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New Features in this Guide

This revision contains the following:

• Support for SGI® REACTTM 1.0 (a new separate release, and a member of the SGI
Performance Suite)

• Support for running REACT on third-party x86–64 systems. For best performance,
run REACT on SGI x86-64 servers. See "REACT Requirements" on page 7.

• Support for the SGI Linux® Trace (SLT) user library C application programming
interface (API) to generate SLT user events. See Chapter 12, "Using the SGI Linux
Trace User Library" on page 139.

• Support for the following new API routines to change the CPU affinity of the
given IRQs and change permissions so that non-root users can run REACT:

– "cpu_sysrt_irq" on page 121

– "cpu_sysrt_perm" on page 122

• Information about the deprecated reactconf.pl command has been removed
because it has been superseded by the react command.
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About This Guide

A real-time program is one that must maintain a fixed timing relationship to external
hardware. In order to respond to the hardware quickly and reliably, a real-time
program must have special support from the system software and hardware. This
guide describes the facilities of SGI® REACTTM real-time for Linux®.

Audience
This guide is written for real-time programmers. You are assumed to be:

• An expert in the C programming language

• Knowledgeable about the hardware interfaces used by your real-time program

• Familiar with system-programming concepts such as interrupts, device drivers,
multiprogramming, and semaphores

You are not assumed to be an expert in Linux system programming, although you do
need to be familiar with Linux as an environment for developing software.

What This Guide Contains
This guide contains the following:

• Chapter 1, "Introduction" on page 1, describes the important classes of real-time
programs and applications, summarizes the features that REACT provides, and
lists installation requirements

• Chapter 2, "Linux and REACT Support for Real–Time Programs" on page 9,
provides an overview of how Linux and REACT support real-time programs

• Chapter 3, "External Interrupts" on page 17, discusses the external interrupts
feature and, as an example, the SGI IOC4 PCI device

• Chapter 4, "CPU Workload" on page 39, describes how you can isolate a CPU and
dedicate almost all of its cycles to your program’s use
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• Chapter 5, "Using the Frame Scheduler" on page 53, describes how to structure a
real-time program as a family of independent, cooperating activities, running on
multiple CPUs, scheduled in sequence at the frame rate of the application

• Chapter 6, "Disk I/O Optimization" on page 91, describes how to set up disk I/O
to meet real-time constraints, including the use of memory-mapped and
asynchronous I/O

• Chapter 7, "PCI Devices" on page 93, discusses the Linux PCI interface

• Chapter 8, "User-Level Interrupts" on page 97, discusses the facility that is
intended to simplify the creation of device drivers for unsupported devices

• Chapter 9, "REACT System Configuration" on page 107, explains how to configure
real-time CPUs

• Chapter 10, "Using the REACT Library" on page 117, explains how to use the
REACT C application programming interface (API) to change the configuration of
real-time CPUs from program control without affecting the boot-up configuration
for real-time processing

• Chapter 11, "SGI Linux Trace" on page 127, discusses the feature that generates
traces for kernel events such as interrupt handling, scheduling, and system calls.

• Chapter 12, "Using the SGI Linux Trace User Library" on page 139, explains how
to use the SGI Linux Trace (SLT) user library C API to generate SLT user events

• Chapter 13, "Troubleshooting" on page 145, discusses diagnostic tools that apply to
real-time applications and common problems

• Appendix A, "Example Application" on page 149, provides excerpts of application
modules to be used with REACT

• Appendix B, "High-Resolution Timer Example " on page 159, demonstrates the use
of SGI high-resolution timers

• Appendix C, "Sample User-Level Interrupt Programs" on page 165, contains a
sample program that shows how user-level interrupts are used
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Related Publications and Sites
The following may be useful:

• Available from the online SGI Technical Publications Library:

– The user guide for your SGI system

– SGI Performance Suite 1.0 Start Here

– Linux Configuration and Operations Guide

– SGI L1 and L2 Controller Software User’s Guide

– TP9500 Remote Mirror Premium Feature-Factory

– The Linux Programmer’s Guide (Sven Goldt, Sven van der Meer, Scott Burkett,
Matt Welsh)

– The Linux Kernel (David A Rusling)

– Linux Kernel Module Programming Guide (Ori Pomerantz)

• Linux Device Drivers, third edition, by Jonathan Corbet, Alessandro Rubini, and
Greg Kroah-Hartman, February 2005 (ISBN: 0-596-00590-3):

http://www.oreilly.com/catalog/linuxdrive3/

For more information about SGI servers, see:

• http://www.sgi.com/products/servers
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Conventions
The following conventions are used throughout this document:

Convention Meaning

[ ] Brackets enclose optional portions of a command or
directive line.

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

... Ellipses indicate that a preceding element can be
repeated.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

variable Italic typeface denotes variable entries and words or
concepts being defined.

ms (or msec) Millisecond (1 ms is .001 seconds)

ns Nanosecond (1 ns is .000000001 seconds)

us (or usec) Microsecond (1 us is .000001 seconds)

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• You can view man pages by typing man title at a command line.
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Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

SGI
Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.
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Chapter 1

Introduction

This chapter discusses the following:

• "Real-Time Programs" on page 1

• "Real-Time Applications" on page 2

• "REACTTM Features" on page 6

• "REACT Requirements" on page 7

• "REACT RPMs" on page 7

Real-Time Programs
A real-time program is any program that must maintain a fixed, absolute timing
relationship with an external hardware device:

• A hard real-time program experiences a catastrophic error if it misses a deadline

• A firm real-time program experiences a significant error if it misses a deadline but is
able to recover from the error and can continue to execute

• A soft real-time program can occasionally miss a deadline with only minor adverse
effects

A normal-time program is a correct program when it produces the correct output, no
matter how long that takes. Normal-time programs do not require a fixed timing
relationship to external devices. You can specify performance goals for a normal-time
program (such as “respond in at most 2 seconds to 90% of all transactions”), but if the
program does not meet the goals, it is merely slow, not incorrect.
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Real-Time Applications
The following are examples of real-time applications:

• "Simulators and Stimulators" on page 2

• "Data Collection Systems" on page 5

• "Process Control Systems" on page 6

Simulators and Stimulators

A simulator or a stimulator maintains an internal model of the world. It receives
control inputs, updates the model to reflect them, and outputs the changed model. It
must process inputs in real time in order to be accurate. The difference between them
is that a simulator provides visual output while a stimulator provides nonvisual
output. SGI® systems are well-suited to programming many kinds of simulators and
stimulators.

Simulators and stimulators have the following components:

• An internal model of the world, or part of it; for example, a model of a vehicle
traveling through a specific geography, or a model of the physical state of a
nuclear power plant.

• External devices to supply control inputs; for example, a steering wheel, a joystick,
or simulated knobs and dials. (This does not apply to all stimulators.)

• An operator (or hardware under test) that closes the feedback loop by moving the
controls in response to what is shown on the display. A feedback loop provides
input to the system in response to output from the system. (This does not apply to
all stimulators.)

Simulators also have the external devices to display the state of the model; for
example, video displays, audio speakers, or simulated instrument panels.

The real-time requirements vary depending on the nature of these components. The
following are key performance requirements:

• Frame rate is the rate at which the simulator updates the display, whether or not
the simulator displays its model on a video screen. Frame rate is given in cycles
per second (hertz, abbreviated Hz). Typical frame rates run from 15 Hz to 60 Hz,
although rates higher and lower than these are used in special situations.
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The inverse of frame rate is frame interval. For example, a frame rate of 60 Hz
implies a frame interval of 1/60 second, or 16.67 ms (.01667 seconds). To maintain
a frame rate of 60 Hz, a simulator must update its model and prepare a new
display in less than 16.67 ms.

• Transport delay is the number of frames that elapses before a control motion is
reflected in the display. When the transport delay is too long, the operator
perceives the simulation as sluggish or unrealistic. If a visual display in a
simulator lags behind control inputs, a human operator can become physically ill.
In the case where the operator is physical hardware, excessive transport delay can
cause the control loop to become unstable.

Aircraft Simulators

Simulators for real or hypothetical aircraft or spacecraft typically require frame rates
of 30 Hz to 120 Hz and transport delays of 1 or 2 frames. There can be several
analogue control inputs and possibly many digital control inputs (simulated switches
and circuit breakers, for example). There are often multiple video display outputs
(one each for the left, forward, and right “windows”) and possibly special hardware
to shake or tilt the “cockpit.” The display in the “windows” must have a convincing
level of detail.

Ground Vehicle Simulators

Simulators for automobiles, tanks, and heavy equipment have been built with SGI
systems. Frame rates and transport delays are similar to those for aircraft simulators.
However, there is a smaller world of simulated “geography” to maintain in the
model. Also, the viewpoint of the display changes more slowly, and through smaller
angles, than the viewpoint from an aircraft simulator. These factors can make it
somewhat simpler for a ground vehicle simulator to update its display.

Plant Control Simulators

A simulator can be used to train the operators of an industrial plant such as a nuclear
or conventional power-generation plant. Power-plant simulators have been built
using SGI systems.

The frame rate of a plant control simulator can be as low as 1 or 2 Hz. However, the
number of control inputs (knobs, dials, valves, and so on) can be very large. Special
hardware may be required to attach the control inputs and multiplex them onto the
PCI bus. Also, the number of display outputs (simulated gauges, charts, warning
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lights, and so on) can be very large and may also require custom hardware to
interface them to the computer.

Virtual Reality Simulators

A virtual reality simulator aims to give its operator a sense of presence in a
computer-generated world. A difference between a vehicle simulator and a virtual
reality simulator is that the vehicle simulator strives for an exact model of the laws of
physics, while a virtual reality simulator typically does not.

Usually the operator can see only the simulated display and has no other visual
referents. Because of this, the frame rate must be high enough to give smooth,
nonflickering animation; any perceptible transport delay can cause nausea and
disorientation. However, the virtual world is not required (or expected) to look like
the real world, so the simulator may be able to do less work to prepare the display
than does a vehicle simulator

SGI systems, with their excellent graphic and audio capabilities, are well suited to
building virtual reality applications.

Hardware-in-the-Loop Simulators

The operator of a simulator need not be a person. In a hardware-in-the-loop (HWIL)
simulator, the human operator is replaced by physical hardware such as an aircraft
autopilot or a missile guidance computer. The inputs to the system under test are the
simulator’s output. The output signals of the system under test are the simulator’s
control inputs.

Depending on the hardware being exercised, the simulator may have to maintain a
very high frame rate, up to several thousand Hz. SGI systems are excellent choices
for HWIL simulators.

Control Law Processor Stimulator

An example of a control law processor is one that simulates the effects of Newton’s law
on an aircraft flying through the air. When the rudder is turned to the left, the
information that the rudder had turned, the velocity, and the direction is fed into the
control law processor. The processor calculates and returns a response that represents
the physics of motion. The pilot in the simulator cockpit will feel the response and
the instruments will show the response. However, a human did not actually interact
directly with the processor; it was a machine-to-machine interaction.
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Wave Tank Stimulator

A wave tank simulates waves hitting a ship model under test. The stimulator must
“push” the water at a certain rhythm to keep the waves going. An operator may
adjust the frequency and amplitude of the waves, or it could run on a
preprogrammed cycle.

Data Collection Systems

A data collection system receives input from reporting devices (such as telemetry
receivers) and stores the data. It may be required to process, reduce, analyze, or
compress the data before storing it. It must respond in real time to avoid losing data.
SGI systems are suited to many data collection tasks.

A data collection system has the following major parts:

• Sources of data such as telemetry (the PCI bus, serial ports, SCSI devices, and
other device types can be used).

• A repository for the data. This can be a raw device (such as a tape), a disk file, or
a database system.

• Rules for processing. The data collection system might be asked only to buffer the
data and copy it to disk. Or it might be expected to compress the data, smooth it,
sample it, or filter it for noise.

• Optionally, a display. The data collection system may be required to display the
status of the system or to display a summary or sample of the data. The display is
typically not required to maintain a particular frame rate, however.

The first requirement on a data collection system is imposed by the peak data rate of
the combined data sources. The system must be able to receive data at this peak rate
without an overrun; that is, without losing data because it could not read the data as
fast as it arrived.

The second requirement is that the system must be able to process and write the data
to the repository at the average data rate of the combined sources. Writing can proceed
at the average rate as long as there is enough memory to buffer short bursts at the
peak rate.

You might specify a desired frame rate for updating the display of the data. However,
there is usually no real-time requirement on display rate for a data collection system.
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That is, the system is correct as long as it receives and stores all data, even if the
display is updated slowly.

Process Control Systems

A process control system monitors the state of an industrial process and constantly
adjusts it for efficient, safe operation. It must respond in real time to avoid waste,
damage, or hazardous operating conditions.

An example of a process control system would be a power plant monitoring and
control system required to do the following:

• Monitor a stream of data from sensors

• Recognize a dangerous situation has occurred

• Visualize the key data, such as by highlighting representations of down physical
equipment in red and sending audible alarms

The danger must be recognized, flagged, and responded to quickly in order for
corrective action to be taken appropriately. This entails a real-time system. SGI
systems are suited for many process control applications.

REACTTM Features
REACT real-time for Linux® provides the following features:

• SGI Linux Trace debug kernel to provide trace information for analyzing the
impact of kernel operations on application performance.

• The react command helps you easily generate and configure a real-time system.
See Chapter 9, "REACT System Configuration" on page 107.

• User-level interrupts to allow you to handle hardware interrupts from a user
process.

• A frame scheduler that makes it easier to structure a real-time program as a family
of independent, cooperating activities that are running on multiple CPUs and are
scheduled in sequence at the frame rate of the application.

Note: CPU refers to cores (not sockets).
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REACT Requirements
REACT requires the following:

• One of the following operating systems:

– SUSE® Linux® Enterprise Server 11 Service Pack 1 (SLES 11 SP1) or later

– Red Hat® Enterprise Linux® 6 (RHEL 6) or later

• x86-64 Intel® processors with at least 2 cores (4 cores are preferred)

• Sufficient memory so that the system can run the operating system and the
real-time applications without swapping

For best performance, run REACT on SGI x86-64 servers.

Note: Real–time programs using REACT should be written in the C language, which
is the most common language for system programming on Linux.

REACT RPMs
The following RPMs are used for REACT:

• Required RPMs:

– Cpuset and bitmask:

cpuset-utils
libbitmask
libcpuset

– External interrupts (see Chapter 3, "External Interrupts" on page 17):

extint
sgi-extint-kmp-*
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– REACT configuration (see Chapter 9, "REACT System Configuration" on page
107) and library:

react-utils

– REACT library:

libreact

– REACT licensing (for react-utils):

lk
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Chapter 2

Linux and REACT Support for Real–Time
Programs

This chapter provides an overview of how Linux and REACT support real-time
programs:

• "Kernel Facilities" on page 9

• "Frame Scheduler" on page 11

• "Clocks and Timers (Altix® UV 1000 and Altix UV 100)" on page 12

• "Interchassis Communication" on page 14

Kernel Facilities
The Linux kernel has a number of features that are valuable when you are designing
a real-time program. These are described in the following sections:

• "Special Scheduling Disciplines" on page 9

• "Virtual Memory Locking" on page 10

• "Processes Mapping and CPUs" on page 10

• "Interrupt Distribution Control" on page 11

Special Scheduling Disciplines

The default Linux scheduling algorithm is designed to ensure fairness among
time-shared users. The priorities of time-shared threads are largely determined by the
following:

• Their nice value

• The degree to which they are CPU-bound versus I/O-bound
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While a time-share scheduler is effective at scheduling most standard applications, it
is not suitable for real time. For deterministic scheduling, Linux provides the
following POSIX real-time policies:

• First-in-first-out

• Round-robin

These policies share a real-time priority band consisting of 99 priorities. For more
information about scheduling, see "Real-Time Priority Band" on page 40 and the
sched_setscheduler(2) man page.

Virtual Memory Locking

Linux allows a task to lock all or part of its virtual memory into physical memory so
that it cannot be paged out and so that a page fault cannot occur while it is running.

Memory locking prevents unpredictable delays caused by paging, but the locked
memory is not available for the address spaces of other tasks. The system must have
enough physical memory to hold the locked address space and space for a minimum
of other activities.

Examples of system calls used to lock memory are mlock(2) and mlockall(2).

Processes Mapping and CPUs

Normally, Linux tries to keep all CPUs busy, dispatching the next ready process to the
next available CPU. Because the number of ready processes changes continuously,
dispatching is a random process. A normal process cannot predict how often or when
it will next be able to run. For normal programs, this does not matter as long as each
process continues to run at a satisfactory average rate. However, real-time processes
cannot tolerate this unpredictability. To reduce it, you can dedicate one or more CPUs
to real-time work by using the following steps:

1. Restrict one or more CPUs from normal scheduling so that they can run only the
processes that are specifically assigned to them and isolate them from the effects
of scheduler load-balancing.

2. Assign one or more processes to run on the restricted CPUs.

A process on a dedicated CPU runs when it needs to run, delayed only by interrupt
service and by kernel scheduling cycles.
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Interrupt Distribution Control

In normal operations, a CPU receives frequent interrupts:

• I/O interrupts from devices attached to, or near, the CPU

• Timer interrupts that occur on every CPU

• Console interrupts that occur on the CPU servicing the system console

These interrupts can make the execution time of a process unpredictable. I/O
interrupt control is done by /proc filesystem manipulation. For more information on
controlling I/O interrupts, see "Redirect Interrupts" on page 43.

You can minimize console interrupt effects with proper real-time thread placement.
You should not run time-critical threads on the CPU that is servicing the system
console. You can see where console interrupts are being serviced by examining the
/proc/interrupts file. For example:

[root@linux root]# head -1 /proc/interrupts && grep ’SAL console’ /proc/interrupts

CPU0 CPU1 CPU2 CPU3
233: 0 12498 0 0 SN hub SAL console driver

The above shows that 12,498 console driver interrupts have been serviced by CPU 1.
In this case, CPUs 2 and 3 would be much better choices for running time-critical
threads because they are not servicing console interrupts.

Timer processing is always performed on the CPU from which the timer was started,
such as by executing a POSIX timer_settime() call. You can avoid the effects of
timer processing by not allowing execution of any threads other than time-critical
threads on CPUs that have been designated as such. If your time-critical threads start
any timers, the timer processing will result in additional latency when the timeout
occurs.

Frame Scheduler
Many real-time programs must sustain a fixed frame rate. In such programs, the
central design problem is that the program must complete certain activities during
every frame interval.

The frame scheduler is a process execution manager that schedules activities on one or
more CPUs in a predefined, cyclic order. The scheduling interval is determined by a
repetitive time base, usually a hardware interrupt.

007–4746–014 11



2: Linux and REACT Support for Real–Time Programs

The frame scheduler makes it easy to organize a real-time program as a set of
independent, cooperating threads. You concentrate on designing the activities and
implementing them as threads in a clean, structured way. It is relatively easy to
change the number of activities, their sequence, or the number of CPUs, even late in
the project. For more information, see Chapter 5, "Using the Frame Scheduler" on
page 53.

Clocks and Timers (Altix ® UV 1000 and Altix UV 100)
This section discusses the following for Altix UV 1000 and Altix UV 100:

• "Clocks" on page 12

• "Direct RTC Access" on page 14

Clocks

Note: This section does not apply to third-party x86-64 or Altix UV 10 servers .

SGI Altix UV 1000 and Altix UV 100 systems provide a systemwide clock called a
real-time clock (RTC) that is accessible locally on every node. The RTC provides a raw
time source that is incremented in 5-ns intervals and using the local APIC timer for
timer interrupts (timer_create()), which has a 1–ns resolution.

The RTC is 56 bits wide, which ensures that it will not wrap around zero unless the
system has been running for more than 11.42 years. RTC values are mapped into the
local memory of each node. Multiple nodes accessing the RTC value will not reduce
the performance of the clock functions.

The RTC is the basis for system time, which may be obtained via the
clock_gettime function call that is implemented in conformance with the POSIX
standard. clock_gettime takes an argument that describes which clock is wanted.
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The following clock values are typically used:

• CLOCK_REALTIME is the actual current time that you would obtain from any
ordinary clock. However, CLOCK_REALTIME is set during startup and may be
corrected during the operation of the system. This implies that time differences
observed by an application using CLOCK_REALTIME may be affected by the initial
setting or the later correction of time (via clock_settime) and therefore may not
accurately reflect time that has passed for the system.

• CLOCK_MONOTONIC starts at zero during bootup and is continually increasing.
CLOCK_MONOTONIC will not be affected by time corrections and the initial time
setup during boot. If you require a continually increasing time source that always
reflects the real time that has passed for the system, use CLOCK_MONOTONIC.

The clock_gettime function is a fastcall version that was optimized in assembler
and bypasses the context switch typically necessary for a full system call. SGI
recommends that you use clock_gettime for all time needs.

CLOCK_REALTIME and CLOCK_MONOTONIC report the correct resolution. You can use
either CLOCK_REALTIME or CLOCK_MONOTONIC to generate signals via the
timer_create() function.

To determine the tick frequency, use the sysconf(_SC_CLK_TCK) function. The
sysconf(_SC_CLK_TCK) function will always return the right value on Altix UV
1000 and Altix UV 100 systems.
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Direct RTC Access

Note: This section does not apply to third-party x86-64 or Altix UV 10 servers.

In some situations, the overhead of the clock_gettime fastcall may be too high. In
that case, direct memory-mapped access to the Altix UV 1000 or Altix UV 100 RTC
counter is useful. (See the comments in mmtimer.h.)

Note: Measurements have shown that the code generated by a function written to
obtain the RTC value and then calculate the nanoseconds that have passed is slower
than the fastcall for clock_gettime. Direct use of the RTC is only advisable for
timestamps.

Like CLOCK_MONOTONIC, the RTC counter is monotonically increasing from bootup
and is not affected by setting the time.

Interchassis Communication
This section discusses the following:

• "Socket Programming"

• "Message-Passing Interface (MPI)"

The performance of both sockets and MPI depends on the speed of the underlying
network. The network that connects nodes (systems) in an array product has a very
high bandwidth.

Socket Programming

One standard, portable way to connect processes in different computers is to use the
BSD-compatible socket I/O interface. You can use sockets to communicate within the
same machine, between machines on a local area network, or between machines on
different continents.
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Message-Passing Interface (MPI)

MPI is a standard architecture and programming interface for designing distributed
applications. For the MPI standard, see:

http://www.mcs.anl.gov/mpi

SGI supports MPI.
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Chapter 3

External Interrupts

Real-time processes often require the ability to react to an external event. External
interrupts are a way for a real-time process to receive a real-world external signal.

An external interrupt is generated via a signal applied to the external interrupt socket
on systems supporting such a hardware feature, such as the IO9 card on an SGI Altix
system, which has a 1/8-inch stereo-style jack into which a 0-5V signal can be fed. An
exterior piece of hardware can assert this line, causing the card’s IOC4 chip to
generate an interrupt.

This chapter discusses the following:

• "Abstraction Layer" on page 17

• "Making Use of Unsupported Hardware Device Capabilities " on page 31

• "Low-level Driver Template" on page 31

• "Example: SGI IOC4 PCI Device" on page 32

Abstraction Layer
Various external interrupt hardware might implement the external interrupt feature in
very different ways. The external interrupt abstraction layer provides the ability to
determine when an interrupt occurs, to count the number of interrupts, and to select
the source of those interrupts without depending upon specifics of the device being
used.

This section discusses the following:

• "sysfs Attribute Files" on page 18

• "The /dev/extint# Device" on page 20

• "Low-Level Driver Interface" on page 23

• "Interrupt Notification Interface" on page 28
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sysfs Attribute Files

The external interrupt abstraction layer provides a character device and the following
sysfs attribute files to control operation:

File Description

dev Contains the major and minor number of the abstracted external
interrupt device. If sysfs, hotplug, and udev are configured
appropriately, udev will automatically create a /dev/extint#
character special device file with this major and minor number. If you
prefer, you may manually invoke mknod(1) to create the character
special device file. Once created, this device file provides a counter that
can be used by applications in a variety of ways. See "The
/dev/extint# Device" on page 20.

mode Contains the shape of the output signal for interrupt generation. For
example, SGI’s IOC4 chip can set the output to one of the following:
high, low, pulse, strobe, or toggle. For more information, see
"External Interrupt Output" on page 34.

modelist Contains the list of available valid output modes, one per line. These
strings are the legal valid values that can be written to the mode
attribute. For more information, see "External Interrupt Output" on
page 34.

Note: For the SGI IOC4 chip, there are other values that may be read
from the mode attribute file that do not appear in modelist; these
represent invalid hardware states. Only the modes present from the
modelist are valid settings to be written to the mode attribute.

period Contains the repetition interval for periodic output signals (such as
repeated strobes, automatic toggling). This period is specified in
nanoseconds, and is written as a string. For more information, see
"External Interrupt Output" on page 34.

provider Contains an indication of which low-level hardware driver and device
instance are attached to the external interrupt interface. This string is
free-form and is determined by the low-level driver. For example, the
SGI IOC4 low-level driver will return a string of the form
ioc4_intout#.
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Note: The # value in ioc4_intout# is not necessarily the same
number used for extint#, particularly if multiple different low-level
drivers are in use (for example, IOC3 and IOC4).

quantum Contains the interval to which any writes of the period attribute will
be rounded. Because external interrupt output hardware may not
support nanosecond granularity for output periods, this attribute allows
you to determine the supported granularity. The behavior of the
interrupt output (when a value that is not a multiple of the quantum is
written to the period attribute) is determined by the specific low-level
external interrupt drive. However, generally the low-level driver should
round to the nearest available quantum multiple. For example, suppose
the quantum value is 7800. If a value of 75000 was written into the
period attribute, this would represent 9.6 quantums. The actual period
will be rounded to 10 quantums, or 78000 nanoseconds. The actual
period will be returned upon subsequent reads from the period
attribute. For more information, see "External Interrupt Output" on
page 34.

source Contains the hardware source of interrupts. For example, SGI’s IOC4
chip can trigger either from the external pin or from an internal
loopback from its interrupt output section.

sourcelist Contains the list of available interrupt sources, one per line. These
strings are the legal values that can be written to the source attribute
file.

Assuming the usual /sys mount-point for sysfs, the attribute files are located in the
following directory:

/sys/class/extint/extint#/

The extint# component of the path is determined by the extint driver itself. The #
character is replaced by a number (possibly multidigit), one per external interrupt
device, beginning at 0. For example, if there were three devices, there would be three
directories:

/sys/class/extint/extint0/
/sys/class/extint/extint1/

/sys/class/extint/extint2/
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The /dev/extint# Device

This section discusses the operations that an application can perform with the
read-only external interrupt device file /dev/extint#:

• "Counting Interrupts" on page 20

• "Waiting for Interrupts" on page 20

• "Exclusively Accessing a Device" on page 20

Counting Interrupts

A process may use mmap(2) to memory-map a single memory page from the external
interrupt device file into the process’ address space. At the beginning of this page, a
counter of an unsigned long type is maintained. This counter is incremented with
each external interrupt received by the device.

Alternatively, the read(2) system call returns a string representation of the counter’s
current value.

