstalling the software

• Calling customer service

16.1 Verifying That NQE Components Are Running

To ensure that NQE components are running, complete the following steps:

1. Ensure that the daemons are running as described in Section 16.2.

2. Determine whether the NLB server daemon is up and running by using the
following command:

/nqebase/bin/nlbconfig -ping

3. Determine whether the nqsdaemon is up and running by using the
following command:

/nqebase/bin/qping -v

SG–2150 3.3 365

NQE Administration

4. Determine the systems that are candidates for accepting requests based on
current NLB policies by using the following command:

/nqebase/bin/nlbpolicy -p nqs

5. Display load-balancing request information by selecting the Load button on
the NQE GUI.

6. Display information about queues by using the cqstatl-f or qstat-f
command.

7. Display NQS request information by selecting the Status button on the
NQE GUI display or by using the cqstatl-f or qstat-f command.

If all of these steps display nonerror information, your NQE software is ready
for use.

16.2 Verifying That Daemons Are Running

To ensure that the daemons are running, complete the following steps:

1. Log in as root.

2. Depending on which ps command you have in your search path, use either
the ps -e or the ps -aux command to display running processes. Some
systems truncate the daemon names in your ps display.

If one or more of the daemons shown in Table 31 are not running but are
configured to run on this node, NQE is not operational. In that case, you
should have received an error from the nqeinit script or have an error in the
NQS NQE_SPOOL/log/nqslog log file or in the qstart.$$.out file (where
$$ is the PID of the process running qstart), or in the nqscon.$$.out file,
which logs NQS activity until the NQS log daemon starts.

You also can check the license manager log files for any error information.

Table 31 describes the NQE server daemons.

Table 31. NQE Server Daemons

Component Daemons

Collector ccol NLBportnumber

FTA ftad (when FTA NPPA transfers are active)

366 SG–2150 3.3

Problem Solving [16]

Component Daemons

fta (when any FTA transfers are active)

Load balancer nlbserver

NQE database msqld

LWS nqedb_lws.tcl

NQS logdaemon, netdaemon, and nqsdaemon

If you have checked all of the steps described in Section 16.1, page 365, and the
NQE daemons still are not running, try the following steps:

• Ensure that you have added the necessary NQE port numbers to your
/etc/services file. You may have already had these port numbers
assigned to other daemons and not realized it, or you may have made a
typing error when you entered the information.

• Ensure that you have configured all desired NQE components in the
nqeinfo(5) file. Client software contains only commands; it has no
daemons.

• Check the /nqebase/nqeversion/host/nqeinfo file for typing errors. This file
records your choices during installation. The host is the TCP/IP host name
of the machine on which you installed the software. Ensure that all of the
information in this file is correct. If not, you should reinstall the software as
described in NQE Installation, publication SG–5236.

To ensure that NQE is running properly, try the following steps:

• Ensure that the nqenlb and nqebatch queues exist, are enabled, and are
started on each node NQS is configured for by using the NQE cqstatl or
qstat command.

• Ensure that TCP/IP is running between all NQE clients and servers by using
the telnet and ftp commands between the client and server systems.

• If you are using file validation, ensure that NQS validation is correct by
checking that you have a valid account on all NQS servers and that the
submitting user name matches the user name at the executing NQS server.

Check that the submitting account has an entry in either a .rhosts or
.nqshosts file in the home directory of the target user on each NQS server.
Entries must have the format hostname username.

SG–2150 3.3 367

NQE Administration

• Examine the NQS log file for any error messages. The NQS log file contains
messages from the various NQS daemon processes, messages indicating
successful completion of events, and messages indicating specific errors that
may have occurred.

To determine the NQS log file path name, use the following qmgr command:

show parameters

To increase the amount of information recorded in the log file, use the
following qmgr command:

set message_types on all

16.3 NQS Troubleshooting

This section describes some common problems users may encounter in running
NQS, along with their possible causes and resolutions.

16.3.1 A Request Has Disappeared

If you cannot find a request, try the following steps to locate it.

1. The following may show the location of the request:

• The NQE GUI Status window displays all requests in the complex.

• The cqstatl -a and the qstat -a command display all requests on
the server defined by the NQS_SERVER environment variable. The
cqstatl -a also displays an NQE database request summary (the NQE
database server is defined by the MSQL_SERVER, MSQL_TCP_PORT, and
NQE_DEST_TYPE environment variables).

• The cqstatl -a -h remote-hostname and qstat -a -h
remote-hostname commands display all requests at a remote host.

2. The request may have been completed. The user should check for the
standard output and standard error files produced by the request. Unless
the user specified a different location for these files, they should be in the
directory from which the request was submitted. If they are not there,
check the user’s home directory on the remote system.

3. The user should check electronic mail. If NQS encounters problems running
a request, it may send a mail message to the issuing user.

368 SG–2150 3.3

Problem Solving [16]

16.3.2 A Queued Request Will Not Run

A request may be queued without being run for the following reasons.

16.3.2.1 Limits Reached

A request may be queued without being run when it reaches an NQS batch
queue, even though the NQS batch queue has not reached its limits. This could
happen because the limits for the queue complex, the user’s group, or the NQS
server global limits were reached.

To get details of the request, including its requested resource limits, use the
cqstatl or qstat command. Following is an example of the command:

cqstatl -f -h target_host requestids

Compare these limits with the limits defined for the batch queue by using the
same command to receive details about the queue. Following is an example of
the command:

cqstatl -f queues

16.3.2.2 Pipe Queue’s Destination List Points to a Disabled Batch Queue

When a pipe queue’s destination list points to a disabled batch queue, the
default retry time for re-queuing requests has no effect.

A pipe queue’s destination list should not contain any elements that are
disabled batch queues. In the event that this does occur, any jobs that are
submitted to the pipe queue will remain in the pipe queue if they cannot be
sent to any of the other destinations in the list. Because the disabled batch
queue exists, NQS waits for the queue to become enabled or for it to be deleted
before it moves the job from the pipe queue. To ensure that jobs are not sent to
a particular destination in the pipe queue’s list, remove the destination from the
list instead of disabling the batch queue.

16.3.3 Standard Output and Standard Error Files Cannot Be Found

Unless the user specified a different location for these files, they should be in
the directory that was current when the request was submitted. If they are not
there, check the user’s home directory or the home directory at the remote
system of the user under which the request executed.

SG–2150 3.3 369

NQE Administration

If you cannot find any output files, check for electronic mail messages sent to
the user. NQS might have removed the request for a variety of reasons (for
example, it requested more of a resource than was allowed for that user or the
request violated your system’s security). The mail message contains a
description of the problem.

The user may get a mail message stating that the standard output and error
files could not be written back to the user’s system. The message indicates
where these files were actually placed (usually in the home directory of the
remote user under which the request was run). These files usually cannot be
written back because the user’s home directory does not contain a suitable
validation file entry that authorizes NQS to write the output files. However, it
also may be due to a problem with the network connection to the NQS system.

NQS tries the following methods to return output to a user:

1. NQS tries to send the output over an NQS protocol.

2. NQS tries to use FTA.

3. NQS tries to use rcp, which works if the user has a .rhosts entry for the
server on the user’s submitting system (NQE client).

4. NQS sends the user mail stating that it could not deliver the output to its
first destination. It places the output in the user’s home directory (or in the
home directory of the target user) on the server that executed the request.

5. If for some reason NQS cannot write to the user’s home directory on the
server that executed the request (for example, if the permissions on the
user’s home directory are r-xr-xr-x), it writes the output to the
$NQE_NQS_SPOOL/private/root/failed directory (only root can
access this directory) .

16.3.4 Syntax Errors

If the standard error file contains an excessive number of syntax errors, the user
may be using the wrong shell. Usually, it is the shell flow control commands
(such as if, while, for, and foreach) that cause errors when the wrong shell
is used. Ensure that the user is using the correct shell strategy.

370 SG–2150 3.3

Problem Solving [16]

16.3.5 File Not Found Errors in Standard Error File

If the user receives an error message such as file not found or file does
not exist in the standard error file, the batch request may have tried to
access a file that could not be found.

NQS assumes that any files the user is trying to access are in the home directory
of the user at the execution host. To indicate that a file is in another location, the
user should either specify the full path name or use the cd command to move
to that directory before trying to access the file within the batch request script.

16.3.6 Queues Shut Off by NQS

NQS can shut off a queue or several queues (with no intervention from a
manager or operator). The reason for the action might be that the nqsdaemon
session reached a process limit or that it cannot allocate a resource. To
determine the reason, you should examine the NQS log file. After determining
the reason and correcting the problem, the queue(s) can be restarted manually.

16.3.7 Unexpected Changes in Request States

Requests may unexpectedly switch states from queued to wait. A
checkpointed UNICOS, UNICOS/mk, or IRIX request may be waiting for a
specific process or a job ID to become available. When it becomes available, the
request will remain in queued state until it executes.

16.3.8 Problems Issuing qmgr Commands

Most qmgr commands can be executed only by an NQS manager or operator.
An operator can issue only a subset of the commands that are available to the
manager. If you try to use a command that you are not allowed to use, the
following message is displayed:

NQS manager[TCML_INSUFFPRV]: Insufficient privilege at

local host.

16.3.9 NQS or qmgr Fails with a no local machine id Message

If NQS or qmgr fails with a no local machine id message, and the site is
using DNS (Domain Name Service) to resolve host names, follow these
procedures:

SG–2150 3.3 371

NQE Administration

1. Use the hostname command to find the true host name that NQS or qmgr
would be using. For example:

hostname sn9031

2. Use the nslookup utility to find out what the DNS server thinks your host
name really is (that is, the name/alias(s) it goes by); for example:

nslookup

Default Server: VGER.PRIUS.JNJ.CO

Address: 122.147.94.7

sn9031

Server: VGER.PRIUS.JNJ.COM

Address: 122.147.94.7

Name: Cray1.PRIUS.JNJ.com
Address: 122.147.92.39

Aliases: SN9031.PRIUS.JNJ.com

exit

3. The DNS on the system above says sn9031 has the name
Cray1.PRIUS.JNJ.com and has an alias of SN9031.PRIUS.JNJ.com.
Use qmgr commands to add the machine ID with those names. Assuming
that the machine ID is to be 1, the command would be as follows:

qmgr

ADd MId 1 sn9031 Cray1.PRIUS.JNJ.com SN9031.PRIUS.JNJ.com

exit

It is important to note that it does make a difference in the host
names/aliases if they are upper- or lowercase; the names/aliases must be
entered exactly as DNS shows them. The result of the preceding example is
shown by using the qmgr sho mi command as follows:

qmgr sho mi

MID PRINCIPAL NAME AGENTS ALIASES

-------- -------------- ------ -------

1 sn9031 nqs Cray1.PRIUS.JNJ.com

SN9031.PRIUS.JNJ.com

372 SG–2150 3.3

Problem Solving [16]

qmgr can now find the machine ID for the host name of the local machine.

16.3.10 NQS Seems to Be Running Slowly

If NQS appears to be running slowly, you may need to edit the /etc/hosts
file.

Because NQS supports networks of machines, it uses the gethostbyname
system call to get the host information for a request. The implementation makes
calls to this routine while processing all requests, including requests that are
submitted on a local machine for execution on the local machine.

The gethostbyname system call looks up the host name by doing a sequential
search of the /etc/hosts.bin binary file (or the text version /etc/hosts if
the binary file does not exist).

The bigger the host file, and the further down in the file the local machine
name appears, the longer it will take for the system call to complete, and the
longer the nqsdaemon will take to process requests.

To solve this problem, edit the /etc/hosts file so that the local machine
appears at the top of the file, then use the mkbinhost file to make a new copy
of the binary /etc/host.bin file.

16.3.11 Configuring the Scope of User Status Display

NQE allows an administrator to expand the default scope of the information
displayed to non-NQS managers using the qstat(1) or cqstatl(1) commands.
The default behavior for these commands is to display information only to
non-NQS managers regarding jobs that they have submitted themselves. To let
users display the status of all jobs residing at that NQS node when they execute
the qstat(1) or cqstatl(1) command, use the NQE configuration utility
(nqeconfig(8) command) and set the nqeinfo file variable
NQE_NQS_QSTAT_SHOWALL to 1, which modifies the information that is
displayed to the users of these commands.

16.4 Client Troubleshooting

This section describes several common problems users may encounter in
running NQE clients, along with their possible causes and resolutions.

SG–2150 3.3 373

NQE Administration

Note: If a user does not specify a user name when submitting a request, the
user name must be the same on both the client host and the NQS server or
account authorization will fail. If the NQE_NQS_NQCACCT environment
variable is set to ORIGIN, the user must have the same account name on both
the client and the server.

16.4.1 Client Users Cannot Access the NQS Server

If the NQS_SERVER environment variable is not set, the client tries to connect to
the NQS server on the local host. If the user cannot connect to a local NQS
server, the following message is displayed:

QUESR: ERROR: Failed to connect to NQS_SERVER at host[port]
obtaining UNIX environment failed

NETWORK: ERROR: Connect: Connection refused

Ensure that the NQS_SERVER environment variable is set. This must be set in
each user’s environment to contain the host name of the machine running the
NQS server.

It also may be true that the NQS server is not running or that a networking
problem exists between the workstation and the NQS server (see Section 16.7,
page 379).

