
Linux® Configuration and Operations
Guide

007–4633–002

CONTRIBUTORS

Written by Terry Schultz
Illustrated by Chrystie Danzer
Production by Karen Jacobson
Engineering contributions by John Hawkes, Dan Higgins, Erik Jacobson, Kevin McMahon, Dean Roe

COPYRIGHT
© 2003, 2004 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere
herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in
any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX, Onyx2, Origin, and XFS are registered trademarks and Altix, NUMAflex, NUMAlink,
OpenMP, Performance Co-Pilot, SGI Linux, SGI ProPack, SGIconsole, and XIO are trademarks of Silicon Graphics, Inc., in the United
States and/or other countries worldwide.

SGI Advanced Linux Environment 2.1 is based on Red Hat Linux Advanced Server 2.1 for the Itanium Processor, but is not sponsored
by or endorsed by Red Hat, Inc. in any way. Red Hat is a registered trademark and Red Hat Linux Advanced Server 2.1 is a
trademark of Red Hat, Inc

Intel and Itanium are trademarks or registered trademarks of Intel Corporation. Linux is a registered trademark of Linus Torvalds,
used with permission by Silicon Graphics, Inc. MIPS is a registered trademark of MIPS Technologies, Inc., used under license by
Silicon Graphics, Inc. RPM is a trademark of Red Hat, Inc.’

New Features in This Manual

This rewrite of the Linux Configuration and Operations Guide supports the v2.4 release
of the SGI ProPack for Linux operating system.

Major Documentation Changes
The following updates are included in this release:

• Added information on how to recover a damaged root file system in "Recovering
a Damaged Root Filesystem" on page 35.

• Added information on how to manually mount the root file system in "Manually
Mounting the Root Filesystem" on page 37.

• Added information on memory (swap) kernel parameters in "Memory (Swap)
sysctl Parameters" on page 79.

• Added information on the hugetlb page parameter in "Virtual Memory hugetlb
Parameter" on page 81.

• Added information about XFS file system tunable parameters in
"/proc/sys/fs/xfs" on page 90.

• Added information about XFS file system tunable parameters that can be modified
using the sysctl(8) command in "XFS sysctl Tunable Parameters" on page 91.

007–4633–002 iii

Record of Revision

Version Description

001 October 2003
Original publication.

002 February 2004
Updated to support the SGI ProPack for Linux v2.4 release.

007–4633–002 v

Contents

About This Guide . xvii

Related Publications . xvii

Additional Reading . xix

Linux System Administration xix

Intel Compiler Documentation xix

Other Intel Documentation xix

Open-Source Documents . xx

Obtaining Publications . xx

Conventions . xxi

Reader Comments . xxi

1. Configuring Your System 1

Cloning System Disks . 1

Setting up quota on the root File System 4

System Partitioning . 5

Overview . 6

Advantages of Partitioning 6

Create a Large, Shared-memory Cluster 6

Provides Fault Containment 7

Allows Variable Partition Sizes 7

Provide High Performance Clusters 7

Limitations of Partitioning . 8

Supported Configurations . 8

Installing Partitioning Software and Configuring Partitions 8

007–4633–002 vii

Contents

Partitioning Software . 9

Partitioning Guidelines . 9

Partitioning a System . 10

Determining If a System is Partitioned 16

Accessing the Console on a Partitioned System 17

Unpartitioning a System 18

Connecting the System Console to the Controller 19

Making Array Services Operational 19

Pluggable Authentication Modules 21

2. System Operation . 23

Booting a System . 23

Halting the System . 26

Connecting to the L1 Controller 27

Connecting to the L2 Controller 28

Getting Console Access . 29

Handling a System Hang or Crash on Panic 30

Recovering a Damaged Root Filesystem 35

Manually Mounting the Root Filesystem 37

3. Performance Tuning 39

Determining System Configuration 39

Single Processor Code Tuning 41

Getting the Correct Results 42

Using the ddd Tool . 44

Managing Heap Corruption Problems 47

Using Tuned Code . 48

viii 007–4633–002

Linux® Configuration and Operations Guide

Determining Tuning Needs 49

Using Compiler Options Where Possible 49

Tuning the Cache Performance 50

Managing Memory . 51

Using the chatr Command to Change Stack and Data Segments 52

Multiprocessor Code Tuning . 52

Parallelizing Your Code . 53

Solving Bottlenecks in Code 54

Fixing False Sharing . 55

Determining the Occurence of False Sharing 55

Fixing False Sharing . 55

Using dplace and runon . 56

dplace for MPI Codes . 56

dplace for OpenMP Codes 56

Environment Variables for Performance Tuning 57

Profiling and Analyzing Your Code 58

Profling with pfmon . 58

Using the profile.pl Script 59

profile.pl with MPI programs 59

Using VTune for Remote Sampling 60

Using GuideView . 60

Other Performance Tools . 61

4. NUMA Tools . 63

dlook . 63

dplace . 69

topology . 73

007–4633–002 ix

Contents

Installing NUMA Tools . 74

5. Kernel Tunable Parameters on SGI ProPack Servers 77

CPU Scheduler /proc/sys/sched Directory 77

/etc/sysconfig/dump Directory 77

Memory (Swap) sysctl Parameters 79

vm.min_swap_page_calls 80

vm.oom_killer_nap_jiffies 80

vm.swap_watch_interval 80

vm.min_jiffies_out . 81

vm.print_get_swap_page 81

vm.min_free_swap_pages 81

Virtual Memory hugetlb Parameter 81

Appendix A. Linux Kernel Tunable Parameters 83

/proc/sys/kernel Parameters 83

acct . 84

ctrl-alt-del . 84

domainname and hostname 85

osrelease, ostype, and version 85

overflowgid and overflowuid 85

panic . 86

printk . 86

rtsig-max and rtsig-nr 86

sg-big-buff . 87

shmmax . 87

tainted . 87

/proc/sys/fs Parameters . 87

dentry-state . 88

x 007–4633–002

Linux® Configuration and Operations Guide

dquot-max and dquot-nr 88

file-max and file-nr . 88

inode-max, inode-nr, and inode-state 89

overflowgid and overflowuid 89

super-max and super-nr 90

XFS Tunable Parameters . 90

/proc/sys/fs/xfs . 90

fs.xfs.stats_clear . 90

fs.xfs.refcache_size . 91

vm.pagebuf.stats_clear . 91

XFS sysctl Tunable Parameters 91

fs.xfs.sync_interval . 92

fs.xfs.error_level . 92

fs.xfs.panic_mask . 92

fs.xfs.irix_symlink_mode 92

fs.xfs.irix_sgid_inherit . 93

fs.xfs.restrict_chown . 93

fs.xfs.refcache_purge . 93

vm.pagebuf.flush_age . 93

vm.pagebuf.flush_int . 93

/proc/sys/vm Parameters . 93

bdflush . 94

buffermem . 95

freepages . 96

kswapd . 96

overcommit_memory . 97

max_map_count . 97

page-cluster . 97

007–4633–002 xi

Contents

pagecache . 98

pagetable_cache . 98

Index . 99

xii 007–4633–002

Figures

Figure 3-1 DataDisplayDebugger(ddd)(1) 44

007–4633–002 xiii

Procedures

Procedure 1-1 Cloning System Disks 2

Procedure 1-2 Setting up quota on the root File System 5

Procedure 1-3 Partitioning a System Into Four Partitions 10

Procedure 1-4 Partitioning a System into Two Partitions 15

Procedure 1-5 Determing If a System Is Partitioned 16

Procedure 1-6 Access the Console on a Partitioned System 17

Procedure 1-7 Unpartitioning a System 18

Procedure 1-8 Making Array Services Operational 19

Procedure 2-1 Booting a System 23

Procedure 2-2 Halting the System 27

Procedure 2-3 Connecting to the L1 Controller 27

Procedure 2-4 Connecting to the L2 Controller 28

Procedure 2-5 Getting Console Access 29

Procedure 2-6 Handling a System Hang or Crash 30

Procedure 2-7 Recovering a Damaged Root Filesystem 35

Procedure 2-8 Manually Mounting the Root Filesystem 37

Procedure 3-1 Using ddd(1) with MPI Jobs 45

007–4633–002 xv

About This Guide

This guide explains how to perform general system configuration and operations
under the Linux operating system used with SGI servers and superclusters. The
information in this manual is specific to the SGI Altix 3000 family of servers and
superclusters. For information about general Linux system administration, see
"Additional Reading" on page ???.

This manual contains the following chapters:

• Chapter 1, "Configuring Your System" on page 1

• Chapter 2, "System Operation" on page 23

• Chapter 3, "Performance Tuning" on page 39

• Chapter 4, "NUMA Tools" on page 63

• Chapter 5, "Kernel Tunable Parameters on SGI ProPack Servers" on page 77

• Appendix A, "Linux Kernel Tunable Parameters" on page 83

Related Publications
The following publications contain additional information that may be helpful:

• SGI ProPack for Linux Start Here provides information about the SGI ProPack for
Linux release including information about major new features, software
installation, product support, and performance tuning.

• SGI ProPack v2.4 for Linux Release Notes provides the latest information about
software and documentation in this release. The release notes are on the SGI
ProPack for Linux Documentation CD in the root directory, in a file named
README.TXT.

• SGI Altix 3000 User’s Guide provides an overview of the architecture and
descriptions of the major components that make up the SGI Altix 3000 computer
system. It also describes the standard procedures for powering up and powering
down the system, basic troubleshooting information, and it includes important
safety and regulatory specifications.

007–4633–002 xvii

About This Guide

• SGI L1 and L2 Controller Software User’s Guide describes how to use the L1 and L2
controller commands at your system console to monitor and manage your system.

• Console Manager for SGIconsole Administrator’s Guide describes the Console Manager
software graphical interface, which allows you to control multiple SGI servers; SGI
partitioned systems; and large, single-system image servers.

• Linux Resource Administration Guide is a reference document for people who
manage the operation of SGI computer systems running the Linux operating
system. It contains information needed in the administration of various system
resource management features such as Comprehensive System Accounting (CSA),
Array Services, CPU memory sets (CpuMemSets) and scheduling, and the Cpuset
System.

• Performance Co-Pilot for IA-64 Linux User’s and Administrator’s Guide documents the
Performance Co-Pilot software package running on IA-64 Linux systems.
Performance Co-Pilot provides a systems-level suite of tools that cooperate to
deliver integrated performance monitoring and performance management services
spanning the hardware platforms, operating systems, service layers, database
management systems (DBMSs), and user applications.

• Linux Device Driver Programmer’s Guide-Porting to SGI Altix 3000 Systems provides
information on programming, integrating, and controlling drivers.

• Message Passing Toolkit: MPI Programmer’s Manual describes industry-standard
message passing protocol optimized for SGI computers.

• XFS for Linux Administration describes XFS, an open-source, fast recovery,
journaling filesystem that provides direct I/O support, space preallocation, access
control lists, quotas, and other commercial file system features.

• Origin 2000 and Onyx2 Performance Tuning and Optimization Guide contains
information specific to MIPS/IRIX systems, but the general guidelines in the
document are hardware and operating system independent.

• Event Manager User Guide provides information about the Event Manger
application that collects event information from other applications. This document
describes the Event Manager application, the application programming interface
that you can use to access it, the procedures that you can use to communicate with
it from another application, and the commands that you can use to control it.

• Embedded Support Partner User Guide provides information about using the
Embedded Support Partner (ESP) software suite to monitor events, set up
proactive notification, and generate reports. This revision of the document

xviii 007–4633–002

Linux® Configuration and Operations Guide

describes ESP version 3.0, which is the first version of ESP that supports the Linux
operating system.

Additional Reading
The following sections describe publications that contain additional information that
my be helpful in the administration of your system.

Linux System Administration

Linux system administration information is available on your system at the following
location:

/usr/src/linux-2.4.21/Documentation

Linux system administration course information is available at:

http://www.sgi.com/support/custeducation/courses/linux/sys_admin.html

Intel Compiler Documentation

Documentation for the Intel compilers is located on your system in the /docs
directory of the directory tree where your compilers are installed. If you have
installed the Intel compilers, the following documentation is available:

• Intel C++ Compiler User’s Guide (c_ug_lnx.pdf)

• Intel Fortran Compiler User’s Guide (for_ug_lnx.pdf)

• Intel Fortran Programmer’s Reference (for_prg.pdf)

• Intel Fortran Libraries Reference (for_lib.pdf)

Other Intel Documentation

The following documents describe the Itanium (previously called "IA-64") architecture
and other topics of interest:

• Intel Itanium 2 Processor Reference Manual for Software Development and Optimization,
available online at the following location:

http://developer.intel.com/design/itanium/manuals

007–4633–002 xix

About This Guide

• Intel Itanium Architecture Software Developer’s Manual, available online at the
following location:

http://developer.intel.com/design/itanium/manuals

• Introduction to Itanium Architecture, available online at the following location:

http://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=13

(secure channel required)

Open-Source Documents

The following open-source document may be useful to you.

• Debugging with DDD User’s Guide and Reference Manual provides information on
using the DataDisplayDebugger (DDD). It is available at the following location:

http://www.gnu.org/manual/ddd/pdf/ddd.pdf

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• SGI ProPack for Linux documentation, and all other documentation included in the
RPMs on the distribution CDs can be found on the CD titled "SGI ProPack V.2.4
for Linux - Documentation CD." To access the information on the documentation
CD, open the index.html file with a web browser. Because this online file can be
updated later in the release cycle than this document, you should check it for the
latest information. After installation, all SGI ProPack for Linux documentation
(including README.SGI) is in /usr/share/doc/sgi-propack-2.4.

• You can view man pages by typing man title on a command line.

xx 007–4633–002

Linux® Configuration and Operations Guide

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

007–4633–002 xxi

About This Guide

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, California 94043–1351

SGI values your comments and will respond to them promptly.

xxii 007–4633–002

Chapter 1

Configuring Your System

This chapter provides information on configuring your system and covers the
following topics:

• "Cloning System Disks" on page 1

• "Setting up quota on the root File System" on page 4

• "System Partitioning " on page 5

• "Making Array Services Operational" on page 19

• "Pluggable Authentication Modules" on page 21

Cloning System Disks
Hard disks can be divided into one or more logical disks called partitions. This
division is described in the partition table found in sector 0 of the disk.

You may want to make a second copy or clone of the system disks for backup
purposes in the event there is a catastrophic failure on the first disk. This makes
recovery faster and easier than re-installing the software from CDs.

This sections describes how to clone a disk on an SGI Altix 3000 system.

The following assumptions have been made:

• This procedure assumes the target disk is in IX—brick system bay 2 and the
source root drive is in IX—brick system bay 1.

It is not possible to boot from fibre channel disks because there is no PROM
support. The boot loader initialized RAM disk (initrd) currently does not
support cloning system disks.

• Booting from a TP900 storage system works but the fstab and elilo.conf files
need to reflect a different XSCSI path.

Note: The first drive bay on an Altix system is on the right side when you are
facing the drives. The second drive (target 2) is on the left.

007–4633–002 1

1: Configuring Your System

Procedure 1-1 Cloning System Disks

To clone a disk on an SGI Altix 3000 system, perform the following steps:

1. Halt the system and put the target disk in to drive bay 2 in the IX—brick

2. From the extensible firmware interface (EFI) shell prompt, boot the system into
single-user mode, as follows:

elilo sgilinux single

Use the parted(8) disk partitioning and partition resizing program.

3. From the single-user mode prompt, replicate to the system disk to the disk in the
second bay of the IX—brick disk, as follows:

a. Use the parted(8) disk partitioning and partition resizing program to
partition the disk, where the installer makes an EFI GUID Partition (GPT)
partition table.

b. Use the fdisk(8) partition table manipulator for Linux programs to partition
the disk and create a master boot record (MBR) partition table.

!
Caution: If you boot the system and EFI cannot find any vfat filesystem on
your disk (see fs(1) for filesystem type information), you may have run in to
a situation where you tried to make an fdisk/MBR partition table but the
GPT label still exists. You can resolve this by running parted on the target
disk. If this inconsistency is found when using the parted program, you can
fix it when you print the partition table.

c. If you keep the partition number order the same as the source disk, you do
not need to adjust elilo.conf and the fstab files.

4. Partition the disk using the fdisk or parted program to partition the disk. For
information on these programs, see the fdisk(8) or parted(8) man page,
respectively.

Make sure the partition disk on the target looks like the partition table on the
source. You use the disk- style path with parted or fdisk. For example to start
the fdisk program perform the following command:

fdisk /dev/xscsi/pci01.03.0-1/target2/lun0/disc

2 007–4633–002

Linux® Configuration and Operations Guide

5. Put the filesystems and swap space on the partitions. Partition 1 is EFI, partition
2 is swap, and partition 3 is root.

6. Make the vfat filesystem for EFI, as follows:

mkfs.msdos /dev/xscsi/pci01.03.0-1/target2/lun0/part1

7. Make the swap partition, as follows:

mkswap /dev/xscsi/pci01.03.0-1/target2/lun0/part2

8. Make the root filesystem, as follows:

mkfs.xfs /dev/xscsi/pci01.03.0-1/target2/lun0/part3

9. Mount the newly created EFI filesystem for replication, as follows:

mount /dev/xscsi/pci01.03.0-1/target2/lun0/part1 /mnt

10. Replicate the EFI filesystem to the target disk, for example:

cd /boot/efi; tar cBf - . | (cd /mnt && tar xBf -)

11. Unmount the target EFI filesystem, as follows:

umount /mnt

12. Mount the target root for replication, as follows:

mount /dev/xscsi/pci01.03.0-1/target2/lun0/part3 /mnt

13. Replicate from the source root drive to the target using the xfsdump(8) command
piped to xfsrestore(8) command, as follows:

xfsdump - / | xfsrestore - /mnt

14. Before you unmount the target root, remove the Ethernet persistent naming file.
Failure to do this will result in the target system having no eth0 (eth1 would be
appear instead), as follows:

rm /mnt/etc/sysconfig/networking/eth0_persist

15. Unmount the target root filesystem, as follows:

umount /mnt

007–4633–002 3

1: Configuring Your System

16. If the source fstab uses filesystem labels, you either need to change the
/etc/fstab of the target disk to not use them or you need to label the
filesystem. Currently, SGI Altix systems do not use filesystem labels by default.

17. You have now replicated the root filesystem. It is a copy of the source. Here are
some things to consider when you put the target drive in to its final destination
system:

• The target system may need a PROM upgrade; you may need to flash PROM
from EFI.

• The installer program runs a command to populate the EFI boot menu with a
"SGI ProPack" style banner. You have three choices here, as follows:

– Leave it as is. PROM has a generic non-labeled entry to boot automatically.

– From Linux update the boot menu used in EFI, as follows:

/usr/sbin/efibootmgr -c -w -L "SGI ProPack(TM)" -d /dev/xscsi/pci01.03.0-1/target1/lun0/disc -p 1

– Use the EFI boot manager menus to add boot options.

• If you intend to use this disk in a different machine (as opposed to just having
a backup of the running root available), you will need to configure network
settings for the target machine. Configuration files like /etc/hosts,
/etc/sysconfig/network, and
/etc/sysconfig/network-scripts/ifcfg-eth0 need to be updated.
You can also run the netconfig(8) command.