Waiting for Interrupts

The poll(2) and select(2) system calls allow a process to wait for an interrupt to
trigger:

• poll() indicates whether an interrupt has occurred since the last open(2) or
read() of the file

• select() blocks until the next interrupt is received

Exclusively Accessing a Device

The flock(2) system call with the options LOCK_EX|LOCK_MAND ensures exclusive
write access to the device attribute files (for example,
/sys/class/extint/extint#/mode).

Note: You must define the _GNU_SOURCE macro before including the header files in
order to use the LOCK_MAND flag on the call to flock(2).

When this lock is obtained, only a process that has access to the corresponding file
descriptor will be able to write to the attribute files for that device. Any other process
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that attempts a write(2) system call on one of these attribute files will fail with
errno set to EAGAIN.

The flock() system call will block until there are no other processes that have the
device file open and until no other flock() is active on the device. However, if
LOCK_NB is passed to flock(), the call will fail and errno will be set to
EWOULDBLOCK.

While a lock is in place, any attempt to call open(2) on the device will block.
However, if O_NONBLOCK is passed to open(), the call will fail and errno will be set
to EWOULDBLOCK.

To release the lock, call flock() with the LOCK_UN argument. The lock will also be
automatically dropped when the last user of the corresponding file descriptor closes
the file, including via a process exit. The lock will persist if the file descriptor is
inherited across fork(2) or exec(2) system calls.

Note: You must not pass the LOCK_MAND flag along with the LOCK_UN flag. The
flock() system call behavior is unspecified in this case.

Example 3-1 illustrates a method of searching for an unused external interrupt device
that can be used exclusively by that program.

Example 3-1 Searching for an Unused External Interrupt Device

#define _GNU_SOURCE

#include <stdio.h>
#include <sys/file.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <limits.h>

#include <errno.h>
#include <string.h>

int main(void) {

char devfile[PATH_MAX];

int i = 0;

int fd;
int found = 0;

int status;
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try_again:
/* Search for free /dev/extint# device */

while (i <= 255) {

sprintf(devfile, "/dev/extint%d", i);

i++;

fd = open(devfile, O_RDONLY|O_NONBLOCK);

if (fd >= 0) {

/* Found a unlocked device. */

found = 1;

break;

}

/* An error occurred. Check why. */

if (EWOULDBLOCK == errno) {

/* Found a locked device. */

printf("Tried %s, but it is locked.\n", devfile);
}

/* Some other type of error, just try next device.

* But don’t complain about non-existent devices.

*/

if (ENOENT != errno)

printf("Unexpected error opening %s: %s\n",
devfile, strerror(errno));

}

if (!found) {

printf("Could not find unlocked extint device to use.\n");
return 1;

}

/* Try locking this device to gain exclusive access. */

status = flock(fd, LOCK_EX|LOCK_MAND|LOCK_NB);
if (status != 0) {

if (EWOULDBLOCK == errno) {

/* The device was available, but another process

* has locked it between the time we opened it

* and made the flock() call.

*/
printf("Opened %s, but someone else locked it.\n",

devfile);
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} else {
/* Some other error occurred. */

printf("Unexpected error locking %s: %s\n",

devfile, strerror(errno));

}

/* Try the next device. */
found = 0;

close(fd);

goto try_again;

}

/* Successfully gained exclusive use of device */
printf("Exclusive use of %s established.\n", devfile);

/* Application code begins... */

/* ... application code ends. */

/* Unlock and close external interrupt device */

flock(fd, LOCK_UN);

close(fd);

/* Successful run */
return 0;

}

Low-Level Driver Interface

The extint_properties and extint_device structures provide the low-level
driver interface to the abstraction layer driver. The
/usr/local/include/extint.h file defines the structures and function
prototypes.

This section discusses the following:

• "Driver Registration" on page 24

• "Implementation Functions" on page 24

• "When an External Interrupt Occurs" on page 28

• "Driver Deregistration" on page 28
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Driver Registration

To register the low-level driver with the abstraction layer, use the following call:

struct extint_device*
extint_device_register(struct extint_properties *ep,

void *devdata);

The ep argument is a pointer to an extint_properties structure that specifies the
particular low-level driver functions that the abstraction layer should call when
reading/writing the attributes described in "sysfs Attribute Files" on page 18.

The devdata argument is an opaque pointer that is stored by the extint code. To
retrieve or modify this value, use the following calls:

void* extint_get_devdata(const struct extint_device *ed);

void extint_set_devdata(struct extint_device *ed, void* devdata);

The low-level driver uses this value to determine which of multiple devices it is
operating upon.

The return value is one of the following:

• A pointer to a struct extint_device (which should be saved for later
interrupt notification and driver deregistration).

• A negative error value (in case of registration failure). The driver should be
prepared to deal with such failures.

Implementation Functions

The struct extint_properties call table is as follows:

struct extint_properties {

/* Owner module */

struct module *owner;

/* Get/set generation mode */
ssize_t (*get_mode)(struct extint_device * ed, char *buf);

ssize_t (*set_mode)(struct extint_device * ed, const char *buf,

size_t count);

/* Get generation mode list */
ssize_t (*get_modelist)(struct extint_device * ed, char *buf);
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/* Get/set generation period */

unsigned long (*get_period)(struct extint_device * ed);

ssize_t (*set_period)(struct extint_device * ed, unsigned long period);

/* Get low-level provider name */
ssize_t (*get_provider)(struct extint_device *ed, char *buf);

/* Generation period quantum */

unsigned long (*get_quantum)(struct extint_device * ed);

/* Get/set ingest source */
ssize_t (*get_source)(struct extint_device * ed, char *buf);

ssize_t (*set_source)(struct extint_device * ed, const char *buf,

size_t count);

/* Get ingest source list */
ssize_t (*get_sourcelist)(struct extint_device * ed, char *buf);

/* Arm/disarm timer */

int64_t (*arm_timer)(struct extint_device * ed, int64_t ns, int when);

void (*disarm_timer)(struct extint_device * ed);

};

Note: Additional fields not of interest to the low-level external interrupt driver may
be present. You should include /usr/local/include/extint.h to acquire these
structure definitions.

The owner value should be set to the module that contains the functions pointed to
by the remaining structure members. The remaining functions implement low-level
aspects of the abstraction layer attributes. They all take a pointer to the struct
extint_device as was returned from the registration function. In all of these
functions, you can retrieve the value passed as the devdata argument to the
registration function by using the following call:

extint_get_devdata(ed);

You can update the value by using the following call:

extint_set_devdata(ed, newvalue);
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Typically, this value is a pointer to driver-specific data for the individual device being
operated upon. It may, for example, contain pointers to mapped PCI regions where
control registers reside.

Field Description

owner Specifies the module that contains the functions pointed
to by the remaining structure members.

get_mode Writes the current mode attribute of the abstraction layer
into the single-page-sized buffer passed as the second
argument and returns the length of the written string.

set_mode Reads the mode attribute of the abstraction layer as
specified in the buffer (passed as the second argument
and as sized by the third) and returns the number of
characters consumed (or a negative error number in
event of failure). It also causes the output mode to be
set as requested.

get_modelist Writes strings representing the available interrupt
output generation modes into the single-page-sized
buffer passed as the second argument, one mode per
line. It returns the number of bytes written into this
buffer. This implements the modelist attribute of the
abstraction layer.

get_period Returns an unsigned long that represents the current
repetition period, in nanoseconds. This implements the
period attribute of the abstraction layer.

set_period Accepts an unsigned long as the new value for the
repetition period, specified in nanoseconds, and
returning either 0 or a negative error number indicating
a failure. If the requested repetition period is not a
value that can be exactly set into the underlying
hardware, the driver is free to adjust the value as it sees
fit, although typically it should round the value to the
nearest available value. This implements the period
attribute of the abstraction layer.

get_provider Writes a human-readable string that identifies the
low-level driver and a particular instance of a driven
hardware device. For example, if the low-level driver
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provides its own additional device files for extra
functionality not present in the abstraction layer, this
routine might emit the name of the driver module and
the names (or device numbers) of the low-level driver’s
own character special device files. This implements the
provider attribute of the abstraction layer.

get_quantum Returns an unsigned long that represents the
granularity to which the interrupt output repetition
period can be set, in nanoseconds. This implements the
quantum attribute of the abstraction layer.

get_source Writes the current interrupt input source into the
single-page-sized buffer passed as the second argument
and returns the length of the written string. This
implements the source attribute of the abstraction
layer.

set_source Reads the source specified in the buffer (passed as the
second argument and as sized by the third) and returns
the number of characters consumed or a negative error
number in event of failure. It also causes the input
source to be selected as requested. This implements the
source attribute of the abstraction layer.

get_sourcelist Writes strings representing the available interrupt input
sources into the single-page-sized buffer passed as the
second argument, one source per line. It returns the
number of bytes written into this buffer. This
implements the sourcelist attribute of the
abstraction layer.

arm_timer Sets up the external interrupt device to generate an
interrupt at a specified time. The time is specified in
nanoseconds via the second argument. The third
parameter may be set to the values
EXTINT_TIMER_RELATIVE or
EXTINT_TIMER_ABSOLUTE. The third parameter
controls whether the time is relative to the moment the
function is called or is absolute system time, (as
returned by the getnstimeofday() system call).
Interrupt notifications occur through the standard
external interrupt callout mechanism described in
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"Interrupt Notification Interface" on page 28. This field
may be set to NULL if the low-level driver does not
support timer functionality.

disarm_timer Cancels a pending interrupt, if any, scheduled to be
delivered due to a prior call to the arm_timer()
function. If the previously scheduled interrupt has
already occurred, it is not necessary to call
disarm_timer(), and calling disarm_timer()
when no interrupt is pending should be harmless. This
field may be set to NULL if the low-level driver does not
support timer functionality.

When an External Interrupt Occurs

When an external interrupt signal triggers an interrupt that is handled by the
low-level driver, the driver should make the following call:

void

extint_interrupt(struct extint_device *ed);

This allows the abstraction layer to perform any appropriate abstracted actions, such
as update the interrupt count or trigger poll/select actions. The sole argument is
the struct extint_device that was returned from the registration call.

Driver Deregistration

When the driver desires to deregister a particular device previously registered with
the abstraction layer, it should make the following call:

void

extint_device_unregister(struct extint_device *ed);

The sole argument is the struct extint_device that was returned from the
registration call. There is no error return from this call, but if invalid data is passed to
it, the likelihood of a kernel panic is very high.

Interrupt Notification Interface

In addition to the user-visible aspects of the external interrupt abstraction layer, there
is a kernel-only interface available for interrupt notification. This interface provides
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the ability for other kernel modules to register a callout to be invoked whenever an
external interrupt is ingested for a particular device.

This section discusses the following:

• "Callout Mechanism" on page 29

• "Callout Registration" on page 29

• "Callout Deregistration" on page 30

Callout Mechanism

For systems (not just applications) that are critically interested in responding as
quickly as possible to an externally triggered event, waiting for a poll/select
operation, or even busy-waiting on the value of the interrupt counter to change, may
have unexpected harmful effects (such as tying up a CPU spinning on a value) or
may not provide appropriate response times.

A callout mechanism lets you write your own kernel module in order to gain
minimal-latency notification of events and react accordingly. It also provides an
extension capability that might be of interest in certain situations. For example, there
could be an application that requires an interrupt counter page similar to the one
maintained by the abstraction layer, but that starts counting at 0 when the device
special file is opened. Or, there could be an application that requires a signal to be
generated and delivered to the process when an interrupt is ingested. These examples
are more esoteric than the simple counter page, and are best provided by a separate
module rather than cluttering the main external interrupt abstraction code.

Callout Registration

To register a callout to be invoked upon interrupt ingest, allocate a struct
extint_callout, fill it in, and pass it to the following call:

int

extint_callout_register(struct extint_device *ed,

struct extint_callout *ec);

The first argument is the struct extint_device corresponding to the particular
abstracted external interrupt hardware device of interest. How this structure is found
is up to the caller; however, the file_to_extint_device function will convert a
struct file pointer to a struct extint_device pointer. This function will return
-EINVAL if an inappropriate file descriptor is passed to it.
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The second argument is one of the following structures:

struct extint_callout {
struct module* owner;

void (*function)(void *);

void *data;

};

Note: Additional fields not of interest to the external interrupt user may be present.
You should include /usr/local/include/extint.h to acquire these structure
definitions.

The owner field should be set to the module containing the function and data
pointed to by the remaining fields.

The function pointer is a callout function that is to be invoked whenever an
interrupt is ingested by the abstraction layer for the device of interest. The data field
is the only argument passed to it; it is used opaquely and is provided solely for use
by the caller. That is, the abstraction layer will invoke the following upon each
interrupt of the specified device:

ec->function(data);

You can register multiple callouts for the same abstracted external interrupt device.
They will be invoked in no guaranteed order, but will be invoked one at a time.

The interrupt counter will be incremented before the callouts are invoked, but before
any signal/poll notifications occur.

The module specified by the owner field in the callout structure, as well as the
module corresponding to the low-level external interrupt device driver, will have
their reference counts increased by one until the callout is deregistered.

Callout Deregistration

To remove a callout, call the following with the same arguments as provided during
callout registration:

extern void

extint_callout_unregister(struct extint_device *ed,

struct extint_callout *ec);
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You can remove both active and orphaned callouts in this manner with no distinction
between the two.

The callout function must continue to be able to be invoked until the call to
extint_callout_unregister completes.

Making Use of Unsupported Hardware Device Capabilities
If your hardware device supports capabilities that are not provided for in the
abstraction layer, you can do one of the following:

• Add a new attribute to the abstraction layer by modifying struct
extint_properties to add appropriate interface routines and update any
existing drivers as necessary.

• Have the low-level driver create its own device class and corresponding attributes
and/or character special devices. This method is preferred and is required if the
capability is dependent on the hardware in a method that cannot be abstracted.

For example, the SGI IOC4 has the ability to map the interrupt output control register
directly into a user application to avoid the kernel overhead of reading/writing the
abstracted attribute files. Using this capability means that the application must have
intimate knowledge of the format of the control register, something that cannot be
abstracted away by the kernel and is very specific to this particular I/O controller
chip. This capability is provided by the ioc4_extint driver, which supplies its own
character special device along with an ioc4_intout device class.

Low-level Driver Template
You can use the ioc4_extint.c file as a template for a low-level driver. The file is
shipped as part of the extint source RPM.

Note: In addition to providing the abstraction interface, this low-level driver creates
an IOC4-specific character special device and an IOC4-specific device class.
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Example: SGI IOC4 PCI Device
This section describes the following for the SGI IOC4 PCI device:

• "Multiple Independent Drivers" on page 32

• "External Interrupt Output" on page 34

• "External Interrupt Ingest" on page 36

• "Physical Interfaces" on page 36

For more information, see the Documentation/sgi-ioc4.txt file, which is
installed with the Linux source code corresponding to the real-time kernel.

Multiple Independent Drivers

The IOC4 external interrupt driver is not a typical PCI device driver. Due to certain
design features of the IOC4 controller, typical PCI probing and removal functions are
not appropriate. Instead, the IOC4 external interrupt driver interfaces with a core
IOC4 driver that takes care of the usual PCI-level driver functionality. (An overview
is provided below; for more details, see the Documentation/sgi-ioc4.txt file in
the kernel source code.) However, the IOC4 external interrupt driver does interface
very cleanly with the external interrupt abstraction layer, which is within the scope of
the following discussion.

The IOC4 driver actually consists of the following independent drivers:

ioc4 The core driver for IOC4. It is responsible for
initializing the basic functionality of the chip and
allocating the PCI resources that are shared between the
IOC4 functions.

This driver also provides registration functions that the
other IOC4 drivers can call to make their presence
known. Each driver must provide a probe and a
remove function, which are invoked by the core driver
at appropriate times. The interface for the probe and
remove operations is not precisely the same as the PCI
device probe and remove operations, but is logically the
same operation.
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sgiioc4 The IDE driver for IOC4. It hooks up to the ioc4
driver via the appropriate registration, probe, and
remove functions.

ioc4_serial The serial driver for IOC4. It hooks up to the ioc4
driver via the appropriate registration, probe, and
remove functions.

ioc4_extint The external interrupts driver for IOC4.

IOC4-based I/O controller cards provide an electrical
interface to the outside world that can be used to ingest
and generate a simple signal for the following purposes:

• On the output side, one of the jacks can provide a
small selection of output modes (low, high, a single
strobe, toggling, and pulses at a specified interval)
that create a 0-5V electrical output.

• On the input side, one of the jacks will cause the
IOC4 to generate a PCI interrupt on the transition
edge of an electrical signal.

This driver registers with the extint abstracted
external interrupt driver and lets it take care of the
user-facing details.
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External Interrupt Output

The output section provides several modes of output:

Mode Description

high Sets the output to logic high. The high state of the card’s electrical
output is actually a low voltage (0V).

low Sets the output to logic low. The low state of the card’s electrical
output is actually a high voltage (+5V).

pulse Sets the output to logic high for 3 ticks then returns to logic low for an
interval configured by the period setting, then repeats. The mode is
configurable by the abstraction layer device’s mode attribute. The
abstraction layer device’s modelist attribute contains available modes.

strobe Sets the output to logic high for 3 ticks, then returns to logic low. A
tick is the PCI clock signal divided by 520.

toggle Alternates the output between logic low and logic high as configured
by the period setting.

The period can be set to a range of values determined by the PCI clock speed of the
IOC4 device. For the toggle and pulse output modes, this period determines how
often the toggle or pulse occurs. The output period can be set only to a multiple of
this length (rounding will occur automatically in the driver). The pulse and strobe
output modes have a logic high pulse width equal to three ticks. The period should
be configurable by the abstraction layer device’s period attribute, and the tick length
can be found from the abstraction layer device’s quantum attribute.

Note: For reference, on a 66-MHz PCI bus, the tick length is 7.8 microseconds. On a
33-MHz PCI bus, the tick length is 15.6 microseconds. However, the IOC4 driver
calibrates itself to a more precise value than these somewhat coarse numbers,
depending on actual bus speed, which may vary slightly from bus to bus or even
reboot to reboot. However, IOC4 is only officially supported when running at 66-MHz.

One device file is provided, which can be memory mapped. The first 32-bit quantity
in the mapped area is aliased to the hardware register that controls output. Direct
manipulation of the register, both for reading and writing, may be performed in order
to avoid the kernel overhead that would be necessary if using the abstracted
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interfaces. Assuming the typical sysfs mount point, the device number files for
these devices can be found at:

/sys/class/ioc4_intout/intout#/dev

This capability is not abstracted into the external interrupt abstraction layer because it
is critical for an application to know that this is an IOC4 device in order to determine
the format of the mapped register. Table 3-1 shows the register format.

Table 3-1 Register Format

Bits Field Read/Write Options Description

15:0 COUNT RW Reloaded into the counter each time it reaches 0x0. The
count period is actually (COUNT+1).

18:16 MODE RW Sets the mode for INT_OUT control:

• 000 loads a 0 to INT_OUT
• 100 loads a 1 to INT_OUT
• 101 pulses INT_OUT high for 3 ticks
• 110 pulses INT_OUT for 3 ticks every COUNT
• 111 toggles INT_OUT for 3 ticks every COUNT
• 001, 010, and 011 are undefined

29:19 (reserved) RO Read as 0, writes are ignored.

30 DIAG RW Bypass clock base divider. Operation when DIAG is set to
a value of 1 is strictly unsupported.

31 INT_OUT RO Current state of INT_OUT signal.

Note: There are the following considerations:

• The register should always be read and written as a 32-bit word in order to avoid
concerns about big-endian and little-endian differences between the CPU and the
IOC4 device.

• The /dev/intout# file may be memory-mapped only on kernels with a system
page size of 16 KB or smaller. Due to technical constraints, it is not made available
on kernels with a system page size larger than 16 KB.
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External Interrupt Ingest

The ingest section provides one control, the source of interrupt signals. The external
source is a circuit connected to the external jack provided on IOC4-based I/O
controller cards. The loopback source is the output of the IOC4’s interrupt output
section. The source is configurable by the abstraction layer device’s source attribute.
You can find available sources in the abstraction layer device’s sourcelist attribute.

For example, to set up loopback mode:

[root@linux root]# echo loopback >/sys/class/extint/extint0/source

[root@linux root]# echo 100000000 >/sys/class/extint/extint0/period

[root@linux root]# echo toggle >/sys/class/extint/extint0/mode

Note: The IO10 card does not provide the 1/8–inch stereo connector interface for
external interrupts, and thus can only use loopback as its source.

Physical Interfaces

Use a two-conductor shielded cable to connect external interrupt output and input,
with the two cable conductors wired to the +5V and interrupt conductors and the
sleeves connected to the cable shield at both ends to maintain EMI integrity.

All IOC4-based external interrupt implementations use female 1/8-inch audio jacks.
The wiring for the input jack is as follows:

• Tip: +5V input

• Ring: interrupt input (active low, optoisolated)

• Sleeve: chassis ground/cable shield

The input signal passes through an optoisolator that has a damping effect. The input
signal must be of sufficient duration to drive the output of the optoisolator low in
order for the interrupt to be recognized by the receiving machine. Current
experimentation shows that the threshold is about 2.5 microseconds. To be safe, the
driver sets its default outgoing pulse width to 10 microseconds. Any hardware not
from SGI that is driving this line should do the same.

Figure 3-1 shows the internal driver circuit for the output connector and the internal
receiver circuit for the input connector.

36 007–4746–014



REACT
TM

Real-Time for Linux® Programmer’s Guide

Internal driver circuit
output connector

+5V
Output +5V connector

Output interrupt connector
open collector driver

Ground

Internal driver circuit
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Input +5V connector

Input interrupt connector

Optoisolator LED

Figure 3-1 Output and Input Connectors for Interface Circuits of IO9 and PCI-RT-Z Cards

You can wire an output connector directly to an input connector, taking care to
connect the +5V output to the +5V input and the interrupt output to the interrupt
input. If some other device is used to drive the input, it must be a it must be a +5V
source current-limited with series resistor of at least 420 ohms in order to avoid
damaging the optoisolator.

Note: The resistor on the output circuit of IO9 and PCI-RT-Z cards is 470 ohms. To
protect the input circuit on these cards from damage, a resistor of at least 420 ohms is
required.
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Chapter 4

CPU Workload

This chapter describes how to use Linux kernel features to make the execution of a
real-time program predictable. Each of these features works in some way to dedicate
hardware to your program’s use, or to reduce the influence of unplanned interrupts
on it:

• "Using Priorities and Scheduling Queues" on page 39

• "Minimizing Overhead Work" on page 43

• "Understanding Interrupt Response Time" on page 47

• "Minimizing Interrupt Response Time" on page 51

Using Priorities and Scheduling Queues
The default Linux scheduling algorithm is designed for a conventional time-sharing
system. It also offers additional real-time scheduling disciplines that are better-suited
to certain real-time applications.

This section discusses the following:

• "Scheduling Concepts" on page 39

• "Setting Pthread Priority" on page 41

• "Controlling Kernel and User Threads" on page 42

Scheduling Concepts

In order to understand the differences between scheduling methods, you must
understand the following basic concepts:

• "Timer Interrupts" on page 40

• "Real-Time Priority Band" on page 40

For information about time slices and changing the time-slice duration, see the
information about the CPU scheduler in the Linux Configuration and Operations Guide.
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Timer Interrupts

In normal operation, the kernel pauses to make scheduling decisions every several
millisecond (ms) in every CPU. You can determine the frequency of this interval with
the sysconf(_SC_CLK_TCK) function (see "Clocks" on page 12). Every CPU is
normally interrupted by a timer every timer interval. (However, the CPUs in a
multiprocessor are not necessarily synchronized. Different CPUs may take timer
interrupts at different times.)

During the timer interrupt, the kernel updates accounting values, does other
housekeeping work, and chooses which process to run next—usually the interrupted
process, unless a process of superior priority has become ready to run. The timer
interrupt is the mechanism that makes Linux scheduling preemptive; that is, it is the
mechanism that allows a high-priority process to take a CPU away from a
lower-priority process.

Before the kernel returns to the chosen process, it checks for pending signals and may
divert the process into a signal handler.

Real-Time Priority Band

A real-time thread can select one of a range of 99 priorities (1-99) in the real-time
priority band, using POSIX interfaces sched_setparam() or
sched_setscheduler(). The higher the numeric value of the priority, the more
important the thread. For more information, see the sched_setscheduler(2) man
page.

Many soft real-time applications must execute ahead of time-share applications, so a
lower priority range is best suited. Because time-share applications are scheduled at
lower priority than real-time applications, a thread running at the lowest real-time
priority (1) still executes ahead of all time-share applications.

Note: Applications cannot depend on system services if they are running ahead of
system threads without observing system-responsiveness timing guidelines.
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Within a program it is usually best to follow the principles of rate-monotonic
scheduling. However, you can use the following list as a guideline for selecting
scheduling priorities in order to coordinate among different programs:

Priority Description

99 Reserved for critical kernel threads and should not be used by
applications (99 is the highest real-time priority)

90 - 98 Hard real-time user threads

60 - 89 High-priority operating system services

40 - 59 Firm real-time user threads

31 - 39 Low-priority operating system services

1 - 30 Soft real-time user threads

Real-time users can use tools such as strace(1) and ps(1) to observe the actual
priorities and dynamic behaviors.

Setting Pthread Priority

The Linux pthreads library shipped with SLES and RHEL is known as the new
pthreads library (NPTL). By default, a newly created pthread receives its priority from
the same scheduling policy and scheduling priority as the pthread that created it; new
pthreads will ignore the values in the attributes structure.
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You can set the priority and scheduling policy of pthreads as follows:

• To change a running pthread, the pthread must call pthread_setschedparam().

• To set the scheduling attributes that a pthread will start with when it is created,
use the pthread_attr_setschedpolicy() and
pthread_attr_setschedparam() library calls to configure the attributes
structure that will later be passed to pthread_create().

The pthread_attr_setinheritsched() library call acts on the
pthread_attr_t structure that will later be passed to pthread_create(). You
can configure it with one of the following settings:

– PTHREAD_EXPLICIT_SCHED causes pthreads to use the scheduling values set
in the structure

– PTHREAD_INHERIT_SCHED causes pthreads to inherit the scheduling values
from their parent pthread

Controlling Kernel and User Threads

In some situations, kernel threads and user threads must run on specific processors or
with other special behavior. Most user threads and a number of kernel threads do not
require any specific CPU or node affinity, and therefore can run on a select set of
nodes. The SGI bootcpuset feature controls the placement of both kernel and user
threads that do not require any specific CPU or node affinity. By placing these threads
out of the way of your time-critical application threads, you can minimize
interference from various external events.

As an example, an application might have two time-critical interrupt servicing
threads, one per CPU, running on a four-processor machine. You could set up CPUs 0
and 1 as a bootcpuset and then run the time-critical threads on CPUs 2 and 3.

Note: You must have the SGI cpuset-*.rpm RPM installed to use bootcpusets. For
configuration information, see the bootcpuset(8) man page.

You can use the react command to configure the real-time CPUs; see Chapter 9,
"REACT System Configuration" on page 107.
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Minimizing Overhead Work
A certain amount of CPU time must be spent on general housekeeping. Because this
work is done by the kernel and triggered by interrupts, it can interfere with the
operation of a real-time process. However, you can remove almost all such work from
designated CPUs, leaving them free for real-time work.