16.4.2 Non-secure network port Messages

NQE clients are installed with set UID (suid), are owned by root, and use
secure ports. This means that clients running at a specific NQE release level are
rejected if they try to connect to an NQE server running at a different NQE
release level. The following messages are displayed:

QUESRV: ERROR: Failed to retrieve status information

QUESRV: ERROR: Non-secure network port verification error at

transaction peer
QUESRV: ERROR: Received response NONSECPORT (01462) for

transaction NPK_QSTAT

If you receive these messages, you should upgrade your client software.

374 SG–2150 3.3

Problem Solving [16]

16.4.3 A Request Is Accepted by NQS but Not Run

A request that remains in an NQS queue for a long time without executing
usually indicates that NQS is not running or that the machine system itself is
not running.

However, you should check the status of the queue in which the request is
waiting to see whether the queue is currently stopped. Enter the qmgr
command show queue and look under the column STS, which displays on
when the queue is started. A stopped queue cannot process requests that are
waiting in it.

You also can check any request attributes specified on the cqsub or the qsub
command line. Ensure that they match the attributes of the batch queue.

16.4.4 No account authorization at transaction peer Messages

The default validation type in NQS is file validation. File validation requires a
.rhosts (or .nqshosts) file in the home directory of your account on all of
the NQS server systems on which your request may run. This applies even if
your target NQS server is your local machine.

If a client command returns the message No account authorization at
transaction peer, or if a cqsub command results in the message being
returned in a mail message, one of the following may be true:

• No .nqshosts or .rhosts file exists for this user. This may be the case if
the $HOME environment variable points to a location that does not have
these files.

• The proper hostname username pair is not contained in either the .nqshosts
or .rhosts file. NQS checks the .rhosts file only when the .nqshosts
file does not exist. An example .rhosts file entry for the user jane to
submit requests to host snow is as follows:

snow jane

• The file mode of the .nqshosts or .rhosts file may need to be changed to
644 (rw-r--r--). This may not be true for all platforms that NQE supports.

16.4.5 Commands Do Not Execute

Before you can use the NQE commands, you must add the NQE bin and etc
directories to your search path. Before you can use the man pages (which tell
you about the NQE commands and command options), you must add the NQE

SG–2150 3.3 375

NQE Administration

man directories to your search path. For a description of how to set these
variables, see Introducing NQE, publication IN–2153.

16.4.6 ctoken generation failure Messages

If you submit requests by using the cqsub or qsub command and receive
ctoken generation failure messages in the NQS log, it indicates that
NQS tried to use FTA to deliver output files and did not find a user-supplied
password, a .netrc file, or an NPPA S-key. The log also contains a message
indicating that the FTA transfer failed.

When NQS returns output, it tries to use FTA. FTA checks first for a
user-supplied password on the cqsub or qsub command. (To determine the
syntax used to specify the FTA password, see the description of the -e option
on the cqsub(1) or qsub man page.)

If no password was supplied, FTA tries to send the output to the host and user
(with an associated password) by using the user’s .netrc file on the NQS
execution host. If no .netrc file exists, FTA tries to send the file by using
NPPA. If you have not defined S-keys as described in Section 13.2.8.1, page 331,
you will receive ctoken generation failure messages.

NQS then tries to return the output by using rcp.

You can ensure that you do not receive the messages by using any of the
following methods:

• Ensure that users supply a password on the cqsub or qsub command line.

• Ensure that users have a .netrc file on the NQS execution host that
contains an entry for the destination host and user name and an associated
password.

• Configure NPPA as described in section Chapter 13, page 317.

• Change the configuration of the FTA default inet domain so that the
nopassword flag is not set. Section 13.2.8.1, page 331, describes how to
make changes to the FTA configuration.

16.4.7 NQE Load Display Fails

If your NQE Load display fails, ensure that your NLB_SERVER environment
variable is set to a host that is running an NLB server. You do not have to
specify the host port number unless the NLB server is configured with a NLB
port number that is different from the default (604) provided during installation.

376 SG–2150 3.3

Problem Solving [16]

16.5 NLB Troubleshooting

This section describes some common problems you may encounter in running
NLB, along with their possible causes and resolutions.

16.5.1 NLB Commands Report cannot determine server location

If NLB commands report that they cannot determine the server location, no
information is available to locate the server. NQE may not have been
configured on the host. To connect to the server, define the NLB_SERVER
environment variable or use the -s option on the command line.

16.5.2 Collector Is Running, but No Data Appears in Server

If a collector is running on a host, but no data appears in the NLB server for
that host, check the following:

• The collector may be pointing to the wrong location. Check that the
machine on which the collector is running is configured to point at the
correct host name and TCP/IP port to connect properly to the server.

• An ACL may be preventing the collector from entering data into the server.
If you have an ACL for NLB or NQE GUI status data, it must include a
record to allow the user ID running the collector to insert and delete data.
This can be either an explicit entry for a user ID on the collector host, or an
entry for that ID on all hosts using "*" for the host name.

16.5.3 nlbconfig -pol Reports Errors

If you have modified the policies file and the nlbconfig -pol command
reports an error, the policies file that you downloaded to the server may
contain a syntax error. If this is true, the nlbconfig -pol command fails;
however, you do not receive an explanation of the error. To see the error, stop
the server (with nlbconfig -kill) and start it again (with nlbserver). Any
errors in parsing the policy file will be reported to stderr. The server does not
treat an error in the policy file as fatal, but load balancing will not work until
you have a correct policies file.

16.5.4 Collectors on Solaris Systems Report Incorrect Data

Collectors on Solaris systems may report incorrect data under the following
conditions:

SG–2150 3.3 377

NQE Administration

• If a collector appears to be working, but reports zero memory size for a
machine, you are running the collector from an account that does not have
permission to read from /dev/kmem, which is used when finding memory
size. You must run the collector from an account with permission to read
from /dev/kmem.

• If a collector appears to be running, but reports random data, check that sar
is working correctly. The collector tries to execute /usr/bin/sar -crquw
1 to obtain data. If the command does not work, you must fix the system
problem.

• If swap space data seems to be invalid, check that /usr/sbin/swap -s
works. If the command does not work, you must fix the system problem.

16.5.5 Policies Cause Unexpected Results

If you are using a policy and getting unexpected results, probably the wrong
policy is being used. If a policy name is not defined, a default policy is used.
The policy name might be defined incorrectly if you misspell the policy name
either in the NQS queue definition or in the nlbpolicy command.

16.5.6 Modifying ACL for Type C_OBJ Reports no privilege for requested operation

If you try to modify the ACL for object type C_OBJ, you will receive the
message No privilege for requested operation. You cannot modify
the ACL for C_OBJ because it is fixed. It consists of the master ACL plus
WORLD read permission. These permissions are necessary because, if a user
cannot read the C_OBJ object type, most commands will fail.

16.6 NQE Database Troubleshooting

This section describes some common problems you may encounter in running
the NQE database, along with their possible causes and resolutions.

16.6.1 NQE Database Authorization Failures

A client trying to connect to the NQE database without the proper validation
will result in an error such as the following:

378 SG–2150 3.3

Problem Solving [16]

NETWORK: ERROR: NQE Database connection failure:

Connection disallowed.
latte$

If this occurs, verify that the user has an entry in the nqedbusers file. For
additional information about the nqedbusers file, see Chapter 9, page 231.

16.6.2 NQE Database Connection Failures

If a user is trying to submit a request to the NQE database and the NQE
database server is not up, the following message will be sent:

NETWORK: ERROR: NQE Database connection failure:

Cannot connect to MSQL server on latte.
latte$

For additional information on checking network connectivity, see Section 16.7.

16.7 Network Debugging

The following sections discuss how to diagnose network problems.

16.7.1 Checking Connectivity

The first step in network debugging is to ensure that the machine that is being
accessed can be reached by the local host.

To ensure that you can access a host through TCP/IP, use the ping command.
This command sends a data packet to the destination host and does not rely on
the presence of any specific service at the destination. For example, if the node
name is rhubarb, enter the following command:

ping rhubarb

Entering the previous command can result in several replies:

• ping: unknown host rhubarb

If you receive this reply, the host name is unknown on your machine; obtain
its Internet address and ensure that this address is in your /etc/hosts file
or the network information service (NIS).

SG–2150 3.3 379

NQE Administration

• sendto: Network is unreachable

If you receive this reply, your machine does not know how to send a packet
to the destination machine. Consult with your network administrator and
explain what you are trying to do, because the solution may require action
on his or her part. For example, a routing table may need updating, a
gateway machine may be down, or the network to which you are trying to
connect cannot be reached.

• no answer from rhubarb

If you receive this reply, your machine knows how to get to the destination
node, but did not get a reply. This usually means that either the destination
machine is shut down, or the destination machine is running but does not
know how to send a packet to your machine. In this case, check the routing
on the destination machine.

• rhubarb is alive.

As far as ping is concerned, everything is working.

16.7.2 Checking Transport Service Connections

If the host-to-host network connection is running, the next step is to examine
the individual connections on your machine and the machine with which you
are trying to communicate.

The main tool for examining TCP/IP connections is the netstat command,
which examines kernel data structures and prints the current state of all
connections to and from the host on which it is run. For more information on
how to use this command, see the operating system manuals for your machine.

When you specify the netstat(1) command without any parameters, it reports
each open connection on a machine; netstat -a also reports the connections
offered by servers.

The most important information to check is the protocol type (Proto), your
local address (Local Address), and the status of the connection (state).

16.7.3 Connection failed Messages

If you receive connection failed messages, ensure that your NQS_SERVER
environment variable is set to a host that is running an NQS server. You do not
have to specify the host port number unless the NQS server is configured with

380 SG–2150 3.3

Problem Solving [16]

an NQS port number that is different from the default (607) provided during
installation.

If a transient network error condition exists that allows the connection to be
retried, you will receive messages such as the following:

Retrying connection to NQS_SERVER on host ice (127.111.21.90) . . .

Retrying connection to NQS_SERVER on host ice (127.111.21.90) . . .

QUESRV: ERROR: Failed to connect to NQS_SERVER at ice [port 607]

NETWORK: ERROR: NQS network daemon not responding

These messages indicate that the command received a connection refused
error from the connect () system call or that an address it is trying to use is
temporarily in use. This could be true, for example, because the server is just
coming up or is not listening, or the network is busy. NQS retries its connection
to the server for 30 seconds.

16.8 User’s Job Project Displays As 0

If a user’s job project is displayed as 0 instead of the project specified in
/etc/project, the Array Services daemon may not be running. For
information about Array Services administration, see the Silicon Graphics
publication Getting Started with Array Systems.

16.9 Reinstalling the Software

If you want to reinstall the software, complete the following steps:

1. Stop all NQE daemons by using the nqestop(8) command. If this does not
stop all of them, or does not work, you can use the kill -9 command to
stop them.

2. Delete the desired version of NQE using the nqemaint(8) utility.

3. Reinstall the software as described in NQE Installation, publication SG–5236.

SG–2150 3.3 381

NQE Administration

16.10 Calling Customer Service

To obtain support for NQE, contact your local call center or local service
representative. The cs_support(7) man page provides NQE product support
information.

You also can send a facsimile (fax) to +1-404-631-2226. To obtain service, you
must have your NQE product customer number.

Before you call your local call center or local service representative, have the
following information ready to help with your problem:

• The exact error messages and unexpected behavior you are seeing.

• The ps displays of all daemons that are running on the systems with which
you are having problems.

• A list of NQE binary files, their paths, their protections, and their sizes.

• The qstat -f or cqstatl -f output from all queues in the batch complex.

• Hardware platforms, model numbers, system software levels, and additional
software patches applied to your NQE platforms.

• Accounting information, if any, about the exit status of any daemons or
commands aborting (such as copies of the corresponding NQE log file and
any error messages sent to the user).

382 SG–2150 3.3

Man Page List [A]

The man command provides online help on all NQE commands. To view a man
page online, type man commandname.

You must ensure that your MANPATH is set properly; it must include the path
name of the NQE man pages. The default name is /nqebase/man.

A.1 User Man Pages

The following user-level online man pages are provided with your NQE
software:

User-level man
page

Description

cevent(1) Posts, reads, and deletes job-dependency event
information.

cqdel(1) Deletes or signals to a specified batch request.

cqstatl(1) Provides a line-mode display of requests and
queues on a specified host.

cqsub(1) Submits a batch request to NQE.

ftua(1) Transfers a file interactively (this command is
issued on an NQE server only).

ilb(1) Executes a load-balanced interactive command.

nqe(1) Provides a graphical user interface (GUI) to NQE
functionality.

qalter(1) Alters the attributes of one or more NQS requests
(this command is issued on an NQE server only).

qchkpnt(1) Checkpoints an NQS request on a UNICOS,
UNICOS/mk, or IRIX system (this command is
issued on an NQE server only).

qdel(1) Deletes or signals NQS requests (this command is
issued on an NQE server only).

qlimit(1) Displays NQS batch limits for the local host (this
command is issued on an NQE server only).

SG–2150 3.3 383

NQE Administration

qmsg(1) Writes messages to stderr, stdout, or the job
log file of an NQS batch request (this command is
issued on an NQE server only).

qping(1) Determines whether the local NQS daemon is
running and responding to requests (this
command is issued on an NQE server only).

qstat(1) Displays the status of NQS queues, requests, and
queue complexes (this command is issued on an
NQE server only).

qsub(1) Submits a batch request to NQS (this command is
issued on an NQE server only).

rft(1) Transfers a file in a batch request (this command
is issued on an NQE server only).