• If the target disk is for a different machine (not a backup), it is a good idea to
remove the ssh keys from the /etc/ssh file to allow the new target to make
new keys at the next start up. The filenames of the ssh keys are as follows:
/etc/ssh: ssh_host_key.pub, ssh_host_key
ssh_host_rsa_key.pub, ssh_host_rsa_key ssh_host_dsa_key.pub,
ssh_host_dsa_key

Setting up quota on the root File System
You can use the quota command to display the disk usage and limits of a user. By
default only the user quotas are printed.

The quota command reports the quotas of all the filesystems listed in the /etc/mtab
file. For filesystems that are NFS-mounted, a call to the rpc.rquotad daemon on the

4 007–4633–002

Linux® Configuration and Operations Guide

server machine is performed to get the information. For more information on the
quota command, see the quota(1) man page.

Procedure 1-2 Setting up quota on the root File System

To set up quota on root filesystem, add the following entry (rootflags=quota) to
the append line in the elilo.conf file, as follows:

append="root=/dev/xscsi/pci00.01.0-1/target0/lun0/part3 rootflags=quota"

The repquota(8) command reports information similar to the following:

root@altix root]# repquota /

*** Report for user quotas on device /dev/xscsi/pci00.01.0-1/target0/lun0/part3

Block grace time: 7days; Inode grace time: 7days

Block limits File limits

User used soft hard grace used soft hard grace

--
root -- 2867796 0 0 104034 0 0

...

The repquota(8) command prints a summary of the disk usage and quotas for the
specified file systems. For each user, the current number of files and amount of space
(in kilobytes) is printed, along with any quotas created with edquota(8). For more
information, see the quota, repquota(8), and edquota(8) man pages.

System Partitioning
This section describes how to partition an SGI ProPack server and contains the
following topics:

1. "Overview" on page 6

2. "Advantages of Partitioning" on page 6

3. "Limitations of Partitioning" on page 8

4. "Supported Configurations" on page 8

5. "Installing Partitioning Software and Configuring Partitions" on page 8

6. "Connecting the System Console to the Controller" on page 19

007–4633–002 5

1: Configuring Your System

Overview

A single SGI ProPack for Linux server can be divided into multiple distinct systems,
each with its own console, root filesystem, and IP network address. Each of these
software-defined group of processors are distinct systems referred to as a partition.
Each partition can be rebooted, loaded with software, powered down, and upgraded
independently. The partitions communicate with each other over an SGI NUMAlink
connection. Collectively, all of these partitions compose a single, shared-memory
cluster.

Direct memory access between partitions, sometimes referred to as global shared
memory, is made available by the XPC and XPMEM kernel modules. This allows
processes in one partition to access physical memory located on another partition.
The benefits of global shared memory are currently available via SGI’s Message
Passing Toolkit (MPT) software.

It is relatively easy to configure a large SGI Altix system into partitions and
reconfigure the machine for specific needs. No cable changes are needed to partition
or repartition an SGI Altix machine. Partitioning is accomplished by commands sent
to the system controller. For details on system controller commands, see the SGI L1
and L2 Controller Software User’s Guide.

Advantages of Partitioning

This section describes the advantages of partitioning an SGI ProPack server as follows:

• "Create a Large, Shared-memory Cluster " on page 6

• "Provides Fault Containment" on page 7

• "Allows Variable Partition Sizes" on page 7

• "Provide High Performance Clusters" on page 7

Create a Large, Shared-memory Cluster

You can use SGI’s NUMAlink technology and the XPC and XPMEM kernel modules
to create a very low latency, very large, shared-memory cluster (currently up to 512
CPUs) for optimized use of Message Passing Interface (MPI) software and logically
shared, distributed memory access (SHMEM) routines. The globally addressable,
cache coherent, shared memory is exploited by MPI and SHMEM to deliver high
performance.

6 007–4633–002

Linux® Configuration and Operations Guide

Provides Fault Containment

Another reason for partitioning a system is fault containment. In most cases, a single
partition can be brought down (because of a hardware or software failure, or as part
of a controlled shutdown) without affecting the rest of the system. Hardware memory
protections prevent any unintentional accesses to physical memory on a different
partition from reaching and corrupting that physical memory. For current fault
containment caveats, see "Limitations of Partitioning" on page 8.

You can power off and “warm swap” a failing C-brick in a down partition while
other partitions are powered up and booted. For information see “Adding or
Replacing a PCI or PCI-X Card” in chapter 12, “Maintenance and Upgrade
Procedures” in SGI Altix 3000 User’s Guide.

Allows Variable Partition Sizes

Partitions can be of different sizes, and a particular system can be configured in more
than one way. For example, a 128-processor system could be configured into four
partitions of 32 processors each or configured into two partitions of 64 processors
each. (See "Supported Configurations" for a list of supported configurations for
system partitioning.)

Your choice of partition size and number of partitions affects both fault containment
and scalability. For example, you may want to dedicate all 64 processors of a system
to a single large application during the night, but then partition the system in two 32
processor systems for separate and isolated use during the day.

Provide High Performance Clusters

One of the fundamental factors that determines the performance of a high-end
computer is the bandwidth and latency of the memory. The SGI NUMAflex
technology gives an SGI ProPack partitioned, shared-memory cluster a huge
performance advantage over a cluster of commodity Linux machines (white boxes). If
a cluster of N white boxes, each with M CPUs is connected via Ethernet or Myrinet or
InfinaBand, an SGI ProPack system with N partitions of M CPUs provides superior
performance because of the significantly lower latency of the NUMAlink interconnect,
which is exploited by the XPNET kernel module.

007–4633–002 7

1: Configuring Your System

Limitations of Partitioning

Partitioning can increase the reliability of a system because power failures and other
hardware errors can be contained within a particular partition. There are still cases
where the whole shared memory cluster is affected; for example, during upgrades of
harware which is shared by multiple partitions.

If a partition is sharing its memory with other partitions, the loss of that partition
may take down all other partitions that were accessing its memory. This is currently
possible when an MPI or SHMEM job is running across partitions using the XPMEM
kernel module.

Supported Configurations

See the SGI Altix 3000 User’s Guide for information on configurations that are
supported for system partitioning. Currently, the following guidelines are valid:

• Maximum number of partitions supported is 8

• Maximum partition size is 64 processors

• Maximum system size is 512 processors

For additional information about configurations that are supported for system
partitioning, see your sales representative. SGI field support personnel may reference
the SGI Altix 3000 Internal Technical Configuration Manual.

Installing Partitioning Software and Configuring Partitions

To enable or disable partitioning software, see "Partitioning Software" on page 9, to
use the system partitioning capabilities, see "Partitioning Guidelines" on page 9 and
"Partitioning a System" on page 10.

This section covers the following topics:

• "Partitioning Software" on page 9

• "Partitioning Guidelines" on page 9

• "Partitioning a System" on page 10

• "Determining If a System is Partitioned" on page 16

• "Accessing the Console on a Partitioned System" on page 17

8 007–4633–002

Linux® Configuration and Operations Guide

• "Unpartitioning a System" on page 18

Partitioning Software

SGI ProPack for Linux servers have XP, XPC, XPNET, and XPMEM kernel modules
installed by default to provide partitioning support. XPC and XPNET are configured
off by default in the /etc/sysconfig/sgi-xpc and
/etc/sysconfig/sgi-xpnet files, respectively. XPMEM is configured on by
default in the /etc/sysconfig/sgi-xpmem file. To enable or disable any of these
features, edit the appropriate /etc/sysconfig/ file and execute the
/etc/init.d/sgi-xp script.

The XP kernel module is a simple module which coordinates activities between XPC,
XPMEM, and XPNET. All of the other cross-partition kernel modules require XP to
function.

The XPC kernel module provides fault-tolerant, cross-partition communication
channels over NUMAlink for use by the XPNET and XPMEM kernel modules.

The XPNET kernel module implements an Internet protocol (IP) interface on top of
XPC to provide high-speed network access via NUMAlink. XPNET can be used by
applications to communicate between partitions via NUMAlink, to mount file systems
across partitions, and so on. The XPNET driver is configured using the ifconfig
commands. For more information, see the ifconfig(1M) man page. The procedure
for configuring the XPNET kernel module as a network driver is essentially the same
as the procedure used to configure the Ethernet driver. You can configure the XPNET
driver at boot time like the Ethernet interfaces by using the configuration files in
/etc/sysconfig/network-scripts.

The XPMEM kernel module provides direct access to memory located on other
partitions. It uses XPC internally to communicate with XPMEM kernel modules on
other partitions to accomplish this. XPMEM is currently used by SGI’s Message
Passing Toolkit (MPT) software (MPI and SHMEM).

Partitioning Guidelines

Follow these guidelines when partitioning your system:

• A partition must be made up of one or more C—bricks (Each C—brick contains
four processors). The number of C-bricks in your systems determines the number
of partitions you can create. The number of partitions cannot exceed the number
of C—bricks your system contains. The first C—brick in each partition must have
an IX—brick attached to it via the XIO connection of the C—brick.

007–4633–002 9

1: Configuring Your System

• You need at least as many IX—bricks for base IO as partitions you wish to use.

• Each partition needs to have an IX—brick with a valid system disk in it. Since
each partition is a separate running system, each system disk should be
configured with a different IP address/system name, and so on.

• Each partition must have a unique partition ID number between 1 and 63,
inclusively.

• All bricks in a partition must be physically contiguous. The route between any
two processors in the same partition must be contained within that partition, and
not through any other partition. If the bricks in a partition are not contiguous, the
system will not boot.

• Each partition must contain the following components:

– At least one C—brick for system sizes of 64 C—bricks and below, or multiples
of 4 C—bricks for system sizes of 65 C—bricks and above (minimum)

– One IX-brick (minimum)

– One root disk

– One console connection

Partitioning a System

This section describes how to partition your system.

Procedure 1-3 Partitioning a System Into Four Partitions

To partition your system, perform the following steps :

1. Make sure your system can be partitioned. See "Partitioning Guidelines" on page
9.

2. You can use the Connect to System Controller task of the SGIconsole Console
Manager GUI to connect to the L2 controller of the system you want to partition.
The L2 controller must appear as a node in the SGIconsole configuration. For
information on how to use SGIconsole, see the Console Manager for SGIconsole
Administrator’s Guide.

10 007–4633–002

Linux® Configuration and Operations Guide

3. Using the L2 terminal (l2term), connect to the L2 controller of the system you
wish to partition. After a connection to the L2 controller, an L2> prompt appears,
indicating that the L2 is ready to accept commands, for example:

cranberry-192.168.11.92-L2>:

If the L2 prompt does not appear, you can type Ctrl-T. To remain at the L2
command prompt, type l2 (lowercase letter ’L’) at the L2> prompt

Note: Each partition has its own set of the following PROM environment
variables: ConsolePath, OSLoadPartition, SystemPartition, netaddr,
and root.

For more information on using the L2 controller, see the SGI L1 and L2 Controller
Software User’s Guide.

You can partition a system from SGIconsole Console Manager system console
connection, however, SGIconsole does not include any GUI awareness of
partitions (in the node tree view for instance) or in the commands, and there is no
way to power down a group of partitions, or get all the logs of a partitioned
system, or to actually partition a system. If you partition a node that is managed
by SGIconsole, make sure to edit the partition number of the node using the
Modify a Node task. For more information, see the Console Manager for SGIconsole
Administrator’s Guide.

4. Use the L2 sel command to list the available consoles, as follows:

cranberry-192.168.11.92-L2>sel

Note: If the Linux operating system is currently executing, perform the proper
shutdown procedures before you partition your system.

5. This step shows an example of how to partition a system into four separate
partitions.

a. To see the current configuration of your system, use the L2 cfg command to
display the available bricks, as follows:

cranberry-192.168.11.92-L2>cfg

L2 192.168.11.92: - --- (no rack ID set) (LOCAL)

L1 192.168.11.92:8:0 - 001c31

L1 192.168.11.92:8:1 - 001i34

007–4633–002 11

1: Configuring Your System

L1 192.168.11.92:11:0 - 001c31
L1 192.168.11.92:11:1 - 001i34

L1 192.168.11.92:6:0 - 001r29

L1 192.168.11.92:9:0 - 001r27

L1 192.168.11.92:7:0 - 001c24

L1 192.168.11.92:7:1 - 101i25
L1 192.168.11.92:10:0 - 001c24

L1 192.168.11.92:10:1 - 101i25

L1 192.168.11.92:0:0 - 001r22

L1 192.168.11.92:3:0 - 001r20

L1 192.168.11.92:2:0 - 001c14

L1 192.168.11.92:2:1 - 101i21
L1 192.168.11.92:5:0 - 001c14

L1 192.168.11.92:5:1 - 101i21

L1 192.168.11.92:1:0 - 001c11

L1 192.168.11.92:1:1 - 001i07

L1 192.168.11.92:4:0 - 001c11
L1 192.168.11.92:4:1 - 001i07

b. In this step, you need to decide which bricks to put into which partitions.

You can determine which C—bricks are directly attached to IX—bricks by
looking at the output from the cfg man. Consult the hardware configuration
guide for the partitioning layout for your particular system. In the cfg
output above, you can check the number after the IP address. For example,
001c31 is attached to 001i34 which is indicated by the fact that they both
have 11 after their respective IP address.

Note: On some systems, you will have a rack ID in place of the IP address.
001c31 is a C–brick (designated by the c in 001c31) and 001i34 is an
IX-brick (designated with an i in 001i34).

Another pair is 101i25 and 001c24. They both have 10 after the IP address.
The brick names containing an r designation are routers. Routers do not need
to be designated to a specific partition number.

In this example, the maximum number of partitions this system can have is
four. There are only four IX—bricks total: 001i07, 101i21, 101i25, and
001i34.

12 007–4633–002

Linux® Configuration and Operations Guide

Note: Some IX—brick names appear twice. This occurs because some
IX—bricks have dual XIO connections.

You do not have to explicitly assign IX-bricks to a partition. The IX—bricks
assigned to a partition are inherited from the C—bricks.

c. When you specify bricks to L2 commands, you use a rack.slot naming
convention. To configure the system into four partitions, do not specify the
whole brick name (001c31) but rather use the designation 1.31 as follows:

cranberry-192.168.11.92-L2>1.31 brick part 1

001c31:

brick partition set to 1.

cranberry-192.168.11.92-L2>1.34 brick part 1
001#34:

brick partition set to 1.

cranberry-192.168.11.92-L2>1.24 brick part 2

001c24:

brick partition set to 2.
cranberry-192.168.11.92-L2>101.25 brick part 2

101#25:

brick partition set to 2.

cranberry-192.168.11.92-L2>1.14 brick part 3

001c14:
brick partition set to 3.

cranberry-192.168.11.92-L2>101.21 brick part 3

101i21:

brick partition set to 3.

cranberry-192.168.11.92-L2>1.11 brick part 4

001c11:
brick partition set to 4.

cranberry-192.168.11.92-L2>1.07 brick part 4

001#07:

brick partition set to 4.

d. To confirm your settings, enter the cfg command again, as follows:

007–4633–002 13

1: Configuring Your System

Note: This may take up to 30 seconds.

cranberry-192.168.11.92-L2>cfg

L2 192.168.11.92: - --- (no rack ID set) (LOCAL)
L1 192.168.11.92:8:0 - 001c31.1

L1 192.168.11.92:8:1 - 001i34.1

L1 192.168.11.92:11:0 - 001c31.1

L1 192.168.11.92:11:1 - 001i34.1

L1 192.168.11.92:6:0 - 001r29
L1 192.168.11.92:9:0 - 001r27

L1 192.168.11.92:7:0 - 001c24.2

L1 192.168.11.92:7:1 - 101i25.2

L1 192.168.11.92:10:0 - 001c24.2

L1 192.168.11.92:10:1 - 101i25.2

L1 192.168.11.92:0:0 - 001r22
L1 192.168.11.92:3:0 - 001r20

L1 192.168.11.92:2:0 - 001c14.3

L1 192.168.11.92:2:1 - 101i21.3

L1 192.168.11.92:5:0 - 001c14.3

L1 192.168.11.92:5:1 - 101i21.3
L1 192.168.11.92:1:0 - 001c11.4

L1 192.168.11.92:1:1 - 001i07.4

L1 192.168.11.92:4:0 - 001c11.4

L1 192.168.11.92:4:1 - 001i07.4

e. The system is now partitioned. However, you need to reset each partition to
complete the configuration, as follows:

cranberry-192.168.11.92-L2>p 1,2,3,4 rst

Note: You can use a shortcut to reset every partition, as follows:

cranberry-192.168.11.92-L2>p * rst

f. To get to the individual console of a partition, such as partition 2, enter the
following:

cranberry-192.168.11.92-L2>sel p 2

14 007–4633–002

Linux® Configuration and Operations Guide

For more information on accessing the console of a partition, see "Accessing
the Console on a Partitioned System" on page 17.

Procedure 1-4 Partitioning a System into Two Partitions

To partition your system, perform the following steps:

1. Perform steps 1 through 5 in Procedure 1-3, page 10.

2. To configure the system into two partitions, enter the following commands:

cranberry-192.168.11.92-L2>1.31 brick part 1

001c31:
brick partition set to 1.

cranberry-192.168.11.92-L2>1.34 brick part 1

001#34:

brick partition set to 1.

cranberry-192.168.11.92-L2>1.24 brick part 1
001c24:

brick partition set to 1.

cranberry-192.168.11.92-L2>101.25 brick part 1

101#25:

brick partition set to 1.
cranberry-192.168.11.92-L2>1.14 brick part 2

001c14:

brick partition set to 2.

cranberry-192.168.11.92-L2>101.21 brick part 2

101i21:

brick partition set to 2.
cranberry-192.168.11.92-L2>1.11 brick part 2

001c11:

brick partition set to 2.

cranberry-192.168.11.92-L2>1.7 brick part 2

001#07:
brick partition set to 2.

3. To confirm your settings, issue the cfg command again, as follows:

007–4633–002 15

1: Configuring Your System

Note: This may take up to 30 seconds.

cranberry-192.168.11.92-L2>cfg

L2 192.168.11.92: - --- (no rack ID set) (LOCAL)
L1 192.168.11.92:8:0 - 001c31.1

L1 192.168.11.92:8:1 - 001i34.1

L1 192.168.11.92:11:0 - 001c31.1

L1 192.168.11.92:11:1 - 001i34.1

L1 192.168.11.92:6:0 - 001r29
L1 192.168.11.92:9:0 - 001r27

L1 192.168.11.92:7:0 - 001c24.1

L1 192.168.11.92:7:1 - 101i25.1

L1 192.168.11.92:10:0 - 001c24.1

L1 192.168.11.92:10:1 - 101i25.1

L1 192.168.11.92:0:0 - 001r22
L1 192.168.11.92:3:0 - 001r20

L1 192.168.11.92:2:0 - 001c14.2

L1 192.168.11.92:2:1 - 101i21.2

L1 192.168.11.92:5:0 - 001c14.2

L1 192.168.11.92:5:1 - 101i21.2
L1 192.168.11.92:1:0 - 001c11.2

L1 192.168.11.92:1:1 - 001i07.2

L1 192.168.11.92:4:0 - 001c11.2

L1 192.168.11.92:4:1 - 001i07.2

4. Now the system has two partitions. To complete the configuration, reset the two
partitions as follows:

cranberry-192.168.11.92-L2>p 1,2 rst

Determining If a System is Partitioned

Procedure 1-5 Determing If a System Is Partitioned

To determine whether a system is partitioned or not, perform the following steps:

1. Use the L2term to connect to the L2 controller of the system.

16 007–4633–002

Linux® Configuration and Operations Guide

Note: If you are connected to the L2 controller, but do not have the L2 prompt,
try typing the following: CTRL-t.