First decide how many CPUs are required to run your real-time application. Then
apply the following steps to isolate and restrict those CPUs:

• "Avoid the Clock Processor (CPU 0)" on page 43

• "Redirect Interrupts" on page 43

• "Restrict, Isolate, and Shield CPUs" on page 44

• "Avoid Kernel Module Insertion and Removal" on page 46

• "Avoid Filesystem Mounts" on page 47

Note: The steps are independent of each other, but each must be done to completely
free a CPU.

Avoid the Clock Processor (CPU 0)

Every CPU takes a timer interrupt that is the basis of process scheduling. However,
CPU 0 does additional housekeeping for the whole system on each of its timer
interrupts. Therefore, you should not to use CPU 0 for running real-time processes.

Redirect Interrupts

To minimize latency of real-time interrupts, it is often necessary to direct them to
specific real-time processors. It is also necessary to direct other interrupts away from
specific real-time processors. This process is called interrupt redirection.

You can use the react command to redirect interrupts; for more information, see
Chapter 9, "REACT System Configuration" on page 107.

Note: SGI recommends that someone with knowledge of the system configuration
use react to redirect only the interrupts that must be moved.
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The process involves writing a hexadecimal bitmask to the
/proc/irq/interruptnumber/smp_affinity file, which shows a bitmask of the
CPUs that are allowed to receive this interrupt. A 1 in the least-significant bit in this
mask denotes that CPU 0 is allowed to receive the interrupt. The most-significant bit
denotes the highest-possible CPU that the booted kernel could support.

For example, to redirect interrupt 62 to CPU 1, enter the following:

[root@linux root]# echo 1 > /proc/irq/62/smp_affinity

To view the IRQ/CPU affinity, use the less command to view the smp_affinity
file. For example:

[root@linux root]# less /proc/irq/62/smp_affinity

Note: To avoid any potential viewing problems, you should use less(1) rather than
cat(1) to view the smp_affinity file.

You can examine the /proc/interrupts file to discover where interrupts are being
received on your system.

Restrict, Isolate, and Shield CPUs

In general, the Linux scheduling algorithms run a process that is ready to run on any
CPU. For best performance of a real-time process or for minimum interrupt response
time, you must use one or more CPUs without competition from other scheduled
processes. You can exert the following levels of increasing control:

• Restricted and isolated, which prevents the CPU from running scheduled processes
and removes the CPU from load balancing considerations, a time-consuming
scheduler operation.

• Shielded, which switches off the timer (scheduler) interrupts that would normally
be scheduled on the CPU. These are a source of jitter, but only a minor source of
interrupt response latency. Shielding should only be done for short periods where
basically jitter-free program execution is required.

You should use the react command to create a real-time CPU that is restricted and
isolated. For more information, see Chapter 9, "REACT System Configuration" on
page 107.
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You can also use the REACT C application programming interface (API) to restrict
and isolate a CPU. See Chapter 10, "Using the REACT Library" on page 117.

Restricting a CPU from Scheduled Work and Isolating it from Scheduler Load Balancing

You can restrict one or more CPUs from running scheduled processes and isolate
them from scheduler load balancing by designating them as realtime CPUs with the
react command.

The only processes that can use a restricted CPU are those processes that you assign
to it, along with certain per-CPU kernel threads. Isolating a CPU removes one source
of unpredictable delays from a real-time program and helps further minimize the
latency of interrupt handling.

To restrict one or more CPUs, use the react -r command documented in Chapter 9,
"REACT System Configuration" on page 107.

After restricting a CPU, you can assign processes to it using the SGI cpuset
command. See "Running a Process on a Real-Time CPU" on page 115.

Each rtcpu is set to be cpu_exclusive.

To remove the CPU restriction, allowing the CPU to execute any scheduled process,
see "Changing the Configuration" on page 110.

Shielding a CPU from Timer Interrupts

You can shield a CPU from the normally scheduled Linux timer (scheduler) interrupts.
For more information on timer interrupts, see "Timer Interrupts" on page 40.

Timer interrupts are a source of interrupt response latency (usually several usec).
Shielding is done dynamically from program control, and should only be done for
short periods where essentially jitter-free program execution is required.

When a CPU’s timer interrupts are switched off, scheduling on that CPU ceases. A
thread must not yield the CPU (sleep) unless it expects to be awoken by an external
event such as an I/O interrupt or if timer interrupts will be switched back on before
it must be scheduled again.
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Note: Be aware of the following:

• Prolonged periods of shielding might eventually result in system resource
depletion. System resource depletion usually takes the form of out-of-memory
conditions, eventually causing forced shutdown of the application. The kernel ring
buffer will indicate this situation by showing a stack trace for the application and
a No available memory in cpuset: message. To view the kernel ring buffer,
run the dmesg command.

• You should ensure that all threads are placed in their appropriate cpusets prior to
calling cpu_shield() anywhere on the system. Movement between cpusets will
be held off during periods where any processor’s timer interrupts are switched off.
After timer interrupts for all processors are switched back on, any pending cpuset
thread movement will occur.

To shield a CPU from timer interrupts, do the following:

1. Load the sgi-shield kernel module. For example:

[root@linux root]# modprobe sgi-shield

2. From your application, call the cpu_shield() function with the
SHIELD_STOP_INTR flag and the desired CPU number. Your program must link
in the libreact library to access the cpu_shield() function. For more
information, see the libreact(3) man page.

For example, to switch off timer interrupts on CPU 3, perform the following
function call from the application:

cpu_shield(SHIELD_STOP_INTR, 3)

To unshield the CPU, call the cpu_shield() function with the
SHIELD_START_INTR flag and the desired CPU number.

For example, when shielding CPU 3 is no longer necessary, perform the following call
from the application:

cpu_shield(SHIELD_START_INTR, 3)

Avoid Kernel Module Insertion and Removal

The insertion and removal of Linux kernel modules (such as by using modprobe or
insmod/rmmod) requires that a kernel thread be started on all active CPUs (including
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isolated CPUs) in order to synchronously stop them. This process allows safe
lockless-module list manipulation. However, these kernel threads can interfere with
thread wakeup and, for brief periods, the ability to receive interrupts.

While a time-critical application is running, you must avoid Linux kernel module
insertion and removal. All necessary system services should be running prior to
starting time-critical applications.

Avoid Filesystem Mounts

The process of mounting/unmounting a filesystem (including an NFS filesystem) can
interfere with response times for a number of CPUs. These delays do not happen
after the mount has completed. There is no delay for disk accesses.

Prior to running a time-critical application, you should complete all filesystem
mounts that may be necessary during application execution. Filesystem unmounts
during application execution should be avoided. This includes autofs mounts
performed by automount.

Understanding Interrupt Response Time
Interrupt response time is the time that passes between the instant when a hardware
device raises an interrupt signal and the instant when (interrupt service completed)
the system returns control to a user process. SGI guarantees a maximum interrupt
response time on certain systems, but you must configure the system properly in
order to realize the guaranteed time.

This section discusses the following:

• "Maximum Response Time Guarantee" on page 48

• "Components of Interrupt Response Time" on page 48
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Maximum Response Time Guarantee

In properly configured systems, interrupt response time is guaranteed not to exceed
30 microseconds (usecs) for SGI x86–64 systems running Linux.

This guarantee is important to a real-time program because it puts an upper bound
on the overhead of servicing interrupts from real-time devices. You should have some
idea of the number of interrupts that will arrive per second. Multiplying this by
30 usecs yields a conservative estimate of the amount of time in any one second
devoted to interrupt handling in the CPU that receives the interrupts. The remaining
time is available to your real-time application in that CPU.

Components of Interrupt Response Time

The total interrupt response time includes the following sequential parts:

Time Description

Hardware latency The time required to make a CPU respond to an
interrupt signal. See "Hardware Latency" on page 49.

Software latency The time required to dispatch an interrupt thread. See
"Software Latency" on page 49.

Device service The time the device driver spends processing the
interrupt and dispatching a user thread. See "Device
Service" on page 51.

Mode switch The time it takes for a thread to switch from kernel
mode to user mode. See "Mode Switch" on page 51.

Figure 4-1 diagrams the parts discussed in the following sections.
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Figure 4-1 Components of Interrupt Response Time

Hardware Latency

When an I/O device requests an interrupt, it activates a line in the PCI bus interface.
The bus adapter chip places an interrupt request on the system internal bus and a
CPU accepts the interrupt request.

The time taken for these events is the hardware latency, or interrupt propagation delay.
For more information, see Chapter 7, "PCI Devices" on page 93.

Software Latency

Software latency is affected by the following:

• "Kernel Critical Sections" on page 50

• "Interrupt Threads Dispatch" on page 50
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Kernel Critical Sections

Certain sections of kernel code depend on exclusive access to shared resources. Spin
locks are used to control access to these critical sections. Once in a critical section,
interrupts are disabled. New interrupts are not serviced until the critical section is
complete.

There is no guarantee on the length of kernel critical sections. In order to achieve
30-usec response time, your real-time program must avoid executing system calls on
the CPU where interrupts are handled. The way to ensure this is to restrict that CPU
from running normal processes. For more information, see "Restricting a CPU from
Scheduled Work and Isolating it from Scheduler Load Balancing" on page 45.

You may need to dedicate a CPU to handling interrupts. However, if the
interrupt-handling CPU has power well above that required to service interrupts (and
if your real-time process can tolerate interruptions for interrupt service), you can use
the restricted CPU to execute real-time processes. If you do this, the processes that
use the CPU must avoid system calls that do I/O or allocate resources, such as
fork(), brk(), or mmap(). The processes must also avoid generating external
interrupts with long pulse widths.

In general, processes in a CPU that services time-critical interrupts should avoid all
system calls except those for interprocess communication and for memory allocation
within an arena of fixed size.

Interrupt Threads Dispatch

The primary function of interrupt dispatch is to determine which device triggered the
interrupt and dispatch the corresponding interrupt thread. Interrupt threads are
responsible for calling the device driver and executing its interrupt service routine.

While the interrupt dispatch is executing, all interrupts at or below the current
interrupt’s level are masked until it completes. Any pending interrupts are
dispatched before interrupt threads execute. Thus, the handling of an interrupt could
be delayed by one or more devices.

In order to achieve 30-usec response time on a CPU, you must ensure that the
time-critical devices supply the only device interrupts directed to that CPU. For more
information, see "Redirect Interrupts" on page 43.
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Device Service

Device service time is affected by the following:

• "Interrupt Service Routines"

• "User Threads Dispatch"

Interrupt Service Routines

The time spent servicing an interrupt should be negligible. The interrupt handler
should do very little processing; it should only wake up a sleeping user process and
possibly start another device operation. Time-consuming operations such as allocating
buffers or locking down buffer pages should be done in the request entry points for
read(), write(), or ioctl(). When this is the case, device service time is minimal.

User Threads Dispatch

Typically, the result of the interrupt is to make a sleeping thread runnable. The
runnable thread is entered in one of the scheduler queues. This work may be done
while still within the interrupt handler.

Mode Switch

A number of instructions are required to exit kernel mode and resume execution of
the user thread. Among other things, this is the time when the kernel looks for
software signals addressed to this process and redirects control to the signal handler.
If a signal handler is to be entered, the kernel might have to extend the size of the
stack segment. (This cannot happen if the stack was extended before it was locked.)

Minimizing Interrupt Response Time
You can ensure interrupt response time of 30 usecs or less for one specified device
interrupt on a given CPU provided that you configure the system as follows:

• The CPU does not receive any other SN hub device interrupts

• The interrupt is handled by a device driver from a source that promises negligible
processing time

• The CPU is isolated from the effects of load balancing
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• The CPU is restricted from executing general Linux processes

• Any process you assign to the CPU avoids system calls other than interprocess
communication and allocation within an arena

• Kernel module insertion and removal is avoided

When these things are done, interrupts are serviced in minimal time.
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Using the Frame Scheduler

The frame scheduler makes it easy to structure a real-time program as a family of
independent, cooperating activities that are running on multiple CPUs and are
scheduled in sequence at the frame rate of the application.

Note: With third-party x86-64 and Altix UV 10 architecture, the CC clock source is
supplied by the PCI-RT-Z card. HUB hardware timers are not available on third-party
x86-64 and Altix UV 10 platforms. On these platforms, you must have one PCI-RT-Z
card per asynchronous frame scheduler. Multiple frame schedulers running
synchronously can use a single PCI-RT-Z card, however.

This chapter discusses the following:

• "Frame Scheduler Concepts" on page 53

• "Selecting a Time Base" on page 69

• "Using the Scheduling Disciplines" on page 71

• "Using Multiple Consecutive Minor Frames" on page 73

• "Designing an Application for the Frame Scheduler" on page 75

• "Preparing the System" on page 76

• "Implementing a Single Frame Scheduler" on page 77

• "Implementing Synchronized Schedulers" on page 78

• "Handling Frame Scheduler Exceptions" on page 81

• "Using Signals Under the Frame Scheduler" on page 86

• "Using Timers with the Frame Scheduler" on page 89

Frame Scheduler Concepts
One frame scheduler dispatches selected threads at a real-time rate on one CPU. You
can also create multiple, synchronized frame schedulers that dispatch concurrent
threads on multiple CPUs.
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This section discusses the following:

• "Frame Scheduler Basics" on page 54

• "Thread Programming Model" on page 55

• "Frame Scheduling" on page 55

• "Controller Thread" on page 58

• "Frame Scheduler API" on page 58

• "Interrupt Information Templates" on page 59

• "Library Interface for C Programs" on page 60

• "Thread Execution" on page 62

• "Scheduling Within a Minor Frame" on page 64

• "Synchronizing Multiple Schedulers" on page 66

• "Starting a Single Scheduler" on page 66

• "Starting Multiple Schedulers" on page 67

• "Pausing Frame Schedulers" on page 67

• "Managing Activity Threads" on page 68

Frame Scheduler Basics

When a frame scheduler dispatches threads on one CPU, it does not completely
supersede the operation of the normal Linux scheduler. The CPUs chosen for frame
scheduling must be restricted and isolated (see "Restrict, Isolate, and Shield CPUs" on
page 44). You do not have to set up cpusets for the frame-scheduled CPUs because
the frame scheduler will set up cpusets named rtcpuN (where N is the CPU number)
if this has not already been done. For more control over cpuset parameters, you can
create your own cpusets for the frame scheduler to use (one per CPU, and one CPU
per cpuset), by naming them exactly as mentioned above.

If you already have cpusets named rtcpuN but they include other than only the CPU
number in question, the frame scheduler will return an EEXIST error.
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Note: REACT for Linux does not support Vsync, device-driver, or system-call time
bases.

For more information, see "Preparing the System" on page 76.

Thread Programming Model

The frame scheduler supports pthreads.

In this guide, a thread is defined as an independent flow of execution that consists of a
set of registers (including a program counter and a stack). A pthread is defined by the
POSIX standard. Pthreads within a process use the same global address space.

A traditional Linux process has a single active thread that starts after the program is
executed and runs until the program terminates. A multithreaded process may have
several threads active at one time. Hence, a process can be viewed as a receptacle that
contains the threads of execution and the resources they share (that is, data segments,
text segments, file descriptors, synchronizers, and so forth).

Frame Scheduling

Instead of scheduling threads according to priorities, the frame scheduler dispatches
them according to a strict, cyclic rotation governed by a repetitive time base. The time
base determines the fundamental frame rate. (See "Selecting a Time Base" on page 69.)
Some examples of the time base are as follows:

• A specific clocked interval in microseconds

• An external interrupt (see "External Interrupts as a Time Base" on page 70)

• The Vsync (vertical retrace) interrupt from the graphics subsystem

• A device interrupt from a specially modified device driver

• A system call (normally used for debugging)

Note: REACT for Linux does not support Vsync, device-driver, or system-call time
bases.
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The interrupts from the time base define minor frames. Together, a fixed number of
minor frames make up a major frame. The length of a major frame defines the
application’s true frame rate. The minor frames allow you to divide a major frame
into subframes. Figure 5-1 shows major and minor frames.

Q0 Q1 Q2

TIME

Major frame

Minor-0 Minor-1 Minor-2 Minor-0 Minor-1 Minor-2

Major frame

Real-time event interrupts

Thread queues

Figure 5-1 Major and Minor Frames

In the simplest case, there is a single frame rate, such as 60 Hz, and every activity the
program performs must be done once per frame. In this case, the major and minor
frame rates are the same.

In other cases, there are some activities that must be done in every minor frame, but
there are also activities that are done less often, such as in every other minor frame or
in every third one. In these cases, you define the major frame so that its rate is the
rate of the least-frequent activity. The major frame contains as many minor frames as
necessary to schedule activities at their relative rates.

As pictured in Figure 5-1, the frame scheduler maintains a queue of threads for each
minor frame. You must queue each activity thread of the program to a specific minor
frame. You determine the order of cyclic execution within a minor frame by the order
in which you queue threads. You can do the following:

• Queue multiple threads in one minor frame. They are run in the queued sequence
within the frame. All must complete their work within the minor frame interval.
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• Queue the same thread to run in more than one minor frame. For example,
suppose that thread double is to run twice as often as thread solo. You would
queue double to Q0 and Q2 in Figure 5-1, and queue solo to Q1.

• Queue a thread that takes more than a minor frame to complete its work. If thread
sloth needs more than one minor interval, you would queue it to Q0, Q1, and
Q2, such that it can continue working in all three minor frames until it completes.

• Queue a background thread that is allowed to run only when all others have
completed, to use up any remaining time within a minor frame.

All of these options are controlled by scheduling disciplines you specify for each
thread as you queue it. For more information, see "Using the Scheduling Disciplines"
on page 71.

Typically, a frame scheduler is driven by a single interrupt source and contains minor
frames having the same duration, but a variable frame scheduler may be used to
implement a frame scheduler having multiple interrupt sources and/or minor frames
of variable duration. For more information, see the frs_create_vmaster()
function.

The relationship between threads and a frame scheduler depends upon the thread
model in use:

• The pthread programming model requires that all threads scheduled by the frame
scheduler reside in the same process.

• The fork() programming model does not require that the participating threads
reside in the same process.

See "Implementing a Single Frame Scheduler" on page 77 for details.
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Controller Thread

The thread that creates a frame scheduler is called the frame scheduler controller thread.
It is privileged in these respects:

• Its identifier is used to identify its frame scheduler in various functions. The frame
scheduler controller thread uses a pthread ID.

• It can receive signals when errors are detected by the frame scheduler (see "Using
Signals Under the Frame Scheduler" on page 86).

• It cannot itself be queued to the frame scheduler. It continues to be dispatched by
Linux and executes on a CPU other than the one that the frame scheduler uses.

Frame Scheduler API

For an overview of the frame scheduler API, see the frs(3) man page, which
provides a complete listing of all the frame scheduler functions. Separate man pages
for each of the frame scheduler functions provide the API details. The API elements
are declared in /usr/include/frs.h. Table 5-1 shows some important types that
are declared in /usr/include/frs.h.

Table 5-1 Frame Scheduler Types

Type Description

typedef frs_fsched_info_t A structure containing information about
one scheduler (including its CPU number,
interrupt source, and time base) and
number of minor frames. Used when
creating a frame scheduler.

typedef frs_t A structure that identifies a frame scheduler.

typedef frs_queue_info_t A structure containing information about
one activity thread: the frame scheduler
and minor frame it uses and its scheduling
discipline. Used when enqueuing a thread.
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Type Description

typedef frs_recv_info_t A structure containing error recovery
options.

typedef frs_intr_info_t A structure that frs_create_vmaster()
uses for defining interrupt information
templates (see Table 5-3 on page 60).

Additionally, the pthreads interface adds the following types, as declared in
/usr/include/sys/pthread.h:

Table 5-2 Pthread Types

Type Description

typedef pthread_t An integer identifying the pthread ID.

typedef pthread_attr_t A structure containing information about
the attributes of the frame scheduler
controller thread.

Interrupt Information Templates

Variable frame schedulers may drive each minor frame with a different interrupt
source, as well as define a different duration for each minor frame. These two
characteristics may be used together or separately, and are defined using an interrupt
information template.

An interrupt information template consists of an array of frs_intr_info_t data
structures, where each element in the array represents a minor frame. For example,
the first element in the array represents the interrupt information for the first minor
frame, and so on for n minor frames.

The frs_intr_info_t data structure contains two fields for defining the interrupt
source and its qualifier: intr_source and intr_qualifier.

The following example demonstrates how to define an interrupt information template
for a frame scheduler having minor frames of different duration. Assume the
application requires four minor frames, where each minor frame is triggered by the
synchronized clock timer, and the duration of each minor frame is as follows: 100 ms,
150 ms, 200 ms, and 250 ms.
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The interrupt information template may be defined as follows:

frs_intr_info_t intr_info[4];
intr_info[0].intr_source = FRS_INTRSOURCE_CCTIMER;

intr_info[0].intr_qualifier = 100000;

intr_info[1].intr_source = FRS_INTRSOURCE_CCTIMER;

intr_info[1].intr_qualifier = 150000;

intr_info[2].intr_source = FRS_INTRSOURCE_CCTIMER;

intr_info[2].intr_qualifier = 200000;
intr_info[3].intr_source = FRS_INTRSOURCE_CCTIMER;

intr_info[3].intr_qualifier = 250000;

For detailed programming examples, demonstrating the use of variable frame
schedulers, see the /usr/share/react/frs/examples directory and the
frs_create_vmaster(3) man page.

Library Interface for C Programs

Table 5-3 summarizes the API library functions in the /usr/lib/libfrs.a file.

Table 5-3 Frame Scheduler Operations

Operation Use Frame Scheduler API

Create a frame
scheduler

Process setup frs_t* frs_create(cpu, (int int intr_source int
intr_qualifier, int, n_minors, pid_t sync_master_pid,
intnum_slaves);

Process or pthread
setup

frs_t* frs_create_master(int cpu, int intr_source, int
intr_qualifier, int n_minors, int num_slaves);

Process or pthread
setup

frs_t* frs_create_slave(int cpu, frs_t*
sync_master_frs);

Process or pthread
setup

frs_t* frs_create_vmaster(int cpu, int n_minors, int
n_slaves, frs_intr_info_t *intr_info);

Queue to a frame
scheduler minor
frame

Process setup int frs_enqueue(frs_t* frs, pid_t pid, int minor_frame,
unsigned int discipline);
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Operation Use Frame Scheduler API

Pthread setup int frs_pthread_enqueue(frs_t* frs, pthread_t pthread,
int minor_frame, unsigned int discipline);

Insert into a queue,
possibly changing
discipline

Process setup int frs_pinsert(frs_t* frs, int minor_frame, pid_t
target_pid, int discipline, pid_t base_pid);

Pthread setup int frs_pthread_insert(frs_t* frs, int minor_index,
pthread_t target_pthread, int discipline, pthread_t
base_pthread);

Set error recovery
options

Process setup int frs_setattr(frs_t* frs, int minor_frame, pid_t pid,
frs_attr_t attribute, void* param);

Pthread setup int frs_pthread_setattr(frs_t* frs, int minor_frame,
pthread_t pthread, frs_attr_t attribute, void* param);

Join a frame
scheduler (activity
is ready to start)

Process or pthread
execution

int frs_join(frs_t* frs);

Start scheduling (all
activities queued)

Process or pthread
execution

int frs_start(frs_t* frs);

Yield control after
completing activity

Process or pthread
execution

int frs_yield(void);

Pause scheduling at
end of minor frame

Process or pthread
execution

int frs_stop(frs_t* frs);

Resume scheduling
at next time-base
interrupt

Process or pthread
execution

int frs_resume(frs_t* frs);

Trigger a user-level
frame scheduler
interrupt

Process or pthread
execution

int frs_userintr(frs_t* frs);

Interrogate a minor
frame queue

Process or pthread
query

int frs_getqueuelen(frs_t* frs, int minor_index);

Process query int frs_readqueue(frs_t* frs, int minor_frame, pid_t
*pidlist);

Pthread query int frs_pthread_readqueue(frs_t* frs, int minor_frame,
pthread_t *pthreadlist);
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Operation Use Frame Scheduler API

Retrieve error
recovery options

Process query int frs_getattr(frs_t* frs, int minor_frame, pid_t pid,
frs_attr_t attribute, void* param);

Pthread query int frs_pthread_getattr(frs_t* frs, int minor_frame,
pthread_t pthread, frs_attr_t attribute, void* param);

Destroy frame
scheduler and send
SIGKILL to its
frame scheduler
controller

Process or pthread
teardown

int frs_destroy(frs_t* frs);

Remove a process
or thread from a
queue

Process teardown int frs_premove(frs_t* frs, int minor_frame, pid_t
remove_pid);

Pthread teardown int frs_pthread_remove(frs_t* frs, int minor_frame,
pthread_t remove_pthread);

Register a thread Pthread setup int frs_pthread_register(void);

Thread Execution

Example 5-1 shows the basic structure of an activity thread that is queued to a frame
scheduler.

Example 5-1 Skeleton of an Activity Thread

/* Initialize data structures etc. */

frs_join(scheduler-handle)
do

{

/* Perform the activity. */

frs_yield();

} while(1);

_exit();

When the thread is ready to start real-time execution, it calls frs_join(). This call
blocks until all queued threads are ready and scheduling begins. When frs_join()
returns, the thread is running in its first minor frame. For more information, see
"Starting Multiple Schedulers" on page 67 and the frs_join(3) man page.
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Note: Each thread of a pthreaded application (including the controller thread) must
first call frs_pthread_register() before making any other calls to the frame
scheduler. In addition, each activity thread must complete its call to
frs_pthread_register before the controller thread calls frs_pthread_enqueue.

The thread then performs whatever activity is needed to complete the minor frame
and calls frs_yield(). This gives up control of the CPU until the next minor frame
where the thread is queued and executes. For more information, see the
frs_yield(3) man page.

An activity thread is never preempted by the frame scheduler within a minor frame.
As long as it yields before the end of the frame, it can do its assigned work without
interruption from other activity threads. (However, it can be interrupted by hardware
interrupts, if they are allowed in that CPU.) The frame scheduler preempts the thread
at the end of the minor frame.

When a very short minor frame interval is used, it is possible for a thread to have an
overrun error in its first frame due to cache misses. A simple variation on the basic
structure shown in Example 5-1 is to spend the first minor frame touching a set of
important data structures in order to “warm up” the cache. This is sketched in
Example 5-2.

Example 5-2 Alternate Skeleton of an Activity Thread

/* Initialize data structures etc. */

frs_join(scheduler-handle); /* Much time could pass here. */

/* First frame: merely touch important data structures. */

do
{

frs_yield();

/* Second and later frames: perform the activity. */

} while(1);

_exit();

When an activity thread is scheduled on more than one minor frame in a major
frame, it can be designed to do nothing except warm up the cache in the entire first
major frame. To do this, the activity thread function must know how many minor
frames it is scheduled on and call frs_yield() a corresponding number of times in
order to pass the first major frame.
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Scheduling Within a Minor Frame

Threads in a minor frame queue are dispatched in the order that they appear on the
queue (priority is irrelevant). Queue ordering can be modified as follows:

• Appending a thread at the end of the queue with frs_pthread_enqueue() or
frs_enqueue()

• Inserting a thread after a specific target thread via frs_pthread_insert() or
frs_pinsert()

• Deleting a thread in the queue with frs_pthread_remove() or
frs_premove()

See "Managing Activity Threads" on page 68 and the frs_enqueue(3),
frs_pinsert(3), and frs_premove(3) man pages.