A.2 Application Interfaces Man Pages

The following online man pages are provided with your NQE software to help
those who must develop applications that others might use to perform work
using NQE, such as writing a scheduler or modifying the NQE GUI:

Application interface man page Description

nqeapi(3) Describes general NQE
functions for formatted lists.

nqe_get_policy_list(3) Queries the NLB to retrieve a
formatted list of hosts that
match a specified policy.

nqe_get_request_ids(3) Returns a list of all NQS
request IDs known.

nqe_get_request_info(3) Returns a list of all
information known about a
specific NQS request ID from
a specified NLB server.

nqe_request_delete(3) Deletes a specific NQS
request.

384 SG–2150 3.3

Man Page List [A]

nqe_request_submit(3) Submits a batch request to
NQS.

For more detailed information, you also may want to read a reference book
about Tcl or Tk, such as the Tcl and the Tk Toolkit by John K. Ousterhout
(Addison Wesley publisher) or Practical Programming in Tcl and Tk by Brent B.
Welch (Prentice Hall publisher).

A.3 File Formats Man Pages for UNICOS Systems

The following online man pages describe the content of NQE configuration files
and are provided with your NQE software:

Configuration file man
pages

Description

fta.conf(5) UNICOS systems that run only the NQE subset
(NQS and FTA components) use the fta.conf(5)
command, which is the file transfer agent (FTA)
configuration file for these systems. The
fta.conf(5) online man page documents the
fta.conf file, which contains the list of file
transfer services (FTSs) that FTA operates.

nqeinfo(5) The nqeinfo file is the NQE configuration file.
The nqeinfo(5) online man page documents all
NQE configuration variables.

A.4 Product Support Man Page

The cs_support(7) online man page is provided with your NQE software; it
includes product support information.

A.5 Administrator-level Man Pages

The following administrator-level online man pages are provided with your
NQE software:

Administrator-level man
page

Description

ccollect(8) Daemon that provides NLB data to NQE.

compactdb(8) Compacts the NQE database.

SG–2150 3.3 385

NQE Administration

csuspend(8) Suspends NQE batch activity.

fta(8) Performs file transfer management.

ftad(8) Invokes the FTA file transfer protocol server.

nlbconfig(8) Configures and maintains the NLB server.

nlbpolicy(8) Queries the NLB server.

nlbserver(8) Starts an NLB server.

nqeconfig(8) Configures the NQE nqeinfo variables.

nqedbmgr(8) NQE database administration.

nqeinit(8) Starts NQE.

nqemaint(8) Performs NQE version maintenance.

nqestop(8) Stops NQE.

nqsdaemon(8) Starts the NQS main daemon.

nqsfts(8) File transfer service for NQS.

qconfigck(8) Verifies the NQS configuration of customized
variables.

qmgr(8) Enters the NQS queue manager subsystem.

qstart(8) Starts NQS.

qstop(8) Stops NQS.

skey(8) FTA daemon network peer-to-peer authorization
management.

386 SG–2150 3.3

NQE Sample Configurations [B]

This appendix describes sample NQE configurations for NQE administrators
and discusses the following topics:

• NQE servers and clients

• NQE cluster configuration

• NQS queue structure

• NQE database and scheduler structure

B.1 NQE Servers and Clients

NQE consists of a cluster of servers and clients. The following components can
be configured to run on nodes in an NQE cluster:

• The Network Load Balancer (NLB) server which receives and stores
information from the NLB collectors in the NLB database which it manages.

• The NQE database server which serves connections from clients, the
scheduler, the monitor and lightweight server (LWS) components in the
cluster to add, modify, or remove data from the NQE database.

• The NQE scheduler which analyses data in the NQE database, making
scheduling decisions.

• The NQE database monitor which monitors the state of the database and
which NQE database components are connected.

• NQS which schedules and initiates batch requests on the local server.

• FTA which adds reliability through transfer retry and recovery and through
network peer-to-peer authorization (NPPA). FTA transfers may be initiated
on any server and those transfers may retrieve files from or copy files to any
NQE server or client.

• NLB collectors which collect and communicate system load information to
the NLB server so that the NLB can provide NQS with a list of servers, in
order of preference, to run a request and provide status information upon
request.

• The LWS which obtains request information from the NQE database, verifies
validation, submits the copy of a request to NQS, and obtains exit status of

SG–2150 3.3 387

NQE Administration

completed requests from NQS. The LWS may override NQS scheduling. For
information about LWS attributes, see Chapter 9, page 231, and Chapter 10,
page 261.

• NQE clients contain software so users may submit, monitor, and control
requests by using either the NQE graphical user interface (GUI) or the
command-line interface. From clients, users also may monitor request status,
delete or signal requests, monitor machine load, and receive request output.

For more information on components which can be configured to run on nodes
in an NQE cluster, see Section 1.2, page 2.

NQE uses the FLEXlm license manager to license the product. Before you can
run NQE, a license manager must be installed and running. The license
manager can run on any server or on another (nonserver) host.

The NLB collector is run on all NQS server nodes to collect the following:

• NQS request status data

• Host load information for destination selection

By default, the collector is configured to report the system batch queue as
nqebatch@ hostname and to send information to the NLB server.

The initial configuration of NQE starts the following components: NQS, NLB,
and Collector

B.2 NQE Cluster Configuration

This section describes NQE clusters and gives you information about selecting
servers. You can expand the examples to suit the needs of your network.

B.2.1 Simple Cluster

A simple cluster has one node to execute batch requests and has some clients, as
shown in Figure 26.

388 SG–2150 3.3

NQE Sample Configurations [B]

NQE clientNQE client

NQE client NQE client

License manager

a11565

NQS, NLB, and Collector

Figure 26. Simple NQE Cluster

B.2.2 NQE Load-balanced Cluster

An NQE load-balanced cluster has one NLB server, multiple NQS servers, and
multiple clients, as shown in Figure 27. Clients submit work to an NQE
load-balancing queue on any node. In this network, requests are sent to any
node in an NQE cluster. To set up a quorum, the license manager is placed on
each node.

NQE clientNQE client

NQE clientNQE client

NQE client NQE client

a11566

NQS, NLB, and Collector

NQS and Collector NQS and Collector

Figure 27. NQE Load-balanced Cluster

SG–2150 3.3 389

NQE Administration

B.2.3 NQE Scheduler Cluster

An NQE scheduler cluster has one NQE database server, multiple NQS servers,
one NLB server, and multiple clients, and is in this sense the same as the
load-balanced cluster shown in Figure 27. The difference between the two
clusters lies in how work is scheduled, as described in section Section B.4, page
393.

B.2.4 Server Considerations

The following types of NQE servers can exist in the NQE cluster:

• At least one node with high availability for the NQE cluster. The NLB
load-balancing server and NQE database server run on this node.

• Typically, the NQE cluster includes additional NQS servers that have
sufficient CPU cycles to be used for executing batch requests. However, in a
simple network, this might be the same node as the NLB server.

• Typically, many workstations are designated as NQE clients, which do not
provide batch execution cycles to the NQE cluster.

B.2.5 Load-balancing Policies

NQE comes configured with a default NQS load-balancing policy that assumes
all of your NLB servers are of similar speed and that you want requests sent to
the system that has the lowest CPU load. You can alter this policy or create
others to suit your needs. For example, you could create policies that weigh
and normalize differences in system CPU, or you could create policies that
define sets of systems with important characteristics (some systems might run a
given application, some systems might be for compiling, and so on). Chapter 8,
page 193, describes how to define and implement load-balancing policies.

B.2.6 NQE Scheduler and NQE Database Options

In certain environments, it is not sufficient to choose a destination for a request
by using NLB policies. For example, you may want to wait to send requests to
a machine until its idle CPU is greater than 90%, or you may want to allow a
user to run only one request at a time across the entire NQE cluster, regardless
of which machine.

In such cases, you can use the NQE scheduler and NQE database. For a
summary of how the NQE scheduler and NQE database are structured, see

390 SG–2150 3.3

NQE Sample Configurations [B]

section Section B.4, page 393. For more information, see Chapter 9, page 231,
and Chapter 10, page 261.

B.3 NQS Queue Configuration

NQS supports two types of queues: batch queues, which initiate requests; and
pipe queues, which route work to appropriate destinations for execution or
further routing. A destination selection queue is a pipe queue that uses
load-balancing to route requests. These pipe queues are associated with policies.

When requests enter a destination-selection queue, NQS queries the NLB for a
list of destinations. The list is ordered based on the policy. When multiple
destinations fit the policy, NQS tries the first destination. If for some reason the
first destination cannot accept the request, NQS tries the second, and so on.

When you submit a request, NQS places it in the default queue unless you
specify otherwise. NQE is shipped with the following queues configured:

• The destination-selection queue nqenlb, which is the default for request
submission.

• The batch queue nqebatch, which handles local batch request submissions
and accepts requests from other destination-selection queues in the NQE
cluster.

This configuration uses the NLB to send requests to the most appropriate
system, based on an NLB policy. The default NLB policy, called nqs, sends
batch requests to the system that has the lowest CPU load.

If users submit requests to the nqebatch queue, the request runs on the local
NQS server.

Part of the configuration process is to define these queues and to interconnect
the different instances of NQS to form the NQE cluster.

The NQS_SERVER environment variable points to the NQS server that handles
NQE request submission. If you want your request run on another NQS server
explicitly, you can change the NQS_SERVER environment variable to point to
another host running NQS. You must have access to an account on this host
and must have set up NQS validation as described in Introducing NQE,
publication IN–2153.

Figure 28 shows how the default NQE configuration would look in a network
that had one NLB server and two NQS servers. The nqebatch queue on each
NQS system is configured by default to allow no more than six requests to run

SG–2150 3.3 391

NQE Administration

at one time and to allow no more than two requests from a user to run at one
time on each NQS system. If the queue is full (running the predefined number
of requests), requests wait in the nqebatch queue until an opening occurs, or
until the queue limits are changed.

nqebatch
Batch queue

NLB server

Collector
nqenlb

nqebatch
Batch queue

Pipe queue

Collector

nqenlb

nqebatch
Batch queue

Pipe queue

NQE client
NQE client

NQE client

NQE client
NQE client

NQE client

NQE client
NQE client

NQE client

Collector

Pipe queue
nqenlb

Request
submitted

Request
submitted

Request
submitted

a11567

NQE node

NQS server

NQS server

Figure 28. Default NQE Queue Configuration

392 SG–2150 3.3

NQE Sample Configurations [B]

B.4 NQE Database and Scheduler Structure

The NQE database and NQE scheduler let clients submit work to the NQE
central storage database on the NQE database server. The scheduler analyzes
the requests in the database, and selects when and on which NQS server the
request will run.

The NQE scheduler and database components are shown in Figure 29.

The database server system task serves connections from clients (either locally
or in the network) to access data in the database.

The monitor system task monitors the state of the databases and which system
tasks are connected.

The scheduler system task analyzes data in the database and makes scheduling
decisions.

The lightweight server (LWS) system task obtains request information from the
database, checks authorization files locally, submits request to NQS, and obtains
their exit status.

NQE client
NQE client

NQE client

Request
submitted

a11568

Scheduler

Database server
(mSQL)Monitor

Database

Lightweight
server

NQS server

Node A

Node B

Figure 29. NQE Database and NQE Scheduler Components

SG–2150 3.3 393

config.h/nqeinfo File Variables [C]

This appendix applies only to UNICOS 9.0.x and UNICOS 9.1 systems.

NQS config.h file customization variables have been moved into the
nqeinfo file. This appendix lists each new nqeinfo file variable name and its
equivalent config.h file variable name, along with the default setting and a
description of the variable’s function. All nqeinfo file configuration variables
are documented on the nqeinfo(5) man page.

Note: Use the NQE configuration utility (nqeconfig(8)) to add any of the
NQE_NQS_xxxx variables listed in this appendix to the nqeinfo file.

NQE_NQS_ABORT_WAIT IC_ABORT_WAIT

Default is: 60

Specifies the default time, in seconds, to wait after sending a
SIGTERM signal to all processes for each request running in a
queue that has received a PKT_ABOQUE packet. At the end of
this time period, any remaining queue processes receive a
SIGKILL signal. This variable is the default grace period for
the qmgr commands abort queue, hold request, and
preempt request. This variable is an integer from 0 to 600.

NQE_NQS_CHKPNT_DELAY IC_CHKPNT_DELAY

Default is: 0

Defines the number of seconds to wait before a chkpnt(2)
system call is retried during periodic checkpointing. This
variable can be 0 or any positive integer.

NQE_NQS_CHKPNT_DELAY_KILL IC_CHKPNT_DELAY_KILL

Default is: 60

Defines the number of seconds to wait before a chkpnt(2)
system call is retried during a hold or shutdown. This variable
can be 0 or any positive integer.

NQE_NQS_CHKPNT_TRIES IC_CHKPNT_TRIES

Default is: 1

SG–2150 3.3 395

NQE Administration

Defines the total number of chkpnt(2) system calls that will be
retried. This variable is an integer; a value that is less than 1 is
treated as a 1.