2. Use the cfg command to determine if the system is partitioned, as follows:

cranberry-192.168.11.92-L2>cfg
L2 192.168.11.92: -(no rack ID set) (LOCAL)

L1 192.168.11.92:8:0 - 001c31.1

L1 192.168.11.92:8:1 - 001i34.1

L1 192.168.11.92:11:0 - 001c31.1

L1 192.168.11.92:11:1 - 001i34.1
L1 192.168.11.92:6:0 - 001r29

L1 192.168.11.92:9:0 - 001r27

L1 192.168.11.92:7:0 - 001c24.2

L1 192.168.11.92:7:1 - 101i25.2

L1 192.168.11.92:10:0 - 001c24.2

L1 192.168.11.92:10:1 - 101i25.2
L1 192.168.11.92:0:0 - 001r22

L1 192.168.11.92:3:0 - 001r20

L1 192.168.11.92:2:0 - 001c14.3

L1 192.168.11.92:2:1 - 101i21.3

L1 192.168.11.92:5:0 - 001c14.3
L1 192.168.11.92:5:1 - 101i21.3

L1 192.168.11.92:1:0 - 001c11.4

L1 192.168.11.92:1:1 - 001i07.4

L1 192.168.11.92:4:0 - 001c11.4

L1 192.168.11.92:4:1 - 001i07.4

3. See the explanation of the output from the cfg command in Procedure 1-3.

Accessing the Console on a Partitioned System

Procedure 1-6 Access the Console on a Partitioned System

To access the console on a partition, perform the following steps:

1. Use the L2term to connect to the L2 controller of the system.

007–4633–002 17

1: Configuring Your System

Note: If you are connected to the L2 controller, but do not have the L2 prompt,
try typing the following: CTRL-t.

2. To see output that shows which C-bricks have system consoles, enter the sel
command without options on a partitioned system as follows:

cranberry-192.168.11.92-L2>sel

known system consoles (partitioned)

partition 1: 001c31 - L2 detected
partition 2: 001c24 - L2 detected

partition 3: 001c14 - L2 detected

partition 4: 001c11 - L2 detected

current system console

console input: not defined

console output: not filtered

The output from the sel command shows that there are four partitions defined.

3. To get to the console of partition 2, for example, enter the following:

cranberry-192.168.11.92-L2>sel p 2

4. To connect to the console of partition 2, enter Ctrl-d.

Unpartitioning a System

Procedure 1-7 Unpartitioning a System

To remove the partitions from a system, perform the following steps:

1. Use the L2term to connect to the L2 controller of the system.

Note: If you are connected to the L2 controller, but do not have the L2 prompt,
try typing the following: CTRL-t.

18 007–4633–002

Linux® Configuration and Operations Guide

2. Shut down the Linux operating system running on each partition before
unpartitioning a system.

3. To set the partition ID on all bricks to zero, enter the following command:

cranberry-192.168.11.92-L2>r * brick part 0

4. To confirm that all the partitions on your system have been removed, enter the
following command:

cranberry-192.168.11.92-L2>cfg

The list of bricks no longer have a dot followed by a number in their name (see
"Determining If a System is Partitioned" on page 16).

5. To reset all of the bricks, enter the following command:

cranberry-192.168.11.92-L2>r * rst

6. To get to the system console for the newly unpartitioned system, you need to
reset the select setting as follows:

cranberry-192.168.11.92-L2>sel reset

7. To get the console (assuming you still have the L2 prompt), enter Ctrl-d.

Connecting the System Console to the Controller

System partitioning is an administrative function. The system console is connected to
the controller as required by the configuration selected when an SGI ProPack system is
installed. For additional information or recabling, contact your service representative.

Making Array Services Operational
This section describes how to get Array Services operational on your system. For
detailed information on Array Services, see chapter 3, “Array Sevices”, in the Linux
Resource Administration Guide.

Procedure 1-8 Making Array Services Operational

To make Array Services operational on your system, perform the following steps:

007–4633–002 19

1: Configuring Your System

1. To enable Array Services by default, perform the following:

chkconfig array on

2. Add a user called guest, as follows:

adduser -u 81 -g 99 -s /bin/tcsh -c "array services guest" -d /dev/null guest

3. Add a guest group, as follows:

Note: User guest does not have to be a member of group guest.

groupadd -g 999 guest

4. Add the following line to the /etc/services file:

sgi-arrayd 5434/tcp # SGI Array Services daemon

5. Make sure that the setting in the /usr/lib/array/arrayd.auth file is
appropriate for your site.

!
Caution: Changing the AUTHENTICATION parameter from NOREMOTE to NONE
may have a negative security impact on your site.

6. Make the following changes to your networking files as needed.

• Add localhost to your /etc/hosts.equiv file.

• Add every node in the cluster to each /etc/hosts.equiv file.

Note: If you have NIS installed, you can force a map lookup from
/etc/hosts.equiv listing all the names if you prefer (for example,
+@equiv).

In general, keeping the hosts.equiv file up-to-date helps users because they
do not need to update their individual .rhosts files.

Manually, start Array Services as follows:

20 007–4633–002

Linux® Configuration and Operations Guide

Note: Since you configured Array Services on in step 1, Array Services will be
automatically started in the future.

/etc/init.d/array start

7. To determine if Array Services is correctly installed, run the following command:

array who

You should see yourself listed.

Pluggable Authentication Modules
Pluggable Authentication Modules (PAM) are a suite of shared libraries that enable
the local system administrator to choose how applications authenticate users. In other
words, without rewriting and recompiling a PAM-aware application, it is possible to
switch between the authentication mechanism(s) it uses. You may entirely upgrade
the local authentication system without touching the applications themselves.

SGI ProPack for Linux is integrated with PAM and PAM is configured on during
system installation.

For additional information go to this
location:http://www.kernel.org/pub/linux/libs/pam

007–4633–002 21

Chapter 2

System Operation

This chapter describes the operation of an SGI Altix 3000 series computer systems. It
covers the following topics:

• "Booting a System" on page 23

• "Halting the System" on page 26

• "Getting Console Access" on page 29

• "Handling a System Hang or Crash on Panic" on page 30

Booting a System
This section describes how to boot an SGI Altix series computer system.

Procedure 2-1 Booting a System

To boot an SGI Altix 3000 series computer system, perform the following:

1. Obtain the system console as described in "Getting Console Access" on page 29 if
you are using SGIconsole or telnet to the L2 controller as described in
"Connecting to the L2 Controller" on page 28.

2. By default, when booting a menu of boot options appears. On a properly
configured system (as shipped from the factory), you can boot directly to the
Linux operating sytem. A system administrator can change the default using the
boot mainenance menus, the extensible firmware interface (EFI) shell> command,
or the efibootmgr command (see the efibootmgr options usage statement for
more information).

Note: To see the boot menus properly on an SGI Altix 3000 system, make sure
sure the debug switches are set to 0 or 1.

A screen similar to the following appears after booting your machine:

EFI Boot Manager ver 1.02 [12.38]

007–4633–002 23

2: System Operation

Partition 0: Enabled Disabled
CBricks 1 Nodes 2 0

RBricks 0 CPUs 4 0

IOBricks 1 Mem(GB) 4 0

Please select a boot option

UnitedLinux

ProPack

Boot option maintenance menu

Use the arrow keys to change option(s). Use Enter to select an option

One of the menu options appears highlighted. Pressing arrow keys moves the
highlight.

An example of selecting the EFI Boot Maintenance Manager menu is, as follows:

EFI Boot Maintenance Manager ver 1.02 [12.38]

Main Menu. Select an Operation

Boot from a File

Add a Boot Option

Delete Boot Option(s)

Change Boot Order

Manage BootNext setting

Set Auto Boot TimeOut

Select Active Console Output Devices
Select Active Console Input Devices

Select Active Standard Error Devices

Cold Reset

Exit

24 007–4633–002

Linux® Configuration and Operations Guide

An example of selecting the Boot from a File option is, as follows:

EFI Boot Maintenance Manager ver 1.02 [12.38]

Boot From a File. Select a Volume

NO VOLUME LABEL [Pci(1|1)/Scsi(Pun0,Lun1)/HD(Part1,Sig7CFD016D-A

NO VOLUME LABEL [Pci(1|1)/Scsi(Pun0,Lun2)/HD(Part1,Sig1F9EFFAD-7

Default Boot [Pci(1|1)/Scsi(Pun0,Lun1)]
Default Boot [Pci(1|1)/Scsi(Pun0,Lun2)]

Load File [Pci(4|0)/Mac(08006913DB7D)/NicName(tg0)]

Load File [EFI Shell [Built-in]]

Exit

An example of selecting Load File EFI Shell is, as follows:

Device Path VenHw(D65A6B8C-71E5-4DF0-A909-F0D23000000099B40000002BB40000005AB4
EFI Shell version 1.02 [12.38]

Device mapping table

fs0 : Pci(1|1)/Scsi(Pun0,Lun1)/HD(Part1,Sigg1)

fs1 : Pci(1|1)/Scsi(Pun0,Lun2)/HD(Part1,Sigg2)

blk0 : Pci(1|1)/Scsi(Pun0,Lun1)
blk1 : Pci(1|1)/Scsi(Pun0,Lun1)/HD(Part1,Sigg1)

blk2 : Pci(1|1)/Scsi(Pun0,Lun1)/HD(Part2,Sigg3)

blk3 : Pci(1|1)/Scsi(Pun0,Lun1)/HD(Part3,Sigg4)

blk4 : Pci(1|1)/Scsi(Pun0,Lun2)

blk5 : Pci(1|1)/Scsi(Pun0,Lun2)/HD(Part1,Sigg2)

blk6 : Pci(1|1)/Scsi(Pun0,Lun2)/HD(Part2,Sigg5)
blk7 : Pci(1|1)/Scsi(Pun0,Lun2)/HD(Part3,Sigg6)

Shell>

From the system EFI shell> prompt, you can proceed with booting the system.
Optional booting steps follow:

007–4633–002 25

2: System Operation

You have the option to select an EFI partition you want to load your kernel as
follows. If you choose not to do this, fs0: is searched by default and the
following prompt appears:

fs0:

If there are multiple EFI filesystems (for example, fs1, fs2, and so on), change to
the one you from which you wish to load the kernel. Then perform the following:

a. To boot the default kernel from the first boot disk, enter the following
command at the prompt:

Booting disk 1:efi/sgi/elilo

b. To boot the default kernel from the second root disk, change directory (cd) to
efi/sgi and enter the following command at the prompt:

Booting disk 2:elilo sgilinux root=/dev/xscsi/pci01.03.0-1/target2/lun0/part3

The preceding XSCSI path points to the seoncd disk of the primary IX-brick.

3. If the system is at the kernel debugger kdb> prompt or is not responding at all,
try resetting the system from the system controller. To get to the system controller
prompt, enter Ctrl-T. At the system controller (L1 or L2) prompt, enter rst. The
EFI shell> promt appears.

4. To give up control of the console, perform one of the following:

• For k consoles, enter Ctrl-] and then enter Ctrl-D.

• To exit a session from from SGIconsole, from the Console Manager File
pulldown menu, choose Exit. To exit from the SGIconsole text-based user
interface (tscm), enter 8 for quit.

• To exit a session in in either the graphical or text version of IRISconsole, enter
the following: ~x.

• To end a telnet session to the the L2 controller, enter the following: Ctrl-]
and then Ctrl-D.

Halting the System
This section describes how halt the Linux operating sytem and power down your
system.

26 007–4633–002

Linux® Configuration and Operations Guide

Procedure 2-2 Halting the System

To halt the Linux operating sytem and power down your system, perform the
following:

1. Connect to the L2> controller by following the steps in Procedure 2-4 on page 28.

2. Enter Ctrl-D to connect to the system console.

3. Enter the halt command.

You can also reset the system by enter Ctrl-T to get to the L2> prompt and then
enter the rst command to reset the system.

4. To to power on and power off individual bricks or your entire Altix 3000 series
system, see “Powering the System On and Off” in Chapter 1, “Operation
Procedures” in the SGI Altix 3000 User’s Guide.

Connecting to the L1 Controller
You can monitor the L1 controller status and error messages on the L1 controller’s
liquid crystal display (LCD) located on the front panel of the individual bricks. The
L1 controller and L2 controller status and error messages can also be monitored at
your system console. The system console allows you to monitor and manage your
server or graphics system by entering L1 controller commands. You can also enter L2
controller commands to monitor and manage your system if your system has L2
controller hardware and a system console or if you are using an SGIconsole as your
system console. For information on connecting to the system console, see "Getting
Console Access" on page 29. For detailed information on using the L2 controller
software, see the SGI L1 and L2 Controller Software User’s Guide

Procedure 2-3 Connecting to the L1 Controller

1. From the Tasks pulldown menu of SGIconsole Console Manager GUI, choose
Connect to a System Controller.

2. To get to the L2> controller prompt, enter Ctrl -T.

3. To get back to the L1> controller prompt, enter Ctrl-D.

007–4633–002 27

2: System Operation

Connecting to the L2 Controller
To access the L2 controller firmware, you must connect a system console such as
SGIconsole or a dumb terminal, to the L2 controller. The L2 firmware is always
running as long as power is supplied to the L2 controller. If you connect a system
console to the L2 controller’s console port, the L2 prompt appears. For instructions on
connecting a console to the L2 controller, see your server or graphics system owner’s
guide or the SGIconsole Hardware Connectivity Guide.

The SGIconsole Console Manager graphical user interface (GUI) or text-based user
interface (tscm(1)), can be used to securely access a system console and connect to an
L2 controller. For information on using Console Manager to access an SGI Altix
system or to access an SGI Altix system in secure mode using the ssh(1) command,
see the Console Manager for SGIconsole Administrator’s Guide.

Your SGI Altix 3000 system should have an L2 controller on your network that you
can access. This section describes how you can connet to an L2 controller if you are
not using SGIconsole.

Procedure 2-4 Connecting to the L2 Controller

To connect to a system L2 controller, perform the following steps:

1. From the Tasks pulldown menu of SGIconsole Console Manager GUI, choose
Node Tasks -> Get/Steal/Spy. Follow the instructions in the Console Manager for
SGIconsole Administrator’s Guide to connect to the console. You can also use the
tscm(1) command line interface to Console Manager. If you do not have
SGIconsole installed, proceed to the next step.

2. Use the telnet(1) command to connect to the L2 controller as follows:

telnet L2-system-name.domain-name.company.com

The system-name argument is the name of the SGI Altix system to which you want
to connect. In some case, you may need to use the full domain such as
system-name.americas.sgi.com.

3. Once connected, press the Enter key and a prompt similar to the following
appears:

system_name-001-L2>

4. To connect to the system console, enter Ctrl–D.

28 007–4633–002

Linux® Configuration and Operations Guide

If your system is partitioned, a message similar to the following appears:

INFO: ERROR: no system console defined

For information on working with partitioned systems, see "System Partitioning "
on page 5.

Note: For detailed information on using the L2 controller software, see the SGI L1 and
L2 Controller Software User’s Guide and the SGI Altix 3000 User’s Guide.

Getting Console Access
This section describes how to access a system console.

Procedure 2-5 Getting Console Access

1. From the Tasks pulldown menu of SGIconsole Console Manager GUI, choose
Node Tasks -> Get/Steal/Spy. Follow the instructions in the Console Manager for
SGIconsole Administrator’s Guide to connect to the console. You can also use the
tscm(1) command line interface to Console Manager. For information on using
Console Manger or tscm(1), see Console Manager for SGIconsole Administrator’s
Guide.

If you do not have Console Manager installed, proceed to the next step.

2. To connect to a system L2 controller, perform the steps in Procedure 2-4 on page
28.

3. Once connected, press the Enter key and a prompt similar to the following
appears:

system_name-001-L2>

4. To connect to the system console, enter Ctrl–D.

If your system is partitioned, a message similar to the following appears:

INFO: ERROR: no system console defined

For information on working with partitioned systems, see "System Partitioning "
on page 5.

5. To return to the L2 controller, enter Ctrl-T.

007–4633–002 29

2: System Operation

To return to the telnet prompt, enter Ctrl-] (control -right bracket).

Note: For detailed information on using the L2 controller software, see the SGI L1 and
L2 Controller Software User’s Guide.

Handling a System Hang or Crash on Panic
If the system panics or drops into the kernel debugger, a kdb> prompt appears on the
system console. This section describes how to troubleshoot a system that hangs, that
is, is unresponsive and does not respond to commands from the controller prompt or
a system that appears to have crashed on a system panic.

Procedure 2-6 Handling a System Hang or Crash

1. Connect to the L2 controller via a serial port or Ethernet connection or
SGIconsole. (see "Getting Console Access" on page 29)

Make sure that you use a tool such as script(1) to capture all output from your
console session. For example, if you connect from an L3 controller, use the
following script:

script

Script started, file is typescript

/stand/sysco/bin/l2term --l2 <IP address of the L2>

2. Make sure that the console selection is set up correctly, as follows:

a. Escape to the L2 controller via serial port or Ethernet connection by entering
Ctrl-t.

b. Select the L2 controller, as follows:

?-001-L2>l2

c. Reset selections to defaults, as follows:

?-001-L2>sel reset
console input: 001c11 console0

console output: not filtered

30 007–4633–002

Linux® Configuration and Operations Guide

d. Make sure that the selection is correct, as follows:

?-001-L2>sel
known system consoles (nonpartitioned)

001c11 - L2 detected

current system console

console input: 001c11 console0

console output: not filtered

3. For partitioned systems only, select the desired partition, for example 1, as
follows (for nonpartitioned systems, go to step 4):

?-001-L2>sel p 1

4. Make sure that the destination is set up correctly by setting it to default, as
follows:

?-001-L2>dest reset

5. For partitioned systems only, set the destination to the desired partition, for
example 1, as folllows (for nonpartitioned systems, go to step 6):

?-001-L2>p 1 dest

6. Determine which L1 controllers are configured and functional by using the cfg
and pwr commands, as follows:

?-001-L2>cfg

L2 163.154.17.66: - 001 (LOCAL)

L1 163.154.17.66:0:0 - 001c11

L1 163.154.17.66:0:1 - 002i01

L1 163.154.17.66:0:5 - 001c14

Note: In systems with routers, each C-brick may show up twice.

?-001-L2>pwr

001c10:

power appears on

001c13:

007–4633–002 31

2: System Operation

power appears on
001r16:

power appears on

If some L1 controllers are missing, reseat the Universal Serial Bus (USB)
connections between the R-bricks and the L2 controller.

7. Determine whether the system has hung or crashed on panic, as follows:

a. Use the ping(8) command to try to ping the system.

b. Enter console mode by entering Ctrl-d.

Press the Enter key several times and look for a response from the system. If
you get a line feed, it means the kernel is still running. If the system is hung,
you will typically see a message similar to the following:

no response from 001c10 console, system not responding

If the system has dropped to the kdb> prompt, then it has crashed and is not
hung.