Scheduler Flags frs_run and frs_yield

The frame scheduler keeps two status flags per queued thread: frs_run and
frs_yield:

• If a thread is ready to run when its turn comes, it is dispatched and its frs_run
flag is set to indicate that this thread has run at least once within this minor frame.

• When a thread yields, its frs_yield flag is set to indicate that the thread has
released the processor. It is not activated again within this minor frame.

If a thread is not ready (usually because it is blocked waiting for I/O, a semaphore,
or a lock), it is skipped. Upon reaching the end of the queue, the scheduler goes back
to the beginning, in a round-robin fashion, searching for threads that have not yielded
and may have become ready to run. If no ready threads are found, the frame
scheduler goes into idle mode until a thread becomes available or until an interrupt
marks the end of the frame.

Detecting Overrun and Underrun

When a time base interrupt occurs to indicate the end of the minor frame, the frame
scheduler checks the flags for each thread. If the frs_run flag has not been set, that
thread never ran and therefore is a candidate for an underrun exception. If the
frs_run flag is set but the frs_yield flag is not, the thread is a candidate for an
overrun exception.
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Whether these exceptions are declared depends on the scheduling discipline assigned
to the thread. For more information, see "Using the Scheduling Disciplines" on page
71.

At the end of a minor frame, the frame scheduler resets all frs_run flags, except for
those of threads that use the continuable discipline in that minor frame. For those
threads, the residual frs_yield flags keeps the threads that have yielded from being
dispatched in the next minor frame.

Underrun and overrun exceptions are typically communicated via Linux signals. For
more information, see "Using Signals Under the Frame Scheduler" on page 86.

Estimating Available Time

It is up to the application to make sure that all the threads queued to any minor
frame can actually complete their work in one minor-frame interval. If there is too
much work for the available CPU cycles, overrun errors will occur.

Estimation is somewhat simplified by the fact that a restricted CPU will only execute
threads specifically pinned to it, along with a few CPU-specific kernel threads. You
must estimate the maximum time each thread can consume between one call to
frs_yield() and the next.

Frame scheduler threads do compete for CPU cycles with I/O interrupts on the same
CPU. If you direct I/O interrupts away from the CPU, the only competition for CPU
cycles (other than a very few essential interrupts and CPU-specific kernel threads) is
the overhead of the frame scheduler itself, and it has been carefully optimized to
reduce overhead.

Alternatively, you may assign specific I/O interrupts to a CPU used by the frame
scheduler. In that case, you must estimate the time that interrupt service will
consume and allow for it.
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Synchronizing Multiple Schedulers

When the activities of one frame cannot be completed by one CPU, you must recruit
additional CPUs and execute some activities concurrently. However, it is important
that each of the CPUs have the same time base, so that each starts and ends frames at
the same time.

You can create one master frame scheduler that owns the time base and one CPU,
and as many synchronized (slave) frame schedulers as you need, each managing an
additional CPU. The slave schedulers take their time base from the master, so that all
start minor frames at the same instant.

Each frame scheduler requires its own controller thread. Therefore, to create multiple,
synchronized frame schedulers, you must create a controller thread for the master
and each slave frame scheduler.

Each frame scheduler has its own queues of threads. A given thread can be queued
to only one CPU. (However, you can create multiple threads based on the same code,
and queue each to a different CPU.) All synchronized frame schedulers use the same
number of minor frames per major frame, which is taken from the definition of the
master frame scheduler.

Starting a Single Scheduler

A single frame scheduler is created when the frame scheduler controller thread calls
frs_create_master() or frs_create(). The frame scheduler controller calls
frs_pthread_enqueue() or frs_enqueue() one or more times to notify the new
frame scheduler of the threads to schedule in each of the minor frames. The frame
scheduler controller calls frs_start() when it has queued all the threads. Each
scheduled thread must call frs_join() after it has initialized and is ready to be
scheduled.

Each activity thread must be queued to at least one minor frame before it can join the
frame scheduler via frs_join(). After all threads have called frs_join() and the
controller has called frs_start(), scheduling of worker threads in the first minor
frame occurs after the second interrupt arrives.

Note: The first interrupt is used to drive the frame scheduler’s internal processing
during which time no scheduling occurs.
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For more information about these functions, see the frs_enqueue(3), frs_join(3),
and frs_start(3) man pages.

Starting Multiple Schedulers

A frame scheduler cannot start dispatching activities until the following have
occurred:

• The frame scheduler controller has queued all the activity threads to their minor
frames

• All the queued threads have done their own initial setup and have called
frs_join.

When multiple frame schedulers are used, none can start until all are ready.

Each frame scheduler controller notifies its frame scheduler that it has queued all
activities by calling frs_start(). Each activity thread signals its frame scheduler
that it is ready to begin real-time processing by calling frs_join().

A frame scheduler is ready when it has received one or more
frs_pthread_enqueue() or frs_enqueue() calls, a matching number of
frs_join() calls, and an frs_start() call for each frame scheduler. Each slave
frame scheduler notifies the master frame scheduler when it is ready. When all the
schedulers are ready, the master frame scheduler gives the downbeat and the first
minor frame begins.

Note: After all threads have called frs_join() and the controller has called
frs_start(), scheduling of worker threads in the first minor frame does not occur
until the second interrupt arrives. The first interrupt is used to drive the frame
scheduler’s internal processing during which time no scheduling occurs.

Pausing Frame Schedulers

Any frame scheduler can be made to pause and restart. Any thread (typically but not
necessarily the frame scheduler controller) can call frs_stop(), specifying a
particular frame scheduler. That scheduler continues dispatching threads from the
current minor frame until all have yielded. Then it goes into an idle loop until a call
to frs_resume() tells it to start. It resumes on the next time-base interrupt, with the
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next minor frame in succession. For more information, see the frs_stop(3) and
frs_resume(3) man pages.

Note: If there is a thread running background discipline in the current minor frame, it
continues to execute until it yields or is blocked on a system service. See "Background
Discipline" on page 73.

Because a frame scheduler does not stop until the end of a minor frame, you can stop
and restart a group of synchronized frame schedulers by calling frs_stop() for
each one before the end of a minor frame. There is no way to restart all of a group of
schedulers with the certainty that they start up on the same time-base interrupt.

Managing Activity Threads

The frame scheduler controller identifies the initial set of activity threads by calling
frs_pthread_enqueue() or frs_enqueue() prior to starting the frame scheduler.
All the queued threads must call frs_join() before scheduling can begin. However,
the frame scheduler controller can change the set of activity threads dynamically while
the frame scheduler is working, using the functions shown in Table 5-4 on page 68.

Table 5-4 Activity Thread Functions

Function Description

frs_getqueuelen() Gets the number of threads currently in
the queue for a specified minor frame

frs_pthread_readqueue() or
frs_readqueue()

Returns the ID values of all queued
threads for a specified minor frame as a
vector of integers

frs_pthread_remove() or
frs_premove()

Removes a thread (specified by its ID)
from a minor frame queue

frs_pthread_insert() or
frs_pinsert()

Inserts a thread (specified by its ID and
discipline) into a given position in a minor
frame queue

Using these functions, the frame scheduler controller can change the queueing
discipline (overrun, underrun, continuable) of a thread by removing it and inserting it
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with a new discipline. The frame scheduler controller can suspend a thread by
removing it from its queue or can restart a thread by putting it back in its queue.

Note: When an activity thread is removed from the last or only queue it was in, it no
longer is dispatched by the frame scheduler. When an activity thread is removed
from a queue, a signal may be sent to the removed thread (see "Handling Signals in
an Activity Thread" on page 87). If a signal is sent to it, it begins executing in its
specified or default signal handler; otherwise, it begins executing following
frs_yield(). After being returned to the Linux scheduler, a call to a frame
scheduler function such as frs_yield() returns an error (this also can be used to
indicate the resumption of normal scheduling).

The frame scheduler controller can also queue new threads that have not been
scheduled before. The frame scheduler does not reject an frs_pthread_insert()
or frs_pinsert() call for a thread that has not yet joined the scheduler. However,
a thread must call frs_join() before it can be scheduled. For more information, see
the frs_pinsert(3) man page.

If a queued thread is terminated for any reason, the frame scheduler removes the
thread from all queues in which it appears.

Selecting a Time Base
The program specifies an interrupt source for the time base when it creates the master
(or only) frame scheduler. The master frame scheduler initializes the necessary
hardware resources and redirects the interrupt to the appropriate CPU and handler.

The frame scheduler time base is fundamental because it determines the duration of a
minor frame, and hence the frame rate of the program. This section explains the
different time bases that are available.

When you use multiple, synchronized frame schedulers, the master frame scheduler
distributes the time-base interrupt to each synchronized CPU. This ensures that
minor-frame boundaries are synchronized across all the frame schedulers.

This section discusses the following:

• "High-Resolution Timer" on page 70

• "External Interrupts as a Time Base" on page 70
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High-Resolution Timer

The real-time clock (RTC) is synchronous across all processors and is ideal to drive
synchronous schedulers. REACT uses the RTC for its frame scheduler high-resolution
timer solution.

Note: Frame scheduler applications cannot use POSIX high-resolution timers.

To use the RTC, specify FRS_INTRSOURCE_CCTIMER and the minor frame interval in
microseconds to frs_create_master() or frs_create(). The maximum frame
rate supported by a timer is 2000 Hz.

The high-resolution timers in all CPUs are synchronized automatically.

Note: Third-party x86-64 and Altix UV 10 servers do not have a HUB RTC timer. A
PCI-RT-Z external interrupt card is supplied by SGI and is required for generation of
the Frame Scheduler cc-timer interrupts. Each PCI-RT-Z card can generate
interrupts at one set frequency, so a PCI-RT-Z card is required for each asynchronous
frame scheduler running on a system.

External Interrupts as a Time Base

To use external interrupts as a time base, do the following:

1. Load ioc4_extint to load the external interrupts modules.

2. Open the appropriate external interrupts device file. For example:

if ((fd = open("/dev/extint0", O_RDONLY)) < 0) {

perror("Open EI control file");

return 1;

}

3. Specify FRS_INTRSOURCE_EXTINTR as the intr_source and pass the returned
file descriptor as the intr_qualifier to frs_create_master or
frs_create.

The CPU receiving the interrupt allocates it simultaneously to the synchronized
schedulers. If other IOC4 devices are also in use, you should redirect IOC4 interrupts
to a non-frame-scheduled CPU in order to avoid jitter and delay.
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Note: After all threads have called frs_join() and the controller has called
frs_start(), scheduling of worker threads in the first minor frame does not occur
until the second interrupt arrives. The first interrupt is used to drive the frame
scheduler’s internal processing during which time no scheduling occurs.

For more information, see Chapter 3, "External Interrupts" on page 17.

Using the Scheduling Disciplines
When a frame scheduler controller thread queues an activity thread to a minor frame
using frs_pthread_enqueue() or frs_enqueue(), it must specify a scheduling
discipline that tells the frame scheduler how the thread is expected to use its time
within that minor frame.

The disciplines are as follows:

• "Real-Time Discipline" on page 71

• "Underrunable Discipline" on page 72

• "Overrunnable Discipline" on page 72

• "Continuable Discipline" on page 73

• "Background Discipline" on page 73

Real-Time Discipline

In the real-time discipline, an activity thread starts during the minor frame in which it
is queued, completes its work, and yields within the same minor frame. If the thread
is not ready to run (for example, if it is blocked on I/O) during the entire minor
frame, an underrun exception is said to occur. If the thread fails to complete its work
and yield within the minor frame interval, an overrun exception is said to occur.

Note: If an activity thread becomes blocked by other than an frs_yield() call (and
therefore is not ready to run) and later becomes unblocked outside of its minor frame
slot, it will run assuming that no other threads are available to run (similar to
"Background Discipline" on page 73) until it yields or a new minor frame begins.
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This model could describe a simple kind of simulator in which certain activities (such
as poll the inputs, calculate the new status, and update the display) must be repeated
in the same order during every frame. In this scenario, each activity must start and
must finish in every frame. If one fails to start, or fails to finish, the real-time
program is broken and must take action.

However, realistic designs need the flexibility to have threads with the following
characteristics:

• Need not start every frame; for instance, threads that sleep on a semaphore until
there is work for them to do

• May run longer than one minor frame

• Should run only when time is available, and whose rate of progress is not critical

The other disciplines are used, in combination with real-time and with each other, to
allow these variations.

Underrunable Discipline

You specify the underrunable discipline in the following cases:

• When a thread needs to run only when an event has occurred, such as a lock
being released or a semaphore being posted

• When a thread may need more than one minor frame (see "Using Multiple
Consecutive Minor Frames" on page 73)

To prevent detection of underrun exceptions, specify the underrunable discipline with
the real-time discipline. When you specify real-time plus underrunable, the thread is
not required to start in that minor frame. However, if it starts, it is required to yield
before the end of the frame or an overrun exception is raised.

Overrunnable Discipline

You specify the overrunnable discipline in the following cases:

• When it truly does not matter if the thread fails to complete its work within the
minor frame—for example, a calculation of a game strategy that, if it fails to finish,
merely makes the computer a less dangerous opponent
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• When a thread may need more than one minor frame (see "Using Multiple
Consecutive Minor Frames" on page 73)

To prevent detection of overrun exceptions, specify an overrunnable discipline with a
real-time discipline. When you specify overrunnable plus real-time, the thread is not
required to call frs_yield() before the end of the frame. Even so, the thread is
preempted at the end of the frame. It does not have a chance to run again until the
next minor frame in which it is queued. At that time it resumes where it was
preempted, with no indication that it was preempted.

Continuable Discipline

You specify continuable discipline with real-time discipline to prevent the frame
scheduler from clearing the flags at the end of this minor frame (see "Scheduling
Within a Minor Frame" on page 64).

The result is that, if the thread yields in this frame, it need not run or yield in the
following frame. The residual frs_yield flag value, carried forward to the next
frame, applies. You specify continuable discipline with other disciplines in order to
let a thread execute just once in a block of consecutive minor frames.

Background Discipline

The background discipline is mutually exclusive with the other disciplines. The frame
scheduler dispatches a background thread only when all other threads queued to that
minor frame have run and have yielded. Because the background thread cannot be
sure it will run and cannot predict how much time it will have, the concepts of
underrun and overrun do not apply to it.

Note: A thread with the background discipline must be queued to its frame following
all non-background threads. Do not queue a real-time thread after a background
thread.

Using Multiple Consecutive Minor Frames
There are cases when a thread sometimes or always requires more than one minor
frame to complete its work. Possibly the work is lengthy, or possibly the thread could
be delayed by a system call or a lock or semaphore wait.
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You must decide the absolute maximum time the thread could consume between
starting up and calling frs_yield(). If this is unpredictable, or if it is predictably
longer than the major frame, the thread cannot be scheduled by the frame scheduler.
Hence, it should probably run on another CPU under the Linux real-time scheduler.

However, when the worst-case time is bounded and is less than the major frame, you
can queue the thread to enough consecutive minor frames to allow it to finish. A
combination of disciplines is used in these frames to ensure that the thread starts
when it should, finishes when it must, and does not cause an error if it finishes early.

The discipline settings should be as follows:

Frame Description

First Real-time + overrunnable + continuable

The thread must start in this frame (not underrunable) but is not
required to yield (overrunnable). If it yields, it is not restarted in the
following minor frame (continuable).

Intermediate Realtime + underrunable + overrunnable + continuable

The thread need not start (it might already have yielded, or might be
blocked) but is not required to yield. If it does yield or if it had yielded
in a preceding minor frame, it is not restarted in the following minor
frame (continuable).

Final Realtime + underrunable

The thread need not start (it might already have yielded) but if it starts,
it must yield in this frame (not overrunnable). The thread can start a
new run in the next minor frame to which it is queued (not continuable).

A thread can be queued for one or more of these multiframe sequences in one major
frame. For example, suppose that the minor frame rate is 60 Hz and a major frame
contains 60 minor frames (1 Hz). You have a thread that should run at a rate of 5 Hz
and can use up to 3/60 second at each dispatch. You can queue the thread to 5
sequences of 3 consecutive frames each. It could start in frames 0, 12, 24, 36, and 48.
Frames 1, 13, 25, 37, and 49 could be intermediate frames, and 2, 14, 26, 38, and 50
could be final frames.
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Designing an Application for the Frame Scheduler
When using the frame scheduler, consider the following guidelines when designing a
real-time application:

1. Determine the programming model for implementing the activities in the
program, choosing between POSIX threads or SVR4 fork() calls. (You cannot
mix pthreads and other disciplines within the program.)

2. Partition the program into activities, where each activity is an independent piece
of work that can be done without interruption.

For example, in a simple vehicle simulator, activities might include the following:

• Poll the joystick

• Update the positions of moving objects

• Cull the set of visible objects

3. Decide the relationships among the activities, as follows:

• Some must be done once per minor frame, others less frequently

• Some must be done before or after others

• Some may be conditional (for example, an activity could poll a semaphore and
do nothing unless an event had completed)

4. Estimate the worst-case time required to execute each activity. Some activities may
need more than one minor frame interval (the frame scheduler allows for this).

5. Schedule the activities. If all are executed sequentially, will they complete in one
major frame? If not, choose activities that can execute concurrently on two or
more CPUs, and estimate again. You may have to change the design in order to
get greater concurrency.

When the design is complete, implement each activity as an independent thread that
communicates with the others using shared memory, semaphores, and locks.

A controller thread creates, stops, and resumes the frame scheduler. The controller
thread can also interrogate and receive signals from the frame scheduler.

A frame scheduler seizes its assigned CPU, isolates it, and controls the scheduling on
it. It waits for all queued threads to initialize themselves and join the scheduler. The
frame scheduler begins dispatching the threads in the specified sequence during each
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frame interval. Errors are monitored (such as a thread that fails to complete its work
within its frame) and a specified action is taken when an error occurs. Typically, the
error action is to send a signal to the controller thread.

Preparing the System
Before a real-time program executes, you must do the following:

1. Choose the CPUs that the real-time program will use. CPU 0 (at least) must be
reserved for Linux system functions.

2. Decide which CPUs will handle I/O interrupts. By default, Linux distributes I/O
interrupts across all available processors as a means of balancing the load
(referred to as spraying interrupts). You should redirect I/O interrupts away from
CPUs that are used for real-time programs. For more information, see "Redirect
Interrupts" on page 43.

3. If you are using an external interrupt as a time base, make sure it is redirected to
the CPU of the master frame scheduler. For more information, see "External
Interrupts as a Time Base" on page 70.

4. Make sure that none of the real-time CPUs is managing the clock. Normally, the
responsibility of handling 10–ms scheduler interrupts is given to CPU 0. For more
information, see "Avoid the Clock Processor (CPU 0)" on page 43.

5. Restrict and isolate the real-time CPUs, as described in "Restrict, Isolate, and
Shield CPUs" on page 44.

6. Load the frs kernel module:

[root@linux root]# modprobe frs

Note: You must perform this step after each system boot.

7. If you are using external interrupts as a time base or if you are running the frame
scheduler on a third-party x86-64 or Altix UV 10 server, you must load the
ioc4_extint kernel module:

[root@linux root]# modprobe ioc4_extint
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Implementing a Single Frame Scheduler
When the activities of a real-time program can be handled within a major frame
interval by a single CPU, the program requires only one frame scheduler. The
programs found in /usr/share/react/frs/examples provide examples of
implementing a single frame scheduler.

Typically, a program has a top-level controller thread to handle startup and
termination, and one or more activity threads that are dispatched by the frame
scheduler. The activity threads are typically lightweight pthreads, but that is not a
requirement; they can also be created with fork(). (They need not be children of the
controller thread.) For examples, see /usr/share/react/frs/examples.

In general, these are the steps for setting up a single frame scheduler:

1. Initialize global resources such as memory-mapped segments, memory arenas,
files, asynchronous I/O, semaphores, locks, and other resources.

2. Lock the shared address space segments. (When fork() is used, each child
process must lock its own address space.)

3. If using pthreads, create a controller thread; otherwise, the initial thread of
execution may be used as the controller thread.

• Create a controller thread using pthread_create() and the attribute
structure you just set up. See the pthread_create(3P) man page for details.

• Exit the initial thread, because it cannot execute any frame scheduler
operations.

4. Create the frame scheduler using frs_create_master(),
frs_create_vmaster(), or frs_create(). See the frs_create(3) man
page.
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5. Create the activity threads using one of the following interfaces, depending on the
thread model being used:

• pthread_create()

• fork()

6. Queue the activity threads on the target minor frame queues, using
frs_pthread_enqueue() or frs_enqueue().

7. Optionally, initialize the frame scheduler signal handler to catch frame overrun,
underrun, and activity dequeue events (see "Setting Frame Scheduler Signals" on
page 87 and "Setting Exception Policies" on page 83). The handlers are set at this
time, after creation of the activity threads, so that the activity threads do not
inherit them.

8. Use frs_start() to enable scheduling. For more information, see Table 5-3 on
page 60.

9. Have the activity threads call frs_join(). The frame scheduler begins
scheduling processes as soon as all the activity threads have called frs_join().

10. Wait for error signals from the frame scheduler and for the termination of child
processes.

11. Use frs_destroy() to terminate the frame scheduler.

12. Perform program cleanup as desired.

See /usr/share/react/frs/examples.

Implementing Synchronized Schedulers
When the real-time application requires the power of multiple CPUs, you must add
one more level to the program design for a single CPU. The program creates multiple
frame schedulers, one master and one or more synchronized slaves.
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This section discusses the following:

• "Synchronized Scheduler Concepts" on page 79

• "Master Controller Thread" on page 79

• "Slave Controller Thread" on page 80

Synchronized Scheduler Concepts

The first frame scheduler provides the time base for the others. It is called the master
scheduler. The other schedulers take their time base interrupts from the master, and so
are called slaves. The combination is called a sync group.

No single thread may create more than one frame scheduler. This is because every
frame scheduler must have a unique frame scheduler controller thread to which it can
send signals. As a result, the program has the following types of threads:

• A master controller thread that sets up global data and creates the master frame
scheduler

• One slave controller thread for each slave frame scheduler

• Activity threads

The master frame scheduler must be created before any slave frame schedulers can be
created. Slave frame schedulers must be specified to have the same time base and the
same number of minor frames as the master.

Slave frame schedulers can be stopped and restarted independently. However, when
any scheduler (master or slave) is destroyed, all are immediately destroyed.

Master Controller Thread

The master controller thread performs these steps:

1. Initializes a global resource. One global resource is the thread ID of the master
controller thread.

2. Creates the master frame scheduler using either the frs_create_master() or
frs_create_vmaster() call and stores its handle in a global location.

3. Creates one slave controller thread for each synchronized CPU to be used.
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4. Creates the activity threads that will be scheduled by the master frame scheduler
and queues them to their assigned minor frames.

5. Sets up signal handlers for signals from the frame scheduler. See "Using Signals
Under the Frame Scheduler" on page 86.

6. Uses frs_start() to tell the master frame scheduler that its activity threads are
all queued and ready to commence scheduling. See Table 5-3 on page 60.

The master frame scheduler starts scheduling threads as soon as all threads have
called frs_join() for their respective schedulers.

7. Waits for error signals.

8. Uses frs_destroy() to terminate the master frame scheduler.

9. Performs any desired program cleanup.

Slave Controller Thread

Each slave controller thread performs these steps:

1. Creates a synchronized frame scheduler using frs_create_slave(), specifying
information about the master frame scheduler stored by the master controller
thread. The master frame scheduler must exist. A slave frame scheduler must
specify the same time base and number of minor frames as the master frame
scheduler.

2. Changes the frame scheduler signals or exception policy, if desired. See "Setting
Frame Scheduler Signals" on page 87 and "Setting Exception Policies" on page 83.

3. Creates the activity threads that are scheduled by this slave frame scheduler and
queues them to their assigned minor frames.

4. Sets up signal handlers for signals from the slave frame scheduler.

5. Uses frs_start() to tell the slave frame scheduler that all activity threads have
been queued.

The slave frame scheduler notifies the master when all threads have called
frs_join(). When the master frame scheduler starts broadcasting interrupts,
scheduling begins.

6. Waits for error signals.
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7. Uses frs_destroy() to terminate the slave frame scheduler.

For an example of this kind of program structure, refer to
/usr/share/react/frs/examples.

Tip: In this design sketch, the knowledge of which activity threads to create, and on
which frames to queue them, is distributed throughout the code, where it might be
hard to maintain. However, it is possible to centralize the plan of schedulers,
activities, and frames in one or more arrays that are statically initialized. This
improves the maintainability of a complex program.

Handling Frame Scheduler Exceptions
The frame scheduler controller manages overrun and underrun exceptions. It can
specify how these exceptions should be handled and what signals the frame
scheduler should send. These policies must be set before the scheduler is started.
While the scheduler is running, the frame scheduler controller can query the number
of exceptions that have occurred.

This section discusses the following:

• "Exception Types" on page 81

• "Exception Handling Policies" on page 82

• "Setting Exception Policies" on page 83

• "Querying Counts of Exceptions" on page 84

Exception Types

The overrun exception indicates that a thread failed to yield in a minor frame where
it was expected to yield and was preempted at the end of the frame. An overrun
exception indicates that an unknown amount of work that should have been done
was not done, and will not be done until the next frame in which the overrunning
thread is queued.

The underrun exception indicates that a thread that should have started in a minor
frame did not start. The thread may have terminated or (more likely) it was blocked
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in a wait because of an unexpected delay in I/O or because of a deadlock on a lock or
semaphore.

Exception Handling Policies

The frame scheduler controller can establish one of four policies for handling overrun
and underrun exceptions. When it detects an exception, the frame scheduler can do
the following:

• Send a signal to the controller

• Inject an additional minor frame

• Extend the frame by a specified number of microseconds

• Steal a specified number of microseconds from the following frame

By default, it sends a signal. The scheduler continues to run. The frame scheduler
controller can then take action, such as terminating the frame scheduler. For more
information, see "Setting Frame Scheduler Signals" on page 87.

Injecting a Repeat Frame

The policy of injecting an additional minor frame can be used with any time base. The
frame scheduler inserts another complete minor frame, essentially repeating the minor
frame in which the exception occurred. In the case of an overrun, the activity threads
that did not finish have another frame’s worth of time to complete. In the case of an
underrun, there is that much more time for the waiting thread to wake up. Because
exactly one frame is inserted, all other threads remain synchronized to the time base.

Extending the Current Frame

The policies of extending the frame, either with more time or by stealing time from
the next frame, are allowed only when the time base is a high-resolution timer. For
more information, see "Selecting a Time Base" on page 69.

When adding time, the current frame is made longer by a fixed amount of time.
Because the minor frame becomes a variable length, it is possible for the frame
scheduler to drop out of synchronization with an external device.

When stealing time from the following frame, the frame scheduler returns to the
original time base at the end of the following minor frame provided that the threads
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queued to that following frame can finish their work in a reduced amount of time. If
they do not, the frame scheduler steals time from the next frame.

Dealing With Multiple Exceptions

You decide how many consecutive exceptions are allowed within a single minor
frame. After injecting, stretching, or stealing time that many times, the frame
scheduler stops trying to recover and sends a signal instead.

The count of exceptions is reset when a minor frame completes with no remaining
exceptions.