NQE_NQS_CHKPNT_TRIES_KILL IC_CHKPNT_TRIES_KILL

Default is: 3

Defines the total number of chkpnt(2) system calls that will be
retried. This variable is an integer; a value that is less than 1 is
treated as a 1.

NQE_NQS_DEF_NETRETTIM IC_DEF_NETRETTIM

Default is: 31

Sets the maximum number of seconds during which a network
function may continue to fail, because of a temporary condition,
before being marked as completely failed. This variable is an
integer from 0 to 600.

NQE_NQS_DEF_USRRETTIM IC_DEF_USRRETTIM

Default is: 15

Defines the maximum time, in seconds, that is allowed for the
qdel(1) or qstat(1) command to try to connect to a remote
machine. This variable is an integer from 0 to 600.

NQE_NQS_DLIM_PPCORECOEFF IC_DLIM_PPCORECOEFF

Default is: 256

Defines the default per-process core size limit coefficient. The
complete limit is expressed as NQE_NQS_DLIM_PPCORECOEFF
* NQE_NQS_DLIM_PPCOREUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647
((231)-1).

NQE_NQS_DLIM_PPCOREUNITS IC_DLIM_PPCOREUNITS

Default is: QLM_MWORDS

Defines the default per-process core size limit units. The
complete limit is expressed as NQE_NQS_DLIM_PPCORECOEFF
* NQE_NQS_DLIM_PPCOREUNITS. When no specific value is

396 SG–2150 3.3

config.h/nqeinfo File Variables [C]

set during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PPCPUMS IC_DLIM_PPCPUMS

Default is: 0

Defines the time, in milliseconds, of the default per-process
CPU limit. The complete limit is expressed as
NQE_NQS_DLIM_PPCPUSECS + NQE_NQS_DLIM_PPCPUMS.
When no specific value is set during the creation of a queue,
this variable is used as the default value. This variable is an
integer from 0 to 999.

NQE_NQS_DLIM_PPCPUSECS IC_DLIM_PPCPUSECS

Default is: 720000

Defines the time, in seconds, of the default per-process CPU
limit. The complete limit is expressed as
NQE_NQS_DLIM_PPCPUSECS + NQE_NQS_DLIM_PPCPUMS. To
change this variable for an individual queue, use the qmgr set
per_process cpu_limit command; when no specific value
is set during the creation of a queue, this variable is used as the
default value creation of a queue. This variable is an integer
from 1 to 2,147,483,647.

NQE_NQS_DLIM_PPDATACOEFF IC_DLIM_PPDATACOEFF

Default is: 256

Defines the default per-process data size limit coefficient. The
complete limit is expressed as NQE_NQS_DLIM_PPDATACOEFF

SG–2150 3.3 397

NQE Administration

* NQE_NQS_DLIM_PPDATAUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PPDATAUNITS IC_DLIM_PPDATAUNITS

Default is: QLM_MWORDS

Defines the default per-process data size limit units. The
complete limit is expressed as NQE_NQS_DLIM_PPDATACOEFF
* NQE_NQS_DLIM_PPDATAUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PPMEMCOEFF IC_DLIM_PPMEMCOEFF

Default is: 256

Defines the default per-process memory size limit coefficient.
The complete limit is expressed as
NQE_NQS_DLIM_PPMEMCOEFF *
NQE_NQS_DLIM_PPMEMUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PPMEMUNITS IC_DLIM_PPMEMUNITS

Default is: QLM_MWORDS

Defines the default per-process memory size limit units. The
complete limit is expressed as NQE_NQS_DLIM_PPMEMCOEFF *
NQE_NQS_DLIM_PPMEMUNITS. When no specific value is set
during the creation of a queue, this value is used as the default
value. This variable is one of the following values:

398 SG–2150 3.3

config.h/nqeinfo File Variables [C]

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PPMPP_SECS IC_DLIM_PPMPP_SECS

Default is: 10

Defines the default per-process massively parallel processing
Cray MPP systems time limit. To change this variable for an
individual queue, use the qmgr set per_process
mpp_time_limit command. When no specific value is set
during the creation of a queue, this variable is used as the
default value. If you change this value, it will not alter all
queue limits, but it will be used only when another queue is
created. The variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PPNICE IC_DLIM_PPNICE

Default is: 0

Defines the default nice value assigned to requests in a queue.
For more information, see the qmgr set nice_increment
command. This variable is an integer from -20 to 19. You
should specify only a positive value because a negative value is
used for the initial queue nice value during the queue creation
for all queues. To change this variable for an individual queue,
use the qmgr set nice_increment command. When no
specific value is set during the creation of a queue, this variable
is used as the default value.

NQE_NQS_DLIM_PPPFILECOEFF IC_DLIM_PPPFILECOEFF

Default is: 100

Defines the default per-process permanent file size limit
coefficient. To change this value for an individual queue, use the
qmgr set per_process permfile_limit command. The

SG–2150 3.3 399

NQE Administration

complete limit is expressed as NQE_NQS_DLIM_PPPFILECOEFF
* NQE_NQS_DLIM_PPPFILEUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PPPFILEUNITS IC_DLIM_PPPFILEUNITS

Default is: QLM_MBYTES

Defines the default per-process permanent file size limit units.
To change this value for an individual queue, use the qmgr set
per_process permfile_limit command. The complete
limit is expressed as NQE_NQS_DLIM_PPPFILECOEFF *
NQE_NQS_DLIM_PPPFILEUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PPQFILECOEFF IC_DLIM_PPQFILECOEFF

Default is: 0

Defines the default per-process quick-file size limit coefficient.
The complete limit is expressed as
NQE_NQS_DLIM_PPQFILECOEFF *
NQE_NQS_DLIM_PPQFILEUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PPQFILEUNITS IC_DLIM_PPQFILEUNITS

Default is: QLM_MBYTES

400 SG–2150 3.3

config.h/nqeinfo File Variables [C]

Defines the default per-process permanent quick-file size limit
units. The complete limit is expressed as
NQE_NQS_DLIM_PPQFILECOEFF *
NQE_NQS_DLIM_PPQFILEUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value during the creation of a queue. This variable is
one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PPSTACKCOEFF IC_DLIM_PPSTACKCOEFF

Default is: 256

Defines the default per-process stack size limit coefficient. The
complete limit is expressed as NQE_NQS_DLIM_PPSTACKCOEFF
* NQE_NQS_DLIM_PPSTACKUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PPSTACKUNITS IC_DLIM_PPSTACKUNITS

Default is: QLM_MWORDS

Defines the default per-process stack size limit units. The
complete limit is expressed as NQE_NQS_DLIM_PPSTACKCOEFF
* NQE_NQS_DLIM_PPSTACKUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

SG–2150 3.3 401

NQE Administration

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PPTFILECOEFF IC_DLIM_PPTFILECOEFF

Default is: 0

Defines the default per-process temporary file size limit
coefficient. The complete limit is expressed as
NQE_NQS_DLIM_PPTFILECOEFF *
NQE_NQS_DLIM_PPTFILEUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PPTFILEUNITS IC_DLIM_PPTFILEUNITS

Default is: QLM_MBYTES

Defines the default per-process temporary file size limit units.
The complete limit is expressed as
NQE_NQS_DLIM_PPTFILECOEFF *
NQE_NQS_DLIM_PPTFILEUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PPWORKCOEFF IC_DLIM_PPWORKCOEFF

Default is: 256

402 SG–2150 3.3

config.h/nqeinfo File Variables [C]

Defines the default per-process work size limit coefficient. The
complete limit is expressed as NQE_NQS_DLIM_PPWORKCOEFF
* NQE_NQS_DLIM_PPWORKUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PPWORKUNITS IC_DLIM_PPWORKUNITS

Default is: QLM_MWORDS

Defines the default per-process work size limit units. The
complete limit is expressed as NQE_NQS_DLIM_PPWORKCOEFF
* NQE_NQS_DLIM_PPWORKUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PRCPUMS IC_DLIM_PRCPUMS

Default is: 0

Defines the milliseconds portion of the default per-request CPU
limit. To change this variable for an individual queue, use the
qmgr set per_request cpu_limit command. The
complete limit is expressed as NQE_NQS_DLIM_PRCPUMS +
NQE_NQS_DLIM_PRCPUSECS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 999.

NQE_NQS_DLIM_PRCPUSECS IC_DLIM_PRCPUSECS

Default is: 720000

Defines the seconds portion of the default per-request CPU
limit. To change this variable for an individual queue, use the

SG–2150 3.3 403

NQE Administration

qmgr set per_request cpu_limit command. The
complete limit is expressed as NQE_NQS_DLIM_PRCPUMS +
NQE_NQS_DLIM_PRCPUSECS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is an integer from 1 to 2,147,483,647.

NQE_NQS_DLIM_PRDRIVES IC_DLIM_PRDRIVES

Default is: 0

Defines the per-request tape drive limit. To change this variable
for an individual queue, use the qmgr set per_request
tape_limit command. When no specific value is set during
the creation of a queue, this variable is used as the default
value. This variable is an integer from 0 to 255.

NQE_NQS_DLIM_PRMEMCOEFF IC_DLIM_PRMEMCOEFF

Default is: 256

Defines the default per-request memory size limit coefficient.
To change this variable for an individual queue, use the qmgr
set per_request memory_limit command. The complete
limit is expressed as NQE_NQS_DLIM_PRMEMCOEFF *
NQE_NQS_DLIM_PRMEMUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PRMEMUNITS IC_DLIM_PRMEMUNITS

Default is: QLM_MWORDS

Defines the default per-process memory size limit units. The
complete limit is expressed as NQE_NQS_DLIM_PRMEMCOEFF *
NQE_NQS_DLIM_PRMEMUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

404 SG–2150 3.3

config.h/nqeinfo File Variables [C]

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PRMPP_PES IC_DLIM_PRMPP_PES

Default is: 0

Defines the default per-request Cray MPP systems processing
element (PE) limit. To change this variable for an individual
queue, use the qmgr set per_request mpp_pe_limit
command. When no specific value is set during the creation of
a queue, this variable is used as the default value. If you
change this value, it will not alter all queue limits, but it will be
used only when another queue is created. The variable is an
integer from 0 to NQE_NQS_MAX_MPPPES.

NQE_NQS_DLIM_PRMPP_SECS IC_DLIM_PRMPP_SECS

Default is: 10

Defines the default per-request Cray MPP systems time limit. To
change this variable for an individual queue, use the qmgr set
per_request mpp_time_limit command. When no specific
value is set during the creation of a queue, this variable is used
as the default value. If you change this value, it will not alter
all queue limits, but it will be used only when another queue is
created. The variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PRPFILECOEFF IC_DLIM_PRPFILECOEFF

Default is: 0

Defines the default per-request permanent file size limit
coefficient. To change this variable for an individual queue, use
the qmgr set per_request permfile_limit command. The
complete limit is expressed as NQE_NQS_DLIM_PRPFILECOEFF
* NQE_NQS_DLIM_PRPFILEUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PRPFILEUNITS IC_DLIM_PRPFILEUNITS

Default is: QLM_BYTES

Defines the default per-request permanent file size limit units.
To change this variable for an individual queue, use the qmgr

SG–2150 3.3 405

NQE Administration

set per_request permfile_limit command. The complete limit is
expressed as NQE_NQS_DLIM_PRPFILECOEFF *
NQE_NQS_DLIM_PRPFILEUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PRQFILECOEFF IC_DLIM_PRQFILECOEFF

Default is: 0

Defines the default per-request quick-file-size limit coefficient.
To change this variable for an individual queue, use the qmgr
set per_request quickfile_limit command. The
complete limit is expressed as NQE_NQS_DLIM_PRQFILECOEFF
* NQE_NQS_DLIM_PRQFILEUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PRQFILEUNITS IC_DLIM_PRQFILEUNITS

Default is: QLM_BYTES

Defines the default per-request quick-file size limit units. To
change this variable for an individual queue, use the qmgr set
per_request quickfile_limit command. The complete
limit is expressed as NQE_NQS_DLIM_PRQFILECOEFF *
NQE_NQS_DLIM_PRQFILEUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

406 SG–2150 3.3

config.h/nqeinfo File Variables [C]

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_DLIM_PRSHM_COEFF IC_DLIM_PRSHM_COEFF

Default is: 0

Defines the default per-request shared memory size limit
coefficient. The complete limit is expressed as
NQE_NQS_DLIM_PRSHM_COEFF *
NQE_NQS_DLIM_PRSHM_UNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to
NQE_NQS_MAX_SHM_COEFF.

NQE_NQS_DLIM_PRSHM_SEGS IC_DLIM_PRSHM_SEGS

Default is: 0

Defines the default per-request shared memory segment limit.
When no specific value is set during the creation of a queue,
this variable is used as the default value. This variable is an
integer from 0 to NQE_NQS_MAX_SHM_SEGS.

NQE_NQS_DLIM_PRSHM_UNITS IC_DLIM_PRSHM_UNITS

Default is: QLM_MWORDS

Defines the default per-request shared memory size limit units.
The complete limit is expressed as
NQE_NQS_DLIM_PRSHM_COEFF *
NQE_NQS_DLIM_PRSHM_UNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value.