8. Record the LED and port status, as follows:

a. Escape to the L2 controller by entering Ctrl-t:

b. Select the L2 controller, as follows:

?-001-L2>l2

c. Record LED status, as follows:

?-001-L2>leds

001c11:
CPU 0A: 0x3c: SAL calling OS_INIT

CPU 0C: 0x3c: SAL calling OS_INIT

CPU 1A: 0x3c: SAL calling OS_INIT

CPU 1C: 0x3c: SAL calling OS_INIT

001c14:

CPU 0A: 0x3c: SAL calling OS_INIT

CPU 0C: 0x3c: SAL calling OS_INIT

CPU 1A: 0x3c: SAL calling OS_INIT

32 007–4633–002

Linux® Configuration and Operations Guide

CPU 1C: 0x3c: SAL calling OS_INIT

Record the link LED status; a missing link can cause a hang.

d. Record the port status, as follows:

?-001-L2>port
001c11:

Port Stat Remote Pwr Local Pwr Link LED SW LED

---- ---- ---------- ---------- -------- --------

A 0x0f okay okay on on

B 0x0f okay okay on on

C 0x0f okay okay on on
D 0x02 none okay off off

001c14:

Port Stat Remote Pwr Local Pwr Link LED SW LED

---- ---- ---------- ---------- -------- --------

A 0x0f okay okay on on
B 0x02 none okay off off

C 0x0f okay okay on on

D 0x02 none okay off off

9. Record information from KDB, as follows:

a. Return to console mode by entering Ctrl-d.

b. If the system is not already at the kdb> prompt, enter the system debugger by
entering the following command at the system console (Hit the escape key
(Esc) and then enter KDB all in caps).

l2> Esc KDB

c. At the kdb> prompt, enter the following:

[0]kdb> sn2kdb

[0]kdb> pod
0 000: POD SysCt (RT) Cac> error a

0 000: POD SysCt (RT) Cac> exit

This produces much output.

10. Generate an error dump from the L3 controller, as follows:

007–4633–002 33

2: System Operation

a. From the L3 controller, enter the following:

errdmp -m system namee

b. Alternatively, if the name of the L2 is not of the form l2-systemname enter the
following:

errdmp --l2 L2 IP address

A file is created in the /usr/people/sgidiag/sn2/dumps directory.

11. Use the Linux Kernel Crash Dump (LKCD) comand to take a crash dump, as
follows:

a. Leave KDB as follows:

[0]kdb> go

b. Enter Esc SYSc (the Escape key followed by "SYS" and then "c" within 5
seconds) to initiate a system dump. You should see output similar to the
following output:

Start a Crash Dump (If Configured)

Dumping from interrupt handler !

Uncertain scenario - but will try my best

If the dump is successful, the system will reset, and you will see the
following message as it boots:

Configuring system to save crash dumps [OK]

Generating crash report - this may take a few minutes

The crash dump will be saved in a numbered directory under
/var/log/dump.

12. If the system does not respond to the SysRq escape sequence, perform the
following:

a. Perform an NMI (nonmaskable interrupt), as follows:

Ctrl-t

?-001-L2>nmi

b. Capture the field replaceable unit (FRU) information, as follows:

l2> Ctrl-T fru capture

34 007–4633–002

Linux® Configuration and Operations Guide

c. Print the FRUinformation, as follows:

Ctrl-t
?-001-L2>fru print

d. If the system dropped into KDB when the NMI was performed, follow the
instructions in Step 9 and then peform a system reset, as follows:

?-001-L2>reset

When the system comes back up, the error records are saved in
/var/log/messages and written to the console.

Recovering a Damaged Root Filesystem
The following section describes how to recover a damaged root filesystem.

Procedure 2-7 Recovering a Damaged Root Filesystem

If your root filesystem should become damaged, use the following recovery steps:

1. Insert SGI Advanced Linux Environment 2.1.1 CD1 into the system’s CD-ROM
drive and restart the system.

2. While the system is powering up, check the device mapping table. It should look
similar to the following:

Device mapping table

fs0 : Pci(2|1)/Ata(Primary, Master)/CDROM(Entry1)This is the CD-ROM

fs1 : Pci(1|1)/Scsi(Pun0/Lun1)/HD(Part1,Sig00000000)
fs2 : Pci(1|1)/Scsi(Pun0/Lun2)/HD(Part1,Sigg1)

blk0 : Pci(2|1)/Ata(Primary, Master)

blk1 : Pci(2|1)/Ata(Primary, Master)/CDROM(Entry1)

blk2 : Pci(1|1)/Scsi(Pun0/Lun1)

blk3 : Pci(1|1)/Scsi(Pun0/Lun1)/HD(Part1,Sig00000000)

blk4 : Pci(1|1)/Scsi(Pun0/Lun1)/HD(Part2,Sig00000000)
blk5 : Pci(1|1)/Scsi(Pun0/Lun1)/HD(Part3,Sig00000000)

blk6 : Pci(1|1)/Scsi(Pun0/Lun1)/HD(Part4,Sig00000000)

blk7 : Pci(1|1)/Scsi(Pun0/Lun2)

blk8 : Pci(1|1)/Scsi(Pun0/Lun2)/HD(Part1,Sigg10)

007–4633–002 35

2: System Operation

3. At the Shell> prompt, type the CD-ROM device name, as follows:

Shell> fs0: Type this to change to the CD-ROM device
fs0:\>

4. Boot the CD by entering elilo linux rescue, as follows:

fs0:\> elilo linux rescue This starts the boot loader

5. The CD will then boot and start the rescue process.

6. Select the language you prefer to use for the rescue process. To continue, select OK.

Note: Console support for Asian languages is not available at this time. SGI
recommends that customers in Asia set the language to English.

7. The next screen lets you choose the media containing the rescue image. Currently,
Local CDROM is the only choice. To continue, select OK.

8. On the next screen, you have the option of mounting your root drive. If your root
filesystem has been damaged, it is important to attempt to mount it before
running the xfs_repair command. This ensures that valuable data from the
journal is recovered.

If you select Continue and the installer hangs or crashes, you will have to restart
this process and select Skip. Then you can attempt to mount the filesystem
manually. For information on how to do this, see "Manually Mounting the Root
Filesystem" on page 37.

9. If successful, the next screen informs you that your system can be found under
/mnt/sysimage. To enter the rescue shell, select OK.

10. At this point, administrators can inspect and attempt to repair or recover any
damaged or missing software. What follows is an example of how you might
repair a corrupted root filesystem.

While it is important to mount your filesystem to recover any data contained in
the journal, you must then unmount the filesystem before running the
xfs_repair command.

36 007–4633–002

Linux® Configuration and Operations Guide

The mount command issued without arguments lists currently mounted
filesystems, as follows:

sh-2.05# mount

rootfs on / type rootfs (rw)

devfs on /dev type devfs (rw)

/dev/root.old on / type ext2 (rw)

none on /dev type devfs (rw)
/proc on /proc type proc (rw)

/dev/pts on /dev/pts type devpts (rw)

/tmp/cdrom on /mnt/source type iso9660 (ro)

/tmp/loop0 on /mnt/runtime type cramfs (ro)

/dev/xscsi/pci01.03.0-1/target1/lun0/part3 on /mnt/sysimage type xfs (rw)
/dev/xscsi/pci01.03.0-1/target1/lun0/part1 on /mnt/sysimage/boot/efi type vfat (rw)

none on /mnt/sysimage/dev/pts type devpts (rw)

none on /mnt/sysimage/proc type proc (rw)

The line ending with /mnt/sysimage type xfs (rw) also contains the device
corresponding to your root disk. In this case,
/dev/xscsi/pci01.03.0-1/target1/lun0/part3.

11. Enter the following command to unmount the filesystem:

umount /mnt/sysimage

12. Run xfs_repair on the filesystem, as follows:

xfs_repair /dev/xscsi/pci01.03.0-1/target1/lun0/part3

13. After the xfs_repair command completes, the filesystem has been repaired and
you can reset your system.

Manually Mounting the Root Filesystem
The following section describes how to manually mount the root filesystem.

Procedure 2-8 Manually Mounting the Root Filesystem

If the installer could not locate your root filesystem, you can locate and mount it
manually. This section describes that process. For details, see XFS for Linux
Administration. In rare cases, mounting a corrupted filesystem could cause the mount

007–4633–002 37

2: System Operation

command to hang or have trouble. If that happens, see XFS for Linux Administration
for instructions on how to run xfs_repair without mounting first.

1. The following example assumes that your root filesystem is on partition 3 and
that it resides on a disk in the first disk bay of the IX-brick. To view the partitions
available on the system, issue the following command:

sh-2.05# cat /proc/partitions

major minor #blocks name rio rmerge rsect ruse wio wmerge wsect wuse running use aveq

5 0 125470 xscsi/pci01.01.0/target0/lun0/disc 218 4524 18968 10952 0 0 0 0 0 10952 10952

4 0 35843686 xscsi/pci01.03.0-1/target1/lun0/disc 32 101 692 69 2 14 512 10 0 80 80
4 1 513008 xscsi/pci01.03.0-1/target1/lun0/part1 0 0 0 0 0 0 0 0 0 0 0

4 2 9438208 xscsi/pci01.03.0-1/target1/lun0/part2 0 0 0 0 0 0 0 0 0 0 0

4 3 25891840 xscsi/pci01.03.0-1/target1/lun0/part3 28 29 584 50 2 14 512 10 0 61 61

4 16 35843686 xscsi/pci01.03.0-1/target2/lun0/disc 4 72 108 19 0 0 0 0 0 19 19

4 17 513008 xscsi/pci01.03.0-1/target2/lun0/part1 0 0 0 0 0 0 0 0 0 0 0
4 18 9438208 xscsi/pci01.03.0-1/target2/lun0/part2 0 0 0 0 0 0 0 0 0 0 0

4 19 25891840 xscsi/pci01.03.0-1/target2/lun0/part3 0 0 0 0 0 0 0 0 0 0 0

2. When the system is running normally, the XSCSI pathname in the following
example represents the system disk in bay 1 of the IX-brick. This example
assumes that you put the root filesystem on partition 3:

/dev/xscsi/pci01.03.0-1/target1/lun0/part3

3. To manually mount the filesystem, enter the following commands:

sh-2.06# mkdir /mnt/sysimage

sh-2.07# mount -t xfs /dev/xscsi/pci01.03.0-1/target1/lun0/part3 /mnt/sysimage

38 007–4633–002

Chapter 3

Performance Tuning

This chapter describes tuning issues for single processor and multiprocessor programs
and contains the following sections:

• "Determining System Configuration" on page 39

• "Single Processor Code Tuning" on page 41

• "Multiprocessor Code Tuning" on page 52

• "Profiling and Analyzing Your Code" on page 58

• "Other Performance Tools" on page 61

The Linux Application Tuning Guide provides detailed information about tuning
application programs on the SGI Altix 3000 family of servers and superclusters,
running the Linux operating system. Application programs includes Fortran and C
programs written with the Intel-provided compilers on SGI Linux systems.

For a list of available references, see “Related Publications” in the preface of this
manual.

Determining System Configuration
To determine the details of the system you are running, you can browse files from the
/proc pseudo-filesystem (see the proc(5) man page for details). Some of the
information you can obtain is, as follows:

• /proc/cpuinfo

Displays processor information, one entry per processor. You can use this to
determine clock speed and processor stepping.

• /proc/meminfo

Provides a global view of system memory usage, such as: total memory, free
memory, swap space, and so on.

• /proc/discontig

Shows memory usage (in pages).

007–4633–002 39

3: Performance Tuning

• proc/pal/cpu0/cache_info

Provides detailed information about L1, L2, and L3 cache structure, such as: size,
latency, associativity, line size, and so on. Other files in /proc/pal/cpu0 provide
information about the Translation Lookaside Buffer (TLB) structure, clock ratios,
and other details.

• /proc/version

Provides information about the installed kernel.

• /proc/perfmon

If this file does not exist in /proc (that is, if it has not been exported),
performance counters are not started by the kernel and none of the performance
tools that use the counters will work.

• /proc/mounts

Provides details about the filesystems that are currently mounted.

• /proc/modules

Contains details about currently installed kernel modules.

You can also use the uname(1) command, which returns the kernel version and other
machine information similar to the following:

[user@ferrari ~]$ uname -a

Linux ferrari.americas.sgi.com 2.4.19-sgi212r2 #1 SMP Mon Mar 31 23:59:51 PST 2003 ia64 unknown

In addition, the topology command is a Bourne shell script that uses information in
/dev/hw to display system configuration information, similar to the following:

[user@ferrari ~]$ topology

Machine ferrari.americas.sgi.com has:

8 cpu’s

4 memory nodes

The cpus are:

cpu 0 is /dev/hw/module/001c05/slab/0/node/cpubus/0/a

cpu 1 is /dev/hw/module/001c05/slab/0/node/cpubus/0/c

cpu 2 is /dev/hw/module/001c05/slab/1/node/cpubus/0/a

cpu 3 is /dev/hw/module/001c05/slab/1/node/cpubus/0/c

40 007–4633–002

Linux® Configuration and Operations Guide

cpu 4 is /dev/hw/module/001c08/slab/0/node/cpubus/0/a
cpu 5 is /dev/hw/module/001c08/slab/0/node/cpubus/0/c

cpu 6 is /dev/hw/module/001c08/slab/1/node/cpubus/0/a

cpu 7 is /dev/hw/module/001c08/slab/1/node/cpubus/0/c

The nodes are:
node 0 is /dev/hw/module/001c05/slab/0/node

node 1 is /dev/hw/module/001c05/slab/1/node

node 2 is /dev/hw/module/001c08/slab/0/node

node 3 is /dev/hw/module/001c08/slab/1/node

The topology is defined by:
/dev/hw/module/001c05/slab/0/node/link/1 is /dev/hw/module/001c05/slab/1/node

/dev/hw/module/001c05/slab/0/node/link/2 is /dev/hw/module/001c08/slab/0/node

/dev/hw/module/001c05/slab/1/node/link/1 is /dev/hw/module/001c05/slab/0/node

/dev/hw/module/001c05/slab/1/node/link/2 is /dev/hw/module/001c08/slab/1/node

/dev/hw/module/001c08/slab/0/node/link/1 is /dev/hw/module/001c08/slab/1/node
/dev/hw/module/001c08/slab/0/node/link/2 is /dev/hw/module/001c05/slab/0/node

/dev/hw/module/001c08/slab/1/node/link/1 is /dev/hw/module/001c08/slab/0/node

/dev/hw/module/001c08/slab/1/node/link/2 is /dev/hw/module/001c05/slab/1/node

/dev/hw/module/001c05/slab/0/node/xtalk/0/link -> /dev/hw/module/001c05/slab/0/IXbrick

See the topology(1) man page for details.

The currently recommended compilers for SGI Altix 3000 systems are efc and ecc
(the Intel Fortran compiler and Intel C/C++ compiler). Other compilers (such as the
GNU set of compilers) can be used; however, efc and ecc provide the best
performance on Linux systems. Examples in this chapter, unless noted otherwise, use
the efc or ecc compiler.ecc compiler.

Single Processor Code Tuning
Several basic steps are used to tune performance of single-processor code, as follows:

• Get the expected answers and then tune performance. For details, see "Getting the
Correct Results" on page 42.

• Use existing tuned code, such as that found in math libraries and scientific library
packages. For details, see "Using Tuned Code" on page 48.

007–4633–002 41

3: Performance Tuning

• Determine what needs tuning. For details, see "Determining Tuning Needs" on
page 49.

• Use the compiler to do the work. For details, see "Using Compiler Options Where
Possible" on page 49.

• Tune cache performance. For details, see "Tuning the Cache Performance" on page
50.

• Set environment variables to enable higher-performance memory management
mode. For details, see "Managing Memory" on page 51.

• Change stack and data segments. For details, see "Using the chatr Command to
Change Stack and Data Segments" on page 52.

Getting the Correct Results

One of the first steps in performance tuning is to verify that the correct answers are
being obtained. Once the correct answers are obtained, tuning can be done. You can
verify answers by initially disabling specific optimizations and limiting default
optimizations. This can be accomplished by using specific compiler options and by
using debugging tools.

The following compiler options emphasize tracing and porting over performance:

• -O

The -O0 option disables all optimization. The default is -O2.

• -g

The -g option preserves symbols for debugging.

• -mp

The -mp option limits floating-point optimizations and maintains declared
precision.

• -IPF_fltacc

The -IPF_fltacc option disables optimizations that affect floating-point
accuracy.

• --r, -i

42 007–4633–002

Linux® Configuration and Operations Guide

The -r8 and -i8 options set default real, integer, and logical sizes to 8 bytes,
which are useful for porting Cray codes. This explicitly declares intrinsic and
external library functions.

Some debugging tools can also be used to verify that correct answers are being
obtained. The following debuggers can be used:

• gdb

The GNU project debugger. This is useful for debugging programs written in C,
C++, and Fortran 95. When compiling with C and C++, include the -g option on
the compiler command line to produce the dwarf2 symbols database used by
gdb(1).

When using gdb for Fortran debugging, include the -g and -O0 options. Do not
use gdb for Fortran debugging when compiling with -O1 or higher.

The debugger to be used for Fortran 95 codes can be downloaded from
http://sourceforge.net/project/showfiles.php?group_id=56720.

Note: The standard gdb compiler does not support Fortran 95 codes.

To verify that you have the correct version of gdb installed, use the gdb -v
command. The output should appear similar to the following:

GNU gdb 5.1.1 FORTRAN95-20020628 (RC1)

Copyright 2002 Free Software Foundation, Inc.

For a complete list of gdb commands, see the gdb user guide online at
http://sources.redhat.com/gdb/onlinedocs/gdb_toc.html or use the help option.

Note: The current instances of gdb do not report ar.ec registers correctly. If
you are debugging rotating, register-based, software-pipelined loops at the
assembly code level, try using idb instead.

• idb

The idb program is the the Intel debugger. This is a fully symbolic debugger for
Linux platforms. The debugger provides extensive support for debugging
programs written in C, C++, FORTRAN 77, and Fortran 90. At this time, idb
cannot be used to debug multithreaded or multiprocessor programs on systems
with Itanium processors.

007–4633–002 43

3: Performance Tuning

Running idb with the -gdb option on the shell command line provides gdb-like
user commands and debugger output.

• ddd

A graphical user interface (GUI) to a command line debugger. It supports gdb
and idb. For details about usage, see "Using the ddd Tool".

Using the ddd Tool

The DataDisplayDebugger ddd(1) tool is a GUI to an arbitrary command line
debugger as shown in Figure 3-1 on page 44. To instantiate ddd, use the
--debugger option to specify the debugger used (for example, --debugger
"idb"). The default debugger used is gdb.

Figure 3-1 DataDisplayDebugger(ddd)(1)

44 007–4633–002

Linux® Configuration and Operations Guide

When the debugger is loaded the DataDisplayDebugger screen appears divided into
panes that show the following information:

• Array inspection

• Source code

• Disassembled code

• A command line window to the debugger engine

You can use the View menu to switch these panes on and off.

Some commonly used commands, such as run, step, next, continue, kill are found off
the Program pull-down menu and command history, previous, next, find forward,
find backward, quit search, and so on are found off the Commands pull-down menu.
In addition, the following actions can be useful:

• Select an address in the assembly view, click the right mouse button, and select
lookup. The gdb(1) command is executed in the command pane and it shows the
corresponding source line.

• Select a variable in the source pane and click the right mouse button. The current
value is displayed. Arrays are displayed in the array inspection window. You can
print these arrays to a PostScript file by using the File > Print Graph option.