Setting Exception Policies

The frs_pthread_setattr() or frs_setattr() function is used to change
exception policies. This function must be called before the frame scheduler is started.
After scheduling has begun, an attempt to change the policies or signals is rejected.

In order to allow for future enhancements, frs_pthread_setattr() or
frs_setattr() accepts arguments for minor frame number and thread ID; however
it currently allows setting exception policies only for all policies and all minor frames.
The most significant argument to it is the frs_recv_info structure, declared with
the following fields:

typedef struct frs_recv_info {

mfbe_rmode_t rmode; /* Basic recovery mode */

mfbe_tmode_t tmode; /* Time expansion mode */

uint maxcerr; /* Max consecutive errors */
uint xtime; /* Recovery extension time */

} frs_recv_info_t;

The recovery modes and other constants are declared in /usr/include/frs.h. The
function in Example 5-3 sets the policy of injecting a repeat frame. The caller specifies
only the frame scheduler and the number of consecutive exceptions allowed.
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Example 5-3 Function to Set INJECTFRAME Exception Policy

int
setInjectFrameMode(frs_t *frs, int consecErrs)

{

frs_recv_info_t work;

bzero((void*)&work,sizeof(work));

work.rmode = MFBERM_INJECTFRAME;

work.maxcerr = consecErrs;
return frs_setattr(frs,0,0,FRS_ATTR_RECOVERY,(void*)&work);

}

The function in Example 5-4 sets the policy of stretching the current frame (a function
to set the policy of stealing time from the next frame is nearly identical). The caller
specifies the frame scheduler, the number of consecutive exceptions, and the stretch
time in microseconds.

Example 5-4 Function to Set STRETCH Exception Policy

int

setStretchFrameMode(frs_t *frs,int consecErrs,uint microSecs)
{

frs_recv_info_t work;

bzero((void*)&work,sizeof(work));

work.rmode = MFBERM_EXTENDFRAME_STRETCH;

work.tmode = EFT_FIXED; /* only choice available */
work.maxcerr = consecErrs;

work.xtime = microSecs;

return frs_setattr(frs,0,0,FRS_ATTR_RECOVERY,(void*)&work);

}

Querying Counts of Exceptions

When you set a policy that permits exceptions, the frame scheduler controller thread
can query for counts of exceptions. This is done with a call to
frs_pthread_getattr() or frs_getattr(), passing the handle to the frame
scheduler, the number of the minor frame and the thread ID of the thread within that
frame.

The values returned in a structure of type frs_overrun_info_t are the counts of
overrun and underrun exceptions incurred by that thread in that minor frame. In
order to find the count of all overruns in a given minor frame, you must sum the
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counts for all threads queued to that frame. If a thread is queued to more than one
minor frame, separate counts are kept for it in each frame.

The function in Example 5-5 takes a frame scheduler handle and a minor frame
number. It gets the list of thread IDs queued to that minor frame, and returns the
sum of all exceptions for all of them.

Example 5-5 Function to Return a Sum of Exception Counts (pthread Model)

#define THE_MOST_TIDS 250

int

totalExcepts(frs_t * theFRS, int theMinor)

{

int numTids = frs_getqueuelen(theFRS, theMinor);
int j, sum;

pthread_t allTids[THE_MOST_TIDS];

if ( (numTids <= 0) || (numTids > THE_MOST_TIDS) )

return 0; /* invalid minor #, or no threads queued? */

if (frs_pthread_readqueue(theFRS, theMinor, allTids) == -1)

return 0; /* unexpected problem with reading IDs */

for (sum = j = 0; j<numTids; ++j)

{
frs_overrun_info_t work;

frs_pthread_getattr(theFRS /* the scheduler */

theMinor, /* the minor frame */

allTids[j], /* the threads */

FRS_ATTR_OVERRUNS, /* want counts */

&work); /* put them here */
sum += (work.overruns + work.underruns);

}

return sum;

}

Note: The frame scheduler read queue functions return the number of threads
present on the queue at the time of the read. Applications can use this returned value
to eliminate calls to frs_getqueuelen().
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Using Signals Under the Frame Scheduler
The frame scheduler itself sends signals to the threads using it. Threads can
communicate by sending signals to each other. In brief, a frame scheduler sends
signals to indicate the following:

• The frame scheduler has been terminated

• An overrun or underrun has been detected

• A thread has been dequeued

The rest of this section describes how to specify the signal numbers and how to
handle the signals:

• "Handling Signals in the Frame Scheduler Controller" on page 86

• "Handling Signals in an Activity Thread" on page 87

• "Setting Frame Scheduler Signals" on page 87

• "Handling a Sequence Error" on page 88

Handling Signals in the Frame Scheduler Controller

When a frame scheduler detects an overrun or underrun exception from which it
cannot recover, and when it is ready to terminate, it sends a signal to the frame
scheduler controller.

Tip: Child processes inherit signal handlers from the parent, so a parent should not
set up handlers prior to fork() unless they are meant to be inherited.

The frame scheduler controller for a synchronized frame scheduler should have
handlers for underrun and overrun signals. The handler could report the error and
issue frs_destroy() to shut down its scheduler. A frame scheduler controller for a
synchronized scheduler should use the default action for SIGHUP (exit) so that
completion of the frs_destroy() quietly terminates the frame scheduler controller.

The frame scheduler controller for the master (or only) frame scheduler should catch
underrun and overrun exceptions, report them, and shut down its scheduler.

When a frame scheduler is terminated with frs_destroy(), it sends SIGKILL to its
frame scheduler controller. This cannot be changed and SIGKILL cannot be handled.
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Hence frs_destroy() is equivalent to termination for the frame scheduler
controller.

Handling Signals in an Activity Thread

A frame scheduler can send a signal to an activity thread when the thread is removed
from any queue using frs_pthread_remove() or frs_premove(). The scheduler
can also send a signal to an activity thread when it is removed from the last or only
minor frame to which it was queued (at which time it is scheduled only by Linux).
For more information, see "Managing Activity Threads" on page 68.

In order to have these signals sent, the frame scheduler controller must set nonzero
signal numbers for them, as discussed in "Setting Frame Scheduler Signals".

Setting Frame Scheduler Signals

The frame scheduler sends signals to the frame scheduler controller.

The signal numbers used for most events can be modified. Signal numbers can be
queried using frs_pthread_getattr(FRS_ATTR_SIGNALS) or
frs_getattr(FRS_ATTR_SIGNALS) and changed using
frs_pthread_setattr(FRS_ATTR_SIGNALS) or
frs_setattr(FRS_ATTR_SIGNALS), in each case passing an frs_signal_info
structure. This structure contains room for four signal numbers, as shown in Table 5-5.

Table 5-5 Signals Passed in frs_signal_info_t

Field Name Signal Purpose Default Signal

sig_underrun Notify frame scheduler controller of underrun SIGUSR1

sig_overrun Notify frame scheduler controller of the overrun SIGUSR2

sig_dequeue Notify an activity thread that it has been dequeued with
frs_pthread_remove() or frs_premove()

0 (do not send)

sig_unframesched Notify an activity thread that it has been removed from
the last or only queue in which it was queued

SIGRTMIN
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Signal numbers must be changed before the frame scheduler is started. All the
numbers must be specified to frs_pthread_setattr() or frs_setattr(), so the
proper way to set any number is to first fill the frs_signal_info_t using
frs_pthread_getattr() or frs_getattr(). The function in Example 5-6 sets
the signal numbers for overrun and underrun from its arguments.

Example 5-6 Function to Set Frame Scheduler Signals

int

setUnderOverSignals(frs_t *frs, int underSig, int overSig)

{
int error;

frs_signal_info_t work;

error = frs_pthread_getattr(frs,0,0,FRS_ATTR_SIGNALS,(void*)&work);

if (!error)

{

work.sig_underrun = underSig;
work.sig_overrun = overSig;

error = frs_pthread_setattr(frs,0,0,FRS_ATTR_SIGNALS,(void*)&work);

}

return error;

}

Handling a Sequence Error

When frs_create_vmaster() is used to create a frame scheduler triggered by
multiple interrupt sources, a sequence error signal is dispatched to the controller
thread if the interrupts come in out of order. For example, if the first and second
minor frame interrupt sources are different, and the second minor frame’s interrupt
source is triggered before the first minor frame’s interrupt source, then a sequence
error has occurred.

This type of error condition is indicative of unrealistic time constraints defined by the
interrupt information template.

The signal code that represents the occurrence of a sequence error is SIGRTMIN+1.
This signal cannot be reset or disabled using the frs_setattr() interface.
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Using Timers with the Frame Scheduler
Frame scheduler applications cannot use POSIX high-resolution timers. With other
interval timers, signal delivery to an activity thread can be delayed, so timer latency
is unpredictable.

If the frame scheduler controller is using timers, it should run on a node outside of
those containing CPUs running frame scheduler worker threads.

Example 5-7 Minimal Activity Process as a Timer

frs_join(scheduler-handle)
do {

usvsema(frs-controller-wait-semaphore);
frs_yield();

} while(1);

_exit();
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Chapter 6

Disk I/O Optimization

A real-time program sometimes must perform disk I/O under tight time constraints
and without affecting the timing of other activities such as data collection. This
chapter covers techniques that can help you meet these performance goals:

• "Memory-Mapped I/O" on page 91

• "Asynchronous I/O" on page 91

Memory-Mapped I/O
When an input file has a fixed size, the simplest as well as the fastest access method
is to map the file into memory. A file that represents a database (such as a file
containing a precalculated table of operating parameters for simulated hardware) is
best mapped into memory and accessed as a memory array. A mapped file of
reasonable size can be locked into memory so that access to it is always fast.

You can also perform output on a memory-mapped file by storing into the memory
image. When the mapped segment is also locked in memory, you control when the
actual write takes place. Output happens only when the program calls msync() or
changes the mapping of the file at the time that the modified pages are written. The
time-consuming call to msync() can be made from an asynchronous process. For
more information, see the msync(2) man page.

Asynchronous I/O
You can use asynchronous I/O to isolate the real-time processes in your program
from the unpredictable delays caused by I/O. Asynchronous I/O in Linux strives to
conform with the POSIX real-time specification 1003.1-2003.

This section discusses the following:

• "Conventional Synchronous I/O" on page 92

• "Asynchronous I/O Basics" on page 92
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Conventional Synchronous I/O

Conventional I/O in Linux is synchronous; that is, the process that requests the I/O is
blocked until the I/O has completed. The effects are different for input and for output.

For disk files, the process that calls write() is normally delayed only as long as it
takes to copy the output data to a buffer in kernel address space. The device driver
schedules the device write and returns. The actual disk output is asynchronous. As a
result, most output requests are blocked for only a short time. However, since a
number of disk writes could be pending, the true state of a file on disk is unknown
until the file is closed.

In order to make sure that all data has been written to disk successfully, a process can
call fsync() for a conventional file or msync() for a memory-mapped file. The
process that calls these functions is blocked until all buffered data has been written.
For more information, see the fsync(2) and msync(2) man pages.

Devices other than disks may block the calling process until the output is complete. It
is the device driver logic that determines whether a call to write() blocks the caller,
and for how long.

Asynchronous I/O Basics

A real-time process must read or write a device, but it cannot tolerate an
unpredictable delay. One obvious solution can be summarized as “call read() or
write() from a different process, and run that process in a different CPU.” This is
the essence of asynchronous I/O. You could implement an asynchronous I/O scheme
of your own design, and you may wish to do so in order to integrate the I/O closely
with your own configuration of processes and data structures. However, a standard
solution is available.

Linux supports asynchronous I/O library calls that strive to conform with the POSIX
real-time specification 1003.1-2003. You use relatively simple calls to initiate input or
output.

For more information, see the aio_read(3) and aio_write(3) man pages.
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PCI Devices

To perform programmed I/O on PCI devices on an Altix UV system, do the following
to determine the resource filename (resourceN) and create an appropriate program
to open the file and memory-map it:

1. Examine the output of the lspci(8) command to determine which device you
want to map:

a. Record the domain, bus, slot, and function for the device (this information
will help you locate the appropriate resource address file).

For example:

# lspci

...

0000:00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 90)

0000:00:1f.0 ISA bridge: Intel Corporation 82801JIR (ICH10R) LPC Interface Controller

0000:00:1f.3 SMBus: Intel Corporation 82801JI (ICH10 Family) SMBus Controller

0000:01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

0000:01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

0000:04:00.0 SCSI storage controller: LSI Logic / Symbios Logic SAS1064ET PCI-Express Fusion-MPT SAS (rev 08)

0000:05:00.0 VGA compatible controller: Matrox Graphics, Inc. MGA G200e [Pilot] ServerEngines (SEP1) (rev 02)

...

The first field gives the information that is required to map the PCI registers
into memory. The format is:

Domain:Bus:Slot.Function

In the above example, the highlighted output of 0000:01:00.1 for the Intel
Corporation 82576 Gigabit Network card equates to domain 0, bus 1, slot 0,
and function 1.

b. Determine the resourceN numbers from the Region numbers in the lspci
-vv output. The Region value corresponds directly to each resourceN
value.

In the following example, the Region N output (highlighted) indicates that
there are four resourceN values (resource0, resource1, resource2 and
resource3):
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# lspci -n -s 0000:01:00.1 -vv

0000:01:00.1 0200: 8086:10c9 (rev 01)

Subsystem: 10a9:8028

Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+

Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- SERR- <PERR- INTx-

Latency: 0, Cache Line Size: 64 bytes

Interrupt: pin B routed to IRQ 40

Region 0: Memory at b2140000 (32-bit, non-prefetchable) [size=128K]

Region 1: Memory at b2120000 (32-bit, non-prefetchable) [size=128K]

Region 2: I/O ports at 2000 [size=32]

Region 3: Memory at b2240000 (32-bit, non-prefetchable) [size=16K]

Expansion ROM at b2100000 [disabled] [size=128K]

Capabilities: [40] Power Management version 3

Flags: PMEClk- DSI+ D1- D2- AuxCurrent=0mA PME(D0+,D1-,D2-,D3hot+,D3cold+)

Status: D0 PME-Enable- DSel=0 DScale=1 PME-

...

...

Kernel driver in use: igb

Kernel modules: igb

A device can have both 32-bit and 64-bit base address registers (BARs). If a
BAR is mapping a 64-bit address space, then two 32-bit BARs are used to
map that 64-bit Region. As a result, Region numbers may not be
consecutive. For example, in the following lspci output, there are three
Region values (Region 0, Region 1 and Region 3):

# lspci -n -s 0000:04:00.0 -vv

0000:04:00.0 0100: 1000:0056 (rev 08)

Subsystem: 1000:1000

Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-

Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-

Latency: 0

Interrupt: pin A routed to IRQ 24

Region 0: I/O ports at 1000 [size=256]

Region 1: Memory at b2010000 (64-bit, non-prefetchable) [size=16K]

Region 3: Memory at b2000000 (64-bit, non-prefetchable) [size=64K]

Expansion ROM at b1c00000 [disabled] [size=4M]

Capabilities: [50] Power Management version 2

Flags: PMEClk- DSI- D1+ D2+ AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-)

Status: D0 PME-Enable- DSel=0 DScale=0 PME-

...

...
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Kernel driver in use: mptsas

Kernel modules: mptsas

There is no Region 2 because the card’s second BAR is mapping a 64-bit
region and thus uses two 32-bit BARs to do so. In this example, there would
be three corresponding resource numbers (resource0, resource1, and
resource3) that would be used to memory-map the PCI registers.

Note: Only memory base-address registers (not I/O base-address registers)
can be memory mapped. The base address must be page aligned.

2. Based on the information in step 1, determine the resource address file that you
want to open:

/sys/bus/pci/devices/domain:bus:slot.function/resourceN

For the Intel example above, the resource address files are:

/sys/bus/pci/devices/0000:01:00.1/resource0

/sys/bus/pci/devices/0000:01:00.1/resource1

/sys/bus/pci/devices/0000:01:00.1/resource2

/sys/bus/pci/devices/0000:01:00.1/resource3

In the case of the LSI Logic® card example showing 64-bit Region values:

/sys/bus/pci/devices/0000:04:00.0/resource0
/sys/bus/pci/devices/0000:04:00.0/resource1

/sys/bus/pci/devices/0000:04:00.0/resource3

3. Create a program that opens the appropriate resource file for the domain, bus,
slot, function, and resource in which you are interested. For example, the C
program for the Intel card could include the following lines:

sprintf(path, "/sys/bus/pci/devices/%04x:%02x:%02x.%x/%s",

(unsigned)domain, (unsigned)bus, (unsigned)slot, (unsigned)function,

"resource0");
if ((fd = open(path, O_RDWR)) == -1) {

perror("Couldn’t open resource file");

exit(1);

}
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4. Add a line to the program that will memory-map the opened file from offset 0.
For example, in C:

ptr = mmap( NULL, getpagesize(), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

For details about kernel-level PCI device drivers, see the Linux Device Driver
Programmer’s Guide,Porting to SGI Altix Systems.
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User-Level Interrupts

The user-level interrupt (ULI) facility allows a hardware interrupt to be handled by a
user process.

A user process may register a function with the kernel, linked into the process in the
normal fashion, to be called when a particular interrupt is received. The process,
referred to as a ULI process, effectively becomes multithreaded, with the main process
thread possibly running simultaneously with the interrupt handler thread. The
interrupt handler is called asynchronously and has access only to the process’s
address space.

The ULI facility is intended to simplify the creation of device drivers for unsupported
devices. ULIs can be written to respond to interrupts initiated from external interrupt
ports. A programming error in the driver will result in nothing more serious than the
termination of a process rather than crashing the entire system, and the developer
need not know anything about interfacing a driver into the kernel.

The ULI feature may also be used for high-performance I/O applications when
combined with memory-mapped device I/O. Applications can make all device
accesses in user space. This is useful for high-performance I/O applications such as
hardware-in-the-loop simulators.

A ULI is essentially an interrupt service routine (ISR) that resides in the address space
of a user process. As shown in Figure 8-1, when an interrupt is received that has been
registered to a ULI, it triggers the user function. For function prototypes and other
details, see the uli(3) man page.

User level

Interrupt level The kernel ISR
calls the function

residing in 
user process space

Kernel
ISR

ULI
function

User
process

Interrupt

Figure 8-1 ULI Functional Overview
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Note: The uli(3) man page and the libuli library are installed as part of the
REACT package.

This chapter discusses the following:

• "Overview of ULI" on page 98

• "Setting Up ULI" on page 101

Overview of ULI
All registration functions return an opaque identifier for the ULI, which is passed as
an argument to various other ULI functions. Table 8-1 lists the arguments that are
common to all registration functions.

Table 8-1 Common Arguments for Registration Functions

Function Description

func Points to the function that will handle the interrupt.

ULI_register_irq Requests that an interrupt be handled as a ULI. Once a registration function
has been called, the handler function may be called asynchronously any time
the associated hardware sees fit to generate an interrupt. Any state needed by
the handler function must have been initialized before ULI registration. The
process will continue to receive the ULI until it exits or the ULI is destroyed
(see ULI_destroy below), at which time the system reverts to handling the
interrupt in the kernel. The CPU that executes the ULI handler is the CPU that
would execute the equivalent kernel-based interrupt handler if the ULI were
not registered (that is, the CPU to which the device sends the interrupt).

ULI_destroy Destroys a ULI. When this function returns, the identifier will no longer be
valid for use with any ULI function and the handler function used with it will
no longer be called.
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Function Description

ULI_block_intr Blocks a ULI. If the handler is currently running on another CPU in a
multiprocessing environment, ULI_block_intr will spin until the handler
has completed.

ULI_unblock_intr Unblocks a ULI. Interrupts posted while the ULI was blocked will be handled
at this time. If multiple interrupts occur while blocked, the handler function
will be called only once when the interrupt is unblocked.

ULI_sleep Blocks the calling thread on a semaphore associated with a particular ULI. The
registration function initializes the ULI with a caller-specified number of
semaphores. ULI_sleep may return before the event being awaited has
occurred, thus it should be called within a while loop.

ULI_wakeup Wakes up the next thread sleeping on a semaphore associated with a
particular ULI. If ULI_wakeup is called before the corresponding ULI_sleep,
the call to ULI_sleep will return immediately without blocking.

For more details, see the uli(3) man page.

This section discusses the following:

• "Restrictions on the ULI Handler" on page 99

• "Planning for Concurrency: Declaring Global Variables" on page 101

• "Using Multiple Devices" on page 101

Restrictions on the ULI Handler

Of the ULI library functions listed above, only ULI_wakeup may be called by the
handler function.

Each ULI handler function runs within its own POSIX thread running at a priority in
the range 80 through 89. Threads that run at a higher priority should not attempt to
block ULI execution with ULI_block() because deadlock may occur.
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If a ULI handler function does any of the following, its behavior is undefined:

• Causes a page fault

• Uses the floating point unit (FPU)

• Makes a system call

• Executes an illegal instruction

Note: To avoid page faults, use the mlock() or mlockall() function prior to
creating the ULI.

You can only use the ULI_sleep and ULI_wakeup functions inside of a share group.
These functions cannot wake up arbitrary processes.

In essence, the ULI handler should do only the following things, as shown in Figure
8-2:

• Store data in program variables in locked pages, to record the interrupt event. (For
example, a ring buffer is a data structure that is suitable for concurrent access.)

• Program the device as required to clear the interrupt or acknowledge it. The ULI
handler has access to the whole program address space, including any mapped-in
devices, so it can perform PIO loads and stores.

• Post a semaphore to wake up the main process. This must be done using a ULI
function.

User level

Interrupt level The kernel ISR
calls the function

residing in 
user process space

Kernel
ISR

ULI
function

User
process

Interrupt

Figure 8-2 ULI Handler Functions
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Planning for Concurrency: Declaring Global Variables

Because the ULI handler can interrupt the program at any point, or run concurrently
with it, the program must be prepared for concurrent execution. This is done by
declaring global variables. When variables can be modified by both the main process
and the ULI handler, you must take special care to avoid race conditions.

You can declare the global variables that are shared with the ULI handler with the
keyword volatile so that the compiler generates code to load the variables from
memory on each reference. However, the compiler never holds global values in
registers over a function call, and you almost always have a function call such as
ULI_block_intr() preceding a test of a shared global variable.

Using Multiple Devices

The ULI feature allows a program to open more than one interrupting device. You
register a handler for each device. However, the program can only wait for a specific
interrupt to occur; that is, the ULI_sleep() function specifies the handle of one
particular ULI handler. This does not mean that the main program must sleep until
that particular interrupt handler is entered, however. Any ULI handler can waken the
main program, as discussed under "Interacting With the Handler" on page 104.

Setting Up ULI
A program initializes for ULI in the following major steps:

1. Load the uli kernel module:

[root@linux root]# modprobe uli

2. For a PCI, map the device addresses into process memory.

3. Lock the program address space in memory.

4. Initialize any data structures used by the interrupt handler.

5. Register the interrupt handler.

6. Interact with the device and the interrupt handler.

An interrupt can occur any time after the handler has been registered, causing entry
to the ULI handler.
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This section discusses the following:

• "Opening the Device Special File" on page 102

• "Locking the Program Address Space" on page 102

• "Registering the Interrupt Handler" on page 103

• "Registering a Per-IRQ Handler" on page 103

• "Interacting With the Handler" on page 104

• "Achieving Mutual Exclusion" on page 105

Opening the Device Special File

Devices are represented by device special files. In order to gain access to a device,
you open the device special file that represents it. If the appropriate loadable kernel
modules have been loaded (that is, the extint and ioc4_extint modules), the
device file /dev/extint# should be created automatically for you, where # is
replaced by a system-assigned number, one for each of the IOC4 devices present in
the system.

Locking the Program Address Space

The ULI handler must not reference a page of program text or data that is not present
in memory. You prevent this by locking the pages of the program address space in
memory. The simplest way to do this is to call the mlockall() system function:

if (mlockall(MCL_CURRENT|MCL_FUTURE)<0) perror ("mlockall");

The mlockall() function has the following possible difficulties:

• The calling process must have either superuser privilege or CAP_MEMORY_MGT
capability. This may not pose a problem if the program needs superuser privilege
in any case (for example, to open a device special file). For more information, see
the mlockall(3C) man page.

• The mlockall() function locks all text and data pages. In a very large program,
this may be so much memory that system performance is harmed.

In order to use mlock(), you must specify the exact address ranges to be locked.
Provided that the ULI handler refers only to global data and its own code, it is
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relatively simple to derive address ranges that encompass the needed pages. If the
ULI handler calls any library functions, the library DSO must be locked as well. The
smaller and simpler the code of the ULI handler, the easier it is to use mlock().

Registering the Interrupt Handler

When the program is ready to start operations, it registers its ULI handler. The ULI
handler is a function that matches the following prototype:

void function_name(void *arg);

The registration function takes arguments with the following purposes:

• The address of the handler function.

• An argument value to be passed to the handler on each interrupt. This is typically
a pointer to a work area that is unique to the interrupting device (supposing the
program is using more than one device).

• A count of semaphores to be allocated for use with this interrupt.

The semaphores are allocated and maintained by the ULI support. They are used to
coordinate between the program process and the interrupt handler, as discussed in
"Interacting With the Handler" on page 104. You should specify one semaphore for
each independent process that can wait for interrupts from this handler. Normally,
one semaphore is sufficient.

The value returned by the registration function is a handle that is used to identify this
interrupt in other functions. Once registered, the ULI handler remains registered until
the program terminates or ULI_destroy() is called.

Registering a Per-IRQ Handler

ULI_register_irq() takes two additional arguments to those already described:

• The CPU where the interrupt is occurring

• The number of the interrupt line to attach to
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Interacting With the Handler

The program process and the ULI handler synchronize their actions using the
following functions:

• ULI_sleep()

• ULI_wakeup()

When the program cannot proceed without an interrupt, it calls ULI_sleep(),
specifying the following:

• The handle of the interrupt for which to wait

• The number of the semaphore to use for waiting

Typically, only one process ever calls ULI_sleep() and it specifies waiting on
semaphore 0. However, it is possible to have two or more processes that wait. For
example, if the device can produce two distinct kinds of interrupts (such as normal
and high-priority), you could set up an independent process for each interrupt type.
One would sleep on semaphore 0, the other on semaphore 1.

When a ULI handler is entered, it wakes up a program process by calling
ULI_wakeup(), specifying the semaphore number to be posted. The handler must
know which semaphore to post, based on the values it can read from the device or
from program variables.

The ULI_sleep() call can terminate early, such as if a signal is sent to the process.
The process that calls ULI_sleep() must test to find the reason the call returned. It
is not necessarily because of an interrupt.

The ULI_wakeup() function can be called from normal code as well as from a ULI
handler function. It could be used within any type of asynchronous callback function
to wake up the program process.
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The ULI_wakeup() call also specifies the handle of the interrupt. When you have
multiple interrupting devices, you have the following design choices:

• You can have one child process waiting on the handler for each device. In this
case, each ULI handler specifies its own handle to ULI_wakeup().

• You can have a single process that waits on any interrupt. In this case, the main
program specifies the handle of one particular interrupt to ULI_sleep(), and
every ULI handler specifies that same handle to ULI_wakeup().