NQE_NQS_DLIM_PRTFILECOEFF IC_DLIM_PRTFILECOEFF

Default is: 0

Defines the default per-request temporary file size limit
coefficient. To change this variable for an individual queue, use
the qmgr set per_request tempfile command. The

SG–2150 3.3 407

NQE Administration

complete limit is expressed as NQE_NQS_DLIM_PRTFILECOEFF
* NQE_NQS_DLIM_PRTFILEUNITS. When no specific value is
set during the creation of a queue, this variable is used as the
default value. This variable is an integer from 0 to 2,147,483,647.

NQE_NQS_DLIM_PRTFILEUNITS IC_DLIM_PRTFILEUNITS

Default is: QLM_BYTES

Defines the default per-request temporary file size limit units.
To change this variable for an individual queue, use the qmgr
set per_request tempfile command. The complete limit
is expressed as NQE_NQS_DLIM_PRTFILECOEFF *
NQE_NQS_DLIM_PRTFILEUNITS. When no specific value is set
during the creation of a queue, this variable is used as the
default value. This variable is one of the following values:

QLM_BYTES Allocate in units of bytes

QLM_WORDS Allocate in units of words

QLM_KBYTES Allocate in units of Kbytes

QLM_KWORDS Allocate in units of Kwords

QLM_MBYTES Allocate in units of Mbytes

QLM_MWORDS Allocate in units of Mwords

QLM_GBYTES Allocate in units of Gbytes

QLM_GWORDS Allocate in units of Gwords

NQE_NQS_ER_WAIT_TIME IC_ER_WAIT_TIME

Default is: 60

Defines the time interval (in seconds) to wait when checking
whether external resources are available again after being
unavailable. If the time interval elapses and the external
resources are still unavailable, the timer is reset to wait again.
Otherwise, the scheduler is called to process any queued
requests that require the resources. This variable is an integer
from 1 to 300.

NQE_NQS_EVENT_LOG_MODE IC_EVENT_LOG_MODE

Default is: 1

408 SG–2150 3.3

config.h/nqeinfo File Variables [C]

Defines the configuration switch that controls whether the
request-related event messages will be logged automatically to
the job log area in the tail of the request’s control file. If this
variable is set to 0, no messages are generated automatically. If
this variable is set to 1, the messages are logged automatically
to the request’s control file as events happen to the request.

NQE_NQS_FAIR_RATIO IC_FAIR_RATIO

Default is: 0

Defines the configuration flag that controls which fair-share
algorithm will be used. This variable can be set to 0 for the
standard fair-share algorithm, or 1 for the share/usage ratio
algorithm. When the kernel fair-share process scheduling is
enabled, you should use the standard algorithms. You should
use the alternative share/usage ratio algorithm only when the
kernel is collecting share data.

NQE_NQS_IPC_TIMEOUT IC_IPC_TIMEOUT

Default is: 90

Defines the minor time-out interval that is used for the
interprocess communication time-out for NQS
daemon-to-daemon requests. When this timer expires, the NQS
daemon is queried to determine whether it is still running and
available to process requests. This timer is set again and a wait
occurs. This continues until NQE_NQS_IPC_WAIT_TIME
expires, which causes the request to fail. This is important for
long-running tasks, such as suspend or checkpoint, so that they
do not time out. This variable is an integer from 1 to 86,400.

NQE_NQS_IPC_TIMEOUT_I IC_IPC_TIMEOUT_I

Default is: 15

Defines the minor time-out interval that is used for the
interprocess communication time-out for NQS user
commands-to-daemon requests. When this timer expires, the
NQS daemon is queried to determine whether it is still running
and available to process requests. If the daemon is still
available, the following message is displayed on the user’s
screen: Waiting on local NQS daemon to complete transaction.
This timer is set again and a wait occurs. This continues until
NQE_NQS_IPC_WAIT_TIME expires, which causes the request

SG–2150 3.3 409

NQE Administration

to fail. This is important for long-running tasks, such as
suspend or checkpoint so that they do not time out. This
variable is an integer from 1 to 86,400.

NQE_NQS_IPC_WAIT_TIME IC_IPC_WAIT_TIME

Default is: 5400

Defines the major time-out interval that is used for the
interprocess communication time-out for NQS commands and
daemons. This time-out value is used with the
NQE_NQS_IPC_TIMEOUT and NQE_NQS_IPC_TIMEOUT_I
variables. If this time-out value expires, the current task ends
with a time-out response. This variable is an integer from 1 to
86,400.

NQE_NQS_MAC_COMMAND IC_MAC_COMMAND

Default is: 0

Enables mandatory access control (MAC) checking for job
status and deletion. If enabled, qstat lets users display only
job information that their MAC label dominates. If enabled,
qdel lets users delete jobs that are equal to their MAC label
(user-owned jobs only). To disable MAC checking, set this
variable to 0; to enable MAC checking, set it to 1.

NQE_NQS_MAC_DIRECTORY IC_MAC_DIRECTORY

Default is: 0

Enables multilevel directory (MLD) support for NQS spool
directories that hold files with different MAC labels. To specify
wildcard directories, set this variable to 0; to specify MLDs, set
it to 1.

NQE_NQS_MAX_ENVIRONMENT IC_MAX_ENVIRONMENT

Default is: 5120

Defines the maximum amount of environment space, in bytes,
for a request. If this value is reduced, requests that are queued
before the change may fail. This variable is an integer from
5120 to 50,000.

NQE_NQS_MAX_ENVIRONVARS IC_MAX_ENVIRONVARS

Default is: 400

410 SG–2150 3.3

config.h/nqeinfo File Variables [C]

Defines the maximum number of environment variables for a
request server. If this value is reduced, requests that are queued
before the change may fail. This variable is an integer from 100
to 25,000.

NQE_NQS_MAX_EXTREQUESTS IC_MAX_EXTREQUESTS

Default is: 250

Defines the maximum number of requests from other remote
machines that can be queued at a given time on this machine.

The NQE_NQS_MAX_EXTREQUESTS value must always be less
than or equal to NQE_NQS_MAX_TRANSACTS. Any change in
NQE_NQS_MAX_TRANSACTS must be considered carefully. If
any NQS requests are on the local host, you can only increase
the value of NQE_NQS_MAX_TRANSACTS. If one or more
requests are on the local host, you cannot decrease the value of
NQE_NQS_MAX_TRANSACTS. Any change to
NQE_NQS_MAX_EXTREQUESTS also must be carefully
considered. Any increase in this value is always safe. A danger,
however, in decreasing this value exists. You can reduce
NQE_NQS_MAX_EXTREQUESTS only if you know that the
number of requests currently queued on the local system is less
than or equal to the reduced value of
NQE_NQS_MAX_EXTREQUESTS. If this condition is not true,
NQS cannot requeue all of the requests on rebooting. If a value
smaller than the current number of transactions in the NQS
database is specified, the value will be increased to the current
read count.

This variable is an integer from 1 to 65,536. If you change this
variable when queued requests are in NQS, the queued requests
will be deleted when the NQS databases are re-created.

NQE_NQS_MAX_GBLBATLIMIT IC_MAX_GBLBATLIMIT

Default is: 20

Defines the global maximum number of batch requests that are
running simultaneously. To change this variable for an
individual queue, use the qmgr set global batch_limit
command. This variable is an integer from 1 to 65,536.

SG–2150 3.3 411

NQE Administration

NQE_NQS_MAX_GBLNETLIMIT IC_MAX_GBLNETLIMIT

Default is: 20

Defines the global maximum number of network queue servers
that are running simultaneously. This variable is an integer
from 1 to 65,536.

NQE_NQS_MAX_GBLPIPLIMIT IC_MAX_GBLPIPLIMIT

Default is: 20

Defines the global maximum number of pipe queue servers that
are running simultaneously. This value acts only as an initial
value. You can configure other values through the qmgr
program. To change this variable for an individual queue, use
the qmgr set global pipe_limit command. This variable
is an integer from 1 to 65,536.

NQE_NQS_MAX_GBLTAPLIMIT IC_MAX_GBLTAPLIMIT

Default is: 100

Defines the global maximum number of tape drives that can be
allocated simultaneously. To change this variable for an
individual queue, use the qmgr set global tape_limit
command. This variable is an integer from 1 to 65,536.

NQE_NQS_MAX_MPPPES IC_MAX_MPPPES

Default is: 4096 on Cray MPP systems running UNICOS/mk or
Origin 64-bit systems, 64 on all other platforms

Defines the maximum number of MPP processing elements
(PEs) on a Cray MPP system or the maximum number of CPUs
on an Origin 64-bit system that are accessible at the local host.
This variable is an integer from 0 to 65,533.

NQE_NQS_MAX_NETRETTIM IC_MAX_NETRETTIM

Default is: 300

Sets the maximum number of seconds (retry time) during
which a network function can continue to fail, because of a
temporary condition, before being marked as completely failed.
To change this variable for an individual queue, use the qmgr

412 SG–2150 3.3

config.h/nqeinfo File Variables [C]

set network retry_time command. This variable is an
integer from 1 to 86,400.

NQE_NQS_MAX_QPRIORITY IC_MAX_QPRIORITY

Default is: 63

Defines the maximum priority that can be assigned to an NQS
queue. This variable is an integer from 0 to 63.

NQE_NQS_MAX_SHM_COEFF IC_MAX_SHM_COEFF

Default is: MAX_NQS_LIM_SHM_L

Defines the maximum finite value of the shared memory limit
coefficient. This variable is an integer from 0 to
MAX_NQS_LIM_SHM_L.

NQE_NQS_MAX_SHM_SEGS IC_MAX_SHM_SEGS

Default is: MAX_NQS_LIM_SHM_S

Defines the maximum finite value of the number of shared
memory segments that can be created. This variable is an
integer from 0 to MAX_NQS_LIM_SHM_S.

NQE_NQS_MAX_TRANSACTS IC_MAX_TRANSACTS

Default is: 500

Defines the maximum number of concurrent transactions. Each
request on the system has a transaction descriptor. Therefore,
the value of this parameter sets a limit on the maximum
number of requests that can be queued on the local host.

The NQE_NQS_MAX_EXTREQUESTS value must always be less
than or equal to NQE_NQS_MAX_TRANSACTS. You must
consider carefully any change in NQE_NQS_MAX_TRANSACTS. If
any NQS requests are on the local host, you can only increase
the value of NQE_NQS_MAX_TRANSACTS. If one or more
requests are on the local host, you cannot decrease the value of
NQE_NQS_MAX_TRANSACTS. You also must consider carefully
any decrease to NQE_NQS_MAX_EXTREQUESTS. A danger,
however, in decreasing this value exists. You can reduce
NQE_NQS_MAX_EXTREQUESTS only if you know that the
number of requests currently queued on the local system is less
than or equal to the reduced value of

SG–2150 3.3 413

NQE Administration

NQE_NQS_MAX_EXTREQUESTS. If this condition is not true,
NQS will not requeue all of the requests on rebooting.

This variable is an integer from 1 to 65,536. If you change this
variable when queued requests are in NQS, the queued requests
will be deleted when the NQS databases are re-created.

NQE_NQS_MPP_CHECK IC_MPP_CHECK

Default is: 0 for a UNIX system, 1 for CRAY T3D systems
running UNICOS

Enables checking for CRAY T3D availability. If enabled, NQS
checks for the availability of the CRAY T3D device before it
initiates a request that requires the device. If it is disabled, no
checking is performed. To disable this variable, set it to 0; to
enable it, set it to 1. This variable is intended for use only in a
test environment; you should not change it in a production
environment.

NQE_NQS_MSG_CAT_MODE IC_MSG_CAT_MODE

Default is: 1

Defines the default mode in which NQS will use the UNICOS
message catalog for its user and log messages. This variable can
be set to either 0 to reduce the memory that is required at the
expense of additional I/O, or set to 1 to reduce I/O at the
expense of additional memory.

NQE_NQS_NQS_NICE IC_NQS_NICE

Default is: -5

Defines the nice value of the NQS daemons. This variable is an
integer from -19 to 20, however, NQS should always run at a
more desirable nice value than all user processes and at a less
desirable nice value than the kernel.

NQE_NQS_PRIV_FIFO IC_PRIV_FIFO

Default is: 0

Enables use of privilege through privilege assignment lists
(PALs) to read and write on the NQS protocol FIFO named pipe
and the NQS LOGFIFO pipe. If this variable is not enabled,
these two pipes are created with a wildcard label. To use a

414 SG–2150 3.3

config.h/nqeinfo File Variables [C]

wildcard label, set this variable to 0; to use the privilege
mechanism, set it to 1.

NQE_NQS_QSTAT_SHOWALL IC_QSTAT_SHOWALL

Default is: 0

Defines the behavior of a qstat -a command, and lets the site
configure it to display either all jobs or just the user’s jobs. You
can set this variable to either 0 to display only the user’s own
jobs, or 1 to display all jobs.

NQE_NQS_SHELLINVOCATION IC_SHELL_INVOCATION

Default is: 2

Defines the invocation method used to initiate batch jobs. This
variable can be set either to 1 for the one-shell invocation
method or to 2 for the two-shell invocation method.

NQE_NQS_SHELLPATH IC_SHELL_PATH

Default is: Null string

Defines the shell used to initiate a batch job. The default value,
a null string, indicates that the user’s UDB shell should be used.
This variable can be any valid shell path name.