• You can view the contents of the register file, including general, floating-point,
NaT, predicate, and application registers by selecting Registers from the Status
menu.The Status menu also allows you to view stack traces or to switch threads.

Procedure 3-1 Using ddd(1) with MPI Jobs

To use the ddd tool with an MPI job, perform the following:

1. Compile your program -g option similar to the following example:

% cc -g -o hello hello.c -lmpi

2. In a window, set the start and pause environment variables, as follows:

% setenv MPI_SLAVE_DEBUG_ATTACH 0

The 0 argument is is the rank used by MPI to refer to the logical process number
in the job. A 64 processor job has ranks 0-63. A program can query what its rank
and perform particular tasks, accordingly.

007–4633–002 45

3: Performance Tuning

Then, run a command similar to the following:

% mpirun -v -np 2 hello

The output similar to the following appears:

MPI: libxmpi.so ’SGI MPI 4.4pre MPT 1.9pre 08/04/03 11:37:02’

MPI: libmpi.so ’SGI MPI 4.4pre MPT 1.9pre 08/04/03 11:32:58’

MPI: MPI_MSGS_MAX = 524288

MPI: MPI_BUFS_PER_PROC= 32

MPI rank 0 sleeping for 20 seconds while you attach the debugger.

In this example, the hello program simply runs N copies, each reporting their
own rank. It happens that rank 1 was the first to start up and report the
instructions for how to attach the debugger to the job.

Use can use one or the other of the following debugger tools, as follows:

% gdb /proc/29911/exe 29911

or

% idb -pid 29911 /proc/29911/ex

3. In a second window, set your DISPLAY environment variable and then run the
ddd command with the name of your program and the program’s PID, as follow:

% setenv DISPLAY display:0.0

then

% ddd hello 29911

4. From the View pull-down menu, select Machine Code Window.

For detailed information on using the DataDisplayDebugger (DDD), see the Debugging
with DDD User’s Guide and Reference Manual available at the following location:

http://www.gnu.org/manual/ddd/pdf/ddd.pdf

For more information on gdb and ddd, see the gdb(1) and ddd(1) man pages,
respectively.

46 007–4633–002

Linux® Configuration and Operations Guide

Managing Heap Corruption Problems

Two methods can be used to check for heap corruption problems in programs that
use the glibc library malloc/free dynamic memory management routines:
environment variables and Electric Fence.

Set the MALLOC_CHECK_ environment variable to 1 to print diagnostic messages or to
2 to abort immediately when heap corruption is detected. For more information on
the malloc and free memory management routines, see the malloc(3) and free(1)
man pages, respectively.

Electric Fence is a malloc debugger for Linux and UNIX. It stops your program on
the exact instruction that overruns (or underruns) a malloc() memory buffer and
displays the source-code line that causes the bug. It aligns either the start or end of
an allocated block with an invalid page, causing segmentation faults to occur on
buffer overruns or underruns at the point of error. It can also detect accesses to
previously freed regions of memory.

Underruns and overruns cannot be simultaneously detected. The default behavior is
to place inaccessible pages immediately after allocated memory, but the
complementary case can be enabled by setting the EF_PROTECT_BELOW environment
variable. To use Electric Fence, link with the libefence library, as shown in the
following example:

% cat foo.c

#include <stdio.h>

#include <stdlib.h>

int main (void)
{

int i;

int * a;

float *b;

a = (int *)malloc(1000*sizeof (int));

b = (float *)malloc(1000*sizeof (float));

a[0]=1;

for (i=1 ; i<1001;i++)
{

a[i]=a[i-1]+1;

}

for (i=1 ; i<1000;i++)

{

007–4633–002 47

3: Performance Tuning

b[i]=a[i-1]*3.14;
}

printf("answer is %d %f \n"a[999],b[999]);

}

Compile and run the program as follows (note the error when it is compiled with the
library call):

% ecc foo.c
% ./a.out

answer is 1000 3136.860107

% ecc foo.c -lefence

% ./a.out

Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens

Segmentation fault

%

To avoid potentially large core files, the recommended method of using Electric Fence
is from within a debugger. For more information, see the efence(3) man page.

Using Tuned Code

Where possible, use code which has already been tuned for optimum hardware
performance.

The following mathematical functions should be used where possible to help obtain
best results:

• MKL: Intel’s Math Kernel Library. This library includes BLAS, LAPACK, and FFT
routines.

• VML: the Vector Math Library, available as part of the MKL package
(libmkl_vml_itp.so).

• Standard Math library: standard math library functions are provided with the
Intel compiler’s libimf.a file. If the -lm option is specified, the glibc libm
routines are linked in first.

You can find documentation for MKL and VML at the following website:

48 007–4633–002

Linux® Configuration and Operations Guide

http://intel.com/software/products/perflib/index.htm?iid=ipp_home+software_libraries&

Determining Tuning Needs

To determine what points in your code might benefit from tuning, use the following
tools:

time Use this command to obtain an overview of user,
system, and elapsed time. For more information, see
the time(1) man page.

gprof Use this tool to obtain an execution profile of your
program (a pcsamp profile). Use the -p compiler
option to enable gprof use. For more information, see
the gprof(1) man page.

VTune This Intel performance monitoring tool is a
Linux-server, Windows-client application. It supports
remote sampling on all Itanium and Linux systems.

pfmon This performance monitoring tool is designed for
Itanium and Linux. It uses the Itanium Performance
Monitoring Unit (PMU) to do counting and sampling
on unmodified binaries. For more information, see the
pfmon(1) man page.

For information about VTune and pfmon, see "Profilers and Performance Tools".

Using Compiler Options Where Possible

Several compiler options can be used to optimize performance. For a short summary
of efc or ecc options, use the -help option on the compiler command line. Use the
-dryrun option to show the driver tool commands that efc or ecc generate. This
option does not execute tools.

Use the following options to help tune performance:

-ftz Flushes underflow to zero to avoid kernel traps.
Enabled by default at -O3 optimization.

-fno-alias Assumes no pointer aliasing. Other aliasing options
include -ansi_alias and -fno_fnalias. Note that
alias assertions may generate incorrect code.

007–4633–002 49

3: Performance Tuning

-ip Generates single file, interprocedural optimization.

-ipo Generates multifile, interprocedural optimization.

-O3 Enables -O2 optimizations plus more aggressive
optimizations, including loop transformation and
prefetching. Level 3 optimization may not improve
performance for all programs.

-opt_report Generates an optimization report and places it in the
file specified in -opt_report_file.

-override_limits This is an undocumented option that sometimes allows
the compiler to continue optimizing when it has hit an
internal limit.

-prof_gen and
-prof_use

Generates and uses profiling information. These
options require a three-step compilation process:

1. Compile with proper instrumentation using
-prof_gen.

2. Run the program on one or more training datasets.

3. Compile with -prof_use, which uses the profile
information from the training run.

-S Compiles and generates assembly listing in .s files and
does not link. The assembly listing can be used in
conjunction with the output generated by the
-opt_report option to try to determine how well the
compiler is optimizing loops.

Tuning the Cache Performance

The pfmon software is a performance monitoring tool that provides a user-level
interface to the Performance Monitoring Unit (PMU) built into the Itanium processor
chip. pfmon can be used to count or sample PMU events for unmodified binaries in
its per-process mode and it can also be used to run system-wide monitoring sessions.
The pfmon tool can monitor activities happening at the user and/or kernel level for
both type of sessions. These counts and samples can be used to optimize program
performance on the IPF processor. For more information on pfmon, see the pfmon(1)
man page.

There are several actions you can take to help tune cache performance, as follows:

50 007–4633–002

Linux® Configuration and Operations Guide

• Avoid large power-of-2 strides and dimensions that cause cache thrashing.

• Use strides of 1 wherever possible.

• Cache bank conflicts can occur if there are two accesses to the same 16-byte-wide
bank at the same time. Try different padding of arrays if the output from the
pfmon -e L2_OZQ_CANCELS1_BANK_CONF command and the output from the
pfmon -e CPU_CYCLES command shows a high number of bank conflicts relative
to total CPU cycles. These can be combined into one command, as follows:

% pfmon -e CPU_CYCLES,L2_OZQ_CANCELS1_BANK_CONF a.out

A maximum of four performance monitoring events can be counted simultaneously.

• Group together data that is used at the same time and do not use vectors in your
code, if possible.

• Try to avoid the use of temporary arrays and minimize data copies.

Managing Memory

Codes that frequently allocate and deallocate memory through the glibc library
malloc(3)/free(1) calls may accrue significant system time due to memory
management overhead. By default, glibc strives for system-wide memory efficiency at
the expense of performance. A detailed discussion of this issue can be found at the
following location:

http://www.linuxshowcase.org/ezolt.html

To enable the higher-performance memory management mode, set the following
environment variables:

% setenv MALLOC_TRIM_THRESHOLD_ -1

% setenv MALLOC_MMAP_MAX_ 0

Because allocations in efc using the malloc intrinsic use the glibc library malloc
command internally, these environment variables are also applicable in Fortran codes
using, for example, Cray pointers with malloc(3)/free(1). But they do not work for
Fortran 90 allocatable arrays, which are managed directly through Fortran library calls.

007–4633–002 51

3: Performance Tuning

Using the chatr Command to Change Stack and Data Segments

The chatr(1) command changes the ELF header of a program so that when the
program is run, instructions in the stack and data segments are or are not executable.

The default is to allow the stack and data segments to be executable. For certain
workloads, a performance improvement can be obtained by turning off the default
behavior and making the stack and code segments unexecutable. This typically
benefits workloads that do a large number of fork() calls. Workloads without a large
number of fork() calls will probably not see a performance improvement.

You can change this behavior system-wide by using the sysctl command. The
following command disallows executable stacks and data segments:

% sysctl vm.executable_stacks=0
The following command allows executable stacks and data segments:

% sysctl vm.executable_stacks=1

Note that some programs may now fail with a SEGV error even though they worked
correctly before. Usually, these are programs that store instructions in the stack or
data segment and then branch to those instructions (for example, older versions of the
X server that load graphics drivers into the data segment, or Java JIT compilers). You
can use the chatr command to make these programs work correctly, regardless of
the value of vm.executable_stacks.

For more detailed information about usage, see the chatr(1) man page.

Multiprocessor Code Tuning
Before beginning any multiprocessor tuning, first perform single processor tuning.
This can often obtain good results in multiprocessor codes also. For details, see
"Single Processor Code Tuning" on page 41.

Multiprocessor tuning consists of the following major steps:

• Choose the parallelization methodology for your code. For details, see
"Parallelizing Your Code" on page 53.

• Analyze your code to make sure it is parallelizing properly. For details, see
"Solving Bottlenecks in Code" on page 54.

52 007–4633–002

Linux® Configuration and Operations Guide

• Check to determine if false sharing exists. For details, see "Fixing False Sharing"
on page 55.

• Tune for data placement. For details, see "Using dplace and runon" on page 56.

• Use environment variables to assist with tuning. For details, see "Environment
Variables for Performance Tuning" on page 57.

Parallelizing Your Code

The first step in multiprocessor performance tuning is to choose the parallelization
methodology that you want to use for tuning. You can use the following options:Use
the

• Use the Message Passing Interface (MPI) from the SGI Message Passing Toolkit
(MPT). MPI is optimized and more scalable for SGI Altix 3000 series systems than
generic MPI libraries. It takes advantage of the SGI Altix 3000 architecture and
SGI Linux NUMA features.

Use the -lmpi compiler option to use MPI. For a list of environment variables
that are supported, see the mpi(1) man page. Those variables that are valid for
IRIX systems only are so noted on the man page.

MPIO_DIRECT_READ and MPIO_DIRECT_WRITE are supported under Linux for
local XFS filesystems in SGI MPT version 1.6.1 and beyond.

• Use OpenMP. When using C, C++, or Fortran code with OpenMP directives, you
can use the following compiler options:

efc -openmp or ecc -openmp These options use the Intel
OpenMP front-end that is built
into the Intel compilers. The
resulting executable file makes
calls to libguide.so, which is
the Intel OpenMP run-time
library.

guide An alternate command to
invoke the Intel compilers to use
OpenMP code. Use guidec (in
place of ecc), guideefc (in
place of efc), or guidec++ to
translate code with OpenMP

007–4633–002 53

3: Performance Tuning

directives into code with calls to
libguide. See "Other
Performance Tools" for details.

The -openmp option to efc is the Intel long-term OpenMP compiler for Linux.
However, if you have performance problems with this option, using guide might
provide improved performance.

• Use the compiler to invoke automatic parallelization. Use the -parallel and
-par_report option to the efc or ecc compiler. These options show which
loops were parallelized and the reasons why some loops were not parallelized. If
a source file contains many loops, it might be necessary to add the
-override_limits flag to enable automatic parallelization. The code generated
by -parallel is based on the OpenMP API, and the standard OpenMP
environment variables and Intel extensions apply.

Determine the amount of code that is parallelized. Use the following formula to
calculate the amount of code that is parallelized:

p=N(T(1)-T(N)) / T(1)(N-1)

In this equation, T(1) is the time the code runs on a single CPU and T(N) is the time it
runs on N CPUs. Speedup is defined as T(1)/T(N).

If speedup/N is less than 50% (that is, N>(2-p)/(1-p))), stop using more CPUs and
tune for better scalability.

CPU activity can be displayed with the top or vmstat commands or accessed by
using the PCP tools (for example, pmval kernel.percpu.cpu.user) or by using
Performance Co-Pilot visualization tools on a remote IRIX workstation. Hardware
configuration information can be displayed using the /proc/cpuinfo or
/proc/meminfo script. Detailed cache (and other) information can be displayed
using the /proc/pal/cpuX script, where X is a CPU number.

Solving Bottlenecks in Code

For details about the different profiling tools that can pinpoint the bottlenecks in your
code, see "Profilers and Performance Tools".

54 007–4633–002

Linux® Configuration and Operations Guide

Fixing False Sharing

If the parallel version of your program is slower than the serial version, false sharing
might be occurring. False sharing occurs when two or more data items that appear not
to be accessed by different threads in a shared memory application correspond to the
same cache line in the processor data caches. If two threads executing on different
CPUs modify the same cache line, the cache line cannot remain resident and correct
in both CPUs, and the hardware must move the cache line through the memory
subsystem to retain coherency. This causes performance degradation and reduction in
the scalability of the application. If the data items are only read, not written, the
cache line remains in a shared state on all of the CPUs concerned. False sharing can
occur when different threads modify adjacent elements in a shared array.

Determining the Occurence of False Sharing

You can use the following methods to verify that false sharing is happening, as
follows:

• Use the performance monitor to look at output from pfmon(1) and the
BUS_MEM_READ_BRIL_SELF and BUS_RD_INVAL_ALL_HITM events.

• Use pfmon to check DEAR events to track common cache lines.

• Use the Performance Co-Pilot pmshub utility to monitor cache traffic and CPU
utilization. For more information, see the pmshub(1) man page.

Note: The pmshub utility may not be available for this release. Consult your
release notes for information about its availability.

Fixing False Sharing

If false sharing is a problem on your system, try the following solutions:

• Use the HW counter to run a profile that monitors storage to shared cache lines.
This will show the location of the problem.

• Revise data structures or algorithms.

• Check shared data, static variables, common blocks, and private and public
variables in shared objects.

• Use critical regions to identify the part of the code that has the problem.

007–4633–002 55

3: Performance Tuning

Using dplace and runon

The dplace command binds processes to specified CPUs in a round-robin fashion.
Once bound to a process, they do not migrate. This is similar to _DSM_MUSTRUN on
IRIX systems. dplace numbering is done in the context of the current CPU memory
set. For more information, see the dplace(1) man page.

The runon command restricts execution to the listed set of CPUs; however, processes
are still free to move among listed CPUs. For more information, see the runon(1)
man page.

For more details on these commands, see the following sections.

dplace for MPI Codes

For best placement and for CPU-data affinity, use one of the following methods:

• Use MPI_DSM_MUSTRUN in a cpuset.

• Set the MPI_DSM_CPULIST environment variable.

• Use the dplace -s1 command.

When using SGI MPI-compiled codes, use the -s1 option and provide the full path to
dplace, as in the following example:

% mpirun -np 32 /usr/bin/dplace -c16-47 -s1 ./a.out

Using the -s1 option directs dplace to skip placement of the lightweight MPI
"shepherd" process. For more information on the dplace command, see the
dplace(1) man page.

dplace for OpenMP Codes

When using OpenMP codes from Intel, use the -x6 option, as in the following
example:

% setenv OMP_NUM_THREADS 4

% dplace -x6 -c5-8 ./a.out

The -x6 option directs dplace to skip placement of the two lightweight OpenMP
shepherd processes.

56 007–4633–002

Linux® Configuration and Operations Guide

Notice the distinction between dplace and runon:

% setenv OMP_NUM_THREADS 4
% dplace -x6 -c5-8 ./a.out

% runon 5-8 ./a.out

The dplace command allows you to skip placement of the shepherd processes, while
the runon command does not. The dplace command also locks each thread to its
corresponding CPU; the runon command restricts the threads to CPUs 5 through 8,
but they are free to migrate among those CPUs.

For information about the dplace command and its usage, see the dplace(1) man
page and "dplace" on page 69 in Chapter 4, "NUMA Tools" on page 63.

Environment Variables for Performance Tuning

You can use several different You can use several different environment variables to
assist in performance tuning. For details about environment variables used to control
the behavior of MPI, see the mpi(1) man page.

Several OpenMP environment variables can affect the actions of the OpenMP library.
For example, some environment variables control the behavior of threads in the
application when they have no work to perform or are waiting for other threads to
arrive at a synchronization semantic; other variables can specify how the OpenMP
library schedules iterations of a loop across threads. The following environment
variables are part of the OpenMP standard:

• OMP_NUM_THREADS

The default is the number of CPUs in the system.

• OMP_SCHEDULE

The default is static.

• OMP_DYNAMIC

The default is false.

• OMP_NESTED

The default is false.

In addition to the preceding environment variables, Intel provides several OpenMP
extensions, two of which are through the use of the KMP_LIBRARY variable.

007–4633–002 57

3: Performance Tuning

The KMP_LIBRARY variable sets the run-time execution mode, as follows:

• If set to serial, single-processor execution is used.

• If set to throughput, CPUs yield to other processes when waiting for work. This
is the default and is intended to provide good overall system performance in a
multiuser environment. This is analogous to the IRIX _DSM_WAIT=YIELD variable.

• If set to turnaround, worker threads do not yield while waiting for work. This is
analogous to the IRIX _DSM_WAIT=SPIN variable. Setting KMP_LIBRARY to
turnaround may improve the performance of benchmarks run on dedicated
systems, where multiple users are not contending for CPU resources.

f your program gets a segmentation fault immediately upon execution, you may need
to increase KMP_STACKSIZE. This is the private stack size for threads. The default is
4 MB. You may also need to increase your shell stack size limit.

Profiling and Analyzing Your Code
Several tools are available to help determine areas for performance improvements.
The following sections describe some of those tools and covers the following topics:

• "Profling with pfmon" on page 58

• "Using the profile.pl Script" on page 59

• "Using VTune for Remote Sampling " on page 60

• "Using GuideView" on page 60

Profling with pfmon

The pfmon tool is a performance monitoring tool designed for Linux. It uses the
Itanium Performance Monitoring Unit (PMU) to count and sample on unmodified
binaries. In addition, it can be used for the following tasks:

• To monitor unmodified binaries in its per-process mode.