Achieving Mutual Exclusion

The program can gain exclusive use of global variables with a call to
ULI_block_intr(). This function does not block receipt of the hardware interrupt,
but does block the call to the ULI handler. Until the program process calls
ULI_unblock_intr(), it can test and update global variables without danger of a
race condition. This period of time should be as short as possible, because it extends
the interrupt latency time. If more than one hardware interrupt occurs while the ULI
handler is blocked, it is called for only the last-received interrupt.

007–4746–014 105





Chapter 9

REACT System Configuration

This chapter explains how to configure real-time CPUs that are restricted from
running scheduled processes and isolated from load-balancing considerations. It
discusses the following:

• "react Command-Line Summary" on page 107

• "Initially Configuring REACT" on page 109

• "Changing the Configuration" on page 110

• "Disabling REACT" on page 111

• "Reenabling REACT" on page 111

• "Showing the Configuration" on page 112

• "Getting Trace Information" on page 112

• "Running a Process on a Real-Time CPU" on page 115

• "Granting Access to REACT Features with react-permissions.pl" on page 116

For information about creating an external interrupt character special device file, see
"Opening the Device Special File" on page 102. For information about potential
problems, see Chapter 13, "Troubleshooting" on page 145.

react Command-Line Summary
To configure REACT, you will use the react(8) command. Configurable items
include:

• The configured real-time CPUs (the rtcpu devices)

• The bootcpuset (/boot)

• Interrupts, which can be redirected

REACT stores configuration information supplied via the react command in the
/etc/react.conf file.
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The react command has the following options:

/sbin/react -d [-v]
/sbin/react -e [-v]

/sbin/react -h

/sbin/react -i irqlist|RR [-v]

/sbin/react -r cpulist [-i irqlist|RR] [-v]

/sbin/react -s

-d Disables REACT.

-e Enables the configuration stored in the
/etc/react.conf file. For more information, see
"Initially Configuring REACT" on page 109.

-h Displays the usage statement (the default for react
without any options).

-i irqlist|RR Specifies the interrupt requests (IRQs) to be redirected.
The specification is either:

• A comma-separated list of IRQs and the CPUs to
which they should be directed, in the format:

IRQ:CPU,IRQ:CPU,IRQ:CPU ...

• RR for round-robin dispersal among CPUs in the
bootcpuset (the default).

To minimize latency of real-time interrupts, it is often
necessary to direct some IRQs to specific real-time
processors and to direct other interrupts away from
specific real-time processors. You should only redirect
IRQs if you must move them away from CPUs that
must be real-time. However, redirected IRQs often have
higher latency, so it is preferable to select CPUs for
real-time in such a way as to not require interrupt
redirection.

By default (if you do not enter -i), REACT assumes
that the IRQs should be moved off of the real-time
CPUs. REACT causes IRQs that can be moved to be
evenly dispersed among CPUs in the bootcpuset in a
round-robin (-i RR) fashion.
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-r cpulist Specifies the real-time CPUs. cpulist takes one of the
following formats:

• A comma-separated list of CPUs (you cannot specify
CPU 0):

cpu,cpu,...

• A range of CPUs (you cannot specify CPU 0 or a
descending range):

cpu-cpu

• A mixture of the above:

cpu,...cpu-cpu,cpu,...

If you do not specify -r cpulist, no real-time CPUs are
identified.

-s Shows the REACT configuration. See "Showing the
Configuration" on page 112.

-v Specifies verbose mode, which sends tracing messages
to the console.

For more information, see the react(8) man page.

Initially Configuring REACT
To initially configure REACT, do the following:

1. Specify the real-time CPUs and optionally any interrupt requests (IRQs) to be
redirected:

[root@linux root]# react -r cpulist [-i irqlist]

For example, to restrict CPUs 8-32 and (by default) redirect IRQs away from
CPUs 8-32:

[root@linux root]# react -r 8-32
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In another example, to restrict CPUs 2, 3, 4, 5, 6, and 7, to redirect IRQ 59 to CPU
2, and to redirect IRQ 66 to CPU 5:

[root@linux root]# react -r 2-7 -i 59:2,66:5

2. Reboot the system (react will add the required kernel command-line options).

When the system comes back up, REACT is automatically enabled by the
/etc/init.d/sgi_react script (which runs the react -e command).

The enable (-e) option does the following:

• Creates a container cpuset named rtcpus and cpusets (labeled rtcpuN) for each
CPU that is not part of the bootcpuset (such as /rtcpus/rtcpu1 for CPU1). You
can use these cpusets to run your real-time threads. You will find these cpusets in
/dev/cpuset, along with the bootcpuset set up by react -r in step 1 and
stored in /etc/react.conf.

• Configures the cpuset’s memory nodes by setting the values in the following files:

– /dev/cpuset/rtcpus/rtcpuN/mems

– /dev/cpuset/boot/mems

• Redirects interrupts if specified with the -i option in step 1. The proper
hexadecimal mask values are echoed to the file
/proc/irq/interrupt/smp_affinity.

Changing the Configuration
After the system is rebooted with the real-time configuration and REACT is
automatically enabled, you can make changes to the real-time and bootcpusets
dynamically without additional reboots.

For example, to change the list of real-time CPUs to CPU 2 and CPU 4 and return to
the default round-robin handling of IRQs, enter the following:

[root@linux root]# react -r 2,4 -i RR

To change the IRQ configuration without altering the real-time CPUs, use just the -i
option. For example, to redirect IRQ 4340 to CPU 3 and to redirect IRQ 66 to CPU 5:

[root@linux root]# react -i 4340:3,66:5
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Note: To temporarily change the running REACT system, you can call libreact
from a user program to add or remove real-time CPUs. However, these changes will
not be stored in /etc/react.conf. For more information, see the libreact(3)
man page.

Disabling REACT
To disable REACT and return the system to normal, do the following:

1. Stop the real-time processes.

2. Enter the disable option:

[root@linux root]# react -d

The disable option does the following:

• Removes the rtcpuN cpusets and adjusts /boot to behave like /cpuset on a
system without REACT.

• Starts the IRQ balancer, which will move any changed IRQs to CPUs based on the
IRQ balancer’s policies. For more information, see the irqbalance(1) man page.

Reenabling REACT
To reenable a previously configured REACT system that has been disabled and use
the configuration that is stored in /etc/react.conf, enter the following:

[root@linux root]# react -e

If you enter react -e on a currently enabled REACT system whose configuration
has been modified by a user program that calls libreact, react enables the
configuration stored in the /etc/react.conf file.

007–4746–014 111



9: REACT System Configuration

Showing the Configuration
The -s option displays the configuration that is running and the configuration that is
stored in /etc/react.conf.

Note: These may be different if you have called libreact from a user program to
add or remove real-time CPUs.

For example:

[root@linux root]# react -s

++++ REACT is ENABLED ++++

Live configuration:

===================
bootcpuset cpus: 0-1,4,7

real-time cpus: 2-3,5-6

Stored configuration in /etc/react.conf:
========================================

bootcpuset cpus: 0 1

real-time cpus: 2-7

IRQ configuration: 21:0 23:7 54:4 4336:1

Getting Trace Information
If you add -v to the command line with -d, -e, -r, or -i, the react command
prints a trace of its actions to the console. The verbose output will detail the steps
taken by react and is useful in understanding its behavior and analyzing problems.
(The amount of output will vary greatly depending on the number of CPUs and the
number of IRQs.)
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For example (line breaks shown here for readability:

[root@linux root]# react -e -v

SAL CPU 0

Default label = ’linux’

Searching for : [[:space:]]*label[[:space:]]*=[[:space:]]*linux[[:space:]]*$

Found matching image : label = linux

Modified kernel cmdline append = "console=ttySG0,115200 splash=silent thash_entries=2097152

crashkernel=512M-:256M kdb=on rcuclassic.blimit=3 disable_buffer_lru nohalt nosoftlockup noirqdebug

cgroups_disable=memory init=/sbin/react-init.sh isolcpus=1-3"

Current Kernel Command line:

BOOT_IMAGE=dev003:\efi\SuSE\vmlinuz-2.6.27.19-5-default root=/dev/sda11 console=ttySG0,115200

splash=silent thash_entries=2097152 crashkernel=512M-:256M kdb=on rcuclassic.blimit=3

disable_buffer_lru nohalt nosoftlockup noirqdebug cgroups_disable=memory init=/sbin/react-init.sh

isolcpus=1-3

rtcpus 1-3

bootcpus

Acquiring Lock...

Lock Acquired

cpuset /rtcpus cpu 1 mem 0

cpuset /rtcpus cpu 2 mem 1

cpuset /rtcpus cpu 3 mem 1

modified cpu list 1-3

modified mem list 0-1

cpuset: modify /rtcpus

cpuset /boot cpu 0 mem 0

modified cpu list 0

modified mem list 0

cpuset: modify /boot

Releasing Lock

Lock Released

Acquiring Lock...

Lock Acquired

SAL CPU 0
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DUP cpu 1

DUP cpu 2

DUP cpu 3

cpuset /boot cpu 0 mem 0

modified cpu list 0

modified mem list 0

cpuset: modify /boot

cpuset /rtcpus cpu 1 mem 0

cpuset /rtcpus cpu 2 mem 1

cpuset /rtcpus cpu 3 mem 1

modified cpu list 1-3

modified mem list 0-1

cpuset: modify /rtcpus

cpuset /rtcpus/rtcpu1 cpu 1 mem 0

modified cpu list 1

modified mem list 0

cpuset: modify /rtcpus/rtcpu1

cpuset /rtcpus/rtcpu2 cpu 2 mem 1

modified cpu list 2

modified mem list 1

cpuset: modify /rtcpus/rtcpu2

cpuset /rtcpus/rtcpu3 cpu 3 mem 1

modified cpu list 3

modified mem list 1

cpuset: modify /rtcpus/rtcpu3

Releasing Lock

Lock Released

++++ REACT is ENABLED ++++

Live configuration:

===================

bootcpuset cpus: 0

real-time cpus: 1-3

Stored configuration in /etc/react.conf:

========================================

bootcpuset cpus: 0

real-time cpus: 1-3
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IRQ configuration: RR

/proc/irq/28/smp_affinity

IRQ 28 cpu 0, new_mask

00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,

00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,

00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,

00000001

/proc/irq/29/smp_affinity

...

Running a Process on a Real-Time CPU
To run a process on a real-time CPU, you must invoke or attach it to a real-time
cpuset (that is, a cpuset containing a CPU that does not exist in the bootcpuset, such
as the /dev/cpuset/rtcpus/rtcpuN cpusets created above). For example:

[root@linux root]# cpuset --invoke /rtcpus/rtcpu4 -I ./foo

or:

[root@linux root]# echo $$ | cpuset -a /rtcpus

[root@linux root]# dplace -c 1 ./foo

Note: The dplace command example will attach the process to the second real-time
CPU, not the second CPU on the system.

To attach an existing process to a real-time CPU, you can use cpuset --attach.
For example, to attach your current process to CPU 2:

[root@linux root]# echo $$ | cpuset --attach /rtcpus/rtcpu2

For more information, see the cpuset(1), dplace(1), libreact(3), and
libcpuset(3) man pages.
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Granting Access to REACT Features with react-permissions.pl

The cpusets, devices, and control files associated with REACT are normally accessible
only by the root user.

You can use the react-permissions.pl script to specify a group of users that
have access to the following REACT features:

• Cpusets created by the react command

• User-level interrupts (ULI)

• The frame scheduler

• External interrupts

The script generates the /etc/udev/rules.d/99-sgi-react.rules file and a
new /etc/sysconfig/sgi-react.conf configuration file, which initially holds
the group ID and permissions. It changes the group ownership and file mode
permissions for REACT /dev, /sys/class/extint, and /dev/cpuset files, both
immediately and across reboots.

After running react-permissions.pl, the specified users can run REACT
applications without having the ability to overwrite any file on the system. (That is,
the specified users do not have CAP_DAC_OVERRIDE authority.)

Note: The script does not give the specified users access to native system calls that
require specific capabilities, such as sched_setscheduler(). To directly use those
system calls, a user must have the required process capabilities set.

For example, the following will change the group ownership to rtgroup and the file
mode to the default of 664 on the above mentioned files, giving users that are
members of rtgroup the ability to use the select REACT feature set:

[root@linux root]# react-permissions.pl rtgroup
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Using the REACT Library

You can use the REACT C application programming interface (API) to change the
configuration of real-time CPUs from program control without affecting the boot-up
configuration for real-time processing.

The system must have been booted with REACT configured as described in Chapter
9, "REACT System Configuration" on page 107. The real-time CPUs created with the
C API have local memory nodes assigned to them by default. The API requires that a
/boot cpuset is present.

Note: IRQ redirection is not supported through the API.

This chapter discusses the following:

• "REACT Library Routines" on page 117

• "Accessing REACT Library Routines" on page 124

• "Example Code Using the REACT Library Routines" on page 124

REACT Library Routines
This section discusses the following REACT library API routines:

• "cpu_shield" on page 118

• "cpu_sysrt_add" on page 119

• "cpu_sysrt_delete" on page 120

• "cpu_sysrt_info" on page 120

• "cpu_sysrt_irq" on page 121

• "cpu_sysrt_perm" on page 122

• "cpu_sysrt_runon" on page 124
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cpu_shield

int cpu_shield(int op, int cpu)

The cpu_shield routine controls timer interrupts on select CPUs. The cpu_shield
routine requires the following arguments:

Argument Description

op Starts (SHIELD_START_INTR) or stops
(SHIELD_STOP_INTR) timer interrupts

cpu Specifies the CPU on which to stop or start timer
interrupts

Note: Timer interrupts cannot be stopped on CPU 0
because it performs time-keeping tasks.

To avoid system instability, you should only use this routine on isolated CPUs that
are not being used by the system in general.

To use cpu_shield, you must install and load the sgi-shield kernel module. To
load the module, run the following:

# modprobe sgi-shield
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Return values:

Value Description

0 Success

-1 Error, setting errno

Note: Because cpu_shield makes use of a device file, errors associated with
open(2) also apply. An error of this type likely indicates that the sgi-shield
module is not loaded.

cpu_sysrt_add

int cpu_sysrt_add(struct bitmask *cpus, unsigned long rt_flags)

The cpu_sysrt_add routine creates real-time CPUs in the given bitmask CPUs. The
bitmask can contain one or more CPUs and memory nodes for the given flag. Access
to the cpusets must be mutually exclusive during the modification of the real-time
CPUs. The cpu_sysrt_add routine can either wait for the lock to become free or
can return immediately with errno set to EWOULDBLOCK.

Real-time flags

Flag Description

RT_WAIT Wait until the lock is free

RT_NO_WAIT Do not wait

Return values:

Value Description

0 Success

-1 Error, setting errno
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cpu_sysrt_delete

int cpu_sysrt_delete(struct bitmask *cpus, unsigned long rt_flags)

The cpu_sysrt_delete routine deletes the real-time CPUs in the given bitmask
CPUs. The bitmask can contain one or more CPUs and memory nodes for the given
flag. Access to the cpusets must be mutually exclusive during the modification of the
real-time CPUs. The cpu_sysrt_delete routine can either wait for the lock to
become free or can return immediately with errno set to EWOULDBLOCK.

Real-time flags:

Flag Description

RT_WAIT Wait until the lock is free

RT_NO_WAIT Do not wait

Return values:

Value Description

0 Success

-1 Error, setting errno

cpu_sysrt_info

int cpu_sysrt_info(struct bitmask &b_mask, unsigned long query_flag)

The cpu_sysrt_info routine writes the bitmask to b_mask. The bitmask will
contain one or more corresponding CPU or memory nodes for the given flag.

As its parameter, cpu_sysrt_info takes an allocated, NULL bitmask structure.

Query flags:

Flag Description

BOOTCPUS The CPUs in the /boot cpuset

BOOTMEMS The memory nodes assigned to the /boot cpuset

RTCPUS The real-time CPUs currently configured on the system
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RTMEMS The real-time memory nodes associated with the
real-time CPUs

Return values:

Value Description

0 Success

-1 Error, setting errno

Note: This routine can fail if an invalid query flag (EINVAL) is set. If any of the
cpuset query routines fail, an error is printed to stderr along with errno being set.

cpu_sysrt_irq

int cpu_sysrt_irq(char *user_irq_input, unsigned long rt_flags)

The cpu_sysrt_irq routine changes the CPU affinity of the given IRQs.

Input for user_irq_input is in string format, one of the following:

• A comma-separated list of paired IRQs and CPUs:

IRQ:CPU,IRQ:CPU,IRQ:CPU, ...

• Round-robin (default):

RR

Note: By default, REACT assumes that the IRQs should be moved off of the
real-time CPUs. REACT causes IRQs that can be moved to be evenly dispersed
among CPUs in the bootcpuset in a round-robin fashion.
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Return values:

Value Description

0 Success

-1 Error, setting errno

cpu_sysrt_perm

cpu_sysrt_perm (gid_t group, mode_t mode, unsigned long
rt_flags)

The cpu_sysrt_perm routine changes permissions so that REACT can be run by
non-root users, based on customer-specified group ownership and file-mode
permission parameters.

Input:

Value Description

gid_t group Specifies one of the following:

• The group number allowed

• PARAMETER_UNCHANGED, which leaves the group as
is

• READ_FROM_FILE, which uses the group that was
written to the sgi-react.conf file

mode_t mode Specifies one of the following:

• The file permissions allowed

• PARAMETER_UNCHANGED, which leaves the mode as
is

• READ_FROM_FILE, which uses the mode that was
written to the sgi-react.conf file
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unsigned long
rt_flag

Specifies the bitwise-OR of one or more of the following:

• Wait action, one of:

RT_WAIT Waits for the lock to
become free

RT_NO_WAIT Returns immediately
with errno set to
EWOULDBLOCK

• Write action:

WRITE_TO_FILE Writes the current
permissions, after
changes have been
made to the
sgi-react.conf
file.

Return values:

Value Description

0 Success

-1 Error, setting errno

Note: The chmod and chown commands do not exit on error, so the
errno will not be set on those errors but an error message will be
displayed.
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cpu_sysrt_runon

int cpu_sysrt_runon(int cpu)

The cpu_sysrt_runon routine assigns a process to run only on the processor
number given by cpu. cpu is assumed to be real-time, configured via
cpu_sysrt_add or react(8), or errno will be set to EINVAL.

Return values:

Value Description

0 Success

-1 Error, setting errno

Accessing REACT Library Routines
The following inclusion and linkage provides access to the REACT library from C
code:

#include <bitmask.h>

#include <react.h>
/* link with -lreact */

Example Code Using the REACT Library Routines
Following is example code using the REACT library.

/* Add, Delete and RunOn*/

int new_rtcpu = 3;

if ((cpus = bitmask_alloc(cpuset_cpus_nbits())) == NULL) {

perror("cpuset: bitmask alloc failed:");
exit (1);

}

bitmask_setbit(cpus, new_rtcpu);

if (cpu_sysrt_add(cpus, RT_WAIT)){
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perror("cpu_sysrt_add failed:");
}

if (cpu_sysrt_runon(new_rtcpu)) {

perror("cpu_sysrt_runon");

exit(1);
}

..

/* RT CODE */

..

if (cpu_sysrt_delete(cpus,RT_WAIT)){

perror("cpu_sysrt_del failed:");

}

bitmask_free(cpus);

=======================================================================

/* IRQ */

char user_irq_input_buf[45] = "86:2,89:1,87:3,18:4,88:6";

if (cpu_sysrt_irq(user_irq_input_buf, RT_WAIT)){

perror("cpu_sysrt_irq failed");

}

=======================================================================

/* Info */

struct bitmask *i_cpus = NULL;

if ((i_cpus = bitmask_alloc(cpuset_cpus_nbits())) == NULL) {

perror("cpuset: bitmask alloc failed:");

exit (1);

}

if (cpu_sysrt_info(&i_cpus, QRTCPUS)){

perror("cpu_sysrt_info failed");
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}

..

/* See libbitmask for use of bitmask structure */

..

bitmask_free(i_cpus);

=======================================================================

/* Permissions */

gid_t group_id = 117; /* group id or PARAMETER_UNCHANGED, READ_FROM_FILE */
mode_t mode = 01644; /* permissions or PARAMETER_UNCHANGED, READ_FROM_FILE*/

unsigned long mask = 0;

mask |= RT_NO_WAIT; /* or RT_WAIT */

mask |= WRITE_TO_FILE;

if (cpu_sysrt_perm(group_id, mode, mask) < 0){

perror("Permissions failed");

}
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SGI Linux Trace

This chapter discusses the following:

• "Overview of SGI Linux Trace" on page 127

• "Installing SGI Linux Trace" on page 128

• "Gathering Trace Data" on page 129

• "Monitoring Trace Events" on page 135

• "Exiting from the tracevisualizer GUI" on page 137

• "Removing SGI Linux Trace" on page 138

Overview of SGI Linux Trace
The SGI Linux Trace feature generates traces for kernel events such as interrupt
handling, scheduling, and system calls. You can use the SGI Linux Trace tools to
record and view trace events and analyze how kernel behavior impacts the execution
of applications.

SGI Linux Trace consists of the following:

• A debug kernel with traces inserted

• The tracevisualizer(1) graphical user interface (GUI)

• The tracedaemon(1) command, which is available from within the GUI or
directly from the command line

• Sample platform-specific data files gathered with the frame scheduler enabled and
running the simple_pt example program:

/var/SLT-DataFiles/x86_64/Default-example.proc
/var/SLT-DataFiles/x86_64/slt-cpu.example-all

You can view these files using tracevisualizer.
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For additional details, see the man pages and the tracevisualizer GUI help text
in the following file:

/usr/share/doc/TraceToolkit-0.9.5-1/Help.tracevisualizer

Note: SGI Linux Trace is based on the open-source Linux Trace Toolkit and has been
enhanced.

Installing SGI Linux Trace
To install the sltdebug kernel and SGI Linux Trace, do the following:

1. Log in as the superuser.

2. Install the kernel-sltdebug RPM:

[root@linux root]# rpm -Uvh kernel-sltdebug-*.rpm

3. Install the TraceToolkit RPM:

[root@linux root]# rpm -Uvh TraceToolkit-*.rpm

4. Do one of the following:

a. To use the slt service, set it to start after a reboot and then perform the
reboot:

[root@linux root]# chkconfig slt on
[root@linux root]# reboot

b. If you do not want to use the slt service, you must enter the following the
commands manually while running the slt kernel. (Without these steps, the
tracedaemon will not function.)

i. Create the /mnt/debug directory if it does not already exist:

[root@linux root]# mkdir /mnt/debug

ii. Mount the debugfs filesystem:

[root@linux root]# mount -t debugfs debugfs /mnt/debug
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iii. Load the slt module:

[root@linux root]# modprobe slt

Note: This procedure installs the sltdebug kernel as the default kernel. When you
are done with the sltdebug kernel, you should remove the kernel-sltdebug
RPM or change the symbolic links in /boot back to the default kernel. If you reboot
into a non-sltdebug kernel without removing both the kernel-sltdebug and
TraceToolkit RPMs, you must remove the slt module. See "Removing SGI Linux
Trace" on page 138.

Gathering Trace Data
The tracedaemon(1) command reads buffers of trace data provided by the kernel
and writes that data to a file. You can run tracedaemon from within the
tracevisualizer GUI or from the command line.

This section discusses the following:

• "Invoking the tracevisualizer GUI" on page 129

• "Recording Events" on page 130

• "Trace Files and Event Types" on page 132

• "Exiting from the tracedaemon Command Line" on page 135

Invoking the tracevisualizer GUI

To gather data, you must run the tracevisualizer GUI or the tracedaemon
command as root. To allow non-root users to use the command, you can do one of
the following:

• Configure sudo to allow execution of tracedaemon by specific users.

• Configure the command to set setuid root.

To invoke the tracevisualizer GUI, enter the following:

[user@linux user]# tracevisualizer
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To write the event data in ASCII format to the specified output file, enter the
following:

tracevisualizer trace_input_file proc_file output_file

For example:

[user@linux user]# tracevisualizer slt-cpu.1 Default.proc asciitraceoutput

For information about options that filter out the information written to output_file, see
the tracevisualizer(1) man page.

Recording Events

When you want to start recording events, click the stoplight toolbar icon. You can
then select options to control the following:

• The time duration for which the trace is to be recorded. You can click Start to start
recording and Stop to stop recording, or you can enter a specific duration in
seconds. The default is 120 seconds.

• The CPUs in which threads will be run. Select Bootcpuset: On to run threads in
every CPU in the bootcpuset (or CPU 0 if no bootcpuset is present) or select Off to
specify specific CPUs in CPUs To Run Threads in one of the following formats:

– A list of CPUs:

cpu,cpu,...

– A range of CPUs (you cannot specify a descending range):

cpu-cpu

– A mixture of the above:

cpu,...cpu-cpu,cpu,...

• The sub-buffer size and number. (A sub-buffer is a portion of a CPU buffer. The
size of the CPU buffer equals the number of sub-buffers multiplied by the
sub-buffer size.) If you experience data being overwritten or dropped, you may
need to increase the default values.
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• The size of the data files, which can be one of the following:

– Fixed size, sets the size of the sub-buffer and data file. This allows you to
continuously collect data within the sub-buffer without filling up all disk space
with growing data files.

– All data, which collects data into the sub-buffers and writes those sub-buffers
out to the ever-growing data file without restrictions on file size.

!
Caution: You do not want to collect events indefinitely, because you would
end up with huge trace files that would consume all disk space.

You can also use the tracedaemon command line to specify the information for
recording events:

tracedaemon [-h]

tracedaemon [-b] [-c] [-n n_subbufs] [-s subbuf_size] [-t seconds]
tracedaemon [-n n_subbufs] [-r cpulist] [-s subbuf_size] [-t seconds]

-b Runs the tracedaemon command and threads on all
CPUs listed in the bootcpuset. The default is CPU 0.

-c Specifies buffer circular (overwrite) mode, in which
data will be written to a fixed size buffer. After the
buffer is full, data will be overwritten and lost.

-h Displays the usage statement.

-n n_subbufs Specifies the number of sub-buffers. The default is 4.

-r cpulist Specifies on which CPUs the tracedaemon process
and threads can run, where cpulist takes one of the
following formats described above. This is useful for
keeping traffic off of certain CPUs. By default, per-cpu
threads run locally on the CPU in which they are
collecting data and the tracedaemon process runs
wherever the scheduler puts it.

-s subbuf_size Specifies the sub-buffer size in bytes. The default is
524224.
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-t seconds Specifies the total run time in seconds. The default is
120 seconds.

For example, to record trace events for 200 seconds and run tracedaemon and
threads in the bootcpuset (or CPU 0 if there is no bootcpuset), enter the following:

[root@linux root]# tracedaemon -t 200 -b

Trace Files and Event Types

The event information for each CPU is recorded in a separate file that can be read by
tracevisualizer and displayed graphically. The files are located in the same
directory from which the tracevisualizer GUI or the tracedaemon command is
run.

The trace files are named as follows:

• slt-cpu.N, with N corresponding to the CPU number.

• slt-cpu.all, which combines information from all of the individual slt-cpu.N
files. This file is only created when you run tracedaemon from inside the GUI.

Note: If you invoked tracedaemon from the command line, the slt-cpu.all
file is not created.

• Default.proc process/IRQ information file.