NQE_NQS_SHUTDOWN_WAIT IC_SHUTDOWN_WAIT

Default is: 60

Defines the default time, in seconds, to wait after sending a
SIGTERM signal to all processes for each request that runs in
any queue after it receives a qmgr shutdown command. At the
end of this time period, all remaining processes of any
remaining NQS requests receive a SIGKILL signal. This
variable is an integer from 1 to 86,400.

NQE_NQS_TAPED_CHECK IC_TAPED_CHECK

Default is: 0 for a UNIX system, 1 for a UNICOS or
UNICOS/mk system

Enables checking for tape daemon availability. If enabled, NQS
checks for the availability of the tape daemon before it initiates
a request that requires a tape device. If it is disabled, no
checking is performed. To disable checking, set this variable to

SG–2150 3.3 415

NQE Administration

0; to enable checking, set it to 1. This variable is intended for
use only in a test environment; you should not change it in a
production environment.

NQE_NQS_TCP_SERVICE IC_TCP_SERVICE

Default is: nqs

Defines the TCP/IP port or service name from the
/etc/services file that will be used for NQS. This variable
must be a valid TCP/IP port or service name that is defined in
the /etc/services file.

NQE_NQS_TMPDIR IC_TMPDIR

Default is: JTMPDIR

Defines the name of the temporary directory for NQS batch
requests. A subdirectory is created in NQE_NQS_TMPDIR for
each NQS job. The name of the NQS temporary directory must
be a valid directory; NQS does not create this directory. On
UNICOS and UNICOS/mk systems, valid values are JTMPDIR,
which translates into the use of /tmp, or JTMPDIRNQS, which
translates into the use of /nqstmp. On UNIX systems, this
variable can be set to any valid directory path.

If a UNICOS NQS administrator wishes to use a directory other
than /tmp or /nqstmp, such as /scratch, a solution is to
create a link between /nqstmp and /scratch (that is, ln -s
/scratch /nqstmp) and then set the NQE_NQS_TMPDIR
value to JTMPDIRNQS.

The environment variable TMPDIR is created and sent to the
user shell.

NQE_NQS_TMPMODE IC_TMPMODE

Default is: JTMPMODE

Defines the permissions (mode) for the temporary directory that
is created for each NQS job that is initiated. This mode setting is
for each user’s temporary directory. The name of that temporary
directory will be generated by NQE_NQS_TMPDIR. This does not
set the mode for TMPDIR itself. The default value for
NQE_NQS_TMPMODE comes from /usr/include/tmpdir.h; it
uses the value of the variable JTMPMODE as a default. The value
of JTMPMODE is 0700. This variable is any valid mode bit mask.

416 SG–2150 3.3

config.h/nqeinfo File Variables [C]

NQE_NQS_TREE_TIMER IC_TREE_TIMER

Default is: 15

Controls the frequency, in minutes, that the NQS share tree for
fair-share scheduling is regenerated. After NQS startup, the
share tree is regenerated periodically with any changes related
to user IDs, account IDs, shares, or resource groups. If
fair-share scheduling is not used for NQS job scheduling, or
there are few changes to the UDB values, you can specify a
long frequency. If there are many changes or you want to keep
current values, you can specify a short frequency. This variable
is an integer from 5 to 1440.

NQE_NQS_URM_RETRY IC_URM_RETRY

Default is: 120

For UNICOS sytems, defines the default Unified Resource
Manager (URM) connection retry time, in seconds. If the
connection between NQS and URM is broken, NQS retries the
connection every IC_URM_RETRY seconds. This variable is an
integer from 60 to 2,147,483,647 ((231)-1).

NQE_NQS_URM_SERVICE IC_URM_SERVICE

Default is: urm

For UNICOS systems, defines the URM port or service name
from /etc/services that NQS will use to interface to URM.
This variable string must be a valid TCP/IP port or service
name that is defined in /etc/services.

SG–2150 3.3 417

Index

A

abort queue command, 168
abort request command, 168
Access

restricting queue attributes, 24
restricting user

to queues, 69
Access Control List, 30
Access Control Lists

configuring for the NLB, 178
Accounting

setting for NQS, 103
ACLs

changing permissions for NLB, 190
configuring for the NLB, 178
configuring NLB, 186
user names, 30

add destination command, 63
add groups command, 70
add managers command, 57
add mid command, 54
add name command, 54
add output_agent command, 52
add queues command, 71
add users command, 70
addkey option

fta command
for configuring NPPA security keys, 332

skey command
for configuring NPPA security keys, 332

Administration, FTA, 336
Administrator-level man pages, 385
agents

NQS
definition, 51

alias
NQS

definition, 51

Alias list, 51
Alternate user validation, 14
Application interfaces man pages, 384
Applying policies

in NLB, 196
Array services status, 381
Attribute names

NLB, 174
Attributes

NLB
host object list, 208
types, 207
values, 212

NQS requests with NLB policies, 221
Authorization

FTA
NPPA, 330

Autologin for FTA, 318
.netrc file, 318

B

Batch queue
attributes, 25
definition, 18

Batch queues
in NQE configurations, 391

Batch request
definition, 11
shell interpretation, 11

batch_limit option
set global command

qmgr, 73
build_nqs script, 130

SG–2150 3.3 419

NQE Administration

C

ccollect command, 181
options, 182

cevent command, 313
Changing FTA configuration, 326
Changing the ftpd port number, 329
Characteristics

NQS queues, 58
Checkpointing, 92

abort event, 97
compatibility mode, 93
CPU time mode, 94, 96
file restrictions, 93
hold request, 97
mode types, 93
modify request, 97
NQS system shutdown, 97
preempt request, 98
qchkpnt command, 97
release request, 98
request completion, 97
rerun request, 98
restore request, 98
resume request, 98
suspend request, 99
user-initiated mode, 94
wall-clock mode, 95, 96

Client
definition, 5, 388

Client request processing, 20
Clients

NLB, 31
CLOSED state

NQS queues, 27
cluster, 3
Cluster rerun

default setting, 258
enabling, 258

Collector (NLB)
starting, 181

Commands
to display currently defined machines, 55

Commands do not execute, 375
Common services

FTA, 318
compactdb command, 239
config file

NLB configuration file, 176
config.h customization variables, 395
Configuration, 387

files
FTA, 329

FTA
changing with NLB, 326

NLB, 173
NQS

description, 47
guidelines, 48

configuration enhancements, adding to a
scheduler, 286

Configuration variables, 35
Configuration, FTA, 320
Configuring ACLs for the NLB, 178
Configuring NQE database components, 253

script size limit, 253
Configuring scope of user status display, 373
connection failed messages, 380
Constraint expressions

in NLB policies, 195
Constraints

policy
NLB, 196

corefile_limit option
set per-process command

qmgr, 79
Count

policy
NLB, 197

cpu_limit option
set per-process command

qmgr, 79
cqdel -d command, 238
cqstatl -d command, 238
cqsub -d command, 238

420 SG–2150 3.3

Index

Cray Research Customer Service
contacting, 382

CRAY T3E
NLB differences, 229

create batch_queue command, 63
create complex command, 71
create pipe_queue command, 63

for destination-selection queues, 61, 65, 219,
220

cs_support man page, 382
csuspend command, 307

examples, 310
ctoken authorization failure messages, 376
ctoken generation failure messages, 376
Customer service

contacting, 382
Customized collector startup

storing arbitrary data in NLB database, 229
cvtmldir command, 117
Cycle stealing

with csuspend command, 307

D

Daemon
processes

lock and unlock, 111
Daemons

NQS, 134
Daemons not running, 366
Data

in NLB policies
averaging, 198

data_limit option
set per-process command

qmgr, 79
DCE credentials, 353

Forwardable ticket, 354
Renewable ticket, 354

DCE support, 351
Administration of Kerberos and DCE, 357
checkpoint support, 355

DCE credentials, 355
enabling DCE support, 351
KRB5CCNAME caution, 355
KRB5CCNAME variable, 355
NQE_AUTHENTICATION, 352
NQE_DCE_BIN, 352
NQE_DCE_REFRESH, 352
restart caution, 355
restart support, 355
Task submission using a password, 352
Task submission using ticket forwarding, 354
ticket renew/refresh, 355
user requirements, 356

kdestroy command caution, 357
password, 356

Debug level
setting for NQS, 102

Debugging
network, 379

Debugging Tcl errors, 284, 287
Default NQE database scheduler, 256
Default NQE path name, 8
Default queue

displaying, 69
setting, 68

Definition of NQS queues
commands for, 63

delete command, 53
delete destination command, 65
delete groups command, 70
delete managers command, 57
delete mid command, 54
delete name command, 54
Delete or signal requests, 169
delete output_agent command, 52
delete privilege

NLB ACLs, 30
delete queue command, 68
delete request command, 168
delete users command, 70
Deleting requests, 169
delkey option

SG–2150 3.3 421

NQE Administration

fta command
for configuring NPPA security keys, 332

skey command
for configuring NPPA security keys, 332

Destination characteristic
NQS queues, 59

Destination selection, 29
definition, 30
queues

creating, 61, 65, 219, 220
Destination-selection policies

defining for NQS, 214
Destinations

changing order in pipe queues
example, 68

deleting from a queue
from a queue, 65

for NQS pipe queues
adding, 63
deleting, 65
resetting, 64

for pipe queues, 18
disable queue command, 160
DISABLED state

NQS queues, 27
Display

currently defined machines, 54
Displaying

current
retry limits, 110

Displaying requests, 158
Domain name

in FTA, 34
DUMP_VARS event, 285

E

Editing system configuration files, FTA, 329
enable queue command, 160
ENABLED state

NQS queues, 27
Environment variables

NLB_SERVER, 180
etc/build_nqs script, 130
etc/config/fta.conf

editing for new ftpd port number, 329
editing to add NPPA domain

example, 336
etc/inetd.conf file

editing for FTA, 329
/etc/librc file

LOGIN blocks, 361
SYSTEM blocks, 362

/etc/librc file for ilb command, 361
etc/services file

editing for FTA, 329
etc/syslogd.conf file

editing for FTA, 329
Event objects, 290
Execution priority

of requests, 17
Extensible collector, 226

customized collector startup, 229

F

Failure types
FTA, 340

Feature descriptions
added in this release

File formats
in NLB, 204

File formats man page, 385
File names

for output specification, 114
File structure for NQE, 9
File Transfer Agent, 4
File transfer request, 52

definition, 34
File transfer service

definition, 34
File transfer services, 319
File transfer status, 348

422 SG–2150 3.3

Index

File validation
NQS, 107

default, 108
FLEXlm

definition of license manager, 388
FTA, 5

admin users, definition, 34
administration, 317, 336

information log, 342
recovery, 337
system startup, 336

autologin, 318
canceling requests, 344
common services, 318
configuration, 320

changing, 321
changing ftpd port number, 329
changing with NLB, 326
editing system configuration files, 329
modifying NLB database for NPPA, 335
network peer-to-peer authorization, 330
NPPA example, 332
viewing, 321

deleting requests, 344
displaying request status, 344
domain name, definition, 34
editing configuration files, 329
errors, 340
failure types, 339
file transfer services, 319
file transfer status, 348
functionality, 4
holding requests, 344
logging, 343
management functions, 344
modifying NLB database

for NPPA, 335
peer-to-peer authorization, 330
queue directory, definition, 34
recovery, 337
recovery limits, 340
recovery strategy, 341
releasing requests, 344

status, 344
status users, definition, 34
user interface, 318

fta command
-addkey option

for configuring NPPA security keys, 332
-showkey option

for displaying NPPA security keys, 332
FTA configuration file, 385
fta nqs output agent, 53
fta output agent

NQS
configuring, 52

FTA type
NLB object, 175

fta.conf file, 328
fta.conf(5) man page, 385
ftpd port number

changing for new NPPA domains, 329
FTS, 319

G

Global configuration object, 299
Global limits

defining for NQS, 73
definition, 29
displaying, 74

Global Resource Manager, 87
GRM

See "Global Resource Manager", 87
Group limits

queue attributes, 26
group_limit option

set complex command
qmgr, 72

set global command
qmgr, 73

set queue command
qmgr, 62

SG–2150 3.3 423

NQE Administration

H

hold request command, 164
Holding requests in UNIX queues, 165
$HOME/.ilbrc file for ilb command, 362
Host object

attributes list
NLB, 208

hostname
definition of NQS hosts, 51

I

ilb command, 361
configuring, 361
/etc/librc file, 361
$HOME/.ilbrc file, 362
LOGIN blocks, 361
SYSTEM blocks, 362
user environment variables, 363

INACTIVE state
NQS queues, 28

inetd.conf file
editing for FTA, 329

Initial configuration
NQE, 387

Initializing an NQE cluster, 45
Installation procedures

reinstalling software, 381
Interactive connection with your work, 361
Interactive load balancing

ilb command, 361
Interactive load-balanced command, 361
Interqueue priority

characteristic
NQS queues, 60

for NQS pipe queues
setting, 65

queue attributes, 25
Unified Resource Manager (URM)

scheduling, 60
Intraqueue priority

definition, 15
queue attributes, 25

J

Job flow through NQE figure
NQE database, 21
NQS, 20

Job log file
definition, 11

Job recovery
SIGPEFAILURE signal, 170
SIGRPE signal, 170
SIGUME signal, 170

Job scheduling
URM on UNICOS systems, 88

Job scheduling parameters
setting, 82

K

kdestroy command caution for DCE support, 357
KRB5CCNAME DCE variable caution, 355