• To run system-wide monitoring sessions. Such session are active across all
processes executing on a given CPU.

• Launch a system-wide session on a dedicated CPU or a set of CPUs in parallel.

58 007–4633–002

Linux® Configuration and Operations Guide

• Monitor activities happening at the user level or at the kernel level.

• Collect basic event counts.

• Sample program or system execution, monitoring up to four events at a time.

To see a list of available options, use the pfmon -help command or see the pfmon(1)
man page.

Using the profile.pl Script

The profile.pl script handles the entire user program profiling process, including
using dplace. Typical usage is as follows:

% profile.pl -c0-3 -x6 command args

This script designates processors 0 through 3. The -x6 option is necessary only for
OpenMP codes.

The result is a profile taken on the CPU_CYCLES PMU event and placed into
profile.out. This script also supports profiling on other events such as
IA64_INST_RETIRED, L3_MISSES, and so on; enter pfmon -l for a complete list of
PMU events. The script handles running the command under the performance
monitor, creating a map file of symbol names and addresses from the executable and
any associated dynamic libraries, and running the profile analyzer.

For more information on these program profiling tools, see profile.pl(1),
analyze.pl(1), and makemap.pl(1) man pages.

profile.pl with MPI programs

For MPI programs, use the profile.pl command with the -s1 option, as in the
following example:

% mpirun -np 4 profile.pl -s1 -c0-3 test_prog </dev/null

The use of /dev/null ensures that MPI programs run in the background without
asking for TTY input.

007–4633–002 59

3: Performance Tuning

Using VTune for Remote Sampling

The Intel VTune performance analyzer does remote sampling experiments. The
VTune data collector runs on the Linux system and an accompanying GUI runs on an
IA-32 Windows machine, which is used for analyzing the results.

For details about using VTune, see the following URL:

http://developer.intel.com/software/products/vtune/vtune61/index.htm

Note: The VTune tool may not be available for this release. Consult your release
notes to its availability.

Using GuideView

GuideView is a graphical tool that presents a window into the performance details of
the parallel execution of a program. GuideView is part of the KAP/Pro Toolset,
which also includes the Guide OpenMP compiler and the Assure Thread Analyzer.
GuideView is not a part of the default software installation on your system.

GuideView uses an intuitive, color-coded display of parallel performance bottlenecks
which helps pinpoint performance anomalies. It graphically illustrates the activity of
each processor at various levels of detail by using a hierarchical summary.

Statistical data is collapsed into relevant summaries that indicate where attention
should be focused (for example, regions of the code where improvements in local
performance will have the greatest impact on overall performance).

To gather programming statistics, use the -O3, -openmp, and -openmp_profile
compiler options. This causes the linker to use libguide_stats.a instead of the
default libguide.a. The following example demonstrates the compiler command
line used to produce a file named swim:

% efc -O3 -openmp -openmp_profile -o swim swim.f

To obtain profiling data, run the program, as in this example:

% export OMP_NUM_THREADS=8

% ./swim < swim.in

60 007–4633–002

Linux® Configuration and Operations Guide

When the program finishes, the swim.gvs file is produced and it can be used with
GuideView. To invoke GuideView with that file, use the following command:

% guideview -jpath=your_path_to_Java -mhz=998 ./swim.gvs.

The graphical portions of GuideView require the use of Java. Java 1.1.6-8 and Java
1.2.2 are supported and later versions appear to work correctly. Without Java, the
functionality is severely limited, but text output is still available and is useful, as the
following portion of the text file that is produced demonstrates:

Program execution time (in seconds):

cpu : 0.07 sec

elapsed : 69.48 sec
serial : 0.96 sec

parallel : 68.52 sec

pcpu percent : 0.10 %

end

Summary over all regions (has 4 threads):

Thread #0 #1 #2 #3

Sum Parallel : 68.304 68.230 68.240 68.185

Sum Imbalance : 1.020 0.592 0.892 0.838

Sum Critical Section: 0.011 0.022 0.021 0.024

Sum Sequential : 0.011 4.4e-03 4.6e-03 1.6e-03
Min Parallel : -5.1e-04 -5.1e-04 4.2e-04 -5.2e-04

Max Parallel : 0.090 0.090 0.090 0.090

Max Imbalance : 0.036 0.087 0.087 0.087

Max Critical Section: 4.6e-05 9.8e-04 6.0e-05 9.8e-04

Max Sequential : 9.8e-04 9.8e-04 9.8e-04 9.8e-04
end

Other Performance Tools
The following performance tools also can be of benefit when you are trying to
optimize your code:l

• Guide OpenMP Compiler is an OpenMP implementation for C, C++, and Fortran
from Intel.

• Assure Thread Analyzer from Intel locates programming errors in threaded
applications with no recoding required.

007–4633–002 61

3: Performance Tuning

You can find more detailed information about these products, at the following
location:

http://developer.intel.com/software/products/threading

Note: These products have not been thoroughly tested on SGI systems. SGI takes no
responsibility for the correct operation of third party products described or their
suitability for any particular purpose.

62 007–4633–002

Chapter 4

NUMA Tools

This chapter describes the dlook(1) and dplace(1) tools that you can use to improve
the performance of processes running on your SGI nonuniform memory access
(NUMA) machine. You can use dlook(1) to find out where in memory the operating
system is placing your application’s pages and how much system and user CPU time
it is consuming. You can use the dplace(1) command to bind a related set of
processes to specific CPUs or nodes to prevent process migration. This can improve
the performance of your application since it increases the percentage of memory
accesses that are local.

This chapter covers the following topics:

• "dlook" on page 63

• "dplace" on page 69

• "topology" on page 73

• "Installing NUMA Tools" on page 74

dlook

The dlook(1) command allows you to display the memory map and CPU usage for a
specified process as follows:

dlook [-a] [-c] [-h] [-l] [-o outfile] [-s secs] command [command-args]
dlook [-a] [-c] [-h] [-l] [-o outfile] [-s secs] pid

For each page in the virtual address space of the process, dlook(1) prints the
following information:

• The object that owns the page, such as a file, SYSV shared memory, a device
driver, and so on.

• The type of page, such as random access memory (RAM), FETCHOP, IOSPACE,
and so on.

• If the page type is RAM memory, the following information is displayed:

– Memory attributes, such as, SHARED, DIRTY, and so on

007–4633–002 63

4: NUMA Tools

– The node on which the page is located

– The physical address of the page (optional)

• Optionally, the dlook(1) command also prints the amount of elapsed CPU time
that the process has executed on each physical CPU in the system.

Two forms of the dlook(1) command are provided. In one form, dlook prints
information about an existing process that is identified by a process ID (PID). To use
this form of the command, you must be the owner of the process or be running with
root privilege. In the other form, you use dlook on a command you are launching
and thus are the owner.

The dlook(1) command accepts the following options:

-a Shows the physical addresses of each page in the address space.

-c Shows the elapsed CPU time, that is how long the process has executed
on each CPU.

-h Explicitly lists holes in the address space.

-l Shows libraries.

-o Outputs the file name. If not specified, output is written to stdout.

-s Specifies a sample interval in seconds. Information about the process is
displayed every second (secs) of CPU usage by the process.

An example for the sleep process with a PID of 4702 is as follows:

Note: The output has been abbreviated to shorten the example and bold headings
added for easier reading.

dlook 4702

Peek: sleep

Pid: 4702 Thu Aug 22 10:45:34 2002

Cputime by cpu (in seconds):

user system
TOTAL 0.002 0.033

cpu1 0.002 0.033

Process memory map:

2000000000000000-2000000000030000 r-xp 0000000000000000 04:03 4479 /lib/ld-2.2.4.so

64 007–4633–002

Linux® Configuration and Operations Guide

[2000000000000000-200000000002c000] 11 pages on node 1 MEMORY|SHARED

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-200000000003c000] 3 pages on node 0 MEMORY|DIRTY

...

2000000000128000-2000000000370000 r-xp 0000000000000000 04:03 4672 /lib/libc-2.2.4.so

[2000000000128000-2000000000164000] 15 pages on node 1 MEMORY|SHARED

[2000000000174000-2000000000188000] 5 pages on node 2 MEMORY|SHARED

[2000000000188000-2000000000190000] 2 pages on node 1 MEMORY|SHARED

[200000000019c000-20000000001a8000] 3 pages on node 1 MEMORY|SHARED
[20000000001c8000-20000000001d0000] 2 pages on node 1 MEMORY|SHARED

[20000000001fc000-2000000000204000] 2 pages on node 1 MEMORY|SHARED

[200000000020c000-2000000000230000] 9 pages on node 1 MEMORY|SHARED

[200000000026c000-2000000000270000] 1 page on node 1 MEMORY|SHARED

[2000000000284000-2000000000288000] 1 page on node 1 MEMORY|SHARED
[20000000002b4000-20000000002b8000] 1 page on node 1 MEMORY|SHARED

[20000000002c4000-20000000002c8000] 1 page on node 1 MEMORY|SHARED

[20000000002d0000-20000000002d8000] 2 pages on node 1 MEMORY|SHARED

[20000000002dc000-20000000002e0000] 1 page on node 1 MEMORY|SHARED

[2000000000340000-2000000000344000] 1 page on node 1 MEMORY|SHARED

[200000000034c000-2000000000358000] 3 pages on node 2 MEMORY|SHARED

....

20000000003c8000-20000000003d0000 rw-p 0000000000000000 00:00 0

[20000000003c8000-20000000003d0000] 2 pages on node 0 MEMORY|DIRTY

The dlook command gives the name of the process (Peek: sleep), the process ID,
and time and date it was invoked. It provides total user and system CPU time in
seconds for the process.

Under the heading Process memory map, the dlook command prints information
about a process from the /proc/pid/cpu and /proc/pid/maps files. On the left, it
shows the memory segment with the offsets below in decimal. In the middle of the
output page, it shows the type of access, time of execution, the PID, and the object
that owns the memory (in this case, /lib/ld-2.2.4.so). The characters s or p
indicate whether the page is mapped as sharable (s) with other processes or is private
(p). The right side of the output page shows the number of pages of memory
consumed and on which nodes the pages reside. Dirty memory means that the
memory has been modified by a user.

007–4633–002 65

4: NUMA Tools

In the second form of the dlook command, you specify a command and optional
command arguments. The dlook command issues an exec call on the command and
passes the command arguments. When the process terminates, dlook prints
information about the process, as shown in the following example:

dlook date

Thu Aug 22 10:39:20 CDT 2002

Exit: date

Pid: 4680 Thu Aug 22 10:39:20 2002

Process memory map:
2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-200000000003c000] 3 pages on node 3 MEMORY|DIRTY

20000000002dc000-20000000002e4000 rw-p 0000000000000000 00:00 0

[20000000002dc000-20000000002e4000] 2 pages on node 3 MEMORY|DIRTY

2000000000324000-2000000000334000 rw-p 0000000000000000 00:00 0

[2000000000324000-2000000000328000] 1 page on node 3 MEMORY|DIRTY

4000000000000000-400000000000c000 r-xp 0000000000000000 04:03 9657220 /bin/date

[4000000000000000-400000000000c000] 3 pages on node 1 MEMORY|SHARED

6000000000008000-6000000000010000 rw-p 0000000000008000 04:03 9657220 /bin/date

[600000000000c000-6000000000010000] 1 page on node 3 MEMORY|DIRTY

6000000000010000-6000000000014000 rwxp 0000000000000000 00:00 0
[6000000000010000-6000000000014000] 1 page on node 3 MEMORY|DIRTY

60000fff80000000-60000fff80004000 rw-p 0000000000000000 00:00 0

[60000fff80000000-60000fff80004000] 1 page on node 3 MEMORY|DIRTY

60000fffffff4000-60000fffffffc000 rwxp ffffffffffffc000 00:00 0

[60000fffffff4000-60000fffffffc000] 2 pages on node 3 MEMORY|DIRTY

66 007–4633–002

Linux® Configuration and Operations Guide

If you use the dlook command with the -s secs option, the information is sampled at
regular internals. The output for the command dlook -s 5 sleep 50 is as follows:

Exit: sleep

Pid: 5617 Thu Aug 22 11:16:05 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0
[2000000000030000-200000000003c000] 3 pages on node 3 MEMORY|DIRTY

2000000000134000-2000000000140000 rw-p 0000000000000000 00:00 0

20000000003a4000-20000000003a8000 rw-p 0000000000000000 00:00 0
[20000000003a4000-20000000003a8000] 1 page on node 3 MEMORY|DIRTY

20000000003e0000-20000000003ec000 rw-p 0000000000000000 00:00 0

[20000000003e0000-20000000003ec000] 3 pages on node 3 MEMORY|DIRTY

4000000000000000-4000000000008000 r-xp 0000000000000000 04:03 9657225 /bin/sleep

[4000000000000000-4000000000008000] 2 pages on node 3 MEMORY|SHARED

6000000000004000-6000000000008000 rw-p 0000000000004000 04:03 9657225 /bin/sleep

[6000000000004000-6000000000008000] 1 page on node 3 MEMORY|DIRTY

6000000000008000-600000000000c000 rwxp 0000000000000000 00:00 0

[6000000000008000-600000000000c000] 1 page on node 3 MEMORY|DIRTY

60000fff80000000-60000fff80004000 rw-p 0000000000000000 00:00 0

[60000fff80000000-60000fff80004000] 1 page on node 3 MEMORY|DIRTY

60000fffffff4000-60000fffffffc000 rwxp ffffffffffffc000 00:00 0

[60000fffffff4000-60000fffffffc000] 2 pages on node 3 MEMORY|DIRTY

You can run an message passing interface (MPI) job using the mpirun command and
print the memory map for each thread, or redirect the ouput to a file, as follows:

007–4633–002 67

4: NUMA Tools

Note: The output has been abbreviated to shorten the example and bold headings
added for easier reading.

mpirun -np 8 dlook -o dlook.out ft.C.8

Contents of dlook.out:

Exit: ft.C.8

Pid: 2306 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 21 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

...

Exit: ft.C.8

Pid: 2310 Fri Aug 30 14:33:37 2002

Process memory map:
2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 25 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED
[2000000000050000-2000000000054000] 1 page on node 25 MEMORY|DIRTY

...

Exit: ft.C.8

Pid: 2307 Fri Aug 30 14:33:37 2002

68 007–4633–002

Linux® Configuration and Operations Guide

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 30 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 30 MEMORY|DIRTY

...

Exit: ft.C.8

Pid: 2308 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 0 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0
[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 0 MEMORY|DIRTY

...

For more information on the dlook command, see the dlook man page.

dplace

The dplace command allow you to control the placement of a process onto specified
CPUs as follows:

dplace [-c cpu_numbers] [-s skip_count] [-n process_name]
[-x skip_mask] [-p placement_file] command [command-args]

dplace -q

Scheduling and memory placement policies for the process are set up according to
dplace command line arguments.

007–4633–002 69

4: NUMA Tools

By default, memory is allocated to a process on the node on which the process is
executing. If a process moves from node to node while it running, a higher
percentage of memory references are made to remote nodes. Because remote accesses
typically have higher access times, process performance can be diminished.

You can use the dplace command to bind a related set of processes to specific CPUs
or nodes to prevent process migrations. In some cases, this improves performance
since a higher percentage of memory accesses are made to local nodes.

Processes always execute within a CpuMemSet. The CpuMemSet specifies the CPUs
on which a process can execute. By default, processes usually execute in a
CpuMemSet that contains all the CPUs in the system (for detailed information on
CpuMemSets, see the Linux Resource Administration Guide).

The dplace command invokes a kernel hook (that is, a process aggregate or PAGG)
to create a placement container consisting of all the CPUs (or a or a subset of CPUs)
of the CpuMemSet. The dplace process is placed in this container and by default is
bound to the first CPU of the CpuMemSet associated with the container. Then
dplace invokes exec to execute the command.

The command executes within this placement container and remains bound to the
first CPU of the container. As the command forks child processes, they inherit the
container and are bound to the next available CPU of the container.

If you do not specify a placement file, dplace binds processes sequentially in a
round-robin fashion to CPUs of the placement container. For example, if the current
CpuMemSet consists of physical CPUs 2, 3, 8, and 9, the first process launched by
dplace is bound to CPU 2. The first child process forked by this process is bound to
CPU 3, the next process (regardless whether it is forked by parent or child) to 8, and
so on. If more processes are forked than there are CPUs in the CpuMemSet, binding
starts over with the first CPU in the CpuMemSet.

For more information on dplace(1) and examples of how to use the command, see
the dplace(1) man page.

The dplace(1) command accepts the following options:

-c cpu_numbers The cpu_numbers variable specifies a list of CPU ranges,
for example: "-c1", "-c2-4", "-c1, 4-8, 3". CPU numbers
are not physical CPU numbers. They are logical CPU
numbers that are relative to the CPUs that are in the set
of allowed CPUs as specified by the current
CpuMemSet or runon(1) command. CPU numbers
start at 0. If this option is not specified, all CPUs of the

70 007–4633–002

Linux® Configuration and Operations Guide

current CpuMemSet are available. Note that a previous
runon command may be used to restrict the available
CPUs.

-s skip_count Skips the first skip_count processes before starting to
place processes onto CPUs. This option is useful if the
first skip_count processes are “shepherd" processes that
are used only for launching the application. If
skip_count is not specified, a default value of 0 is used.

-n process_name Only processes named process_name are placed. Other
processes are ignored and are not explicitly bound to
CPUs.

Note: The process_name argument is the basename of
the executable.

-x skip_mask Provides the ability to skip placement of processes. The
skip_mask argument is a bitmask. If bit N of
skip_mask is set, then the N+1th process that is forked
is not placed. For example, setting the mask to 6 causes
the second and third processes from being placed. The
first process (the process named by the command) will
be assigned to the first CPU. The second amd third
processes are not placed. The fourth process is assigned
to the second CPU, and so on. This option is useful for
certain classes of threaded applications that spawn a
few helper processes that typically do not use much
CPU time.

Note: Intel OpenMP applications currently should be
placed using the -x option with a skip_mask of 6
(-x6). This could change in future versions of OpenMP.

-p placement_file Specifies a placement file that contains additional
directives that are used to control process placement.
(Not yet implemented).

command
[command-args]

Specifies the command you want to place and its
arguments.

007–4633–002 71

4: NUMA Tools

-q Lists the global count of the number of active processes
that have been placed (by dplace) on each CPU in the
current cpuset. Note that CPU numbers are logical CPU
numbers within the cpuset, not physical CPU numbers.

Example 4-1 Using dplace command with MPI Programs

You can use the dplace command to improve placement of MPI programs on
NUMA systems and verify placement of certain data structures of a long running
MPI program by running a command such as the following:

mpirun -np 64 /usr/bin/dplace -s1 -c 0-63 ./a.out

You can then use the dlook(1) command to verify placement of certain data
structures of long running MPI program by using the dlook command in another
window on one of the slave thread PIDs to verify placement. For more information
on using the dlook command, see "dlook" on page 63 and the dlook(1) man page.

Example 4-2 Using dplace command with OpenMP Programs

To run an OpenMP program on logical CPUs 4 through 7 within the current
CpuMemSet, perform the following:

efc -o prog -openmp -O3 program.f
setenv OMP_NUM_THREADS 4
dplace -x6 -c4-7 ./prog

The dplace(1) command has a static load balancing feature so that you do not
necessarily have to supply a CPU list. To place prog1 on logical CPUs 0 through 3
and prog2 on logical CPUs 4 through 7, perform the following:

setenv OMP_NUM_THREADS 4
dplace -x6 ./prog1 &

dplace -x6 ./prog2 &

You can use the dplace -q command to display the static load information.