For example, suppose you have 4 CPUs. If you use the default options in the GUI,
the following files would be output:

slt-cpu.0

slt-cpu.1

slt-cpu.2

slt-cpu.3

slt-cpu.all
Default.proc

Table 11-1 summarizes the types of events that are recorded. For more information,
see the tracedaemon(8) man page.
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Table 11-1 Trace Events that are Recorded

Event Type Raw Trace Output Name
Event Graph
Representation Description

Advanced
programmable
interrupt
controller
(APIC)

APIC Intr Timer APIC Timer The thread has entered a local
APIC timer interrupt.

APIC Call Func APIC CF The thread has entered the APIC
Interrupt for SMP Call
function. The passed function will
be run on the CPUs.

APIC Intr Exit (no representation) The function execution is finished
and the thread is exiting the APIC
interrupt processing.

Frame
scheduler

FRS Yield FRSYL A frame scheduler application
worker thread has called
frs_yield() to indicate the end
of its processing for the current
minor frame.

FRS Intr Entry FRSINTENT The frame scheduler
interrupt/event processing has
started.

FRS Intr Exit FRSINTEX The frame scheduler
interrupt/event processing has
finished.

Interrupt Badbreak BBRK The thread is entering privileged
mode to handle a bad system call.

Break BRK The thread is entering privileged
mode to handle a system call.

Fault FAULT The thread is entering privileged
mode to handle a system fault.
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Event Type Raw Trace Output Name
Event Graph
Representation Description

Kernel exit (a change will appear
in the graph)

The interrupt processing is
complete and thread is returning to
the previous user-mode processing.

Interrupt return INTRT The interrupt processing is
complete and the thread is
returning to the previous
kernel-mode processing.

IRQ entry IRQ The running thread has been
preempted to handle the top-half of
an interrupt (IRQ) event.

Lightweight LTW The thread is entering privileged
mode via a lightweight mechanism
such as a fastpath system call.

Opfault OPF The thread is entering privileged
mode to handle an illegal operation.

Pagefault PGF The thread is entering privileged
mode to handle a fault in the
requested page.

Soft IRQ SIRQ:IRQ number Soft-IRQ execution for previous
IRQ event.

Tasklet action TA:function address Tasklet execution for previous IRQ
event.

Tasklet hiaction THA:function address High-priority tasklet execution for
previous IRQ event.

Unaligned UNA The thread is entering privileged
mode to handle an unaligned
memory access.

Scheduler Sched activate Ac:PID The thread has been moved onto
the CPU run queue. The thread is
in the ready-to-run state.

Sched deactivate De:PID The thread has been moved off the
CPU run queue. The thread is in
the wait/sleeping state.
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Event Type Raw Trace Output Name
Event Graph
Representation Description

Sched switch Sw:PID The CPU has been allocated to a
new thread. The new thread’s
register state, stack, and memory
mappings are switched onto the
CPU. The new thread is in the
running state. The previous thread
will likely have been deactivated
prior to the switch.

System call Syscall entry system call name The thread is entering a system
call. System calls can be invoked
from user-mode and kernel-mode
on Linux.

Syscall exit (no representation) The thread has exited a system call
handler.

Exiting from the tracedaemon Command Line

If you run tracedaemon from the command line, do one of the following to exit:

• Press Ctrl-c

• Enter the following, using the process ID (PID) for the tracedaemon process:

[root@linux root]# kill -9 tracedaemon_PID

Monitoring Trace Events
This section discusses the following:

• "Opening a Trace File" on page 136

• "Zooming In On An Event" on page 136

• "Changing the Time Frame" on page 136

• "Seeing Process Details" on page 137

• "Seeing All Event Trace Details" on page 137

• "Filtering Events Based on CPU" on page 137
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For more details, see the GUI help text.

Opening a Trace File

To monitor events, you must open a trace file and the Default.proc process/IRQ
information file. You must have permission to read the files.

Use the following menu selection to invoke the Open Trace window:

File
> Open Trace

Note: You could also click on the left-most icon in the icon bar to open a new trace.
For more information about the shortcuts in the icon bar, see the GUI help.

Enter the path to a trace file and process/IRQ information file, or click the Browse
button to open the Select Trace File or > Select Proc File, which lets you select a
filename.

By default, the trace is shown in the Event Graph output, zoomed out to a great
distance.

Zooming In On An Event

The graph displays the current start time, the end time, the resulting span of time,
and the format of the time ruler in either microseconds (us) or nanoseconds (ns).

In most cases, the graph will be most useful if you zoom in to a smaller time span.
You may also wish to resize the window. To zoom in, select the following from the
menu bar or use the + spyglass icon:

Tools
> Zoom In

Changing the Time Frame

You can use several methods to change the time frame:

• Use the scroll bar at the bottom of the graph for slight changes

136 007–4746–014



REACT
TM

Real-Time for Linux® Programmer’s Guide

• Left-click the mouse button to zoom in and right-click to zoom out

• Use the following menu selection to set the start and end time:

Tools
> View Time Frame ...

• Display the time difference between the two points on the graph by clicking the
middle mouse button at the first point (which will display a vertical line drawn as
dashes) and at the second point (which will cause a second vertical line to appear),
which then displays the time difference in the left of the bottom status bar.

Seeing Process Details

To see a particular process, click on the Process Analysis tab and select the specific
process ID number on the left. The right side of the screen will display characteristics
of the process and system call accounting. The Kernel process (process 0)
summarizes the system.

Seeing All Event Trace Details

To see details about all trace entries, click on the Raw Trace tab.

Filtering Events Based on CPU

To turn events on or off based on CPU both in the Event Graph and Raw Trace
output, use the Filter CPU’s menu. Enter the CPUs that you want to display.

Exiting from the tracevisualizer GUI
To exit from the tracevisualizer GUI, select:

File
> Exit
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Removing SGI Linux Trace
To remove the sltdebug kernel and SGI Linux Trace, do the following:

1. Log in as the superuser.

2. Remove the kernel-sltdebug RPM:

[root@linux root]# rpm -ev kernel-sltdebug-*

3. Remove the TraceToolkit RPM:

[root@linux root]# rpm -ev TraceToolkit-*

4. Reboot the system (so that it uses the default kernel).

Note: If you remove the kernel-sltdebug RPM but not the TraceToolkit RPM,
or if you reboot into a non-sltdebug kernel without removing either RPM, you must
do the following to stop the slt service and prevent it from starting after a reboot:

[root@linux root]# /etc/init.d/slt stop

[root@linux root]# chkconfig slt off
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Using the SGI Linux Trace User Library

You can use the SGI Linux Trace (SLT) user library C application programming
interface (API) to generate SLT user events, which allow a user program to log data in
the same format as the kernel events generated by the SLT debug kernel. No
additional SLT kernel events will be generated when logging the user event.

This chapter discusses the following:

• "SLT User Library Routines" on page 139

• "Accessing SLT User Library Routines" on page 141

• "Example Code Using the SLT User Library Routines" on page 141

• "Generating User and Kernel Data" on page 142

• "Examining the Data" on page 142

• "Manually Including User Events in slt-cpu.all" on page 143

SLT User Library Routines
This section discusses the following SLT user library routines:

• "slt_close_utrace" on page 139

• "slt_open_utrace" on page 140

• "slt_user_trace" on page 140

slt_close_utrace

int slt_close_utrace()

The slt_close_utrace routine closes the user channel opened by
slt_open_utrace.

Return values: none
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slt_open_utrace

int slt_open_utrace()

The slt_open_utrace routine opens a user channel that allows user events to be
created. You must call this routine before any user events can be created.

Return values: none

slt_user_trace

int slt_user_trace(int EVENT_ID, char* user_string, int cpu)

The slt_user_trace routine generates up to five user events with the given
information supplied by the user.

Input:

Value Description

int EVENT_ID SLT_USER_N, where N is a numeral in the range 1-5
(such as SLT_USER_1).

char* user_string A descriptive string supplied by the user that describes
in more detail the type of user event being logged. It
can also be used as a search token when examining the
user data. The user_string can be up to 16
characters in length.

int cpu The CPU on which data was logged (optional). The
user can supply the CPU number in order to generate a
more accurate representation of the logged data.
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Return values:

Value Description

0 Success

-1 Error, setting errno

Accessing SLT User Library Routines
The following inclusion and linkage provides access to SLT user library the from C
code:

#include <bitmask.h>

#include <react.h>

/* link with -lreact */

Example Code Using the SLT User Library Routines
Following is example code using the SLT user library:

{

int user_tt_fd;

if ((user_tt_fd = slt_open_utrace()) < 0)

exit(1);

slt_user_trace(SLT_USER_1, "My Event String",3 /* cpu */);

slt_close_utrace();

}

The following example program that is installed with the TraceToolkit illustrates how
to use the SLT user:

/usr/share/react/SLT/sample-user/u_trace_test.c

To compile the example:

# cc u_trace_test.c -o u_trace_test -lusertrace -lpthread
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Generating User and Kernel Data
To collect user and kernel data, open the tracevisualizer(1) and collect kernel
data in the normal manner. While data collection is in progress, execute the user
program with the user events:

# ./u_trace_test

An slt-cpu.user data file will be created in the same directory from which the
user program was executed. This will contain all of the user events for the last
execution of u_trace_test.

After the data collection has stopped, the tracevisualizer combines all of the data files
in its current directory. For example, suppose you had the following files:

slt-cpu.0
slt-cpu.1

...

slt-cpu.N

ll of the above files will be combined into one file, slt-cpu.all.

Note: To include the user events in slt-cpu.all, the slt-cpu.user file must be
in the same directory as the slt-cpu.X files. If this was not the case, see "Manually
Including User Events in slt-cpu.all" on page 143.

Examining the Data
The slt-dump utility program that is installed with the SGI Linux Trace Toolkit will
assist in examining the SLT user and kernel data created. To compile it, do the
following:

# /usr/share/react/SLT/tests/slt-dump.c

# cc slt-dump.c -o slt-dump

Due to the amount of data collected, you should redirect the output to a .txt file so
that you can examine it with an editor of your choice. For example:

# ./slt-dump -cf slt-cpu.all > slt-data-9-20-13:21.txt
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Manually Including User Events in slt-cpu.all

To include the user events in slt-cpu.all, the slt-cpu.user file must be in the
same directory as the slt-cpu.X files. If slt-cpu.all was created without
slt-cpu.user in the directory, do the following to manually include the events:

1. Delete the slt-cpu.all file.

2. Copy slt-cpu.user to the same directory as the slt-cpu.X files.

3. Restart the tracevisualizer. This will trigger the routine to merge all the data
files.
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Chapter 13

Troubleshooting

This chapter discusses the following:

• "Diagnostic Tools" on page 145

• "Problem Removing /rtcpus" on page 148

Diagnostic Tools
You can use the following diagnostic tools:

• Use the cat(1) command to view the /proc/interrupts file in order to
determine where your interrupts are going:

[user@linux user]% cat /proc/interrupts

For an example, see Appendix A, "Example Application" on page 149.

• Use the profile.pl(1) Perl script to do procedure-level profiling of a program
and discover latencies. For more information, see the profile.pl(1) man page.

• Use the following ps(1) command to see where your threads are running:

[user@linux user]% ps -FC processname

For an example, see Appendix A, "Example Application" on page 149.

To see the scheduling policy, real-time priority, and current processor of all threads
on the system, use the following command:

[user@linux user]% ps -eLo pid,tid,class,rtprio,psr,cmd

For more information, see the ps(1) man page.

• Use the top(1) command to display the largest processes on the system. For more
information, see the top(1) man page.

• Use the strace(1) command to determine where an application is spending most
of its time and where there may be large latencies. The strace command is a
very flexible tool for tracing application activities and can be used for tracking
down latencies in an application. Following are several simple examples:

007–4746–014 145



13: Troubleshooting

– To see the amount of time being used by system calls in the form of histogram
data for a program named hello_world, use the following:

[root@linux root]# strace -c hello_world

execve("./hello_world", ["hello_world"], [/* 80 vars */]) = 0

Hello World

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

27.69 0.000139 28 5 3 open
20.92 0.000105 15 7 mmap

10.76 0.000054 54 1 write

7.57 0.000038 13 3 fstat

6.57 0.000033 17 2 1 stat

5.98 0.000030 15 2 munmap
4.58 0.000023 12 2 close

4.38 0.000022 22 1 mprotect

4.18 0.000021 21 1 madvise

2.99 0.000015 15 1 read

2.39 0.000012 12 1 brk
1.99 0.000010 10 1 uname

------ ----------- ----------- --------- --------- ----------------

100.00 0.000502 27 4 total

– You can record the actual chronological progression through a program with
the following command (line breaks added for readability):

[root@linux root]# strace -ttT hello_world

14:21:03.974181 execve("./hello_world", ["hello_world"], [/* 80 vars */]) = 0

..
14:21:03.976992 mmap(NULL, 65536, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)

= 0x2000000000040000 <0.000007>

14:21:03.977053 write(1, "Hello World\n", 12Hello World

) = 12 <0.000008>

14:21:03.977109 munmap(0x2000000000040000, 65536) = 0 <0.000009>
14:21:03.977158 exit_group(0) = ?

The time stamps are displayed in the following format:

hour:minute:second.microsecond

The execution time of each system call is displayed in the following format:

<second>
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Note: You can use the -p option to attach to another already running process.

For more information, see the strace(1) man page.

• Use the tracevisualizer command. See Chapter 11, "SGI Linux Trace" on page
127.

• To find the CPU-to-core numbering scheme, examine the following fields in the
/proc/cpuinfo file:

processor
physical id
core id

For example, the following output for a third-party x86-64 system shows that
logical CPU 0 (processor 0) and CPU 2 (processor 2) are cores sharing the
same socket: (physical id 0)

processor : 0

...
physical id : 0

siblings : 2

core id : 0

cpu cores : 2

processor : 2

...

physical id : 0

siblings : 2

core id : 1
cpu cores : 2
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The following output for an Altix UV 1000 or Altix UV 100 system shows two
logical processors CPU 0 (processor 0) and CPU 8 (processor 8):

processor : 0

..

physical id : 0

siblings : 16

core id : 0

cpu cores : 8

processor : 8

..

physical id : 1

siblings : 16
core id : 0

cpu cores : 8

Note the following:

– CPU 0 is housed in the first socket on the system (physical id 0). This
socket has 8 CPU cores. Each of those cores will have two logical CPUs if
hyperthreading is enabled.

– CPU 8 is housed in the second socket (physical id 1). This socket has 8
CPU cores. Each of those cores will have two logical CPUs if hyperthreading is
enabled.

Each logical CPU is in the first core on its respective socket (core ID 0).

Problem Removing /rtcpus

You should stop real-time processes before using the --disable option. However,
the script will attempt to remove the process from the real-time CPUs and display the
following failure message if it was unable to move them:

"*** Problem removing /rtcpus/rtcpu3. cpuset***

Try again. If that doesn’t work check /dev/cpuset/rtcpus/rtcpu3/tasks

for potential problem PIDS;
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Example Application

This appendix discusses an example of a multithreaded application that demonstrates
using external interrupts and other aspects of REACT. It uses netlink sockets to
communicate from kernel space to user space. You can use it as a performance
benchmark to compare between machines or settings within REACT, such as for
external interrupts, cpusets, and CPU isolation.

The application is composed of the following examples:

• A kernel module, which shows examples of the following concepts:

– Creating and building a driver with a standard miscellaneous device interface

– Setting up and registering a external interrupt handler

– Creating and binding a kernel thread

– Using netlink sockets to communicate with a user application

• A user-space application, which shows examples of the following concepts :

– Assigning threads to cpusets, thereby changing thread/CPU affinity

– Changing thread/CPU affinity without cpusets

– Creating, destroying, and signaling threads

– Changing a thread’s scheduling policies and priorities

– Locking memory

– Setting up a netlink socket to communicate with a kernel thread

This example puts the data into a matrix and multiplies two matrices together. The
worker thread displays the multiplication and calculates how long it takes to multiply
the two matrices together. You can modify the size of the matrix to see how it effects
the time to calculate the multiplication. For example, you could use a
field-programmable gate array (FPGA) to implement the multiply function in order to
show how much faster it is under these circumstances than under normal calculation.
You could also run on two different platforms to compare the speed of integer
multiplication.
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This program runs as a multithreaded process. The main process launches the
following threads, sets each thread’s scheduling policy and priority, and displays the
thread policy and priority information:

• The receiving thread (netlink_receive) does the following:

1. Tells the kernel to start the processing of interrupts (a one-time event).

2. Locks its current and future memory (if requested).

3. Uses the example kernel module driver to do the following:

a. Waits for messages from the kernel netlink socket.

b. Signals the worker thread with the data from the driver.

• The worker thread (worker_routine) does the following:

1. Waits to be signaled by the receive thread for data.

2. Fills two matrices with the data and multiplies them together. The output will
be printed to the console.

3. Calculates the time it takes for the matrices to by multiplied together.

• The interrupt handler (extint_run) runs when a hardware external interrupt is
received. It wakes up the bench_extintd thread.

• The kernel thread (bench_extintd) gets data, sends messages with the data to
the receiving thread (netlink_receive), and then sleeps until another interrupt
occurs.

netlink_receive is set at a higher priority than the time-consuming
worker_routine.

Figure A-1 describes the example. Step 1 occurs once, but steps 2 through 4 are
repeated for each external interrupt.
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Interrupt Context Kernal Space User Space

1

Start processing interrupts
and sending messages, and
create communication link

netlink_receive

Wake up
bench_extint

extint_run

Get data
Send messages with data
Sleep

bench_extintd

Receive data
Signal worker_routine

netlink_receive

Put data into matrix
Do matrix work

worker_routine

2 3 4

External
interrupt

Figure A-1 Example Work Flow

The rest of this section discusses the following:

• "Setting Up External Interrupts" on page 151

• "Building and Loading the Kernel Module" on page 152

• "Building the User-Space Application" on page 153

• "Running the Sample Application" on page 153

• "set_affinity code" on page 156

Setting Up External Interrupts
To set up external interrupts, do the following:

1. Log in to the target system as root.

2. Load the ioc4_extint module:

[root@linux root]# modprobe ioc4_extint
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3. Insert the required information into the source, mode, and period files in the
/sys/class/extint/extint0/ directory. For example:

[root@linux root]# echo loopback >/sys/class/extint/extint0/source

[root@linux root]# echo toggle >/sys/class/extint/extint0/mode

[root@linux root]# echo 1000000 >/sys/class/extint/extint0/period

For more information about external interrupts see Chapter 3, "External Interrupts" on
page 17.

Building and Loading the Kernel Module
To build the bench_extint_mod application kernel module, do the following on the
target system:

1. Log in to the target system as root.

2. Ensure that the kernel-source-*.rpm RPM is installed.

3. Ensure that the sgi-extint-kmp-modvers RPM is installed.

4. Copy the Module.symvers file from its location in the directory defined by the
uname -r output to the kernel directory:

[root@linux root]# cp /usr/share/extint/‘uname -r‘/Module.symvers /usr/share/react/examples/bench/kernel/.

5. Change to the kernel directory:

[root@linux root]# cd /usr/share/react/samples/bench/kernel

6. Build the bench_extint_mod.ko file:

[root@linux kernel]# make -C /lib/modules/‘uname -r‘/build SUBDIRS=$PWD modules

For more information, see the uname(1) man page.

7. Copy the bench_extint_mod.ko file to the directory defined by the uname -r
output:

[root@linux kernel]# cp bench_extint_mod.ko /lib/modules/‘uname -r‘

8. Make a dependency file:

[root@linux kernel]# depmod
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For more information, see the depmod(8) man page.

9. Load the bench_extint_mod module:

[root@linux kernel]# modprobe bench_extint_mod

For more information, see the modprobe(8) man page.

10. Use the bench_extint_mod kernel module with the bench_example
application.

Note: You must load the ioc4_extint module before the bench_extint_mod
module.

Building the User-Space Application
To build the user-space module, do the following:

1. Change to the user directory:

[root@linux root]# cd /usr/share/react/samples/bench/user

2. Build the module:

[root@linux root]$ make

Running the Sample Application
You can run the bench_example application in the following modes:

• Matrix multiply mode receives data from the kernel module and puts that data into
a matrix. After two matrices are full, it multiplies them together and calculates the
amount of time taken for the calculation. See "Matrix Multiply Mode Examples"
on page 155.

• Netlink socket bench mode causes the application to send multiple messages from
kernel space to user space during one iteration. The number of messages sent per
iteration depends upon notification from the user application to start sending
messages. See "Netlink Socket Benchmark Mode Examples" on page 155.
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Do the following:

• Ensure that you have the bench_extint_mod module loaded by using the
lsmod(1) command, which should show it in the module list.

For example:

[root@linux root]# lsmod

Module Size Used by

bench_extint_mod 546232 0

ioc4_extint 27272 0

ioc4 24704 1 ioc4_extint

extint 32008 2 bench_extint_mod,ioc4_extint

If the output does not include bench_extint_mod, follow the instructions in
"Building and Loading the Kernel Module" on page 152.

• Execute the bench command as desired.

The bench command has the following options:

-b messages Runs the application in benchmark mode with the
specified number of messages in each send. messages
is an integer in the range 1 through 100. (If you
enter an invalid number, the default is 100.)

-h Prints usage instructions.

-k cpu Specifies the CPU where the kthread will run.

-m Locks memory.

-p cpu Specifies the CPU where the bench process will run.

-r cpu Specifies the CPU where the receive thread will run.

-s size Specifies the size of buffers in bytes for network
socket bench mode. The default is 1024. You can
vary the size of the buffers to see the impact on
performance.

-t sec Specifies the total run time in seconds, with a
maximum of 30 seconds. The default is 30.
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-w cpu Specifies the CPU where the worker thread will run.

Matrix Multiply Mode Examples

To run in matrix multiply mode for 30 seconds:

[root@linux root]# ./bench -t30

To run with memory locked and bench processes running on CPU 2 (real-time or
non-real-time):

[root@linux root]# ./bench -m -p2 -t30

To run the bench process on CPU 3 and the worker and receive threads on CPU 2:

[root@linux root]# ./bench -m -p3 -r2 -w2 -t30

See also "set_affinity code" on page 156.

Netlink Socket Benchmark Mode Examples

The following shows an example in bench mode that runs for 30 seconds with
memory locked and a buffer size of 512 bytes. There are 50 messages in each send.
The process is running on CPU 1, the receive thread running on CPU 2, the worker
thread is running on CPU 3, and the kernel thread is running on CPU 1:

[root@linux root]# ./bench -m -t30 -p1 -r2 -w3 -k1 -b50 -s512

If you have multiple terminals open, you can run the following tail(1) and ps(1)
commands to see where things are running:

[root@linux root]# tail -f /var/log/messages

Feb 16 08:54:05 dewberry kernel: bench_extint init

Feb 16 08:54:40 dewberry kernel: bench_extint ran 14958, thread ran 14958 dropped msgs 0

Feb 16 08:54:40 dewberry kernel: ioctl unregister bench_extint

[root@linux root]# ps -eLF

UID PID PPID LWP C NLWP SZ RSS PSR STIME TTY TIME CMD

root 10076 6747 10076 0 3 5951 18696 1 11:34 pts/0 00:00:00 ./bench -m -t30 -p1 -r2 -w3 -k1 -b50 -s512

root 10076 6747 10078 11 3 5951 18696 2 11:34 pts/0 00:00:00 ./bench -m -t30 -p1 -r2 -w3 -k1 -b50 -s512

root 10076 6747 10079 99 3 5951 18696 3 11:34 pts/0 00:00:04 ./bench -m -t30 -p1 -r2 -w3 -k1 -b50 -s512

root 10077 15 10077 10 1 0 0 1 11:34 ? 00:00:00 [bench_exintd]
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set_affinity code
You can use the following functions to set process and thread affinity for real-time
and non real-time CPUs. You can compile this file as part of another application, but
you must link it against the libcpuset.

#include <sys/syscall.h>
#include <unistd.h>

#include "errors.h"

#define CPUSET_ROOT "/dev/cpuset"

#define BITS_PER_LONG (sizeof(unsigned long) * 8)

pid_t _gettid(){

return syscall(__NR_gettid);

}

void do_pthread_affinity(int cpu) {

int nrcpus = cpuset_cpus_nbits();

int bitmask_size = (nrcpus/BITS_PER_LONG);

unsigned long cpus[bitmask_size];
pid_t tid = _gettid();

cpus[cpu/64] = 1 << (cpu % 64);

if (sched_setaffinity(tid, sizeof(cpus), cpus)) {

perror("set_affinity");
exit(1);

}

}

void set_thread_affinity(int cpu) {

char path[50],fullpath[50];

sprintf(path, "/rtcpus/rtcpu%d", cpu);

sprintf (fullpath, CPUSET_ROOT "/rtcpus/rtcpu%d",cpu);

if (access(fullpath, F_OK) != 0) {

/* no cpuset, so try moving it without */

156 007–4746–014



REACT
TM

Real-Time for Linux® Programmer’s Guide

do_pthread_affinity(cpu);
return;

}

/* Move the process into the cpuset */

if (cpuset_move(_gettid(), path) == -1) {
perror("cpuset_move");

exit(1);

}

}

/* Set the current proc to run on cpu . */

void set_process_affinity(int cpu) {

int nrcpus = cpuset_cpus_nbits();

int bitmask_size = (nrcpus/BITS_PER_LONG);
unsigned long cpus[bitmask_size];

char path[50],fullpath[50];

unsigned long mask;

cpus[cpu/64] = 1 << (cpu % 64);

sprintf(path, "/rtcpus/rtcpu%d", cpu);

sprintf (fullpath, CPUSET_ROOT "/rtcpus/rtcpu%d",cpu);

if (access(fullpath, F_OK) != 0) {

/* no cpuset, so try moving it without */
if (sched_setaffinity(getpid(), sizeof(cpus), cpus)) {

perror("set_process_affinity");

}

return;

}
/* Move the process into the cpuset */

if (cpuset_move(getpid(), path) == -1)

perror("cpuset_move");

}
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Appendix B

High-Resolution Timer Example

Example B-1 demonstrates the use of SGI high-resolution timers. It will run
high-resolution POSIX timers in both relative mode and absolute mode.