L

Licensing
definition of license manager, 388

Lightweight server, 33, 237
Lightweight server process

NQE database, 387, 393
Limits

NQS
defining global, 73
defining per-process, 75
defining per-request, 75
defining queue complex, 72
retry of requests, 110

Load display fails, 376

424 SG–2150 3.3

Index

Load window, 173
Load-balancing, 29

changing ACL permissions, 190
config file, 176
configuring ACLs, 186
configuring objects, 186
configuring the name map, 186
definition, 29
destination selection, 29
location of NLB server, 180
managing the NLB server, 185
policies, definition, 31
rereading policies file, 186
shutting down the NLB server, 186
starting the NLB collector, 181
verifying the NLB server is running, 186

Load-balancing policies
defining, 193
example of use by selection, 220
testing, 203

Load-balancing queues
commands for configuring, 65

loadonly
diagram of use, 26
queue attributes, 25

loadonly characteristic
NQS queues, 60

Local scheduler name, 262
local_sched.tcl, 262
Location/queue, 157, 158
Lock and unlock daemon processes, 111
Log file

NQS
displaying, 101

setting for NQS, 99
logdaemon and nqestop, 140
Logging

FTA, 343
LOGIN blocks for ilb command, 361
LWS

definition, 33, 237
lws system task, 241

M

Machine database
displaying, 159

Mail
NQS

defining sender of, 111
Mail sender

of RQS UNIX mail, 111
Man pages provided online, 383

administrator-level man pages, 385
application interfaces man pages, 384
file formats man page, 385
product support man page, 385
user-level man pages, 383

Management
FTA, 344

Managers
NQS

overview of actions, 49
NQS list display, 150

MANPATH environment variable, 383
MAX_SCRIPT_SIZE nqeinfo file variable, 253
Memory limit

queue attributes, 27
memory_limit option

set complex command
qmgr, 72

set global command
qmgr, 73

set per-process command
qmgr, 79

set queue command
qmgr, 62

Message types
NQS

recorded in log file, 100
Messages and solutions for scheduler writing, 287
mid

add mid command, 54
definition, 51
delete mid command, 54

SG–2150 3.3 425

NQE Administration

mid database
displaying, 159

Miser scheduler
Miser scheduler for IRIX systems, 89

MLS
NQS, 115

auditing, 125
converting to wildcard labeled

directories, 127
DAC security policy, 123
differences, 116
identification and authentication (I&A), 124
MAC security policy, 120
multilevel directories (MLDs), 117
NQS MLS configuration, 126
privilege assignment lists (PALs), 119
security policies supported, 119
system management, 124

modify request command, 166
Modifying the NLB database for NPPA, 335
Monitor for NQE database

definition, 33, 237
Monitor process

NQE database, 393
monitor system task, 241
Monitoring NQS, 141
Monitoring system load, 181, 193
move queue command, 162
move request command, 162
mpp_memory_limit option

set per-process command
qmgr, 79

mpp_pe_limit option
set per-request command

qmgr, 79
mpp_per_limit option

set queue command
qmgr, 62

mpp_time_limit option
set per-process command

qmgr, 79
set per-request command

qmgr, 79

mSQL server, 32, 236
MSQL_SERVER variable, 244
Multilevel security

NQS differences, 116
UNICOS and UNICOS/mk systems

auditing, 125
converting to wildcard labeled

directories, 127
identification and authentication (I&A), 124
MAC security policy, 120
NQS configuration, 126
NQS multilevel directories (MLDs), 117
privilege assignment lists (PALs), 119
security policies supported, 119
system management, 124

N

Name
policy definition

NLB, 196
Name map

NLB, 186
name_map file

example, 206
example of downloading, 202
example of loading, 202
example of updating, 202
format of, 204

Negative nice increment for a queue warning, 11
.netrc file

autologin for FTA, 318
Network

debugging, 379
checking connectivity, 379
checking transport service connections, 380
transport service connections, 380

defining NQE cluster in, 388
Network configuration

NQS, 50
Network Load Balancer, 4, 29, 173, 193

426 SG–2150 3.3

Index

Network Load Balancer (NLB), 391
default policy, 391

Network peer-to-peer authorization
definition, 34

Network Queuing System, 3
New features

added in this release
Nice value

definition, 11
NJS_ALIVE object type, 174
NLB, 176

accessing servers, 30
ACLs, changing permissions, 190
ACLs, configuring, 186
C_OBJ object type, 175
client definition, 31
collector, 179
collector definition, 31
collector, starting, 181
configuration, 173
configuring ACLs, 178
configuring name map, 186
configuring objects, 186
controlling access to servers, 30
CRAY T3E differences, 229
customized collector startup, 229
definition, 29
differences on UNICOS/mk, 229
extensible collector, 226
file formats

example of downloading, 204
FTA object type, 175
functionality, 4
host object attributes

list, 208
name map

example of downloading, 202
example of loading, 202
example of updating, 202

name map file
example, 206
format of, 204

NLB_JOB object type, 175

object attribute name, 174
object attribute types, 207
object attribute value, 174, 212
object data file

format of, 211
object name, definition, 173
object type definition, 173
object type list, 174
objects

definition, 173
overview, 173, 193
policies

applying, 196
Boolean operators, 194
constraint expressions, 194
definition, 194
weighting factors for machines in, 199

policies, definition, 31
policies, NQS request attributes, 221
policy constraints

applying, 196
policy count

applying, 197
policy data

averaging, 198
policy examples, 201
policy name

definition, 196
policy sort

applying, 197
redundant NLB servers, 181
replicating servers, 30
server, 30, 185
server, definition, 30
storing arbitrary data in NLB database, 226
time-based policies

applying, 200
writing policies, 201

NLB collector, 181
starting, 181

NLB database
customized collector startup, 229

SG–2150 3.3 427

NQE Administration

editing to add NPPA domain, 335
extensible collector, 226

NLB name
attribute, 174

NLB server
and job dependency, 314
location, 180
managing, 185
shutting down, 186
verifying the NLB server is running, 186

NLB server verification, 186
NLB_SERVER environment variable, 180
nlbconfig -mdump command

example, 202
nlbconfig -mput command

example, 202
nlbconfig -oupdat command

example, 202
nlbconfig -pol command

example, 203
nlbconfig command, 185
nlbpolicy command, 203
nlbserver command, 179
nmake install command, 129
nonsecure network port messages, 374
NPPA

configuring, 331, 335
definition, 34
editing /etc/config/fta.conf

for new ftpd port number, 329
to add NPPA domain, 336

editing NLB database
to add NPPA domain, 335

security keys
configuring NPPA with fta options, 332
configuring NPPA with skey options, 332

NQE
client definition, 5
client functionality, 3
component location, 5
environment overview, 2
file structure, 9

NQE clients

output specification in commands, 114
NQE clients, definition, 388
NQE cluster

defining for your network, 388
NQE components

definition, 387
Network Load Balancer (NLB) server, 4
NQE clients, 5
NQE database monitor, 5
NQE database server, 5
NQE scheduler, 5

NQE components not running, 365
NQE configuration, 387, 391

nqeconfig(8) command, 35
nqeinfo file, 35

NQE database, 393
attribute names, 289
authorization, 248

connection, 249
events, 252
FILE, 251
nqedbusers file, 249
PASSWD, 251
status, 252
target, 251

client commands, 238
compactdb command, 239
components, 31, 235
concepts, 239
configuring components, 253

global configuration attributes, 254
LWS attributes, 258
scheduler attributes, 256

default scheduler attributes, 256
definition, 31
delete a request, 238
description, 234
event objects, 290
events, 243
events for authorization, 252
global configuration attributes, 254
global configuration object, 299

428 SG–2150 3.3

Index

job flow through NQE figure, 22
lightweight server process, 387, 393
LWS, 33, 237
LWS attributes, 258
lws system task, 241
modifying a scheduler, 261
monitor, 33, 237
monitor process, 393
monitor system task, 241
mSQL server, 32, 236
MSQL_SERVER variable, 244
NQE node, 244
nqedbmgr command, 238

shut down commands, 246
startup control commands, 245
status commands, 247

nqeinfo file names, 289
nqeinfo file variables, 289
nqestop command, 246
objects, 239
scheduler, 33, 237
scheduler attributes, 256
scheduler system task, 241, 261
scheduler, writing, 261
script size limit, 253
security, 248
server, 32, 236
shut down commands, 246
signal a request, 238
standard events, 244
starting, 244
startup control commands, 245
state tasks, 241
status, 247
status commands, 247
status of request, 238
status, authorization, 252
stopping, 246
submit a request to, 238
system task definition, 237
system task object, 297
task owners, 240
Tcl built-in functions, 302

terms, 239
troubleshooting

authorization failures, 378
connection failures, 379

user task attributes, 292
uses, 232
writing a scheduler, 261
writing a simple scheduler, 263

NQE database and scheduler, 173
NQE database server, 393
NQE GUI load function, 179
NQE GUI status function, 173, 179
NQE job flow figure

NQE database, 21
NQS, 20

NQE running slowly, 373
NQE scheduler, 393
NQE support

contacting, 382
NQE troubleshooting

commands do not execute, 375
configuring user status display, 373
connection failed messages, 380
ctoken generation failure messages, 376
daemons not running, 366
load display fails, 376
nonsecure network port messages, 374
NQE components not running, 365
NQE running slowly, 373
NQS running slowly, 373
scope of user status display, 373

NQE_AUTHENTICATION
DCE support, 352

NQE_CUSTOM_COLLECTOR_LIST variable, 228
NQE_DCE_BIN

DCE support, 352
NQE_DCE_REFRESH

DCE support, 352
NQE_NQS_MAC_COMMAND configuration

parameter, 120
NQE_NQS_NQCACCT variable, 14
nqe_tclsh, 262

SG–2150 3.3 429

NQE Administration

/nqebase
default NQE path name, 8

nqebatch queue
definition, 17, 58

nqeconfig(8) command, 35
nqedb_scheduler.tcl, 262
nqedbmgr command, 238
nqedbusers file, 249

%dbuser segment, 249
%host segment, 249

nqeinfo file
config.h customization variables, 395
configuration variables, 35
cutomization variables, 395

nqeinfo file customization variables, 395
nqeinfo file variables, 289
nqeinfo(5) man page, 385
nqeinit(8) script, 46
nqenlb queue

definition, 17, 58
nqestop command, 140
nqestop(8) script, 46
NQS

accounting, 103
checkpointing, 92
configuration

description, 47
guidelines, 48

configuring remote output agents, 52
daemon, 134
debug level

setting, 102
defining hosts in the network

commands for, 54
defining queues, 58

commands for, 63
hints, 62

definition of network hosts
agents, 51
alias, 51
host name, 51
machine ID, 51
nonnetworking example, 56

NQS protocol, 50
remote output agents, 53
TCP/IP example, 55

functionality, 3
global limits, 73
hosts

defining in the network, 50
job flow through NQE figure, 21
load-balancing policies, 214

example of use by selection, 220
local changes, 128

source-code modification, 132
user exits, 128

log file, 99
mail

defining sender, 111
managers

defining, 57
MLS , 115

auditing, 125
converting to wildcard labeled

directories, 127
DAC security policy, 123
identification and authentication (I&A), 124
MAC security policy, 120
multilevel directories (MLDs), 117
NQS differences, 116
privilege assignment lists (PALs), 119
security policies supported, 119
system management, 124

MLS (UNICOS systems)
NQS multilevel security configuration, 126

operator actions, overview, 133
operators

defining, 57
periodic checkpointing, 92

abort event, 97
compatibility mode, 93
CPU time mode, 94, 96
file restrictions, 93
hold request, 97
mode types, 93

430 SG–2150 3.3

Index

modify request, 97
NQS system shutdown, 97
preempt request, 98
qchkpnt command, 97
release request, 98
request completion, 97
rerun request, 98
restore request, 98
resume request, 98
suspend request, 99
user-initiated mode, 94
wall-clock mode, 95

periodic checkpointing wall-clock mode, 96
queue limits

setting, 61
queues

setting run limit for, 65
queues, controlling availability, 159
queues, deleting requests in, 168
queues, disabling, 160
queues, enabling, 160
queues, holding requests, 164
queues, modifying requests in, 166
queues, moving requests between, 162
queues, moving requests within, 163
queues, releasing requests, 164
queues, starting, 161
queues, stopping, 161
request scheduler

and intraqueue priority, 83, 84
resuming requests, 165
retry limits

setting, 110
snapshot of configuration, 113
source-code modification, 132
starting, 134
stopping, 140
suspending requests, 165
system parameters, displaying, 142
user exits, 128
user status display scope, 58
validation strategy

default, 108

setting, 107
NQS accounting procedures, 103
NQS limits

global
defining, 73
displaying, 74

per-process
defining, 75

per-request
defining, 75

nqs output agent
NQS

configuring, 52
NQS request limits, 76
NQS running slowly, 373
NQS server definition, 3
NQS_SERVER and user validation, 14
nqsdaemon

definition, 20
nqsdaemon daemon, 134
nqshosts file, 375

O

Object data file
NLB

format of, 211
Objects

configuring NLB, 186
NLB, 173, 174

attribute types, 207
attribute values, 212
host object attributes list, 208

NLB attribute value, 174
NLB type, 174

Objects definition
NLB, 173

Online man pages, 383
Operators

in NLB policy constraint expressions, 194
NQS, 133

SG–2150 3.3 431

NQE Administration

NQS list display, 150
Output agents, 52, 53
Output specification

in client commands, 114
OWNER user name

NLB ACLs, 30

P

Password
checking, 108
length, 108
maximum number of characters, 108
requirements, 108
validation, 108