Example 4-3 Using dplace command with Linux Commands

The following examples assume that the command is executed from a shell running
in a CpuMemSet consisting of physical CPUs 8 through 15.

Command Run Location

dplace -c2 date Runs the date command on physical CPU 10.

72 007–4633–002

Linux® Configuration and Operations Guide

dplace make linux Runs gcc and related processes on physical CPUs 8
through 15.

dplace -c0-4,6
make linux

Runs gcc and related processes on physical CPUs 8
through 12 or 14.

runon 4-7 dplace
app

The runon command restricts execution to physical
CPUs 12 through 15. The dplace sequentially binds
processes to CPUs 12 through 15.

topology

The topology(1) command provides topology information about your system.
Topology information is extracted from information in the/dev/hw directory. Unlike
IRIX, in Linux the hardware topology information is implemented on a devfs
filesystem rather than on a hwgraph filesystem. The devfs filesystem represents the
collection of all significant hardware connected to a system, such as CPUs, memory
nodes, routers, repeater routers, disk drives, disk partitions, serial ports, Ethernet
ports, and so on. The devfs filesystem is maintained by system software and is
mounted at /hw by the Linux kernel at system boot.

Applications programmers can use the topology command to help execution layout
for their applications. For more information, see the topology(1) man page.

Output from the topology command is similar to the following: (Note that the
following output has been abbreviated.)

% topology
Machine parrot.americas.sgi.com has:

64 cpu’s

32 memory nodes

8 routers

8 repeaterrouters

The cpus are:

cpu 0 is /dev/hw/module/001c07/slab/0/node/cpubus/0/a

cpu 1 is /dev/hw/module/001c07/slab/0/node/cpubus/0/c

cpu 2 is /dev/hw/module/001c07/slab/1/node/cpubus/0/a
cpu 3 is /dev/hw/module/001c07/slab/1/node/cpubus/0/c

cpu 4 is /dev/hw/module/001c10/slab/0/node/cpubus/0/a

...

The nodes are:

007–4633–002 73

4: NUMA Tools

node 0 is /dev/hw/module/001c07/slab/0/node
node 1 is /dev/hw/module/001c07/slab/1/node

node 2 is /dev/hw/module/001c10/slab/0/node

node 3 is /dev/hw/module/001c10/slab/1/node

node 4 is /dev/hw/module/001c17/slab/0/node

...
The routers are:

/dev/hw/module/002r15/slab/0/router

/dev/hw/module/002r17/slab/0/router

/dev/hw/module/002r19/slab/0/router

/dev/hw/module/002r21/slab/0/router

...
The repeaterrouters are:

/dev/hw/module/001r13/slab/0/repeaterrouter

/dev/hw/module/001r15/slab/0/repeaterrouter

/dev/hw/module/001r29/slab/0/repeaterrouter

/dev/hw/module/001r31/slab/0/repeaterrouter
...

The topology is defined by:

/dev/hw/module/001c07/slab/0/node/link/1 is /dev/hw/module/001c07/slab/1/node

/dev/hw/module/001c07/slab/0/node/link/2 is /dev/hw/module/001r13/slab/0/repeaterrouter

/dev/hw/module/001c07/slab/1/node/link/1 is /dev/hw/module/001c07/slab/0/node

/dev/hw/module/001c07/slab/1/node/link/2 is /dev/hw/module/001r13/slab/0/repeaterrouter
/dev/hw/module/001c10/slab/0/node/link/1 is /dev/hw/module/001c10/slab/1/node

/dev/hw/module/001c10/slab/0/node/link/2 is /dev/hw/module/001r13/slab/0/repeaterrouter

Installing NUMA Tools
To use the dlook(1), dplace(1), and topology(1) commands, you must load the
numatools kernel module. Perform the following steps:

1. Configure the numatools kernel module on across system reboots by using the
chkconfig(8) utility as follows:

chkconfig --add numatools

2. To turn on numatools, enter the following command:

/etc/rc.d/init.d/numatools start

74 007–4633–002

Linux® Configuration and Operations Guide

This step will be done automatically for subsequent system reboots when
numatools are configured on by using the chkconfig(8) utility.

The following steps are required to disable numatools:

1. To turn off numatools, enter the following:

/etc/rc.d/init.d/numatools stop

2. To stop numatools from initiating after a system reboot, use the chkconfig(8)
command as follows:

chkconfig --del numatools

007–4633–002 75

Chapter 5

Kernel Tunable Parameters on SGI ProPack
Servers

This section identifies and describes the settings for kernel tunable parameters
appropriate for large SGI ProPack servers. For a general description of Linux kernel
tunable parameters, see Appendix A, "Linux Kernel Tunable Parameters" on page 83.

CPU Scheduler /proc/sys/sched Directory
This section describes tunable parameters for CPU scheduling in the
/proc/sys/sched file.

The contents of the /proc/sys/sched directory is similar to the following:

[root@profit sched]# ls

busy_node_rebalance_ratio idle_node_rebalance_ratio_max min_timeslice

child_penalty max_loadbal_rejects sched_exec_threshold

idle_node_rebalance_ratio max_timeslice sched_node_threshold

Do not change min_timeslice value to be less than 10, which is the current value
for cache_decay_ticks, or else the scheduler’s load-balancing will be adversely
affected on some workloads.

Note: Be very careful in changing any of the values in this directory. You risk
adversely affecting CPU scheduling performance.

/etc/sysconfig/dump Directory
This file contains the configuration variables for the Linux Kernel Crash Dump
(LKCD) facility that creates files in the /var/log/dump directory.

The following variables defined in this directory:

• DUMP_ACTIVE

The DUMP_ACTIVE variable indicates whether the dump process is active or not.
If this variable is 0, the dump kernel process is not activated.

007–4633–002 77

5: Kernel Tunable Parameters on SGI ProPack Servers

• DUMPDEV

The DUMPDEV variable represents the name of the dump device. It is typically the
primary swap partition on the local system, although any disk device can be used.

!
Caution: Be careful when defining this value to avoid unintended problems.

• DUMPDIR

The DUMPDIR variable defines the location where crash dumps are saved. In that
directory, a file called bounds is created that is the current index of the last crash
dump saved. The bounds file is updated with an incremented index once a new
crash dump or crash report is saved.

If there is an lkcd dump, LKCD could easily exceed multiple gigabytes in /var.
This is why the default root filesystem is larger. For this reason, you may wish to
make a separate /var/dump filesystem or change the configuration of lkcd. For
more information on lkcd, see the lkcd_config(1) man page.

To save crash dumps to a different location, change the DUMPDIR value in
/etc/sysconfig/dump file.

• DUMP_SAVE

The DUMP_SAVE variable defines whether to save the memory image to disk or
not. If the value is 1, the vmcore image is stored, and a crash report is created
from the saved dump. If it is not set to 1, only a crash report is created and the
dump is not saved. Use this option if you do not want your system’s disk space
consumed by large crash dump images.

• DUMP_LEVEL

The DUMP_LEVEL variable has a number of possible values, as follows:

DUMP_NONE (0) Do nothing, just return if called.

DUMP_HEADER (1) Dump the dump header and first 128K bytes.

DUMP_KERN (2) Everything in DUMP_HEADER and kernel pages only

DUMP_USED (4) Everything except the kernel free pages.

DUMP_ALL (8) All memory is dumped.

Currently, the DUMP_NONE, DUMP_HEADER or DUMP_ALL variables are valid.

78 007–4633–002

Linux® Configuration and Operations Guide

Note: You must use the numeric value, not the name of the variable.

• DUMP_COMPRESS

The DUMP_COMPRESS variable indicates which compression mechanism the kernel
should attempt to use for compression. The new method is not to use dump
compression unless someone specifically asks for it. There are multiple types of
compression available. For now, if you modprobe dump_rle , the dump_rle.o
module is installed, that enables RLE compression of the dump pages. The RLE
compression algorithm used in the kernel gives (on average) 40% compression of
the memory image, which can vary depending on how much memory is used on
the system. There are also other compression modules coming (such as gzip).
The values for the DUMP_COMPRESS variable are currently, as follows:

DUMP_COMPRESS_NONE(0) Do not compress this dump.

DUMP_COMPRESS_RLE(1) Use RLE compression.

DUMP_COMPRESS_GZIP(2) Use GZIP compression.

• PANIC_TIMEOUT

The PANIC_TIMEOUT variable represents the timeout (in seconds) before reboot
after a panic occurs. Typically, this is set to 0 on the system, which means the
kernel sits and spins until someone resets the machine. This is not the preferred
action if we want to recover the dump after the reboot.

The following is an example of a /etc/sysconfig/dump file follows:

DUMP_ACTIVE=1
DUMPDEV=/dev/vmdump

DUMPDIR=/var/log/dump

DUMP_SAVE=1

DUMP_LEVEL=2

DUMP_FLAGS=0

DUMP_COMPRESS=0
PANIC_TIMEOUT=5

Memory (Swap) sysctl Parameters
The following kernel parameters can be modified at runtime using the sysctl(8)
command to affect kernel swap behavior, as follows:

007–4633–002 79

5: Kernel Tunable Parameters on SGI ProPack Servers

• "vm.min_swap_page_calls" on page 80

• "vm.oom_killer_nap_jiffies" on page 80

• "vm.swap_watch_interval" on page 80

• "vm.min_jiffies_out" on page 81

• "vm.print_get_swap_page" on page 81

• "vm.min_free_swap_pages" on page 81

vm.min_swap_page_calls

Minimum number of swap calls in a swap watch interval before a decision is made to
determine if the system is out of swap space or not.

Defaults to 1000

vm.oom_killer_nap_jiffies

How long the oom_killer_thread naps after it is first woken up and before it kills
some process; also the time it naps after killing a process and before killing the next
process. This is done to make sure that the system does not kill a process unless it
has been out of swap space for a while. It also gives the system time to react (and
perhaps stop swapping so much) after a processes has been killed and before it
decides whether or not to kill another process. (Note that oom_killer() function
checks to make sure it is still out of swap space every it time it wakes up from a
"nap". If we are not out of swap space, it goes back to long term sleep waiting until
start_oom_killer() is called again.

Defaults to 10*HZ

vm.swap_watch_interval

How long between resets of the swap out statistics collected by the
get_swap_page() function.

Defaults to 10*HZ

80 007–4633–002

Linux® Configuration and Operations Guide

vm.min_jiffies_out

Minimum time that the try_to_free_pages_zone() function has to have
consistently failed before the out_of_memory() function will start up the
oom_killer() function.

Defaults to 5*HZ

vm.print_get_swap_page

If set to 1, vm.print_get_swap_page parameter will cause the system to log swap
out statistics every swap_watch_interval, provided that swapping is active. This
may be removed in a future release.

Defaults to 0

vm.min_free_swap_pages

If this much swap space is free, the system will decide it is no longer out of swap (out
of memory) on the next pass through the oom_killer() function. While settable
using the sysctl(8) command, this is reset after each swapon() call to 1% of
available swap pages. If some other default is desired, there has to be another
sysctl call.

Defaults to 1% of total swap pages

Virtual Memory hugetlb Parameter
The /usr/src/linux/Documentation/vm/hugetlbpage.txt file on your
system provides a brief summary of hugetlb page support in the Linux kernel. The
Intel Itanium architecture supports multiple page sizes 4K, 8K, 64K, 256K, 1M, 4M,
16M, 256M and so on. A translation lookaside buffer (TLB) is a cache of
virtual-to-physical translations. Typically, this is a very scarce resource on a processor.
Operating systems try to make best use of limited number of TLB resources. This
optimization is more critical now as larger physical memories (several GBs) are more
available.

You can use the huge page support in Linux kernel by either using the mmap(2)
system call or standard shared memory system calls shmget(2) and shmat(2) (see the
shmop(2) man page).

007–4633–002 81

5: Kernel Tunable Parameters on SGI ProPack Servers

For information on using hugetlb, see
/usr/src/linux/Documentation/vm/hugetlbpage.txt.

You can also boot your system with the kernel hugepages= X parameter set, where
X is a number of pages. Setting the hugepages parameter allows the kernel to
allocate as many of the huge pages as possible early on. After the system is booted, it
gets harder to find contiguous memory. You can also set huge pages early in the
init scripts in /proc/sys/vm/nr_hugepages as described in the
/usr/src/linux/Documentation/vm/hugetlbpage.txt file.

Some considerations on using the hugetlb parameter on your Altix system are, as
follows:

• Currently, the hugetlb parameter does not account for NUMA systems. This
means that when memory is allocated, it tends to be allocated from node zero
until it is out of contiguous memory (256 Megabytes at a time) and then moves on
to the next node.

• Currently, the hugetlb page is not necessarily allocated from the node that is
running when the allocation request happens.

• Currently, the hugetlb size is a configure time option. While you can control the
number of pages allocated, you cannot control the size of the pages unless you
rebuild the kernel. The setting on your system as shipped is 256 Megabytes. If
you reconfigure and rebuild the kernel, you have the option of 1 Gigabyte or 4
Gigabyte pages along with several smaller options.

82 007–4633–002

Appendix A

Linux Kernel Tunable Parameters

The sysctl(8) command is used to modify kernel parameters at runtime. These
parameters are those listed under the /proc/sys/**** file system. You can use the
sysctl(8) command to both read and write system control data.

This information about Linux kernel tunable parameters is included in your Linux
release and can be found in the following file:
/usr/src/linux-2.4.19/Documentation/sysctl file.

This chapter describes the following topics:

• "/proc/sys/kernel Parameters" on page 83

• "/proc/sys/fs Parameters" on page 87

• "/proc/sys/vm Parameters" on page 93

/proc/sys/kernel Parameters
This section describes the files in the /proc/sys/kernel directory that can be used
to tune and monitor filesystem performance of the Linux operating system.

Note: Changing the values of the parameters in these files can adversely affect the
performance of your system. Make sure you have read the appropriate
documentation before applying these adjustements.

This section describes the following kernel parameters contained in the following files:

• "acct" on page 84

• "ctrl-alt-del" on page 84

• "domainname and hostname" on page 85

• "osrelease, ostype, and version" on page 85

• "overflowgid and overflowuid" on page 85

• "panic" on page 86

007–4633–002 83

A: Linux Kernel Tunable Parameters

• "printk" on page 86

• "rtsig-max and rtsig-nr" on page 86

• "sg-big-buff" on page 87

• "shmmax" on page 87

• "tainted" on page 87

acct

The acct file defines the high-water and low-water frequency.

If BSD-style process accounting is enabled these values control its behavior. If free
space on filesystem where the log lives goes below the lowater percentage, the
accounting suspends. If free space gets above the highwater percentage accounting
resumes. The frequency parameter determines how often do we check the amount of
free space (value is in seconds).

The default: is 4 2 30

That is, suspend accounting if there is less than or equal to 2% free space; resume
accounting if there is greater than or equal to 4% free space; consider information
about amount of free space valid for 30 seconds.

ctrl-alt-del

When the value in this file is 0, ctrl-alt-del is trapped and sent to the init(1)
program to handle a graceful restart. When, however, the value is greater than 0, the
operating system’s reaction to a Vulcan Nerve Pinch (The keyboard combination that
forces a soft boot or jump to ROM monitor on machines that support such a feature)
will be an immediate reboot, without even synchronizing its dirty buffers.

Note: When a program (like dosemu) has the keyboard in raw mode, the
ctrl-alt-del is intercepted by the program before it ever reaches the kernel tty
layer, and it is up to the program to decide what to do with it.

84 007–4633–002

Linux® Configuration and Operations Guide

domainname and hostname

These files can be used to set the NIS/YP domainname and the hostname of your
system in exactly the same way as the commands domainname and hostname, for
example:

echo "darkstar" > /proc/sys/kernel/hostname

echo "mydomain" > /proc/sys/kernel/domainname

This has the same effect as the following:

hostname "darkstar" > /proc/sys/kernel/hostname

domainname "mydomain" > /proc/sys/kernel/domainname

Note, however, that the classic darkstar.frop.org has the hostname darkstar and
DNS (Internet Domain Name Server) domainname frop.org, not to be confused
with the NIS (Network Information Service) or YP (Yellow Pages) domainname.
These two domain names are in general different. For a detailed discussion see the
hostname(1) man page.

osrelease, ostype, and version

The files osrelease and ostype parameters displayed below are self-evident. The
version parameter needs a little more clarification, however. The number 5 means that
this is the fifth kernel built from this source base and the date behind it indicates the
time the kernel was built. The only way to tune these values is to rebuild the kernel.

cat osrelease

2.1.88

cat ostype

Linux
cat version

#5 Wed Feb 25 21:49:24 MET 1998

overflowgid and overflowuid

These parameters allow you to change the value of the fixed UID and GID.

The default is 65534.

007–4633–002 85

A: Linux Kernel Tunable Parameters

panic

The value in this file represents the number of seconds the kernel waits before
rebooting on a panic. When you use the software watchdog, the recommended
setting is 60 seconds.

printk

The four values in printk denote: console_loglevel,
default_message_loglevel, minimum_console_level, and
default_console_loglevel, respectively.

These values influence printk() behavior when printing or logging error messages.

• console_loglevel: messages with a higher priority than this are printed to the
console.

• default_message_level: messages without an explicit priority are printed
with this priority.

• minimum_console_loglevel: minimum (highest) value to which
console_loglevel can be set.

• default_console_loglevel: default value for console_loglevel.

Note: The code in the linux/kernel/printk.c executable reveals that these
variables are not put inside a structure, so their order in-core is not formally
guaranteed and garbage values might occur when the compiler changes.

For more information on log levels, see the syslog(2) man page.

rtsig-max and rtsig-nr

The rtsig-max file can be used to tune the maximum number of POSIX real–time
(queued) signals that can be outstanding in the system.

The rtsig-nr file shows the number of real-time signals currently queued.

86 007–4633–002

Linux® Configuration and Operations Guide

sg-big-buff

This file shows the size of the generic SCSI (sg) buffer. You can not tune it just yet,
but you could change it on compile time by editing the /scsi/sg.h include file and
changing the value of SG_BIG_BUFF.

Typically, the value of this parameter is not changed.

shmmax

This value can be used to query and set the run time limit on the maximum shared
memory segment size that can be created. Shared memory segments up to 1GBs are
now supported in the kernel. This value defaults to SHMMAX

tainted

The tainted parameter is nonzero if the kernel has been tainted. These are numeric
values which can be ORed together as follows:

1 A module with a non-General Public License (non-GPL) license has
been loaded, this includes modules with no license. Set by modutils
equal to or greater than the 2.4.9 release.

2 A module was force loaded by insmod -f. Set by modutils equal to or
greater than the 2.4.9 release.

/proc/sys/fs Parameters
This section describes the files in the /proc/sys/fs directory that can be used to
tune and monitor general system performance controlled by the Linux kernel.

Note: Changing the values of the parameters in these files can adversely affect the
performance of your system. Make sure you have read the appropriate
documentation before applying these adjustements.