Example B-1 High-Resolution Timer

/*****************************************************************************

* *
* This sample program demonstrates the use of SGI high resolution timers *

* in SGI REACT. *

* *

* A simple way to build this sample program is: *

* cc -o timer_sample timer_sample.c -lrt *
* *

* Invocation example (500 usec timer): *

* ./timer_sample 500 *

* *

* Invocation example (500 usec timer on realtime cpu 2): *

* cpuset --invoke=/rtcpu2 --invokecmd=./timer_sample 500 *
* *

*****************************************************************************/

#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#include <signal.h>

#include <time.h>

#include <errno.h>

#include <asm/unistd.h>
#include <pthread.h>

#include <strings.h>

#include <sys/time.h>

#include <getopt.h>

#include <libgen.h>

struct timespec time1;

int flag;

/* Timer has triggered, get current time and indicate completion */
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void sigalarm(int signo)
{

clock_gettime(CLOCK_REALTIME,&time1);

flag = 1;

}

int timer_test(int clock_id, long nanosec) {

struct itimerspec ts;

struct sigevent se;

struct sigaction act;

sigset_t sigmask;
struct timespec sleeptime, time0;

timer_t timer_id;

long i;

int signum = SIGRTMAX;

int status;

/* Set up sleep time for loops: */

sleeptime.tv_sec = 1;

sleeptime.tv_nsec = 0;

/* Set up signal handler: */
sigfillset(&act.sa_mask);

act.sa_flags = 0;

act.sa_handler = sigalarm;

sigaction(signum, &act, NULL);

/* Set up timer: */

memset(&se, 0, sizeof(se));

se.sigev_notify = SIGEV_SIGNAL;

se.sigev_signo = signum;

se.sigev_value.sival_int = 0;
status = timer_create(clock_id, &se, &timer_id);

if (status < 0) {

perror("timer_create");

return -1;

}

/* Start relative timer: */
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ts.it_value.tv_sec = nanosec / 1000000000;
ts.it_value.tv_nsec = (nanosec % 1000000000);

ts.it_interval.tv_sec = 0;

ts.it_interval.tv_nsec = 0;

printf("Waiting for timeout of relative timer: ");
fflush(stdout);

flag = 0;

/* Get current time for reference */

clock_gettime(CLOCK_REALTIME,&time0);

/*

* There will be some latency between getting the start time above,
* and setting the relative time in timer_settime.

*/

status = timer_settime(timer_id, 0, &ts, NULL);

if (status < 0) {

perror("timer_settime");
return -1;

}

/* Loop waiting for timer to go off */

while (!flag) nanosleep(&sleeptime, NULL);

if (time1.tv_nsec < time0.tv_nsec)
printf("Total time=%luns\n",

1000000000LL - (time0.tv_nsec - time1.tv_nsec) +

((time1.tv_sec - time0.tv_sec -1)*1000000000LL));

else

printf("Total time=%luns\n",
time1.tv_nsec - time0.tv_nsec +

((time1.tv_sec - time0.tv_sec)*1000000000LL));

/* Start absolute timer: */
printf("Waiting for timeout of absolute timer: ");

fflush(stdout);

flag = 0;

/* Get current time and add timeout to that for absolute time */

clock_gettime(CLOCK_REALTIME,&time0);

i = time0.tv_nsec + (nanosec % 1000000000);
ts.it_value.tv_nsec = i % 1000000000;

ts.it_value.tv_sec = (time0.tv_sec + (nanosec / 1000000000)) +
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(i / 1000000000);
/* There should be less latency than what we saw above */

status = timer_settime(timer_id, TIMER_ABSTIME, &ts, NULL);

if (status < 0) {

perror("timer_settime");

return -1;
}

/* Loop waiting for timer to go off */

while (!flag) nanosleep(&sleeptime, NULL);

if (time1.tv_nsec < time0.tv_nsec)

printf("Total time=%luns\n",
1000000000LL - (time0.tv_nsec - time1.tv_nsec) +

((time1.tv_sec - time0.tv_sec -1)*1000000000LL));

else

printf("Total time=%luns\n",

time1.tv_nsec - time0.tv_nsec +
((time1.tv_sec - time0.tv_sec)*1000000000LL));

/* Cleanup */

timer_delete(timer_id);

return 0;

}

int main(int argc, char *argv[])

{
long timeout;

if (argc < 2) {

printf("usage: %s <timeout usec>\n", basename(argv[0]));

return -1;
}

timeout = atol(argv[1]);

if (timeout <= 0) {

printf("Timeout negative or 0 specified\n");

printf("usage: %s <timeout usec>\n", basename(argv[0]));
return -1;

}
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/* Run timer_test with high resolution timer. */

printf("\nRunning with CLOCK_REALTIME (normal resolution)..\n");

if (timer_test(CLOCK_REALTIME, timeout * 1000)) {

return -1;

}
}
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Sample User-Level Interrupt Programs

The following applications demonstrate some of the user-level interrupt (ULI)
interface:

• "uli_sample Sample Program" on page 165

• "uli_ei Sample Program" on page 166

The applications are installed with the ULI RPM and are located in:

/usr/share/react/uli/examples/

uli_sample Sample Program
The uli_sample program registers for notification on CPU 0 for occurrences of a
specified interrupt number. To use uli_sample, do the following:

1. Load the ULI feature kernel module:

[root@linux root]# modprobe uli

2. Change to the directory containing uli_sample:

[root@linux root]# cd /usr/share/react/uli/examples/

3. Run uli_sample, where interrupt# is the interrupt number:

[root@linux root]# ./uli_sample interrupt#

For example, to register for notification on CPU 0 for occurrences of the interrupt
number 34, enter the following:

[root@linux root]# ./uli_sample 34
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uli_ei Sample Program
The uli_ei program requires the external interrupt to run and prints a message
every time the external interrupt line is toggled. To use uli_ei, do the following:

1. Load the ULI feature kernel module, if not already done:

[root@linux root]# modprobe uli

2. Load the external interrupt kernel module:

[root@linux root]# modprobe ioc4_extint

3. Set the external interrupt mode to toggle:

[root@linux root]# echo toggle > /sys/class/extint/extint0/mode

4. Change to the directory containing uli_ei:

[root@linux root]# cd /usr/share/react/uli/examples/

5. Run uli_ei:

[root@linux root]# ./uli_ei
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activity

When using the frame scheduler, the basic design unit: a piece of work that can be
done by one thread or process without interruption. You partition the real-time
program into activities and use the frame scheduler to invoke them in sequence
within each frame interval.

address space

The set of memory addresses that a process may legally access. The potential address
space in Linux is 264; however, only addresses that have been mapped by the kernel
are legally accessible.

APIC

Advanced programmable interrupt controller.

arena

A segment of memory used as a pool for allocation of objects of a particular type.

asynchronous I/O

I/O performed in a separate process so that the process requesting the I/O is not
blocked waiting for the I/O to complete.

average data rate

The rate at which data arrives at a data collection system, averaged over a given
period of time (seconds or minutes, depending on the application). The system must
be able to write data at the average rate, and it must have enough memory to buffer
bursts at the peak data rate.

BAR

Base address register.

clock tick

A measure of time determined by the resolution of the real-time clock.
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control law processor

A type of stimulator provides the effects of laws of physics to a machine.

controller thread

A top-level process that handles startup and termination.

CPU

Central Processing Unit refers to cores (not sockets).

device driver

Code that operates a specific hardware device and handles interrupts from that device.

device service time

The time the device driver spends processing the interrupt and dispatching a user
thread.

device special file

The symbolic name of a device that appears as a filename in the /dev directory
hierarchy. The file entry contains the device numbers that associate the name with a
device driver.

external interrupt

A hardware signal from an I/O device, such as the SGI IOC4 chip, that is generated
in response to a voltage change on an externally accessible hardware port.

fastcall

A version of a function call that has been optimized in assembler in order to bypass
the context switch typically necessary for a full system call.

file descriptor

A number returned by open() and other system functions to represent the state of
an open file. The number is used with system calls such as read() to access the
opened file or device.
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firm real-time program

A program that experiences a significant error if it misses a deadline but can recover
from the error and can continue to execute. See also hard real-time program and soft
real-time program.

frame interval

The amount of time that a program has to prepare the next display frame. A frame
rate of 60 Hz equals a frame interval of 16.67 milliseconds.

frame rate

The frequency with which a simulator updates its display, in cycles per second (Hz).
Typical frame rates range from 15 to 60 Hz.

frame scheduler

A process execution manager that schedules activities on one or more CPUs in a
predefined, cyclic order.

frame scheduler controller

The thread or process that creates a frame scheduler. Its thread or process ID is used
to identify the frame scheduler internally, so a thread or process can only be
identified with one scheduler.

frame scheduler controller thread

The thread that creates a frame scheduler.

guaranteed rate

A rate of data transfer, in bytes per second, that definitely is available through a
particular file descriptor.

hard real-time program

A program that experiences a catastrophic error if it misses a deadline. See also firm
real-time program and soft real-time program.

hardware latency

The time required to make a CPU respond to an interrupt signal.
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hardware-in-the-loop (HWIL) simulator

A simulator in which the role of operator is played by another computer.

interrupt

A hardware signal from an I/O device that causes the computer to divert execution
to a device driver.

interrupt information template

An array of frs_intr_info_t data structures, where each element in the array
represents a minor frame.

interrupt propagation delay

See hardware latency.

interrupt redirection

The process of directing certain interrupts to specific real-time processors and
directing other interrupts away from specific real-time processors in order to
minimize the latency of those interrupts.

interrupt response time

The total time from the arrival of an interrupt until the user process is executing
again. Its main components are hardware latency, software latency, device service time,
and mode switch.

interrupt service routine (ISR)

A routine that is called each time an interrupt occurs to handle the event.

interval time counter (ITC)

A 64–bit counter that is scaled from the CPU frequency and is intended to allow an
accounting for CPU cycles.

interval timer match (ITM) register

A register that allows the generation of an interval timer when a certain ITC value
has been reached.
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IPI

Interprocessor interrupt.

IRQ

Interrupt request.

isolate

To remove the Linux CPU from load balancing considerations, a time-consuming
scheduler operation.

jitter

Numerous short interruptions in process execution.

locks

Memory objects that represent the exclusive right to use a shared resource. A process
that wants to use the resource requests the lock that (by agreement) stands for that
resource. The process releases the lock when it is finished using the resource. See
semaphore.

LSM

Linux security model.

major frame

The basic frame rate of a program running under the frame scheduler.

master scheduler

The first frame scheduler, which provides the time base for the others. See also slaves
and sync group.

microsecond (us or usec)

1 microsecond is .000001 seconds. Abbreviated as us or usec.

millisecond (ms or msec)

1 millisecond is .001 seconds. Abbreviated as ms or msec.
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minor frame

The scheduling unit of the frame scheduler, the period of time in which any
scheduled thread or process must do its work.

mode switch

The time it takes for a thread to switch from kernel mode to user mode.

MPI

Message passing interface.

nanosecond (ns)

1 nanosecond is .000000001 seconds. Abbreviated as ns or nsec.

new pthreads library (NPTL)

The Linux pthreads library shipped with 2.6 Linux.

overrun

When incoming data arrives faster than a data collection system can accept it and
therefore data is lost.

overrun exception

When a thread or process scheduled by the frame scheduler should have yielded
before the end of the minor frame but did not.

page fault

The hardware event that results when a process attempts to access a page of virtual
memory that is not present in physical memory.

pages

The units of real memory managed by the kernel. Memory is always allocated in
page units on page-boundary addresses. Virtual memory is read and written from the
swap device in page units.
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peak data rate

The instantaneous maximum rate of input to a data collection system. The system
must be able to accept data at this rate to avoid overrun. See also average data rate.

process

The entity that executes instructions in a Linux system. A process has access to an
address space containing its instructions and data.

pthread

A thread defined by the POSIX standard. Pthreads within a process use the same
global address space. Also see thread.

rate-monotonic analysis

A technique for analyzing a program based on the periodicities and deadlines of its
threads and events.

rate-monotonic scheduling

A technique for choosing scheduling priorities for programs and threads based on the
results of rate-monotonic analysis.

restrict

To prevent a CPU from running scheduled processes.

scheduling discipline

The rules under which an activity thread or process is dispatched by a frame
scheduler, including whether or not the thread or process is allowed to cause overrun
or underrun exceptions.

segment

Any contiguous range of memory addresses. Segments as allocated by Linux always
start on a page boundary and contain an integral number of pages.

semaphore

A memory object that represents the availability of a shared resource. A process that
needs the resource executes a p operation on the semaphore to reserve the resource,
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blocking if necessary until the resource is free. The resource is released by a v
operation on the semaphore. See also locks.

shield

To switch off the timer (scheduler) interrupts that would normally be scheduled on a
CPU.

simulator

An application that maintains an internal model of the world. It receives control
inputs, updates the model to reflect them, and outputs the changed model as visual
output.

slaves

The other schedulers that take their time base interrupts from the master scheduler. See
also sync group.

soft real-time program

A program that can occasionally miss a deadline with only minor adverse effects. See
also firm real-time program and hard real-time program.

software latency

The time required to dispatch an interrupt thread.

spraying interrupts

The distribution of I/O interrupts across all available processors as a means of
balancing the load.

stimulator

An application that maintains an internal model of the world. It receives control
inputs, updates the model to reflect them, and outputs the changed model as
nonvisual output.

sub-buffer

A portion of a CPU buffer. The size of the CPU buffer equals the number of
sub-buffers multiplied by the sub-buffer size.
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sync group

The combination of a master scheduler and slaves.

thread

An independent flow of execution that consists of a set of registers (including a
program counter and a stack). Also see pthread.

TLB

Translation lookaside buffer, which translates CPU virtual memory addresses to bus
physical memory addresses.

transport delay

The time it takes for a simulator to reflect a control input in its output display. Too
long a transport delay makes the simulation inaccurate or unpleasant to use.

ULI

User-level interrupt

ULI process

A user process that has registered a function with the kernel, linked into the process
in the normal fashion, to be called when a particular interrupt is received.

underrun exception

When a thread or process scheduled by the frame scheduler should have started in a
given minor frame but did not (owing to being blocked), an underrun exception is
signaled. See overrun exception.

unsynchronized drifty ITCs

Systems with processors that run at the same speed but do not have the same clock
source and therefore their ITC values may experience drift relative to one another.

us (or usec)

Microsecond (1 us is .000001 seconds).
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user-level interrupt (ULI)

A facility that allows a hardware interrupt to be handled by a user process.
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A

abstraction layer, 17
access to select REACT features, 116
activity thread management, 68
address space (locking in memory), 102
advanced programmable interrupt controller

(APIC), 133
aircraft simulator, 3
API

REACT library, 117
SLT user library, 139

application example, 149
asynchronous I/O, 91
average data rate, 5

B

/boot, 107
/boot cpuset, 117, 120
BOOTCPUS, 120
bootcpuset, 42, 107
BOOTMEMS, 120

C

C language, 7
cache warming, 63
callout deregistration, 30
callout mechanism, 29
callout registration, 29
CAP_DAC_OVERRIDE authority, 116
cat, 145
clock processor, 43
clock_gettime, 13, 14

CLOCK_MONOTONIC, 13
CLOCK_REALTIME, 13
clock_settime, 13
clocks, 12
close a user trace routine, 139
configuration, 107
console interrupts, 11
control law process stimulator, 4
controller thread, 66, 77
core ID, 148
cores requirement, 7
CPU

restricting, 10, 45
workload control, 39

CPU 0, 43
CPU affinity routine, 121
CPU designation routine, 124
CPU-bound, 9
CPU-to-core numbering scheme, 147
cpu_shield, 118
cpu_sysrt_add, 119
cpu_sysrt_delete, 120
cpu_sysrt_info, 120
cpu_sysrt_irq, 121
cpu_sysrt_perm, 122
cpu_sysrt_runon, 124
CPUs in the /boot cpuset, 120
cpuset, 42, 115
cpuset-utils, 7
cpusets, 54
create real-time routine, 119
cycles per second, 3

D

data collection system, 5
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debug kernel, 6
delete real-time routine, 120
deregistration of callout, 30
dev attribute file, 18
/dev/extint#, 102
device service time, 48, 51
device special file, 102
device-driver time base, 55
diagnostic tools, 145
direct RTC access, 14
disciplines, 9
disk I/O optimization, 91
distributed applications, 15
dplace, 116
driver creation and building, 149
driver deregistration, 28
driver interface, 23
driver registration, 24
driver template, 31

E

earnings-based scheduler, 10
event recording, 131
events recorded by tracedaemon, 132
examples

API code
REACT library , 124
SLT user library, 141

matrix multiply mode, 155
multithreaded application, 149
Netlink socket benchmark mode, 155

exception types, 81
external interrupt ingest, 36
external interrupt setup and registration, 149
external interrupt with frame scheduler, 70
external interrupts, 17
extint, 7, 19, 102
extint_device, 23
extint_properties, 23

F

fastcall, 13
features, 6
feedback loop, 2
filter tracedaemon events based on CPU, 137
firm real-time program, 1
first-in-first-out, 10
flock system call, 20
fork(), 78
FPGA, 149
frame interval, 3
frame rate, 2
frame scheduler, 6, 53

advantages, 12
API, 58
background discipline, 73
basics, 54
concepts, 53
continuable discipline, 73
controller thread, 66
current frame extension, 82
design process, 75
exception counts, 84
exception handling, 81
exception policies, 83
exception types, 81
external interrupt, 70
frame scheduler controller, 58
frs_run flag, 64
frs_yield flag, 64
high-resolution timer, 70
interval timers not used with, 89
library interface for C programs, 60
major frame, 56
managing activity threads, 68
minor frame, 56
multiple exceptions, 83
multiple synchronized, 66
overrun exception, 71, 81
overrunnable discipline, 72
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overview, 11
pausing, 67
preparing the system, 76
process outline for single, 77
real-time discipline, 71
repeat frame, 82
scheduling disciplines, 71
scheduling rules of, 64
sequence error handling, 88
signal use under, 86
signals in an activity thread, 87
signals produced by, 86, 87
starting up a single scheduler, 66
starting up multiple schedulers, 67
synchronized schedulers, 78
thread programming model, 55
thread structure, 62
time base selection, 55, 69
underrun exception, 71, 81
underrunable discipline, 72
using consecutive minor frames, 73
warming up cache, 63

frame scheduler controller, 58
receives signals, 87

frs
See "frame scheduler", 53

frs_create(), 60, 77
frs_create_master(), 60, 78, 79
frs_create_slave(), 60, 80
frs_create_vmaster(), 60, 78, 79
frs_destroy(), 62, 78, 80, 81
frs_enqueue(), 60, 67, 78
frs_fsched_info_t, 58
frs_getattr(), 62, 84
frs_getqueuelen(), 61, 68
frs_intr_info_t, 59
frs_join, 61
frs_join(), , 62, 67, 78, 80
frs_overrun_info_t(), 84
frs_pinsert(), 61, 68
frs_premove(), 62, 68, 87
frs_pthread_enqueue(), 61, 64, 71, 78, 80

frs_pthread_getattr(), 62, 84
frs_pthread_insert, 61
frs_pthread_insert(), 68
frs_pthread_readqueue(), 61, 68
frs_pthread_register(), 62
frs_pthread_remove(), 62, 68, 87
frs_pthread_setattr(), 61, 83

example code, 84
frs_queue_info_t, 58
frs_readqueue(), 61, 68
frs_recv_info_t, 59
frs_resume(), 61, 67
frs_run, 64
frs_setattr(), 61, 83
frs_start, 61
frs_start(), 67, 78, 80
frs_stop, 61
frs_stop(), 67
frs_t, 58
frs_userintr(), 61
frs_yield, , 61, 62, 64, 73
fsync, 92

G

generate user events routine, 140
generating a REACT system configuration, 107
global variables and ULI, 101
_GNU_SOURCE, 20
ground vehicle simulator, 3

H

hard real-time program, 1
hardware latency, 48, 49
hardware–in–the–loop simulator, 4
high-output modes, 34
high-priority tasklet execution event, 134
high-resolution timer, 70, 159
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HUB hardware timers, 53
hyperthreading, 148
Hz (hertz, cycles per second), 3

I

I/O interrupts, 11
I/O-bound, 9
IDE driver, 33
illegal operation event, 134
implementation functions, 24
include files, 124, 141
ingest section for external interrupts, 36
interchassis communication, 14
internal driver circuit I/O connectors, 37
interrupt

group. See interrupt group, 69
See also user-level interrupt (ULI), 97

interrupt control, 11
interrupt events, 134
interrupt group, 69
interrupt information template, 59
interrupt notification interface, 28
interrupt propagation delay, 49
interrupt redirection, 43
interrupt response time

components, 48
definition of, 47
minimizing, 51

interrupt return event, 134
interrupt service routines (ISRs), 51, 97
interval

See "frame interval", 3
interval timer, 89
introduction, 1
IOC4 chip, 17
IOC4 driver, 32
ioc4_extint, 102
IOC4–specific character special device and class, 31
IRQ redirection, 117

K

kernel critical section, 50
kernel data generation, 142
kernel facilities for real-time, 9
kernel module insertion/removal, 46
kernel scheduling, 39
kernel thread control, 42
kernel thread creating and binding, 149

L

latency, 48, 49
libbitmask, 7
libcpuset, 7, 116
libreact, 8
libuli, 98
linkage, 124, 141
Linux requirement, 7
Linux Trace, 127
Linux Trace Toolkit, 128
lk, 8
LOCK_MAND, 20
locking memory, 102
locking virtual memory, 10
low output modes, 34
low-level driver interface, 23
low-level driver template, 31
lspci, 93

M

major frame, 56
master controller thread, 79
master scheduler, 79
maximum response time guarantee, 48
mechanism for callout, 29
memory locking, 149
memory locking (virtual), 10
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memory nodes assigned to the /boot cpuset, 120
memory requirement, 7
memory-mapped I/O, 91
Message-Passing Interface (MPI), 15
minor frame, 56, 64
mlock(), 10, 100
mlockall(), 10, 100
mmap, 20
mode attribute file, 18
mode switch, 48, 51
modelist attribute file, 18
monitoring trace events, 136
MPI, 15
ms (milliseconds), 3
msync, 91, 92
multiple devices and ULI, 101
multiple independent drivers, 32
multiprocessor architecture, 66

N

netlink socket use, 149
new pthreads library (NPTL), 42
nice value, 9
normal-time program, 1
NPTL, 42

O

open a user trace routine, 140
operating system requirements, 7
operator, 2
output modes, 34
overhead work, 43
overrun, 5
overrun exception, 64
overrun in frame scheduler, 71

P

page fault, 10
page fault event, 134
param.h, 40
PCI devices and programmed I/O, 93
PCI-RT-Z, 53
peak data rate, 5
period attribute file, 18
permissions routine, 122
physical ID, 148
physical interfaces, 36
physical memory requirements, 10
poll, 20
POSIX

real-time policies, 10
real-time specification 1003.1-2003, 92

power plant simulator, 3
priorities, 39
priority band, 40
problem removing /rtcpus, 148
/proc manipulation, 11
/proc/cpuinfo, 147
/proc/interrupts, 44, 145
process control, 6
process details in tracevisualizer, 137
process mapping to CPU, 10
process running on a real-time CPU, 115
processor requirement, 7
profile.pl, 145
programmed I/O and PCI devices, 93
programming language for REACT, 7
propagation delay, 49
provider attribute file, 19
ps, 41, 145
pthread priority, 42
pthread_attr_setinheritsched(), 42
pthread_attr_setschedparam(), 42
pthread_attr_setschedpolicy(), 42
pthread_attr_t, 42
pthread_attr_t(), 59

007–4746–014 181



Index

pthread_create(), 42, 78
PTHREAD_EXPLICIT_SCHED, 42
PTHREAD_INHERIT_SCHED, 42
pthread_setschedparam(), 42
pthread_t, 59
pulse output modes, 34

Q

quantum attribute file, 19

R

rate
See "frame rate", 3

raw trace, 137
react command, 6
react-permissions.pl, 116
react-utils, 8
read system call, 20
real-time applications, 2
real-time clock (RTC), 12
real-time CPU and running a process, 115
real-time CPUs currently configured on the

system, 121
real-time memory nodes associated with the

real-time CPUs, 121
real-time priority band, 40
real-time program

and frame scheduler, 11
terminology, 1

register access, 14
register format, 35
registration of callout, 29
repeat frame, 82
requirements, 7
response time guarantee, 48
restricting a CPU, 45
RHEL requirement, 7
round-robin, 10

RPMs, 7
RT_NO_WAIT, 119, 120
RT_WAIT, 119, 120
RTC, 12
RTC access, 14
rtcpu, 54
rtcpu devices, 107
RTCPUS, 121
RTMEMS, 121

S

sched_setparam(), 40
sched_setscheduler(), 10, 40
scheduler events, 133, 134
scheduling, 39
scheduling disciplines, 9, 71
scheduling policy, 149
select system call, 20
SGI Linux Trace, 6, 127
SGI Linux Trace user library, 139
sgi-extint-kmp-*, 7
sgiioc4 driver, 33
sig_dequeue, 87
sig_overrun, 87
sig_underrun, 87
sig_unframesched, 87
signal, 86
signal handler, 80
SIGRTMIN, 87
SIGUSR1, 87
SIGUSR2, 87
simulator, 2
single frame scheduler start, 66
slave controller thread, 80
slave scheduler, 79
SLES requirement, 7
SLT, 127

See "SGI Linux Trace", 139
slt-cpu.all, 132, 142
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slt-cpu.N, 132
slt-cpu.user, 142
SLT-DataFiles, 127
slt_close_utrace, 139, 140
slt_open_utrace, 140
slt_user_trace, 141
sltdebug kernel, 138
SN hub device interrupts, 51
socket programming, 14
soft real-time program, 1
soft-IRQ execution event, 134
software latency, 48, 49
source attribute file, 19
sourcelist attribute file, 19
special scheduling disciplines, 9
stimulator, 2
strace, 41, 145
strobe output modes, 34
sub-buffer size, 130
swapping requirement, 7
sync group, 79
synchronous I/O, 92
/sys/class/extint/extint#/ , 19
/sys/class/ioc4_intout/intout#/dev, 35
sysconf(_SC_CLK_TCK), 13
sysfs attribute files, 18
system call event, 135
system call exit, 135
system configuration generation, 107
system fault event, 133
system-call time base, 55

T

tasklet action event, 134
tasklet hiaction, 134
thread, 58
thread control, 42
thread creation, destruction, and signals, 149
thread programming model, 55
time base for frame scheduler, 69

time base support, 55
time difference, 137
time estimation, 65
time frame in tracevisualizer, 136
time slices, 40
time-share applications, 10
Timer interrupt control REACT library routine, 118
timer interrupts, 11, 40
timer_create(), 13
toggle output modes, 34
top, 145
Trace, 6
trace data gathering, 129
trace events, 132
trace files and event types, 132
tracedaemon, 127, 131
tracevisualizer, 127, 129, 142
transport delay, 3
troubleshooting, 145

U

u_trace_test, 142
ULI

See "User-level interrupt (ULI)", 97
uli, 98
ULI_block_intr, 99
ULI_destroy, 98
ULI_register_irq(), 98, 103
ULI_sleep(), 99
ULI_unblock_intr, 99
ULI_wakeup(), 99
unaligned access event, 134
underrun exception, 64
underrun, in frame scheduler, 71
unsupported hardware device capabilities, 31
usecs (microseconds), 48
user access, 116
user application communication, 149
user data generation, 142
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user event generation, 139
user thread control, 42
user thread dispatch, 51
user trace routines, 140
user-level interrupt (ULI)

concurrency, 101
global variables, 101
handler interaction, 104
initializing, 101
interrupt handler registration, 103
multiple devices, 101
mutual exclusion, 105
overview, 97
per-IRQ handler, 103
program address space locking, 102
restrictions on handler, 99
ULI_block_intr(), 105
ULI_sleep (), 104
ULI_sleep () function, 101
ULI_wakeup () function, 104

user-level interrupts (ULI), 165
/usr/include/asm/param.h, 40
/usr/include/sn/timer.h, 14

/usr/include/sys/pthread.h, 59
/usr/share/src/react/examples, 60

V

virtual memory locking, 10
virtual reality simulator, 4
volatile keyword, 101
Vsync time base, 55

W

wave stimulator, 5
write bitmask routine, 120

Z

zooming in tracevisualizer, 136
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