Password validation
NQS, 108

Per-process limits
defining for NQS, 75

Per-process resource limit, 75
Per-request limits

defining for NQS, 75
Per-request resource limit, 75
Periodic checkpointing, 92

abort event, 97
compatibility mode, 93
CPU time mode, 94, 96
file restrictions, 93
hold request, 97
mode types, 93
modify request, 97
NQS system shutdown, 97
preempt request, 98
qchkpnt command, 97
release request, 98
request completion, 97
rerun request, 98
restore request, 98
resume request, 98
suspend request, 99
user-initiated mode, 94
wall-clock mode, 95, 96

Permanent errors
in FTA, 340

permfile_limit option
set per-process command

qmgr, 79
Pipe queues

adding destinations to, 63
definition, 18
deleting destinations to, 65
in NQE configurations, 391
resetting destinations to, 64

pipe_limit option
set global command

qmgr, 73
pipeclient process

definition, 19
setting for queues, 65

pipeonly
queue attributes, 25

pipeonly characteristic
NQS queues, 60

Policies
destination-selection

defining for NQS, 214
load-balancing, 193

defining for NQS, 220
testing, 203

NLB
applying, 196
averaging data, 198
constraint expressions, 194
constraints, 196
count, 198
definition, 194
examples, 201
name definition, 196
NQS request attributes in, 221
sort, 197
time-based, 200
weighting factors for machines, 199
writing, 201

rereading NLB policies, 186

432 SG–2150 3.3

Index

policies file, 194
rereading, 186

Political scheduling
Polictiacl scheduling threshold

NQE_PSCHED_THRESHOLD, 87
Political scheduling daemon, 87
Political scheduling daemon threshold, 87
Port number

ftpd
editing /etc/config/fta.conf for new

domains, 329
Priority

executing requests, 17
intraqueue, definition, 15
setting for queues, 65

Problem analysis, 101
Problems

array services, 381
commands do not execute, 375
common

solving, 377, 378, 368, 373
configuring user status display, 373
connection failed messages, 380
ctoken generation failure messages, 376
daemons not running, 366
job project displays as 0, 381
limits reached, 369
load display fails, 376
nonsecure network port messages, 374
NQE components not running, 365
NQE database troubleshooting

authorization failures, 378
connection failures, 379

NQE running slowly, 373
NQS running slowly, 373
qmgr, 371
re-queuing requests has no effect, 369
reinstalling software, 381
scope of user status display, 373
solving, 365

changes in request state, 371
commands cannot determine server

(NLB), 377

file could not be found, 371
Modifying C_OBJ object type, 378
NLB collectors not recording data, 377
NLB collectors recording incorrect data, 378
NLB polices cause unexpected results, 378
NQE database troubleshooting, 378
policies file, 377
queued request will not run, 369
queues shut off by NQS, 371
request has disappeared, 368
request reporting connection failure, 374
request reporting transaction failure, 375
requests are not being sent to NQS, 375
standard output and standard error files

not found, 369
syntax errors in standard error file, 370
with NLB, 377
with NQC, 373
with NQS, 368

user’s job project displays as 0, 381
Processing element limit (Cray MPP systems)

queue attributes, 27
Product support man page, 385
psched daemon

See "Political scheduling daemon", 87
purge queue command, 168

Q

qmgr
manager actions, 49
operator actions, 133

qmgr input file, 134
qmgr manager

defining, 57
qmgr operators

defining, 57
qmgr set periodic_checkpoint commands, 92
qmgr shutdown command, 140
qstart command, 134
qstop command, 140

SG–2150 3.3 433

NQE Administration

qsub -la command
NLB policies, 221

Qualifying options, 188
Queue

adding destinations to, 63
attributes, 24
changing

run limit, 65
complexes, 28
complexes, defining, 71
configuring for destination-selection, 214

commands, 65
configuring for load-balancing

example of use by selection, 220
controlling availability of, 159
default

displaying, 69
setting, 68

defining
characteristics, 58

defining in NQS
examples, 66

definition, 17
deleting, 68
deleting destinations to, 65
deleting requests in, 168
disabling, 160
displaying details of, 71
displaying summary status, 150
enabling, 160
FTA directories, 34
hints for defining, 62
holding requests, 164
limits, setting, 61
modifying requests in, 166
moving requests between, 162
moving requests within, 163
NQS

commands for defining, 63
overview, 17
releasing requests, 164
resetting destinations to, 64
restricting

user access, 70
resuming requests, 165
setting pipeclient process for, 65
setting priority, 65
setting run limit for, 65
starting, 161
states, 27
stopping, 161
suspending requests, 165
user access

restricting, 69
Queue attributes

access restrictions, 24
group limit, 26
interqueue priority, 25
intraqueue priority, 25
loadonly, 25
memory limit, 27
MPP processing limit, 27
overview, 24
pipeonly, 25
quick–file limit, 27
run limit, 25
user limit, 27

Queue complex
defining, 71
definition, 28

Queue directories
in FTA, 34

Queue group limit
queue attributes, 26

Queue limits
NQS queues, 61

Queue memory limit
queue attributes, 27

Queue negative nice increment warning, 11
Queue processing element (PE) limit

queue attributes, 27
Queue quick-file limit

queue attributes, 27
Queue run limit

queue attributes, 25

434 SG–2150 3.3

Index

Queue states, 27
Queue user limit

queue attributes, 27
queue_name characteristic

NQS queues, 59
Quick-file limit

queue attributes, 27
quickfile_limit option

set per-request command
qmgr, 80

R

Read permission for ACL, 190
read privilege

NLB ACLs, 30
Recovering jobs terminated because of

hardware problems, 170
Recovery

FTA, 337
Recovery limits

FTA, 340
Recovery strategy

FTA, 341
Reinstalling software, 381
release request command, 164
Releasing requests in UNIX queues, 165
Remote output agents

NQS
configuring, 52

remove queues command, 71
Request and queue information, 141
Request processing

client submission, 20
client submission to NQE database, 21
client submission to NQS, 20
local submission, 20
overview, 19
remote submission, 22

Request states, 15
Requests

batch, 11

controlling, 23
deleting in NQS queues, 168
example, 7
FTA

canceling, 344
deleting, 344
displaying status of, 344
holding, 344
releasing, 344

holding in NQS queues, 164
manipulating, 162
modifying in NQS queues, 166
moving between NQS queues, 162
moving within NQS queues, 163
NLB policies attributes, 221
releasing in NQS queues, 164
resuming in NQS queues, 165
setting job scheduling parameters for, 82
setting retry limits for, 110
signalling in NQS queues, 168
suspending in NQS queues, 165

rerun request command, 165
reset logfile command, 99
Resource limits

and batch queues, 18
definition, 15
limit assignment strategy (UNICOS and

UNICOS/mk systems), 18
per-process and per-request, 75

Resource Manager (URM) scheduling
interqueue priority, 60

Restriction
of user access to queues, 69

resume request command, 165
Retry limits

displaying current, 110
setting for NQS, 110

rft command
example, 7

rhosts file, 375
Run limit

changing, 65

SG–2150 3.3 435

NQE Administration

queue attributes, 25
setting for queues, 65

run_limit characteristic
NQS queues, 59

run_limit option
set complex command

qmgr, 72
set queue command

qmgr, 62
Running scheduler, tutorial, 283
RUNNING state

NQS queues, 28

S

S-keys
configuring, 331, 332
configuring with fta command options, 332
configuring with skey command options, 332

schedule request command, 163
Scheduler

NQE database default, 256
Scheduler file, 267
Scheduler for NQE database

definition, 33, 237
Scheduler system task, 261
scheduler system task, 241
Scheduler, writing, 263
Scheduling

Miser scheduler for IRIX systems, 89
setting for batch requests, 82

Script
as input to the qmgr utility, 112

Segmentation, 99
Server

NLB location, 180
Server (NLB)

managing, 185
server characteristic

NQS queues, 61
Service

contacting Cray Research, 382

services file
editing for FTA, 329

set complex command, 72
set default batch_request queue command, 68
set default destination_retry command, 110
set destination command, 64
set global command, 73
set log_file command, 99
set managers command, 57
set message_header command, 101
set message_types command, 100
set no_access command, 70
set no_validation command, 109
set per_process command, 75
set per_request command, 75
set pipe_client command, 65
set priority command, 65
set queue command, 61
set queue run_limit command, 65
set sched_factor cpu command, 82
set sched_factor memory command, 82
set sched_factor mpp_cpu 0 command, 83
set sched_factor mpp_pe 0 command, 83
set sched_factor share command, 82
set sched_factor time command, 83
set sched_factor user_priority command, 83
set segment directory command, 99
set segment on_init command, 100
set segment size command, 100
set segment time_interval command, 100
set snapfile command, 113
set unrestricted_access command, 70
set validation command, 109
Shell interpretation, 11
shm_limit option

set per-request command
qmgr, 80

shm_segments option
set per-request command

qmgr, 80
show global_parameters command, 74, 145
show long queue command, 151

436 SG–2150 3.3

Index

show managers command, 57, 150
show mid command, 52

example, 159
show parameters command, 142
show queue command, 150
showkey option

fta command
for displaying NPPA security keys, 332

skey command
for displaying NPPA security keys, 332

shutdown command
qmgr, 140

SHUTDOWN state
NQS queues, 28

Signaling requests, 168
skey command

-addkey option
for configuring NPPA security keys, 332

-delkey option
for configuring NPPA security keys, 332

-showkey option
for displaying NPPA security keys, 332

snap command, 113
Solving problems, 365

with NLB, 377
with NQC, 373
with NQS, 368

Sort
policy

NLB, 197
Source-code modification

NQS, 132
ST

batch request summary display, 15
stack_limit option

set per-process command
qmgr, 80

start all_queues command, 161
start queue command, 161
Starting an NQE cluster, 46
Startup

NQS, 134
State

displaying for a submitted request, 15
Status

NQS queues list, 150
Status values

for requests, 15
stop queue command, 161
STOPPED state

NQS queues, 28
Stopping

NQS, 140
Stopping an NQE cluster, 46
Stopping NQE, 140
Stopping NQS, 140
Stopping queues

NQS, 161
STOPPING state

NQS queues, 28
Support

contacting, 382
Support telephone numbers, 385
suspend request command, 165
syslogd.conf file

editing for FTA, 329
SYSTEM blocks for ilb command, 362
System monitoring, 181, 193
System parameters

NQS, 142
System startup

FTA, 336
System task definition, 237
System task object, 266, 297

T

tape_drive_limit option
set global command

qmgr, 74
tape_limit option

set per-process command
qmgr, 80

Tcl built-in functions, 302

SG–2150 3.3 437

NQE Administration

Tcl errors, 284, 287
Tcl script for scheduler, 262
Tcl shell for NQE, 262
Tcl variables, 285
tempfile_limit option

set per-process command
qmgr, 80

Tentry callback function, 282
Ticket renew/refresh

DCE support, 355
Time-based policies

NLB
applying, 200

Tinit callback function, 269
Tnewowner callback function, 280
Tpass callback function, 276
trace_level attribute, 285
Transient errors

in FTA, 340
Trentry callback function, 271
Troubleshooting, 365

NLB, 377
NQC, 374
NQS, 368

Type
attribute

NLB, 207
C_OBJ object, 175
NLB object, 173
NLB_JOB object, 175

U

Unified Resource Manager (URM), 88
update privilege

NLB ACLs, 30
URM for UNICOS systems, 88
User access

restricting for NQS queues, 69
User environment variables for ilb command, 363
User exits

NQS, 128

User limit
queue attributes, 27

User status display
viewing all NQS jobs, 58

user status display scope, 373
User task attributes, 292
User validation

alternate user validation, 14
NQE_NQS_NQCACCT, 14

user’s job project displays as 0, 381
User-level man pages, 383
user_limit option

set complex command
qmgr, 72

set global command
qmgr, 74

set queue command
qmgr, 62

V

Validation
NQS, 107

default, 108
types in NQS, 108
user

setting, example, 109
Value

attribute
NLB, 212

NLB attribute, 174
Viewing all NQS jobs, 58
Viewing FTA configuration, 321

W

Web interface, 9
Weighting machines

policies for
NLB, 199

438 SG–2150 3.3

Index

working_set_limit option
set per-process command

qmgr, 80
WORLD user name

NLB ACLs, 30
World Wide Web interface, 9
Writing a simple scheduler, 263

configuration enhancements, adding, 286
create scheduler file, 267
create system task object, 266
goal, 266
requirements, 263

running the scheduler, 283
Tcl errors, 284, 287
Tcl variables, 285
trace levels, 285
write Tentry callback function, 282
write Tinit callback function, 269
write Tnewowner callback function, 280
write Tpass callback function, 276
write Trentry callback function, 271

Writing policies, 201

SG–2150 3.3 439