This section describes the following kernel parameters:

• "dentry-state" on page 88

007–4633–002 87

A: Linux Kernel Tunable Parameters

• "dquot-max and dquot-nr" on page 88

• "file-max and file-nr" on page 88

• "inode-max, inode-nr, and inode-state" on page 89

• "overflowgid and overflowuid" on page 89

• "super-max and super-nr" on page 90

dentry-state

The entries in the dentry-state are dynamically allocated and deallocated and
nr_dentry is typically 0 all the time. Consequently, it is safe to assume that only
nr_unused, age_limit and want_pages parameters are used. The nr_unused is
not used. The age_limit parameter is the age in seconds after which dcache entries
can be reclaimed when memory is short and the want_pages parameter is nonzero
when shrink_dcache_pages() has been called and the dcache is not pruned yet.

The following structure is from /fs/dentry.c:

struct {

int nr_dentry;

int nr_unused;

int age_limit; /* age in seconds */

int want_pages; /* pages requested by system */

int dummy[2];
} dentry_stat = {0, 0, 45, 0,};

dquot-max and dquot-nr

The dquot-max file shows the maximum number of cached disk quota entries. The
file dquot-nr file shows the number of allocated disk quota entries and the number
of free disk quota entries. If the number of free cached disk quotas is very low and
you have an extremely large number of simultaneous system users, you might want
to raise the limit.

file-max and file-nr

The kernel allocates file handles dynamically but, as of yet, it does not free them again.

88 007–4633–002

Linux® Configuration and Operations Guide

The value in the file-max file denotes the maximum number of file handles that the
kernel will allocate. If your receive man error messages about running out of file
handles, you may want to increase this limit.

inode-max, inode-nr, and inode-state

Like file handles, the kernel allocates the inode structures dynamically, but, as of yet,
it does not free them again.

The value in the inode-max file denotes the maximum number of inode handlers.
This value should be 3 to 4 times larger than the value in the file-max file , since
stdin, stdout and network sockets also need an inode structure to handle them. If
you regularly run out of inodes, you need to increase this value.

The inode-nr file contains the first two items from inode-state file described in
the following paragraphs.

The inode-state file contains three actual numbers and four placeholder numbers
that currently do not affect inode structures. The actual numbers are, in order of
appearance, nr_inodes, nr_free_inodes and preshrink.

The nr_inodes parameter stands for the number of inodes the system has allocated.
This can be slightly more than inode-max because Linux allocates them a whole
page at a time.

The nr_free_inodes parameter represents the number of free inodes and the
preshrink parameter is nonzero when the nr_inodes value is greater than
inode-max and the system needs to shorten the inode list instead of allocating more
inodes.

overflowgid and overflowuid

Some filesystems only support 16-bit UIDs and GIDs, although in Linux UIDs and
GIDs are 32 bits. When one of these filesystems is mounted with writes enabled, any
UID or GID that would exceed 65535 is translated to a fixed value before being
written to disk.

These sysctl parameters allow you to change the value of the fixed UID and GID.

The default is 65534.

007–4633–002 89

A: Linux Kernel Tunable Parameters

super-max and super-nr

The super-max and super-nr numbers control the maximum number of
superblocks and thus the maximum number of mounted filesystems the kernel can
have. You only need to increase the super-max value if you need to mount more
filesystems than the current value in the super-max parameter allows you to.

XFS Tunable Parameters
This section describes the new XFS tunable parameters that can be used to tune the
operation of the xfs file system, as follows:

vm.pagebuf.io_bypass = 4294967296

fs.xfs.inherit_noatime = 1

fs.xfs.inherit_nodump = 1

fs.xfs.inherit_sync = 1
fs.xfs.probe_quota = 4294967297

fs.xfs.probe_ioops = 4294967296

fs.xfs.probe_dmapi = 4294967297

/proc/sys/fs/xfs

This section describes the files in the /proc/sys/fs/xfs directory that can be used
to tune the operation of the xfs file system, as follows:

• "fs.xfs.stats_clear" on page 90

• "fs.xfs.refcache_size" on page 91

• "vm.pagebuf.stats_clear" on page 91

fs.xfs.stats_clear

Setting this parameter to 1 clears the accumulated XFS statistics in the
/proc/fs/xfs/stat file. It then immediately reset to 0.

Minimum: 0 Default: 0 Maximum: 1

90 007–4633–002

Linux® Configuration and Operations Guide

fs.xfs.refcache_size

Controls the size of the NFS refcache, which holds references on files opened via
NFS to improve performance. The value is the maximum number of files that can be
in the cache at any one time.

Minimum: 0 Default: 128 Maximum: 512

vm.pagebuf.stats_clear

Setting this to 1 clears accumulated pagebuf statistics in
/proc/fs/pagebuf/stat. It then immediately reset to 0.

Minimum: 0 Default: 0 Maximum: 1

XFS sysctl Tunable Parameters

This section describes XFS sysctl tunable parameters. For more information see the
/etc/sysctl.conf file, the sysctl.conf(5) man page, and the sysctl(8) man
page.

This section describes the files in the /proc/sys/fs/xfs directory that can be used
to tune the operation of the xfs file system, as follows:

• "fs.xfs.sync_interval" on page 92

• "fs.xfs.error_level" on page 92

• "fs.xfs.panic_mask" on page 92

• "fs.xfs.irix_symlink_mode" on page 92

• "fs.xfs.irix_sgid_inherit" on page 93

• "fs.xfs.restrict_chown" on page 93

• "fs.xfs.refcache_purge" on page 93

• "vm.pagebuf.flush_age" on page 93

• "vm.pagebuf.flush_int" on page 93

007–4633–002 91

A: Linux Kernel Tunable Parameters

fs.xfs.sync_interval

The interval at which the xfssyncd thread for xfs filesystems flushes metadata out to
disk. This thread will flush log activity out and do some processing on unlinked
inodes.

Minimum: 1*HZ Default: 30*HZ Maximum: 60*HZ

fs.xfs.error_level

A volume knob for error reporting when internal errors occur. This will generate
detailed messages and backtraces, for example, for things events like filesystem
shutdowns. Current threshold values are, as follows:

XFS_ERRLEVEL_OFF: 0

XFS_ERRLEVEL_LOW: 1

XFS_ERRLEVEL_HIGH: 5

Minimum: 0 Default: 3 Maximum: 11

fs.xfs.panic_mask

Causes certain error conditions to call the BUG() function. Value is a bitmask; AND
together the tags that represent errors that should cause panics, as follows:

XFS_NO_PTAG 0
XFS_PTAG_IFLUSH 0x00000001

XFS_PTAG_LOGRES 0x00000002

XFS_PTAG_AILDELETE 0x00000004

XFS_PTAG_ERROR_REPORT 0x00000008

XFS_PTAG_SHUTDOWN_CORRUPT 0x00000010

XFS_PTAG_SHUTDOWN_IOERROR 0x00000020
XFS_PTAG_SHUTDOWN_LOGERROR 0x00000040

Minimum: 0 Default: 3 Maximum: 127

fs.xfs.irix_symlink_mode

Controls whether symbolic links are created with mode 0777 (default) or whether
their mode is affected by the umask (IRIX mode).

Minimum: 0 Default: 0 Maximum: 1

92 007–4633–002

Linux® Configuration and Operations Guide

fs.xfs.irix_sgid_inherit

Controls files created in set group ID (SGID) directories. If the group ID of the new
file does not match the effective group ID or one of the supplementary group IDs of
the parent directory, the ISGID bit is cleared if the irix_sgid_inherit
compatibility sysctl is set.

Minimum: 0 Default: 0 Maximum: 1

fs.xfs.restrict_chown

Controls whether unprivileged users can use the chown command to "give away" a
file to another user.

Minimum: 0 Default: 0 Maximum: 1

fs.xfs.refcache_purge

Controls the number of entries purged from the NFS refcache every
synchronization interval.

Minimum: 0 Default: 32 Maximum: 512

vm.pagebuf.flush_age

The age at which dirty metadata buffers are flushed to disk.

Minimum: 1*HZ Default: 15*HZ Maximum: 300*HZ

vm.pagebuf.flush_int

The interval at which the list of dirty metadata buffers is scanned.

Minimum: HZ/2 Default: 1*HZ Maximum: 30*HZ

/proc/sys/vm Parameters
This section describes the files in the /proc/sys/vm directory that can be used to
tune the operation of the virtual memory (VM) subsystem of the Linux kernel and the
bdflush file also has some influence on disk usage.

007–4633–002 93

A: Linux Kernel Tunable Parameters

Default values and initialization routines for most of these files can be found in
mm/swap.c.

This section describes the following kernel parameters:

• "bdflush" on page 94

• "buffermem" on page 95

• "freepages" on page 96

• "kswapd" on page 96

• "overcommit_memory" on page 97

• "max_map_count" on page 97

• "page-cluster" on page 97

• "pagecache" on page 98

• "pagetable_cache" on page 98

bdflush

This file controls the operation of the bdflush kernel daemon that flush dirty buffers
back to disk. For more information on bdflush daemon, see the bdflush(8) man
page. The source code to this structure can be found in linux/fs/buffer.c. It
currently contains 9 integer values, of which 4 are actually used by the kernel.

The bdflush_param stucture from the /fs/buffer.c executable follows:

union bdflush_param {

struct {
int nfract; /* Percentage of buffer cache dirty to

activate bdflush */

int dummy1; /* old "ndirty" */

int dummy2; /* old "nrefill" */

int dummy3; /* unused */
int interval; /* jiffies delay between kupdate flushes */

int age_buffer; /* Time for normal buffer to age */

int nfract_sync;/* Percentage of buffer cache dirty to

activate bdflush synchronously */

int dummy4; /* unused */

94 007–4633–002

Linux® Configuration and Operations Guide

int dummy5; /* unused */
} b_un;

unsigned int data[N_PARAM];

} bdf_prm = {{30, 64, 64, 256, 5*HZ, 30*HZ, 60, 0, 0}};

The nfract parameter governs the maximum number of dirty buffers in the buffer
cache. Dirty means that the contents of the buffer still have to be written to disk (as
opposed to a clean buffer, which can just be forgotten about). Setting this to a high
value means that the operating system can delay disk writes for a long time but it
also means that it will have to do many I/O operations when memory becomes short.
A low value will spread out disk I/O more evenly, at the cost of more frequent I/O
operations.

The default value is 30%, the minimum is 0%, and the maximum is 100%.

The interval parameter is the minimum rate at which the kupdate routine will
wake and flush the buffer. The value is expressed in jiffies (clock ticks), the number of
jiffies per second is normally 100 (Alpha is 1024). Thus, x*HZ is x seconds.

The default value is 5 seconds, the minimum is 0 seconds, and the maximum is 600
seconds.

The age_buffer parameter governs the maximum time Linux waits before writing
out a dirty buffer to disk. The value is in jiffies.

The default value is 30 seconds, the minimum is 1 second, and the maximum 6,000
seconds.

The nfract_sync parameter governs the percentage of buffer cache that is dirty
before bdflush activates synchronously. This can be viewed as the hard limit before
bdflush forces buffers to disk.

The default is 60%, the minimum is 0%, and the maximum is 100%.

buffermem

The three values in this file correspond to the values in the buffer_mem structure. It
controls how much memory should be used for buffer memory. The percentage is
calculated as a percentage of total system memory.

The values are as follows:

min_percent This is the minimum percentage of memory that should
be spent on buffer memory.

007–4633–002 95

A: Linux Kernel Tunable Parameters

borrow_percent Not used.

max_percent Not used.

freepages

This file contains the values in the freepages structure. This structure contains three
members: min, low, and high.

The values are as follows:

freepages.min When the number of free pages in the system reaches
this number, only the kernel can allocate more memory.

freepages.low If the number of free pages gets below this point, the
kernel starts swapping aggressively.

freepages.high The kernel tries to keep up to this amount of memory
free; if memory comes below this point, the kernel
gently starts swapping in the hopes that it never has to
do real aggressive swapping.

kswapd

The kernel swapout daemon is kswapd.

The numbers in this page correspond to the numbers in thefollowing structure:

struct pager_daemon {tries_base, tries_min, swap_cluster};

The tries_base and swap_cluster probably have the largest influence on system
performance.

The values are as follows:

tries_base The maximum number of pages that the kswapd
daemon tries to free in one round is calculated from
this number. Usually this number will be divided by 4
or 8 (see mm/vmscan.c), so it is not as big as it
appears. When you need to increase the bandwidth to
or from swap, you will want to increase this number.

tries_min This is the minimum number of times that the kswapd
daemon tries to free a page each time it is called.

96 007–4633–002

Linux® Configuration and Operations Guide

Basically, it is just there to make sure that the kswapd
daemon frees some pages even when it is being called
with minimum priority.

swap_cluster This is the number of pages that the kswapd daemon
writes in one turn. You want this large so that kswapd
does it’s I/O in large chunks and the disk does not
have to seek often, but you do not want it to be too
large since that would flood the request queue.

overcommit_memory

This value contains a flag that enables memory overcommitment. When this flag is 0,
the kernel checks before each malloc() request to determine if there is enough
remaining memory. If the flag is nonzero, the system pretends there is always enough
memory.

This feature can be very useful because there are many programs that use the
malloc() routine huge amounts of memory just-in-case it is needed and do not use
much of it.

For more information, look at vm_enough_memory() routine in the mm/mmap.c file.

max_map_count

This file contains the maximum number of memory map areas a process may have.
Memory map areas are used as a side-effect of calling the malloc routine, directly by
mmap and mprotect, and also when loading shared libraries.

While most applications need less than a thousand maps, certain programs,
particularly the malloc routine debuggers, may consume lots of them, for example, up
to one or two maps per allocation.

page-cluster

The Linux virtual memory (VM) subsystem avoids excessive disk seeks by reading
multiple pages on a page fault. The number of pages it reads is dependent on the
amount of memory in your machine.

007–4633–002 97

A: Linux Kernel Tunable Parameters

The number of pages the kernel reads in at once is equal to 2 ^ page-cluster. Values
above 2 ^ 5 do not make much sense for swap because we only cluster swap data in
32-page groups.

pagecache

This file does exactly the same as the buffermem file, only this file controls the
page_cache structure, and thus controls the amount of memory used for the page
cache.

The page cache is used for three main purposes as follows:

• Caching read() data from files.

• Caching mmap() data and executable files.

• Swapping cache.

When your system is both deep in swap and high on cache, it probably means that a
lot of the swapped data is being cached, making for more efficient swapping than
possible with prior kernels.

pagetable_cache

The kernel keeps a number of page tables in a per-processor cache (this helps a lot on
shared-memory multiprocessor (SMP) systems). The cache size for each processor will
be between the low and the high value.

On a low-memory, single CPU system you can safely set these values to 0 so you do
not waste the memory. On SMP systems, it is used so that the system can do fast
page table allocations without having to acquire the kernel memory lock.

For large systems, the settings are probably OK. For normal systems, they will not
have negative effects. For small systems, (less than 16MB RAM) it might be
advantageous to set both values to 0.

98 007–4633–002

Index

C

cache performance, 50
compiler options for tuning, 49
compilers, 41

D

determining tuning needs
tools used, 49

E

Electric Fence debugger, 47
Environment variables, 57

F

False sharing, 55

G

gdb tool, 43
GNU debugger, 43
GuideView tool, 60

I

idb tool, 44

M

Message Passing Toolkit
for parallelization, 53
using profile.pl, 59

N

NUMA Tools
Command

dlook, 63
dplace, 69
topology, 73

installing, 74

O

OpenMP
environment variables, 57
Guide OpenMP Compiler, 61

P

Parallelization
automatic, 54
using MPI, 53
using OpenMP, 53

performance
Assure Thread Analyzer, 62
Guide OpenMP Compiler, 61
GuideView, 60
VTune, 60

pfmon tool, 58
profile.pl script, 59

007–4633–002 99

Index

profiling
pfmon, 58
profile.pl, 59

T

tools
Assure Thread Analyzer, 62
Guide OpenMP Compiler, 61
GuideView, 60
pfmon, 58
profile.pl, 59
VTune, 60

tuning
cache performance, 50
ddd tool, 44
debugging tools

Electric Fence, 47
gbd, 43
idb, 44

dplace, 56
Electric Fence, 47
environment variables, 57
false sharing, 55

heap corruption, 47
managing memory, 51
multiprocessor code, 52
parallelization, 53
profiling

GuideView, 60
mpirun command, 59
pfmon, 58
profile.pl script, 59
VTune analyzer, 60

recommended compilers, 41
single processor code, 41
solving bottlenecks, 54
system configuration, 39
using compiler options, 49
using dplace, 56
using math functions, 48
using runon, 56
verifying correct results, 42

V

VTune performance analyzer, 60

100 007–4633–002

	New Features in This Manual
	Major Documentation Changes

	Table of Contents
	List of Figures
	List of Procedures

	About This Guide
	Related Publications
	Additional Reading
	Obtaining Publications
	Conventions
	Reader Comments

	1. Configuring Your System
	Cloning System Disks
	Setting up quota on the root File System
	System Partitioning
	Overview
	Advantages of Partitioning
	Limitations of Partitioning
	Supported Configurations
	Installing Partitioning Software and Configuring Partitions

	Making Array Services Operational
	Pluggable Authentication Modules

	2. System Operation
	Booting a System
	Halting the System
	Connecting to the L1 Controller
	Connecting to the L2 Controller
	Getting Console Access
	Handling a System Hang or Crash on Panic
	Recovering a Damaged Root Filesystem
	Manually Mounting the Root Filesystem

	3. Performance Tuning
	Determining System Configuration
	Single Processor Code Tuning
	Getting the Correct Results
	Using Tuned Code
	Determining Tuning Needs
	Using Compiler Options Where Possible
	Tuning the Cache Performance
	Managing Memory
	Using the chatr Command to Change Stack and Data Segments

	Multiprocessor Code Tuning
	Parallelizing Your Code
	Solving Bottlenecks in Code
	Fixing False Sharing
	Using dplace and runon
	Environment Variables for Performance Tuning

	Profiling and Analyzing Your Code
	Proing with pfmon
	Using the profile.pl Script
	profile.pl with MPI programs
	Using VT une for Remote Sampling
	Using GuideView

	Other Performance Tools

	4. NUMA Tools
	dlook
	dplace
	topology
	Installing NUMA Tools

	5. Kernel Tunable Parameters on SGI ProPack Servers
	CPU Scheduler /proc/sys/sched Directory
	/etc/sysconfig/dump Directory
	Memory (Swap) sysctl Parameters
	vm.min_swap_page_calls
	vm.oom_killer_nap_jiffies
	vm.swap_watch_interval
	vm.min_jiffies_out
	vm.print_get_swap_page
	vm.min_free_swap_pages

	Virtual Memory hugetlb Parameter

	A. Linux Kernel Tunable Parameters
	/proc/sys/kernel Parameters
	acct
	ctrl-alt-del
	domainname and hostname
	osrelease, ostype, and version
	overflowgid and overflowuid
	panic
	printk
	rtsig-max and rtsig-nr
	sg-big-buff
	shmmax
	tainted

	/proc/sys/fs Parameters
	dentry-state
	dquot-max and dquot-nr
	file-max and file-nr
	inode-max ,inode-nr, and inode-state
	overflowgid and overflowuid
	super-max and super-nr

	XFS Tunable Parameters
	/proc/sys/fs/xfs
	XFS sysctl Tunable Parameters

	/proc/sys/vm Parameters
	bdflush
	buffermem
	freepages
	kswapd
	overcommit_memory
	max_map_count
	page-cluster
	pagecache
	pagetable_cache

	Index

